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Central extensions of 
urrent groups

Peter Maier, Karl-Hermann Neeb

Abstra
t. In this paper we study 
entral extensions of the identity 
omponent G of the Lie group

C

1

(M;K) of smooth maps from a 
ompa
t manifold M into a Lie group K whi
h might be in�nite-

dimensional. We restri
t our attention to Lie algebra 
o
y
les of the form !(�;�)=[�(�;d�)℄ , where

�:k�k!Y is a symmetri
 invariant bilinear map on the Lie algebra k of K and the values of ! lie in




1

(M;Y )=dC

1

(M;Y ) . For su
h 
o
y
les we show that a 
orresponding 
entral Lie group extension

exists if and only if this is the 
ase for M=S

1

. If K is �nite-dimensional semisimple, this implies the

existen
e of a universal 
entral Lie group extension

b

G of G . The groups Di�(M) and C

1

(M;K) a
t

naturally on G by automorphisms. We also show that these smooth a
tions 
an be lifted to smooth

a
tions on the 
entral extension

b

G if it also is a 
entral extension of the universal 
overing group

e

G

of G .

Introdu
tion

Let M be a 
ompa
t manifold and K a Lie group (whi
h may be in�nite-dimensional). Then

the so 
alled 
urrent groups C

1

(M;K) with pointwise multipli
ation are interesting in�nite-

dimensional Lie groups arising in many 
ir
umstan
es. The most studied 
lass of su
h groups

are the loop groups (M = S

1

and K 
ompa
t) whi
h is 
ompletely 
overed by Pressley and

Segal's monograph [PS86℄. The goal of this paper is a systemati
 understanding of a 
ertain


lass of 
entral extensions of the identity 
omponents of these groups, namely those whose Lie

algebra 
o
y
le is of produ
t type, whi
h is de�ned in more detail below. Here the main point is

to see whi
h Lie algebra 
o
y
le 
an be integrated to a 
entral Lie group extension. These


entral extensions o

ur naturally in mathemati
al physi
s, where the problem to integrate

proje
tive representations of groups to representations of 
entral extensions is at the heart of

quantum me
hani
s ([Mi87℄, [LMNS98℄, [Wu01℄). The 
entral extensions of 
urrent groups are

often 
onstru
ted via representatations by pulling ba
k 
entral extensions of 
ertain operator

groups ([Mi89℄). It is our philosophy that one should try to understand the 
entral extensions of

a Lie group G �rst, and then try to 
onstru
t representations of these 
entral extensions. In this


ontext 
ertain dis
reteness 
onditions for Lie algebra 
o
y
les appear naturally be
ause they

ensure that the 
orresponding 
entral Lie algebra extensions integrate to group representations

([Ne02b℄). We think of these dis
reteness 
onditions as an abstra
t version of the phenomenon

of dis
reteness of quantum numbers in quantum physi
s. As an out
ome of our analysis, we will

see that we do not have to impose any 
onditions on the group K for our general results.

We now des
ribe our results in some more detail. Let M be a 
ompa
t manifold, Y a

sequentially 
omplete lo
ally 
onvex spa
e, 


p

(M;Y ) the spa
e of smooth Y -valued p-forms on

M , and z

M

(Y ) = 


1

(M;Y )=dC

1

(M;Y ). Then z

M

(Y ) 
arries a natural lo
ally 
onvex topology

and if Y is Fr�e
het, then the same holds for z

M

(Y ). Now let K be a possibly in�nite-dimensional


onne
ted Lie group and k its Lie algebra. We asso
iate to ea
h invariant 
ontinuous bilinear form

�: k�k ! Y a 
ontinuous Lie algebra 
o
y
le on g := C

1

(M; k) by !(�; �) := [�(�; d�)℄ 2 z

M

(Y ).

We 
all su
h 
o
y
les of produ
t type. The main obje
tive of this paper is to understand 
entral

Lie group extensions of the identity 
omponent G := C

1

(M;K)

e

of the Lie group C

1

(M;K)


orresponding to the Lie algebra 
o
y
le ! . A

ording to the results in [Ne02b, Se
t. VII℄, there
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are two obstru
tions for the existen
e of a 
entral Lie group extension

b

G of G 
orresponding

to ! . First the image of the asso
iated period map per

!

:�

2

(G) ! z

M

(Y ) may not be dis
rete,

and se
ond, the adjoint a
tion of g on the Lie algebra

b

g := g �

!

z

M

(Y ) does not integrate to

a smooth representation of G . The main point in the 
hoi
e of this general setting is that it

permits us to use arbitrary in�nite-dimensional Lie groups K , hen
e in parti
ular groups of the

type K = C

1

(N;H), H a �nite-dimensional Lie group. Then C

1

(M;K)

�

=

C

1

(M �N;H),

so that we may use produ
t de
ompositions of manifolds to study 
urrent groups on manifolds.

In the �rst se
tion we investigate the dis
reteness of the period group �

!

:= im(per

!

). Our

main result states that �

!

is dis
rete for all 
ompa
t manifolds M if and only if it is dis
rete

for the manifold M = S

1

. This is remarkable be
ause the group �

2

(G) is not well a

essible for

dimM > 2. In Se
tion II we turn to the 
ase where K is �nite-dimensional and �: k� k! V (k)

is the universal invariant symmetri
 bilinear form on k . In this 
ase we show that the period

group is dis
rete for M = S

1

, hen
e also for arbitrary M by the results of Se
tion I.

In Se
tion III we turn to the 
entral Lie group extensions. Here we show in parti
ular that

for any Lie algebra 
o
y
le ! of produ
t type the adjoint representation of g on

b

g integrates to

a smooth Lie group representation of the generally non-
onne
ted group C

1

(M;K). Therefore

the se
ond obstru
tion to the existen
e of a 
entral Lie group extension is always trivial, and

we obtain for ea
h � for whi
h the period group �

!

is dis
rete a 
entral Lie group extension of

the identity 
omponent G = C

1

(M;K)

e

. In Se
tion IV we show that if K is �nite-dimensional

and semisimple, then we even obtain a universal 
entral Lie group extension of G by the abelian

group �

1

(G) � (z

M

(V (k))=�

!

).

Be
ause of its relevan
e for the 
onstru
tion of representations of Di�(M) and abelian

extensions of this group, it is interesting to know to whi
h extent the Lie group Di�(M) a
ts

on the 
entral extensions of G . It obviously a
ts on G itself by 
omposition ':f := f Æ '

�1

for

f 2 G , ' 2 Di�(M). Suppose that Z ,!

b

G!! G is a 
entral Lie group extension 
orresponding

to a 
o
y
le of produ
t type and that

b

G also is a 
entral extension of the universal 
overing group

e

G of G , whi
h means that the 
onne
ting homomorphism �

1

(G) ! �

0

(Z) is an isomorphism.

Then we show in Se
tion VI that the a
tion of Di�(M) has a unique lift to an a
tion on

b

G . This

result is based on general results in Se
tion V whi
h are 
on
erned with lifting automorphi
 Lie

group a
tions R � G ! G to a
tions of R on 
entral extensions

b

G of G by Z . We show that

if G is simply 
onne
ted, a pair of smooth a
tions of R on G and Z 
an be lifted to a smooth

a
tion of R on

b

G whenever there is a smooth a
tion of R on the Lie algebra

b

g of

b

G extending

the a
tions on g and z .

The universal 
entral extension

b

G of the universal 
overing group

e

G of G = C

1

(M;K)

e

,

K a simple 
ompa
t Lie group, appears in [PS86℄ for the �rst time, although no rigorous argument

for its existen
e is given there. As we will see in Se
tion III, the group �

2

(

b

G) is not always trivial,


ontradi
ting a 
orresponding statement in [PS86℄. The 
onstru
tion of a 
entral extension of

the group G , instead of its universal 
overing group, seems to be new (see [LMNS98℄ for a


onstru
tion for whi
h it is not 
lear to the authors that it produ
es a Lie group). It is 
lear that

this point of view has the advantage that the group G itself has a 
on
rete realization, whi
h

need not be the 
ase for its universal 
overing group.

As is well known from the 
ase of loop groups ([PS86℄) and the 
ase of 
urrent groups

over Riemann surfa
es ([EF94℄), the 
oadjoint orbits of the 
entral extensions

b

G have fas
inating

geometri
 interpretations. In [VN02℄ we address various aspe
ts of the geometry of 
oadjoint

orbits for general M .

It is also interesting to study \algebrai
" relatives of the 
entral extensions of 
urrent

groups arising in this paper. In [Shi92℄ Shi 
onstru
ts so-
alled toroidal groups asso
iated to the

universal 
entral extension

b

g of the Lie algebra g := C [t

�

; s

�

℄
 k , where k is a simple 
omplex

Lie algebra. These groups are de�ned as groups generated by root groups in su
h a way that

they a
t in all integrable representations of

b

g . He also makes a 
onne
tion to Steinberg groups of

the algebra C [t

�

; s

�

℄ of Laurent polynomials. It would be interesting to understand the pre
ise

relationship between these groups and the universal 
entral Lie group extension of C

1

(T

2

;K)

e

.

For M = T

d

, the d-dimensional torus, we think of our 
entral extensions

b

G , or the 
orresponding

semidire
t produ
t groups

b

G o T

d

, as natural Lie group versions of toroidal groups. The Lie
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algebras of these groups and their representations have been studied intensively in re
ent years

(see f.i. [CF01℄, [Tan99℄, [Pi00℄, [BB99℄). In [Ta98℄ Takebayashi approa
hes the problem to �nd

groups for the Lie algebra

b

g , or rather for g in his 
ontext, by using a Chevalley basis of k to


onstru
t a group 
orresponding to g as an algebrai
 group over the algebra C [t

�

; s

�

℄ via the

Chevalley-Demazure 
onstru
tion. He also examines the stru
ture of the \elementary subgroup"

generated by all root groups, whi
h is a quotient of the group 
onstru
ted by Shi.

This paper 
ontributes to a larger program dealing with Lie groups G whose Lie algebras g

are root graded in the sense that there exists a �nite irredu
ible root system � su
h that g has a

�-grading g = g

0

�

L

�2�

g

�

, it 
ontains the split simple Lie algebra k 
orresponding to � as a

graded subalgebra, and is generated, topologi
ally, by the root spa
es g

�

, � 2 �. All Lie groups

of the type C

1

(M;K), M 
ompa
t and K simple 
omplex, are of this type, and the same holds

for their 
entral extension. A di�erent but related 
lass of groups arising in this 
ontext are the

Lie groups SL

n

(A) and their 
entral extensions, where A is a 
ontinuous inverse algebra, i.e., a

lo
ally 
onvex unital asso
iative algebra with open unit group and 
ontinuous inversion ([Gl01
℄).

In [Ne01
℄ we dis
uss the universal 
entral extensions of the groups SL

n

(A), whi
h are Lie group

versions of the Steinberg groups St

n

(A). In the end of Se
tion II we show that for K = SL

n

(A),

A a 
ommutative 
ontinuous inverse algebra, we have V (k)

�

=

A with �(x; y) = tr(xy) and that

the image of the 
orresponding period map is dis
rete for the 
orresponding produ
t type 
o
y
le

on the Lie algebra C

1

(M; k) of the group C

1

(M;K). For non-
ommutative algebras the image

of the period map is not always dis
rete.

The present results on 
urrent groups over 
ompa
t manifolds are extended in [Ne02
℄

to 
urrent groups over non-
ompa
t manifolds in several settings. It is remarkable that the

diÆ
ulties arising in this 
ontext are of a 
ompletely di�erent nature as those in this paper

be
ause they are mainly 
aused by the possible in�nite dimension of the �rst 
ohomology of M .

I. The period map

De�nition I.1. For a �nite-dimensional manifold M (for this de�nition we do not have to

assume that M is 
ompa
t) and a sequentially 
omplete lo
ally 
onvex (s.
.l.
.) spa
e Y we

de�ne

z

M

(Y ) := 


1

(M;Y )=d


0

(M;Y )

and observe that the image of the spa
e of 
losed forms in z

M

(Y ) is the subspa
e H

1

dR

(M;Y ).

We endow 


1

(M;Y ) with the natural topology given by lo
ally uniform 
onvergen
e of all

derivatives. Then we obtain for ea
h � 2 C

1

(S

1

;M) a 
ontinuous linear map 


1

(M;Y )! Y by

integration over � . Sin
e the spa
e d


0

(M;Y ) of all exa
t 1-forms 
oin
ides with the annihilator

of these fun
tionals, it is a 
losed subspa
e, and we thus obtain on z

M

(Y ) a natural lo
ally 
onvex

Hausdor� topology and 
ontinuous linear maps given by

�

z

: z

M

(Y )! Y; [�℄ 7!

Z

�

�:

In the following we write Lin(E;F ) for the spa
e of 
ontinuous linear maps between

topologi
al ve
tor spa
es E and F .

Remark I.2. (a) Sin
e an element � 2 


1

(M;Y ) is an exa
t form if and only if all integrals

R

�

� , � 2 C

1

(S

1

;M), vanish, the linear fun
tions �

z

2 Lin(z

M

(Y ); Y ) separate the points of

z

M

(Y ).

(b) A 1-form � 2 


1

(M;Y ) is 
losed if and only if for all pairs of homotopi
 paths �

1

; �

2

the

integrals of � over �

1

and �

2


oin
ide. Therefore the subspa
e H

1

dR

(M;Y ) � z

M

(Y ) is the

annihilator of the fun
tionals �

1;z

��

2;z

, [�

1

℄ = [�

2

℄ in �

1

(M), whi
h implies in parti
ular that

it is 
losed. Moreover, for [�℄ 2 z

M

(Y ) the 
ondition [�℄ 2 H

1

dR

(M;Y ) is equivalent to the

independen
e of �

z

([�℄) from the homotopy 
lass of � .

(
) For M = S

1

we have z

S

1
(Y )

�

=

Y be
ause the map 


1

(M;Y ) ! Y; � 7!

R

S

1

� is surje
tive

with kernel d


0

(M;Y ). We identify the 
lass of � 2 


1

(S

1

; Y ) in z

S

1

(Y ) with the integral

R

S

1

�:
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(d) On the subspa
e H

1

dR

(M;Y ) we 
an de�ne 
ontinuous linear maps by integration over


ontinuous loops be
ause we may use the isomorphism

H

1

dR

(M;Y )

�

=

H

1

sing

(M;Y )

�

=

Hom(�

1

(M); Y ):

From now on we assume M to be 
ompa
t.

The following remark will be helpful for the 
al
ulation of period groups.

Remark I.3. For every 
ompa
t 
onne
ted smooth manifold M the group �

1

(M) is �nitely

generated (M 
an be triangulated), whi
h is inherited by the singular homology group H

1

(M)

�

=

�

1

(M)=(�

1

(M); �

1

(M)) (Hurewi
z). Let k := b

1

(M) := rankH

1

(M) and �x �

1

; : : : ; �

k

2

C(S

1

;M) su
h that the 
orresponding 1-
y
les [�

j

℄ form a basis of the free abelian group

H

1

(M)= tor(H

1

(M)).

Sin
e H

0

(M) is a free abelian group, the Universal CoeÆ
ient Theorem implies that

H

1

sing

(M;Z)

�

=

Hom(H

1

(M);Z)

�

=

Hom(�

1

(M);Z)):

Moreover, in view of Huber's Theorem ([Hu61℄) and the lo
al 
ontra
tibility of M , this group is

isomorphi
 to

�

H

1

(M;Z)

�

=

[M;S

1

℄:

In parti
ular there exist 
ontinuous fun
tions f

1

; : : : ; f

k

:M ! S

1

su
h that [f

j

Æ �

i

℄ = Æ

ij

2

�

1

(S

1

)

�

=

Z . Sin
e every homotopy 
lass in [M;S

1

℄ 
ontains a smooth fun
tion ([Ne02b,

Th. A.3.7℄), we will assume in the following that the fun
tions f

j

are smooth. This implies

in parti
ular that its logarithmi
 derivative Æ(f

j

) := f

�1

j

:df

j


an be viewed as a 
losed 1-form

on M , whi
h is not exa
t be
ause

R

�

j

Æ(f

j

) = 1.

With the basis [�

j

℄ of the group H

1

(M)= torH

1

(M), we immediately obtain an isomor-

phism

�:H

1

dR

(M;Y )

�

=

Hom(H

1

(M); Y )

�

=

Hom(H

1

(M)= torH

1

(M); Y )! Y

k

; [�℄ 7!

�

Z

�

j

�

�

j=1;:::;k

whose 
ontinuous inverse is given by

�

�1

(y

1

; : : : ; y

k

) =

h

k

X

j=1

Æ(f

j

) � y

j

i

:

De�nition I.4. (The topology on C

1

(M;K)) (a) If K is a Lie group and X is a 
ompa
t

spa
e, then C(X;K), endowed with the topology of uniform 
onvergen
e is a Lie group with Lie

algebra C(X; k) ([Ne02b, App. A.3℄).

(b) If K is a Lie group with Lie algebra k , then the tangent bundle of K is a Lie group isomorphi


to koK , where K a
ts by the adjoint representation on k (
f. [Ne01b℄). Iterating this pro
edure,

we obtain a Lie group stru
ture on all higher tangent bundles T

n

K whi
h are di�eomorphi
 to

k

2

n

�1

�K .

For ea
h n 2 N

0

we obtain topologi
al groups C(T

n

M;T

n

K) by using the topology of

uniform 
onvergen
e on 
ompa
t subsets. Therefore the in
lusion

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K)

leads to a natural topology on C

1

(M;K) turning it into a topologi
al group. For 
ompa
t

manifolds M these groups 
an even be turned into Lie groups with Lie algebra C

1

(M; k). Here

C

1

(M; k) is endowed with the topology de�ned above if we 
onsider k as an additive Lie group.

For details we refer to [Gl01b℄.
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De�nition I.5. (a) Let z be a topologi
al ve
tor spa
e and g a topologi
al Lie algebra. A


ontinuous z-valued 2-
o
y
le is a 
ontinuous skew-symmetri
 bilinear fun
tion !: g � g ! z

satisfying

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is 
alled a 
oboundary if there exists a 
ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2




(g; z) for the spa
e of 
ontinuous z-valued 2-
o
y
les

and B

2




(g; z) for the subspa
e of 
oboundaries de�ned by 
ontinuous linear maps. We de�ne the

se
ond 
ontinuous Lie algebra 
ohomology spa
e to be

H

2




(g; z) := Z

2




(g; z)=B

2




(g; z):

(b) If ! is a 
ontinuous z-valued 
o
y
le on g , then we write g �

!

z for the topologi
al Lie

algebra whose underlying topologi
al ve
tor spa
e is the produ
t spa
e g� z , and the bra
ket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a 
entral extension and �: g! g�

!

z; x 7! (x; 0) is a 
ontinuous

linear se
tion of q .

Let K be a Lie group and k its Lie algebra. Further let G := C

1

(M;K)

e

denote the

identity 
omponent of the Lie group C

1

(M;K) with Lie algebra g = C

1

(M; k). We 
onsider

a 
ontinuous invariant symmetri
 bilinear map �: k � k ! Y . We thus obtain a 
ontinuous

z

M

(Y )-valued 
o
y
le on g by

(1:1) !

M

(�; �) := !

M;�

(�; �) := [�(�; d�)℄ 2 z

M

(Y );

where we view �(�; d�) as the element of 


1

(M;Y ) whose value in a tangent ve
tor v 2 T

p

(M)

is given by �(�(p); d�(p)(v)). We write 


M

for the left invariant z

M

(Y )-valued 2-form on G

with 


M

(e) = !

M

.

In this �rst se
tion we will dis
uss the image of the period homomorphism

per

!

M

:�

2

(G)! z

M

(Y )

whi
h is de�ned on pie
ewise smooth maps (with respe
t to a triangulation) �:S

2

! G by

per

!

M

([�℄) :=

Z

�




M

([Ne02b, Se
t. V℄). We also re
all from [Ne02b, Th. A.3.7℄ that ea
h homotopy 
lass in �

2

(G) has

smooth representatives and that the integration formula de�nes a group homomorphism per

!

M

.

In parti
ular we are interested in whether or not the period group

�

M;�

:= im(per

!

M;�

)

is a dis
rete subgroup of z

M

(Y ).

The following theorem is the key result of this se
tion.

Theorem I.6. (Redu
tion Theorem) The period group �

M;�

is 
ontained in the subspa
e

H

1

dR

(M;Y ) of z

M

(Y ) . Identifying H

1

dR

(M;Y ) with Y

k

via the map � , where k := b

1

(M) :=

dimH

1

dR

(M;R) is the �rst Betti number of M , we have

�

M;�

�

=

�

k

S

1

;�

� Y

k

�

=

H

1

dR

(M;Y ) � z

M

(Y ):

In parti
ular �

M;�

is dis
rete if and only if �

S

1

;�

is dis
rete.

For the proof we need several lemmas. Sin
e the linear maps �

z

on z

M

separate points

(Remark I.2), it is 
ru
ial to get a better des
ription of the 
ompositions �

z

Æ per

!

M

.
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Lemma I.7. For ea
h � 2 C

1

(S

1

;M) we have

(1:2) �

z

Æ per

!

M

= per

!

S

1

Æ�

2

(�

K

);

where �

2

(�

K

):�

2

(G) ! �

2

(C

1

(S

1

;K)) is the group homomorphism indu
ed by the Lie group

homomorphism �

K

:G! C

1

(S

1

;K); f 7! f Æ � .

Proof. First we observe that �

z

Æ


M

is a Y -valued left invariant 2-form on G whose value

in e is �

z

Æ !

M

. Further �

�

K




S

1

is a left invariant 2-form on G whose value in e is given by

(�; �) 7! !

S

1

(� Æ �; � Æ �) = [�(� Æ �; d(� Æ �))℄

= [�(�

�

�; �

�

(d�))℄ =

Z

S

1

�(�

�

�; �

�

(d�)) =

Z

�

�(�; d�) = �

z

�

!

M

(�; �)

�

:

This implies �

z

Æ


M

= �

�

K




S

1

, whi
h in turn leads to (1.2).

Lemma I.8. Let M

i

, i = 1; 2 , be two 
ompa
t manifolds with base points x

M

i

and �

1;2

:M

1

!

M

2

two smooth homotopi
 maps with �

j

(x

M

1

) = x

M

2

. Then the Lie group homomorphisms

�

j;K

:C

1

(M

2

;K)! C

1

(M

1

;K); f 7! f Æ �

j

satisfy �

m

(�

1;K

) = �

m

(�

2;K

) for ea
h m 2 N

0

.

Proof. Let F : [1; 2℄�M

1

!M

2

be a homotopy with F

1

= �

1

and F

2

= �

2

. Then the map

�: [1; 2℄� C(M

2

;K)! C(M

1

;K); �(t; f)(s) := f(F (t; s))

is 
ontinuous be
ause the map

e

�: [1; 2℄� C(M

2

;K)�M

1

! K;

e

�(t; f; s) := f(F (t; s)) = ev(f; F (t; s))

is 
ontinuous, whi
h in turn follows from the 
ontinuity of the evaluation map

ev:C(M

2

;K)�M

2

! K:

We 
on
lude that the two maps �

1

;�

2

:C(M

2

;K)! C(M

1

;K) are homotopi
, hen
e indu
e the

same homomorphisms �

m

(C(M

2

;K))! �

m

(C(M

1

;K)) for ea
h m 2 N

0

.

The restri
tion, resp., 
orestri
tion of these two maps to the subgroup C

1

(M

2

;K) of

smooth fun
tions are the maps �

1;K

and �

2;K

. Sin
e the in
lusions C

1

(M

j

;K) ,! C(M

j

;K)

is a homotopy equivalen
e ([Ne02b, Th. A.3.7℄), the 
ommutativity of the diagram

�

m

(C

1

(M

2

;K))

�

=

��! �

m

(C(M

2

;K))

?

?

y

�

m

(�

j;K

)

?

?

y

�

m

(�

j

)

�

m

(C

1

(M

1

;K))

�

=

��! �

m

(C(M

1

;K))

implies �

m

(�

1;K

) = �

m

(�

2;K

) be
ause of �

m

(�

1

) = �

m

(�

2

).

Corollary I.9. �

M;�

� H

1

dR

(M;Y ) .

Proof. From (1.2) and Lemma I.8 we derive that for ea
h � 2 C

1

(S

1

;M) the map

�

z

Æper

!

M

only depends on the homotopy 
lass of � , and therefore that im(per

!

M

) � H

1

dR

(M;Y )

(Remark I.2(b)).
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Lemma I.10. Let C

1

�

(S

1

;K) := ff 2 C

1

(S

1

;K): f(1) = eg denote the Lie group of based

loops. For h 2 C

1

(S

1

;S

1

) and m 2 N

0

the map

�

m

(h

K

):�

m

(C

1

�

(S

1

;K))! �

m

(C

1

�

(S

1

;K))

is given by

�

m

(h

K

)([�℄) = deg(h) � [�℄;

where deg(h) = [h℄ 2 �

1

(S

1

)

�

=

Z is the mapping degree of h .

Proof. We realize S

1

as R=Z , so that 
ontinuous fun
tions S

1

! K 
orrespond to 
ontinuous

1-periodi
 fun
tions R ! K . In view of Lemma I.8, �

m

(h

K

) only depends on the homotopy


lass of h , so that we may assume that h(z) = nz for some n 2 Z . In this 
ase n = deg(h).

Sin
e the in
lusion C

1

�

(S

1

;K) ,! C

�

(S

1

;K) is a homotopy equivalen
e ([Ne02b,

Th. A.3.7℄), it suÆ
es to 
onsider the maps

'

n

:C

�

(S

1

;K)! C

1

�

(S

1

;K); '

n

(f)(t) = f(nt):

We 
laim that '

n

is homotopy equivalent to the map  

n

(f) := f

n

.

We assume that n > 0. The 
ase n = 0 is trivial and the 
ase n < 0 is treated similarly.

For ea
h interval [

i

n

;

i+1

n

℄ , i = 0; : : : ; n� 1, we de�ne a 
ontinuous map

�

i

:C

�

(S

1

;K)! C

�

(S

1

;K); �

i

(f)(t) := f(e�

i

(t)); 0 � t � 1;

where

e�

i

: [0; 1℄! [0; 1℄; t 7!

8

<

:

0 for t �

i

n

nt� i for

i

n

� t �

i+1

n

1 for

i+1

n

� t � 1.

This means that the fun
tions �

i

(f) are \supported" by the Z-translates of the interval [

i

n

;

i+1

n

℄ .

Then ea
h map e�

i

is homotopi
 to the identity of [0; 1℄ with �xed endpoints, and the same 
arries

over to �

i

. Now

'

n

(f) = �

1

(f) � �

2

(f) � � ��

n

(f)

is a pointwise produ
t be
ause the supports of the fa
tors are disjoint. As ea
h map �

i

is

homotopi
 to id

C

�

(S

1

;K)

, the map '

n

is homotopi
 to the nth power map.

The nth power map on C

�

(S

1

;K) indu
es the nth power map on the 
orresponding

homotopy groups, where the multipli
ation is indu
ed by pointwise multipli
ation in K , and

we 
on
lude that

�

m

('

n

):�

m

(C

�

(S

1

;K))! �

m

(C

�

(S

1

;K))

is the nth power map in the abelian group �

m

(C

�

(S

1

;K)).

In the appendix we give an alternative proof of Lemma I.10 using the homotopy 
ogroup

stru
ture of S

1

.

Proof. (of Theorem I.6) We already know from Corollary I.9 that

�

M;�

� H

1

dR

(M;Y ) =

k

M

j=1

[Æ(f

j

)℄ � Y

�

=

Y

k

;

and the linear maps �

j;z


orrespond to the proje
tions onto the 
omponents in Y

k

. We have to

evaluate these maps on �

M

. To approa
h �

M

from below, we asso
iate to ea
h f 2 C

1

(M;S

1

)

the map

f

K

:C

1

(S

1

;K)! G = C

1

(M;K); � 7! � Æ f;

whi
h in turn indu
es a map �

2

(f

K

):�

2

(C

1

(S

1

;K)) ! �

2

(G): For � 2 C

1

(S

1

;M) we obtain

with Lemma I.10

�

z

Æ per

!

M

Æ�

2

(f

K

) = per

!

S

1

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

S

1

Æ�

2

(�

K

Æ f

K

)

= per

!

S

1

Æ�

2

((f Æ �)

K

) = deg(f Æ �) � per

!

S

1

:
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For f = f

i

and � = �

j

it follows in parti
ular that

�

i;z

Æ per

!

M

Æ�

2

(f

j;K

) = Æ

ij

per

!

S

1

:

Hen
e

per

!

M

�

im �

2

(f

j;K

)

�

= [Æ(f

j

)℄ ��

S

1

;�

;

and further

�

M

�

k

X

j=1

[Æ(f

j

)℄ ��

S

1

�

=

�

k

S

1

:

For the 
onverse in
lusion, we observe that

�

j;z

Æ per

!

M

= per

!

S

1

Æ�

2

(�

K

)

implies that for ea
h j we have �

j;z

Æ per

!

M

� �

S

1

;�

and therefore �

M

� �

k

S

1

;�

.

In view of Theorem I.6, the dis
reteness of the group �

M;�

does not depend on M (if

b

1

(M) > 0), so that as far as the dis
reteness of the period group is 
on
erned, it suÆ
es to


onsider the simplest non-trivial 
ompa
t manifold M = S

1

. In this �rst se
tion we did not use

any spe
i�
 information on � , but for the dis
reteness of �

S

1

;�

the spe
i�
 
hoi
e of � plays a


ru
ial role.

Remark I.11. (a) In this se
tion we have analyzed the period map

�

2

(C

1

(M;K))! z

M

(Y )

by indire
t methods based on smooth homomorphisms of loop groups into C

1

(M;K) and

on homomorphisms into loop groups. It is remarkable that this method provides a 
omplete

des
ription of the period group.

Let x

M

2M be a base point and C

�

(M;K) � C(M;K) denote the kernel of the evaluation

homomorphism C(M;K) ! K; f 7! f(x

M

). For general groups K and general 
ompa
t

manifolds the Approximation Theorem ([Ne02b, Th. A.3.7℄ implies that

�

2

(C

1

(M;K))

�

=

�

2

(C(M;K))

�

=

�

2

(K)� �

2

(C

�

(M;K))

�

=

�

2

(K)� [S

2

; C(M;K)℄

�

�

=

�

2

(K)� [S

2

^M;K℄

�

�

=

�

2

(K)� �

0

(C

�

(S

2

^M;K)):

In general the group of homotopy 
lasses [M;K℄ for a CW-
omplex M may be quite hard

to a

ess if dimM � 3. For 2-dimensional manifolds one 
an use the 
lassi�
ation of 
ompa
t

surfa
es to obtain good des
riptions of �

2

(C(M;K)).

(b) We 
onsider the 
ase where M = T

d

is a d-dimensional torus. Then

C(T

d

;K)

�

=

C(T; C(T

d�1

;K))

�

=

C

�

�

T; C(T

d�1

;K)

�

o C(T

d�1

;K)

implies that

�

k

(C(T

d

;K))

�

=

�

k+1

(C(T

d�1

;K))� �

k

(C(T

d�1

;K))

and by indu
tion we obtain

�

k

(C(T

d

;K))

�

=

d

X

j=0

�

k+j

(K)

(

d

j

)

:
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II. The 
ase of loop groups

We keep the notation of Se
tion I. In addition, we assume in this se
tion that K is �nite-

dimensional. In this 
ase we show that if � is the universal invariant symmetri
 bilinear form on

k , then the period group �

S

1

;�

is dis
rete.

De�nition II.1. For a �nite-dimensional Lie algebra k we write V (k) := S

2

(k)=k:S

2

(k), where

the a
tion of k on S

2

(k) is the natural a
tion inherited by the one on the tensor produ
t k 
 k

by x:(y 
 z) = [x; y℄
 z + y 
 [x; z℄ . There exists a natural invariant symmetri
 bilinear form

�: k� k! V (k); x
 y 7! [x _ y℄

su
h that for ea
h invariant symmetri
 bilinear form �: k � k ! W there exists a unique linear

map ':V (k) ! W with ' Æ � = � . We 
all the natural map �: k � k ! V (k) the universal

invariant symmetri
 bilinear form on k .

We start with some observations that will be needed later on.

Remark II.2. (1) The assignment g! V (g) is a 
ovariant fun
tor from Lie algebras to ve
tor

spa
es.

(2) If g = a� b with a perfe
t, then V (g)

�

=

V (a)�V (b) be
ause for every symmetri
 invariant

bilinear map �: g � g ! V we have for x; y 2 a , z 2 b the relation �([x; y℄; z) = �(x; [y; z℄) =

�(x; 0) = 0.

(3) If h E g is an ideal and the quotient morphism q: g ! q := g=h splits, then g

�

=

h o q , and

the natural map V (q)! V (g) is an embedding. In fa
t, let �: q! g be the in
lusion map. Then

q Æ � = id

q

and this leads to V (q) Æ V (�) = id

V (q)

, showing that V (�) is inje
tive.

(4) If s is redu
tive with the simple ideals s

1

; : : : ; s

n

, then (2) implies that

V (s)

�

=

V (z(s)) �

n

M

j=1

V (s

j

)

�

=

V (z(s)) � R

n

:

(5) If k = r o s is a Levi de
omposition, then (3) implies that the natural map V (s) ! V (k) is

an embedding.

(6) If k = gl(n;R) , then V (k)

�

=

R

2

follows from (4).

Remark II.3. We re
all some results on the homotopy groups of �nite-dimensional Lie

groups K . First we re
all E. Cartan's Theorem

�

2

(K) = 1

([Mi95, Th. 3.7℄), and further Bott's Theorem that for a 
ompa
t 
onne
ted simple Lie group C

we have

�

3

(C)

�

=

Z

([Mi95, Th. 3.9℄).

In [Mi95, pp. 969/970℄ one also �nds a table with �

k

(G) up to k = 15, showing that

�

4

(G)

�

=

8

>

<

>

:

Z

2

�Z

2

for G = SO(4)

Z

2

for G = Sp(n); SU(2); SO(3); SO(5)

1 for G = SU(n), n � 3 and SO(n), n � 6

1 for G = G

2

; F

4

; E

6

; E

7

; E

8

.

�

5

(G)

�

=

8

>

<

>

:

Z

2

�Z

2

for G = SO(4)

Z

2

for G = Sp(n); SU(2); SO(3); SO(5)

Z for G = SU(n), n � 3 and SO(6)

1 for G = SO(n), n � 7, G

2

; F

4

; E

6

; E

7

; E

8

.
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Remark II.4. (a) Let C � K be a maximal 
ompa
t subgroup, C

0

the identity 
omponent

of the 
enter of C and C

1

; : : : ; C

m

the 
onne
ted simple normal subgroups of C . Then the

multipli
ation map

C

0

� C

1

� : : :� C

m

! C

has �nite kernel, hen
e is a 
overing map. Now the existen
e of a manifold fa
tor in K implies

that

�

3

(K)

�

=

�

3

(C)

�

=

m

Y

j=1

�

3

(C

j

)

�

=

Z

m

(Remark II.3) be
ause C

0

is a torus, so that �

3

(C

0

) is trivial.

(b) If C is 
ompa
t and simple, then a generator of �

3

(C) 
an be obtained from a homomorphism

�: SU(2) ! C . More pre
isely, let � be a long root in the root system �




of 
 and 
(�) � 


the 
orresponding su(2)-subalgebra. Then the 
orresponding homomorphism SU(2)

�

=

S

3

! C

represents a generator of �

3

(C) ([Bo58℄).

Remark II.5. If E and F are lo
ally 
onvex ve
tor spa
es, then we write E 


�

F for the

tensor produ
t spa
e endowed with the proje
tive tensor produ
t topology (
f. [Tr67℄) and E

b


F

for the 
ompletion of this spa
e.

If M is a �nite-dimensional � -
ompa
t manifold and E a 
omplete lo
ally 
onvex spa
e,

then

C

1

(M;E)

�

=

C

1

(M;R)

b


E

follows from [Gr55, Ch. 2, p.81℄. In parti
ular, the subspa
e

C

1

(M;R) 
E

�

=

spanf' � y:' 2 C

1

(M;R); y 2 Eg

is dense in C

1

(M;E).

Lemma II.6. Let Y be a s.
.l.
. spa
e and z

M

(Y ) as in De�nition I.1. Then the subspa
e

z

M

(R) �Y spanned by the elements of the form [� �y℄ , � 2 


1

(M;R) , y 2 Y , is dense in z

M

(Y ) .

Proof. It suÆ
es to show that 


1

(M;R) � Y spans a dense subspa
e of 


1

(M;Y ).

Let ('

j

)

j2J

be a �nite partition of unity in C

1

(M;R) su
h that the support of ea
h

fun
tion '

j

is 
ontained in an open set U

j

di�eomorphi
 to an open subset of R

d

for d := dimM .

For ea
h U

j

we then have




1

(U

j

; Y )

�

=

C

1

(U

j

; Y )

d

;

and Remark II.5 implies that for the 
ompletion Y of Y we have

C

1

(U

j

; Y )

�

=

C

1

(U

j

;R)

b


Y :

Sin
e C

1

(U

j

;R) � Y is dense in C

1

(U

j

;R)

b


Y , it is also dense in C

1

(U

j

; Y ).

Writing � 2 


1

(M;Y ) as a sum � =

P

j

'

j

� , the pre
eding argument implies that ea
h

'

j

� is 
ontained in the 
losure of 


1

(M;R) � Y , and this proves that 


1

(M;R) � Y is dense in




1

(M;Y ).

Lemma II.7. Let k be a lo
ally 
onvex Lie algebra, M a smooth manifold, g := C

1

(M; k) ,

�: k� k! Y a 
ontinuous invariant symmetri
 bilinear form, and !

M;�

2 Z

2




(g; z

M

(Y )) de�ned

by

!

M;�

(�; �) := [�(�; d�)℄;

so that in parti
ular !

M;�

(f 
 x; g 
 y) := [fdg℄�(x; y) 2 z

M

(Y ): If im(�) spans Y , then the


entral extension

b

g := g �

!

M;�

z

M

(Y ) is a 
overing, i.e., z

M

(Y ) is 
ontained in the 
losure of

the 
ommutator algebra of

b

g .

Proof. For x; y 2 k and f; g 2 C

1

(M;R) we have in

b

g the relation

[f 
 x; g 
 y℄� [g 
 x; f 
 y℄ =

�

fg 
 [x; y℄� gf 
 [x; y℄; 2[fdg℄ � �(x; y)

�

=

�

0; 2[fdg℄ � �(x; y)

�

:

This implies that the dense subspa
e z

M

(R) � Y of z

M

(Y ) (Lemma II.6) is 
ontained in [

b

g;

b

g℄

and therefore that

b

g! g is a 
overing.

We now return to our assumption that K is �nite-dimensional and 
onsider the loop group

G := C

1

(S

1

;K). Let �: k � k ! V (k) denote the universal invariant symmetri
 bilinear form

and de�ne a 
o
y
le on g = C

1

(S

1

; k) as in Se
tion I by !(f; g) := !

S

1

;�

(f; g) := [�(f; dg)℄:
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Remark II.8. (a) If K is a �nite-dimensional Lie group, then �

2

(K) = 1 implies that

�

3

(K)

�

=

�

2

(C

�

(S

1

;K))

�

=

�

2

(G), and we 
an view the period map of ! as a homomorphism

per

K

:�

3

(K)! V (k):

(b) For any in�nite-dimensional Lie group K we 
an also de�ne a homomorphism �

3

(K)! V (k)

as follows. To de�ne V (k) for an in�nite-dimensional Lie algebra k , we �rst endow k
 k with the

proje
tive tensor produ
t topology and de�ne V (k) as the quotient of this spa
e by the 
losure

of the subspa
e spanned by all elements of the form

x
 y � y 
 x and [x; y℄
 z + y 
 [x; z℄; x; y; z 2 k:

If [z℄ denotes the image of z 2 k
 k in V (k), we obtain a 
ontinuous invariant bilinear map

�: k� k ! V (k); �(x; y) := [x
 y℄

whi
h leads to the 
o
y
le ! 2 Z

2




(g; V (k)) on g := C

1

(S

1

; k) given by !(�; �) := [�(�; d�)℄:

Let G := C

1

(S

1

;K)

e

. Sin
e the restri
tion of ! to the subalgebra k of g 
onsisting of


onstant k-valued fun
tions vanishes, the period map per

!

:�

2

(G)

�

=

�

3

(K) � �

2

(K) ! V (k)

vanishes on �

2

(K) and de�nes group homomorphism

per

K

:�

3

(K)! V (k)

with the same image.

The following theorem shows that for ea
h �nite-dimensional Lie group K the homomor-

phism per

K

has dis
rete image, and it is not so easy to �nd in�nite-dimensional Lie groups where

this is not the 
ase. Below we dis
uss some related examples and spe
ial 
lasses.

Theorem II.9. For every �nite-dimensional 
onne
ted Lie group K and the V (k)-valued


o
y
le !(f; g) = [�(f; dg)℄ on C

1

(S

1

; k) , the image of per

!

in V (k) is dis
rete.

Proof. If ':K

1

! K

2

is a Lie group morphism and L('): k

1

! k

2

the 
orresponding Lie

algebra morphism, then we have

�

k

2

Æ L('� ') = V (L(')) Æ �

k

1

; and per

!

M;k

2

Æ�

3

(') = V (L(')) Æ per

!

M

;k

1

:

In view of Remark II.4, this redu
es the problem to the determination of V (L(�

j

)) for the

generators �

j

: SU(2)! K , j = 1; : : : ;m , of �

3

(K).

For K = SU(2) pi
k x 2 k with Spe
(adx) = f0;�2ig . All these elements are 
onjugate

under inner automorphisms. Therefore v

k

:=

1

2

�(x; x) 2 V (k) is well de�ned (� 
an be viewed

as a multiple of the Cartan-Killing form; see also Remark II.2(4)). Then the 
al
ulations in

Appendix IIa to Se
tion II in [Ne01a℄ imply that per

!

([id

K

℄) = v

k

:

Therefore, in the general 
ase, im(per!) � V (k) is the subgroup generated by the elements

v

1

; : : : ; v

m


orresponding to the homomorphisms �

j

: SU(2) ! C

j

mentioned above. If s � k

is a Levi 
omplement, then we may assume that im(L(�

j

)) � s for ea
h j , so that it suÆ
es

to determine the image of per

!

in the 
ase where k = s is semisimple (Remark II.2(5)). This

problem immediately redu
es to the 
ase where s is simple. Let s




� s be a maximal 
ompa
t

semisimple subalgebra. Then s




need not be simple and we write s

j




, j = 1; : : : ; l , for its simple

ideals. (For s = su(p; q) we have s




�

=

su(p)� su(q), so that l = 2 for p; q � 2.)

We are interested in the subgroup of V (s)

�

=

R generated by the elements v

j


oming from

the basis elements v

s

j




=

1

2

�(x

j

; x

j

) 2 V (s

j




); where x

j

denotes an element in a suitable su

2

-

subalgebra of the simple ideal s

j




of s




whi
h is normalized in su
h a way that Spe
(adx

j

) =

f�2i; 0g holds on the su

2

-subalgebra. The 
hoi
e of the elements x

j

2 s

j




and the representation

theory of sl(2; C ) imply that all eigenvalues of adx

j

are 
ontained in iZ ,so that tr((adx

j

)

2

) 2

�N

0

. Therefore the values of the Cartan{Killing form on the v

j

are integral, so that they

generate a dis
rete subgroup of V (s)

�

=

R . We �nally 
on
lude that in the general situation the

image of per

!

in V (k) is dis
rete.
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Remark II.10. Let 
 2 V (k)

�

, so that �




:= 
 Æ � de�nes a real-valued symmetri
 bilinear

form on k . Then the image of the 
orresponding period map in R is determined by the values

of 
 on the image of the period map �

3

(K)! V (k) in Theorem II.9 whi
h is generated by the

elements v

1

; : : : ; v

m

2 V (k) obtained as follows. Let 


j

denote the simple ideals in the Lie algebra


 of a maximal 
ompa
t subgroup C � K . Further let su(2)

j

� 


j

be a subalgebra 
orresponding

to a long root and x

j

2 su(2)

j

with Spe
(adx

j

j

su(2)

j

) = f0;�2ig . Then v

j

=

1

2

�(x

j

; x

j

) 2 V (k),

and we have

im(per

!

) =

k

X

j=1

Z
(v

j

) =

k

X

j=1

1

2

Z
(�(x

j

; x

j

)):

Lemma II.11. Let k be a �nite-dimensional simple Lie algebra, and �

k

its Cartan-Killing

form of k . Further let A be a lo
ally 
onvex unital 
ommutative asso
iative algebra and 
onsider

the lo
ally 
onvex Lie algebra g := A


�

k with the bra
ket given by [a
 x; b
 y℄ := ab
 [x; y℄ .

Then the map

�: g� g! A; (a
 x; b
 y) 7! �

k

(x; y)ab

has the universal property of the universal invariant symmetri
 bilinear form. In parti
ular we

have V (g)

�

=

A .

Proof. From

�([a
 x; b
 y℄; 

 z) = �

k

([x; y℄; z)ab
 = �

k

(x; [y; z℄)ab
 = �(a
 x; [b
 y; 

 z℄)

we see that � is an invariant symmetri
 bilinear form on g . Its 
onstru
tion implies the 
ontinuity.

To verify the universal property, let �: g � g ! Y be a 
ontinuous invariant symmetri


bilinear form. For ea
h pair a; b 2 A we then obtain an invariant bilinear form

�

a;b

: k� k! Y; (x; y) 7! �(a
 x; b
 y):

Now V (k) = R�

k

implies the existen
e of a unique element �(a; b) 2 Y with �

a;b

= �

k

� �(a; b).

Pi
k x; y 2 k with �

k

(x; y) 6= 0. Then the 
ontinuity of the map

A�A! Y; (a; b) 7! �(a
 x; b
 y) = �

k

(x; y)�(a; b)

implies the 
ontinuity of �:A�A! Y .

Sin
e k is a perfe
t Lie algebra, we also �nd three elements x; y; z 2 k with �

k

([x; y℄; z) 6= 0.

Then the invarian
e of � further leads to

�

k

([x; y℄; z)�(ab; 
) = �([a
 x; b
 y℄; 

 z) = �(a
 x; [b
 y; 

 z℄)

= �

k

(x; [y; z℄)�(a; b
) = �

k

([x; y℄; z)�(a; b
);

so that

�(ab; 
) = �(a; b
); a; b; 
 2 A:

Let 1 2 A denote the unit element and de�ne the 
ontinuous linear map 
:A! Y; a 7! �(a;1).

Then

�(a
 x; b
 y) = �

k

(x; y)�(a; b) = �

k

(x; y)�(ab;1) = �

k

(x; y)
(ab) = (
 Æ �)(a
 x; b
 y)

shows that � fa
tors through � , whi
h implies the universal property of � . Here the uniqueness

of 
 follows from A = 1 �A = A �A .
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Remark II.12. (a) We 
all an asso
iative unital lo
ally 
onvex algebra A a 
ontinuous inverse

algebra if its group of units A

�

is open and the inversion A

�

! A

�

is a 
ontinuous map. Su
h

algebras have been studied in [Gl01
℄. In parti
ular the following results have been obtained:

(1) If A is a sequentially 
omplete 
ontinuous inverse algebra, then all matrix algebras M

n

(A),

n 2 N , also have this property ([Gl01
, Prop. 4.5℄).

(2) If A is a 
ontinuous inverse algebra, then A

�

is a Baker{Campbell{Hausdor�{Lie group

(BCH-Lie group), i.e., it has an exponential map exp: a ! A (given by holomorphi


fun
tional 
al
ulus) whi
h restri
ts to a di�eomorphism of some open 0-neighborhood U

in A to some open 1-neighborhood in A

�

and on some 0-neighborhood W � U with

expW expW � expU the multipli
ation

x � y := exp j

�1

U

(expx exp y)

is given by the BCH-series.

By 
ombining (1) and (2), we 
an use the theory of analyti
 subgroups of BCH-Lie groups

([Gl01b℄) to derive for ea
h 
losed Lie subalgebra g �M

n

(A) the existen
e of a global Lie group

G with an exponential fun
tion obtained by restri
ting the one of M

n

(A) ([Gl01b, Prop. 2.13℄).

(b) Let A be a unital lo
ally 
onvex algebra and HC

0

(A) := A=[A;A℄ . We write [a℄ for the


lass of a 2 A in HC

0

(A). Then the map

Tr:M

r

(A)! HC

0

(A); x 7! [

X

j

x

jj

℄

is a 
ontinuous Lie algebra homomorphism and we de�ne sl

r

(A) := kerTr. Inspe
ting the

arguments in [BGK96, Lemma 2.8℄ in the algebrai
 setting, it is easy to see that V (sl

r

(A))

�

=

HC

0

(A) and that a universal invariant symmetri
 bilinear form is given by �(x; y) := Tr(xy):

Suppose that A is a 
omplete 
omplex 
ommutative 
ontinuous inverse algebra. A

ording

to [Bos95, Prop. A.1.5℄, A satis�es

K

0

(A)

�

=

K

2

(A) := indlim

n!1

�

3

(GL

n

(A)):

One 
an show that the period map

per

SL

r

(K)

:�

3

(SL

r

(A))! HC

0

(A)

is the 
omposition of the natural maps �

3

(SL

r

(A))! �

3

(GL

r

(A))! K

0

(A) and the tra
e map

T

A

:K

0

(A)! HC

0

(A); [p℄ 7! Tr(p);

where p = p

2

2 M

n

(A) is an idempotent representing an element of K

0

(A) (see [Ne02a℄ for

details).

If A is 
ommutative, then HC

0

(A) = A and the image of the tra
e map T

A

is 
ontained

in the kernel of the exponential fun
tion exp

A

:A! A

�

; x 7! e

2�ix

, hen
e dis
rete. This implies

that im(per

SL

r

(A)

) is dis
rete. The smallest examples of non-
ommutative algebras for whi
h

im(T

A

) is not dis
rete are the irrational rotation algebras, 
ertain 2-dimensional quantum tori.

In this 
ase HC

0

(A)

�

=

C and im(T

A

) = Z+ �Z for some irrational real number.

(
) In the 
ontext of (b), we 
an use (a) to obtain for ea
h simple 
omplex Lie algebra k the

existen
e of a Lie group G with Lie algebra g := A
k be
ause we 
an embed k into some M

n

(C )

and then extend s
alars to obtain an embedding g ,! M

n

(A). We then have g � sl

n

(A), and

the natural map V (g) ! V (sl

n

(A)) is an isomorphism (Lemma II.11). Therefore (b) implies

that im(per

G

) is dis
rete if im(per

SL

r

(A)

) is dis
rete, whi
h holds whenever A is a 
omplete


ommutative 
ontinuous inverse algebra.
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III. Existen
e of 
orresponding 
entral Lie group extensions

In the following we will use the 
on
ept of an in�nite-dimensional Lie group des
ribed in detail

in [Mi83℄ (see also [Gl01a℄ and [Ne01b℄). This means that a Lie group G is a smooth manifold

modeled on a lo
ally 
onvex spa
e g for whi
h the group multipli
ation and the inversion are

smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for the left, resp., right multipli
ation

on G . Then ea
h X 2 T

e

(G) 
orresponds to a unique left invariant ve
tor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G: The spa
e of left invariant ve
tor �elds is 
losed under the Lie bra
ket

of ve
tor �elds, hen
e inherits a Lie algebra stru
ture. In this sense we obtain on g := T

e

(G) a


ontinuous Lie bra
ket whi
h is uniquely determined by [X;Y ℄

l

= [X

l

; Y

l

℄ .

In this 
ontext 
entral extensions of Lie groups are always assumed to have a smooth lo
al

se
tion. Let Z ,!

b

G !! G be a 
entral extension of the 
onne
ted Lie group G by the abelian

group Z . We assume that the identity 
omponent Z

e

of Z 
an be written as Z

e

= z=�

1

(Z),

where the Lie algebra z of Z is a s.
.l.
. spa
e. This means that the additive group of z 
an be

identi�ed in a natural way with the universal 
overing group of Z

e

, and that Z

e

is a quotient

z modulo a dis
rete subgroup whi
h 
an be identi�ed with �

1

(Z). Sin
e the quotient map

q:

b

G! G has a smooth lo
al se
tion, the 
orresponding Lie algebra homomorphism

b

g! g has a


ontinuous linear se
tion, hen
e 
an be des
ribed by a 
ontinuous Lie algebra 
o
y
le ! 2 Z

2




(g; z)

as

b

g

�

=

g�

!

z with the bra
ket [(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

)):

Let Z

2

s

(G;Z) denote the abelian group of 2-
o
y
les f :G � G ! Z whi
h are smooth

in a neighborhood of (e; e) and B

2

s

(G;Z) the subgroup of all fun
tions of the form (g; g

0

) 7!

h(gg

0

)h(g)

�1

h(g

0

)

�1

, where h:G ! Z is smooth in an identity neighborhood. We re
all from

[Ne02b, Prop. IV.2℄ that 
entral Lie group extensions as above 
an always be written as

b

G

�

=

G�

f

Z with (g; z)(g

0

; z

0

) =

�

gg

0

; zz

0

f(g; g

0

)

�

;

with f 2 Z

2

s

(G;Z). Two 
o
y
les f

1

, f

2

de�ne equivalent Lie group extensions if and only

if f

1

� f

�1

2

2 B

2

s

(G;Z) (for f

�1

2

(x; y) := f

2

(x; y)

�1

), and the quotient group H

2

s

(G;Z) :=

Z

2

s

(G;Z)=B

2

s

(G;Z) parametrizes the equivalen
e 
lasses of 
entral Z -extensions of G with

smooth lo
al se
tions ([Ne02b, Remark IV.4℄). On the Lie algebra level the spa
e H

2




(g; z) =

Z

2




(g; z)=B

2




(g; z) 
lassi�es the 
entral z-extensions of g with 
ontinuous linear se
tions. There

is a natural map H

2

s

(G;Z)! H

2




(g; z) indu
ed by the map

(3:1) D:Z

2

s

(G;Z)! Z

2




(g; z); D(f)(x; y) = d

2

f(e; e)(x; y)� d

2

f(e; e)(y; x)

([Ne02b, Lemma IV.6℄), where d

2

f(e; e) has to be understood as

d

2

f(e; e)(x; y) :=

�

2

�s�t

j

t;s=0

f(
(t); �(s))

where 
: ℄� "; "[! G and �: ℄� "; "[! G are smooth 
urves with 
(0) = e , 


0

(0) = x , �(0) = e ,

and �

0

(0) = y . For more details we refer to [Ne02b℄.

In this se
tion we dis
uss the existen
e of a 
entral Lie group extension for the Lie algebra


o
y
les !

M;�

of produ
t type (see (1.1)), where K may be an in�nite-dimensional Lie group.

The group G := C

1

(M;K) a
ts on g by the adjoint a
tion whi
h is given by

(Ad(f):�)(m) := Ad(f(m)):�(m) for m 2M:

We also de�ne an a
tion of G on k-valued 1-forms on M by

(Ad(f):�)(m) := Ad(f(m)) Æ �(m) for m 2M:
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De�nition III.1. For an element f 2 C

1

(M;K) we write

Æ

l

(f)(m) := d�

f(m)

�1
(f(m))df(m):T

m

(M)! k

�

=

T

e

(K)

for the left logarithmi
 derivative of f . This derivative 
an be viewed as a k-valued 1-form on

M . We also write simply Æ

l

(f) = f

�1

:df and observe the following produ
t rule

(3:2) Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

):

The right logarithmi
 derivative Æ

r

(f) = df:f

�1

satis�es the produ
t rule

(3:3) Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

)

([KM97, 38.1℄).

The form �

l

K

:= Æ

l

(id

K

) 2 


1

(K; k) is 
alled the left Maurer{Cartan form on K and

�

r

K

:= Æ

r

(id

K

) the right Maurer{Cartan form. Using the Maurer{Cartan forms, we have

Æ

l

(f) = f

�

�

l

K

and Æ

r

(f) = f

�

�

r

K

:

Lemma III.2. The smooth maps Æ

l

; Æ

r

:C

1

(M;K)! 


1

(M; k) satisfy

(dÆ

l

)(e)(�) = (dÆ

r

)(e)(�) = d� for � 2 C

1

(M; k)

�

=

T

e

(C

1

(M;K)):

Proof. Let V � k be an open 
onvex 0-neighborhood and ':V ! U := '(V ) a 
hart of K

with '(0) = e and d'(0) = id

k

. Let � 2 g = C

1

(M; k). Then there exists an " > 0 su
h that

for ea
h t 2 [0; "℄ we have t�(M) � V . Then


: [0; "℄! C

1

(M;K); 


t

(m) := '(t�(m))

is a smooth 
urve on C

1

(M;K) with 
(0) = e and 


0

(0) = � . We now have for v 2 T

m

(M)

d


t

(m):v = d'(t�(m))td�(m)v 2 T


(m)

(K)

and therefore

Æ

l

(


t

)(m):v = 


t

(m)

�1

:(d


t

(m):v) = '(t�(m))

�1

:d'(t�(m)) � t � d�(m)v 2 k:

In view of d


0

= 0, it follows that

d

dt

t=0




t

(m)

�1

:(d


t

(m):v) = lim

t!0

'(t�(m))

�1

:d'(t�(m))d�(m)v

= '(0)

�1

:d'(0)d�(m)v = d�(m)v:

A similar argument works for the right logarithmi
 derivatives.

Proposition III.3. Let g := C

1

(M; k) , �: k � k ! Y be a 
ontinuous invariant symmetri


bilinear form, and de�ne

�:C

1

(M;K)! Lin(g; z

M

(Y )); �(f)(�) := [�(Æ

l

(f); �)℄:

Then we obtain for the 
o
y
le !(�; �) := [�(�; d�)℄ an automorphi
 a
tion of C

1

(M;K) on

b

g := g�

!

z

M

(Y ) by

(3:4) f:(�; z) := (Ad(f):�; z ��(f)(�)) = (Ad(f):�; z � [�(Æ

l

(f); �)℄):
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The 
orresponding derived a
tion is given by

(3:5) �:(�; z) = [(�; 0); (�; z)℄ = ([�; �℄; !(�; �)):

Proof. Using (3.2), we �rst verify the 
o
y
le 
ondition for �:

�(f

1

f

2

)(�) = [�(Æ

l

(f

1

f

2

); �)℄ = [�(Æ

l

(f

2

) + Ad(f

2

)

�1

:Æ

l

(f

1

); �)℄

= �(f

2

)(�) + [�(Æ

l

(f

1

);Ad(f

2

):�)℄ = �(f

2

)(�) + �(f

1

)(Ad(f

2

):�):

This relation implies that

f

1

:(f

2

:(�; z)) = f

1

:(Ad(f

2

):�; z ��(f

2

)(�)) =

�

Ad(f

1

f

2

):�; z ��(f

2

)(�) ��(f

1

)(Ad(f

2

):�)

�

=

�

Ad(f

1

f

2

):�; z ��(f

1

f

2

)(�)

�

:

To see that C

1

(M;K) a
ts by automorphisms of

b

g , we note that

d(Ad(f):�)(m) =

�

(dAd)(f(m))df(m)

�

:�(m) + Ad(f(m)) Æ d�(m)

=

�

Ad(f(m))dAd(e)d�

f(m)

�1(f(m))df(m)

�

:�(m) + Ad(f(m)) Æ d�(m)

=

�

Ad(f(m)) Æ ad Æ

l

(f)(m)

�

:�(m) + Ad(f(m)) Æ d�(m);

whi
h means that

(3:6) d(Ad(f):�) = Ad(f):[Æ

l

(f); �℄ + Ad(f):d�:

Therefore

!(Ad(f):�;Ad(f):�) = [�(Ad(f):�; d(Ad(f):�))℄ = [�(Ad(f):�;Ad(f):d� +Ad(f):[Æ

l

(f); �℄)℄

= [�(�; d�)℄ + [�(�; [Æ

l

(f); �℄)℄ = [�(�; d�)℄� [�(Æ

l

(f); [�; �℄)℄

= !(�; �)��(f)([�; �℄):

That C

1

(M;K) a
ts by automorphisms on

b

g now follows from

f:[(�

1

; z

1

); (�

2

; z

2

)℄ = (Ad(f):[�

1

; �

2

℄; !(�

1

; �

2

)��(f)([�

1

; �

2

℄))

=

�

[Ad(f):�

1

;Ad(f):�

2

℄; !(Ad(f):�

1

;Ad(f):�

2

)

�

= [f:(�

1

; z

1

); f:(�

2

; z

2

)℄:

To verify (3.5), we have to show that the di�erential of � in e is given by

d�(e)(�)(�) = !(�; �):

Using Lemma III.2, we obtain

d�(e)(�)(�) = [�

�

(dÆ

l

)(e)(�); �

�

℄ = [�(d�; �)℄ = [�(�; d�)℄ = !(�; �):

De�nition III.4. Let G be a 
onne
ted Lie group with Lie algebra g and ! 2 Z

2




(g; z) a


ontinuous Lie algebra 
o
y
le with values in the s.
.l.
. spa
e z . Let � � z be a dis
rete subgroup

and Z := z=� the 
orresponding quotient Lie group. Further let 
 be the 
orresponding left

invariant 
losed z-valued 2-form on G . Then we de�ne a homomorphism

P :H

2




(g; z)! Hom(�

2

(G); Z)�Hom(�

1

(G);Lin(g; z))

as follows. For the �rst 
omponent we take

P

1

([!℄) := q

Z

Æ per

!

;

where q

Z

: z! Z is the quotient map and per

!

:�

2

(G)! z is the period map of ! . To de�ne the

se
ond 
omponent, for ea
h X 2 g we write X

r

for the 
orresponding right invariant ve
tor �eld

on G . Then i

X

r


 is a 
losed z-valued 1-form ([Ne02b, Lemma III.11℄) to whi
h we asso
iate a

homomorphism �

1

(G)! z via

P

2

([!℄)([
℄)(X) :=

Z




i

X

r


:

We refer to [Ne02b, Se
t. VII℄ for arguments showing that P is well de�ned, i.e., that the right

hand sides only depend on the Lie algebra 
ohomology 
lass of ! .
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Theorem III.5. Let ! 2 Z

2




(g; z) be a 
ontinuous Lie algebra 
o
y
le. Then the 
entral Lie

algebra extension z ,!

b

g := g�

!

z!! g integrates to a 
entral Lie group extension Z ,!

b

G!! G

if and only if P ([!℄) = 0 .

Proof. [Ne02b, Th. VII.12℄.

Theorem III.6. Let K be a 
onne
ted Lie group, M a 
ompa
t manifold, G := C

1

(M;K)

e

and !

M;�

2 Z

2




(g; z

M

(Y )) as above. Suppose that the period group �

M;�

� z

M

(Y ) is dis
rete.

For Z := z

M

(Y )=�

!

M;�

we then obtain a 
entral Lie group extension Z ,!

b

G!! G 
orresponding

to the 
o
y
le !

M;�

.

Proof. In view of Theorem III.5, we only have to see that P

2

([!

M;�

℄) = 0, but this follows

from Proposition III.3 and [Ne02b, Prop. VII.6℄.

Corollary III.7. If dimK <1 , Y = V (k) , and �: k� k ! V (k) is the universal symmetri


invariant bilinear map, then there exists for Z := V (k)=�

M;�

a 
entral Lie group extension

Z ,!

b

G!! G = C

1

(M;K)

e

:

Proof. This is a 
onsequen
e of Theorem II.9 and Theorem III.6.

Remark III.8. (a) (
f. [Ne02b, Rem. V.12℄) Let Z ,!

b

G !! G be a 
entral extension of Lie

groups, where G and

b

G are 
onne
ted. In view of [Ne02b, Prop. V.11℄, the long exa
t homotopy

sequen
e of the prin
ipal Z -bundle

b

G over G leads to an exa
t sequen
e

�

2

(Z)! �

2

(

b

G)! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z)! �

0

(

b

G) = 1;

so that �

2

(Z)

�

=

�

2

(z) = 1 leads to

�

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)!! �

1

(G)! �

0

(Z):

If the 
onne
ting map �

1

(G) ! �

0

(Z) is inje
tive, then the map �

1

(Z) ! �

1

(

b

G) is surje
tive,

and we obtain

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= 
okerper

!

:

These relations show how the period homomorphism 
ontrols how the �rst two homotopy groups

of G and

b

G are related.

(b) We 
onsider the spe
ial 
ase where K is a simple 
ompa
t Lie group and G = C

1

(T

d

;K)

e

,

where M = T

d

is a d-dimensional torus. Then Y = V (k)

�

=

R , where the Cartan-Killing form

�

k

of k is universal, and �

1

(T

d

)

�

=

Z

d

implies z

T

d
(R)

�

=

R

d

, where the proje
tion onto the


omponents is given by integrating over the 
oordinate loops �

j

:T ,! T

d

, j = 1; : : : ; d .

A

ording to Remark I.11(b), we have

�

2

(G)

�

=

�

2

(K)� �

3

(K)

d

� �

4

(K)

(

d

2

)

� : : : :

Sin
e �

2

(K) is trivial and �

3

(K)

�

=

Z (Remark II.3), we have

�

2

(G)

�

=

Z

d

�E;

where E

�

=

�

4

(K)

(

d

2

)

� : : : . The natural homomorphism Z

d

,! �

2

(G) is obtained from the map

C

1

(T;K)

d

! G; (g

j

)

j=1;:::;d

7! (g

1

Æ p

1

) � � � (g

d

Æ p

d

);

where p

j

:T

d

! T is the proje
tion onto the j -
omponent. As we have seen above, the period

map per

!

M;�

maps the subgroup Z

d

bije
tively onto the full period group

�

T

d

;�

�

=

�

d

S

1

;�

�

=

Z

d

� z

T

d(R)

�

=

R

d

:

We 
on
lude in parti
ular with (a) that

�

2

(

b

G)

�

=

ker(per

!

T

d

;�

)

�

=

�

2

(G)=�

3

(K)

d

�

=

�

4

(K)

(

d

2

)

� : : : :

As we have seen in Remark II.3, this group is not always trivial, showing that �

2

(

b

G) is not

always trivial. This 
ontradi
ts a statement in [PS86, Prop. 4.10.1℄ saying that �

2

(

b

G) is trivial.
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For the following theorem we re
all that we 
an use the 
ontinuous bilinear form �: k�k ! Y

to de�ne a wedge produ
t

^

�

: 


1

(M; k) �


1

(M; k)! 


2

(M;Y )

by

(� ^

�

�)(v; w) := �(�

p

(v); �

p

(w)) � �(�

p

(v); �

p

(w)); v; w 2 T

p

(M):

We also de�ne for � 2 C

1

(M; k) and � 2 


1

(M; k) the wedge produ
t

� ^

�

� := �� ^

�

� := �(�; �)

and observe that

d(� ^

�

�) = d� ^

�

�+ �(�; d�):

For ea
h smooth map f :M ! G we then have

(3:7)

�

Ad(f):�

�

^

�

� = � ^

�

�

Ad(f)

�1

:�

�

;

where (Ad(f):�)(v) = Ad(f(p)):�(v) for v 2 T

p

(M), be
ause the bilinear map � is invariant

under Ad(K). We likewise get

(3:8) [�; �℄ ^

�

� = �� ^

�

[�; �℄

for � 2 C

1

(M; k), where [�; �℄

p

(v) := �[�; �℄

p

(v) := [�

p

(v); �(p)℄ . We also have a wedge produ
t

[�; �℄

^

: 


1

(M; k) �


1

(M; k)! 


2

(M; k)

de�ned by

[�; �℄

^

(v; w) := [�

p

(v); �

p

(w)℄� [�

p

(w); �

p

(v)℄; v; w 2 T

p

(M):

Note that [�; �℄

^

= [�; �℄

^

. The two wedge produ
ts are related by the formula

(3:9) �([�; �℄

^

; �) = � ^

�

[�; �℄; � 2 C

1

(M; k):

Theorem III.9. Let G

+

:= C

1

(M;K) . Then the map


:G

+

�G

+

! 


2

(M;Y ); 
(f; g) := Æ

l

(f) ^

�

Æ

r

(g)

de�nes a a smooth 


2

(M;Y )-valued group 2-
o
y
le on G

+

, so that we obtain a 
entral Lie

group extension

b

G

+

:= G

+

�







2

(M;Y ) . The 
orresponding Lie algebra 
o
y
le D
 from (3.1)

is given by

D
(�; �) = 2d� ^

�

d� for �; � 2 C

1

(M; k):

The map 
: z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! 2d� satis�es 
 Æ !

M;�

= D
 and indu
es a Lie algebra

homomorphism




g

:

b

g = g�

!

M;�

z

M

(Y )!

b

g

+

:= g�

D





2

(M;Y ); (X; [�℄) 7! (X; 2d�):

This homomorphism is G

+

-equivariant with respe
t to the a
tion on

b

g

+

indu
ed by the adjoint

a
tion of

b

G

+

, given by

Ad

bg

+

(g):(�; z) =

�

Ad(g):�; z � d(�(Æ

l

(g); �))

�

:

Proof. The smoothness of the 
o
y
le follows from the smoothness of the maps

Æ

l

; Æ

r

:C

1

(M;K)! 


1

(M; k)

and the 
ontinuity of � .
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For the 
onstant fun
tion f = e we have Æ

l

(f) = Æ

r

(f) = 0, so that 
(g; e) = 
(e; g) = 0:

Moreover, we obtain with (3.2), (3.3) and (3.7):


(f; gh)� 
(fg; h) = Æ

l

(f) ^

�

Æ

r

(gh)� Æ

l

(fg) ^

�

Æ

r

(h)

= Æ

l

(f) ^

�

�

Æ

r

(g) + Ad(g):Æ

r

(h))�

�

Æ

l

(g) + Ad(g)

�1

:Æ

l

(f)

�

^

�

Æ

r

(h)

= 
(f; g)� 
(g; h) + Æ

l

(f) ^

�

�

Ad(g):Æ

r

(h))�

�

Ad(g)

�1

:Æ

l

(f)

�

^

�

Æ

r

(h)

= 
(f; g)� 
(g; h)

Therefore 
 is a group 
o
y
le.

A

ording to [Ne02, Lemma IV.6℄ and Lemma III.2, the 
orresponding Lie algebra 
o
y
le

D
 2 Z

2




(C

1

(M; k); Y ), is given by

D
(�; �) = d

2


(e; e)(�; �)� d

2


(e; e)(�; �)

= dÆ

l

(e)(�) ^

�

dÆ

r

(e)(�)� dÆ

l

(e)(�) ^

�

dÆ

r

(e)(�)

= d� ^

�

d� � d� ^

�

d� = 2d� ^

�

d�:

To relate the Lie algebra 
o
y
les !

M;�

and D
 , we �rst observe that the di�erential

d: 


1

(M;Y ) ! 


2

(M;Y ) leads to a linear map 
: z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! 2d�: This map

satis�es


 Æ !

M;�

(�; �) = 2d(�(�; d�)) = 2d(� ^

�

d�) = 2d� ^

�

d� = D
(�; �):

This implies that 


g

is a Lie algebra homomorphism.

Next we derive an expli
it formula for the a
tion of G

+

on the Lie algebra

b

g

+

:= g�

D





2

(M;Y )

from whi
h it will follow that 


g

is G

+

-equivariant. The 
onjugation a
tion of G

+

on the group

b

G

+

is given by

g:(h; 0) := (g; 0)(h; 0)(g; 0)

�1

=

�

ghg

�1

; 
(g; h)� 
(ghg

�1

; g)

�

([Ne02b, Rem. I.2℄) whi
h implies that the derived a
tion is given by

Ad

bg

+

(g):(�; 0) =

�

Ad(g):�; d
(g; e)(0; �)� d
(e; g)(Ad(g):�; 0)

�

:

We have seen in Lemma III.2 that

d
(g; e)(0; �) = Æ

l

(g) ^

�

d�;

and with (3.6) we further get

d
(e; g)(Ad(g):�; 0) = d(Ad(g):�) ^

�

Æ

r

(g) = Ad(g):[Æ

l

(g); �℄ ^

�

Æ

r

(g) +

�

Ad(g):d�

�

^

�

Æ

r

(g)

= Ad(g):[Æ

l

(g); �℄ ^

�

Æ

r

(g) + d� ^

�

�

Ad(g)

�1

:Æ

r

(g)

�

= [Æ

l

(g); �℄ ^

�

Æ

l

(g) + d� ^

�

Æ

l

(g):

This leads to

Ad

bg

+

(g):(�; 0) =

�

Ad(g):�; 2Æ

l

(g) ^

�

d� + Æ

l

(g) ^

�

[Æ

l

(g); �℄

�

:

To show that 


g

is G

+

-equivariant, we have to verify that

(3:10) Ad

bg

+

(g):(�; 0) :=

�

Ad(g):�;�2d

�

�(Æ

l

(g); �)

��

(see (3.4)). The Maurer{Cartan Equation

dÆ

l

(f) = �

1

2

[Æ

l

(f); Æ

l

(f)℄

^

; f 2 C

1

(M;K)

([KM97, p.405℄) implies

d

�

�(Æ

l

(f); �)

�

= d(Æ

l

(f) ^

�

�) = dÆ

l

(f) ^

�

� � Æ

l

(f) ^

�

d�

= �

1

2

[Æ

l

(f); Æ

l

(f)℄

^

^

�

� � Æ

l

(f) ^

�

d� = �

1

2

Æ

l

(f) ^

�

[Æ

l

(f); �℄� Æ

l

(f) ^

�

d�:

This relation immediately gives the desired formula for Ad

bg

+

(f).
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Remark III.10. Sin
e the 
entral extension

b

G

+

of G

+

has a smooth global se
tion, its period

group �

D


= 
(�

M;�

) � 


2

(M;Y ) is trivial ([Ne02b, Prop. VIII.5℄). This is another argument

for the in
lusion �

M;�

� H

1

dR

(M;Y ) (Corollary I.9). It is remarkable that we obtain a 
entral

extension of the whole group G

+

and not only of its identity 
omponent G .

Remark III.11. (a) Sin
e M is 
ompa
t, its fundamental group �

1

(M) is �nitely generated.

Let k := b

1

(M) := rkH

1

(M) and 
hoose �

1

; : : : ; �

k

2 C

1

(S

1

;M) as in Remark I.3. Then the

integration map

�: z

M

(Y )! Y

k

; [�℄ 7!

�

Z

�

j

�

�

j=1;:::;k

maps the subspa
e H

1

dR

(M;Y ) bije
tively onto Y

k

, so that we obtain a topologi
al splitting

z

M

(Y )

�

=

H

1

dR

(M;Y )� ker�:

Then the di�erential d: z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! d� maps ker� 
ontinuously onto the 
losed

subspa
e B

2

dR

(M;Y ) of exa
t 2-forms in 


2

(M;Y ).

Suppose that �

M;�

is dis
rete. Then the group Z from Theorem III.6 has a produ
t

de
omposition

Z

�

=

�

H

1

dR

(M;Y )=�

M;�

�

� ker�

�

=

�

Y=�

S

1

;�

�

k

� ker�

(
f. Theorem I.6).

(b) The di�erential d: z

M

(Y )! 


2

(M;Y ) indu
es a Lie algebra homomorphism




g

:

b

g = g�

!

M;�

z

M

(Y )!

b

g

+

= g�

D





2

(M;Y ); (�; [�℄) 7! (�; 2d�):

The 
onstru
tion of a 
orresponding Lie group homomorphism

b

G !

b

G

+

, where

b

G is a


entral extension of G by Z = z

M

(Y )=�

M;�

(Theorem III.6) is not so obvious be
ause the

values of the 
o
y
le 
 in Theorem III.9 are in general not exa
t forms (Remark III.13 below),

hen
e do not lie in the range of the map d . Nevertheless, the range of the Lie algebra 
o
y
le D


is 
ontained in the spa
e of exa
t forms. Suppose that Y is a Fr�e
het spa
e. Then the quotient

map p: 


2

(M;Y ) ! E := 


2

(M;Y )=B

2

dR

(M;Y ) is an open morphism of Fr�e
het spa
es. We

obtain a smooth group 
o
y
le 


�

:= pÆ 
 2 Z

2

s

(G

+

; E) whose 
orresponding Lie algebra 
o
y
le

is trivial. A

ording to [Ne02b, Th. VIII.8℄, there exists a homomorphism �:�

1

(G) ! E su
h

that G �




�

E

�

=

(

e

G � E)=�(�), where �(�) � �

1

(G) � E is the graph of � . Is this extension

trivial? Sin
e G is smoothly para
ompa
t, there exists a smooth fun
tion f :

e

G ! E with

f(gd) = f(g) + �(d), g 2

e

G , d 2 �

1

(G) ([Ne02b, Prop. III.8℄).

(
) If Y is Fr�e
het, the same holds for the spa
e 


2

(M;Y ). Therefore

b

G

+

is a 
entral extension

of the regular Fr�e
het{Lie group G

+

by the regular Fr�e
het{Lie group 


2

(M;Y ), hen
e regular

([KM97, Th. 38.6℄). Therefore the Lie algebra homomorphism 


g

:

b

g ! g�

D


B

2

dR

(M;Y ) inte-

grates to a unique Lie group homomorphism e


G

:G

℄

!

e

G�

e





2

(M;Y ), where G

℄

is the 
entral Lie

group extension of the universal 
overing group

e

G of G by Z = z

M

(Y )=�

M;�

(Theorem III.6).

Then the surje
tivity of the period homomorphism �

2

(G)

�

=

�

2

(

e

G) ! �

1

(Z) implies that G

℄

is simply 
onne
ted (Remark III.8). Sin
e the natural map �

1

(

b

G) ! �

1

(G) is an isomorphism

(Remark III.8), it follows that e


G

(�

1

(

b

G)) � �

1

(G), and hen
e that e


G

fa
tors through a Lie

group homomorphism 


G

:

b

G!

b

G

+

with L(


G

) = 


g

.

Remark III.12. (The abelian 
ase) We assume that K is a 
onne
ted abelian Lie group with

universal 
overing group

e

K = (k;+). Then K

�

=

k=�, where �

�

=

�

1

(K) is a dis
rete subgroup

of k . Let q

K

: k! K denote the quotient map.

Let M be a 
ompa
t 
onne
ted manifold. Then the group G

+

= C

1

(M;K) is abelian

and its identity 
omponent G = C

1

(M;K)

e

is the image of the exponential map

exp

G

: g = C

1

(M; k)! G; � 7! q

K

Æ �:



21 
urrent.tex April 8, 2002

Therefore

e

G = g = C

1

(M; k) is 
ontra
tible, and �

k

(G) = 1 for k � 2. We further have

�

1

(G)

�

=

ker exp

G

�

=

C

1

(M;�)

�

=

� and �

0

(G)

�

=

Hom(�

1

(M);�)

�

=

�

k

for k = b

1

(M). Here we use [Ne02b, Prop. III.9℄ to see that ea
h homomorphism �

1

(M)! � is

obtained from a smooth map M ! K and that a smooth map f :M ! K lifts to a smooth map

M ! k if and only if �

1

(f):�

1

(M) ! �

1

(K)

�

=

� is trivial. Let �: k � k ! Y be a 
ontinuous

bilinear form and !(�; �) := [�(�; d�)℄ the 
orresponding Lie algebra 
o
y
le.

(a) Sin
e ea
h element of �

1

(G) � g 
orresponds to a 
onstant fun
tion, we have

!(�

1

(G); g) = f0g; so that




G

(exp

G

�; exp

G

�) :=

1

2

!(�; �) =

1

2

[�(�; d�)℄

de�nes a global z

M

(Y )-valued group 
o
y
le on G , and we obtain a 
entral extension

b

G = G�




G

z

M

(Y )

whi
h 
an be lifted to a 
entral Lie group extension

e

G�

e


G

z

M

(Y ) with e


G

:= 


G

Æ (exp

G

� exp

G

);

i.e., e


G

(�; �) = [�(�; d�)℄ .

On the other hand we have the 
entral extension G

+

�







2

(M;Y ) given by the 
o
y
le


(g; h) = Æ

l

(g) ^

�

Æ

r

(h) = Æ

l

(g) ^

�

Æ

l

(h)

(Theorem III.9). Note that Æ

r

= Æ

l

follows from K being abelian. Sin
e ea
h left invariant 1-

form on an abelian Lie group is 
losed, the Maurer{Cartan form �

K

is 
losed, hen
e Æ

l

(f) = f

�

�

K

is 
losed for ea
h smooth fun
tion f :M ! K , so that all 2-forms 
(g; h) are 
losed.

As we will see below, they are not always exa
t. For elements g = exp

G

� and h = exp

G

�

in the identity 
omponent G of G

+

we have


(g; h) = d� ^

�

d� = d

�

�(�; d�)

�

= 2d

�




G

(g; h));

so that

G�




G

z

M

(Y )! G

+

�







2

(M;Y ); (g; [�℄) 7! (g; 2d�)

is a Lie group homomorphism.

(b) Let q

M

:

f

M !M denote the universal 
overing map and g 2 G

+

. Then the map eg := g Æ q

M


an be written as exp

K

Æ

e

� , where

e

� 2 C

1

(

f

M; k). We likewise write

e

h = exp

K

Æe� for a se
ond

element h 2 G

+

. Then

q

�

M


(g; h) = q

�

M

(Æ

l

(g) ^

�

Æ

l

(h)) = d

e

� ^

�

de� = d(

e

� ^

�

de�)

is an exa
t 2-form on

f

M . This means that [
(g; h)℄ 2 H

2

(M;Y )

�

=

Hom(H

2

(M); Y ) vanishes

on the image of �

2

(M)

�

=

H

2

(

f

M) in H

2

(M).

(
) For M = T

2

, K = T , Y = R , �(x; y) = xy , g(t

1

; t

2

) = t

1

and h(t

1

; t

2

) = t

2

we obtain on

f

M

�

=

R

2

:

q

�

M


(g; h) = dx ^ dy

and therefore

R

M


(g; h) 6= 0. In parti
ular 
(g; h) is not exa
t.

(d) Sin
e K is abelian, the group �

0

(G

+

) a
ts trivially on

e

G and hen
e on �

1

(G). The a
tions

of G

+

on

b

g and

b

g

+

are given by

Ad

bg

(g):(�; z) = (�; z � [�(Æ

l

(g); �)℄)
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and

Ad

bg

+

(g):(�; z) = (�; z � d�(Æ

l

(g); �)) = (�; z � Æ

l

(g) ^

�

d�):

For ea
h 
onstant map � 2 � �

e

G

�

=

g we therefore obtain Ad

bg

+

(g):(�; z) = (�; z), but for ea
h

g 2 G the 1-form �(Æ

l

(g); �) = Æ

l

(g) ^

�

� is 
losed, and for � 2 C

1

(S

1

;M) we have

Z

�

�(Æ

l

(g); �) = �

�

Z

�

Æ

l

(g); �

�

with

R

�

Æ

l

(g) 2 �. Therefore the a
tion of �

0

(G

+

) on �

1

(G)� z

M

(Y )

�

=

�� z

M

(Y ) is given by

g:(
; z) = (
; z � [�(Æ

l

(g); 
)℄);

where [�(Æ

l

(g); 
)℄ 2 H

1

dR

(M;Y )

�

=

H

1

(M;Y )

�

=

Hom(�

1

(M); Y ) 
orresponds to the homomor-

phism �(�

1

(g); 
):�

1

(M)! Y . This a
tion is non-trivial if and only if �(�;�) 6= f0g:

Remark III.13. Let K be a 
ompa
t Lie group and M := K �K . We 
onsider the smooth

maps

f :M ! K; (k

1

; k

2

) 7! k

1

and g:M ! K; (k

1

; k

2

) 7! k

�1

2

:

Let p

1

; p

2

:M ! K denote the proje
tions onto the fa
tors. Then Æ

l

(f) = p

�

1

�

l

K

and Æ

r

(g) =

�p

�

2

�

l

K

holds for the left Maurer{Cartan form �

l

K

on K . Hen
e 
(f; g) = �p

�

1

�

l

K

^

�

p

�

2

�

l

K

is a

left invariant 2-form on the 
ompa
t Lie group M = K �K . Let � := 
(f; g)

e

. Then

�((x; y); (x

0

; y

0

)) = ��(x; y

0

) + �(x

0

; y):

Sin
e K is a 
ompa
t 
onne
ted Lie group, the form 
(f; g) is 
losed/exa
t if and only if � is


losed/exa
t as a Lie algebra 
o
hain. For every 
ontinuous linear map �: k� k! Y we have

�([(x; y); (x

0

; y

0

)℄) = �([x; x

0

℄; 0) + �(0; [y; y

0

℄):

Therefore 
(f; g) is exa
t if and only if � = 0.

The 
losedness of 
(f; g) is equivalent to the vanishing of

�([x

0

; x

00

℄; y)� �([y

0

; y

00

℄; x) + �([x

00

; x℄; y

0

)� �([y

00

; y℄; x

0

) + �([x; x

0

℄; y

00

)� �([y; y

0

℄; x

00

):

Using this identity for y

0

= y

00

= 0, we see that 
(f; g) is 
losed if and only if �(k; [k; k℄) = f0g .

IV. Universal 
entral extensions

In this se
tion we turn to the question whether the 
entral extension from Corollary III.7 is

universal. This question will be answered aÆrmatively if k is �nite-dimensional and semisimple.

First we re
all some 
on
epts and a result from [Ne01
℄ on weakly universal 
entral extensions

of Lie groups and Lie algebras.

De�nition IV.1. (
f. [Ne01
℄) Let g be a topologi
al Lie algebra over K 2 fR; C g and

a be a topologi
al ve
tor spa
e 
onsidered as a trivial g-module. We 
all a 
entral extension

q:

b

g = g �

!

z ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal for a if the


orresponding map Æ

a

: Lin(z; a)! H

2




(g; a); 
 7! [
 Æ !℄ is bije
tive.

We 
all q:

b

g! g universal for a if for every linearly split 
entral extension q

1

:

b

g

1

! g of g

by a there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . Note that this universal

property immediately implies that two 
entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

whi
h

are both universal for both spa
es a

1

and a

2

are isomorphi
. A 
entral extension is said to be

(weakly) universal if it is (weakly) universal for all lo
ally 
onvex spa
es a .
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De�nition IV.2. We 
all a 
entral extension

b

G = G�

f

Z of the 
onne
ted Lie group G by

the abelian Lie group Z weakly universal for the abelian Lie group A if the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A); 
 7! [
 Æ f ℄

is bije
tive. It is 
alled universal for the abelian group A if for every 
entral extension

q

1

:G�

'

A! G; ' 2 Z

2




(G;A);

there exists a unique Lie group homomorphism  :G�

f

Z ! G�

'

A with q

1

Æ = q . A 
entral

extensional is said to be (weakly) universal if it is (weakly) universal for all Lie groups A with

A

e

�

=

a=�

1

(A) and a s.
.l.
.

De�nition IV.3. If g is a Fr�e
het{Lie algebra, then we write H

1

(g) := g=g

0

, where g

0

:= [g; g℄

is the 
losed 
ommutator algebra. The spa
e H

1

(g) is a Fr�e
het spa
e be
ause g

0

is 
losed. If

G is a 
onne
ted Lie group with Lie algebra g and

e

G its universal 
overing group, then we

have a natural homomorphism d

G

:

e

G ! H

1

(g). Its kernel is denoted by (

e

G;

e

G). If G is �nite-

dimensional, then (

e

G;

e

G) is the 
ommutator group of

e

G .

The following theorem is [Ne01
, Th. IV.13℄.

Theorem IV.4. (Re
ognition Theorem) Assume that q:

b

G ! G is a 
entral Z -extension of

Fr�e
het{Lie groups over K 2 fR; C g for whi
h

(1) the 
orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply 
onne
ted, and

(3) �

1

(G) � (

e

G;

e

G) .

If

b

g is weakly universal for a Fr�e
het spa
e a , then

b

G is weakly universal for ea
h abelian

Fr�e
het{Lie group A with Lie algebra a and A

e

�

=

a=�

1

(A) .

Lemma IV.5. If q:Y ! Z is a surje
tive morphism of Fr�e
het spa
es and X a Fr�e
het spa
e,

then the natural map id

X


q:X

b


Y ! X

b


Z is a quotient map.

Proof. Let f 2 X

b


Z . Then f 
an be written as f =

P

n2N

�

n

x

n


 z

n

with � 2 l

1

(N;R) ,

x

n

! 0 and z

n

! 0 ([Tr67, Th. 45.1℄). Let p

X

, p

Y

, resp., p

Z

, be a 
ontinuous seminorm on

X , Y , resp., Z . We further assume that

p

Z

(q(y)) = inf p

Y

(y + ker q);

be
ause the seminorms on the right hand side de�ne the topology on Z .

Using the quotient metri
 on Z , we �nd y

n

2 Y with q(y

n

) = z

n

and y

n

! 0. Then

e

f :=

X

n

�

n

x

n


 y

n


onverges absolutely in X

b


Y be
ause

X

n

j�

n

j(p

X


 p

Y

)(x

n


 y

n

) �

X

n

j�

n

jp

X

(x

n

)p

Y

(y

n

)

and the right hand side 
onverges sin
e p

X

(x

n

) ! 0 and p

Y

(y

n

) ! 0. Moreover, we have

q(

e

f) = f . This implies that id

X


q is surje
tive, hen
e a quotient map by the Open Mapping

Theorem.
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Proposition IV.6. Let M be a 
ompa
t manifold, K a 
onne
ted Fr�e
het{Lie group and

G := C

1

(M;K)

e

. Then

�

1

(G) � (

e

G;

e

G) () �

1

(K) � (

e

K;

e

K):

Moreover, we have

g

0

= C

1

(M; k

0

) and H

1

(g)

�

=

C

1

(M;H

1

(k)):

Proof. Let x

M

2M be any point and 
onsider the evaluation map Æ:G! K; f 7! f(x

M

). We

write Æ

g

: g ! k for the 
orresponding Lie algebra homomorphism. With G

�

:= C

1

�

(M;K)

e

:=

ker Æ we obtain G

�

=

G

�

oK , i.e., the Lie group homomorphism Æ is split by the natural in
lusion

�:K ! G by viewing elements of K as 
onstant maps on M . We thus obtain a 
ommutative

diagram, where the verti
al homomorphisms split:

e

G

d

G

��! H

1

(g)

?

?

y

e

Æ

?

?

y

H

1

(Æ

g

)

e

K

d

K

��! H

1

(k):

The splitting of the verti
al arrows implies that we may view the lower horizontal homomorphism

as the restri
tion of d

G

to

e

K . As �

1

(K) 
an be viewed as a subgroup of �

1

(G), this shows that

�

1

(G) � (

e

G;

e

G) = ker d

G

implies �

1

(K) � ker d

K

= (

e

K;

e

K):

Suppose, 
onversely, that �

1

(K) � ker d

K

, i.e., that d

K

fa
tors through a Lie group

homomorphism d

0

K

:K ! H

1

(k) whi
h in turn indu
es a Lie group homomorphism

�:C

1

(M;K)! C

1

(M;H

1

(k)); �(f)(m) := d

0

K

(f(m)):

On the other hand, the natural Lie algebra homomorphism �:C

1

(M; k) ! C

1

(M;H

1

(k)) is a

quotient map (Remark II.5, Lemma IV.5) with kernel C

1

(M; k

0

).

We 
laim that g

0

= C

1

(M; k

0

). It is obvious that the 
ommutator algebra g

0

is 
ontained

in C

1

(M; k

0

). We further have for ea
h f 2 C

1

(M; k) the relation

f 


X

j

[x

j

; y

j

℄ =

X

j

[1
 x

j

; f 
 y

j

℄ 2 g

0

;

whi
h leads to C

1

(M;R)

b


k

0

�

=

C

1

(M; k

0

) � g

0

be
ause k

0

is a 
omplete lo
ally 
onvex spa
e

(Remark II.5), and hen
e to C

1

(M; k

0

) = g

0

. Putting the information together, we 
on
lude

that

H

1

(g) = g=g

0

= C

1

(M; k)=C

1

(M; k

0

)

�

=

C

1

(M;H

1

(k)):

Therefore the Lie group homomorphism G � C

1

(M;K) ! C

1

(M;H

1

(k)) integrates the Lie

algebra homomorphism g! H

1

(g), whi
h implies that �

1

(G) � ker d

G

= (

e

G;

e

G).

Theorem IV.7. Suppose that K is �nite-dimensional semisimple and let G := C

1

(M;K)

e

.

Let z := z

M

(V (k)) and ! 2 Z

2




(g; z) the 
o
y
le given by !(�; �) = [�(�; d�)℄ . Then the 
orre-

sponding 
entral Lie algebra extension

b

g := g�

!

z is universal and there exists a 
orresponding


entral Lie group extension Z ,!

b

G !! G with Z

�

=

�

1

(G) � (z=�

!

) whi
h is universal for all

abelian Fr�e
het{Lie groups A with A

e

�

=

a=�

1

(A) .

Proof. First we note that

b

g ! g is a 
overing (Lemma II.7), so that for ea
h lo
ally 
onvex

spa
e a the natural map

Æ: Lin(z; a)! H

2




(g; a); 
 7! [
 Æ !℄

is inje
tive ([Ne01
, Rem. I.6℄).

It has been shown in [Ma02, Thm. 16℄ that Æ is also surje
tive, so that

b

g is weakly universal

for all lo
ally 
onvex spa
es a . Sin
e g is perfe
t by Proposition IV.6, the Lie algebra

b

g is a

universal 
entral extension of g .
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Furthermore, the period map per

!

:�

2

(G) ! z has dis
rete image �

!

(Theorem II.9). In

view of Theorem III.6, [Ne02b, Prop. VII.13℄ now implies the existen
e of a 
entral Lie group

extension Z ,!

b

G !! G with Z

�

=

(z=�

!

) � �

1

(G) 
orresponding to the Lie algebra extension

z ,!

b

g! g and su
h that the 
onne
ting homomorphism �

1

(G)! �

0

(Z) is an isomorphism.

To prove the universality of

b

G , we use the Re
ognition Theorem IV.4. For that we have

to verify that

(1)

b

g is weakly universal,

(2) k is Fr�e
het,

(3) �

1

(

b

G) = 1 ,

(4) �

1

(G) � (

e

G;

e

G):

Sin
e k is �nite-dimensional semisimple, (2) is trivially satis�ed, and (1) has been veri�ed

above. Further (4) follows from �

1

(K) �

e

K = (

e

K;

e

K) (Proposition IV.6). It therefore remains

to verify (3). For that we 
onsider a part of the long exa
t homotopy sequen
e of the Z -prin
ipal

bundle q:

b

G! G (
f. Remark III.8):

(3:11) �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z):

A

ording to [Ne02b, Prop. V.11℄, we have Æ = � per

!

, so that �

1

(Z) = �

!

(as subsets of

z) implies that Æ is surje
tive. Moreover, the natural homomorphism �

1

(G) ! �

0

(Z) is an

isomorphism by the 
onstru
tion of

b

G , so that the exa
tness of (3.11) implies that

b

G is simply


onne
ted.

Remark IV.8. (a) If K is �nite-dimensional and redu
tive, then

e

K

�

=

z(k)�(

e

K;

e

K). Therefore

�

1

(K) is 
ontained in (

e

K;

e

K) if and only if K

�

=

z(k) � (K;K). In this 
ase we have

C

1

(M;K)

�

=

C

1

(M; z(k)) � C

1

(M; (K;K))

and hen
e we have for G = C

1

(M;K)

e

the dire
t produ
t de
omposition

G = G

D

�G

Z

with G

D

:= C

1

(M; (K;K))

e

and G

Z

:= C

1

(M; z(k)):

In this 
ase the Lie algebra g = C

1

(M; k) has the dire
t de
omposition g = g

0

� z(g) with

g

0

= C

1

(M; k

0

) (Proposition IV.6) and z(g) = C

1

(M; z(k)). It is easy to see that every Lie

algebra 
o
y
le ! 2 Z

2




(g; Y ) vanishes on g

0

� z(g) � g� g be
ause g

0

is perfe
t. From that one

further derives that a weakly universal 
entral extension of g 
an be obtained with

z := z

M

(V (k

0

))� �

2

(z(g));

where for a lo
ally 
onvex spa
e E the spa
e �

2

(E) is de�ned as the quotient of E


�

E modulo

the 
losure of the subspa
e spanned by the elements e
e , e 2 E . To des
ribe the 
orresponding


o
y
le, we write � 2 g as � = (�

0

; �

z

) with �

0

2 g

0

and �

z

2 z(g). Then a weakly universal


o
y
le is given by

!(�; �) = ([�

k

0

(�

0

; d�

0

)℄; �

z

^ �

z

):

Let

b

G

D

be the universal 
entral extension of G

D

from Theorem IV.7 and de�ne

b

G :=

b

G

D

�

b

G

Z

; where

b

G

Z

is the 2-step nilpotent Lie algebra

z(g)�

!

Z

�

2

(z(g)) with !

Z

(�; �) = � ^ �:

Using Theorem IV.4, we see that

b

G

Z

is a weakly universal 
entral extension of G

Z

�

=

g

Z

.

Theorems IV.4 and IV.7 now imply that

b

G is a weakly universal 
entral extension of G .

(b) As we have seen in Proposition IV.6, the Lie algebra g = C

1

(M; k) has the 
ommutator

algebra g

0

= C

1

(M; k

0

). On the other hand g = g

�

o k , where k 
orresponds to the 
onstant

fun
tions in g , and g

�

:= f� 2 g: �(x

M

) = 0g , where x

M

2 M is any point. For two elements

�; � 2 g

�

we then have d[�; �℄(x

M

) = 0, showing that [g

�

; g

�

℄ is in general not dense in C

1

�

(M; k

0

).

This defe
t 
omes from the observation that in the algebra C

1

�

(M;R) the ideal C

1

�

(M;R)

2

is


ontained in ff 2 C

1

�

(M;R): df(x

M

) = 0g , and it is easy to see that we a
tually have equality.
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V. Lifting automorphisms to 
entral extensions

In this se
tion we dis
uss the problem to asso
iate to a pair (


G

; 


Z

) of an automorphism 


G

of G and 


Z

of Z an automorphism b
 of a 
entral extension

b

G of G by Z restri
ting to 


Z

on Z and indu
ing 


G

on G . This se
tion is independent of the others. Its results apply to

general in�nite-dimensional Lie groups. The key results of this se
tion are Proposition V.4 whi
h

gives for a simply 
onne
ted G a ne
essary and suÆ
ient 
ondition for the existen
e of b
 , and

Theorem V.9, saying that for smooth a
tions of a Lie group R on G and Z whi
h lead to a

smooth a
tion on the Lie algebra

b

g , there exists a smooth a
tion on the group

b

G . In Se
tion VI

we will apply these results to the a
tions of the groups Di�(M) and C

1

(M;K) on C

1

(M;K)

e

.

For a Lie group G we write Aut(G) for the group of Lie group automorphisms of G

and Hom(G

1

; G

2

) for the set of Lie group morphisms from G

1

to G

2

. For a homomorphism

':G

1

! G

2

of Lie groups we write L('): g

1

! g

2

for the 
orresponding homomorphism of Lie

algebras. In parti
ular we then obtain a group homomorphism L: Aut(G) ! Aut(g). As above,

let Z ,!

b

G

q

��!G be a 
entral extension of 
onne
ted Lie groups, where Z

e

�

=

z=�

1

(Z).

In the following we write 
 = (


G

; 


Z

) for elements 
 2 Aut(G) � Aut(Z). The group

Aut(G)�Aut(Z) a
ts on the group Z

2

s

(G;Z) by


:f := 


Z

Æ f Æ (


�1

G

; 


�1

G

):

It likewise a
ts on Z

2




(g; z) by

f:! := L(


Z

) Æ f Æ (L(


G

)

�1

� L(


G

)

�1

):

The following purely algebrai
 lemma will be quite useful in the following.

Lemma V.1. (a) For i = 1; 2 let

b

G

i

= G

i

�

f

i

Z

i

be a 
entral Lie group extension of G

i

by the

abelian Lie group Z

i

de�ned by f

i

2 Z

2

s

(G

i

; Z

i

): For 
 = (


G

; 


Z

) 2 Hom(G

1

; G

2

)�Hom(Z

1

; Z

2

)

and a fun
tion h:G

1

! Z

2

whi
h is smooth in an identity neighborhood, the formula

b
(g; z) := (


G

(g); 


Z

(z)h(g)); g 2 G

1

; z 2 Z

1

de�nes a Lie group morphism

b

G

1

!

b

G

2

if and only if the relation

(5:1) 


Z

(f

1

(g; g

0

))h(gg

0

) = f

2

�




G

(g); 


G

(g

0

)

�

h(g)h(g

0

)

holds. Every Lie group homomorphism b
:

b

G

1

!

b

G

2

mapping Z

1

into Z

2

is of this form.

For G = G

1

= G

2

, Z = Z

1

= Z

2

and (


G

; 


Z

) 2 Aut(G) � Aut(Z) , formula (5.1) is

equivalent to

(5:2) (
:f)(g; g

0

)f(g; g

0

)

�1

= h

0

(gg

0

)h

0

(g)

�1

h

0

(g

0

)

�1

; g; g

0

2 G

for the fun
tion h

0

:= inv(h) Æ 


�1

G

, where inv(h)(x) := h(x)

�1

.

(b) For i = 1; 2 let

b

g

i

= g

i

�

!

i

z

i

be a 
entral extension of the topologi
al Lie algebra g

i

by the

abelian Lie algebra z

i

de�ned by !

i

2 Z

2




(g

i

; z

i

) . If 
 = (


g

; 


z

) 2 Lin(g

1

; g

2

)� Lin(z

1

; z

2

) , then

for � 2 Lin(g

1

; z

2

) the formula

b
(x; z) := (


g

(x); 


z

(z) + �(x)); x 2 g

1

; z 2 z

1

;

de�nes a 
ontinuous Lie algebra morphism

b

g

1

!

b

g

2

if and only if the relation

(5:3) !

2

(


g

(x); 


g

(x

0

)

�

= 


z

(!

1

(x; x

0

)) + �([x; x

0

℄)
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holds. Every morphism

b

g

1

!

b

g

2

mapping z

1

,! z

2

is of this form.

For g = g

1

= g

2

, z = z

1

= z

2

, (


g

; 


z

) 2 Aut(g) � Aut(z) , and �

0

:= � Æ 


�1

g

, formula

(5.3) is equivalent to 
:! � ! = d�

0

:

(
) Let R be a Lie group and 
:R ! Aut(g) � Aut(z); r 7! (r

g

; r

z

) a homomorphism su
h that

the 
orresponding a
tions on g and z are smooth. Let �:R � g ! z be a smooth map whi
h is

linear in the se
ond argument. Then

b
(r):(x; z) := (r

g

(x); r

z

(z) + �(r; x)); r 2 R; x 2 g; z 2 z;

de�nes a smooth a
tion of R by automorphisms of

b

g if and only if for ea
h r 2 R the fun
tion

�

r

:= �(r; �) satis�es (5.3) for 
(r) , and � satis�es the 
o
y
le 
ondition

(5:4) �(rer; x) = r

z

:�(er; x) + �(r; er

g

:x); r; er 2 R; x 2 g:

Proof. (a) If (5.1) is satis�ed for some fun
tion h whi
h is smooth in an identity neighborhood,

then b
 is a group homomorphism whi
h is smooth in an identity neighborhood, hen
e a morphism

of Lie groups.

Assume, 
onversely, that b
:

b

G

1

!

b

G

2

is a Lie group homomorphism mapping Z

1

into Z

2

.

Then b
 has the form

b
(g; z) =

�




G

(g); 


Z

(z)h(g)

�

;

where h:G

1

! Z

2

is a fun
tion whi
h is smooth in an identity neighborhood, and an easy


al
ulation leads to (5.1).

(b) The proof is a straightforward veri�
ation.

(
) A

ording to (b), the requirement b
(r) 2 Aut(

b

g) is equivalent to (5.3) for 
(r) and �

r

.

Suppose that these 
onditions are satis�ed. It is 
lear that b
 de�nes a smooth fun
tion R�

b

g!

b

g ,

so that we only have to see whi
h 
ondition on � means that b
 de�nes a representation of R

on

b

g . That this is equivalent to (5.4) follows from

r:(er:(x; z)) = (r

g

er

g

:x; r

z

er

z

:z + r

z

:�(er; x) + �(r; er

g

:x))

and

(rer):(x; z) = (r

g

er

g

:x; r

z

er

z

:z + �(rer; x)):

Lemma V.2. If 
 2 Aut(

b

G) preserves the subgroup Z , then 


Z

:= 
 j

Z

is a smooth

endomorphism of Z .

Proof. This follows from the fa
t that Z is a submanifold of

b

G in the sense that ea
h point

in Z has a neighborhood whi
h is di�eomorphi
 to a produ
t of an open subset of Z and a

transversal manifold.

If Z ,!

b

G!! G is a 
entral extension as dis
ussed above, then we de�ne

Aut(

b

G;Z) := f
 2 Aut(

b

G): 
(Z) = Zg:

In view of Lemma V.2, we then have a natural homomorphism

�: Aut(

b

G;Z)! Aut(G)�Aut(Z); �(
)(q(g); z) =

�

q(
(g)); 
(z)):

To ea
h f 2 Hom(G;Z) we assign the element of Aut(

b

G;Z) given by

b

f(g) := gf(q(g)). Then

ker� = f

b

f : f 2 Hom(G;Z)g

�

=

Hom(G;Z):

([Ne01a, Lemma II.9℄).
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Lemma V.3. If 
 = (


G

; 


Z

) 2 Aut(G) � Aut(Z) is 
ontained in the range of � , then there

exists � 2 Lin(g; z) satisfying (5.3). If, 
onversely, G is simply 
onne
ted and � 2 Lin(g; z)

satis�es (5.3), then there exists a unique automorphism b
 2 Aut(

b

G;Z) with �(b
) = 
 and

L(b
)(x; z) =

�

L(


G

):x;L(


Z

)(z) + �(x)

�

; x 2 g; z 2 z:

Proof. If 
 = �(b
), then L(b
) 2 Aut(

b

g) preserves z and indu
es an automorphism of z

(Lemma V.2). Hen
e it is of the form

L(b
):(x; z) = (L(


G

):x;L(


Z

):z + �(x));

where �: g ! z is a 
ontinuous linear map (Lemma V.1(b)). This implies the �rst part of the

assertion.

Suppose, 
onversely, that (5.3) is satis�ed by � 2 Lin(g; z) for 


g

:= L(


G

) and 


z

:=

L(


Z

). Sin
e G is simply 
onne
ted, the exa
t sequen
e for 
entral Lie group extensions ([Ne02b,

Th. VII.12℄) implies that the natural map H

2

s

(G;Z)! H

2




(g; z) is inje
tive.

Now it easily follows that it is equivariant with respe
t to the a
tion of Aut(G) �Aut(Z)

on both sides. Our assumption implies that [
:!℄ = [!℄ in H

2




(g; z), so that the equivarian
e of

D together with the inje
tivity of the 
orresponding map on the 
ohomology groups implies that

[
:f ℄ = [f ℄ in H

2

s

(G;Z). Now the existen
e of the automorphism b
 follows from Lemma V.1(a).

The uniquenss of the automorphism b
 follows from the fa
t that any automorphism of the


onne
ted Lie group

b

G is uniquely determined by the 
orresponding automorphism of the Lie

algebra ([Mi83, Lemma 7.1℄).

Proposition V.4. If G is simply 
onne
ted and ! 2 Z

2




(g; z) is a Lie algebra 
o
y
le


orresponding to the Lie algebra extension z ,!

b

g !! g , and

b

G a 
orresponding Lie group

extension of G by Z , then 
 = (


G

; 


Z

) 2 Aut(G) � Aut(Z) lifts to an automorphism b
 2

Aut(

b

G;Z) if and only if [
:!℄ = [!℄ , i.e., if the 
orresponding automorphism of g lifts to an

automorphism of

b

g .

Proof. This is a dire
t 
onsequen
e of Lemma V.3.

Lemma V.5. Suppose that �:R � G ! G is a smooth a
tion of the Lie group R by auto-

morphisms of the 
onne
ted Lie group G . Then the a
tion of R on G lifts to a smooth a
tion

e�:R�

e

G!

e

G by automorphisms of the simply 
onne
ted 
overing group

e

G of G .

Proof. [Ne01a, Lemma II.17℄

If G is not simply 
onne
ted, then it might have non-trivial 
entral Z -extensions 
orre-

sponding to trivial Lie algebra extension. These are dis
ussed in the following lemma.

Lemma V.6. If

b

G is of the form

b

G = (

e

G � Z)=�('); where q

G

:

e

G ! G is the universal


overing morphism of G , �

1

(G)

�

=

ker q

G

is identi�ed with a subgroup of

e

G , ':�

1

(G)! Z is a

homomorphism, and

�(') := f(d; '(d)): d 2 �

1

(G)g

the graph of ' , then 
 = (


G

; 


Z

) 2 Aut(G) � Aut(Z) is in the range of � if and only if

(


�1

Z

Æ ' Æ �

1

(


G

)) � '

�1

extends to a smooth homomorphism

e

G! Z .

Proof. Let e


G

be the natural lift of 


G

to

e

G (Lemma V.5). The 
anoni
al map

e

G�Z !

b

G

is a 
overing, and

e

G � z is the universal 
overing group of

b

G . Therefore, if 
 = �(b
), the

automorphism b
 also lifts to some automorphism e
 of

e

G � Z preserving the subgroup �(').

Then e
 is of the form

e
(g; z) = (e


G

(g); 


Z

(z)f(g));

with f 2 Hom(

e

G;Z). The 
ondition that e
 preserves �(') means that

f j

�

1

(G)

= (


Z

Æ ')

�1

� ' Æ �

1

(


G

);

where �

1

(


G

) = e


G

j

�

1

(G)

. If, 
onversely, (


Z

Æ')

�1

�' Æ�

1

(


G

) extends to a morphism

e

G! Z ,

then the above formula yields an automorphism e
 on

e

G�Z preserving �(') whi
h then fa
tors

to the quotient group

b

G .
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If �

1

(G) � (

e

G;

e

G), then 
 2 im(�) is equivalent to 


Z

Æ ' = ' Æ �

1

(


G

) be
ause for every

homomorphism of

e

G to an abelian Lie group the restri
tion to �

1

(G) is trivial.

Lifting automorphi
 group a
tions to 
entral extensions

In the pre
eding subse
tion we have lifted automorphisms of G to automorphisms of

b

G .

Now we assume that we have a smooth automorphi
 a
tion of the Lie group R on G , whi
h

leads to a semidire
t produ
t Lie group G o R . We are looking for suÆ
ient 
onditions to lift

the smooth a
tion of R on G to a smooth a
tion on

b

G whi
h apply in parti
ular to the a
tion of

Di�(M) and C

1

(M;K) on C

1

(M;K)

e

, where K is a Lie group and M a 
ompa
t manifold.

The following lemma will be used to redu
e the problem to the 
ase where the group

b

G is

simply 
onne
ted.

Lemma V.7. Let Z

℄

:= z= im(per

!

) . Then there exists a 
entral Lie group extension

Z

℄

,! G

℄

q

℄

��!

e

G


orresponding to the 
o
y
le ! , and G

℄

is the universal 
overing group of

b

G .

Proof. [Ne01a, Lemma II.16℄

The following remark will be relevant for the argument in the proof of the Lifting Theo-

rem IV.9 below.

Remark V.8. (Lo
al des
ription of 
entral Lie group extensions) Let q:

b

G ! G be a 
entral

Lie group extension with kernel Z .

Let 
 be the left invariant 2-form on G with 


e

= ! , where

b

g

�

=

g �

!

z . Further let

p

z

:

b

g ! z denote the proje
tion onto z de�ned by this identi�
ation. We write � for the left

invariant z-valued 1-form on

b

G with �

e

= p

z

. Then the 2-form q

�


 is exa
t with q

�


 = �d�

be
ause �dp

z

((x; z); (x

0

; z

0

)) = p

z

([(x; z); (x

0

; z

0

)℄) = !(x; x

0

):

In

b

G we have an open e-neighborhood of the form U � Z �

b

G , where the multipli
ation

is given for x; x

0

; xx

0

2 U by

(x; z)(x

0

; z

0

) = (xx

0

; zz

0

f

Z

(x; x

0

))

for a smooth fun
tion f

Z

:U � U ! Z . This means that the left multipli
ation map �

(x;e)

is

given by (x

0

; z

0

) 7! (xx

0

; z

0

f

Z

x

(x

0

)) for a smooth fun
tion f

Z

x

:U ! Z . Let �:U !

b

G denote the

smooth se
tion given by �(g) = (g; e). Then � := ��

�

� is a z-valued 1-form on G with

d� = �d�

�

� = ��

�

d� = �

�

q

�


 = 
 and �

e

= �p

z

Æ d�(e) = 0:

In view of the left invarian
e of � , we have on U � Z the relation

� = q

�

� + p

�

Z

�

Z

;

where �

Z

= Æ

l

(id

Z

) is the Maurer{Cartan form on Z with �

Z

(e) = id

z

and p

Z

:U � Z ! Z is

the proje
tion onto Z . Therefore

� = �

�

(x;e)

� = q

�

�

�

x

� + p

�

Z

�

Z

+ q

�

Æ

l

(f

Z

x

);

whi
h leads to

� = �

�

x

� � Æ

l

(f

Z

x

)

and hen
e to

�

�

x

� � � = Æ

l

(f

Z

x

); f

Z

x

(e) = e:
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We assume that W is an open identity neighborhood in G di�eomorphi
 to an open 
onvex

subset of g with WW � U . Then the Poin
ar�e Lemma ([Ne02b, Lemma III.3℄) implies for ea
h

x 2W the existen
e of a smooth fun
tion

f

z

x

:W ! z with f

z

x

(e) = 0 and df

z

x

= (�

�

x

� � �) j

W

:

Moreover, this fun
tion depends smoothly on x , so that the fun
tion

f

z

:W �W ! z; f

z

(x; y) := f

z

x

(y)

is smooth. From the uniqueness we now 
on
lude that on W we have for ea
h x 2 W the

relation f

Z

x

= q

Z

Æ f

z

x

: This 
onstru
tion of the fun
tions f

Z

x

will be
ome 
ru
ial, when we lift

automorphi
 group a
tions on G to group a
tions on

b

G in Theorem V.9.

Theorem V.9. (Lifting Theorem) Let �

G

:R � G ! G , resp., �

Z

:R � Z ! Z be smooth

automorphi
 a
tions of the Lie group R on the 
onne
ted Lie groups G , resp., Z . Assume

further that G is simply 
onne
ted and that there exists a smooth fun
tion �:R � g ! z su
h

that

�

bg

(r)(x; z) := (r:x; r:z + �(r; x)); r 2 R; x 2 g; z 2 z

is an a
tion of R on

b

g by automorphisms. Then there exists a unique smooth a
tion

�

b

G

:R�

b

G!

b

G

by automorphisms su
h that the 
orresponding derived a
tion is �

bg

.

Proof. In view of Lemma V.3, ea
h automorphism �

bg

(r) of

b

g integrates to a unique auto-

morphism of

b

G . It is 
lear that the uniqueness implies that we obtain an a
tion �

b

G

of R on

b

G

by smooth automorphisms. It remains to show that this a
tion is smooth.

The a
tion �

b

G

lifts uniquely to an a
tion �

G

℄
on the universal 
overing group G

℄

of

b

G by

Lie group automorphisms whi
h 
an also be viewed as a 
entral extension of the simply 
onne
ted

group G by a group Z

℄

�

=

z=�

1

(Z

℄

) (Lemma V.7). If the a
tion �

G

℄ is smooth, then the indu
ed

a
tion �

b

G

is also smooth. Hen
e it suÆ
es to show that �

G

℄
is smooth. Therefore we may

w.l.o.g. assume that

b

G is simply 
onne
ted, i.e.,

b

G = G

℄

.

First we 
onsider the lo
al situation in a suitable small neighborhood of the identity in

b

G .

For r 2 R we write r

G

:= �

G

(r; �) and r

Z

:= �

Z

(r; �). In

b

G we have an open e-neighborhood of

the form U � Z �

b

G , where the multipli
ation is given for x; x

0

; xx

0

2 U by

(x; z)(x

0

; z

0

) = (xx

0

; zz

0

f

Z

(x; x

0

))

for a smooth fun
tion f

Z

:U � U ! Z . Let W and f := f

z

:W �W ! z with f

Z

= q

Z

Æ f be

as in Remark V.8 determined by

df

x

= (�

�

x

� � �) j

W

for f

x

:= f(x; �):

Now let r 2 R and W

1

� W be an open e-neighborhood di�eomorphi
 to a 
onvex set su
h

that r:W

1

�W . Let �

r

be the left invariant z-valued 1-form on G with �

r

(e) = �(r; �). Then

(5.3) implies that

r

�

G


� L(r

Z

) Æ
 = �d�

r

be
ause both sides are left invariant 2-forms whi
h 
oin
ide in e be
ause

!(L(r

G

):x;L(r

G

):y)� L(r

Z

):!(x; y) = �([x; y℄); x; y 2 g:

On W

1

we therefore have d(r

�

G

� � L(r

Z

) Æ � + �

r

) = 0; so that there exists a unique fun
tion

h

r

:W

1

! z with h

r

(e) = 0 and dh

r

= r

�

G

� � L(r

Z

) Æ � + �

r

.
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On W

1

� W

1

we 
onsider the fun
tion (r

℄

:f)(x; y) := L(r

Z

)

�1

:f(r

G

:x; r

G

:y). Then

(r

℄

:f)

x

= L(r

Z

)

�1

r

�

G

f

r

G

:x

, so that on W

1

we have

d

�

(r

℄

:f)

x

�

= L(r

Z

)

�1

r

�

G

df

r

G

:x

= L(r

Z

)

�1

r

�

G

(�

�

r

G

:x

� � �)

= L(r

Z

)

�1

�

(�

r

G

:x

Æ r

G

)

�

� � r

�

G

�

�

= L(r

Z

)

�1

�

(r

G

Æ �

x

)

�

� � r

�

G

�

�

= L(r

Z

)

�1

�

�

�

x

r

�

G

� � r

�

G

�

�

:

Now the left invarian
e of �

r

leads to

d((r

℄

:f)

x

� f

x

) = L(r

Z

)

�1

�

�

�

x

r

�

G

� � r

�

G

�

�

� �

�

x

� + �

= L(r

Z

)

�1

�

�

�

x

�

r

�

G

� � L(r

Z

) Æ �

�

� (r

�

G

� � L(r

Z

) Æ �)

�

= L(r

Z

)

�1

�

�

�

x

�

r

�

G

� � L(r

Z

) Æ � + �

r

�

� (r

�

G

� � L(r

Z

) Æ � + �

r

)

�

= L(r

Z

)

�1

(�

�

x

dh

r

� dh

r

) = d

�

L(r

Z

)

�1

(�

�

x

h

r

� h

r

)

�

:

In view of the normalizations f

x

(e) = f(x; e) = 0 = h

r

(e), we have

((r

℄

:f)

x

� f

x

)(e) = L(r

Z

)

�1

:f(r

G

:x; e) = 0

and

L(r

Z

)

�1

(�

�

x

h

r

� h

r

)(e) = L(r

Z

)

�1

h

r

(x):

Therefore

(r

℄

:f)

x

� f

x

= L(r

Z

)

�1

(�

�

x

h

r

� h

r

)� L(r

Z

)

�1

h

r

(x);

whi
h leads to

(5:5) f(r

G

:x; r

G

:y)� L(r

Z

):f(x; y) = h

r

(xy)� h

r

(y)� h

r

(x)

for x; y suÆ
iently 
lose to e .

Let q

Z

: z ! Z be the quotient map, f

Z

:= q

Z

Æ f and h

Z

r

:= q

Z

Æ h

r

. Then we have an

e-neighborhood of the form W

2

� Z in

b

G , where W

2

� W

1

, and the multipli
ation on W

2

� Z

is given by

(g; z)(g

0

; z

0

) = (gg

0

; zz

0

f

Z

(g; g

0

)):

Pi
k an open symmetri
 
onne
ted e-neighborhood W

3

� W

2

with r:W

3

� W

2

su
h that (5.5)

is satis�ed for x; y 2 W

3

. Then a similar argument as in Lemma V.1 shows that the map

�

0

(r):W

3

� Z ! W

2

� Z �

b

G; (g; z) 7! (r

G

:g; r

Z

(z)h

Z

r

(g))

is a smooth homomorphism of lo
al groups. Using Lemma II.3 in [Ne02b℄ and the simple


onne
tedness of

b

G , we see that �

0

(r) extends to a smooth homomorphism �

0

(r):

b

G !

b

G .

The derivative of this automorphism in e 2

b

G is given by

d�

0

(r)(e)(x; z) = (r

G

:x; r

Z

:z + dh

Z

r

(e)(x)) = (r

G

:x; r

Z

:z + dh

r

(e)(x))

= (r

G

:x; r

Z

:z + �(r; x) + �(e)(r

G

:x)� r

Z

:�(e)(x))

= (r

G

:x; r

Z

:z + �(r; x)) = �

bg

(r)(x; z):

Sin
e both automorphisms indu
e the same Lie algebra automorphism, �

0

(r) = �

b

G

(r) for ea
h

r 2 R , so that we obtain an expli
it des
ription of �

b

G

near to the identity in

b

G .

It remains to show that this a
tion is smooth. Sin
e R a
ts by smooth automorphism on

b

G , it suÆ
es to show that the a
tion is smooth in a neighborhood of (e; e) and that all orbit

maps R!

b

G are smooth in a neighborhood of e . Sin
e the latter property 
an be derived from

the �rst one (

b

G is 
onne
ted), it remains to see that the a
tion is smooth in a neighborhood of

(e; e). To this end, we slightly adjust the 
hoi
es of W

1

and W

3

above. First we 
hoose an open

e-neighborhood V in R and W

1

su
h that, in addition, V:W

1

�W . Likewise we 
hoose V

1

� V

and W

3

� W

2

with V

1

:W

3

� W

2

. Then the fun
tion (r; x) 7! h

r

(x) is de�ned on V �W

1

,

and the 
onstru
tion of h

r

with the Poin
ar�e Lemma implies that this fun
tion is smooth in

a neighborhood of (e; e) (
f. [Ne02b, Lemma III.3℄). This implies that the a
tion map �

b

G

is

smooth on a neighborhood of (e; e) 
ontained in V

1

�W

3

, and this 
ompletes the proof.
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Corollary V.10. Let �

G

:R�G! G be a smooth automorphi
 a
tion of the Lie group R on

the 
onne
ted Lie group G . Assume that G is simply 
onne
ted and that r

�

G

! = L(r

Z

) Æ! holds

for all r 2 R . Then the a
tion of R on G lifts uniquely to a smooth automorphi
 a
tion of R

on

b

G su
h that the 
orresponding a
tion of R on

b

g

�

=

g�

!

z is given by

r:(x; z) = (L(r

G

):x;L(r

Z

):z); r 2 R; x 2 g; z 2 z:

Proof. We apply Theorem V.9 with � = 0.

Remark V.11. Suppose that Z ,!

b

G !! G is a 
entral Lie group extension and that the

R -a
tion on the group G

℄

from Lemma V.7 exists. If this a
tion preserves the dis
rete subgroup

�

1

(

b

G), then it fa
tors through an a
tion on

b

G

�

=

G

℄

=�

1

(

b

G), but this 
ondition has to be 
he
ked

dire
tly in 
on
rete 
ases be
ause there is no general reason for it to be satis�ed. If G is simply


onne
ted, then the natural mal H

2

s

(G;Z)! H

2




(g; z) is inje
tive, whi
h permits us to lift every


 2 Aut(G)� Aut(Z) �xing the 
ohomology 
lass [!℄ in H

2




(g; z) to an automorphism of

b

G . If

G is not simply 
onne
ted, then we only have an exa
t sequen
e

: : :! Hom(�

1

(G); Z)! H

2

s

(G;Z)! H

2




(g; z)! : : :

([Ne02b, Th. VII.12℄) whi
h shows that in general there are inequivalent 
entral Z -extensions

b

G

of G with the same Lie algebra, so that there is no reason for a 
 2 Aut(G)�Aut(Z) to lift to

a parti
ular one.

Remark V.12. (a) If g is topologi
ally perfe
t, i.e., the 
ommutator algebra [g; g℄ is dense

in g , then in (5.5) the 
ontinuous linear map �

r

:= �(r; �): g ! z is uniquely determined by

r

�

! � ! = �d�

r

. Therefore

�d�

rer

= (rer)

�

! � L(r

Z

)L(er

Z

)!

= er

�

(r

�

! � L(r

Z

)!) + er

�

L(r

Z

)! � L(r

Z

)L(er

Z

)! = �er

�

d�

r

� L(r

Z

)d�

er

implies the relation (5.4). In view of this, (5.4) is only needed if g is not topologi
ally perfe
t.

(b) If

b

G is a regular Lie group in the sense of [Mi83℄, then every automorphism of

b

g integrates

uniquely to an automorphism of

b

G ([Mi83, Th. 8.1℄). In our 
ontext it does not make sense

to work with this additional assumption be
ause we anyway need the more expli
it information

obtained in the proof of Theorem V.9 to show that the a
tion is smooth.

Problem V.1. Let G be Lie group and �

G

:R �G ! G an a
tion of the Lie group R on G

by Lie automorphisms su
h that the 
orresponding a
tion �

g

:R � g ! g is smooth. Does this

imply that �

G

is a smooth a
tion?

VI. Di�eomorphism groups a
ting on 
urrent groups

If M is a 
ompa
t manifold, then the group Di�(M) of all di�eomorphisms of M has a natural

Lie group stru
ture and the a
tion of this group on M indu
es a natural smooth a
tion on ea
h

group C

1

(M;K) of smooth maps into some Lie group K . In this se
tion we apply the Lifting

Theorem of the pre
eding se
tion to see how the a
tion of Di�(M) on G = C

1

(M;K)

e


an be

lifted to a smooth a
tion of Di�(M) on a 
entral extension

b

G whenever this 
entral extension

of G is su
h that the 
onne
ting homomorphism �

1

(G)! �

0

(Z) is an isomorphism. The latter

means that

b

G is weakly universal for dis
rete abelian groups. This 
ondition is in parti
ular

satis�ed for the universal 
entral extension of G if K is �nite-dimensional and simple (Theorem

IV.7). We also lift the 
onjugation a
tion of C

1

(M;K) on G to

b

G .

The manifold stru
ture on Di�(M) is obtained by the observation that this group is an

open subset of the mapping spa
e C

1

(M;M) whi
h is a smooth manifold ([KM97, Th. 43.1℄).

Let E: Di�(M)�M !M be the natural a
tion of Di�(M) on M given by the evaluation. To

see that E is a smooth map, it suÆ
es to observe that the 
orresponding map

E:C

1

(M;M)�M !M; (';m) 7! '(m)

is smooth ([KM97, Th. 42.13℄).
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Lemma VI.1. If M is a 
ompa
t manifold and K a Fr�e
het{Lie group, then the natural a
tion

Di�(M)� C

1

(M;K)! C

1

(M;K); ('; f) 7! f Æ '

�1

is smooth.

Proof. Let U � K be an open identity neighborhood di�eomorphi
 to an open subset of k .

Then [Ne01b, Th. III.5℄ implies that the a
tion of Di�(M) on the open subset C

1

(M;U) �

C

1

(M;K) is smooth.

For a smooth fun
tion f :M ! K the orbit map

Di�(M)! C

1

(M;K); ' 7! f Æ '

�1

is smooth be
ause the map Di�(M) �M ! K; (';m) 7! f('

�1

(m)) is smooth, whi
h in turn

follows from the smoothness of the a
tion of Di�(M) on M .

Now the smoothness of the a
tion of Di�(M) on C

1

(M;K) follows from the observation

that for ea
h f 2 C

1

(M;K) the map

Di�(M)� C

1

(M;U)! C

1

(M;K); ('; h) 7! ':(fh) = ':f � ':h

is smooth be
ause the orbit map of f is smooth and the a
tion on C

1

(M;U) is smooth.

The general argument behind the proof of Lemma VI.1 is that an automorphi
 a
tion of a

Lie group R on the Lie group G is smooth if

(1) there exists an open invariant identity neighborhood on whi
h the a
tion is smooth, and

(2) all orbit maps are smooth.

Remark VI.2. (a) Let G := C

1

(M;G)

e

. On the Lie algebra g = C

1

(M; k) of G we 
onsider

the 
ontinuous 
o
y
le

!: g� g! z

M

(Y ) = 


1

(M;Y )=d


0

(M;Y ); !(�; �) = [�(�; d�)℄;

where � is a 
ontinuous invariant symmetri
 bilinear form k � k ! Y and Y is a s.
.l.
. spa
e.

For ' 2 Di�(M) we have

!('

�1

:�; '

�1

:�) = !('

�

�; '

�

�) = [�('

�

�; d'

�

�)℄

= [�('

�

�; '

�

d�)℄ = ['

�

�(�; d�)℄ = '

�1

:[�(�; d�)℄ = '

�1

:!(�; �):

Here the last expression refers to the natural a
tion of Di�(M) on z

M

(Y ) whi
h exists be
ause

the natural a
tion on 


1

(M;Y ) preserves the 
losed subspa
e d


0

(M;Y ) be
ause '

�

(df) = d'

�

f

for f 2 


0

(M;Y ). Lemma V.1(b) now implies that

':(�; z) := (� Æ '

�1

; ('

�1

)

�

:z)

de�nes a smooth a
tion of R on the Lie algebra

b

g = g�

!

z by Lie algebra automorphisms.

(b) The 
o
y
le ! is �xed by Di�(M) if and only if this group a
ts trivial on z

M

(Y ), whi
h (for

Y 6= 0) is equivalent to the triviality of the a
tion on z

M

(R) . If this is the 
ase, then we have in

parti
ular that for ea
h ve
tor �eld X on M and ea
h 1-form � the 1-form

L

X

:� = i

X

d�+ d(i

X

:�)

is exa
t, whi
h implies d� = 0. That all 1-forms are 
losed means that dimM � 1, so that

M = S

1

is the only non-trivial 
ompa
t manifold for whi
h the Lie algebra of ve
tor �elds a
ts

trivially on z

M

(R). For a 1-form � on M and ' 2 Di�(M) we have

Z

S

1

'

�

� = deg(')

Z

S

1

�:

Therefore the identity 
omponent Di�(S

1

)

e

of orientation preserving di�eomorphisms a
ts triv-

ially on z

S

1

(R)

�

=

R , and if a di�eomorphism 
hanges orientation, it a
ts by multipli
ation by

�1 on z

S

1

(R) .
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Theorem VI.3. Let K be a 
onne
ted Fr�e
het{Lie group, M a 
ompa
t manifold, G :=

C

1

(M;K)

e

, ! 2 Z

2




(g; z

M

(Y )) a 
o
y
le of produ
t type with dis
rete period group. Further let

b

G ! G be a 
orresponding 
entral extension of G by a Lie group Z with Lie algebra z

M

(Y )

for whi
h the 
onne
ting homomorphism �

1

(G)! �

0

(Z) is an isomorphism. Then the following

assertions hold:

(1) The automorphi
 a
tion of Di�(M) on

b

g = g �

!

z

M

(Y ) by ':(�; z) := (� Æ '

�1

; ('

�1

)

�

:z)

integrates to a smooth a
tion of Di�(M) on

b

G .

(2) The automorphi
 a
tion of C

1

(M;K) on

b

g = g�

!

z

M

(Y ) by

f:(�; z) := (Ad(f):�; z � [�(Æ

l

(f); �)℄)

integrates to a smooth a
tion on

b

G .

Proof. First we use [Ne01
, Lemma 4.6℄ to see that the 
ondition that the 
onne
ting

homomorphism �

1

(G) ! �

0

(Z) is an isomorphism implies that the 
entral extension q:

b

G ! G

is weakly universal for all dis
rete abelian groups A . Now [Ne01
, Prop. 4.7℄ further implies that

b

G=Z

e

�

=

e

G , showing that

b

G 
an be viewed as a 
entral extension of the simply 
onne
ted group

e

G by Z

e

.

(1) Using Lemma V.5, we lift the smooth a
tion of Di�(M) on G to a smooth a
tion on

e

G . Now

the Lifting Theorem V.9 implies that this a
tion 
an be lifted to a smooth a
tion of Di�(M) on

b

G , integrating the given a
tion on the Lie algebra

b

g .

(2) follows as in (1) from Proposition III.3 and the Lifting Theorem V.9.

For the 
ase of loop groups, part (2) of Theorem VI.3 has already been observed in [PS86℄.

Theorem VI.3 is a good starting point for a systemati
 investigation of the a
tion of subgroups

of Di�(M) on 
oadjoint orbits of the 
entral extension

b

G . Although Di�(M) a
ts on the group

b

G and its Lie algebra

b

g , the 
orresponding a
tion on the topologi
al dual

b

g

0

mixes the 
oadjoint

orbits of

b

G . Here the interesting point is that spe
i�
 
oadjoint orbits of

b

G 
an be assigned to

geometri
 stru
tures on the manifold M and one 
an only expe
t the 
orresponding subgroups

of Di�(M) to a
t on these orbits. This point of view will be explored in [NV02℄ (see also [PS86℄

for the 
ase of loop groups whi
h is somehow trivial, and [EF94℄ for the 
ase of 
omplex Riemann

surfa
es).

VII. Problems arising for non-
onne
ted groups

In this se
tion we dis
uss some of the additional diÆ
ulties arising for non-
onne
ted groups.

One su
h diÆ
ulty is that for a non-
onne
ted group the 
onjugation a
tion of G on G might

indu
e a non-trivial a
tion on the fundamental group �

1

(G). A related problem is that the

surje
tive homomorphism G! �

0

(G) does in general not split. Another problem is that we �nd

for 
onne
ted groups K 
ertain natural maps

�

m;n

:�

m

(K)� �

n

(K)! �

n+m

(K)

given by 
ommutators, and we do not know whether they are always trivial or not. This is of

parti
ular interest for m = n = 1. If K is �nite-dimensional, then �

2

(K) is trivial, so that �

1;1

is trivial. For in�nite-dimensional groups, the maps �

1;1

are harder to study be
ause �

1

(K)

need not be generated by Hom(T;K).
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Central extensions of non-
onne
ted groups

Remark VII.1. Let G be the identity 
omponent of the Lie group G

+

and assume that we

have a 
entral extension Z ,!

b

G !! G as above. When 
an we extend this 
entral extension to

a 
entral extension Z ,!

b

G

+

!! G

+

of the full group G

+

?

Sin
e Z �

b

G

+

is 
entral, the subgroup

b

G �

b

G

+

a
ts trivially by 
onjugation on Z , so

that we obtain an a
tion of

b

G

+

=

b

G

�

=

G

+

=G = �

0

(G

+

) by Lie automorphisms on the group Z .

Let �

Z

denote the 
orresponding a
tion of G

+

, resp., �

0

(G

+

), on Z . A ne
essary 
ondition

for the existen
e of a 
entral extension

b

G

+

of G

+

is that the adjoint a
tion of G

+

on g 
an be

extended to an a
tion of G

+

�

=

b

G

+

=Z on

b

g

�

=

g�

!

z of the form


(g):(x; z) :=

�

Ad(g):x; �

Z

(g):z + �(g; x)

�

;

where �:G

+

� g! z is a 
o
y
le, so that 
:G

+

! Aut(

b

g) de�nes a representation of G

+

on

b

g .

The existen
e of this a
tion implies in parti
ular that

�

Z

(g) Æ ! � ! Æ (Ad(g)�Ad(g)) 2 B

2




(g; z)

for all g 2 G

+

(Lemma V.1). For g 2 G this follows automati
ally from the existen
e of the


onjugation a
tion of G on

b

G .

In the pre
eding se
tion we have 
onstru
ted 
entral extensions of the identity 
omponent

C

1

(M;K)

e

of the group C

1

(M;K) whi
h in general is not 
onne
ted. In this subse
tion we

brie
y dis
uss the diÆ
ulties involved in extending 
entral Lie group extensions from the identity


omponent of a Lie group to the whole group.

Remark VII.2. We resume the situation of Theorem VI.3. As we have seen in Proposition

III.3, the 
ondition under (a) is satis�ed for the group G

+

= C

1

(M;K) and the 
o
y
le

!(�; �) = [�(�; d�)℄ for �

Z

(g) = id

z

. We re
all that �

0

(Z)

�

=

�

1

(G), so that the divisibility

of Z

e

�

=

z=�

M;�

implies that Z

�

=

Z

e

� �

1

(G). Sin
e the a
tion of G

+

on

b

g �xes z pointwise,

the 
orresponding a
tion on

b

G �xes Z

e

pointwise. Therefore the a
tion is given by an a
tion of

�

0

(G

+

)

�

=

[M;K℄ on �

0

(Z)

�

=

�

1

(G)

�

=

�

1

(G

+

) and a map

�:�

0

(G

+

)� �

1

(G)! Z

e

de�ned by �:(z; �) = (z�(�; �); �:�):

The map � satis�es the 
o
y
le identity

�(�

1

�

2

; �) = �(�

1

; �

2

:�)�(�

2

; �);

so that � is a bihomomorphism if the a
tion of �

0

(G

+

) on �

1

(G

+

) = �

1

(G) is trivial. Sin
e the

splitting of Z

e

in Z is not natural, we 
annot expe
t to �nd a 
omplement whi
h is invariant

under the a
tion of �

0

(G

+

). Nevertheless, if q:

b

G ! G is the quotient map of the 
entral

extension and we 
onsider K as a subgroup of G , then q

�1

(K)

�

=

e

K � Z

1

, where Z

1

is an

open subgroup of Z . To see this, we �rst 
onstru
t the 
entral extension

b

G

�

of the subgroup

G

�

:= C

1

�

(M;K)

e

of G

�

=

G

�

oK , and then observe that

b

G

�

=

b

G

�

o

e

K be
ause this group is

simply 
onne
ted with the Lie algebra

b

g

�

=

g

�

o k . As the 
o
y
le ! on g is invariant under

Ad(K), there is no obstru
tion to lifting the a
tion of K on G

�

to

b

G

�

(Theorem V.9). In this

pi
ture �

1

(K), realized as a subgroup of

e

K , arises naturally as a subgroup of Z , but the a
tion

of G

+

does not leave the subgroup

e

K of

b

G invariant.

In Proposition A.3 below we will see that the a
tion of �

0

(C

�

(M;K)) on �

1

(C

�

(M;K)) is

trivial for M = S

d

, d � 1, and more generally if M is homotopi
 to a spa
e of the form S

1

^N .

In this 
ase the a
tion of �

0

(G

+

) on Z is 
ompletely en
oded in the map � . Passing from

G

+

to the open subgroup C

1

(M;

e

K), where

e

K is the universal 
overing group of K , redu
es

the number of 
onne
ted 
omponents, so that in this 
ontext it is more probable that G

+

a
ts

trivially on Z .
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Remark VII.3. In this remark we dis
uss the problem of �nding a formula for � whi
h is as

expli
it as possible. For that we have to understand how an element 
 2 G

+

= C

1

(M;K) a
ts

on the group

b

G (Theorem VI.3), where the a
tion on the Lie algebra

b

g is given by

Ad

bg

(
):(�; z) =

�

Ad(
):�; z � [�(Æ

l

(
); �)℄

�

:

Let 
 2 


2

(G; z

M

(Y )) be the left invariant 2-form with 


e

= !

S

1

;�

. Then the 
al
ulations

in the proof of Proposition III.3 show that Ad(
)

�

! � ! = d�(
) with �(
) = [�(Æ

l

(
); �)℄ 2

Lin(g; z

M

(Y )). Let �(
) 2 


1

(G; z

M

(Y )) denote the 
orresponding left invariant 1-form on G .

Then the 
onjugation automorphism 





(f) := 
f


�1

of G satis�es 


�

f


 � 
 = d�(
). For a

smooth map � 2 C

1

�

(S

1

; G) we then obtain

Z

�

�(
) =

Z

S

1

[�( Æ

l

(
)

| {z }

2


1

(M;k)

; Æ

l

(�)(t)

| {z }

2C

1

(M;k)

)℄ dt 2 z

M

(Y ):

Let S

1

�

=

R=2�Z , and z: [0; 2�℄! Z a smooth 
urve with

z(0) = 0 and Æ

l

(z)(t) = ��(
)(�

0

(t)) = ��(
)(Æ

l

(�)(t)):

Further let b�: [0; 2�℄ !

b

G denote the horizontal lift of the 
urve 





:� de�ned by b�(0) = e and

Æ

l

(b�)(t) = (Ad(
):Æ

l

(�)(t); 0), t 2 [0; 2�℄ . Then the pointwise produ
t b� � z: [0; 2�℄ !

b

G is a

smooth 
urve with

Æ

l

(b� � z) = Æ

l

(b�) + Æ

l

(z) = Ad

bg

(
):(Æ

l

(�)(t); 0) =

�

Ad(
):Æ

l

(�)(t);�[�(Æ

l

(
); Æ

l

(�)(t))℄

�

be
ause z is a 
urve with 
entral values. The endpoint b�(2�)z(2�) lies over e�(2�) for the lift e�

of � to

e

G , hen
e 
orresponds to 
:([�℄; 0) = (
:[�℄; �(
; �)) 2 �

1

(G)� Z .

Let us assume, in addition, that �(S

1

) � K , i.e., that ea
h map �(t):M ! K is 
onstant,

so that we 
an think of e� as a 
urve in

e

K �

b

G from e to the element [�℄ 2 �

1

(K) ,! �

1

(G). This


urve is mapped by b


f

2 Aut(

b

G) to b� � z ending in b�(2�)z(2�). If, in addition, Ad(
):Æ

l

(�)(t) =

Æ

l

(�)(t) holds for ea
h t 2 [0; 2�℄ , then b�(t) = �(t), and therefore

(7:1) �([
℄; [�℄) = z(2�) = q

Z

�

�

Z

2�

0

[�

�

Æ

l

(
); Æ

l

(�)(t)

�

℄ dt

�

:

Sin
e ea
h Æ

l

(�)(t) is a 
onstant fun
tion, we identify it with an element of k , and write [Æ

l

(
)℄

for the 
lass of Æ

l

(
) 2 


1

(M; k) in z

M

(k). Then we have for ea
h t the relation

[�

�

Æ

l

(
); Æ

l

(�)(t)

�

℄ = �

�

[Æ

l

(
)℄; Æ

l

(�)(t)

�

2 z

M

(Y );

via the map

z

M

(k)� k ! z

M

(Y ); ([�℄; x) 7! [�(�; x)℄;

whi
h is well de�ned be
ause d�(�; x) = �(d�; x) for � 2 C

1

(M; k). In this sense we also have

(7:2) �([
℄; [�℄) = q

Z

�

� �

�

[Æ

l

(
)℄;

Z

2�

0

Æ

l

(�)(t) dt

��

:
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Example VII.4. (a) In [PS86℄ one �nds an expli
it des
ription of the a
tion of �

0

(G

+

)

on Z for the loop group 
ase M = S

1

and K 
ompa
t and simple. We now 
onsider the

situation, where M = S

1

for a general 
onne
ted groups K satisfying �

2

(K) = 1 . This

holds in parti
ular for �nite-dimensional Lie groups K . In this 
ase �

0

(G

+

)

�

=

�

1

(K) and

�

1

(G

+

)

�

=

�

2

(K) � �

1

(K)

�

=

�

1

(K). As the 
onjugation a
tion of �

1

(K) on itself is trivial, the

a
tion of �

1

(K) on Z is 
ompletely determined by the bihomomorphism

�:�

1

(K)� �

1

(K)! Z

e

:

We think of S

1

as R=2�Z , so that we think of fun
tions on S

1

as 2� -periodi
 fun
tions on R .

Further z

S

1

(Y )

�

=

Y via the integration isomorphism [�℄ 7!

1

2�

R

S

1

� , and Z

e

�

=

Y=�

S

1

;�

:

Let 
 2 C

1

�

(S

1

;K) be a smooth loop. Then we identify [Æ

l

(
)℄ 2 z

M

(k) with

1

2�

R

S

1

Æ

l

(
)

and obtain with (7.2) for � 2 C

1

�

(S

1

;K):

�([
℄; [�℄) = q

Z

�

� �

�

1

2�

Z

S

1

Æ

l

(
);

Z

S

1

Æ

l

(�)

��

:

If K is �nite-dimensional and T � K a maximal torus, then the natural map Hom(T; T )!

�

1

(K) is surje
tive, so that [
℄ and [� ℄ have representatives for whi
h Æ

l

(
) = x and Æ

l

(�) = y

are 
onstant fun
tions. As [x; y℄ = 0, the assumptions leading to (7.2) are satis�ed, and we

obtain the simple formula

�([
℄; [�℄) = q

Z

�

� 2��(x; y)

�

:

We 
on
lude that � is trivial if and only if 2�x; 2�y 2 ker exp

T

for the exponential fun
tion

exp

T

: t! T of the maximal torus T � K implies �(x; y) 2

1

2�

�

S

1

;�

.

(b) To understand this 
ondition, let us assume that K is 
ompa
t and simple. Then V (k) is

one-dimensional, so that we may w.l.o.g. assume that Y = R . Further �

2

(G)

�

=

�

3

(K)

�

=

Z , and

we may therefore assume that �

S

1

;�

= 2�Z , where

!(�; �) =

1

2�

Z

2�

0

�(�(�); �

0

(�)) d�:

Let t � k be the Lie algebra of a maximal torus of K . For the 
oroots �� of the long roots

� 2 �

k

� it

�

we then have

��(��; ��) = �(i��; i��) = 2

for the 
omplex bilinear extension of � to k

C

(see Appendix IIa to Se
tion II in [Ne01a℄). We


laim that for x 2 t

C

we then have

�(

�

�; x) � Z�(x):

In fa
t, let � 2 � and r

�

(x) := x��(x)�� the 
orresponding re
e
tion in t

C

. Sin
e the restri
tion

of � to t

C

is invariant under all these re
e
tions, we have

�(��; x) = ��(r

�

:��; x) = ��(��; r

�

:x) = ��(��; x) + �(x)�(��; ��);

so that

�(��; x) =

1

2

�(x)�(��; ��) 2 Z�(x)

follows from �(��; ��) 2 2Z for all roots (in
luding the short ones) (see [Ne01a, lo
.
it.℄). From

�(��) � Z for ea
h 
oroot, we obtain in parti
ular

�(

�

�;

�

�) � Z:

If Z(K) is trivial, then for x 2 t the 
ondition exp 2�x = e is equivalent to e

2� adx

= id

k

,

whi
h means that �(x) � iZ . This is satis�ed in parti
ular for x 2 i

�

�. We have

�(x; i

�

�) � iZ�(x)� Z
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whenever �(x) � iZ . Nevertheless, it may happen that there are two elements x; y 2 t with

2�x; 2�y 2 ker exp

T

but �(x; y) 62 Z .

(
) Finally we 
onsider an example where � is non-trivial. For k = su(2) and K = SO(3;R)

�

=

SU(2; C )=f�eg we have ker exp

T

= Z�i��, where � = f��g . For x = y =

i

2

�� we therefore get

�(x; y) = �

1

4

�(��; ��) =

1

2

62 Z:

We 
on
lude that for K = SO(3;R) the group �

0

(G

+

)

�

=

�

1

(K)

�

=

Z

2

= f�1g a
ts non-trivially

on Z

�

=

R=2�Z� Z

2

by s:(x; t) = (
(s; t)x; t), where 
:Z

2

� Z

2

! Z

2

is the unique non-trivial

bi
hara
ter satisfying 
(�1;�1) = �1.

Remark VII.5. (a) Let x

o

2M be a base point, and assume that M is 
onne
ted of positive

dimension and K is a Bana
h{Lie group. We 
onsider the group G

�

:= C

1

�

(M;K)

e

. If

' 2 Hom(T; G

�

), then the map

�:M ! Hom(T;K); x 7! (t 7! '(t)(x))

is a 
ontinuous map with �(x

o

) = e (the 
onstant homomorphism). Sin
e K has no small

subgroups, the 
onstant homomorphism e is isolated in the set Hom(T;K) � C(T;K). Therefore

the 
ontinuity of � implies that it is 
onstant, and thus Hom(T; G

�

) = feg . On the other hand

�

1

(G

�

)

�

=

[M ^ S

1

;K℄ may be non-trivial. A typi
al example is K = SU(2; C ) and M = S

2

,

where �

1

(G

�

)

�

=

�

3

(K)

�

=

Z . Hen
e G

�

is an example of an in�nite-dimensional Lie group for

whi
h �

1

(G

�

) is not generated by the homotopy 
lasses of homomorphisms T! G

�

.

(b) A

ording to [ASS71℄, the unit groups G := A

�

of von Neumann algebras on separable

Hilbert spa
es all have the property that Hom(T; A

�

) generates �

1

(A

�

).

Problems VII. (1) Find a good 
hara
terization of those groups G for whi
h a \universal


overing group" exists even if G is not 
onne
ted.

(2) Generalize (7.1) to a general formula for � without any additional assumption.

The following two examples show that in general the universal 
overing group q:

e

G ! G


annot be extended to a 
entral/abelian extension of the full group G

+

. If the homomorphism

G

+

!! �

0

(G

+

) splits, then we 
an simply form

e

G o �

0

(G

+

) by lifting the natural 
onjugation

a
tion of �

0

(G

+

) on G to an a
tion on

e

G .

Example VII.6. We des
ribe an example of a non-
onne
ted Lie group for whi
h G

e

does not

split. Let

G :=

n

0

�

1 p z

0 1 q

0 0 1

1

A

: p; q 2 Z; z 2 R

o

:

Then G

e

�

=

R and �

0

(G)

�

=

Z

2

. The group G is a 
entral extension of Z

2

by R . An easy


al
ulation shows that the 
ommutator group (G;G) of G is

(G;G) =

n

0

�

1 0 z

0 1 0

0 0 1

1

A

: z 2 Z

o

:

As the 
ommutator group is non-trivial, G is not a semidire
t produ
t of G

e

and �

0

(G).

Example VII.7. In the group G of Example VII.6, we 
onsider the normal subgroup

N :=

n

0

�

1 p z

0 1 q

0 0 1

1

A

: p; q; z 2 2Z

o

:
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Then G=N is a 
entral extension of �

0

(G=N)

�

=

Z

2

2

by T

�

=

R=Z . The 
ommutator group of

G=N is given by (G;G)=((G;G) \N)

�

=

Z=2Z

�

=

Z

2

. Therefore

T = (G=N)

e

,! G=N !! Z

2

2

�

=

�

0

(G=N)

is a non-trivial 
entral extension.

Suppose that we have an extension

e

T

�

=

R ,!

b

G!! Z

2

2

;

where

b

G is a 
overing group of G . Then

e

T is 
entral in

b

G be
ause Z

2

2

�

=

�

0

(G=N) a
ts trivially

on the Lie algebra of G=N , hen
e on (G=N)

e

. Therefore

b

G is a 
entral extension of Z

2

2

by R .

Sin
e the 
ommutator map (x; y) 7! xyx

�1

y

�1

fa
tors through a bihomomorphism Z

2

2

! R .

Sin
e R has no non-trivial �nite subgroups, the 
ommutator group of

b

G is trivial. Therefore

b

G

is abelian, 
ontradi
ting the assumption that

b

G is a 
overing of the non-abelian group G .

We have thus shown that the group G has no universal 
overing group.

Lemma VII.8. Let G := C

�

(M;K) , where K is a Bana
h{Lie group and M a 
onne
ted

topologi
al spa
e. Then the 
onstant map e is the only element of G of �nite order.

Proof. Assume that f

k

= e holds for some 
ontinuous base point preserving map f :M ! K .

Further let U � K be an identity neighborhood 
ontaining no small subgroups and V � U an

open identity neighborhood with V

k

� U . Then the only element of order k in V is e be
ause

otherwise U would 
ontain a non-trivial subgroup of K . Therefore f

�1

(V ) is an open subset of

M whi
h 
oin
ides with f

�1

(feg), hen
e is also 
losed. As f preserves base points, this set is

non-empty, and the 
onne
tedness of M implies that f is 
onstant e .

Example VII.9. Let M = S

1

, K be a 
ompa
t 
onne
ted semisimple Lie group, and G :=

C

�

(M;K). Then �

0

(G)

�

=

�

1

(K) is a �nite group and Lemma VII.8 implies that the exa
t

sequen
e G

e

,! G!! �

0

(G) does not split.

Appendix: Some homotopy theoreti
 ba
kground

A version of Hilton's Lemma

This se
tion grew out of an attempt to obtain a more 
on
eptual proof of Lemma I.10.

Lemma A.1. Let G be a set with two group stru
tures m

1

(a; b) = ab and m

2

(a; b) = a � b

with identity elements e

1

and e

2

. We assume that m

2

is a group homomorphism (G;m

1

)

2

!

(G;m

1

) , i.e., that

(ab) � (
d) = (a � 
)(b � d); a; b; 
; d 2 G:

Then e

1

= e

2

, m

1

= m

2

, and the multipli
ations are abelian.

Proof. First we obtain

e

1

� e

1

= (e

1

e

1

) � (e

1

e

1

) = (e

1

� e

1

)(e

1

� e

1

);

showing that e

1

� e

1

is an idempotent for m

1

, and hen
e that e

1

= e

1

� e

1

. Now e

1

is an

idempotent for m

2

, so that we also get e

2

= e

1

. Therefore e := e

1

= e

2

is a unit for both group

stru
tures. We now obtain for a; b; 
; d 2 G :

b � 
 = (eb) � (
e) = (e � 
)(b � e) = 
b and a � d = (ae) � (ed) = (a � e)(e � d) = ad:

We 
on
lude that both group stru
tures 
oin
ide and turn G into an abelian group.
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The above argument works with somewhat weaker assumptions. It also shows that if we

have two monoid stru
tures with the same identity on a set M , then both 
oin
ide and are

abelian.

If G is a topologi
al group and X an H -
ogroup, su
h as a sphere S

n

, then we have on

the set [X;G℄ of homotopy 
lasses of 
ontinuous maps X ! G two natural group stru
tures.

The �rst one is given by pointwise multipli
ation:

[f ℄[g℄ := [f � g℄;

and the se
ond one is obtained by the 
omultipli
ation 
:X ! X _X by

[f ℄ � [g℄ := [f � g℄ := [(f _ g) Æ 
℄:

A

ording to [Br93, Lemma VII.3.4℄, both group stru
tures satisfy the assumptions of Lemma A.1,

hen
e 
oin
ide. A similar argument applies to the set [X;G℄

�

of homotopy 
lasses of base point

preserving maps, but if G is ar
wise 
onne
ted, we trivially have [X;G℄ = [X;G℄

�

.

Remark A.2. If X itself is a topologi
al group, for example if X = S

1

= T , then we 
onsider

the element [id

X

℄ in the abelian group [X;X ℄ . Its powers form a 
y
li
 subgroup [id

X

℄

Z

of

[X;X ℄ .

Let

[X;X ℄� [X;G℄! [X;G℄; ([f ℄; [g℄) 7! [g Æ f ℄

denote the natural 
omposition map. We 
laim that in the group [X;G℄ we have

[f ℄[id

X

℄

n

= [f

n

℄; n 2 Z:

In fa
t, for a �xed [f ℄ 2 [X;G℄ the map

[X;X ℄! [X;G℄; [h℄ 7! [f Æ h℄

is a group homomorphism be
ause

[h

1

℄[h

2

℄ = [h

1

� h

2

℄ 7! [f Æ (h

1

_ h

2

) Æ 
℄ = [f Æ h

1

℄ � [f Æ h

2

℄:

Therefore

[f ℄ Æ [id

X

℄

n

= [f Æ id

X

℄

n

= [f ℄

n

= [f

n

℄; n 2 Z;

and in parti
ular [id

X

℄

n

�

=

[id

n

X

℄ . For X = S

1

= T this implies that for ea
h n 2 Z and

f 2 C

1

(S

1

; G) the maps

t 7! f(t

n

) and t 7! f(t)

n

are homotopi
.

Whitehead produ
ts and some homotopy theory

Let G be a topologi
al group. Then G a
ts by inner automorphism 


g

(x) := gxg

�1

on

itself. For ea
h k 2 N

0

the automorphism 


g

indu
es an automorphism �

k

(


g

) of the homotopy

group �

k

(G) whi
h is trivial if g 2 G

e

, the ar
-
omponent of the identity of G . We thus obtain

an a
tion of �

0

(G) on the groups �

k

(G), whi
h for k = 0 is the 
onjugation a
tion of �

0

(G) on

itself.

There are 
ir
umstan
e under whi
h these a
tions are trivial.
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Proposition A.3. If G = C

�

(S

1

;K) holds for a topologi
al group K , then �

0

(G) a
ts trivially

on all homotopy groups �

k

(G) , k 2 N

0

.

Proof. If G = C

�

(S

1

;K) for some topologi
al group K , then we have to 
onsider the a
tion

of �

0

(G)

�

=

�

1

(K) on the groups �

k

(G)

�

=

�

k+1

(K). To see that this a
tion is trivial, we

view the pointed spa
es S

k

as I

k

=�I

k

, where I = [0; 1℄. Then we view elements of G as


ontinuous fun
tion f : I ! K , and an element of �

k

(G) is represented by a 
ontinuous fun
tion

h: I

k+1

! K . Then the a
tion of [f ℄ 2 �

0

(G) on [h℄ 2 �

k

(G) is given by

(f:h)(x

1

; : : : ; x

k

; x

k+1

) = f(x

1

)h(x

1

; : : : ; x

k

; x

k+1

)f(x

1

)

�1

:

The map f is homotopi
 to f

1

with support 
ontained in [0;

1

2

℄ � I , and h

1

is homotopi
 to

a maps whose support is 
ontained in [

1

2

; 1℄� I

k

. Therefore [f:h℄ = [f

1

:h

1

℄ = [h

1

℄ implies that

�

0

(G) a
ts trivially on �

k

(G).

Corollary A.4. For G = C

�

(S

d

;K) , d > 0 and K a topologi
al group, the a
tion of �

0

(G)

on all homotopy groups �

k

(G) is trivial.

Proof. In view of d � 1, we have

C

�

(S

d

;K)

�

=

C

�

(S

1

^ S

d�1

;K)

�

=

C

�

(S

1

; C

�

(S

d�1

;K)):

Therefore Proposition A.3 applies.

Now let G = C(S

d

;K) with d > 0 and assume that K is 
onne
ted. Then the evaluation

map ev:G ! K; f 7! f(x

o

) in the base point x

o

2 S

d

is split by the map K ,! G mapping

k 2 K to the 
orresponding 
onstant map. Let G

�

:= C

�

(S

d

;K) := ker ev. We then obtain an

isomorphism G

�

=

G

�

oK , and therefore

�

0

(G)

�

=

�

0

(G

�

)

�

=

�

d

(K);

and for k > 0:

�

k

(G)

�

=

�

k

(G

�

)� �

k

(K)

�

=

�

k+d

(K)� �

k

(K):

From Corollary A.4 we derive that the a
tion of �

0

(G) on �

k

(G

�

) is trivial. Sin
e the proje
tion

�

k

(G) ! �

k

(K) 
orresponds to the evaluation in x

o

, and all the elements of G

�

are trivial in

x

o

, we see that the a
tion of �

0

(G) on �

k

(G) 
an be written as

[f ℄:([v℄; [w℄) = ([v℄ + �

d;k

([f ℄; [w℄); [w℄);

where the map

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K)

is a bihomomorphism. This map is given on the level of fun
tions by �

d;k

([f ℄; [v℄) = [f � v℄ with

(f � v)(x; y) = f(x)v(y)f(x)

�1

v(y)

�1

;

where we observe that this de�nes a map I

k+d

= I

k

� I

d

! K vanishing on the boundary of

I

k+d

. A parti
ular interesting 
ase is d = k = 1, where we have a bihomomorphism

�

1;1

:�

1

(K)� �

1

(K)! �

2

(K):

Proposition A.5. If K = C

�

(S

1

; H) holds for a topologi
al group H , then the maps

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K) are trivial.

Proof. Let f : I

d

! K and v: I

k

! K be 
ontinuous maps representing the elements

[f ℄ 2 �

d

(K) and [v℄ 2 �

k

(K). In view of C

�

(S

d

;K) = C

�

(S

d

; C

�

(S

1

; H))

�

=

C

�

(S

d+1

; H), we may

think of f as a fun
tion

e

f : I � I

d

! H , and likewise interprete v as a fun
tion ev: I � I

k

! H .

As these fun
tions vanish on �I � I

d

, resp., �I � I

k

, they 
an be represented by fun
tions f

supported by [0;

1

2

℄� I

d

, resp., v supported by [

1

2

; 1℄� I

k

. Then the fun
tion

I � I

d

� I

k

! H; (t; x; y) 7! f(t; x)v(t; y)f(t; x)

�1

v(t; y)

�1

is 
onstant e , whi
h implies that �

d;k

([f ℄; [v℄) 2 �

d+k

(K) is trivial.
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Remark A.6. For ea
h pointed topologi
al spa
e X one has the Whitehead produ
ts

�

k

(X)� �

m

(X)! �

k+m�1

(X); k;m 2 N:

These maps are de�ned as follows. We use the natural map

g:S

k+m�1

�

=

�I

k+m

= �I

k

� I

m

[ I

k

� �I

m

! S

k

_ S

m

to de�ne for two maps ' 2 C

�

(S

k

; X) and  2 C

�

(S

m

; X) the map

' �  := (' _  ) Æ g:S

k+m�1

! X;

and by passing to the homotopy 
lasses a map

�

k

(X)� �

m

(X)! �

k+m�1

(X); ['℄ � [ ℄ 7! [' �  ℄:

With a similar argument as in the proof of Proposition A.5, one 
an see that if X is a

topologi
al group, then all Whitehead produ
ts are trivial ([Br93, Probl. VII.7.5℄). For k = m = 1

this implies in parti
ular that �

1

(X) is abelian be
ause in this 
ase

['℄ � [ ℄ = ['℄[ ℄['℄

�1

[ ℄

�1

:

The Whitehead produ
ts are somehow 
lose, but di�erent from the maps �

d;k

de�ned above. If

X = H is a topologi
al group and K := C

�

(S

1

; H), then the Whitehead produ
ts are maps

�

k

(K)� �

m

(K)! �

k+m

(K); k;m 2 N

0

:

We do not know whether the Whitehead produ
ts 
orrespond in this setting to the maps �

d;k

from above, but in this 
ontext we also have the dire
t argument in Proposition A.5 showing

that ea
h �

d;k

is trivial.

Remark A.7. (Some information on [M;K℄

�

) Let

e

K denote the simply 
onne
ted 
overing

group of K . Then a base point preserving smooth map f :M ! K lifts to

e

K if and only if the


orresponding homomorphism �

1

(f):�

1

(M) ! �

1

(K) is trivial. We therefore obtain an exa
t

sequen
e

C

�

(M;

e

K) ,! C

�

(M;K)! Hom(�

1

(M); �

1

(K))

whi
h immediately leads to an exa
t sequen
e

[M;

e

K℄

�

�

=

�

0

(C

�

(M;

e

K)) ,! [M;K℄

�

�

=

�

0

(C

�

(M;K))! Hom(�

1

(M); �

1

(K)):

Here we use that the image of C

�

(M;

e

K) is open be
ause maps with image 
ontained in a

suÆ
iently small identity neighborhood 
an be lifted to the universal 
overing group of K .

Remark A.8. One may also try to get some information on the �

d;k

's for the groups G

d

:=

C(T

d

;K) for d � 2, but this be
omes quite involved for the following reasons. In this 
ase

G

d

�

=

C(T; G

d�1

)

�

=

C

�

(T; G

d�1

)oG

d�1

(
f. Remark I.11(b)). If we ask for the a
tion of �

0

(G

d

) on �

1

(G

d

), then we 
an use the same

argument as after Corollary A.4 to see that this a
tion is trivial if and only if the 
ommutator

map

�

1;1

:�

1

(G

d�1

)� �

1

(G

d�1

)! �

2

(G

d�1

)

is trivial. Even for d = 2, this does not follow from Proposition A.5 be
ause C(T;K) is larger

than the group C

�

(T;K).

Problem A.1. Let K be a 
onne
ted topologi
al group. Is the mapping

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K)

de�ned above trivial for d; k � 1? The 
ase k = d = 1 is of parti
ular interest.
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