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Central extensions of urrent groups

Peter Maier, Karl-Hermann Neeb

Abstrat. In this paper we study entral extensions of the identity omponent G of the Lie group

C

1

(M;K) of smooth maps from a ompat manifold M into a Lie group K whih might be in�nite-

dimensional. We restrit our attention to Lie algebra oyles of the form !(�;�)=[�(�;d�)℄ , where

�:k�k!Y is a symmetri invariant bilinear map on the Lie algebra k of K and the values of ! lie in




1

(M;Y )=dC

1

(M;Y ) . For suh oyles we show that a orresponding entral Lie group extension

exists if and only if this is the ase for M=S

1

. If K is �nite-dimensional semisimple, this implies the

existene of a universal entral Lie group extension

b

G of G . The groups Di�(M) and C

1

(M;K) at

naturally on G by automorphisms. We also show that these smooth ations an be lifted to smooth

ations on the entral extension

b

G if it also is a entral extension of the universal overing group

e

G

of G .

Introdution

Let M be a ompat manifold and K a Lie group (whih may be in�nite-dimensional). Then

the so alled urrent groups C

1

(M;K) with pointwise multipliation are interesting in�nite-

dimensional Lie groups arising in many irumstanes. The most studied lass of suh groups

are the loop groups (M = S

1

and K ompat) whih is ompletely overed by Pressley and

Segal's monograph [PS86℄. The goal of this paper is a systemati understanding of a ertain

lass of entral extensions of the identity omponents of these groups, namely those whose Lie

algebra oyle is of produt type, whih is de�ned in more detail below. Here the main point is

to see whih Lie algebra oyle an be integrated to a entral Lie group extension. These

entral extensions our naturally in mathematial physis, where the problem to integrate

projetive representations of groups to representations of entral extensions is at the heart of

quantum mehanis ([Mi87℄, [LMNS98℄, [Wu01℄). The entral extensions of urrent groups are

often onstruted via representatations by pulling bak entral extensions of ertain operator

groups ([Mi89℄). It is our philosophy that one should try to understand the entral extensions of

a Lie group G �rst, and then try to onstrut representations of these entral extensions. In this

ontext ertain disreteness onditions for Lie algebra oyles appear naturally beause they

ensure that the orresponding entral Lie algebra extensions integrate to group representations

([Ne02b℄). We think of these disreteness onditions as an abstrat version of the phenomenon

of disreteness of quantum numbers in quantum physis. As an outome of our analysis, we will

see that we do not have to impose any onditions on the group K for our general results.

We now desribe our results in some more detail. Let M be a ompat manifold, Y a

sequentially omplete loally onvex spae, 


p

(M;Y ) the spae of smooth Y -valued p-forms on

M , and z

M

(Y ) = 


1

(M;Y )=dC

1

(M;Y ). Then z

M

(Y ) arries a natural loally onvex topology

and if Y is Fr�ehet, then the same holds for z

M

(Y ). Now let K be a possibly in�nite-dimensional

onneted Lie group and k its Lie algebra. We assoiate to eah invariant ontinuous bilinear form

�: k�k ! Y a ontinuous Lie algebra oyle on g := C

1

(M; k) by !(�; �) := [�(�; d�)℄ 2 z

M

(Y ).

We all suh oyles of produt type. The main objetive of this paper is to understand entral

Lie group extensions of the identity omponent G := C

1

(M;K)

e

of the Lie group C

1

(M;K)

orresponding to the Lie algebra oyle ! . Aording to the results in [Ne02b, Set. VII℄, there
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are two obstrutions for the existene of a entral Lie group extension

b

G of G orresponding

to ! . First the image of the assoiated period map per

!

:�

2

(G) ! z

M

(Y ) may not be disrete,

and seond, the adjoint ation of g on the Lie algebra

b

g := g �

!

z

M

(Y ) does not integrate to

a smooth representation of G . The main point in the hoie of this general setting is that it

permits us to use arbitrary in�nite-dimensional Lie groups K , hene in partiular groups of the

type K = C

1

(N;H), H a �nite-dimensional Lie group. Then C

1

(M;K)

�

=

C

1

(M �N;H),

so that we may use produt deompositions of manifolds to study urrent groups on manifolds.

In the �rst setion we investigate the disreteness of the period group �

!

:= im(per

!

). Our

main result states that �

!

is disrete for all ompat manifolds M if and only if it is disrete

for the manifold M = S

1

. This is remarkable beause the group �

2

(G) is not well aessible for

dimM > 2. In Setion II we turn to the ase where K is �nite-dimensional and �: k� k! V (k)

is the universal invariant symmetri bilinear form on k . In this ase we show that the period

group is disrete for M = S

1

, hene also for arbitrary M by the results of Setion I.

In Setion III we turn to the entral Lie group extensions. Here we show in partiular that

for any Lie algebra oyle ! of produt type the adjoint representation of g on

b

g integrates to

a smooth Lie group representation of the generally non-onneted group C

1

(M;K). Therefore

the seond obstrution to the existene of a entral Lie group extension is always trivial, and

we obtain for eah � for whih the period group �

!

is disrete a entral Lie group extension of

the identity omponent G = C

1

(M;K)

e

. In Setion IV we show that if K is �nite-dimensional

and semisimple, then we even obtain a universal entral Lie group extension of G by the abelian

group �

1

(G) � (z

M

(V (k))=�

!

).

Beause of its relevane for the onstrution of representations of Di�(M) and abelian

extensions of this group, it is interesting to know to whih extent the Lie group Di�(M) ats

on the entral extensions of G . It obviously ats on G itself by omposition ':f := f Æ '

�1

for

f 2 G , ' 2 Di�(M). Suppose that Z ,!

b

G!! G is a entral Lie group extension orresponding

to a oyle of produt type and that

b

G also is a entral extension of the universal overing group

e

G of G , whih means that the onneting homomorphism �

1

(G) ! �

0

(Z) is an isomorphism.

Then we show in Setion VI that the ation of Di�(M) has a unique lift to an ation on

b

G . This

result is based on general results in Setion V whih are onerned with lifting automorphi Lie

group ations R � G ! G to ations of R on entral extensions

b

G of G by Z . We show that

if G is simply onneted, a pair of smooth ations of R on G and Z an be lifted to a smooth

ation of R on

b

G whenever there is a smooth ation of R on the Lie algebra

b

g of

b

G extending

the ations on g and z .

The universal entral extension

b

G of the universal overing group

e

G of G = C

1

(M;K)

e

,

K a simple ompat Lie group, appears in [PS86℄ for the �rst time, although no rigorous argument

for its existene is given there. As we will see in Setion III, the group �

2

(

b

G) is not always trivial,

ontraditing a orresponding statement in [PS86℄. The onstrution of a entral extension of

the group G , instead of its universal overing group, seems to be new (see [LMNS98℄ for a

onstrution for whih it is not lear to the authors that it produes a Lie group). It is lear that

this point of view has the advantage that the group G itself has a onrete realization, whih

need not be the ase for its universal overing group.

As is well known from the ase of loop groups ([PS86℄) and the ase of urrent groups

over Riemann surfaes ([EF94℄), the oadjoint orbits of the entral extensions

b

G have fasinating

geometri interpretations. In [VN02℄ we address various aspets of the geometry of oadjoint

orbits for general M .

It is also interesting to study \algebrai" relatives of the entral extensions of urrent

groups arising in this paper. In [Shi92℄ Shi onstruts so-alled toroidal groups assoiated to the

universal entral extension

b

g of the Lie algebra g := C [t

�

; s

�

℄
 k , where k is a simple omplex

Lie algebra. These groups are de�ned as groups generated by root groups in suh a way that

they at in all integrable representations of

b

g . He also makes a onnetion to Steinberg groups of

the algebra C [t

�

; s

�

℄ of Laurent polynomials. It would be interesting to understand the preise

relationship between these groups and the universal entral Lie group extension of C

1

(T

2

;K)

e

.

For M = T

d

, the d-dimensional torus, we think of our entral extensions

b

G , or the orresponding

semidiret produt groups

b

G o T

d

, as natural Lie group versions of toroidal groups. The Lie
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algebras of these groups and their representations have been studied intensively in reent years

(see f.i. [CF01℄, [Tan99℄, [Pi00℄, [BB99℄). In [Ta98℄ Takebayashi approahes the problem to �nd

groups for the Lie algebra

b

g , or rather for g in his ontext, by using a Chevalley basis of k to

onstrut a group orresponding to g as an algebrai group over the algebra C [t

�

; s

�

℄ via the

Chevalley-Demazure onstrution. He also examines the struture of the \elementary subgroup"

generated by all root groups, whih is a quotient of the group onstruted by Shi.

This paper ontributes to a larger program dealing with Lie groups G whose Lie algebras g

are root graded in the sense that there exists a �nite irreduible root system � suh that g has a

�-grading g = g

0

�

L

�2�

g

�

, it ontains the split simple Lie algebra k orresponding to � as a

graded subalgebra, and is generated, topologially, by the root spaes g

�

, � 2 �. All Lie groups

of the type C

1

(M;K), M ompat and K simple omplex, are of this type, and the same holds

for their entral extension. A di�erent but related lass of groups arising in this ontext are the

Lie groups SL

n

(A) and their entral extensions, where A is a ontinuous inverse algebra, i.e., a

loally onvex unital assoiative algebra with open unit group and ontinuous inversion ([Gl01℄).

In [Ne01℄ we disuss the universal entral extensions of the groups SL

n

(A), whih are Lie group

versions of the Steinberg groups St

n

(A). In the end of Setion II we show that for K = SL

n

(A),

A a ommutative ontinuous inverse algebra, we have V (k)

�

=

A with �(x; y) = tr(xy) and that

the image of the orresponding period map is disrete for the orresponding produt type oyle

on the Lie algebra C

1

(M; k) of the group C

1

(M;K). For non-ommutative algebras the image

of the period map is not always disrete.

The present results on urrent groups over ompat manifolds are extended in [Ne02℄

to urrent groups over non-ompat manifolds in several settings. It is remarkable that the

diÆulties arising in this ontext are of a ompletely di�erent nature as those in this paper

beause they are mainly aused by the possible in�nite dimension of the �rst ohomology of M .

I. The period map

De�nition I.1. For a �nite-dimensional manifold M (for this de�nition we do not have to

assume that M is ompat) and a sequentially omplete loally onvex (s..l..) spae Y we

de�ne

z

M

(Y ) := 


1

(M;Y )=d


0

(M;Y )

and observe that the image of the spae of losed forms in z

M

(Y ) is the subspae H

1

dR

(M;Y ).

We endow 


1

(M;Y ) with the natural topology given by loally uniform onvergene of all

derivatives. Then we obtain for eah � 2 C

1

(S

1

;M) a ontinuous linear map 


1

(M;Y )! Y by

integration over � . Sine the spae d


0

(M;Y ) of all exat 1-forms oinides with the annihilator

of these funtionals, it is a losed subspae, and we thus obtain on z

M

(Y ) a natural loally onvex

Hausdor� topology and ontinuous linear maps given by

�

z

: z

M

(Y )! Y; [�℄ 7!

Z

�

�:

In the following we write Lin(E;F ) for the spae of ontinuous linear maps between

topologial vetor spaes E and F .

Remark I.2. (a) Sine an element � 2 


1

(M;Y ) is an exat form if and only if all integrals

R

�

� , � 2 C

1

(S

1

;M), vanish, the linear funtions �

z

2 Lin(z

M

(Y ); Y ) separate the points of

z

M

(Y ).

(b) A 1-form � 2 


1

(M;Y ) is losed if and only if for all pairs of homotopi paths �

1

; �

2

the

integrals of � over �

1

and �

2

oinide. Therefore the subspae H

1

dR

(M;Y ) � z

M

(Y ) is the

annihilator of the funtionals �

1;z

��

2;z

, [�

1

℄ = [�

2

℄ in �

1

(M), whih implies in partiular that

it is losed. Moreover, for [�℄ 2 z

M

(Y ) the ondition [�℄ 2 H

1

dR

(M;Y ) is equivalent to the

independene of �

z

([�℄) from the homotopy lass of � .

() For M = S

1

we have z

S

1
(Y )

�

=

Y beause the map 


1

(M;Y ) ! Y; � 7!

R

S

1

� is surjetive

with kernel d


0

(M;Y ). We identify the lass of � 2 


1

(S

1

; Y ) in z

S

1

(Y ) with the integral

R

S

1

�:
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(d) On the subspae H

1

dR

(M;Y ) we an de�ne ontinuous linear maps by integration over

ontinuous loops beause we may use the isomorphism

H

1

dR

(M;Y )

�

=

H

1

sing

(M;Y )

�

=

Hom(�

1

(M); Y ):

From now on we assume M to be ompat.

The following remark will be helpful for the alulation of period groups.

Remark I.3. For every ompat onneted smooth manifold M the group �

1

(M) is �nitely

generated (M an be triangulated), whih is inherited by the singular homology group H

1

(M)

�

=

�

1

(M)=(�

1

(M); �

1

(M)) (Hurewiz). Let k := b

1

(M) := rankH

1

(M) and �x �

1

; : : : ; �

k

2

C(S

1

;M) suh that the orresponding 1-yles [�

j

℄ form a basis of the free abelian group

H

1

(M)= tor(H

1

(M)).

Sine H

0

(M) is a free abelian group, the Universal CoeÆient Theorem implies that

H

1

sing

(M;Z)

�

=

Hom(H

1

(M);Z)

�

=

Hom(�

1

(M);Z)):

Moreover, in view of Huber's Theorem ([Hu61℄) and the loal ontratibility of M , this group is

isomorphi to

�

H

1

(M;Z)

�

=

[M;S

1

℄:

In partiular there exist ontinuous funtions f

1

; : : : ; f

k

:M ! S

1

suh that [f

j

Æ �

i

℄ = Æ

ij

2

�

1

(S

1

)

�

=

Z . Sine every homotopy lass in [M;S

1

℄ ontains a smooth funtion ([Ne02b,

Th. A.3.7℄), we will assume in the following that the funtions f

j

are smooth. This implies

in partiular that its logarithmi derivative Æ(f

j

) := f

�1

j

:df

j

an be viewed as a losed 1-form

on M , whih is not exat beause

R

�

j

Æ(f

j

) = 1.

With the basis [�

j

℄ of the group H

1

(M)= torH

1

(M), we immediately obtain an isomor-

phism

�:H

1

dR

(M;Y )

�

=

Hom(H

1

(M); Y )

�

=

Hom(H

1

(M)= torH

1

(M); Y )! Y

k

; [�℄ 7!

�

Z

�

j

�

�

j=1;:::;k

whose ontinuous inverse is given by

�

�1

(y

1

; : : : ; y

k

) =

h

k

X

j=1

Æ(f

j

) � y

j

i

:

De�nition I.4. (The topology on C

1

(M;K)) (a) If K is a Lie group and X is a ompat

spae, then C(X;K), endowed with the topology of uniform onvergene is a Lie group with Lie

algebra C(X; k) ([Ne02b, App. A.3℄).

(b) If K is a Lie group with Lie algebra k , then the tangent bundle of K is a Lie group isomorphi

to koK , where K ats by the adjoint representation on k (f. [Ne01b℄). Iterating this proedure,

we obtain a Lie group struture on all higher tangent bundles T

n

K whih are di�eomorphi to

k

2

n

�1

�K .

For eah n 2 N

0

we obtain topologial groups C(T

n

M;T

n

K) by using the topology of

uniform onvergene on ompat subsets. Therefore the inlusion

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K)

leads to a natural topology on C

1

(M;K) turning it into a topologial group. For ompat

manifolds M these groups an even be turned into Lie groups with Lie algebra C

1

(M; k). Here

C

1

(M; k) is endowed with the topology de�ned above if we onsider k as an additive Lie group.

For details we refer to [Gl01b℄.
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De�nition I.5. (a) Let z be a topologial vetor spae and g a topologial Lie algebra. A

ontinuous z-valued 2-oyle is a ontinuous skew-symmetri bilinear funtion !: g � g ! z

satisfying

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is alled a oboundary if there exists a ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2



(g; z) for the spae of ontinuous z-valued 2-oyles

and B

2



(g; z) for the subspae of oboundaries de�ned by ontinuous linear maps. We de�ne the

seond ontinuous Lie algebra ohomology spae to be

H

2



(g; z) := Z

2



(g; z)=B

2



(g; z):

(b) If ! is a ontinuous z-valued oyle on g , then we write g �

!

z for the topologial Lie

algebra whose underlying topologial vetor spae is the produt spae g� z , and the braket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a entral extension and �: g! g�

!

z; x 7! (x; 0) is a ontinuous

linear setion of q .

Let K be a Lie group and k its Lie algebra. Further let G := C

1

(M;K)

e

denote the

identity omponent of the Lie group C

1

(M;K) with Lie algebra g = C

1

(M; k). We onsider

a ontinuous invariant symmetri bilinear map �: k � k ! Y . We thus obtain a ontinuous

z

M

(Y )-valued oyle on g by

(1:1) !

M

(�; �) := !

M;�

(�; �) := [�(�; d�)℄ 2 z

M

(Y );

where we view �(�; d�) as the element of 


1

(M;Y ) whose value in a tangent vetor v 2 T

p

(M)

is given by �(�(p); d�(p)(v)). We write 


M

for the left invariant z

M

(Y )-valued 2-form on G

with 


M

(e) = !

M

.

In this �rst setion we will disuss the image of the period homomorphism

per

!

M

:�

2

(G)! z

M

(Y )

whih is de�ned on pieewise smooth maps (with respet to a triangulation) �:S

2

! G by

per

!

M

([�℄) :=

Z

�




M

([Ne02b, Set. V℄). We also reall from [Ne02b, Th. A.3.7℄ that eah homotopy lass in �

2

(G) has

smooth representatives and that the integration formula de�nes a group homomorphism per

!

M

.

In partiular we are interested in whether or not the period group

�

M;�

:= im(per

!

M;�

)

is a disrete subgroup of z

M

(Y ).

The following theorem is the key result of this setion.

Theorem I.6. (Redution Theorem) The period group �

M;�

is ontained in the subspae

H

1

dR

(M;Y ) of z

M

(Y ) . Identifying H

1

dR

(M;Y ) with Y

k

via the map � , where k := b

1

(M) :=

dimH

1

dR

(M;R) is the �rst Betti number of M , we have

�

M;�

�

=

�

k

S

1

;�

� Y

k

�

=

H

1

dR

(M;Y ) � z

M

(Y ):

In partiular �

M;�

is disrete if and only if �

S

1

;�

is disrete.

For the proof we need several lemmas. Sine the linear maps �

z

on z

M

separate points

(Remark I.2), it is ruial to get a better desription of the ompositions �

z

Æ per

!

M

.
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Lemma I.7. For eah � 2 C

1

(S

1

;M) we have

(1:2) �

z

Æ per

!

M

= per

!

S

1

Æ�

2

(�

K

);

where �

2

(�

K

):�

2

(G) ! �

2

(C

1

(S

1

;K)) is the group homomorphism indued by the Lie group

homomorphism �

K

:G! C

1

(S

1

;K); f 7! f Æ � .

Proof. First we observe that �

z

Æ


M

is a Y -valued left invariant 2-form on G whose value

in e is �

z

Æ !

M

. Further �

�

K




S

1

is a left invariant 2-form on G whose value in e is given by

(�; �) 7! !

S

1

(� Æ �; � Æ �) = [�(� Æ �; d(� Æ �))℄

= [�(�

�

�; �

�

(d�))℄ =

Z

S

1

�(�

�

�; �

�

(d�)) =

Z

�

�(�; d�) = �

z

�

!

M

(�; �)

�

:

This implies �

z

Æ


M

= �

�

K




S

1

, whih in turn leads to (1.2).

Lemma I.8. Let M

i

, i = 1; 2 , be two ompat manifolds with base points x

M

i

and �

1;2

:M

1

!

M

2

two smooth homotopi maps with �

j

(x

M

1

) = x

M

2

. Then the Lie group homomorphisms

�

j;K

:C

1

(M

2

;K)! C

1

(M

1

;K); f 7! f Æ �

j

satisfy �

m

(�

1;K

) = �

m

(�

2;K

) for eah m 2 N

0

.

Proof. Let F : [1; 2℄�M

1

!M

2

be a homotopy with F

1

= �

1

and F

2

= �

2

. Then the map

�: [1; 2℄� C(M

2

;K)! C(M

1

;K); �(t; f)(s) := f(F (t; s))

is ontinuous beause the map

e

�: [1; 2℄� C(M

2

;K)�M

1

! K;

e

�(t; f; s) := f(F (t; s)) = ev(f; F (t; s))

is ontinuous, whih in turn follows from the ontinuity of the evaluation map

ev:C(M

2

;K)�M

2

! K:

We onlude that the two maps �

1

;�

2

:C(M

2

;K)! C(M

1

;K) are homotopi, hene indue the

same homomorphisms �

m

(C(M

2

;K))! �

m

(C(M

1

;K)) for eah m 2 N

0

.

The restrition, resp., orestrition of these two maps to the subgroup C

1

(M

2

;K) of

smooth funtions are the maps �

1;K

and �

2;K

. Sine the inlusions C

1

(M

j

;K) ,! C(M

j

;K)

is a homotopy equivalene ([Ne02b, Th. A.3.7℄), the ommutativity of the diagram

�

m

(C

1

(M

2

;K))

�

=

��! �

m

(C(M

2

;K))

?

?

y

�

m

(�

j;K

)

?

?

y

�

m

(�

j

)

�

m

(C

1

(M

1

;K))

�

=

��! �

m

(C(M

1

;K))

implies �

m

(�

1;K

) = �

m

(�

2;K

) beause of �

m

(�

1

) = �

m

(�

2

).

Corollary I.9. �

M;�

� H

1

dR

(M;Y ) .

Proof. From (1.2) and Lemma I.8 we derive that for eah � 2 C

1

(S

1

;M) the map

�

z

Æper

!

M

only depends on the homotopy lass of � , and therefore that im(per

!

M

) � H

1

dR

(M;Y )

(Remark I.2(b)).
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Lemma I.10. Let C

1

�

(S

1

;K) := ff 2 C

1

(S

1

;K): f(1) = eg denote the Lie group of based

loops. For h 2 C

1

(S

1

;S

1

) and m 2 N

0

the map

�

m

(h

K

):�

m

(C

1

�

(S

1

;K))! �

m

(C

1

�

(S

1

;K))

is given by

�

m

(h

K

)([�℄) = deg(h) � [�℄;

where deg(h) = [h℄ 2 �

1

(S

1

)

�

=

Z is the mapping degree of h .

Proof. We realize S

1

as R=Z , so that ontinuous funtions S

1

! K orrespond to ontinuous

1-periodi funtions R ! K . In view of Lemma I.8, �

m

(h

K

) only depends on the homotopy

lass of h , so that we may assume that h(z) = nz for some n 2 Z . In this ase n = deg(h).

Sine the inlusion C

1

�

(S

1

;K) ,! C

�

(S

1

;K) is a homotopy equivalene ([Ne02b,

Th. A.3.7℄), it suÆes to onsider the maps

'

n

:C

�

(S

1

;K)! C

1

�

(S

1

;K); '

n

(f)(t) = f(nt):

We laim that '

n

is homotopy equivalent to the map  

n

(f) := f

n

.

We assume that n > 0. The ase n = 0 is trivial and the ase n < 0 is treated similarly.

For eah interval [

i

n

;

i+1

n

℄ , i = 0; : : : ; n� 1, we de�ne a ontinuous map

�

i

:C

�

(S

1

;K)! C

�

(S

1

;K); �

i

(f)(t) := f(e�

i

(t)); 0 � t � 1;

where

e�

i

: [0; 1℄! [0; 1℄; t 7!

8

<

:

0 for t �

i

n

nt� i for

i

n

� t �

i+1

n

1 for

i+1

n

� t � 1.

This means that the funtions �

i

(f) are \supported" by the Z-translates of the interval [

i

n

;

i+1

n

℄ .

Then eah map e�

i

is homotopi to the identity of [0; 1℄ with �xed endpoints, and the same arries

over to �

i

. Now

'

n

(f) = �

1

(f) � �

2

(f) � � ��

n

(f)

is a pointwise produt beause the supports of the fators are disjoint. As eah map �

i

is

homotopi to id

C

�

(S

1

;K)

, the map '

n

is homotopi to the nth power map.

The nth power map on C

�

(S

1

;K) indues the nth power map on the orresponding

homotopy groups, where the multipliation is indued by pointwise multipliation in K , and

we onlude that

�

m

('

n

):�

m

(C

�

(S

1

;K))! �

m

(C

�

(S

1

;K))

is the nth power map in the abelian group �

m

(C

�

(S

1

;K)).

In the appendix we give an alternative proof of Lemma I.10 using the homotopy ogroup

struture of S

1

.

Proof. (of Theorem I.6) We already know from Corollary I.9 that

�

M;�

� H

1

dR

(M;Y ) =

k

M

j=1

[Æ(f

j

)℄ � Y

�

=

Y

k

;

and the linear maps �

j;z

orrespond to the projetions onto the omponents in Y

k

. We have to

evaluate these maps on �

M

. To approah �

M

from below, we assoiate to eah f 2 C

1

(M;S

1

)

the map

f

K

:C

1

(S

1

;K)! G = C

1

(M;K); � 7! � Æ f;

whih in turn indues a map �

2

(f

K

):�

2

(C

1

(S

1

;K)) ! �

2

(G): For � 2 C

1

(S

1

;M) we obtain

with Lemma I.10

�

z

Æ per

!

M

Æ�

2

(f

K

) = per

!

S

1

Æ�

2

(�

K

) Æ �

2

(f

K

) = per

!

S

1

Æ�

2

(�

K

Æ f

K

)

= per

!

S

1

Æ�

2

((f Æ �)

K

) = deg(f Æ �) � per

!

S

1

:



8 Central extensions of urrent groups April 8, 2002

For f = f

i

and � = �

j

it follows in partiular that

�

i;z

Æ per

!

M

Æ�

2

(f

j;K

) = Æ

ij

per

!

S

1

:

Hene

per

!

M

�

im �

2

(f

j;K

)

�

= [Æ(f

j

)℄ ��

S

1

;�

;

and further

�

M

�

k

X

j=1

[Æ(f

j

)℄ ��

S

1

�

=

�

k

S

1

:

For the onverse inlusion, we observe that

�

j;z

Æ per

!

M

= per

!

S

1

Æ�

2

(�

K

)

implies that for eah j we have �

j;z

Æ per

!

M

� �

S

1

;�

and therefore �

M

� �

k

S

1

;�

.

In view of Theorem I.6, the disreteness of the group �

M;�

does not depend on M (if

b

1

(M) > 0), so that as far as the disreteness of the period group is onerned, it suÆes to

onsider the simplest non-trivial ompat manifold M = S

1

. In this �rst setion we did not use

any spei� information on � , but for the disreteness of �

S

1

;�

the spei� hoie of � plays a

ruial role.

Remark I.11. (a) In this setion we have analyzed the period map

�

2

(C

1

(M;K))! z

M

(Y )

by indiret methods based on smooth homomorphisms of loop groups into C

1

(M;K) and

on homomorphisms into loop groups. It is remarkable that this method provides a omplete

desription of the period group.

Let x

M

2M be a base point and C

�

(M;K) � C(M;K) denote the kernel of the evaluation

homomorphism C(M;K) ! K; f 7! f(x

M

). For general groups K and general ompat

manifolds the Approximation Theorem ([Ne02b, Th. A.3.7℄ implies that

�

2

(C

1

(M;K))

�

=

�

2

(C(M;K))

�

=

�

2

(K)� �

2

(C

�

(M;K))

�

=

�

2

(K)� [S

2

; C(M;K)℄

�

�

=

�

2

(K)� [S

2

^M;K℄

�

�

=

�

2

(K)� �

0

(C

�

(S

2

^M;K)):

In general the group of homotopy lasses [M;K℄ for a CW-omplex M may be quite hard

to aess if dimM � 3. For 2-dimensional manifolds one an use the lassi�ation of ompat

surfaes to obtain good desriptions of �

2

(C(M;K)).

(b) We onsider the ase where M = T

d

is a d-dimensional torus. Then

C(T

d

;K)

�

=

C(T; C(T

d�1

;K))

�

=

C

�

�

T; C(T

d�1

;K)

�

o C(T

d�1

;K)

implies that

�

k

(C(T

d

;K))

�

=

�

k+1

(C(T

d�1

;K))� �

k

(C(T

d�1

;K))

and by indution we obtain

�

k

(C(T

d

;K))

�

=

d

X

j=0

�

k+j

(K)

(

d

j

)

:



9 urrent.tex April 8, 2002

II. The ase of loop groups

We keep the notation of Setion I. In addition, we assume in this setion that K is �nite-

dimensional. In this ase we show that if � is the universal invariant symmetri bilinear form on

k , then the period group �

S

1

;�

is disrete.

De�nition II.1. For a �nite-dimensional Lie algebra k we write V (k) := S

2

(k)=k:S

2

(k), where

the ation of k on S

2

(k) is the natural ation inherited by the one on the tensor produt k 
 k

by x:(y 
 z) = [x; y℄
 z + y 
 [x; z℄ . There exists a natural invariant symmetri bilinear form

�: k� k! V (k); x
 y 7! [x _ y℄

suh that for eah invariant symmetri bilinear form �: k � k ! W there exists a unique linear

map ':V (k) ! W with ' Æ � = � . We all the natural map �: k � k ! V (k) the universal

invariant symmetri bilinear form on k .

We start with some observations that will be needed later on.

Remark II.2. (1) The assignment g! V (g) is a ovariant funtor from Lie algebras to vetor

spaes.

(2) If g = a� b with a perfet, then V (g)

�

=

V (a)�V (b) beause for every symmetri invariant

bilinear map �: g � g ! V we have for x; y 2 a , z 2 b the relation �([x; y℄; z) = �(x; [y; z℄) =

�(x; 0) = 0.

(3) If h E g is an ideal and the quotient morphism q: g ! q := g=h splits, then g

�

=

h o q , and

the natural map V (q)! V (g) is an embedding. In fat, let �: q! g be the inlusion map. Then

q Æ � = id

q

and this leads to V (q) Æ V (�) = id

V (q)

, showing that V (�) is injetive.

(4) If s is redutive with the simple ideals s

1

; : : : ; s

n

, then (2) implies that

V (s)

�

=

V (z(s)) �

n

M

j=1

V (s

j

)

�

=

V (z(s)) � R

n

:

(5) If k = r o s is a Levi deomposition, then (3) implies that the natural map V (s) ! V (k) is

an embedding.

(6) If k = gl(n;R) , then V (k)

�

=

R

2

follows from (4).

Remark II.3. We reall some results on the homotopy groups of �nite-dimensional Lie

groups K . First we reall E. Cartan's Theorem

�

2

(K) = 1

([Mi95, Th. 3.7℄), and further Bott's Theorem that for a ompat onneted simple Lie group C

we have

�

3

(C)

�

=

Z

([Mi95, Th. 3.9℄).

In [Mi95, pp. 969/970℄ one also �nds a table with �

k

(G) up to k = 15, showing that

�

4

(G)

�

=

8

>

<

>

:

Z

2

�Z

2

for G = SO(4)

Z

2

for G = Sp(n); SU(2); SO(3); SO(5)

1 for G = SU(n), n � 3 and SO(n), n � 6

1 for G = G

2

; F

4

; E

6

; E

7

; E

8

.

�

5

(G)

�

=

8

>

<

>

:

Z

2

�Z

2

for G = SO(4)

Z

2

for G = Sp(n); SU(2); SO(3); SO(5)

Z for G = SU(n), n � 3 and SO(6)

1 for G = SO(n), n � 7, G

2

; F

4

; E

6

; E

7

; E

8

.
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Remark II.4. (a) Let C � K be a maximal ompat subgroup, C

0

the identity omponent

of the enter of C and C

1

; : : : ; C

m

the onneted simple normal subgroups of C . Then the

multipliation map

C

0

� C

1

� : : :� C

m

! C

has �nite kernel, hene is a overing map. Now the existene of a manifold fator in K implies

that

�

3

(K)

�

=

�

3

(C)

�

=

m

Y

j=1

�

3

(C

j

)

�

=

Z

m

(Remark II.3) beause C

0

is a torus, so that �

3

(C

0

) is trivial.

(b) If C is ompat and simple, then a generator of �

3

(C) an be obtained from a homomorphism

�: SU(2) ! C . More preisely, let � be a long root in the root system �



of  and (�) � 

the orresponding su(2)-subalgebra. Then the orresponding homomorphism SU(2)

�

=

S

3

! C

represents a generator of �

3

(C) ([Bo58℄).

Remark II.5. If E and F are loally onvex vetor spaes, then we write E 


�

F for the

tensor produt spae endowed with the projetive tensor produt topology (f. [Tr67℄) and E

b


F

for the ompletion of this spae.

If M is a �nite-dimensional � -ompat manifold and E a omplete loally onvex spae,

then

C

1

(M;E)

�

=

C

1

(M;R)

b


E

follows from [Gr55, Ch. 2, p.81℄. In partiular, the subspae

C

1

(M;R) 
E

�

=

spanf' � y:' 2 C

1

(M;R); y 2 Eg

is dense in C

1

(M;E).

Lemma II.6. Let Y be a s..l.. spae and z

M

(Y ) as in De�nition I.1. Then the subspae

z

M

(R) �Y spanned by the elements of the form [� �y℄ , � 2 


1

(M;R) , y 2 Y , is dense in z

M

(Y ) .

Proof. It suÆes to show that 


1

(M;R) � Y spans a dense subspae of 


1

(M;Y ).

Let ('

j

)

j2J

be a �nite partition of unity in C

1

(M;R) suh that the support of eah

funtion '

j

is ontained in an open set U

j

di�eomorphi to an open subset of R

d

for d := dimM .

For eah U

j

we then have




1

(U

j

; Y )

�

=

C

1

(U

j

; Y )

d

;

and Remark II.5 implies that for the ompletion Y of Y we have

C

1

(U

j

; Y )

�

=

C

1

(U

j

;R)

b


Y :

Sine C

1

(U

j

;R) � Y is dense in C

1

(U

j

;R)

b


Y , it is also dense in C

1

(U

j

; Y ).

Writing � 2 


1

(M;Y ) as a sum � =

P

j

'

j

� , the preeding argument implies that eah

'

j

� is ontained in the losure of 


1

(M;R) � Y , and this proves that 


1

(M;R) � Y is dense in




1

(M;Y ).

Lemma II.7. Let k be a loally onvex Lie algebra, M a smooth manifold, g := C

1

(M; k) ,

�: k� k! Y a ontinuous invariant symmetri bilinear form, and !

M;�

2 Z

2



(g; z

M

(Y )) de�ned

by

!

M;�

(�; �) := [�(�; d�)℄;

so that in partiular !

M;�

(f 
 x; g 
 y) := [fdg℄�(x; y) 2 z

M

(Y ): If im(�) spans Y , then the

entral extension

b

g := g �

!

M;�

z

M

(Y ) is a overing, i.e., z

M

(Y ) is ontained in the losure of

the ommutator algebra of

b

g .

Proof. For x; y 2 k and f; g 2 C

1

(M;R) we have in

b

g the relation

[f 
 x; g 
 y℄� [g 
 x; f 
 y℄ =

�

fg 
 [x; y℄� gf 
 [x; y℄; 2[fdg℄ � �(x; y)

�

=

�

0; 2[fdg℄ � �(x; y)

�

:

This implies that the dense subspae z

M

(R) � Y of z

M

(Y ) (Lemma II.6) is ontained in [

b

g;

b

g℄

and therefore that

b

g! g is a overing.

We now return to our assumption that K is �nite-dimensional and onsider the loop group

G := C

1

(S

1

;K). Let �: k � k ! V (k) denote the universal invariant symmetri bilinear form

and de�ne a oyle on g = C

1

(S

1

; k) as in Setion I by !(f; g) := !

S

1

;�

(f; g) := [�(f; dg)℄:
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Remark II.8. (a) If K is a �nite-dimensional Lie group, then �

2

(K) = 1 implies that

�

3

(K)

�

=

�

2

(C

�

(S

1

;K))

�

=

�

2

(G), and we an view the period map of ! as a homomorphism

per

K

:�

3

(K)! V (k):

(b) For any in�nite-dimensional Lie group K we an also de�ne a homomorphism �

3

(K)! V (k)

as follows. To de�ne V (k) for an in�nite-dimensional Lie algebra k , we �rst endow k
 k with the

projetive tensor produt topology and de�ne V (k) as the quotient of this spae by the losure

of the subspae spanned by all elements of the form

x
 y � y 
 x and [x; y℄
 z + y 
 [x; z℄; x; y; z 2 k:

If [z℄ denotes the image of z 2 k
 k in V (k), we obtain a ontinuous invariant bilinear map

�: k� k ! V (k); �(x; y) := [x
 y℄

whih leads to the oyle ! 2 Z

2



(g; V (k)) on g := C

1

(S

1

; k) given by !(�; �) := [�(�; d�)℄:

Let G := C

1

(S

1

;K)

e

. Sine the restrition of ! to the subalgebra k of g onsisting of

onstant k-valued funtions vanishes, the period map per

!

:�

2

(G)

�

=

�

3

(K) � �

2

(K) ! V (k)

vanishes on �

2

(K) and de�nes group homomorphism

per

K

:�

3

(K)! V (k)

with the same image.

The following theorem shows that for eah �nite-dimensional Lie group K the homomor-

phism per

K

has disrete image, and it is not so easy to �nd in�nite-dimensional Lie groups where

this is not the ase. Below we disuss some related examples and speial lasses.

Theorem II.9. For every �nite-dimensional onneted Lie group K and the V (k)-valued

oyle !(f; g) = [�(f; dg)℄ on C

1

(S

1

; k) , the image of per

!

in V (k) is disrete.

Proof. If ':K

1

! K

2

is a Lie group morphism and L('): k

1

! k

2

the orresponding Lie

algebra morphism, then we have

�

k

2

Æ L('� ') = V (L(')) Æ �

k

1

; and per

!

M;k

2

Æ�

3

(') = V (L(')) Æ per

!

M

;k

1

:

In view of Remark II.4, this redues the problem to the determination of V (L(�

j

)) for the

generators �

j

: SU(2)! K , j = 1; : : : ;m , of �

3

(K).

For K = SU(2) pik x 2 k with Spe(adx) = f0;�2ig . All these elements are onjugate

under inner automorphisms. Therefore v

k

:=

1

2

�(x; x) 2 V (k) is well de�ned (� an be viewed

as a multiple of the Cartan-Killing form; see also Remark II.2(4)). Then the alulations in

Appendix IIa to Setion II in [Ne01a℄ imply that per

!

([id

K

℄) = v

k

:

Therefore, in the general ase, im(per!) � V (k) is the subgroup generated by the elements

v

1

; : : : ; v

m

orresponding to the homomorphisms �

j

: SU(2) ! C

j

mentioned above. If s � k

is a Levi omplement, then we may assume that im(L(�

j

)) � s for eah j , so that it suÆes

to determine the image of per

!

in the ase where k = s is semisimple (Remark II.2(5)). This

problem immediately redues to the ase where s is simple. Let s



� s be a maximal ompat

semisimple subalgebra. Then s



need not be simple and we write s

j



, j = 1; : : : ; l , for its simple

ideals. (For s = su(p; q) we have s



�

=

su(p)� su(q), so that l = 2 for p; q � 2.)

We are interested in the subgroup of V (s)

�

=

R generated by the elements v

j

oming from

the basis elements v

s

j



=

1

2

�(x

j

; x

j

) 2 V (s

j



); where x

j

denotes an element in a suitable su

2

-

subalgebra of the simple ideal s

j



of s



whih is normalized in suh a way that Spe(adx

j

) =

f�2i; 0g holds on the su

2

-subalgebra. The hoie of the elements x

j

2 s

j



and the representation

theory of sl(2; C ) imply that all eigenvalues of adx

j

are ontained in iZ ,so that tr((adx

j

)

2

) 2

�N

0

. Therefore the values of the Cartan{Killing form on the v

j

are integral, so that they

generate a disrete subgroup of V (s)

�

=

R . We �nally onlude that in the general situation the

image of per

!

in V (k) is disrete.
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Remark II.10. Let  2 V (k)

�

, so that �



:=  Æ � de�nes a real-valued symmetri bilinear

form on k . Then the image of the orresponding period map in R is determined by the values

of  on the image of the period map �

3

(K)! V (k) in Theorem II.9 whih is generated by the

elements v

1

; : : : ; v

m

2 V (k) obtained as follows. Let 

j

denote the simple ideals in the Lie algebra

 of a maximal ompat subgroup C � K . Further let su(2)

j

� 

j

be a subalgebra orresponding

to a long root and x

j

2 su(2)

j

with Spe(adx

j

j

su(2)

j

) = f0;�2ig . Then v

j

=

1

2

�(x

j

; x

j

) 2 V (k),

and we have

im(per

!

) =

k

X

j=1

Z(v

j

) =

k

X

j=1

1

2

Z(�(x

j

; x

j

)):

Lemma II.11. Let k be a �nite-dimensional simple Lie algebra, and �

k

its Cartan-Killing

form of k . Further let A be a loally onvex unital ommutative assoiative algebra and onsider

the loally onvex Lie algebra g := A


�

k with the braket given by [a
 x; b
 y℄ := ab
 [x; y℄ .

Then the map

�: g� g! A; (a
 x; b
 y) 7! �

k

(x; y)ab

has the universal property of the universal invariant symmetri bilinear form. In partiular we

have V (g)

�

=

A .

Proof. From

�([a
 x; b
 y℄; 
 z) = �

k

([x; y℄; z)ab = �

k

(x; [y; z℄)ab = �(a
 x; [b
 y; 
 z℄)

we see that � is an invariant symmetri bilinear form on g . Its onstrution implies the ontinuity.

To verify the universal property, let �: g � g ! Y be a ontinuous invariant symmetri

bilinear form. For eah pair a; b 2 A we then obtain an invariant bilinear form

�

a;b

: k� k! Y; (x; y) 7! �(a
 x; b
 y):

Now V (k) = R�

k

implies the existene of a unique element �(a; b) 2 Y with �

a;b

= �

k

� �(a; b).

Pik x; y 2 k with �

k

(x; y) 6= 0. Then the ontinuity of the map

A�A! Y; (a; b) 7! �(a
 x; b
 y) = �

k

(x; y)�(a; b)

implies the ontinuity of �:A�A! Y .

Sine k is a perfet Lie algebra, we also �nd three elements x; y; z 2 k with �

k

([x; y℄; z) 6= 0.

Then the invariane of � further leads to

�

k

([x; y℄; z)�(ab; ) = �([a
 x; b
 y℄; 
 z) = �(a
 x; [b
 y; 
 z℄)

= �

k

(x; [y; z℄)�(a; b) = �

k

([x; y℄; z)�(a; b);

so that

�(ab; ) = �(a; b); a; b;  2 A:

Let 1 2 A denote the unit element and de�ne the ontinuous linear map :A! Y; a 7! �(a;1).

Then

�(a
 x; b
 y) = �

k

(x; y)�(a; b) = �

k

(x; y)�(ab;1) = �

k

(x; y)(ab) = ( Æ �)(a
 x; b
 y)

shows that � fators through � , whih implies the universal property of � . Here the uniqueness

of  follows from A = 1 �A = A �A .



13 urrent.tex April 8, 2002

Remark II.12. (a) We all an assoiative unital loally onvex algebra A a ontinuous inverse

algebra if its group of units A

�

is open and the inversion A

�

! A

�

is a ontinuous map. Suh

algebras have been studied in [Gl01℄. In partiular the following results have been obtained:

(1) If A is a sequentially omplete ontinuous inverse algebra, then all matrix algebras M

n

(A),

n 2 N , also have this property ([Gl01, Prop. 4.5℄).

(2) If A is a ontinuous inverse algebra, then A

�

is a Baker{Campbell{Hausdor�{Lie group

(BCH-Lie group), i.e., it has an exponential map exp: a ! A (given by holomorphi

funtional alulus) whih restrits to a di�eomorphism of some open 0-neighborhood U

in A to some open 1-neighborhood in A

�

and on some 0-neighborhood W � U with

expW expW � expU the multipliation

x � y := exp j

�1

U

(expx exp y)

is given by the BCH-series.

By ombining (1) and (2), we an use the theory of analyti subgroups of BCH-Lie groups

([Gl01b℄) to derive for eah losed Lie subalgebra g �M

n

(A) the existene of a global Lie group

G with an exponential funtion obtained by restriting the one of M

n

(A) ([Gl01b, Prop. 2.13℄).

(b) Let A be a unital loally onvex algebra and HC

0

(A) := A=[A;A℄ . We write [a℄ for the

lass of a 2 A in HC

0

(A). Then the map

Tr:M

r

(A)! HC

0

(A); x 7! [

X

j

x

jj

℄

is a ontinuous Lie algebra homomorphism and we de�ne sl

r

(A) := kerTr. Inspeting the

arguments in [BGK96, Lemma 2.8℄ in the algebrai setting, it is easy to see that V (sl

r

(A))

�

=

HC

0

(A) and that a universal invariant symmetri bilinear form is given by �(x; y) := Tr(xy):

Suppose that A is a omplete omplex ommutative ontinuous inverse algebra. Aording

to [Bos95, Prop. A.1.5℄, A satis�es

K

0

(A)

�

=

K

2

(A) := indlim

n!1

�

3

(GL

n

(A)):

One an show that the period map

per

SL

r

(K)

:�

3

(SL

r

(A))! HC

0

(A)

is the omposition of the natural maps �

3

(SL

r

(A))! �

3

(GL

r

(A))! K

0

(A) and the trae map

T

A

:K

0

(A)! HC

0

(A); [p℄ 7! Tr(p);

where p = p

2

2 M

n

(A) is an idempotent representing an element of K

0

(A) (see [Ne02a℄ for

details).

If A is ommutative, then HC

0

(A) = A and the image of the trae map T

A

is ontained

in the kernel of the exponential funtion exp

A

:A! A

�

; x 7! e

2�ix

, hene disrete. This implies

that im(per

SL

r

(A)

) is disrete. The smallest examples of non-ommutative algebras for whih

im(T

A

) is not disrete are the irrational rotation algebras, ertain 2-dimensional quantum tori.

In this ase HC

0

(A)

�

=

C and im(T

A

) = Z+ �Z for some irrational real number.

() In the ontext of (b), we an use (a) to obtain for eah simple omplex Lie algebra k the

existene of a Lie group G with Lie algebra g := A
k beause we an embed k into some M

n

(C )

and then extend salars to obtain an embedding g ,! M

n

(A). We then have g � sl

n

(A), and

the natural map V (g) ! V (sl

n

(A)) is an isomorphism (Lemma II.11). Therefore (b) implies

that im(per

G

) is disrete if im(per

SL

r

(A)

) is disrete, whih holds whenever A is a omplete

ommutative ontinuous inverse algebra.
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III. Existene of orresponding entral Lie group extensions

In the following we will use the onept of an in�nite-dimensional Lie group desribed in detail

in [Mi83℄ (see also [Gl01a℄ and [Ne01b℄). This means that a Lie group G is a smooth manifold

modeled on a loally onvex spae g for whih the group multipliation and the inversion are

smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for the left, resp., right multipliation

on G . Then eah X 2 T

e

(G) orresponds to a unique left invariant vetor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G: The spae of left invariant vetor �elds is losed under the Lie braket

of vetor �elds, hene inherits a Lie algebra struture. In this sense we obtain on g := T

e

(G) a

ontinuous Lie braket whih is uniquely determined by [X;Y ℄

l

= [X

l

; Y

l

℄ .

In this ontext entral extensions of Lie groups are always assumed to have a smooth loal

setion. Let Z ,!

b

G !! G be a entral extension of the onneted Lie group G by the abelian

group Z . We assume that the identity omponent Z

e

of Z an be written as Z

e

= z=�

1

(Z),

where the Lie algebra z of Z is a s..l.. spae. This means that the additive group of z an be

identi�ed in a natural way with the universal overing group of Z

e

, and that Z

e

is a quotient

z modulo a disrete subgroup whih an be identi�ed with �

1

(Z). Sine the quotient map

q:

b

G! G has a smooth loal setion, the orresponding Lie algebra homomorphism

b

g! g has a

ontinuous linear setion, hene an be desribed by a ontinuous Lie algebra oyle ! 2 Z

2



(g; z)

as

b

g

�

=

g�

!

z with the braket [(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

)):

Let Z

2

s

(G;Z) denote the abelian group of 2-oyles f :G � G ! Z whih are smooth

in a neighborhood of (e; e) and B

2

s

(G;Z) the subgroup of all funtions of the form (g; g

0

) 7!

h(gg

0

)h(g)

�1

h(g

0

)

�1

, where h:G ! Z is smooth in an identity neighborhood. We reall from

[Ne02b, Prop. IV.2℄ that entral Lie group extensions as above an always be written as

b

G

�

=

G�

f

Z with (g; z)(g

0

; z

0

) =

�

gg

0

; zz

0

f(g; g

0

)

�

;

with f 2 Z

2

s

(G;Z). Two oyles f

1

, f

2

de�ne equivalent Lie group extensions if and only

if f

1

� f

�1

2

2 B

2

s

(G;Z) (for f

�1

2

(x; y) := f

2

(x; y)

�1

), and the quotient group H

2

s

(G;Z) :=

Z

2

s

(G;Z)=B

2

s

(G;Z) parametrizes the equivalene lasses of entral Z -extensions of G with

smooth loal setions ([Ne02b, Remark IV.4℄). On the Lie algebra level the spae H

2



(g; z) =

Z

2



(g; z)=B

2



(g; z) lassi�es the entral z-extensions of g with ontinuous linear setions. There

is a natural map H

2

s

(G;Z)! H

2



(g; z) indued by the map

(3:1) D:Z

2

s

(G;Z)! Z

2



(g; z); D(f)(x; y) = d

2

f(e; e)(x; y)� d

2

f(e; e)(y; x)

([Ne02b, Lemma IV.6℄), where d

2

f(e; e) has to be understood as

d

2

f(e; e)(x; y) :=

�

2

�s�t

j

t;s=0

f((t); �(s))

where : ℄� "; "[! G and �: ℄� "; "[! G are smooth urves with (0) = e , 

0

(0) = x , �(0) = e ,

and �

0

(0) = y . For more details we refer to [Ne02b℄.

In this setion we disuss the existene of a entral Lie group extension for the Lie algebra

oyles !

M;�

of produt type (see (1.1)), where K may be an in�nite-dimensional Lie group.

The group G := C

1

(M;K) ats on g by the adjoint ation whih is given by

(Ad(f):�)(m) := Ad(f(m)):�(m) for m 2M:

We also de�ne an ation of G on k-valued 1-forms on M by

(Ad(f):�)(m) := Ad(f(m)) Æ �(m) for m 2M:
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De�nition III.1. For an element f 2 C

1

(M;K) we write

Æ

l

(f)(m) := d�

f(m)

�1
(f(m))df(m):T

m

(M)! k

�

=

T

e

(K)

for the left logarithmi derivative of f . This derivative an be viewed as a k-valued 1-form on

M . We also write simply Æ

l

(f) = f

�1

:df and observe the following produt rule

(3:2) Æ

l

(f

1

f

2

) = Ad(f

2

)

�1

:Æ

l

(f

1

) + Æ

l

(f

2

):

The right logarithmi derivative Æ

r

(f) = df:f

�1

satis�es the produt rule

(3:3) Æ

r

(f

1

f

2

) = Æ

r

(f

1

) + Ad(f

1

):Æ

r

(f

2

)

([KM97, 38.1℄).

The form �

l

K

:= Æ

l

(id

K

) 2 


1

(K; k) is alled the left Maurer{Cartan form on K and

�

r

K

:= Æ

r

(id

K

) the right Maurer{Cartan form. Using the Maurer{Cartan forms, we have

Æ

l

(f) = f

�

�

l

K

and Æ

r

(f) = f

�

�

r

K

:

Lemma III.2. The smooth maps Æ

l

; Æ

r

:C

1

(M;K)! 


1

(M; k) satisfy

(dÆ

l

)(e)(�) = (dÆ

r

)(e)(�) = d� for � 2 C

1

(M; k)

�

=

T

e

(C

1

(M;K)):

Proof. Let V � k be an open onvex 0-neighborhood and ':V ! U := '(V ) a hart of K

with '(0) = e and d'(0) = id

k

. Let � 2 g = C

1

(M; k). Then there exists an " > 0 suh that

for eah t 2 [0; "℄ we have t�(M) � V . Then

: [0; "℄! C

1

(M;K); 

t

(m) := '(t�(m))

is a smooth urve on C

1

(M;K) with (0) = e and 

0

(0) = � . We now have for v 2 T

m

(M)

d

t

(m):v = d'(t�(m))td�(m)v 2 T

(m)

(K)

and therefore

Æ

l

(

t

)(m):v = 

t

(m)

�1

:(d

t

(m):v) = '(t�(m))

�1

:d'(t�(m)) � t � d�(m)v 2 k:

In view of d

0

= 0, it follows that

d

dt

t=0



t

(m)

�1

:(d

t

(m):v) = lim

t!0

'(t�(m))

�1

:d'(t�(m))d�(m)v

= '(0)

�1

:d'(0)d�(m)v = d�(m)v:

A similar argument works for the right logarithmi derivatives.

Proposition III.3. Let g := C

1

(M; k) , �: k � k ! Y be a ontinuous invariant symmetri

bilinear form, and de�ne

�:C

1

(M;K)! Lin(g; z

M

(Y )); �(f)(�) := [�(Æ

l

(f); �)℄:

Then we obtain for the oyle !(�; �) := [�(�; d�)℄ an automorphi ation of C

1

(M;K) on

b

g := g�

!

z

M

(Y ) by

(3:4) f:(�; z) := (Ad(f):�; z ��(f)(�)) = (Ad(f):�; z � [�(Æ

l

(f); �)℄):
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The orresponding derived ation is given by

(3:5) �:(�; z) = [(�; 0); (�; z)℄ = ([�; �℄; !(�; �)):

Proof. Using (3.2), we �rst verify the oyle ondition for �:

�(f

1

f

2

)(�) = [�(Æ

l

(f

1

f

2

); �)℄ = [�(Æ

l

(f

2

) + Ad(f

2

)

�1

:Æ

l

(f

1

); �)℄

= �(f

2

)(�) + [�(Æ

l

(f

1

);Ad(f

2

):�)℄ = �(f

2

)(�) + �(f

1

)(Ad(f

2

):�):

This relation implies that

f

1

:(f

2

:(�; z)) = f

1

:(Ad(f

2

):�; z ��(f

2

)(�)) =

�

Ad(f

1

f

2

):�; z ��(f

2

)(�) ��(f

1

)(Ad(f

2

):�)

�

=

�

Ad(f

1

f

2

):�; z ��(f

1

f

2

)(�)

�

:

To see that C

1

(M;K) ats by automorphisms of

b

g , we note that

d(Ad(f):�)(m) =

�

(dAd)(f(m))df(m)

�

:�(m) + Ad(f(m)) Æ d�(m)

=

�

Ad(f(m))dAd(e)d�

f(m)

�1(f(m))df(m)

�

:�(m) + Ad(f(m)) Æ d�(m)

=

�

Ad(f(m)) Æ ad Æ

l

(f)(m)

�

:�(m) + Ad(f(m)) Æ d�(m);

whih means that

(3:6) d(Ad(f):�) = Ad(f):[Æ

l

(f); �℄ + Ad(f):d�:

Therefore

!(Ad(f):�;Ad(f):�) = [�(Ad(f):�; d(Ad(f):�))℄ = [�(Ad(f):�;Ad(f):d� +Ad(f):[Æ

l

(f); �℄)℄

= [�(�; d�)℄ + [�(�; [Æ

l

(f); �℄)℄ = [�(�; d�)℄� [�(Æ

l

(f); [�; �℄)℄

= !(�; �)��(f)([�; �℄):

That C

1

(M;K) ats by automorphisms on

b

g now follows from

f:[(�

1

; z

1

); (�

2

; z

2

)℄ = (Ad(f):[�

1

; �

2

℄; !(�

1

; �

2

)��(f)([�

1

; �

2

℄))

=

�

[Ad(f):�

1

;Ad(f):�

2

℄; !(Ad(f):�

1

;Ad(f):�

2

)

�

= [f:(�

1

; z

1

); f:(�

2

; z

2

)℄:

To verify (3.5), we have to show that the di�erential of � in e is given by

d�(e)(�)(�) = !(�; �):

Using Lemma III.2, we obtain

d�(e)(�)(�) = [�

�

(dÆ

l

)(e)(�); �

�

℄ = [�(d�; �)℄ = [�(�; d�)℄ = !(�; �):

De�nition III.4. Let G be a onneted Lie group with Lie algebra g and ! 2 Z

2



(g; z) a

ontinuous Lie algebra oyle with values in the s..l.. spae z . Let � � z be a disrete subgroup

and Z := z=� the orresponding quotient Lie group. Further let 
 be the orresponding left

invariant losed z-valued 2-form on G . Then we de�ne a homomorphism

P :H

2



(g; z)! Hom(�

2

(G); Z)�Hom(�

1

(G);Lin(g; z))

as follows. For the �rst omponent we take

P

1

([!℄) := q

Z

Æ per

!

;

where q

Z

: z! Z is the quotient map and per

!

:�

2

(G)! z is the period map of ! . To de�ne the

seond omponent, for eah X 2 g we write X

r

for the orresponding right invariant vetor �eld

on G . Then i

X

r


 is a losed z-valued 1-form ([Ne02b, Lemma III.11℄) to whih we assoiate a

homomorphism �

1

(G)! z via

P

2

([!℄)([℄)(X) :=

Z



i

X

r


:

We refer to [Ne02b, Set. VII℄ for arguments showing that P is well de�ned, i.e., that the right

hand sides only depend on the Lie algebra ohomology lass of ! .
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Theorem III.5. Let ! 2 Z

2



(g; z) be a ontinuous Lie algebra oyle. Then the entral Lie

algebra extension z ,!

b

g := g�

!

z!! g integrates to a entral Lie group extension Z ,!

b

G!! G

if and only if P ([!℄) = 0 .

Proof. [Ne02b, Th. VII.12℄.

Theorem III.6. Let K be a onneted Lie group, M a ompat manifold, G := C

1

(M;K)

e

and !

M;�

2 Z

2



(g; z

M

(Y )) as above. Suppose that the period group �

M;�

� z

M

(Y ) is disrete.

For Z := z

M

(Y )=�

!

M;�

we then obtain a entral Lie group extension Z ,!

b

G!! G orresponding

to the oyle !

M;�

.

Proof. In view of Theorem III.5, we only have to see that P

2

([!

M;�

℄) = 0, but this follows

from Proposition III.3 and [Ne02b, Prop. VII.6℄.

Corollary III.7. If dimK <1 , Y = V (k) , and �: k� k ! V (k) is the universal symmetri

invariant bilinear map, then there exists for Z := V (k)=�

M;�

a entral Lie group extension

Z ,!

b

G!! G = C

1

(M;K)

e

:

Proof. This is a onsequene of Theorem II.9 and Theorem III.6.

Remark III.8. (a) (f. [Ne02b, Rem. V.12℄) Let Z ,!

b

G !! G be a entral extension of Lie

groups, where G and

b

G are onneted. In view of [Ne02b, Prop. V.11℄, the long exat homotopy

sequene of the prinipal Z -bundle

b

G over G leads to an exat sequene

�

2

(Z)! �

2

(

b

G)! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z)! �

0

(

b

G) = 1;

so that �

2

(Z)

�

=

�

2

(z) = 1 leads to

�

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)!! �

1

(G)! �

0

(Z):

If the onneting map �

1

(G) ! �

0

(Z) is injetive, then the map �

1

(Z) ! �

1

(

b

G) is surjetive,

and we obtain

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= okerper

!

:

These relations show how the period homomorphism ontrols how the �rst two homotopy groups

of G and

b

G are related.

(b) We onsider the speial ase where K is a simple ompat Lie group and G = C

1

(T

d

;K)

e

,

where M = T

d

is a d-dimensional torus. Then Y = V (k)

�

=

R , where the Cartan-Killing form

�

k

of k is universal, and �

1

(T

d

)

�

=

Z

d

implies z

T

d
(R)

�

=

R

d

, where the projetion onto the

omponents is given by integrating over the oordinate loops �

j

:T ,! T

d

, j = 1; : : : ; d .

Aording to Remark I.11(b), we have

�

2

(G)

�

=

�

2

(K)� �

3

(K)

d

� �

4

(K)

(

d

2

)

� : : : :

Sine �

2

(K) is trivial and �

3

(K)

�

=

Z (Remark II.3), we have

�

2

(G)

�

=

Z

d

�E;

where E

�

=

�

4

(K)

(

d

2

)

� : : : . The natural homomorphism Z

d

,! �

2

(G) is obtained from the map

C

1

(T;K)

d

! G; (g

j

)

j=1;:::;d

7! (g

1

Æ p

1

) � � � (g

d

Æ p

d

);

where p

j

:T

d

! T is the projetion onto the j -omponent. As we have seen above, the period

map per

!

M;�

maps the subgroup Z

d

bijetively onto the full period group

�

T

d

;�

�

=

�

d

S

1

;�

�

=

Z

d

� z

T

d(R)

�

=

R

d

:

We onlude in partiular with (a) that

�

2

(

b

G)

�

=

ker(per

!

T

d

;�

)

�

=

�

2

(G)=�

3

(K)

d

�

=

�

4

(K)

(

d

2

)

� : : : :

As we have seen in Remark II.3, this group is not always trivial, showing that �

2

(

b

G) is not

always trivial. This ontradits a statement in [PS86, Prop. 4.10.1℄ saying that �

2

(

b

G) is trivial.
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For the following theorem we reall that we an use the ontinuous bilinear form �: k�k ! Y

to de�ne a wedge produt

^

�

: 


1

(M; k) �


1

(M; k)! 


2

(M;Y )

by

(� ^

�

�)(v; w) := �(�

p

(v); �

p

(w)) � �(�

p

(v); �

p

(w)); v; w 2 T

p

(M):

We also de�ne for � 2 C

1

(M; k) and � 2 


1

(M; k) the wedge produt

� ^

�

� := �� ^

�

� := �(�; �)

and observe that

d(� ^

�

�) = d� ^

�

�+ �(�; d�):

For eah smooth map f :M ! G we then have

(3:7)

�

Ad(f):�

�

^

�

� = � ^

�

�

Ad(f)

�1

:�

�

;

where (Ad(f):�)(v) = Ad(f(p)):�(v) for v 2 T

p

(M), beause the bilinear map � is invariant

under Ad(K). We likewise get

(3:8) [�; �℄ ^

�

� = �� ^

�

[�; �℄

for � 2 C

1

(M; k), where [�; �℄

p

(v) := �[�; �℄

p

(v) := [�

p

(v); �(p)℄ . We also have a wedge produt

[�; �℄

^

: 


1

(M; k) �


1

(M; k)! 


2

(M; k)

de�ned by

[�; �℄

^

(v; w) := [�

p

(v); �

p

(w)℄� [�

p

(w); �

p

(v)℄; v; w 2 T

p

(M):

Note that [�; �℄

^

= [�; �℄

^

. The two wedge produts are related by the formula

(3:9) �([�; �℄

^

; �) = � ^

�

[�; �℄; � 2 C

1

(M; k):

Theorem III.9. Let G

+

:= C

1

(M;K) . Then the map

:G

+

�G

+

! 


2

(M;Y ); (f; g) := Æ

l

(f) ^

�

Æ

r

(g)

de�nes a a smooth 


2

(M;Y )-valued group 2-oyle on G

+

, so that we obtain a entral Lie

group extension

b

G

+

:= G

+

�






2

(M;Y ) . The orresponding Lie algebra oyle D from (3.1)

is given by

D(�; �) = 2d� ^

�

d� for �; � 2 C

1

(M; k):

The map : z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! 2d� satis�es  Æ !

M;�

= D and indues a Lie algebra

homomorphism



g

:

b

g = g�

!

M;�

z

M

(Y )!

b

g

+

:= g�

D




2

(M;Y ); (X; [�℄) 7! (X; 2d�):

This homomorphism is G

+

-equivariant with respet to the ation on

b

g

+

indued by the adjoint

ation of

b

G

+

, given by

Ad

bg

+

(g):(�; z) =

�

Ad(g):�; z � d(�(Æ

l

(g); �))

�

:

Proof. The smoothness of the oyle follows from the smoothness of the maps

Æ

l

; Æ

r

:C

1

(M;K)! 


1

(M; k)

and the ontinuity of � .
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For the onstant funtion f = e we have Æ

l

(f) = Æ

r

(f) = 0, so that (g; e) = (e; g) = 0:

Moreover, we obtain with (3.2), (3.3) and (3.7):

(f; gh)� (fg; h) = Æ

l

(f) ^

�

Æ

r

(gh)� Æ

l

(fg) ^

�

Æ

r

(h)

= Æ

l

(f) ^

�

�

Æ

r

(g) + Ad(g):Æ

r

(h))�

�

Æ

l

(g) + Ad(g)

�1

:Æ

l

(f)

�

^

�

Æ

r

(h)

= (f; g)� (g; h) + Æ

l

(f) ^

�

�

Ad(g):Æ

r

(h))�

�

Ad(g)

�1

:Æ

l

(f)

�

^

�

Æ

r

(h)

= (f; g)� (g; h)

Therefore  is a group oyle.

Aording to [Ne02, Lemma IV.6℄ and Lemma III.2, the orresponding Lie algebra oyle

D 2 Z

2



(C

1

(M; k); Y ), is given by

D(�; �) = d

2

(e; e)(�; �)� d

2

(e; e)(�; �)

= dÆ

l

(e)(�) ^

�

dÆ

r

(e)(�)� dÆ

l

(e)(�) ^

�

dÆ

r

(e)(�)

= d� ^

�

d� � d� ^

�

d� = 2d� ^

�

d�:

To relate the Lie algebra oyles !

M;�

and D , we �rst observe that the di�erential

d: 


1

(M;Y ) ! 


2

(M;Y ) leads to a linear map : z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! 2d�: This map

satis�es

 Æ !

M;�

(�; �) = 2d(�(�; d�)) = 2d(� ^

�

d�) = 2d� ^

�

d� = D(�; �):

This implies that 

g

is a Lie algebra homomorphism.

Next we derive an expliit formula for the ation of G

+

on the Lie algebra

b

g

+

:= g�

D




2

(M;Y )

from whih it will follow that 

g

is G

+

-equivariant. The onjugation ation of G

+

on the group

b

G

+

is given by

g:(h; 0) := (g; 0)(h; 0)(g; 0)

�1

=

�

ghg

�1

; (g; h)� (ghg

�1

; g)

�

([Ne02b, Rem. I.2℄) whih implies that the derived ation is given by

Ad

bg

+

(g):(�; 0) =

�

Ad(g):�; d(g; e)(0; �)� d(e; g)(Ad(g):�; 0)

�

:

We have seen in Lemma III.2 that

d(g; e)(0; �) = Æ

l

(g) ^

�

d�;

and with (3.6) we further get

d(e; g)(Ad(g):�; 0) = d(Ad(g):�) ^

�

Æ

r

(g) = Ad(g):[Æ

l

(g); �℄ ^

�

Æ

r

(g) +

�

Ad(g):d�

�

^

�

Æ

r

(g)

= Ad(g):[Æ

l

(g); �℄ ^

�

Æ

r

(g) + d� ^

�

�

Ad(g)

�1

:Æ

r

(g)

�

= [Æ

l

(g); �℄ ^

�

Æ

l

(g) + d� ^

�

Æ

l

(g):

This leads to

Ad

bg

+

(g):(�; 0) =

�

Ad(g):�; 2Æ

l

(g) ^

�

d� + Æ

l

(g) ^

�

[Æ

l

(g); �℄

�

:

To show that 

g

is G

+

-equivariant, we have to verify that

(3:10) Ad

bg

+

(g):(�; 0) :=

�

Ad(g):�;�2d

�

�(Æ

l

(g); �)

��

(see (3.4)). The Maurer{Cartan Equation

dÆ

l

(f) = �

1

2

[Æ

l

(f); Æ

l

(f)℄

^

; f 2 C

1

(M;K)

([KM97, p.405℄) implies

d

�

�(Æ

l

(f); �)

�

= d(Æ

l

(f) ^

�

�) = dÆ

l

(f) ^

�

� � Æ

l

(f) ^

�

d�

= �

1

2

[Æ

l

(f); Æ

l

(f)℄

^

^

�

� � Æ

l

(f) ^

�

d� = �

1

2

Æ

l

(f) ^

�

[Æ

l

(f); �℄� Æ

l

(f) ^

�

d�:

This relation immediately gives the desired formula for Ad

bg

+

(f).
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Remark III.10. Sine the entral extension

b

G

+

of G

+

has a smooth global setion, its period

group �

D

= (�

M;�

) � 


2

(M;Y ) is trivial ([Ne02b, Prop. VIII.5℄). This is another argument

for the inlusion �

M;�

� H

1

dR

(M;Y ) (Corollary I.9). It is remarkable that we obtain a entral

extension of the whole group G

+

and not only of its identity omponent G .

Remark III.11. (a) Sine M is ompat, its fundamental group �

1

(M) is �nitely generated.

Let k := b

1

(M) := rkH

1

(M) and hoose �

1

; : : : ; �

k

2 C

1

(S

1

;M) as in Remark I.3. Then the

integration map

�: z

M

(Y )! Y

k

; [�℄ 7!

�

Z

�

j

�

�

j=1;:::;k

maps the subspae H

1

dR

(M;Y ) bijetively onto Y

k

, so that we obtain a topologial splitting

z

M

(Y )

�

=

H

1

dR

(M;Y )� ker�:

Then the di�erential d: z

M

(Y ) ! 


2

(M;Y ); [�℄ 7! d� maps ker� ontinuously onto the losed

subspae B

2

dR

(M;Y ) of exat 2-forms in 


2

(M;Y ).

Suppose that �

M;�

is disrete. Then the group Z from Theorem III.6 has a produt

deomposition

Z

�

=

�

H

1

dR

(M;Y )=�

M;�

�

� ker�

�

=

�

Y=�

S

1

;�

�

k

� ker�

(f. Theorem I.6).

(b) The di�erential d: z

M

(Y )! 


2

(M;Y ) indues a Lie algebra homomorphism



g

:

b

g = g�

!

M;�

z

M

(Y )!

b

g

+

= g�

D




2

(M;Y ); (�; [�℄) 7! (�; 2d�):

The onstrution of a orresponding Lie group homomorphism

b

G !

b

G

+

, where

b

G is a

entral extension of G by Z = z

M

(Y )=�

M;�

(Theorem III.6) is not so obvious beause the

values of the oyle  in Theorem III.9 are in general not exat forms (Remark III.13 below),

hene do not lie in the range of the map d . Nevertheless, the range of the Lie algebra oyle D

is ontained in the spae of exat forms. Suppose that Y is a Fr�ehet spae. Then the quotient

map p: 


2

(M;Y ) ! E := 


2

(M;Y )=B

2

dR

(M;Y ) is an open morphism of Fr�ehet spaes. We

obtain a smooth group oyle 

�

:= pÆ  2 Z

2

s

(G

+

; E) whose orresponding Lie algebra oyle

is trivial. Aording to [Ne02b, Th. VIII.8℄, there exists a homomorphism �:�

1

(G) ! E suh

that G �



�

E

�

=

(

e

G � E)=�(�), where �(�) � �

1

(G) � E is the graph of � . Is this extension

trivial? Sine G is smoothly paraompat, there exists a smooth funtion f :

e

G ! E with

f(gd) = f(g) + �(d), g 2

e

G , d 2 �

1

(G) ([Ne02b, Prop. III.8℄).

() If Y is Fr�ehet, the same holds for the spae 


2

(M;Y ). Therefore

b

G

+

is a entral extension

of the regular Fr�ehet{Lie group G

+

by the regular Fr�ehet{Lie group 


2

(M;Y ), hene regular

([KM97, Th. 38.6℄). Therefore the Lie algebra homomorphism 

g

:

b

g ! g�

D

B

2

dR

(M;Y ) inte-

grates to a unique Lie group homomorphism e

G

:G

℄

!

e

G�

e




2

(M;Y ), where G

℄

is the entral Lie

group extension of the universal overing group

e

G of G by Z = z

M

(Y )=�

M;�

(Theorem III.6).

Then the surjetivity of the period homomorphism �

2

(G)

�

=

�

2

(

e

G) ! �

1

(Z) implies that G

℄

is simply onneted (Remark III.8). Sine the natural map �

1

(

b

G) ! �

1

(G) is an isomorphism

(Remark III.8), it follows that e

G

(�

1

(

b

G)) � �

1

(G), and hene that e

G

fators through a Lie

group homomorphism 

G

:

b

G!

b

G

+

with L(

G

) = 

g

.

Remark III.12. (The abelian ase) We assume that K is a onneted abelian Lie group with

universal overing group

e

K = (k;+). Then K

�

=

k=�, where �

�

=

�

1

(K) is a disrete subgroup

of k . Let q

K

: k! K denote the quotient map.

Let M be a ompat onneted manifold. Then the group G

+

= C

1

(M;K) is abelian

and its identity omponent G = C

1

(M;K)

e

is the image of the exponential map

exp

G

: g = C

1

(M; k)! G; � 7! q

K

Æ �:
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Therefore

e

G = g = C

1

(M; k) is ontratible, and �

k

(G) = 1 for k � 2. We further have

�

1

(G)

�

=

ker exp

G

�

=

C

1

(M;�)

�

=

� and �

0

(G)

�

=

Hom(�

1

(M);�)

�

=

�

k

for k = b

1

(M). Here we use [Ne02b, Prop. III.9℄ to see that eah homomorphism �

1

(M)! � is

obtained from a smooth map M ! K and that a smooth map f :M ! K lifts to a smooth map

M ! k if and only if �

1

(f):�

1

(M) ! �

1

(K)

�

=

� is trivial. Let �: k � k ! Y be a ontinuous

bilinear form and !(�; �) := [�(�; d�)℄ the orresponding Lie algebra oyle.

(a) Sine eah element of �

1

(G) � g orresponds to a onstant funtion, we have

!(�

1

(G); g) = f0g; so that



G

(exp

G

�; exp

G

�) :=

1

2

!(�; �) =

1

2

[�(�; d�)℄

de�nes a global z

M

(Y )-valued group oyle on G , and we obtain a entral extension

b

G = G�



G

z

M

(Y )

whih an be lifted to a entral Lie group extension

e

G�

e

G

z

M

(Y ) with e

G

:= 

G

Æ (exp

G

� exp

G

);

i.e., e

G

(�; �) = [�(�; d�)℄ .

On the other hand we have the entral extension G

+

�






2

(M;Y ) given by the oyle

(g; h) = Æ

l

(g) ^

�

Æ

r

(h) = Æ

l

(g) ^

�

Æ

l

(h)

(Theorem III.9). Note that Æ

r

= Æ

l

follows from K being abelian. Sine eah left invariant 1-

form on an abelian Lie group is losed, the Maurer{Cartan form �

K

is losed, hene Æ

l

(f) = f

�

�

K

is losed for eah smooth funtion f :M ! K , so that all 2-forms (g; h) are losed.

As we will see below, they are not always exat. For elements g = exp

G

� and h = exp

G

�

in the identity omponent G of G

+

we have

(g; h) = d� ^

�

d� = d

�

�(�; d�)

�

= 2d

�



G

(g; h));

so that

G�



G

z

M

(Y )! G

+

�






2

(M;Y ); (g; [�℄) 7! (g; 2d�)

is a Lie group homomorphism.

(b) Let q

M

:

f

M !M denote the universal overing map and g 2 G

+

. Then the map eg := g Æ q

M

an be written as exp

K

Æ

e

� , where

e

� 2 C

1

(

f

M; k). We likewise write

e

h = exp

K

Æe� for a seond

element h 2 G

+

. Then

q

�

M

(g; h) = q

�

M

(Æ

l

(g) ^

�

Æ

l

(h)) = d

e

� ^

�

de� = d(

e

� ^

�

de�)

is an exat 2-form on

f

M . This means that [(g; h)℄ 2 H

2

(M;Y )

�

=

Hom(H

2

(M); Y ) vanishes

on the image of �

2

(M)

�

=

H

2

(

f

M) in H

2

(M).

() For M = T

2

, K = T , Y = R , �(x; y) = xy , g(t

1

; t

2

) = t

1

and h(t

1

; t

2

) = t

2

we obtain on

f

M

�

=

R

2

:

q

�

M

(g; h) = dx ^ dy

and therefore

R

M

(g; h) 6= 0. In partiular (g; h) is not exat.

(d) Sine K is abelian, the group �

0

(G

+

) ats trivially on

e

G and hene on �

1

(G). The ations

of G

+

on

b

g and

b

g

+

are given by

Ad

bg

(g):(�; z) = (�; z � [�(Æ

l

(g); �)℄)
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and

Ad

bg

+

(g):(�; z) = (�; z � d�(Æ

l

(g); �)) = (�; z � Æ

l

(g) ^

�

d�):

For eah onstant map � 2 � �

e

G

�

=

g we therefore obtain Ad

bg

+

(g):(�; z) = (�; z), but for eah

g 2 G the 1-form �(Æ

l

(g); �) = Æ

l

(g) ^

�

� is losed, and for � 2 C

1

(S

1

;M) we have

Z

�

�(Æ

l

(g); �) = �

�

Z

�

Æ

l

(g); �

�

with

R

�

Æ

l

(g) 2 �. Therefore the ation of �

0

(G

+

) on �

1

(G)� z

M

(Y )

�

=

�� z

M

(Y ) is given by

g:(; z) = (; z � [�(Æ

l

(g); )℄);

where [�(Æ

l

(g); )℄ 2 H

1

dR

(M;Y )

�

=

H

1

(M;Y )

�

=

Hom(�

1

(M); Y ) orresponds to the homomor-

phism �(�

1

(g); ):�

1

(M)! Y . This ation is non-trivial if and only if �(�;�) 6= f0g:

Remark III.13. Let K be a ompat Lie group and M := K �K . We onsider the smooth

maps

f :M ! K; (k

1

; k

2

) 7! k

1

and g:M ! K; (k

1

; k

2

) 7! k

�1

2

:

Let p

1

; p

2

:M ! K denote the projetions onto the fators. Then Æ

l

(f) = p

�

1

�

l

K

and Æ

r

(g) =

�p

�

2

�

l

K

holds for the left Maurer{Cartan form �

l

K

on K . Hene (f; g) = �p

�

1

�

l

K

^

�

p

�

2

�

l

K

is a

left invariant 2-form on the ompat Lie group M = K �K . Let � := (f; g)

e

. Then

�((x; y); (x

0

; y

0

)) = ��(x; y

0

) + �(x

0

; y):

Sine K is a ompat onneted Lie group, the form (f; g) is losed/exat if and only if � is

losed/exat as a Lie algebra ohain. For every ontinuous linear map �: k� k! Y we have

�([(x; y); (x

0

; y

0

)℄) = �([x; x

0

℄; 0) + �(0; [y; y

0

℄):

Therefore (f; g) is exat if and only if � = 0.

The losedness of (f; g) is equivalent to the vanishing of

�([x

0

; x

00

℄; y)� �([y

0

; y

00

℄; x) + �([x

00

; x℄; y

0

)� �([y

00

; y℄; x

0

) + �([x; x

0

℄; y

00

)� �([y; y

0

℄; x

00

):

Using this identity for y

0

= y

00

= 0, we see that (f; g) is losed if and only if �(k; [k; k℄) = f0g .

IV. Universal entral extensions

In this setion we turn to the question whether the entral extension from Corollary III.7 is

universal. This question will be answered aÆrmatively if k is �nite-dimensional and semisimple.

First we reall some onepts and a result from [Ne01℄ on weakly universal entral extensions

of Lie groups and Lie algebras.

De�nition IV.1. (f. [Ne01℄) Let g be a topologial Lie algebra over K 2 fR; C g and

a be a topologial vetor spae onsidered as a trivial g-module. We all a entral extension

q:

b

g = g �

!

z ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal for a if the

orresponding map Æ

a

: Lin(z; a)! H

2



(g; a);  7! [ Æ !℄ is bijetive.

We all q:

b

g! g universal for a if for every linearly split entral extension q

1

:

b

g

1

! g of g

by a there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . Note that this universal

property immediately implies that two entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

whih

are both universal for both spaes a

1

and a

2

are isomorphi. A entral extension is said to be

(weakly) universal if it is (weakly) universal for all loally onvex spaes a .
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De�nition IV.2. We all a entral extension

b

G = G�

f

Z of the onneted Lie group G by

the abelian Lie group Z weakly universal for the abelian Lie group A if the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A);  7! [ Æ f ℄

is bijetive. It is alled universal for the abelian group A if for every entral extension

q

1

:G�

'

A! G; ' 2 Z

2



(G;A);

there exists a unique Lie group homomorphism  :G�

f

Z ! G�

'

A with q

1

Æ = q . A entral

extensional is said to be (weakly) universal if it is (weakly) universal for all Lie groups A with

A

e

�

=

a=�

1

(A) and a s..l..

De�nition IV.3. If g is a Fr�ehet{Lie algebra, then we write H

1

(g) := g=g

0

, where g

0

:= [g; g℄

is the losed ommutator algebra. The spae H

1

(g) is a Fr�ehet spae beause g

0

is losed. If

G is a onneted Lie group with Lie algebra g and

e

G its universal overing group, then we

have a natural homomorphism d

G

:

e

G ! H

1

(g). Its kernel is denoted by (

e

G;

e

G). If G is �nite-

dimensional, then (

e

G;

e

G) is the ommutator group of

e

G .

The following theorem is [Ne01, Th. IV.13℄.

Theorem IV.4. (Reognition Theorem) Assume that q:

b

G ! G is a entral Z -extension of

Fr�ehet{Lie groups over K 2 fR; C g for whih

(1) the orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply onneted, and

(3) �

1

(G) � (

e

G;

e

G) .

If

b

g is weakly universal for a Fr�ehet spae a , then

b

G is weakly universal for eah abelian

Fr�ehet{Lie group A with Lie algebra a and A

e

�

=

a=�

1

(A) .

Lemma IV.5. If q:Y ! Z is a surjetive morphism of Fr�ehet spaes and X a Fr�ehet spae,

then the natural map id

X


q:X

b


Y ! X

b


Z is a quotient map.

Proof. Let f 2 X

b


Z . Then f an be written as f =

P

n2N

�

n

x

n


 z

n

with � 2 l

1

(N;R) ,

x

n

! 0 and z

n

! 0 ([Tr67, Th. 45.1℄). Let p

X

, p

Y

, resp., p

Z

, be a ontinuous seminorm on

X , Y , resp., Z . We further assume that

p

Z

(q(y)) = inf p

Y

(y + ker q);

beause the seminorms on the right hand side de�ne the topology on Z .

Using the quotient metri on Z , we �nd y

n

2 Y with q(y

n

) = z

n

and y

n

! 0. Then

e

f :=

X

n

�

n

x

n


 y

n

onverges absolutely in X

b


Y beause

X

n

j�

n

j(p

X


 p

Y

)(x

n


 y

n

) �

X

n

j�

n

jp

X

(x

n

)p

Y

(y

n

)

and the right hand side onverges sine p

X

(x

n

) ! 0 and p

Y

(y

n

) ! 0. Moreover, we have

q(

e

f) = f . This implies that id

X


q is surjetive, hene a quotient map by the Open Mapping

Theorem.
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Proposition IV.6. Let M be a ompat manifold, K a onneted Fr�ehet{Lie group and

G := C

1

(M;K)

e

. Then

�

1

(G) � (

e

G;

e

G) () �

1

(K) � (

e

K;

e

K):

Moreover, we have

g

0

= C

1

(M; k

0

) and H

1

(g)

�

=

C

1

(M;H

1

(k)):

Proof. Let x

M

2M be any point and onsider the evaluation map Æ:G! K; f 7! f(x

M

). We

write Æ

g

: g ! k for the orresponding Lie algebra homomorphism. With G

�

:= C

1

�

(M;K)

e

:=

ker Æ we obtain G

�

=

G

�

oK , i.e., the Lie group homomorphism Æ is split by the natural inlusion

�:K ! G by viewing elements of K as onstant maps on M . We thus obtain a ommutative

diagram, where the vertial homomorphisms split:

e

G

d

G

��! H

1

(g)

?

?

y

e

Æ

?

?

y

H

1

(Æ

g

)

e

K

d

K

��! H

1

(k):

The splitting of the vertial arrows implies that we may view the lower horizontal homomorphism

as the restrition of d

G

to

e

K . As �

1

(K) an be viewed as a subgroup of �

1

(G), this shows that

�

1

(G) � (

e

G;

e

G) = ker d

G

implies �

1

(K) � ker d

K

= (

e

K;

e

K):

Suppose, onversely, that �

1

(K) � ker d

K

, i.e., that d

K

fators through a Lie group

homomorphism d

0

K

:K ! H

1

(k) whih in turn indues a Lie group homomorphism

�:C

1

(M;K)! C

1

(M;H

1

(k)); �(f)(m) := d

0

K

(f(m)):

On the other hand, the natural Lie algebra homomorphism �:C

1

(M; k) ! C

1

(M;H

1

(k)) is a

quotient map (Remark II.5, Lemma IV.5) with kernel C

1

(M; k

0

).

We laim that g

0

= C

1

(M; k

0

). It is obvious that the ommutator algebra g

0

is ontained

in C

1

(M; k

0

). We further have for eah f 2 C

1

(M; k) the relation

f 


X

j

[x

j

; y

j

℄ =

X

j

[1
 x

j

; f 
 y

j

℄ 2 g

0

;

whih leads to C

1

(M;R)

b


k

0

�

=

C

1

(M; k

0

) � g

0

beause k

0

is a omplete loally onvex spae

(Remark II.5), and hene to C

1

(M; k

0

) = g

0

. Putting the information together, we onlude

that

H

1

(g) = g=g

0

= C

1

(M; k)=C

1

(M; k

0

)

�

=

C

1

(M;H

1

(k)):

Therefore the Lie group homomorphism G � C

1

(M;K) ! C

1

(M;H

1

(k)) integrates the Lie

algebra homomorphism g! H

1

(g), whih implies that �

1

(G) � ker d

G

= (

e

G;

e

G).

Theorem IV.7. Suppose that K is �nite-dimensional semisimple and let G := C

1

(M;K)

e

.

Let z := z

M

(V (k)) and ! 2 Z

2



(g; z) the oyle given by !(�; �) = [�(�; d�)℄ . Then the orre-

sponding entral Lie algebra extension

b

g := g�

!

z is universal and there exists a orresponding

entral Lie group extension Z ,!

b

G !! G with Z

�

=

�

1

(G) � (z=�

!

) whih is universal for all

abelian Fr�ehet{Lie groups A with A

e

�

=

a=�

1

(A) .

Proof. First we note that

b

g ! g is a overing (Lemma II.7), so that for eah loally onvex

spae a the natural map

Æ: Lin(z; a)! H

2



(g; a);  7! [ Æ !℄

is injetive ([Ne01, Rem. I.6℄).

It has been shown in [Ma02, Thm. 16℄ that Æ is also surjetive, so that

b

g is weakly universal

for all loally onvex spaes a . Sine g is perfet by Proposition IV.6, the Lie algebra

b

g is a

universal entral extension of g .
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Furthermore, the period map per

!

:�

2

(G) ! z has disrete image �

!

(Theorem II.9). In

view of Theorem III.6, [Ne02b, Prop. VII.13℄ now implies the existene of a entral Lie group

extension Z ,!

b

G !! G with Z

�

=

(z=�

!

) � �

1

(G) orresponding to the Lie algebra extension

z ,!

b

g! g and suh that the onneting homomorphism �

1

(G)! �

0

(Z) is an isomorphism.

To prove the universality of

b

G , we use the Reognition Theorem IV.4. For that we have

to verify that

(1)

b

g is weakly universal,

(2) k is Fr�ehet,

(3) �

1

(

b

G) = 1 ,

(4) �

1

(G) � (

e

G;

e

G):

Sine k is �nite-dimensional semisimple, (2) is trivially satis�ed, and (1) has been veri�ed

above. Further (4) follows from �

1

(K) �

e

K = (

e

K;

e

K) (Proposition IV.6). It therefore remains

to verify (3). For that we onsider a part of the long exat homotopy sequene of the Z -prinipal

bundle q:

b

G! G (f. Remark III.8):

(3:11) �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z):

Aording to [Ne02b, Prop. V.11℄, we have Æ = � per

!

, so that �

1

(Z) = �

!

(as subsets of

z) implies that Æ is surjetive. Moreover, the natural homomorphism �

1

(G) ! �

0

(Z) is an

isomorphism by the onstrution of

b

G , so that the exatness of (3.11) implies that

b

G is simply

onneted.

Remark IV.8. (a) If K is �nite-dimensional and redutive, then

e

K

�

=

z(k)�(

e

K;

e

K). Therefore

�

1

(K) is ontained in (

e

K;

e

K) if and only if K

�

=

z(k) � (K;K). In this ase we have

C

1

(M;K)

�

=

C

1

(M; z(k)) � C

1

(M; (K;K))

and hene we have for G = C

1

(M;K)

e

the diret produt deomposition

G = G

D

�G

Z

with G

D

:= C

1

(M; (K;K))

e

and G

Z

:= C

1

(M; z(k)):

In this ase the Lie algebra g = C

1

(M; k) has the diret deomposition g = g

0

� z(g) with

g

0

= C

1

(M; k

0

) (Proposition IV.6) and z(g) = C

1

(M; z(k)). It is easy to see that every Lie

algebra oyle ! 2 Z

2



(g; Y ) vanishes on g

0

� z(g) � g� g beause g

0

is perfet. From that one

further derives that a weakly universal entral extension of g an be obtained with

z := z

M

(V (k

0

))� �

2

(z(g));

where for a loally onvex spae E the spae �

2

(E) is de�ned as the quotient of E


�

E modulo

the losure of the subspae spanned by the elements e
e , e 2 E . To desribe the orresponding

oyle, we write � 2 g as � = (�

0

; �

z

) with �

0

2 g

0

and �

z

2 z(g). Then a weakly universal

oyle is given by

!(�; �) = ([�

k

0

(�

0

; d�

0

)℄; �

z

^ �

z

):

Let

b

G

D

be the universal entral extension of G

D

from Theorem IV.7 and de�ne

b

G :=

b

G

D

�

b

G

Z

; where

b

G

Z

is the 2-step nilpotent Lie algebra

z(g)�

!

Z

�

2

(z(g)) with !

Z

(�; �) = � ^ �:

Using Theorem IV.4, we see that

b

G

Z

is a weakly universal entral extension of G

Z

�

=

g

Z

.

Theorems IV.4 and IV.7 now imply that

b

G is a weakly universal entral extension of G .

(b) As we have seen in Proposition IV.6, the Lie algebra g = C

1

(M; k) has the ommutator

algebra g

0

= C

1

(M; k

0

). On the other hand g = g

�

o k , where k orresponds to the onstant

funtions in g , and g

�

:= f� 2 g: �(x

M

) = 0g , where x

M

2 M is any point. For two elements

�; � 2 g

�

we then have d[�; �℄(x

M

) = 0, showing that [g

�

; g

�

℄ is in general not dense in C

1

�

(M; k

0

).

This defet omes from the observation that in the algebra C

1

�

(M;R) the ideal C

1

�

(M;R)

2

is

ontained in ff 2 C

1

�

(M;R): df(x

M

) = 0g , and it is easy to see that we atually have equality.
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V. Lifting automorphisms to entral extensions

In this setion we disuss the problem to assoiate to a pair (

G

; 

Z

) of an automorphism 

G

of G and 

Z

of Z an automorphism b of a entral extension

b

G of G by Z restriting to 

Z

on Z and induing 

G

on G . This setion is independent of the others. Its results apply to

general in�nite-dimensional Lie groups. The key results of this setion are Proposition V.4 whih

gives for a simply onneted G a neessary and suÆient ondition for the existene of b , and

Theorem V.9, saying that for smooth ations of a Lie group R on G and Z whih lead to a

smooth ation on the Lie algebra

b

g , there exists a smooth ation on the group

b

G . In Setion VI

we will apply these results to the ations of the groups Di�(M) and C

1

(M;K) on C

1

(M;K)

e

.

For a Lie group G we write Aut(G) for the group of Lie group automorphisms of G

and Hom(G

1

; G

2

) for the set of Lie group morphisms from G

1

to G

2

. For a homomorphism

':G

1

! G

2

of Lie groups we write L('): g

1

! g

2

for the orresponding homomorphism of Lie

algebras. In partiular we then obtain a group homomorphism L: Aut(G) ! Aut(g). As above,

let Z ,!

b

G

q

��!G be a entral extension of onneted Lie groups, where Z

e

�

=

z=�

1

(Z).

In the following we write  = (

G

; 

Z

) for elements  2 Aut(G) � Aut(Z). The group

Aut(G)�Aut(Z) ats on the group Z

2

s

(G;Z) by

:f := 

Z

Æ f Æ (

�1

G

; 

�1

G

):

It likewise ats on Z

2



(g; z) by

f:! := L(

Z

) Æ f Æ (L(

G

)

�1

� L(

G

)

�1

):

The following purely algebrai lemma will be quite useful in the following.

Lemma V.1. (a) For i = 1; 2 let

b

G

i

= G

i

�

f

i

Z

i

be a entral Lie group extension of G

i

by the

abelian Lie group Z

i

de�ned by f

i

2 Z

2

s

(G

i

; Z

i

): For  = (

G

; 

Z

) 2 Hom(G

1

; G

2

)�Hom(Z

1

; Z

2

)

and a funtion h:G

1

! Z

2

whih is smooth in an identity neighborhood, the formula

b(g; z) := (

G

(g); 

Z

(z)h(g)); g 2 G

1

; z 2 Z

1

de�nes a Lie group morphism

b

G

1

!

b

G

2

if and only if the relation

(5:1) 

Z

(f

1

(g; g

0

))h(gg

0

) = f

2

�



G

(g); 

G

(g

0

)

�

h(g)h(g

0

)

holds. Every Lie group homomorphism b:

b

G

1

!

b

G

2

mapping Z

1

into Z

2

is of this form.

For G = G

1

= G

2

, Z = Z

1

= Z

2

and (

G

; 

Z

) 2 Aut(G) � Aut(Z) , formula (5.1) is

equivalent to

(5:2) (:f)(g; g

0

)f(g; g

0

)

�1

= h

0

(gg

0

)h

0

(g)

�1

h

0

(g

0

)

�1

; g; g

0

2 G

for the funtion h

0

:= inv(h) Æ 

�1

G

, where inv(h)(x) := h(x)

�1

.

(b) For i = 1; 2 let

b

g

i

= g

i

�

!

i

z

i

be a entral extension of the topologial Lie algebra g

i

by the

abelian Lie algebra z

i

de�ned by !

i

2 Z

2



(g

i

; z

i

) . If  = (

g

; 

z

) 2 Lin(g

1

; g

2

)� Lin(z

1

; z

2

) , then

for � 2 Lin(g

1

; z

2

) the formula

b(x; z) := (

g

(x); 

z

(z) + �(x)); x 2 g

1

; z 2 z

1

;

de�nes a ontinuous Lie algebra morphism

b

g

1

!

b

g

2

if and only if the relation

(5:3) !

2

(

g

(x); 

g

(x

0

)

�

= 

z

(!

1

(x; x

0

)) + �([x; x

0

℄)
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holds. Every morphism

b

g

1

!

b

g

2

mapping z

1

,! z

2

is of this form.

For g = g

1

= g

2

, z = z

1

= z

2

, (

g

; 

z

) 2 Aut(g) � Aut(z) , and �

0

:= � Æ 

�1

g

, formula

(5.3) is equivalent to :! � ! = d�

0

:

() Let R be a Lie group and :R ! Aut(g) � Aut(z); r 7! (r

g

; r

z

) a homomorphism suh that

the orresponding ations on g and z are smooth. Let �:R � g ! z be a smooth map whih is

linear in the seond argument. Then

b(r):(x; z) := (r

g

(x); r

z

(z) + �(r; x)); r 2 R; x 2 g; z 2 z;

de�nes a smooth ation of R by automorphisms of

b

g if and only if for eah r 2 R the funtion

�

r

:= �(r; �) satis�es (5.3) for (r) , and � satis�es the oyle ondition

(5:4) �(rer; x) = r

z

:�(er; x) + �(r; er

g

:x); r; er 2 R; x 2 g:

Proof. (a) If (5.1) is satis�ed for some funtion h whih is smooth in an identity neighborhood,

then b is a group homomorphism whih is smooth in an identity neighborhood, hene a morphism

of Lie groups.

Assume, onversely, that b:

b

G

1

!

b

G

2

is a Lie group homomorphism mapping Z

1

into Z

2

.

Then b has the form

b(g; z) =

�



G

(g); 

Z

(z)h(g)

�

;

where h:G

1

! Z

2

is a funtion whih is smooth in an identity neighborhood, and an easy

alulation leads to (5.1).

(b) The proof is a straightforward veri�ation.

() Aording to (b), the requirement b(r) 2 Aut(

b

g) is equivalent to (5.3) for (r) and �

r

.

Suppose that these onditions are satis�ed. It is lear that b de�nes a smooth funtion R�

b

g!

b

g ,

so that we only have to see whih ondition on � means that b de�nes a representation of R

on

b

g . That this is equivalent to (5.4) follows from

r:(er:(x; z)) = (r

g

er

g

:x; r

z

er

z

:z + r

z

:�(er; x) + �(r; er

g

:x))

and

(rer):(x; z) = (r

g

er

g

:x; r

z

er

z

:z + �(rer; x)):

Lemma V.2. If  2 Aut(

b

G) preserves the subgroup Z , then 

Z

:=  j

Z

is a smooth

endomorphism of Z .

Proof. This follows from the fat that Z is a submanifold of

b

G in the sense that eah point

in Z has a neighborhood whih is di�eomorphi to a produt of an open subset of Z and a

transversal manifold.

If Z ,!

b

G!! G is a entral extension as disussed above, then we de�ne

Aut(

b

G;Z) := f 2 Aut(

b

G): (Z) = Zg:

In view of Lemma V.2, we then have a natural homomorphism

�: Aut(

b

G;Z)! Aut(G)�Aut(Z); �()(q(g); z) =

�

q((g)); (z)):

To eah f 2 Hom(G;Z) we assign the element of Aut(

b

G;Z) given by

b

f(g) := gf(q(g)). Then

ker� = f

b

f : f 2 Hom(G;Z)g

�

=

Hom(G;Z):

([Ne01a, Lemma II.9℄).
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Lemma V.3. If  = (

G

; 

Z

) 2 Aut(G) � Aut(Z) is ontained in the range of � , then there

exists � 2 Lin(g; z) satisfying (5.3). If, onversely, G is simply onneted and � 2 Lin(g; z)

satis�es (5.3), then there exists a unique automorphism b 2 Aut(

b

G;Z) with �(b) =  and

L(b)(x; z) =

�

L(

G

):x;L(

Z

)(z) + �(x)

�

; x 2 g; z 2 z:

Proof. If  = �(b), then L(b) 2 Aut(

b

g) preserves z and indues an automorphism of z

(Lemma V.2). Hene it is of the form

L(b):(x; z) = (L(

G

):x;L(

Z

):z + �(x));

where �: g ! z is a ontinuous linear map (Lemma V.1(b)). This implies the �rst part of the

assertion.

Suppose, onversely, that (5.3) is satis�ed by � 2 Lin(g; z) for 

g

:= L(

G

) and 

z

:=

L(

Z

). Sine G is simply onneted, the exat sequene for entral Lie group extensions ([Ne02b,

Th. VII.12℄) implies that the natural map H

2

s

(G;Z)! H

2



(g; z) is injetive.

Now it easily follows that it is equivariant with respet to the ation of Aut(G) �Aut(Z)

on both sides. Our assumption implies that [:!℄ = [!℄ in H

2



(g; z), so that the equivariane of

D together with the injetivity of the orresponding map on the ohomology groups implies that

[:f ℄ = [f ℄ in H

2

s

(G;Z). Now the existene of the automorphism b follows from Lemma V.1(a).

The uniquenss of the automorphism b follows from the fat that any automorphism of the

onneted Lie group

b

G is uniquely determined by the orresponding automorphism of the Lie

algebra ([Mi83, Lemma 7.1℄).

Proposition V.4. If G is simply onneted and ! 2 Z

2



(g; z) is a Lie algebra oyle

orresponding to the Lie algebra extension z ,!

b

g !! g , and

b

G a orresponding Lie group

extension of G by Z , then  = (

G

; 

Z

) 2 Aut(G) � Aut(Z) lifts to an automorphism b 2

Aut(

b

G;Z) if and only if [:!℄ = [!℄ , i.e., if the orresponding automorphism of g lifts to an

automorphism of

b

g .

Proof. This is a diret onsequene of Lemma V.3.

Lemma V.5. Suppose that �:R � G ! G is a smooth ation of the Lie group R by auto-

morphisms of the onneted Lie group G . Then the ation of R on G lifts to a smooth ation

e�:R�

e

G!

e

G by automorphisms of the simply onneted overing group

e

G of G .

Proof. [Ne01a, Lemma II.17℄

If G is not simply onneted, then it might have non-trivial entral Z -extensions orre-

sponding to trivial Lie algebra extension. These are disussed in the following lemma.

Lemma V.6. If

b

G is of the form

b

G = (

e

G � Z)=�('); where q

G

:

e

G ! G is the universal

overing morphism of G , �

1

(G)

�

=

ker q

G

is identi�ed with a subgroup of

e

G , ':�

1

(G)! Z is a

homomorphism, and

�(') := f(d; '(d)): d 2 �

1

(G)g

the graph of ' , then  = (

G

; 

Z

) 2 Aut(G) � Aut(Z) is in the range of � if and only if

(

�1

Z

Æ ' Æ �

1

(

G

)) � '

�1

extends to a smooth homomorphism

e

G! Z .

Proof. Let e

G

be the natural lift of 

G

to

e

G (Lemma V.5). The anonial map

e

G�Z !

b

G

is a overing, and

e

G � z is the universal overing group of

b

G . Therefore, if  = �(b), the

automorphism b also lifts to some automorphism e of

e

G � Z preserving the subgroup �(').

Then e is of the form

e(g; z) = (e

G

(g); 

Z

(z)f(g));

with f 2 Hom(

e

G;Z). The ondition that e preserves �(') means that

f j

�

1

(G)

= (

Z

Æ ')

�1

� ' Æ �

1

(

G

);

where �

1

(

G

) = e

G

j

�

1

(G)

. If, onversely, (

Z

Æ')

�1

�' Æ�

1

(

G

) extends to a morphism

e

G! Z ,

then the above formula yields an automorphism e on

e

G�Z preserving �(') whih then fators

to the quotient group

b

G .
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If �

1

(G) � (

e

G;

e

G), then  2 im(�) is equivalent to 

Z

Æ ' = ' Æ �

1

(

G

) beause for every

homomorphism of

e

G to an abelian Lie group the restrition to �

1

(G) is trivial.

Lifting automorphi group ations to entral extensions

In the preeding subsetion we have lifted automorphisms of G to automorphisms of

b

G .

Now we assume that we have a smooth automorphi ation of the Lie group R on G , whih

leads to a semidiret produt Lie group G o R . We are looking for suÆient onditions to lift

the smooth ation of R on G to a smooth ation on

b

G whih apply in partiular to the ation of

Di�(M) and C

1

(M;K) on C

1

(M;K)

e

, where K is a Lie group and M a ompat manifold.

The following lemma will be used to redue the problem to the ase where the group

b

G is

simply onneted.

Lemma V.7. Let Z

℄

:= z= im(per

!

) . Then there exists a entral Lie group extension

Z

℄

,! G

℄

q

℄

��!

e

G

orresponding to the oyle ! , and G

℄

is the universal overing group of

b

G .

Proof. [Ne01a, Lemma II.16℄

The following remark will be relevant for the argument in the proof of the Lifting Theo-

rem IV.9 below.

Remark V.8. (Loal desription of entral Lie group extensions) Let q:

b

G ! G be a entral

Lie group extension with kernel Z .

Let 
 be the left invariant 2-form on G with 


e

= ! , where

b

g

�

=

g �

!

z . Further let

p

z

:

b

g ! z denote the projetion onto z de�ned by this identi�ation. We write � for the left

invariant z-valued 1-form on

b

G with �

e

= p

z

. Then the 2-form q

�


 is exat with q

�


 = �d�

beause �dp

z

((x; z); (x

0

; z

0

)) = p

z

([(x; z); (x

0

; z

0

)℄) = !(x; x

0

):

In

b

G we have an open e-neighborhood of the form U � Z �

b

G , where the multipliation

is given for x; x

0

; xx

0

2 U by

(x; z)(x

0

; z

0

) = (xx

0

; zz

0

f

Z

(x; x

0

))

for a smooth funtion f

Z

:U � U ! Z . This means that the left multipliation map �

(x;e)

is

given by (x

0

; z

0

) 7! (xx

0

; z

0

f

Z

x

(x

0

)) for a smooth funtion f

Z

x

:U ! Z . Let �:U !

b

G denote the

smooth setion given by �(g) = (g; e). Then � := ��

�

� is a z-valued 1-form on G with

d� = �d�

�

� = ��

�

d� = �

�

q

�


 = 
 and �

e

= �p

z

Æ d�(e) = 0:

In view of the left invariane of � , we have on U � Z the relation

� = q

�

� + p

�

Z

�

Z

;

where �

Z

= Æ

l

(id

Z

) is the Maurer{Cartan form on Z with �

Z

(e) = id

z

and p

Z

:U � Z ! Z is

the projetion onto Z . Therefore

� = �

�

(x;e)

� = q

�

�

�

x

� + p

�

Z

�

Z

+ q

�

Æ

l

(f

Z

x

);

whih leads to

� = �

�

x

� � Æ

l

(f

Z

x

)

and hene to

�

�

x

� � � = Æ

l

(f

Z

x

); f

Z

x

(e) = e:
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We assume that W is an open identity neighborhood in G di�eomorphi to an open onvex

subset of g with WW � U . Then the Poinar�e Lemma ([Ne02b, Lemma III.3℄) implies for eah

x 2W the existene of a smooth funtion

f

z

x

:W ! z with f

z

x

(e) = 0 and df

z

x

= (�

�

x

� � �) j

W

:

Moreover, this funtion depends smoothly on x , so that the funtion

f

z

:W �W ! z; f

z

(x; y) := f

z

x

(y)

is smooth. From the uniqueness we now onlude that on W we have for eah x 2 W the

relation f

Z

x

= q

Z

Æ f

z

x

: This onstrution of the funtions f

Z

x

will beome ruial, when we lift

automorphi group ations on G to group ations on

b

G in Theorem V.9.

Theorem V.9. (Lifting Theorem) Let �

G

:R � G ! G , resp., �

Z

:R � Z ! Z be smooth

automorphi ations of the Lie group R on the onneted Lie groups G , resp., Z . Assume

further that G is simply onneted and that there exists a smooth funtion �:R � g ! z suh

that

�

bg

(r)(x; z) := (r:x; r:z + �(r; x)); r 2 R; x 2 g; z 2 z

is an ation of R on

b

g by automorphisms. Then there exists a unique smooth ation

�

b

G

:R�

b

G!

b

G

by automorphisms suh that the orresponding derived ation is �

bg

.

Proof. In view of Lemma V.3, eah automorphism �

bg

(r) of

b

g integrates to a unique auto-

morphism of

b

G . It is lear that the uniqueness implies that we obtain an ation �

b

G

of R on

b

G

by smooth automorphisms. It remains to show that this ation is smooth.

The ation �

b

G

lifts uniquely to an ation �

G

℄
on the universal overing group G

℄

of

b

G by

Lie group automorphisms whih an also be viewed as a entral extension of the simply onneted

group G by a group Z

℄

�

=

z=�

1

(Z

℄

) (Lemma V.7). If the ation �

G

℄ is smooth, then the indued

ation �

b

G

is also smooth. Hene it suÆes to show that �

G

℄
is smooth. Therefore we may

w.l.o.g. assume that

b

G is simply onneted, i.e.,

b

G = G

℄

.

First we onsider the loal situation in a suitable small neighborhood of the identity in

b

G .

For r 2 R we write r

G

:= �

G

(r; �) and r

Z

:= �

Z

(r; �). In

b

G we have an open e-neighborhood of

the form U � Z �

b

G , where the multipliation is given for x; x

0

; xx

0

2 U by

(x; z)(x

0

; z

0

) = (xx

0

; zz

0

f

Z

(x; x

0

))

for a smooth funtion f

Z

:U � U ! Z . Let W and f := f

z

:W �W ! z with f

Z

= q

Z

Æ f be

as in Remark V.8 determined by

df

x

= (�

�

x

� � �) j

W

for f

x

:= f(x; �):

Now let r 2 R and W

1

� W be an open e-neighborhood di�eomorphi to a onvex set suh

that r:W

1

�W . Let �

r

be the left invariant z-valued 1-form on G with �

r

(e) = �(r; �). Then

(5.3) implies that

r

�

G


� L(r

Z

) Æ
 = �d�

r

beause both sides are left invariant 2-forms whih oinide in e beause

!(L(r

G

):x;L(r

G

):y)� L(r

Z

):!(x; y) = �([x; y℄); x; y 2 g:

On W

1

we therefore have d(r

�

G

� � L(r

Z

) Æ � + �

r

) = 0; so that there exists a unique funtion

h

r

:W

1

! z with h

r

(e) = 0 and dh

r

= r

�

G

� � L(r

Z

) Æ � + �

r

.
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On W

1

� W

1

we onsider the funtion (r

℄

:f)(x; y) := L(r

Z

)

�1

:f(r

G

:x; r

G

:y). Then

(r

℄

:f)

x

= L(r

Z

)

�1

r

�

G

f

r

G

:x

, so that on W

1

we have

d

�

(r

℄

:f)

x

�

= L(r

Z

)

�1

r

�

G

df

r

G

:x

= L(r

Z

)

�1

r

�

G

(�

�

r

G

:x

� � �)

= L(r

Z

)

�1

�

(�

r

G

:x

Æ r

G

)

�

� � r

�

G

�

�

= L(r

Z

)

�1

�

(r

G

Æ �

x

)

�

� � r

�

G

�

�

= L(r

Z

)

�1

�

�

�

x

r

�

G

� � r

�

G

�

�

:

Now the left invariane of �

r

leads to

d((r

℄

:f)

x

� f

x

) = L(r

Z

)

�1

�

�

�

x

r

�

G

� � r

�

G

�

�

� �

�

x

� + �

= L(r

Z

)

�1

�

�

�

x

�

r

�

G

� � L(r

Z

) Æ �

�

� (r

�

G

� � L(r

Z

) Æ �)

�

= L(r

Z

)

�1

�

�

�

x

�

r

�

G

� � L(r

Z

) Æ � + �

r

�

� (r

�

G

� � L(r

Z

) Æ � + �

r

)

�

= L(r

Z

)

�1

(�

�

x

dh

r

� dh

r

) = d

�

L(r

Z

)

�1

(�

�

x

h

r

� h

r

)

�

:

In view of the normalizations f

x

(e) = f(x; e) = 0 = h

r

(e), we have

((r

℄

:f)

x

� f

x

)(e) = L(r

Z

)

�1

:f(r

G

:x; e) = 0

and

L(r

Z

)

�1

(�

�

x

h

r

� h

r

)(e) = L(r

Z

)

�1

h

r

(x):

Therefore

(r

℄

:f)

x

� f

x

= L(r

Z

)

�1

(�

�

x

h

r

� h

r

)� L(r

Z

)

�1

h

r

(x);

whih leads to

(5:5) f(r

G

:x; r

G

:y)� L(r

Z

):f(x; y) = h

r

(xy)� h

r

(y)� h

r

(x)

for x; y suÆiently lose to e .

Let q

Z

: z ! Z be the quotient map, f

Z

:= q

Z

Æ f and h

Z

r

:= q

Z

Æ h

r

. Then we have an

e-neighborhood of the form W

2

� Z in

b

G , where W

2

� W

1

, and the multipliation on W

2

� Z

is given by

(g; z)(g

0

; z

0

) = (gg

0

; zz

0

f

Z

(g; g

0

)):

Pik an open symmetri onneted e-neighborhood W

3

� W

2

with r:W

3

� W

2

suh that (5.5)

is satis�ed for x; y 2 W

3

. Then a similar argument as in Lemma V.1 shows that the map

�

0

(r):W

3

� Z ! W

2

� Z �

b

G; (g; z) 7! (r

G

:g; r

Z

(z)h

Z

r

(g))

is a smooth homomorphism of loal groups. Using Lemma II.3 in [Ne02b℄ and the simple

onnetedness of

b

G , we see that �

0

(r) extends to a smooth homomorphism �

0

(r):

b

G !

b

G .

The derivative of this automorphism in e 2

b

G is given by

d�

0

(r)(e)(x; z) = (r

G

:x; r

Z

:z + dh

Z

r

(e)(x)) = (r

G

:x; r

Z

:z + dh

r

(e)(x))

= (r

G

:x; r

Z

:z + �(r; x) + �(e)(r

G

:x)� r

Z

:�(e)(x))

= (r

G

:x; r

Z

:z + �(r; x)) = �

bg

(r)(x; z):

Sine both automorphisms indue the same Lie algebra automorphism, �

0

(r) = �

b

G

(r) for eah

r 2 R , so that we obtain an expliit desription of �

b

G

near to the identity in

b

G .

It remains to show that this ation is smooth. Sine R ats by smooth automorphism on

b

G , it suÆes to show that the ation is smooth in a neighborhood of (e; e) and that all orbit

maps R!

b

G are smooth in a neighborhood of e . Sine the latter property an be derived from

the �rst one (

b

G is onneted), it remains to see that the ation is smooth in a neighborhood of

(e; e). To this end, we slightly adjust the hoies of W

1

and W

3

above. First we hoose an open

e-neighborhood V in R and W

1

suh that, in addition, V:W

1

�W . Likewise we hoose V

1

� V

and W

3

� W

2

with V

1

:W

3

� W

2

. Then the funtion (r; x) 7! h

r

(x) is de�ned on V �W

1

,

and the onstrution of h

r

with the Poinar�e Lemma implies that this funtion is smooth in

a neighborhood of (e; e) (f. [Ne02b, Lemma III.3℄). This implies that the ation map �

b

G

is

smooth on a neighborhood of (e; e) ontained in V

1

�W

3

, and this ompletes the proof.
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Corollary V.10. Let �

G

:R�G! G be a smooth automorphi ation of the Lie group R on

the onneted Lie group G . Assume that G is simply onneted and that r

�

G

! = L(r

Z

) Æ! holds

for all r 2 R . Then the ation of R on G lifts uniquely to a smooth automorphi ation of R

on

b

G suh that the orresponding ation of R on

b

g

�

=

g�

!

z is given by

r:(x; z) = (L(r

G

):x;L(r

Z

):z); r 2 R; x 2 g; z 2 z:

Proof. We apply Theorem V.9 with � = 0.

Remark V.11. Suppose that Z ,!

b

G !! G is a entral Lie group extension and that the

R -ation on the group G

℄

from Lemma V.7 exists. If this ation preserves the disrete subgroup

�

1

(

b

G), then it fators through an ation on

b

G

�

=

G

℄

=�

1

(

b

G), but this ondition has to be heked

diretly in onrete ases beause there is no general reason for it to be satis�ed. If G is simply

onneted, then the natural mal H

2

s

(G;Z)! H

2



(g; z) is injetive, whih permits us to lift every

 2 Aut(G)� Aut(Z) �xing the ohomology lass [!℄ in H

2



(g; z) to an automorphism of

b

G . If

G is not simply onneted, then we only have an exat sequene

: : :! Hom(�

1

(G); Z)! H

2

s

(G;Z)! H

2



(g; z)! : : :

([Ne02b, Th. VII.12℄) whih shows that in general there are inequivalent entral Z -extensions

b

G

of G with the same Lie algebra, so that there is no reason for a  2 Aut(G)�Aut(Z) to lift to

a partiular one.

Remark V.12. (a) If g is topologially perfet, i.e., the ommutator algebra [g; g℄ is dense

in g , then in (5.5) the ontinuous linear map �

r

:= �(r; �): g ! z is uniquely determined by

r

�

! � ! = �d�

r

. Therefore

�d�

rer

= (rer)

�

! � L(r

Z

)L(er

Z

)!

= er

�

(r

�

! � L(r

Z

)!) + er

�

L(r

Z

)! � L(r

Z

)L(er

Z

)! = �er

�

d�

r

� L(r

Z

)d�

er

implies the relation (5.4). In view of this, (5.4) is only needed if g is not topologially perfet.

(b) If

b

G is a regular Lie group in the sense of [Mi83℄, then every automorphism of

b

g integrates

uniquely to an automorphism of

b

G ([Mi83, Th. 8.1℄). In our ontext it does not make sense

to work with this additional assumption beause we anyway need the more expliit information

obtained in the proof of Theorem V.9 to show that the ation is smooth.

Problem V.1. Let G be Lie group and �

G

:R �G ! G an ation of the Lie group R on G

by Lie automorphisms suh that the orresponding ation �

g

:R � g ! g is smooth. Does this

imply that �

G

is a smooth ation?

VI. Di�eomorphism groups ating on urrent groups

If M is a ompat manifold, then the group Di�(M) of all di�eomorphisms of M has a natural

Lie group struture and the ation of this group on M indues a natural smooth ation on eah

group C

1

(M;K) of smooth maps into some Lie group K . In this setion we apply the Lifting

Theorem of the preeding setion to see how the ation of Di�(M) on G = C

1

(M;K)

e

an be

lifted to a smooth ation of Di�(M) on a entral extension

b

G whenever this entral extension

of G is suh that the onneting homomorphism �

1

(G)! �

0

(Z) is an isomorphism. The latter

means that

b

G is weakly universal for disrete abelian groups. This ondition is in partiular

satis�ed for the universal entral extension of G if K is �nite-dimensional and simple (Theorem

IV.7). We also lift the onjugation ation of C

1

(M;K) on G to

b

G .

The manifold struture on Di�(M) is obtained by the observation that this group is an

open subset of the mapping spae C

1

(M;M) whih is a smooth manifold ([KM97, Th. 43.1℄).

Let E: Di�(M)�M !M be the natural ation of Di�(M) on M given by the evaluation. To

see that E is a smooth map, it suÆes to observe that the orresponding map

E:C

1

(M;M)�M !M; (';m) 7! '(m)

is smooth ([KM97, Th. 42.13℄).
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Lemma VI.1. If M is a ompat manifold and K a Fr�ehet{Lie group, then the natural ation

Di�(M)� C

1

(M;K)! C

1

(M;K); ('; f) 7! f Æ '

�1

is smooth.

Proof. Let U � K be an open identity neighborhood di�eomorphi to an open subset of k .

Then [Ne01b, Th. III.5℄ implies that the ation of Di�(M) on the open subset C

1

(M;U) �

C

1

(M;K) is smooth.

For a smooth funtion f :M ! K the orbit map

Di�(M)! C

1

(M;K); ' 7! f Æ '

�1

is smooth beause the map Di�(M) �M ! K; (';m) 7! f('

�1

(m)) is smooth, whih in turn

follows from the smoothness of the ation of Di�(M) on M .

Now the smoothness of the ation of Di�(M) on C

1

(M;K) follows from the observation

that for eah f 2 C

1

(M;K) the map

Di�(M)� C

1

(M;U)! C

1

(M;K); ('; h) 7! ':(fh) = ':f � ':h

is smooth beause the orbit map of f is smooth and the ation on C

1

(M;U) is smooth.

The general argument behind the proof of Lemma VI.1 is that an automorphi ation of a

Lie group R on the Lie group G is smooth if

(1) there exists an open invariant identity neighborhood on whih the ation is smooth, and

(2) all orbit maps are smooth.

Remark VI.2. (a) Let G := C

1

(M;G)

e

. On the Lie algebra g = C

1

(M; k) of G we onsider

the ontinuous oyle

!: g� g! z

M

(Y ) = 


1

(M;Y )=d


0

(M;Y ); !(�; �) = [�(�; d�)℄;

where � is a ontinuous invariant symmetri bilinear form k � k ! Y and Y is a s..l.. spae.

For ' 2 Di�(M) we have

!('

�1

:�; '

�1

:�) = !('

�

�; '

�

�) = [�('

�

�; d'

�

�)℄

= [�('

�

�; '

�

d�)℄ = ['

�

�(�; d�)℄ = '

�1

:[�(�; d�)℄ = '

�1

:!(�; �):

Here the last expression refers to the natural ation of Di�(M) on z

M

(Y ) whih exists beause

the natural ation on 


1

(M;Y ) preserves the losed subspae d


0

(M;Y ) beause '

�

(df) = d'

�

f

for f 2 


0

(M;Y ). Lemma V.1(b) now implies that

':(�; z) := (� Æ '

�1

; ('

�1

)

�

:z)

de�nes a smooth ation of R on the Lie algebra

b

g = g�

!

z by Lie algebra automorphisms.

(b) The oyle ! is �xed by Di�(M) if and only if this group ats trivial on z

M

(Y ), whih (for

Y 6= 0) is equivalent to the triviality of the ation on z

M

(R) . If this is the ase, then we have in

partiular that for eah vetor �eld X on M and eah 1-form � the 1-form

L

X

:� = i

X

d�+ d(i

X

:�)

is exat, whih implies d� = 0. That all 1-forms are losed means that dimM � 1, so that

M = S

1

is the only non-trivial ompat manifold for whih the Lie algebra of vetor �elds ats

trivially on z

M

(R). For a 1-form � on M and ' 2 Di�(M) we have

Z

S

1

'

�

� = deg(')

Z

S

1

�:

Therefore the identity omponent Di�(S

1

)

e

of orientation preserving di�eomorphisms ats triv-

ially on z

S

1

(R)

�

=

R , and if a di�eomorphism hanges orientation, it ats by multipliation by

�1 on z

S

1

(R) .
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Theorem VI.3. Let K be a onneted Fr�ehet{Lie group, M a ompat manifold, G :=

C

1

(M;K)

e

, ! 2 Z

2



(g; z

M

(Y )) a oyle of produt type with disrete period group. Further let

b

G ! G be a orresponding entral extension of G by a Lie group Z with Lie algebra z

M

(Y )

for whih the onneting homomorphism �

1

(G)! �

0

(Z) is an isomorphism. Then the following

assertions hold:

(1) The automorphi ation of Di�(M) on

b

g = g �

!

z

M

(Y ) by ':(�; z) := (� Æ '

�1

; ('

�1

)

�

:z)

integrates to a smooth ation of Di�(M) on

b

G .

(2) The automorphi ation of C

1

(M;K) on

b

g = g�

!

z

M

(Y ) by

f:(�; z) := (Ad(f):�; z � [�(Æ

l

(f); �)℄)

integrates to a smooth ation on

b

G .

Proof. First we use [Ne01, Lemma 4.6℄ to see that the ondition that the onneting

homomorphism �

1

(G) ! �

0

(Z) is an isomorphism implies that the entral extension q:

b

G ! G

is weakly universal for all disrete abelian groups A . Now [Ne01, Prop. 4.7℄ further implies that

b

G=Z

e

�

=

e

G , showing that

b

G an be viewed as a entral extension of the simply onneted group

e

G by Z

e

.

(1) Using Lemma V.5, we lift the smooth ation of Di�(M) on G to a smooth ation on

e

G . Now

the Lifting Theorem V.9 implies that this ation an be lifted to a smooth ation of Di�(M) on

b

G , integrating the given ation on the Lie algebra

b

g .

(2) follows as in (1) from Proposition III.3 and the Lifting Theorem V.9.

For the ase of loop groups, part (2) of Theorem VI.3 has already been observed in [PS86℄.

Theorem VI.3 is a good starting point for a systemati investigation of the ation of subgroups

of Di�(M) on oadjoint orbits of the entral extension

b

G . Although Di�(M) ats on the group

b

G and its Lie algebra

b

g , the orresponding ation on the topologial dual

b

g

0

mixes the oadjoint

orbits of

b

G . Here the interesting point is that spei� oadjoint orbits of

b

G an be assigned to

geometri strutures on the manifold M and one an only expet the orresponding subgroups

of Di�(M) to at on these orbits. This point of view will be explored in [NV02℄ (see also [PS86℄

for the ase of loop groups whih is somehow trivial, and [EF94℄ for the ase of omplex Riemann

surfaes).

VII. Problems arising for non-onneted groups

In this setion we disuss some of the additional diÆulties arising for non-onneted groups.

One suh diÆulty is that for a non-onneted group the onjugation ation of G on G might

indue a non-trivial ation on the fundamental group �

1

(G). A related problem is that the

surjetive homomorphism G! �

0

(G) does in general not split. Another problem is that we �nd

for onneted groups K ertain natural maps

�

m;n

:�

m

(K)� �

n

(K)! �

n+m

(K)

given by ommutators, and we do not know whether they are always trivial or not. This is of

partiular interest for m = n = 1. If K is �nite-dimensional, then �

2

(K) is trivial, so that �

1;1

is trivial. For in�nite-dimensional groups, the maps �

1;1

are harder to study beause �

1

(K)

need not be generated by Hom(T;K).
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Central extensions of non-onneted groups

Remark VII.1. Let G be the identity omponent of the Lie group G

+

and assume that we

have a entral extension Z ,!

b

G !! G as above. When an we extend this entral extension to

a entral extension Z ,!

b

G

+

!! G

+

of the full group G

+

?

Sine Z �

b

G

+

is entral, the subgroup

b

G �

b

G

+

ats trivially by onjugation on Z , so

that we obtain an ation of

b

G

+

=

b

G

�

=

G

+

=G = �

0

(G

+

) by Lie automorphisms on the group Z .

Let �

Z

denote the orresponding ation of G

+

, resp., �

0

(G

+

), on Z . A neessary ondition

for the existene of a entral extension

b

G

+

of G

+

is that the adjoint ation of G

+

on g an be

extended to an ation of G

+

�

=

b

G

+

=Z on

b

g

�

=

g�

!

z of the form

(g):(x; z) :=

�

Ad(g):x; �

Z

(g):z + �(g; x)

�

;

where �:G

+

� g! z is a oyle, so that :G

+

! Aut(

b

g) de�nes a representation of G

+

on

b

g .

The existene of this ation implies in partiular that

�

Z

(g) Æ ! � ! Æ (Ad(g)�Ad(g)) 2 B

2



(g; z)

for all g 2 G

+

(Lemma V.1). For g 2 G this follows automatially from the existene of the

onjugation ation of G on

b

G .

In the preeding setion we have onstruted entral extensions of the identity omponent

C

1

(M;K)

e

of the group C

1

(M;K) whih in general is not onneted. In this subsetion we

briey disuss the diÆulties involved in extending entral Lie group extensions from the identity

omponent of a Lie group to the whole group.

Remark VII.2. We resume the situation of Theorem VI.3. As we have seen in Proposition

III.3, the ondition under (a) is satis�ed for the group G

+

= C

1

(M;K) and the oyle

!(�; �) = [�(�; d�)℄ for �

Z

(g) = id

z

. We reall that �

0

(Z)

�

=

�

1

(G), so that the divisibility

of Z

e

�

=

z=�

M;�

implies that Z

�

=

Z

e

� �

1

(G). Sine the ation of G

+

on

b

g �xes z pointwise,

the orresponding ation on

b

G �xes Z

e

pointwise. Therefore the ation is given by an ation of

�

0

(G

+

)

�

=

[M;K℄ on �

0

(Z)

�

=

�

1

(G)

�

=

�

1

(G

+

) and a map

�:�

0

(G

+

)� �

1

(G)! Z

e

de�ned by �:(z; �) = (z�(�; �); �:�):

The map � satis�es the oyle identity

�(�

1

�

2

; �) = �(�

1

; �

2

:�)�(�

2

; �);

so that � is a bihomomorphism if the ation of �

0

(G

+

) on �

1

(G

+

) = �

1

(G) is trivial. Sine the

splitting of Z

e

in Z is not natural, we annot expet to �nd a omplement whih is invariant

under the ation of �

0

(G

+

). Nevertheless, if q:

b

G ! G is the quotient map of the entral

extension and we onsider K as a subgroup of G , then q

�1

(K)

�

=

e

K � Z

1

, where Z

1

is an

open subgroup of Z . To see this, we �rst onstrut the entral extension

b

G

�

of the subgroup

G

�

:= C

1

�

(M;K)

e

of G

�

=

G

�

oK , and then observe that

b

G

�

=

b

G

�

o

e

K beause this group is

simply onneted with the Lie algebra

b

g

�

=

g

�

o k . As the oyle ! on g is invariant under

Ad(K), there is no obstrution to lifting the ation of K on G

�

to

b

G

�

(Theorem V.9). In this

piture �

1

(K), realized as a subgroup of

e

K , arises naturally as a subgroup of Z , but the ation

of G

+

does not leave the subgroup

e

K of

b

G invariant.

In Proposition A.3 below we will see that the ation of �

0

(C

�

(M;K)) on �

1

(C

�

(M;K)) is

trivial for M = S

d

, d � 1, and more generally if M is homotopi to a spae of the form S

1

^N .

In this ase the ation of �

0

(G

+

) on Z is ompletely enoded in the map � . Passing from

G

+

to the open subgroup C

1

(M;

e

K), where

e

K is the universal overing group of K , redues

the number of onneted omponents, so that in this ontext it is more probable that G

+

ats

trivially on Z .



36 Central extensions of urrent groups April 8, 2002

Remark VII.3. In this remark we disuss the problem of �nding a formula for � whih is as

expliit as possible. For that we have to understand how an element  2 G

+

= C

1

(M;K) ats

on the group

b

G (Theorem VI.3), where the ation on the Lie algebra

b

g is given by

Ad

bg

():(�; z) =

�

Ad():�; z � [�(Æ

l

(); �)℄

�

:

Let 
 2 


2

(G; z

M

(Y )) be the left invariant 2-form with 


e

= !

S

1

;�

. Then the alulations

in the proof of Proposition III.3 show that Ad()

�

! � ! = d�() with �() = [�(Æ

l

(); �)℄ 2

Lin(g; z

M

(Y )). Let �() 2 


1

(G; z

M

(Y )) denote the orresponding left invariant 1-form on G .

Then the onjugation automorphism 



(f) := f

�1

of G satis�es 

�

f


 � 
 = d�(). For a

smooth map � 2 C

1

�

(S

1

; G) we then obtain

Z

�

�() =

Z

S

1

[�( Æ

l

()

| {z }

2


1

(M;k)

; Æ

l

(�)(t)

| {z }

2C

1

(M;k)

)℄ dt 2 z

M

(Y ):

Let S

1

�

=

R=2�Z , and z: [0; 2�℄! Z a smooth urve with

z(0) = 0 and Æ

l

(z)(t) = ��()(�

0

(t)) = ��()(Æ

l

(�)(t)):

Further let b�: [0; 2�℄ !

b

G denote the horizontal lift of the urve 



:� de�ned by b�(0) = e and

Æ

l

(b�)(t) = (Ad():Æ

l

(�)(t); 0), t 2 [0; 2�℄ . Then the pointwise produt b� � z: [0; 2�℄ !

b

G is a

smooth urve with

Æ

l

(b� � z) = Æ

l

(b�) + Æ

l

(z) = Ad

bg

():(Æ

l

(�)(t); 0) =

�

Ad():Æ

l

(�)(t);�[�(Æ

l

(); Æ

l

(�)(t))℄

�

beause z is a urve with entral values. The endpoint b�(2�)z(2�) lies over e�(2�) for the lift e�

of � to

e

G , hene orresponds to :([�℄; 0) = (:[�℄; �(; �)) 2 �

1

(G)� Z .

Let us assume, in addition, that �(S

1

) � K , i.e., that eah map �(t):M ! K is onstant,

so that we an think of e� as a urve in

e

K �

b

G from e to the element [�℄ 2 �

1

(K) ,! �

1

(G). This

urve is mapped by b

f

2 Aut(

b

G) to b� � z ending in b�(2�)z(2�). If, in addition, Ad():Æ

l

(�)(t) =

Æ

l

(�)(t) holds for eah t 2 [0; 2�℄ , then b�(t) = �(t), and therefore

(7:1) �([℄; [�℄) = z(2�) = q

Z

�

�

Z

2�

0

[�

�

Æ

l

(); Æ

l

(�)(t)

�

℄ dt

�

:

Sine eah Æ

l

(�)(t) is a onstant funtion, we identify it with an element of k , and write [Æ

l

()℄

for the lass of Æ

l

() 2 


1

(M; k) in z

M

(k). Then we have for eah t the relation

[�

�

Æ

l

(); Æ

l

(�)(t)

�

℄ = �

�

[Æ

l

()℄; Æ

l

(�)(t)

�

2 z

M

(Y );

via the map

z

M

(k)� k ! z

M

(Y ); ([�℄; x) 7! [�(�; x)℄;

whih is well de�ned beause d�(�; x) = �(d�; x) for � 2 C

1

(M; k). In this sense we also have

(7:2) �([℄; [�℄) = q

Z

�

� �

�

[Æ

l

()℄;

Z

2�

0

Æ

l

(�)(t) dt

��

:
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Example VII.4. (a) In [PS86℄ one �nds an expliit desription of the ation of �

0

(G

+

)

on Z for the loop group ase M = S

1

and K ompat and simple. We now onsider the

situation, where M = S

1

for a general onneted groups K satisfying �

2

(K) = 1 . This

holds in partiular for �nite-dimensional Lie groups K . In this ase �

0

(G

+

)

�

=

�

1

(K) and

�

1

(G

+

)

�

=

�

2

(K) � �

1

(K)

�

=

�

1

(K). As the onjugation ation of �

1

(K) on itself is trivial, the

ation of �

1

(K) on Z is ompletely determined by the bihomomorphism

�:�

1

(K)� �

1

(K)! Z

e

:

We think of S

1

as R=2�Z , so that we think of funtions on S

1

as 2� -periodi funtions on R .

Further z

S

1

(Y )

�

=

Y via the integration isomorphism [�℄ 7!

1

2�

R

S

1

� , and Z

e

�

=

Y=�

S

1

;�

:

Let  2 C

1

�

(S

1

;K) be a smooth loop. Then we identify [Æ

l

()℄ 2 z

M

(k) with

1

2�

R

S

1

Æ

l

()

and obtain with (7.2) for � 2 C

1

�

(S

1

;K):

�([℄; [�℄) = q

Z

�

� �

�

1

2�

Z

S

1

Æ

l

();

Z

S

1

Æ

l

(�)

��

:

If K is �nite-dimensional and T � K a maximal torus, then the natural map Hom(T; T )!

�

1

(K) is surjetive, so that [℄ and [� ℄ have representatives for whih Æ

l

() = x and Æ

l

(�) = y

are onstant funtions. As [x; y℄ = 0, the assumptions leading to (7.2) are satis�ed, and we

obtain the simple formula

�([℄; [�℄) = q

Z

�

� 2��(x; y)

�

:

We onlude that � is trivial if and only if 2�x; 2�y 2 ker exp

T

for the exponential funtion

exp

T

: t! T of the maximal torus T � K implies �(x; y) 2

1

2�

�

S

1

;�

.

(b) To understand this ondition, let us assume that K is ompat and simple. Then V (k) is

one-dimensional, so that we may w.l.o.g. assume that Y = R . Further �

2

(G)

�

=

�

3

(K)

�

=

Z , and

we may therefore assume that �

S

1

;�

= 2�Z , where

!(�; �) =

1

2�

Z

2�

0

�(�(�); �

0

(�)) d�:

Let t � k be the Lie algebra of a maximal torus of K . For the oroots �� of the long roots

� 2 �

k

� it

�

we then have

��(��; ��) = �(i��; i��) = 2

for the omplex bilinear extension of � to k

C

(see Appendix IIa to Setion II in [Ne01a℄). We

laim that for x 2 t

C

we then have

�(

�

�; x) � Z�(x):

In fat, let � 2 � and r

�

(x) := x��(x)�� the orresponding reetion in t

C

. Sine the restrition

of � to t

C

is invariant under all these reetions, we have

�(��; x) = ��(r

�

:��; x) = ��(��; r

�

:x) = ��(��; x) + �(x)�(��; ��);

so that

�(��; x) =

1

2

�(x)�(��; ��) 2 Z�(x)

follows from �(��; ��) 2 2Z for all roots (inluding the short ones) (see [Ne01a, lo.it.℄). From

�(��) � Z for eah oroot, we obtain in partiular

�(

�

�;

�

�) � Z:

If Z(K) is trivial, then for x 2 t the ondition exp 2�x = e is equivalent to e

2� adx

= id

k

,

whih means that �(x) � iZ . This is satis�ed in partiular for x 2 i

�

�. We have

�(x; i

�

�) � iZ�(x)� Z
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whenever �(x) � iZ . Nevertheless, it may happen that there are two elements x; y 2 t with

2�x; 2�y 2 ker exp

T

but �(x; y) 62 Z .

() Finally we onsider an example where � is non-trivial. For k = su(2) and K = SO(3;R)

�

=

SU(2; C )=f�eg we have ker exp

T

= Z�i��, where � = f��g . For x = y =

i

2

�� we therefore get

�(x; y) = �

1

4

�(��; ��) =

1

2

62 Z:

We onlude that for K = SO(3;R) the group �

0

(G

+

)

�

=

�

1

(K)

�

=

Z

2

= f�1g ats non-trivially

on Z

�

=

R=2�Z� Z

2

by s:(x; t) = ((s; t)x; t), where :Z

2

� Z

2

! Z

2

is the unique non-trivial

biharater satisfying (�1;�1) = �1.

Remark VII.5. (a) Let x

o

2M be a base point, and assume that M is onneted of positive

dimension and K is a Banah{Lie group. We onsider the group G

�

:= C

1

�

(M;K)

e

. If

' 2 Hom(T; G

�

), then the map

�:M ! Hom(T;K); x 7! (t 7! '(t)(x))

is a ontinuous map with �(x

o

) = e (the onstant homomorphism). Sine K has no small

subgroups, the onstant homomorphism e is isolated in the set Hom(T;K) � C(T;K). Therefore

the ontinuity of � implies that it is onstant, and thus Hom(T; G

�

) = feg . On the other hand

�

1

(G

�

)

�

=

[M ^ S

1

;K℄ may be non-trivial. A typial example is K = SU(2; C ) and M = S

2

,

where �

1

(G

�

)

�

=

�

3

(K)

�

=

Z . Hene G

�

is an example of an in�nite-dimensional Lie group for

whih �

1

(G

�

) is not generated by the homotopy lasses of homomorphisms T! G

�

.

(b) Aording to [ASS71℄, the unit groups G := A

�

of von Neumann algebras on separable

Hilbert spaes all have the property that Hom(T; A

�

) generates �

1

(A

�

).

Problems VII. (1) Find a good haraterization of those groups G for whih a \universal

overing group" exists even if G is not onneted.

(2) Generalize (7.1) to a general formula for � without any additional assumption.

The following two examples show that in general the universal overing group q:

e

G ! G

annot be extended to a entral/abelian extension of the full group G

+

. If the homomorphism

G

+

!! �

0

(G

+

) splits, then we an simply form

e

G o �

0

(G

+

) by lifting the natural onjugation

ation of �

0

(G

+

) on G to an ation on

e

G .

Example VII.6. We desribe an example of a non-onneted Lie group for whih G

e

does not

split. Let

G :=

n

0

�

1 p z

0 1 q

0 0 1

1

A

: p; q 2 Z; z 2 R

o

:

Then G

e

�

=

R and �

0

(G)

�

=

Z

2

. The group G is a entral extension of Z

2

by R . An easy

alulation shows that the ommutator group (G;G) of G is

(G;G) =

n

0

�

1 0 z

0 1 0

0 0 1

1

A

: z 2 Z

o

:

As the ommutator group is non-trivial, G is not a semidiret produt of G

e

and �

0

(G).

Example VII.7. In the group G of Example VII.6, we onsider the normal subgroup

N :=

n

0

�

1 p z

0 1 q

0 0 1

1

A

: p; q; z 2 2Z

o

:
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Then G=N is a entral extension of �

0

(G=N)

�

=

Z

2

2

by T

�

=

R=Z . The ommutator group of

G=N is given by (G;G)=((G;G) \N)

�

=

Z=2Z

�

=

Z

2

. Therefore

T = (G=N)

e

,! G=N !! Z

2

2

�

=

�

0

(G=N)

is a non-trivial entral extension.

Suppose that we have an extension

e

T

�

=

R ,!

b

G!! Z

2

2

;

where

b

G is a overing group of G . Then

e

T is entral in

b

G beause Z

2

2

�

=

�

0

(G=N) ats trivially

on the Lie algebra of G=N , hene on (G=N)

e

. Therefore

b

G is a entral extension of Z

2

2

by R .

Sine the ommutator map (x; y) 7! xyx

�1

y

�1

fators through a bihomomorphism Z

2

2

! R .

Sine R has no non-trivial �nite subgroups, the ommutator group of

b

G is trivial. Therefore

b

G

is abelian, ontraditing the assumption that

b

G is a overing of the non-abelian group G .

We have thus shown that the group G has no universal overing group.

Lemma VII.8. Let G := C

�

(M;K) , where K is a Banah{Lie group and M a onneted

topologial spae. Then the onstant map e is the only element of G of �nite order.

Proof. Assume that f

k

= e holds for some ontinuous base point preserving map f :M ! K .

Further let U � K be an identity neighborhood ontaining no small subgroups and V � U an

open identity neighborhood with V

k

� U . Then the only element of order k in V is e beause

otherwise U would ontain a non-trivial subgroup of K . Therefore f

�1

(V ) is an open subset of

M whih oinides with f

�1

(feg), hene is also losed. As f preserves base points, this set is

non-empty, and the onnetedness of M implies that f is onstant e .

Example VII.9. Let M = S

1

, K be a ompat onneted semisimple Lie group, and G :=

C

�

(M;K). Then �

0

(G)

�

=

�

1

(K) is a �nite group and Lemma VII.8 implies that the exat

sequene G

e

,! G!! �

0

(G) does not split.

Appendix: Some homotopy theoreti bakground

A version of Hilton's Lemma

This setion grew out of an attempt to obtain a more oneptual proof of Lemma I.10.

Lemma A.1. Let G be a set with two group strutures m

1

(a; b) = ab and m

2

(a; b) = a � b

with identity elements e

1

and e

2

. We assume that m

2

is a group homomorphism (G;m

1

)

2

!

(G;m

1

) , i.e., that

(ab) � (d) = (a � )(b � d); a; b; ; d 2 G:

Then e

1

= e

2

, m

1

= m

2

, and the multipliations are abelian.

Proof. First we obtain

e

1

� e

1

= (e

1

e

1

) � (e

1

e

1

) = (e

1

� e

1

)(e

1

� e

1

);

showing that e

1

� e

1

is an idempotent for m

1

, and hene that e

1

= e

1

� e

1

. Now e

1

is an

idempotent for m

2

, so that we also get e

2

= e

1

. Therefore e := e

1

= e

2

is a unit for both group

strutures. We now obtain for a; b; ; d 2 G :

b �  = (eb) � (e) = (e � )(b � e) = b and a � d = (ae) � (ed) = (a � e)(e � d) = ad:

We onlude that both group strutures oinide and turn G into an abelian group.
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The above argument works with somewhat weaker assumptions. It also shows that if we

have two monoid strutures with the same identity on a set M , then both oinide and are

abelian.

If G is a topologial group and X an H -ogroup, suh as a sphere S

n

, then we have on

the set [X;G℄ of homotopy lasses of ontinuous maps X ! G two natural group strutures.

The �rst one is given by pointwise multipliation:

[f ℄[g℄ := [f � g℄;

and the seond one is obtained by the omultipliation :X ! X _X by

[f ℄ � [g℄ := [f � g℄ := [(f _ g) Æ ℄:

Aording to [Br93, Lemma VII.3.4℄, both group strutures satisfy the assumptions of Lemma A.1,

hene oinide. A similar argument applies to the set [X;G℄

�

of homotopy lasses of base point

preserving maps, but if G is arwise onneted, we trivially have [X;G℄ = [X;G℄

�

.

Remark A.2. If X itself is a topologial group, for example if X = S

1

= T , then we onsider

the element [id

X

℄ in the abelian group [X;X ℄ . Its powers form a yli subgroup [id

X

℄

Z

of

[X;X ℄ .

Let

[X;X ℄� [X;G℄! [X;G℄; ([f ℄; [g℄) 7! [g Æ f ℄

denote the natural omposition map. We laim that in the group [X;G℄ we have

[f ℄[id

X

℄

n

= [f

n

℄; n 2 Z:

In fat, for a �xed [f ℄ 2 [X;G℄ the map

[X;X ℄! [X;G℄; [h℄ 7! [f Æ h℄

is a group homomorphism beause

[h

1

℄[h

2

℄ = [h

1

� h

2

℄ 7! [f Æ (h

1

_ h

2

) Æ ℄ = [f Æ h

1

℄ � [f Æ h

2

℄:

Therefore

[f ℄ Æ [id

X

℄

n

= [f Æ id

X

℄

n

= [f ℄

n

= [f

n

℄; n 2 Z;

and in partiular [id

X

℄

n

�

=

[id

n

X

℄ . For X = S

1

= T this implies that for eah n 2 Z and

f 2 C

1

(S

1

; G) the maps

t 7! f(t

n

) and t 7! f(t)

n

are homotopi.

Whitehead produts and some homotopy theory

Let G be a topologial group. Then G ats by inner automorphism 

g

(x) := gxg

�1

on

itself. For eah k 2 N

0

the automorphism 

g

indues an automorphism �

k

(

g

) of the homotopy

group �

k

(G) whih is trivial if g 2 G

e

, the ar-omponent of the identity of G . We thus obtain

an ation of �

0

(G) on the groups �

k

(G), whih for k = 0 is the onjugation ation of �

0

(G) on

itself.

There are irumstane under whih these ations are trivial.
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Proposition A.3. If G = C

�

(S

1

;K) holds for a topologial group K , then �

0

(G) ats trivially

on all homotopy groups �

k

(G) , k 2 N

0

.

Proof. If G = C

�

(S

1

;K) for some topologial group K , then we have to onsider the ation

of �

0

(G)

�

=

�

1

(K) on the groups �

k

(G)

�

=

�

k+1

(K). To see that this ation is trivial, we

view the pointed spaes S

k

as I

k

=�I

k

, where I = [0; 1℄. Then we view elements of G as

ontinuous funtion f : I ! K , and an element of �

k

(G) is represented by a ontinuous funtion

h: I

k+1

! K . Then the ation of [f ℄ 2 �

0

(G) on [h℄ 2 �

k

(G) is given by

(f:h)(x

1

; : : : ; x

k

; x

k+1

) = f(x

1

)h(x

1

; : : : ; x

k

; x

k+1

)f(x

1

)

�1

:

The map f is homotopi to f

1

with support ontained in [0;

1

2

℄ � I , and h

1

is homotopi to

a maps whose support is ontained in [

1

2

; 1℄� I

k

. Therefore [f:h℄ = [f

1

:h

1

℄ = [h

1

℄ implies that

�

0

(G) ats trivially on �

k

(G).

Corollary A.4. For G = C

�

(S

d

;K) , d > 0 and K a topologial group, the ation of �

0

(G)

on all homotopy groups �

k

(G) is trivial.

Proof. In view of d � 1, we have

C

�

(S

d

;K)

�

=

C

�

(S

1

^ S

d�1

;K)

�

=

C

�

(S

1

; C

�

(S

d�1

;K)):

Therefore Proposition A.3 applies.

Now let G = C(S

d

;K) with d > 0 and assume that K is onneted. Then the evaluation

map ev:G ! K; f 7! f(x

o

) in the base point x

o

2 S

d

is split by the map K ,! G mapping

k 2 K to the orresponding onstant map. Let G

�

:= C

�

(S

d

;K) := ker ev. We then obtain an

isomorphism G

�

=

G

�

oK , and therefore

�

0

(G)

�

=

�

0

(G

�

)

�

=

�

d

(K);

and for k > 0:

�

k

(G)

�

=

�

k

(G

�

)� �

k

(K)

�

=

�

k+d

(K)� �

k

(K):

From Corollary A.4 we derive that the ation of �

0

(G) on �

k

(G

�

) is trivial. Sine the projetion

�

k

(G) ! �

k

(K) orresponds to the evaluation in x

o

, and all the elements of G

�

are trivial in

x

o

, we see that the ation of �

0

(G) on �

k

(G) an be written as

[f ℄:([v℄; [w℄) = ([v℄ + �

d;k

([f ℄; [w℄); [w℄);

where the map

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K)

is a bihomomorphism. This map is given on the level of funtions by �

d;k

([f ℄; [v℄) = [f � v℄ with

(f � v)(x; y) = f(x)v(y)f(x)

�1

v(y)

�1

;

where we observe that this de�nes a map I

k+d

= I

k

� I

d

! K vanishing on the boundary of

I

k+d

. A partiular interesting ase is d = k = 1, where we have a bihomomorphism

�

1;1

:�

1

(K)� �

1

(K)! �

2

(K):

Proposition A.5. If K = C

�

(S

1

; H) holds for a topologial group H , then the maps

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K) are trivial.

Proof. Let f : I

d

! K and v: I

k

! K be ontinuous maps representing the elements

[f ℄ 2 �

d

(K) and [v℄ 2 �

k

(K). In view of C

�

(S

d

;K) = C

�

(S

d

; C

�

(S

1

; H))

�

=

C

�

(S

d+1

; H), we may

think of f as a funtion

e

f : I � I

d

! H , and likewise interprete v as a funtion ev: I � I

k

! H .

As these funtions vanish on �I � I

d

, resp., �I � I

k

, they an be represented by funtions f

supported by [0;

1

2

℄� I

d

, resp., v supported by [

1

2

; 1℄� I

k

. Then the funtion

I � I

d

� I

k

! H; (t; x; y) 7! f(t; x)v(t; y)f(t; x)

�1

v(t; y)

�1

is onstant e , whih implies that �

d;k

([f ℄; [v℄) 2 �

d+k

(K) is trivial.
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Remark A.6. For eah pointed topologial spae X one has the Whitehead produts

�

k

(X)� �

m

(X)! �

k+m�1

(X); k;m 2 N:

These maps are de�ned as follows. We use the natural map

g:S

k+m�1

�

=

�I

k+m

= �I

k

� I

m

[ I

k

� �I

m

! S

k

_ S

m

to de�ne for two maps ' 2 C

�

(S

k

; X) and  2 C

�

(S

m

; X) the map

' �  := (' _  ) Æ g:S

k+m�1

! X;

and by passing to the homotopy lasses a map

�

k

(X)� �

m

(X)! �

k+m�1

(X); ['℄ � [ ℄ 7! [' �  ℄:

With a similar argument as in the proof of Proposition A.5, one an see that if X is a

topologial group, then all Whitehead produts are trivial ([Br93, Probl. VII.7.5℄). For k = m = 1

this implies in partiular that �

1

(X) is abelian beause in this ase

['℄ � [ ℄ = ['℄[ ℄['℄

�1

[ ℄

�1

:

The Whitehead produts are somehow lose, but di�erent from the maps �

d;k

de�ned above. If

X = H is a topologial group and K := C

�

(S

1

; H), then the Whitehead produts are maps

�

k

(K)� �

m

(K)! �

k+m

(K); k;m 2 N

0

:

We do not know whether the Whitehead produts orrespond in this setting to the maps �

d;k

from above, but in this ontext we also have the diret argument in Proposition A.5 showing

that eah �

d;k

is trivial.

Remark A.7. (Some information on [M;K℄

�

) Let

e

K denote the simply onneted overing

group of K . Then a base point preserving smooth map f :M ! K lifts to

e

K if and only if the

orresponding homomorphism �

1

(f):�

1

(M) ! �

1

(K) is trivial. We therefore obtain an exat

sequene

C

�

(M;

e

K) ,! C

�

(M;K)! Hom(�

1

(M); �

1

(K))

whih immediately leads to an exat sequene

[M;

e

K℄

�

�

=

�

0

(C

�

(M;

e

K)) ,! [M;K℄

�

�

=

�

0

(C

�

(M;K))! Hom(�

1

(M); �

1

(K)):

Here we use that the image of C

�

(M;

e

K) is open beause maps with image ontained in a

suÆiently small identity neighborhood an be lifted to the universal overing group of K .

Remark A.8. One may also try to get some information on the �

d;k

's for the groups G

d

:=

C(T

d

;K) for d � 2, but this beomes quite involved for the following reasons. In this ase

G

d

�

=

C(T; G

d�1

)

�

=

C

�

(T; G

d�1

)oG

d�1

(f. Remark I.11(b)). If we ask for the ation of �

0

(G

d

) on �

1

(G

d

), then we an use the same

argument as after Corollary A.4 to see that this ation is trivial if and only if the ommutator

map

�

1;1

:�

1

(G

d�1

)� �

1

(G

d�1

)! �

2

(G

d�1

)

is trivial. Even for d = 2, this does not follow from Proposition A.5 beause C(T;K) is larger

than the group C

�

(T;K).

Problem A.1. Let K be a onneted topologial group. Is the mapping

�

d;k

:�

d

(K)� �

k

(K)! �

k+d

(K)

de�ned above trivial for d; k � 1? The ase k = d = 1 is of partiular interest.



43 urrent.tex April 8, 2002

Referenes

[ASS71℄ Araki, H., M.-S. Bae Smith, and L. Smith, On the homotopial signi�ane of

the type of von Neumann algebra fators, Commun. math. Phys. 22 (1971),

71{88.

[BGK96℄ Berman, S., Y. Gao, Y. Krylyuk, Quantum tori and the struture of ellipti

quasi-simple Lie algebras, J. Funt. Anal. 135 (1996), 339{389.

[BB99℄ Berman, S., and Y. Billig, Irreduible representations for toroidal Lie algebras,

J. Algebra 221 (1999), 188{231.

[Bos90℄ Bost, J.-B., Prinipe d'Oka, K -theorie et syst�emes dynamiques non-ommuta-

tifs, Invent. Math. 101 (1990), 261{333.

[Bo58℄ Bott, R., The spae of loops on a Lie group, Mihigan Math. J. 5 (1958), 35{61.

[Br93℄ Bredon, G. E., \Topology and Geometry," Graduate Texts in Mathematis 139,

Springer-Verlag, Berlin, 1993.

[BJ73℄ Br�oker, Th., and K. J�anih, \Einf�uhrung in die Di�erentialtopologie," Springer

Verlag, Berlin, 1973.

[CF01℄ Cox. B., and V. Futorny, Borel subalgebras and ategories of highest weight

modules for toroidal Lie algebras, J. Algebra 236 (2001), 1{28.

[EK64℄ van Est, W. T., and Th. J. Korthagen, Non enlargible Lie algebras, Pro. Kon.

Ned. Aad. v. Wet. A 67 (1964), 15{31.

[EF94℄ Etingof, P. I., and I. B. Frenkel, Central extensions of urrent groups in two

dimensions, Commun. Math. Phys. 165 (1994), 429{444.

[Fe88℄ Feigin, B. L., On the ohomology of the Lie algebra of vetor �elds and the

urrent algebra, Sel. Math. So. 7:1 (1988), 49{62.

[Gl01a℄ Gl�okner, H., In�nite-dimensional Lie groups without ompleteness ondition,

Preprint, Louisiana State University, Marh 2001.

[Gl01b℄ |, Lie group strutures on quotient groups and universal omplexi�ations for

in�nite-dimensional Lie groups, J. Funt. Anal., to appear.

[Gl01℄ |, Algebras whose groups of units are Lie groups, Studia Math., to appear.

[Gr55℄ Grothendiek, A., \Produits tensoriels topologiques et espaes nul�eaires,"

Mem. of the Amer. Math. So. 16 (1955), Prov., Rhode Island, 1955.

[Ha92℄ Haddi, A., Homologie des alg�ebres de Lie �etendues �a une alg�ebre ommutative,

Comm. in Alg. 20:4 (1992), 1145{1166.

[Hi76℄ Hirsh, M. W., \Di�erential Topology," Graduate Texts in Mathematis 33,

Springer-Verlag, 1976.

[Hu61℄ Huber, P. J., Homotopial Cohomology and C�eh Cohomology, Math. Annalen

144 (1961), 73{76.

[KM97℄ Kriegl, A., and P. Mihor, \The Convenient Setting of Global Analysis," Math.

Surveys and Monographs 53, Amer. Math. So., 1997.

[Lo98℄ Loday, J.-L., \Cyli Homology," Grundlehren der math. Wissenshaften 301,

Springer-Verlag, Berlin, 1998.

[LMNS96℄ Losev, A., G. Moore, N. Nekrasov, and S. Shatashvili, Four-dimensional avatars

of two-dimensional RCFT, in \Strings 95" (Los Angeles, CA, 1995), World Si.

Publ., NJ, 1996, 336{362.

[LMNS98℄ |, Central extensions of gauge groups revisited, Sel. math., New series 4 (1998),

117{123.

[Ma02℄ Maier, P., Central extensions of topologial urrent algebras , in Pro. of the

\Workshop on Lie Groups and Lie Algebras" in Bedlewo (Sept. 2000), Banah

Center Publiations, to appear.



44 Central extensions of urrent groups April 8, 2002

[Mi87℄ Mikelsson, J., Ka-Moody groups, topology of the Dira determinant bundle,

and fermionization, Commun. Math. Phys. 110 (1987), 173{183.

[Mi89℄ |, \Current Algebras and Groups," Plenum Press, ew York, 1989.

[Mi95℄ Mimura, M., Homotopy theory of Lie groups, in \Handbook of Algebrai Topol-

ogy," I. M. James ed., North Holland, 1995.

[Ne01a℄ Neeb, K.-H., Borel-Weil Theory for Loop Groups, in \In�nite Dimensional

K�ahler Manifolds," Eds. A. Hukleberry, T. Wurzbaher, DMV-Seminar 31,

Birkh�auser Verlag, 2001.

[Ne01b℄ |, Representations of in�nite dimensional groups, in \In�nite Dimensional

K�ahler Manifolds," Eds. A. Hukleberry, T. Wurzbaher, DMV-Seminar 31,

Birkh�auser Verlag, 2001.

[Ne01℄ |, Universal entral extensions of Lie groups, Ata Appl. Math., to appear.

[Ne02a℄ |, Steinberg{Lie groups, in preparation.

[Ne02b℄ |, Central extensions of in�nite-dimensional Lie groups, Annales de l'Inst.

Fourier, to appear.

[Ne02℄ |, Current groups over non-ompat manifolds, in preparation.

[NV02℄ Neeb, K.-H., and C. Vizman, A geometri approah to oadjoint orbits of entral

extensions of urrent groups, in preparation.

[Pi00℄ Pianzola, A., Line bundles and onjugay theorems for toroidal Lie algebras, C.

R. Math. Aad. Si. So. R. Can. 22 (2000), 125{128.

[PS86℄ Pressley, A., and G. Segal, \Loop Groups," Oxford University Press, Oxford,

1986.

[Se76℄ Seligman, G. B., \Rational Methods in Lie Algebras," Leture Notes in Pure

and Applied Math. 17, Marel Dekker, New York, 1976.

[Shi92℄ Shi, Zhiyang, Toroidal groups, Comm. in Alg. 20:11 (1992), 3411{3458.

[Ta98℄ Takebayashi, T., Chevalley groups assoiated to ellipti Lie algebras, J. of Al-

gebra 210 (1998), 498{513.

[Tan99℄ Tan, Sh., Prinipal onstrution of the toroidal Lie algebra of type A

1

, Math.

Z. 230 (1999), 621{657.

[Tr67℄ Treves, F., \Topologial Vetor Spaes, Distributions, and Kernels," Aademi

Press, New York, 1967.

[Wu01℄ Wurzbaher, T., Fermioni seond quantization and the geometry of the re-

strited Grassmannian, in \In�nite Dimensional K�ahler Manifolds," Eds. A.

Hukleberry, T. Wurzbaher, DMV-Seminar 31, Birkh�auser Verlag, 2001.

Peter Maier

Karl-Hermann Neeb

Tehnishe Universit�at Darmstadt

Shlossgartenstrasse 7

D-64289 Darmstadt

Deutshland

maier�mathematik.tu-darmstadt.de

neeb�mathematik.tu-darmstadt.de


