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Central extensions of current groups

Peter Maier, Karl-Hermann Neeb

Abstract. In this paper we study central extensions of the identity component G of the Lie group
C*(M,K) of smooth maps from a compact manifold M into a Lie group K which might be infinite-
dimensional. We restrict our attention to Lie algebra cocycles of the form w(¢,n7)=[r(€,dn)], where
Kk:Ext—Y is a symmetric invariant bilinear map on the Lie algebra ¢ of K and the values of w lie in
QY(M,Y)/dC>(M,Y). For such cocycles we show that a corresponding central Lie group extension
exists if and only if this is the case for M=S!. If K is finite-dimensional semisimple, this implies the
existence of a universal central Lie group extension G of G. The groups Diff(M) and C*°(M,K) act
naturally on G by automorphisms. We also show that these smooth actions can be lifted to smooth
actions on the central extension & if it also is a central extension of the universal covering group G
of G.

Introduction

Let M be a compact manifold and K a Lie group (which may be infinite-dimensional). Then
the so called current groups C*°(M, K) with pointwise multiplication are interesting infinite-
dimensional Lie groups arising in many circumstances. The most studied class of such groups
are the loop groups (M = S! and K compact) which is completely covered by Pressley and
Segal’s monograph [PS86]. The goal of this paper is a systematic understanding of a certain
class of central extensions of the identity components of these groups, namely those whose Lie
algebra cocycle is of product type, which is defined in more detail below. Here the main point is
to see which Lie algebra cocycle can be integrated to a central Lie group extension. These
central extensions occur naturally in mathematical physics, where the problem to integrate
projective representations of groups to representations of central extensions is at the heart of
quantum mechanics ([Mi87], [LMNS98], [Wu01]). The central extensions of current groups are
often constructed via representatations by pulling back central extensions of certain operator
groups ([Mi&9]). It is our philosophy that one should try to understand the central extensions of
a Lie group G first, and then try to construct representations of these central extensions. In this
context certain discreteness conditions for Lie algebra cocycles appear naturally because they
ensure that the corresponding central Lie algebra extensions integrate to group representations
([Ne02b]). We think of these discreteness conditions as an abstract version of the phenomenon
of discreteness of quantum numbers in quantum physics. As an outcome of our analysis, we will
see that we do not have to impose any conditions on the group K for our general results.

We now describe our results in some more detail. Let M be a compact manifold, Y a
sequentially complete locally convex space, Q?(M,Y") the space of smooth Y -valued p-forms on
M, and 33(Y) = QY(M,Y)/dC>®(M,Y). Then 35 (Y) carries a natural locally convex topology
and if Y is Fréchet, then the same holds for 3,/ (Y). Now let K be a possibly infinite-dimensional
connected Lie group and € its Lie algebra. We associate to each invariant continuous bilinear form
k:Ext =Y acontinuous Lie algebra cocycle on g := C*° (M, ¥) by w(&,n) := [k(£,dn)] € 3m(Y).
We call such cocycles of product type. The main objective of this paper is to understand central
Lie group extensions of the identity component G := C*°(M, K), of the Lie group C*°(M, K)
corresponding to the Lie algebra cocycle w. According to the results in [Ne02b, Sect. VII], there
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are two obstructions for the existence of a central Lie group extension G of @ corresponding
to w. First the image of the associated period map per,:m2(G) = 3 (Y) may not be discrete,
and second, the adjoint action of g on the Lie algebra g := g ®,, 30 (Y) does not integrate to
a smooth representation of G. The main point in the choice of this general setting is that it
permits us to use arbitrary infinite-dimensional Lie groups K , hence in particular groups of the
type K = C*°(N,H), H a finite-dimensional Lie group. Then C*(M,K) = C*(M x N,H),
so that we may use product decompositions of manifolds to study current groups on manifolds.

In the first section we investigate the discreteness of the period group II,, := im(per,,). Our
main result states that II, is discrete for all compact manifolds M if and only if it is discrete
for the manifold M = S!. This is remarkable because the group m2(G) is not well accessible for
dim M > 2. In Section II we turn to the case where K is finite-dimensional and «: € x ¢ — V()
is the universal invariant symmetric bilinear form on €. In this case we show that the period
group is discrete for M = S!, hence also for arbitrary M by the results of Section I.

In Section III we turn to the central Lie group extensions. Here we show in particular that
for any Lie algebra cocycle w of product type the adjoint representation of g on g integrates to
a smooth Lie group representation of the generally non-connected group C* (M, K). Therefore
the second obstruction to the existence of a central Lie group extension is always trivial, and
we obtain for each x for which the period group II, is discrete a central Lie group extension of
the identity component G = C*° (M, K).. In Section IV we show that if K is finite-dimensional
and semisimple, then we even obtain a universal central Lie group extension of G by the abelian
group (@) x (301 (V (£)) /IL) .

Because of its relevance for the construction of representations of Diff (M) and abelian
extensions of this group, it is interesting to know to which extent the Lie group Diff (M) acts
on the central extensions of GG. It obviously acts on G itself by composition ¢.f := f o o™t for
f €@, p € Diff(M). Suppose that Z — G —» G is a central Lie group extension corresponding
to a cocycle of product type and that G also is a central extension of the universal covering group
G of G, which means that the connecting homomorphism 71 (G) — 7p(Z) is an isomorphism.
Then we show in Section VI that the action of Diff (M) has a unique lift to an action on G. This
result is based on general results in Section V which are concerned with lifting automorphic Lie
group actions R x G — G to actions of R on central extensions G of G by Z. We show that
if G is simply connected, a pair of smooth actions of R on G and Z can be lifted to a smooth
action of R on G whenever there is a smooth action of R on the Lie algebra g of G extending
the actions on g and j3.

The universal central extension G of the universal covering group G of G=C> (M,K).,
K asimple compact Lie group, appears in [PS86] for the first time, although no rigorous argument
for its existence is given there. As we will see in Section III, the group o (@) is not always trivial,
contradicting a corresponding statement in [PS86]. The construction of a central extension of
the group G, instead of its universal covering group, seems to be new (see [LMNS98] for a
construction for which it is not clear to the authors that it produces a Lie group). It is clear that
this point of view has the advantage that the group G itself has a concrete realization, which
need not be the case for its universal covering group.

As is well known from the case of loop groups ([PS86]) and the case of current groups
over Riemann surfaces ([EF94]), the coadjoint orbits of the central extensions G have fascinating
geometric interpretations. In [VN02] we address various aspects of the geometry of coadjoint
orbits for general M .

It is also interesting to study “algebraic” relatives of the central extensions of current
groups arising in this paper. In [Shi92] Shi constructs so-called toroidal groups associated to the
universal central extension g of the Lie algebra g := C[tT,s*] @ t, where € is a simple complex
Lie algebra. These groups are defined as groups generated by root groups in such a way that
they act in all integrable representations of g. He also makes a connection to Steinberg groups of
the algebra C[t*,s*] of Laurent polynomials. It would be interesting to understand the precise
relationship between these groups and the universal central Lie group extension of C*(T?, K), .
For M = T, the d- dimensional torus, we think of our central extensions G or the corresponding

semidirect product groups G x T¢, as natural Lie group versions of t0r01da1 groups. The Lie
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algebras of these groups and their representations have been studied intensively in recent years
(see f.i. [CFO1], [Tan99], [Pi00], [BB99]). In [Ta98] Takebayashi approaches the problem to find
groups for the Lie algebra g, or rather for g in his context, by using a Chevalley basis of £ to
construct a group corresponding to g as an algebraic group over the algebra C[t,sT] via the
Chevalley-Demazure construction. He also examines the structure of the “elementary subgroup”
generated by all root groups, which is a quotient of the group constructed by Shi.

This paper contributes to a larger program dealing with Lie groups G whose Lie algebras g
are root graded in the sense that there exists a finite irreducible root system A such that g has a
A-grading g = go © P, Ja, it contains the split simple Lie algebra € corresponding to A as a
graded subalgebra, and is generated, topologically, by the root spaces g,, o € A. All Lie groups
of the type C*°(M,K), M compact and K simple complex, are of this type, and the same holds
for their central extension. A different but related class of groups arising in this context are the
Lie groups SL,(A) and their central extensions, where A is a continuous inverse algebra, i.e., a
locally convex unital associative algebra with open unit group and continuous inversion ([Gl01c]).
In [NeOlc] we discuss the universal central extensions of the groups SL, (A), which are Lie group
versions of the Steinberg groups Sty (A). In the end of Section II we show that for K = SL,(4),
A a commutative continuous inverse algebra, we have V(¢) = A with k(x,y) = ¢tr(xy) and that
the image of the corresponding period map is discrete for the corresponding product type cocycle
on the Lie algebra C*°(M,€) of the group C*° (M, K). For non-commutative algebras the image
of the period map is not always discrete.

The present results on current groups over compact manifolds are extended in [Ne02c]
to current groups over non-compact manifolds in several settings. It is remarkable that the
difficulties arising in this context are of a completely different nature as those in this paper
because they are mainly caused by the possible infinite dimension of the first cohomology of M .

I. The period map

Definition I.1.  For a finite-dimensional manifold M (for this definition we do not have to
assume that M is compact) and a sequentially complete locally convex (s.c.l.c.) space ¥V we
define

s (Y) = QY(M,Y)/dQA(M,Y)

and observe that the image of the space of closed forms in 3p(Y') is the subspace Hjp(M,Y).

We endow Q! (M,Y) with the natural topology given by locally uniform convergence of all
derivatives. Then we obtain for each a € C*°(S!, M) a continuous linear map Q'(M,Y) = Y by
integration over «. Since the space dQ2°(M,Y) of all exact 1-forms coincides with the annihilator
of these functionals, it is a closed subspace, and we thus obtain on 3,/(Y) a natural locally convex
Hausdorff topology and continuous linear maps given by

a3 (V) = Y, [B]H/ﬂ. .

In the following we write Lin(E,F) for the space of continuous linear maps between
topological vector spaces E and F'.

Remark I.2. (a) Since an element 3 € Q'(M,Y) is an exact form if and only if all integrals
[, B, a € C>(S', M), vanish, the linear functions «; € Lin(3a(Y),Y) separate the points of
am(Y).

(b) A 1-form 8 € Q'(M,Y) is closed if and only if for all pairs of homotopic paths aj,as the
integrals of 8 over a; and ay coincide. Therefore the subspace Hjg (M,Y) C 3m(Y) is the
annihilator of the functionals o ; — as 5, [a1] = [@e] in 7 (M), which implies in particular that
it is closed. Moreover, for [8] € 3a(Y) the condition [8] € Hlz(M,Y) is equivalent to the
independence of «;([f]) from the homotopy class of «.

(c) For M = S' we have 35:1(Y) =Y because the map Q'(M,Y) = Y,8 — [, is surjective
with kernel dQ°(M,Y). We identify the class of §# € Q'(S',Y) in 351(Y") with the integral [, 5.
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(d) On the subspace H}p(M,Y) we can define continuous linear maps by integration over
continuous loops because we may use the isomorphism
H&R(M7Y> = Hslmg(M7Y) = Hom(ﬂ—l(M%Y)' u
From now on we assume M to be compact.
The following remark will be helpful for the calculation of period groups.

Remark 1.3. For every compact connected smooth manifold M the group m (M) is finitely
generated (M can be triangulated), which is inherited by the singular homology group H; (M) =
m (M) /(m (M), 71 (M)) (Hurewicz). Let k := by (M) := rank H; (M) and fix «ay,...,qr €
C(S', M) such that the corresponding 1l-cycles [a;] form a basis of the free abelian group
H,(M)/tor(Hy(M)).
Since Ho(M) is a free abelian group, the Universal Coefficient Theorem implies that
HY,, (M, 2) = Hom(H, (M), Z) = Hom(r, (M), Z).

Moreover, in view of Huber’s Theorem ([Hu61]) and the local contractibility of M , this group is

isomorphic to
HY(M,Z) = [M,SY.

In particular there exist continuous functions fi,..., fr: M — S! such that [fj o a;] = &;; €
m(SY) = Z. Since every homotopy class in [M,S!] contains a smooth function ([Ne02b,
Th. A.3.7]), we will assume in the following that the functions f; are smooth. This implies
in particular that its logarithmic derivative §(f;) := fj*l.dfj can be viewed as a closed 1-form
on M, which is not exact because faj a(fj) =1.

With the basis [«;] of the group H;(M)/tor H1 (M), we immediately obtain an isomor-
phism

®: Hip (M, Y) = Hom(H, (M), ) = Hom(H (M) / tor Hy (M), Y) - Y*, [8] = ( / 8)
o j=1,...,
whose continuous inverse is given by
k
O o) = [ 200 ). .
j=1

Definition I.4.  (The topology on C*(M,K)) (a) If K is a Lie group and X is a compact
space, then C(X, K), endowed with the topology of uniform convergence is a Lie group with Lie
algebra C(X,t) ([NeO2b, App. A.3]).
(b) If K is a Lie group with Lie algebra £, then the tangent bundle of K is a Lie group isomorphic
to €x K, where K acts by the adjoint representation on € (cf. [NeO1b]). Iterating this procedure,
we obtain a Lie group structure on all higher tangent bundles 7" K which are diffeomorphic to
2l K.

For each n € Ny we obtain topological groups C(T"M,T"™K) by using the topology of
uniform convergence on compact subsets. Therefore the inclusion

C®(M,K)— [[ c@"M,T"K)
n€Np

leads to a natural topology on C® (M, K) turning it into a topological group. For compact
manifolds M these groups can even be turned into Lie groups with Lie algebra C'* (M, ¢). Here
C>(M,t) is endowed with the topology defined above if we consider ¢ as an additive Lie group.
For details we refer to [G101b]. =
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Definition I.5.  (a) Let 3 be a topological vector space and g a topological Lie algebra. A
continuous 3-valued 2-cocycle is a continuous skew-symmetric bilinear function w:g x g — 3
satisfying

W([J,‘, y]v Z) + w([y, Z]v JJ) + w([zv JJ], y) =0.
It is called a coboundary if there exists a continuous linear map « € Lin(g,3) with w(z,y) =
a([z,y]) for all z,y € g. We write Z2(g,3) for the space of continuous j3-valued 2-cocycles

and B2(g,3) for the subspace of coboundaries defined by continuous linear maps. We define the
second continuous Lie algebra cohomology space to be

HZ(g,3) = Z2(9,3)/ B-(g,3)-

(b) If w is a continuous 3-valued cocycle on g, then we write g @, 3 for the topological Lie
algebra whose underlying topological vector space is the product space g x 3, and the bracket is

defined by
[(z,2), (', 2")] = ([z,3'],w(z,a")).

Then q¢:g®. 3 — ¢, (z,2) — x is a central extension and o:g — g®, 3,z — (z,0) is a continuous
linear section of q. ]

Let K be a Lie group and € its Lie algebra. Further let G := C*°(M, K),. denote the
identity component of the Lie group C*°(M, K) with Lie algebra g = C*°(M,t). We consider
a continuous invariant symmetric bilinear map x:€ x £ — Y. We thus obtain a continuous
3m (Y)-valued cocycle on g by

(11) WM(fﬂ?) = CUM7H(€,7’]) = [KJ(€7 dn)] € 3M(Y>7

where we view k(& dn) as the element of Q!(M,Y) whose value in a tangent vector v € T, (M)
is given by &(&(p),dn(p)(v)). We write Qs for the left invariant 33;(Y)-valued 2-form on G
with QM(e) = Why -

In this first section we will discuss the image of the period homomorphism

per, m(G) = jm(Y)

W

which is defined on piecewise smooth maps (with respect to a triangulation) 0:S? — G by

per,,, ([0]) = / Qu

([Ne02b, Sect. V]). We also recall from [Ne02b, Th. A.3.7] that each homotopy class in 7m2(G) has
smooth representatives and that the integration formula defines a group homomorphism per,, .
In particular we are interested in whether or not the period group

s, := im(per,,, )

is a discrete subgroup of 3, (Y).
The following theorem is the key result of this section.

Theorem I.6. (Reduction Theorem) The period group I, is contained in the subspace
HY (M)Y) of 3m(Y). Identifying Hix (M,Y) with Y* via the map ®, where k := by (M) :=
dim HJp (M, R) is the first Betti number of M, we have

Oy 208, CYF = Hig(MY) Cim(Y).

In particular 1y, is discrete if and only if g1, is discrete. ]

For the proof we need several lemmas. Since the linear maps «; on 3js separate points
(Remark 1.2), it is crucial to get a better description of the compositions «; o per,,,, .
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Lemma 1.7. For each o € C*°(S*, M) we have
(12) Q; opery,,, = perwc‘l oT2 (aK)7

where (o ):m2(G) = m(C®(SY,K)) is the group homomorphism induced by the Lie group
homomorphism ay:G — C®(SLK),f+— foa.

Proof. First we observe that «; o Q7 is a Y -valued left invariant 2-form on G whose value
in e is a; owps. Further aj Qs is a left invariant 2-form on G whose value in e is given by

(€)= wsr(€ 0 0,0 ) = [5(€ 0 @, 0 )]
= e ot (@) = | Karéar(dn) = [ w(Edn) = ay(an ().

This implies o; 0 Qar = afQs1, which in turn leads to (1.2). |

Lemma I.8. Let M;, i = 1,2, be two compact manifolds with base points xp, and oy 2: My —
M two smooth homotopic maps with o;(xar,) = xa, . Then the Lie group homomorphisms

OCj,K:COO(Mz,K)—)COO(Ml,K), foOOéj

satisfy wm (a1 k) = Tm(ae,x) for each m € Ny .

Proof. Let F:[1,2] x M; — M> be a homotopy with F; = a3 and F» = as. Then the map
®:[1,2] x (M3, K) — C(My, K), ®(t, f)(s) := f(F(t,5))
is continuous because the map
$:[1,2] x C(M2, K) x My = K, ®(t, f,s) := f(F(t,5)) = ev(f, F(t,s))
is continuous, which in turn follows from the continuity of the evaluation map
eviC(Ms,K) x My — K.

We conclude that the two maps @1, ®2: C(M2, K) — C(M;, K) are homotopic, hence induce the
same homomorphisms 7, (C (M, K)) = 7, (C(Mi, K)) for each m € Ny .

The restriction, resp., corestriction of these two maps to the subgroup C*°(M,, K) of

smooth functions are the maps oy x and as i . Since the inclusions C*(M;, K) — C(M;, K)
is a homotopy equivalence ([Ne02b, Th. A.3.7]), the commutativity of the diagram

T (C® (M2, K))  —— 1 (C(Ms, K))
Tm (0, K) Tm (D)

T (C®(My, K))  — 7w (C(My, K))
implies 7, (a1,x) = T (a2, k) because of Ty (P1) = Ty (P2). [

Corollary 1.9. 1[Iy, C Hig(M,Y).

Proof.  From (1.2) and Lemma 1.8 we derive that for each o € C*(S!, M) the map
a;oper,, —only depends on the homotopy class of «, and therefore that im(per,, ) C Hiz(M,Y)
(Remark I.2(b)). ]
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Lemma I.10. Let C* (S}, K) := {f € C®(SY, K): f(1) = e} denote the Lie group of based
loops. For h € C>*(S,SY) and m € Ny the map

T (hi): T (C2 (ST, K)) = 1, (C (S, K))

is given by

mm (b )([o]) = deg(h) - [o],
where deg(h) = [h] € m1(SY) =2 Z is the mapping degree of h.
Proof. We realize S! as R/Z, so that continuous functions S* — K correspond to continuous
1-periodic functions R — K. In view of Lemma 1.8, 7, (hk) only depends on the homotopy
class of h, so that we may assume that h(z) = nz for some n € Z. In this case n = deg(h).

Since the inclusion C>®(SY, K) < C.(SY K) is a homotopy equivalence ([Ne02b,
Th. A.3.7]), it suffices to consider the maps

on:Cu(SY,K) = CX(SLK),  @a(f)(t) = f(nt).

We claim that ¢,, is homotopy equivalent to the map ¥, (f) := f".
We assume that n > 0. The case n = 0 is trivial and the case n < 0 is treated similarly.

For each interval [’ “721], t=0,...,n—1, we define a continuous map

@i C.(SLK) = C.(SLK), as(f)(t) = f@(t), 0<t<1,

where
0 for ¢ g%
@;:[0,1] = [0,1], t—= ¢ nt—i for %gtgi%
1 for Ll <t <1

This means that the functions o;(f) are “supported” by the Z-translates of the interval [, “EL].
Then each map @; is homotopic to the identity of [0, 1] with fixed endpoints, and the same carrles
over to a;. Now

en(f) = ar(f) - aa(f) - an(f)

is a pointwise product because the supports of the factors are disjoint. As each map «; is
homotopic to idg, (s1,x), the map ¢, is homotopic to the nth power map.

The nth power map on C,(S! K) induces the nth power map on the corresponding
homotopy groups, where the multiplication is induced by pointwise multiplication in K, and
we conclude that

T (n): Tm (Co (81, K)) = 7 (C1(SY, K))

is the nth power map in the abelian group m,,(C.(S!, K)). ]

In the appendix we give an alternative proof of Lemma I.10 using the homotopy cogroup
structure of S*t.

Proof. (of Theorem I1.6) We already know from Corollary 1.9 that

k
My« C Hig(M,Y) = @(f;)]- Y =YF,

Jj=1

and the linear maps «; ; correspond to the projections onto the components in Y*. We have to
evaluate these maps on II,;. To approach II; from below, we associate to each f € C*°(M,S*)
the map

fK:COO(SlaK)_)G:COO(MvK)v n—mnof,

which in turn induces a map m2(fx): m2(C*(SY, K)) = m2(G). For a € C*°(S', M) we obtain
with Lemma I.10

a; o per,, omy(fK) = per, , omz(ak) o m2(fk) = per,, , om(ak © fi)

= per,,,, om((f 0 a)) = deg(f 0 a) - per,, ,
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For f = f; and a = «; it follows in particular that
Qi © per,,, oms(fjKx) = 0ij per,, , -

Hence
pery,,, (lm 7T2(fj7K)) = [6(f])] ) Hgl,na

and further

k
My 2 Y [6(f;)] - s = I,
=1
For the converse inclusion, we observe that
j5 © PeL,,, = Per, oma (k)

implies that for each j we have a;; oper, ~CIIs1, and therefore Iy C H’S“17H. ]

In view of Theorem I.6, the discreteness of the group I, does not depend on M (if
b1 (M) > 0), so that as far as the discreteness of the period group is concerned, it suffices to
consider the simplest non-trivial compact manifold M = S!. In this first section we did not use
any specific information on &, but for the discreteness of Ils:1 ,, the specific choice of & plays a
crucial role.

Remark I.11. (a) In this section we have analyzed the period map
m(C%(M, K)) = 3m(Y)

by indirect methods based on smooth homomorphisms of loop groups into C*°(M,K) and
on homomorphisms into loop groups. It is remarkable that this method provides a complete
description of the period group.

Let zpr € M be a base point and C, (M, K) C C(M, K) denote the kernel of the evaluation
homomorphism C(M,K) — K,f — f(zam). For general groups K and general compact
manifolds the Approximation Theorem ([NeO2b, Th. A.3.7] implies that

m(C (M, K)) = mo(C(M, K)) = my(K) x m3(C (M, K)) = my(K) x [§%, O(M, K],
> 1y (K) x [S2A M, K], = m3(K) x m(Cy(S2A M, K)).

In general the group of homotopy classes [M, K] for a CW-complex M may be quite hard
to access if dim M > 3. For 2-dimensional manifolds one can use the classification of compact
surfaces to obtain good descriptions of m2(C(M, K)).

(b) We consider the case where M = T? is a d-dimensional torus. Then

C(T%, K) = O(T,C(T% ", K)) = C. (T, C(T%, K)) » C(T%", K)

implies that
m:(C(T% K)) = mer (C(T7, K)) © me(C(T*, K))

and by induction we obtain

d
T (C(T4 1)) 23 g (K)6). .
7j=0
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II. The case of loop groups

We keep the notation of Section I. In addition, we assume in this section that K is finite-
dimensional. In this case we show that if x is the universal invariant symmetric bilinear form on
€, then the period group Ilg: ,, is discrete.

Definition II.1.  For a finite-dimensional Lie algebra ¢ we write V (€) := S?(£)/£.5%(¢), where
the action of € on S2(€) is the natural action inherited by the one on the tensor product & ® €
by z.(y ® z) = [z,y] ® 2 + y ® [z, 2]. There exists a natural invariant symmetric bilinear form

KEXE>V(E), 0y~ [zVy]

such that for each invariant symmetric bilinear form §:€ x € — W there exists a unique linear
map ¢:V(¢) - W with pox = 3. We call the natural map k:¢ x ¢ = V() the universal
invariant symmetric bilinear form on . ]

We start with some observations that will be needed later on.

Remark IT1.2. (1) The assignment g — V(g) is a covariant functor from Lie algebras to vector
spaces.

(2) If g =a @b with a perfect, then V(g) = V(a) @ V(b) because for every symmetric invariant
bilinear map k:g x g — V we have for z,y € a, z € b the relation &([z,y],2) = k(z,[y,2]) =
k(z,0) =0.

(3) If h < g is an ideal and the quotient morphism ¢:g — q := g/b splits, then g = h x q, and
the natural map V(q) — V(g) is an embedding. In fact, let 7: ¢ — g be the inclusion map. Then
qon =idy and this leads to V(g) o V() =idy (g, showing that V(n) is injective.

(4) If s is reductive with the simple ideals sq,...,s,, then (2) implies that

V(s) = V(3(s) @ 69 V(s;) 2 V(3(s)) @ R".

(5) If € =1t x5 is a Levi decomposition, then (3) implies that the natural map V(s) — V(£) is
an embedding.
(6) If & = gl(n,R), then V(&) 2 R? follows from (4). ]

Remark II.3. We recall some results on the homotopy groups of finite-dimensional Lie
groups K. First we recall E. Cartan’s Theorem
T2 (K) =1

([Mi95, Th. 3.7]), and further Bott’s Theorem that for a compact connected simple Lie group C
we have

m3(C)

Il

Z

([Mi95, Th. 3.9]).
In [Mi95, pp. 969/970] one also finds a table with 7 (G) up to k = 15, showing that

Zo®Zy for G =SO(4)

(G = Zs for G = Sp(n),SU(2),S0(3),S0O(5)
1 for G = SU(n), n > 3 and SO(n), n > 6
1 fOI“G:GQ,F4,E6,E7,Eg.
Zo® Zo for G =S0(4)
Q) =~ Zs for G = Sp(n),SU(2),S0(3),S0(5)
ms(G) = Z for G = SU(n), n > 3 and SO(6)
1 for G =S0(n), n > 7, G2, Fy, Es, E7, Es.
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Remark II.4. (a) Let C C K be a maximal compact subgroup, Cy the identity component
of the center of C' and C,...,C,, the connected simple normal subgroups of C'. Then the
multiplication map

CoxCyx...xCp = C

has finite kernel, hence is a covering map. Now the existence of a manifold factor in K implies
that

ma(K) 2 m(C0) = [[ ma(Cy) 2 27

(Remark I1.3) because Cy is a torus, so that w3(Cp) is trivial.

(b) If C is compact and simple, then a generator of m3(C) can be obtained from a homomorphism
7:SU(2) — C'. More precisely, let « be a long root in the root system A. of ¢ and ¢(a) C ¢
the corresponding su(2)-subalgebra. Then the corresponding homomorphism SU(2) = §% — C
represents a generator of m3(C) ([Bo38]). =

Remark IL.5. If E and F are locally convex vector spaces, then we write E ®, F for the
tensor product space endowed with the projective tensor product topology (cf. [Tr67]) and EQF
for the completion of this space.

If M is a finite-dimensional ¢-compact manifold and E a complete locally convex space,
then

C®(M,E)=C*(M,R®FE
follows from [Gr55, Ch. 2, p.81]. In particular, the subspace
C*(M,R) ® E = span{y - y:p € C*°(M,R),y € E}

is dense in C*°(M, E). ]

Lemma I1.6. Let Y be a s.cl.c. space and 30 (Y) as in Definition 1.1. Then the subspace
3m(R) Y spanned by the elements of the form [3-y], B € Q*(M,R), y € Y, is dense in 35, (V).
Proof. It suffices to show that Q!(M,R) - Y spans a dense subspace of Q'(M,Y).

Let (p;j)jes be a finite partition of unity in C*°(M,R) such that the support of each
function ¢; is contained in an open set U; diffeomorphic to an open subset of R? for d := dim M .
For each U; we then have

QMU Y) = C®(U;, Y)Y,
and Remark IL.5 implies that for the completion Y of ¥ we have
C>™(U;,Y) = C>®(U;, DY .
Since C*(U;,R) - Y is dense in C*®(U;, R)®Y, it is also dense in C*®(U;,Y).

Writing 8 € Q'(M,Y) as a sum 3 = Zj @; 3, the preceding argument implies that each
¢;B is contained in the closure of Q!'(M,R) -Y, and this proves that Q'(M,R) -Y is dense in
QY (M,Y). ]

Lemma II.7. Let ¢ be a locally convex Lie algebra, M a smooth manifold, g := C*(M,¥),
ki€ x € =Y a continuous invariant symmetric bilinear form, and wyr, € Z2(g,3m(Y)) defined
by

WM,H(nvg) = [K’(nadG)]v
so that in particuler wyrx(f ® x,9 ® y) := [fdgle(z,y) € 3 (Y). If im(k) spans Y, then the
central extension g := g @y, , 3m(Y) is a covering, i.e., 30 (Y) is contained in the closure of
the commutator algebra of g.

Proof. For z,y € t and f,g € C*®°(M,R) we have in g the relation

[foz,goyl—lgo, foyl= (fg®[z,y] - gf ®[z,y],2[fdg] - k(z,y)) = (0,2[fdg] - £(z,y)).
This implies that the dense subspace 3a(R) - Y of 3u(Y) (Lemma I1.6) is contained in [g,g]
and therefore that g — g is a covering. u

We now return to our assumption that K is finite-dimensional and consider the loop group
G := C>®(SY,K). Let k:&x & — V(E) denote the universal invariant symmetric bilinear form
and define a cocycle on g = C*°(S', ) as in Section I by w(f,g) := ws14(f, 9) == [&(f, dg)]-
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Remark I1.8. (a) If K is a finite-dimensional Lie group, then mo(K) = 1 implies that
m3(K) = my(Ck (S K)) = (@), and we can view the period map of w as a homomorphism

perg:m3(K) = V().

(b) For any infinite-dimensional Lie group K we can also define a homomorphism 75(K) — V (¥)
as follows. To define V' (£) for an infinite-dimensional Lie algebra ¢, we first endow £® ¢ with the
projective tensor product topology and define V' (£) as the quotient of this space by the closure
of the subspace spanned by all elements of the form

ry—y®z and [ry|@z+y®[r,z], zy,zc¢t
If [2] denotes the image of z € E® € in V (£), we obtain a continuous invariant bilinear map
kExt=>V(), k(z,y) =[xy

which leads to the cocycle w € Z2(g,V (€)) on g:= C>®(S1,€) given by w(&,n) := [k(£,dn)].

Let G := C*(S!,K).. Since the restriction of w to the subalgebra € of g consisting of
constant £-valued functions vanishes, the period map per,:m2(G) = w3(K) x meo(K) — V(§)
vanishes on 72 (K) and defines group homomorphism

perg:m3(K) — V()
with the same image. ]

The following theorem shows that for each finite-dimensional Lie group K the homomor-
phism perg has discrete image, and it is not so easy to find infinite-dimensional Lie groups where
this is not the case. Below we discuss some related examples and special classes.

Theorem II.9. For every finite-dimensional connected Lie group K and the V() -valued
cocycle w(f,g) = [k(f,dg)] on C®(S1, ), the image of per,, in V(€) is discrete.

Proof. If ¢:K; — K> is a Lie group morphism and L(p): & — & the corresponding Lie
algebra morphism, then we have

ke, o L(p x @) = V(L(p)) o ke, and  per,,,, oms(p) = V(L(p)) o pery,, ¢, -

In view of Remark IL.4, this reduces the problem to the determination of V(L(n;)) for the
generators n;: SU(2) - K, j=1,...,m, of m3(K).

For K = SU(2) pick = € ¢ with Spec(adz) = {0,£2i}. All these elements are conjugate
under inner automorphisms. Therefore ve := 1x(z,z) € V(£) is well defined (s can be viewed
as a multiple of the Cartan-Killing form; see also Remark II1.2(4)). Then the calculations in
Appendix ITa to Section II in [NeOla] imply that per, ([idx]) = ve.

Therefore, in the general case, im(per w) C V() is the subgroup generated by the elements
V1,..., 0, corresponding to the homomorphisms n;:SU(2) — C; mentioned above. If s C ¢
is a Levi complement, then we may assume that im(L(n;)) C s for each j, so that it suffices
to determine the image of per, in the case where ¢ = s is semisimple (Remark I1.2(5)). This
problem immediately reduces to the case where s is simple. Let s. C s be a maximal compact
semisimple subalgebra. Then s, need not be simple and we write s/, j = 1,...,1, for its simple
ideals. (For s = su(p,q) we have s, = su(p) x su(q), so that { =2 for p,q > 2.)

We are interested in the subgroup of V(s) = R generated by the elements v; coming from

the basis elements v,; = $x(xj,x;) € V(sl), where z; denotes an element in a suitable su-

subalgebra of the simple ideal s/ of s, which is normalized in such a way that Spec(adz;) =
{+£24,0} holds on the su,-subalgebra. The choice of the elements z; € s/ and the representation
theory of sl(2,C) imply that all eigenvalues of adx; are contained in iZ ,so that tr((adz;)?) €
—Np. Therefore the values of the Cartan—Killing form on the v; are integral, so that they
generate a discrete subgroup of V(s) = R. We finally conclude that in the general situation the
image of per, in V() is discrete. =
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Remark I1.10. Let v € V(£)*, so that &, := 7 o & defines a real-valued symmetric bilinear
form on €. Then the image of the corresponding period map in R is determined by the values
of 7 on the image of the period map w3(K) — V() in Theorem II.9 which is generated by the
elements vy, ..., v, € V(£) obtained as follows. Let ¢; denote the simple ideals in the Lie algebra
¢ of a maximal compact subgroup C C K. Further let su(2); C ¢; be a subalgebra corresponding
to a long root and z; € su(2); with Spec(ad z; |sy(2),) = {0, £2i}. Then v; = 3x(z;, ;) € V(E),
and we have
k k

im(per,) = 3" 2(0p) = 3 380 (sl 2,)- .

j=1 j=1

Lemma II.11. Let & be a finite-dimensional simple Lie algebra, and k¢ its Cartan-Killing
form of €. Further let A be a locally convex unital commutative associative algebra and consider
the locally convex Lie algebra g := A ®, € with the bracket given by [a ® x,b® y] := ab ® [z, y].
Then the map

kgxg— A (a®z,b®y)— ke(z,y)ab

has the universal property of the universal invariant symmetric bilinear form. In particular we
have V(g) = A.

Proof. From
K(la®z,b®yl,c® 2z) = ke([z,y], 2)abe = ke(x, [y, 2])abc = k(a @ z, bRy, c ® 2])
we see that k is an invariant symmetric bilinear form on g. Its construction implies the continuity.

To verify the universal property, let 8:g x g — Y be a continuous invariant symmetric
bilinear form. For each pair a,b € A we then obtain an invariant bilinear form

ﬂa7b:EXE_>Y7 (x7y)'_>ﬁ(a®$7b®y)

Now V(€) = Rk implies the existence of a unique element n(a,b) € Y with 8,5 = xe - 1(a,b).
Pick z,y € ¢ with xe¢(z,y) # 0. Then the continuity of the map

Ax A=Y, (a,b)— Bla®z,boy) = rke(z,y)nla,b)

implies the continuity of n: A x A - Y.
Since t is a perfect Lie algebra, we also find three elements z,y, z € ¢ with k¢([z,y], z) # 0.
Then the invariance of S further leads to

ke([z,y], z)n(ab,c) = B(la®@ 2, b@yl,c®2) = FlaRz, b @y, c® z])
= Ii(g(.%’, [y7 Z])ﬁ(a: bC) = He([may]wz)n(a: bC),

so that
n(ab,¢) = n(a,bc), a,b,c€ A.

Let 1 € A denote the unit element and define the continuous linear map v: A — Y, a — n(a, 1).
Then

Bla®z,b@y) = ke(z,y)n(a,b) = ke(z,y)n(ab, 1) = ke(z,y)y(ab) = (yo k)(a @z, b @ y)

shows that 3 factors through s, which implies the universal property of x. Here the uniqueness
of ~ follows from A=1-A=A-A. ]
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Remark I1.12. (a) We call an associative unital locally convex algebra A a continuous inverse

algebra if its group of units A* is open and the inversion A* — A* is a continuous map. Such

algebras have been studied in [Gl01c]. In particular the following results have been obtained:

(1) If A is a sequentially complete continuous inverse algebra, then all matrix algebras M, (A),
n € N, also have this property ([Gl01lc, Prop. 4.5]).

(2) If A is a continuous inverse algebra, then A* is a Baker—Campbell-Hausdorff-Lie group
(BCH-Lie group), i.e., it has an exponential map exp:a — A (given by holomorphic
functional calculus) which restricts to a diffeomorphism of some open 0-neighborhood U
in A to some open 1-neighborhood in A* and on some 0-neighborhood W C U with
expWexpW C expU the multiplication

z*y = expl;' (expzexpy)

is given by the BCH-series.
By combining (1) and (2), we can use the theory of analytic subgroups of BCH-Lie groups
([G101b]) to derive for each closed Lie subalgebra g C M, (A) the existence of a global Lie group
G with an exponential function obtained by restricting the one of M, (A) ([Gl01b, Prop. 2.13]).

(b) Let A be a unital locally convex algebra and HCy(A4) := A/[A, A]. We write [a] for the
class of a € A in HCy(A). Then the map

Tr: M, (A) —» HCy(4), z+— [Z ]

is a continuous Lie algebra homomorphism and we define sl.(A) := ker Tr. Inspecting the

arguments in [BGK96, Lemma 2.8] in the algebraic setting, it is easy to see that V(sl.(4)) =

HCy(A) and that a universal invariant symmetric bilinear form is given by k(z,y) := Tr(zy).
Suppose that A is a complete complex commutative continuous inverse algebra. According

to [Bos95, Prop. A.1.5], A satisfies
Ko(A) = Ko(A) == indlim,,_, 73(GL,, (4)).
One can show that the period map
pergy, (k): 73 (SLr(A4)) — HCo(A)
is the composition of the natural maps m3(SL;(A)) = 7m3(GL,(A)) = Ko(A) and the trace map
Ta: Ko(A) = HCo(A), [p] = Tr(p),

where p = p? € M,(A) is an idempotent representing an element of Ky(A) (see [Ne0O2a] for
details).

If A is commutative, then HCy(A) = A and the image of the trace map T4 is contained
in the kernel of the exponential function exp 4: A — AX, x — €2™ hence discrete. This implies
that im(pergy, (4)) is discrete. The smallest examples of non-commutative algebras for which
im(T'4) is not discrete are the irrational rotation algebras, certain 2-dimensional quantum tori.
In this case HCy(A) = C and im(T4) = Z + 07 for some irrational real number.

(¢) In the context of (b), we can use (a) to obtain for each simple complex Lie algebra ¢ the
existence of a Lie group G with Lie algebra g := A®¢£ because we can embed £ into some M, (C)
and then extend scalars to obtain an embedding g — M,,(A). We then have g C sl,(A), and
the natural map V(g) — V(sl,(A)) is an isomorphism (Lemma II.11). Therefore (b) implies
that im(perg) is discrete if im(pergy, (4)) is discrete, which holds whenever A is a complete
commutative continuous inverse algebra. ]
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III. Existence of corresponding central Lie group extensions

In the following we will use the concept of an infinite-dimensional Lie group described in detail
in [Mi83] (see also [Gl0la] and [NeOlb]). This means that a Lie group G is a smooth manifold
modeled on a locally convex space g for which the group multiplication and the inversion are
smooth maps. We write A\;(x) = gz, resp., py(x) = xg for the left, resp., right multiplication
on G. Then each X € T.(G) corresponds to a unique left invariant vector field X; with
Xi(g) :=dX\;(1).X, g € G. The space of left invariant vector fields is closed under the Lie bracket
of vector fields, hence inherits a Lie algebra structure. In this sense we obtain on g := T,.(G) a
continuous Lie bracket which is uniquely determined by [X, Y], = [X}, Y]].

In this context central extensions of Lie groups are always assumed to have a smooth local
section. Let Z — GG —» G be a central extension of the connected Lie group G by the abelian
group Z. We assume that the identity component Z, of Z can be written as Z, = 3/m1(2),
where the Lie algebra 3 of Z is a s.c.l.c. space. This means that the additive group of 3 can be
identified in a natural way with the universal covering group of Z., and that Z. is a quotient
3 modulo a discrete subgroup which can be identified with #;(Z). Since the quotient map
q: G — @ has a smooth local section, the corresponding Lie algebra homomorphism g — g has a
continuous linear section, hence can be described by a continuous Lie algebra cocycle w € Z2(g, 3)
as

g2 gd,3 with the bracket [(z,2), (2, 2")] = ([z, 2], w(x, z")).

Let Z2(G,Z) denote the abelian group of 2-cocycles f:G x G — Z which are smooth
in a neighborhood of (e,e) and B2(G,Z) the subgroup of all functions of the form (g,g') +
h(gg")h(g)~th(g')~t, where h:G — Z is smooth in an identity neighborhood. We recall from
[Ne02b, Prop. IV.2] that central Lie group extensions as above can always be written as

G=Gx;7Z with (g,2)(,7) = (99',22'f(9,9")),

with f € Z2(G,Z). Two cocycles f1, f» define equivalent Lie group extensions if and only
if fi-f;t € B2G,Z) (for fy'(x,y) := folz,y)~'), and the quotient group HZ(G,Z) :=
Z2(G,Z)/B%(G,Z) parametrizes the equivalence classes of central Z-extensions of G with
smooth local sections ([Ne02b, Remark IV.4]). On the Lie algebra level the space H2(g,3) =
Z%(g,3)/B%(g,3) classifies the central 3-extensions of g with continuous linear sections. There
is a natural map H2(G,Z) — HZ(g,3) induced by the map

(31) DZ?(G, Z) _>Z3(973>7 D(f)(:zr,y) :dzf(e,e)(w,y)—dzf(e,e)(y,w)

([Ne02b, Lemma IV.6]), where d?f(e, e) has to be understood as

P f(e,e)(,y) = o

= 950t |t,s:0 f(W(t)aU(S))

where v:] —¢g,e[— G and n:] —¢,e[— G are smooth curves with v(0) = e, 7'(0) = =, n(0) =e,
and 7'(0) = y. For more details we refer to [Ne02b].

In this section we discuss the existence of a central Lie group extension for the Lie algebra
cocycles war,, of product type (see (1.1)), where K may be an infinite-dimensional Lie group.
The group G := C*° (M, K) acts on g by the adjoint action which is given by

(Ad(f)-&)(m) := Ad(f(m)).£(m) for m € M.
We also define an action of G on t-valued 1-forms on M by

(Ad(f)-«)(m) := Ad(f(m)) ca(m) for m e M.
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Definition III.1. For an element f € C*°(M,K) we write
8'(f)(m) = dX gy -1 (£ (m))df (m): T (M) — € = T (K)

for the left logarithmic derivative of f. This derivative can be viewed as a £-valued 1-form on
M. We also write simply §'(f) = f~1.df and observe the following product rule

(3:2) 3'(fufo) = Ad(f2) .0 (f1) +8'(f2)-

The right logarithmic derivative 6" (f) = df.f=* satisfies the product rule
(3.3) 0" (frf2) = 6"(f1) + Ad(f1).0"(f2)
([KM97, 38.1]).

The form 6% = §'(idg) € Q'(K,E) is called the left Maurer—Cartan form on K and
0% = 0"(idk) the right Maurer—Cartan form. Using the Maurer—Cartan forms, we have

8'(f) = [0k and  &"(f) = [ 0% .
Lemma III.2. The smooth maps 6',6": C*(M,K) — Q' (M, ¥) satisfy

(d8")(e)(m) = (dd")(e)(m) = dn  for 1€ C®(M, &) = T.(C®(M, K)).

Proof. Let V C ¢t be an open convex 0-neighborhood and ¢:V — U := ¢(V) a chart of K
with ©(0) = e and dp(0) =id¢. Let n € g = C°°(M,t). Then there exists an € > 0 such that
for each ¢ € [0,¢] we have tn(M) C V. Then
e [075] - COO(M7 K)7 ’W(m> = @(tn(m))
is a smooth curve on C*° (M, K) with v(0) = e and +'(0) = 7. We now have for v € T},,(M)
dyu(m).0 = d(tn(m)tdn(m)u € T, ) (K)
and therefore

8 () (m)-v = ye(m) ™" (dye(m).v) = (tn(m)) " dp(tn(m)) -t - di(m)v € t.

In view of dvyy = 0, it follows that

d _ . -
i 1o Y6 (m) (e (m)-v) = T ot (m) ~dip(tn (m) ) dp (m)v
= —0
= ¢(0)"".dp(0)dn(m)v = dy(m)v.
A similar argument works for the right logarithmic derivatives. ]

Proposition II1.3.  Let g := C*(M,€), k:t xt - Y be a continuous invariant symmetric
bilinear form, and define

©:C%(M, K) — Lin(g,3(Y)), O(f)(€) := [6(8'(f), ©)].

Then we obtain for the cocycle w(&,n) = [k(&,dn)] an automorphic action of C*°(M,K) on
9:=9g,5m(Y) by

(3.4) F(&2) = (Ad(f)-€ 2 — O()(€) = (Ad(f)-€, 2 — [(3'(f), E)]).
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The corresponding derived action is given by
(3.5) 1-(§2) = [(n,0), (& 2)] = ([0, €], w(n,§))-
Proof. Using (3.2), we first verify the cocycle condition for ©:

O(f1£2)(&) = [k(0' (1 £2),6)] = [K(8' (f2) + Ad(f2) 8" (f1), €)]
= 0(f2)(€) + [£(0'(f1), Ad(f2).£)] = ©(f2)(€) + O(f1)(Ad(f2)-£).
This relation implies that
fi(f2-(6,2)) = f1-(Ad(£2) €, 2 = O(£2)(€)) = (Ad(f1f2)-€ 2 — O(f2)(§) — O(f1)(Ad(f2)-6))
= (Ad(flfz)-faz - @(f1f2)(5))-
To see that C°(M, K) acts by automorphisms of g, we note that
d(Ad(f).n)(m) = ((dAd)(f(m))df (m)).n(m) + Ad(f(m)) o dn(m)
(Ad(f(m))d Ad(e)dAf(m)-1 (f(m))df (m)).n(m) + Ad(f(m)) o dn(m)
(Ad(f(m)) o add'(f)(m)).n(m) + Ad(f(m)) o dn(m),

which means that

(3.6) d(Ad(f)n) = Ad(f).[0"(f), ] + Ad(f).dn.
Therefore
W(A(F).£, Ad(f)0) = [S(AA().€, d(AA(f)0)] = [R(AA(F).€, Ad(F).dy + Ad(F)6'(f), n])]
= [k(&, dn)] + [K(&, [0' (), D] = [8(&, dn)] = [x(8' (), [€, )]
= w(&n) — O(N)E D).
That C*°(M, K) acts by automorphisms on g now follows from

[l(&, 21), (&2, 22)] = (AA(S)-[61, &2], w(&r, €2) — O(F)([61,E2]))
= ([Ad(f)-&, Ad(f) 2], w(Ad(f) &1, Ad(f) £2)) = [f-(&, 21), (€2, 22)]-

To verify (3.5), we have to show that the differential of © in e is given by
dO(e)(n)(§) = w(&,n).

Using Lemma II1.2, we obtain

dO(e)(n)(§) = [5((dd")(e)(n), €)] = [K(dn, €)] = [5(€, dn)] = w(&,n). u

Definition III.4. Let G be a connected Lie group with Lie algebra g and w € Z2(g,3) a
continuous Lie algebra cocycle with values in the s.c.l.c. space 3. Let I' C 3 be a discrete subgroup
and Z := 3/I" the corresponding quotient Lie group. Further let © be the corresponding left
invariant closed 3-valued 2-form on G. Then we define a homomorphism

P:HZ(g,3) = Hom(my(G), Z) x Hom(m (G), Lin(g, 3))
as follows. For the first component we take
Pl([wD = ({z o per,,

where gz:3 — Z is the quotient map and per,,: m2(G) — 3 is the period map of w. To define the
second component, for each X € g we write X, for the corresponding right invariant vector field
on G. Then ix ) is a closed 3-valued 1-form ([Ne02b, Lemma III.11]) to which we associate a
homomorphism m (G) —  via

Py(w]) (D) (X) = / ix, Q.

~

We refer to [Ne02b, Sect. VII] for arguments showing that P is well defined, i.e., that the right
hand sides only depend on the Lie algebra cohomology class of w. ]
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Theorem IIL.5. Let w € Z%(g,3) be a continuous Lie algebra cocycle. Then the central Lie

algebra extension 3 — g := gD, 3 —» @ integrates to a central Lie group extension Z — GG
if and only if P([w]) =0.
Proof. [Ne02b, Th. VIL.12]. ]

Theorem II1.6. Let K be a connected Lie group, M a compact manifold, G := C*(M, K).
and warx € Z2(8,3m(Y)) as above. Suppose that the period group Inr .. C 30 (Y) is discrete.

For Z := 3 (Y)/IL,,, . we then obtain a central Lie group extension Z — G — G corresponding
to the cocycle wpy .

Proof. In view of Theorem III.5, we only have to see that Py([was,x]) = 0, but this follows
from Proposition II1.3 and [Ne02b, Prop. VIL.6]. ]

Corollary IIL.7. IfdimK < oo, Y =V(¥), and k:t x t — V(8) is the universal symmetric
invariant bilinear map, then there exists for Z := V (¢) /I, o central Lie group extension

Z G -—»G=C%0MK)..
Proof. This is a consequence of Theorem I11.9 and Theorem III.6. ]

Remark IIL.8. (a) (cf. [NeO2b, Rem. V.12]) Let Z — G —» G be a central extension of Lie

-~

groups, where G and G are connected. In view of [NeO2b, Prop. V.11], the long exact homotopy
sequence of the principal Z-bundle G over G leads to an exact sequence

12(2) = m(G) = m(G) 071 (Z) = 1 (G) = 1 (G) = mo(Z) = mo(G) =1,
so that m(Z) = ma(3) = 1 leads to
m2(G) = 1 (@) 27 (2) = m(G) = 71(G) = mo(2).

If the connecting map 7 (G) — mo(Z) is injective, then the map w1 (Z) — m,(G) is surjective,
and we obtain

T2(G) = ker per, Cm(G) and m(G)=m (CA?)/ coker per,, .

These relations show how the period homomorphism controls how the first two homotopy groups

of G and G are related.

(b) We consider the special case where K is a simple compact Lie group and G = C*(T%, K).,

where M = T? is a d-dimensional torus. Then Y = V(¢) 2 R, where the Cartan-Killing form

ke of £ is universal, and 7 (T?9) = Z<¢ implies 3ra(R) = R?, where the projection onto the

components is given by integrating over the coordinate loops a;: T — T4, j =1,...,d.
According to Remark I.11(b), we have

m(G) = 1o (K) @ my(K)? @ ma(K)D @ ..
Since mo(K) is trivial and 73(K) = Z (Remark IL.3), we have
m(G)=Z'eE,
where E = 7y (K)(g) @ . ... The natural homomorphism Z? < m5(G) is obtained from the map
C(T,K)* = G, (g;)j=1...ar (grop1) - (ga°pa),

where p;: T¢ — T is the projection onto the j-component. As we have seen above, the period
map per,, — maps the subgroup Z? bijectively onto the full period group

Hpa, =00, 2 79 C zra(R) = RY.
We conclude in particular with (a) that

72 (G) 22 ker(per ~ 10(G) 3 (K) =y (K) ) @ .

wﬂ;dw)

~

As we have seen in Remark IL.3, this group is not always trivial, showing that o (G) is not
always trivial. This contradicts a statement in [PS86, Prop. 4.10.1] saying that m2(G) is trivial.m
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For the following theorem we recall that we can use the continuous bilinear form x:€x¢ = Y
to define a wedge product

A QM B) x QY(M,€) — Q*(M,Y)

by
(a Ay B)(v,w) := K(ap(v), Bp(w)) — K(Bp(v), ap(w)), v, w € Tp(M).

=K
We also define for £ € C°(M,€) and « € Q' (M, €) the wedge product
ENgai=—ang E:=k(E )

and observe that
d(€ N @) = d€ A a + k(€ da).

For each smooth map f: M — G we then have
(3.7) (Ad(f).a) As B =aAe (Ad(F)™.5),

where (Ad(f).a)(v) = Ad(f(p)).a(v) for v € T,(M), because the bilinear map & is invariant
under Ad(K). We likewise get

(3.8) [5?05] N B = —aNg [576]
for £ € C™°(M,¥), where [5,&],(v) :== —[§, Blp(v) := [Bp(v), E(p)]. We also have a wedge product
[, Jas QN (M, B) x Q' (M, ) — Q*(M, £)

defined by
[, BIa (v, w) = [ap(v), Bp(w)] — [ap(w), Bp(v)],  v,w € Ty(M).

Note that [a, 8]n = [B,a]a. The two wedge products are related by the formula
(3.9) ([, B, &) = ang [B,€], £ CF(M,¥).
Theorem II1.9. Let Gt := C®(M,K). Then the map

aGY x GT = Q*(M,Y),  c(f,9) = 8(f) Au 8" (g)

defines a a smooth Q?(M,Y)-valued group 2-cocycle on GV, so that we obtain a central Lie
group extension Gt =Gt x. Q2(M,Y). The corresponding Lie algebra cocycle Dc from (3.1)
is given by

Dc(&,n) =2dE N dny  for  &n e C™®(M,¢).

The map v:30(Y) = Q*(M,Y),[B] — 2dB satisfies v owp,x = Dc and induces a Lie algebra
homomorphism

Wg:/g\: g @WM,K 3M(Y) — §+ = g EBDC 92(M7Y)7 (X7 [6]) = (X7 2d6)

This homomorphism is GT -equivariant with respect to the action on g induced by the adjoint
action of GT, given by

Ad (9)-(€,2) = (Ad(9)-€, 2 — d(k(3'(9),£)))-
Proof. The smoothness of the cocycle follows from the smoothness of the maps
6,67 C® (M, K) — QY (M, )

and the continuity of .
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For the constant function f = e we have &'(f) = 6"(f) = 0, so that c(g,e) = c(e,g) = 0.
Moreover, we obtain with (3.2), (3.3) and (3.7):

c(f,gh) = e(fg,h) = &' (f) Aw 8" (gh) = &' (fg) A 07 ()
= 0'(f) A (07(9) + Ad(9).0" (h)) — (6'(g) + Ad(9) ™0 (f)) Ax 0" (R)
= c(f,9) = clg, h) + &' (F) A (Ad(g).0"(h)) — (Ad(g)".8'(f)) Aw 0" (h)
=c(f,9) —clg, h)
Therefore ¢ is a group cocycle.

According to [Ne02, Lemma IV.6] and Lemma II1.2; the corresponding Lie algebra cocycle
Dc € Z2(C*>(M,¥),Y), is given by

Dc(€7 77) = d20(67 6) (57 77) - d20(67 6) (777 5)

= db'(e) (&) Aw d6" (e) () — db' (e)(n) Ay d6" (e)(£)
= d€ Ay dn — dn Ay dE = 2dE A, diy.

To relate the Lie algebra cocycles wyr,, and Dc, we first observe that the differential
d:QY(M,Y) — Q*(M,Y) leads to a linear map v:33(Y) — Q?(M,Y),[8] = 2dB. This map
satisfies

v own,s(€,m) = 2d(k(€, dn)) = 2d(§ Ny dn) = 2dE Ay dip = De(,n).
This implies that 74 is a Lie algebra homomorphism.
Next we derive an explicit formula for the action of G* on the Lie algebra

§+ =49 DDe 92(M7 Y)

from which it will follow that ~4 is GT -equivariant. The conjugation action of G* on the group
G™ is given by
9-(h,0) := (g,0)(h,0)(g,0) " = (ghg™*,c(g, h) — c(ghg ™", 9))
([Ne02b, Rem. I1.2]) which implies that the derived action is given by
Ads, (9)-(€,0) = (Ad(g)-£, dc(g, €)(0,€) — de(e, g)(Ad(g).£,0)).
We have seen in Lemma II1.2 that
de(g,€)(0,€) = 8'(g) Ax de,
and with (3.6) we further get
dele, 9)(Ad(9)-£,0) = d(Ad(9).€) A 07(g) = Ad(9).[5"(9), €] Ax " (9) + (Ad(g).dE) A 67(9)
= Ad(9)-[0'(9), €] Aw 07 (9) + dE Aw (Ad(9)~".67(9))
= [0'(9),€) Aw 0'(9) + d€ Ax 8'(9).

This leads to
Adg, (9)-(£,0) = (Ad(9).€,28'(9) A d€ +68'(9) Ax [0 (9),€]).-

To show that 74 is G -equivariant, we have to verify that
(3.10) Ade, (9)-(6,0) = (Ad(g) &, ~2d(x(8'(9), ©)))
(see (3.4)). The Maurer—Cartan Equation
45'(f) = ~5[0' (1,6 (), f € C(M,K)
([KM97, p.405]) implies
A(5(0'(£),6)) = d(8(F) A €) = 81 (F) A € — 61() A dE
= 2,0 ()] A € 81 A = =30 (F) e 910, 6) = 01(7) A .

This relation immediately gives the desired formula for Ad@ +(f). m



20 Central extensions of current groups April 8, 2002

Remark IIL.10. Since the central extension G+ of G* has a smooth global section, its period
group Ip. = y(Hy) C Q*(M,Y) is trivial ([Ne02b, Prop. VIIL5]). This is another argument
for the inclusion Ips,, C Hig(M,Y) (Corollary 1.9). It is remarkable that we obtain a central
extension of the whole group G and not only of its identity component G. |

Remark III.11. (a) Since M is compact, its fundamental group m (M) is finitely generated.
Let k := by (M) :=rk H; (M) and choose ai,...,a; € C*(S}, M) as in Remark 1.3. Then the
integration map

b () > v (8 ([ )
o Jj=1,...,k
maps the subspace Hl (M,Y) bijectively onto Y*, so that we obtain a topological splitting
s (Y) 2 Hig(M,Y) @ ker ®.

Then the differential d:3/(Y) — Q*(M,Y),[B] — dB maps ker @ continuously onto the closed
subspace B3;(M,Y) of exact 2-forms in Q?(M,Y).

Suppose that Ilps, is discrete. Then the group Z from Theorem III.6 has a product
decomposition

Z = (Hle(M, Y)/HM7H> x ker & = (Y/HSI,H)k x ker &

(cf. Theorem 1.6).
(b) The differential d:3,(Y) — Q?(M,Y) induces a Lie algebra homomorphism

FYQ:/g\ = g @L’JM,H 3M(Y) _>/g\+ = g EBDC QZ(ny)v (57 [5]) = (572d6)

The construction of a corresponding Lie group homomorphism G — é*, where G is a
central extension of G by Z = 3 (Y)/Ila, (Theorem IIL.6) is not so obvious because the
values of the cocycle ¢ in Theorem II1.9 are in general not exact forms (Remark I11.13 below),
hence do not lie in the range of the map d. Nevertheless, the range of the Lie algebra cocycle Dc
is contained in the space of exact forms. Suppose that Y is a Fréchet space. Then the quotient
map p:Q?(M,Y) —» E := Q*(M,Y)/B3;(M,Y) is an open morphism of Fréchet spaces. We
obtain a smooth group cocycle ¢_ := poc € Z2(G", E) whose corresponding Lie algebra cocycle
is trivial. According to [Ne02b, Th. VIIL.8], there exists a homomorphism o: 7 (G) — E such
that G x._ E = (G x E)/T(a), where I'(a) C m(G) x E is the graph of «. Is this extension
trivial? Since G is smoothly paracompact, there exists a smooth function f:é’ — E with
flgd) = f(g) +a(d), g € G, d € m(G) ([NeO2b, Prop. IIL.8]).

(c) If Y is Fréchet, the same holds for the space Q?(M,Y). Therefore G+ is a central extension
of the regular Fréchet—Lie group Gt by the regular Fréchet—Lie group Q?(M,Y’), hence regular
([KM97, Th. 38.6]). Therefore the Lie algebra homomorphism v4:9 = g ®p. Big(M,Y) inte-
grates to a unique Lie group homomorphism Jg: G* — G ><va(22 (M,Y), where G* is the central Lie
group extension of the universal covering group G of G by Z = 3, (Y)/11 M, (Theorem IIL6).
Then the surjectivity of the period homomorphism 73(G) = m3(G) — m1(Z) implies that G

~

is simply connected (Remark III.8). Since the natural map m;(G) — 71 (G) is an isomorphism

(Remark IIL.8), it follows that g (m1(G)) C 71 (G), and hence that Fg factors through a Lie
group homomorphism yg:G — Gt with L(yg) = 4. [ ]

Remark II1.12. (The abelian case) We assume that K is a connected abelian Lie group with
universal covering group K = (¢,+). Then K = ¢/T', where I’ = 7 (K) is a discrete subgroup
of ¢. Let gx:€ — K denote the quotient map.

Let M be a compact connected manifold. Then the group GT = C*®(M, K) is abelian
and its identity component G = C*° (M, K). is the image of the exponential map

eXpG:g:COO(Mak)_)Ga fHQKof-
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Therefore G = g = C°°(M, ) is contractible, and m(G) = 1 for k > 2. We further have
71 (G) Z kerexpg = C°(M,T) =T and 7(G) = Hom(m (M),T) =T*

for k = b1(M). Here we use [NeO2b, Prop. II1.9] to see that each homomorphism (M) — T is
obtained from a smooth map M — K and that a smooth map f: M — K lifts to a smooth map
M — tif and only if m(f):m (M) — m (K) = T is trivial. Let x:€ x £ = Y be a continuous
bilinear form and w(&,n) := [k(&, dn)] the corresponding Lie algebra cocycle.

(a) Since each element of m(G) C g corresponds to a constant function, we have
w(mi(G),8) = {0}, so that

ca(expg &, expgn) := zw(&n) = 3[k(€, dn)]
defines a global 3,/ (Y")-valued group cocycle on G, and we obtain a central extension
G =G %o 3m(Y)
which can be lifted to a central Lie group extension
G Xz sm(Y)  with  ¢g = cg o (expg X expg),

i-e'a gG' (57 77) = [K’(ga dﬁ)] .
On the other hand we have the central extension G x. Q*(M,Y’) given by the cocycle

c(g,h) = 8'(g) Aw 8" (h) = &'(g) A ' (h)

(Theorem IIL1.9). Note that 6" = &' follows from K being abelian. Since each left invariant 1-
form on an abelian Lie group is closed, the Maurer—Cartan form 6 is closed, hence 6'(f) = f*0x
is closed for each smooth function f: M — K, so that all 2-forms ¢(g, h) are closed.

As we will see below, they are not always exact. For elements g = expy € and h = expg 7
in the identity component G of GT we have

c(g, h) = dé A dn = d(k(&, dn)) = 2d(calg, b)),

so that
G Xeg3u(Y) = GT x . Q*(M,Y), (g,[8]) = (9,2dB)

is a Lie group homomorphism.

(b) Let qas: M — M denote the universal covering map and g € G*. Then the map § := goqu
can be written as expy oE, where Ee COO(M, t). We likewise write h= exp on for a second
element h € GT. Then

are(9, 1) = a31(8'(9) Aw 8 () = dE N dif = d(E A d])

is an exact 2-form on M. This means that [c(g,h)] € H2(M,Y) = Hom(Hy(M),Y) vanishes
on the image of mo(M) = Hy(M) in Hy(M).
(c) For M =T?, K =T, Y =R, k(z,y) = 2y, g(ti,t2) = t; and h(t;,ts) = to we obtain on
M=R?:

qrrclg, h) = de A dy

and therefore [, c(g,h) # 0. In particular ¢(g,h) is not exact.

(d) Since K is abelian, the group m(G*) acts trivially on G and hence on 7 (G). The actions
of GT on g and gt are given by

Ads(9).(€,2) = (2 — [£(6(9), )
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and

Adg, (9)-(&,2) = (&2 — dk(8'(9),€)) = (& 2 = 0" (g) Ay dE).

For each constant map £ € I' C G 2 g we therefore obtain AdE+ (9)-(£,2) = (&, 2), but for each
g € G the 1-form x(8'(g),€) = 8'(g) Ax € is closed, and for a € C*°(S!, M) we have

[ w6 @.0 = ([ 510).¢)

with [ 6'(g) € I'. Therefore the action of mo(G") on 71 (G) x 3 (Y) =T x 30 (Y) is given by

9-(v,2) = (7,2 = [6(6'(9), 7)),

where [k(6'(g),7)] € Hx(M,Y) = HY(M,Y) = Hom(m (M),Y) corresponds to the homomor-
phism x(71(g),7):m (M) — Y. This action is non-trivial if and only if «(I',T") # {0}. ]

Remark II1.13. Let K be a compact Lie group and M := K x K. We consider the smooth
maps
M=K, (k,k)—=k and ¢gM—K, (ki k) k3t

Let p1,p2: M — K denote the projections onto the factors. Then &'(f) = pjf% and 6"(g) =
—p36k holds for the left Maurer—Cartan form 6% on K. Hence c(f,g) = —pi0i Ay p30% is a
left invariant 2-form on the compact Lie group M = K x K. Let 8 := ¢(f,g).. Then

ﬂ((m7y)7 (wlayl» = _H(w7yl) + H(Z’,,y).

Since K is a compact connected Lie group, the form c(f,g) is closed/exact if and only if g is
closed/exact as a Lie algebra cochain. For every continuous linear map a: € x ¢ — Y we have

a([(z,y), (=, y)]) = a([z,2],0) + (0, [y, y'])-

Therefore ¢(f,g) is exact if and only if K = 0.
The closedness of ¢(f, g) is equivalent to the vanishing of

k(2’2" y) — 6y y"] @) + w(2", 2], y") — s(ly",y],2") + 6([2, 2'],0") = 6(ly, ¥'], 2").

Using this identity for y' = y" = 0, we see that ¢(f,g) is closed if and only if «(t,[¢,€]) = {0} m

IV. Universal central extensions

In this section we turn to the question whether the central extension from Corollary II1.7 is
universal. This question will be answered affirmatively if € is finite-dimensional and semisimple.
First we recall some concepts and a result from [NeOlc] on weakly universal central extensions
of Lie groups and Lie algebras.

Definition IV.1.  (cf. [NeOlc]) Let g be a topological Lie algebra over K € {R,C} and
a be a topological vector space considered as a trivial g-module. We call a central extension
g = gD, 3 — g with 3 = kerq (or simply the Lie algebra g) weakly universal for a if the
corresponding map d,: Lin(3,a) — H2(g,a),7 — [y o w] is bijective.

We call q:g — g universal for a if for every linearly split central extension ¢;:g; — g of g
by a there exists a unique homomorphism ¢:g — g1 with ¢; o ¢ = q. Note that this universal
property immediately implies that two central extensions g; and g» of g by a; and as which
are both universal for both spaces a; and as are isomorphic. A central extension is said to be
(weakly) universal if it is (weakly) universal for all locally convex spaces a. =
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Definition IV.2.  We call a central extension G = G X Z of the connected Lie group G by
the abelian Lie group Z weakly universal for the abelian Lie group A if the map

da:Hom(Z, A) — HI(G,A), v~ [yof]
is bijective. It is called universal for the abelian group A if for every central extension
q:G x, A= G, peZG,A),

there exists a unique Lie group homomorphism : G x; Z —+ G x, A with g, 09 = ¢q. A central
extensional is said to be (weakly) universal if it is (weakly) universal for all Lie groups A with
A, 2 a/m(A) and a s.clc. ]

Definition IV.3. If g is a Fréchet—Lie algebra, then we write H;(g) := g/g¢’, where g’ := [g, ¢]
is the closed commutator algebra. The space H;(g) is a Fréchet space because g' is closed. If

G is a connected Lie group with Lie algebra g and G its universal covering group, then we
have a natural homomorphism dg:G — Hi(g). Its kernel is denoted by (G,G). If G is finite-
dimensional, then (G, (@) is the commutator group of G. |

The following theorem is [NeOlc, Th. IV.13].

Theorem IV.4. (Recogunition Theorem) Assume that q:CA? — G is a central Z -extension of
Fréchet-Lie groups over K € {R,C} for which

(1) the corresponding Lie algebra extension § — g is weakly K-universal,

(2) G is simply connected, and

3) m(G) € (G,G).

If g is weakly universal for a Fréchet space a, then G is weakly universal for each abelian
Fréchet-Lie group A with Lie algebra a and A, = a/m(A). =

Lemma IV.5. If ¢:Y — Z is a surjective morphism of Fréchet spaces and X a Fréchet space,
then the natural map idx ®q¢: XQY — X®RZ is a quotient map.

Proof. Let f € X®Z. Then f can be written as f = > onen Anln @ z, with X € I'(N,R),
z, — 0 and z, — 0 ([Tr67, Th. 45.1]). Let px, py, resp., pz, be a continuous seminorm on
X, Y, resp., Z. We further assume that

pz(q(y)) = inf py (y + ker q),

because the seminorms on the right hand side define the topology on Z.
Using the quotient metric on Z, we find y, € Y with ¢(y,) = 2z, and y, — 0. Then

n

converges absolutely in X®Y because

D alpx @ py)(@n @ yn) <D [Aalpx (a)py (y2)

and the right hand side converges since px(r,) — 0 and py(y,) — 0. Moreover, we have
q(f) = f. This implies that idx ®q is surjective, hence a quotient map by the Open Mapping
Theorem. |
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Proposition IV.6. Let M be a compact manifold, K a connected Fréchet—Lie group and
G:=C®(M,K).. Then

Moreover, we have

g =C®(M,¥) and Hy(g) = C>®(M,H(¢)).
Proof. Let xp € M be any point and consider the evaluation map §:G — K, f — f(xp). We
write dg4:g — € for the corresponding Lie algebra homomorphism. With G, := C*(M,K), =
keré we obtain G = G, x K, i.e., the Lie group homomorphism ¢ is split by the natural inclusion
1: K — G by viewing elements of K as constant maps on M. We thus obtain a commutative
diagram, where the vertical homomorphisms split:

G & H(g)
lfg lHl(ag)
K 2= Hi(e).

The splitting of the vertical arrows implies that we may view the lower horizontal homomorphism
as the restriction of dg to K. As 7 (K) can be viewed as a subgroup of 7 (G), this shows that
m(G) C (G,G) = kerdg implies m (K) C kerdg = (K, K).

Suppose, conversely, that 7 (K) C kerdg, i.e., that dgx factors through a Lie group
homomorphism d: K — H;(£) which in turn induces a Lie group homomorphism

n: O (M, K) — C%(M, Hy(8), n(f)(m) = di(f(m)).

On the other hand, the natural Lie algebra homomorphism 3:C*°(M,t) — C*°(M,H;(¢)) is a
quotient map (Remark II.5, Lemma IV.5) with kernel C*°(M,¥').

We claim that g’ = C*°(M,¥'). It is obvious that the commutator algebra g’ is contained
in C*°(M,¥). We further have for each f € C*°(M,¥¢) the relation

FoY lrjyl=) oz, foyled,
J J

which leads to C™(M,R)®¢ = C®(M,¢') C g’ because ¥ is a complete locally convex space
(Remark I1.5), and hence to C*°(M,¥) = g'. Putting the information together, we conclude
that

Hi(g) = g/g' = C=(M,£)/C=(M,¥') = C=(M, Hi(¥)).

Therefore the Lie group homomorphism G C C*°(M,K) — C*>°(M, H,(t)) integrates the Lie
algebra homomorphism g — H;(g), which implies that m1(G) C kerdg = (G, G). u

Theorem IV.7.  Suppose that K is finite-dimensional semisimple and let G := C® (M, K)..
Let 3 := 30(V(8) and w € Z2(g,3) the cocycle given by w(n,&) = [k(n,dE)]. Then the corre-
sponding central Lie algebra extension 0:=g®, 3 is universal and there exists a corresponding
central Lie group extension Z — G —» G with Z = m11(G) x (3/I1,) which is universal for all
abelian Fréchet-Lie groups A with A, = a/m(A).

Proof. First we note that g — g is a covering (Lemma I1.7), so that for each locally convex

space a the natural map
§:Lin(s, a) = H(g,0), 7+ [you]

is injective ([NeOlc, Rem. 1.6]).

It has been shown in [Ma02, Thm. 16] that § is also surjective, so that g is weakly universal
for all locally convex spaces a. Since g is perfect by Proposition IV.6, the Lie algebra g is a
universal central extension of g.
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Furthermore, the period map per,:m2(G) — 3 has discrete image II,, (Theorem II.9). In
view of Theorem IIL.6, [Ne02b, Prop. VII.13] now implies the existence of a central Lie group
extension Z < G —» G with Z = (3/I1,,) x m1(G) corresponding to the Lie algebra extension
3 <= g — g and such that the connecting homomorphism 71 (G) — mp(Z) is an isomorphism.

To prove the universality of @, we use the Recognition Theorem IV.4. For that we have
to verify that
(1) ¢ is weakly universal,

)
(2) ¢ isAFréchet,
(3) 7T1(G):17~ _
4 m(G) € (G,q).

Since ¢ is finite-dimensional semisimple, (2) is trivially satisfied, and (1) has been verified
above. Further (4) follows from 7 (K) C K = (K, K) (Proposition IV.6). It therefore remains
to verify (3). For that we consider a part of the long exact homotopy sequence of the Z-principal
bundle ¢:G — G (cf. Remark IIL.8):

(3.11) 12(G) =71 (2) = m(G) = m(G) = m0(2).

According to [Ne02b, Prop. V.11], we have 6 = —per,, so that 7 (Z) = II, (as subsets of
3) implies that § is surjective. Moreover, the natural homomorphism 7 (G) — 7(Z) is an
isomorphism by the construction of G , so that the exactness of (3.11) implies that G is simply
connected. u

Remark IV.8. (a)If K is finite-dimensional and reductive, then K = 3(€) x (K, K). Therefore
m1(K) is contained in (K, K) if and only if K = 3(¢) x (K, K). In this case we have

C®(M,K) = C®(M,;5(8) x C=(M, (K, K))
and hence we have for G = C*(M, K). the direct product decomposition
G=GpxGy with Gp:=C*M,(K,K)). and Gz:=C>®(M,j3¥)).

In this case the Lie algebra g = C*°(M, £) has the direct decomposition g = g’ @ 3(g) with
g = C>*(M,¥') (Proposition IV.6) and 3(g) = C*°(M,3(k)). It is easy to see that every Lie
algebra cocycle w € Z2(g,Y’) vanishes on g’ x 3(g) C g x g because g’ is perfect. From that one
further derives that a weakly universal central extension of g can be obtained with

3=sm(V(¥)) ® A*(3(0)),

where for a locally convex space E the space A%(E) is defined as the quotient of E®, E modulo
the closure of the subspace spanned by the elements e®e, e € E. To describe the corresponding
cocycle, we write £ € g as { = (¢,§) with ¢ € ¢’ and & € 3(g). Then a weakly universal
cocycle is given by

w(&n) = ([ke (&', dn")], & A1)

R LAet G p be tAhe universal central extension of Gp from Theorem IV.7 and define G =
Gp x Gz, where Gz is the 2-step nilpotent Lie algebra

3(0) Xw, A%(3(g))  with  wz(&,m) =EAn.

Using Theorem IV.4, we see that Gz is_a weakly universal central extension of Gz = gz.
Theorems IV.4 and IV.7 now imply that G is a weakly universal central extension of G.

(b) As we have seen in Proposition IV.6, the Lie algebra g = C*°(M,¥) has the commutator
algebra g’ = C°°(M,¥). On the other hand g = g, x &, where ¢ corresponds to the constant
functions in g, and g. := {£ € g:{(xpr) = 0}, where x) € M is any point. For two elements
&, n € g« we then have d[¢, n](xpr) = 0, showing that [g., g.] is in general not dense in C°(M, ).
This defect comes from the observation that in the algebra C°(M,R) the ideal C>°(M,R)? is
contained in {f € C°(M,R):df (xp;) = 0}, and it is easy to see that we actually have equality.m
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V. Lifting automorphisms to central extensions

In this section we discuss the problem to associate to a pair (vg,7vz) of an automorphism ¢
of G and vz of Z an automorphism 7 of a central extension G of G by Z restricting to vz
on Z and inducing vg on G. This section is independent of the others. Its results apply to
general infinite-dimensional Lie groups. The key results of this section are Proposition V.4 which
gives for a simply connected G a necessary and sufficient condition for the existence of 7, and
Theorem V.9, saying that for smooth actions of a Lie group R on G and Z which lead to a
smooth action on the Lie algebra g, there exists a smooth action on the group G. In Section VI
we will apply these results to the actions of the groups Diff (M) and C*°(M,K) on C*(M,K)..

For a Lie group G we write Aut(G) for the group of Lie group automorphisms of G
and Hom(G1,G2) for the set of Lie group morphisms from G; to Gy. For a homomorphism
©:G1 — G of Lie groups we write L(p): g1 — g2 for the corresponding homomorphism of Lie
algebras. In particular we then obtain a group homomorphism L: Aut(G) — Aut(g). As above,
let Z <> G—5G be a central extension of connected Lie groups, where Z, = 3/m(2).

In the following we write v = (vg,7vz) for elements v € Aut(G) x Aut(Z). The group
Aut(G) x Aut(Z) acts on the group Z2(G,Z) by

v-fi=vz0fo (gt 6.
It likewise acts on Z2(g,3) by
fw=L{yz)o fo(L(ve)™" x Live)™").
The following purely algebraic lemma will be quite useful in the following.
Lemma V.1. (a) For i =1,2 let él =G, X5, Z; be a central Lie group extension of G; by the

abelian Lie group Z; defined by f; € Z2(Gy, Z;). For v = (vag,7vz) € Hom(Gy,G2) x Hom(Z1, Z5)
and a function h: Gy — Zy which is smooth in an identity neighborhood, the formula

7(9,2) := (va(9),7z(2)h(g)), g€ Gi,2€ Z1

defines a Lie group morphism Gr — Go if and only if the relation

(5.1) vz(fi(g,9")h(g9g") = f2(va(9),7a(g)) h(g)h(g)

holds. Every Lie group homomorphism ﬁ:@l — G, mapping Z1 into Zo is of this form.
For G =Gy =G, Z =27y = Z> and (va,vz) € Aut(G) x Aut(Z), formula (5.1) is
equivalent to

(5.2) (v-£)(9,9")1(9,9") " = holgg ) ho(9) tholg) ', 9.9 €G
for the function hg :=inv(h) ov5", where inv(h)(z) := h(z)~t.

or 1 =1, et g; = g; Xw; 3i be a central extension of the topological Lie algebra g; by the
b) For i =1,2 let g T [ ion of th logical Lie algeb by th

abelian Lie algebra 3; defined by w; € Z2(gi,3:). If v = (7g,7;) € Lin(g1,92) x Lin(31,32), then
for a € Lin(g1,32) the formula

V(w, 2) == (va(2), 7% (2) + a(@)), @€ 81,2 €51,
defines a continuous Lie algebra morphism g1 — g2 if and only if the relation

(5.3) w2 (7a(®),7a(@")) = % (Wi (@,2)) + o[z, 2'])
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holds. Every morphism g1 — g2 mapping 31 < 3o is of this form.

For g =g1 =02, 3 =3 =3, (Yg,7) € Aut(g) x Aut(3), and oo := aovg', formula
(5.3) is equivalent to y.w — w = dag.
(c) Let R be a Lie group and v: R — Aut(g) x Aut(3),r — (rg,7;) a homomorphism such that
the corresponding actions on g and 3 are smooth. Let a: R X g — 3 be a smooth map which is
linear in the second argument. Then

V(). (z,2) := (rg(2),13(2) + alr,z)), reRzegzey,

defines a smooth action of R by automorphisms of g if and only if for each r € R the function
ay = afr,-) satisfies (5.3) for v(r), and « satisfies the cocycle condition

(5.4) a(rr,z) = ry.a(f, ) + a(r,7g.2), r,TE€R,x€g.

Proof. (a)If (5.1) is satisfied for some function h which is smooth in an identity neighborhood,
then 7 is a group homomorphism which is smooth in an identity neighborhood, hence a morphism
of Lie groups.

Assume, conversely, that 7: él — 62 is a Lie group homomorphism mapping Z; into Z,.
Then 7 has the form

(g, 2) = (1a(9), vz(2)h(9)),

where h:G; — Z» is a function which is smooth in an identity neighborhood, and an easy
calculation leads to (5.1).
(b) The proof is a straightforward verification.
(¢) According to (b), the requirement J(r) € Aut(g) is equivalent to (5.3) for v(r) and «,.
Suppose that these conditions are satisfied. It is clear that 7 defines a smooth function Rxg — g,
so that we only have to see which condition on «a means that 7 defines a representation of R
on g. That this is equivalent to (5.4) follows from

r.(F.(z,2)) = (rgTg.@,m375.2 + 15.a(F, ) + ar,75.x))

and
(rr).(z,2) = (rgrg.x,r375.2 + a(rr, x)). u

Lemma V.2. If v € Aut(é) preserves the subgroup Z, then vz := v |z is a smooth
endomorphism of Z .

Proof.  This follows from the fact that Z is a submanifold of G in the sense that each point
in Z has a neighborhood which is diffeomorphic to a product of an open subset of Z and a
transversal manifold. ]

If Z < G —» G is a central extension as discussed above, then we define
Aut(G, Z) == {y € Aut(@):~v(2) = Z}.
In view of Lemma V.2, we then have a natural homomorphism
n:Aut(G, Z) = Aut(G) x Aut(Z), n(v)(a(9),2) = (a(v(9)),7(2))-
To each f € Hom(G, Z) we assign the element of Aut(G,Z) given by f(g) :=g¢gf(q(g)). Then
kern = {ff € Hom(G, Z)} = Hom(G, Z).

([NeOla, Lemma IL.9]).
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Lemma V.3. If v = (vg,7z) € Aut(G) x Aut(Z) is contained in the range of 1, then there
exists o € Lin(g,3) satisfying (5.3). If, conversely, G is simply connected and o € Lin(g,})
satisfies (5.3), then there exists a unique automorphism 7 € Aut(G, Z) with n(¥) =~ and

L()(z,2) = (L(ye)-7,L(vz)(2) + a(z)), @ €g,2 €5

Proof. If v = 5n(7), then L(¥) € Aut(g) preserves 3 and induces an automorphism of
(Lemma V.2). Hence it is of the form

L(®).(z,2) = (L(ya)-w, L(vz)-z + a(z)),
where a:g — 3 is a continuous linear map (Lemma V.1(b)). This implies the first part of the
assertion.

Suppose, conversely, that (5.3) is satisfied by « € Lin(g,3) for 74 := L(yg) and v; :=
L(vz). Since G is simply connected, the exact sequence for central Lie group extensions ([Ne02b,
Th. VIL.12]) implies that the natural map H2(G,Z) — HZ2(g,3) is injective.

Now it easily follows that it is equivariant with respect to the action of Aut(G) x Aut(Z)
on both sides. Our assumption implies that [y.w] = [w] in HZ2(g,3), so that the equivariance of
D together with the injectivity of the corresponding map on the cohomology groups implies that
[v-f] = [f] in H2(G, Z). Now the existence of the automorphism 7 follows from Lemma V.1(a).
The uniquenss of the automorphism 7 follows from the fact that any automorphism of the

connected Lie group G is uniquely determined by the corresponding automorphism of the Lie
algebra ([Mi83, Lemma 7.1]). ]

Proposition V.4. If G is simply connected and w € Z%(g,3) is a Lie algebra cocycle
corresponding to the Lie algebra extension 3 — g —» ¢, and G a corresponding Lie group
extension of G by Z, then v = (va,vz) € Aut(G) x Aut(Z) lifts to an autornorphism 7 €
Aut(CA?,Z) if and only if [yw] = [w], i.e., if the corresponding automorphism of g lifts to an
automorphism of g.

Proof. This is a direct consequence of Lemma V.3. ]

Lemma V.5. Suppose that o: R x G — G is a smooth action of the Lie group R by auto-
morphisms of the connected Lie group G'. Then the action of R on G lifts to a smooth action
0: R x G — G by automorphisms of the simply connected covering group G of G.

Proof. [NeOla, Lemma II.17] n

If G is not simply connected, then it might have non-trivial central Z-extensions corre-
sponding to trivial Lie algebra extension. These are discussed in the following lemma.

Lemma V.6. If G is of the form G = (G x Z)/T(p), where qo:G — G is the universal
covering morphism of G, w1 (G) = ker qg is identified with a subgroup of G, ¢:m(G) = Z is a
homomorphism, and
I'(p) :=={(d,¢(d):d € m (G)}

the graph of ¢, then v = (ya,7vz) € Aut(G) x Aut(Z) is in the range of n if and only if
(v, opom(vg)) - ¢ ! estends to a smooth homomorphism G — Z.

Proof. Let Jg be the natural lift of v¢ to G (Lemma V.5). The canonical map G x Z — G
is a covering, and G X 3 is the universal covering group of G. Therefore, if v = n(¥), the

automorphism % also lifts to some automorphism 5 of G x Z preserving the subgroup I'(y).
Then 7 is of the form

7(9,2) = (Ya(9),72(2)f(9)),
with f € Hom(G, Z). The condition that 5 preserves I'(¢) means that
Flm@) = (vzo9) ™ - pom(ya),

() - If, conversely, (yzo@) ' -@om (vg) extends to a morphism G- Z,

where m (va) = ¢
then the above formula yields an automorphism 5 on G x Z preserving I'(¢) which then factors
to the quotient group G. ]
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If 7, (G) C (G,G), then v € im(n) is equivalent to vz o ¢ = p o 1, (7g) because for every
homomorphism of G' to an abelian Lie group the restriction to m; (G) is trivial.

Lifting automorphic group actions to central extensions

In the preceding subsection we have lifted automorphisms of G to automorphisms of G.
Now we assume that we have a smooth automorphic action of the Lie group R on G, which
leads to a semidirect product Lie group G x R. We are looking for sufficient conditions to lift
the smooth action of R on GG to a smooth action on G which apply in particular to the action of
Diff(M) and C*(M,K) on C*(M,K)., where K is a Lie group and M a compact manifold.

The following lemma will be used to reduce the problem to the case where the group G is
simply connected.

Lemma V.7. Let Z* :=3/im(per,). Then there exists a central Lie group extension
'
VARRYELIEEE
corresponding to the cocycle w, and G is the universal covering group of G.

Proof. [Ne0la, Lemma II.16] ]

The following remark will be relevant for the argument in the proof of the Lifting Theo-
rem IV.9 below.

Remark V.8. (Local description of central Lie group extensions) Let ¢: G — G be a central
Lie group extension with kernel Z.

Let Q be the left invariant 2-form on G with Q. = w, where g = g ®, 3. Further let
ps;: 8 — 3 denote the projection onto 3 defined by this identification. We write a for the left
invariant 3-valued 1-form on G with o, = p;. Then the 2-form ¢*(} is exact with ¢*Q = —da
because ~dp, (2, 2), (', 2)) = py([(, 2), (&, 2)]) = w(, ).

In G we have an open e-neighborhood of the form U x Z C G , where the multiplication
is given for z,z',zx’ € U by

(z,2)(a',2") = (w2, 22" f7 (x,2"))

for a smooth function fZ:U x U — Z. This means that the left multiplication map Az,e) 18

given by (z',2') — (za',2'fZ(z')) for a smooth function fZ:U — Z. Let 0:U — G denote the
smooth section given by o(g) = (g9,€). Then 6 := —c*« is a 3-valued 1-form on G with

df = —do*a = —-0"da=0"¢"Q=Q and 6.=—p;odo(e)=0.
In view of the left invariance of a, we have on U x Z the relation
a=q"0+py0z,

where 07 = 0'(idz) is the Maurer—Cartan form on Z with 6z(e) = idy and pz:U x Z —» Z is
the projection onto Z. Therefore

o= Az$76)a =q"\,0+pL0, + q*(sl(fwz)a

which leads to
6=X\10 - 8'(f7)

and hence to
X6 —0=0'(f7), flle)=e.
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We assume that W is an open identity neighborhood in G diffeomorphic to an open convex
subset of g with WW C U. Then the Poincaré Lemma ([Ne02b, Lemma III.3]) implies for each
x € W the existence of a smooth function

f2:W =3 with  fi(e)=0 and dfi=(\0-06)|w.
Moreover, this function depends smoothly on x, so that the function

W xW =3, filz,y) = fi(y)

is smooth. From the uniqueness we now conclude that on W we have for each & € W the
relation fZ = qz o f3. This construction of the functions fZ will become crucial, when we lift
automorphic group actions on G to group actions on G in Theorem V.9. ]

Theorem V.9.  (Lifting Theorem) Let og: R x G — G, resp., 0z: R X Z — Z be smooth
automorphic actions of the Lie group R on the connected Lie groups G, resp., Z. Assume
further that G is simply connected and that there exists a smooth function a: R x g — 3 such
that

O’E(T)(SL’,Z) = (ra,rz+a(r,z)), reRxecgze;

is an action of R on g by automorphisms. Then there exists a unique smooth action
og: RxG—G

by automorphisms such that the corresponding derived action is o5

Proof. In view of Lemma V.3, each automorphism ag(r) of g integrates to a unique auto-

morphism of G. It is clear that the uniqueness implies that we obtain an action oa of Ron G
by smooth automorphisms. It remains to show that this action is smooth.

The action og lifts uniquely to an action og: on the universal covering group G* of G by
Lie group automorphisms which can also be viewed as a central extension of the simply connected
group G by a group Z* = ;3/m (Z*) (Lemma V.7). If the action o¢s is smooth, then the induced

action oy is also smooth. Hence it suffices to show that og: is smooth. Therefore we may

w.l.0.g. assume that G is simply connected, i.e., G=G".

First we consider the local situation in a suitable small neighborhood of the identity in G.
For r € R we write rg := og(r,+) and rz := 04(r,-). In G we have an open e-neighborhood of
the form U x Z C G, where the multiplication is given for ,2’,za' € U by

(z,2)(a',2") = (w2, 22" f7 (x,2"))

for a smooth function fZ:U x U — Z. Let W and f:= f&:W x W — 3 with fZ =gz o f be
as in Remark V.8 determined by

dfy = (A0 = 0)|lw for f, = f(z,").

Now let 7 € R and Wy C W be an open e-neighborhood diffeomorphic to a convex set such
that W, C W. Let «, be the left invariant 3-valued 1-form on G with «,(e) = a(r,-). Then
(5.3) implies that

r&Q —L(rz) o Q = —da,

because both sides are left invariant 2-forms which coincide in e because
W(L(Tg)..l‘, L(TG)y) - L(Tz).W(.T,y) = O{([Jf,y]), T,y €9

On Wi we therefore have d(r50 — L(rz) o 8 + ) = 0, so that there exists a unique function
hr: W1 — 3 with h.(e) =0 and dh, =r 0 — L(rz) o0+ ;.
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On W, x Wy we consider the function (rf.f)(z,y) = L(rz)~'.f(rg.z,rg.y). Then
(r*.f)e = L(rz) *r& fro .z, so that on Wy we have
d((rf.f)z) = L(rz) 'rédfra.c = L(rz) ' rg (A, 0 — 6)
=L(rz) "((Arg.a0rc) 0 —150) = L(rz) H ((ra o Ag)*0 — r(,0)
=L(rz) N (\irg0 — r0).
Now the left invariance of «, leads to

d((r*.f)z — fo) = L(rz) " (A\ir&0 —r50) — A0 + 6

=L(ry) (/\* rg0 —L(rg)of) — (rg0 —Lry) o 9))
=L(rz) 1()\* TCH L(r )Oe-l-ar)—(TZ;H—L(Tz)OH-FOér))

=L(rz) '(Asdh, —dh,) = d(L(rz) " (Aihy — hy)).
In view of the normalizations f,(e) = f(x,e) =0 = h,.(e), we have

((rF.f)e = fa)(e) = L(rz) " ".f(rg.z,e) = 0
and
L(rz) *(\sh, — hy)(e) = L(rz) th.(z).
Therefore
(5. 1)e = fo = L(rz) " (A\phy = he) = L(rz) 'R (),
which leads to

(5.5) flra.w,ray) = L(rz)-f(2,y) = he(zy) — he(y) — e (2)

for z,y sufficiently close to e.

Let qz:3 — Z be the quotient map, fZ := gz o f and hZ := gz o h,. Then we have an
e-neighborhood of the form Ws x Z in @, where Wy C W1, and the multiplication on Wy x Z
is given by

(9,2)(9',2") = (99", 22" (9. 9")).
Pick an open symmetric connected e-neighborhood W3 C Wy with r.W5 C W, such that (5.5)
is satisfied for x,y € W5. Then a similar argument as in Lemma V.1 shows that the map

00(r):Ws x Z = Wo x ZC G, (g,2) = (ra-g,rz(2)hf(9))

is a smooth homomorphism of local groups. Using Lemma II.3 in [Ne02b] and the simple
connectedness of G, we see that o¢(r) extends to a smooth homomorphism oo(r):G — G.
The derivative of this automorphism in e € G is given by

doo(r)(e)(x,2) = (rg.x,77.2 + dhZ(e)(z)) = (rg.x,rz.2 + dh,.(e)(x))
= (rg.x,rz.z + alr,x) + 0(e)(rg.x) — rz.0(e)(x))
= (rg.xz,rz.z + afr,z)) = 0”9\(7”)(1}, z).

Since both automorphisms induce the same Lie algebra automorphism, oo(r) = o5(r) for each

r € R, so that we obtain an explicit description of o5 near to the identity in G.

It remains to show that this action is smooth. Since R acts by smooth automorphism on
G, it suffices to show that the action is smooth in a neighborhood of (e,e) and that all orbit
maps R — G are smooth in a neighborhood of e. Since the latter property can be derived from
the first one (G is connected), it remains to see that the action is smooth in a neighborhood of
(e,e). To this end, we slightly adjust the choices of W7 and W3 above. First we choose an open
e-neighborhood V' in R and W) such that, in addition, V.W; C W . Likewise we choose V; CV
and W3 C Wy with V4. W3 C Ws. Then the function (r,z) — h,(x) is defined on V x Wy,
and the construction of h, with the Poincaré Lemma implies that this function is smooth in
a neighborhood of (e,e) (cf. [Ne02b, Lemma II1.3]). This implies that the action map o is

G
smooth on a neighborhood of (e,e) contained in V; x W5, and this completes the proof. u
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Corollary V.10. Let og: Rx G — G be a smooth automorphic action of the Lie group R on
the connected Lie group G'. Assume that G is simply connected and that rfw = L(rz) ow holds
for all r € R. Then the action of R on G lifts uniquely to a smooth automorphic action of R
on G such that the corresponding action of R on g = g®, 3 s given by

r.(z,z) = (L(rg).z,L(ryz).z), reR,zecg,z¢€;}.
Proof. We apply Theorem V.9 with a = 0. ]

Remark V.11. Suppose that Z — G —» G is a central Lie group extension and that the
R-action on the group G* from Lemma V.7 exists. If this action preserves the discrete subgroup
m (G) then it factors through an action on G = G m (G ) but this condition has to be checked
directly in concrete cases because there is no general reason for it to be satisfied. If G is simply
connected, then the natural mal H2(G, Z) — H2(g,3) is injective, which permits us to lift every
v € Aut(G) x Aut(Z) fixing the cohomology class [w] in HZ2(g,3) to an automorphism of G.If
G is not simply connected, then we only have an exact sequence

. — Hom(m, (G), Z) — HZ(G,Z) — H}(g,3) —
([Ne02b, Th. VIL.12]) which shows that in general there are inequivalent central Z-extensions a

of G with the same Lie algebra, so that there is no reason for a v € Aut(G) x Aut(Z) to lift to
a particular one. u

Remark V.12. (a) If g is topologically perfect, i.e., the commutator algebra [g,g] is dense
in g, then in (5.5) the continuous linear map «, := a( -):g — 3 is uniquely determined by
r*w — w = —da, . Therefore

—da ~= (rr)*w — L(rz) L(Fz)w
= (r"w—L{rz)w) + ™ L(rz)w — L(rz) L(7z)w = —7da,. — L(TZ)dO‘}v

5.4). In view of this, (5.4) is only needed if g is not topologically perfect.

—~

implies the relation

—~

(b) If Gisa regular Lie group in the sense of [Mi83], then every automorphism of g integrates
uniquely to an automorphism of G ([Mi83, Th. 8.1]). In our context it does not make sense
to work with this additional assumption because we anyway need the more explicit information
obtained in the proof of Theorem V.9 to show that the action is smooth. ]

Problem V.1. Let G be Lie group and og: R x G — G an action of the Lie group R on G
by Lie automorphisms such that the corresponding action o4: R x g — g is smooth. Does this
imply that og is a smooth action? u

VI. Diffeomorphism groups acting on current groups

If M is a compact manifold, then the group Diff(M) of all diffeomorphisms of M has a natural
Lie group structure and the action of this group on M induces a natural smooth action on each
group C'*° (M, K) of smooth maps into some Lie group K. In this section we apply the Lifting
Theorem of the preceding section to see how the action of Diff(M) on G = C*°(M, K), can be
lifted to a smooth action of Diff(M) on a central extension G whenever this central extension
of G is such that the connecting homomorphism 71 (G) — 7o(Z) is an isomorphism. The latter
means that G is weakly universal for discrete abelian groups. This condition is in particular
satisfied for the universal central extension of G if K is finite-dimensional and simple (Theorem
IV.7). We also lift the conjugation action of C°°(M,K) on G to G.

The manifold structure on Diff (M) is obtained by the observation that this group is an
open subset of the mapping space C*° (M, M) which is a smooth manifold ([KM97, Th. 43.1]).
Let E:Diff(M) x M — M be the natural action of Diff (M) on M given by the evaluation. To
see that E is a smooth map, it suffices to observe that the corresponding map

E:C(M,M)x M — M, (p,m)— p(m)
is smooth ([KM97, Th. 42.13]).
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Lemma VI.1. If M is a compact manifold and K a Fréchet—Lie group, then the natural action
Diff (M) x C*(M,K) = C*(M,K), (p,f) = foyp™

is smooth.

Proof. Let U C K be an open identity neighborhood diffeomorphic to an open subset of €.
Then [NeOlb, Th. III.5] implies that the action of Diff(M) on the open subset C*(M,U) C
C*(M, K) is smooth.

For a smooth function f: M — K the orbit map

Diff (M) - C>*(M,K), ¢— foc,of1

is smooth because the map Diff (M) x M — K, (¢,m) — f(¢ (m)) is smooth, which in turn
follows from the smoothness of the action of Diff (M) on M.

Now the smoothness of the action of Diff (M) on C* (M, K) follows from the observation
that for each f € C°°(M,K) the map

is smooth because the orbit map of f is smooth and the action on C*(M,U) is smooth. n

The general argument behind the proof of Lemma VI.1 is that an automorphic action of a
Lie group R on the Lie group G is smooth if
(1) there exists an open invariant identity neighborhood on which the action is smooth, and
(2) all orbit maps are smooth.

Remark VI.2. (a)Let G := C*(M,G).. On the Lie algebra g = C*°(M, €) of G we consider
the continuous cocycle

wigxg—3uY)=QYM,Y)/dQ(M,)Y), w(&n) = [k( dn)),

where & is a continuous invariant symmetric bilinear form € x £ = Y and Y is a s.c.l.c. space.
For ¢ € Diff(M) we have

w(p™ .6 07 ) = w(@ € ™) = [K(P"E, de™n)]
= [(@"E, 0 dn)] = [¢" k(& dn)] = ¢~ [K(€,dn)] = ¢~ w(£, ).

Here the last expression refers to the natural action of Diff (M) on 35 (Y) which exists because
the natural action on Q' (M,Y) preserves the closed subspace d2°(M,Y’) because ¢*(df) = do* f
for f € Q°(M,Y). Lemma V.1(b) now implies that

0.(&2) == (Eop ! (p71)"2)

defines a smooth action of R on the Lie algebra g = g ®,, 3 by Lie algebra automorphisms.

(b) The cocycle w is fixed by Diff (M) if and only if this group acts trivial on 3, (Y"), which (for
Y #0) is equivalent to the triviality of the action on 35/(R). If this is the case, then we have in
particular that for each vector field X on M and each 1-form « the 1-form

Lx.a= ixda-l-d(ix.a)

is exact, which implies da = 0. That all 1-forms are closed means that dim M < 1, so that
M = S! is the only non-trivial compact manifold for which the Lie algebra of vector fields acts
trivially on 3 (R). For a 1-form a on M and ¢ € Diff (M) we have

/ w*a:deg(ga)/ Q.
st st

Therefore the identity component Diff(S!), of orientation preserving diffeomorphisms acts triv-
ially on 35:(R) = R, and if a diffeomorphism changes orientation, it acts by multiplication by
—1 on 351 (R). =
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Theorem VI.3. Let K be a connected Fréchet-Lie group, M a compact manifold, G :=
C>®(M,K)., we Z*(g,5m(Y)) a cocycle of product type with discrete period group. Further let
G— G bea corresponding central extension of G by a Lie group Z with Lie algebra 35 (Y)
for which the connecting homomorphism m (G) — wo(Z) is an isomorphism. Then the following
assertions hold:

(1) The automorphic action of Diff(M) on g =g D, 3m(Y) by p.(§,2) := (o™t (p71)*.2)

integrates to a smooth action of Diff (M) on G.
(2) The automorphic action of C*®°(M,K) on g=g®, 3m(Y) by

f(&2) = (Ad(f)-€, 2 = [K(8' (), )

integrates to a smooth action on G.

Proof. First we use [NeOlc, Lemma 4.6] to see that the condition that the connecting
homomorphism 1 (G) — mo(Z) is an isomorphism implies that the central extension ¢: G — G
is weakly universal for all discrete abelian groups A. Now [NeOlc, Prop. 4.7] further implies that
G [ Ze = G , showing that G can be viewed as a central extension of the simply connected group
G by Z..

(1) Using Lemma V.5, we lift the smooth action of Diff (M) on G to a smooth action on G. Now
the Lifting Theorem V.9 implies that this action can be lifted to a smooth action of Diff (M) on
é, integrating the given action on the Lie algebra g.

(2) follows as in (1) from Proposition III.3 and the Lifting Theorem V.9. =

For the case of loop groups, part (2) of Theorem VI.3 has already been observed in [PS86].
Theorem V1.3 is a good starting point for a systematic investigation of the action of subgroups
of Diff(M) on coadjoint orbits of the central extension G. Although Diff (M) acts on the group
G and its Lie algebra g, the corresponding action on the topological dual ﬁ’A mixes the coadjoint
orbits of G. Here the interesting point is that specific coadjoint orbits of G can be assigned to
geometric structures on the manifold M and one can only expect the corresponding subgroups
of Diff (M) to act on these orbits. This point of view will be explored in [NV02] (see also [PS86)
for the case of loop groups which is somehow trivial, and [EF94] for the case of complex Riemann
surfaces).

VII. Problems arising for non-connected groups

In this section we discuss some of the additional difficulties arising for non-connected groups.
One such difficulty is that for a non-connected group the conjugation action of G on G might
induce a non-trivial action on the fundamental group =;(G). A related problem is that the
surjective homomorphism G — 7(G) does in general not split. Another problem is that we find
for connected groups K certain natural maps

Xm,n577m(K) X 71'n([() - 7Tn+m(K)

given by commutators, and we do not know whether they are always trivial or not. This is of
particular interest for m =n = 1. If K is finite-dimensional, then 7 (K) is trivial, so that xi1
is trivial. For infinite-dimensional groups, the maps x11 are harder to study because 71 (K)
need not be generated by Hom(T, K).
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Central extensions of non-connected groups

Remark VIL.1. Let G be the identity component of the Lie group GT and assume that we
have a central extension Z < G —» G as above. When can we extend this central extension to
a central extension Z < G+ —» G+ of the full group G*7

Since Z C Gt is central, the subgroup G C G+ acts trivially by conjugation on Z, so
that we obtain an action of G+/G ~ Gt/G = mp(GT) by Lie automorphisms on the group Z.
Let oz denote the corresponding action of G, resp., mo(GT), on Z. A necessary condition
for the existence of a central extension G+ of G is that the adjoint action of G* on g can be
extended to an action of Gt = G*/Z on g = g®, 3 of the form

c(9).(z,2) == (Ad(g).z,04(9).2 + a(g, z)),

where a: GT x g — 3 is a cocycle, so that ¢:GT — Aut(g) defines a representation of G on g.
The existence of this action implies in particular that

07(9) 0w —w o (Ad(g) x Ad(g)) € BZ(g,3)

for all ¢ € G* (Lemma V.1). For g € G this follows automatically from the existence of the
conjugation action of G on G. =

In the preceding section we have constructed central extensions of the identity component
C>*(M,K), of the group C°(M, K) which in general is not connected. In this subsection we
briefly discuss the difficulties involved in extending central Lie group extensions from the identity
component of a Lie group to the whole group.

Remark VIIL.2. We resume the situation of Theorem VI.3. As we have seen in Proposition
II1.3, the condition under (a) is satisfied for the group G+ = C*°(M,K) and the cocycle
w(é,m) = [k(& dn)] for oz(g) = id;. We recall that mo(Z) = m1(G), so that the divisibility
of Z, = 3/, implies that Z = Z, x 71 (G). Since the action of Gt on g fixes 3 pointwise,
the corresponding action on G fixes Z, pointwise. Therefore the action is given by an action of
70(GT) =2 [M, K] on 7p(Z) = 71 (G) = 71 (GT) and a map

C:mo(GT) x T (G) = Z.  defined by  a.(z,8) = (2{(a, B), a.3).
The map ( satisfies the cocycle identity
((araz, B) = ((a1, a2.8)((az, B),

so that ¢ is a bihomomorphism if the action of 7o(GT) on 7 (GT) = 71 (G) is trivial. Since the
splitting of Z. in Z is not natural, we cannot expect to find a complement which is invariant
under the action of mo(GT). Nevertheless, if ¢: G = @ is the quotient map of the central
extension and we consider K as a subgroup of G, then ¢ }(K) = K x Zy, where Z; is an
open subgroup of Z. To see this, we first construct the centAral extension CA}'* of the subgroup
G, =C(M,K). of G =G, x K, and then observe that G = G, x K because this group is
simply connected with the Lie algebra g = g« @ t. As the cocycle w on g is invariant under
Ad(K), there is no obstruction to lifting the action of K on G, to G, (Theorem V.9). In this
picture m (K), realized as a subgroup of K arises naturally as a subgroup of Z, but the action
of GT does not leave the subgroup K of G invariant. ]

In Proposition A.3 below we will see that the action of mo(Cy(M, K)) on 71 (Cy(M, K)) is
trivial for M = S, d > 1, and more generally if M is homotopic to a space of the form S'AN.
In this case the action of mo(G™) on Z is completely encoded in the map (. Passing from
G to the open subgroup C*®(M, IN(), where K is the universal covering group of K, reduces
the number of connected components, so that in this context it is more probable that Gt acts
trivially on Z.
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Remark VII.3. In this remark we discuss the problem of finding a formula for ¢ which is as
explicit as possible. For that we have to understand how an element v € Gt = C* (M, K) acts
on the group G (Theorem VI1.3), where the action on the Lie algebra g is given by

Adg(7).(§,2) = (Ad(7).£, 2 = [6(5' (), ©)]).-

Let © € Q*(G,3m(Y)) be the left invariant 2-form with Q. = wsi,. Then the calculations
in the proof of Proposition IIL.3 show that Ad(y)*w —w = df(y) with 6(y) = [k(6'(7),")] €
Lin(g,3m(Y)). Let ©(y) € Q1 (G, 31 (Y)) denote the corresponding left invariant 1-form on G.
Then the conjugation automorphism ¢, (f) := vfy~" of G satisfies ¢} — Q = dO(y). For a
smooth map n € CX(S!, @) we then obtain

[ee= [ 816) . S Nar e st

€QL(M,E) €C=(M,E)
Let St~ R/2nZ, and 2:]0,27] — Z a smooth curve with
200=0 and §'(x)(t) = -0 (1)) = —6(y)(d' () (1)

Further let 7:[0,27] — G denote the horizontal lift of the curve ¢y.n defined by 7(0) = e and
SM(t) = (Ad(v).6'(n)(t),0), t € [0,27]. Then the pointwise product 7 - 2:[0,27] — G is a
smooth curve with

§'(71 - z) = 0'(7) + 0" (2) = Adg(7)-(0" () (1), 0) = (Ad(y).8' () (t), —[5(8' (7), 8" () ()]

because z is a curve with central values. The endpoint 7(27)z(27) lies over 7j(2x) for the lift 7
of i to G, hence corresponds to v.([7],0) = (v.[n], C(v, 7)) € m(G) x Z.

Let us assume, in addition, that n(S') C K, i.e., that each map 7(t): M — K is constant,
so that we can think of 7j as a curve in K C G from e to the element [n] € m(K) <= 71 (G). This
curve is mapped by ¢y € Aut(é) to -z ending in 7(27)z(27). If, in addition, Ad(y).6'(n)(t) =
8t (n)(t) holds for each t € [0,2n], then 7j(t) = n(t), and therefore

@ L) = =2 =z~ [ (608 o)) ).

Since each &'(n)(t) is a constant function, we identify it with an element of £, and write [§'(7)]
for the class of §'(y) € Q(M,€) in 35,(€). Then we have for each ¢ the relation

[5(8'(7), 0" () ()] = K([6' (1], ' ) (2)) € 31 (Y),

via the map
am(®) x =3 (Y), ([Bl,2) = [£(B, )],

which is well defined because dk(§,x) = k(d€, x) for £ € C°(M,¥). In this sense we also have

27

(7.2) i) =az (= w(0 L [ S at)).

0
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Example VIL4. (a) In [PS86] one finds an explicit description of the action of mo(G™)
on Z for the loop group case M = S! and K compact and simple. We now consider the
situation, where M = S! for a general connected groups K satisfying m2(K) = 1. This
holds in particular for finite-dimensional Lie groups K. In this case mo(G1) = 7(K) and
71 (G1) =2 my(K) x m(K) =2 7w (K). As the conjugation action of 7y (K) on itself is trivial, the
action of 71 (K) on Z is completely determined by the bihomomorphism

¢m(K) xm(K)— Z,.

We think of S! as R/27Z, so that we think of functions on S! as 2m-periodic functions on R.
Further 351(Y) =Y via the integration isomorphism [§] — % fsl B, and Z, =2 Y/Ilg1 .

Let v € C°(SY, K) be a smooth loop. Then we identify [6'(v)] € 3ar(€) with 5= [, 6'(7)
and obtain with (7.2) for n € C°(SY K):

bbb = ar(= (5 [ d0. [ d)).

If K is finite-dimensional and 7' C K a maximal torus, then the natural map Hom(T,T") —
71 (K) is surjective, so that [y] and [n] have representatives for which §'(y) =z and &'(n) =y
are constant functions. As [z,y] = 0, the assumptions leading to (7.2) are satisfied, and we
obtain the simple formula

(] ) = az( — 27(z,y)).

We conclude that (¢ is trivial if and only if 27x,27y € kerexp, for the exponential function
expr:t — T of the maximal torus 7' C K implies s(z,y) € 5=1Ilg1 ;.

(b) To understand this condition, let us assume that K is compact and simple. Then V() is
one-dimensional, so that we may w.l.o.g. assume that Y = R. Further m3(G) = 75(K) = Z, and
we may therefore assume that Ilg: ,, = 27Z , where

1

w(&n) = %/0 ﬂ/@(ﬁ(&),ﬁ'(&))d&.

Let t C & be the Lie algebra of a maximal torus of K. For the coroots & of the long roots
o € A Cit* we then have
—k(d, @) = k(id,ic) = 2

for the complex bilinear extension of & to £ (see Appendix ITa to Section II in [NeOla]). We
claim that for z € t¢ we then have

k(A z) C ZA(x).

In fact, let « € A and r,(z) := x—a(z)d the corresponding reflection in t¢ . Since the restriction
of Kk to t¢ is invariant under all these reflections, we have

k(a,z) = —k(ry.a,x) = —k(d,re.z) = —k(&, z) + a(x)k(a, &),
so that 1
k(d,x) = 504(:3)&(64,64) € Za(x)

follows from x(&,&) € 2Z for all roots (including the short ones) (see [NeOla, loc.cit.]). From
A(q) C Z for each coroot, we obtain in particular

k(A A) C Z.

If Z(K) is trivial, then for = € t the condition exp 27z = e is equivalent to e?724% = id,

which means that A(z) C iZ. This is satisfied in particular for 2 € iA. We have

k(z,iA) CiZA(z) C Z
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whenever A(z) C iZ. Nevertheless, it may happen that there are two elements z,y € t with
2rx, 21y € kerexpy but k(z,y) € Z.

(¢) Finally we consider an example where ¢ is non-trivial. For € = su(2) and K = SO(3,R) =
SU(2,C)/{*e} we have kerexp, = Zmwic, where A = {£a}. For # =y = L& we therefore get

1 1
w(z,y) = —35(d,0) = 5 £ 2.
We conclude that for K = SO(3,R) the group mo(G") =2 m (K) = Zy = {£1} acts non-trivially
on Z = R/2xZ x Zy by s.(z,t) = (c(s,t)x,t), where c:Zs X Zo — Z» is the unique non-trivial
bicharacter satisfying ¢(—1,—-1) = —1. ]
Remark VII.5. (a) Let z, € M be a base point, and assume that M is connected of positive
dimension and K is a Banach-Lie group. We consider the group G, = CX(M,K).. If
¢ € Hom(T, G.), then the map

®: M — Hom(T,K), zw (t— o(t)(x))

is a continuous map with ®(z,) = e (the constant homomorphism). Since K has no small
subgroups, the constant homomorphism e is isolated in the set Hom(T, K') C C(T, K). Therefore
the continuity of ® implies that it is constant, and thus Hom(T,G,) = {e}. On the other hand
m(Gy) = [M A S, K] may be non-trivial. A typical example is K = SU(2,C) and M = S2,
where m(G,) = m3(K) = Z. Hence G, is an example of an infinite-dimensional Lie group for
which 71 (G.) is not generated by the homotopy classes of homomorphisms T — G.,.

(b) According to [ASS71], the unit groups G := A* of von Neumann algebras on separable
Hilbert spaces all have the property that Hom(T, A*) generates mq(A*). ]

Problems VII. (1) Find a good characterization of those groups G for which a “universal
covering group” exists even if G is not connected.
(2) Generalize (7.1) to a general formula for ¢ without any additional assumption. |

The following two examples show that in general the universal covering group g: G- G
cannot be extended to a central/abelian extension of the full group G*. If the homomorphism
G —» mo(GT) splits, then we can simply form G x mo(GT) by lifting the natural conjugation
action of 7o(G1) on G to an action on G.

Example VII.6. We describe an example of a non-connected Lie group for which G, does not
split. Let

G::{ é :p,qEZ,zER}.

[ R ]
W

Then G. =2 R and 7(G) = Z2. The group G is a central extension of Z2? by R. An easy
calculation shows that the commutator group (G,G) of G is

1 0 =
(G,G):{ 01 0 :ZGZ}.
0 01
As the commutator group is non-trivial, G is not a semidirect product of G, and 7o(G). ]

Example VIL.7. In the group G of Example VIL.6, we consider the normal subgroup

N::{ é g :p,q,z€2Z}.

e W
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Then G/N is a central extension of mo(G/N) = Z% by T = R/Z. The commutator group of
G/N is given by (G,GQ)/((G,G)NN) = Z /27 = Z;. Therefore

T = (G/N), = G/N —» 73 = 715(G/N)

is a non-trivial central extension.
Suppose that we have an extension

TR« G —» Z

where @ is a covering group of G.. Then T is central in G because Z2 = m(G/N) acts trivially
on the Lie algebra of G/N , hence on (G/N),. Therefore G is a central extension of Z2 by R.
Since the commutator map (z,y) — zyx 'y ! factors through a bihomomorphism Z3% — R.
Since R has no non-trivial finite subgroups, the commutator group of G is trivial. Therefore G
is abelian, contradicting the assumption that G is a covering of the non-abelian group G.

We have thus shown that the group G has no universal covering group. ]

Lemma VIL.8. Let G := C.(M,K), where K is a Banach-Lie group and M a connected
topological space. Then the constant map e is the only element of G of finite order.

Proof. Assume that f* = e holds for some continuous base point preserving map f: M — K.
Further let U C K be an identity neighborhood containing no small subgroups and V C U an
open identity neighborhood with V¥ C U. Then the only element of order k in V is e because
otherwise U would contain a non-trivial subgroup of K. Therefore f~1(V) is an open subset of
M which coincides with f=!({e}), hence is also closed. As f preserves base points, this set is
non-empty, and the connectedness of M implies that f is constant e. ]

Example VIL.9. Let M =S!, K be a compact connected semisimple Lie group, and G :=
Ci.(M,K). Then mo(G) = m(K) is a finite group and Lemma VIL.8 implies that the exact
sequence G, — G —» mo(G) does not split. [

Appendix: Some homotopy theoretic background

A version of Hilton’s Lemma

This section grew out of an attempt to obtain a more conceptual proof of Lemma I.10.

Lemma A.1. Let G be a set with two group structures my(a,b) = ab and ma(a,b) = a*b
with identity elements e; and es. We assume that mo is a group homomorphism (G,m1)2 —
(G,m1), i.e., that

(ab) * (cd) = (ax¢)(bxd), a,b,c,d€G.
Then ey = es, m1 = mo, and the multiplications are abelian.

Proof. First we obtain
e1 xep = (ere1) * (ere1) = (ex * eq)(eg * e1),

showing that e; % e; is an idempotent for m;, and hence that e; = e; xe;. Now e; is an
idempotent for ms, so that we also get e = e1. Therefore e := e; = e is a unit for both group
structures. We now obtain for a,b,c,d € G:

bxc=(eb)x(ce) =(exc)(bxe)=cb and ax*xd= (ae)=*(ed) = (a*e)(ex*d)=ad.

We conclude that both group structures coincide and turn G into an abelian group. ]
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The above argument works with somewhat weaker assumptions. It also shows that if we
have two monoid structures with the same identity on a set M, then both coincide and are
abelian.

If G is a topological group and X an H -cogroup, such as a sphere S™, then we have on
the set [X,G] of homotopy classes of continuous maps X — G two natural group structures.
The first one is given by pointwise multiplication:

[flg] = [f - gl

and the second one is obtained by the comultiplication v: X — X V X by

[f1*[g]l == [f*g]:==[(fVg)orl]

According to [Br93, Lemma VII.3.4], both group structures satisfy the assumptions of Lemma A.1,
hence coincide. A similar argument applies to the set [X, @], of homotopy classes of base point
preserving maps, but if G is arcwise connected, we trivially have [X,G] = [X, G]..

Remark A.2. If X itself is a topological group, for example if X = S! = T, then we consider
the element [idx] in the abelian group [X,X]. Its powers form a cyclic subgroup [idx]% of
[X, X].
Let
(X, X]x [X,G] = [X,G],  ([f].[9]) = [g° f]

denote the natural composition map. We claim that in the group [X,G] we have
[Alidx]" = [f"], neZ.
In fact, for a fixed [f] € [X,G] the map
(X, X] = [X,G], [h]—[foh]
is a group homomorphism because
[ha]lhe] = [l % hao] = [f o (ha V hy) 0 5] = [f o hu] % [f © hs].

Therefore
[fleidx]" = [feidx]" =[f]"=[f"], ne€L,

and in particular [idy]® = [id%]. For X = S! = T this implies that for each n € Z and
f € C=(St,G) the maps
t— f(t") and te— f(H)"

are homotopic. [ ]

Whitehead products and some homotopy theory

Let G be a topological group. Then G acts by inner automorphism c,(z) := gzg~" on

itself. For each k € Ny the automorphism ¢, induces an automorphism 7 (cy) of the homotopy
group 7, (G) which is trivial if g € G, the arc-component of the identity of G. We thus obtain
an action of mo(G) on the groups m;(G), which for k£ = 0 is the conjugation action of mo(G) on
itself.

There are circumstance under which these actions are trivial.
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Proposition A.3. If G = C.(SY, K) holds for a topological group K , then 7o (G) acts trivially
on all homotopy groups m,(G), k€ Ny.

Proof. If G = C.(S% K) for some topological group K, then we have to consider the action

~

of mo(G) = 7 (K) on the groups mi(G) = w11 (K). To see that this action is trivial, we
view the pointed spaces S* as I*/0I*, where I = [0,1]. Then we view elements of G as
continuous function f:I — K, and an element of 7 (G) is represented by a continuous function
h: T¥*! — K. Then the action of [f] € mo(G) on [h] € m,(G) is given by

(FR) (1, s, ahgn) = f@)b(@y, o h, wpp) f) 1
The map f is homotopic to f; with support contained in [0, %] C I, and h; is homotopic to

a maps whose support is contained in [1,1] x I*¥. Therefore [f.h] = [f1.h1] = [h1] implies that

mo(G) acts trivially on m(G). ]

Corollary A.4. For G = C.(SL, K), d >0 and K a topological group, the action of my(G)
on all homotopy groups 7 (G) is trivial.

Proof. In view of d > 1, we have
C.(SY,K) = C.(S'AS?L K) = C, (S, C. (S, K)).
Therefore Proposition A.3 applies. ]

Now let G = C(S%, K) with d > 0 and assume that K is connected. Then the evaluation
map ev:G — K, f — f(x,) in the base point x, € S? is split by the map K < G mapping
k € K to the corresponding constant map. Let G, := C,(S% K) := kerev. We then obtain an
isomorphism G = G, x K, and therefore

mo(G) = mo(G) = ma(K),
and for k > 0:
Tk (G) Z e (Gy) X 7 (K) = wpppq(K) X w5 (K).

From Corollary A.4 we derive that the action of 7(G) on 7, (G.) is trivial. Since the projection
7 (G) — 7 (K) corresponds to the evaluation in z,, and all the elements of G, are trivial in
xo, we see that the action of mo(G) on 7 (G) can be written as

[£1-([]; [w]) = ([v] + xax([f]; [w]), [w]),

where the map
XdJc:ﬂ—d(K) X Wk(K) — 7Tk+d(K)

is a bihomomorphism. This map is given on the level of functions by xq4.x([f], [v]) = [f *v] with

(f *v)(@,y) = F@)o(y)f(z) " vly)

where we observe that this defines a map I**? = I* x I? — K vanishing on the boundary of
I*d A particular interesting case is d = k = 1, where we have a bihomomorphism

x1,1:m (K) x 1 (K) = m2(K).
Proposition A.5. If K = C.«(SY, H) holds for a topological group H, then the maps
Xd.k: Ta(K) X 1 (K) = mp4qa(K) are trivial.

Proof. Let f:I? — K and v:I* — K be continuous maps representing the elements
[f] € 74(K) and [v] € 7 (K). In view of C.(S% K) = C.(S4, C.(S1, H)) = C. (ST, H), we may
think of f as a function fvz I x I* - H, and likewise interprete v as a function o:I x I* — H.
As these functions vanish on OI x I?, resp., dI x I* they can be represented by functions f
supported by [0, 3] x I, resp., © supported by [+,1] x I¥. Then the function

IxI¥x I = H, (t,z,y)— f(t,z)o(t,y)f(t, )" o(t,y)""

is constant e, which implies that xq4.5([f], [v]) € matx(K) is trivial. n
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Remark A.6. For each pointed topological space X one has the Whitehead products
76 (X) X T (X) = Tpem—1(X), k,méeN.
These maps are defined as follows. We use the natural map
g:SkTm=l = grhtm — grk 5 m U I*F x 9™ — Skv ™
to define for two maps ¢ € C.(S*, X) and ¢ € C.(S™, X) the map
pryi=(pVe)og S5 X,
and by passing to the homotopy classes a map
Tk (X) X T (X) = Thpm—1 (X)), [0] % [9] = [+ 9],

With a similar argument as in the proof of Proposition A.5, one can see that if X is a
topological group, then all Whitehead products are trivial ([Br93, Probl. VIL.7.5]). For k=m =1
this implies in particular that 7 (X) is abelian because in this case

The Whitehead products are somehow close, but different from the maps x4 defined above. If
X = H is a topological group and K := C,(S!, H), then the Whitehead products are maps

Wk(K)XWm(K)—)Wk+m(K), k,m e Ny.

We do not know whether the Whitehead products correspond in this setting to the maps x4,
from above, but in this context we also have the direct argument in Proposition A.5 showing
that each xg4, is trivial. [ ]

Remark A.7. (Some information on [M,K],) Let K denote the simply connected covering
group of K . Then a base point preserving smooth map f: M — K lifts to K if and only if the
corresponding homomorphism m (f): 7 (M) — 71 (K) is trivial. We therefore obtain an exact

sequence "
C.(M,K) < C.(M,K) — Hom(r (M), m (K))

which immediately leads to an exact sequence
[M, K], = m(C\ (M, K)) < [M, K], = m(C\.(M, K)) — Hom(m (M), 7, (K)).

Here we use that the image of C,(M, INC) is open because maps with image contained in a
sufficiently small identity neighborhood can be lifted to the universal covering group of K. =

Remark A.8. One may also try to get some information on the xg4’s for the groups Gy :=
C(T?, K) for d > 2, but this becomes quite involved for the following reasons. In this case

Gg=2CO(T,Gg-1) = C(T,Gg_1) x Gag_1

(cf. Remark I.11(b)). If we ask for the action of mo(Gq4) on 7 (Gq), then we can use the same
argument as after Corollary A.4 to see that this action is trivial if and only if the commutator
map

X1,1:71(Ga—1) X T (Ga—1) = m2(Ga—1)

is trivial. Even for d = 2, this does not follow from Proposition A.5 because C(T, K) is larger
than the group C.(T, K). ]

Problem A.1. Let K be a connected topological group. Is the mapping
XdJc:ﬂ—d(K) X Wk(K) — 7Tk+d(K)

defined above trivial for d,k > 17 The case k = d = 1 is of particular interest. ]
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