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Abstra
t. These le
ture notes provide an introdu
tion to the representation

theory of Bana
h{Lie groups of operators on Hilbert spa
es, where our main

fo
us lies on highest weight representations and their geometri
 realization as

spa
es of holomorphi
 se
tions of a 
omplex line bundle. After dis
ussing the

�nite-dimensional 
ase in Se
tion I, we des
ribe the algebrai
 side of the theory

in Se
tions II and III. Then we turn in Se
tions IV and V to Bana
h{Lie groups

and holomorphi
 representations of 
omplex 
lassi
al ones. The geometry of the


oadjoint a
tion is dis
ussed in Se
tion VI, and in the 
on
luding Se
tion VII all

threads lead to a full dis
ussion of the theory for the group U

2

(H) of unitary

operators u on a Hilbert spa
e H for whi
h u�1 is Hilbert{S
hmidt.

Introdu
tion

As in �nite dimensions, Lie theory is an ex
iting 
ombination of algebrai
 and

analyti
 methods. In the �nite-dimensional situation one studies a 
onne
ted

Lie group G by the exponential fun
tion exp: g! G whi
h is a lo
al di�eomor-

phism. Therefore the Lie algebra stru
ture of g 
arries essentially all the lo
al

information on G . This means that all groups with the same Lie algebra g are

quotients of an essentially unique simply 
onne
ted group

e

G modulo dis
rete


entral subgroups. Viewing g as a \linearization" of G , the heart of the Lie

theoreti
 methods is a di
tionary translating analyti
 and global properties of G

into algebrai
 properties of its Lie algebra g , whi
h are then studied by algebrai


methods.

This pi
ture is di�erent for in�nite-dimensional groups, and how bad it

be
omes depends on the setting one is working in. The 
entral obje
ts of these

le
tures will be groups of operators on Hilbert spa
es. These groups will always

have a natural topology for whi
h they are Bana
h{Lie groups, i.e., manifolds

modeled over a Bana
h spa
e endowed with a smooth group stru
ture (multi-

pli
ation and inversion). In this setting one still has an exponential fun
tion
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exp: g ! G whi
h is a lo
al di�eomorphism, hen
e a good translation me
ha-

nism from G to g and ba
k to G . A new feature is that the Lie algebra g now

is a Bana
h spa
e with a 
ontinuous Lie bra
ket, a Bana
h{Lie algebra, so that

we need fun
tional analyti
 as well as algebrai
 
on
epts to study the Lie algebra

and the group.

As we will see below, one often �nds many in
arnations of su
h a Lie group

in the sense that there is a great variety of dense subgroups G

1

� G whi
h are Lie

groups in their own right, but whi
h are better suited for several 
onstru
tions

than G itself. Sometimes G is simply too big or has to be repla
ed by a suitable


entral extension. On the Lie algebrai
 side these groups 
orrespond to dense

subalgebras g

1

of g whi
h are mu
h smaller, and one often has 
ertain \minimal"

subalgebras whi
h are purely algebrai
 obje
ts. It is this phenomenon that makes

in�nite-dimensional Lie theory more diÆ
ult and also more interesting than the

�nite-dimensional theory. One �rst has to �nd the right \version" of the group

whi
h is best suited for the setting one has in mind, and then one has to analyze

this group whi
h might di�er from the original one.

The following diagram shows s
hemati
ally whi
h way one has to go to

obtain a thorough understanding of the 
lass of (unitary) highest weight repre-

sentations of Bana
h{Lie groups. Starting with a Bana
h{Lie group (in these

notes this will essentially be a group of operators on a Hilbert spa
e), we spe
ify

a 
ertain dense subalgebra g

0

of its Lie algebra whi
h has a root de
omposition.

For this Lie algebra we are then able to 
lassify all unitary highest weight repre-

sentations in a 
ompletely algebrai
 
ontext. The next step 
onsists in extending

these representations under natural boundedness 
onditions to a 
ontinuous rep-

resentation of a Bana
h{Lie algebra 
ompletion g

1

of g

0

and then integrating

this representation to a holomorphi
 representation of some 
omplex Bana
h{Lie

group G

1

. In many 
ases it turns out that the group G

1

is far from being the

maximal group to whi
h this representation integrates, and to understand the

subtleties involved in this integration pro
ess, we will have to obtain a natu-

ral geometri
 realization of the representation under 
onsideration by a spa
e of

holomorphi
 se
tions of a 
omplex line bundle. In this geometri
 
ontext we will

then determine the natural groups a
ting in the representations. This involves

in parti
ular a dis
ussion of 
entral extensions of these groups.

Below we will see several examples where su
h translations pro
edures

be
ome 
ru
ial. We think that the quite a

essible 
lass of operator groups

displays these te
hniques quite well. They also lead to a good understanding

of many phenomena in the physi
al literature 
on
erning 
entral extensions and

the implementability of symmetries. For the sake of simpli
ity, we will mainly

dis
uss the group GL

2

(H) of a 
omplex Hilbert spa
e H whi
h 
onsists of all

those invertible operators g on H for whi
h g�1 is a Hilbert{S
hmidt operator.
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I. The �nite-dimensional 
ase

Before we turn to in�nite-dimensional groups, it is worthwhile to re
all the

pi
ture for �nite-dimensional groups to 
larify whi
h kind of representations and

type of geometry we will be looking for in the in�nite-dimensional 
ontext.

There are several paths along whi
h one 
an approa
h the pi
ture whi
h

presents itself as a 
ir
le of ideas with several entry points. One possibility is to

start with 
ompa
t groups. Here the problem is to 
lassify all irredu
ible unitary

representations of a 
ompa
t 
onne
ted Lie group U and to �nd natural geomet-

ri
 realizations of these representations whi
h then 
an in turn be used to get

more information on the representations. Fun
tional analyti
 arguments imply

that all irredu
ible representations of a 
ompa
t group are �nite-dimensional, so

that we may limit our 
onsiderations to �nite-dimensional representations. To

be able to obtain a 
lassi�
ation, it turns out to be very fruitful to use a 
ertain

analyti
 extension pro
ess to translate the problem as follows. First one shows

that there exists a 
omplex 
onne
ted Lie group G = U

C


ontaining U as a

subgroup for whi
h the polar map

U � u! G; (u;X) 7! u exp iX

is a di�eomorphism. Here u = L(U) denotes the Lie algebra of U . We 
all

the resulting de
omposition G = U exp(iu) the polar de
omposition of G . The

simplest example is the 
ir
le group

U = T := fz 2 C : jzj = 1g with U

C

= C

�

;

where the polar map 
orresponds to polar 
oordinates in the 
omplex plane.

Groups of the form U

C

are 
alled 
omplex redu
tive groups. This terminology


omes the theory of algebrai
 groups. One should be aware of the fa
t that the

Lie algebras of 
omplex redu
tive groups are redu
tive, but that the 
onverse is

not true. In parti
ular the group C

n

is not \
omplex redu
tive" in the sense

above.

An important 
onsequen
e of the polar de
omposition is that every homo-

morphism ':U ! H to a �nite-dimensional 
omplex Lie group H extends to a

holomorphi
 homomorphism

'

C

:U

C

! H by '

C

(u exp(iX)) := '(u) exp(iL(')(X));

where

L(') = d'(1):L(U)! L(H)

is the 
orresponding Lie algebra homomorphism. We thus obtain a one-to-one


orresponden
e between irredu
ible unitary representations of U and irredu
ible

(�nite-dimensional) holomorphi
 representations of G = U

C

(
f. Exer
ise I.2), so

that we are left with the problem of des
ribing the irredu
ible �nite-dimensional

holomorphi
 representations of a 
omplex redu
tive group G . For simpli
ity we

assume in the following that G is simply 
onne
ted. A parti
ular example is the

group G = SL(n; C ) whi
h arises as U

C

for U = U(n; C ).
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The algebrai
 approa
h to the 
lassi�
ation

We are interested in the geometry and the stru
ture of the irredu
ible

representations of U , resp., G . The best a

essible pi
ture is the algebrai
 one,

dealing with simple �nite-dimensional modules of the redu
tive Lie algebra g .

To see the 
onne
tion between group and Lie algebra representations requires

some translation me
hanism, a method whi
h is 
hara
teristi
 for Lie theory as

a whole.

First we have to get hold of the algebrai
 stru
ture of the Lie algebra g

of G . The 
ru
ial tool is the root de
omposition of g : There exists a maximal

abelian subalgebra h � g with the property that all operators adh , h 2 h ,

are diagonalizable, so that one obtains a de
omposition of g into simultaneous

eigenspa
es

g

�

= fx 2 g: (8h 2 h) [h; x℄ = �(h)xg

for the a
tion of h on g , where �: h ! C is a linear fun
tional. A non-zero

fun
tional � 2 h

�

is 
alled a root of g if g

�

6= f0g . We write � � h

�

for the set

of roots. It turns out that g

0

= h , so that we obtain the de
omposition

g = h�

M

�2�

g

�

:

It is an important fa
t that for every root � 2 � the subspa
e

g(�) := g

�

+ g

��

+ [g

�

; g

��

℄

is a three-dimensional simple subalgebra, hen
e isomorphi
 to sl(2; C ). From

that one derives the existen
e of a unique element �� 2 [g

�

; g

��

℄ � h with

�(��) = 2. This element is 
alled the 
oroot 
orresponding to � .

To use the information on the stru
ture of g to 
lassify irredu
ible repre-

sentations, we 
onsider a maximal solvable subalgebra b � g 
ontaining h . Sin
e

h is abelian, hen
e solvable, the existen
e of su
h a subalgebra follows from the

fa
t that g is �nite-dimensional. One simply 
hooses a solvable subalgebra 
on-

taining h whi
h is of maximal dimension. One 
an show that, in terms of the

root de
omposition, b 
an be des
ribed as

b = h+

X

�2�

+

g

�

;

where �

+

� � is a positive system, i.e.,

�

+

_

[ ��

+

= � and (�

+

+�

+

) \� � �

+

:

The next step is to apply Lie's Theorem on the �nite-dimensional repre-

sentations of solvable Lie algebras to see that every simple g -module V 
ontains

a (unique) one-dimensional b -eigenspa
e C v . Sin
e the linear fun
tional

�: b! C
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given by b:v = �(b)v , b 2 b , is a Lie algebra homomorphism, it vanishes on ea
h

g

�

, � 2 �

+

. Moreover, the representation theory of sl(2; C ), applied to the

subalgebras g(�), implies that � is dominant integral:

�(��) 2 N

0

for all � 2 �

+

:

This sets the stage for the 
lassi�
ation, and now one shows that if V

1

�

=

V

2

, then

�

1

= �

2

, and that for ea
h dominant integral � , there exists a simple g -module

whi
h is 
alled L(�).

Theorem I.1. The �nite-dimensional simple g-modules of are in one-to-one


orresponden
e with the dominant integral weights � with respe
t to �

+

.

A detailed proof of the pre
eding result 
an be found in [Hum72℄. It is

remarkable that the 
hoi
e of b , resp., �

+

is irrelevant. A di�erent 
hoi
e only

leads to a parametrization of the simple modules by a di�erent set of dominant

integral weights. This will be drasti
ally di�erent in the in�nite-dimensional

setting.

Now we 
ome ba
k to the group level. Sin
e G is assumed to be simply


onne
ted, the irredu
ible representations of G are in one-to-one 
orresponden
e

with the irredu
ible representations of g , so that the 
lassi�
ation des
ribed

above also yields a 
lassi�
ation for G and hen
e for the 
orresponding 
ompa
t

group U . Here we refer to the general theorem that every Lie algebra homomor-

phism g ! gl(V ) integrates to a homomorphism G ! GL(V ), whi
h is quite

inexpli
it and does not lead to any kind of geometri
 information about the rep-

resentation. It is mu
h more desirable to have a more geometri
 realization of

the G -representation on the spa
e L(�) whi
h will be des
ribed in the remainder

of this se
tion.

Holomorphi
 ve
tor bundles

In this subse
tion we explain some of the geometry whi
h is involved in the

geometri
 realization of the irredu
ible representations of a 
omplex redu
tive

Lie group as the spa
e of holomorphi
 se
tions of a 
omplex line bundle. Still all

Lie groups are assumed to be �nite-dimensional.

Let G be a 
omplex Lie group and P � G a 
losed 
omplex subgroup.

Then the quotient spa
e M := G=P 
arries the stru
ture of a 
omplex manifold.

To ea
h holomorphi
 representation (�; V ) of P , i.e., to ea
h holomorphi
 ho-

momorphism �:P ! GL(V ), we will asso
iate a holomorphi
 ve
tor bundle over

M .

De�nition I.2. Let M be a 
omplex manifold. A holomorphi
 ve
tor bundle

with �ber V is a holomorphi
 map �:V ! M of 
omplex manifolds for whi
h

there exists a 
omplex ve
tor spa
e V , an open 
overing (U

j

)

j2J

of M , and

biholomorphi
 maps

'

j

:�

�1

(U

j

)! U

j

� V



In�nite-dimensional groups and their representations 7

with

�('

�1

j

(x; v)) = x for (x; v) 2 U

j

� V;

and su
h that for ea
h pair i; j 2 J there exists a holomorphi
 map

g

ij

:U

i

\ U

j

! GL(V )

with

'

i

'

�1

j

: (U

i

\ U

j

)� V ! (U

i

\ U

j

)� V; (x; v) 7! (x; g

ij

(x):v):

The spa
es �

�1

(x) are 
alled the �bers of the bundle V . Sin
e the maps

'

i

'

�1

j

are �berwise linear, ea
h �ber �

�1

(x) 
arries a natural 
omplex ve
tor

spa
e stru
ture su
h that '

j

j

�

�1

(x)

:�

�1

(x) ! fxg � V

�

=

V is an isomorphism

of 
omplex ve
tor spa
es.

A holomorphi
 se
tion of V is a holomorphi
 map �:M ! V with � Æ� =

id

M

. Using the ve
tor spa
e stru
ture on the �bers, we obtain on the spa
e �(V)

of holomorphi
 se
tions of V the stru
ture of a 
omplex ve
tor spa
e via

(��)(x) := ��(x) and (�

1

+ �

2

)(x) := �

1

(x) + �

2

(x):

Homogeneous ve
tor bundles

The only type of bundles we will deal with in these notes are of a rather

simple nature be
ause they are so 
alled homogeneous bundles. Su
h bundles are


onstru
ted as follows. We return to the setting where G is a 
omplex Lie group,

P � G is a 
losed 
omplex subgroup, and M = G=P . We write q:G ! M for

the quotient map. Let (�; V ) be a holomorphi
 representation of P on V and

write h:v := �(h)(v).

On the produ
t manifold G � V we 
onsider the a
tion of P given by

h:(g; v) := (gh

�1

; h:v). Let

V := G�

P

V := (G� V )=P

denote the spa
e of all P -orbits in G � V . We write [g; v℄ := P:(x; v) for the

orbit of (x; v) and observe that we have a well-de�ned map

�:V !M; [x; v℄ 7! q(x) = xP:

Let U � G=P be an open subset for whi
h there exists a holomorphi
 map

�

U

:U ! G with x = �

U

(x)P for all x 2 U . Then the map

q

�1

(U)! U � P; g 7! (q(g); �

U

(q(g))

�1

g)
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is biholomorphi
 and its inverse is given by the multipli
ation map

U � P ! q

�1

(U); (u; h) 7! �

U

(u)h:

We further have a bije
tion

'

U

:�

�1

(U)! U � V; [x; v℄!

�

q(x);

�

�

U

(q(x))

�1

x

�

:v

�

:

If, in addition, U is 
hosen su
h that it is the domain of a 
hart of M , then the

maps '

U


an be used to obtain a 
hart of V as a 
omplex manifold. Moreover,

we have

� Æ '

�1

U

(x; v) = x for (x; v) 2 U � V;

and for two open subsets U;W � M with se
tions �

U

and �

W

, we obtain the

map

'

U

'

�1

W

: (U \W )� V ! (U \W )� V; (x; v) 7! (x; g

U;W

(x):v)

with

g

U;W

(x) = �

�

�

U

(xP )

�1

�

W

(q(x))

�

:

We 
on
lude that �:V !M is a holomorphi
 ve
tor bundle over M . It is

homogeneous in the sense that the natural a
tion of the group G on V given by

g:[x; v℄ := [g:x; v℄ is a holomorphi
 a
tion G� V ! V whi
h is �berwise linear,

i.e., an a
tion by automorphisms of the holomorphi
 ve
tor bundle.

On the spa
e �(V) of holomorphi
 se
tions we now obtain a natural rep-

resentation of G by

(g:s)(x) := g:s(g

�1

:x)

(Exer
ise).

It often is 
onvenient to have a more a

essible des
ription of the spa
e �(V)

as holomorphi
 fun
tions G ! V . This des
ription is obtained as follows. Let

s:M ! V be a holomorphi
 se
tion of V . Then we 
an write s(q(x)) = [x; f(x)℄ ,

where f :G ! V is a fun
tion. In fa
t, for ea
h x 2 G ea
h element of the

�ber �

�1

(q(x)) has a unique representative of the form (x; v) and all other

representatives are given by (xp

�1

; p:v), p 2 P . This leads to

(1:1) f(xp

�1

) = p:f(x) for x 2 G; p 2 P:

In lo
al 
oordinates we then have

'

U

(s(q(x))) =

�

q(x);

�

�

U

(q(x))

�1

x

�

:f(x)

�

;

showing that the fun
tion f :G ! V is holomorphi
 be
ause q

�1

(U) ! P; x 7!

�

U

(q(x))

�1

x is a holomorphi
 map. If, 
onversely, f 2 Hol(G; V ) is a holomor-

phi
 map satisfying (1.1), then the holomorphi
 map G ! V; (g; v) 7! [g; f(g)℄

is 
onstant on the P -orbits and therefore fa
tors through a holomorphi
 map

s:M = G=P ! V whi
h is a holomorphi
 se
tion of V .

We summarize the results of the pre
eding dis
ussion in the following

lemma.
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Lemma I.3. If V = G �

P

V is a homogeneous holomorphi
 ve
tor bundle

over M = G=P , then the spa
e �(V) of holomorphi
 se
tions is in one-to-one


orresponden
e with the spa
e

�

G

(V) := ff 2 Hol(G; V ): (8x 2 G; p 2 P ) f(xp

�1

) = p:f(x)g:

The 
orresponding map is given by

�: �(V)! �

G

(V); s(xP ) = [x;�(s)(x)℄:

On �

G

(V) � Hol(G; V ) the representation of G is given by

(g:f)(x) = f(g

�1

:x):

Proof. In view of the pre
eding dis
ussion, it only remains to verify the

formula for the a
tion of G on �

G

(V): For s(q(x)) = [x; f(x)℄ , q(x) = xP , we

have

(g:s)(q(x)) = g:

�

s(g

�1

:q(x))

�

= g:

�

s(q(g

�1

x))

�

= g:[g

�1

x; f(g

�1

x)℄ = [x; f(g

�1

x)℄:

A key example: SL(2; C )

We 
onsider the spe
ial 
ase where G = SL(2; C ) and

P :=

n

�

a 0


 a

�1

�

: a 2 C

�

; 
 2 C

o

:

Then P is the stabilizer of the line C e

2

� C

2

, so that the quotient spa
e G=P


an be identi�ed with the 
omplex proje
tive line P

1

(C ) := P(C

2

), i.e., the

set of all one-dimensional subspa
es of C

2

, via the map gP 7! C g:e

2

. We

write [z; w℄ := C (z; w) for the one-dimensional spa
e represented by (z; w) =

ze

1

+ we

2

2 C

2

n f0g . There are two natural open subsets of P

1

(C ) given by

U

1

:= f[z; w℄:w 6= 0gg = f[z; 1℄: z 2 C g; U

2

:= f[z; w℄: z 6= 0g = f[1; w℄:w 2 C g

with U

1

[ U

2

= P

1

(C ). On U

1

we de�ne a se
tion

�

1

:U

1

! G; �

1

([z; 1℄) :=

�

1 z

0 1

�

and on U

2

we put

�

2

:U

2

! G; �

2

([1; w℄) :=

�

1 0

w 1

��

0 1

�1 0

�

:
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One immediately veri�es that these two maps are indeed se
tions of q:G !

G=P

�

=

P

1

(C ), i.e., q(�

1

([z; 1℄)) = [z; 1℄ and q(�

2

([1; w℄)) = [1; w℄ .

For n 2 Z we 
onsider the one-dimensional holomorphi
 representation (a

holomorphi
 
hara
ter)

�

n

:P ! GL(1; C )

�

=

C

�

;

�

a 0


 a

�1

�

7! a

n

and 
onsider the 
orresponding holomorphi
 line bundle L

n

! P

1

(C ). We

are interested in the question whether this bundle has a non-zero holomorphi


se
tion.

Let s:P

1

(C ) ! L

n

be a holomorphi
 se
tion and f :G ! C the 
orre-

sponding holomorphi
 fun
tion satisfying f(xp

�1

) = �

n

(p)f(x) for x 2 G; p 2 P .

We de�ne an entire fun
tion h: C ! C by

h(z) := f

�

�

1 z

0 1

�

�

:

From

�

2

([1; w℄) =

�

1 0

w 1

��

0 1

�1 0

�

=

�

1 w

�1

0 1

��

w

�1

0

�1 w

�

; w 2 C

�

;

in G = SL(2; C ) we obtain

f(�

2

([1; w℄)) = �

n

�

w

�1

0

�1 w

�

�1

:h(w

�1

) = w

n

h(w

�1

) for w 2 C

�

:

The fa
t that this fun
tion extends holomorphi
ally to 0 leads in parti
ular to

(1:2) lim sup

jzj!1

jh(z)j � jzj

�n

<1:

For n < 0 this implies that h is bounded so that Liouville's Theorem shows that

h is 
onstant. For h 6= 0 we then obtain a 
ontradi
tion to the holomorphi


extendability of the fun
tion w 7! w

n

h(w

�1

) to 0. This implies that

�(L

n

) = f0g for n < 0:

For n � 0 the 
ondition (1.2) means that h is a polynomial of degree at

most n (this follows from the Cau
hy estimates for Laurent series). Conversely,

for every su
h polynomial the fun
tion w 7! w

n

h(w

�1

) extends holomorphi
ally

to 0, so that it 
orresponds to a holomorphi
 se
tion of L

n

.

Next we ask whi
h representation of SL(2; C ) we �nd in the spa
e �(L

n

)

for n � 0. We know already that the dimension is n + 1. To determine the

representation, we 
onsider the realization in the spa
e �

G

(L

n

) � Hol(G). Let

N :=

n

�

1 z

0 1

�

: z 2 C

o
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and observe that NP is dense in SL(2; C ), so that the restri
tion map

�

G

(L

n

)! Hol(N)

�

=

Hol(C )

is inje
tive. Let f 2 �

G

(L

n

) denote the element 
orresponding to a non-

zero 
onstant fun
tion in Hol(N). For x 2 N and p 2 P we then have

f(xp) = �

n

(p)

�1

f(1). This implies that for x 2 N we have x:f = f , and

for a diagonal matrix h we get for x 2 N :

(1:3) (h:f)(x) = f(h

�1

x) = f(h

�1

xhh

�1

) = �

n

(h):f(h

�1

xh

| {z }

2N

) = �

n

(h):f(x):

On the Lie algebra level we have g = g

��

+ h+ g

�

with h+ g

��

= L(P )

and N = exp(g

�

), where �� =

�

1 0

0 �1

�

. The derived representation of g on

�

G

(L

n

) is a representation 
ontaining a ve
tor f with

��:f = nf and g

�

:f = L(N):f = f0g;

Now the representation theory of the Lie algebra sl(2; C ) implies that the

submodule generated by f is an (n+1)-dimensional simple module and therefore

that �(L

n

) is a simple module of SL(2; C ).

With these elementary 
onsiderations we have proved the Borel{Weil The-

orem for the group SL(2; C ):

Theorem I.4. (Borel{Weil Theorem for SL(2; C )) Consider the 
losed sub-

group

P :=

n

�

a 0


 a

�1

�

: a 2 C

�

; 
 2 C

o

of G := SL(2; C ) and its holomorphi
 
hara
ters

�

n

:P ! GL(1; C )

�

=

C

�

;

�

a 0


 a

�1

�

7! a

n

; n 2 Z:

For the asso
iated holomorphi
 line bundles L

n

:= G�

P

C we then have

dim�(L

n

) =

�

0 for n < 0

n+ 1 for n � 0.

For n � 0 the natural representation of G on the spa
e �(L

n

) of holomorphi


se
tions is the irredu
ible representation of dimension n+ 1 .

For n = 0 the bundle L

0

! P

1

(C ) is trivial. Therefore �(L

0

) =

Hol(P

1

(C )) is the spa
e of holomorphi
 fun
tions on the Riemann sphere P

1

(C )

whi
h 
onsists only of the 
onstant fun
tions.
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The Borel{Weil Theorem for 
omplex redu
tive groups

The general Borel{Weil Theorem 
an be stated as follows:

Theorem I.5. (Borel{Weil Theorem for 
omplex redu
tive groups) Let G be

a 
omplex redu
tive group, p � g a subalgebra of the form

p = h+

X

�2�

P

g

�

with �

P

[ ��

P

= �;

and �

+

� �n�

P

a positive system. We 
onsider the 
losed 
onne
ted subgroup

P � G with Lie algebra p and a holomorphi
 
hara
ter �:P ! C

�

. Let

� := d� j

h

. For the asso
iated holomorphi
 line bundles L

�

:= G �

P

C we

then have

�(L

�

) 6= f0g () (8� 2 �

P

) �(��) 2 �N

0

:

In this 
ase the representation of G on �(L

�

) is the irredu
ible holomorphi


representation of highest weight � with respe
t to �

+

.

The Borel-Weil Theorem shows in parti
ular that if � is dominant integral

and we 
hoose the paraboli
 subalgebra p su
h that

�

P

:= f� 2 �:�(��) � 0g;

then L(�) is isomorphi
 to the spa
e of holomorphi
 se
tions of L

�

, whenever

� integrates to a holomorphi
 
hara
ter of P . If G is semisimple and simply


onne
ted, this is always the 
ase if � is dominant integral (Exer
ise I.4). In

general we need that �(x) 2 2�iZ for ea
h x 2 h with expx = 1 (� is then


alled analyti
ally integral).

We 
an also take �

P

:= ��

+

if � is dominant integral with respe
t to

�

+

.

Proof. Idea of the proof (for a detailed proof of the more general Bott{Borel{

Weil Theorem we refer to [KV95℄): First we observe that the group P is a

semidire
t produ
t

P

�

=

N

P

o L

P

;

where

N

P

= exp

�

X

�2�

P

n��

P

g

�

�

and L

P

=




exp(h+

X

�2�

P

\��

P

g

�

)

�

;

Let 0 6= s 2 �(L

�

) be a non-zero se
tion. Pi
k p 2 M = G=P with

s(p) 6= f0g and write x

0

:= q(1) 2 M for the base point. Then there exists a

g 2 G with g:p = x

0

, and the se
tion g:s does not vanish in x

0

, so that we may

assume that s(x

0

) 6= f0g . Let f :G! C denote the 
orresponding holomorphi


fun
tion.
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For � 2 ��

P

and the 
orresponding subalgebra

g(�) := C ��+ g

�

+ g

��

�

=

sl(2; C )

we have a 
orresponding holomorphi
 homomorphism

�

�

: SL(2; C )! G;

where �� = L(�

�

):h for h =

�

1 0

0 �1

�

: Put p(�) := g

��

+ C �� and write

P

�

� SL(2; C ) for the 
orresponding analyti
 subgroup. Sin
e f(1) 6= 0, the

fun
tion f

�

:= f Æ �

�

is a non-zero holomorphi
 fun
tion on SL(2; C ) satisfying

f

�

(xp

�1

) = �(�

�

(p))f

�

(x) for x 2 SL(2; C ); p 2 P

�

:

The 
hara
ter � Æ �

�

j

P

�

:P

�

! C

�

is determined by the integer

n := �

�

L(�

�

):h

�

= �(��);

so that Theorem I.4 implies that n 2 N

0

be
ause the bundle L

n

! P

1

(C ) has

a non-zero holomorphi
 se
tion given by the fun
tion f

�

on SL(2; C ). This

proves that �(��) 2 N

0

for � 2 ��

P

is ne
essary for the existen
e of non-zero

holomorphi
 se
tions of L

�

.

Next we assume that this 
ondition is satis�ed. Then there are several

ways to show that �(L

�

) is non-trivial. One possibility is to use the Bruhat

de
omposition of the group G to 
onstru
t dire
tly a holomorphi
 se
tion f 2

�(L

�

) with f(1) = 1 (
f. [CSM95, Se
t. II.14℄ and also [PS86℄). Sin
e this

method will not work in the in�nite-dimensional 
ases, we use the representation

theory of the Lie algebra g to obtain a simple highest weight module L(�) of

highest weight � (Theorem I.1). Then the representation of g on L(�) integrates

to a representation of the simply 
onne
ted 
overing group

e

G on L(�), but sin
e

� integrates to a 
hara
ter of P and therefore in parti
ular to a 
hara
ter of the

subgroup H := exp h , it fa
tors through a holomorphi
 representation (�

�

; L(�))

of G (see Exer
ise I.4).

To realize this representation by holomorphi
 se
tions of L

�

, we �rst


onsider the dual spa
e L(�)

�

. This spa
e is a g -module with respe
t to the

a
tion given by

(x:�)(v) := ��(x:v); x 2 g; � 2 L(�)

�

; v 2 L(�):

Sin
e the � -weight spa
e V

�

of V with respe
t to h is one-dimensional, there

exists a linear fun
tional Æ 2 L(�)

�

and a basis element v

�

2 V

�

with Æ(v

�

) = 1

and ker Æ =

P

�6=�

V

�

.

For the paraboli
 subalgebra

p := h+

X

�(��)�0

g

�
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we then have p: ker Æ � ker Æ (Exer
ise I.3), whi
h easily implies that Æ is a

p -eigenfun
tional of weight �� . The group G a
ts on L(�)

�

by

(g:�)(v) := �(g

�1

:v); g 2 G; � 2 L(�)

�

; v 2 L(�);

and for the 
onne
ted subgroup P := hexp pi � G 
orresponding to p , we obtain

that

p:Æ = �(p)

�1

Æ;

where �:P ! C

�

is the unique holomorphi
 
hara
ter whose di�erential is � ,

viewed as a linear fun
tion on p vanishing on all the root spa
es. Let

	:L(�)! Hol(G); 	(v)(g) := hÆ; g

�1

:vi = (g:Æ)(v):

Then 	 is a G -equivariant linear map with respe
t to the natural representation

of G on Hol(G) given by (g:f)(x) := f(g

�1

x), and ea
h fun
tion f in the range

of 	 satis�es

f(gp) = �(p)

�1

f(g); g 2 G; p 2 P:

This means that

	(L(�)) � �

G

(L

�

) = ff 2 Hol(G): (8g 2 G)(8p 2 P ) f(gp) = �(p)

�1

f(g)g;

showing that �(L

�

) 
ontains a subspa
e isomorphi
 to the highest weight module

L(�). It remains to show that this subspa
e exhausts �(L

�

).

To analyze the representation on the non-zero spa
e �(L

�

) of holomorphi


se
tions, we need a fa
t whose proof we do not want to reprodu
e:

dim�(L

�

) <1:

This is a spe
ial 
ase of a more general theorem on spa
es of holomorphi
 se
-

tions of ve
tor bundles over 
ompa
t 
omplex manifolds,

1

and G=P is 
ompa
t

be
ause the 
ompa
t real form U a
ts transitively on G=P . A more dire
t proof

is outlined in Remark I.6 below.

Now we 
an argue as follows. First we use Lie's Theorem for the solvable

Lie algebra b := h +

P

�2�

+

g

�

to see that there exists an f 2 �

G

(L

�

) whi
h

is a b -eigenve
tor. Then f is �xed by the group N := exp(

P

�2�

+

g

�

) for

whi
h NP � G is an open subset of G (Exer
ise I.5). Therefore ea
h element

of �

G

(L

�

) is uniquely determined by its restri
tion to N , whi
h in parti
ular

implies that the spa
e

�

G

(L

�

)

N

= ff 2 �

G

(L

�

): (8u 2 N)u:f = fg

1

We refer to [GR65, Th. VIII.19℄ for the Theorem of Cartan{Serre asserting that the


ohomology of any 
oherent sheaf on a 
ompa
t analyti
 spa
e is �nite-dimensional. Sin
e


ompa
t 
omplex manifolds are in parti
ular 
ompa
t analyti
 spa
es, and holomorphi
 ve
tor

bundles de�ne 
oherent sheaves, this implies the �nite-dimensionality of the spa
e of holomor-

phi
 se
tions for every holomorphi
 ve
tor bundle over a 
ompa
t 
omplex manifold.
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is one-dimensional. We may assume that f(1) = 1, so that f(u) = 1 for all

u 2 N . Then we obtain for h 2 H :

(h:f)(u) = f(h

�1

u) = f(h

�1

uhh

�1

) = �(h)f(h

�1

uh

| {z }

2N

) = �(h) = �(h)f(u):

This shows that for h 2 h we have h:f = �(h)f , and therefore that f is a

b -eigenve
tor of weight � . As in the proof of Theorem I.4, the �nite-dimensional

representation theory of g implies that the submodule generated by f is iso-

morphi
 to L(�). It remains to see that this subspa
e exhausts �

G

(L

�

). If this

is not the 
ase, then Weyl's Theorem implies that there exists a 
omplemen-

tary submodule W . Repeating the argument above, we �nd a non-zero fun
tion

e

f 2 W whi
h is N -invariant, but this 
ontradi
ts the fa
t that �

G

(L

�

)

N

is

one-dimensional.

Remark I.6. (a) Let T

�

=

T

n

be a torus group and (�; V ) a 
ontinuous

representation of T on the �nite-dimensional ve
tor spa
e V . Then T also

a
ts on the spa
e Hol(V ) of 
omplex-valued holomorphi
 fun
tions on V by

(t:f)(x) := f(t

�1

:x):

Sin
e T is abelian, V de
omposes into a �nite sum of weight spa
es of the

Lie algebra h := t

C

:

V =

M

�2h

�

V

�

:

Let v

j

, j = 1; : : : ;m , be a basis of V with v

j

2 V

�

j

. We then have a Taylor

expansion

f

�

X

j

z

j

v

j

�

=

X

�2N

m

0




�

z

�

;

where � = (�

1

; : : : ; �

m

) and

z

�

:= z

�

1

1

� � � z

�

m

m

:

In these terms we obtain

((expx):f)

�

X

j

z

j

v

j

�

=

X

�2N

m

0




�

e

�

P

j

�

j

�

j

(x)

z

�

;

showing that the weight spa
es Hol(V )

�

are given by

Hol(V )

�

=

n

f 2 Hol(V ): f

�

X

j

z

j

v

j

�

=

X

P

j

�

j

�

j

=��




�

z

�

o

:

If there exists an element x

0

2 it with �

j

(x

0

) > 0 for all j , then we may

w.l.o.g. assume that �

j

(x

0

) > 1 for all j . This 
ondition means that the set
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f�

1

; : : : ; �

m

g is 
ontained in an open half spa
e. Then

P

j

�

j

�

j

= �� implies

that ��(x

0

) =

P

j

�

j

�

j

(x

0

) �

P

j

�

j

, so that there are only �nitely many

� 2 N

m

0

with

P

j

�

j

�

j

= �� , whi
h implies that

dimHol(V )

�

=

�

�

�

n

� 2 N

m

0

:

X

j

�

j

�

j

= ��

o

�

�

�

<1:

If F � Hol(V ) is a 
losed subspa
e invariant under T , then for ea
h f 2 F

and ea
h 
hara
ter �

�

:T ! T with �

�

(expx) = e

�(x)

the holomorphi
 fun
tion

f

�

(x) :=

Z

T

f(t:x)�

�

(t) d�

T

(t)

is also 
ontained in F , where �

T

is the normalized Haar measure on T . For

� = d�

�

we have f

�

2 Hol(V )

�

, and this implies that ea
h f 2 F has a


onvergent expansion

f =

X

�2P

F

f

�

; P

F

:= f� 2 t

�

C

:F

�

6= f0gg:

This leads to the following observation: If all weight spa
es Hol(V )

�

are

�nite-dimensional and F � Hol(V ) is a 
losed T -invariant subspa
e for whi
h

P

F

is a �nite set, then

dimF <1:

(b) Now we explain how the pre
eding dis
ussion 
an be applied to show that

in the proof of the Borel{Weil Theorem we have dim�(L

�

) <1 . First we have

to spe
ify the torus group to whi
h (a) will be applied. We 
onsider the torus

T = exp(t), where

t = fx 2 h: exp(Rx) is 
ompa
tg

(Exer
ise I.7). If G is semisimple, this means that t = span

R

fi��:� 2 �g: In

this situation we put

V :=

X

�62�

P

g

�

with � n�

P

� �

+

:

Sin
e exp(V )P � G is an open subset,

�

G

(L

�

)! Hol(V ); f 7! (x 7! f(expx))

is a T -equivariant inje
tive map, where the a
tion of T on Hol(V ) is given by

(t:f)(z) = �(t)f(Ad(t)

�1

:z):

The dis
ussion above shows that the set of t -weights, resp., h -weights in Hol(V )

is given by

��

X

�2�n�

P

N

0

� � ��

X

�2�

+

N

0

�;
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and that all multipli
ities are �nite.

On the other hand the set of h -weights is invariant under the Weyl group

W (Exer
ise!), so that the set of weights is 
ontained in

\

w2W

�

��

X

�2�

+

N

0

�

�

� 
onv(W:�) \ (�+R);

where R is the root latti
e. Here the in
lusion \�" is not obvious (see [Bou90,

Ch. VIII℄; see also Se
tion V.2 in [Ne99a℄). Sin
e the latter set is �nite, and all

multipli
ities are �nite, we derive that the spa
e �(L

�

) is �nite-dimensional.

Remark I.7. A third possibility to get hold of the representation on the spa
e

�(L

�

) is to view it as a representation of the 
ompa
t real form U � G on

a Fr�e
het spa
e. Then the Big Peter{Weyl Theorem (
f. [HoMo98, Th. 3.51℄)

implies that it 
ontains a dense subspa
e of �nite-dimensional submodules. Now

the argument given in the proof of Theorem I.5 shows that this subspa
e is

an irredu
ible module, and therefore that the representation of G on the spa
e

�(L

�

) is �nite-dimensional and irredu
ible.

Exer
ises for Se
tion I

Exer
ise I.1. Let V be a �nite-dimensional real ve
tor spa
e and W � V a

subspa
e. For A 2 End(V ) the following are equivalent:

(a) A(W ) �W .

(b) For all t 2 R we have e

tA

(W ) �W .

(
) There exists an " > 0 su
h that for all t 2 [�"; "℄ we have e

tA

(W ) �W .

Exer
ise I.2. Let �:G! GL(V ) be a holomorphi
 representation of a �nite-

dimensional 
onne
ted 
omplex Lie group G , d�:L(G) ! gl(V ) the derived

representation, and U � G a subgroup su
h that L(G) = L(U) + iL(U). Then

for a subspa
e W � V the following are equivalent:

(a) W is invariant under G .

(b) W is invariant under U .

(
) W is invariant under d�(L(U)).

(d) W is invariant under d�(L(G)).

Exer
ise I.3. Let L(�) be a simple highest weight module of a 
omplex

redu
tive Lie algebra g of highest weight � and write

L(�) = W � L(�)

�

;

where W =

P

�6=�

L(�)

�

is the sum of all other weight spa
es. Then W is

invariant under the subalgebra

p := h+

X

�(��)�0

g

�

:

Hint: If v

�

is a weight ve
tor of weight � and � 2 �, x

�

2 g

�

, with x

�

:v

�

= v

�

,

then �(��) > 0 follows from the representation theory of sl(2; C ).
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Exer
ise I.4. Let G be a 
onne
ted 
omplex redu
tive Lie group and q:

e

G! G

its universal 
overing group. Further let h � g be a Cartan subalgebra. We


onsider the 
omplex abelian subgroups H := exp

G

h , resp.,

e

H := exp

e

G

h of

G , resp.,

e

G . For a dominant integral � let e�

�

:

e

G ! GL(L(�)) denote the


orresponding holomorphi
 representation of

e

G . Show that the following are

equivalent:

(a) e�

�

fa
tors through a holomorphi
 representation �

�

:G! GL(L(�)).

(b) �

1

(G) := ker q � ker e�

�

.

(
) There exists a holomorphi
 
hara
ter �:H ! C

�

with d� = � .

(d) � satis�es �(�) � 2�iZ for the subgroup � := fx 2 h: expx = 1g .

Hint: Use that �

1

(G) � Z(

e

G) �

e

H .

Exer
ise I.5. Let G be a Lie group and a; b � g subalgebras with a+ b = g .

Let A;B � G be the 
orresponding analyti
 subgroups endowed with their

intrinsi
 Lie group topology. Show that the map

m:A�B ! G

has an open image and that m is a di�eomorphism onto the open subset AB if

A\B = f1g . Hint: Consider the a
tion of the dire
t produ
t group on G given

by (a; b):g := agb

�1

.

Exer
ise I.6. (Integrating representations of sl(2; C ))

(1) Let V

n

be the n + 1-dimensional simple module of sl(2; C ). We 
onsider

the spa
e

P

n

:= spanfz

j

1

z

k

2

: j + k = ng � C [z

1

; z

2

℄

�

=

Pol(C

2

)

of homogeneous polynomials of degree k on C

2

. Then the group SL(2; C )

a
ts on P

n

by (g:f)(x) := f(g

�1

:x). Show that the 
orresponding derived

sl(2; C )-module is isomorphi
 to V

n

and hen
e that the Lie algebra a
tion

on V

n


an be integrated to a representation of SL(2; C ) on V

n

.

(2) We 
all a module (�; V ) of sl(2; C ) integrable if the operators �(e) and �(f)

are lo
ally nilpotent and �(h) is diagonalizable. Using the PBW-Theorem,

show that V is a lo
ally �nite module, i.e., every element generates a �nite-

dimensional submodule.

(3) If (�; V ) is a lo
ally �nite sl(2; C )-module, then there exists a representation

e�: SL(2; C )! GL(V ) su
h that

�(X):v =

d

dt

t=0

e�(e

tX

):v for all v 2 V:

Hint: Use Weyl's Theorem to see that V is a sum of simple modules, hen
e

semisimple and therefore a dire
t sum of simple �nite-dimensional modules.

Then use (1).

(4) Justify the terminology \integrable module."
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Exer
ise I.7. Let A be a 
onne
ted real abelian Lie group and a its Lie

algebra. Then

t := fx 2 a: expRx is 
ompa
tg

is a subspa
e of a and T := exp t is a torus, whi
h is the unique maximal 
ompa
t

subgroup of A .
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II. Split Lie algebras

In this se
tion we des
ribe, in a 
ompletely algebrai
 
ontext, several types

of Lie algebras that o

ur as the algebrai
 skeleton of operator Lie algebras.

These are always lo
ally �nite Lie algebras with a root de
omposition. For

this 
lass of Lie algebras the root de
omposition leads to an e�e
tive stru
ture

theory whi
h is almost 
omparable to the results one has for �nite-dimensional

Lie algebras. In parti
ular one has a 
lassi�
ation of the simple Lie algebras.

The stru
ture of these Lie algebras will be re�ned by endowing them with

an involution, a stru
tural feature that will be 
ru
ial in the study of unitary

highest weight representations in the next se
tion. The algebrai
 analysis of

these representations is the �rst step in our approa
h to the highest weight

representations of operator groups.

Throughout this se
tion all Lie algebras are 
omplex if not stated otherwise.

II. Root de
ompositions

De�nition II.1. (a) We 
all an abelian subalgebra h of a Lie algebra g

a splitting Cartan subalgebra if h is maximal abelian and the derivations adh

for h 2 h are simultaneously diagonalizable. If g 
ontains a splitting Cartan

subalgebra h , then g , respe
tively the pair (g; h), is 
alled a split Lie algebra and

h a splitting Cartan subalgebra. This means that we have a root de
omposition

g = h+

X

�2�

g

�

;

where g

�

= fx 2 g : (8h 2 h) [h; x℄ = �(h)xg for a linear fun
tional � 2 h

�

, and

� := �(g; h) := f� 2 h

�

nf0g : g

�

6= f0gg

is the 
orresponding root system. The subspa
es g

�

for � 2 � are 
alled root

spa
es and its elements are 
alled root ve
tors.

(b) A root � 2 � is 
alled integrable if g(�) := g

�

+ g

��

+ [g

�

; g

��

℄

�

=

sl(2; C )

and there exist non-zero elements x

��

2 g

��

su
h that adx

��

are lo
ally

nilpotent. (An endomorphism A of a ve
tor spa
e V is 
alled lo
ally nilpotent

if V =

S

n2N

kerA

n

.) If g is lo
ally �nite, i.e., every �nite subset generates a

�nite-dimensional subalgebra, then the latter 
ondition is redundant (Exer
ise

II.1).

We write �

i

for the set of integrable roots. For � 2 �

i

the spa
e [g

�

; g

��

℄

is one-dimensional and � does not vanish on it. Hen
e there exists a unique

element �� 2 [g

�

; g

��

℄ with �(��) = 2 whi
h is 
alled the asso
iated 
oroot. To

ea
h 
oroot we asso
iate the re
e
tion r

�

2 GL(h

�

) given by

r

�

(�) = � � �(��)�
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and write W � GL(h

�

) for the subgroup generated by these re
e
tions. It is


alled the Weyl group of g .

It is well known that every �nite-dimensional semisimple 
omplex Lie al-

gebra g has a root de
omposition and that all roots are integrable ([Hum72℄).

One 
an show that the integrability of a root is equivalent to the existen
e of

a representation �

�

: SL(2; C ) ! Aut(g) for whi
h the derived representation is

given by restri
ting the adjoint representation to g (
f. [MP95℄; see also Exer
ise

I.6). This justi�es the terminology.

Example II.2. Sin
e the Lie algebra sl(2; C ) plays an important role in root

de
ompositions, we �rst have a look at its standard root de
omposition. It is

given by

h =

�

1 0

0 �1

�

; e =

�

0 1

0 0

�

and f =

�

0 0

1 0

�

:

The bra
kets of these basis elements are given by

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

Therefore we have the root de
omposition

g = h+ g

�

+ g

��

; h = C h; g

�

= C e; g

��

= C f;

with �(h) = 2, so that �� = 2 and r

�

:� = �� .

Example II.3. Let J be a set and C

(J)

the ve
tor spa
e with the basis

(e

j

)

j2J

. One may also think of this spa
e as the spa
e of all fun
tions J ! C

with �nite support. We write g := gl(J; C ) � End(C

(J)

) for the Lie algebra


onsisting of all those endomorphisms whose 
orresponding J �J -matri
es have

only �nitely many non-zero entries. Then the elementary matri
es E

ij

with

a single non-zero entry in the (i; j)-position form a basis of the ve
tor spa
e

g . Let h � g be the subalgebra of diagonal matri
es and de�ne "

j

2 h

�

by

"

j

(diag(x

ii

)) := x

jj

. Then the set of of roots of g with respe
t to h is given by

� := f"

j

� "

k

: j 6= k; j; k 2 Jg

where

g

"

j

�"

k

= C E

jk

and ("

j

� "

k

)�= E

jj

� E

kk

:

For every pair i 6= j the subalgebra g("

i

�"

j

) spanned by h := E

ii

�E

jj

, e = E

ij

and f := E

ji

is isomorphi
 to sl(2; C ). Sin
e, moreover, (adE

ij

)

3

= 0, every

root is integrable.

We de�ne

sl(J; C ) :=

n

X 2 gl(J; C ): trX =

X

j2J

x

jj

= 0

o

and note that this subalgebra also has a root de
omposition with respe
t to the

Cartan subalgebra h \ sl(J; C ).

For in�nite-dimensional Lie algebras there are some subtleties involving

the notion of a \redu
tive" Lie algebra whi
h 
ome from the fa
t that for many

simple Lie algebras not every derivation is inner (
f. Exer
ise II.10).
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De�nition II.4. We 
all a Lie algebra g semisimple if it is a dire
t sum of

simple ideals. It is said to be almost redu
tive if [g; g℄ is semisimple. It is 
alled

redu
tive if g

�

=

z(g)� [g; g℄ .

Example II.5. For every n 2 N the Lie algebra gl(n; C ) is redu
tive. We

have

gl(n; C )

�

=

sl(n; C )� C 1;

where sl(n; C ) is simple.

For an in�nite set J the identity matrix 1 is not 
ontained in gl(J; C ),

whi
h implies that

z(gl(J; C )) = fx 2 gl(J; C ): [x; gl(J; C )℄ = f0gg = f0g:

What survives is the Lie algebra homomorphism

tr: gl(J; C )! C

with ker tr = sl(J; C ). Sin
e sl(J; C ) is simple (Exer
ise!), we obtain

[gl(J; C ); gl(J; C )℄ = sl(J; C );

showing that gl(J; C ) is almost redu
tive but not redu
tive.

The following theorem shows that the abundan
e of integrable roots in a

split Lie algebra has strong 
onsequen
es for its stru
ture.

Theorem II.6. A split Lie algebra g is almost redu
tive and lo
ally �nite if

and only if all roots are integrable, i.e., � = �

i

.

Proof. If � = �

i

, then Theorem VI.3 in [Ne00a℄ implies that g is lo
ally

�nite. Now Theorem III.12 in [St99a℄ shows that g is almost redu
tive. The


onverse follows from Lemma IV.8 and Theorem III.19 in [St99a℄.

Positive systems

De�nition II.7. A subset �

+

� � is 
alled a positive system if � =

�

+

[ ��

+

and no non-trivial linear 
ombination

P

n

j=1

�

j

�

j

with �

j

2 �

+

and �

j

� 0 vanishes. Geometri
ally this 
ondition means that


one(�

+

) := R

+

[�

+

℄ :=

n

n

X

j=1

�

j

�

j

:�

j

2 R

+

; �

j

2 �

+

o

is a pointed 
onvex 
one in the sense that


one(�

+

) \ � 
one(�

+

) = f0g:

This requirement implies in parti
ular that ea
h positive system 
ontains

exa
tly one root of ea
h set f�;��g and that �

+

\ ��

+

= �.
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Proposition II.8. The positive systems in the root system

� = A

J

:= f"

j

� "

k

: j 6= k 2 Jg

of gl(J; C ) are in one-to-one 
orresponden
e with the linear orderings � of the

set J . This 
orresponden
e is established by assigning to � the positive system

�

+

�

:= f"

j

� "

k

: j � kg:

Proof. First we show that for a linear order � on J the set �

+

�

is a

positive system. So let �

i

= "

j

i

� "

k

i

, i = 1; : : : ; n , be positive roots and

J

0

:= fj

i

; k

i

: i = 1; : : : ; ng . Let f : J

0

! R be an inje
tive de
reasing fun
tion.

Then there exists a linear fun
tional F on spanf"

j

: j 2 J

0

g with F ("

j

) = f(j)

and we have for ea
h positive linear 
ombination

F

�

n

X

i=1

�

i

�

i

�

=

n

X

i=1

�

i

�

f(j

i

)� f(k

i

)

�

> 0

if at least one �

i

is positive. This shows that the set �

+

�

is a positive system in

�.

If, 
onversely, �

+

is a positive system, then we de�ne j � k by j = k or

"

j

�"

k

2 �

+

. It is 
lear that we thus obtain a re
exive, transitive relation whi
h

de�nes a linear order on J .

Remark II.9. (a) The Weyl group W of � = A

J

is isomorphi
 to the

group S

(J)

of �nite permutations of the set J (the subgroup generated by all

transpositions). It a
ts on the diagonal matri
es by permuting the entries. Sin
e

S

(J)

a
ts transitively on the set of all pairs of elements of J , we see that W a
ts

transitively on �.

As the pre
eding proposition shows, the W -orbits on the set of all positive

systems in � 
orrespond to the S

(J)

-orbits on the set of all linear orders on J .

If J is �nite, then W a
ts transitively on the set of all linear orders, hen
e on the

set of all positive systems. This does not make it ne
essary to 
onsider di�erent

positive systems for gl(n; C ) be
ause every �nite linearly ordered set (J;�) is

isomorphi
 to (f1; : : : ; ng;�).

(b) If J = N , then it is 
lear that the natural order � on N 
orresponds to the

standard positive system. A linear order is W -
onjugate to this one if there are

only �nitely many pairs (j; k) with j < k and k � j (Exer
ise!). Interesting

other orders are the following: 2 � 3 � 4 � : : : � 1 or 3 � 4 � 5 � : : : � 1 � 2

et
. Another 
lass of interesting orders arises from bije
tions with Z :

: : :7 � 5 � 3 � 1 � 2 � 4 � 6 : : :

One 
ould even de�ne a linear order on N by using a bije
tion to Q .

(
) Note that for orders like those des
ribed above on J = N one 
an think of

the elements of gl(N ; C ) as N � N -matri
es with �nitely many non-zero entries,

where the basis is ordered a

ording to the linear order � . For the order 
oming

from the bije
tion with Z , this leads to the representation by Z � Z -matri
es

with �nitely many non-zero entries.
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Involutions on split Lie algebras

De�nition II.10. (a) An involutive Lie algebra is a 
omplex Lie algebra g

endowed with an involutive antilinear antiautomorphism z 7! z

�

. This means in

parti
ular that

(x

�

)

�

= x and [x; y℄

�

= [y

�

; x

�

℄:

Su
h an involution determines the real form

g

R

:= fx 2 g : x

�

= �xg

of g . This is a real subalgebra with g = g

R

� ig

R

(dire
t sum of ve
tor spa
es).

If, 
onversely, g

R

is a real form of g , then there exists a unique involution �

de�ning g

R

whi
h is given by (x+ iy)

�

:= �x+ iy for x; y 2 g

R

.

(b) Let (g; h) be a 
omplex split Lie algebra and g = h +

P

�2�

g

�

the 
orre-

sponding root de
omposition. An involution � of g is said to be 
ompatible with

the root de
omposition if x

�

2 g

��

for x 2 g

�

and � 2 � [ f0g . In this 
ase

the triple (g; h; �) is 
alled an involutive split Lie algebra.

(
) Let (g; h; �) be an involutive split Lie algebra and � the 
orresponding root

system. For � 2 �

i

the spa
e g(�)

R

:= g(�)\g

R

is a real form of the test algebra

g(�)

�

=

sl(2; C ), so that g(�)

R

�

=

sl(2;R)

�

=

su(1; 1) or g(�)

R

�

=

su(2). We 
all �


ompa
t if g(�)

R

�

=

su(2) and write �

k

for the set of 
ompa
t roots. The roots

in �

p

:= � n�

k

are 
alled non-
ompa
t. We write W

k

for the subgroup of W

generated by the re
e
tions r

�

, � 2 �

k

. This group is 
alled the 
ompa
t Weyl

group, whi
h of 
ourse does not mean that W

k

is a 
ompa
t topologi
al group.

Examples II.11. (a) If H is a Hilbert spa
e and gl(H) := B(H) the spa
e of

all bounded linear operators on H , then gl(H) is an involutive Lie algebra with

respe
t to the operator adjoint whi
h is de�ned by

hX

�

:v; wi = hv;X:wi for all v; w 2 H:

The 
orresponding real form is the subalgebra

u(H) := gl(H)

R

= fX 2 B(H):X

�

= �Xg

of skew-hermitian operators. We will see later how the notation u(H) and gl(H)

will be justi�ed by the 
orresponding Lie groups.

(b) For H = C

n

with hz; wi =

P

n

j=1

z

j

w

j

we also write

gl(n; C ) := gl(H) and u(n; C ) := u(H):

The subalgebra

sl(n; C ) := fX 2 gl(n; C ): trX = 0g
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is invariant under the involution, and we thus obtain the real form

su(n; C ) := u(n; C ) \ sl(n; C ) = sl(n; C )

R

:

(
) For every set J the Lie algebra gl(J; C ) 
an be viewed as operators on the

Hilbert spa
e

H = l

2

(J; C ) =

n

(x

j

)

j2J

2 C

J

:

X

j

jx

j

j

2

<1

o

:

The 
orresponding involution is given by X

�

= X

>

.

(d) The Lie algebra gl(n; C ) has another natural involution given by X

℄

= �X ,

where X = (x

ij

)

i;j2J

for X = (x

ij

)

i;j2J

. In this 
ase the 
orresponding real

form is

gl(n; C )

R

= gl(n;R);

the Lie algebra of real (n� n)-matri
es.

(e) For � :=

�

1

p

0

0 �1

q

�

2 gl(p+ q; C ) we obtain on gl(p+ q; C ) an involution

by X

℄

:= �X

�

� . The 
orresponding real form is 
alled u(p; q; C ). We likewise

have the real form su(p; q; C ) of sl(p+ q; C ).

In the �rst part of these le
tures we will mainly be 
on
erned with the 
ase

where all roots are 
ompa
t. In this 
ase we 
all g

R

a 
ompa
t real form of g .

Note that the standard involution X

�

= X

>

on gl(J; C ) has this property.

Exer
ises for Se
tion II

Exer
ise II.1. Let g be a �nite-dimensional Lie algebra with root de
ompo-

sition.

(a) Show that for ea
h root � and x

�

2 g

�

the endomorphism adx

�

: g ! g is

nilpotent. Hint: The set of roots is �nite.

(b) If g is �nite-dimensional, then � 2 � is integrable if and only if g(�)

�

=

sl(2; C ).

(
) If g is lo
ally �nite (every �nite subset generates a �nite-dimensional subal-

gebra), then � 2 � is integrable if and only if g(�)

�

=

sl(2; C ).

(d)* If g is lo
ally �nite, then � 2 � is integrable if and only if

�([g

�

; g

��

℄) 6= f0g:

Hint: Use the representation theory of sl(2; C ).

* Exer
ises marked with � require more work than the others.
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Exer
ise II.2. In the Lie algebra gl(n; C ) of (n�n)-matri
es, we 
onsider the

subalgebra g of upper triangular matri
es.

(a) Show that the diagonal matri
es h are a splitting Cartan subalgebra of g .

(b) � \ �� = f0g holds for the 
orresponding root system.

(
) Are there any integrable roots?

Exer
ise II.3. (a) Find on the ve
tor spa
e C [Z℄ (the algebra of all polynomi-

als in one indeterminate Z over C ) two linear maps P and Q with [P;Q℄ = 1 .

(b) Let V be a ve
tor spa
e and gl(V ) := End(V ) the Lie algebra of all linear

maps V ! V . Show that

1 2 [gl(V ); gl(V )℄ () dimV =1:

Hint: If V is in�nite, then V

�

=

V 
 C [Z℄ (why?).

(
)

�

Show that if dimV =1 , then

gl(V ) = [gl(V ); gl(V )℄:

Hint: Write V

�

=

V 
 C [Z℄ and write a given A 2 gl(V ) as A = [S;B℄ with

S(v 
 f(Z)) = v 
 f

0

(Z).

Exer
ise II.4. (Blo
k stru
ture of 
lassi
al Lie algebras) Let J be a set and


onsider the disjoint union 2J := J

_

[ � J , where �J means a set whose el-

ements are formally written as �j , j 2 J . We write C

(2J)

= C

(J)

� C

(J)

and a

ordingly elements of gl(2J; C ) as blo
k (2� 2)-matri
es with entries in

gl(J; C ).

(a) Show that

o(2J; C ) :=

n

�

a b


 �a

>

�

2 gl(2J; C ): b = �b

>

; 
 = �


>

o

is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = D

J

:= f�("

j

� "

k

): j 6= k; j; k 2 Jg;

where we de�ne "

j

2 h

�

by "

j

�

diag(x

ii

)

�

:= x

jj

for j 2 J . Hint: Show that the

symmetri
 bilinear form �(v; w) :=

P

j22J

v

j

w

�j

satis�es

o(2J; C ) = fX 2 gl(2J; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

(b) Show that

sp(2J; C ) =

n

�

a b


 �a

>

�

2 gl(2J; C ): b = b

>

; 
 = 


>

o
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is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = C

J

:= f�2"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg:

Hint: Show that the skew-symmetri
 bilinear form

�(v; w) :=

X

j2J

x

j

y

�j

� x

�j

y

j

satis�es

sp(J; C ) = fX 2 gl(2J; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

(
) We write C

(2J+1)

= C

(J)

�C �C

(J)

and a

ordingly elements of gl(2J+1; C )

as blo
k (3� 3)-matri
es. Show that

o(2J + 1; C ) :=

�

0

�

a b 


�b

>

0 d

e �d

>

�a

>

1

A

2 gl(2J + 1; C ): 
 = �


>

; e = �e

>

�

is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = B

J

:= f�"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg:

Hint: Show that the symmetri
 bilinear form �(v; w) :=

P

j22J+1

v

j

w

�j

satis�es

o(2J + 1; C ) = fX 2 gl(2J + 1; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

The pre
eding exer
ise shows that there are split Lie algebras with h

�

=

C

(J)

, where � = �

i

is one of the following root systems:

A

J

= f"

j

� "

k

: j; k 2 J; j 6= kg; for sl(J; C ); gl(J; C );

B

J

= f�"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J + 1; C )

C

J

= f�2"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for sp(J; C ); and

D

J

= f�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J; C ):

One 
an show that these are pre
isely the in�nite root systems of simple split

lo
ally �nite Lie algebras whi
h then leads to the 
lassi�
ation of this 
lass

of simple Lie algebras ([NeSt00℄): Every in�nite-dimensional lo
ally �nite split

simple 
omplex Lie algebra g is isomorphi
 to one of the following three types:

sl(J; C ); sp(J; C ) or o(2J; C )

�

=

o(2J + 1; C ):

The latter isomorphism is spe
i�
 for the in�nite-dimensional situation. It is

dis
ussed in Exer
ise II.6 below.
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Exer
ise II.5. (a) Show that gl(J; C ) and therefore every subalgebra of

gl(J; C ) is a lo
ally �nite Lie algebra.

(b) Show that all roots of the Lie algebras o(2J; C ), o(2J + 1; C ) and sp(J; C )

are integrable.

(
) Determine the stru
ture of the Weyl groups for sl(J; C ), o(2J; C ),

o(2J + 1; C ) and sp(J; C ).

Exer
ise II.6. (Isomorphisms of orthogonal Lie algebras) Let J = J

1

_

[J

2

be

a set and S 2 End(C

(J)

) the symmetri
 blo
k (2� 2)-matrix

S :=

�

1

J

1

0

0 �1

J

2

�

with respe
t to the de
omposition C

(J)

= C

(J

1

)

� C

(J

2

)

. We de�ne the Lie

algebra

o(J

1

; J

2

; C ) := fX 2 gl(2J; C ):X

>

S + SX = 0g:

(a) Show that o(2J; C )

�

=

o(J; J; C ).

(b) Show that o(2J + 1; C )

�

=

o(J + 1; J; C ).

(
) Show that o(J

1

; J

2

; C )

�

=

o(J

1

_

[J

2

; 0; C ).

(d) Dedu
e that o(2J; C )

�

=

o(2J + 1; C ) for in�nite sets J .

(e) Whi
h of the arguments in (a){(d) work over arbitrary �elds K of 
hara
ter-

isti
 zero? When is o(J

1

; J

2

; K )

�

=

o(J

0

1

; J

0

2

; K )? What happens over R ?

Exer
ise II.7. (a) Des
ribe the endomorphisms of the ve
tor spa
e C

(J)

in

terms of (J � J)-matri
es. Whi
h matri
es o

ur?

(b) Show that every (J � J)-matrix A for whi
h every 
olumn 
ontains at most

�nitely many non-zero entries and whi
h is invertible in the sense that there

exists another matrix A

�1

of this type with AA

�1

= A

�1

A = 1 de�nes an

isomorphism '

A

of gl(J; C ) by '

A

(x) = AxA

�1

.

(
) Show that the group S

J

of all bije
tions of J a
ts naturally on the Lie algebra

gl(J; C ) by automorphisms.

Exer
ise II.8. (a) Show that the real forms sl(2;R) and su(1; 1) of sl(2; C )

are isomorphi
.

(b) Des
ribe the isomorphisms so(3;R)

�

=

su(2; C ) and so(3; C )

�

=

sl(2; C ).

(
) Is every real form of sl(2; C ) isomorphi
 to su(2; C ) or su(1; 1; C )?

(d) Des
ribe the 
orresponding real form in terms of (2� 2)-blo
k matri
es.

(e) How 
an Example II.10(e) be generalized to Lie algebras of operators on

Hilbert spa
es?

Exer
ise II.9. We 
all a module V of the split Lie algebra g integrable if for

ea
h integrable root � 2 �

i

the module V is lo
ally �nite for the subalgebra

g(�)

�

=

sl(2; C ). Show that if V is an integrable module of the �nite-dimensional

split Lie algebra g and h � g a splitting Cartan subalgebra, then the set P

V

� h

�

of h -weights of V is invariant under the Weyl group. Hint: For ea
h weight

� 2 P

V

and ea
h integrable root � 
onsider the g(�)-module

P

k2Z

V

�+k�

.
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Exer
ise II.10. (a) Let g = sl(J; C ), where J is an in�nite set. Show that

for ea
h element x 2 gl(J; C ) n sl(J; C ) the derivation D := adx j

g

of sl(J; C ) is

not inner.

(b) Let d be a diagonal matrix d = diag(d

j

)

j2J

. Then D(x) := dx� xd de�nes

a derivation of gl(J; C ) and sl(J; C ) whi
h is diagonalizable as an operator on

both Lie algebras.

(
) Let A be a 
omplex J � J -matrix su
h that ea
h row and ea
h 
olumn of A


ontains at most �nitely many entries. Then D

A

(x) := Ax� xA maps gl(J; C )

and sl(J; C ) into itself and de�nes a derivation of these algebras.

Exer
ise II.11. A subset � of a positive system �

+

is 
alled a basis if

�

+

� N

0

[�℄, i.e., every positive root is a sum of elements of �. We assume

that � = A

J

.

(a) A positive system �

+

�

has a basis if and only if for ea
h pair j; k 2 J with

j � k the order interval [j; k℄ := fi 2 J : j � i � kg is �nite.

(b) If �

+

has a basis, then J is 
ountable.

(
) If J is in�nite and 
ountable, then there are three types of positive systems

�

+

�

whi
h have a basis. They 
orrespond to the linearly ordered sets (N ;�),

(N ;�) (the reversed order) and (Z;�).
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III. Unitary highest weight modules

In the representation theory of in�nite-dimensional Lie groups, the unitary high-

est weight representations are a very prominent 
lass of representations. This

has several reasons. First of all they arise most naturally in physi
al models

be
ause boundedness properties of spe
tra (su
h as the lower boundedness of the

energy) often imply that representations are highest weight representations (see

the dis
ussion in Chapter X of [Ne99a℄). On the other hand, highest weight rep-

resentations enjoy some very 
lose 
onne
tions to 
omplex geometry and K�ahler

manifolds. We have already seen part of this 
onne
tion in our dis
ussion of the

Borel{Weil Theorem in Se
tion I.

In this se
tion we study unitary highest weight representations from a

purely algebrai
 point of view. After des
ribing the general setting, we will

explain some spe
i�
 
lassi�
ation results for lo
ally �nite Lie algebras.

Unitary highest weight modules of lo
ally �nite Lie algebras

De�nition III.1. Let g be a split Lie algebra.

(a) For a g -module V and � 2 h

�

we write

V

�

:= fv 2 V : (8X 2 h)X:v = �(X)vg

for the weight spa
e of weight � and

P

V

= f� 2 h

�

:V

�

6= f0gg

for the set of h-weights of V .

(b) A non-zero element v 2 V

�

, � 2 P

V

, is 
alled primitive (with respe
t to

the positive system �

+

) if g

�

:v = f0g holds for all � 2 �

+

. A g -module V is


alled a highest weight module with highest weight � (with respe
t to �

+

) if it

is generated by a primitive element of weight � .

(
) Suppose, in addition, that g is an involutive Lie algebra. Then we 
all a

hermitian form h�; �i on a g -module V 
ontravariant if

hX:v; wi = hv;X

�

:wi for all v; w 2 V;X 2 g:

A g -module V is said to be unitary if it 
arries a 
ontravariant positive de�nite

hermitian form. Note that this property depends on the involution � on the Lie

algebra g .

In the following we will de�ne �

�

(x) := �(x

�

) for � 2 h

�

.
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Proposition III.2. Let g be an involutive split 
omplex Lie algebra and �

+

a positive system. Then the following assertions hold:

(i) Ea
h module V of highest weight � satis�es

P

V

� �� N

0

[�

+

℄:

Moreover, it has a unique maximal submodule and satis�es End

g

(V ) = C 1 .

(ii) For ea
h � 2 h

�

there exists a unique irredu
ible highest weight module

L(�;�

+

) .

(iii) If L(�;�

+

) is unitary, then � = �

�

and moreover � = �

�

for ea
h � 2 P

V

.

(iv) Ea
h unitary highest weight module is irredu
ible.

(v) If � = �

�

and v

�

2 L(�;�

+

) is a primitive element, then L(�;�

+

) 
arries

a unique 
ontravariant hermitian form h�; �i with hv

�

; v

�

i = 1: This form is

non-degenerate.

Proof. (i) Let n

�

:=

P

�2�

+

g

��

and v

�

2 V

�

be a primitive element.

From U(g) = U(n

�

)U(h)U(n

+

) (whi
h follows from the Poin
ar�e{Birkho�{

Witt Theorem) we obtain V = U(n

�

):v

�

, showing that V has an h -weight

de
omposition. Sin
e the set of h -weights on U(n

�

) is �N

0

[�

+

℄ , the set P

V

of

h -weights of V is 
ontained in �� N

0

[�

+

℄ .

To see that V

�

is one-dimensional, we observe that

V = U(n

�

):v

�

� C v

�

+ n

�

:V;

where all h -weights in n

�

:V are 
ontained in

S

�2�

+

(� � � � N

0

[�

+

℄) . The

relation (��

+

) \ N

0

[�

+

℄ = � further implies that � is not a weight of n

�

:V ,

and therefore dimV

�

= 1.

In view of dimV

�

= 1, ea
h A 2 End

g

(V ) maps the primitive element

v

�

to a multiple 
v

�

of v

�

. Then A = 
1 is a 
onsequen
e of the fa
t that v

�

generates V .

If N � V is a proper submodule, then it does not 
ontain v

�

. Further

the fa
t that it is invariant under h implies that it de
omposes a

ording to

the h -weight de
omposition (Exer
ise III.1). Hen
e it is 
ontained in the proper

subspa
e

X

06=�2N

0

[�

+

℄

V

���

:

This implies that the sum of all proper submodules is a proper submodule and

therefore a maximal submodule.

(ii) Let C

�

denote the one-dimensional module of the Lie algebra b := h+n

+

on

whi
h n

+

a
ts trivially and h a
ts by X:v = �(X)v . We 
onsider the indu
ed

g -module

M(�;�

+

) := U(g)


U(h+n

+

)

C

�

whi
h is 
alled the Verma module of highest weight � . We think of M(�;�

+

) as

a g -module quotient of the tensor produ
t U(g)
 C

�

, where C

�

is 
onsidered

as a trivial g -module, modulo the subspa
e spanned by the elements of the form
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DX
1�D
�(X), D 2 U(g), X 2 b . In this sense, we write [v
 z℄ 2M(�; b)

for the image of the element v 
 z 2 U(g)
 C

�

under the natural surje
tion to

M(�; b). We also write �:U(b) ! C for the algebra homomorphism obtained

by the homomorphi
 extension of � .

Claim 1: The module M(�; b) is a highest weight module of highest weight

� , and [1 
 1℄ is a primitive element: This is immediate from the de�nitions

be
ause for X 2 b we have

X:[1
 1℄ = [X 
 1℄ = [1
 �(X)℄ = �(X)[1
 1℄;

and U(g):[1
 1℄ = [U(g)
 1℄ =M(�;�

+

).

Claim 2: Ea
h g -module V of highest weight � is a quotient of M(�;�

+

):

Let v

�

2 V be a primitive element of weight � . Then we have a unique surje
tive

g -equivariant map

U(g)
 C

�

! V with D 
 1 7! D:v

�

:

Sin
e v

�

is a b -weight ve
tor of weight � , this map fa
tors through a surje
tive

map

M(�;�

+

)! V with [D 
 1℄ 7! D:v

�

:

Now Claim 2 and (i) show that every irredu
ible module of highest weight

� is isomorphi
 to the quotient of M(�;�

+

) modulo its maximal submodule.

(iii) The �rst part follows dire
tly from

�(X)hv

�

; v

�

i = hX:v

�

; v

�

i = hv

�

; X

�

:v

�

i = �(X

�

)hv

�

; v

�

i

for all X 2 h and a primitive element v

�

. The se
ond part now follows from (i)

and �

�

= � for all roots � 2 �.

(iv) First we observe that for unitary modules the h -weight de
omposition is

orthogonal (Exer
ise III.1). Let N � V be a proper submodule. As we have

seen in (i),

N �

X

06=�2N

0

[�

+

℄

V

���

� v

?

�

:

Hen
e

hN; V i = hN;U(g):v

�

i = hU(g):N; v

�

i � hN; v

�

i = f0g:

Sin
e the h�; �i is non-degenerate, it follows that N = f0g and therefore that V

is irredu
ible.

(v) Uniqueness of the form: We de�ne a linear fun
tional on U(g) by

'(D) := hD:v

�

; v

�

i:

In view of

hD

1

:v

�

; D

2

:v

�

i = hD

�

2

D

1

:v

�

; v

�

i = '(D

�

2

D

1

);
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it suÆ
es to show that ' is uniquely determined by � and does not depend on

h�; �i . For D 2 U(h) we have '(D) = �(D), and

U(g)n

+

+ n

�

U(g) � ker':

Sin
e the Poin
ar�e{Birkho�{Witt Theorem implies that U(g) is a dire
t ve
tor

spa
e sum

(3:1) U(g) = n

�

U(g)� U(h)� U(g)n

+

;

it follows that ' is uniquely determined by � .

Existen
e: We use the de
omposition in (3.1) to de�ne a linear fun
tion '

on U(g) with U(g)n

+

+ n

�

U(g) � ker' and ' j

U(h)

= � . First we observe that

the form

�

U(g)
 C

�

�

�

�

U(g)
 C

�

�

! C ; (C 
 1; D 
 1) 7! '(D

�

C)

is sesquilinear and fa
tors through a form on M(�;�

+

) with

h[C 
 1℄; [D
 1℄i := '(D

�

C); C;D 2 U(g):

The assumption � = �

�

�rst implies that '(x

�

) = '(x)

�

holds for all x 2 U(h),

and further

�

U(g)n

+

�

�

= n

�

U(g) implies that the pre
eding relation holds for

all x 2 U(g). Therefore h�; �i is a hermitian form, and the 
ontravarian
e follows

immediately from the de�nition.

The following proposition is quite useful to prove that highest weight mod-

ules of lo
ally �nite Lie algebras are unitary be
ause it permits to use information

on �nite-dimensional Lie algebras.

In the following we 
all a family (g

j

)

j2J

of subalgebras of g dire
ted if for

j

1

; j

2

2 J there exists a j

3

2 J with g

j

1

[ g

j

3

� g

j

3

.

Proposition III.3. Let (g

j

)

j2J

be a dire
ted family of involutive subalgebras

of g with the following properties:

(1) g =

S

j

g

j

.

(2) Ea
h g

j

is invariant under h su
h that h

j

:= h \ g

j

is a splitting Cartan

subalgebra of g

j

.

(3) h

j

separates the points in the ve
tor spa
e spanned by

�

j

:= f� 2 �: g

�

\ g

j

6= f0gg;

so that we may identify �

j

with the roots of g

j

with respe
t to h

j

.

For a positive system �

+

� � we 
onsider the positive system �

+

j

:=

�

+

\ �

j

in �

j

. Then the highest weight module L(�;�

+

) of g is unitary if

and only if all the highest weight modules L(� j

h

j

;�

+

j

) for the subalgebras g

j

,

j 2 J , are unitary.
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Proof. If L(�;�

+

) is unitary and v

�

2 L(�;�

+

) is a primitive element, then

V

j

:= U(g

j

):v

�

is a unitary highest weight module of highest weight �

j

:= � j

h

j

of

g

j

, hen
e irredu
ible (Proposition III.2(iv)). We 
on
lude that V

j

�

=

L(�

j

;�

+

j

)

is unitary.

If, 
onversely, all the modules L(�

j

;�

+

j

) are unitary, and h�; �i denotes

the unique 
ontravariant hermitian form on L(�;�

+

) with hv

�

; v

�

i = 1 (
f.

Proposition III.2(v)), then the uniqueness of the 
ontravariant form on V

j

implies

that it is positive semide�nite on the submodules V

j

whose union 
oin
ides with

L(�;�

+

). Therefore it is positive semide�nite on L(�;�

+

) and hen
e positive

de�nite be
ause L(�;�

+

) is irredu
ible.

Some ne
essary 
onditions for unitarity

In this subse
tion g denotes an involutive split Lie algebra. We use expli
it


al
ulations involving root ve
tors to derive some ne
essary 
onditions for the

unitarity of a highest weight module L(�;�

+

), whi
h for the parti
ular 
ase of

Lie algebras with �

+

= f�g and dim g

�

= 1 turn out to be suÆ
ient.

Lemma III.4. For � 2 � , Z 2 g

�

and Y 2 g

��

, the following assertions

hold:

(i) [Z; Y

n

℄ = nY

n�1

�

[Z; Y ℄�

n�1

2

�([Z; Y ℄)1

�

in U(g) .

(ii) If v

�

2 L(�;�

+

) is a primitive element, then

Z

n

(Z

�

)

n

:v

�

= n!

n�1

Y

j=0

�

��

j

2

�

�

([Z;Z

�

℄)v

�

:

Proof. (i) Repeated appli
ation of the Leibniz rule leads to

[Z; Y

n

℄ =

X

i+j=n�1

Y

i

[Z; Y ℄Y

j

=

X

i+j=n�1

Y

i+j

[Z; Y ℄ + Y

i

�

[Z; Y ℄; Y

j

�

=

X

i+j=n�1

Y

i+j

[Z; Y ℄� j�([Z; Y ℄)Y

i+j

= nY

n�1

[Z; Y ℄�

n(n�1)

2

�([Z; Y ℄)Y

n�1

= nY

n�1

�

[Z; Y ℄�

(n�1)

2

�([Z; Y ℄)1

�

:

(ii) Again repeated appli
ation of the Leibniz rule yields

[Z

n

; (Z

�

)

n

℄ =

X

i+j=n�1

Z

i

[Z; (Z

�

)

n

℄Z

j

;

so that Z

n

(Z

�

)

n

:v

�

= [Z

n

; (Z

�

)

n

℄:v

�

= Z

n�1

[Z; (Z

�

)

n

℄:v

�

: Hen
e the formula

under (i) gives

Z

n

(Z

�

)

n

:v

�

= n(��

n�1

2

�)([Z;Z

�

℄) Z

n�1

(Z

�

)

n�1

:v

�

:

Now the assertion follows from an easy indu
tion.
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Proposition III.5. Suppose that g = h+g

�

+g

��

is an involutive Lie algebra

with g

�

= C Z , and let � = �

�

2 h

�

.

(i) If �([Z;Z

�

℄) > 0 , then L(�;�

+

) is unitary if and only if there exists an

n 2 N

0

with

�([Z;Z

�

℄) = n

�([Z;Z

�

℄)

2

:

For � 2 �

k

this means that �(��) 2 N

0

. In this 
ase, dimL(�;�

+

) = n+1 .

(ii) If �([Z;Z

�

℄) � 0 , then L(�;�

+

) is unitary if and only if �([Z;Z

�

℄) � 0 .

If, in addition, �([Z;Z

�

℄) = 0 , then L(�;�

+

) is one-dimensional, and

otherwise in�nite-dimensional with the weights �� N

0

� .

Proof. Sin
e g

�

= C Z , the highest weight module L(�;�

+

) is the orthogonal

dire
t sum of the one-dimensional subspa
es generated by the elements (Z

�

)

n

:v

�

,

n 2 N

0

. So it is unitary if and only if all the numbers in Lemma III.4(ii) are

non-negative. Now the assertions are immediate 
onsequen
es.

The following theorem provides the essential information that we will need

in the following se
tions.

Theorem III.6. (Chara
terization of unitarity) Let g be a lo
ally �nite split

Lie algebra with � = �

k

.

(i) Then the highest weight module L(�;�

+

) of g with respe
t to �

+

is unitary

if and only if � = �

�

and � is dominant integral in the sense that

�(��) 2 N

0

for all � 2 �

+

:

(ii) If L(�;�

+

) is unitary and R := Z[�℄ � h

�

denotes the root group, then the

weight system P

�

of L(�;�

+

) is given by

P

�

= 
onv(W:�) \ (�+R):

(iii) For ea
h X 2 g the 
orresponding operator on L(�;�

+

) is lo
ally �nite.

Proof. (Sket
h) (i) The ne
essity of �(��) 2 N

0

for all � 2 �

+

follows

from Proposition III.5. To see that this 
ondition is suÆ
ient, we �rst observe

that we may w.l.o.g. assume that g is perfe
t be
ause [g; g℄ is a subalgebra with

h+[g; g℄ = g and the splitting Cartan subalgebra h\[g; g℄ = span

�

�, and L(�;�)

also is a highest weight module for [g; g℄ (
f. Exer
ise III.3).

Sin
e g is lo
ally �nite, it 
an be written as a dire
ted union of �nite-

dimensional subalgebras g

j

, j 2 J , as in Proposition III.3. These subalgebras


an be obtained as follows: Let �

j

� � be a �nite subset whi
h is full in the set

that �

j

= � \ span�

j

. Then we 
onsider g

j

:= span

�

�

j

+

P

�2�

j

g

�

. It is not

hard to see that g is a dire
ted union of these �nite-dimensional subalgebras for

whi
h (g

j

)

R

is a 
ompa
t real form. In view of Proposition III.3, the assertion

now follows from the 
orresponding result for �nite-dimensional Lie algebras,

where we already know that the fa
t that �

j

is dominant integral implies that

L(�

j

;�

+

j

) is �nite-dimensional (Theorem I.1), so that the 
ompa
tness of the
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simply 
onne
ted group U

j


orresponding to u

j

:= (g

j

)

R

implies that the repre-

sentation of this group on L(�

j

;�

+

j

) 
an be made unitary by averaging a given

positive de�nite hermitian form.

(ii) This part follows from the 
orresponding assertion for �nite-dimensional Lie

algebras (
f. [Bou90, Ch. 8℄) and the trivial observation that W =

S

j2J

W

j

,

where W

j

� W is the subgroup generated by the re
e
tions r

�

, � 2 �

j

.

(iii) Let X 2 g and v 2 L(�;�

+

). We have to show that v is 
ontained in a

�nite-dimensional X -invariant subspa
e. We write X as X

h

+X

s

with X

h

2 h

and X

s

2 [g; g℄ . Now let g

j

be as in (iii) so large that v 2 U(g

j

):v

�

and X

s

2 g

j

.

Then [X; g

j

℄ � g

j

implies that the �nite-dimensional subspa
e U(g

j

):v

�

is X -

invariant be
ause X:v

�

2 C v

�

+X

s

:v

�

� U(g

j

):v

�

.

The pre
eding theorem applies in parti
ular to the Lie algebras sl(J; C ),

gl(J; C ), sp(J; C ), o(2J; C ) and o(2J + 1; C ) with their natural involutions

de�ned by x

�

= �x

>

.

Example III.7. The unitary highest weight modules of the Lie algebra gl(J; C )

with respe
t to the positive system �

+

�

= f"

j

� "

k

: j � k; j; k 2 Jg are

parametrized by fun
tionals � = (�

j

)

j2J

2 h

�

�

=

C

J

whi
h we also write as

� =

X

j2J

�

j

"

j

or as fun
tions �: J ! R; j 7! �

j

. If � = �

�

, then the highest weight module

L(�) of gl(J; C ) is unitary if and only if �

j

� �

k

2 N

0

for j � k:

Given a linear order � on J we have parti
ular dominant integral fun
-

tionals given by

$

M

:=

X

j2M

"

j

;

where M � J is a subset satisfying M � J nM (it is a lower set for the order

�). These fun
tionals $

M

are 
alled the fundamental weights. Note that for

M = J we get $

J

= tr. For more details on the relation between fundamental

weights and general weights we refer to the dis
ussion in [Ne98℄.

If g is �nite-dimensional, then the pre
eding theorem dire
tly yields a


lassi�
ation of the unitary highest weight modules for the 
ompa
t real form

u = g

R

be
ause every simple highest weight module is �nite-dimensional and

every simple �nite-dimensional module is isomorphi
 to some L(�;�

+

) for a

�xed positive system �

+

(Theorem I.1). In the in�nite-dimensional 
ase there

are many di�erent positive systems whi
h are not 
onjugate under the Weyl

group W (
f. Remark II.9), so that we 
annot expe
t su
h a simple situation.

To obtain a 
lassi�
ation of the unitary highest weight modules, we therefore have

to dis
uss when two unitary highest weight modules L(�;�

+

) and L(

e

�;

e

�

+

) are

isomorphi
.
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The 
lassi�
ation of unitary highest weight modules

In this se
tion g is a lo
ally �nite split involutive Lie algebra with � = �

k

.

Proposition III.8. If V is an irredu
ible g-module with h-weight system

P

V

� h

�

, and �

+

a positive system su
h that � 2 P

V

satis�es

� 2 P

V

� �� R

+

[�

+

℄;

then V

�

=

L(�;�

+

) .

Proof. Let v

�

2 V be an h -weight ve
tor of weight � . For � 2 �

+

we then

have g

�

:v

�

� V

�+�

. If g

�

:v

�

is non-zero, this means that

�+ � 2 P

V

� �� R

+

[�

+

℄;

hen
e that � 2 �

+

\ �R

+

[�

+

℄ = �, a 
ontradi
tion. Thus v

�

is a primitive

element in V with respe
t to �

+

, and therefore the irredu
ibility of V implies

that V is an irredu
ible highest weight module of highest weight � , i.e., isomor-

phi
 to L(�;�

+

).

Corollary III.9. Two unitary highest weight modules L(�;�

+

) and

L(�;

e

�

+

) are isomorphi
.

Proof. A

ording to Theorem III.6, both modules have the same set of weights

satisfying the 
ondition of Proposition III.8, so that L(�;

e

�

+

)

�

=

L(�;�

+

).

In view of the pre
eding 
orollary, we may de�ne

L(�) := L(�;�

+

)

if �

+

is a positive system su
h that L(�;�

+

) is unitary be
ause the isomorphy


lass of L(�;�

+

) does not depend on the 
hoi
e of �

+

. The next question is

when two unitary highest weight modules L(�) and L(�) are isomorphi
. To

answer this question, we will need the following elementary lemma:

Lemma III.10. If E is a subset of the real ve
tor spa
e V , then Ext(
onvE) �

E .

Proof. Sin
e every element of 
onv(E) is a �nite 
onvex 
ombination of

elements of E , it 
learly suÆ
es to prove the assertion for a �nite subset E .

We use indu
tion over jEj . For jEj = 1 the assertion is trivial. If the

assertion holds for set of at most n elements and jEj = n + 1, then we write

E = E

0

[ feg with e 2 E and jE

0

j = n . Now


onv(E) =

[

�2[0;1℄

�

� 
onv(E

0

) + (1� �)e

�

;

and therefore Ext

�


onv(E)

�

� Ext

�


onv(E

0

)

�

[ feg � E

0

[ feg = E:
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Lemma III.11. If L(�;�

+

) is unitary, then

Ext

�


onv(P

�

)

�

=W:�:

Proof. In view of Proposition III.2(i), we have 
onv(P

�

) � � � R

+

[�

+

℄

and the 
onvex 
one R

+

[�

+

℄ is pointed, so that � 2 Ext

�


onv(P

�

)

�

. On the

other hand P

�

is invariant under the Weyl group W (Exer
ise II.9), whi
h

implies that W:� � Ext

�


onv(P

�

)

�

. Moreover, Theorem III.6 shows that


onv(P

�

) = 
onv(W:�), so that Lemma III.10 leads to

Ext

�


onv(P

�

)

�

� W:�:

This 
ompletes the proof.

Lemma III.12. Two unitary highest weight modules L(�) and L(�) are iso-

morphi
 if and only if � 2 W:� .

Proof. If � 2 W:� , then Theorem III.6 implies that the set of weights of

L(�) and L(�) 
oin
ides, hen
e that both are isomorphi
 (Proposition III.8). If,


onversely, L(�)

�

=

L(�), then both have the same set of weights, so that Lemma

III.11 yields

� 2 Ext

�


onv(P

�

)

�

= Ext

�


onv(P

�

)

�

=W:�:

The remaining question is how we 
an see if for a fun
tional � 2 h

�

there

exists a positive system �

+

su
h that L(�;�

+

) is unitary. To answer this

question we generalize a useful 
on
ept from the theory of �nite root systems to

our setting.

De�nition III.13. A subset � � � is 
alled 
losed if

(� + �) \� � �:

It is 
alled paraboli
 if it is 
losed and satis�es

� [ �� = �:

Note that 
losed subsets 
orrespond to subalgebras p(�) := h +

P

�2�

g

�

(Exer
ise!).

Proposition III.14. Every paraboli
 system � 
ontains a positive system.

Proof. (a) Let �

+

:= � n ��. Then

(� + �

+

) \� � �

+

:

Let � 2 � and � 2 �

+

with �+ � 2 �. Sin
e � is 
losed, we have �+ � 2 �.

If this root is not 
ontained in �

+

, then ��� � 2 �, so that the 
losedness of

� leads to �� = (��� �) + � 2 �, a 
ontradi
tion.
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(b) Using Zorn's Lemma, we �nd a maximal 
losed subset � � � satisfying

� \ �� = �. In view of (a), we then have

�

(� [ �

+

) + (� [ �

+

)

�

\� � � [ �

+

;

and further

(� [ �

+

) \ �(� [ �

+

) � (� \ ��) [ (� \ ��

+

) [ (�� \ �

+

) = �:

Therefore the maximality of � implies that �

+

� �.

(
) � [ �� = �. Suppose that this is not the 
ase and pi
k � 2 � not in � or

��. In view of (b), we then have � 2 �\��. The maximality of � implies that

it 
annot be enlarged by � , whi
h means that there exists a �nite-dimensional

subspa
e E � span� 
ontaining � su
h that the �nite 
losed subset �

0

:= �\E


annot be put into a positive system

e

�

0

of �

0

:= � \E 
ontaining � .

The property �

0

\ ��

0

= � implies that b

0

:= span

�

�

0

+

P

�2�

0

g

�

is a

solvable subalgebra of g

0

:= span

�

�

0

+

P

�2�

0

g

�

. Let b be a maximal solvable

subalgebra of g

0


ontaining b

0

. Then

b = span

�

�

0

+

X

�2�

+

0

g

�

for a positive system �

+

0

of �

0

(
f. [Bou90, Ch. VIII, x3.1, Prop. 5℄). Now

� 2 �

+

0

[ ��

+

0

leads to a 
ontradi
tion whi
h proves that � [ �� = �.

(d) � is a positive system: It suÆ
es to show that for every �nite-dimensional

subspa
e E � span� the set � \ E is a positive system in �

0

:= � \ E , but

this follows from the existen
e of a linearly independent basis of �

+

0

([Bou90,

Ch. VIII℄).

Example III.15. We 
onsider the root system � = A

J

. If � � � is a positive

system, then

j �

�

k :() "

j

� "

k

2 � [ f0g

de�nes a partial order on J . Sin
e the positive systems in � 
orrespond to

linear orders on J , it is easy to see that the positive systems 
ontained in �


orrespond to the linear orderings � re�ning the partial order �

�

. In this setting

Proposition III.14 means that ea
h partial order on a set J 
an be re�ned to a

linear order.

Now we are ready to address the 
omplete 
lassi�
ation of unitary highest

weight modules.

Theorem III.16. Let P := f� 2 h

�

:�

�

= �; (8� 2 �)�(��) 2 Zg denote the

group of symmetri
 weights. If L(�;�

+

) is unitary, then � 2 P and, 
onversely,

for ea
h � 2 P there exists a positive system �

+

su
h that L(�;�

+

) is unitary.

The subset P � h

�

is invariant under the a
tion of the Weyl group, and the map
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� 7! L(�) indu
es a bije
tion of the orbit spa
e P=W onto the set of isomorphy


lasses of unitary highest weight modules.

Proof. The ne
essity of � 2 P follows from Theorem III.6. Now let � 2 P

and 
onsider the set

�

�

:= f� 2 �:�(��) 2 N

0

g:

We 
laim that �

�

is a paraboli
 system. It is 
lear that �

�

[ ��

�

= �. Now

let �; � 2 �

�

with � + � 2 �. Then the theory of �nite root systems, applied

to �

0

:= � \ spanf�; �g , implies that

(3:2) (�+ �)�2 R

+

��+ R

+

�

�:

In fa
t, there exists a s
alar produ
t (�; �) on span�

0

whi
h permits us to identify

this spa
e with spanf��;

�

�g in su
h a way that �
 
orresponds to

2


(
;
)

for 
 2 �

0

([Bou90, Ch. VIII, x2, no. 2, Th. 2℄). This implies for 
 = � + � the relation

(3.2) whi
h in turn shows that �

�

is 
losed, hen
e a paraboli
 system. Now we

use Proposition III.14 to see that there exists a positive system �

+

� �

�

. Then

L(�;�

+

) is unitary by Theorem III.6.

The remainder follows dire
tly from Lemma III.12.

Exer
ises for Se
tion III

Exer
ise III.1. Let h be an abelian Lie algebra and V an h -module whi
h is

spanned by simultaneous h -eigenve
tors. We 
all V an h -weight module. Then

the following assertions hold:

(i) V =

L

�2P

V

V

�

.

(ii) Every submodule W � V satis�es

W =

M

�2P

V

(W \ V

�

) =

M

�2P

V

W

�

:

(iii) Suppose that h is involutive and that h�; �i is a 
ontravariant hermitian form

on V and let � 2 h

�

. We put �

�

(x) := �(x

�

). Then hV

�

; V

�

�

i = f0g for

� 6= � . If, in addition, �

�

= � for ea
h weight in P

V

, then the weight

de
omposition of V is orthogonal with respe
t to h�; �i .

Exer
ise III.2. Let g be a �nite-dimensional 
omplex semisimple Lie algebra.

(i) If g

R

is a real form de�ned by an involution � whi
h is 
ompatible with a root

de
omposition, then the Cartan subalgebra h

R

:= h\ g

R

of g

R

is 
ompa
tly

embedded in the sense that the 
losure of the group e

ad h

R

in Aut(g

R

) is


ompa
t.

(ii) Find a real form of a 
omplex semisimple Lie algebra whi
h does not 
ontain

a 
ompa
tly embedded Cartan subalgebra. Then g

R

does not o

ur for any

involution 
ompatible with a root de
omposition.
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Exer
ise III.3. Let (g; h) be a split Lie algebra.

(i) g = [g; g℄ + h and for ea
h highest weight module V with highest weight

ve
tor v

�

we have V = U(g):v

�

.

(ii) If no root vanishes on h

0

:= h\[g; g℄ , then h

0

is a splitting Cartan subalgebra

of [g; g℄ .

(iii) If h

0

is a splitting Cartan subalgebra of [g; g℄ , then a highest weight mod-

ule L(�;�

+

) of g is unitary if the 
orresponding highest weight module

L(� j

h

0

;�

+

) of [g; g℄ is unitary.

Exer
ise III.4. We 
onsider g = sl(2; C ) with �

+

= f�g and the fun
tional

� 2 h

�

with �(��) = n 2 N

0

. Let L(�;�

+

) be the 
orresponding (n + 1)-

dimensional simple g -module with the 
anoni
al basis f

j

:v

�

, j = 0; : : : ; n . We

endow g with the involution with g

R

= su(1; 1). Determine the signature of the


anoni
al hermitian on the subspa
es C f

j

:v

�

.
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IV. Bana
h{Lie groups

In this se
tion we will brie
y dis
uss the 
ru
ial points where in�nite-dimensional

Lie theory for Bana
h{Lie groups di�ers from the familiar �nite-dimensional

theory. Moreover, we will explain some tools that 
an be used to deal with

spe
i�
 groups quite eÆ
iently.

General Lie theory for Bana
h{Lie groups

Throughout this se
tion, we will assume some familiarity with the basi



on
epts and results of di�erential 
al
ulus in Bana
h spa
es whi
h does not

di�er very mu
h from di�erential 
al
ulus in R

n

: If U is an open subset of the

Bana
h spa
e E , and F a Bana
h spa
e, then a map f :U ! F is said to be

di�erentiable in p 2 U if there exists a 
ontinuous linear map df(p):E ! F su
h

that

f(p+ v) = f(p) + df(p):v + o(kvk):

We 
all f a C

1

-map or 
ontinuously di�erentiable if it is di�erentiable in every

point of U and the map df :U ! B(E;F ) is 
ontinuous. We 
all f a C

2

-map

if df is C

1

et
. We say that f is C

1

or smooth if f is C

n

for every n 2 N . So

essentially everything works as in R

n

, provided it is formulated in a 
oordinate

free way. This holds in parti
ular for the de�nition of manifolds, submanifolds,

tangent bundles and ve
tor �elds (whi
h are always viewed as smooth se
tions

of the tangent bundle). For the details we refer to [La99℄.

De�nition IV.1. A Bana
h{Lie group G is a manifold modeled over a Bana
h

spa
e su
h that the multipli
ation map G�G! G; (x; y) 7! xy and the inversion

G! G; x 7! x

�1

are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for

the left, resp., right multipli
ation on G ([La99, xVI.5℄).

The Lie algebra g of G 
an be obtained as in the �nite-dimensional 
ase:

Ea
h X 2 T

1

(G) (the tangent spa
e in the identity element 1) 
orresponds to a

unique left invariant ve
tor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G:

The spa
e of left invariant ve
tor �elds is 
losed under the Lie bra
ket of ve
tor

�elds ([La99, Prop. III.5.1℄), hen
e inherits a Lie algebra stru
ture. In this sense

we obtain on g := T

1

(G) a 
ontinuous Lie bra
ket whi
h is uniquely determined

by [X;Y ℄

l

= [X

l

; Y

l

℄ . To emphasize the fun
torial dependen
e of g of G , we

frequently write L(G) for the Lie algebra of G . If k � k is a norm on g de�ning

the topology, then the 
ontinuity of the Lie bra
ket means that there exists a


onstant C > 0 with

k[X;Y ℄k � CkXk kY k for all X;Y 2 g
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(Exer
ise IV.10). A Bana
h spa
e (g; k � k) whi
h at the same time is a Lie

algebra with a 
ontinuous Lie bra
ket is 
alled a Bana
h{Lie algebra.

The existen
e and uniquenes results for ordinary di�erential equations also

hold in the setting of Bana
h spa
es (
f. [La99, xxIV.1/2℄). By integrating the 
ow

of a left-invariant ve
tor �eld X

l

, we therefore obtain the exponential fun
tion

exp: g! G; exp(X) := 


X

(1);

where 


X

:R ! G is a solution of the initial value problem




0

X

(t) = X

l

(


X

(t)); 


X

(0) = 1:

The exponential fun
tion is a smooth map with d exp(0) = id

g

: In view of the

Inverse Fun
tion Theorem, this implies that one 
an use the exponential fun
tion

to 
onstru
t 
anoni
al 
harts of G . As for �nite-dimensional groups, one 
an

show that these 
harts de�ne on G the stru
ture of an analyti
 Lie group (the

transition maps in 
harts are analyti
).

The left invarian
e of the ve
tor �eld X

l

implies in parti
ular that the

integral 
urve 


X

:R ! G is a Lie group homomorphism (R;+) ! G . It 
an be

shown that all 
ontinuous Lie group homomorphism are of this type, so that we

have a natural bije
tion

g! Hom(R; G); X 7! 


X

:

Sin
e essentially all Lie groups arising in these notes will be Bana
h{Lie

groups, we will simply 
all them Lie groups.

The following results 
arry over from �nite-dimensional Lie theory:

Theorem IV.2. Let G and H be Bana
h{Lie groups.

(a) For X;Y 2 L(G) we have the Trotter produ
t formula

exp(X + Y ) = lim

n!1

�

exp(

1

n

X) exp(

1

n

Y )

�

n

and the 
ommutator formula

exp([X;Y ℄) = lim

n!1

�

exp(

1

n

X) exp(

1

n

Y ) exp(�

1

n

X) exp(�

1

n

Y )

�

n

2

:

(b) Let ':G ! H be a 
ontinuous homomorphism between Bana
h{Lie groups.

Then ' is smooth and L(') := d'(1):L(G)! L(H) is a 
ontinuous homomor-

phism of Bana
h{Lie algebras.

(
) If, 
onversely,  :L(G) ! L(H) is a 
ontinuous homomorphism of Lie

algebras and G is 
onne
ted and simply 
onne
ted, then there exists a unique


ontinuous homomorphism ':G! H with L(') =  .

Proof. (Sket
h) (a) This follows from analyzing the the produ
t

X � Y := exp j

�1

V

(expX expY ) = X + Y +

1

2

[X;Y ℄ + : : :
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on an open neighborhood W � g for whi
h there exists an open 0-neighborhood

V �W for whi
h exp j

V

:V ! exp(V ) is a di�eomorphism and

exp(W ) exp(W ) � exp(V ):

(b) For every X 2 g the homomorphism ' Æ 


X

:R ! H is a 
ontinuous one-

parameter group, hen
e 
an be written as

' Æ 


X

= 


 (X)

;  (X) 2 L(H)

(De�nition IV.1). We 
on
lude that

' Æ exp

G

= exp

H

Æ :

Using (a), one shows that  is linear and a Lie algebra homomorphism. Sin
e

exp

G

and exp

H

are lo
al di�eomorphisms, it follows that  :L(G) ! L(H) is


ontinuous.

(
) This is done as in the �nite-dimensional 
ase.

The fa
t that Bana
h{Lie groups are lo
ally 
ontra
tible implies in parti
u-

lar that for ea
h Bana
h{Lie group G there exists a simply 
onne
ted 
overing

group

e

G , whi
h also 
arries a unique Bana
h{Lie group stru
ture su
h that

the map q:

e

G ! G is a 
overing homomorphism of Lie groups. In the light of

this fa
t, Theorem IV.2(
) is a very important tool to \integrate" Lie algebra

representations to group representations.

Corollary IV.3. For every 
losed subgroup H � G the subset

L(H) := fX 2 g: exp(RX) � Hg

is a 
losed Lie subalgebra of g .

Proof. This is a dire
t 
onsequen
e of Theorem IV.2(a).

Remark IV.4. (Lie subgroups) (a) Let G be a Lie group with Lie algebra

g . There exist various notions of Lie subgroups in the literature. The weakest

one is that of Maissen ([Ma62℄) who shows that for every 
losed subalgebra

h � g there exists a 
onne
ted Lie group H

L

with Lie algebra h and an inje
tive

homomorphism of Lie groups

�:H

L

! G

with �(H

L

) = H := hexp hi . The main idea is to re�ne the topology on the

subgroup H in su
h a way that the exponential fun
tion exp: h ! H

L

yields

a lo
al homeomorphism. The same approa
h is dis
ussed in a slightly more

restri
ted 
ontext in Theorem 5.52 in [HoMo98℄, where it is shown that for

separable subalgebras h we have

L(H) := fX 2 g: exp(RX) � Hg = h:
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For non-separable subalgebras h this is no longer true in general, as the following


ounterexample shows ([HoMo98, p.157℄): We 
onsider the abelian Lie group

g := l

1

(R;R) � R , where the group stru
ture is given by the addition. We write

(e

r

)

r2R

for the 
anoni
al topologi
al basis elements of l

1

(R;R) (
f. Exer
ise

IV.11). Then the subgroup D generated by the pairs (e

r

;�r), r 2 R , is 
losed

and dis
rete, so that G := g=D is an abelian Lie group. Now we 
onsider the


losed subalgebra h := l

1

(R;R) of g . As h+D = g , we have H := exp h = G ,

and therefore

(0; 1) 2 L(H) n h:

(b) In [La99℄ S. Lang 
alls a subgroup H � G a Lie subgroup if H 
arries a Lie

group stru
ture for whi
h there exists an immersion �:H ! G . In view of the

de�nition of an immersion, this 
on
ept requires the Lie algebra h of g to be a


losed subalgebra of g whi
h is 
omplemented in the sense that there exists a


losed ve
tor spa
e 
omplement. Conversely, it is shown in [La99℄ that for every


omplemented 
losed subalgebra h � g there exists a Lie subgroup in this sense

([La99, Th. VI.5.4℄). For a �nite-dimensional Lie group G , this 
on
ept des
ribes

the analyti
 subgroups of G be
ause every subalgebra of a �nite-dimensional Lie

algebra is 
losed and 
omplemented. As the dense wind in the two-dimensional

torus G = T

2

shows, subgroups of this type need not be 
losed. We also note

that the 
losed subspa
e




0

(N;R) � l

1

(N ;R)

of sequen
es 
onverging to 0 is not 
omplemented ([Wil78, Ex. 14-4-9℄; see also

[We95, Satz IV.6.5℄ for an elementary proof), hen
e not a Lie subgroup in the

sense of Lang, but a Lie subgroup in the sense of Maissen.

(
) The stronges 
on
ept is the one used in [Bou90, Ch. 3℄. Here a Lie subgroup H

is required to be a submanifold whi
h implies in parti
ular that it is lo
ally 
losed

and therefore 
losed. On the other hand this implies that the quotient spa
e G=H

has a natural manifold stru
ture for whi
h the quotient map q:G ! G=H is a

submersion ([Bou90, Ch. 3, x1.6, Prop. 11℄).

(d) For �nite-dimensional Lie groups 
losed subgroups are Lie subgroups, but

for Bana
h{Lie groups this is no longer true. What remains true is that lo
ally


ompa
t subgroups are Lie subgroups (
f. [HoMo98, Th. 5.41(vi)℄). How bad


losed subgroups 
an be is illustrated by the following example due to K. H. Hof-

mann: We 
onsider the real Hilbert spa
e G := L

2

([0; 1℄;R) as a Bana
h{Lie

group. Then the subgroup H := L

2

([0; 1℄;Z) of all those fun
tions whi
h almost

everywhere take values in Z is a 
losed subgroup. Sin
e the one-parameter sub-

groups of G are of the form Rf , f 2 G , we have L(H) = f0g . On the other

hand, the group H is ar
wise 
onne
ted and even 
ontra
tible be
ause the map

F : [0; 1℄�H ! H given by

F (t; f)(x) :=

�

f(x) 0 � x � t

0 t < x � 1

is 
ontinuous with F (1; f) = f and F (0; f) = 0.

The following lemma is a useful 
riterion to verify that subgroups of given

Lie groups are Lie groups.
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Proposition IV.5. Let G be a Lie group and H � G a 
losed subgroup for

whi
h there exists an open 0-neighborhood V � g su
h that exp j

V

:V ! U :=

exp(V ) is a di�eomorphism and

exp(V \ L(H)) = U \H:

Then H 
arries a natural Lie group stru
ture su
h that L(H) is the Lie algebra

of H and the exponential map of H is given by the restri
tion

exp

H

= exp

G

j

L(H)

:L(H)! H:

If, in addition, g 
ontains a 
losed subspa
e E 
omplementing L(H) , then

H is a submanifold of G and the homogeneous spa
e G=H 
arries a natural

manifold stru
ture su
h that the 
anoni
al map �:G! G=H is a submersion.

Proof. (Sket
h) We put h := L(H). The idea of the proof is to use the

exponential fun
tion to de�ne an atlas of H . This is done by �rst observing

that the restri
tion of exp to a suitable open 0-neighborhood V

h

in h yields a

homeomorphism ':V

h

! '(V

h

) onto a 1 -neighborhood '(V

h

) � H . Now one

pro
eeds as in the �nite-dimensional 
ase (see also Maissen's approa
h, Remark

IV.4).

If, in addition, a 
losed 
omplement E exists for h , then H is a Lie

subgroup in the sense of Lang and the in
lusion map �:H ! G is an immersion.

This implies that there exists an open 1 -neighborhood U

H

� H su
h that U

H

is a submanifold of G . Choosing U

H

su
h that it is 
ontained in U , we see that

1 has an open neighborhood U

0

su
h that H \ U

0

is a submanifold of G . In

view of the homogeneity of G , it follows that H is a submanifold of G in the

sense of Bourbaki.

De�nition IV.6. Let G be a Lie group and h � g a 
losed subalgebra.

We 
all the subgroup H := hexp hi generated by the exponential image of h the


orresponding analyti
 subgroup of G . A

ording to Maissen's results, this group

has a natural Lie group stru
ture su
h that the map H ,! G is a morphism of

Lie groups (see also [HoMo98, Cor. 5.34℄).

For a 
losed subgroup H � G we 
onsider the 
losed Lie subalgebra

h := L(H) = fX 2 g: exp(RX) � Hg

of g (Corollary IV.3) and say that H is a Lie subgroup if there exists an open

0-neighborhood V � g su
h that exp j

V

is a di�eomorphism onto an open

subset exp(V ) and exp(V \ h) = (expV ) \ H . Then Proposition IV.5 implies

that H 
arries a natural Lie group stru
ture su
h that the map H ,! G is a

homomorphism of Lie groups whi
h is a homeomorphism onto its image.

We 
all a Lie subgroup H 
omplemented if g 
ontains a 
losed subspa
e

E 
omplementing the 
losed subalgebra h . If this 
ondition is satis�ed, then H

is a submanifold in the sense of Bourbaki, and in parti
ular the homogeneous

spa
e G=H 
arries a natural manifold stru
ture su
h that the 
anoni
al map

�:G! G=H is a submersion (Proposition IV.5).
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Remark IV.7. If G is a Hilbert{Lie group, i.e., the topology on g 
omes from

a real Hilbert spa
e stru
ture on g , then every 
losed subspa
e h � g has a


losed 
omplement, so that every Lie subgroup is 
omplemented.

Linear Lie groups

Now the natural question is how to �nd in�nite-dimensional Lie groups.

In the �nite-dimensional 
ontext the most natural examples are matrix groups,

i.e., groups of operators on �nite-dimensional ve
tor spa
es. In the in�nite-

dimensional 
ontext the situation is similar. The most natural examples are

groups of operators on Bana
h spa
es.

De�nition IV.8. A Bana
h algebra is a Bana
h spa
e A endowed with an

asso
iative algebra stru
ture su
h that the norm on A is submultipli
ative:

kxyk � kxk � kyk; x; y 2 A:

We 
all A unital if A 
ontains an identity element 1 . In this 
ase we write

G(A) := fa 2 A: (9b 2 A) ab = ba = 1g

for the group of units of A .

Proposition IV.9. If A is a unital Bana
h algebra, then G(A) is a Lie group

with Lie algebra A (endowed with the 
ommutator bra
ket) and the exponential

fun
tion

exp:A! G(A); exp(x) = e

x

:=

1

X

n=0

x

n

n!

:

Proof. First we observe that for kxk < 1 the Neumann series

P

1

n=0

x

n


onverges to an element y 2 A satisfying y(1� x) = (1� x)y = 1 . We 
on
lude

that

U := fg 2 A: kg � 1k < 1g � G(A);

and that on U the inversion is given by the 
onvergent power series

g

�1

=

1

X

n=0

(1� g)

n

;

hen
e an analyti
 fun
tion and therefore in parti
ular smooth.

For every element g 2 G the multipli
ation �

g

:A ! A is a homeomor-

phism, so that �

g

:U = gU is an open neighborhood of g in A whi
h is 
ontained

in G(A). This proves that G(A) is open. Sin
e the multipli
ation m:A�A! A

is bilinear, it restri
ts to a smooth map G(A)�G(A)! G(A). To see that the

inversion is a smooth fun
tion, we observe that for u 2 U we have

(gu)

�1

= u

�1

g

�1

;
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so that the smoothness of the inversion on gU follows from the smoothness on U .

To see that exp is the exponential fun
tion of the Lie group G(A), we

observe that the left invariant ve
tor �elds on G(A) are given by X

l

(g) = gX ,

so that the 
orresponding integral 
urves starting in 1 are 


X

(t) = e

tX

, and this

implies that exp(X) = 


X

(1) = e

X

.

Corollary IV.10. If E is a Bana
h spa
e, then the group GL(E) of invertible

bounded linear maps E ! E is a Lie group with Lie algebra B(E) , the algebra

of all bounded operators on E .

Proof. The group GL(E) is the unit group of the unital Bana
h algebra

B(E).

Let E be a Bana
h spa
e. We 
all a Lie subgroup H � GL(E) a linear

Lie group (
f. [HoMo98, Ch. V℄, where linear Lie groups are dis
ussed in a quite

elementary fashion). The following lemma is a useful 
riterion to see that 
ertain


losed subgroups are Lie subgroups.

Lemma IV.11. If ':G

1

! G is a 
ontinuous homomorphism of Lie groups

and H � G a Lie subgroup, then H

1

:= '

�1

(H) also is a Lie subgroup. In

parti
ular ker' is a Lie subgroup of G

1

.

Proof. We 
hoose an open 0-neighborhood V � g su
h that exp

G

j

V

is a

di�eomorphism onto the open subset U := exp

G

V of G , and exp

G

(V \ h) =

U \ H . Then we 
hoose an open 0-neighborhood V

1

� L(')

�1

(V ) su
h that

exp

G

1

j

V

1

is a di�eomorphism onto U

1

:= exp

G

1

(V

1

). We put H

1

:= '

�1

(H).

Let X 2 V

1

with exp

G

1

X 2 U

1

\H

1

. Then

'(exp

G

1

X) = exp

G

(L('):X) 2 U \H

with L('):X 2 V . Hen
e L('):X 2 h and therefore

X 2 h

1

= fY 2 g

1

: exp(RY ) � H

1

g;

whi
h is the 
losed Lie subalgebra 
orresponding to the 
losed subgroup H

1

of

G

1

(
f. Corollary IV.3). This implies that U

1

\H

1

� exp(V

1

\ h

1

) and therefore

equality be
ause the 
onverse in
lusion is trivial.

Lemma IV.12. Let E be a Bana
h spa
e and F � E a 
losed subspa
e. Then

H := fg 2 GL(E): g:F � Fg

is a Lie subgroup of GL(E) .

Proof. Let V � g be an open 0-neighborhood su
h that exp j

V

:V ! expV is

a di�eomorphism and k expx� 1k < 1 for all x 2 V . Then the inverse fun
tion

log:= (exp j

V

)

�1

: expV ! g

is given by the 
onverging power series

log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

(this requires a proof!). For g = expX 2 (expV ) \H we then obtain X:F � F

dire
tly from the power series.
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Algebrai
 Lie subgroups

We will now dis
uss a very 
onvenient 
riterion whi
h in many 
on
rete


ases 
an be used to verify that a 
losed subgroup H of a Lie group is a Lie

subgroup. To this end, we will need the 
on
ept of a polynomial fun
tion and of

an algebrai
 subgroup.

De�nition IV.13. (a) Let E and V be Bana
h spa
es. A fun
tion f :E ! V

is 
alled a homogeneous polynomial of degree k if there exists a symmetri
 k -

linear fun
tion

e

f :E

k

! V with

f(x) =

e

f(x; : : : ; x) for all x 2 E:

Polynomial fun
tions of degree 0 are 
onstant fun
tions and polynomial fun
tions

of degree 1 are linear maps. Polynomial fun
tions of degree 2 are also 
alled

quadrati
 maps. In this 
ase

e

f 
an be obtained quite dire
tly by

e

f(x; y) =

1

4

�

f(x+y)�f(x�y)

�

=

1

8

�

f(x+y)�f(x�y)�f(�x+y)+f(�x�y)

�

:

For polynomials of degree k we have the general formula

e

f(h

1

; : : : ; h

n

) =

1

2

n

n!

X

"2f1;�1g

n

("

1

� � � "

n

)f("

1

h

1

+ : : :+ "

n

h

n

):

We write P

k

(E;F ) for the spa
e of 
ontinuous F -valued homogeneous polynomi-

als of degree k on E . A polynomial is a �nite sum of homogeneous polynomials,

so that P (E;F ) :=

L

1

k=0

P

k

(E;F ) is the spa
e of 
ontinuous F -valued polyno-

mials on E . If f =

P

k

f

k

is a polynomial, then we say that f is of degree d if

f

d

6= 0 and f

k

= 0 for k > d .

(b) Let A be a Bana
h algebra over K = R or C . A subgroup G � G(A) is


alled algebrai
 if there exists a d 2 N

0

and a set F of Bana
h spa
e valued

polynomial fun
tions on A� A of degree � d su
h that

G = fg 2 G(A): (8f 2 F)f(g; g

�1

) = 0g:

Proposition IV.14. (Harris/Kaup) Every algebrai
 subgroup G � G(A) is a

Lie subgroup.

Proof. In view of the Hahn-Bana
h Theorem, we may assume that

F � P :=

d

M

k=0

P

k

(A� A; K );
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the Bana
h spa
e of s
alar-valued 
ontinuous polynomials on A � A of degree

� d . The spa
e P 
arries a natural Bana
h spa
e stru
ture su
h that the a
tion

of G(A) on P given by

�

�(g):f

�

(x; y) := f(xg; g

�1

y)

yields a 
ontinuous homomorphism �:G(A)! GL(P ) (Exer
ise IV.6(d)).

Repla
ing F by

F := ff 2 P : (8g 2 G) f(g; g

�1

) = 0g;

we may assume that F = F . The spa
e F is a 
losed subspa
e of P . We 
laim

that

G = fg 2 G(A):�(g):F � Fg:

In fa
t, if g; x 2 G and f 2 F , then

�

�(g):f

�

(x; x

�1

) = f(xg; g

�1

x

�1

) = 0;

showing that �(g):f 2 F . If, 
onversely, g 62 G , then there exists an f 2 F with

0 6= f(g; g

�1

) =

�

�(g):f

�

(1;1):

It follows in parti
ular that �(g):f 62 F .

We 
on
lude that

G = �

�1

(fg 2 GL(P ):�(g):F � Fg);

so that the assertion follows from Lemma IV.11 
ombined with Lemma IV.12.

Examples IV.15. (a) If A is a unital Bana
h algebra and M (n;A) is the

algebra of (n � n)-matri
es with entries in A , then M (n;A) also is a Bana
h

algebra. In fa
t, on the spa
e A

n

= A� : : :� A we 
onsider the norm given by

kxk := maxfkx

1

k; : : : ; kx

n

kg:

Then A

n

is a Bana
h spa
e and we have a natural embedding

M (n;A) ,! B(A

n

)

whi
h we use to de�ne a norm on M (n;A). It is not hard to verify that M (n;A)

is 
losed in B(A

n

), hen
e a Bana
h algebra. We write GL(n;A) := G(M (n;A))

for the unit group of this Bana
h algebra.

(b) As we will see below, it sometimes is 
onvenient to re�ne the 
onstru
tion in

(b) as follows. Let J E A be an ideal whi
h is a Bana
h algebra in its own right

su
h that the multipli
ation map

A� J ! J; (a; b) 7! ab
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is 
ontinuous, i.e., there exists a C > 0 with kabk

J

� Ckak

A

kbk

J

for a 2 A and

b 2 J . After repla
ing the norm on A by the equivalent norm

kak

0

:= max(kak

A

; supfkabk

J

: kbk

J

� 1g) � max(1; C)kak

A

;

we may assume that kabk

J

� kak

A

kbk

J

holds for a 2 A and b 2 J .

We 
onsider the algebra

M (2; A; J) :=

n

�

a b


 d

�

: a; d 2 A; b; 
 2 J

o

endowed with the norm










�

a b


 d

�










:= 2maxfkak

A

; kbk

J

; k
k

J

; kdk

A

g:

Then kxyk � kxkkyk holds for x; y 2 M (2; A; J) (Exer
ise!), so that M (2; A; J)

is a Bana
h algebra.

A similar 
onstru
tion works for (n� n)-matri
es, where one de�nes

M (n;A; J) := f(x

ij

)

i;j=1;:::;n

2 M (n;A): i 6= j ) x

ij

2 Jg

and

k(x

ij

)k := nmaxfkx

ij

k

J

; i 6= j; kx

ii

k

A

; i = 1; : : : ; ng:

We write GL(n;A; J) for the unit group of this Bana
h algebra.

(
) If A is a Bana
h algebra without a unit element, then we endow the spa
e

e

A := A� C

with the Bana
h algebra stru
ture given by

k(a; z)k := kak+ jzj and (a; z)(a

0

; z

0

) := (aa

0

+ za

0

+ z

0

a; zz

0

):

Then A

�

=

A�f0g is a 
losed ideal in

e

A , and we have an algebra homomorphism

":

e

A! C given by "(a; z) = z . We de�ne

S(A) := "

�1

(1) \G(

e

A):

This is a 
losed subgroup of G(

e

A) and f(a; 1): kak < 1g is an open 1 -neighbor-

hood in S(A). Therefore S(A) is a Lie subgroup of G(

e

A) with the Lie algebra

A and the exponential fun
tion

exp:A! S(A); x 7! e

x

= (e

x

� 1;1):

(d) If J E A is an ideal and A is a unital Bana
h algebra, then

S(J) := G(A) \ (1+ J)
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is the kernel of the homomorphism

G(A)! G(A=J); g 7! g + J;

where G(A=J) denotes the unit group of the unital algebra A=J whi
h is not

required to 
arry a natural Bana
h spa
e stru
ture. Moreover, we have for

e

J := C 1+ J � A the relation

G(

e

J) = G(A) \

e

J = C

�

� S(J):

If, in addition, J is 
losed, then S(J) is a 
losed subgroup of G(A) and a

Lie group with Lie algebra J . Moreover, A=J 
arries a natural Bana
h algebra

stru
ture given by

ka+ Jk := inffka+ bk: b 2 Jg;

and the quotient map A! A=J is 
ontinuous, so that we have an exa
t sequen
e

of Lie groups

f1g ! S(J) ,! G(A)! G(A=J):

Here the map on the right hand side need not be surje
tive. A typi
al example is

A = B(H) and J = K(H) (the ideal of 
ompa
t operators) for an in�nite-

dimensional Hilbert spa
e (there are Fredholm operators with non-vanishing

index). It is easy to see that for every norm on J for whi
h J is a Bana
h

algebra, the group S(J) 
oin
ides, as a set, with the invertible elements in the

algebra

e

J from (d) above. In this sense both 
onstru
tions lead to the same

obje
ts.

Classi
al Bana
h{Lie groups of operators

In this subse
tion we will introdu
e various types of groups of operators

on a Hilbert spa
e generalizing the �nite-dimensional 
lassi
al groups on real,


omplex and quaternioni
 ve
tor spa
es.

De�nition IV.16. (Complex 
lassi
al groups) Let H be a 
omplex Hilbert

spa
e. Then we have the following three types of 
omplex 
lassi
al groups.

(1) The full linear group GL(H) := G(B(H)).

(2) Let I:H ! H be an antilinear isometry with I

2

= 1 . The 
orresponding

orthogonal group is de�ned by

O(H; I) := fg 2 GL(H): g

�1

= Ig

�

I

�1

g:

Applying Proposition IV.14 with the 
omplex linear fun
tion

f :B(H)! B(H); f(x; y) := Ix

�

I

�1

� y
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shows that O(H; I) is a Lie group with the Lie algebra

o(H; I) := fX 2 B(H): IX

�

I

�1

+X = 0g

(Exer
ise!). This group 
an also be des
ribed as an isometry group of the

symmetri
 
omplex bilinear form �(v; w) := hv; I:wi be
ause

O(H; I) = O(H; �) := fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

(
f. Exer
ise IV.12).

(3) Let I:H ! H be an antilinear isometry with I

2

= �1 . The 
orresponding

symple
ti
 group is de�ned by

Sp(H; I) := fg 2 GL(H): g

�1

= Ig

�

I

�1

g:

As in (2), this is a Lie group with Lie algebra

sp(H; I) := fX 2 B(H): IX

�

I

�1

+X = 0g:

This group 
an also be des
ribed as an isometry group of the skew-symmetri



omplex bilinear form �(v; w) := hv; I:wi be
ause

Sp(H; I) = Sp(H; �) := fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g:

(
f. Exer
ise IV.12).

De�nition IV.17. (Unitary real forms of the 
omplex 
lassi
al groups) That

there are three types of 
omplex 
lassi
al groups is related to the fa
t that there

are three �nite-dimensional real skew-�elds: K = R; C ; H . Here the group

GL(H) is related to C . For an antilinear involution I the subspa
e

H

R

:= fv 2 H: I:v = vg

is a real form of the 
omplex spa
e H , and for an antilinear involution I

with I

2

= �1 the algebra C 1 + C I is isomorphi
 to H , so that we obtain

a quaternioni
 stru
ture on H . In this 
ase we also write H

H

for the pair (H; I)

meaning the 
omplex Hilbert spa
e H endowed with an antilinear isometri


involution, i.e., a quaternioni
 stru
ture.

A

ordingly we obtain the following groups of K -linear invertible isome-

tries:

(1) For K = C we get the unitary group

U(H) := fg 2 GL(H): gg

�

= g

�

g = 1g:

This is a real algebrai
 subgroup of GL(H) with Lie algebra

u(H) := fX 2 B(H):X +X

�

= 0g:
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(2) For K = R we get the orthogonal group of the real Hilbert spa
e H

R

:

O(H

R

) := O(H; I) \U(H) = fg 2 U(H): gI = Igg

�

=

fg 2 GL(H

R

): gg

>

= g

>

g = 1g:

This is an algebrai
 subgroup of U(H) with Lie algebra

o(H

R

) := fX 2 B(H

R

):X +X

>

= 0g:

(3) For K = H we �nally get the quaternioni
 unitary group:

Sp(H

H

) := Sp(H; I) \ U(H)

�

=

fg 2 U(H): gI = Igg

�

=

fg 2 GL(H

H

): gg

�

= g

�

g = 1g:

This is an algebrai
 subgroup of U(H) with Lie algebra

sp(H

R

) := fX 2 B(H

H

):X +X

�

= 0g:

The groups U(H), O(H

R

), resp., Sp(H

H

), are 
alled the unitary real forms

of the 
omplex Lie groups GL(H), O(H; I), resp., Sp(H; I).

Remark IV.18. Other real forms 
an be 
onstru
ted as follows:

(1) For GL(H): The groups U(H

+

; H

�

) 
orresponding to inde�nite hermitian

forms of the type

�(x

+

+ x

�

; y

+

+ y

�

) = hx

+

; y

+

i � hx

�

; y

�

i;

where H = H

+

� H

�

is an orthogonal de
omposition and x

+

; y

+

2 H

+

,

x

�

; y

�

2 H

�

.

(2) For O(H; I): The groups O(H

+

R

; H

�

R

) 
orresponding to inde�nite symmetri


bilinear forms of the type

�(x

+

+ x

�

; y

+

+ y

�

) = hx

+

; y

+

i � hx

�

; y

�

i

on a real Hilbert spa
e H

R

with the dire
t sum de
omposition H

R

= H

R;+

�H

R;�

and x

+

; y

+

2 H

R;+

, x

�

; y

�

2 H

R;�

.

(3) For Sp(H; I) (H

�

=

l

2

(2J; C )) the subgroup Sp(H

R

; I) preserving the sub-

spa
e l

2

(2J;R) whi
h 
oin
ides with the group fg 2 Sp(H; I): g� = �gg , where

�(x) = x .
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Smaller 
lassi
al groups

De�nition IV.19. Let H be a 
omplex Hilbert spa
e. We write B

�n

(H) E

B(H) for the ideal of all operators of �nite rank. This spa
e is spanned by the

rank one operators P

x;y

, x; y 2 H , whi
h are given by

P

x;y

(v) := hv; yix:

We also put P

x

:= P

x;x

. We de�ne the tra
e of a �nite rank operator A by

tr(A) :=

n

X

j=1

hA:e

j

; e

j

i = tr(A j

A(H)

);

where e

1

; : : : ; e

n

is an orthonormal basis of the �nite-dimensional subspa
e

A(H) � H . For a rank-one operator we get

trP

x;y

= hx; yi:

We de�ne the tra
e norm

k � k

1

:B(H)! [0;1℄; kAk

1

:= supfj tr(AB)j:B 2 B

�n

(H); kBk � 1g:

Note that the right hand side is well de�ned be
ause AB 2 B

�n

(H). It turns

out that

B

1

(H) := fA 2 B(H): kAk

1

<1g

is an ideal of B(H) on whi
h k � k

1

is a 
omplete norm satisfying

j tr(AB)j � kAk

1

kBk; A 2 B

1

(H); B 2 B(H)

(
f. [RS78℄). The elements of B

1

(H) are 
alled tra
e 
lass operators. Important

properties of this spa
e are:

(a) The tra
e extends to a 
ontinuous linear fun
tional tr:B

1

(H)! C su
h that

tr(ab) = tr(ba); a 2 B

1

(H); b 2 B(H)

and

tr(a) = kak

1

for positive a:

(b) If (e

j

)

j2J

is an orthonormal basis of H and A 2 B

1

(H), then

tr(A) =

X

j2J

hA:e

j

; e

j

i:



56 IV. Bana
h{Lie groups August 9, 2000

With the aid of the tra
e norm we 
an de�ne a 
ontinuous s
ale of ideals

of B(H) as follows. For every p 2 [1;1[ the subsets

B

p

(H) := fX 2 B(H): k(XX

�

)

p

2

k

1

<1g;

are ideals of B(H) whi
h are Bana
h spa
es with respe
t to the norms

kXk

p

:= k(XX

�

)

p

2

k

1

p

1

:

For p = 1 this leads to another formula

kXk

1

=

q

tr(

p

XX

�

)

for the tra
e norm. The spa
es B

p

(H) are 
alled the S
hatten ideals and its ele-

ments operators of S
hatten 
lass p . (Compare this de�nition with the de�nition

of the spa
es L

p

(X;S; �) for a measure spa
e (X;S; �).)

For p = 2 we obtain the parti
ularly important spa
e B

2

(H) of Hilbert-

S
hmidt operators. The norm on this spa
e satis�es

kXk

2

2

= kXX

�

k

1

= tr(XX

�

);

showing that it is de�ned by the s
alar produ
t

hX;Y i := tr(XY

�

)

whi
h indeed turns B

2

(H) into a Hilbert spa
e. If (e

j

)

j2J

is an orthonormal

basis of H and A 2 B

2

(H), then

hX;Y i =

X

j2J

hY

�

X:e

j

; e

j

i =

X

j2J

hX:e

j

; Y:e

j

i =

X

j;k2J

hX:e

j

; e

k

ihe

k

; Y:e

j

i

and in parti
ular

kXk

2

2

=

X

j2J

kX:e

j

k

2

:

We write B

1

(H) := K(H) for the ideal of 
ompa
t operators in B(H)

endowed with the operator norm. We then have for 1 � p � q

B

1

(H) � B

p

(H) � B

q

(H) � B

1

(H) = K(H);

and moreover

kxyk

p

� kxkkyk

p

; kxyk

p

� kxk

p

kyk; and kxk � kxk

p

for x; y 2 B(H).

For a more detailed dis
ussion of these operator ideals and their norms we

refer to [RS78℄.
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De�nition IV.20. The 
onstru
tions of Examples IV.15(
),(d) lead to Lie

groups

GL

p

(H) := GL(H) \ (1+ B

p

(H))

with Lie algebra gl

p

(H) := B

p

(H). The group GL

1

(H) is 
alled the Fredholm

group. The group

U

p

(H) := U(H) \ (1+B

p

(H))

is a Lie subgroup with Lie algebra

u

p

(H) := u(H) \ B

p

(H) = fX 2 B

p

(H):X

�

= �Xg:

With

Herm

p

(H) := Herm(H) \ B

p

(H)

we then have

gl

p

(H) = u

p

(H)� Herm

p

(H) = u

p

(H)� iu

p

(H):

Determinant fun
tions

We 
onsider the Bana
h{Lie algebra g := B

1

(H) = gl

1

(H) and the 
orre-

sponding Bana
h{Lie group G := GL

1

(H) introdu
ed in De�nition IV.20.

Proposition IV.21. There exists a unique holomorphi
 
hara
ter

det:GL

1

(H)! C

�

with L(det) = tr . Let

SL(H) := ker det

and de�ne for a unit ve
tor v 2 H a holomorphi
 homomorphism


: C

�

! GL

1

(H); 
(z)(w) :=

�

zw for w 2 C v

w for w 2 v

?

.

Then det Æ
 = id

C

and

GL

1

(H) = SL(H)
(C

�

)

�

=

SL(H)o C

�

:

Moreover, the group SL(H) is simply 
onne
ted.

Proof. (a) First we prove the existen
e of the determinant fun
tion det . Let

q:

f

GL

1

(H)! GL

1

(H) denote the universal 
overing group. Sin
e tr: gl

1

(H)! C

vanishes on 
ommutators, it is a Lie algebra homomorphism. Its 
ontinuity

follows from j tr(X)j � kXk

1

for X 2 gl

1

(H). Hen
e there exists a holomorphi



hara
ter

f

det:

f

GL

1

(H)! C

�

with L(

f

det) = tr :
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It remains to show that

f

det fa
tors through the 
overing map q . Let v 2 H

be a unit ve
tor and de�ne 
 as above. Then it follows from Theorem A.10 that


 indu
es an isomorphism

�

1

(
):�

1

(C

�

)

�

=

Z! �

1

(GL

1

(H)):

In parti
ular its natural lift e
: C

�

=

e

C

�

!

f

GL

1

(H) satis�es

e
(�

1

(C

�

)) = �

1

(GL

1

(H)):

In view of tr ÆL(
) = id

C

, we have

f

det Æ e
 = exp

C

�
: C ! C

�

;

showing that �

1

(GL

1

(H)) � ker

f

det, and therefore there exists a unique holo-

morphi
 homomorphism

det:GL

1

(H)! C

�

with L(det) = tr.

(b) In view of Lemma IV.11, SL(H) is a Lie subgroup of GL

1

(H) whose Lie

algebra is given by

sl(H) := fX 2 B

1

(H): trX = 0g:

We 
laim that the mapping

�: SL(H)o C

�

! GL

1

(H); (A; z) 7! 
(z)A

is a biholomorphi
 isomorphism of Bana
h Lie groups, where the semidire
t

produ
t stru
ture is given by the 
onjugation a
tion of 
(z) on the normal

subgroup SL(H).

The pre
eding argument implies that det Æ
 = id

C

�
whi
h shows that �

is surje
tive and SL(H) \ 
(C

�

) = f1g , whi
h means that � is a bije
tion.

It is 
lear that � is holomorphi
, and sin
e �

�1

(g) =

�

g
(det g)

�1

; det g

�

, the

mapping � is biholomorphi
.

(
) To see that SL(H) is simply 
onne
ted, we only have to use the produ
t

de
omposition

GL

1

(H)

�

=

SL(H)
(C

�

)

�

=

SL(H)o C

�

and to re
all that �

1

(
):Z! �

1

(GL

1

(H)) is surje
tive.

Notes on Se
tion IV

For a more detailed dis
ussion of the S
hatten ideals and the determinant

fun
tion we refer to [RS78℄ and in parti
ular [RS78, Th. XIII.105℄.
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Exer
ises for Se
tion IV

Exer
ise IV.1. (a) Let m:G�G! G be a smooth asso
iative multipli
ation

on the manifold G with identity element 1 . Show that the di�erential in (1;1)

is given by

dm(1;1):T

1

(G)� T

1

(G)! T

1

(G); (v; w) 7! v + w:

(b) Show that the smoothness of the inversion in the de�nition of a Bana
h{Lie

group is redundant be
ause the Inverse Fun
tion Theorem 
an be applied to the

map

G�G! G�G; (x; y) 7! (x; xy)

whose di�erential in (1;1) is given by the map (v; w) 7! (v; v + w).

Exer
ise IV.2. Let E be a Bana
h spa
e. Show that every 
ontinuous group

homomorphism 
: (R;+) ! (E;+) 
an be written as 
(t) = tv for some v 2 E .

Exer
ise IV.3. Let E be a Bana
h spa
e.

(1) If F is a 
losed subspa
e of E and H := fg 2 GL(E): g:F � Fg , then

L(H) = fY 2 B(E):Y:F � Fg:

(2) For ea
h v 2 E and H := fg 2 GL(E): g:v = vg we have

L(H) = fY 2 B(E):Y:v = 0g:

Exer
ise IV.4. Let A be a Bana
h spa
e and m:A � A ! A a 
ontinuous

linear map. Then the group

Aut(A;m) := fg 2 GL(A): (8a; b 2 A) m(g:a; g:b) = g:m(a; b)g

of automorphisms of the \algebra" (A;m) is a Lie group whose Lie algebra is

the spa
e

der(A;m) := fX 2 B(A): (8a; b 2 A)X:m(a; b) = m(X:a; b) +m(a;X:b)g

of derivations of (A;m).

Exer
ise IV.5. (a) Let G and N be Lie groups and ':G ! Aut(N) be a

homomorphism su
h that the map G � N ! N; (g; n) 7! '(g)(n) is smooth.

Then the semidire
t produ
t group GoN with the multipli
ation

(n; g)(n

0

; g

0

) := (n'(g)(n

0

); gg

0

)

is a Lie group with Lie algebra no g .

(b) Let H be a Hilbert spa
e. Show that the motion group

Mot(H) := H oU(H)

is a Lie group with Lie algeba H o u(H).
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Exer
ise IV.6. Let E and F be Bana
h spa
es and B

k

(E;F ) be the spa
e

of 
ontinuous k -linear maps E

k

! F .

(a) Then B

k

(E;F ) is a Bana
h spa
e with respe
t to the norm

kfk := supfkf(x

1

; : : : ; x

k

)k:x

i

2 E; kx

1

k; : : : ; kx

k

k � 1g:

(b) The assignment

�

�(g):f

�

(x

1

; : : : ; x

k

) := f(g

�1

:x

1

; : : : ; g

�1

:x

k

)

de�nes a 
ontinuous homomorphism �: GL(E) ! GL(B

k

(E;F )). Hint: The

map �:B(E)! B(B

k

(E;F )) with

�

�(A):f

�

(x

1

; : : : ; x

k

) := f(A:x

1

; : : : ; A:x

k

)

is a 
ontinuous k -linear map.

(
) Cal
ulate the derived Lie algebra representation d�:B(E)! B(B

k

(E;F )).

(d) We identify the spa
e P

k

(E;F ) of F -valued 
ontinuous polynomial fun
tions

of degree k on E with the 
losed subspa
e Sym

k

(E;F ) � B

k

(E;F ). Then the

norm on this spa
e is given by

kfk = supfkf(x)k: kxk � 1g

and the assignment

�

�(g):f

�

(x) := f(g

�1

:x)

de�nes a 
ontinuous homomorphism �: GL(E)! GL(P

k

(E;F )).

Exer
ise IV.7. (a) Let H be a 
omplex Hilbert spa
e. Show that there exists

an antilinear isometri
 map I:H ! H with I

2

= 1 .

(b) If I

1

and I

2

are two su
h maps, then there exists a unitary operator g 2 U(H)

with I

2

= gI

1

g

�1

.

(
) Show that for a �xed 
omplex Hilbert spa
e H all groups O(H; I) are

isomorphi
.

Exer
ise IV.8. (a) Let H be an in�nite-dimensional or even-dimensional


omplex Hilbert spa
e. Show that there exists an antilinear isometri
 map

I:H ! H with I

2

= �1 .

(b) If I

1

and I

2

are two su
h maps, then there exists a unitary operator g 2 U(H)

with I

2

= gI

1

g

�1

.

(
) Show that for a �xed 
omplex Hilbert spa
e H all groups Sp(H; I) are

isomorphi
.
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Exer
ise IV.9. Let H be a 
omplex Hilbert spa
e and I an antilinear isometry

with I

2

= �1 . We 
onsider the 
omplex bilinear form

�(v; w) := hv; I:wi:

(1) � is symmetri
 (skew-symmetri
) if I

2

= 1 (I

2

= �1).

(2) For I

2

= 1 we have

O(H; I) = fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

and the Lie algebra of this subgroup is

o(H; I) = fX 2 B(H): IX

�

I

�1

+X = 0g

= fX 2 B(H): (8v; w 2 H) �(X:v; w) + �(v;X:w) = 0g:

(3) For I

2

= �1 we have

Sp(H; I) = fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

and the Lie algebra of this subgroup is

sp(H; I) = fX 2 B(H): IX

�

I

�1

+X = 0g

= fX 2 B(H): (8v; w 2 H) �(X:v; w) + �(v;X:w) = 0g:

(4) If I

2

= 1 and dimH =1 , there exists an orthonormal basis (e

j

)

j22J

of H

with I:e

j

= e

�j

, j 2 2J . Then

H

�

=

l

2

(2J; C )

�

=

l

2

(J; C )� l

2

(�J; C )

�

=

l

2

(J; C )� l

2

(J; C );

and with respe
t to this de
omposition, we write elements of B(H) as 2�2-

blo
k matri
es. For Q:(v; w) = (w; v) we then have

O(H; I) = fg 2 GL(H): g

�1

= Qg

>

Qg

and for g =

�

a b


 d

�

this means that


b

>

+ da

>

= 1; 
d

>

+ d


>

= 0 and ab

>

+ ba

>

= 0:

(5) If I

2

= �1 , then there exists an orthonormal basis (e

j

)

j22J

of H with

I:e

j

=

�

e

�j

; j 2 J ,

�e

�j

; j 2 �J .

Then

Sp(H; I) = fg 2 GL(H): g

�1

= �Qg

>

Qg with Q =

�

0 �1

1 0

�

;

and for g =

�

a b


 d

�

this means that




>

a = a

>


; d

>

b = b

>

d and a

>

d� 


>

b = 1:

Exer
ise IV.10. Let E , F and G be Bana
h spa
es. Show that for a bilinear

map �:E � F ! G the following are equivalent:

(1) � is 
ontinuous.

(2) � is 
ontinuous in (0; 0).

(3) (9C > 0)(8x 2 E)(8y 2 F ) k�(x; y)k � Ckxk kyk:
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Exer
ise IV.11. Let J be a set. For a tuple x = (x

j

)

j2J

2 (R

+

)

J

we de�ne

X

j2J

x

j

:= sup

n

X

j2F

x

j

:F � J �nite

o

:

Show that

l

1

(J;R) :=

n

x = (x

j

)

j2J

:

X

j2J

jx

j

j <1

o

is a Bana
h spa
e with respe
t to

kxk

1

:=

X

j2J

jx

j

j:

De�ne e

j

2 l

1

(J;R) by (e

j

)

i

= Æ

ij

. Show that the subgroup � generated by

fe

j

: j 2 Jg is dis
rete.
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V. Holomorphi
 representations of 
lassi
al Bana
h{Lie groups

We have seen in Se
tion III how the unitary highest weight modules of

an involutive split lo
ally �nite Lie algebra g with respe
t to a \
ompa
t" real

form u = g

R


an be 
lassi�ed. Our goal is to realize su
h representations by

holomorphi
 se
tions of a holomorphi
 line bundle over some 
oadjoint orbit

whi
h at the same time is a 
omplex K�ahler manifold.

In the pre
eding se
tion we have dis
ussed several aspe
ts of the general

theory of Bana
h{Lie groups and in parti
ular the groups GL

p

(H) with the Lie

algebras B

p

(H) whi
h for H = l

2

(J; C ) 
an be viewed as Bana
h versions of

the lo
ally �nite Lie algebra gl(J; C ), whi
h is a 
ompletely algebrai
 obje
t.

In this se
tion we will make our �rst step towards a geometri
 realization of the

representations (�

�

; L(�)) of g (mainly for g = gl(J; C )) by dis
ussing 
onditions

under whi
h they 
an be integrated to holomorphi
 representations of 
ertain


omplex Lie groups (GL

1

(H) for g = gl(J; C )). In the next se
tion we will

then dis
uss 
oadjoint orbits of Bana
h{Lie groups and how one 
an 
onstru
t

holomorphi
 line bundles thereon.

For the sake of simpli
ity of the exposition, we state several results in

this se
tion only for gl(J; C ) and the 
orresponding groups. One 
an develop

the whole theory in the 
ontext of groups asso
iated to L

�

-algebras whi
h then

makes it possible to deal with all spe
ial 
ases simultaneously, but this theory

requires a more elaborate ba
kground whi
h is super
uous in the spe
ial 
ase of

gl(J; C ).

The norm fun
tion of a unitary highest weight module

Let (g; h) be a split lo
ally �nite involutive Lie algebra with � = �

k

.

Sin
e g is lo
ally �nite, ea
h element X 2 g de�nes an inner automorphism

e

adX

of g be
ause for ea
h Y 2 g the series

e

adX

:Y :=

1

X

n=0

1

n!

(adX)

n

:Y


onverges sin
e X and Y generate a �nite-dimensional subalgebra of g . We 
all

the group

Inn(g

R

) := hfe

adY

:Y

�

= �Y gi

the group of unitary inner automorphisms of g .

Lemma V.1. For a unitary highest weight representation (�

�

; L(�)) of g the

following assertions hold:
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(i) For ea
h X 2 g the operator e

�

�

(X)

on L(�) is well de�ned and satis�es

(5:1) (e

�

�

(X)

)

�

= (e

�

�

(X

�

)

):

In parti
ular e

�

�

(X)

is unitary for X

�

= �X , i.e., X 2 u = g

R

.

(ii) For X;Y 2 g we have

(5:2) e

�

�

(X)

�

�

(Y )e

��

�

(X)

= �

�

(e

adX

:Y ):

(iii) The fun
tion s: g ! [0;1℄; s(X) := k�

�

(X)k is a 
onvex fun
tion whi
h is

positively homogeneous in the sense that

s(zX) = jzjs(X) for X 2 g; z 2 C ;

and it is invariant under the involution � and the group Inn(g

R

) . For X 2 h

we have

s(X) = sup jhP

�

; Xij = sup jhW:�;Xij:

Proof. (i) For ea
h element X 2 g the operator �

�

(X) is lo
ally �nite on

L(�) (Theorem III.6(iii)), so that we �nd for ea
h v 2 L(�) a �nite-dimensional

�

�

(X)-invariant subspa
e E 
ontaining v . Now

e

�

�

(X)

:v :=

1

X

n=0

1

n!

�

�

(X)

n

:v


onverges be
ause the series for e

�

�

(X)j

E


onverges in End(E).

An easy veri�
ation shows that, as an operator on the pre-Hilbert spa
e

L(�), we have �

�

(X)

�

= �

�

(X

�

) be
ause L(�) is a unitary g -module. This

implies that for v; w 2 L(�) we have

he

�

�

(X)

:v; wi = hv; e

�

�

(X

�

)

:wi

whi
h means that the operator e

�

�

(X)

has an adjoint given by (5.1).

(ii) Now let X;Y 2 g and g

0

� g be a �nite-dimensional subalgebra 
ontaining

both. Then e

adY

:X is well de�ned. Sin
e ea
h v 2 L(�) is 
ontained in a

�nite-dimensional g

0

-invariant subspa
e, we now easily obtain

e

�

�

(X)

�

�

(Y )e

��

�

(X)

= �

�

(e

adX

:Y ):

(iii) That s is 
onvex, positively homogeneous and � -invariant follows from the


orresponding properties of the norm fun
tion on the algebra

fA 2 End(L(�)): (9A

�

2 End(L(�))(8v; w 2 L(�)) hA:v; wi = hv; A

�

:wig

(
f. [Ne99a, Prop. II.3.5℄). For ea
h element Y = �Y

�

2 g we further get by


ombining (i) and (ii):

s(e

adY

:X) = k�

�

(e

adY

:X)k = ke

�

�

(Y )

�

�

(X)e

��

�

(Y )

k = k�

�

(X)k = s(X);

showing that s is Inn(g

R

)-invariant.

The formula for s(X), X 2 h , follows dire
tly from the weight de
ompo-

sition of L(�) and the des
ription of the set of weights in Theorem III.6.
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Proposition V.2. Assume that g is simple. Then for a unitary highest weight

representation the following are equivalent:

(1) There exists an element X 2 g with k�

�

(X)k <1 .

(2) k�

�

(X)k <1 for all X 2 g .

(3) �(

�

�) is a bounded subset of Z .

Proof. (1) ) (2): We 
onsider the subset

g

s

:= fX 2 g: s(X) <1g:

The properties of the fun
tion s: g! [0;1℄ (Lemma V.1(iii)) imply that g

s

is a


omplex subspa
e of g whi
h is invariant under the group Inn(g

R

). For X 2 g

s

and Y

�

= �Y the 
urve e

RadY

:X lies in a �nite-dimensional subspa
e of g

s

,

so taking derivatives leads to [Y;X℄ 2 g

s

and therefore to [g

R

; g

s

℄ � g

s

whi
h in

turn implies that [g; g

s

℄ � g

s

. This means that g

s

is a non-zero ideal of g and

therefore equal to g be
ause g was assumed to be simple.

(2) ) (3): As in the �nite-dimensional 
ase, one shows that the Weyl group W

has at most two orbits in � and likewise in

�

� for its natural a
tion on h given

by

r

�

:x := x� �(x)��; x 2 h

(Exer
ise V.2). We write � =W:f�

1

; �

2

g . Then we also have

�

� =W:f��

1

; ��

2

g .

For � 2 � we now obtain

j�(��)j � supfj�(w:��

j

)j:w 2 W; j = 1; 2gj � supfjhw:�; ��

j

ij:w 2 W; j = 1; 2gj

� max(k�

�

(��

1

)k; k�

�

(��

2

)k):

(3) ) (1): Let � 2 �. Then

k�

�

(��)k = sup jhW:�; ��ij = sup jh�;W:��ij � sup jh�;

�

�ij <1:

Corollary V.3. Assume that g is redu
tive. If �(

�

�) is a bounded subset of

Z , then k�

�

(X)k <1 for all X 2 g .

Proof. The assumption that g is redu
tive means that g = z(g)� [g; g℄ . Sin
e

z(g) a
ts by s
alar multiples of the identity on L(�) (Proposition III.2(i)), all

the operators in �

�

(z(g)) are bounded anyway. Therefore it suÆ
es to assume

that g is semisimple. The proof of (3) ) (1) in Proposition V.2 implies that

k�

�

(��)k < 1 for all � 2 �. Sin
e g 
oin
ides with the smallest Inn(g

R

)-

invariant 
omplex subspa
e 
ontaining

�

�, the fa
t that s

�1

(R) is su
h a subspa
e

implies the assertion.

The boundedness of �(

�

�) is suÆ
ient, but not ne
essary for all the oper-

ators �

�

(X), X 2 g , to be bounded. In fa
t, g might be an in�nite dire
t sum

of simple ideals g

i

, i 2 I , su
h that

sup jh�;

�

�

i

ij <1

for ea
h individual i 2 I , but

sup jh�;

�

�ij =1:

Then we still have k�

�

(X)k <1 for ea
h X 2 g .
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Holomorphi
 highest weight representations of GL

1

(H)

In this subse
tion we apply the general results of the pre
eding se
tion to

holomorphi
 highest weight representations of the 
omplex Bana
h{Lie group

GL

1

(H).

Let L(�) be a unitary highest weight module of gl(J; C ). As in Example

III.7, we represent � by an element of C

J

�

=

h

�

.

Lemma V.4. For a unitary highest weight module L(�) of gl(J; C ) the fol-

lowing are equivalent:

(1) �(

�

�) is bounded.

(2) � = (�)

j2J

is bounded as an element of C

J

, hen
e an element of l

1

(J; C ) .

(3) k�

�

(X)k � 2k�k

1

kXk

1

for all X 2 g , where k � k

1

denotes the tra
e norm.

Proof. (1) ) (2): Let � 2 �. The values of � on the 
oroots E

jj

�E

kk

are

given by �

j

� �

k

, j; k 2 J . It is 
lear that � is bounded if the set of all these

numbers is bounded.

(2) ) (3): Let k�k

1

:= supfj�

j

j: j 2 Jg . Then for ea
h X 2 h the relation


onv(P

�

) = 
onv(W:�) (Theorem III.6) and the fa
t that W a
ts isometri
ally

on l

1

(J) imply for X 2 h that

k�

�

(X)k � k�k

1

kXk

1

:

For X = X

�

2 gl(J; C ) there exists a g 2 U(J; C ) with Ad(g):X = gXg

�1

2 h

(Exer
ise V.3). We now obtain

k�

�

(X)k = k�

�

(gXg

�1

)k � k�k

1

kgXg

�1

k

1

= k�k

1

kXk

1

:

For a general element X 2 g this leads to

s(X) = s

�

X +X

�

2

+

X �X

�

2

�

�

1

2

�

s(X +X

�

) + s(i(X �X

�

))

�

�

1

2

k�k

1

�

kX +X

�

k

1

+ kX �X

�

k

1

�

� k�k

1

(kXk

1

+ kX

�

k

1

) = 2k�k

1

kXk

1

:

(3) ) (1): We have k��k

1

= 2 for every 
oroot �� = E

ii

� E

jj

for � = "

i

� "

j

.

Therefore (3) implies that

j�(��)j � k�

�

(��)k � 2k�k

1

k��k

1

= 4k�k

1

:

De�nition V.5. We 
all a holomorphi
 representation �: GL

p

(H)! GL(H)

a highest weight representation if

(1) H 
ontains a dense subspa
e whi
h is a highest weight module for the Lie

algebra gl(J; C ) � gl

p

(H) (for H

�

=

l

2

(J; C )), and

(2) �(g

�

) = �(g)

�

for all g 2 GL

p

(H).

The pre
eding 
ondition means in parti
ular that the subgroup U

p

(H) a
ts

unitarily on H .
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We now use Lemma V.4 to obtain a 
lassi�
ation of all holomorphi
 highest

weight representations of the group GL

1

(H) and its universal 
overing group

f

GL

1

(H).

Theorem V.6. Let �

+

�

� � be a positive system and � = �

�

=

P

j

�

j

"

j

2

h

�

. Then � is the highest weight of a holomorphi
 highest weight representation

of

f

GL

1

(H) if and only if the following 
onditions are satis�ed:

(i) � is dominant integral, i.e., �

j

� �

k

2 N

0

for j � k , and

(ii) � is bounded.

The 
orresponding representation fa
tors through GL

1

(H) if and only if, in

addition,

(iii) �

j

2 Z for all j 2 J .

Proof. Let H

�

denote the 
ompletion of the pre-Hilbert spa
e L(�). First

we observe that a unitary highest weight representation of gl(J; C ) extends to a


ontinuous Lie algebra representation

�

�

: gl

1

(H)! B(H

�

)

if and only if � is bounded (Lemma V.4). Therefore the �rst part of the theorem

follows from Theorem III.6 (see also Example III.7) be
ause the 
ontinuous

representations �

�

: gl

1

(H)! B(H

�

) are in one-to-one 
orresponden
e with the

holomorphi
 representations �

�

:

f

GL

1

(H)! GL(H

�

) with L(�

�

) = �

�

(Theorem

IV.2(
)).

So let us assume that � is bounded and that L(�) is unitary. Pi
k j 2 J

and 
onsider the holomorphi
 homomorphism


: C ! GL

1

(H); z 7! e

zE

jj

:

In view of Proposition IV.21, the 
anoni
al lift

e
: C !

f

GL

1

(H); z 7! exp(zE

jj

)

satis�es

e
(2�iZ) = �

1

(GL

1

(H)):

We 
on
lude that �

�

fa
tors through GL

1

(H) if and only if

1 = e

2�i�

�

(E

jj

)

= �

�

(exp 2�iE

jj

);

whi
h, in view of Theorem III.6, is equivalent to �

j

2 Z . This is equivalent to

�

k

2 Z for all k 2 J .

Remark V.7. Let J be a set and H = l

2

(J; C ).

(a) If the order � on J is su
h that J has m smallest elements j

1

� : : : � j

m

,

then the fundamental weights $

k

= "

j

1

+ : : : + "

j

k

, k � m 
orrespond to the

irredu
ible representations

�

�

k

;�

k

(H)

�

of GL(H) on the spa
e �

k

(H) given by

�

k

(g)(v

1

^ : : : ^ v

k

) = (g:v

1

) ^ : : : ^ (g:v

k

):
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A primitive element for gl(J; C ) is given by e

j

1

^ : : :^ e

j

k

. For k = 1 we obtain

the identi
al representation of B(H) on H . For J = N with the natural order

we have in parti
ular $

k

= "

1

+ : : :+ "

k

for ea
h k 2 N .

If M � J satis�es M � M




:= J n M and J n M is �nite, then we


an des
ribe the representation 
orresponding to � = $

M

�$

J

as follows. Let

� :H ! H be the antilinear isometry given by �(

P

j2J

x

j

e

j

) =

P

j2J

x

j

e

j

. For

A 2 B(H) we put A

>

:= �A

�

� and note that B(H) ! B(H); A 7! A

>

, is a

linear antiautomorphism of the algebra B(H).

We 
laim that for k := jM




j <1 the representation of GL(H) on �

k

(H)

given by

e

�

k

(g) := �

k

(g

>

)

�1

is a holomorphi
 highest weight representation

with highest weight � := $

M

� $

J

= �$

M




(
f. Example III.7). In fa
t, let

M




= fj

1

; : : : ; j

k

g and put v

�

:= e

j

1

^ : : : ^ e

j

k

: It is 
lear that v

�

generates a

dense gl(J; C )-submodule of �

k

(H). Furthermore for X 2 h we have

X:v

�

= �d�

k

(X

>

):v

�

= �d�

k

(X):v

�

= $

M




(X)v

�

:

Hen
e E

>

jk

= E

kj

leads to j � k to E

jk

:v

�

= 0. This means that v

�

is a

primitive element with respe
t to �

+

�

, and thus

�

e

�

k

;�

k

(H)

�

is a holomorphi


highest weight representation of GL(H) with highest weight �$

M




.

(b) (The in�nite wedge representations) A parti
ular interesting 
ase 
overed by

the pre
eding theorem is given by J = Z endowed with the natural order and

M = fm 2 Z:m � kg . In this 
ase

� = $

M

=

k

X

j=�1

"

j

:

Here H

$

M


an be identi�ed with a the Hilbert spa
e with the orthonormal basis

e

i

k

^ e

i

k�1

^ e

i

k�2

^ : : : ; where i

k

> i

k�1

> i

k�2

> : : : ;

and there exists j

0

2 Z with i

j

= j for j � j

0

. Then the dense subspa
e

spanned by these basis ve
tors 
arries a unitary highest weight representation of

the Lie algebra gl(Z; C ) of �nite Z � Z -matri
es whi
h is one of the \in�nite

wedge representations" des
ribed in [KR87℄.

(
) For ea
h s 2 R the fun
tional s$

J

= s tr is dominant integral and bounded.

The 
orresponding representation of

f

GL

1

(H) is given by the 
hara
ter

det

s

:

f

GL

1

(H)! C

�

; g 7! det(g)

s

(see the proof of Proposition IV.21).

Suppose that � satis�es 
onditions (i) and (ii) in Theorem V.6 and put

s := �

j

for some j 2 J . Then � � s tr satis�es (i){(iii), hen
e de�nes a

holomorphi
 representation of GL

1

(H). This shows that the representation

�

�


 det

�s

of

f

GL

1

(H) fa
tors to GL

1

(H). So apart from the real powers of

the determinant the holomorphi
 highest weight representations of

f

GL

1

(H) are
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more or less the same than the holomorphi
 highest weight representations of

GL

1

(H).

(d) Theorem V.6 
an also be used to obtain a 
lassi�
ation of all holomorphi


highest weight representations of

f

GL

1

(H) in the same spirit as in the �nite

dimensional 
ase. Suppose that � satis�es (i) and (ii).

Pi
k j

0

2 J and put m := minf�

j

: j 2 Jg . If M

k

:= fj 2 J :�

j

� m+ kg ,

then M

k

� J nM

k

for all k 2 Z , and an elementary 
onsideration leads to the

representation

� = m$

J

+

n

X

k=1

$

M

k

of � as a �nite sum of fundamental weights, where n > maxf�

j

: j 2 Jg�m: We


on
lude in parti
ular that L(�) and also H

�


an be realized in a �nite tensor

produ
t of the Hilbert spa
es 
orresponding to the fundamental weights.

Remark V.8. (a) The 
onstru
tions in this se
tion 
an also be 
arried out

for the other three types of simple split lo
ally �nite Lie algebras, where the

boundedness of � leads to a holomorphi
 representation of the 
orresponding

groups

Sp

1

(H; I) := Sp(H; I) \GL

1

(H) and O

1

(H; I) := O(H; I)\GL

1

(H)

(
f. [Ne98℄).

(b) In [Ne98℄ one also �nds a 
lassi�
ation of all holomorphi
 representations of

the groups GL

p

(H), p > 1. These representations are dire
t sums of highest

weight representations with �nite highest weights. For p = 1 the situation is

more 
ompli
ated in three respe
ts:

(1) First one has mu
h more highest weight representations be
ause the

boundedness 
ondition is mu
h weaker than the 
ondition that at most �nitely

many �

j

are non-zero.

(2) Se
ond the global holomorphi
 representation theory of the group

GL

1

(H) is more 
ompli
ated in the sense that it also has holomorphi
 fa
tor

representations of type II and III. These are not dire
t sums of irredu
ible rep-

resentations.

(3) There are irredu
ible holomorphi
 representations whi
h are not highest

weight representations. This is dis
ussed in the following example.

Example V.9. We 
onsider the Lie algebra g := gl(N ; C ) as the union of

the subalgebras g

n

:= gl(2n; C ), n 2 N , and �x the standard positive system

�

+

:= f"

j

� "

k

: j < kg . For ea
h n 2 N we 
onsider the dominant integral

weight

�

n

:= (1; 1; : : : ; 1

| {z }

n times

;�1;�1; : : : ;�1

| {z }

n times

)

with respe
t to �

+

n

:= �

n

\ �

+

and �

n

:= f� 2 �: g

�

� g

n

g . Then the set

P

�

n

of weights of the highest weight module L(�

n

; g

n

) of g

n

is given by

P

�

n

=

n

2n

X

j=1

a

j

"

j

: a

j

2 f�1; 0; 1g;

2n

X

j=1

a

j

= 0

o

;
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as follows easily from P

�

n

= 
onv(W

n

:�

n

) \ (�

n

+ Z[�

n

℄); where �

n

� h

�

n

denotes the roots of g

n

. In parti
ular ea
h weight � 2 P

�

n


an be written as

� =

X

j2N

1

"

j

�

X

j2N

2

"

j

; where jN

1

j = jN

2

j � n and N

1

\N

2

= �:

We see in parti
ular that �

n�1

is 
ontained in P

�

n

, and that the 
orresponding

weight spa
e generates a g

n�1

-submodule of highest weight �

n�1

. Using a �xed


hoi
e of embeddings

L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

); n 2 N ;

we obtain a simple weight module V := lim

�!

L(�

n

; g

n

) of g . The weight system

of this module is given by

P

V

=

[

n2N

P

�

n

=

n

m

X

j=1

a

j

"

j

:m 2 N ; a

j

2 f�1; 0; 1g;

m

X

j=1

a

j

= 0

o

:

If � 2 P

V

is an extreme point of 
onv(P

V

), then there exists an n 2 N with

� =

P

2n

j=1

a

j

"

j

2 P

�

n

. Then � 2 Ext(
onvP

�

n

) = W

n

:�

n

. This means

that jfj: a

j

= 1gj = n . Then � is not extremal in 
onv(P

�

n+1

), hen
e not

in 
onv(P

V

). This 
ontradi
tion shows that the set Ext

�


onv(P

V

)

�

of extreme

points of 
onv(P

V

) is empty, and hen
e that V is not a highest weight module

(
f. Lemma III.10).

The fa
t that all the highest weight modules L(�

n

; g

n

) are unitary implies

that the embeddings L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

) 
an be turned into isometri


embeddings, so that we obtain on V the stru
ture of a unitary g -module.

As the set P

V

is bounded in l

1

(N ; C ), a similar argument as in the proof

of Lemma V.4 shows that there exists a 
onstant C > 0 with

k�

V

(X)k � CkXk

1

;

where k � k

1

is the tra
e norm. Then �

V

integrates to a holomorphi
 represen-

tation

�

V

: GL

1

(H)! GL(H

V

);

where H

V

is the 
ompletion of V with respe
t to the inner produ
t. As the


onstru
tion shows, the representation �

V

is not a highest weight representation.

One should observe that our 
onstru
tion of representations always as-

sumed a �xed 
hoi
e of a splitting Cartan subalgebra. Although Cartan subal-

gebras of gl(J; C ) are 
onjugate under the group Aut(g) of automorphisms of

g , not every su
h automorphism �xes the highest weight representations, i.e.,

indu
es an operator on the 
orresponding representation spa
e. Therefore it is

an interesting question how unitary highest weight representations with respe
t

to one Cartan subalgebra h behave with respe
t to another Cartan subalgebra

e

h . One possible strategy is to atta
h unitary highest weight representation to


ertain 
oadjoint orbits and then to study the geometry of these orbits and how

bigger groups of automorphisms permute the orbits. Some results related to this

approa
h will be dis
ussed in the next se
tions.
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Notes on Se
tion V

Most of the material of this se
tion has been adapted from [Ne98℄. A

dis
ussion of the boundedness 
ondition for highest weight representations of

indu
tive limit groups 
an also be found in [NRW99, Prop. 3.14℄. The arguments

used there are quite di�erent from ours. Also related is the approa
h of Neretin

to realize the spin representation of the in�nite-dimensional orthogonal group in

a Fr�e
het spa
e ([Ner87℄).

The problem of integrating representations of in�nite-dimensional Lie al-

gebras to group representations be
omes quite diÆ
ult if the Lie algebra a
ts

by unbounded operators. Laredo has re
ently made signi�
ant progress on this

problem ([Lar99℄). The 
ase of unitary highest weight representations of loop

groups and the Virasoro group is due to Goodman and Walla
h ([GW84℄ and

[GW85℄; see also [Se81℄).

In the literature one �nds many results on representations of the unitary

groups U

p

(H). In [Se57℄ I. E. Segal studies unitary representations of the

full group U(H) 
alled physi
al representations whi
h are 
hara
terized by the


ondition that their di�erential maps �nite rank hermitian proje
tions to positive

operators. Segal shows that physi
al representations de
ompose dis
retely into

irredu
ible physi
al representations whi
h are pre
isely those o

uring in the

de
omposition of �nite tensor produ
ts of the identity representation. Later

A. A. Kirillov ([Ki73℄) and also G. I. Ol'shanski�� ([Ol78, Th. 1.11℄) proved

that all strongly 
ontinuous representations of the Bana
h{Lie group U

1

(H),

H separable, are type I, they even de
ompose as dire
t sums of irredu
ible

representations.

We have mentioned in Remark V.8 that the group GL

1

(H) has holomor-

phi
 representations of type II and III. The same is true for unitary strongly


ontinuous representations of the group U

2

(H) ([Bo90℄). In the same paper

Boyer develops a Borel{Weil theory for the (linear) 
oadjoint orbits of the group

U

2

(H), whi
h only leads to those highest weight representations where the high-

est weight has �nitely many non-zero entries.

Highest weight representations of parti
ularly interest in physi
s are the

spin representations of the group O

1

(H). For a detailed dis
ussion of these

representations we refer to [CP89℄, [PS86℄, [Ot95℄ and [Ner96℄.

Exer
ises for Se
tion V

Exer
ise V.1. Show that for a split Lie algebra (g; h) there exists an a
tion

of the Weyl group W on h satisfying r

�

(x) = x� �(x)�� for all � 2 �

i

. Hint:

Consider h as a subspa
e of (h

�

)

�

.

Exer
ise V.2. Show that for a lo
ally �nite split simple Lie algebra g the
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set � 
ontains at most two W -orbits. Hint: Assume that W does not a
t

transitively and pi
k two non-
onjugate roots f�

1

; �

2

g . Then for ea
h � 2 �

there exists a �nite-dimensional subalgebra g

0

with f�

1

; �

2

; �g � �

0

. Now use

the �nite-dimensional result.

Exer
ise V.3. Let (g; h) be a lo
ally �nite split Lie algebra with � = �

k

.

Show that for ea
h element Y = Y

�

2 g there exists an element X = �X

�

2 g

with e

adX

:Y 2 h . Hint: Choose a �nite-dimensional � -invariant split subalgebra


ontaining X and Y and then argue with the 
orresponding result for 
ompa
t

Lie algebras.
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VI. Geometry of 
oadjoint orbits of Bana
h{Lie groups

In the pre
eding se
tion we have seen that for ea
h bounded highest weight

� , for whi
h L(�) is unitary, we obtain a holomorphi
 highest weight repre-

sentation of G

1

:= GL

1

(H) on the 
orresponding Hilbert spa
e H

�

. A 
loser

inspe
tion of this situation would show that if one 
onsiders the 
onstru
tions

of Se
tion I for 
omplex homogeneous spa
e of the type G

1

=P

1

, then one would

obtain a realization of H

�

by a holomorphi
 se
tion in a line bundle over a spa
e

whi
h is not a Hilbert manifold and therefore 
annot be a strong K�ahler mani-

fold. Motivated by this observation, we now take a 
loser look at the geometry of


oadjoint orbits of Bana
h{Lie groups to �nd the appropriate K�ahler manifolds.

For our guiding example gl(J; C ), this will lead to rather 
omplete information

in the 
ase G = U

2

(H) = U(H) \ (1+ B

2

(H)).

Let G be a real 
onne
ted Bana
h{Lie group, g its Lie algebra, and g

�

the topologi
al dual spa
e 
onsisting of the 
ontinuous linear fun
tionals on g .

As for �nite-dimensional groups, the 
oadjoint representation

Ad

�

:G! GL(g

�

); Ad

�

(g):� := � ÆAd(g)

�1

of G plays a 
ru
ial role in the pro
ess of obtaining natural realizations of

representations of G . For �nite-dimensional groups, 
oadjoint orbits

O

f

:= Ad

�

(G):f

always 
arry a natural manifold stru
ture by identifying them with the homo-

mogeneous spa
e G=G

f

, where G

f

:= fg 2 G: Ad

�

(g):f = fg is the stabilizer

of f in G . Unfortunately, for an in�nite-dimensional group G , the topologi
al

spa
e G=G

f

need not have a natural manifold stru
ture. This problem suggests

that in many 
ases in whi
h G=G

f

does not exist as a manifold its geometry

should be re
e
ted by geometri
 obje
ts dire
tly related to G . In fa
t, this point

of view turns out to be quite su

essful in many respe
ts.

In this spirit a G -invariant symple
ti
 stru
ture on G=G

f

should 
orre-

spond to a left invariant 
losed 2-form on G whi
h is degenerate along the


osets of G

f

. So we �rst take a 
losed look at left-invariant 2-forms on G .

The tangent bundle TG of G is trivial, and a 
onvenient trivialization is

given by the map

	:G� g! TG; 	(g)(X) := d�

g

(1):X;

where �

g

(x) = gx is the left multipli
ation on G . We therefore obtain a bije
tion

! 7! !

l

assigning to ea
h 
ontinuous alternating p -form ! 2 Alt

p

(g;R) a left-

invariant di�erential p -form !

l

on G given by

!

l

(g)(d�

g

(1):X

1

; : : : ; d�

g

(1):X

p

) = !(X

1

; : : : ; X

p

); g 2 G;X

1

; : : : ; X

p

2 g:
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Lemma VI.1. Let ! 2 Alt

p

(g;R) . The left-invariant p-form !

l

on G is


losed if and only if

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p+1

) = 0

holds for all X

1

; : : : ; X

p+1

2 g .

Proof. For X 2 g we write X

l

2 V(G) for the 
orresponding left invariant

ve
tor �eld on G , i.e., X

l

(g) = d�

g

(1):X . A left invariant p -form !

l

on G is


losed if and only if d!

l

vanishes on p+ 1-tuples of left invariant ve
tor �elds.

Moreover, d!

l

((X

1

)

l

; : : : ; (X

p+1

)

l

) is a 
onstant fun
tion. To 
al
ulate its value

in the identity, we observe that ea
h fun
tion

!

l

�

(X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ; (X

p+1

)

l

�

is 
onstant, so that

�

d!

l

((X

1

)

l

; : : : ; (X

p+1

)

l

�

�

(1)

=

p+1

X

i=1

(�1)

i

(X

i

)

l

:!

l

((X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ; (X

p+1

)

l

)(1)

+

X

i<j

(�1)

i+j

!

l

([(X

i

)

l

; (X

j

)

l

℄; (X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ;

\

(X

j

)

l

; : : : ; (X

p+1

)

l

)(1)

=

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p+1

):

De�nition VI.2. We 
on
lude in parti
ular that a bilinear form !: g�g! R

de�nes a 
losed left invariant 2-form 
 := !

l

on G if and only if ! is a Lie

algebra 2-
o
y
le, i.e.,

!(x; [y; z℄) + !(y; [z; x℄) + !(z; [x; y℄) = 0; x; y; z 2 g:

We write Z

2




(g;R) for the spa
e of 
ontinuous real-valued 2-
o
y
les on g .

Let 
 2 


2

(G) be a left invariant 
losed 2-form de�ned by ! 2 Z

2




(g;R).

Then there exists a left invariant 1-form � with d� = 
 if and only if there

exists a 
ontinuous linear fun
tional f 2 g

�

with !(x; y) = f([x; y℄) for x; y 2 g ,

i.e., the 2-
o
y
le ! is a 2-
oboundary. The spa
e of 
ontinuous 2-
oboundaries

is denoted B

2




(g;R), and the quotient spa
e

H

2




(g;R) := Z

2




(g;R)=B

2




(g;R)

is the se
ond 
ontinuous real-valued Lie algebra 
ohomology of g .

Below we will dis
uss modi�
ations of the 
oadjoint a
tion to 
ertain aÆne

a
tions, so we �rst have a 
loser look at the aÆne group of a Bana
h spa
e.
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De�nition VI.3. (a) Let V be a Bana
h spa
e. We 
onsider the aÆne group

A�(V )

�

=

V o GL(V ) whi
h a
ts on V by (x; g):v = g:v + x . On the spa
e

e

V := V � R the group A�(V ) a
ts by linear maps (x; g):(v; z) := (g:v + zx; z),

and we thus obtain a realization of A�(V ) as a linear Lie subgroup of GL(

e

V ).

The 
orresponding Lie algebra is aff(V )

�

=

V o gl(V ) with the bra
ket

[(v; A); (v

0

; A

0

)℄ = (A:v

0

� A

0

:v; [A;A

0

℄):

(b) A homomorphism �: g! aff(V ) is therefore given by a pair (�

l

; �) 
onsisting

of a linear representation �

l

: g! gl(V ) and map �: g! V satisfying

(6:1) �([x; y℄) = �

l

(x):�(y)� �

l

(y):�(x); for x; y 2 g:

A map �: g ! V satisfying (6.1) is 
alled a 1-
o
y
le with values in the g -

representation (�

l

; V ).

(
) On the group level a homomorphism �:G! A�(V ) is given by a pair (�

l

;�)

of a linear representation �

l

:G! GL(V ) and map �:G! V satisfying

(6:2) �(g

1

g

2

) = �

l

(g

1

):�(g

2

) + �(g

1

) for g

1

; g

2

2 G:

A map �:G ! V satisfying (6.2) is 
alled a 1-
o
y
le with values in the G -

representation (�

l

; V ). Typi
al examples of 1-
o
y
les are maps of the form

�(g) := �

l

(g):v � v; v 2 V:

These 
o
y
les are 
alled trivial (
oboundaries).

Lemma VI.4. Let ! 2 Z

2

(g;R) be a 
ontinuous 2-
o
y
le. Then �(x)(y) :=

!(x; y) is a 1-
o
y
le with values in the 
oadjoint representation (ad

�

; g

�

) , where

ad

�

(x):� = �� Æadx . If G is simply 
onne
ted, then there exists a unique aÆne

representation

Ad

�

!

:G! A�(g

�

); Ad

�

!

(g) = (�(g);Ad

�

(g))

with d�(1) = � .

Proof. That � is a 1-
o
y
le with values in the 
oadjoint representation

(ad

�

; g

�

) follows from

�([x; y℄)(z) = !([x; y℄; z) = �!(y; [x; z℄) + !(x; [y; z℄)

= (ad

�

(x):�(y))(z)� (ad

�

(y):�(x))(z):

We therefore obtain an aÆne representation of g on g

�

given by

ad

�

!

: g! aff(g

�

); ad

�

!

(x) = (�(x); ad

�

(x)):

If G is simply 
onne
ted, then Theorem IV.2(
) implies that the aÆne

representation ad

�

!

integrates to an aÆne representation

Ad

�

!

:G! A�(g

�

); Ad

�

!

(g) = (�(g);Ad

�

(g));

where �:G ! g

�

is a smooth 1-
o
y
le for G with values in the 
oadjoint

representation. The group 
o
y
le is related to the Lie algebra 
o
y
le � by

d�(1) = � and the uniqueness of � follows from the uniqueness assertion in

Theorem IV.2(
).
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The aÆne a
tions of G on g

�

obtained by this pro
ess are generalizations

of the 
oadjoint a
tion. The a
tion Ad

�

!

of G on g

�

is equivalent to a linear

representation if and only if it has a �xed point f 2 g

�

. This means that

ad

�

!

(g):f = f0g , i.e., !(x; �) = f Æ adx for all x 2 g , whi
h in turn means that

!(x; y) = f([x; y℄) , i.e., ! is a 
oboundary.

Remark VI.5. (a) The 
o
y
le ! 2 Z

2

(g;R) de�nes a Lie algebra stru
ture

on

b

g := g� R by

[(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

));

whi
h is a 
entral extension of g by R . The aÆne a
tion Ad

�

!

of G on g

�


orresponds to a linear a
tion on

b

g

�

given by

Ad

�

bg

(g):(�; �) = (Ad

�

(g):�+ ��(g); �):

This means that the aÆne a
tion of G on g

�

is equivalent to a linear a
tion on

the aÆne hyperplane g

�

� f1g in

b

g

�

.

(b) The main reason for preferring the aÆne a
tion is that to understand the

a
tion on

b

g

�

in a proper sense as a 
oadjoint a
tion, we would need a group

b

G

with L(

b

G) =

b

g , but su
h groups need not exist (see the example below). On

the other hand, one knows that in all 
ases the a
tion of the simply 
onne
ted

group with Lie algebra g has a natural linear a
tion on

b

g , even if G is not a

Bana
h{Lie group (
f. [Ne00
℄).

One of the most simple examples of a Bana
h{Lie algebra for whi
h no


orresponding group exists is the quotient

g :=

�

u(H)� u(H)

�

=z;

where z := R(i1;

p

2i1) and H is an in�nite-dimensional 
omplex Hilbert spa
e

(
f. [EK64℄).

Now we turn to the geometri
 stru
ture of orbits of the a
tion Ad

�

!

. The

following theorem generalized the observation of Kirillov, Kostant and Souriau,

that every 
oadjoint orbit of a �nite-dimensional Lie group 
arries a natural

invariant symple
ti
 stru
ture.

We re
all that a weakly symple
ti
 manifold is a pair (M;
) of a manifold

M and a non-degenerate 
losed 2-form 
. It is 
alled strongly symple
ti
 if for

ea
h p 2M the inje
tive map

T

p

(M)! T

p

(M)

�

; v 7! 


p

(v; �)

is surje
tive. Note that ea
h �nite-dimensional weakly symple
ti
 manifold is

also strongly symple
ti
 (
f. Exer
ise VI.1).

Theorem VI.6. Suppose that the aÆne representation Ad

�

!

of G on g

�

exists. Let f 2 g

�

and ! 2 Z

2




(g;R) . If the stabilizer G

f

is 
omplemented, then

the orbit O

f

= Ad

�

!

(G):f 
arries the stru
ture of a weakly symple
ti
 manifold.
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Proof. Let f 2 g

�

. Then the stabilizer g

f

of f is given by

(6:3)

g

f

= fx 2 g: ad

�

!

(x):f = 0g = fx 2 g: �(x) = f Æ adxg

= fx 2 g:!(x; �)� f([x; �℄) = 0g:

The 
orresponding subgroup G

f

� G is a Lie subgroup (Exer
ise IV.3).

Let us assume, in addition, that G

f

is 
omplemented (whi
h is the 
ase if G

is a Hilbert{Lie group). Then we identify O

f

with G=G

f

and obtain on O

f

a

natural manifold stru
ture su
h that G a
ts smoothly and transitively on O

f

.

The tangent spa
e T

f

(O

f

) 
an be identi�ed with g=g

f

on whi
h we have the

skew-symmetri
 bilinear form given by




f

(ad

�

!

(x):f; ad

�

!

(y):f) := !(x; y)� f([x; y℄)

whi
h is well de�ned, non-degenerate (see (6.3)) and G

f

-invariant (Exer
ise!).

Hen
e there exists a G -invariant 2-form 
 on O

f

whi
h 
oin
ides with this form

on T

f

(O

f

). Let �:G ! O

f

�

=

G=G

f

denote the orbit map. Then �

�


 is the

left invariant 2-form on G whi
h in 1 
oin
ides with ! + df 2 Z

2




(g;R), where

df(x; y) := f([y; x℄) . This implies that

d�

�


 = �

�

d
 = 0;

showing that d
 = 0, i.e., 
 is 
losed.

Remark VI.7. If g is topologi
ally isomorphi
 to a Hilbert spa
e, then the

assumption of Theorem VI.6 is automati
ally satis�ed.

Remark VI.8. Let ! 2 Z

2




(g;R) and Ad

�

!

be as above. For � 2 g

�

we


onsider the equivalent 
o
y
le

e! := ! + d�; e!(x; y) = !(x; y)� �([x; y℄):

Then

e

�(x) = �(x) + ad

�

(x):� , and therefore

e

�(g) = �(g) + Ad

�

(g):�� �:

This implies that the translation map �

�

: g

�

! g

�

; � 7! � + � satis�es

(6:4) Ad

�

!

(g) Æ �

�

= �

�

ÆAd

�

e!

(g):

Therefore the two aÆne a
tions Ad

�

!

and Ad

�

e!

are equivalent. For the 
orre-

sponding orbits this means that

O

�

=

e

O

���

+ �;

and one easily 
he
ks that this isomorphism preserves the symple
ti
 stru
ture,

so that it suÆ
es to study the orbits of the type

O

!

:= O

0

:= Ad

�

!

(G):0 = �(G) � g

�

:

If, in addition, � vanishes on the 
ommutator algebra, then d� = 0, so

that e! = ! . In this 
ase (6.4) means that �

�


ommutes with the aÆne a
tion

Ad

�

!

.
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Complex stru
tures on homogeneous spa
es

The most dire
t way to obtain 
omplex stru
tures on homogeneous spa
es

is to realize them as open submanifolds of 
omplex manifolds. To see how to �nd

su
h embeddings systemati
ally, let us assume that M = G=H is a homogeneous

spa
e of a Bana
h{Lie group G for whi
h H is a 
omplemented Lie subgroup,

so that M 
arries a natural real manifold stru
ture.

Remark VI.8. Let us assume that M also 
arries an invariant 
omplex stru
-

ture, i.e., M is a 
omplex manifold su
h that G a
ts by biholomorphi
 mappings.

Then the natural Lie algebra homomorphism _�: g! V(M) given by

_�(X)(p) :=

d

dt

t=0

exp(�tX):p

extends to a 
omplex linear homomorphism _�

C

: g

C

! V

hol

(M); where V

hol

(M)

denote the Lie algebra of holomorphi
 ve
tor �elds on M . Let

p := fX 2 g

C

: _�

C

(X)(x

0

) = 0g;

where x

0

= 1H 2 M is the base point. We write X 7! X for the 
omplex


onjugation on g

C

. Then p has the following properties:

(C1) p is a 
losed Ad(H)-invariant subalgebra of the Bana
h{Lie algebra g

C

.

(C2) p \ p = h

C

, and

(C3) p+ p = g

C

.

(C1) follows from the relation

_�

C

(Ad(h):X)(x

0

) = �

iso

(h): _�

C

(X)(x

0

);

where �

iso

:H ! GL(T

x

0

(M)) is the isotropy representation of H in x

0

. To

verify (C2), we observe that the 
omplex Lie algebra p \ p is 
onjugation-

invariant, hen
e satis�es

p \ p = (p \ p \ g)

C

= (p \ g)

C

= h

C

:

For 
ondition (C3) we note that M = G=H implies that

T

x

0

(M) = _�(g)(x

0

);

so that g

C

� g+ p . This in turn means that

fX �X:X 2 g

C

g = fX �X:X 2 pg = fX �X:X 2 p+ pg;

so that (C3) follows be
ause p \ p is the 
omplexi�
ation of the subspa
e of the

purely imaginary elements it 
ontains.

In the �nite-dimensional 
ase one 
an show that a subalgebra p � g

C

satisfying (1){(3) is already enough to obtain on M = G=H an invariant 
omplex

stru
ture (
f. [Ki76, p.203℄). We do not expe
t that (C1){(C3) would be enough

in the in�nite-dimensional 
ase. For the arguments in [Ki76℄ to work one needs at

least the additional assumption that p is 
omplemented in g , and this should be

enough. Sin
e we will need 
omplex stru
tures only in quite spe
i�
 situations, let

us formulate a suÆ
ient set of 
onditions for the existen
e of a 
omplex stru
ture.
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Proposition VI.9. We assume that G is 
ontained as a Lie subgroup in

a 
omplex Bana
h{Lie group G

C

with Lie algebra g

C

on whi
h we have an

antiholomorphi
 automorphism � su
h that

L(�)(X) = X; X 2 g

C

:

Let H be a 
omplemented Lie subgroup of the 
onne
ted Lie group G , g := L(G) ,

h := L(H) , and p � g

C

a 
losed 
omplex subalgebra for whi
h the following

assertions hold:

(1) P := hexp pi is a 
omplemented Lie subgroup of G

C

.

(2) P \G = H .

(3) p+ g = g

C

.

Then the orbit mapping G ! G

C

=P; g 7! gP , indu
es an open embedding

of G=H as an open G-orbit in the 
omplex manifold G

C

=P .

Proof. We 
onsider the orbit map �:G! G

C

=P; g 7! g:x

0

, where x

0

= 1P is

the base point in G

C

=P . This is a smooth map whi
h is 
onstant on the H -left


osets gH in G , hen
e fa
tors to a smooth map �:M ! G

C

=P whi
h is inje
tive

be
ause of (2). Its di�erential in x

0


orresponds to the 
anoni
al map

g=h! g

C

=p

whi
h, in view of (2), is inje
tive, and, a

ording to (3), is surje
tive. Therefore

the Inverse Fun
tion Theorem shows that � is a lo
al di�eomorphism in x

0

. Sin
e

� is also G -equivariant, it follows that � is an open embedding of manifolds.

The assumption (2) in Proposition VI.9 implies p\g = h whi
h is equivalent

to (C2), and (3) is easily seen to be equivalent to (C3).

Complex stru
tures on 
oadjoint orbits

Now we turn more spe
i�
ally to 
oadjoint orbits in the sense of Theorem

VI.6. So we 
onsider a homogeneous spa
e M = G=H whi
h is a 
oadjoint orbit

of the type O

!


onsidered in Theorem VI.6. Then we want, in addition, that the


omplex stru
ture I (viewed as the multipli
ation by i in ea
h tangent spa
e),

preserves the symple
ti
 form. Taking the homogeneity of M into a

ount, it

suÆ
es to verify this 
ondition in the base point x

0

= 0. The tangent spa
e

T

x

0

(M) = T

0

(O

!

) 
an naturally be identi�ed with g=h by the map

g=h! T

0

(O

!

); X + h 7! ad

�

!

(X):0 = �(X):

Let us write Z

�

:= �Z for Z 2 g

C

. In view of p+ p = g

C

, we may write ea
h

element X 2 g as Z � Z

�

, Z 2 p (the map g

C

! g , Z 7! Z � Z

�

is surje
tive

and p and p have the same image). Suppose that M 
arries a 
omplex stru
ture

de�ned by p . Then T

x

0

(M)

�

=

g=h

�

=

g

C

=p des
ribes the 
omplex stru
ture on

the tangent spa
e. We write �: g

C

! T

0

(O

!

) for the 
omplex linear extension of
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g with respe
t to the 
omplex stru
ture on T

0

(O

!

). Writing X as Z � Z

�

for

Z 2 p , we obtain for the multipli
ation with i on T

0

(O

!

) the formula

I:�(X) = I:�(Z � Z

�

) = I:�(Z) = �(iZ) = �(i(Z + Z

�

))

with i(Z + Z

�

) 2 u . Now




0

(�(Z � Z

�

); I:�(W �W

�

))

= !(Z � Z

�

; i(W +W

�

))

= !(iZ;W

�

) + !(iW;Z

�

) + !(iZ;W ) + !(�iZ

�

;W

�

);

= !(iZ;W

�

) + !(iW;Z

�

)

| {z }

symmetri


+2Re

�

!(iZ;W )

�

| {z }

skew�symmetri


;

so that the requirement that this form is symmetri
 means that Re! vanishes

on p� p , whi
h is the same as

(C4) !(p� p) = f0g .

If p satis�es (C1){(C4), we 
all it a 
omplex polarization in ! . Our 
al
u-

lation above has shown that this 
ondition means that if a 
omplex stru
ture is

obtained from Proposition VI.9, then (C4) guarantees that the 
omplex stru
ture

is 
ompatible with the symple
ti
 stru
ture in the sense that multipli
ation by

I is a symple
ti
 isomorphism in ea
h tangent spa
e. If (M;
) is a weakly sym-

ple
ti
 manifold endowed with a 
omplex manifold stru
ture for whi
h I satis�es

this 
ondition, we 
all the triple (M;
; I) a pseudo-K�ahler manifold.

We 
all it a K�ahler manifold if, in addition, we have 0 < 


0

(v; I:v) for

0 6= v . For a 
omplex polarization this means that for Z 2 p n h

C

we have

0 < 


0

(ad

�

!

(Z�Z

�

):�; I ad

�

!

(Z�Z

�

):�) = !(Z�Z

�

;�iZ�iZ

�

) = �2i!(Z;Z

�

):

So we formulate an additional 
ondition on p :

(C5)For all Z 2 p n h

C

we have �i!(Z;Z

�

) > 0.

Notes on Se
tion VI

For �nite-dimensional split involutive Lie algebras K�ahler stru
tures on


oadjoint orbits have been studied in some detail [Ne95a℄. For �nite-dimensional

Lie algebras 
oadjoint orbits of the highest weights of unitary highest weight rep-

resentations are always 
oadjoint K�ahler orbits ([Ne95b℄). For further material

on K�ahler orbits for 
ompa
t groups, we refer to [GS84℄. A detailed analy-

sis of homogeneous K�ahler manifolds is undertaken in [DoNa88℄ by Dorfmeister

and Nakajima, where they prove the Fundamental Conje
ture for Homogeneous

K�ahler Manifolds whi
h essentially leads to a 
lassi�
ation of all homogeneous

K�ahler manifolds. All in�nite-dimensional homogeneous strongly K�ahler mani-

folds we are aware of have the same �bration stru
ture given in the 
lassi�
ation

for the �nite-dimensional 
ase. It seems that the geometry be
omes mu
h less


ontrollable for weakly K�ahler manifolds.
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Exer
ises for Se
tion VI

Exer
ise VI.1. We 
onsider the Bana
h spa
e E := l

1

(Z n f0g;R) with the


ontinuous alternating bilinear form

!(x; y) :=

X

j>0

x

j

y

�j

� x

�j

y

j

:

We then de�ne a 
onstant 2-form 
 on E by 


p

:= ! for all p 2 E . Show

that (E;
) is a weakly symple
ti
 manifold whi
h is not strongly symple
ti
.

Hint: The image of the natural map E ! E

�

�

=

l

1

(Z n f0g;R) is the subspa
e

l

1

(Z n f0g;R).

Exer
ise VI.2. It is instru
tive to visualize the 
onstru
tions in this se
tion

for the 
ase of abelian Lie algebras. Let g be an abelian Bana
h{Lie algebra

whi
h we also 
onsider as a group G = g with exp = id.

(a) Z

2




(g;R) = Alt

2

(g;R) is the spa
e of 
ontinuous alternating bilinear forms

! on g .

(b) The aÆne a
tion of G on g

�


orresponding to ! is given by Ad

�

!

(x):� =

� + !(x; �). Its orbits are aÆne subspa
es of g

�

.

(
) Suppose that ! is non-degenerate and that g has a 
omplex stru
ture I for

whi
h there exists a real subspa
e n � g satisfying:

(1) g = n� In .

(2) ! vanishes on n� n .

(3) ! is I -invariant.

Show that the 
omplex subspa
e

p := fv � iIv: v 2 ng � g

C

is a 
omplex polarization in ! whi
h is 
omplemented. When is it a K�ahler

polarization?

Exer
ise VI.3. Let (V;
) be a symple
ti
 ve
tor spa
e, i.e., 
:V � V ! R

is a non-degenerate alternating bilinear form. For a 
omplex stru
ture I on V

the following are equivalent:

(a) 
 is I -invariant, i.e., I 2 Sp(V;
).

(b) 
(v; I:w) = 
(w; I:v) for v; w 2 V .

(
) The 
omplex bilinear extension 
:V

C

� V

C

! V of 
 satis�es 
(v; w) = 0

for v; w 2 V

+

:= fx� iIx:x 2 V g .
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VII. Coadjoint orbits and 
omplex line bundles for U

2

(H)

In this se
tion we 
omplete the pi
ture for the spe
ial 
ase of the group

U := U

2

(H). This means that we will des
ribe K�ahler 
oadjoint orbits of this

group and realize all unitary highest weight representations L(�) of gl(J; C ) (for

H = l

2

(J; C )) with bounded � in a spa
e of holomorphi
 se
tions of a 
omplex

line bundle over su
h orbits. This pi
ture will show in parti
ular that the group

GL

1

(H) a
ting on the Hilbert spa
e H

�

is far from being maximal.

Although the material in this se
tion is formulated, for simpli
ity, only for

the group U

2

(H), it works in the more general setting of L

�

-algebras.

Coadjoint K�ahler orbits for u

2

(H)

To �x the notation, we write

U := U

2

(H); G := GL

2

(H); u = L(U) = u

2

(H); g = L(G) = B

2

(H):

We also identify u with u

�

using the tra
e form (x; y) := tr(xy). Then the


oadjoint a
tion is given by Ad

�

(g):x = Ad(g):x = gxg

�1

. As we have seen in

Se
tion VI, to understand the aÆne 
oadjoint a
tions from a higher viewpoint,

we �rst have to des
ribe the spa
e Z

2




(u;R) or real-valued 2-
o
y
les.

Lemma VII.1. Every 
ontinuous 
o
y
le ! 2 Z

2




(u;R) 
an be written as

!(x; y) = tr(A[x; y℄) for some A 2 B(H) with A

�

= �A .

Proof. In [dlH72, Prop. II.9℄ it is shown that the 
omplex bilinear extension

!

C

2 Z

2




(g; C ) 
an be written as !

C

(x; y) = tr(B[x; y℄) for some B 2 B(H).

For C

�

= C and x 2 u we have tr(Cx) 2 iR , so that !(x; y) 2 R for x; y 2 u

implies that tr((B + B

�

)[x; y℄) = 0 for all x; y 2 u . Hen
e we obtain with

A :=

1

2

(B � B

�

) the relation !(x; y) = tr(A[x; y℄) .

In the following we assume that ! 2 Z

2




(u;R) is given by A = �A

�

2 B(H)

as in Lemma VII.1 by

!(x; y) = tr(A[x; y℄) = tr([A; x℄y):

This means that the 
orresponding Lie algebra 
o
y
le �: u! u is given by

�(x) = [A; x℄:

Note that adA:B

2

(H) ! B

2

(H) is a 
ontinuous map and that B

2

(H) is an

ideal in B(H). Having su
h a 
on
rete formula for the 
o
y
le, it is easy to

des
ribe the 
orresponding group 
o
y
le whi
h exists although the group U is
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not simply 
onne
ted (in view of Proposition A.4 and Theorems A.10/11 we have

�

1

(U)

�

=

Z):

�:U ! u; �(g) = gAg

�1

� A:

Note that for g 2 U = U

2

(H) and A 2 B(H) we have

gAg

�1

= (g � 1)Ag

�1

+ A(g

�1

� 1) 2 B

2

(H)

and that for A

�

= �A we also get �(g)

�

= ��(g).

Remark VII.2. In this 
ase it would also be possible to work with a 
entral

extension of the group U . In view of Proposition A.4 and Theorems A.10/11,

the group �

2

(U) is trivial, so that the results in [Ne00
℄ imply the existen
e of

a 
entral extension

R !

b

U ! U


orresponding to the Lie algebra extension

b

u = u�

!

R de�ned by ! 2 Z

2




(u;R)

with the bra
ket

[(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

)):

The next problem is to �nd the geometri
ally well behaved 
oadjoint orbits

in u . As we have seen in Se
tion VI, it suÆ
es to 
onsider the orbit

O

!

:= �(G) � u

of 0 (Remark VI.8). Sin
e we are looking for strong K�ahler orbits, a natural

question is when these orbits are submanifolds of u . In�nitesimally this leads to

the question when the tangent spa
e T

0

(O

!

) = �(u) = [A; u℄ is a 
losed subspa
e

of u .

For a normal operator A 2 B(H) we write A = A




� A

d

(
ontinuous and

dis
rete part of A) a

ording to the orthogonal de
omposition H = H




� H

d

,

where H

d

is the Hilbert spa
e dire
t sum of the eigenspa
es of A , H




= H

>

d

,

A

d

= A j

H

d

, and A




= A j

H




.

Lemma VII.3. For A = �A

�

2 B(H) the following assertions hold:

(i) If X 2 u 
ommutes with A , then XA




= A




X = 0 , and X vanishes on

H




. Moreover, ker(adA) � B

2

(H

d

) .

(ii) The map adA: u ! u has 
losed range if and only if A is diagonalizable

with �nite spe
trum.

Proof. (i) The stabilizer of 0 2 O

!

in u is the 
entralizer of A in u . We

re
all that every operator X 2 u is 
ompa
t and normal, hen
e diagonalizable

and all eigenspa
es 
orresponding to non-zero eigenvalues are �nite-dimensional.

If X 2 u 
ommutes with A , then it preserves the eigenspa
es of A , hen
e


ommutes with A




and A

d

. Therefore A




preserves the �nite-dimensional non-

trivial eigenspa
es of X on whi
h it a
ts trivially be
ause it does not have any

eigenve
tor for a non-zero eigenvalue. Therefore XA




= A




X = 0. Sin
e A(H




)

is dense in H




, it follows that H




� kerX and imX � (kerX)

?

� H

d

, so
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that we 
an identify X with an element of B

2

(H

d

). In this sense we have

ker(adA) � B

2

(H

d

).

(ii) We 
onsider the hermitian operator adA on the 
omplex Hilbert spa
e

g = B

2

(H). Then im(adA) = [A; g℄ is the 
omplexi�
ation of the spa
e [A; u℄ ,

showing that this spa
e is a 
losed subspa
e of u if and only if adA has 
losed

range on g . Sin
e adA is normal, this 
ondition is equivalent to 0 being an

isolated point in the spe
trum Spe
(adA) of adA (Exer
ise VII.1).

We note that B

2

(H




) � (ker adA)

?

= imadA follows dire
tly from (i).

The trivial fa
t that A

d


ommutes with B

2

(H




) entails that adA , resp., adA




restri
ts to an invertible operator B

2

(H




) ! B

2

(H




). Let E be the spe
tral

measure of A




and � 6= � 2 Spe
(A




). Then there exist disjoint 
ompa
t " -

neighborhoods U

�

of � and U

�

of � in C . We re
all the rank-one operators

P

v;w

(x) = hx; viw on H . For unit ve
tors v 2 E(U

�

) and w 2 E(U

�

) we now

get

k[A




; P

v;w

℄k

2

= hP

A




:v;w

� P

v;A




:w

; P

A




:v;w

� P

v;A




:w

i

= kA




:vk

2

+ kA




:wk

2

� 2hA




:v; vihA




:w; wi:

If " tends to 0, then this number tends to �

2

+�

2

� 2�� = (���)

2

. Sin
e � is

not isolated in the spe
trum of A




, we 
on
lude that the expression k[A




; P

v;w

℄k

2


an be arbitrarily small, 
ontradi
ting the invertibility of adA




on B

2

(H




). We


on
lude that A




= 0, i.e., A = A

d

is diagonalizable on H .

Now we apply the same argument with eigenve
tors v , resp., w of A


orresponding to the eigenvalues � , resp., � , and obtain

[A;P

v;w

℄ = (�� �)P

v;w

:

Sin
e 0 is isolated in Spe
(adA), we 
on
lude that every point in Spe
(A) is

isolated, and hen
e that this 
ompa
t set is �nite.

Motivated by Lemma VII.3, we now restri
t our attention to those 
o
y
les

! for whi
h A is diagonalizable with �nite spe
trum. Let �

1

> : : : > �

k

denote

the eigenvalues of the hermitian operator iA and H

j

:= ker(iA � �

j

1) be the


orresponding eigenspa
e. We then have an orthogonal de
omposition

H = H

1

� : : :�H

k

:

A

ordingly we write operators B 2 B(H) as blo
k k � k -matri
es with entries

b

ij

2 B(H

j

; H

i

).

The stabilizer of 0 2 O

!


oin
ides with the 
entralizer of A , hen
e is

isomorphi
 to

U

0

:= U

2

(H

1

)� : : :� U

2

(H

k

) = fu 2 U : (8i 6= j)u

ij

= 0g:

We want to show that O

!


arries a natural stru
ture of a strong K�ahler

manifold 
ompatible with the symple
ti
 stru
ture. So we have to �nd a K�ahler

polarization p in ! .
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Lemma VII.4. The 
losed subalgebra

p := fX = (X

ij

)

i;j=1;:::;k

2 g: i < j ) X

ij

= 0g

is a 
omplemented subalgebra whi
h is a 
omplex K�ahler polarization in the


o
y
le ! in the sense that (CP1)-(CP5) are satis�ed.

For k = 3 the elements of p have the form

0

�

X

11

0 0

X

21

X

22

0

X

31

X

32

X

33

:

1

A

Proof. That p is 
omplemented is 
lear be
ause

n := fX = (X

ij

)

i;j=1;:::;k

2 g: i � j ) X

ij

= 0g

is a 
losed subspa
e of g 
omplementing p .

We have to verify 
onditions (C1){(C5) from Se
tion VI. From the expli
it

des
ription of the stabilizer group U

0

we immediately derive that p is Ad(U

0

)-

invariant, whi
h is (C1). The relations

p \ p = u

0

C

and p+ p = g

are also trivially satis�ed. To verify (C4), let X;Y 2 p . Then

!(X;Y ) = tr(A[X;Y ℄) =

k

X

j=1

�i�

j

tr([X

jj

; Y

jj

℄) = 0

follows from the fa
t that [B

2

(H

j

); B

2

(H

j

)℄ � sl(H

j

) for ea
h j (Exer
ise VII.2).

For (C5) we 
al
ulate for Z 2 p :

�i!(Z;Z

�

) = �i tr(A[Z;Z

�

℄) = �i tr([A;Z℄; Z

�

) = �i

X

j�k

tr([A;Z

jk

℄Z

�

kj

)

= �i

X

j�k

tr

�

� i(�

j

� �

k

)Z

jk

Z

�

kj

�

=

X

j�k

(�

k

� �

j

) tr(Z

jk

Z

�

kj

)

=

X

j�k

(�

k

� �

j

)kZ

jk

k

2

2

> 0

for Z 62 u

0

C

.

Lemma VII.5. Let P := hexp pi � G denote the analyti
 subgroup 
orre-

sponding to p . Then

P = f(g

ij

) 2 GL

2

(H): i < j ) g

ij

= 0g:

In parti
ular P is a 
omplemented Lie subgroup of G .
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Proof. We have to show that the group P

0

on the right hand side is 
onne
ted.

It is a semidire
t produ
t N oG

0

, where

G

0

:= f(g

ij

) 2 GL

2

(H): i 6= j ) g

ij

= 0g

�

=

k

Y

j=1

GL

2

(H

j

)

and

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i < j ) g

ij

= 0g:

For the group N the exponential fun
tion exp: n! N is a di�eomorphism whose

inverse is given by

log:N ! n: log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

=

k

X

n=1

(�1)

n+1

n

(g � 1)

n

:

Therefore the 
onne
tedness of the right hand side above follows from the 
on-

ne
tedness of the groups GL

2

(H

j

) (Theorem A.10) or dire
tly from the obser-

vation that N = 1+ n .

Theorem VII.6. If A is diagonalizable with dis
rete spe
trum and !(x; y) =

tr(A[x; y℄) , then the 
oadjoint orbit O

!

is a strong K�ahler orbit, i.e., a K�ahler

orbit whi
h is a strongly symple
ti
 manifold.

Proof. In view of Lemmas VII.4 and VII.5, we have exa
tly the situation

asked for in Proposition VI.9, so that we obtain an open embedding

O

!

�

=

U=U

0

,! G=P;

whi
h yields on O

0

the stru
ture of a 
omplex manifold. Sin
e p is a K�ahler

polarization, we see that O

!

is a K�ahler manifold.

It remains to show that the symple
ti
 stru
ture on the tangent spa
e

T

0

(O

!

) yields an isomorphism to the dual spa
e. We identify T

0

(O

!

) with

g=p

�

=

n = fX = (X

ij

)

i;j=1;:::;k

2 g: i � j ) X

ij

= 0g

as in the proof of Lemma VII.4. Then the real s
alar produ
t 
orresponding to

the K�ahler stru
ture is given for Z 2 n by

�i!(Z

�

; Z) =

X

k<j

(�

k

� �

j

)kZ

�

jk

k

2

2

=

X

j<k

(�

j

� �

k

)kZ

jk

k

2

2

:

The fa
t that the di�eren
es �

j

� �

k

, j < k , are all positive shows that n is a


omplex Hilbert spa
e with respe
t to the above s
alar produ
t, hen
e that O

!

is a strong K�ahler orbit.

We will see in Remark VII.19 below that the natural in
lusion map U=U

0

,!

G=P is in fa
t a bije
tion, i.e., U a
ts transitively on G=P .

So far our geometri
 approa
h has provided us with a 
ertain set of K�ahler

orbits of the Lie algebra u

2

(H) in the sense of aÆne 
oadjoint a
tions. These

orbits are 
oadjoint orbits in the usual sense if and only if im(A) =

P

�

j

6=0

H

j

is

�nite-dimensional, whi
h is quite restri
tive. In the next subse
tion we turn to

the 
onstru
tion of the 
orresponding holomorphi
 line bundles and show that

we 
an realize all holomorphi
 unitary highest weight representations in Hilbert

spa
es of holomorphi
 se
tions of su
h bundles.
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Constru
tion of the 
omplex line bundles

In this subse
tion we start with an orthogonal de
omposition

H = H

1

� : : :�H

k

of the 
omplex Hilbert spa
e H . We 
onsider the Bana
h algebra

B

r;1

(H

1

; : : : ; H

k

)

:= fA = (a

ij

) 2 B(H): (8i 6= j) a

ij

2 B

2

(H

j

; H

i

); (8j) a

jj

2 B

1

(H

j

)g

with the norm

kXk := maxfka

jj

k

1

; j = 1; : : : ; k; ka

jl

k; j 6= lg

(Example VII.3) and

B

res

(H

1

; : : : ; H

k

) := fA = (a

ij

) 2 B(H): (8i 6= j) a

ij

2 B

2

(H

j

; H

i

)g

with the norm

kXk := maxfka

jj

k; j = 1; : : : ; k; ka

jl

k; j 6= lg

(Example VII.4).

Lemma VII.7. (a) GL

res

:= GL(H) \ B

res

(H

1

; : : : ; H

k

) is a group, and

U

res

:= GL

res

\U(H) = f(g

ij

) 2 U(H): (8i > j) g

ij

2 B

2

(H

j

; H

i

); g

jj

Fredholmg:

(b) G

r;1

:= GL(H) \

�

1+ B

r;1

(H

1

; : : : ; H

k

)

�

is a group.

Proof. (a) Let g 2 G

r;1

. For the �rst assertion we only have to show that

(g

�1

)

il

2 B

2

(H

l

; H

i

) holds for i 6= l . First we observe that

1 = g

ii

(g

�1

)

ii

+

X

j 6=i

g

ij

(g

�1

)

ji

2 g

ii

(g

�1

)

ii

+ B

2

(H

i

):

We also have

g

ii

(g

�1

)

il

= �

X

j 6=i

g

ij

(g

�1

)

jl

:

Multiplying this equation with (g

�1

)

ii

, we obtain

(g

�1

)

ii

g

ii

(g

�1

)

il

= �

X

j 6=i

(g

�1

)

ii

g

ij

(g

�1

)

jl

2 B

2

(H

l

; H

i

);
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so that

(g

�1

)

il

2 (g

�1

)

ii

g

ii

(g

�1

)

il

+B

2

(H

l

; H

i

) � B

2

(H

l

; H

i

):

For the se
ond part we �rst observe that ea
h element g 2 U

res

trivially

satis�es g

ij

2 B

2

(H

j

; H

i

) for i > j . Let us assume, 
onversely, that these


onditions are satis�ed. From g

�

g = 1 we then get for n;m 2 f1; : : : ; kg the

relations

Æ

nm

1 =

X

l

g

�

ln

g

lm

:

For m = 1 < n this leads to

0 = g

�

1n

g

11

+ g

�

2n

g

21

+ : : :+ g

�

kn

g

k1

| {z }

2B

2

(H

1

;H

n

)

:

Sin
e g

11

is a Fredholm operator (it has �nite-dimensional kernel and 
okernel),

we derive that g

1n

2 B

2

(H

n

; H

1

) for n > 1 (Example VII.7). For m < n we

now assume that g

ln

2 B

2

(H

n

; H

l

) for l < m . Then we obtain

0 =

X

l<m

g

�

ln

g

lm

| {z }

2B

2

(H

m

;H

n

)

+g

�

mn

g

mm

+

X

l>m

g

�

ln

g

lm

| {z }

2B

2

(H

m

;H

n

)

;

so that g

�

mn

g

mm

2 B

2

(H

m

; H

n

), and we see as above that g

mn

is Hilbert{

S
hmidt.

(b) Let g 2 G

r

. Then (a) implies that for j 6= l we have (g

�1

)

jl

2 B

2

(H

l

; H

j

).

We further have

1 = g

ii

(g

�1

)

ii

+

X

j 6=i

g

ij

(g

�1

)

ji

2 (1+B

1

(H

i

))(g

�1

)

ii

+B

1

(H

i

) � (g

�1

)

ii

+B

1

(H

i

);

so that g

�1

2 1+ B

r;1

(H

1

; : : : ; H

k

).

We re
all from Lemma VII.5 the subgroup P � G whi
h we write in the


anoni
al way as a semidire
t produ
t

P

�

=

N oG

0

;

where

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i < j ) g

ij

= 0g:

A

ordingly we put

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i > j ) g

ij

= 0g:

We also 
onsider the 
orresponding subgroup of G

r;1

:

P

r;1

:= P \G

r;1

�

=

N oG

0

1

:
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Sin
e the group P

r;1

is a submanifold of the Bana
h{Lie group G

r;1

, the

quotient spa
e M := G

r;1

=P

r;1


arries a natural 
omplex manifold stru
ture

modeled over the Hilbert spa
e n . It is 
lear that for G

1

:= GL

1

(H) and

P

1

:= P \GL

1

(H) we obtain an inje
tion G

1

=P

1

,! G

r;1

=P

r;1

; gP

1

7! gP

r;1

.

We 
onstru
t holomorphi
 line bundles on M as follows. Sin
e the group

G

0

1

is isomorphi
 to the produ
t

Q

k

j=1

GL

1

(H

j

), we have for ea
h

� = (�

1

; : : : ; �

k

) 2 Z

k

a holomorphi
 
hara
ter

�:G

0

1

! C

�

; �(g) =

k

Y

j=1

det(g

jj

)

�

j

whi
h we immediately extend to a holomorphi
 
hara
ter �:P

r;1

! C

�

with

N � ker� . A
tually every holomorphi
 
hara
ter of P

r;1

has this form (Exer
ise

VII.5).

Now we de�ne an a
tion of P

r;1

on G

r;1

� C by

p:(g; z) := (gp

�1

; �(p)z); p 2 P

r;1

; z 2 C ; g 2 G

r;1

and obtain a the homogeneous 
omplex line bundle

L

�

:= G

r;1

�

P

r;1

C !M

as the quotient manifold with respe
t to this a
tion (the same arguments as in

Se
tion I apply). We write [g; z℄ for the element of L

�


orresponding to the

orbit of (g; z) under the a
tion of P

r;1

and �(L

�

) for the spa
e of holomorphi


se
tions.

We will now address the question when the bundle L

�

has non-zero holo-

morphi
 se
tions. First we will see that a simple SL

2

-redu
tion argument yields

a ne
essary 
ondition of whi
h we will see later that it also is suÆ
ient.

Lemma VII.8. If �(L

�

) 6= f0g , then

(7:1) �

1

� : : : � �

k

:

Proof. We assume that i < j and pi
k unit ve
tors v 2 H

i

and w 2 H

j

.

Then

h := P

v;v

� P

w;w

; e := P

v;w

and f := P

w;v

satisfy the 
ommutator relations of sl(2; C ) (Example II.2), so that

g(v; w) := spanfP

v;w

; P

w;v

; P

v;v

� P

w;w

g

�

=

sl(2; C ):

We put G(v; w) := hexp g(v; w)i

�

=

SL(2; C ) � G

r;1

. Then

P (v; w) := P

r;1

\G(v; w)
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is a paraboli
 subgroup of G(v; w) with Lie algebra

p(v; w) = C h+ C f;

and the restri
tion of the 
hara
ter � to p(u;w) satis�es

d�(h) = �

i

� �

j

:

If L

�

has non-zero holomorphi
 se
tions, then it has a non-zero holomorphi


se
tion not vanishing in the base point, and therefore the bundle L

�

i

��

j

over

G(v; w)=P (v; w) has non-zero holomorphi
 se
tions (
f. the proof of Theorem

I.5). In view of Theorem I.4, this implies �

i

� �

j

2 N

0

.

The next step is to show that if � satis�es (7.1) (we 
all su
h a � domi-

nant), then L

�

is non-zero. In [HH94a℄ this is done by a dire
t 
onstru
tion of

holomorphi
 se
tions. Here we will give a general argument whi
h is universal

for all types of groups U 
oming from L

�

-algebras g (see the 
omments at the

end of this se
tion).

We start with the information we have from Se
tion V. We 
hoose an

orthonormal basis (e

j

)

j2J

in H subordinated to the de
omposition of H into

the subspa
es H

1

; : : : ; H

k

. If � satis�es (7.1), we 
an view it as an element of

l

1

(J; C ), so that we obtain with Theorem V.6 a holomorphi
 highest weight

representation (�

�

;H

�

) of G

1

:= GL

1

(H) with highest weight � .

Pi
k a highest weight ve
tor v

�

2 H

�

. We de�ne Æ 2 H

�

�

by Æ(v) := hv; v

�

i

and 
onsider on H

�

�

the holomorphi
 representation de�ned by (g:�)(v) :=

�(g

�1

:v). For the 
omplex Lie subgroup P

1

:= G

1

\ P we then have

p:Æ = �(p)Æ for all p 2 P:

We now have a map

	:H

�

! Hol(G

1

); 	(v)(g) := (g:Æ)(v) = hÆ; g

�1

:vi = hg

�1

:v; v

�

i:

Then 	 is a G

1

-equivariant linear map with respe
t to the natural representation

of G

1

on Hol(G

1

) given by (g:f)(x) := f(g

�1

x), and ea
h fun
tion f in the

range of 	 satis�es

f(gp) = �(p)

�1

f(g); g 2 G

1

; p 2 P

1

:

Sin
e G

1

=P

1

� G

r;1

=P

r;1

is a proper subset, these fun
tions on G

1

are not

suÆ
ient to de�ne holomorphi
 se
tions of L

�

, we �rst have to extend them to

the bigger group G

r;1

. The following lemmas prepare the holomorphi
 extension

of the fun
tion f

�;1

:= 	(v

�

) to G

r;1

.

Lemma VII.9. For g

1

; g

2

2 G the 
ommutator (g

1

; g

2

) := g

1

g

2

g

�1

1

g

�1

2

is


ontained in G

1

, i.e., (G;G) � G

1

.
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Proof. We write g

1

= 1 + x and g

2

= 1 + y with x; y 2 B

2

(H). Then we

also have

(1+ x)

�1

= 1+ x

0

and (1+ y)

�1

= 1+ y

0

with x

0

; y

0

2 B

2

(H) and

1 = (1+ x)(1+ x

0

) = 1+ x+ x

0

+ xx

0

;

so that x+ x

0

= �xx

0

2 B

1

(H). Likewise we get y+ y

0

2 B

1

(H), and therefore

(g

1

; g

2

) = (1+x)(1+y)(1+x

0

)(1+y

0

) 2 1+x+x

0

+y+y

0

+B

1

(H) � 1+B

1

(H):

This shows that (g

1

; g

2

) 2 GL

1

(H).

Lemma VII.10. The map

�:N �G

1

�N ! G

r;1

; (x; g; y) 7! xgy

is a surje
tive holomorphi
 submersion with the property that

�(x; g; y) = �(x

0

; g

0

; y

0

) ) g

0

2 N

1

gN

1

:

Proof. (1) First we show that � is surje
tive. In view of Lemma VII.9,

the group G

r;1

=G

1

(whi
h we only 
onsider as an abstra
t group) is abelian.

Therefore the image of NN in G

r;1

=G

1

is a subgroup, so that NG

1

N = NNG

1

is a subgroup of G

r;1

. Sin
e it also 
ontains the open subset NG

0

1

N (this requires

a generalization of Exer
ise I.5 to Bana
h{Lie groups), it is an open subgroup, so

that the 
onne
tedness of G

r;1

(a similar argument as in Theorem A.10 applies)

implies that G

r;1

= �.

(2) Sin
e N a
ts smoothly by 
onjugation on the group G

1

, we 
an form the


orresponding semidire
t produ
t group G

1

o N . Now we 
onsider the right

a
tion of the group N � (G

1

oN) on G

r;1

given by

x:(n; (g;m)) := n

�1

xgm:

Then, up to the di�eomorphism (n; g

1

; n

0

) 7! (n

�1

; g

1

; n

0

), � is an orbit mapping

for this a
tion, so that it suÆ
es to prove that d�(1;1;1) is surje
tive with

splitting kernel ([La99, Prop. 2.2℄). The map d�(1;1;1) is simply the addition

map

n� g

1

� n! g

r;1

= n� g

0

1

� n

whi
h obviously is surje
tive. The 
losed subspa
e n� g

0

1

� n of n� g

1

� n is a


losed 
omplement of the kernel of d�(1;1;1). Therefore � is a submersion in

(1;1;1) and hen
e everywhere.

(3) Des
ription of the �bers: Repla
ing x by (x

0

)

�1

x and y by y(y

0

)

�1

, we may

assume that x

0

= y

0

= 1 . Then g

0

= xgy , so that the normality of G

1

in G

r;1

implies that xy 2 G

1

. Let a := x� 1 2 n and b := y � 1 2 n . Then

xy = (1+ a)(1+ b) = 1+ a+ b+ ab 2 1+ B

1

(H)

implies that a + b 2 g

1

= B

1

(H). Now g

1

= n

1

� g

0

1

� n

1

implies that a 2 n

1

and b 2 n

1

, showing that x 2 N

1

and y 2 N

1

.
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Proposition VII.11. The fun
tion f

�;1

= 	(v

�

) on G

1

extends to a holo-

morphi
 fun
tion f

�

on G

r;1

with f

�

(n

1

gn

2

) = f

�

(g) for n

1

2 N , n

2

2 N and

g 2 G

r;1

. Moreover, we have

f

�

(gp

�1

) = �(p)f

�

(g); g 2 G

r;1

; p 2 P

r;1

:

Proof. We 
onsider the holomorphi
 fun
tion

F :N �G

1

�N ! C ; (x; g; y) 7! f

�;1

(g):

In view of f

�;1

(n

1

gn

2

) = f

�;1

(g) for n

1

2 N

1

, n

2

2 N

1

and g 2 G

1

, the

fun
tion F is 
onstant on the �bers of the map � (Lemma VII.10). Sin
e �

is a submersion onto G

r;1

, the fun
tion F fa
tors through � to a holomorphi


fun
tion on G

r;1

with the required properties.

For p = ng

1

2 P

r;1

= N oG

0

1

this further leads to

f

�

(gp

�1

) = f

�

(gg

�1

1

) = �(g

1

)f

�

(g) = �(p)f

�

(g);

�rst for g 2 G

1

and then by 
ontinuity for all g 2 G

1;r

.

The following theorem is a generalization of the geometri
 part of the Borel{

Weil Theorem to the line bundles L

�

over G=P = G

r;1

=P

r;1

.

Theorem VII.12. (Helmin
k and Helmin
k) The bundle L

�

has non-zero

holomorphi
 se
tions if and only if

�

1

� : : : � �

k

:

Proof. The �rst half follows from Lemma VII.8, and for the 
onverse we use

Proposition VII.11 to see that the spa
e �

G

r;1

(L

�

) is non-zero, and therefore

that L

�

has non-zero holomorphi
 se
tions.

Reprodu
ing kernel Hilbert spa
es

Let M be a 
omplex manifold and H � Hol(M) a Hilbert spa
e of

holomorphi
 fun
tions su
h that for ea
h z 2M the evaluation map

H ! C ; f 7! f(z)

is 
ontinuous. In view of Riesz' Theorem, there exists an element K

z

2 H with

f(z) = hf;K

z

i for all z 2M . We 
all the fun
tion

K:M �M ! C ; K(z; w) := K

w

(z) = hK

w

; K

z

i

the reprodu
ing kernel of the Hilbert spa
e H and H a reprodu
ing kernel Hilbert

spa
e.
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The fun
tion K has the following properties:

(P1) K is a positive de�nite kernel, i.e., for z

1

; : : : ; z

n

2M the matrix

(K(z

i

; z

j

))

i;j=1;:::;n

is positive semide�nite.

(P2)The fun
tions K

w

: z 7! K(z; w) are holomorphi
.

If, 
onversely, K:M �M ! C is a fun
tion satisfying (P1), (P2) and

(P3)The fun
tion M ! R; z 7! K(z; z), is lo
ally bounded,

then one 
an show that there exists a unique reprodu
ing kernel Hilbert spa
e

H

K

� Hol(M) with reprodu
ing kernel K (
f. [Ne99a, Prop. I.1.9(iii)℄).

The main idea of the 
onstru
tion is to 
onsider the spa
e

H

0

K

:= spanfK

w

:w 2Mg

and show that is has a positive hermitian form h�; �i satisfying

hf;K

z

i = f(z) for all z 2M:

Next one uses (P3) to show that the 
ompletion H

K

of H

0

K


an also be viewed

as a spa
e of holomorphi
 fun
tions on M .

Realizing H

�

in �(L

�

)

So far we have shown that the bundle L

�

has non-zero holomorphi
 se
-

tions. The next step is to see that the whole Hilbert spa
e H

�


an be realized

by holomorphi
 se
tions of L

�

.

We 
onsider G

r;1

as a 
omplex semigroup with involution given by g 7! g

�

.

A fun
tion f :G

r;1

! C is 
alled positive de�nite if for all g

1

; : : : ; g

n

2 G

r;1

the

matrix f(g

i

g

�

j

)

i;j=1;:::;n

is positive semide�nite.

Lemma VII.13. The fun
tion f

�

on G

r;1

from Proposition VII.11 is positive

de�nite.

Proof. Sin
e G

1

is dense in G

r;1

, it suÆ
es to assume that g

1

; : : : ; g

n

2 G

1

.

For x; y 2 G

1

we have

f

�

(xy

�

) = h(xy

�

)

�1

:v

�

; v

�

i = hx

�1

:v

�

; y

�1

:v

�

i;

so that we obtain for 


1

; : : : ; 


n

2 C :

X

i;j




i




j

f

�

(g

i

g

�

j

) =

X

i;j




i




j

hg

�1

i

:v

�

; g

�1

j

:v

�

i = k

X

i




i

g

�1

i

:v

�

k

2

� 0:

Lemma VII.14. There exists a Hilbert subspa
e

H

f

�

� �

G

r;1

(L

�

)
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ontaining all left-translates g:f

�

, g 2 G

r;1

, of f

�

su
h that for all v 2 H

f

�

and

g 2 G

r;1

we have

(7:2) v(g) = hv; (g

�1

)

�

:f

�

i:

Proof. First we 
onsider the kernel K on G

r;1

given by

K(x; y) := f

�

(y

�

x):

Lemma VII.13 means that K is positive de�nite, and, moreover, x 7! K(x; x) =

f

�

(x

�

x) is a lo
ally bounded fun
tion be
ause f

�

is holomorphi
 and there-

fore 
ontinuous. Now [Ne99a, Prop. I.19(iii)℄ implies the existen
e of a Hilbert

subspa
e H

f

�

� Hol(G

r;1

) 
ontaining all left-translates g:f

�

, g 2 G

r;1

, and

satisfying (7.2).

Next we observe that Lemma VII.13 implies in parti
ular f

�

(g

�

) = f

�

(g)

for g 2 G

r;1

and therefore

(p

�

:f

�

)(g) = f

�

((p

�

)

�1

g) = f

�

(g

�

p

�1

) = �(p)f

�

(g

�

) = �(p)f

�

(g):

For ea
h v 2 H

f

�

, g 2 G

r;1

and p 2 P

r;1

we now get

v(gp

�1

) = hv; (g

�1

)

�

p

�

:f

�

i = hv; (g

�1

)

�

�(p):f

�

i

= �(p)hv; (g

�1

)

�

:f

�

i = �(p)v(g):

Therefore H

f

�

� �

G

r;1

(L

�

):

Lemma VII.15. The restri
tion map Hol(G

r;1

)! Hol(G

1

) indu
es a surje
-

tive isometry

r:H

f

�

! 	(H

�

)

�

=

H

�

:

Proof. First we observe that r is inje
tive be
ause G

1

is dense in G

r;1

.

For v 2 H

�

and g 2 G

1

we have

	(v)(g) = hg

�1

:v; v

�

i = h	(g

�1

:v);	(v

�

)i = hg

�1

:	(v); f

�;1

i

= h	(v); (g

�1

)

�

:f

�;1

i

and 	(G

1

:v

�

) = G

1

:(f

�;1

) is a total subset of 	(H

�

). This means that 	(H

�

)

is a reprodu
ing kernel Hilbert spa
e with kernel

K

1

(x; y) = h(y

�1

)

�

:	(v

�

); (x

�1

)

�

:	(v

�

)i = f

�

(y

�

x):

Now we 
an apply [Ne99a, Prop. I.2.1(iii)℄ be
ause r is inje
tive.

The out
ome of this 
onstru
tion is that we have realized the Hilbert spa
e

H

�

in the spa
e of holomorphi
 se
tions of L

�

in su
h a way that the bigger

group G

r;1

a
ts on a dense subspa
e 
ontaining the highest weight ve
tor f

�

.

This pi
ture is still not optimal be
ause there are larger groups a
ting on the

bundle L

�

and therefore on the spa
e of holomorphi
 se
tions.
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Enlarging the groups

The group G

0

b

:=

Q

k

j=1

GL(H

j

) � G

r

a
ts smoothly by automorphisms on

the group G

r;1

, so that we 
an form the semidire
t produ
t Bana
h{Lie group

G

r;1

oG

0

b

: We 
onsider the identity 
omponent

G

r

:= GL

res

(H

1

; : : : ; H

k

)

0

:

The 
onne
ted 
omponents of the group GL

res

:= GL

res

(H

1

; : : : ; H

k

)

0

are

given by the group homomorphism

ind:GL

res

! Z

k

1

; g 7! (ind(g

jj

))

dimH

j

=1

;

where k

1

:= jfj: dimH

j

=1gj . The image of this group homomorphism is the

set of those tuples (n

j

) with

P

j

n

j

= 0, showing that

�

0

(GL

res

)

�

=

Z

k

1

�1

(
f. [HH94b, Prop. 2.3.1℄).

Lemma VII.16. We have surje
tive homomorphisms

�:G

r;1

oG

0

b

! G

r

; (a; d) 7! ad

and

�

U

:U

r;1

o U

0

b

! U

r

; (a; d) 7! ad:

Proof. The in
lusion G

r;1

G

0

� G

r

holds trivially. For the 
onverse, let

g 2 G

r

. Then ea
h g

jj

is a Fredholm operator, and sin
e G

r

is 
onne
ted by

de�nition, it is a Fredholm operator of index 0 (Exer
ise). Hen
e there exists

a �nite rank operator b

j

mapping ker(g

jj

) bije
tively onto im(g

jj

)

?

. Then

d

j

:= g

jj

+ b

j

2 GL(H

j

) satis�es

g

jj

= g

jj

+ b

j

� b

j

2 (g

jj

+ b

j

)(1+ B

1

(H

j

)):

Therefore d := diag(d

j

) 2 G

0

satis�es d

�1

g 2 G

r;1

.

The �rst part implies in parti
ular that the group G

r

is 
onne
ted be
ause

G

0

b

and G

r;1

are 
onne
ted, so that its polar de
omposition (
f. Proposition A.5

for a related 
ase) shows that U

r

is 
onne
ted. Therefore �

U

is a homomorphism

of 
onne
ted Bana
h{Lie groups, and sin
e u

r

= u

r;1

+u

0

b

, it is open and therefore

surje
tive.

The kernel of � is the subgroup

K := f(a; a

�1

): a 2 G

0

1

g; where G

0

1

= G

0

b

\G

r;1

�

=

k

Y

j=1

GL

1

(H

j

):

The normal subgroup K E G

r;1

o G

0

b

is a 
losed normal subgroup whi
h is

a submanifold in the sense of Bana
h manifolds (
f. [La99℄; Corollary V.5).

Therefore the quotient group (G

r;1

oG

0

b

)=K 
arries a unique Lie group stru
ture

for whi
h the map

�: (G

r;1

oG

0

b

)=K ! G

r

; [a; d℄ 7! ad

is an isomorphism.
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De�nition VII.17. The group

K

�

=

G

0

1

�

=

GL

1

(H

1

)� : : :�GL

1

(H

k

)

has a natural holomorphi
 homomorphism

�:G

0

1

! Z := (C

�

)

k

; g 7! (det(g

j

))

j=1;:::;k

:

Sin
e this homomorphism is invariant under 
onjugation with elements of G

0

b

,

the graph

�(�

�1

) := f(k;�(k)

�1

): k 2 Kg � K � Z � (G

r;1

oG

0

b

)� Z

is a 
entral subgroup whi
h is a submanifold (Exer
ise VII.6), so that we may

form the quotient group

b

G

r

:=

�

(G

r;1

oG

0

b

)� Z

�

=�(�

�1

)

whose elements are written as [a; d; z℄ := (a; d; z)�(�

�1

). This group has a

natural homomorphism

q:

b

G

r

! G

r

; q([a; d; z℄) := ad

whose kernel 
oin
ides with

(K � Z)=�(�

�1

)

�

=

Z = (C

�

)

k

:

We thus obtain a 
entral extension

Z ,!

b

G

r

q

��!G

r

of G

r

. On the subgroup G

r;1

the 
entral extension has a natural splitting given

by

�:G

r;1

!

b

G

r

; �(g) := [(g;1;1)℄:

Let

b

P

r

:= q

�1

(P

r

). Then P

r

�

=

N oG

0

b

implies that

(7:3)

b

P

r

�

=

N o

b

G

0

b

�

=

N o (G

0

b

� Z)

be
ause we 
an use the homomorphism �:N !

b

G

r

to split o� this group. We

de�ne a holomorphi
 
hara
ter

b�:

b

P

r

! C

�

; b�(n; d; z) :=

k

Y

j=1

z

�

j

j

:

One easily veri�es that b� is 
ompatible with � in the sense that b� Æ�(p) = �(p)

for p 2 P

r;1

. We form the 
orresponding 
omplex line bundle

b

L

�

:=

b

G

r

�

b

P

r

C :
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We then have a natural holomorphi
 map

 :L

�

!

b

L

�

; [g; z℄ 7! [�(g); z℄

be
ause for p 2 P

r;1

we have

[�(gp

�1

); �(p)z℄ = [�(g)�(p)

�1

; b�(�(p))z℄ = [�(g); z℄:

Sin
e the 
anoni
al map

G

r;1

=P

r;1

!

b

G

r

=

b

P

r

�

=

G

r

=P

r

is biholomorphi
 (
f. Lemma VII.16), it easily follows that the map  is a

biholomorphi
 isomorphism of 
omplex line bundles. In parti
ular the spa
e

�(L

�

)

�

=

�(

b

L

�

)

has a natural realization in Hol(

b

G

r

), and we have a natural a
tion of the 
omplex

group

b

G

r

on this spa
e.

The a
tion of the diagonal group G

0

b

� ker b� �

b

P

r

on

b

L

�

satis�es

d:[�(g); z℄ = [d�(g); z℄ = [�(dgd

�1

)d; z℄ = [�(dgd

�1

); z℄;

so that

d:[d

�1

gd; f(d

�1

gd)℄ = [g; f(d

�1

gd)℄

implies that the a
tion of G

0

b

on �

G

r;1

(L

�

) is given by

(7:4) (d:f)(g) = f(d

�1

gd):

For f 2 �

G

r;1

(L

�

) and the 
orresponding se
tion s:G

r;1

=P

r;1

�

=

b

G

r

=

b

P

r

!

L

�

the map � Æ s:G

r;1

=P

r;1

�

=

b

G

r

=

b

P

r

!

b

L

�

is a holomorphi
 se
tion, and the


orresponding fun
tion

b

f on

b

G

r

satis�es

b

f(�(g)) = f(g) for g 2 G

r;1

. It is

uniquely determined by its values on G

r;1

be
ause

b

G

r

= �(G

r;1

)

b

G

0

b

= �(G

r;1

)

b

P

0

r

and

b

f(gp

�1

) = �(p)

b

f(g); g 2

b

G

r

; p 2

b

P

r

:

Now we have all means to extend the representation of G

1

on H

�

to a

unitary representation of

b

U

r

and an unbounded representation of

b

G

r

.
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Theorem VII.18. Let L(�;�

+

) be a unitary highest weight module of

gl(J; C ) with � 2 l

1

(J;Z) . Then the holomorphi
 a
tion of the group G

1

=

GL

1

(H) on H

�

extends to a representation of the group

b

G

r

on a dense subspa
e

of H

�

, and the a
tion of the unitary group

b

U

r

extends to a 
ontinuous unitary

a
tion on the whole spa
e H

�

.

Proof. Let

b

f

�

2 �

b

G

r

(

b

L

�

) denote the fun
tion 
orresponding to f

�

2

�

G

1

(L

�

). In view of (7.4) and the fa
t that f

�

on G

r;1

is invariant under

the a
tion of G

0

b

, the fun
tion

b

f

�

is G

0

b

-invariant. It also is N -invariant, so that

(7.3) implies that for p = (n; d; z) 2

b

P

r

we have

p

�

:

b

f

�

= �(z

�

)f

�

= �(z)f

�

= �(p)f

�

:

For a sequen
e of elements g

1

; : : : ; g

n

2

b

G

r

we write g

i

= �(x

i

)p

i

with

x

i

2 G

r;1

and p

i

2

b

P

r

. Then

f

�

(g

�

i

g

j

) = �(p

j

)

�1

�

(p

�

i

)

�1

:f

�

�

(�(x

i

)

�

�(x

j

))

= �(p

j

)

�1

�(p

j

)

�1

f

�

(�(x

i

)

�

�(x

j

));

so that Lemma VII.13 implies that

b

f

�

is a positive de�nite fun
tion on

b

G

r

. Now

the same arguments as for G

r;1

show that

b

G

r

:

b

f

�

� H

�

(viewed as a subspa
e of

�(

b

L

�

), so that

b

G

r

has a representation on a dense subspa
e of H

�

.

For u 2

b

U

r

and x; y 2

b

G

r

we have

b

f

�

((uy)

�

(ux)) =

b

f

�

(y

�

u

�

ux) =

b

f

�

(y

�

x);

whi
h implies that the a
tion of the group

b

U

r

on the dense subspa
e span(

b

G

r

:

b

f

�

)

extends to a 
ontinuous unitary a
tion on H

�

(
f. [Ne99a, Prop. IV.1.9℄).

Remark VII.19. (The relation to restri
ted 
ag manifolds) Let

F := (F

1

; : : : ; F

k

)

be a 
ag in the 
omplex Hilbert spa
e H , i.e.,

F

1

� : : : � F

k

= H

are 
losed subspa
es of H . The 
ag F 
an also be represented by the sequen
e

E := E(F) := (E

1

; : : : ; E

k

)

of 
losed subspa
es de�ned by E

j

:= F

j

\ F

?

j�1

(where F

0

:= f0g). Then

H = E

1

� : : :� E

k

is an orthogonal de
omposition.

We 
all F and F

0


lose if there exists an element g 2 G

r

with g:F

j

= F

0

j

for all j . If this is the 
ase, then one easily veri�es that the orthogonal proje
tions

p

F

j

:F

0

j

! F

j

are Fredholm operators of index 0 and the orthogonal proje
tions
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ep

F

j

:F

0

j

! F

?

j

are Hilbert{S
hmidt (Exer
ise!). Suppose, 
onversely, that this is

the 
ase for two 
ags F and F

0

and E

j

and E

0

j

be as above. Then it is not

hard to see that the orthogonal proje
tions p

ij

:E

0

j

! E

i

are Hilbert{S
hmidt

for i > j and Fredholm of index 0 for i = j (Exer
ise). It follows in parti
ular

that E

j

and E

0

j

have the same Hilbert dimension, so that there exists a unitary

operator u 2 U(H) with u:E

j

= E

0

j

for j = 1; : : : ; k . Writing u as a (k � k)-

blo
k matrix with respe
t to the de
omposition H = E

1

� : : :�E

k

, we see that

the diagonal blo
ks u

jj

as Fredholm of index 0 and the lower diagonal blo
ks

u

ij

, i > j , are Hilbert{S
hmidt. In view of Lemma VII.7(i), this implies that

u 2 U

res

(E

1

; : : : ; E

k

)

0

= U

r

. This means that for the 
ag F 
orresponding to

E , we have

G

r

:F = U

r

:F :

Lemma VII.16 further implies that

G

r

:F = G

r;1

:F and U

r

:F = U

r;1

:F :

We 
on
lude in parti
ular that U � U

r;1

a
ts transitively on G=P

�

=

G

r;1

=P

r;1

�

=

G

r;1

:F . This means that G=P 
an be identi�ed with the 
oadjoint orbit O

!

�

=

U=U

0

� u

�

.

Con
luding remarks

In this se
tion we have seen that the Borel{Weil pi
ture for �nite-dimen-

sional 
omplex redu
tive groups 
arries over to the group G = GL

2

(H), H a


omplex Hilbert spa
e. Our �rst step was to identify H with some l

2

(J; C ), so

that we obtain a dense lo
ally �nite subalgebra gl(J; C ) whose unitary highest

weight modules 
an be 
lassi�ed by algebrai
 means. Then we globalized the

pi
ture by integrating those representations with bounded highest weight � to

holomorphi
 representations of the group GL

1

(H). The next step was to 
onsider

K�ahler stru
tures on (aÆne) 
oadjoint orbits of u

�

for u = u

2

(H). In this 
ontext

we have seen that the 
ondition that su
h a 
oadjoint orbit has a 
losed tangent

spa
e already leads to orbits de�ned by tuples (�

1

; : : : ; �

k

) and an orthogonal

de
omposition of the spa
e H . Eventually we realized the Hilbert spa
e H

�

as

a spa
e of holomorphi
 se
tions of a 
omplex line bundle over su
h a 
oadjoint

orbit. This led us to mu
h bigger groups su
h as

b

G

r

, resp.,

b

U

r

, where the �rst

group a
ts \holomorphi
ally" on a dense subspa
e of H

�

and the latter a
ts

unitarily on the whole spa
e.

Although there was no time in these le
tures to dis
uss the more general

approa
h via L

�

-algebra, let us brie
y des
ribe the main ideas. An L

�

-algebra

is a 
omplex Hilbert spa
e g whi
h at the same time is a 
omplex Lie algebra

su
h that the s
alar produ
t satis�es

h[x; y℄; zi = hy; [x

�

; z℄i; x; y; z 2 g:
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This means that the adjoint of the operator adx is adx

�

. Typi
al examples of

simple L

�

-algebras are

B

2

(H); sp

2

(H; I) and o

2

(H; I);

and these are all in�nite-dimensional simple L

�

-algebras (
f. [CGM90℄, [Neh93℄

and [St99b℄).

For ea
h L

�

-algebra there is a natural 
omplex Lie group G and a \
om-

pa
t" real form U . First one determines the spa
e Z

2




(u;R) and then one shows

that for a 
oadjoint orbit O

!

, ! 2 Z

2




(u;R), the 
losedness of the tangent spa
e

implies that it meats the dual of a Cartan subalgebra h � g whi
h is a maximal

abelian � -invariant subalgebra. Results of S
hue ([S
h60℄) imply that g has an

orthogonal root de
omposition with respe
t to h , and that the subalgebra gen-

erated by the root spa
es is a lo
ally �nite semisimple Lie algebra g

0

. Se
tion

III 
ontains in parti
ular a 
lassi�
ation of all unitary highest weight modules of

this Lie algebra, and there is also an analog of Se
tion V, where g

1

is a natural

Bana
h{Lie algebra whi
h for g = B

2

(H) is sl(H). Se
tions VI and VII also

generalize to this 
ontext, where one simply has to verify that the arguments we

have used above 
an be 
arried over.

The advantage of the L

�

-approa
h is 
omparable to the advantage of


onsidering �nite-dimensional redu
tive Lie algebras instead of studying 
lassi
al

simple Lie algebras 
ases by 
ase.

Notes on Se
tion VII

In [Bo80℄ Boyer des
ribes the representations of the group U = U

2

(H)

in holomorphi
 se
tions in line bundles over 
oadjoint orbits of this group in

u

�

. This approa
h is quite restri
tive, be
ause the 
ondition that the diagonal

matrix de�ned by � is Hilbert-S
hmidt implies that � has �nite support. Rep-

resentations in spa
es of holomorphi
 se
tions of asso
iated line bundles are only


onstru
ted for the 
ase where � is integral and either positive or negative, but

not in the mixed 
ase. It is also shown that the norm-
ontinuous unitary repre-

sentations of U

2

are elementary in the sense that they are dire
t sums of highest

weight representations (
f. [Ne98℄ and Se
tion V).

A more general approa
h is des
ribed in [HH94a℄ and [HH94b℄, where for a

separable Hilbert spa
e H the homogeneous manifolds G=P 
onsidered in this

se
tion are 
onstru
ted dire
tly as restri
ted 
ag manifolds (
f. Remark VII.19).

The 
ase where k = 2 leads to the restri
ted Gra�mannian G=P whi
h has been

dis
ussed earlier in [PS86℄.
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Exer
ises for Se
tion VII

Exer
ise VII.1. Let H be a 
omplex Hilbert spa
e and A a normal bounded

operator on H . Then im(A) is 
losed if and only if 0 is isolated in the spe
trum

�(A) of A . Hint: Redu
e to the 
ase where A is inje
tive.

Exer
ise VII.2. Let H be a Hilbert spa
e. Show that

[B

2

(H); B

2

(H)℄ � sl(H):

Hint: kXY k

1

� kXk

2

kY k

2

for X;Y 2 B

2

(H).

Exer
ise VII.3. Show that the spa
e B

res;1

(H

1

; : : : ; H

k

) is a 
omplex Bana
h-

� -algebra with respe
t to the 
omposition, the natural involution, and the norm

kXk := maxfka

jj

k

1

; j = 1; : : : ; k; ka

jl

k; j 6= lg:

Hint: kXY k

1

� kXk

2

kY k

2

for X;Y 2 B

2

(H).

Exer
ise VII.4. Show that the spa
e B

res

(H

1

; : : : ; H

k

) is a 
omplex Bana
h-

� -algebra with respe
t to the 
omposition, the natural involution, and the norm

kXk := maxfka

jj

k; j = 1; : : : ; k; ka

jl

k; j 6= lg:

Hint: kXY k

2

� kXkkY k

2

for X 2 B(H(, Y 2 B

2

(H).

Exer
ise VII.5. Show that ea
h holomorphi
 
hara
ter �:P

r;1

�

=

N o G

0

1

!

C

�

is of the form

�(n; g) =

k

Y

j=1

det(g

jj

)

�

j

for � 2 Z

k

.

Exer
ise VII.6. If M and N are Bana
h manifolds, M

1

� M is a submani-

fold, and f :M

1

! N is a smooth map, then the graph

�(f) := f(x; f(x)):x 2M

1

g

is a submanifold of M �N .

Exer
ise VII.7. (a) If g 2 GL

res

, then ea
h diagonal entry g

jj

, j = 1; : : : ; k ,

is a Fredholm operator.

(b) If A is a Fredholm operator on H and B 2 B(H) with AB 2 B

2

(H), then

B 2 B

2

(H). Hint: Consider A

�

AB 2 B

2

(H) and write this operator in 2 � 2-

blo
k form a

ording to im(A

�

A) and ker(A

�

A).
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Exer
ise VII.8. We 
onsider the Lie algebra g

r;1

= B

r;1

(H

1

; : : : ; H

k

) and

de�ne a 
ontinuous linear fun
tional

tr: g

r;1

! C ; X 7!

k

X

j=1

trX

jj

:

Show that tr is a Lie algebra homomorphism whi
h integrates to a holomorphi



hara
ter

det:G

r;1

! C :

Hint: [B

2

(H); B

2

(H)℄ � sl(H).
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Appendix. The topology of 
lassi
al Bana
h{Lie groups

In this appendix we 
olle
t some useful results on the homotopy groups

of groups of operators on a Hilbert spa
e. A 
ru
ial tool for the analysis of

the topology of operator groups is the polar de
omposition whi
h is dis
ussed

for several types of groups in the �rst subse
tion. A more general 
ontext for

polar de
ompositions based on the geometri
 
ontext of symmetri
 spa
es of

seminegative 
urvature is des
ribed in [Ne99b℄. We then explain how 
ertain

general results of Palais 
an be used to analyze the topology of groups like

GL

p

(H).

Polar de
ompositions

For the following lemma we re
all the de�nition of the spe
trum of an

element of a Bana
h algebra A :

Spe
(a) := f� 2 C : a� �1 62 G(A)g:

Lemma A.1. Let A be a 
omplex unital Bana
h algebra and

D := fa 2 A: inf Re Spe
(a) > 0g:

For an a 2 D we 
hoose a 
ontour � in C

+

:= fz 2 C : Re z > 0g surrounding

the spe
trum Spe
(a) and de�ne

log(a) :=

1

2�i

I

�

(log�)(�1� a)

�1

d�:

Then we obtain a holomorphi
 fun
tion log:D ! A: If � is an antilinear anti-

automorphism of A , then we have log(a

�

) = log(a)

�

.

Proof. That D is open follows from [Ru73, Th. 10.20℄, and the holomorphy

of log from [Ru73, Th. 10.38℄. For any antilinear antiautomorphism of A we

have f(a

�

) = f(a)

�

for any real-valued polynomial f 2 R[X℄ , and this implies

that log(a

�

) = log(a)

�

be
ause, a

ording to Runge's Theorem, on Spe
(a) the

log-fun
tion is a uniform limit of polynomials (
f. [Ru86℄).

Proposition A.2. If H is a 
omplex Hilbert spa
e, then the polar map

p: U(H)�Herm(H)! GL(H); (u;X) 7! ue

X

is a di�eomorphism.



104 Appendix. The topology of 
lassi
al Bana
h{Lie groups August 9, 2000

Proof. Let g 2 GL(H). Then g

�

g is a positive hermitian operator, so that

the 
ontinuous fun
tional 
al
ulus provides a unique hermitian operator

X :=

1

2

log(g

�

g):

Let u := ge

�X

. Then

uu

�

= ge

�2X

g

�

= g(g

�

g)

�1

g

�

= 1

and

u

�

u = e

�X

g

�

ge

�X

= e

�X

e

2X

e

�X

= 1:

We 
on
lude that every operator g 2 GL(H) has a unique de
omposition g =

ue

X

with X 2 Herm(H). This means that p is bije
tive. It is also 
lear that p

is a smooth map.

To see that p

�1

is also smooth, we have to verify that the fun
tion

log: fg 2 GL(H) \Herm(H): inf Spe
(g) > 0g ! Herm(H)

is smooth. This follows dire
tly from Lemma A.1.

Remark A.3. Our proof for the polar de
omposition works also for abstra
t

C

�

-algebras, where it provides a di�eomorphism

p: U(A)� Herm(A)! G(A); (u;X) 7! ue

X

;

where

U(A) = fa 2 A: aa

�

= a

�

a = 1g:

For 
ommutative algebras A = C(X; C ), X a 
ompa
t spa
e, this is the trivial

de
omposition

C(X;T) � C(X;R) ! C(X; C

�

); (u; f) 7! ue

f

:

Proposition A.4. For every p 2 [1;1℄ the polar map

p: U

p

(H)�Herm

p

(H)! GL

p

(H); (u;X) 7! ue

X

is a di�eomorphism.

Proof. We 
onsider the Bana
h-� -subalgebra

e

B

p

(H) = C 1+ B

p

(H) � B(H):

In Example IV.15(d) we have seen that

e

B

p

(H) \GL(H) = G(

e

B

p

(H));

so that the spe
trum Spe


p

(X) of an element X 2

e

B

p

(H) 
oin
ides with the

spe
trum Spe
(X) of X as an element of B(H). Therefore Lemma A.1 implies

that for g 2 GL

p

(H) we have log(g

�

g) 2 B

p

(H), and that the map

log: fg 2 GL

p

(H) \ Herm

p

(H): inf Spe
(g) > 0g ! Herm

p

(H)

is smooth. This implies the assertion.
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For an orthogonal de
omposition H = H

�

�H

+

we write operators on H

as (2� 2)-blo
k matri
es and de�ne the unital Bana
h-� -algebra

B

res

(H

�

; H

+

) :=

n

�

a b


 d

�

2 B(H): b 2 B

2

(H

+

; H

�

); 
 2 B

2

(H

�

; H

+

)

o

with the norm kxk := 2maxfkak; kbk

2

; k
k

2

; kdkg (
f. Example IV.15(b)). We

further 
onsider

GL

res

(H

�

; H

+

) := GL(H) \B

res

(H

�

; H

+

)

(
f. Lemma VII.7),

U

res

(H

�

; H

+

) := U(H) \B

res

(H

�

; H

+

)

and

Herm

res

(H

�

; H

+

) := Herm(H) \B

res

(H

�

; H

+

):

Proposition A.5. For every orthogonal de
omposition H = H

�

� H

+

the

polar map

p: U

res

(H

�

; H

+

)� Herm

res

(H

�

; H

+

)! GL

res

(H

�

; H

+

); (u;X) 7! ue

X

is a di�eomorphism.

Proof. In view of Lemma VII.7, the group GL

res

(H

�

; H

+

) is the unit group

of the Bana
h algebra A := B

res

(H

�

; H

+

). It follows in parti
ular that the

spe
trum Spe


A

(X) of an element X 2 A 
oin
ides with the spe
trum Spe
(X)

of X as an element of B(H). Therefore Lemma A.1 implies that for g 2

GL

res

(H

�

; H

+

) = G(A) we have log(g

�

g) 2 A , and that the map

log: fg 2 G(A) \Herm(H): inf Spe
(g) > 0g ! Herm

res

(H)

is smooth. This implies the assertion.

Remark A.6. We 
onsider the 
onvex domain


 := fX 2 Herm(H):X >> 0;1�X 2 B

2

(H)g

whi
h 
an be identi�ed with the open 
onvex domain

fY 2 Herm

2

(H):1� Y >> 0g = fY 2 Herm

2

(H): sup Spe
(Y ) < 1g;

where X >> 0 means that Spe
(X) �℄0;1[ .

The group GL(H) a
ts on Herm(H) by g:A := gAg

�

. We 
laim that

G

2

:= fg 2 GL(H): g:
 � 
g = fg 2 GL(H): g

�

g 2 GL

2

(H)g

= U(H) exp

�

Herm

2

(H)

�

:
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In fa
t, if g:
 � 
, then we have in parti
ular that g:1 = gg

�

2 
, so that

gg

�

2 GL

2

(H) and therefore also g

�

g = g

�1

(gg

�

)g 2 GL

2

(H). If, 
onversely,

g

�

g 2 GL

2

(H) and X 2 
, then

g:X � 1 = gXg

�

� gg

�

+ gg

�

� 1 = g(X � 1)g

�

+ gg

�

� 1 2 B

2

(H):

The pre
eding 
al
ulations show that the group G

2

is the natural sym-

metry group of the domain 
. Similar observations 
an be made for real and

quaternioni
 Hilbert spa
es.

To 
onstru
t a natural Lie group stru
ture on the group G

2

, we �rst observe

that the polar de
omposition implies that

G

2

= U(H) exp(Herm

2

(H)) = U(H)U

2

(H) exp(Herm

2

(H)) = U(H)GL

2

(H):

We �rst 
onsider the semidire
t produ
t group

S := GL

2

(H)o U(H):

Then

N := f(g; g

�1

): g 2 U

2

(H)g

�

=

U

2

(H)

is a 
losed normal subgroup of S . It is the kernel of the multipli
ation map

m:S !! G

2

; (a; b) 7! ab

whi
h is in parti
ular 
ontinuous with respe
t to the uniform topology on G

2

.

The group S has a natural Bana
h{Lie group stru
ture. The group S is di�eo-

morphi
 to

Herm

2

(H)� U

2

(H)� U(H)

�

=

Herm

2

(H)�N � U(H);

showing that N is a submanifold of S . Hen
e S=N 
arries a natural Lie group

stru
ture su
h that it is di�eomorphi
 to U(H)�Herm

2

(H) (
f. Remark IV.4).

Some general results on homotopy groups

Lemma A.7. If X is a Hausdor� spa
e whi
h is 
arries the dire
t limit topology

with respe
t to the subspa
es X

n

, n 2 N , with X

n

� X

n+1

, then

�

k

(X) = lim

�!

�

k

(X

n

)

for every k 2 N

0

.

Proof. We 
laim that ea
h 
ompa
t subset K � X is 
ontained in some X

n

.

If this is not so, then for ea
h n 2 N we pi
k x

n

2 KnX

n

. The set M := fx

n

:n 2

Ng satis�es M \X

m

� fx

1

; : : : ; x

m�1

g . Therefore M \X

m

is 
losed for ea
h m ,
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so that M is a 
losed subset of X . Thus M � K implies that M is 
ompa
t.

The same argument applies to the subsets M

m

:= fx

m

; x

m+1

; : : :g � M . Now

T

m2N

M

m

6= � follows from the 
ompa
tness of the sets M

m

. On the other

hand M

m+1

\X

m

= � implies that

\

m2N

M

m

� X n

[

m2N

X

m

= �:

This 
ontradi
tion shows that there exists an n 2 N with K � X

n

.

Now let 
:S

k

! X be a 
ontinuous map. Then 
(S

k

) is a 
ompa
t subset

of X , hen
e 
ontained in some X

n

, and sin
e X

n

,! X is an embedding, the


orestri
tion 
:S

k

! X

n

is 
ontinuous. Therefore the natural map

lim

�!

�

k

(X

n

)! �

k

(X)

is surje
tive. To see that it is inje
tive, we apply the same argument to the range

of a homotopy of two 
ontinuous maps 


1

:S

k

! X

n

1

and 


2

:S

k

! X

n

2

. We �nd

that there exists n

3

> max(n

1

; n

2

) su
h that �

k

('

n

3

;n

1

)([


1

℄) = �

k

('

n

3

;n

2

)([


2

℄) ,

where '

n

3

;n

1

:X

1

! X

3

and '

n

3

;n

2

:X

2

! X

3

are the embeddings.

The following theorem is quite useful to 
al
ulate homotopy groups:

Theorem A.8. Let V

1

and V

2

be lo
ally 
onvex topologi
al ve
tor spa
es

and f :V

1

! V

2

a 
ontinuous linear map with dense range. Let U � V

2

be an

open subset and put

e

U := f

�1

(U) and

e

f := f j

e

U

. Assume that V

1

and V

2

are

metrizable or, more generally, that

e

U and U are para
ompa
t. Then

e

f :

e

U ! U

is a homotopy equivalen
e.

Proof. This is Theorem 16 in [Pa66℄. A quite dire
t proof of the 
orresponding

result for Bana
h spa
es 
an be found in [At67, p.164℄.

The following theorem is parti
ularly useful for separable spa
es:

Theorem A.9. Let V be a lo
ally 
onvex spa
e and (E

n

)

n2N

an in
reasing

sequen
e of �nite-dimensional subspa
es of V su
h that their union is dense

in V . Given an open subset U � V , let U

n

:= U \ E

n

and 
onsider the

dire
t limit topologi
al spa
e U

1

:= lim

�!

U

n

. Then if V is metrizable or, more

generally, if U is para
ompa
t, then the in
lusion map U

1

! U is a homotopy

equivalen
e.

Proof. This is the 
orollary to Theorem 17 in [Pa66℄.

Theorem A.10. Let H be an in�nite-dimensional Hilbert spa
e over K = R ,

C or H and p 2 [1;1℄ . Then for every k 2 N

0

we have

�

k

(GL

p

(H))

�

=

lim

�!

�

k

(GL(n; K )

�

:
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Proof. Let H

s

� H be a separable 
losed subspa
e. We write operators on

H as (2� 2)-blo
k matri
es with respe
t to the de
omposition H = H

s

�H

?

s

.

First we show that the natural in
lusion map

GL

p

(H

s

) ,! GL

p

(H); A 7!

�

A 0

0 1

�

indu
es isomorphism for all homotopy groups.

Let X be a separable 
ompa
t spa
e and 
:X ! GL

p

(H) be a 
ontinuous

map. Then for every x 2 X the the range of 
(x)� 1 is a separable subspa
e

be
ause the operator 
(x)�1 is 
ompa
t. Sin
e X is separable, the 
losure H

e

of

the spa
e spanned by all the separable subspa
es im(
(x)�1) and im(
(x)

�

�1),

x 2 X , is separable. Let u 2 U(H) with u:H

e

= H

s

. Sin
e U(H) is 
onne
ted

(an easy 
onsequen
e of the Spe
tral Theorem for Unitary Operators), there

exists a 
ontinuous 
urve �: [0; 1℄! U(H) with �(0) = 1 and �(1) = u . Then

h(t; x) := �(t)
(x) is a homotopy of 
 to a map whose range is 
ontained in H

s

.

Applying this to X = S

k

and X = S

k

�[0; 1℄, we 
on
lude that the in
lusion map

GL

p

(H

s

) ,! GL

p

(H) indu
es isomorphism of all homotopy groups. Therefore

we may assume that H = H

s

�

=

l

2

(N ; K ).

Let e

n

, n 2 N , be the 
anoni
al orthonormal basis and 
onsider the


orresponding subspa
es E

n

:= spanfe

1

; : : : ; e

n

g . Then the aÆne subspa
es

1+ B(E

n

) � 1+B

p

(H)

form an as
ending 
hain of �nite-dimensional subspa
es whose union is dense

(Exer
ise!). Now Theorem A.9 implies that the in
lusion map

lim

�!

GL(E

n

) = lim

�!

(1+ B(E

n

)) \GL(H)! GL

p

(H) = (1+B

p

(H)) \GL(H)

is a homotopy equivalen
e. Hen
e the assertion follows from Lemma A.7.

The main point in Theorem A.10 is that it permits to des
ribe the homo-

topy groups of all the groups GL

p

(H) expli
itly by the Bott Periodi
ity Theorem.

Theorem A.11. (Bott Periodi
ity Theorem) Let K 2 fR; C ; H g , d :=

dim

R

K and

GL(1; K ) := lim

�!

GL(n; K ):

Then for k � d(n+ 1)� 3 and q 2 N the maps

�

k

(GL(n; K )) ! �

k

(GL(n+ q; K ))

are isomorphism, so that

�

k

(GL(1; K ))

�

=

�

k

(GL(n; K )):

Moreover, we have the periodi
ity relations

�

n+2

(GL(1; C ))

�

=

�

n

(GL(1; C )); �

n+4

(GL(1;R))

�

=

�

n

(GL(1; H ))
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and

�

n+4

(GL(1; H ))

�

=

�

n

(GL(1;R)):

Therefore the homotopy groups of GL(1; K ) are determined by the following

table:

GL(1;R) GL(1; C ) GL(1; H )

�

0

Z

2

f1g f1g

�

1

Z

2

Z f1g

�

2

f1g f1g f1g

�

3

Z Z Z

Proof. The �rst part is [Hu94, Th. 8.4.1℄ and the se
ond part [Hu94, Cor. 9.5.2

and Rem. 9.5.4℄.

The pre
eding theorem implies in parti
ular that for a 
omplex Hilbert

spa
e �

1

(GL

p

(H))

�

=

Z , so that it is a natural question how to des
ribe the

universal 
overing group

f

GL

p

(H). Below we will see how this 
an be done for

p 2 N . Here the 
ase p = 1 is quite spe
ial.

Higher order determinants

De�nition A.12. (a) Let H be a Hilbert spa
e and X 2 B

2

(H). Then

(1 + X)e

�X

� 1 2 B

1

(H) follows from 1 + X � e

X

= X

2

(� � �). Hen
e the

generalized determinant

det

2

(1+X) := det

�

(1+X)e

�X

�

makes sense for X 2 B

2

(H) (
f. [Mi89, Prop. 6.2.3℄). This means that for

g 2 GL

2

(H) we have

det

2

(g) = det(ge

1�g

):

For g 2 GL

1

(H) this simpli�es to det

2

(g) = det(g)e

tr(1�g)

:

(b) The 
onstru
tion in (a) 
an be generalized to all p 2 N as follows. For

X 2 B

p

(H) we de�ne

det

p

(1+X) := det(1+ R

p

(X));

where

R

p

(X) = �1+ (1+X) exp

�

p�1

X

j=1

(�1)

j

X

j

j

�

:

The fun
tion det

p

is 
alled the Carleman{Fredholm determinant of order p . For

p = 1 it is simply 
alled the Fredholm determinant and for p = 2 the Hilbert-

Carleman determinant ([GGK00, Se
tion IX.1℄). Then R

p

(X) 2 B

1

(H) for

every X 2 B

p

(H) be
ause R

p

is de�ned by an everywhere 
onvergent power
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series whi
h starts with a term of the form �

p

X

p

+ �

p+1

X

p+1

+ : : : 2 B

1

(H).

This is most easily seen by observing that

p�1

X

j=1

(�1)

j

z

j

j

= � log(1 + z)�

1

X

j=p

(�1)

j

z

j

j

;

so that

g(z) := �1 + (1 + z) exp

�

p�1

X

j=1

(�1)

j

z

j

j

�

= �1 + exp

�

�

1

X

j=p

(�1)

j

z

j

j

�

for jzj < 1. We 
on
lude that g(z) = z

p

f(z) for some holomorphi
 fun
tion

on the open unit dis
 in C . Sin
e g is entire, the fun
tion f is entire with

g(z) = z

p

f(z) for all z 2 C whi
h implies that

X 7! R

p

(X) = g(X) 2 X

p

B(H) � B

1

(H)

is a holomorphi
 fun
tion. Therefore

det

p

:1+ B

p

(H)! C

is a holomorphi
 fun
tion.

Remark A.13. Let 
: C

�

! GL

p

(H) be the holomorphi
 group homomor-

phism from Proposition IV.21. Then

(det

p

Æ
)(z) = det(
(z)) det

�

exp

�

p�1

X

j=1

(�1)

j

(1� 
(z))

j

j

�

�

= ze

tr

�

P

p�1

j=1

(�1)

j

(1�
(z))

j

j

�

= ze

P

p�1

j=1

(�1)

j

(1�z)

j

j

= ze

f(z)

for some polynomial fun
tion f : C ! C . We 
on
lude that the winding number

of the fun
tion det

p

Æ
: C

�

! C

�

is 1, and hen
e that

det

p

:�

1

(GL

p

(H))! �

1

(C

�

)

�

=

Z

is an isomorphism. This provides a natural 
onstru
tion of the universal 
overing

spa
e by a pullba
k 
onstru
tion

f

GL

p

(H) := f(g; z) 2 GL

p

(H)� C : det

p

(g) = e

z

g:

For p = 1 this leads immediately to the group

f

GL

1

(H)

�

=

SL(H)o C

(
f. Proposition IV.21).
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