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Abstrat. These leture notes provide an introdution to the representation

theory of Banah{Lie groups of operators on Hilbert spaes, where our main

fous lies on highest weight representations and their geometri realization as

spaes of holomorphi setions of a omplex line bundle. After disussing the

�nite-dimensional ase in Setion I, we desribe the algebrai side of the theory

in Setions II and III. Then we turn in Setions IV and V to Banah{Lie groups

and holomorphi representations of omplex lassial ones. The geometry of the

oadjoint ation is disussed in Setion VI, and in the onluding Setion VII all

threads lead to a full disussion of the theory for the group U

2

(H) of unitary

operators u on a Hilbert spae H for whih u�1 is Hilbert{Shmidt.

Introdution

As in �nite dimensions, Lie theory is an exiting ombination of algebrai and

analyti methods. In the �nite-dimensional situation one studies a onneted

Lie group G by the exponential funtion exp: g! G whih is a loal di�eomor-

phism. Therefore the Lie algebra struture of g arries essentially all the loal

information on G . This means that all groups with the same Lie algebra g are

quotients of an essentially unique simply onneted group

e

G modulo disrete

entral subgroups. Viewing g as a \linearization" of G , the heart of the Lie

theoreti methods is a ditionary translating analyti and global properties of G

into algebrai properties of its Lie algebra g , whih are then studied by algebrai

methods.

This piture is di�erent for in�nite-dimensional groups, and how bad it

beomes depends on the setting one is working in. The entral objets of these

letures will be groups of operators on Hilbert spaes. These groups will always

have a natural topology for whih they are Banah{Lie groups, i.e., manifolds

modeled over a Banah spae endowed with a smooth group struture (multi-

pliation and inversion). In this setting one still has an exponential funtion
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exp: g ! G whih is a loal di�eomorphism, hene a good translation meha-

nism from G to g and bak to G . A new feature is that the Lie algebra g now

is a Banah spae with a ontinuous Lie braket, a Banah{Lie algebra, so that

we need funtional analyti as well as algebrai onepts to study the Lie algebra

and the group.

As we will see below, one often �nds many inarnations of suh a Lie group

in the sense that there is a great variety of dense subgroups G

1

� G whih are Lie

groups in their own right, but whih are better suited for several onstrutions

than G itself. Sometimes G is simply too big or has to be replaed by a suitable

entral extension. On the Lie algebrai side these groups orrespond to dense

subalgebras g

1

of g whih are muh smaller, and one often has ertain \minimal"

subalgebras whih are purely algebrai objets. It is this phenomenon that makes

in�nite-dimensional Lie theory more diÆult and also more interesting than the

�nite-dimensional theory. One �rst has to �nd the right \version" of the group

whih is best suited for the setting one has in mind, and then one has to analyze

this group whih might di�er from the original one.

The following diagram shows shematially whih way one has to go to

obtain a thorough understanding of the lass of (unitary) highest weight repre-

sentations of Banah{Lie groups. Starting with a Banah{Lie group (in these

notes this will essentially be a group of operators on a Hilbert spae), we speify

a ertain dense subalgebra g

0

of its Lie algebra whih has a root deomposition.

For this Lie algebra we are then able to lassify all unitary highest weight repre-

sentations in a ompletely algebrai ontext. The next step onsists in extending

these representations under natural boundedness onditions to a ontinuous rep-

resentation of a Banah{Lie algebra ompletion g

1

of g

0

and then integrating

this representation to a holomorphi representation of some omplex Banah{Lie

group G

1

. In many ases it turns out that the group G

1

is far from being the

maximal group to whih this representation integrates, and to understand the

subtleties involved in this integration proess, we will have to obtain a natu-

ral geometri realization of the representation under onsideration by a spae of

holomorphi setions of a omplex line bundle. In this geometri ontext we will

then determine the natural groups ating in the representations. This involves

in partiular a disussion of entral extensions of these groups.

Below we will see several examples where suh translations proedures

beome ruial. We think that the quite aessible lass of operator groups

displays these tehniques quite well. They also lead to a good understanding

of many phenomena in the physial literature onerning entral extensions and

the implementability of symmetries. For the sake of simpliity, we will mainly

disuss the group GL

2

(H) of a omplex Hilbert spae H whih onsists of all

those invertible operators g on H for whih g�1 is a Hilbert{Shmidt operator.
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I. The �nite-dimensional ase

Before we turn to in�nite-dimensional groups, it is worthwhile to reall the

piture for �nite-dimensional groups to larify whih kind of representations and

type of geometry we will be looking for in the in�nite-dimensional ontext.

There are several paths along whih one an approah the piture whih

presents itself as a irle of ideas with several entry points. One possibility is to

start with ompat groups. Here the problem is to lassify all irreduible unitary

representations of a ompat onneted Lie group U and to �nd natural geomet-

ri realizations of these representations whih then an in turn be used to get

more information on the representations. Funtional analyti arguments imply

that all irreduible representations of a ompat group are �nite-dimensional, so

that we may limit our onsiderations to �nite-dimensional representations. To

be able to obtain a lassi�ation, it turns out to be very fruitful to use a ertain

analyti extension proess to translate the problem as follows. First one shows

that there exists a omplex onneted Lie group G = U

C

ontaining U as a

subgroup for whih the polar map

U � u! G; (u;X) 7! u exp iX

is a di�eomorphism. Here u = L(U) denotes the Lie algebra of U . We all

the resulting deomposition G = U exp(iu) the polar deomposition of G . The

simplest example is the irle group

U = T := fz 2 C : jzj = 1g with U

C

= C

�

;

where the polar map orresponds to polar oordinates in the omplex plane.

Groups of the form U

C

are alled omplex redutive groups. This terminology

omes the theory of algebrai groups. One should be aware of the fat that the

Lie algebras of omplex redutive groups are redutive, but that the onverse is

not true. In partiular the group C

n

is not \omplex redutive" in the sense

above.

An important onsequene of the polar deomposition is that every homo-

morphism ':U ! H to a �nite-dimensional omplex Lie group H extends to a

holomorphi homomorphism

'

C

:U

C

! H by '

C

(u exp(iX)) := '(u) exp(iL(')(X));

where

L(') = d'(1):L(U)! L(H)

is the orresponding Lie algebra homomorphism. We thus obtain a one-to-one

orrespondene between irreduible unitary representations of U and irreduible

(�nite-dimensional) holomorphi representations of G = U

C

(f. Exerise I.2), so

that we are left with the problem of desribing the irreduible �nite-dimensional

holomorphi representations of a omplex redutive group G . For simpliity we

assume in the following that G is simply onneted. A partiular example is the

group G = SL(n; C ) whih arises as U

C

for U = U(n; C ).
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The algebrai approah to the lassi�ation

We are interested in the geometry and the struture of the irreduible

representations of U , resp., G . The best aessible piture is the algebrai one,

dealing with simple �nite-dimensional modules of the redutive Lie algebra g .

To see the onnetion between group and Lie algebra representations requires

some translation mehanism, a method whih is harateristi for Lie theory as

a whole.

First we have to get hold of the algebrai struture of the Lie algebra g

of G . The ruial tool is the root deomposition of g : There exists a maximal

abelian subalgebra h � g with the property that all operators adh , h 2 h ,

are diagonalizable, so that one obtains a deomposition of g into simultaneous

eigenspaes

g

�

= fx 2 g: (8h 2 h) [h; x℄ = �(h)xg

for the ation of h on g , where �: h ! C is a linear funtional. A non-zero

funtional � 2 h

�

is alled a root of g if g

�

6= f0g . We write � � h

�

for the set

of roots. It turns out that g

0

= h , so that we obtain the deomposition

g = h�

M

�2�

g

�

:

It is an important fat that for every root � 2 � the subspae

g(�) := g

�

+ g

��

+ [g

�

; g

��

℄

is a three-dimensional simple subalgebra, hene isomorphi to sl(2; C ). From

that one derives the existene of a unique element �� 2 [g

�

; g

��

℄ � h with

�(��) = 2. This element is alled the oroot orresponding to � .

To use the information on the struture of g to lassify irreduible repre-

sentations, we onsider a maximal solvable subalgebra b � g ontaining h . Sine

h is abelian, hene solvable, the existene of suh a subalgebra follows from the

fat that g is �nite-dimensional. One simply hooses a solvable subalgebra on-

taining h whih is of maximal dimension. One an show that, in terms of the

root deomposition, b an be desribed as

b = h+

X

�2�

+

g

�

;

where �

+

� � is a positive system, i.e.,

�

+

_

[ ��

+

= � and (�

+

+�

+

) \� � �

+

:

The next step is to apply Lie's Theorem on the �nite-dimensional repre-

sentations of solvable Lie algebras to see that every simple g -module V ontains

a (unique) one-dimensional b -eigenspae C v . Sine the linear funtional

�: b! C
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given by b:v = �(b)v , b 2 b , is a Lie algebra homomorphism, it vanishes on eah

g

�

, � 2 �

+

. Moreover, the representation theory of sl(2; C ), applied to the

subalgebras g(�), implies that � is dominant integral:

�(��) 2 N

0

for all � 2 �

+

:

This sets the stage for the lassi�ation, and now one shows that if V

1

�

=

V

2

, then

�

1

= �

2

, and that for eah dominant integral � , there exists a simple g -module

whih is alled L(�).

Theorem I.1. The �nite-dimensional simple g-modules of are in one-to-one

orrespondene with the dominant integral weights � with respet to �

+

.

A detailed proof of the preeding result an be found in [Hum72℄. It is

remarkable that the hoie of b , resp., �

+

is irrelevant. A di�erent hoie only

leads to a parametrization of the simple modules by a di�erent set of dominant

integral weights. This will be drastially di�erent in the in�nite-dimensional

setting.

Now we ome bak to the group level. Sine G is assumed to be simply

onneted, the irreduible representations of G are in one-to-one orrespondene

with the irreduible representations of g , so that the lassi�ation desribed

above also yields a lassi�ation for G and hene for the orresponding ompat

group U . Here we refer to the general theorem that every Lie algebra homomor-

phism g ! gl(V ) integrates to a homomorphism G ! GL(V ), whih is quite

inexpliit and does not lead to any kind of geometri information about the rep-

resentation. It is muh more desirable to have a more geometri realization of

the G -representation on the spae L(�) whih will be desribed in the remainder

of this setion.

Holomorphi vetor bundles

In this subsetion we explain some of the geometry whih is involved in the

geometri realization of the irreduible representations of a omplex redutive

Lie group as the spae of holomorphi setions of a omplex line bundle. Still all

Lie groups are assumed to be �nite-dimensional.

Let G be a omplex Lie group and P � G a losed omplex subgroup.

Then the quotient spae M := G=P arries the struture of a omplex manifold.

To eah holomorphi representation (�; V ) of P , i.e., to eah holomorphi ho-

momorphism �:P ! GL(V ), we will assoiate a holomorphi vetor bundle over

M .

De�nition I.2. Let M be a omplex manifold. A holomorphi vetor bundle

with �ber V is a holomorphi map �:V ! M of omplex manifolds for whih

there exists a omplex vetor spae V , an open overing (U

j

)

j2J

of M , and

biholomorphi maps

'

j

:�

�1

(U

j

)! U

j

� V
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with

�('

�1

j

(x; v)) = x for (x; v) 2 U

j

� V;

and suh that for eah pair i; j 2 J there exists a holomorphi map

g

ij

:U

i

\ U

j

! GL(V )

with

'

i

'

�1

j

: (U

i

\ U

j

)� V ! (U

i

\ U

j

)� V; (x; v) 7! (x; g

ij

(x):v):

The spaes �

�1

(x) are alled the �bers of the bundle V . Sine the maps

'

i

'

�1

j

are �berwise linear, eah �ber �

�1

(x) arries a natural omplex vetor

spae struture suh that '

j

j

�

�1

(x)

:�

�1

(x) ! fxg � V

�

=

V is an isomorphism

of omplex vetor spaes.

A holomorphi setion of V is a holomorphi map �:M ! V with � Æ� =

id

M

. Using the vetor spae struture on the �bers, we obtain on the spae �(V)

of holomorphi setions of V the struture of a omplex vetor spae via

(��)(x) := ��(x) and (�

1

+ �

2

)(x) := �

1

(x) + �

2

(x):

Homogeneous vetor bundles

The only type of bundles we will deal with in these notes are of a rather

simple nature beause they are so alled homogeneous bundles. Suh bundles are

onstruted as follows. We return to the setting where G is a omplex Lie group,

P � G is a losed omplex subgroup, and M = G=P . We write q:G ! M for

the quotient map. Let (�; V ) be a holomorphi representation of P on V and

write h:v := �(h)(v).

On the produt manifold G � V we onsider the ation of P given by

h:(g; v) := (gh

�1

; h:v). Let

V := G�

P

V := (G� V )=P

denote the spae of all P -orbits in G � V . We write [g; v℄ := P:(x; v) for the

orbit of (x; v) and observe that we have a well-de�ned map

�:V !M; [x; v℄ 7! q(x) = xP:

Let U � G=P be an open subset for whih there exists a holomorphi map

�

U

:U ! G with x = �

U

(x)P for all x 2 U . Then the map

q

�1

(U)! U � P; g 7! (q(g); �

U

(q(g))

�1

g)
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is biholomorphi and its inverse is given by the multipliation map

U � P ! q

�1

(U); (u; h) 7! �

U

(u)h:

We further have a bijetion

'

U

:�

�1

(U)! U � V; [x; v℄!

�

q(x);

�

�

U

(q(x))

�1

x

�

:v

�

:

If, in addition, U is hosen suh that it is the domain of a hart of M , then the

maps '

U

an be used to obtain a hart of V as a omplex manifold. Moreover,

we have

� Æ '

�1

U

(x; v) = x for (x; v) 2 U � V;

and for two open subsets U;W � M with setions �

U

and �

W

, we obtain the

map

'

U

'

�1

W

: (U \W )� V ! (U \W )� V; (x; v) 7! (x; g

U;W

(x):v)

with

g

U;W

(x) = �

�

�

U

(xP )

�1

�

W

(q(x))

�

:

We onlude that �:V !M is a holomorphi vetor bundle over M . It is

homogeneous in the sense that the natural ation of the group G on V given by

g:[x; v℄ := [g:x; v℄ is a holomorphi ation G� V ! V whih is �berwise linear,

i.e., an ation by automorphisms of the holomorphi vetor bundle.

On the spae �(V) of holomorphi setions we now obtain a natural rep-

resentation of G by

(g:s)(x) := g:s(g

�1

:x)

(Exerise).

It often is onvenient to have a more aessible desription of the spae �(V)

as holomorphi funtions G ! V . This desription is obtained as follows. Let

s:M ! V be a holomorphi setion of V . Then we an write s(q(x)) = [x; f(x)℄ ,

where f :G ! V is a funtion. In fat, for eah x 2 G eah element of the

�ber �

�1

(q(x)) has a unique representative of the form (x; v) and all other

representatives are given by (xp

�1

; p:v), p 2 P . This leads to

(1:1) f(xp

�1

) = p:f(x) for x 2 G; p 2 P:

In loal oordinates we then have

'

U

(s(q(x))) =

�

q(x);

�

�

U

(q(x))

�1

x

�

:f(x)

�

;

showing that the funtion f :G ! V is holomorphi beause q

�1

(U) ! P; x 7!

�

U

(q(x))

�1

x is a holomorphi map. If, onversely, f 2 Hol(G; V ) is a holomor-

phi map satisfying (1.1), then the holomorphi map G ! V; (g; v) 7! [g; f(g)℄

is onstant on the P -orbits and therefore fators through a holomorphi map

s:M = G=P ! V whih is a holomorphi setion of V .

We summarize the results of the preeding disussion in the following

lemma.
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Lemma I.3. If V = G �

P

V is a homogeneous holomorphi vetor bundle

over M = G=P , then the spae �(V) of holomorphi setions is in one-to-one

orrespondene with the spae

�

G

(V) := ff 2 Hol(G; V ): (8x 2 G; p 2 P ) f(xp

�1

) = p:f(x)g:

The orresponding map is given by

�: �(V)! �

G

(V); s(xP ) = [x;�(s)(x)℄:

On �

G

(V) � Hol(G; V ) the representation of G is given by

(g:f)(x) = f(g

�1

:x):

Proof. In view of the preeding disussion, it only remains to verify the

formula for the ation of G on �

G

(V): For s(q(x)) = [x; f(x)℄ , q(x) = xP , we

have

(g:s)(q(x)) = g:

�

s(g

�1

:q(x))

�

= g:

�

s(q(g

�1

x))

�

= g:[g

�1

x; f(g

�1

x)℄ = [x; f(g

�1

x)℄:

A key example: SL(2; C )

We onsider the speial ase where G = SL(2; C ) and

P :=

n

�

a 0

 a

�1

�

: a 2 C

�

;  2 C

o

:

Then P is the stabilizer of the line C e

2

� C

2

, so that the quotient spae G=P

an be identi�ed with the omplex projetive line P

1

(C ) := P(C

2

), i.e., the

set of all one-dimensional subspaes of C

2

, via the map gP 7! C g:e

2

. We

write [z; w℄ := C (z; w) for the one-dimensional spae represented by (z; w) =

ze

1

+ we

2

2 C

2

n f0g . There are two natural open subsets of P

1

(C ) given by

U

1

:= f[z; w℄:w 6= 0gg = f[z; 1℄: z 2 C g; U

2

:= f[z; w℄: z 6= 0g = f[1; w℄:w 2 C g

with U

1

[ U

2

= P

1

(C ). On U

1

we de�ne a setion

�

1

:U

1

! G; �

1

([z; 1℄) :=

�

1 z

0 1

�

and on U

2

we put

�

2

:U

2

! G; �

2

([1; w℄) :=

�

1 0

w 1

��

0 1

�1 0

�

:
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One immediately veri�es that these two maps are indeed setions of q:G !

G=P

�

=

P

1

(C ), i.e., q(�

1

([z; 1℄)) = [z; 1℄ and q(�

2

([1; w℄)) = [1; w℄ .

For n 2 Z we onsider the one-dimensional holomorphi representation (a

holomorphi harater)

�

n

:P ! GL(1; C )

�

=

C

�

;

�

a 0

 a

�1

�

7! a

n

and onsider the orresponding holomorphi line bundle L

n

! P

1

(C ). We

are interested in the question whether this bundle has a non-zero holomorphi

setion.

Let s:P

1

(C ) ! L

n

be a holomorphi setion and f :G ! C the orre-

sponding holomorphi funtion satisfying f(xp

�1

) = �

n

(p)f(x) for x 2 G; p 2 P .

We de�ne an entire funtion h: C ! C by

h(z) := f

�

�

1 z

0 1

�

�

:

From

�

2

([1; w℄) =

�

1 0

w 1

��

0 1

�1 0

�

=

�

1 w

�1

0 1

��

w

�1

0

�1 w

�

; w 2 C

�

;

in G = SL(2; C ) we obtain

f(�

2

([1; w℄)) = �

n

�

w

�1

0

�1 w

�

�1

:h(w

�1

) = w

n

h(w

�1

) for w 2 C

�

:

The fat that this funtion extends holomorphially to 0 leads in partiular to

(1:2) lim sup

jzj!1

jh(z)j � jzj

�n

<1:

For n < 0 this implies that h is bounded so that Liouville's Theorem shows that

h is onstant. For h 6= 0 we then obtain a ontradition to the holomorphi

extendability of the funtion w 7! w

n

h(w

�1

) to 0. This implies that

�(L

n

) = f0g for n < 0:

For n � 0 the ondition (1.2) means that h is a polynomial of degree at

most n (this follows from the Cauhy estimates for Laurent series). Conversely,

for every suh polynomial the funtion w 7! w

n

h(w

�1

) extends holomorphially

to 0, so that it orresponds to a holomorphi setion of L

n

.

Next we ask whih representation of SL(2; C ) we �nd in the spae �(L

n

)

for n � 0. We know already that the dimension is n + 1. To determine the

representation, we onsider the realization in the spae �

G

(L

n

) � Hol(G). Let

N :=

n

�

1 z

0 1

�

: z 2 C

o
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and observe that NP is dense in SL(2; C ), so that the restrition map

�

G

(L

n

)! Hol(N)

�

=

Hol(C )

is injetive. Let f 2 �

G

(L

n

) denote the element orresponding to a non-

zero onstant funtion in Hol(N). For x 2 N and p 2 P we then have

f(xp) = �

n

(p)

�1

f(1). This implies that for x 2 N we have x:f = f , and

for a diagonal matrix h we get for x 2 N :

(1:3) (h:f)(x) = f(h

�1

x) = f(h

�1

xhh

�1

) = �

n

(h):f(h

�1

xh

| {z }

2N

) = �

n

(h):f(x):

On the Lie algebra level we have g = g

��

+ h+ g

�

with h+ g

��

= L(P )

and N = exp(g

�

), where �� =

�

1 0

0 �1

�

. The derived representation of g on

�

G

(L

n

) is a representation ontaining a vetor f with

��:f = nf and g

�

:f = L(N):f = f0g;

Now the representation theory of the Lie algebra sl(2; C ) implies that the

submodule generated by f is an (n+1)-dimensional simple module and therefore

that �(L

n

) is a simple module of SL(2; C ).

With these elementary onsiderations we have proved the Borel{Weil The-

orem for the group SL(2; C ):

Theorem I.4. (Borel{Weil Theorem for SL(2; C )) Consider the losed sub-

group

P :=

n

�

a 0

 a

�1

�

: a 2 C

�

;  2 C

o

of G := SL(2; C ) and its holomorphi haraters

�

n

:P ! GL(1; C )

�

=

C

�

;

�

a 0

 a

�1

�

7! a

n

; n 2 Z:

For the assoiated holomorphi line bundles L

n

:= G�

P

C we then have

dim�(L

n

) =

�

0 for n < 0

n+ 1 for n � 0.

For n � 0 the natural representation of G on the spae �(L

n

) of holomorphi

setions is the irreduible representation of dimension n+ 1 .

For n = 0 the bundle L

0

! P

1

(C ) is trivial. Therefore �(L

0

) =

Hol(P

1

(C )) is the spae of holomorphi funtions on the Riemann sphere P

1

(C )

whih onsists only of the onstant funtions.
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The Borel{Weil Theorem for omplex redutive groups

The general Borel{Weil Theorem an be stated as follows:

Theorem I.5. (Borel{Weil Theorem for omplex redutive groups) Let G be

a omplex redutive group, p � g a subalgebra of the form

p = h+

X

�2�

P

g

�

with �

P

[ ��

P

= �;

and �

+

� �n�

P

a positive system. We onsider the losed onneted subgroup

P � G with Lie algebra p and a holomorphi harater �:P ! C

�

. Let

� := d� j

h

. For the assoiated holomorphi line bundles L

�

:= G �

P

C we

then have

�(L

�

) 6= f0g () (8� 2 �

P

) �(��) 2 �N

0

:

In this ase the representation of G on �(L

�

) is the irreduible holomorphi

representation of highest weight � with respet to �

+

.

The Borel-Weil Theorem shows in partiular that if � is dominant integral

and we hoose the paraboli subalgebra p suh that

�

P

:= f� 2 �:�(��) � 0g;

then L(�) is isomorphi to the spae of holomorphi setions of L

�

, whenever

� integrates to a holomorphi harater of P . If G is semisimple and simply

onneted, this is always the ase if � is dominant integral (Exerise I.4). In

general we need that �(x) 2 2�iZ for eah x 2 h with expx = 1 (� is then

alled analytially integral).

We an also take �

P

:= ��

+

if � is dominant integral with respet to

�

+

.

Proof. Idea of the proof (for a detailed proof of the more general Bott{Borel{

Weil Theorem we refer to [KV95℄): First we observe that the group P is a

semidiret produt

P

�

=

N

P

o L

P

;

where

N

P

= exp

�

X

�2�

P

n��

P

g

�

�

and L

P

=




exp(h+

X

�2�

P

\��

P

g

�

)

�

;

Let 0 6= s 2 �(L

�

) be a non-zero setion. Pik p 2 M = G=P with

s(p) 6= f0g and write x

0

:= q(1) 2 M for the base point. Then there exists a

g 2 G with g:p = x

0

, and the setion g:s does not vanish in x

0

, so that we may

assume that s(x

0

) 6= f0g . Let f :G! C denote the orresponding holomorphi

funtion.
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For � 2 ��

P

and the orresponding subalgebra

g(�) := C ��+ g

�

+ g

��

�

=

sl(2; C )

we have a orresponding holomorphi homomorphism

�

�

: SL(2; C )! G;

where �� = L(�

�

):h for h =

�

1 0

0 �1

�

: Put p(�) := g

��

+ C �� and write

P

�

� SL(2; C ) for the orresponding analyti subgroup. Sine f(1) 6= 0, the

funtion f

�

:= f Æ �

�

is a non-zero holomorphi funtion on SL(2; C ) satisfying

f

�

(xp

�1

) = �(�

�

(p))f

�

(x) for x 2 SL(2; C ); p 2 P

�

:

The harater � Æ �

�

j

P

�

:P

�

! C

�

is determined by the integer

n := �

�

L(�

�

):h

�

= �(��);

so that Theorem I.4 implies that n 2 N

0

beause the bundle L

n

! P

1

(C ) has

a non-zero holomorphi setion given by the funtion f

�

on SL(2; C ). This

proves that �(��) 2 N

0

for � 2 ��

P

is neessary for the existene of non-zero

holomorphi setions of L

�

.

Next we assume that this ondition is satis�ed. Then there are several

ways to show that �(L

�

) is non-trivial. One possibility is to use the Bruhat

deomposition of the group G to onstrut diretly a holomorphi setion f 2

�(L

�

) with f(1) = 1 (f. [CSM95, Set. II.14℄ and also [PS86℄). Sine this

method will not work in the in�nite-dimensional ases, we use the representation

theory of the Lie algebra g to obtain a simple highest weight module L(�) of

highest weight � (Theorem I.1). Then the representation of g on L(�) integrates

to a representation of the simply onneted overing group

e

G on L(�), but sine

� integrates to a harater of P and therefore in partiular to a harater of the

subgroup H := exp h , it fators through a holomorphi representation (�

�

; L(�))

of G (see Exerise I.4).

To realize this representation by holomorphi setions of L

�

, we �rst

onsider the dual spae L(�)

�

. This spae is a g -module with respet to the

ation given by

(x:�)(v) := ��(x:v); x 2 g; � 2 L(�)

�

; v 2 L(�):

Sine the � -weight spae V

�

of V with respet to h is one-dimensional, there

exists a linear funtional Æ 2 L(�)

�

and a basis element v

�

2 V

�

with Æ(v

�

) = 1

and ker Æ =

P

�6=�

V

�

.

For the paraboli subalgebra

p := h+

X

�(��)�0

g

�
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we then have p: ker Æ � ker Æ (Exerise I.3), whih easily implies that Æ is a

p -eigenfuntional of weight �� . The group G ats on L(�)

�

by

(g:�)(v) := �(g

�1

:v); g 2 G; � 2 L(�)

�

; v 2 L(�);

and for the onneted subgroup P := hexp pi � G orresponding to p , we obtain

that

p:Æ = �(p)

�1

Æ;

where �:P ! C

�

is the unique holomorphi harater whose di�erential is � ,

viewed as a linear funtion on p vanishing on all the root spaes. Let

	:L(�)! Hol(G); 	(v)(g) := hÆ; g

�1

:vi = (g:Æ)(v):

Then 	 is a G -equivariant linear map with respet to the natural representation

of G on Hol(G) given by (g:f)(x) := f(g

�1

x), and eah funtion f in the range

of 	 satis�es

f(gp) = �(p)

�1

f(g); g 2 G; p 2 P:

This means that

	(L(�)) � �

G

(L

�

) = ff 2 Hol(G): (8g 2 G)(8p 2 P ) f(gp) = �(p)

�1

f(g)g;

showing that �(L

�

) ontains a subspae isomorphi to the highest weight module

L(�). It remains to show that this subspae exhausts �(L

�

).

To analyze the representation on the non-zero spae �(L

�

) of holomorphi

setions, we need a fat whose proof we do not want to reprodue:

dim�(L

�

) <1:

This is a speial ase of a more general theorem on spaes of holomorphi se-

tions of vetor bundles over ompat omplex manifolds,

1

and G=P is ompat

beause the ompat real form U ats transitively on G=P . A more diret proof

is outlined in Remark I.6 below.

Now we an argue as follows. First we use Lie's Theorem for the solvable

Lie algebra b := h +

P

�2�

+

g

�

to see that there exists an f 2 �

G

(L

�

) whih

is a b -eigenvetor. Then f is �xed by the group N := exp(

P

�2�

+

g

�

) for

whih NP � G is an open subset of G (Exerise I.5). Therefore eah element

of �

G

(L

�

) is uniquely determined by its restrition to N , whih in partiular

implies that the spae

�

G

(L

�

)

N

= ff 2 �

G

(L

�

): (8u 2 N)u:f = fg

1

We refer to [GR65, Th. VIII.19℄ for the Theorem of Cartan{Serre asserting that the

ohomology of any oherent sheaf on a ompat analyti spae is �nite-dimensional. Sine

ompat omplex manifolds are in partiular ompat analyti spaes, and holomorphi vetor

bundles de�ne oherent sheaves, this implies the �nite-dimensionality of the spae of holomor-

phi setions for every holomorphi vetor bundle over a ompat omplex manifold.
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is one-dimensional. We may assume that f(1) = 1, so that f(u) = 1 for all

u 2 N . Then we obtain for h 2 H :

(h:f)(u) = f(h

�1

u) = f(h

�1

uhh

�1

) = �(h)f(h

�1

uh

| {z }

2N

) = �(h) = �(h)f(u):

This shows that for h 2 h we have h:f = �(h)f , and therefore that f is a

b -eigenvetor of weight � . As in the proof of Theorem I.4, the �nite-dimensional

representation theory of g implies that the submodule generated by f is iso-

morphi to L(�). It remains to see that this subspae exhausts �

G

(L

�

). If this

is not the ase, then Weyl's Theorem implies that there exists a omplemen-

tary submodule W . Repeating the argument above, we �nd a non-zero funtion

e

f 2 W whih is N -invariant, but this ontradits the fat that �

G

(L

�

)

N

is

one-dimensional.

Remark I.6. (a) Let T

�

=

T

n

be a torus group and (�; V ) a ontinuous

representation of T on the �nite-dimensional vetor spae V . Then T also

ats on the spae Hol(V ) of omplex-valued holomorphi funtions on V by

(t:f)(x) := f(t

�1

:x):

Sine T is abelian, V deomposes into a �nite sum of weight spaes of the

Lie algebra h := t

C

:

V =

M

�2h

�

V

�

:

Let v

j

, j = 1; : : : ;m , be a basis of V with v

j

2 V

�

j

. We then have a Taylor

expansion

f

�

X

j

z

j

v

j

�

=

X

�2N

m

0



�

z

�

;

where � = (�

1

; : : : ; �

m

) and

z

�

:= z

�

1

1

� � � z

�

m

m

:

In these terms we obtain

((expx):f)

�

X

j

z

j

v

j

�

=

X

�2N

m

0



�

e

�

P

j

�

j

�

j

(x)

z

�

;

showing that the weight spaes Hol(V )

�

are given by

Hol(V )

�

=

n

f 2 Hol(V ): f

�

X

j

z

j

v

j

�

=

X

P

j

�

j

�

j

=��



�

z

�

o

:

If there exists an element x

0

2 it with �

j

(x

0

) > 0 for all j , then we may

w.l.o.g. assume that �

j

(x

0

) > 1 for all j . This ondition means that the set
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f�

1

; : : : ; �

m

g is ontained in an open half spae. Then

P

j

�

j

�

j

= �� implies

that ��(x

0

) =

P

j

�

j

�

j

(x

0

) �

P

j

�

j

, so that there are only �nitely many

� 2 N

m

0

with

P

j

�

j

�

j

= �� , whih implies that

dimHol(V )

�

=

�

�

�

n

� 2 N

m

0

:

X

j

�

j

�

j

= ��

o

�

�

�

<1:

If F � Hol(V ) is a losed subspae invariant under T , then for eah f 2 F

and eah harater �

�

:T ! T with �

�

(expx) = e

�(x)

the holomorphi funtion

f

�

(x) :=

Z

T

f(t:x)�

�

(t) d�

T

(t)

is also ontained in F , where �

T

is the normalized Haar measure on T . For

� = d�

�

we have f

�

2 Hol(V )

�

, and this implies that eah f 2 F has a

onvergent expansion

f =

X

�2P

F

f

�

; P

F

:= f� 2 t

�

C

:F

�

6= f0gg:

This leads to the following observation: If all weight spaes Hol(V )

�

are

�nite-dimensional and F � Hol(V ) is a losed T -invariant subspae for whih

P

F

is a �nite set, then

dimF <1:

(b) Now we explain how the preeding disussion an be applied to show that

in the proof of the Borel{Weil Theorem we have dim�(L

�

) <1 . First we have

to speify the torus group to whih (a) will be applied. We onsider the torus

T = exp(t), where

t = fx 2 h: exp(Rx) is ompatg

(Exerise I.7). If G is semisimple, this means that t = span

R

fi��:� 2 �g: In

this situation we put

V :=

X

�62�

P

g

�

with � n�

P

� �

+

:

Sine exp(V )P � G is an open subset,

�

G

(L

�

)! Hol(V ); f 7! (x 7! f(expx))

is a T -equivariant injetive map, where the ation of T on Hol(V ) is given by

(t:f)(z) = �(t)f(Ad(t)

�1

:z):

The disussion above shows that the set of t -weights, resp., h -weights in Hol(V )

is given by

��

X

�2�n�

P

N

0

� � ��

X

�2�

+

N

0

�;
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and that all multipliities are �nite.

On the other hand the set of h -weights is invariant under the Weyl group

W (Exerise!), so that the set of weights is ontained in

\

w2W

�

��

X

�2�

+

N

0

�

�

� onv(W:�) \ (�+R);

where R is the root lattie. Here the inlusion \�" is not obvious (see [Bou90,

Ch. VIII℄; see also Setion V.2 in [Ne99a℄). Sine the latter set is �nite, and all

multipliities are �nite, we derive that the spae �(L

�

) is �nite-dimensional.

Remark I.7. A third possibility to get hold of the representation on the spae

�(L

�

) is to view it as a representation of the ompat real form U � G on

a Fr�ehet spae. Then the Big Peter{Weyl Theorem (f. [HoMo98, Th. 3.51℄)

implies that it ontains a dense subspae of �nite-dimensional submodules. Now

the argument given in the proof of Theorem I.5 shows that this subspae is

an irreduible module, and therefore that the representation of G on the spae

�(L

�

) is �nite-dimensional and irreduible.

Exerises for Setion I

Exerise I.1. Let V be a �nite-dimensional real vetor spae and W � V a

subspae. For A 2 End(V ) the following are equivalent:

(a) A(W ) �W .

(b) For all t 2 R we have e

tA

(W ) �W .

() There exists an " > 0 suh that for all t 2 [�"; "℄ we have e

tA

(W ) �W .

Exerise I.2. Let �:G! GL(V ) be a holomorphi representation of a �nite-

dimensional onneted omplex Lie group G , d�:L(G) ! gl(V ) the derived

representation, and U � G a subgroup suh that L(G) = L(U) + iL(U). Then

for a subspae W � V the following are equivalent:

(a) W is invariant under G .

(b) W is invariant under U .

() W is invariant under d�(L(U)).

(d) W is invariant under d�(L(G)).

Exerise I.3. Let L(�) be a simple highest weight module of a omplex

redutive Lie algebra g of highest weight � and write

L(�) = W � L(�)

�

;

where W =

P

�6=�

L(�)

�

is the sum of all other weight spaes. Then W is

invariant under the subalgebra

p := h+

X

�(��)�0

g

�

:

Hint: If v

�

is a weight vetor of weight � and � 2 �, x

�

2 g

�

, with x

�

:v

�

= v

�

,

then �(��) > 0 follows from the representation theory of sl(2; C ).
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Exerise I.4. Let G be a onneted omplex redutive Lie group and q:

e

G! G

its universal overing group. Further let h � g be a Cartan subalgebra. We

onsider the omplex abelian subgroups H := exp

G

h , resp.,

e

H := exp

e

G

h of

G , resp.,

e

G . For a dominant integral � let e�

�

:

e

G ! GL(L(�)) denote the

orresponding holomorphi representation of

e

G . Show that the following are

equivalent:

(a) e�

�

fators through a holomorphi representation �

�

:G! GL(L(�)).

(b) �

1

(G) := ker q � ker e�

�

.

() There exists a holomorphi harater �:H ! C

�

with d� = � .

(d) � satis�es �(�) � 2�iZ for the subgroup � := fx 2 h: expx = 1g .

Hint: Use that �

1

(G) � Z(

e

G) �

e

H .

Exerise I.5. Let G be a Lie group and a; b � g subalgebras with a+ b = g .

Let A;B � G be the orresponding analyti subgroups endowed with their

intrinsi Lie group topology. Show that the map

m:A�B ! G

has an open image and that m is a di�eomorphism onto the open subset AB if

A\B = f1g . Hint: Consider the ation of the diret produt group on G given

by (a; b):g := agb

�1

.

Exerise I.6. (Integrating representations of sl(2; C ))

(1) Let V

n

be the n + 1-dimensional simple module of sl(2; C ). We onsider

the spae

P

n

:= spanfz

j

1

z

k

2

: j + k = ng � C [z

1

; z

2

℄

�

=

Pol(C

2

)

of homogeneous polynomials of degree k on C

2

. Then the group SL(2; C )

ats on P

n

by (g:f)(x) := f(g

�1

:x). Show that the orresponding derived

sl(2; C )-module is isomorphi to V

n

and hene that the Lie algebra ation

on V

n

an be integrated to a representation of SL(2; C ) on V

n

.

(2) We all a module (�; V ) of sl(2; C ) integrable if the operators �(e) and �(f)

are loally nilpotent and �(h) is diagonalizable. Using the PBW-Theorem,

show that V is a loally �nite module, i.e., every element generates a �nite-

dimensional submodule.

(3) If (�; V ) is a loally �nite sl(2; C )-module, then there exists a representation

e�: SL(2; C )! GL(V ) suh that

�(X):v =

d

dt

t=0

e�(e

tX

):v for all v 2 V:

Hint: Use Weyl's Theorem to see that V is a sum of simple modules, hene

semisimple and therefore a diret sum of simple �nite-dimensional modules.

Then use (1).

(4) Justify the terminology \integrable module."
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Exerise I.7. Let A be a onneted real abelian Lie group and a its Lie

algebra. Then

t := fx 2 a: expRx is ompatg

is a subspae of a and T := exp t is a torus, whih is the unique maximal ompat

subgroup of A .
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II. Split Lie algebras

In this setion we desribe, in a ompletely algebrai ontext, several types

of Lie algebras that our as the algebrai skeleton of operator Lie algebras.

These are always loally �nite Lie algebras with a root deomposition. For

this lass of Lie algebras the root deomposition leads to an e�etive struture

theory whih is almost omparable to the results one has for �nite-dimensional

Lie algebras. In partiular one has a lassi�ation of the simple Lie algebras.

The struture of these Lie algebras will be re�ned by endowing them with

an involution, a strutural feature that will be ruial in the study of unitary

highest weight representations in the next setion. The algebrai analysis of

these representations is the �rst step in our approah to the highest weight

representations of operator groups.

Throughout this setion all Lie algebras are omplex if not stated otherwise.

II. Root deompositions

De�nition II.1. (a) We all an abelian subalgebra h of a Lie algebra g

a splitting Cartan subalgebra if h is maximal abelian and the derivations adh

for h 2 h are simultaneously diagonalizable. If g ontains a splitting Cartan

subalgebra h , then g , respetively the pair (g; h), is alled a split Lie algebra and

h a splitting Cartan subalgebra. This means that we have a root deomposition

g = h+

X

�2�

g

�

;

where g

�

= fx 2 g : (8h 2 h) [h; x℄ = �(h)xg for a linear funtional � 2 h

�

, and

� := �(g; h) := f� 2 h

�

nf0g : g

�

6= f0gg

is the orresponding root system. The subspaes g

�

for � 2 � are alled root

spaes and its elements are alled root vetors.

(b) A root � 2 � is alled integrable if g(�) := g

�

+ g

��

+ [g

�

; g

��

℄

�

=

sl(2; C )

and there exist non-zero elements x

��

2 g

��

suh that adx

��

are loally

nilpotent. (An endomorphism A of a vetor spae V is alled loally nilpotent

if V =

S

n2N

kerA

n

.) If g is loally �nite, i.e., every �nite subset generates a

�nite-dimensional subalgebra, then the latter ondition is redundant (Exerise

II.1).

We write �

i

for the set of integrable roots. For � 2 �

i

the spae [g

�

; g

��

℄

is one-dimensional and � does not vanish on it. Hene there exists a unique

element �� 2 [g

�

; g

��

℄ with �(��) = 2 whih is alled the assoiated oroot. To

eah oroot we assoiate the reetion r

�

2 GL(h

�

) given by

r

�

(�) = � � �(��)�
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and write W � GL(h

�

) for the subgroup generated by these reetions. It is

alled the Weyl group of g .

It is well known that every �nite-dimensional semisimple omplex Lie al-

gebra g has a root deomposition and that all roots are integrable ([Hum72℄).

One an show that the integrability of a root is equivalent to the existene of

a representation �

�

: SL(2; C ) ! Aut(g) for whih the derived representation is

given by restriting the adjoint representation to g (f. [MP95℄; see also Exerise

I.6). This justi�es the terminology.

Example II.2. Sine the Lie algebra sl(2; C ) plays an important role in root

deompositions, we �rst have a look at its standard root deomposition. It is

given by

h =

�

1 0

0 �1

�

; e =

�

0 1

0 0

�

and f =

�

0 0

1 0

�

:

The brakets of these basis elements are given by

[h; e℄ = 2e; [h; f ℄ = �2f and [e; f ℄ = h:

Therefore we have the root deomposition

g = h+ g

�

+ g

��

; h = C h; g

�

= C e; g

��

= C f;

with �(h) = 2, so that �� = 2 and r

�

:� = �� .

Example II.3. Let J be a set and C

(J)

the vetor spae with the basis

(e

j

)

j2J

. One may also think of this spae as the spae of all funtions J ! C

with �nite support. We write g := gl(J; C ) � End(C

(J)

) for the Lie algebra

onsisting of all those endomorphisms whose orresponding J �J -matries have

only �nitely many non-zero entries. Then the elementary matries E

ij

with

a single non-zero entry in the (i; j)-position form a basis of the vetor spae

g . Let h � g be the subalgebra of diagonal matries and de�ne "

j

2 h

�

by

"

j

(diag(x

ii

)) := x

jj

. Then the set of of roots of g with respet to h is given by

� := f"

j

� "

k

: j 6= k; j; k 2 Jg

where

g

"

j

�"

k

= C E

jk

and ("

j

� "

k

)�= E

jj

� E

kk

:

For every pair i 6= j the subalgebra g("

i

�"

j

) spanned by h := E

ii

�E

jj

, e = E

ij

and f := E

ji

is isomorphi to sl(2; C ). Sine, moreover, (adE

ij

)

3

= 0, every

root is integrable.

We de�ne

sl(J; C ) :=

n

X 2 gl(J; C ): trX =

X

j2J

x

jj

= 0

o

and note that this subalgebra also has a root deomposition with respet to the

Cartan subalgebra h \ sl(J; C ).

For in�nite-dimensional Lie algebras there are some subtleties involving

the notion of a \redutive" Lie algebra whih ome from the fat that for many

simple Lie algebras not every derivation is inner (f. Exerise II.10).
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De�nition II.4. We all a Lie algebra g semisimple if it is a diret sum of

simple ideals. It is said to be almost redutive if [g; g℄ is semisimple. It is alled

redutive if g

�

=

z(g)� [g; g℄ .

Example II.5. For every n 2 N the Lie algebra gl(n; C ) is redutive. We

have

gl(n; C )

�

=

sl(n; C )� C 1;

where sl(n; C ) is simple.

For an in�nite set J the identity matrix 1 is not ontained in gl(J; C ),

whih implies that

z(gl(J; C )) = fx 2 gl(J; C ): [x; gl(J; C )℄ = f0gg = f0g:

What survives is the Lie algebra homomorphism

tr: gl(J; C )! C

with ker tr = sl(J; C ). Sine sl(J; C ) is simple (Exerise!), we obtain

[gl(J; C ); gl(J; C )℄ = sl(J; C );

showing that gl(J; C ) is almost redutive but not redutive.

The following theorem shows that the abundane of integrable roots in a

split Lie algebra has strong onsequenes for its struture.

Theorem II.6. A split Lie algebra g is almost redutive and loally �nite if

and only if all roots are integrable, i.e., � = �

i

.

Proof. If � = �

i

, then Theorem VI.3 in [Ne00a℄ implies that g is loally

�nite. Now Theorem III.12 in [St99a℄ shows that g is almost redutive. The

onverse follows from Lemma IV.8 and Theorem III.19 in [St99a℄.

Positive systems

De�nition II.7. A subset �

+

� � is alled a positive system if � =

�

+

[ ��

+

and no non-trivial linear ombination

P

n

j=1

�

j

�

j

with �

j

2 �

+

and �

j

� 0 vanishes. Geometrially this ondition means that

one(�

+

) := R

+

[�

+

℄ :=

n

n

X

j=1

�

j

�

j

:�

j

2 R

+

; �

j

2 �

+

o

is a pointed onvex one in the sense that

one(�

+

) \ � one(�

+

) = f0g:

This requirement implies in partiular that eah positive system ontains

exatly one root of eah set f�;��g and that �

+

\ ��

+

= �.
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Proposition II.8. The positive systems in the root system

� = A

J

:= f"

j

� "

k

: j 6= k 2 Jg

of gl(J; C ) are in one-to-one orrespondene with the linear orderings � of the

set J . This orrespondene is established by assigning to � the positive system

�

+

�

:= f"

j

� "

k

: j � kg:

Proof. First we show that for a linear order � on J the set �

+

�

is a

positive system. So let �

i

= "

j

i

� "

k

i

, i = 1; : : : ; n , be positive roots and

J

0

:= fj

i

; k

i

: i = 1; : : : ; ng . Let f : J

0

! R be an injetive dereasing funtion.

Then there exists a linear funtional F on spanf"

j

: j 2 J

0

g with F ("

j

) = f(j)

and we have for eah positive linear ombination

F

�

n

X

i=1

�

i

�

i

�

=

n

X

i=1

�

i

�

f(j

i

)� f(k

i

)

�

> 0

if at least one �

i

is positive. This shows that the set �

+

�

is a positive system in

�.

If, onversely, �

+

is a positive system, then we de�ne j � k by j = k or

"

j

�"

k

2 �

+

. It is lear that we thus obtain a reexive, transitive relation whih

de�nes a linear order on J .

Remark II.9. (a) The Weyl group W of � = A

J

is isomorphi to the

group S

(J)

of �nite permutations of the set J (the subgroup generated by all

transpositions). It ats on the diagonal matries by permuting the entries. Sine

S

(J)

ats transitively on the set of all pairs of elements of J , we see that W ats

transitively on �.

As the preeding proposition shows, the W -orbits on the set of all positive

systems in � orrespond to the S

(J)

-orbits on the set of all linear orders on J .

If J is �nite, then W ats transitively on the set of all linear orders, hene on the

set of all positive systems. This does not make it neessary to onsider di�erent

positive systems for gl(n; C ) beause every �nite linearly ordered set (J;�) is

isomorphi to (f1; : : : ; ng;�).

(b) If J = N , then it is lear that the natural order � on N orresponds to the

standard positive system. A linear order is W -onjugate to this one if there are

only �nitely many pairs (j; k) with j < k and k � j (Exerise!). Interesting

other orders are the following: 2 � 3 � 4 � : : : � 1 or 3 � 4 � 5 � : : : � 1 � 2

et. Another lass of interesting orders arises from bijetions with Z :

: : :7 � 5 � 3 � 1 � 2 � 4 � 6 : : :

One ould even de�ne a linear order on N by using a bijetion to Q .

() Note that for orders like those desribed above on J = N one an think of

the elements of gl(N ; C ) as N � N -matries with �nitely many non-zero entries,

where the basis is ordered aording to the linear order � . For the order oming

from the bijetion with Z , this leads to the representation by Z � Z -matries

with �nitely many non-zero entries.
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Involutions on split Lie algebras

De�nition II.10. (a) An involutive Lie algebra is a omplex Lie algebra g

endowed with an involutive antilinear antiautomorphism z 7! z

�

. This means in

partiular that

(x

�

)

�

= x and [x; y℄

�

= [y

�

; x

�

℄:

Suh an involution determines the real form

g

R

:= fx 2 g : x

�

= �xg

of g . This is a real subalgebra with g = g

R

� ig

R

(diret sum of vetor spaes).

If, onversely, g

R

is a real form of g , then there exists a unique involution �

de�ning g

R

whih is given by (x+ iy)

�

:= �x+ iy for x; y 2 g

R

.

(b) Let (g; h) be a omplex split Lie algebra and g = h +

P

�2�

g

�

the orre-

sponding root deomposition. An involution � of g is said to be ompatible with

the root deomposition if x

�

2 g

��

for x 2 g

�

and � 2 � [ f0g . In this ase

the triple (g; h; �) is alled an involutive split Lie algebra.

() Let (g; h; �) be an involutive split Lie algebra and � the orresponding root

system. For � 2 �

i

the spae g(�)

R

:= g(�)\g

R

is a real form of the test algebra

g(�)

�

=

sl(2; C ), so that g(�)

R

�

=

sl(2;R)

�

=

su(1; 1) or g(�)

R

�

=

su(2). We all �

ompat if g(�)

R

�

=

su(2) and write �

k

for the set of ompat roots. The roots

in �

p

:= � n�

k

are alled non-ompat. We write W

k

for the subgroup of W

generated by the reetions r

�

, � 2 �

k

. This group is alled the ompat Weyl

group, whih of ourse does not mean that W

k

is a ompat topologial group.

Examples II.11. (a) If H is a Hilbert spae and gl(H) := B(H) the spae of

all bounded linear operators on H , then gl(H) is an involutive Lie algebra with

respet to the operator adjoint whih is de�ned by

hX

�

:v; wi = hv;X:wi for all v; w 2 H:

The orresponding real form is the subalgebra

u(H) := gl(H)

R

= fX 2 B(H):X

�

= �Xg

of skew-hermitian operators. We will see later how the notation u(H) and gl(H)

will be justi�ed by the orresponding Lie groups.

(b) For H = C

n

with hz; wi =

P

n

j=1

z

j

w

j

we also write

gl(n; C ) := gl(H) and u(n; C ) := u(H):

The subalgebra

sl(n; C ) := fX 2 gl(n; C ): trX = 0g
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is invariant under the involution, and we thus obtain the real form

su(n; C ) := u(n; C ) \ sl(n; C ) = sl(n; C )

R

:

() For every set J the Lie algebra gl(J; C ) an be viewed as operators on the

Hilbert spae

H = l

2

(J; C ) =

n

(x

j

)

j2J

2 C

J

:

X

j

jx

j

j

2

<1

o

:

The orresponding involution is given by X

�

= X

>

.

(d) The Lie algebra gl(n; C ) has another natural involution given by X

℄

= �X ,

where X = (x

ij

)

i;j2J

for X = (x

ij

)

i;j2J

. In this ase the orresponding real

form is

gl(n; C )

R

= gl(n;R);

the Lie algebra of real (n� n)-matries.

(e) For � :=

�

1

p

0

0 �1

q

�

2 gl(p+ q; C ) we obtain on gl(p+ q; C ) an involution

by X

℄

:= �X

�

� . The orresponding real form is alled u(p; q; C ). We likewise

have the real form su(p; q; C ) of sl(p+ q; C ).

In the �rst part of these letures we will mainly be onerned with the ase

where all roots are ompat. In this ase we all g

R

a ompat real form of g .

Note that the standard involution X

�

= X

>

on gl(J; C ) has this property.

Exerises for Setion II

Exerise II.1. Let g be a �nite-dimensional Lie algebra with root deompo-

sition.

(a) Show that for eah root � and x

�

2 g

�

the endomorphism adx

�

: g ! g is

nilpotent. Hint: The set of roots is �nite.

(b) If g is �nite-dimensional, then � 2 � is integrable if and only if g(�)

�

=

sl(2; C ).

() If g is loally �nite (every �nite subset generates a �nite-dimensional subal-

gebra), then � 2 � is integrable if and only if g(�)

�

=

sl(2; C ).

(d)* If g is loally �nite, then � 2 � is integrable if and only if

�([g

�

; g

��

℄) 6= f0g:

Hint: Use the representation theory of sl(2; C ).

* Exerises marked with � require more work than the others.
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Exerise II.2. In the Lie algebra gl(n; C ) of (n�n)-matries, we onsider the

subalgebra g of upper triangular matries.

(a) Show that the diagonal matries h are a splitting Cartan subalgebra of g .

(b) � \ �� = f0g holds for the orresponding root system.

() Are there any integrable roots?

Exerise II.3. (a) Find on the vetor spae C [Z℄ (the algebra of all polynomi-

als in one indeterminate Z over C ) two linear maps P and Q with [P;Q℄ = 1 .

(b) Let V be a vetor spae and gl(V ) := End(V ) the Lie algebra of all linear

maps V ! V . Show that

1 2 [gl(V ); gl(V )℄ () dimV =1:

Hint: If V is in�nite, then V

�

=

V 
 C [Z℄ (why?).

()

�

Show that if dimV =1 , then

gl(V ) = [gl(V ); gl(V )℄:

Hint: Write V

�

=

V 
 C [Z℄ and write a given A 2 gl(V ) as A = [S;B℄ with

S(v 
 f(Z)) = v 
 f

0

(Z).

Exerise II.4. (Blok struture of lassial Lie algebras) Let J be a set and

onsider the disjoint union 2J := J

_

[ � J , where �J means a set whose el-

ements are formally written as �j , j 2 J . We write C

(2J)

= C

(J)

� C

(J)

and aordingly elements of gl(2J; C ) as blok (2� 2)-matries with entries in

gl(J; C ).

(a) Show that

o(2J; C ) :=

n

�

a b

 �a

>

�

2 gl(2J; C ): b = �b

>

;  = �

>

o

is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = D

J

:= f�("

j

� "

k

): j 6= k; j; k 2 Jg;

where we de�ne "

j

2 h

�

by "

j

�

diag(x

ii

)

�

:= x

jj

for j 2 J . Hint: Show that the

symmetri bilinear form �(v; w) :=

P

j22J

v

j

w

�j

satis�es

o(2J; C ) = fX 2 gl(2J; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

(b) Show that

sp(2J; C ) =

n

�

a b

 �a

>

�

2 gl(2J; C ): b = b

>

;  = 

>

o
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is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = C

J

:= f�2"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg:

Hint: Show that the skew-symmetri bilinear form

�(v; w) :=

X

j2J

x

j

y

�j

� x

�j

y

j

satis�es

sp(J; C ) = fX 2 gl(2J; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

() We write C

(2J+1)

= C

(J)

�C �C

(J)

and aordingly elements of gl(2J+1; C )

as blok (3� 3)-matries. Show that

o(2J + 1; C ) :=

�

0

�

a b 

�b

>

0 d

e �d

>

�a

>

1

A

2 gl(2J + 1; C ):  = �

>

; e = �e

>

�

is a Lie algebra and that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a splitting Cartan subalgebra of g with the root system

� = B

J

:= f�"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg:

Hint: Show that the symmetri bilinear form �(v; w) :=

P

j22J+1

v

j

w

�j

satis�es

o(2J + 1; C ) = fX 2 gl(2J + 1; C ): (8v; w 2 V ) �(X:v; w) + �(v;X:w) = 0g:

The preeding exerise shows that there are split Lie algebras with h

�

=

C

(J)

, where � = �

i

is one of the following root systems:

A

J

= f"

j

� "

k

: j; k 2 J; j 6= kg; for sl(J; C ); gl(J; C );

B

J

= f�"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J + 1; C )

C

J

= f�2"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for sp(J; C ); and

D

J

= f�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J; C ):

One an show that these are preisely the in�nite root systems of simple split

loally �nite Lie algebras whih then leads to the lassi�ation of this lass

of simple Lie algebras ([NeSt00℄): Every in�nite-dimensional loally �nite split

simple omplex Lie algebra g is isomorphi to one of the following three types:

sl(J; C ); sp(J; C ) or o(2J; C )

�

=

o(2J + 1; C ):

The latter isomorphism is spei� for the in�nite-dimensional situation. It is

disussed in Exerise II.6 below.
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Exerise II.5. (a) Show that gl(J; C ) and therefore every subalgebra of

gl(J; C ) is a loally �nite Lie algebra.

(b) Show that all roots of the Lie algebras o(2J; C ), o(2J + 1; C ) and sp(J; C )

are integrable.

() Determine the struture of the Weyl groups for sl(J; C ), o(2J; C ),

o(2J + 1; C ) and sp(J; C ).

Exerise II.6. (Isomorphisms of orthogonal Lie algebras) Let J = J

1

_

[J

2

be

a set and S 2 End(C

(J)

) the symmetri blok (2� 2)-matrix

S :=

�

1

J

1

0

0 �1

J

2

�

with respet to the deomposition C

(J)

= C

(J

1

)

� C

(J

2

)

. We de�ne the Lie

algebra

o(J

1

; J

2

; C ) := fX 2 gl(2J; C ):X

>

S + SX = 0g:

(a) Show that o(2J; C )

�

=

o(J; J; C ).

(b) Show that o(2J + 1; C )

�

=

o(J + 1; J; C ).

() Show that o(J

1

; J

2

; C )

�

=

o(J

1

_

[J

2

; 0; C ).

(d) Dedue that o(2J; C )

�

=

o(2J + 1; C ) for in�nite sets J .

(e) Whih of the arguments in (a){(d) work over arbitrary �elds K of harater-

isti zero? When is o(J

1

; J

2

; K )

�

=

o(J

0

1

; J

0

2

; K )? What happens over R ?

Exerise II.7. (a) Desribe the endomorphisms of the vetor spae C

(J)

in

terms of (J � J)-matries. Whih matries our?

(b) Show that every (J � J)-matrix A for whih every olumn ontains at most

�nitely many non-zero entries and whih is invertible in the sense that there

exists another matrix A

�1

of this type with AA

�1

= A

�1

A = 1 de�nes an

isomorphism '

A

of gl(J; C ) by '

A

(x) = AxA

�1

.

() Show that the group S

J

of all bijetions of J ats naturally on the Lie algebra

gl(J; C ) by automorphisms.

Exerise II.8. (a) Show that the real forms sl(2;R) and su(1; 1) of sl(2; C )

are isomorphi.

(b) Desribe the isomorphisms so(3;R)

�

=

su(2; C ) and so(3; C )

�

=

sl(2; C ).

() Is every real form of sl(2; C ) isomorphi to su(2; C ) or su(1; 1; C )?

(d) Desribe the orresponding real form in terms of (2� 2)-blok matries.

(e) How an Example II.10(e) be generalized to Lie algebras of operators on

Hilbert spaes?

Exerise II.9. We all a module V of the split Lie algebra g integrable if for

eah integrable root � 2 �

i

the module V is loally �nite for the subalgebra

g(�)

�

=

sl(2; C ). Show that if V is an integrable module of the �nite-dimensional

split Lie algebra g and h � g a splitting Cartan subalgebra, then the set P

V

� h

�

of h -weights of V is invariant under the Weyl group. Hint: For eah weight

� 2 P

V

and eah integrable root � onsider the g(�)-module

P

k2Z

V

�+k�

.
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Exerise II.10. (a) Let g = sl(J; C ), where J is an in�nite set. Show that

for eah element x 2 gl(J; C ) n sl(J; C ) the derivation D := adx j

g

of sl(J; C ) is

not inner.

(b) Let d be a diagonal matrix d = diag(d

j

)

j2J

. Then D(x) := dx� xd de�nes

a derivation of gl(J; C ) and sl(J; C ) whih is diagonalizable as an operator on

both Lie algebras.

() Let A be a omplex J � J -matrix suh that eah row and eah olumn of A

ontains at most �nitely many entries. Then D

A

(x) := Ax� xA maps gl(J; C )

and sl(J; C ) into itself and de�nes a derivation of these algebras.

Exerise II.11. A subset � of a positive system �

+

is alled a basis if

�

+

� N

0

[�℄, i.e., every positive root is a sum of elements of �. We assume

that � = A

J

.

(a) A positive system �

+

�

has a basis if and only if for eah pair j; k 2 J with

j � k the order interval [j; k℄ := fi 2 J : j � i � kg is �nite.

(b) If �

+

has a basis, then J is ountable.

() If J is in�nite and ountable, then there are three types of positive systems

�

+

�

whih have a basis. They orrespond to the linearly ordered sets (N ;�),

(N ;�) (the reversed order) and (Z;�).
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III. Unitary highest weight modules

In the representation theory of in�nite-dimensional Lie groups, the unitary high-

est weight representations are a very prominent lass of representations. This

has several reasons. First of all they arise most naturally in physial models

beause boundedness properties of spetra (suh as the lower boundedness of the

energy) often imply that representations are highest weight representations (see

the disussion in Chapter X of [Ne99a℄). On the other hand, highest weight rep-

resentations enjoy some very lose onnetions to omplex geometry and K�ahler

manifolds. We have already seen part of this onnetion in our disussion of the

Borel{Weil Theorem in Setion I.

In this setion we study unitary highest weight representations from a

purely algebrai point of view. After desribing the general setting, we will

explain some spei� lassi�ation results for loally �nite Lie algebras.

Unitary highest weight modules of loally �nite Lie algebras

De�nition III.1. Let g be a split Lie algebra.

(a) For a g -module V and � 2 h

�

we write

V

�

:= fv 2 V : (8X 2 h)X:v = �(X)vg

for the weight spae of weight � and

P

V

= f� 2 h

�

:V

�

6= f0gg

for the set of h-weights of V .

(b) A non-zero element v 2 V

�

, � 2 P

V

, is alled primitive (with respet to

the positive system �

+

) if g

�

:v = f0g holds for all � 2 �

+

. A g -module V is

alled a highest weight module with highest weight � (with respet to �

+

) if it

is generated by a primitive element of weight � .

() Suppose, in addition, that g is an involutive Lie algebra. Then we all a

hermitian form h�; �i on a g -module V ontravariant if

hX:v; wi = hv;X

�

:wi for all v; w 2 V;X 2 g:

A g -module V is said to be unitary if it arries a ontravariant positive de�nite

hermitian form. Note that this property depends on the involution � on the Lie

algebra g .

In the following we will de�ne �

�

(x) := �(x

�

) for � 2 h

�

.
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Proposition III.2. Let g be an involutive split omplex Lie algebra and �

+

a positive system. Then the following assertions hold:

(i) Eah module V of highest weight � satis�es

P

V

� �� N

0

[�

+

℄:

Moreover, it has a unique maximal submodule and satis�es End

g

(V ) = C 1 .

(ii) For eah � 2 h

�

there exists a unique irreduible highest weight module

L(�;�

+

) .

(iii) If L(�;�

+

) is unitary, then � = �

�

and moreover � = �

�

for eah � 2 P

V

.

(iv) Eah unitary highest weight module is irreduible.

(v) If � = �

�

and v

�

2 L(�;�

+

) is a primitive element, then L(�;�

+

) arries

a unique ontravariant hermitian form h�; �i with hv

�

; v

�

i = 1: This form is

non-degenerate.

Proof. (i) Let n

�

:=

P

�2�

+

g

��

and v

�

2 V

�

be a primitive element.

From U(g) = U(n

�

)U(h)U(n

+

) (whih follows from the Poinar�e{Birkho�{

Witt Theorem) we obtain V = U(n

�

):v

�

, showing that V has an h -weight

deomposition. Sine the set of h -weights on U(n

�

) is �N

0

[�

+

℄ , the set P

V

of

h -weights of V is ontained in �� N

0

[�

+

℄ .

To see that V

�

is one-dimensional, we observe that

V = U(n

�

):v

�

� C v

�

+ n

�

:V;

where all h -weights in n

�

:V are ontained in

S

�2�

+

(� � � � N

0

[�

+

℄) . The

relation (��

+

) \ N

0

[�

+

℄ = � further implies that � is not a weight of n

�

:V ,

and therefore dimV

�

= 1.

In view of dimV

�

= 1, eah A 2 End

g

(V ) maps the primitive element

v

�

to a multiple v

�

of v

�

. Then A = 1 is a onsequene of the fat that v

�

generates V .

If N � V is a proper submodule, then it does not ontain v

�

. Further

the fat that it is invariant under h implies that it deomposes aording to

the h -weight deomposition (Exerise III.1). Hene it is ontained in the proper

subspae

X

06=�2N

0

[�

+

℄

V

���

:

This implies that the sum of all proper submodules is a proper submodule and

therefore a maximal submodule.

(ii) Let C

�

denote the one-dimensional module of the Lie algebra b := h+n

+

on

whih n

+

ats trivially and h ats by X:v = �(X)v . We onsider the indued

g -module

M(�;�

+

) := U(g)


U(h+n

+

)

C

�

whih is alled the Verma module of highest weight � . We think of M(�;�

+

) as

a g -module quotient of the tensor produt U(g)
 C

�

, where C

�

is onsidered

as a trivial g -module, modulo the subspae spanned by the elements of the form
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DX
1�D
�(X), D 2 U(g), X 2 b . In this sense, we write [v
 z℄ 2M(�; b)

for the image of the element v 
 z 2 U(g)
 C

�

under the natural surjetion to

M(�; b). We also write �:U(b) ! C for the algebra homomorphism obtained

by the homomorphi extension of � .

Claim 1: The module M(�; b) is a highest weight module of highest weight

� , and [1 
 1℄ is a primitive element: This is immediate from the de�nitions

beause for X 2 b we have

X:[1
 1℄ = [X 
 1℄ = [1
 �(X)℄ = �(X)[1
 1℄;

and U(g):[1
 1℄ = [U(g)
 1℄ =M(�;�

+

).

Claim 2: Eah g -module V of highest weight � is a quotient of M(�;�

+

):

Let v

�

2 V be a primitive element of weight � . Then we have a unique surjetive

g -equivariant map

U(g)
 C

�

! V with D 
 1 7! D:v

�

:

Sine v

�

is a b -weight vetor of weight � , this map fators through a surjetive

map

M(�;�

+

)! V with [D 
 1℄ 7! D:v

�

:

Now Claim 2 and (i) show that every irreduible module of highest weight

� is isomorphi to the quotient of M(�;�

+

) modulo its maximal submodule.

(iii) The �rst part follows diretly from

�(X)hv

�

; v

�

i = hX:v

�

; v

�

i = hv

�

; X

�

:v

�

i = �(X

�

)hv

�

; v

�

i

for all X 2 h and a primitive element v

�

. The seond part now follows from (i)

and �

�

= � for all roots � 2 �.

(iv) First we observe that for unitary modules the h -weight deomposition is

orthogonal (Exerise III.1). Let N � V be a proper submodule. As we have

seen in (i),

N �

X

06=�2N

0

[�

+

℄

V

���

� v

?

�

:

Hene

hN; V i = hN;U(g):v

�

i = hU(g):N; v

�

i � hN; v

�

i = f0g:

Sine the h�; �i is non-degenerate, it follows that N = f0g and therefore that V

is irreduible.

(v) Uniqueness of the form: We de�ne a linear funtional on U(g) by

'(D) := hD:v

�

; v

�

i:

In view of

hD

1

:v

�

; D

2

:v

�

i = hD

�

2

D

1

:v

�

; v

�

i = '(D

�

2

D

1

);



In�nite-dimensional groups and their representations 33

it suÆes to show that ' is uniquely determined by � and does not depend on

h�; �i . For D 2 U(h) we have '(D) = �(D), and

U(g)n

+

+ n

�

U(g) � ker':

Sine the Poinar�e{Birkho�{Witt Theorem implies that U(g) is a diret vetor

spae sum

(3:1) U(g) = n

�

U(g)� U(h)� U(g)n

+

;

it follows that ' is uniquely determined by � .

Existene: We use the deomposition in (3.1) to de�ne a linear funtion '

on U(g) with U(g)n

+

+ n

�

U(g) � ker' and ' j

U(h)

= � . First we observe that

the form

�

U(g)
 C

�

�

�

�

U(g)
 C

�

�

! C ; (C 
 1; D 
 1) 7! '(D

�

C)

is sesquilinear and fators through a form on M(�;�

+

) with

h[C 
 1℄; [D
 1℄i := '(D

�

C); C;D 2 U(g):

The assumption � = �

�

�rst implies that '(x

�

) = '(x)

�

holds for all x 2 U(h),

and further

�

U(g)n

+

�

�

= n

�

U(g) implies that the preeding relation holds for

all x 2 U(g). Therefore h�; �i is a hermitian form, and the ontravariane follows

immediately from the de�nition.

The following proposition is quite useful to prove that highest weight mod-

ules of loally �nite Lie algebras are unitary beause it permits to use information

on �nite-dimensional Lie algebras.

In the following we all a family (g

j

)

j2J

of subalgebras of g direted if for

j

1

; j

2

2 J there exists a j

3

2 J with g

j

1

[ g

j

3

� g

j

3

.

Proposition III.3. Let (g

j

)

j2J

be a direted family of involutive subalgebras

of g with the following properties:

(1) g =

S

j

g

j

.

(2) Eah g

j

is invariant under h suh that h

j

:= h \ g

j

is a splitting Cartan

subalgebra of g

j

.

(3) h

j

separates the points in the vetor spae spanned by

�

j

:= f� 2 �: g

�

\ g

j

6= f0gg;

so that we may identify �

j

with the roots of g

j

with respet to h

j

.

For a positive system �

+

� � we onsider the positive system �

+

j

:=

�

+

\ �

j

in �

j

. Then the highest weight module L(�;�

+

) of g is unitary if

and only if all the highest weight modules L(� j

h

j

;�

+

j

) for the subalgebras g

j

,

j 2 J , are unitary.
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Proof. If L(�;�

+

) is unitary and v

�

2 L(�;�

+

) is a primitive element, then

V

j

:= U(g

j

):v

�

is a unitary highest weight module of highest weight �

j

:= � j

h

j

of

g

j

, hene irreduible (Proposition III.2(iv)). We onlude that V

j

�

=

L(�

j

;�

+

j

)

is unitary.

If, onversely, all the modules L(�

j

;�

+

j

) are unitary, and h�; �i denotes

the unique ontravariant hermitian form on L(�;�

+

) with hv

�

; v

�

i = 1 (f.

Proposition III.2(v)), then the uniqueness of the ontravariant form on V

j

implies

that it is positive semide�nite on the submodules V

j

whose union oinides with

L(�;�

+

). Therefore it is positive semide�nite on L(�;�

+

) and hene positive

de�nite beause L(�;�

+

) is irreduible.

Some neessary onditions for unitarity

In this subsetion g denotes an involutive split Lie algebra. We use expliit

alulations involving root vetors to derive some neessary onditions for the

unitarity of a highest weight module L(�;�

+

), whih for the partiular ase of

Lie algebras with �

+

= f�g and dim g

�

= 1 turn out to be suÆient.

Lemma III.4. For � 2 � , Z 2 g

�

and Y 2 g

��

, the following assertions

hold:

(i) [Z; Y

n

℄ = nY

n�1

�

[Z; Y ℄�

n�1

2

�([Z; Y ℄)1

�

in U(g) .

(ii) If v

�

2 L(�;�

+

) is a primitive element, then

Z

n

(Z

�

)

n

:v

�

= n!

n�1

Y

j=0

�

��

j

2

�

�

([Z;Z

�

℄)v

�

:

Proof. (i) Repeated appliation of the Leibniz rule leads to

[Z; Y

n

℄ =

X

i+j=n�1

Y

i

[Z; Y ℄Y

j

=

X

i+j=n�1

Y

i+j

[Z; Y ℄ + Y

i

�

[Z; Y ℄; Y

j

�

=

X

i+j=n�1

Y

i+j

[Z; Y ℄� j�([Z; Y ℄)Y

i+j

= nY

n�1

[Z; Y ℄�

n(n�1)

2

�([Z; Y ℄)Y

n�1

= nY

n�1

�

[Z; Y ℄�

(n�1)

2

�([Z; Y ℄)1

�

:

(ii) Again repeated appliation of the Leibniz rule yields

[Z

n

; (Z

�

)

n

℄ =

X

i+j=n�1

Z

i

[Z; (Z

�

)

n

℄Z

j

;

so that Z

n

(Z

�

)

n

:v

�

= [Z

n

; (Z

�

)

n

℄:v

�

= Z

n�1

[Z; (Z

�

)

n

℄:v

�

: Hene the formula

under (i) gives

Z

n

(Z

�

)

n

:v

�

= n(��

n�1

2

�)([Z;Z

�

℄) Z

n�1

(Z

�

)

n�1

:v

�

:

Now the assertion follows from an easy indution.



In�nite-dimensional groups and their representations 35

Proposition III.5. Suppose that g = h+g

�

+g

��

is an involutive Lie algebra

with g

�

= C Z , and let � = �

�

2 h

�

.

(i) If �([Z;Z

�

℄) > 0 , then L(�;�

+

) is unitary if and only if there exists an

n 2 N

0

with

�([Z;Z

�

℄) = n

�([Z;Z

�

℄)

2

:

For � 2 �

k

this means that �(��) 2 N

0

. In this ase, dimL(�;�

+

) = n+1 .

(ii) If �([Z;Z

�

℄) � 0 , then L(�;�

+

) is unitary if and only if �([Z;Z

�

℄) � 0 .

If, in addition, �([Z;Z

�

℄) = 0 , then L(�;�

+

) is one-dimensional, and

otherwise in�nite-dimensional with the weights �� N

0

� .

Proof. Sine g

�

= C Z , the highest weight module L(�;�

+

) is the orthogonal

diret sum of the one-dimensional subspaes generated by the elements (Z

�

)

n

:v

�

,

n 2 N

0

. So it is unitary if and only if all the numbers in Lemma III.4(ii) are

non-negative. Now the assertions are immediate onsequenes.

The following theorem provides the essential information that we will need

in the following setions.

Theorem III.6. (Charaterization of unitarity) Let g be a loally �nite split

Lie algebra with � = �

k

.

(i) Then the highest weight module L(�;�

+

) of g with respet to �

+

is unitary

if and only if � = �

�

and � is dominant integral in the sense that

�(��) 2 N

0

for all � 2 �

+

:

(ii) If L(�;�

+

) is unitary and R := Z[�℄ � h

�

denotes the root group, then the

weight system P

�

of L(�;�

+

) is given by

P

�

= onv(W:�) \ (�+R):

(iii) For eah X 2 g the orresponding operator on L(�;�

+

) is loally �nite.

Proof. (Sketh) (i) The neessity of �(��) 2 N

0

for all � 2 �

+

follows

from Proposition III.5. To see that this ondition is suÆient, we �rst observe

that we may w.l.o.g. assume that g is perfet beause [g; g℄ is a subalgebra with

h+[g; g℄ = g and the splitting Cartan subalgebra h\[g; g℄ = span

�

�, and L(�;�)

also is a highest weight module for [g; g℄ (f. Exerise III.3).

Sine g is loally �nite, it an be written as a direted union of �nite-

dimensional subalgebras g

j

, j 2 J , as in Proposition III.3. These subalgebras

an be obtained as follows: Let �

j

� � be a �nite subset whih is full in the set

that �

j

= � \ span�

j

. Then we onsider g

j

:= span

�

�

j

+

P

�2�

j

g

�

. It is not

hard to see that g is a direted union of these �nite-dimensional subalgebras for

whih (g

j

)

R

is a ompat real form. In view of Proposition III.3, the assertion

now follows from the orresponding result for �nite-dimensional Lie algebras,

where we already know that the fat that �

j

is dominant integral implies that

L(�

j

;�

+

j

) is �nite-dimensional (Theorem I.1), so that the ompatness of the
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simply onneted group U

j

orresponding to u

j

:= (g

j

)

R

implies that the repre-

sentation of this group on L(�

j

;�

+

j

) an be made unitary by averaging a given

positive de�nite hermitian form.

(ii) This part follows from the orresponding assertion for �nite-dimensional Lie

algebras (f. [Bou90, Ch. 8℄) and the trivial observation that W =

S

j2J

W

j

,

where W

j

� W is the subgroup generated by the reetions r

�

, � 2 �

j

.

(iii) Let X 2 g and v 2 L(�;�

+

). We have to show that v is ontained in a

�nite-dimensional X -invariant subspae. We write X as X

h

+X

s

with X

h

2 h

and X

s

2 [g; g℄ . Now let g

j

be as in (iii) so large that v 2 U(g

j

):v

�

and X

s

2 g

j

.

Then [X; g

j

℄ � g

j

implies that the �nite-dimensional subspae U(g

j

):v

�

is X -

invariant beause X:v

�

2 C v

�

+X

s

:v

�

� U(g

j

):v

�

.

The preeding theorem applies in partiular to the Lie algebras sl(J; C ),

gl(J; C ), sp(J; C ), o(2J; C ) and o(2J + 1; C ) with their natural involutions

de�ned by x

�

= �x

>

.

Example III.7. The unitary highest weight modules of the Lie algebra gl(J; C )

with respet to the positive system �

+

�

= f"

j

� "

k

: j � k; j; k 2 Jg are

parametrized by funtionals � = (�

j

)

j2J

2 h

�

�

=

C

J

whih we also write as

� =

X

j2J

�

j

"

j

or as funtions �: J ! R; j 7! �

j

. If � = �

�

, then the highest weight module

L(�) of gl(J; C ) is unitary if and only if �

j

� �

k

2 N

0

for j � k:

Given a linear order � on J we have partiular dominant integral fun-

tionals given by

$

M

:=

X

j2M

"

j

;

where M � J is a subset satisfying M � J nM (it is a lower set for the order

�). These funtionals $

M

are alled the fundamental weights. Note that for

M = J we get $

J

= tr. For more details on the relation between fundamental

weights and general weights we refer to the disussion in [Ne98℄.

If g is �nite-dimensional, then the preeding theorem diretly yields a

lassi�ation of the unitary highest weight modules for the ompat real form

u = g

R

beause every simple highest weight module is �nite-dimensional and

every simple �nite-dimensional module is isomorphi to some L(�;�

+

) for a

�xed positive system �

+

(Theorem I.1). In the in�nite-dimensional ase there

are many di�erent positive systems whih are not onjugate under the Weyl

group W (f. Remark II.9), so that we annot expet suh a simple situation.

To obtain a lassi�ation of the unitary highest weight modules, we therefore have

to disuss when two unitary highest weight modules L(�;�

+

) and L(

e

�;

e

�

+

) are

isomorphi.
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The lassi�ation of unitary highest weight modules

In this setion g is a loally �nite split involutive Lie algebra with � = �

k

.

Proposition III.8. If V is an irreduible g-module with h-weight system

P

V

� h

�

, and �

+

a positive system suh that � 2 P

V

satis�es

� 2 P

V

� �� R

+

[�

+

℄;

then V

�

=

L(�;�

+

) .

Proof. Let v

�

2 V be an h -weight vetor of weight � . For � 2 �

+

we then

have g

�

:v

�

� V

�+�

. If g

�

:v

�

is non-zero, this means that

�+ � 2 P

V

� �� R

+

[�

+

℄;

hene that � 2 �

+

\ �R

+

[�

+

℄ = �, a ontradition. Thus v

�

is a primitive

element in V with respet to �

+

, and therefore the irreduibility of V implies

that V is an irreduible highest weight module of highest weight � , i.e., isomor-

phi to L(�;�

+

).

Corollary III.9. Two unitary highest weight modules L(�;�

+

) and

L(�;

e

�

+

) are isomorphi.

Proof. Aording to Theorem III.6, both modules have the same set of weights

satisfying the ondition of Proposition III.8, so that L(�;

e

�

+

)

�

=

L(�;�

+

).

In view of the preeding orollary, we may de�ne

L(�) := L(�;�

+

)

if �

+

is a positive system suh that L(�;�

+

) is unitary beause the isomorphy

lass of L(�;�

+

) does not depend on the hoie of �

+

. The next question is

when two unitary highest weight modules L(�) and L(�) are isomorphi. To

answer this question, we will need the following elementary lemma:

Lemma III.10. If E is a subset of the real vetor spae V , then Ext(onvE) �

E .

Proof. Sine every element of onv(E) is a �nite onvex ombination of

elements of E , it learly suÆes to prove the assertion for a �nite subset E .

We use indution over jEj . For jEj = 1 the assertion is trivial. If the

assertion holds for set of at most n elements and jEj = n + 1, then we write

E = E

0

[ feg with e 2 E and jE

0

j = n . Now

onv(E) =

[

�2[0;1℄

�

� onv(E

0

) + (1� �)e

�

;

and therefore Ext

�

onv(E)

�

� Ext

�

onv(E

0

)

�

[ feg � E

0

[ feg = E:
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Lemma III.11. If L(�;�

+

) is unitary, then

Ext

�

onv(P

�

)

�

=W:�:

Proof. In view of Proposition III.2(i), we have onv(P

�

) � � � R

+

[�

+

℄

and the onvex one R

+

[�

+

℄ is pointed, so that � 2 Ext

�

onv(P

�

)

�

. On the

other hand P

�

is invariant under the Weyl group W (Exerise II.9), whih

implies that W:� � Ext

�

onv(P

�

)

�

. Moreover, Theorem III.6 shows that

onv(P

�

) = onv(W:�), so that Lemma III.10 leads to

Ext

�

onv(P

�

)

�

� W:�:

This ompletes the proof.

Lemma III.12. Two unitary highest weight modules L(�) and L(�) are iso-

morphi if and only if � 2 W:� .

Proof. If � 2 W:� , then Theorem III.6 implies that the set of weights of

L(�) and L(�) oinides, hene that both are isomorphi (Proposition III.8). If,

onversely, L(�)

�

=

L(�), then both have the same set of weights, so that Lemma

III.11 yields

� 2 Ext

�

onv(P

�

)

�

= Ext

�

onv(P

�

)

�

=W:�:

The remaining question is how we an see if for a funtional � 2 h

�

there

exists a positive system �

+

suh that L(�;�

+

) is unitary. To answer this

question we generalize a useful onept from the theory of �nite root systems to

our setting.

De�nition III.13. A subset � � � is alled losed if

(� + �) \� � �:

It is alled paraboli if it is losed and satis�es

� [ �� = �:

Note that losed subsets orrespond to subalgebras p(�) := h +

P

�2�

g

�

(Exerise!).

Proposition III.14. Every paraboli system � ontains a positive system.

Proof. (a) Let �

+

:= � n ��. Then

(� + �

+

) \� � �

+

:

Let � 2 � and � 2 �

+

with �+ � 2 �. Sine � is losed, we have �+ � 2 �.

If this root is not ontained in �

+

, then ��� � 2 �, so that the losedness of

� leads to �� = (��� �) + � 2 �, a ontradition.
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(b) Using Zorn's Lemma, we �nd a maximal losed subset � � � satisfying

� \ �� = �. In view of (a), we then have

�

(� [ �

+

) + (� [ �

+

)

�

\� � � [ �

+

;

and further

(� [ �

+

) \ �(� [ �

+

) � (� \ ��) [ (� \ ��

+

) [ (�� \ �

+

) = �:

Therefore the maximality of � implies that �

+

� �.

() � [ �� = �. Suppose that this is not the ase and pik � 2 � not in � or

��. In view of (b), we then have � 2 �\��. The maximality of � implies that

it annot be enlarged by � , whih means that there exists a �nite-dimensional

subspae E � span� ontaining � suh that the �nite losed subset �

0

:= �\E

annot be put into a positive system

e

�

0

of �

0

:= � \E ontaining � .

The property �

0

\ ��

0

= � implies that b

0

:= span

�

�

0

+

P

�2�

0

g

�

is a

solvable subalgebra of g

0

:= span

�

�

0

+

P

�2�

0

g

�

. Let b be a maximal solvable

subalgebra of g

0

ontaining b

0

. Then

b = span

�

�

0

+

X

�2�

+

0

g

�

for a positive system �

+

0

of �

0

(f. [Bou90, Ch. VIII, x3.1, Prop. 5℄). Now

� 2 �

+

0

[ ��

+

0

leads to a ontradition whih proves that � [ �� = �.

(d) � is a positive system: It suÆes to show that for every �nite-dimensional

subspae E � span� the set � \ E is a positive system in �

0

:= � \ E , but

this follows from the existene of a linearly independent basis of �

+

0

([Bou90,

Ch. VIII℄).

Example III.15. We onsider the root system � = A

J

. If � � � is a positive

system, then

j �

�

k :() "

j

� "

k

2 � [ f0g

de�nes a partial order on J . Sine the positive systems in � orrespond to

linear orders on J , it is easy to see that the positive systems ontained in �

orrespond to the linear orderings � re�ning the partial order �

�

. In this setting

Proposition III.14 means that eah partial order on a set J an be re�ned to a

linear order.

Now we are ready to address the omplete lassi�ation of unitary highest

weight modules.

Theorem III.16. Let P := f� 2 h

�

:�

�

= �; (8� 2 �)�(��) 2 Zg denote the

group of symmetri weights. If L(�;�

+

) is unitary, then � 2 P and, onversely,

for eah � 2 P there exists a positive system �

+

suh that L(�;�

+

) is unitary.

The subset P � h

�

is invariant under the ation of the Weyl group, and the map
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� 7! L(�) indues a bijetion of the orbit spae P=W onto the set of isomorphy

lasses of unitary highest weight modules.

Proof. The neessity of � 2 P follows from Theorem III.6. Now let � 2 P

and onsider the set

�

�

:= f� 2 �:�(��) 2 N

0

g:

We laim that �

�

is a paraboli system. It is lear that �

�

[ ��

�

= �. Now

let �; � 2 �

�

with � + � 2 �. Then the theory of �nite root systems, applied

to �

0

:= � \ spanf�; �g , implies that

(3:2) (�+ �)�2 R

+

��+ R

+

�

�:

In fat, there exists a salar produt (�; �) on span�

0

whih permits us to identify

this spae with spanf��;

�

�g in suh a way that � orresponds to

2

(;)

for  2 �

0

([Bou90, Ch. VIII, x2, no. 2, Th. 2℄). This implies for  = � + � the relation

(3.2) whih in turn shows that �

�

is losed, hene a paraboli system. Now we

use Proposition III.14 to see that there exists a positive system �

+

� �

�

. Then

L(�;�

+

) is unitary by Theorem III.6.

The remainder follows diretly from Lemma III.12.

Exerises for Setion III

Exerise III.1. Let h be an abelian Lie algebra and V an h -module whih is

spanned by simultaneous h -eigenvetors. We all V an h -weight module. Then

the following assertions hold:

(i) V =

L

�2P

V

V

�

.

(ii) Every submodule W � V satis�es

W =

M

�2P

V

(W \ V

�

) =

M

�2P

V

W

�

:

(iii) Suppose that h is involutive and that h�; �i is a ontravariant hermitian form

on V and let � 2 h

�

. We put �

�

(x) := �(x

�

). Then hV

�

; V

�

�

i = f0g for

� 6= � . If, in addition, �

�

= � for eah weight in P

V

, then the weight

deomposition of V is orthogonal with respet to h�; �i .

Exerise III.2. Let g be a �nite-dimensional omplex semisimple Lie algebra.

(i) If g

R

is a real form de�ned by an involution � whih is ompatible with a root

deomposition, then the Cartan subalgebra h

R

:= h\ g

R

of g

R

is ompatly

embedded in the sense that the losure of the group e

ad h

R

in Aut(g

R

) is

ompat.

(ii) Find a real form of a omplex semisimple Lie algebra whih does not ontain

a ompatly embedded Cartan subalgebra. Then g

R

does not our for any

involution ompatible with a root deomposition.
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Exerise III.3. Let (g; h) be a split Lie algebra.

(i) g = [g; g℄ + h and for eah highest weight module V with highest weight

vetor v

�

we have V = U(g):v

�

.

(ii) If no root vanishes on h

0

:= h\[g; g℄ , then h

0

is a splitting Cartan subalgebra

of [g; g℄ .

(iii) If h

0

is a splitting Cartan subalgebra of [g; g℄ , then a highest weight mod-

ule L(�;�

+

) of g is unitary if the orresponding highest weight module

L(� j

h

0

;�

+

) of [g; g℄ is unitary.

Exerise III.4. We onsider g = sl(2; C ) with �

+

= f�g and the funtional

� 2 h

�

with �(��) = n 2 N

0

. Let L(�;�

+

) be the orresponding (n + 1)-

dimensional simple g -module with the anonial basis f

j

:v

�

, j = 0; : : : ; n . We

endow g with the involution with g

R

= su(1; 1). Determine the signature of the

anonial hermitian on the subspaes C f

j

:v

�

.
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IV. Banah{Lie groups

In this setion we will briey disuss the ruial points where in�nite-dimensional

Lie theory for Banah{Lie groups di�ers from the familiar �nite-dimensional

theory. Moreover, we will explain some tools that an be used to deal with

spei� groups quite eÆiently.

General Lie theory for Banah{Lie groups

Throughout this setion, we will assume some familiarity with the basi

onepts and results of di�erential alulus in Banah spaes whih does not

di�er very muh from di�erential alulus in R

n

: If U is an open subset of the

Banah spae E , and F a Banah spae, then a map f :U ! F is said to be

di�erentiable in p 2 U if there exists a ontinuous linear map df(p):E ! F suh

that

f(p+ v) = f(p) + df(p):v + o(kvk):

We all f a C

1

-map or ontinuously di�erentiable if it is di�erentiable in every

point of U and the map df :U ! B(E;F ) is ontinuous. We all f a C

2

-map

if df is C

1

et. We say that f is C

1

or smooth if f is C

n

for every n 2 N . So

essentially everything works as in R

n

, provided it is formulated in a oordinate

free way. This holds in partiular for the de�nition of manifolds, submanifolds,

tangent bundles and vetor �elds (whih are always viewed as smooth setions

of the tangent bundle). For the details we refer to [La99℄.

De�nition IV.1. A Banah{Lie group G is a manifold modeled over a Banah

spae suh that the multipliation map G�G! G; (x; y) 7! xy and the inversion

G! G; x 7! x

�1

are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg for

the left, resp., right multipliation on G ([La99, xVI.5℄).

The Lie algebra g of G an be obtained as in the �nite-dimensional ase:

Eah X 2 T

1

(G) (the tangent spae in the identity element 1) orresponds to a

unique left invariant vetor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G:

The spae of left invariant vetor �elds is losed under the Lie braket of vetor

�elds ([La99, Prop. III.5.1℄), hene inherits a Lie algebra struture. In this sense

we obtain on g := T

1

(G) a ontinuous Lie braket whih is uniquely determined

by [X;Y ℄

l

= [X

l

; Y

l

℄ . To emphasize the funtorial dependene of g of G , we

frequently write L(G) for the Lie algebra of G . If k � k is a norm on g de�ning

the topology, then the ontinuity of the Lie braket means that there exists a

onstant C > 0 with

k[X;Y ℄k � CkXk kY k for all X;Y 2 g
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(Exerise IV.10). A Banah spae (g; k � k) whih at the same time is a Lie

algebra with a ontinuous Lie braket is alled a Banah{Lie algebra.

The existene and uniquenes results for ordinary di�erential equations also

hold in the setting of Banah spaes (f. [La99, xxIV.1/2℄). By integrating the ow

of a left-invariant vetor �eld X

l

, we therefore obtain the exponential funtion

exp: g! G; exp(X) := 

X

(1);

where 

X

:R ! G is a solution of the initial value problem



0

X

(t) = X

l

(

X

(t)); 

X

(0) = 1:

The exponential funtion is a smooth map with d exp(0) = id

g

: In view of the

Inverse Funtion Theorem, this implies that one an use the exponential funtion

to onstrut anonial harts of G . As for �nite-dimensional groups, one an

show that these harts de�ne on G the struture of an analyti Lie group (the

transition maps in harts are analyti).

The left invariane of the vetor �eld X

l

implies in partiular that the

integral urve 

X

:R ! G is a Lie group homomorphism (R;+) ! G . It an be

shown that all ontinuous Lie group homomorphism are of this type, so that we

have a natural bijetion

g! Hom(R; G); X 7! 

X

:

Sine essentially all Lie groups arising in these notes will be Banah{Lie

groups, we will simply all them Lie groups.

The following results arry over from �nite-dimensional Lie theory:

Theorem IV.2. Let G and H be Banah{Lie groups.

(a) For X;Y 2 L(G) we have the Trotter produt formula

exp(X + Y ) = lim

n!1

�

exp(

1

n

X) exp(

1

n

Y )

�

n

and the ommutator formula

exp([X;Y ℄) = lim

n!1

�

exp(

1

n

X) exp(

1

n

Y ) exp(�

1

n

X) exp(�

1

n

Y )

�

n

2

:

(b) Let ':G ! H be a ontinuous homomorphism between Banah{Lie groups.

Then ' is smooth and L(') := d'(1):L(G)! L(H) is a ontinuous homomor-

phism of Banah{Lie algebras.

() If, onversely,  :L(G) ! L(H) is a ontinuous homomorphism of Lie

algebras and G is onneted and simply onneted, then there exists a unique

ontinuous homomorphism ':G! H with L(') =  .

Proof. (Sketh) (a) This follows from analyzing the the produt

X � Y := exp j

�1

V

(expX expY ) = X + Y +

1

2

[X;Y ℄ + : : :



44 IV. Banah{Lie groups August 9, 2000

on an open neighborhood W � g for whih there exists an open 0-neighborhood

V �W for whih exp j

V

:V ! exp(V ) is a di�eomorphism and

exp(W ) exp(W ) � exp(V ):

(b) For every X 2 g the homomorphism ' Æ 

X

:R ! H is a ontinuous one-

parameter group, hene an be written as

' Æ 

X

= 

 (X)

;  (X) 2 L(H)

(De�nition IV.1). We onlude that

' Æ exp

G

= exp

H

Æ :

Using (a), one shows that  is linear and a Lie algebra homomorphism. Sine

exp

G

and exp

H

are loal di�eomorphisms, it follows that  :L(G) ! L(H) is

ontinuous.

() This is done as in the �nite-dimensional ase.

The fat that Banah{Lie groups are loally ontratible implies in partiu-

lar that for eah Banah{Lie group G there exists a simply onneted overing

group

e

G , whih also arries a unique Banah{Lie group struture suh that

the map q:

e

G ! G is a overing homomorphism of Lie groups. In the light of

this fat, Theorem IV.2() is a very important tool to \integrate" Lie algebra

representations to group representations.

Corollary IV.3. For every losed subgroup H � G the subset

L(H) := fX 2 g: exp(RX) � Hg

is a losed Lie subalgebra of g .

Proof. This is a diret onsequene of Theorem IV.2(a).

Remark IV.4. (Lie subgroups) (a) Let G be a Lie group with Lie algebra

g . There exist various notions of Lie subgroups in the literature. The weakest

one is that of Maissen ([Ma62℄) who shows that for every losed subalgebra

h � g there exists a onneted Lie group H

L

with Lie algebra h and an injetive

homomorphism of Lie groups

�:H

L

! G

with �(H

L

) = H := hexp hi . The main idea is to re�ne the topology on the

subgroup H in suh a way that the exponential funtion exp: h ! H

L

yields

a loal homeomorphism. The same approah is disussed in a slightly more

restrited ontext in Theorem 5.52 in [HoMo98℄, where it is shown that for

separable subalgebras h we have

L(H) := fX 2 g: exp(RX) � Hg = h:
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For non-separable subalgebras h this is no longer true in general, as the following

ounterexample shows ([HoMo98, p.157℄): We onsider the abelian Lie group

g := l

1

(R;R) � R , where the group struture is given by the addition. We write

(e

r

)

r2R

for the anonial topologial basis elements of l

1

(R;R) (f. Exerise

IV.11). Then the subgroup D generated by the pairs (e

r

;�r), r 2 R , is losed

and disrete, so that G := g=D is an abelian Lie group. Now we onsider the

losed subalgebra h := l

1

(R;R) of g . As h+D = g , we have H := exp h = G ,

and therefore

(0; 1) 2 L(H) n h:

(b) In [La99℄ S. Lang alls a subgroup H � G a Lie subgroup if H arries a Lie

group struture for whih there exists an immersion �:H ! G . In view of the

de�nition of an immersion, this onept requires the Lie algebra h of g to be a

losed subalgebra of g whih is omplemented in the sense that there exists a

losed vetor spae omplement. Conversely, it is shown in [La99℄ that for every

omplemented losed subalgebra h � g there exists a Lie subgroup in this sense

([La99, Th. VI.5.4℄). For a �nite-dimensional Lie group G , this onept desribes

the analyti subgroups of G beause every subalgebra of a �nite-dimensional Lie

algebra is losed and omplemented. As the dense wind in the two-dimensional

torus G = T

2

shows, subgroups of this type need not be losed. We also note

that the losed subspae



0

(N;R) � l

1

(N ;R)

of sequenes onverging to 0 is not omplemented ([Wil78, Ex. 14-4-9℄; see also

[We95, Satz IV.6.5℄ for an elementary proof), hene not a Lie subgroup in the

sense of Lang, but a Lie subgroup in the sense of Maissen.

() The stronges onept is the one used in [Bou90, Ch. 3℄. Here a Lie subgroup H

is required to be a submanifold whih implies in partiular that it is loally losed

and therefore losed. On the other hand this implies that the quotient spae G=H

has a natural manifold struture for whih the quotient map q:G ! G=H is a

submersion ([Bou90, Ch. 3, x1.6, Prop. 11℄).

(d) For �nite-dimensional Lie groups losed subgroups are Lie subgroups, but

for Banah{Lie groups this is no longer true. What remains true is that loally

ompat subgroups are Lie subgroups (f. [HoMo98, Th. 5.41(vi)℄). How bad

losed subgroups an be is illustrated by the following example due to K. H. Hof-

mann: We onsider the real Hilbert spae G := L

2

([0; 1℄;R) as a Banah{Lie

group. Then the subgroup H := L

2

([0; 1℄;Z) of all those funtions whih almost

everywhere take values in Z is a losed subgroup. Sine the one-parameter sub-

groups of G are of the form Rf , f 2 G , we have L(H) = f0g . On the other

hand, the group H is arwise onneted and even ontratible beause the map

F : [0; 1℄�H ! H given by

F (t; f)(x) :=

�

f(x) 0 � x � t

0 t < x � 1

is ontinuous with F (1; f) = f and F (0; f) = 0.

The following lemma is a useful riterion to verify that subgroups of given

Lie groups are Lie groups.
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Proposition IV.5. Let G be a Lie group and H � G a losed subgroup for

whih there exists an open 0-neighborhood V � g suh that exp j

V

:V ! U :=

exp(V ) is a di�eomorphism and

exp(V \ L(H)) = U \H:

Then H arries a natural Lie group struture suh that L(H) is the Lie algebra

of H and the exponential map of H is given by the restrition

exp

H

= exp

G

j

L(H)

:L(H)! H:

If, in addition, g ontains a losed subspae E omplementing L(H) , then

H is a submanifold of G and the homogeneous spae G=H arries a natural

manifold struture suh that the anonial map �:G! G=H is a submersion.

Proof. (Sketh) We put h := L(H). The idea of the proof is to use the

exponential funtion to de�ne an atlas of H . This is done by �rst observing

that the restrition of exp to a suitable open 0-neighborhood V

h

in h yields a

homeomorphism ':V

h

! '(V

h

) onto a 1 -neighborhood '(V

h

) � H . Now one

proeeds as in the �nite-dimensional ase (see also Maissen's approah, Remark

IV.4).

If, in addition, a losed omplement E exists for h , then H is a Lie

subgroup in the sense of Lang and the inlusion map �:H ! G is an immersion.

This implies that there exists an open 1 -neighborhood U

H

� H suh that U

H

is a submanifold of G . Choosing U

H

suh that it is ontained in U , we see that

1 has an open neighborhood U

0

suh that H \ U

0

is a submanifold of G . In

view of the homogeneity of G , it follows that H is a submanifold of G in the

sense of Bourbaki.

De�nition IV.6. Let G be a Lie group and h � g a losed subalgebra.

We all the subgroup H := hexp hi generated by the exponential image of h the

orresponding analyti subgroup of G . Aording to Maissen's results, this group

has a natural Lie group struture suh that the map H ,! G is a morphism of

Lie groups (see also [HoMo98, Cor. 5.34℄).

For a losed subgroup H � G we onsider the losed Lie subalgebra

h := L(H) = fX 2 g: exp(RX) � Hg

of g (Corollary IV.3) and say that H is a Lie subgroup if there exists an open

0-neighborhood V � g suh that exp j

V

is a di�eomorphism onto an open

subset exp(V ) and exp(V \ h) = (expV ) \ H . Then Proposition IV.5 implies

that H arries a natural Lie group struture suh that the map H ,! G is a

homomorphism of Lie groups whih is a homeomorphism onto its image.

We all a Lie subgroup H omplemented if g ontains a losed subspae

E omplementing the losed subalgebra h . If this ondition is satis�ed, then H

is a submanifold in the sense of Bourbaki, and in partiular the homogeneous

spae G=H arries a natural manifold struture suh that the anonial map

�:G! G=H is a submersion (Proposition IV.5).
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Remark IV.7. If G is a Hilbert{Lie group, i.e., the topology on g omes from

a real Hilbert spae struture on g , then every losed subspae h � g has a

losed omplement, so that every Lie subgroup is omplemented.

Linear Lie groups

Now the natural question is how to �nd in�nite-dimensional Lie groups.

In the �nite-dimensional ontext the most natural examples are matrix groups,

i.e., groups of operators on �nite-dimensional vetor spaes. In the in�nite-

dimensional ontext the situation is similar. The most natural examples are

groups of operators on Banah spaes.

De�nition IV.8. A Banah algebra is a Banah spae A endowed with an

assoiative algebra struture suh that the norm on A is submultipliative:

kxyk � kxk � kyk; x; y 2 A:

We all A unital if A ontains an identity element 1 . In this ase we write

G(A) := fa 2 A: (9b 2 A) ab = ba = 1g

for the group of units of A .

Proposition IV.9. If A is a unital Banah algebra, then G(A) is a Lie group

with Lie algebra A (endowed with the ommutator braket) and the exponential

funtion

exp:A! G(A); exp(x) = e

x

:=

1

X

n=0

x

n

n!

:

Proof. First we observe that for kxk < 1 the Neumann series

P

1

n=0

x

n

onverges to an element y 2 A satisfying y(1� x) = (1� x)y = 1 . We onlude

that

U := fg 2 A: kg � 1k < 1g � G(A);

and that on U the inversion is given by the onvergent power series

g

�1

=

1

X

n=0

(1� g)

n

;

hene an analyti funtion and therefore in partiular smooth.

For every element g 2 G the multipliation �

g

:A ! A is a homeomor-

phism, so that �

g

:U = gU is an open neighborhood of g in A whih is ontained

in G(A). This proves that G(A) is open. Sine the multipliation m:A�A! A

is bilinear, it restrits to a smooth map G(A)�G(A)! G(A). To see that the

inversion is a smooth funtion, we observe that for u 2 U we have

(gu)

�1

= u

�1

g

�1

;
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so that the smoothness of the inversion on gU follows from the smoothness on U .

To see that exp is the exponential funtion of the Lie group G(A), we

observe that the left invariant vetor �elds on G(A) are given by X

l

(g) = gX ,

so that the orresponding integral urves starting in 1 are 

X

(t) = e

tX

, and this

implies that exp(X) = 

X

(1) = e

X

.

Corollary IV.10. If E is a Banah spae, then the group GL(E) of invertible

bounded linear maps E ! E is a Lie group with Lie algebra B(E) , the algebra

of all bounded operators on E .

Proof. The group GL(E) is the unit group of the unital Banah algebra

B(E).

Let E be a Banah spae. We all a Lie subgroup H � GL(E) a linear

Lie group (f. [HoMo98, Ch. V℄, where linear Lie groups are disussed in a quite

elementary fashion). The following lemma is a useful riterion to see that ertain

losed subgroups are Lie subgroups.

Lemma IV.11. If ':G

1

! G is a ontinuous homomorphism of Lie groups

and H � G a Lie subgroup, then H

1

:= '

�1

(H) also is a Lie subgroup. In

partiular ker' is a Lie subgroup of G

1

.

Proof. We hoose an open 0-neighborhood V � g suh that exp

G

j

V

is a

di�eomorphism onto the open subset U := exp

G

V of G , and exp

G

(V \ h) =

U \ H . Then we hoose an open 0-neighborhood V

1

� L(')

�1

(V ) suh that

exp

G

1

j

V

1

is a di�eomorphism onto U

1

:= exp

G

1

(V

1

). We put H

1

:= '

�1

(H).

Let X 2 V

1

with exp

G

1

X 2 U

1

\H

1

. Then

'(exp

G

1

X) = exp

G

(L('):X) 2 U \H

with L('):X 2 V . Hene L('):X 2 h and therefore

X 2 h

1

= fY 2 g

1

: exp(RY ) � H

1

g;

whih is the losed Lie subalgebra orresponding to the losed subgroup H

1

of

G

1

(f. Corollary IV.3). This implies that U

1

\H

1

� exp(V

1

\ h

1

) and therefore

equality beause the onverse inlusion is trivial.

Lemma IV.12. Let E be a Banah spae and F � E a losed subspae. Then

H := fg 2 GL(E): g:F � Fg

is a Lie subgroup of GL(E) .

Proof. Let V � g be an open 0-neighborhood suh that exp j

V

:V ! expV is

a di�eomorphism and k expx� 1k < 1 for all x 2 V . Then the inverse funtion

log:= (exp j

V

)

�1

: expV ! g

is given by the onverging power series

log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

(this requires a proof!). For g = expX 2 (expV ) \H we then obtain X:F � F

diretly from the power series.
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Algebrai Lie subgroups

We will now disuss a very onvenient riterion whih in many onrete

ases an be used to verify that a losed subgroup H of a Lie group is a Lie

subgroup. To this end, we will need the onept of a polynomial funtion and of

an algebrai subgroup.

De�nition IV.13. (a) Let E and V be Banah spaes. A funtion f :E ! V

is alled a homogeneous polynomial of degree k if there exists a symmetri k -

linear funtion

e

f :E

k

! V with

f(x) =

e

f(x; : : : ; x) for all x 2 E:

Polynomial funtions of degree 0 are onstant funtions and polynomial funtions

of degree 1 are linear maps. Polynomial funtions of degree 2 are also alled

quadrati maps. In this ase

e

f an be obtained quite diretly by

e

f(x; y) =

1

4

�

f(x+y)�f(x�y)

�

=

1

8

�

f(x+y)�f(x�y)�f(�x+y)+f(�x�y)

�

:

For polynomials of degree k we have the general formula

e

f(h

1

; : : : ; h

n

) =

1

2

n

n!

X

"2f1;�1g

n

("

1

� � � "

n

)f("

1

h

1

+ : : :+ "

n

h

n

):

We write P

k

(E;F ) for the spae of ontinuous F -valued homogeneous polynomi-

als of degree k on E . A polynomial is a �nite sum of homogeneous polynomials,

so that P (E;F ) :=

L

1

k=0

P

k

(E;F ) is the spae of ontinuous F -valued polyno-

mials on E . If f =

P

k

f

k

is a polynomial, then we say that f is of degree d if

f

d

6= 0 and f

k

= 0 for k > d .

(b) Let A be a Banah algebra over K = R or C . A subgroup G � G(A) is

alled algebrai if there exists a d 2 N

0

and a set F of Banah spae valued

polynomial funtions on A� A of degree � d suh that

G = fg 2 G(A): (8f 2 F)f(g; g

�1

) = 0g:

Proposition IV.14. (Harris/Kaup) Every algebrai subgroup G � G(A) is a

Lie subgroup.

Proof. In view of the Hahn-Banah Theorem, we may assume that

F � P :=

d

M

k=0

P

k

(A� A; K );
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the Banah spae of salar-valued ontinuous polynomials on A � A of degree

� d . The spae P arries a natural Banah spae struture suh that the ation

of G(A) on P given by

�

�(g):f

�

(x; y) := f(xg; g

�1

y)

yields a ontinuous homomorphism �:G(A)! GL(P ) (Exerise IV.6(d)).

Replaing F by

F := ff 2 P : (8g 2 G) f(g; g

�1

) = 0g;

we may assume that F = F . The spae F is a losed subspae of P . We laim

that

G = fg 2 G(A):�(g):F � Fg:

In fat, if g; x 2 G and f 2 F , then

�

�(g):f

�

(x; x

�1

) = f(xg; g

�1

x

�1

) = 0;

showing that �(g):f 2 F . If, onversely, g 62 G , then there exists an f 2 F with

0 6= f(g; g

�1

) =

�

�(g):f

�

(1;1):

It follows in partiular that �(g):f 62 F .

We onlude that

G = �

�1

(fg 2 GL(P ):�(g):F � Fg);

so that the assertion follows from Lemma IV.11 ombined with Lemma IV.12.

Examples IV.15. (a) If A is a unital Banah algebra and M (n;A) is the

algebra of (n � n)-matries with entries in A , then M (n;A) also is a Banah

algebra. In fat, on the spae A

n

= A� : : :� A we onsider the norm given by

kxk := maxfkx

1

k; : : : ; kx

n

kg:

Then A

n

is a Banah spae and we have a natural embedding

M (n;A) ,! B(A

n

)

whih we use to de�ne a norm on M (n;A). It is not hard to verify that M (n;A)

is losed in B(A

n

), hene a Banah algebra. We write GL(n;A) := G(M (n;A))

for the unit group of this Banah algebra.

(b) As we will see below, it sometimes is onvenient to re�ne the onstrution in

(b) as follows. Let J E A be an ideal whih is a Banah algebra in its own right

suh that the multipliation map

A� J ! J; (a; b) 7! ab
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is ontinuous, i.e., there exists a C > 0 with kabk

J

� Ckak

A

kbk

J

for a 2 A and

b 2 J . After replaing the norm on A by the equivalent norm

kak

0

:= max(kak

A

; supfkabk

J

: kbk

J

� 1g) � max(1; C)kak

A

;

we may assume that kabk

J

� kak

A

kbk

J

holds for a 2 A and b 2 J .

We onsider the algebra

M (2; A; J) :=

n

�

a b

 d

�

: a; d 2 A; b;  2 J

o

endowed with the norm







�

a b

 d

�







:= 2maxfkak

A

; kbk

J

; kk

J

; kdk

A

g:

Then kxyk � kxkkyk holds for x; y 2 M (2; A; J) (Exerise!), so that M (2; A; J)

is a Banah algebra.

A similar onstrution works for (n� n)-matries, where one de�nes

M (n;A; J) := f(x

ij

)

i;j=1;:::;n

2 M (n;A): i 6= j ) x

ij

2 Jg

and

k(x

ij

)k := nmaxfkx

ij

k

J

; i 6= j; kx

ii

k

A

; i = 1; : : : ; ng:

We write GL(n;A; J) for the unit group of this Banah algebra.

() If A is a Banah algebra without a unit element, then we endow the spae

e

A := A� C

with the Banah algebra struture given by

k(a; z)k := kak+ jzj and (a; z)(a

0

; z

0

) := (aa

0

+ za

0

+ z

0

a; zz

0

):

Then A

�

=

A�f0g is a losed ideal in

e

A , and we have an algebra homomorphism

":

e

A! C given by "(a; z) = z . We de�ne

S(A) := "

�1

(1) \G(

e

A):

This is a losed subgroup of G(

e

A) and f(a; 1): kak < 1g is an open 1 -neighbor-

hood in S(A). Therefore S(A) is a Lie subgroup of G(

e

A) with the Lie algebra

A and the exponential funtion

exp:A! S(A); x 7! e

x

= (e

x

� 1;1):

(d) If J E A is an ideal and A is a unital Banah algebra, then

S(J) := G(A) \ (1+ J)



52 IV. Banah{Lie groups August 9, 2000

is the kernel of the homomorphism

G(A)! G(A=J); g 7! g + J;

where G(A=J) denotes the unit group of the unital algebra A=J whih is not

required to arry a natural Banah spae struture. Moreover, we have for

e

J := C 1+ J � A the relation

G(

e

J) = G(A) \

e

J = C

�

� S(J):

If, in addition, J is losed, then S(J) is a losed subgroup of G(A) and a

Lie group with Lie algebra J . Moreover, A=J arries a natural Banah algebra

struture given by

ka+ Jk := inffka+ bk: b 2 Jg;

and the quotient map A! A=J is ontinuous, so that we have an exat sequene

of Lie groups

f1g ! S(J) ,! G(A)! G(A=J):

Here the map on the right hand side need not be surjetive. A typial example is

A = B(H) and J = K(H) (the ideal of ompat operators) for an in�nite-

dimensional Hilbert spae (there are Fredholm operators with non-vanishing

index). It is easy to see that for every norm on J for whih J is a Banah

algebra, the group S(J) oinides, as a set, with the invertible elements in the

algebra

e

J from (d) above. In this sense both onstrutions lead to the same

objets.

Classial Banah{Lie groups of operators

In this subsetion we will introdue various types of groups of operators

on a Hilbert spae generalizing the �nite-dimensional lassial groups on real,

omplex and quaternioni vetor spaes.

De�nition IV.16. (Complex lassial groups) Let H be a omplex Hilbert

spae. Then we have the following three types of omplex lassial groups.

(1) The full linear group GL(H) := G(B(H)).

(2) Let I:H ! H be an antilinear isometry with I

2

= 1 . The orresponding

orthogonal group is de�ned by

O(H; I) := fg 2 GL(H): g

�1

= Ig

�

I

�1

g:

Applying Proposition IV.14 with the omplex linear funtion

f :B(H)! B(H); f(x; y) := Ix

�

I

�1

� y
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shows that O(H; I) is a Lie group with the Lie algebra

o(H; I) := fX 2 B(H): IX

�

I

�1

+X = 0g

(Exerise!). This group an also be desribed as an isometry group of the

symmetri omplex bilinear form �(v; w) := hv; I:wi beause

O(H; I) = O(H; �) := fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

(f. Exerise IV.12).

(3) Let I:H ! H be an antilinear isometry with I

2

= �1 . The orresponding

sympleti group is de�ned by

Sp(H; I) := fg 2 GL(H): g

�1

= Ig

�

I

�1

g:

As in (2), this is a Lie group with Lie algebra

sp(H; I) := fX 2 B(H): IX

�

I

�1

+X = 0g:

This group an also be desribed as an isometry group of the skew-symmetri

omplex bilinear form �(v; w) := hv; I:wi beause

Sp(H; I) = Sp(H; �) := fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g:

(f. Exerise IV.12).

De�nition IV.17. (Unitary real forms of the omplex lassial groups) That

there are three types of omplex lassial groups is related to the fat that there

are three �nite-dimensional real skew-�elds: K = R; C ; H . Here the group

GL(H) is related to C . For an antilinear involution I the subspae

H

R

:= fv 2 H: I:v = vg

is a real form of the omplex spae H , and for an antilinear involution I

with I

2

= �1 the algebra C 1 + C I is isomorphi to H , so that we obtain

a quaternioni struture on H . In this ase we also write H

H

for the pair (H; I)

meaning the omplex Hilbert spae H endowed with an antilinear isometri

involution, i.e., a quaternioni struture.

Aordingly we obtain the following groups of K -linear invertible isome-

tries:

(1) For K = C we get the unitary group

U(H) := fg 2 GL(H): gg

�

= g

�

g = 1g:

This is a real algebrai subgroup of GL(H) with Lie algebra

u(H) := fX 2 B(H):X +X

�

= 0g:
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(2) For K = R we get the orthogonal group of the real Hilbert spae H

R

:

O(H

R

) := O(H; I) \U(H) = fg 2 U(H): gI = Igg

�

=

fg 2 GL(H

R

): gg

>

= g

>

g = 1g:

This is an algebrai subgroup of U(H) with Lie algebra

o(H

R

) := fX 2 B(H

R

):X +X

>

= 0g:

(3) For K = H we �nally get the quaternioni unitary group:

Sp(H

H

) := Sp(H; I) \ U(H)

�

=

fg 2 U(H): gI = Igg

�

=

fg 2 GL(H

H

): gg

�

= g

�

g = 1g:

This is an algebrai subgroup of U(H) with Lie algebra

sp(H

R

) := fX 2 B(H

H

):X +X

�

= 0g:

The groups U(H), O(H

R

), resp., Sp(H

H

), are alled the unitary real forms

of the omplex Lie groups GL(H), O(H; I), resp., Sp(H; I).

Remark IV.18. Other real forms an be onstruted as follows:

(1) For GL(H): The groups U(H

+

; H

�

) orresponding to inde�nite hermitian

forms of the type

�(x

+

+ x

�

; y

+

+ y

�

) = hx

+

; y

+

i � hx

�

; y

�

i;

where H = H

+

� H

�

is an orthogonal deomposition and x

+

; y

+

2 H

+

,

x

�

; y

�

2 H

�

.

(2) For O(H; I): The groups O(H

+

R

; H

�

R

) orresponding to inde�nite symmetri

bilinear forms of the type

�(x

+

+ x

�

; y

+

+ y

�

) = hx

+

; y

+

i � hx

�

; y

�

i

on a real Hilbert spae H

R

with the diret sum deomposition H

R

= H

R;+

�H

R;�

and x

+

; y

+

2 H

R;+

, x

�

; y

�

2 H

R;�

.

(3) For Sp(H; I) (H

�

=

l

2

(2J; C )) the subgroup Sp(H

R

; I) preserving the sub-

spae l

2

(2J;R) whih oinides with the group fg 2 Sp(H; I): g� = �gg , where

�(x) = x .
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Smaller lassial groups

De�nition IV.19. Let H be a omplex Hilbert spae. We write B

�n

(H) E

B(H) for the ideal of all operators of �nite rank. This spae is spanned by the

rank one operators P

x;y

, x; y 2 H , whih are given by

P

x;y

(v) := hv; yix:

We also put P

x

:= P

x;x

. We de�ne the trae of a �nite rank operator A by

tr(A) :=

n

X

j=1

hA:e

j

; e

j

i = tr(A j

A(H)

);

where e

1

; : : : ; e

n

is an orthonormal basis of the �nite-dimensional subspae

A(H) � H . For a rank-one operator we get

trP

x;y

= hx; yi:

We de�ne the trae norm

k � k

1

:B(H)! [0;1℄; kAk

1

:= supfj tr(AB)j:B 2 B

�n

(H); kBk � 1g:

Note that the right hand side is well de�ned beause AB 2 B

�n

(H). It turns

out that

B

1

(H) := fA 2 B(H): kAk

1

<1g

is an ideal of B(H) on whih k � k

1

is a omplete norm satisfying

j tr(AB)j � kAk

1

kBk; A 2 B

1

(H); B 2 B(H)

(f. [RS78℄). The elements of B

1

(H) are alled trae lass operators. Important

properties of this spae are:

(a) The trae extends to a ontinuous linear funtional tr:B

1

(H)! C suh that

tr(ab) = tr(ba); a 2 B

1

(H); b 2 B(H)

and

tr(a) = kak

1

for positive a:

(b) If (e

j

)

j2J

is an orthonormal basis of H and A 2 B

1

(H), then

tr(A) =

X

j2J

hA:e

j

; e

j

i:
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With the aid of the trae norm we an de�ne a ontinuous sale of ideals

of B(H) as follows. For every p 2 [1;1[ the subsets

B

p

(H) := fX 2 B(H): k(XX

�

)

p

2

k

1

<1g;

are ideals of B(H) whih are Banah spaes with respet to the norms

kXk

p

:= k(XX

�

)

p

2

k

1

p

1

:

For p = 1 this leads to another formula

kXk

1

=

q

tr(

p

XX

�

)

for the trae norm. The spaes B

p

(H) are alled the Shatten ideals and its ele-

ments operators of Shatten lass p . (Compare this de�nition with the de�nition

of the spaes L

p

(X;S; �) for a measure spae (X;S; �).)

For p = 2 we obtain the partiularly important spae B

2

(H) of Hilbert-

Shmidt operators. The norm on this spae satis�es

kXk

2

2

= kXX

�

k

1

= tr(XX

�

);

showing that it is de�ned by the salar produt

hX;Y i := tr(XY

�

)

whih indeed turns B

2

(H) into a Hilbert spae. If (e

j

)

j2J

is an orthonormal

basis of H and A 2 B

2

(H), then

hX;Y i =

X

j2J

hY

�

X:e

j

; e

j

i =

X

j2J

hX:e

j

; Y:e

j

i =

X

j;k2J

hX:e

j

; e

k

ihe

k

; Y:e

j

i

and in partiular

kXk

2

2

=

X

j2J

kX:e

j

k

2

:

We write B

1

(H) := K(H) for the ideal of ompat operators in B(H)

endowed with the operator norm. We then have for 1 � p � q

B

1

(H) � B

p

(H) � B

q

(H) � B

1

(H) = K(H);

and moreover

kxyk

p

� kxkkyk

p

; kxyk

p

� kxk

p

kyk; and kxk � kxk

p

for x; y 2 B(H).

For a more detailed disussion of these operator ideals and their norms we

refer to [RS78℄.
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De�nition IV.20. The onstrutions of Examples IV.15(),(d) lead to Lie

groups

GL

p

(H) := GL(H) \ (1+ B

p

(H))

with Lie algebra gl

p

(H) := B

p

(H). The group GL

1

(H) is alled the Fredholm

group. The group

U

p

(H) := U(H) \ (1+B

p

(H))

is a Lie subgroup with Lie algebra

u

p

(H) := u(H) \ B

p

(H) = fX 2 B

p

(H):X

�

= �Xg:

With

Herm

p

(H) := Herm(H) \ B

p

(H)

we then have

gl

p

(H) = u

p

(H)� Herm

p

(H) = u

p

(H)� iu

p

(H):

Determinant funtions

We onsider the Banah{Lie algebra g := B

1

(H) = gl

1

(H) and the orre-

sponding Banah{Lie group G := GL

1

(H) introdued in De�nition IV.20.

Proposition IV.21. There exists a unique holomorphi harater

det:GL

1

(H)! C

�

with L(det) = tr . Let

SL(H) := ker det

and de�ne for a unit vetor v 2 H a holomorphi homomorphism

: C

�

! GL

1

(H); (z)(w) :=

�

zw for w 2 C v

w for w 2 v

?

.

Then det Æ = id

C

and

GL

1

(H) = SL(H)(C

�

)

�

=

SL(H)o C

�

:

Moreover, the group SL(H) is simply onneted.

Proof. (a) First we prove the existene of the determinant funtion det . Let

q:

f

GL

1

(H)! GL

1

(H) denote the universal overing group. Sine tr: gl

1

(H)! C

vanishes on ommutators, it is a Lie algebra homomorphism. Its ontinuity

follows from j tr(X)j � kXk

1

for X 2 gl

1

(H). Hene there exists a holomorphi

harater

f

det:

f

GL

1

(H)! C

�

with L(

f

det) = tr :
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It remains to show that

f

det fators through the overing map q . Let v 2 H

be a unit vetor and de�ne  as above. Then it follows from Theorem A.10 that

 indues an isomorphism

�

1

():�

1

(C

�

)

�

=

Z! �

1

(GL

1

(H)):

In partiular its natural lift e: C

�

=

e

C

�

!

f

GL

1

(H) satis�es

e(�

1

(C

�

)) = �

1

(GL

1

(H)):

In view of tr ÆL() = id

C

, we have

f

det Æ e = exp

C

�
: C ! C

�

;

showing that �

1

(GL

1

(H)) � ker

f

det, and therefore there exists a unique holo-

morphi homomorphism

det:GL

1

(H)! C

�

with L(det) = tr.

(b) In view of Lemma IV.11, SL(H) is a Lie subgroup of GL

1

(H) whose Lie

algebra is given by

sl(H) := fX 2 B

1

(H): trX = 0g:

We laim that the mapping

�: SL(H)o C

�

! GL

1

(H); (A; z) 7! (z)A

is a biholomorphi isomorphism of Banah Lie groups, where the semidiret

produt struture is given by the onjugation ation of (z) on the normal

subgroup SL(H).

The preeding argument implies that det Æ = id

C

�
whih shows that �

is surjetive and SL(H) \ (C

�

) = f1g , whih means that � is a bijetion.

It is lear that � is holomorphi, and sine �

�1

(g) =

�

g(det g)

�1

; det g

�

, the

mapping � is biholomorphi.

() To see that SL(H) is simply onneted, we only have to use the produt

deomposition

GL

1

(H)

�

=

SL(H)(C

�

)

�

=

SL(H)o C

�

and to reall that �

1

():Z! �

1

(GL

1

(H)) is surjetive.

Notes on Setion IV

For a more detailed disussion of the Shatten ideals and the determinant

funtion we refer to [RS78℄ and in partiular [RS78, Th. XIII.105℄.
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Exerises for Setion IV

Exerise IV.1. (a) Let m:G�G! G be a smooth assoiative multipliation

on the manifold G with identity element 1 . Show that the di�erential in (1;1)

is given by

dm(1;1):T

1

(G)� T

1

(G)! T

1

(G); (v; w) 7! v + w:

(b) Show that the smoothness of the inversion in the de�nition of a Banah{Lie

group is redundant beause the Inverse Funtion Theorem an be applied to the

map

G�G! G�G; (x; y) 7! (x; xy)

whose di�erential in (1;1) is given by the map (v; w) 7! (v; v + w).

Exerise IV.2. Let E be a Banah spae. Show that every ontinuous group

homomorphism : (R;+) ! (E;+) an be written as (t) = tv for some v 2 E .

Exerise IV.3. Let E be a Banah spae.

(1) If F is a losed subspae of E and H := fg 2 GL(E): g:F � Fg , then

L(H) = fY 2 B(E):Y:F � Fg:

(2) For eah v 2 E and H := fg 2 GL(E): g:v = vg we have

L(H) = fY 2 B(E):Y:v = 0g:

Exerise IV.4. Let A be a Banah spae and m:A � A ! A a ontinuous

linear map. Then the group

Aut(A;m) := fg 2 GL(A): (8a; b 2 A) m(g:a; g:b) = g:m(a; b)g

of automorphisms of the \algebra" (A;m) is a Lie group whose Lie algebra is

the spae

der(A;m) := fX 2 B(A): (8a; b 2 A)X:m(a; b) = m(X:a; b) +m(a;X:b)g

of derivations of (A;m).

Exerise IV.5. (a) Let G and N be Lie groups and ':G ! Aut(N) be a

homomorphism suh that the map G � N ! N; (g; n) 7! '(g)(n) is smooth.

Then the semidiret produt group GoN with the multipliation

(n; g)(n

0

; g

0

) := (n'(g)(n

0

); gg

0

)

is a Lie group with Lie algebra no g .

(b) Let H be a Hilbert spae. Show that the motion group

Mot(H) := H oU(H)

is a Lie group with Lie algeba H o u(H).
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Exerise IV.6. Let E and F be Banah spaes and B

k

(E;F ) be the spae

of ontinuous k -linear maps E

k

! F .

(a) Then B

k

(E;F ) is a Banah spae with respet to the norm

kfk := supfkf(x

1

; : : : ; x

k

)k:x

i

2 E; kx

1

k; : : : ; kx

k

k � 1g:

(b) The assignment

�

�(g):f

�

(x

1

; : : : ; x

k

) := f(g

�1

:x

1

; : : : ; g

�1

:x

k

)

de�nes a ontinuous homomorphism �: GL(E) ! GL(B

k

(E;F )). Hint: The

map �:B(E)! B(B

k

(E;F )) with

�

�(A):f

�

(x

1

; : : : ; x

k

) := f(A:x

1

; : : : ; A:x

k

)

is a ontinuous k -linear map.

() Calulate the derived Lie algebra representation d�:B(E)! B(B

k

(E;F )).

(d) We identify the spae P

k

(E;F ) of F -valued ontinuous polynomial funtions

of degree k on E with the losed subspae Sym

k

(E;F ) � B

k

(E;F ). Then the

norm on this spae is given by

kfk = supfkf(x)k: kxk � 1g

and the assignment

�

�(g):f

�

(x) := f(g

�1

:x)

de�nes a ontinuous homomorphism �: GL(E)! GL(P

k

(E;F )).

Exerise IV.7. (a) Let H be a omplex Hilbert spae. Show that there exists

an antilinear isometri map I:H ! H with I

2

= 1 .

(b) If I

1

and I

2

are two suh maps, then there exists a unitary operator g 2 U(H)

with I

2

= gI

1

g

�1

.

() Show that for a �xed omplex Hilbert spae H all groups O(H; I) are

isomorphi.

Exerise IV.8. (a) Let H be an in�nite-dimensional or even-dimensional

omplex Hilbert spae. Show that there exists an antilinear isometri map

I:H ! H with I

2

= �1 .

(b) If I

1

and I

2

are two suh maps, then there exists a unitary operator g 2 U(H)

with I

2

= gI

1

g

�1

.

() Show that for a �xed omplex Hilbert spae H all groups Sp(H; I) are

isomorphi.
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Exerise IV.9. Let H be a omplex Hilbert spae and I an antilinear isometry

with I

2

= �1 . We onsider the omplex bilinear form

�(v; w) := hv; I:wi:

(1) � is symmetri (skew-symmetri) if I

2

= 1 (I

2

= �1).

(2) For I

2

= 1 we have

O(H; I) = fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

and the Lie algebra of this subgroup is

o(H; I) = fX 2 B(H): IX

�

I

�1

+X = 0g

= fX 2 B(H): (8v; w 2 H) �(X:v; w) + �(v;X:w) = 0g:

(3) For I

2

= �1 we have

Sp(H; I) = fg 2 GL(H): (8v; w 2 H) �(g:v; g:w) = �(v; w)g

and the Lie algebra of this subgroup is

sp(H; I) = fX 2 B(H): IX

�

I

�1

+X = 0g

= fX 2 B(H): (8v; w 2 H) �(X:v; w) + �(v;X:w) = 0g:

(4) If I

2

= 1 and dimH =1 , there exists an orthonormal basis (e

j

)

j22J

of H

with I:e

j

= e

�j

, j 2 2J . Then

H

�

=

l

2

(2J; C )

�

=

l

2

(J; C )� l

2

(�J; C )

�

=

l

2

(J; C )� l

2

(J; C );

and with respet to this deomposition, we write elements of B(H) as 2�2-

blok matries. For Q:(v; w) = (w; v) we then have

O(H; I) = fg 2 GL(H): g

�1

= Qg

>

Qg

and for g =

�

a b

 d

�

this means that

b

>

+ da

>

= 1; d

>

+ d

>

= 0 and ab

>

+ ba

>

= 0:

(5) If I

2

= �1 , then there exists an orthonormal basis (e

j

)

j22J

of H with

I:e

j

=

�

e

�j

; j 2 J ,

�e

�j

; j 2 �J .

Then

Sp(H; I) = fg 2 GL(H): g

�1

= �Qg

>

Qg with Q =

�

0 �1

1 0

�

;

and for g =

�

a b

 d

�

this means that



>

a = a

>

; d

>

b = b

>

d and a

>

d� 

>

b = 1:

Exerise IV.10. Let E , F and G be Banah spaes. Show that for a bilinear

map �:E � F ! G the following are equivalent:

(1) � is ontinuous.

(2) � is ontinuous in (0; 0).

(3) (9C > 0)(8x 2 E)(8y 2 F ) k�(x; y)k � Ckxk kyk:
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Exerise IV.11. Let J be a set. For a tuple x = (x

j

)

j2J

2 (R

+

)

J

we de�ne

X

j2J

x

j

:= sup

n

X

j2F

x

j

:F � J �nite

o

:

Show that

l

1

(J;R) :=

n

x = (x

j

)

j2J

:

X

j2J

jx

j

j <1

o

is a Banah spae with respet to

kxk

1

:=

X

j2J

jx

j

j:

De�ne e

j

2 l

1

(J;R) by (e

j

)

i

= Æ

ij

. Show that the subgroup � generated by

fe

j

: j 2 Jg is disrete.
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V. Holomorphi representations of lassial Banah{Lie groups

We have seen in Setion III how the unitary highest weight modules of

an involutive split loally �nite Lie algebra g with respet to a \ompat" real

form u = g

R

an be lassi�ed. Our goal is to realize suh representations by

holomorphi setions of a holomorphi line bundle over some oadjoint orbit

whih at the same time is a omplex K�ahler manifold.

In the preeding setion we have disussed several aspets of the general

theory of Banah{Lie groups and in partiular the groups GL

p

(H) with the Lie

algebras B

p

(H) whih for H = l

2

(J; C ) an be viewed as Banah versions of

the loally �nite Lie algebra gl(J; C ), whih is a ompletely algebrai objet.

In this setion we will make our �rst step towards a geometri realization of the

representations (�

�

; L(�)) of g (mainly for g = gl(J; C )) by disussing onditions

under whih they an be integrated to holomorphi representations of ertain

omplex Lie groups (GL

1

(H) for g = gl(J; C )). In the next setion we will

then disuss oadjoint orbits of Banah{Lie groups and how one an onstrut

holomorphi line bundles thereon.

For the sake of simpliity of the exposition, we state several results in

this setion only for gl(J; C ) and the orresponding groups. One an develop

the whole theory in the ontext of groups assoiated to L

�

-algebras whih then

makes it possible to deal with all speial ases simultaneously, but this theory

requires a more elaborate bakground whih is superuous in the speial ase of

gl(J; C ).

The norm funtion of a unitary highest weight module

Let (g; h) be a split loally �nite involutive Lie algebra with � = �

k

.

Sine g is loally �nite, eah element X 2 g de�nes an inner automorphism

e

adX

of g beause for eah Y 2 g the series

e

adX

:Y :=

1

X

n=0

1

n!

(adX)

n

:Y

onverges sine X and Y generate a �nite-dimensional subalgebra of g . We all

the group

Inn(g

R

) := hfe

adY

:Y

�

= �Y gi

the group of unitary inner automorphisms of g .

Lemma V.1. For a unitary highest weight representation (�

�

; L(�)) of g the

following assertions hold:
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(i) For eah X 2 g the operator e

�

�

(X)

on L(�) is well de�ned and satis�es

(5:1) (e

�

�

(X)

)

�

= (e

�

�

(X

�

)

):

In partiular e

�

�

(X)

is unitary for X

�

= �X , i.e., X 2 u = g

R

.

(ii) For X;Y 2 g we have

(5:2) e

�

�

(X)

�

�

(Y )e

��

�

(X)

= �

�

(e

adX

:Y ):

(iii) The funtion s: g ! [0;1℄; s(X) := k�

�

(X)k is a onvex funtion whih is

positively homogeneous in the sense that

s(zX) = jzjs(X) for X 2 g; z 2 C ;

and it is invariant under the involution � and the group Inn(g

R

) . For X 2 h

we have

s(X) = sup jhP

�

; Xij = sup jhW:�;Xij:

Proof. (i) For eah element X 2 g the operator �

�

(X) is loally �nite on

L(�) (Theorem III.6(iii)), so that we �nd for eah v 2 L(�) a �nite-dimensional

�

�

(X)-invariant subspae E ontaining v . Now

e

�

�

(X)

:v :=

1

X

n=0

1

n!

�

�

(X)

n

:v

onverges beause the series for e

�

�

(X)j

E

onverges in End(E).

An easy veri�ation shows that, as an operator on the pre-Hilbert spae

L(�), we have �

�

(X)

�

= �

�

(X

�

) beause L(�) is a unitary g -module. This

implies that for v; w 2 L(�) we have

he

�

�

(X)

:v; wi = hv; e

�

�

(X

�

)

:wi

whih means that the operator e

�

�

(X)

has an adjoint given by (5.1).

(ii) Now let X;Y 2 g and g

0

� g be a �nite-dimensional subalgebra ontaining

both. Then e

adY

:X is well de�ned. Sine eah v 2 L(�) is ontained in a

�nite-dimensional g

0

-invariant subspae, we now easily obtain

e

�

�

(X)

�

�

(Y )e

��

�

(X)

= �

�

(e

adX

:Y ):

(iii) That s is onvex, positively homogeneous and � -invariant follows from the

orresponding properties of the norm funtion on the algebra

fA 2 End(L(�)): (9A

�

2 End(L(�))(8v; w 2 L(�)) hA:v; wi = hv; A

�

:wig

(f. [Ne99a, Prop. II.3.5℄). For eah element Y = �Y

�

2 g we further get by

ombining (i) and (ii):

s(e

adY

:X) = k�

�

(e

adY

:X)k = ke

�

�

(Y )

�

�

(X)e

��

�

(Y )

k = k�

�

(X)k = s(X);

showing that s is Inn(g

R

)-invariant.

The formula for s(X), X 2 h , follows diretly from the weight deompo-

sition of L(�) and the desription of the set of weights in Theorem III.6.
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Proposition V.2. Assume that g is simple. Then for a unitary highest weight

representation the following are equivalent:

(1) There exists an element X 2 g with k�

�

(X)k <1 .

(2) k�

�

(X)k <1 for all X 2 g .

(3) �(

�

�) is a bounded subset of Z .

Proof. (1) ) (2): We onsider the subset

g

s

:= fX 2 g: s(X) <1g:

The properties of the funtion s: g! [0;1℄ (Lemma V.1(iii)) imply that g

s

is a

omplex subspae of g whih is invariant under the group Inn(g

R

). For X 2 g

s

and Y

�

= �Y the urve e

RadY

:X lies in a �nite-dimensional subspae of g

s

,

so taking derivatives leads to [Y;X℄ 2 g

s

and therefore to [g

R

; g

s

℄ � g

s

whih in

turn implies that [g; g

s

℄ � g

s

. This means that g

s

is a non-zero ideal of g and

therefore equal to g beause g was assumed to be simple.

(2) ) (3): As in the �nite-dimensional ase, one shows that the Weyl group W

has at most two orbits in � and likewise in

�

� for its natural ation on h given

by

r

�

:x := x� �(x)��; x 2 h

(Exerise V.2). We write � =W:f�

1

; �

2

g . Then we also have

�

� =W:f��

1

; ��

2

g .

For � 2 � we now obtain

j�(��)j � supfj�(w:��

j

)j:w 2 W; j = 1; 2gj � supfjhw:�; ��

j

ij:w 2 W; j = 1; 2gj

� max(k�

�

(��

1

)k; k�

�

(��

2

)k):

(3) ) (1): Let � 2 �. Then

k�

�

(��)k = sup jhW:�; ��ij = sup jh�;W:��ij � sup jh�;

�

�ij <1:

Corollary V.3. Assume that g is redutive. If �(

�

�) is a bounded subset of

Z , then k�

�

(X)k <1 for all X 2 g .

Proof. The assumption that g is redutive means that g = z(g)� [g; g℄ . Sine

z(g) ats by salar multiples of the identity on L(�) (Proposition III.2(i)), all

the operators in �

�

(z(g)) are bounded anyway. Therefore it suÆes to assume

that g is semisimple. The proof of (3) ) (1) in Proposition V.2 implies that

k�

�

(��)k < 1 for all � 2 �. Sine g oinides with the smallest Inn(g

R

)-

invariant omplex subspae ontaining

�

�, the fat that s

�1

(R) is suh a subspae

implies the assertion.

The boundedness of �(

�

�) is suÆient, but not neessary for all the oper-

ators �

�

(X), X 2 g , to be bounded. In fat, g might be an in�nite diret sum

of simple ideals g

i

, i 2 I , suh that

sup jh�;

�

�

i

ij <1

for eah individual i 2 I , but

sup jh�;

�

�ij =1:

Then we still have k�

�

(X)k <1 for eah X 2 g .
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Holomorphi highest weight representations of GL

1

(H)

In this subsetion we apply the general results of the preeding setion to

holomorphi highest weight representations of the omplex Banah{Lie group

GL

1

(H).

Let L(�) be a unitary highest weight module of gl(J; C ). As in Example

III.7, we represent � by an element of C

J

�

=

h

�

.

Lemma V.4. For a unitary highest weight module L(�) of gl(J; C ) the fol-

lowing are equivalent:

(1) �(

�

�) is bounded.

(2) � = (�)

j2J

is bounded as an element of C

J

, hene an element of l

1

(J; C ) .

(3) k�

�

(X)k � 2k�k

1

kXk

1

for all X 2 g , where k � k

1

denotes the trae norm.

Proof. (1) ) (2): Let � 2 �. The values of � on the oroots E

jj

�E

kk

are

given by �

j

� �

k

, j; k 2 J . It is lear that � is bounded if the set of all these

numbers is bounded.

(2) ) (3): Let k�k

1

:= supfj�

j

j: j 2 Jg . Then for eah X 2 h the relation

onv(P

�

) = onv(W:�) (Theorem III.6) and the fat that W ats isometrially

on l

1

(J) imply for X 2 h that

k�

�

(X)k � k�k

1

kXk

1

:

For X = X

�

2 gl(J; C ) there exists a g 2 U(J; C ) with Ad(g):X = gXg

�1

2 h

(Exerise V.3). We now obtain

k�

�

(X)k = k�

�

(gXg

�1

)k � k�k

1

kgXg

�1

k

1

= k�k

1

kXk

1

:

For a general element X 2 g this leads to

s(X) = s

�

X +X

�

2

+

X �X

�

2

�

�

1

2

�

s(X +X

�

) + s(i(X �X

�

))

�

�

1

2

k�k

1

�

kX +X

�

k

1

+ kX �X

�

k

1

�

� k�k

1

(kXk

1

+ kX

�

k

1

) = 2k�k

1

kXk

1

:

(3) ) (1): We have k��k

1

= 2 for every oroot �� = E

ii

� E

jj

for � = "

i

� "

j

.

Therefore (3) implies that

j�(��)j � k�

�

(��)k � 2k�k

1

k��k

1

= 4k�k

1

:

De�nition V.5. We all a holomorphi representation �: GL

p

(H)! GL(H)

a highest weight representation if

(1) H ontains a dense subspae whih is a highest weight module for the Lie

algebra gl(J; C ) � gl

p

(H) (for H

�

=

l

2

(J; C )), and

(2) �(g

�

) = �(g)

�

for all g 2 GL

p

(H).

The preeding ondition means in partiular that the subgroup U

p

(H) ats

unitarily on H .
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We now use Lemma V.4 to obtain a lassi�ation of all holomorphi highest

weight representations of the group GL

1

(H) and its universal overing group

f

GL

1

(H).

Theorem V.6. Let �

+

�

� � be a positive system and � = �

�

=

P

j

�

j

"

j

2

h

�

. Then � is the highest weight of a holomorphi highest weight representation

of

f

GL

1

(H) if and only if the following onditions are satis�ed:

(i) � is dominant integral, i.e., �

j

� �

k

2 N

0

for j � k , and

(ii) � is bounded.

The orresponding representation fators through GL

1

(H) if and only if, in

addition,

(iii) �

j

2 Z for all j 2 J .

Proof. Let H

�

denote the ompletion of the pre-Hilbert spae L(�). First

we observe that a unitary highest weight representation of gl(J; C ) extends to a

ontinuous Lie algebra representation

�

�

: gl

1

(H)! B(H

�

)

if and only if � is bounded (Lemma V.4). Therefore the �rst part of the theorem

follows from Theorem III.6 (see also Example III.7) beause the ontinuous

representations �

�

: gl

1

(H)! B(H

�

) are in one-to-one orrespondene with the

holomorphi representations �

�

:

f

GL

1

(H)! GL(H

�

) with L(�

�

) = �

�

(Theorem

IV.2()).

So let us assume that � is bounded and that L(�) is unitary. Pik j 2 J

and onsider the holomorphi homomorphism

: C ! GL

1

(H); z 7! e

zE

jj

:

In view of Proposition IV.21, the anonial lift

e: C !

f

GL

1

(H); z 7! exp(zE

jj

)

satis�es

e(2�iZ) = �

1

(GL

1

(H)):

We onlude that �

�

fators through GL

1

(H) if and only if

1 = e

2�i�

�

(E

jj

)

= �

�

(exp 2�iE

jj

);

whih, in view of Theorem III.6, is equivalent to �

j

2 Z . This is equivalent to

�

k

2 Z for all k 2 J .

Remark V.7. Let J be a set and H = l

2

(J; C ).

(a) If the order � on J is suh that J has m smallest elements j

1

� : : : � j

m

,

then the fundamental weights $

k

= "

j

1

+ : : : + "

j

k

, k � m orrespond to the

irreduible representations

�

�

k

;�

k

(H)

�

of GL(H) on the spae �

k

(H) given by

�

k

(g)(v

1

^ : : : ^ v

k

) = (g:v

1

) ^ : : : ^ (g:v

k

):
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A primitive element for gl(J; C ) is given by e

j

1

^ : : :^ e

j

k

. For k = 1 we obtain

the idential representation of B(H) on H . For J = N with the natural order

we have in partiular $

k

= "

1

+ : : :+ "

k

for eah k 2 N .

If M � J satis�es M � M



:= J n M and J n M is �nite, then we

an desribe the representation orresponding to � = $

M

�$

J

as follows. Let

� :H ! H be the antilinear isometry given by �(

P

j2J

x

j

e

j

) =

P

j2J

x

j

e

j

. For

A 2 B(H) we put A

>

:= �A

�

� and note that B(H) ! B(H); A 7! A

>

, is a

linear antiautomorphism of the algebra B(H).

We laim that for k := jM



j <1 the representation of GL(H) on �

k

(H)

given by

e

�

k

(g) := �

k

(g

>

)

�1

is a holomorphi highest weight representation

with highest weight � := $

M

� $

J

= �$

M



(f. Example III.7). In fat, let

M



= fj

1

; : : : ; j

k

g and put v

�

:= e

j

1

^ : : : ^ e

j

k

: It is lear that v

�

generates a

dense gl(J; C )-submodule of �

k

(H). Furthermore for X 2 h we have

X:v

�

= �d�

k

(X

>

):v

�

= �d�

k

(X):v

�

= $

M



(X)v

�

:

Hene E

>

jk

= E

kj

leads to j � k to E

jk

:v

�

= 0. This means that v

�

is a

primitive element with respet to �

+

�

, and thus

�

e

�

k

;�

k

(H)

�

is a holomorphi

highest weight representation of GL(H) with highest weight �$

M



.

(b) (The in�nite wedge representations) A partiular interesting ase overed by

the preeding theorem is given by J = Z endowed with the natural order and

M = fm 2 Z:m � kg . In this ase

� = $

M

=

k

X

j=�1

"

j

:

Here H

$

M

an be identi�ed with a the Hilbert spae with the orthonormal basis

e

i

k

^ e

i

k�1

^ e

i

k�2

^ : : : ; where i

k

> i

k�1

> i

k�2

> : : : ;

and there exists j

0

2 Z with i

j

= j for j � j

0

. Then the dense subspae

spanned by these basis vetors arries a unitary highest weight representation of

the Lie algebra gl(Z; C ) of �nite Z � Z -matries whih is one of the \in�nite

wedge representations" desribed in [KR87℄.

() For eah s 2 R the funtional s$

J

= s tr is dominant integral and bounded.

The orresponding representation of

f

GL

1

(H) is given by the harater

det

s

:

f

GL

1

(H)! C

�

; g 7! det(g)

s

(see the proof of Proposition IV.21).

Suppose that � satis�es onditions (i) and (ii) in Theorem V.6 and put

s := �

j

for some j 2 J . Then � � s tr satis�es (i){(iii), hene de�nes a

holomorphi representation of GL

1

(H). This shows that the representation

�

�


 det

�s

of

f

GL

1

(H) fators to GL

1

(H). So apart from the real powers of

the determinant the holomorphi highest weight representations of

f

GL

1

(H) are
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more or less the same than the holomorphi highest weight representations of

GL

1

(H).

(d) Theorem V.6 an also be used to obtain a lassi�ation of all holomorphi

highest weight representations of

f

GL

1

(H) in the same spirit as in the �nite

dimensional ase. Suppose that � satis�es (i) and (ii).

Pik j

0

2 J and put m := minf�

j

: j 2 Jg . If M

k

:= fj 2 J :�

j

� m+ kg ,

then M

k

� J nM

k

for all k 2 Z , and an elementary onsideration leads to the

representation

� = m$

J

+

n

X

k=1

$

M

k

of � as a �nite sum of fundamental weights, where n > maxf�

j

: j 2 Jg�m: We

onlude in partiular that L(�) and also H

�

an be realized in a �nite tensor

produt of the Hilbert spaes orresponding to the fundamental weights.

Remark V.8. (a) The onstrutions in this setion an also be arried out

for the other three types of simple split loally �nite Lie algebras, where the

boundedness of � leads to a holomorphi representation of the orresponding

groups

Sp

1

(H; I) := Sp(H; I) \GL

1

(H) and O

1

(H; I) := O(H; I)\GL

1

(H)

(f. [Ne98℄).

(b) In [Ne98℄ one also �nds a lassi�ation of all holomorphi representations of

the groups GL

p

(H), p > 1. These representations are diret sums of highest

weight representations with �nite highest weights. For p = 1 the situation is

more ompliated in three respets:

(1) First one has muh more highest weight representations beause the

boundedness ondition is muh weaker than the ondition that at most �nitely

many �

j

are non-zero.

(2) Seond the global holomorphi representation theory of the group

GL

1

(H) is more ompliated in the sense that it also has holomorphi fator

representations of type II and III. These are not diret sums of irreduible rep-

resentations.

(3) There are irreduible holomorphi representations whih are not highest

weight representations. This is disussed in the following example.

Example V.9. We onsider the Lie algebra g := gl(N ; C ) as the union of

the subalgebras g

n

:= gl(2n; C ), n 2 N , and �x the standard positive system

�

+

:= f"

j

� "

k

: j < kg . For eah n 2 N we onsider the dominant integral

weight

�

n

:= (1; 1; : : : ; 1

| {z }

n times

;�1;�1; : : : ;�1

| {z }

n times

)

with respet to �

+

n

:= �

n

\ �

+

and �

n

:= f� 2 �: g

�

� g

n

g . Then the set

P

�

n

of weights of the highest weight module L(�

n

; g

n

) of g

n

is given by

P

�

n

=

n

2n

X

j=1

a

j

"

j

: a

j

2 f�1; 0; 1g;

2n

X

j=1

a

j

= 0

o

;
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as follows easily from P

�

n

= onv(W

n

:�

n

) \ (�

n

+ Z[�

n

℄); where �

n

� h

�

n

denotes the roots of g

n

. In partiular eah weight � 2 P

�

n

an be written as

� =

X

j2N

1

"

j

�

X

j2N

2

"

j

; where jN

1

j = jN

2

j � n and N

1

\N

2

= �:

We see in partiular that �

n�1

is ontained in P

�

n

, and that the orresponding

weight spae generates a g

n�1

-submodule of highest weight �

n�1

. Using a �xed

hoie of embeddings

L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

); n 2 N ;

we obtain a simple weight module V := lim

�!

L(�

n

; g

n

) of g . The weight system

of this module is given by

P

V

=

[

n2N

P

�

n

=

n

m

X

j=1

a

j

"

j

:m 2 N ; a

j

2 f�1; 0; 1g;

m

X

j=1

a

j

= 0

o

:

If � 2 P

V

is an extreme point of onv(P

V

), then there exists an n 2 N with

� =

P

2n

j=1

a

j

"

j

2 P

�

n

. Then � 2 Ext(onvP

�

n

) = W

n

:�

n

. This means

that jfj: a

j

= 1gj = n . Then � is not extremal in onv(P

�

n+1

), hene not

in onv(P

V

). This ontradition shows that the set Ext

�

onv(P

V

)

�

of extreme

points of onv(P

V

) is empty, and hene that V is not a highest weight module

(f. Lemma III.10).

The fat that all the highest weight modules L(�

n

; g

n

) are unitary implies

that the embeddings L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

) an be turned into isometri

embeddings, so that we obtain on V the struture of a unitary g -module.

As the set P

V

is bounded in l

1

(N ; C ), a similar argument as in the proof

of Lemma V.4 shows that there exists a onstant C > 0 with

k�

V

(X)k � CkXk

1

;

where k � k

1

is the trae norm. Then �

V

integrates to a holomorphi represen-

tation

�

V

: GL

1

(H)! GL(H

V

);

where H

V

is the ompletion of V with respet to the inner produt. As the

onstrution shows, the representation �

V

is not a highest weight representation.

One should observe that our onstrution of representations always as-

sumed a �xed hoie of a splitting Cartan subalgebra. Although Cartan subal-

gebras of gl(J; C ) are onjugate under the group Aut(g) of automorphisms of

g , not every suh automorphism �xes the highest weight representations, i.e.,

indues an operator on the orresponding representation spae. Therefore it is

an interesting question how unitary highest weight representations with respet

to one Cartan subalgebra h behave with respet to another Cartan subalgebra

e

h . One possible strategy is to attah unitary highest weight representation to

ertain oadjoint orbits and then to study the geometry of these orbits and how

bigger groups of automorphisms permute the orbits. Some results related to this

approah will be disussed in the next setions.
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Notes on Setion V

Most of the material of this setion has been adapted from [Ne98℄. A

disussion of the boundedness ondition for highest weight representations of

indutive limit groups an also be found in [NRW99, Prop. 3.14℄. The arguments

used there are quite di�erent from ours. Also related is the approah of Neretin

to realize the spin representation of the in�nite-dimensional orthogonal group in

a Fr�ehet spae ([Ner87℄).

The problem of integrating representations of in�nite-dimensional Lie al-

gebras to group representations beomes quite diÆult if the Lie algebra ats

by unbounded operators. Laredo has reently made signi�ant progress on this

problem ([Lar99℄). The ase of unitary highest weight representations of loop

groups and the Virasoro group is due to Goodman and Wallah ([GW84℄ and

[GW85℄; see also [Se81℄).

In the literature one �nds many results on representations of the unitary

groups U

p

(H). In [Se57℄ I. E. Segal studies unitary representations of the

full group U(H) alled physial representations whih are haraterized by the

ondition that their di�erential maps �nite rank hermitian projetions to positive

operators. Segal shows that physial representations deompose disretely into

irreduible physial representations whih are preisely those ouring in the

deomposition of �nite tensor produts of the identity representation. Later

A. A. Kirillov ([Ki73℄) and also G. I. Ol'shanski�� ([Ol78, Th. 1.11℄) proved

that all strongly ontinuous representations of the Banah{Lie group U

1

(H),

H separable, are type I, they even deompose as diret sums of irreduible

representations.

We have mentioned in Remark V.8 that the group GL

1

(H) has holomor-

phi representations of type II and III. The same is true for unitary strongly

ontinuous representations of the group U

2

(H) ([Bo90℄). In the same paper

Boyer develops a Borel{Weil theory for the (linear) oadjoint orbits of the group

U

2

(H), whih only leads to those highest weight representations where the high-

est weight has �nitely many non-zero entries.

Highest weight representations of partiularly interest in physis are the

spin representations of the group O

1

(H). For a detailed disussion of these

representations we refer to [CP89℄, [PS86℄, [Ot95℄ and [Ner96℄.

Exerises for Setion V

Exerise V.1. Show that for a split Lie algebra (g; h) there exists an ation

of the Weyl group W on h satisfying r

�

(x) = x� �(x)�� for all � 2 �

i

. Hint:

Consider h as a subspae of (h

�

)

�

.

Exerise V.2. Show that for a loally �nite split simple Lie algebra g the
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set � ontains at most two W -orbits. Hint: Assume that W does not at

transitively and pik two non-onjugate roots f�

1

; �

2

g . Then for eah � 2 �

there exists a �nite-dimensional subalgebra g

0

with f�

1

; �

2

; �g � �

0

. Now use

the �nite-dimensional result.

Exerise V.3. Let (g; h) be a loally �nite split Lie algebra with � = �

k

.

Show that for eah element Y = Y

�

2 g there exists an element X = �X

�

2 g

with e

adX

:Y 2 h . Hint: Choose a �nite-dimensional � -invariant split subalgebra

ontaining X and Y and then argue with the orresponding result for ompat

Lie algebras.
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VI. Geometry of oadjoint orbits of Banah{Lie groups

In the preeding setion we have seen that for eah bounded highest weight

� , for whih L(�) is unitary, we obtain a holomorphi highest weight repre-

sentation of G

1

:= GL

1

(H) on the orresponding Hilbert spae H

�

. A loser

inspetion of this situation would show that if one onsiders the onstrutions

of Setion I for omplex homogeneous spae of the type G

1

=P

1

, then one would

obtain a realization of H

�

by a holomorphi setion in a line bundle over a spae

whih is not a Hilbert manifold and therefore annot be a strong K�ahler mani-

fold. Motivated by this observation, we now take a loser look at the geometry of

oadjoint orbits of Banah{Lie groups to �nd the appropriate K�ahler manifolds.

For our guiding example gl(J; C ), this will lead to rather omplete information

in the ase G = U

2

(H) = U(H) \ (1+ B

2

(H)).

Let G be a real onneted Banah{Lie group, g its Lie algebra, and g

�

the topologial dual spae onsisting of the ontinuous linear funtionals on g .

As for �nite-dimensional groups, the oadjoint representation

Ad

�

:G! GL(g

�

); Ad

�

(g):� := � ÆAd(g)

�1

of G plays a ruial role in the proess of obtaining natural realizations of

representations of G . For �nite-dimensional groups, oadjoint orbits

O

f

:= Ad

�

(G):f

always arry a natural manifold struture by identifying them with the homo-

mogeneous spae G=G

f

, where G

f

:= fg 2 G: Ad

�

(g):f = fg is the stabilizer

of f in G . Unfortunately, for an in�nite-dimensional group G , the topologial

spae G=G

f

need not have a natural manifold struture. This problem suggests

that in many ases in whih G=G

f

does not exist as a manifold its geometry

should be reeted by geometri objets diretly related to G . In fat, this point

of view turns out to be quite suessful in many respets.

In this spirit a G -invariant sympleti struture on G=G

f

should orre-

spond to a left invariant losed 2-form on G whih is degenerate along the

osets of G

f

. So we �rst take a losed look at left-invariant 2-forms on G .

The tangent bundle TG of G is trivial, and a onvenient trivialization is

given by the map

	:G� g! TG; 	(g)(X) := d�

g

(1):X;

where �

g

(x) = gx is the left multipliation on G . We therefore obtain a bijetion

! 7! !

l

assigning to eah ontinuous alternating p -form ! 2 Alt

p

(g;R) a left-

invariant di�erential p -form !

l

on G given by

!

l

(g)(d�

g

(1):X

1

; : : : ; d�

g

(1):X

p

) = !(X

1

; : : : ; X

p

); g 2 G;X

1

; : : : ; X

p

2 g:
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Lemma VI.1. Let ! 2 Alt

p

(g;R) . The left-invariant p-form !

l

on G is

losed if and only if

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p+1

) = 0

holds for all X

1

; : : : ; X

p+1

2 g .

Proof. For X 2 g we write X

l

2 V(G) for the orresponding left invariant

vetor �eld on G , i.e., X

l

(g) = d�

g

(1):X . A left invariant p -form !

l

on G is

losed if and only if d!

l

vanishes on p+ 1-tuples of left invariant vetor �elds.

Moreover, d!

l

((X

1

)

l

; : : : ; (X

p+1

)

l

) is a onstant funtion. To alulate its value

in the identity, we observe that eah funtion

!

l

�

(X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ; (X

p+1

)

l

�

is onstant, so that

�

d!

l

((X

1

)

l

; : : : ; (X

p+1

)

l

�

�

(1)

=

p+1

X

i=1

(�1)

i

(X

i

)

l

:!

l

((X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ; (X

p+1

)

l

)(1)

+

X

i<j

(�1)

i+j

!

l

([(X

i

)

l

; (X

j

)

l

℄; (X

1

)

l

; : : : ;

[

(X

i

)

l

; : : : ;

\

(X

j

)

l

; : : : ; (X

p+1

)

l

)(1)

=

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p+1

):

De�nition VI.2. We onlude in partiular that a bilinear form !: g�g! R

de�nes a losed left invariant 2-form 
 := !

l

on G if and only if ! is a Lie

algebra 2-oyle, i.e.,

!(x; [y; z℄) + !(y; [z; x℄) + !(z; [x; y℄) = 0; x; y; z 2 g:

We write Z

2



(g;R) for the spae of ontinuous real-valued 2-oyles on g .

Let 
 2 


2

(G) be a left invariant losed 2-form de�ned by ! 2 Z

2



(g;R).

Then there exists a left invariant 1-form � with d� = 
 if and only if there

exists a ontinuous linear funtional f 2 g

�

with !(x; y) = f([x; y℄) for x; y 2 g ,

i.e., the 2-oyle ! is a 2-oboundary. The spae of ontinuous 2-oboundaries

is denoted B

2



(g;R), and the quotient spae

H

2



(g;R) := Z

2



(g;R)=B

2



(g;R)

is the seond ontinuous real-valued Lie algebra ohomology of g .

Below we will disuss modi�ations of the oadjoint ation to ertain aÆne

ations, so we �rst have a loser look at the aÆne group of a Banah spae.
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De�nition VI.3. (a) Let V be a Banah spae. We onsider the aÆne group

A�(V )

�

=

V o GL(V ) whih ats on V by (x; g):v = g:v + x . On the spae

e

V := V � R the group A�(V ) ats by linear maps (x; g):(v; z) := (g:v + zx; z),

and we thus obtain a realization of A�(V ) as a linear Lie subgroup of GL(

e

V ).

The orresponding Lie algebra is aff(V )

�

=

V o gl(V ) with the braket

[(v; A); (v

0

; A

0

)℄ = (A:v

0

� A

0

:v; [A;A

0

℄):

(b) A homomorphism �: g! aff(V ) is therefore given by a pair (�

l

; �) onsisting

of a linear representation �

l

: g! gl(V ) and map �: g! V satisfying

(6:1) �([x; y℄) = �

l

(x):�(y)� �

l

(y):�(x); for x; y 2 g:

A map �: g ! V satisfying (6.1) is alled a 1-oyle with values in the g -

representation (�

l

; V ).

() On the group level a homomorphism �:G! A�(V ) is given by a pair (�

l

;�)

of a linear representation �

l

:G! GL(V ) and map �:G! V satisfying

(6:2) �(g

1

g

2

) = �

l

(g

1

):�(g

2

) + �(g

1

) for g

1

; g

2

2 G:

A map �:G ! V satisfying (6.2) is alled a 1-oyle with values in the G -

representation (�

l

; V ). Typial examples of 1-oyles are maps of the form

�(g) := �

l

(g):v � v; v 2 V:

These oyles are alled trivial (oboundaries).

Lemma VI.4. Let ! 2 Z

2

(g;R) be a ontinuous 2-oyle. Then �(x)(y) :=

!(x; y) is a 1-oyle with values in the oadjoint representation (ad

�

; g

�

) , where

ad

�

(x):� = �� Æadx . If G is simply onneted, then there exists a unique aÆne

representation

Ad

�

!

:G! A�(g

�

); Ad

�

!

(g) = (�(g);Ad

�

(g))

with d�(1) = � .

Proof. That � is a 1-oyle with values in the oadjoint representation

(ad

�

; g

�

) follows from

�([x; y℄)(z) = !([x; y℄; z) = �!(y; [x; z℄) + !(x; [y; z℄)

= (ad

�

(x):�(y))(z)� (ad

�

(y):�(x))(z):

We therefore obtain an aÆne representation of g on g

�

given by

ad

�

!

: g! aff(g

�

); ad

�

!

(x) = (�(x); ad

�

(x)):

If G is simply onneted, then Theorem IV.2() implies that the aÆne

representation ad

�

!

integrates to an aÆne representation

Ad

�

!

:G! A�(g

�

); Ad

�

!

(g) = (�(g);Ad

�

(g));

where �:G ! g

�

is a smooth 1-oyle for G with values in the oadjoint

representation. The group oyle is related to the Lie algebra oyle � by

d�(1) = � and the uniqueness of � follows from the uniqueness assertion in

Theorem IV.2().
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The aÆne ations of G on g

�

obtained by this proess are generalizations

of the oadjoint ation. The ation Ad

�

!

of G on g

�

is equivalent to a linear

representation if and only if it has a �xed point f 2 g

�

. This means that

ad

�

!

(g):f = f0g , i.e., !(x; �) = f Æ adx for all x 2 g , whih in turn means that

!(x; y) = f([x; y℄) , i.e., ! is a oboundary.

Remark VI.5. (a) The oyle ! 2 Z

2

(g;R) de�nes a Lie algebra struture

on

b

g := g� R by

[(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

));

whih is a entral extension of g by R . The aÆne ation Ad

�

!

of G on g

�

orresponds to a linear ation on

b

g

�

given by

Ad

�

bg

(g):(�; �) = (Ad

�

(g):�+ ��(g); �):

This means that the aÆne ation of G on g

�

is equivalent to a linear ation on

the aÆne hyperplane g

�

� f1g in

b

g

�

.

(b) The main reason for preferring the aÆne ation is that to understand the

ation on

b

g

�

in a proper sense as a oadjoint ation, we would need a group

b

G

with L(

b

G) =

b

g , but suh groups need not exist (see the example below). On

the other hand, one knows that in all ases the ation of the simply onneted

group with Lie algebra g has a natural linear ation on

b

g , even if G is not a

Banah{Lie group (f. [Ne00℄).

One of the most simple examples of a Banah{Lie algebra for whih no

orresponding group exists is the quotient

g :=

�

u(H)� u(H)

�

=z;

where z := R(i1;

p

2i1) and H is an in�nite-dimensional omplex Hilbert spae

(f. [EK64℄).

Now we turn to the geometri struture of orbits of the ation Ad

�

!

. The

following theorem generalized the observation of Kirillov, Kostant and Souriau,

that every oadjoint orbit of a �nite-dimensional Lie group arries a natural

invariant sympleti struture.

We reall that a weakly sympleti manifold is a pair (M;
) of a manifold

M and a non-degenerate losed 2-form 
. It is alled strongly sympleti if for

eah p 2M the injetive map

T

p

(M)! T

p

(M)

�

; v 7! 


p

(v; �)

is surjetive. Note that eah �nite-dimensional weakly sympleti manifold is

also strongly sympleti (f. Exerise VI.1).

Theorem VI.6. Suppose that the aÆne representation Ad

�

!

of G on g

�

exists. Let f 2 g

�

and ! 2 Z

2



(g;R) . If the stabilizer G

f

is omplemented, then

the orbit O

f

= Ad

�

!

(G):f arries the struture of a weakly sympleti manifold.
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Proof. Let f 2 g

�

. Then the stabilizer g

f

of f is given by

(6:3)

g

f

= fx 2 g: ad

�

!

(x):f = 0g = fx 2 g: �(x) = f Æ adxg

= fx 2 g:!(x; �)� f([x; �℄) = 0g:

The orresponding subgroup G

f

� G is a Lie subgroup (Exerise IV.3).

Let us assume, in addition, that G

f

is omplemented (whih is the ase if G

is a Hilbert{Lie group). Then we identify O

f

with G=G

f

and obtain on O

f

a

natural manifold struture suh that G ats smoothly and transitively on O

f

.

The tangent spae T

f

(O

f

) an be identi�ed with g=g

f

on whih we have the

skew-symmetri bilinear form given by




f

(ad

�

!

(x):f; ad

�

!

(y):f) := !(x; y)� f([x; y℄)

whih is well de�ned, non-degenerate (see (6.3)) and G

f

-invariant (Exerise!).

Hene there exists a G -invariant 2-form 
 on O

f

whih oinides with this form

on T

f

(O

f

). Let �:G ! O

f

�

=

G=G

f

denote the orbit map. Then �

�


 is the

left invariant 2-form on G whih in 1 oinides with ! + df 2 Z

2



(g;R), where

df(x; y) := f([y; x℄) . This implies that

d�

�


 = �

�

d
 = 0;

showing that d
 = 0, i.e., 
 is losed.

Remark VI.7. If g is topologially isomorphi to a Hilbert spae, then the

assumption of Theorem VI.6 is automatially satis�ed.

Remark VI.8. Let ! 2 Z

2



(g;R) and Ad

�

!

be as above. For � 2 g

�

we

onsider the equivalent oyle

e! := ! + d�; e!(x; y) = !(x; y)� �([x; y℄):

Then

e

�(x) = �(x) + ad

�

(x):� , and therefore

e

�(g) = �(g) + Ad

�

(g):�� �:

This implies that the translation map �

�

: g

�

! g

�

; � 7! � + � satis�es

(6:4) Ad

�

!

(g) Æ �

�

= �

�

ÆAd

�

e!

(g):

Therefore the two aÆne ations Ad

�

!

and Ad

�

e!

are equivalent. For the orre-

sponding orbits this means that

O

�

=

e

O

���

+ �;

and one easily heks that this isomorphism preserves the sympleti struture,

so that it suÆes to study the orbits of the type

O

!

:= O

0

:= Ad

�

!

(G):0 = �(G) � g

�

:

If, in addition, � vanishes on the ommutator algebra, then d� = 0, so

that e! = ! . In this ase (6.4) means that �

�

ommutes with the aÆne ation

Ad

�

!

.
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Complex strutures on homogeneous spaes

The most diret way to obtain omplex strutures on homogeneous spaes

is to realize them as open submanifolds of omplex manifolds. To see how to �nd

suh embeddings systematially, let us assume that M = G=H is a homogeneous

spae of a Banah{Lie group G for whih H is a omplemented Lie subgroup,

so that M arries a natural real manifold struture.

Remark VI.8. Let us assume that M also arries an invariant omplex stru-

ture, i.e., M is a omplex manifold suh that G ats by biholomorphi mappings.

Then the natural Lie algebra homomorphism _�: g! V(M) given by

_�(X)(p) :=

d

dt

t=0

exp(�tX):p

extends to a omplex linear homomorphism _�

C

: g

C

! V

hol

(M); where V

hol

(M)

denote the Lie algebra of holomorphi vetor �elds on M . Let

p := fX 2 g

C

: _�

C

(X)(x

0

) = 0g;

where x

0

= 1H 2 M is the base point. We write X 7! X for the omplex

onjugation on g

C

. Then p has the following properties:

(C1) p is a losed Ad(H)-invariant subalgebra of the Banah{Lie algebra g

C

.

(C2) p \ p = h

C

, and

(C3) p+ p = g

C

.

(C1) follows from the relation

_�

C

(Ad(h):X)(x

0

) = �

iso

(h): _�

C

(X)(x

0

);

where �

iso

:H ! GL(T

x

0

(M)) is the isotropy representation of H in x

0

. To

verify (C2), we observe that the omplex Lie algebra p \ p is onjugation-

invariant, hene satis�es

p \ p = (p \ p \ g)

C

= (p \ g)

C

= h

C

:

For ondition (C3) we note that M = G=H implies that

T

x

0

(M) = _�(g)(x

0

);

so that g

C

� g+ p . This in turn means that

fX �X:X 2 g

C

g = fX �X:X 2 pg = fX �X:X 2 p+ pg;

so that (C3) follows beause p \ p is the omplexi�ation of the subspae of the

purely imaginary elements it ontains.

In the �nite-dimensional ase one an show that a subalgebra p � g

C

satisfying (1){(3) is already enough to obtain on M = G=H an invariant omplex

struture (f. [Ki76, p.203℄). We do not expet that (C1){(C3) would be enough

in the in�nite-dimensional ase. For the arguments in [Ki76℄ to work one needs at

least the additional assumption that p is omplemented in g , and this should be

enough. Sine we will need omplex strutures only in quite spei� situations, let

us formulate a suÆient set of onditions for the existene of a omplex struture.
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Proposition VI.9. We assume that G is ontained as a Lie subgroup in

a omplex Banah{Lie group G

C

with Lie algebra g

C

on whih we have an

antiholomorphi automorphism � suh that

L(�)(X) = X; X 2 g

C

:

Let H be a omplemented Lie subgroup of the onneted Lie group G , g := L(G) ,

h := L(H) , and p � g

C

a losed omplex subalgebra for whih the following

assertions hold:

(1) P := hexp pi is a omplemented Lie subgroup of G

C

.

(2) P \G = H .

(3) p+ g = g

C

.

Then the orbit mapping G ! G

C

=P; g 7! gP , indues an open embedding

of G=H as an open G-orbit in the omplex manifold G

C

=P .

Proof. We onsider the orbit map �:G! G

C

=P; g 7! g:x

0

, where x

0

= 1P is

the base point in G

C

=P . This is a smooth map whih is onstant on the H -left

osets gH in G , hene fators to a smooth map �:M ! G

C

=P whih is injetive

beause of (2). Its di�erential in x

0

orresponds to the anonial map

g=h! g

C

=p

whih, in view of (2), is injetive, and, aording to (3), is surjetive. Therefore

the Inverse Funtion Theorem shows that � is a loal di�eomorphism in x

0

. Sine

� is also G -equivariant, it follows that � is an open embedding of manifolds.

The assumption (2) in Proposition VI.9 implies p\g = h whih is equivalent

to (C2), and (3) is easily seen to be equivalent to (C3).

Complex strutures on oadjoint orbits

Now we turn more spei�ally to oadjoint orbits in the sense of Theorem

VI.6. So we onsider a homogeneous spae M = G=H whih is a oadjoint orbit

of the type O

!

onsidered in Theorem VI.6. Then we want, in addition, that the

omplex struture I (viewed as the multipliation by i in eah tangent spae),

preserves the sympleti form. Taking the homogeneity of M into aount, it

suÆes to verify this ondition in the base point x

0

= 0. The tangent spae

T

x

0

(M) = T

0

(O

!

) an naturally be identi�ed with g=h by the map

g=h! T

0

(O

!

); X + h 7! ad

�

!

(X):0 = �(X):

Let us write Z

�

:= �Z for Z 2 g

C

. In view of p+ p = g

C

, we may write eah

element X 2 g as Z � Z

�

, Z 2 p (the map g

C

! g , Z 7! Z � Z

�

is surjetive

and p and p have the same image). Suppose that M arries a omplex struture

de�ned by p . Then T

x

0

(M)

�

=

g=h

�

=

g

C

=p desribes the omplex struture on

the tangent spae. We write �: g

C

! T

0

(O

!

) for the omplex linear extension of
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g with respet to the omplex struture on T

0

(O

!

). Writing X as Z � Z

�

for

Z 2 p , we obtain for the multipliation with i on T

0

(O

!

) the formula

I:�(X) = I:�(Z � Z

�

) = I:�(Z) = �(iZ) = �(i(Z + Z

�

))

with i(Z + Z

�

) 2 u . Now




0

(�(Z � Z

�

); I:�(W �W

�

))

= !(Z � Z

�

; i(W +W

�

))

= !(iZ;W

�

) + !(iW;Z

�

) + !(iZ;W ) + !(�iZ

�

;W

�

);

= !(iZ;W

�

) + !(iW;Z

�

)

| {z }

symmetri

+2Re

�

!(iZ;W )

�

| {z }

skew�symmetri

;

so that the requirement that this form is symmetri means that Re! vanishes

on p� p , whih is the same as

(C4) !(p� p) = f0g .

If p satis�es (C1){(C4), we all it a omplex polarization in ! . Our alu-

lation above has shown that this ondition means that if a omplex struture is

obtained from Proposition VI.9, then (C4) guarantees that the omplex struture

is ompatible with the sympleti struture in the sense that multipliation by

I is a sympleti isomorphism in eah tangent spae. If (M;
) is a weakly sym-

pleti manifold endowed with a omplex manifold struture for whih I satis�es

this ondition, we all the triple (M;
; I) a pseudo-K�ahler manifold.

We all it a K�ahler manifold if, in addition, we have 0 < 


0

(v; I:v) for

0 6= v . For a omplex polarization this means that for Z 2 p n h

C

we have

0 < 


0

(ad

�

!

(Z�Z

�

):�; I ad

�

!

(Z�Z

�

):�) = !(Z�Z

�

;�iZ�iZ

�

) = �2i!(Z;Z

�

):

So we formulate an additional ondition on p :

(C5)For all Z 2 p n h

C

we have �i!(Z;Z

�

) > 0.

Notes on Setion VI

For �nite-dimensional split involutive Lie algebras K�ahler strutures on

oadjoint orbits have been studied in some detail [Ne95a℄. For �nite-dimensional

Lie algebras oadjoint orbits of the highest weights of unitary highest weight rep-

resentations are always oadjoint K�ahler orbits ([Ne95b℄). For further material

on K�ahler orbits for ompat groups, we refer to [GS84℄. A detailed analy-

sis of homogeneous K�ahler manifolds is undertaken in [DoNa88℄ by Dorfmeister

and Nakajima, where they prove the Fundamental Conjeture for Homogeneous

K�ahler Manifolds whih essentially leads to a lassi�ation of all homogeneous

K�ahler manifolds. All in�nite-dimensional homogeneous strongly K�ahler mani-

folds we are aware of have the same �bration struture given in the lassi�ation

for the �nite-dimensional ase. It seems that the geometry beomes muh less

ontrollable for weakly K�ahler manifolds.
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Exerises for Setion VI

Exerise VI.1. We onsider the Banah spae E := l

1

(Z n f0g;R) with the

ontinuous alternating bilinear form

!(x; y) :=

X

j>0

x

j

y

�j

� x

�j

y

j

:

We then de�ne a onstant 2-form 
 on E by 


p

:= ! for all p 2 E . Show

that (E;
) is a weakly sympleti manifold whih is not strongly sympleti.

Hint: The image of the natural map E ! E

�

�

=

l

1

(Z n f0g;R) is the subspae

l

1

(Z n f0g;R).

Exerise VI.2. It is instrutive to visualize the onstrutions in this setion

for the ase of abelian Lie algebras. Let g be an abelian Banah{Lie algebra

whih we also onsider as a group G = g with exp = id.

(a) Z

2



(g;R) = Alt

2

(g;R) is the spae of ontinuous alternating bilinear forms

! on g .

(b) The aÆne ation of G on g

�

orresponding to ! is given by Ad

�

!

(x):� =

� + !(x; �). Its orbits are aÆne subspaes of g

�

.

() Suppose that ! is non-degenerate and that g has a omplex struture I for

whih there exists a real subspae n � g satisfying:

(1) g = n� In .

(2) ! vanishes on n� n .

(3) ! is I -invariant.

Show that the omplex subspae

p := fv � iIv: v 2 ng � g

C

is a omplex polarization in ! whih is omplemented. When is it a K�ahler

polarization?

Exerise VI.3. Let (V;
) be a sympleti vetor spae, i.e., 
:V � V ! R

is a non-degenerate alternating bilinear form. For a omplex struture I on V

the following are equivalent:

(a) 
 is I -invariant, i.e., I 2 Sp(V;
).

(b) 
(v; I:w) = 
(w; I:v) for v; w 2 V .

() The omplex bilinear extension 
:V

C

� V

C

! V of 
 satis�es 
(v; w) = 0

for v; w 2 V

+

:= fx� iIx:x 2 V g .
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VII. Coadjoint orbits and omplex line bundles for U

2

(H)

In this setion we omplete the piture for the speial ase of the group

U := U

2

(H). This means that we will desribe K�ahler oadjoint orbits of this

group and realize all unitary highest weight representations L(�) of gl(J; C ) (for

H = l

2

(J; C )) with bounded � in a spae of holomorphi setions of a omplex

line bundle over suh orbits. This piture will show in partiular that the group

GL

1

(H) ating on the Hilbert spae H

�

is far from being maximal.

Although the material in this setion is formulated, for simpliity, only for

the group U

2

(H), it works in the more general setting of L

�

-algebras.

Coadjoint K�ahler orbits for u

2

(H)

To �x the notation, we write

U := U

2

(H); G := GL

2

(H); u = L(U) = u

2

(H); g = L(G) = B

2

(H):

We also identify u with u

�

using the trae form (x; y) := tr(xy). Then the

oadjoint ation is given by Ad

�

(g):x = Ad(g):x = gxg

�1

. As we have seen in

Setion VI, to understand the aÆne oadjoint ations from a higher viewpoint,

we �rst have to desribe the spae Z

2



(u;R) or real-valued 2-oyles.

Lemma VII.1. Every ontinuous oyle ! 2 Z

2



(u;R) an be written as

!(x; y) = tr(A[x; y℄) for some A 2 B(H) with A

�

= �A .

Proof. In [dlH72, Prop. II.9℄ it is shown that the omplex bilinear extension

!

C

2 Z

2



(g; C ) an be written as !

C

(x; y) = tr(B[x; y℄) for some B 2 B(H).

For C

�

= C and x 2 u we have tr(Cx) 2 iR , so that !(x; y) 2 R for x; y 2 u

implies that tr((B + B

�

)[x; y℄) = 0 for all x; y 2 u . Hene we obtain with

A :=

1

2

(B � B

�

) the relation !(x; y) = tr(A[x; y℄) .

In the following we assume that ! 2 Z

2



(u;R) is given by A = �A

�

2 B(H)

as in Lemma VII.1 by

!(x; y) = tr(A[x; y℄) = tr([A; x℄y):

This means that the orresponding Lie algebra oyle �: u! u is given by

�(x) = [A; x℄:

Note that adA:B

2

(H) ! B

2

(H) is a ontinuous map and that B

2

(H) is an

ideal in B(H). Having suh a onrete formula for the oyle, it is easy to

desribe the orresponding group oyle whih exists although the group U is
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not simply onneted (in view of Proposition A.4 and Theorems A.10/11 we have

�

1

(U)

�

=

Z):

�:U ! u; �(g) = gAg

�1

� A:

Note that for g 2 U = U

2

(H) and A 2 B(H) we have

gAg

�1

= (g � 1)Ag

�1

+ A(g

�1

� 1) 2 B

2

(H)

and that for A

�

= �A we also get �(g)

�

= ��(g).

Remark VII.2. In this ase it would also be possible to work with a entral

extension of the group U . In view of Proposition A.4 and Theorems A.10/11,

the group �

2

(U) is trivial, so that the results in [Ne00℄ imply the existene of

a entral extension

R !

b

U ! U

orresponding to the Lie algebra extension

b

u = u�

!

R de�ned by ! 2 Z

2



(u;R)

with the braket

[(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

)):

The next problem is to �nd the geometrially well behaved oadjoint orbits

in u . As we have seen in Setion VI, it suÆes to onsider the orbit

O

!

:= �(G) � u

of 0 (Remark VI.8). Sine we are looking for strong K�ahler orbits, a natural

question is when these orbits are submanifolds of u . In�nitesimally this leads to

the question when the tangent spae T

0

(O

!

) = �(u) = [A; u℄ is a losed subspae

of u .

For a normal operator A 2 B(H) we write A = A



� A

d

(ontinuous and

disrete part of A) aording to the orthogonal deomposition H = H



� H

d

,

where H

d

is the Hilbert spae diret sum of the eigenspaes of A , H



= H

>

d

,

A

d

= A j

H

d

, and A



= A j

H



.

Lemma VII.3. For A = �A

�

2 B(H) the following assertions hold:

(i) If X 2 u ommutes with A , then XA



= A



X = 0 , and X vanishes on

H



. Moreover, ker(adA) � B

2

(H

d

) .

(ii) The map adA: u ! u has losed range if and only if A is diagonalizable

with �nite spetrum.

Proof. (i) The stabilizer of 0 2 O

!

in u is the entralizer of A in u . We

reall that every operator X 2 u is ompat and normal, hene diagonalizable

and all eigenspaes orresponding to non-zero eigenvalues are �nite-dimensional.

If X 2 u ommutes with A , then it preserves the eigenspaes of A , hene

ommutes with A



and A

d

. Therefore A



preserves the �nite-dimensional non-

trivial eigenspaes of X on whih it ats trivially beause it does not have any

eigenvetor for a non-zero eigenvalue. Therefore XA



= A



X = 0. Sine A(H



)

is dense in H



, it follows that H



� kerX and imX � (kerX)

?

� H

d

, so
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that we an identify X with an element of B

2

(H

d

). In this sense we have

ker(adA) � B

2

(H

d

).

(ii) We onsider the hermitian operator adA on the omplex Hilbert spae

g = B

2

(H). Then im(adA) = [A; g℄ is the omplexi�ation of the spae [A; u℄ ,

showing that this spae is a losed subspae of u if and only if adA has losed

range on g . Sine adA is normal, this ondition is equivalent to 0 being an

isolated point in the spetrum Spe(adA) of adA (Exerise VII.1).

We note that B

2

(H



) � (ker adA)

?

= imadA follows diretly from (i).

The trivial fat that A

d

ommutes with B

2

(H



) entails that adA , resp., adA



restrits to an invertible operator B

2

(H



) ! B

2

(H



). Let E be the spetral

measure of A



and � 6= � 2 Spe(A



). Then there exist disjoint ompat " -

neighborhoods U

�

of � and U

�

of � in C . We reall the rank-one operators

P

v;w

(x) = hx; viw on H . For unit vetors v 2 E(U

�

) and w 2 E(U

�

) we now

get

k[A



; P

v;w

℄k

2

= hP

A



:v;w

� P

v;A



:w

; P

A



:v;w

� P

v;A



:w

i

= kA



:vk

2

+ kA



:wk

2

� 2hA



:v; vihA



:w; wi:

If " tends to 0, then this number tends to �

2

+�

2

� 2�� = (���)

2

. Sine � is

not isolated in the spetrum of A



, we onlude that the expression k[A



; P

v;w

℄k

2

an be arbitrarily small, ontraditing the invertibility of adA



on B

2

(H



). We

onlude that A



= 0, i.e., A = A

d

is diagonalizable on H .

Now we apply the same argument with eigenvetors v , resp., w of A

orresponding to the eigenvalues � , resp., � , and obtain

[A;P

v;w

℄ = (�� �)P

v;w

:

Sine 0 is isolated in Spe(adA), we onlude that every point in Spe(A) is

isolated, and hene that this ompat set is �nite.

Motivated by Lemma VII.3, we now restrit our attention to those oyles

! for whih A is diagonalizable with �nite spetrum. Let �

1

> : : : > �

k

denote

the eigenvalues of the hermitian operator iA and H

j

:= ker(iA � �

j

1) be the

orresponding eigenspae. We then have an orthogonal deomposition

H = H

1

� : : :�H

k

:

Aordingly we write operators B 2 B(H) as blok k � k -matries with entries

b

ij

2 B(H

j

; H

i

).

The stabilizer of 0 2 O

!

oinides with the entralizer of A , hene is

isomorphi to

U

0

:= U

2

(H

1

)� : : :� U

2

(H

k

) = fu 2 U : (8i 6= j)u

ij

= 0g:

We want to show that O

!

arries a natural struture of a strong K�ahler

manifold ompatible with the sympleti struture. So we have to �nd a K�ahler

polarization p in ! .
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Lemma VII.4. The losed subalgebra

p := fX = (X

ij

)

i;j=1;:::;k

2 g: i < j ) X

ij

= 0g

is a omplemented subalgebra whih is a omplex K�ahler polarization in the

oyle ! in the sense that (CP1)-(CP5) are satis�ed.

For k = 3 the elements of p have the form

0

�

X

11

0 0

X

21

X

22

0

X

31

X

32

X

33

:

1

A

Proof. That p is omplemented is lear beause

n := fX = (X

ij

)

i;j=1;:::;k

2 g: i � j ) X

ij

= 0g

is a losed subspae of g omplementing p .

We have to verify onditions (C1){(C5) from Setion VI. From the expliit

desription of the stabilizer group U

0

we immediately derive that p is Ad(U

0

)-

invariant, whih is (C1). The relations

p \ p = u

0

C

and p+ p = g

are also trivially satis�ed. To verify (C4), let X;Y 2 p . Then

!(X;Y ) = tr(A[X;Y ℄) =

k

X

j=1

�i�

j

tr([X

jj

; Y

jj

℄) = 0

follows from the fat that [B

2

(H

j

); B

2

(H

j

)℄ � sl(H

j

) for eah j (Exerise VII.2).

For (C5) we alulate for Z 2 p :

�i!(Z;Z

�

) = �i tr(A[Z;Z

�

℄) = �i tr([A;Z℄; Z

�

) = �i

X

j�k

tr([A;Z

jk

℄Z

�

kj

)

= �i

X

j�k

tr

�

� i(�

j

� �

k

)Z

jk

Z

�

kj

�

=

X

j�k

(�

k

� �

j

) tr(Z

jk

Z

�

kj

)

=

X

j�k

(�

k

� �

j

)kZ

jk

k

2

2

> 0

for Z 62 u

0

C

.

Lemma VII.5. Let P := hexp pi � G denote the analyti subgroup orre-

sponding to p . Then

P = f(g

ij

) 2 GL

2

(H): i < j ) g

ij

= 0g:

In partiular P is a omplemented Lie subgroup of G .
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Proof. We have to show that the group P

0

on the right hand side is onneted.

It is a semidiret produt N oG

0

, where

G

0

:= f(g

ij

) 2 GL

2

(H): i 6= j ) g

ij

= 0g

�

=

k

Y

j=1

GL

2

(H

j

)

and

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i < j ) g

ij

= 0g:

For the group N the exponential funtion exp: n! N is a di�eomorphism whose

inverse is given by

log:N ! n: log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

=

k

X

n=1

(�1)

n+1

n

(g � 1)

n

:

Therefore the onnetedness of the right hand side above follows from the on-

netedness of the groups GL

2

(H

j

) (Theorem A.10) or diretly from the obser-

vation that N = 1+ n .

Theorem VII.6. If A is diagonalizable with disrete spetrum and !(x; y) =

tr(A[x; y℄) , then the oadjoint orbit O

!

is a strong K�ahler orbit, i.e., a K�ahler

orbit whih is a strongly sympleti manifold.

Proof. In view of Lemmas VII.4 and VII.5, we have exatly the situation

asked for in Proposition VI.9, so that we obtain an open embedding

O

!

�

=

U=U

0

,! G=P;

whih yields on O

0

the struture of a omplex manifold. Sine p is a K�ahler

polarization, we see that O

!

is a K�ahler manifold.

It remains to show that the sympleti struture on the tangent spae

T

0

(O

!

) yields an isomorphism to the dual spae. We identify T

0

(O

!

) with

g=p

�

=

n = fX = (X

ij

)

i;j=1;:::;k

2 g: i � j ) X

ij

= 0g

as in the proof of Lemma VII.4. Then the real salar produt orresponding to

the K�ahler struture is given for Z 2 n by

�i!(Z

�

; Z) =

X

k<j

(�

k

� �

j

)kZ

�

jk

k

2

2

=

X

j<k

(�

j

� �

k

)kZ

jk

k

2

2

:

The fat that the di�erenes �

j

� �

k

, j < k , are all positive shows that n is a

omplex Hilbert spae with respet to the above salar produt, hene that O

!

is a strong K�ahler orbit.

We will see in Remark VII.19 below that the natural inlusion map U=U

0

,!

G=P is in fat a bijetion, i.e., U ats transitively on G=P .

So far our geometri approah has provided us with a ertain set of K�ahler

orbits of the Lie algebra u

2

(H) in the sense of aÆne oadjoint ations. These

orbits are oadjoint orbits in the usual sense if and only if im(A) =

P

�

j

6=0

H

j

is

�nite-dimensional, whih is quite restritive. In the next subsetion we turn to

the onstrution of the orresponding holomorphi line bundles and show that

we an realize all holomorphi unitary highest weight representations in Hilbert

spaes of holomorphi setions of suh bundles.
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Constrution of the omplex line bundles

In this subsetion we start with an orthogonal deomposition

H = H

1

� : : :�H

k

of the omplex Hilbert spae H . We onsider the Banah algebra

B

r;1

(H

1

; : : : ; H

k

)

:= fA = (a

ij

) 2 B(H): (8i 6= j) a

ij

2 B

2

(H

j

; H

i

); (8j) a

jj

2 B

1

(H

j

)g

with the norm

kXk := maxfka

jj

k

1

; j = 1; : : : ; k; ka

jl

k; j 6= lg

(Example VII.3) and

B

res

(H

1

; : : : ; H

k

) := fA = (a

ij

) 2 B(H): (8i 6= j) a

ij

2 B

2

(H

j

; H

i

)g

with the norm

kXk := maxfka

jj

k; j = 1; : : : ; k; ka

jl

k; j 6= lg

(Example VII.4).

Lemma VII.7. (a) GL

res

:= GL(H) \ B

res

(H

1

; : : : ; H

k

) is a group, and

U

res

:= GL

res

\U(H) = f(g

ij

) 2 U(H): (8i > j) g

ij

2 B

2

(H

j

; H

i

); g

jj

Fredholmg:

(b) G

r;1

:= GL(H) \

�

1+ B

r;1

(H

1

; : : : ; H

k

)

�

is a group.

Proof. (a) Let g 2 G

r;1

. For the �rst assertion we only have to show that

(g

�1

)

il

2 B

2

(H

l

; H

i

) holds for i 6= l . First we observe that

1 = g

ii

(g

�1

)

ii

+

X

j 6=i

g

ij

(g

�1

)

ji

2 g

ii

(g

�1

)

ii

+ B

2

(H

i

):

We also have

g

ii

(g

�1

)

il

= �

X

j 6=i

g

ij

(g

�1

)

jl

:

Multiplying this equation with (g

�1

)

ii

, we obtain

(g

�1

)

ii

g

ii

(g

�1

)

il

= �

X

j 6=i

(g

�1

)

ii

g

ij

(g

�1

)

jl

2 B

2

(H

l

; H

i

);
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so that

(g

�1

)

il

2 (g

�1

)

ii

g

ii

(g

�1

)

il

+B

2

(H

l

; H

i

) � B

2

(H

l

; H

i

):

For the seond part we �rst observe that eah element g 2 U

res

trivially

satis�es g

ij

2 B

2

(H

j

; H

i

) for i > j . Let us assume, onversely, that these

onditions are satis�ed. From g

�

g = 1 we then get for n;m 2 f1; : : : ; kg the

relations

Æ

nm

1 =

X

l

g

�

ln

g

lm

:

For m = 1 < n this leads to

0 = g

�

1n

g

11

+ g

�

2n

g

21

+ : : :+ g

�

kn

g

k1

| {z }

2B

2

(H

1

;H

n

)

:

Sine g

11

is a Fredholm operator (it has �nite-dimensional kernel and okernel),

we derive that g

1n

2 B

2

(H

n

; H

1

) for n > 1 (Example VII.7). For m < n we

now assume that g

ln

2 B

2

(H

n

; H

l

) for l < m . Then we obtain

0 =

X

l<m

g

�

ln

g

lm

| {z }

2B

2

(H

m

;H

n

)

+g

�

mn

g

mm

+

X

l>m

g

�

ln

g

lm

| {z }

2B

2

(H

m

;H

n

)

;

so that g

�

mn

g

mm

2 B

2

(H

m

; H

n

), and we see as above that g

mn

is Hilbert{

Shmidt.

(b) Let g 2 G

r

. Then (a) implies that for j 6= l we have (g

�1

)

jl

2 B

2

(H

l

; H

j

).

We further have

1 = g

ii

(g

�1

)

ii

+

X

j 6=i

g

ij

(g

�1

)

ji

2 (1+B

1

(H

i

))(g

�1

)

ii

+B

1

(H

i

) � (g

�1

)

ii

+B

1

(H

i

);

so that g

�1

2 1+ B

r;1

(H

1

; : : : ; H

k

).

We reall from Lemma VII.5 the subgroup P � G whih we write in the

anonial way as a semidiret produt

P

�

=

N oG

0

;

where

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i < j ) g

ij

= 0g:

Aordingly we put

N := f(g

ij

) 2 GL

2

(H): g

jj

= 1; i > j ) g

ij

= 0g:

We also onsider the orresponding subgroup of G

r;1

:

P

r;1

:= P \G

r;1

�

=

N oG

0

1

:
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Sine the group P

r;1

is a submanifold of the Banah{Lie group G

r;1

, the

quotient spae M := G

r;1

=P

r;1

arries a natural omplex manifold struture

modeled over the Hilbert spae n . It is lear that for G

1

:= GL

1

(H) and

P

1

:= P \GL

1

(H) we obtain an injetion G

1

=P

1

,! G

r;1

=P

r;1

; gP

1

7! gP

r;1

.

We onstrut holomorphi line bundles on M as follows. Sine the group

G

0

1

is isomorphi to the produt

Q

k

j=1

GL

1

(H

j

), we have for eah

� = (�

1

; : : : ; �

k

) 2 Z

k

a holomorphi harater

�:G

0

1

! C

�

; �(g) =

k

Y

j=1

det(g

jj

)

�

j

whih we immediately extend to a holomorphi harater �:P

r;1

! C

�

with

N � ker� . Atually every holomorphi harater of P

r;1

has this form (Exerise

VII.5).

Now we de�ne an ation of P

r;1

on G

r;1

� C by

p:(g; z) := (gp

�1

; �(p)z); p 2 P

r;1

; z 2 C ; g 2 G

r;1

and obtain a the homogeneous omplex line bundle

L

�

:= G

r;1

�

P

r;1

C !M

as the quotient manifold with respet to this ation (the same arguments as in

Setion I apply). We write [g; z℄ for the element of L

�

orresponding to the

orbit of (g; z) under the ation of P

r;1

and �(L

�

) for the spae of holomorphi

setions.

We will now address the question when the bundle L

�

has non-zero holo-

morphi setions. First we will see that a simple SL

2

-redution argument yields

a neessary ondition of whih we will see later that it also is suÆient.

Lemma VII.8. If �(L

�

) 6= f0g , then

(7:1) �

1

� : : : � �

k

:

Proof. We assume that i < j and pik unit vetors v 2 H

i

and w 2 H

j

.

Then

h := P

v;v

� P

w;w

; e := P

v;w

and f := P

w;v

satisfy the ommutator relations of sl(2; C ) (Example II.2), so that

g(v; w) := spanfP

v;w

; P

w;v

; P

v;v

� P

w;w

g

�

=

sl(2; C ):

We put G(v; w) := hexp g(v; w)i

�

=

SL(2; C ) � G

r;1

. Then

P (v; w) := P

r;1

\G(v; w)
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is a paraboli subgroup of G(v; w) with Lie algebra

p(v; w) = C h+ C f;

and the restrition of the harater � to p(u;w) satis�es

d�(h) = �

i

� �

j

:

If L

�

has non-zero holomorphi setions, then it has a non-zero holomorphi

setion not vanishing in the base point, and therefore the bundle L

�

i

��

j

over

G(v; w)=P (v; w) has non-zero holomorphi setions (f. the proof of Theorem

I.5). In view of Theorem I.4, this implies �

i

� �

j

2 N

0

.

The next step is to show that if � satis�es (7.1) (we all suh a � domi-

nant), then L

�

is non-zero. In [HH94a℄ this is done by a diret onstrution of

holomorphi setions. Here we will give a general argument whih is universal

for all types of groups U oming from L

�

-algebras g (see the omments at the

end of this setion).

We start with the information we have from Setion V. We hoose an

orthonormal basis (e

j

)

j2J

in H subordinated to the deomposition of H into

the subspaes H

1

; : : : ; H

k

. If � satis�es (7.1), we an view it as an element of

l

1

(J; C ), so that we obtain with Theorem V.6 a holomorphi highest weight

representation (�

�

;H

�

) of G

1

:= GL

1

(H) with highest weight � .

Pik a highest weight vetor v

�

2 H

�

. We de�ne Æ 2 H

�

�

by Æ(v) := hv; v

�

i

and onsider on H

�

�

the holomorphi representation de�ned by (g:�)(v) :=

�(g

�1

:v). For the omplex Lie subgroup P

1

:= G

1

\ P we then have

p:Æ = �(p)Æ for all p 2 P:

We now have a map

	:H

�

! Hol(G

1

); 	(v)(g) := (g:Æ)(v) = hÆ; g

�1

:vi = hg

�1

:v; v

�

i:

Then 	 is a G

1

-equivariant linear map with respet to the natural representation

of G

1

on Hol(G

1

) given by (g:f)(x) := f(g

�1

x), and eah funtion f in the

range of 	 satis�es

f(gp) = �(p)

�1

f(g); g 2 G

1

; p 2 P

1

:

Sine G

1

=P

1

� G

r;1

=P

r;1

is a proper subset, these funtions on G

1

are not

suÆient to de�ne holomorphi setions of L

�

, we �rst have to extend them to

the bigger group G

r;1

. The following lemmas prepare the holomorphi extension

of the funtion f

�;1

:= 	(v

�

) to G

r;1

.

Lemma VII.9. For g

1

; g

2

2 G the ommutator (g

1

; g

2

) := g

1

g

2

g

�1

1

g

�1

2

is

ontained in G

1

, i.e., (G;G) � G

1

.
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Proof. We write g

1

= 1 + x and g

2

= 1 + y with x; y 2 B

2

(H). Then we

also have

(1+ x)

�1

= 1+ x

0

and (1+ y)

�1

= 1+ y

0

with x

0

; y

0

2 B

2

(H) and

1 = (1+ x)(1+ x

0

) = 1+ x+ x

0

+ xx

0

;

so that x+ x

0

= �xx

0

2 B

1

(H). Likewise we get y+ y

0

2 B

1

(H), and therefore

(g

1

; g

2

) = (1+x)(1+y)(1+x

0

)(1+y

0

) 2 1+x+x

0

+y+y

0

+B

1

(H) � 1+B

1

(H):

This shows that (g

1

; g

2

) 2 GL

1

(H).

Lemma VII.10. The map

�:N �G

1

�N ! G

r;1

; (x; g; y) 7! xgy

is a surjetive holomorphi submersion with the property that

�(x; g; y) = �(x

0

; g

0

; y

0

) ) g

0

2 N

1

gN

1

:

Proof. (1) First we show that � is surjetive. In view of Lemma VII.9,

the group G

r;1

=G

1

(whih we only onsider as an abstrat group) is abelian.

Therefore the image of NN in G

r;1

=G

1

is a subgroup, so that NG

1

N = NNG

1

is a subgroup of G

r;1

. Sine it also ontains the open subset NG

0

1

N (this requires

a generalization of Exerise I.5 to Banah{Lie groups), it is an open subgroup, so

that the onnetedness of G

r;1

(a similar argument as in Theorem A.10 applies)

implies that G

r;1

= �.

(2) Sine N ats smoothly by onjugation on the group G

1

, we an form the

orresponding semidiret produt group G

1

o N . Now we onsider the right

ation of the group N � (G

1

oN) on G

r;1

given by

x:(n; (g;m)) := n

�1

xgm:

Then, up to the di�eomorphism (n; g

1

; n

0

) 7! (n

�1

; g

1

; n

0

), � is an orbit mapping

for this ation, so that it suÆes to prove that d�(1;1;1) is surjetive with

splitting kernel ([La99, Prop. 2.2℄). The map d�(1;1;1) is simply the addition

map

n� g

1

� n! g

r;1

= n� g

0

1

� n

whih obviously is surjetive. The losed subspae n� g

0

1

� n of n� g

1

� n is a

losed omplement of the kernel of d�(1;1;1). Therefore � is a submersion in

(1;1;1) and hene everywhere.

(3) Desription of the �bers: Replaing x by (x

0

)

�1

x and y by y(y

0

)

�1

, we may

assume that x

0

= y

0

= 1 . Then g

0

= xgy , so that the normality of G

1

in G

r;1

implies that xy 2 G

1

. Let a := x� 1 2 n and b := y � 1 2 n . Then

xy = (1+ a)(1+ b) = 1+ a+ b+ ab 2 1+ B

1

(H)

implies that a + b 2 g

1

= B

1

(H). Now g

1

= n

1

� g

0

1

� n

1

implies that a 2 n

1

and b 2 n

1

, showing that x 2 N

1

and y 2 N

1

.
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Proposition VII.11. The funtion f

�;1

= 	(v

�

) on G

1

extends to a holo-

morphi funtion f

�

on G

r;1

with f

�

(n

1

gn

2

) = f

�

(g) for n

1

2 N , n

2

2 N and

g 2 G

r;1

. Moreover, we have

f

�

(gp

�1

) = �(p)f

�

(g); g 2 G

r;1

; p 2 P

r;1

:

Proof. We onsider the holomorphi funtion

F :N �G

1

�N ! C ; (x; g; y) 7! f

�;1

(g):

In view of f

�;1

(n

1

gn

2

) = f

�;1

(g) for n

1

2 N

1

, n

2

2 N

1

and g 2 G

1

, the

funtion F is onstant on the �bers of the map � (Lemma VII.10). Sine �

is a submersion onto G

r;1

, the funtion F fators through � to a holomorphi

funtion on G

r;1

with the required properties.

For p = ng

1

2 P

r;1

= N oG

0

1

this further leads to

f

�

(gp

�1

) = f

�

(gg

�1

1

) = �(g

1

)f

�

(g) = �(p)f

�

(g);

�rst for g 2 G

1

and then by ontinuity for all g 2 G

1;r

.

The following theorem is a generalization of the geometri part of the Borel{

Weil Theorem to the line bundles L

�

over G=P = G

r;1

=P

r;1

.

Theorem VII.12. (Helmink and Helmink) The bundle L

�

has non-zero

holomorphi setions if and only if

�

1

� : : : � �

k

:

Proof. The �rst half follows from Lemma VII.8, and for the onverse we use

Proposition VII.11 to see that the spae �

G

r;1

(L

�

) is non-zero, and therefore

that L

�

has non-zero holomorphi setions.

Reproduing kernel Hilbert spaes

Let M be a omplex manifold and H � Hol(M) a Hilbert spae of

holomorphi funtions suh that for eah z 2M the evaluation map

H ! C ; f 7! f(z)

is ontinuous. In view of Riesz' Theorem, there exists an element K

z

2 H with

f(z) = hf;K

z

i for all z 2M . We all the funtion

K:M �M ! C ; K(z; w) := K

w

(z) = hK

w

; K

z

i

the reproduing kernel of the Hilbert spae H and H a reproduing kernel Hilbert

spae.
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The funtion K has the following properties:

(P1) K is a positive de�nite kernel, i.e., for z

1

; : : : ; z

n

2M the matrix

(K(z

i

; z

j

))

i;j=1;:::;n

is positive semide�nite.

(P2)The funtions K

w

: z 7! K(z; w) are holomorphi.

If, onversely, K:M �M ! C is a funtion satisfying (P1), (P2) and

(P3)The funtion M ! R; z 7! K(z; z), is loally bounded,

then one an show that there exists a unique reproduing kernel Hilbert spae

H

K

� Hol(M) with reproduing kernel K (f. [Ne99a, Prop. I.1.9(iii)℄).

The main idea of the onstrution is to onsider the spae

H

0

K

:= spanfK

w

:w 2Mg

and show that is has a positive hermitian form h�; �i satisfying

hf;K

z

i = f(z) for all z 2M:

Next one uses (P3) to show that the ompletion H

K

of H

0

K

an also be viewed

as a spae of holomorphi funtions on M .

Realizing H

�

in �(L

�

)

So far we have shown that the bundle L

�

has non-zero holomorphi se-

tions. The next step is to see that the whole Hilbert spae H

�

an be realized

by holomorphi setions of L

�

.

We onsider G

r;1

as a omplex semigroup with involution given by g 7! g

�

.

A funtion f :G

r;1

! C is alled positive de�nite if for all g

1

; : : : ; g

n

2 G

r;1

the

matrix f(g

i

g

�

j

)

i;j=1;:::;n

is positive semide�nite.

Lemma VII.13. The funtion f

�

on G

r;1

from Proposition VII.11 is positive

de�nite.

Proof. Sine G

1

is dense in G

r;1

, it suÆes to assume that g

1

; : : : ; g

n

2 G

1

.

For x; y 2 G

1

we have

f

�

(xy

�

) = h(xy

�

)

�1

:v

�

; v

�

i = hx

�1

:v

�

; y

�1

:v

�

i;

so that we obtain for 

1

; : : : ; 

n

2 C :

X

i;j



i



j

f

�

(g

i

g

�

j

) =

X

i;j



i



j

hg

�1

i

:v

�

; g

�1

j

:v

�

i = k

X

i



i

g

�1

i

:v

�

k

2

� 0:

Lemma VII.14. There exists a Hilbert subspae

H

f

�

� �

G

r;1

(L

�

)
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ontaining all left-translates g:f

�

, g 2 G

r;1

, of f

�

suh that for all v 2 H

f

�

and

g 2 G

r;1

we have

(7:2) v(g) = hv; (g

�1

)

�

:f

�

i:

Proof. First we onsider the kernel K on G

r;1

given by

K(x; y) := f

�

(y

�

x):

Lemma VII.13 means that K is positive de�nite, and, moreover, x 7! K(x; x) =

f

�

(x

�

x) is a loally bounded funtion beause f

�

is holomorphi and there-

fore ontinuous. Now [Ne99a, Prop. I.19(iii)℄ implies the existene of a Hilbert

subspae H

f

�

� Hol(G

r;1

) ontaining all left-translates g:f

�

, g 2 G

r;1

, and

satisfying (7.2).

Next we observe that Lemma VII.13 implies in partiular f

�

(g

�

) = f

�

(g)

for g 2 G

r;1

and therefore

(p

�

:f

�

)(g) = f

�

((p

�

)

�1

g) = f

�

(g

�

p

�1

) = �(p)f

�

(g

�

) = �(p)f

�

(g):

For eah v 2 H

f

�

, g 2 G

r;1

and p 2 P

r;1

we now get

v(gp

�1

) = hv; (g

�1

)

�

p

�

:f

�

i = hv; (g

�1

)

�

�(p):f

�

i

= �(p)hv; (g

�1

)

�

:f

�

i = �(p)v(g):

Therefore H

f

�

� �

G

r;1

(L

�

):

Lemma VII.15. The restrition map Hol(G

r;1

)! Hol(G

1

) indues a surje-

tive isometry

r:H

f

�

! 	(H

�

)

�

=

H

�

:

Proof. First we observe that r is injetive beause G

1

is dense in G

r;1

.

For v 2 H

�

and g 2 G

1

we have

	(v)(g) = hg

�1

:v; v

�

i = h	(g

�1

:v);	(v

�

)i = hg

�1

:	(v); f

�;1

i

= h	(v); (g

�1

)

�

:f

�;1

i

and 	(G

1

:v

�

) = G

1

:(f

�;1

) is a total subset of 	(H

�

). This means that 	(H

�

)

is a reproduing kernel Hilbert spae with kernel

K

1

(x; y) = h(y

�1

)

�

:	(v

�

); (x

�1

)

�

:	(v

�

)i = f

�

(y

�

x):

Now we an apply [Ne99a, Prop. I.2.1(iii)℄ beause r is injetive.

The outome of this onstrution is that we have realized the Hilbert spae

H

�

in the spae of holomorphi setions of L

�

in suh a way that the bigger

group G

r;1

ats on a dense subspae ontaining the highest weight vetor f

�

.

This piture is still not optimal beause there are larger groups ating on the

bundle L

�

and therefore on the spae of holomorphi setions.
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Enlarging the groups

The group G

0

b

:=

Q

k

j=1

GL(H

j

) � G

r

ats smoothly by automorphisms on

the group G

r;1

, so that we an form the semidiret produt Banah{Lie group

G

r;1

oG

0

b

: We onsider the identity omponent

G

r

:= GL

res

(H

1

; : : : ; H

k

)

0

:

The onneted omponents of the group GL

res

:= GL

res

(H

1

; : : : ; H

k

)

0

are

given by the group homomorphism

ind:GL

res

! Z

k

1

; g 7! (ind(g

jj

))

dimH

j

=1

;

where k

1

:= jfj: dimH

j

=1gj . The image of this group homomorphism is the

set of those tuples (n

j

) with

P

j

n

j

= 0, showing that

�

0

(GL

res

)

�

=

Z

k

1

�1

(f. [HH94b, Prop. 2.3.1℄).

Lemma VII.16. We have surjetive homomorphisms

�:G

r;1

oG

0

b

! G

r

; (a; d) 7! ad

and

�

U

:U

r;1

o U

0

b

! U

r

; (a; d) 7! ad:

Proof. The inlusion G

r;1

G

0

� G

r

holds trivially. For the onverse, let

g 2 G

r

. Then eah g

jj

is a Fredholm operator, and sine G

r

is onneted by

de�nition, it is a Fredholm operator of index 0 (Exerise). Hene there exists

a �nite rank operator b

j

mapping ker(g

jj

) bijetively onto im(g

jj

)

?

. Then

d

j

:= g

jj

+ b

j

2 GL(H

j

) satis�es

g

jj

= g

jj

+ b

j

� b

j

2 (g

jj

+ b

j

)(1+ B

1

(H

j

)):

Therefore d := diag(d

j

) 2 G

0

satis�es d

�1

g 2 G

r;1

.

The �rst part implies in partiular that the group G

r

is onneted beause

G

0

b

and G

r;1

are onneted, so that its polar deomposition (f. Proposition A.5

for a related ase) shows that U

r

is onneted. Therefore �

U

is a homomorphism

of onneted Banah{Lie groups, and sine u

r

= u

r;1

+u

0

b

, it is open and therefore

surjetive.

The kernel of � is the subgroup

K := f(a; a

�1

): a 2 G

0

1

g; where G

0

1

= G

0

b

\G

r;1

�

=

k

Y

j=1

GL

1

(H

j

):

The normal subgroup K E G

r;1

o G

0

b

is a losed normal subgroup whih is

a submanifold in the sense of Banah manifolds (f. [La99℄; Corollary V.5).

Therefore the quotient group (G

r;1

oG

0

b

)=K arries a unique Lie group struture

for whih the map

�: (G

r;1

oG

0

b

)=K ! G

r

; [a; d℄ 7! ad

is an isomorphism.
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De�nition VII.17. The group

K

�

=

G

0

1

�

=

GL

1

(H

1

)� : : :�GL

1

(H

k

)

has a natural holomorphi homomorphism

�:G

0

1

! Z := (C

�

)

k

; g 7! (det(g

j

))

j=1;:::;k

:

Sine this homomorphism is invariant under onjugation with elements of G

0

b

,

the graph

�(�

�1

) := f(k;�(k)

�1

): k 2 Kg � K � Z � (G

r;1

oG

0

b

)� Z

is a entral subgroup whih is a submanifold (Exerise VII.6), so that we may

form the quotient group

b

G

r

:=

�

(G

r;1

oG

0

b

)� Z

�

=�(�

�1

)

whose elements are written as [a; d; z℄ := (a; d; z)�(�

�1

). This group has a

natural homomorphism

q:

b

G

r

! G

r

; q([a; d; z℄) := ad

whose kernel oinides with

(K � Z)=�(�

�1

)

�

=

Z = (C

�

)

k

:

We thus obtain a entral extension

Z ,!

b

G

r

q

��!G

r

of G

r

. On the subgroup G

r;1

the entral extension has a natural splitting given

by

�:G

r;1

!

b

G

r

; �(g) := [(g;1;1)℄:

Let

b

P

r

:= q

�1

(P

r

). Then P

r

�

=

N oG

0

b

implies that

(7:3)

b

P

r

�

=

N o

b

G

0

b

�

=

N o (G

0

b

� Z)

beause we an use the homomorphism �:N !

b

G

r

to split o� this group. We

de�ne a holomorphi harater

b�:

b

P

r

! C

�

; b�(n; d; z) :=

k

Y

j=1

z

�

j

j

:

One easily veri�es that b� is ompatible with � in the sense that b� Æ�(p) = �(p)

for p 2 P

r;1

. We form the orresponding omplex line bundle

b

L

�

:=

b

G

r

�

b

P

r

C :
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We then have a natural holomorphi map

 :L

�

!

b

L

�

; [g; z℄ 7! [�(g); z℄

beause for p 2 P

r;1

we have

[�(gp

�1

); �(p)z℄ = [�(g)�(p)

�1

; b�(�(p))z℄ = [�(g); z℄:

Sine the anonial map

G

r;1

=P

r;1

!

b

G

r

=

b

P

r

�

=

G

r

=P

r

is biholomorphi (f. Lemma VII.16), it easily follows that the map  is a

biholomorphi isomorphism of omplex line bundles. In partiular the spae

�(L

�

)

�

=

�(

b

L

�

)

has a natural realization in Hol(

b

G

r

), and we have a natural ation of the omplex

group

b

G

r

on this spae.

The ation of the diagonal group G

0

b

� ker b� �

b

P

r

on

b

L

�

satis�es

d:[�(g); z℄ = [d�(g); z℄ = [�(dgd

�1

)d; z℄ = [�(dgd

�1

); z℄;

so that

d:[d

�1

gd; f(d

�1

gd)℄ = [g; f(d

�1

gd)℄

implies that the ation of G

0

b

on �

G

r;1

(L

�

) is given by

(7:4) (d:f)(g) = f(d

�1

gd):

For f 2 �

G

r;1

(L

�

) and the orresponding setion s:G

r;1

=P

r;1

�

=

b

G

r

=

b

P

r

!

L

�

the map � Æ s:G

r;1

=P

r;1

�

=

b

G

r

=

b

P

r

!

b

L

�

is a holomorphi setion, and the

orresponding funtion

b

f on

b

G

r

satis�es

b

f(�(g)) = f(g) for g 2 G

r;1

. It is

uniquely determined by its values on G

r;1

beause

b

G

r

= �(G

r;1

)

b

G

0

b

= �(G

r;1

)

b

P

0

r

and

b

f(gp

�1

) = �(p)

b

f(g); g 2

b

G

r

; p 2

b

P

r

:

Now we have all means to extend the representation of G

1

on H

�

to a

unitary representation of

b

U

r

and an unbounded representation of

b

G

r

.
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Theorem VII.18. Let L(�;�

+

) be a unitary highest weight module of

gl(J; C ) with � 2 l

1

(J;Z) . Then the holomorphi ation of the group G

1

=

GL

1

(H) on H

�

extends to a representation of the group

b

G

r

on a dense subspae

of H

�

, and the ation of the unitary group

b

U

r

extends to a ontinuous unitary

ation on the whole spae H

�

.

Proof. Let

b

f

�

2 �

b

G

r

(

b

L

�

) denote the funtion orresponding to f

�

2

�

G

1

(L

�

). In view of (7.4) and the fat that f

�

on G

r;1

is invariant under

the ation of G

0

b

, the funtion

b

f

�

is G

0

b

-invariant. It also is N -invariant, so that

(7.3) implies that for p = (n; d; z) 2

b

P

r

we have

p

�

:

b

f

�

= �(z

�

)f

�

= �(z)f

�

= �(p)f

�

:

For a sequene of elements g

1

; : : : ; g

n

2

b

G

r

we write g

i

= �(x

i

)p

i

with

x

i

2 G

r;1

and p

i

2

b

P

r

. Then

f

�

(g

�

i

g

j

) = �(p

j

)

�1

�

(p

�

i

)

�1

:f

�

�

(�(x

i

)

�

�(x

j

))

= �(p

j

)

�1

�(p

j

)

�1

f

�

(�(x

i

)

�

�(x

j

));

so that Lemma VII.13 implies that

b

f

�

is a positive de�nite funtion on

b

G

r

. Now

the same arguments as for G

r;1

show that

b

G

r

:

b

f

�

� H

�

(viewed as a subspae of

�(

b

L

�

), so that

b

G

r

has a representation on a dense subspae of H

�

.

For u 2

b

U

r

and x; y 2

b

G

r

we have

b

f

�

((uy)

�

(ux)) =

b

f

�

(y

�

u

�

ux) =

b

f

�

(y

�

x);

whih implies that the ation of the group

b

U

r

on the dense subspae span(

b

G

r

:

b

f

�

)

extends to a ontinuous unitary ation on H

�

(f. [Ne99a, Prop. IV.1.9℄).

Remark VII.19. (The relation to restrited ag manifolds) Let

F := (F

1

; : : : ; F

k

)

be a ag in the omplex Hilbert spae H , i.e.,

F

1

� : : : � F

k

= H

are losed subspaes of H . The ag F an also be represented by the sequene

E := E(F) := (E

1

; : : : ; E

k

)

of losed subspaes de�ned by E

j

:= F

j

\ F

?

j�1

(where F

0

:= f0g). Then

H = E

1

� : : :� E

k

is an orthogonal deomposition.

We all F and F

0

lose if there exists an element g 2 G

r

with g:F

j

= F

0

j

for all j . If this is the ase, then one easily veri�es that the orthogonal projetions

p

F

j

:F

0

j

! F

j

are Fredholm operators of index 0 and the orthogonal projetions
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ep

F

j

:F

0

j

! F

?

j

are Hilbert{Shmidt (Exerise!). Suppose, onversely, that this is

the ase for two ags F and F

0

and E

j

and E

0

j

be as above. Then it is not

hard to see that the orthogonal projetions p

ij

:E

0

j

! E

i

are Hilbert{Shmidt

for i > j and Fredholm of index 0 for i = j (Exerise). It follows in partiular

that E

j

and E

0

j

have the same Hilbert dimension, so that there exists a unitary

operator u 2 U(H) with u:E

j

= E

0

j

for j = 1; : : : ; k . Writing u as a (k � k)-

blok matrix with respet to the deomposition H = E

1

� : : :�E

k

, we see that

the diagonal bloks u

jj

as Fredholm of index 0 and the lower diagonal bloks

u

ij

, i > j , are Hilbert{Shmidt. In view of Lemma VII.7(i), this implies that

u 2 U

res

(E

1

; : : : ; E

k

)

0

= U

r

. This means that for the ag F orresponding to

E , we have

G

r

:F = U

r

:F :

Lemma VII.16 further implies that

G

r

:F = G

r;1

:F and U

r

:F = U

r;1

:F :

We onlude in partiular that U � U

r;1

ats transitively on G=P

�

=

G

r;1

=P

r;1

�

=

G

r;1

:F . This means that G=P an be identi�ed with the oadjoint orbit O

!

�

=

U=U

0

� u

�

.

Conluding remarks

In this setion we have seen that the Borel{Weil piture for �nite-dimen-

sional omplex redutive groups arries over to the group G = GL

2

(H), H a

omplex Hilbert spae. Our �rst step was to identify H with some l

2

(J; C ), so

that we obtain a dense loally �nite subalgebra gl(J; C ) whose unitary highest

weight modules an be lassi�ed by algebrai means. Then we globalized the

piture by integrating those representations with bounded highest weight � to

holomorphi representations of the group GL

1

(H). The next step was to onsider

K�ahler strutures on (aÆne) oadjoint orbits of u

�

for u = u

2

(H). In this ontext

we have seen that the ondition that suh a oadjoint orbit has a losed tangent

spae already leads to orbits de�ned by tuples (�

1

; : : : ; �

k

) and an orthogonal

deomposition of the spae H . Eventually we realized the Hilbert spae H

�

as

a spae of holomorphi setions of a omplex line bundle over suh a oadjoint

orbit. This led us to muh bigger groups suh as

b

G

r

, resp.,

b

U

r

, where the �rst

group ats \holomorphially" on a dense subspae of H

�

and the latter ats

unitarily on the whole spae.

Although there was no time in these letures to disuss the more general

approah via L

�

-algebra, let us briey desribe the main ideas. An L

�

-algebra

is a omplex Hilbert spae g whih at the same time is a omplex Lie algebra

suh that the salar produt satis�es

h[x; y℄; zi = hy; [x

�

; z℄i; x; y; z 2 g:
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This means that the adjoint of the operator adx is adx

�

. Typial examples of

simple L

�

-algebras are

B

2

(H); sp

2

(H; I) and o

2

(H; I);

and these are all in�nite-dimensional simple L

�

-algebras (f. [CGM90℄, [Neh93℄

and [St99b℄).

For eah L

�

-algebra there is a natural omplex Lie group G and a \om-

pat" real form U . First one determines the spae Z

2



(u;R) and then one shows

that for a oadjoint orbit O

!

, ! 2 Z

2



(u;R), the losedness of the tangent spae

implies that it meats the dual of a Cartan subalgebra h � g whih is a maximal

abelian � -invariant subalgebra. Results of Shue ([Sh60℄) imply that g has an

orthogonal root deomposition with respet to h , and that the subalgebra gen-

erated by the root spaes is a loally �nite semisimple Lie algebra g

0

. Setion

III ontains in partiular a lassi�ation of all unitary highest weight modules of

this Lie algebra, and there is also an analog of Setion V, where g

1

is a natural

Banah{Lie algebra whih for g = B

2

(H) is sl(H). Setions VI and VII also

generalize to this ontext, where one simply has to verify that the arguments we

have used above an be arried over.

The advantage of the L

�

-approah is omparable to the advantage of

onsidering �nite-dimensional redutive Lie algebras instead of studying lassial

simple Lie algebras ases by ase.

Notes on Setion VII

In [Bo80℄ Boyer desribes the representations of the group U = U

2

(H)

in holomorphi setions in line bundles over oadjoint orbits of this group in

u

�

. This approah is quite restritive, beause the ondition that the diagonal

matrix de�ned by � is Hilbert-Shmidt implies that � has �nite support. Rep-

resentations in spaes of holomorphi setions of assoiated line bundles are only

onstruted for the ase where � is integral and either positive or negative, but

not in the mixed ase. It is also shown that the norm-ontinuous unitary repre-

sentations of U

2

are elementary in the sense that they are diret sums of highest

weight representations (f. [Ne98℄ and Setion V).

A more general approah is desribed in [HH94a℄ and [HH94b℄, where for a

separable Hilbert spae H the homogeneous manifolds G=P onsidered in this

setion are onstruted diretly as restrited ag manifolds (f. Remark VII.19).

The ase where k = 2 leads to the restrited Gra�mannian G=P whih has been

disussed earlier in [PS86℄.
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Exerises for Setion VII

Exerise VII.1. Let H be a omplex Hilbert spae and A a normal bounded

operator on H . Then im(A) is losed if and only if 0 is isolated in the spetrum

�(A) of A . Hint: Redue to the ase where A is injetive.

Exerise VII.2. Let H be a Hilbert spae. Show that

[B

2

(H); B

2

(H)℄ � sl(H):

Hint: kXY k

1

� kXk

2

kY k

2

for X;Y 2 B

2

(H).

Exerise VII.3. Show that the spae B

res;1

(H

1

; : : : ; H

k

) is a omplex Banah-

� -algebra with respet to the omposition, the natural involution, and the norm

kXk := maxfka

jj

k

1

; j = 1; : : : ; k; ka

jl

k; j 6= lg:

Hint: kXY k

1

� kXk

2

kY k

2

for X;Y 2 B

2

(H).

Exerise VII.4. Show that the spae B

res

(H

1

; : : : ; H

k

) is a omplex Banah-

� -algebra with respet to the omposition, the natural involution, and the norm

kXk := maxfka

jj

k; j = 1; : : : ; k; ka

jl

k; j 6= lg:

Hint: kXY k

2

� kXkkY k

2

for X 2 B(H(, Y 2 B

2

(H).

Exerise VII.5. Show that eah holomorphi harater �:P

r;1

�

=

N o G

0

1

!

C

�

is of the form

�(n; g) =

k

Y

j=1

det(g

jj

)

�

j

for � 2 Z

k

.

Exerise VII.6. If M and N are Banah manifolds, M

1

� M is a submani-

fold, and f :M

1

! N is a smooth map, then the graph

�(f) := f(x; f(x)):x 2M

1

g

is a submanifold of M �N .

Exerise VII.7. (a) If g 2 GL

res

, then eah diagonal entry g

jj

, j = 1; : : : ; k ,

is a Fredholm operator.

(b) If A is a Fredholm operator on H and B 2 B(H) with AB 2 B

2

(H), then

B 2 B

2

(H). Hint: Consider A

�

AB 2 B

2

(H) and write this operator in 2 � 2-

blok form aording to im(A

�

A) and ker(A

�

A).
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Exerise VII.8. We onsider the Lie algebra g

r;1

= B

r;1

(H

1

; : : : ; H

k

) and

de�ne a ontinuous linear funtional

tr: g

r;1

! C ; X 7!

k

X

j=1

trX

jj

:

Show that tr is a Lie algebra homomorphism whih integrates to a holomorphi

harater

det:G

r;1

! C :

Hint: [B

2

(H); B

2

(H)℄ � sl(H).
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Appendix. The topology of lassial Banah{Lie groups

In this appendix we ollet some useful results on the homotopy groups

of groups of operators on a Hilbert spae. A ruial tool for the analysis of

the topology of operator groups is the polar deomposition whih is disussed

for several types of groups in the �rst subsetion. A more general ontext for

polar deompositions based on the geometri ontext of symmetri spaes of

seminegative urvature is desribed in [Ne99b℄. We then explain how ertain

general results of Palais an be used to analyze the topology of groups like

GL

p

(H).

Polar deompositions

For the following lemma we reall the de�nition of the spetrum of an

element of a Banah algebra A :

Spe(a) := f� 2 C : a� �1 62 G(A)g:

Lemma A.1. Let A be a omplex unital Banah algebra and

D := fa 2 A: inf Re Spe(a) > 0g:

For an a 2 D we hoose a ontour � in C

+

:= fz 2 C : Re z > 0g surrounding

the spetrum Spe(a) and de�ne

log(a) :=

1

2�i

I

�

(log�)(�1� a)

�1

d�:

Then we obtain a holomorphi funtion log:D ! A: If � is an antilinear anti-

automorphism of A , then we have log(a

�

) = log(a)

�

.

Proof. That D is open follows from [Ru73, Th. 10.20℄, and the holomorphy

of log from [Ru73, Th. 10.38℄. For any antilinear antiautomorphism of A we

have f(a

�

) = f(a)

�

for any real-valued polynomial f 2 R[X℄ , and this implies

that log(a

�

) = log(a)

�

beause, aording to Runge's Theorem, on Spe(a) the

log-funtion is a uniform limit of polynomials (f. [Ru86℄).

Proposition A.2. If H is a omplex Hilbert spae, then the polar map

p: U(H)�Herm(H)! GL(H); (u;X) 7! ue

X

is a di�eomorphism.
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Proof. Let g 2 GL(H). Then g

�

g is a positive hermitian operator, so that

the ontinuous funtional alulus provides a unique hermitian operator

X :=

1

2

log(g

�

g):

Let u := ge

�X

. Then

uu

�

= ge

�2X

g

�

= g(g

�

g)

�1

g

�

= 1

and

u

�

u = e

�X

g

�

ge

�X

= e

�X

e

2X

e

�X

= 1:

We onlude that every operator g 2 GL(H) has a unique deomposition g =

ue

X

with X 2 Herm(H). This means that p is bijetive. It is also lear that p

is a smooth map.

To see that p

�1

is also smooth, we have to verify that the funtion

log: fg 2 GL(H) \Herm(H): inf Spe(g) > 0g ! Herm(H)

is smooth. This follows diretly from Lemma A.1.

Remark A.3. Our proof for the polar deomposition works also for abstrat

C

�

-algebras, where it provides a di�eomorphism

p: U(A)� Herm(A)! G(A); (u;X) 7! ue

X

;

where

U(A) = fa 2 A: aa

�

= a

�

a = 1g:

For ommutative algebras A = C(X; C ), X a ompat spae, this is the trivial

deomposition

C(X;T) � C(X;R) ! C(X; C

�

); (u; f) 7! ue

f

:

Proposition A.4. For every p 2 [1;1℄ the polar map

p: U

p

(H)�Herm

p

(H)! GL

p

(H); (u;X) 7! ue

X

is a di�eomorphism.

Proof. We onsider the Banah-� -subalgebra

e

B

p

(H) = C 1+ B

p

(H) � B(H):

In Example IV.15(d) we have seen that

e

B

p

(H) \GL(H) = G(

e

B

p

(H));

so that the spetrum Spe

p

(X) of an element X 2

e

B

p

(H) oinides with the

spetrum Spe(X) of X as an element of B(H). Therefore Lemma A.1 implies

that for g 2 GL

p

(H) we have log(g

�

g) 2 B

p

(H), and that the map

log: fg 2 GL

p

(H) \ Herm

p

(H): inf Spe(g) > 0g ! Herm

p

(H)

is smooth. This implies the assertion.
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For an orthogonal deomposition H = H

�

�H

+

we write operators on H

as (2� 2)-blok matries and de�ne the unital Banah-� -algebra

B

res

(H

�

; H

+

) :=

n

�

a b

 d

�

2 B(H): b 2 B

2

(H

+

; H

�

);  2 B

2

(H

�

; H

+

)

o

with the norm kxk := 2maxfkak; kbk

2

; kk

2

; kdkg (f. Example IV.15(b)). We

further onsider

GL

res

(H

�

; H

+

) := GL(H) \B

res

(H

�

; H

+

)

(f. Lemma VII.7),

U

res

(H

�

; H

+

) := U(H) \B

res

(H

�

; H

+

)

and

Herm

res

(H

�

; H

+

) := Herm(H) \B

res

(H

�

; H

+

):

Proposition A.5. For every orthogonal deomposition H = H

�

� H

+

the

polar map

p: U

res

(H

�

; H

+

)� Herm

res

(H

�

; H

+

)! GL

res

(H

�

; H

+

); (u;X) 7! ue

X

is a di�eomorphism.

Proof. In view of Lemma VII.7, the group GL

res

(H

�

; H

+

) is the unit group

of the Banah algebra A := B

res

(H

�

; H

+

). It follows in partiular that the

spetrum Spe

A

(X) of an element X 2 A oinides with the spetrum Spe(X)

of X as an element of B(H). Therefore Lemma A.1 implies that for g 2

GL

res

(H

�

; H

+

) = G(A) we have log(g

�

g) 2 A , and that the map

log: fg 2 G(A) \Herm(H): inf Spe(g) > 0g ! Herm

res

(H)

is smooth. This implies the assertion.

Remark A.6. We onsider the onvex domain


 := fX 2 Herm(H):X >> 0;1�X 2 B

2

(H)g

whih an be identi�ed with the open onvex domain

fY 2 Herm

2

(H):1� Y >> 0g = fY 2 Herm

2

(H): sup Spe(Y ) < 1g;

where X >> 0 means that Spe(X) �℄0;1[ .

The group GL(H) ats on Herm(H) by g:A := gAg

�

. We laim that

G

2

:= fg 2 GL(H): g:
 � 
g = fg 2 GL(H): g

�

g 2 GL

2

(H)g

= U(H) exp

�

Herm

2

(H)

�

:
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In fat, if g:
 � 
, then we have in partiular that g:1 = gg

�

2 
, so that

gg

�

2 GL

2

(H) and therefore also g

�

g = g

�1

(gg

�

)g 2 GL

2

(H). If, onversely,

g

�

g 2 GL

2

(H) and X 2 
, then

g:X � 1 = gXg

�

� gg

�

+ gg

�

� 1 = g(X � 1)g

�

+ gg

�

� 1 2 B

2

(H):

The preeding alulations show that the group G

2

is the natural sym-

metry group of the domain 
. Similar observations an be made for real and

quaternioni Hilbert spaes.

To onstrut a natural Lie group struture on the group G

2

, we �rst observe

that the polar deomposition implies that

G

2

= U(H) exp(Herm

2

(H)) = U(H)U

2

(H) exp(Herm

2

(H)) = U(H)GL

2

(H):

We �rst onsider the semidiret produt group

S := GL

2

(H)o U(H):

Then

N := f(g; g

�1

): g 2 U

2

(H)g

�

=

U

2

(H)

is a losed normal subgroup of S . It is the kernel of the multipliation map

m:S !! G

2

; (a; b) 7! ab

whih is in partiular ontinuous with respet to the uniform topology on G

2

.

The group S has a natural Banah{Lie group struture. The group S is di�eo-

morphi to

Herm

2

(H)� U

2

(H)� U(H)

�

=

Herm

2

(H)�N � U(H);

showing that N is a submanifold of S . Hene S=N arries a natural Lie group

struture suh that it is di�eomorphi to U(H)�Herm

2

(H) (f. Remark IV.4).

Some general results on homotopy groups

Lemma A.7. If X is a Hausdor� spae whih is arries the diret limit topology

with respet to the subspaes X

n

, n 2 N , with X

n

� X

n+1

, then

�

k

(X) = lim

�!

�

k

(X

n

)

for every k 2 N

0

.

Proof. We laim that eah ompat subset K � X is ontained in some X

n

.

If this is not so, then for eah n 2 N we pik x

n

2 KnX

n

. The set M := fx

n

:n 2

Ng satis�es M \X

m

� fx

1

; : : : ; x

m�1

g . Therefore M \X

m

is losed for eah m ,
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so that M is a losed subset of X . Thus M � K implies that M is ompat.

The same argument applies to the subsets M

m

:= fx

m

; x

m+1

; : : :g � M . Now

T

m2N

M

m

6= � follows from the ompatness of the sets M

m

. On the other

hand M

m+1

\X

m

= � implies that

\

m2N

M

m

� X n

[

m2N

X

m

= �:

This ontradition shows that there exists an n 2 N with K � X

n

.

Now let :S

k

! X be a ontinuous map. Then (S

k

) is a ompat subset

of X , hene ontained in some X

n

, and sine X

n

,! X is an embedding, the

orestrition :S

k

! X

n

is ontinuous. Therefore the natural map

lim

�!

�

k

(X

n

)! �

k

(X)

is surjetive. To see that it is injetive, we apply the same argument to the range

of a homotopy of two ontinuous maps 

1

:S

k

! X

n

1

and 

2

:S

k

! X

n

2

. We �nd

that there exists n

3

> max(n

1

; n

2

) suh that �

k

('

n

3

;n

1

)([

1

℄) = �

k

('

n

3

;n

2

)([

2

℄) ,

where '

n

3

;n

1

:X

1

! X

3

and '

n

3

;n

2

:X

2

! X

3

are the embeddings.

The following theorem is quite useful to alulate homotopy groups:

Theorem A.8. Let V

1

and V

2

be loally onvex topologial vetor spaes

and f :V

1

! V

2

a ontinuous linear map with dense range. Let U � V

2

be an

open subset and put

e

U := f

�1

(U) and

e

f := f j

e

U

. Assume that V

1

and V

2

are

metrizable or, more generally, that

e

U and U are paraompat. Then

e

f :

e

U ! U

is a homotopy equivalene.

Proof. This is Theorem 16 in [Pa66℄. A quite diret proof of the orresponding

result for Banah spaes an be found in [At67, p.164℄.

The following theorem is partiularly useful for separable spaes:

Theorem A.9. Let V be a loally onvex spae and (E

n

)

n2N

an inreasing

sequene of �nite-dimensional subspaes of V suh that their union is dense

in V . Given an open subset U � V , let U

n

:= U \ E

n

and onsider the

diret limit topologial spae U

1

:= lim

�!

U

n

. Then if V is metrizable or, more

generally, if U is paraompat, then the inlusion map U

1

! U is a homotopy

equivalene.

Proof. This is the orollary to Theorem 17 in [Pa66℄.

Theorem A.10. Let H be an in�nite-dimensional Hilbert spae over K = R ,

C or H and p 2 [1;1℄ . Then for every k 2 N

0

we have

�

k

(GL

p

(H))

�

=

lim

�!

�

k

(GL(n; K )

�

:
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Proof. Let H

s

� H be a separable losed subspae. We write operators on

H as (2� 2)-blok matries with respet to the deomposition H = H

s

�H

?

s

.

First we show that the natural inlusion map

GL

p

(H

s

) ,! GL

p

(H); A 7!

�

A 0

0 1

�

indues isomorphism for all homotopy groups.

Let X be a separable ompat spae and :X ! GL

p

(H) be a ontinuous

map. Then for every x 2 X the the range of (x)� 1 is a separable subspae

beause the operator (x)�1 is ompat. Sine X is separable, the losure H

e

of

the spae spanned by all the separable subspaes im((x)�1) and im((x)

�

�1),

x 2 X , is separable. Let u 2 U(H) with u:H

e

= H

s

. Sine U(H) is onneted

(an easy onsequene of the Spetral Theorem for Unitary Operators), there

exists a ontinuous urve �: [0; 1℄! U(H) with �(0) = 1 and �(1) = u . Then

h(t; x) := �(t)(x) is a homotopy of  to a map whose range is ontained in H

s

.

Applying this to X = S

k

and X = S

k

�[0; 1℄, we onlude that the inlusion map

GL

p

(H

s

) ,! GL

p

(H) indues isomorphism of all homotopy groups. Therefore

we may assume that H = H

s

�

=

l

2

(N ; K ).

Let e

n

, n 2 N , be the anonial orthonormal basis and onsider the

orresponding subspaes E

n

:= spanfe

1

; : : : ; e

n

g . Then the aÆne subspaes

1+ B(E

n

) � 1+B

p

(H)

form an asending hain of �nite-dimensional subspaes whose union is dense

(Exerise!). Now Theorem A.9 implies that the inlusion map

lim

�!

GL(E

n

) = lim

�!

(1+ B(E

n

)) \GL(H)! GL

p

(H) = (1+B

p

(H)) \GL(H)

is a homotopy equivalene. Hene the assertion follows from Lemma A.7.

The main point in Theorem A.10 is that it permits to desribe the homo-

topy groups of all the groups GL

p

(H) expliitly by the Bott Periodiity Theorem.

Theorem A.11. (Bott Periodiity Theorem) Let K 2 fR; C ; H g , d :=

dim

R

K and

GL(1; K ) := lim

�!

GL(n; K ):

Then for k � d(n+ 1)� 3 and q 2 N the maps

�

k

(GL(n; K )) ! �

k

(GL(n+ q; K ))

are isomorphism, so that

�

k

(GL(1; K ))

�

=

�

k

(GL(n; K )):

Moreover, we have the periodiity relations

�

n+2

(GL(1; C ))

�

=

�

n

(GL(1; C )); �

n+4

(GL(1;R))

�

=

�

n

(GL(1; H ))
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and

�

n+4

(GL(1; H ))

�

=

�

n

(GL(1;R)):

Therefore the homotopy groups of GL(1; K ) are determined by the following

table:

GL(1;R) GL(1; C ) GL(1; H )

�

0

Z

2

f1g f1g

�

1

Z

2

Z f1g

�

2

f1g f1g f1g

�

3

Z Z Z

Proof. The �rst part is [Hu94, Th. 8.4.1℄ and the seond part [Hu94, Cor. 9.5.2

and Rem. 9.5.4℄.

The preeding theorem implies in partiular that for a omplex Hilbert

spae �

1

(GL

p

(H))

�

=

Z , so that it is a natural question how to desribe the

universal overing group

f

GL

p

(H). Below we will see how this an be done for

p 2 N . Here the ase p = 1 is quite speial.

Higher order determinants

De�nition A.12. (a) Let H be a Hilbert spae and X 2 B

2

(H). Then

(1 + X)e

�X

� 1 2 B

1

(H) follows from 1 + X � e

X

= X

2

(� � �). Hene the

generalized determinant

det

2

(1+X) := det

�

(1+X)e

�X

�

makes sense for X 2 B

2

(H) (f. [Mi89, Prop. 6.2.3℄). This means that for

g 2 GL

2

(H) we have

det

2

(g) = det(ge

1�g

):

For g 2 GL

1

(H) this simpli�es to det

2

(g) = det(g)e

tr(1�g)

:

(b) The onstrution in (a) an be generalized to all p 2 N as follows. For

X 2 B

p

(H) we de�ne

det

p

(1+X) := det(1+ R

p

(X));

where

R

p

(X) = �1+ (1+X) exp

�

p�1

X

j=1

(�1)

j

X

j

j

�

:

The funtion det

p

is alled the Carleman{Fredholm determinant of order p . For

p = 1 it is simply alled the Fredholm determinant and for p = 2 the Hilbert-

Carleman determinant ([GGK00, Setion IX.1℄). Then R

p

(X) 2 B

1

(H) for

every X 2 B

p

(H) beause R

p

is de�ned by an everywhere onvergent power
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series whih starts with a term of the form �

p

X

p

+ �

p+1

X

p+1

+ : : : 2 B

1

(H).

This is most easily seen by observing that

p�1

X

j=1

(�1)

j

z

j

j

= � log(1 + z)�

1

X

j=p

(�1)

j

z

j

j

;

so that

g(z) := �1 + (1 + z) exp

�

p�1

X

j=1

(�1)

j

z

j

j

�

= �1 + exp

�

�

1

X

j=p

(�1)

j

z

j

j

�

for jzj < 1. We onlude that g(z) = z

p

f(z) for some holomorphi funtion

on the open unit dis in C . Sine g is entire, the funtion f is entire with

g(z) = z

p

f(z) for all z 2 C whih implies that

X 7! R

p

(X) = g(X) 2 X

p

B(H) � B

1

(H)

is a holomorphi funtion. Therefore

det

p

:1+ B

p

(H)! C

is a holomorphi funtion.

Remark A.13. Let : C

�

! GL

p

(H) be the holomorphi group homomor-

phism from Proposition IV.21. Then

(det

p

Æ)(z) = det((z)) det

�

exp

�

p�1

X

j=1

(�1)

j

(1� (z))

j

j

�

�

= ze

tr

�

P

p�1

j=1

(�1)

j

(1�(z))

j

j

�

= ze

P

p�1

j=1

(�1)

j

(1�z)

j

j

= ze

f(z)

for some polynomial funtion f : C ! C . We onlude that the winding number

of the funtion det

p

Æ: C

�

! C

�

is 1, and hene that

det

p

:�

1

(GL

p

(H))! �

1

(C

�

)

�

=

Z

is an isomorphism. This provides a natural onstrution of the universal overing

spae by a pullbak onstrution

f

GL

p

(H) := f(g; z) 2 GL

p

(H)� C : det

p

(g) = e

z

g:

For p = 1 this leads immediately to the group

f

GL

1

(H)

�

=

SL(H)o C

(f. Proposition IV.21).
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