Infinite-dimensional groups and their representations 1

Lecture at the European School in Group Theory
SDU-Odense University, August 2000

Infinite-dimensional groups and their representations

Karl-Hermann Neeb

Abstract. These lecture notes provide an introduction to the representation
theory of Banach-Lie groups of operators on Hilbert spaces, where our main
focus lies on highest weight representations and their geometric realization as
spaces of holomorphic sections of a complex line bundle. After discussing the
finite-dimensional case in Section I, we describe the algebraic side of the theory
in Sections II and III. Then we turn in Sections IV and V to Banach-Lie groups
and holomorphic representations of complex classical ones. The geometry of the
coadjoint action is discussed in Section VI, and in the concluding Section VII all
threads lead to a full discussion of the theory for the group U.(H) of unitary
operators u on a Hilbert space H for which v—1 is Hilbert—Schmidt.

Introduction

As in finite dimensions, Lie theory is an exciting combination of algebraic and
analytic methods. In the finite-dimensional situation one studies a connected
Lie group G by the exponential function exp: g — G which is a local diffeomor-
phism. Therefore the Lie algebra structure of g carries essentially all the local
information on G'. This means that all groups with the same Lie algebra g are
quotients of an essentially unique simply connected group G modulo discrete
central subgroups. Viewing g as a “linearization” of G, the heart of the Lie
theoretic methods is a dictionary translating analytic and global properties of G
into algebraic properties of its Lie algebra g, which are then studied by algebraic
methods.

This picture is different for infinite-dimensional groups, and how bad it
becomes depends on the setting one is working in. The central objects of these
lectures will be groups of operators on Hilbert spaces. These groups will always
have a natural topology for which they are Banach—Lie groups, i.e., manifolds
modeled over a Banach space endowed with a smooth group structure (multi-
plication and inversion). In this setting one still has an exponential function
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exp: @ — G which is a local diffeomorphism, hence a good translation mecha-
nism from G to g and back to G'. A new feature is that the Lie algebra g now
is a Banach space with a continuous Lie bracket, a Banach—Lie algebra, so that
we need functional analytic as well as algebraic concepts to study the Lie algebra
and the group.

As we will see below, one often finds many incarnations of such a Lie group
in the sense that there is a great variety of dense subgroups G; C G which are Lie
groups in their own right, but which are better suited for several constructions
than G itself. Sometimes G is simply too big or has to be replaced by a suitable
central extension. On the Lie algebraic side these groups correspond to dense
subalgebras g; of g which are much smaller, and one often has certain “minimal”
subalgebras which are purely algebraic objects. It is this phenomenon that makes
infinite-dimensional Lie theory more difficult and also more interesting than the
finite-dimensional theory. One first has to find the right “version” of the group
which is best suited for the setting one has in mind, and then one has to analyze
this group which might differ from the original one.

The following diagram shows schematically which way one has to go to
obtain a thorough understanding of the class of (unitary) highest weight repre-
sentations of Banach—Lie groups. Starting with a Banach-Lie group (in these
notes this will essentially be a group of operators on a Hilbert space), we specify
a certain dense subalgebra g of its Lie algebra which has a root decomposition.
For this Lie algebra we are then able to classify all unitary highest weight repre-
sentations in a completely algebraic context. The next step consists in extending
these representations under natural boundedness conditions to a continuous rep-
resentation of a Banach—Lie algebra completion g; of gy and then integrating
this representation to a holomorphic representation of some complex Banach—Lie
group G1. In many cases it turns out that the group G is far from being the
maximal group to which this representation integrates, and to understand the
subtleties involved in this integration process, we will have to obtain a natu-
ral geometric realization of the representation under consideration by a space of
holomorphic sections of a complex line bundle. In this geometric context we will
then determine the natural groups acting in the representations. This involves
in particular a discussion of central extensions of these groups.

Below we will see several examples where such translations procedures
become crucial. We think that the quite accessible class of operator groups
displays these techniques quite well. They also lead to a good understanding
of many phenomena in the physical literature concerning central extensions and
the implementability of symmetries. For the sake of simplicity, we will mainly
discuss the group GL2(H) of a complex Hilbert space H which consists of all
those invertible operators g on H for which g—1 is a Hilbert—Schmidt operator.
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I. The finite-dimensional case

Before we turn to infinite-dimensional groups, it is worthwhile to recall the
picture for finite-dimensional groups to clarify which kind of representations and
type of geometry we will be looking for in the infinite-dimensional context.

There are several paths along which one can approach the picture which
presents itself as a circle of ideas with several entry points. One possibility is to
start with compact groups. Here the problem is to classify all irreducible unitary
representations of a compact connected Lie group U and to find natural geomet-
ric realizations of these representations which then can in turn be used to get
more information on the representations. Functional analytic arguments imply
that all irreducible representations of a compact group are finite-dimensional, so
that we may limit our considerations to finite-dimensional representations. To
be able to obtain a classification, it turns out to be very fruitful to use a certain
analytic extension process to translate the problem as follows. First one shows
that there exists a complex connected Lie group G = Ug containing U as a
subgroup for which the polar map

Uxu—G, (u,X)—uexpiX

is a diffeomorphism. Here u = L(U) denotes the Lie algebra of U. We call
the resulting decomposition G = U exp(iu) the polar decomposition of G. The
simplest example is the circle group

U=T:={z€C:|z|] =1} with Ug =CX,

where the polar map corresponds to polar coordinates in the complex plane.
Groups of the form Uc are called complex reductive groups. This terminology
comes the theory of algebraic groups. One should be aware of the fact that the
Lie algebras of complex reductive groups are reductive, but that the converse is
not true. In particular the group C" is not “complex reductive” in the sense
above.

An important consequence of the polar decomposition is that every homo-
morphism ¢: U — H to a finite-dimensional complex Lie group H extends to a
holomorphic homomorphism

pc:Uc = H by  pc(uexp(iX)) := o(u) exp(i L(p) (X)),
where
L(p) = dp(1): L(U) — L(H)

is the corresponding Lie algebra homomorphism. We thus obtain a one-to-one
correspondence between irreducible unitary representations of U and irreducible
(finite-dimensional) holomorphic representations of G = Ug (cf. Exercise 1.2), so
that we are left with the problem of describing the irreducible finite-dimensional
holomorphic representations of a complex reductive group G. For simplicity we

assume in the following that G is simply connected. A particular example is the
group G = SL(n,C) which arises as Ug for U = U(n,C).
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The algebraic approach to the classification

We are interested in the geometry and the structure of the irreducible
representations of U, resp., G. The best accessible picture is the algebraic one,
dealing with simple finite-dimensional modules of the reductive Lie algebra g.
To see the connection between group and Lie algebra representations requires
some translation mechanism, a method which is characteristic for Lie theory as
a whole.

First we have to get hold of the algebraic structure of the Lie algebra g
of G. The crucial tool is the root decomposition of g: There exists a maximal
abelian subalgebra h C g with the property that all operators adh, h € b,
are diagonalizable, so that one obtains a decomposition of g into simultaneous
eigenspaces

g% ={z € g: (Vh € b) [h, 2] = a(h)x}
for the action of h on g, where a:h — C is a linear functional. A non-zero

functional « € h* is called a root of g if g* # {0}. We write A C h* for the set
of roots. It turns out that g° = b, so that we obtain the decomposition

s=ho P
It is an important fact that for every root @ € A the subspace

gla) =g+ 97"+ [g% 97 %]

is a three-dimensional simple subalgebra, hence isomorphic to sl(2,C). From
that one derives the existence of a unique element & € [g¢ g=*] C h with
a(d) = 2. This element is called the coroot corresponding to «.

To use the information on the structure of g to classify irreducible repre-
sentations, we consider a maximal solvable subalgebra b C g containing h. Since
bh is abelian, hence solvable, the existence of such a subalgebra follows from the
fact that g is finite-dimensional. One simply chooses a solvable subalgebra con-
taining h which is of maximal dimension. One can show that, in terms of the
root decomposition, b can be described as

b=b+ > ¢
acAt
where AT C A is a positive system, i.e.,
ATU-AT=A and (AT+AT)NACAT.
The next step is to apply Lie’s Theorem on the finite-dimensional repre-

sentations of solvable Lie algebras to see that every simple g-module V' contains
a (unique) one-dimensional b-eigenspace Cuv. Since the linear functional

Ab—C
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given by b.v = A(b)v, b € b, is a Lie algebra homomorphism, it vanishes on each
g%, a € AT. Moreover, the representation theory of sl(2,C), applied to the
subalgebras g(«), implies that A is dominant integral:

AMa)eNy forall acAT.

This sets the stage for the classification, and now one shows that if V; = V5, then
A1 = Ag, and that for each dominant integral A, there exists a simple g-module
which is called L()).

Theorem 1.1.  The finite-dimensional simple g-modules of are in one-to-one
correspondence with the dominant integral weights A with respect to A™T . ]

A detailed proof of the preceding result can be found in [Hum?72]. It is
remarkable that the choice of b, resp., AT is irrelevant. A different choice only
leads to a parametrization of the simple modules by a different set of dominant
integral weights. This will be drastically different in the infinite-dimensional
setting.

Now we come back to the group level. Since G is assumed to be simply
connected, the irreducible representations of G are in one-to-one correspondence
with the irreducible representations of g, so that the classification described
above also yields a classification for G and hence for the corresponding compact
group U. Here we refer to the general theorem that every Lie algebra homomor-
phism g — gl(V) integrates to a homomorphism G — GL(V), which is quite
inexplicit and does not lead to any kind of geometric information about the rep-
resentation. It is much more desirable to have a more geometric realization of
the G-representation on the space L(A) which will be described in the remainder
of this section.

Holomorphic vector bundles

In this subsection we explain some of the geometry which is involved in the
geometric realization of the irreducible representations of a complex reductive
Lie group as the space of holomorphic sections of a complex line bundle. Still all
Lie groups are assumed to be finite-dimensional.

Let G be a complex Lie group and P C G a closed complex subgroup.
Then the quotient space M := G//P carries the structure of a complex manifold.
To each holomorphic representation (p, V) of P, i.e., to each holomorphic ho-
momorphism p: P — GL(V), we will associate a holomorphic vector bundle over
M.

Definition 1.2. Let M be a complex manifold. A holomorphic vector bundle
with fiber V' is a holomorphic map m:)V — M of complex manifolds for which
there exists a complex vector space V', an open covering (U;);jcs of M, and
biholomorphic maps

QOjZﬂ'_l(Uj) — Uj xV
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with
7'('((,0]-_1(.17,1))) =z for (z,v)eU; xV,

and such that for each pair ¢,7 € J there exists a holomorphic map
9i;:U;NU; — GL(V)
with
gol-(pj_lz UiNU;) xV = (U;NU;) xV, (z,v)— (z,gi(z).v).

The spaces 7~ 1(x) are called the fibers of the bundle V. Since the maps
cpigpj_l are fiberwise linear, each fiber m=1(x) carries a natural complex vector
space structure such that ¢; -1, 77 (x) = {£} x V = V is an isomorphism
of complex vector spaces.

A holomorphic section of V is a holomorphic map o: M — V with moo =
idps . Using the vector space structure on the fibers, we obtain on the space I'(V)
of holomorphic sections of V the structure of a complex vector space via

(Ao)(z) := Ao(x) and (o1 + 02)(x) := 01(x) + 02(x). n

Homogeneous vector bundles

The only type of bundles we will deal with in these notes are of a rather
simple nature because they are so called homogeneous bundles. Such bundles are
constructed as follows. We return to the setting where G is a complex Lie group,
P C @ is a closed complex subgroup, and M = G/P. We write ¢:G — M for
the quotient map. Let (p, V) be a holomorphic representation of P on V and
write h.v := p(h)(v).

On the product manifold G x V we consider the action of P given by
h.(g,v) := (gh™, h.v). Let

V:i=GxpV:=(GxV)/P

denote the space of all P-orbits in G x V. We write [g,v] := P.(x,v) for the
orbit of (x,v) and observe that we have a well-defined map

V=M, [z,v]— q(x)=2zP.

Let U C G/P be an open subset for which there exists a holomorphic map
oy:U — G with = oy (x)P for all € U. Then the map

g U) = UxP, g~ (q(g),0u(q9)9)
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is biholomorphic and its inverse is given by the multiplication map
UxP —q Y U),(u,h) = og(u)h.

We further have a bijection
puim M U) = UV, [5,0] = (@), (ou(a(@) " e).0).

If, in addition, U is chosen such that it is the domain of a chart of M, then the
maps gy can be used to obtain a chart of V as a complex manifold. Moreover,
we have

oy (z,0) =2 for (z,0) €U XV,

and for two open subsets U, W C M with sections oy and oy, we obtain the
map

<pU<p;V1: UNW)xV > UNW)xV, (z,v)— (z,guw(x).v)

with
gow (@) = p(ov(@P)ow(g(@))).

We conclude that 7:)V — M is a holomorphic vector bundle over M. It is
homogeneous in the sense that the natural action of the group G on V given by
g.[z,v] := [g.x,v] is a holomorphic action G x V — V which is fiberwise linear,
i.e., an action by automorphisms of the holomorphic vector bundle.

On the space I'(V) of holomorphic sections we now obtain a natural rep-
resentation of G by

(9-5)(2) = g.s(9™ ")
(Exercise).

It often is convenient to have a more accessible description of the space I'(V)
as holomorphic functions G — V. This description is obtained as follows. Let
s: M — V be a holomorphic section of V. Then we can write s(q(z)) = [z, f(x)],
where f:G — V is a function. In fact, for each x € G each element of the
fiber m~1(g(x)) has a unique representative of the form (z,v) and all other
representatives are given by (zp~!,p.v), p € P. This leads to

(1.1) flap™) =p.f(x) for w€G,peP.
In local coordinates we then have

eu(s(a(@)) = (a(@), (ou(a(@) ) f(2)).

showing that the function f:G — V is holomorphic because ¢~ 1(U) — P,z
oy (q(z)) "tz is a holomorphic map. If, conversely, f € Hol(G,V) is a holomor-
phic map satisfying (1.1), then the holomorphic map G — V,(g,v) — [g, f(g9)]
is constant on the P-orbits and therefore factors through a holomorphic map
s:M = G/P — V which is a holomorphic section of V.

We summarize the results of the preceding discussion in the following
lemma.
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Lemma 1.3. If V = G xp V is a homogeneous holomorphic vector bundle
over M = G/P, then the space I'(V) of holomorphic sections is in one-to-one
correspondence with the space

La(V) :={f € Hol(G,V): (Vz € G,p € P) f(zp~") = p.f(x)}.
The corresponding map s given by
O:T'(V) = T'q(V), s(@P)=[z,®(s)(z)]
On I'q(V) C Hol(G,V) the representation of G is given by

(9-f) (@) = f(g~" ).

Proof. In view of the preceding discussion, it only remains to verify the
formula for the action of G on I'q¢(V): For s(q(z)) = [z, f(z)], q(z) = P, we

have
(9-5)(q(x)) = g-(s(g7"-q(x))) = g.(s(alg™ x)))
=g.[g  w, flg7 )] =[x, fg~ o)),

A key example: SL(2,C)
We consider the special case where G = SL(2,C) and

P::{(Z a91>:a€CX,CEC}.

Then P is the stabilizer of the line Ces € C2, so that the quotient space G/P
can be identified with the complex projective line P;(C) := P(C?), ie., the
set of all one-dimensional subspaces of C?, via the map gP — Cg.ea. We
write [z,w] := C(z,w) for the one-dimensional space represented by (z,w) =
zey 4+ wey € C?\ {0}. There are two natural open subsets of P (C) given by

Up = {[z,w:w#0}} ={[z,1]:2€ C}, Usy:={[z,w]:z2#0} ={[l,w]:weC}
with Uy UUz = P1(C). On U; we define a section

o1:Ur = G, o01([z1]) = ((1) i)

and on Us we put

02:Us — G, oa([1,w]) i= (i} 2) (_01 (1))
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One immediately verifies that these two maps are indeed sections of ¢:G —
G/P 2 P(C), ie., q(o1([z,1])) = [z, 1] and ¢(o2([1,w])) = [1, w].

For n € Z we consider the one-dimensional holomorphic representation (a
holomorphic character)

pn: P — GL(1,C) 2 C*, (Z a01> —a'
and consider the corresponding holomorphic line bundle £,, — P;(C). We
are interested in the question whether this bundle has a non-zero holomorphic
section.
Let s:P1(C) — L, be a holomorphic section and f:G — C the corre-
sponding holomorphic function satisfying f(xp~t) = p,(p)f(z) for x € G,p € P.
We define an entire function h: C — C by

=1((h 1))

From

= () (5 5= (0, e

in G = SL(2,C) we obtain

w0

flo2([1,w])) = pn ( 1 w)_ Dhw™) =w"h(w™t)  for weC*.

The fact that this function extends holomorphically to 0 leads in particular to

(1.2) limsup |h(2)] - |2|7™ < 0.

|z]—o00

For n < 0 this implies that h is bounded so that Liouville’s Theorem shows that
h is constant. For h # 0 we then obtain a contradiction to the holomorphic
extendability of the function w — w™h(w™!) to 0. This implies that

I'(L,) ={0} for n<O.

For n > 0 the condition (1.2) means that h is a polynomial of degree at
most n (this follows from the Cauchy estimates for Laurent series). Conversely,
for every such polynomial the function w — w™h(w™!) extends holomorphically
to 0, so that it corresponds to a holomorphic section of L,, .

Next we ask which representation of SL(2,C) we find in the space I'(L,,)
for n > 0. We know already that the dimension is n + 1. To determine the
representation, we consider the realization in the space I'¢(L,) C Hol(G). Let

{6 1) e
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and observe that NP is dense in SL(2,C), so that the restriction map
T'e(Ln) — Hol(N) 2 Hol(C)

is injective. Let f € T'g(L,) denote the element corresponding to a non-
zero constant function in Hol(N). For € N and p € P we then have
f(zp) = pp(p)~1f(1). This implies that for x € N we have z.f = f, and
for a diagonal matrix h we get for x € N:

(13)  (h.f)(@) = f(h™ ) = f(h™ whh™) = pu(h).f(2_ wh) = pu(h).f(@).

eEN
On the Lie algebra level we have g =g~ + § + g® with h+ g~ = L(P)
and N = exp(g®), where & = (1 0

0 -1
I'c¢(L,) is a representation containing a vector f with

) . The derived representation of g on

&.f=nf and g®f=L(N).f={0},

Now the representation theory of the Lie algebra s((2,C) implies that the
submodule generated by f is an (n-+1)-dimensional simple module and therefore
that ['(£,,) is a simple module of SL(2,C).

With these elementary considerations we have proved the Borel-Weil The-
orem for the group SL(2,C):

Theorem I.4.  (Borel-Weil Theorem for SL(2,C)) Consider the closed sub-

group
L a 0 ). %
P'_{<c a_1>.aE(C ,C€(C}

of G :=8SL(2,C) and its holomorphic characters
X a 0 n
Xn: P — GL(1,C) = C”™, (c a_1>»—>a, n € Z.

For the associated holomorphic line bundles L,, := G xp C we then have

. ] forn <0
dimI'(£n) = {n—f— 1 forn>0.
For n > 0 the natural representation of G on the space I'(L,) of holomorphic
sections is the irreducible representation of dimension n+ 1. ]

For n = 0 the bundle £y — Py(C) is trivial. Therefore I'(Ly) =
Hol(P1(C)) is the space of holomorphic functions on the Riemann sphere P (C)
which consists only of the constant functions.
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The Borel-Weil Theorem for complex reductive groups

The general Borel-Weil Theorem can be stated as follows:

Theorem I.5.  (Borel-Weil Theorem for complex reductive groups) Let G be
a complex reductive group, p C g a subalgebra of the form

p=b+ > g* with ApU-Ap=A,
a€EAp

and AT D A\ Ap a positive system. We consider the closed connected subgroup
P C G with Lie algebra p and a holomorphic character x: P — C*. Let
A = dx |p. For the associated holomorphic line bundles Ly = G xp C we
then have

[(Ly) # {0} = (Va € Ap) Ma) € —Np.

In this case the representation of G on T'(Ly) is the irreducible holomorphic
representation of highest weight A with respect to A™ .

The Borel-Weil Theorem shows in particular that if A is dominant integral
and we choose the parabolic subalgebra p such that

Ap = {a € A:\&) <0},

then L(A) is isomorphic to the space of holomorphic sections of Ly, whenever
A integrates to a holomorphic character of P. If G is semisimple and simply
connected, this is always the case if A is dominant integral (Exercise 1.4). In
general we need that A(xz) € 2miZ for each = € h with expx = 1 (A is then
called analytically integral).

We can also take Ap := —A™T if X\ is dominant integral with respect to
AT,
Proof. Idea of the proof (for a detailed proof of the more general Bott—Borel-
Weil Theorem we refer to [KV95]): First we observe that the group P is a
semidirect product

PN, p X L P,

where

Np = exp ( Z ga) and Lp= <eXP(h + Z ga)>7

QGAP\—AP a€EApN—Ap

Let 0 # s € I'(L)) be a non-zero section. Pick p € M = G/P with
s(p) # {0} and write o := ¢(1) € M for the base point. Then there exists a
g € G with g.p = z¢, and the section g.s does not vanish in xq, so that we may
assume that s(zg) # {0}. Let f: G — C denote the corresponding holomorphic
function.
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For o € —Ap and the corresponding subalgebra
gla) : =Ca+g*+g “=sl(2,C)
we have a corresponding holomorphic homomorphism
Ne:SL(2,C) — G,
1 0

where & = L(1ny).h for h = (O 1

P, C SL(2,C) for the corresponding analytic subgroup. Since f(1) # 0, the
function f, := f on, is a non-zero holomorphic function on SL(2,C) satisfying

). Put p(a) := g7* + Ca and write

falzp™) = x(a(p)) falz) for 2 e€SL(2,C),pe P,.

The character x ongy |p,: Py — C ¥ is determined by the integer
n .= )\(L(na).h) = A\&),

so that Theorem 1.4 implies that n € Ny because the bundle £,, — P1(C) has
a non-zero holomorphic section given by the function f, on SL(2,C). This
proves that A(&) € Ny for @ € —Ap is necessary for the existence of non-zero
holomorphic sections of L.

Next we assume that this condition is satisfied. Then there are several
ways to show that ['(£y) is non-trivial. One possibility is to use the Bruhat
decomposition of the group G to construct directly a holomorphic section f €
['(Ly) with f(1) = 1 (cf. [CSM95, Sect. 11.14] and also [PS86]). Since this
method will not work in the infinite-dimensional cases, we use the representation
theory of the Lie algebra g to obtain a simple highest weight module L(A) of
highest weight A (Theorem I.1). Then the representation of g on L(\) integrates
to a representation of the simply connected covering group G on L(\), but since
A integrates to a character of P and therefore in particular to a character of the
subgroup H := exp b, it factors through a holomorphic representation (my, L(A))
of G (see Exercise 1.4).

To realize this representation by holomorphic sections of Ly, we first
consider the dual space L(A)*. This space is a g-module with respect to the
action given by

(x.B)(v) == =B(zw), xe€g,peLN"ve L))

Since the A-weight space V* of V with respect to b is one-dimensional, there
exists a linear functional § € L(A)* and a basis element vy € V* with §(vy) =1
and kerd =3, V¥,

For the parabolic subalgebra

pi=h+ » g

A(&)<0
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we then have p.kerd C kerd (Exercise 1.3), which easily implies that § is a
p-eigenfunctional of weight —A. The group G acts on L(A)* by

(9-8)(v) := B9 v), g€ G, BeLNve L),

and for the connected subgroup P := (expp) C G corresponding to p, we obtain
that

p.8=x(p)~'s,

where x: P — C* is the unique holomorphic character whose differential is A,
viewed as a linear function on p vanishing on all the root spaces. Let

U: L(A\) — Hol(G), ¥ (v)(g) :={5,g~ v) = (g.6)(v).

Then ¥ is a G-equivariant linear map with respect to the natural representation
of G on Hol(G) given by (g.f)(z) := f(9~'x), and each function f in the range
of U satisfies

flgp) =x() "' flg), g€G,peP.

This means that

U(L(X) € La(Lr) = {f € Hol(G): (Vg € G)(Yp € P) f(gp) = x(p) "' f(9)},

showing that I'(£y) contains a subspace isomorphic to the highest weight module
L(X). It remains to show that this subspace exhausts I'(Ly).

To analyze the representation on the non-zero space I'(L£y) of holomorphic
sections, we need a fact whose proof we do not want to reproduce:

dlmr(ﬁ)\) < Q.

This is a special case of a more general theorem on spaces of holomorphic sec-
tions of vector bundles over compact complex manifolds,! and G/P is compact
because the compact real form U acts transitively on G/P. A more direct proof
is outlined in Remark 1.6 below.

Now we can argue as follows. First we use Lie’s Theorem for the solvable
Lie algebra b := b+ > A+ g% to see that there exists an f € I'g(£y) which
is a b-eigenvector. Then f is fixed by the group N := exp(}_,ca+ g) for
which NP C G is an open subset of G (Exercise 1.5). Therefore each element
of T'¢(Ly) is uniquely determined by its restriction to N, which in particular
implies that the space

Fa(L)N ={f €elg(Ly): (Yu € N)u.f = f}

L We refer to [GR65, Th. VIII.19] for the Theorem of Cartan—Serre asserting that the
cohomology of any coherent sheaf on a compact analytic space is finite-dimensional. Since
compact complex manifolds are in particular compact analytic spaces, and holomorphic vector
bundles define coherent sheaves, this implies the finite-dimensionality of the space of holomor-

phic sections for every holomorphic vector bundle over a compact complex manifold.
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is one-dimensional. We may assume that f(1) = 1, so that f(u) = 1 for all
u € N. Then we obtain for h € H:

(h-f)(w) = f(h u) = fF(B uhh™h) = x(h)f (2" ub) = x(h) = x(h) f(u).

This shows that for h € h we have h.f = A(h)f, and therefore that f is a
b-eigenvector of weight A. As in the proof of Theorem 1.4, the finite-dimensional
representation theory of g implies that the submodule generated by f is iso-
morphic to L(A). It remains to see that this subspace exhausts I'g(Ly). If this
is not the case, then Weyl’s Theorem implies that there exists a complemen-
tary submodule W. Repeating the argument above, we find a non-zero function
f € W which is N-invariant, but this contradicts the fact that I'g(Ly)Y is
one-dimensional. |

Remark I.6. (a) Let T = T"™ be a torus group and (p,V) a continuous
representation of 7" on the finite-dimensional vector space V. Then T also
acts on the space Hol(V') of complex-valued holomorphic functions on V' by

(t.f)(@) = f(t ).
Since T' is abelian, V' decomposes into a finite sum of weight spaces of the

Lie algebra b := t¢:
V=g v~
BED™

Let v;, j =1,...,m, be a basis of V' with v; € V#i. We then have a Taylor

expansion
«
f( E zjvj) = g Caz”,
J aEeND
where a = (a1,...,a,) and
24 =2t

In these terms we obtain
exp ). zjvj) = ¢ e_zj #s (@) o
p f 3 Uy « )
J a€ENT
showing that the weight spaces Hol(V')# are given by

Hol(V)# = {f € Hol(V): f(szvj) = Z caza}.

il =—
j JMj K

If there exists an element x( € it with p;(z9) > 0 for all j, then we may
w.l.o.g. assume that pj;(zo) > 1 for all j. This condition means that the set
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{p1,- .-, tm} is contained in an open half space. Then Zj ajprj = —p implies
that —u(xe) = D25 ajpi(we) > >, . so that there are only finitely many
o € Ng* with >, aju; = —p, which implies that

dim Hol(V')# = Ha e Ny': Zajuj = —u}‘ < 00.
J

If F C Hol(V) is a closed subspace invariant under 7', then for each f € F
and each character x,:T — T with y,(expz) = e#(*) the holomorphic function

fula) = /T F(t2)x(t) dvr (2)

is also contained in F', where vy is the normalized Haar measure on 71'. For
p = dx, we have f, € Hol(V)*, and this implies that each f € F has a
convergent expansion

F=Y fu Pri={pete:F"+{0}}.

HEPF

This leads to the following observation: If all weight spaces Hol(V')* are
finite-dimensional and F' C Hol(V) is a closed T'-invariant subspace for which
Pr is a finite set, then

dim F' < oo.

(b) Now we explain how the preceding discussion can be applied to show that
in the proof of the Borel-Weil Theorem we have dimI'(£)) < oo. First we have
to specify the torus group to which (a) will be applied. We consider the torus
T = exp(t), where

t = {z € hrexp(Rz) is compact}

(Exercise 1.7). If G is semisimple, this means that t = spanp{id:a € A}. In
this situation we put

Vi= ) g% with A\ApCA*.
OtQAP

Since exp(V)P C @ is an open subset,
La(Lx) = Hol(V), [ (z = fexpx))
is a T'-equivariant injective map, where the action of 7' on Hol(V) is given by
(t.f)(z) = x(t) f(Ad(t)~".2).

The discussion above shows that the set of t-weights, resp., h-weights in Hol(V)
is given by
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and that all multiplicities are finite.
On the other hand the set of h-weights is invariant under the Weyl group
W (Exercise!), so that the set of weights is contained in

(1 (A= D Noa) Cconv(W.A) N (A+R),
wew aEAt
where R is the root lattice. Here the inclusion “C” is not obvious (see [Bou90,
Ch. VIIIJ; see also Section V.2 in [Ne99a]). Since the latter set is finite, and all
multiplicities are finite, we derive that the space I'(L£y) is finite-dimensional. m

Remark I.7. A third possibility to get hold of the representation on the space
I'(Ly) is to view it as a representation of the compact real form U C G on
a Fréchet space. Then the Big Peter—Weyl Theorem (cf. [HoMo98, Th. 3.51])
implies that it contains a dense subspace of finite-dimensional submodules. Now
the argument given in the proof of Theorem 1.5 shows that this subspace is
an irreducible module, and therefore that the representation of G' on the space
I'(Ly) is finite-dimensional and irreducible. n

Exercises for Section I

Exercise I.1. Let V be a finite-dimensional real vector space and W C V a
subspace. For A € End(V') the following are equivalent:

(a) AW)CW.

(b) For all t € R we have e*4(W) C W.

(c) There exists an € > 0 such that for all ¢ € [—¢,¢] we have e!4(W)C W. m

Exercise I.2. Let p: G — GL(V) be a holomorphic representation of a finite-
dimensional connected complex Lie group G, dp:L(G) — gl(V) the derived
representation, and U C G a subgroup such that L(G) = L(U) +¢L(U). Then
for a subspace W C V the following are equivalent:

(a) W is invariant under G.

(b) W is invariant under U.

(c) W is invariant under dp(L(U)).

(d) W is invariant under dp(L(Q)). |

Exercise 1.3. Let L(\) be a simple highest weight module of a complex
reductive Lie algebra g of highest weight A and write
L)) =W @ L(\)*,

where W = >\ L(A)# is the sum of all other weight spaces. Then W is
invariant under the subalgebra

pi=h+ Y o
A(@)<0

Hint: If v, is a weight vector of weight p and o € A, z, € g%, with z4.v, = vy,
then A(c) > 0 follows from the representation theory of s{(2,C). n
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Exercise I.4. Let G be a connected complex reductive Lie group and ¢: G- G
its universal covering group. Further let h C g be a Cartan subalgebra. We
consider the complex abelian subgroups H := expgh, resp., H = expg b of

G, resp., G. For a dominant integral A let px:G — GL(L()A)) denote the
corresponding holomorphic representation of G. Show that the following are
equivalent:

(a) pa factors through a holomorphic representation py: G — GL(L())).

(b) 71(G) :=kerq C ker py.

(c) There exists a holomorphic character x: H — C* with dy = \.

(d) A satisfies A\(I") C 2miZ for the subgroup I' := {z € hrexpax = 1}.

Hint: Use that 1 (G) C Z(G) C H. =

Exercise 1.5. Let G be a Lie group and a,b C g subalgebras with a+b =g.
Let A,B C G be the corresponding analytic subgroups endowed with their
intrinsic Lie group topology. Show that the map

m:Ax B — G

has an open image and that m is a diffeomorphism onto the open subset AB if
AN B ={1}. Hint: Consider the action of the direct product group on G given
by (a,b).g :=agb~?. n

Exercise I.6. (Integrating representations of s((2,C))
(1) Let V;, be the n + 1-dimensional simple module of s[(2,C). We consider
the space

P, = span{z]25: j + k = n} C C[z1, 2] 2 Pol(C?)

of homogeneous polynomials of degree k on C%. Then the group SL(2,C)
acts on P, by (g.f)(z) :== f(g~1.x). Show that the corresponding derived
s[(2,C)-module is isomorphic to V;, and hence that the Lie algebra action
on V,, can be integrated to a representation of SL(2,C) on V,,.

(2) We call a module (p, V) of sl(2,C) integrable if the operators p(e) and p(f)
are locally nilpotent and p(h) is diagonalizable. Using the PBW-Theorem,
show that V' is a locally finite module, i.e., every element generates a finite-
dimensional submodule.

(3) If (p,V) is alocally finite sl(2, C)-module, then there exists a representation
p:SL(2,C) — GL(V) such that

d
== p(et).w for all v € V.

p(X).v

Hint: Use Weyl’s Theorem to see that V' is a sum of simple modules, hence

semisimple and therefore a direct sum of simple finite-dimensional modules.
Then use (1).

(4) Justify the terminology “integrable module.” |
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Exercise 1.7. Let A be a connected real abelian Lie group and a its Lie
algebra. Then

t:= {z € a:exp Rz is compact}

is a subspace of a and T := exp t is a torus, which is the unique maximal compact
subgroup of A. [ ]
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I1. Split Lie algebras

In this section we describe, in a completely algebraic context, several types
of Lie algebras that occur as the algebraic skeleton of operator Lie algebras.
These are always locally finite Lie algebras with a root decomposition. For
this class of Lie algebras the root decomposition leads to an effective structure
theory which is almost comparable to the results one has for finite-dimensional
Lie algebras. In particular one has a classification of the simple Lie algebras.
The structure of these Lie algebras will be refined by endowing them with
an involution, a structural feature that will be crucial in the study of unitary
highest weight representations in the next section. The algebraic analysis of
these representations is the first step in our approach to the highest weight
representations of operator groups.

Throughout this section all Lie algebras are complex if not stated otherwise.

II. Root decompositions

Definition II.1. (a) We call an abelian subalgebra h of a Lie algebra g
a splitting Cartan subalgebra if h is maximal abelian and the derivations adh
for h € b are simultaneously diagonalizable. If g contains a splitting Cartan
subalgebra b, then g, respectively the pair (g, b), is called a split Lie algebra and
b a splitting Cartan subalgebra. This means that we have a root decomposition

g=h+> g%

aEA

where g* = {z € g: (Vh € h) [h,z] = a(h)z} for a linear functional « € h*, and
A=A, h) = {a € h™\{0} : g% # {0}}

is the corresponding root system. The subspaces g® for a € A are called root
spaces and its elements are called root vectors.

(b) A root o € A is called integrable if g(a) := g*+ g~ + [g%, g~ %] = sl(2,C)
and there exist non-zero elements zi, € g*® such that adzi, are locally
nilpotent. (An endomorphism A of a vector space V is called locally nilpotent
if V= UnEN ker A™.) If g is locally finite, i.e., every finite subset generates a
finite-dimensional subalgebra, then the latter condition is redundant (Exercise
II.1).

We write A; for the set of integrable roots. For av € A; the space [g¢, g~°]
is one-dimensional and « does not vanish on it. Hence there exists a unique
element & € [g%, g~ %] with a(d&) = 2 which is called the associated coroot. To
each coroot we associate the reflection 7, € GL(h*) given by

ra(8) = — fl@)a
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and write YW C GL(h*) for the subgroup generated by these reflections. It is
called the Weyl group of g. |

It is well known that every finite-dimensional semisimple complex Lie al-
gebra g has a root decomposition and that all roots are integrable ([Hum?72]).
One can show that the integrability of a root is equivalent to the existence of
a representation p,:SL(2,C) — Aut(g) for which the derived representation is
given by restricting the adjoint representation to g (cf. [MP95]; see also Exercise
1.6). This justifies the terminology.

Example I1.2. Since the Lie algebra s[(2,C) plays an important role in root
decompositions, we first have a look at its standard root decomposition. It is

given by
1 0 0 1 0 0
h_<0 _1>, e-(o O> and f_(l O>'

The brackets of these basis elements are given by
lh,e] =2e, [h,f]=-2f and [e, f]=h.
Therefore we have the root decomposition
g=b+g"+g™"  b=Ch g"=Ce, ¢ “=Cf

with «a(h) = 2, so that @ = 2 and r,.a0 = —ar. n

Example I1.3. Let J be a set and C) the vector space with the basis
(ej)jes- One may also think of this space as the space of all functions J — C
with finite support. We write g := gl(J,C) C End(C)) for the Lie algebra
consisting of all those endomorphisms whose corresponding J x J-matrices have
only finitely many non-zero entries. Then the elementary matrices E;; with
a single non-zero entry in the (4,7)-position form a basis of the vector space
g. Let b C g be the subalgebra of diagonal matrices and define ¢; € b* by
ej(diag(wii)) := x;;. Then the set of of roots of g with respect to b is given by
A= {Ej—é‘k:j#k,j,ke J}
where
gej_gk :(CEjk and (€j —€k)v: Ej' — .
For every pair ¢ # j the subalgebra g(e; —¢;) spanned by h := E;; —Ej;, e = Ej;
and f := Ej; is isomorphic to sl(2,C). Since, moreover, (ad E;;)®> = 0, every
root is integrable.
We define
sI(J,C) = {X €Ol CltrX = ay; = 0}
JjedJ
and note that this subalgebra also has a root decomposition with respect to the
Cartan subalgebra hNsl(J,C). u

For infinite-dimensional Lie algebras there are some subtleties involving
the notion of a “reductive” Lie algebra which come from the fact that for many
simple Lie algebras not every derivation is inner (cf. Exercise 11.10).
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Definition II.4. We call a Lie algebra g semisimple if it is a direct sum of
simple ideals. It is said to be almost reductive if |g, g] is semisimple. It is called
reductive if g = 3(g) @ g, 9] |

Example II.5. For every n € N the Lie algebra gl(n,C) is reductive. We
have
gl(n,C) 2 sl(n,C) & C1,

where sl(n,C) is simple.
For an infinite set J the identity matrix 1 is not contained in gli(.J,C),
which implies that

3(9l(J,C)) = {=z € gl(J, C): [, gl(J, C)] = {0}} = {0}.
What survives is the Lie algebra homomorphism
tr:gl(J,C) - C
with kertr = sl(J,C). Since sl(J,C) is simple (Exercise!), we obtain
[61(J;C), gl(J, C)] = sl(J,C),
showing that gl(.J,C) is almost reductive but not reductive. u

The following theorem shows that the abundance of integrable roots in a
split Lie algebra has strong consequences for its structure.

Theorem 11.6. A split Lie algebra g is almost reductive and locally finite if
and only if all roots are integrable, i.e., A = A;.

Proof. If A = A,;, then Theorem VI3 in [Ne00Oa] implies that g is locally
finite. Now Theorem II1.12 in [St99a] shows that g is almost reductive. The
converse follows from Lemma IV.8 and Theorem II1.19 in [St99a). n

Positive systems

Definition II.7. A subset AT C A is called a positive system if A =
AT U —AT and no non-trivial linear combination Y7, Ajay with «; € A
and A; > 0 vanishes. Geometrically this condition means that

cone(AT) := R [AT] := {Z)\jaj: A €ERT ;€ A+}
j=1
is a pownted convex cone in the sense that
cone(AT) N —cone(A") = {0}.

This requirement implies in particular that each positive system contains
exactly one root of each set {a, —a} and that ATN—-A"T =0. ]
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Proposition 11.8.  The positive systems in the root system
A=A; ::{éj—ékij#k€<]}

of gl(J,C) are in one-to-one correspondence with the linear orderings < of the
set J. This correspondence is established by assigning to < the positive system

A; = {€j —€kig < k}

Proof. First we show that for a linear order < on J the set AL’ is a
positive system. So let a; = ¢j, —¢eg,, ¢ = 1,...,n, be positive roots and
Jo :={ji,ki:i =1,...,n}. Let f:Jy — R be an injective decreasing function.

Then there exists a linear functional F' on span{e;:j € Jo} with F(e;) = f(j)
and we have for each positive linear combination

F(im) - i X (i) = Fki)) >0

if at least one \; is positive. This shows that the set A‘: is a positive system in
A. B

If, conversely, AT is a positive system, then we define j < %k by 5 =k or
gj—er € AT, It is clear that we thus obtain a reflexive, transitive relation which
defines a linear order on .J. [ ]

Remark II.9. (a) The Weyl group W of A = A; is isomorphic to the
group S(s) of finite permutations of the set .J (the subgroup generated by all
transpositions). It acts on the diagonal matrices by permuting the entries. Since
S(y) acts transitively on the set of all pairs of elements of J, we see that W acts
transitively on A.

As the preceding proposition shows, the WW-orbits on the set of all positive

systems in A correspond to the S z)-orbits on the set of all linear orders on J.
If J is finite, then W acts transitively on the set of all linear orders, hence on the
set of all positive systems. This does not make it necessary to consider different
positive systems for gl(n,C) because every finite linearly ordered set (J, <) is
isomorphic to ({1,...,n},<).
(b) If J =N, then it is clear that the natural order < on N corresponds to the
standard positive system. A linear order is W-conjugate to this one if there are
only finitely many pairs (j,k) with j < k and k < j (Exercise!). Interesting
other orders are the following: 2 <3 <4 <...<1lor3<4<5<...<1<2
etc. Another class of interesting orders arises from bijections with Z:

LT =<3<3<1<2<4<6...

One could even define a linear order on N by using a bijection to Q.

(¢) Note that for orders like those described above on J = N one can think of
the elements of gl(N,C) as N x N-matrices with finitely many non-zero entries,
where the basis is ordered according to the linear order <. For the order coming
from the bijection with Z, this leads to the representation by Z x Z-matrices
with finitely many non-zero entries. [ ]
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Involutions on split Lie algebras

Definition I1.10.  (a) An involutive Lie algebra is a complex Lie algebra g
endowed with an involutive antilinear antiautomorphism z — z*. This means in
particular that

(") =2 and [x,y]" =[y*, z"].

Such an involution determines the real form
gri={recg:2"=—z}

of g. This is a real subalgebra with g = gr ® igr (direct sum of vector spaces).
If, conversely, gr is a real form of g, then there exists a unique involution x
defining gr which is given by (z +iy)* := —x + iy for z,y € gg.

(b) Let (g,h) be a complex split Lie algebra and g = b+ > . g¢ the corre-
sponding root decomposition. An involution * of g is said to be compatible with
the root decomposition if z* € g=* for x € g* and o« € AU {0}. In this case
the triple (g, b, *) is called an involutive split Lie algebra.

(c) Let (g,b,*) be an involutive split Lie algebra and A the corresponding root
system. For v € A; the space g(a)r := g(a)Ngr is a real form of the test algebra
g(a) 2 s1(2,C), so that gla)r 2 sl(2,R) = su(1,1) or g(a)r = su(2). We call «
compact if g(a)r = su(2) and write Ay for the set of compact roots. The roots
in A, := A\ Ay are called non-compact. We write W for the subgroup of W
generated by the reflections r,, o € Ay . This group is called the compact Weyl
group, which of course does not mean that W, is a compact topological group.m

Examples II.11. (a) If H is a Hilbert space and gl(H) := B(H) the space of
all bounded linear operators on H , then gl(H) is an involutive Lie algebra with
respect to the operator adjoint which is defined by

(X*v,w) = (v, Xw) forall wv,weH.
The corresponding real form is the subalgebra
wH)=gl(Hr={X € B(H):X"=-X}

of skew-hermitian operators. We will see later how the notation u(H) and gl(H)
will be justified by the corresponding Lie groups.
(b) For H = C" with (z,w) =>_7_, z;w; we also write

gl(n,C):=gl(H) and u(n,C):=u(H).

The subalgebra
sl(n,C) :={X € gl(n,C):tr X =0}



Infinite-dimensional groups and their representations 25

is invariant under the involution, and we thus obtain the real form
su(n,C) :=u(n,C)Nsl(n,C) = sl(n, C)r.

(¢) For every set J the Lie algebra gl(J,C) can be viewed as operators on the
Hilbert space

H=1(J,C)= {(a:j)jej e’y Jay? < oo}.
J
The corresponding involution is given by X* = X'
(d) The Lie algebra gl(n,C) has another natural involution given by X* = —X,
where X = (Tij)ijes for X = (x45)ijes- In this case the corresponding real
form is

g[(n, (C)]R = gr(”? R)v

the Lie algebra of real (n x n)-matrices.
(e) For 7 := (107’ 01 > € gl(p+¢q,C) we obtain on gl(p+ ¢,C) an involution
—1q

by X*:= 7X*r. The corresponding real form is called u(p,q,C). We likewise
have the real form su(p,q,C) of sl(p+¢,C). [

In the first part of these lectures we will mainly be concerned with the case
where all roots are compact. In this case we call gr a compact real form of g.

Note that the standard involution X* = X ' on gl(J,C) has this property.

Exercises for Section 11

Exercise II.1. Let g be a finite-dimensional Lie algebra with root decompo-
sition.

(a) Show that for each root a and z, € g* the endomorphism adz,:g — g is
nilpotent. Hint: The set of roots is finite.

(b) If g is finite-dimensional, then « € A is integrable if and only if g(a) X
sl(2,C).

(c) If g is locally finite (every finite subset generates a finite-dimensional subal-
gebra), then o € A is integrable if and only if g(«) = sl(2,C).

(d)* If g is locally finite, then « € A is integrable if and only if

a([g% 7% # {0}.

Hint: Use the representation theory of s((2,C). [ ]

* Exercises marked with * require more work than the others.
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Exercise II.2. In the Lie algebra gl(n,C) of (n xn)-matrices, we consider the
subalgebra g of upper triangular matrices.

(a) Show that the diagonal matrices h) are a splitting Cartan subalgebra of g.
(b) AN —A = {0} holds for the corresponding root system.

(¢) Are there any integrable roots? u

Exercise I1.3. (a) Find on the vector space C[Z] (the algebra of all polynomi-
als in one indeterminate Z over C) two linear maps P and @ with [P,Q] = 1.
(b) Let V be a vector space and gl(V) := End(V) the Lie algebra of all linear
maps V — V. Show that

1egl(V),g(V)] < dimV =c.

Hint: If V' is infinite, then V =2V ® C[Z] (why?).
(¢)* Show that if dimV = oo, then

gl(V) = [gl(V), gl(V)].

Hint: Write V =2 V ® C[Z] and write a given A € gl(V) as A = [S, B] with
S f(2)=ve f(Z). m

Exercise I1.4. (Block structure of classical Lie algebras) Let J be a set and
consider the disjoint union 2.J := JU — .J, where —.J means a set whose el-
ements are formally written as —j, j € J. We write C?) = c) ¢ ¢

and accordingly elements of gl(2J,C) as block (2 x 2)-matrices with entries in
gl(J,C).
(a) Show that

0(2J,C) := { (‘z —ZT> € gl(2J,C):b=—bT,c= —cT}
is a Lie algebra and that
h:=span{E;; —E_; _j:j€J}
is a splitting Cartan subalgebra of g with the root system
A=Dy:= {:l:(éj:l:ék):j7é k,j3,k € J},

where we define €; € h* by £;( diag(w;;)) := ;; for j € J. Hint: Show that the
symmetric bilinear form f(v,w) := >,y vjw_; satisfies

0(2J,C) ={X € gl(2J,C): (Vv,w € V) B(X.v,w) + B(v, X.w) = 0}.

(b) Show that

sp(2J,C) = { (Z —ZT> cgl(2J,C):b=0b",c= cT}
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is a Lie algebra and that
h:=span{kj; —E_; j:jc J}
is a splitting Cartan subalgebra of g with the root system
A=Cy:={F2j,x(cjLtex):j#k,jkeJ}
Hint: Show that the skew-symmetric bilinear form
Blo,w) ==Y wjy_; — vy
jEJ
satisfies
sp(J,C) ={X € gl(2J,C): Vv,w € V) B(X.v,w) + (v, X.w) = 0}.

(¢) We write C /) = D aCeCY) and accordingly elements of gl(2J+1,C)
as block (3 x 3)-matrices. Show that

a b c
0(2J+1,C):= { -bT 0 d € gl(2J + 1,(C):c:—cT,e:—eT}
e —d" —al

is a Lie algebra and that
h:=span{E;; —E_; _j:j€J}
is a splitting Cartan subalgebra of g with the root system
A=DBjy:={tej,*(ejteg):j#k,jkeJ}
Hint: Show that the symmetric bilinear form B(v, w) := 3,47, vjw_; satisfies
0(2J+1,C) ={X €gl(2J 4+ 1,C): (Vv,w € V) f(X.v,w) + B(v, X.w) =0}. =

The preceding exercise shows that there are split Lie algebras with § =

C), where A = A; is one of the following root systems:

Ay={ej—ep:j, ke j#k}, for sl(J,C), gl(J,C),

By ={%xej,xejtex:j,ke Jj#k} for 0(2J+1,C)

Cy={£2¢j,xe;ter:j,kecJ,j#k} for sp(J,C), and

Dy={tejter:j,keJ,j#k} for 0(2J,C).
One can show that these are precisely the infinite root systems of simple split
locally finite Lie algebras which then leads to the classification of this class

of simple Lie algebras ([NeSt00]): Every infinite-dimensional locally finite split
simple complex Lie algebra g is isomorphic to one of the following three types:

sl(J,C), sp(J,C) or o(2J,C)=0(2J+1,C).

The latter isomorphism is specific for the infinite-dimensional situation. It is
discussed in Exercise I1.6 below.
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Exercise II.5. (a) Show that gl(J,C) and therefore every subalgebra of
gl(J,C) is a locally finite Lie algebra.

(b) Show that all roots of the Lie algebras 0(2J,C), 0(2J + 1,C) and sp(J,C)
are integrable.

(c) Determine the structure of the Weyl groups for si(J,C), o(2J,C),
0(2J +1,C) and sp(J,C). u

Exercise I1.6. (Isomorphisms of orthogonal Lie algebras) Let J = J;UJy be
a set and S € End(C)) the symmetric block (2 x 2)-matrix

(1 0
s (% %)

with respect to the decomposition c) = cV) @ ). We define the Lie
algebra
o(Jy, J2,C) :={X € gl(2J,C): X TS + SX = 0}.

(a) Show that 0(2J,C) = o(J,J,C).

(b) Show that a(2J +1,C) = a(J + 1, J,C).

(C) Show that O(Jl,Jz,(C) = o(JlUJz,O,(C).

(d) Deduce that o(2J,C) = 0(2J + 1,C) for infinite sets J.
(

e) Which of the arguments in (a)—(d) work over arbitrary fields K of character-
istic zero? When is o(Jy, J2, K) =2 o(J1, J3, K)? What happens over R? m

Exercise I1.7. (a) Describe the endomorphisms of the vector space cY in
terms of (J x J)-matrices. Which matrices occur?

(b) Show that every (J x J)-matrix A for which every column contains at most
finitely many non-zero entries and which is invertible in the sense that there
exists another matrix A~! of this type with AA™! = A7'A = 1 defines an
isomorphism ¢4 of gl(J,C) by pa(x) = AzA~L.

(¢) Show that the group S of all bijections of .J acts naturally on the Lie algebra
gl(J,C) by automorphisms. u

Exercise I1.8. (a) Show that the real forms s[(2,R) and su(1,1) of sl(2,C)
are isomorphic.

(b) Describe the isomorphisms so(3,R) = su(2,C) and so(3,C) = sl(2,C).

(c) Is every real form of sl(2,C) isomorphic to su(2,C) or su(1,1,C)?

(d) Describe the corresponding real form in terms of (2 x 2)-block matrices.

(e) How can Example I1.10(e) be generalized to Lie algebras of operators on
Hilbert spaces? [ ]

Exercise I1.9. We call a module V' of the split Lie algebra g integrable if for
each integrable root o € A; the module V is locally finite for the subalgebra
g(@) = 5l(2,C). Show that if V' is an integrable module of the finite-dimensional
split Lie algebra g and h C g a splitting Cartan subalgebra, then the set Py C h*
of h-weights of V is invariant under the Weyl group. Hint: For each weight
B € Py and each integrable root « consider the g(e)-module -, ., VATEe =
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Exercise I1.10. (a) Let g = sl(J,C), where J is an infinite set. Show that
for each element x € gl(J,C) \ sl(J,C) the derivation D :=ad x|y of sl(J,C) is
not inner.

(b) Let d be a diagonal matrix d = diag(d;);es. Then D(x) := dx — xd defines
a derivation of gl(J,C) and sl(J,C) which is diagonalizable as an operator on
both Lie algebras.

(c) Let A be a complex J x J-matrix such that each row and each column of A
contains at most finitely many entries. Then Dy(z) := Az — zA maps gl(J,C)
and sl(J,C) into itself and defines a derivation of these algebras. m

Exercise II.11. A subset II of a positive system AT is called a basis if

AT C Ny[II], i.e., every positive root is a sum of elements of II. We assume

that A = Ay.

(a) A positive system AJQ has a basis if and only if for each pair 7,k € J with
J < k the order interval [j,k] := {i € J:j < ¢ < k} is finite.

(b) If A* has a basis, then J is countable.

(c) If J is infinite and countable, then there are three types of positive systems
AJQ which have a basis. They correspond to the linearly ordered sets (N, <),
(N,>) (the reversed order) and (Z,<). u
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III. Unitary highest weight modules

In the representation theory of infinite-dimensional Lie groups, the unitary high-
est weight representations are a very prominent class of representations. This
has several reasons. First of all they arise most naturally in physical models
because boundedness properties of spectra (such as the lower boundedness of the
energy) often imply that representations are highest weight representations (see
the discussion in Chapter X of [Ne99a]). On the other hand, highest weight rep-
resentations enjoy some very close connections to complex geometry and Kahler
manifolds. We have already seen part of this connection in our discussion of the
Borel-Weil Theorem in Section I.

In this section we study unitary highest weight representations from a
purely algebraic point of view. After describing the general setting, we will
explain some specific classification results for locally finite Lie algebras.

Unitary highest weight modules of locally finite Lie algebras

Definition III.1. Let g be a split Lie algebra.
(a) For a g-module V and 8 € h* we write

VA ={veV:(VX € h)Xw=p(X)v}
for the weight space of weight 8 and

Pv ={B b :VF £{0}}

for the set of h-weights of V.

(b) A non-zero element v € V*, X\ € Py, is called primitive (with respect to
the positive system A7T) if g®.v = {0} holds for all « € A*. A g-module V is
called a highest weight module with highest weight A (with respect to A™) if it
is generated by a primitive element of weight .

(c) Suppose, in addition, that g is an involutive Lie algebra. Then we call a
hermitian form (-,-) on a g-module V' contravariant if

(Xw,w) = (v, X*w) forall wv,weV,XEeg.
A g-module V is said to be unitary if it carries a contravariant positive definite

hermitian form. Note that this property depends on the involution * on the Lie
algebra g. ]

In the following we will define o*(x) := a(z*) for a € h*.
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Proposition IIL.2. Let g be an involutive split complex Lie algebra and A™
a positive system. Then the following assertions hold:

(i)  Each module V of highest weight \ satisfies
Py C A —Ng[AT].

Moreover, it has a unique mazimal submodule and satisfies Endg(V) = C1.
(i) For each A € b* there exists a unique irreducible highest weight module
L\ AT).
(iii) If L(A\, AT) is unitary, then A = X\* and moreover u = p* for each p € Py .
(iv) Each unitary highest weight module is irreducible.
(v) If A= X* and vy € L(\,A") is a primitive element, then L(\,AT) carries
a unique contravariant hermitian form (-,-) with (vx,vx) = 1. This form is
non-degenerate.

Proof. (i) Let n* := > A+ g5 and vy € V* be a primitive element.
From U(g) = U™ )U(h)U(n") (which follows from the Poincaré-Birkhoff-
Witt Theorem) we obtain V' = U(n~).vy, showing that V has an h-weight
decomposition. Since the set of h-weights on U(n~) is —No[AT], the set Py of
h-weights of V' is contained in A — No[A™].

To see that V? is one-dimensional, we observe that

V = U(n_).w\ C Cuy+n".V,

where all h-weights in n=.V are contained in |J,ca+ (A — a — No[AT]). The
relation (—AT) NNg[AT] = O further implies that A is not a weight of n=.V,
and therefore dimV* = 1.

In view of dimV* = 1, each A € Endy(V) maps the primitive element
vy to a multiple cvy of vy. Then A = 1 is a consequence of the fact that vy
generates V.

If N CV is a proper submodule, then it does not contain vy. Further
the fact that it is invariant under b implies that it decomposes according to
the h-weight decomposition (Exercise III1.1). Hence it is contained in the proper

subspace
>
0£a€eNy[At]

This implies that the sum of all proper submodules is a proper submodule and
therefore a maximal submodule.
(ii) Let C, denote the one-dimensional module of the Lie algebra b := h+n™ on
which nt acts trivially and b acts by X.v = A(X)v. We consider the induced
g-module

M(X,AT) :=U(g) ®uhan+) Ca

which is called the Verma module of highest weight A. We think of M (X, A™) as
a g-module quotient of the tensor product U(g) ® Cy, where C) is considered
as a trivial g-module, modulo the subspace spanned by the elements of the form
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DX®1-D®ANX), DeU(g), X €b. In this sense, we write [v®z] € M (A, b)
for the image of the element v ® z € U(g) ® C, under the natural surjection to
M(X,b). We also write A:U(b) — C for the algebra homomorphism obtained
by the homomorphic extension of .

Claim 1: The module M (), b) is a highest weight module of highest weight
A, and [1 ® 1] is a primitive element: This is immediate from the definitions
because for X € b we have

X[1e1l]=[X®1]=1XX)]=AX)[1e1],

and U(g).[1®1]=[U(g) ®1] = M(\,AT).

Claim 2: Each g-module V of highest weight A is a quotient of M (X, A™T):
Let vy € V be a primitive element of weight A. Then we have a unique surjective
g-equivariant map

UgCh—V with D®1w D.u,.

Since vy is a b-weight vector of weight A, this map factors through a surjective
map

M\AY) -V with [D®1]+ D.vy.

Now Claim 2 and (i) show that every irreducible module of highest weight
A is isomorphic to the quotient of M (A, At) modulo its maximal submodule.
(iii) The first part follows directly from

)\(X)<U)\,U)\> = <X.U)\,U)\> = <’U)\,X*.U)\> = )\(X*)<U)\,’U)\>

for all X € h and a primitive element vy . The second part now follows from (i)
and a* = « for all roots o € A.
(iv) First we observe that for unitary modules the h-weight decomposition is
orthogonal (Exercise III.1). Let N C V be a proper submodule. As we have
seen in (i),
NC > VMocCuy
0#£aENy [A+]

Hence
(N, V) =(N,U(g).vx) = (U(g).N,vx) € (N,vx) = {0}.

Since the (-,-) is non-degenerate, it follows that N = {0} and therefore that V
is irreducible.

(v) Uniqueness of the form: We define a linear functional on U(g) by
@(D) := (D.vx, vy).

In view of
(D1.ux, Da.vy) = (D3D1.vy,vn) = ¢(D3D1),
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it suffices to show that ¢ is uniquely determined by A and does not depend on
(,-). For D € U(h) we have (D) = A(D), and

U(g)n™ +n~U(g) C ker ¢.

Since the Poincaré-Birkhoff-Witt Theorem implies that U(g) is a direct vector
space sum

(3.1) U(g)=n"U(g) o U(h) ® U(g)n™,

it follows that ¢ is uniquely determined by A.

Existence: We use the decomposition in (3.1) to define a linear function ¢
on U(g) with U(g)n™ +n~U(g) C kerp and @[y = A. First we observe that
the form

(U(e) ®Cx) x (U(g ®Cx) = C, (C@LD®1) = o(D*C)
is sesquilinear and factors through a form on M (A, AT) with
(Ce1],[D®1]) = eD*C), C,DclU(g).

The assumption A = A* first implies that ¢(x*) = p(z)* holds for all z € U(h),
and further (U (g)n*’)>k = n~U(g) implies that the preceding relation holds for
all € U(g). Therefore (-,-) is a hermitian form, and the contravariance follows
immediately from the definition. [ ]

The following proposition is quite useful to prove that highest weight mod-
ules of locally finite Lie algebras are unitary because it permits to use information
on finite-dimensional Lie algebras.

In the following we call a family (g;);cs of subalgebras of g directed if for
Ji,J2 € J there exists a j3 € J with g; Ug;, C gj, .

Proposition IIL.3.  Let (g;)jes be a directed family of involutive subalgebras

of g with the following properties:

1) e=U,9-

(2) FEach g; is invariant under b such that b; := b N g; is a splitting Cartan
subalgebra of g; .

(3) b; separates the points in the vector space spanned by

Aj = {a S A:ga ﬁgj 7& {0}}7

so that we may identify A; with the roots of g; with respect to b;.
For a positive system AT C A we consider the positive system A;’ =
AT N A, in Aj. Then the highest weight module L(A, AT) of g is unitary if
and only if all the highest weight modules L(A \hj,A;-") for the subalgebras g;,
j € J, are unitary.
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Proof. If L(\,A™) is unitary and vy € L(\, A1) is a primitive element, then
V; :=U(g;).vx is a unitary highest weight module of highest weight A; := Ay, of
g;, hence irreducible (Proposition III.2(iv)). We conclude that V; = L(A;, Aj)
is unitary.

If, conversely, all the modules L(/\j,Aj) are unitary, and (-,-) denotes
the unique contravariant hermitian form on L(A, AT) with (vx,vx) = 1 (cf.
Proposition I11.2(v)), then the uniqueness of the contravariant form on V; implies
that it is positive semidefinite on the submodules V; whose union coincides with
L(\, AT). Therefore it is positive semidefinite on L(A, A1) and hence positive
definite because L(A, A™) is irreducible. u

Some necessary conditions for unitarity

In this subsection g denotes an involutive split Lie algebra. We use explicit
calculations involving root vectors to derive some necessary conditions for the
unitarity of a highest weight module L(A, A™), which for the particular case of
Lie algebras with AT = {a} and dimg® =1 turn out to be sufficient.

Lemma IIl.4. For a € A, Z € g% and Y € g=%, the following assertions
hold:

(i) [Z2,Y"]=nY""Y[Z,Y]- 27 a([Z,Y])1) in U(g).
(ii) If vx € L(A\, AT) is a primitive element, then

ZMZ )" U)\—’n'H )([Z, Z*])va

Proof. (i) Repeated application of the Leibniz rule leads to
(Zz,Y" = Y YizYlYi= > YWV[ZY]|+Y[ZY]Y]
i+j=n—1 i+j=n—1
> YY) - jal(Z, Y)Y ="z, Y] - 2 a((Z, Y]y

2
i+j=n—1

= nY"_l([Z, y] - =Dy (7, Y])l).

(ii) Again repeated application of the Leibniz rule yields
(Z" (2 = Y 22,27,
t+j=n—1

so that Z™(Z*)".wy = [Z",(Z*)"]wyx = Z" 1 Z,(Z*)"].ux. Hence the formula
under (i) gives

ZM(Z* )" ox = n(A = 2FLa)([Z, 2*]) 27 H(ZF) L.

Now the assertion follows from an easy induction. ]
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* 4s an tnvolutive Lie algebra

Proposition II1.5.  Suppose that g = h+g*+g~
with g* =CZ, and let A = \* € h*.
Q) If a([Z,Z*]) > 0, then L(\,A") is unitary if and only if there exists an
n € Ny with
o((2.2)
2

For a € Ay this means that A(&) € Ny . In this case, dim L(A\, A1) =n+1.
(i) If a([Z,Z*]) < 0, then L(\,A") is unitary if and only if \([Z,Z*]) > 0.
If, in addition, N([Z,Z*]) = 0, then L(\,A%") is one-dimensional, and
otherwise infinite-dimensional with the weights A — Ny«
Proof. Since g* = CZ, the highest weight module L(A, A™) is the orthogonal
direct sum of the one-dimensional subspaces generated by the elements (Z*)™.vy,

n € Np. So it is unitary if and only if all the numbers in Lemma II1.4(ii) are
non-negative. Now the assertions are immediate consequences. |

N[z, 27]) =n

The following theorem provides the essential information that we will need
in the following sections.

Theorem III.6. (Characterization of unitarity) Let g be a locally finite split

Lie algebra with A = Ay .

(i) Then the highest weight module L(\, AT) of g with respect to AT is unitary
if and only if A= X" and X\ is dominant integral in the sense that

Ma)eNy forall ae AT,

(ii) If L(A, A™) is unitary and R := Z[A] C b* denotes the root group, then the
weight system Py of L(\, A1) is given by

Pr =conviWA)N(A+R).

(iii) For each X € g the corresponding operator on L(X\, AT) is locally finite.

Proof. (Sketch) (i) The necessity of A(@) € Ny for all @ € AT follows
from Proposition II1.5. To see that this condition is sufficient, we first observe
that we may w.l.o.g. assume that g is perfect because [g, g] is a subalgebra with
bh+[g, g] = g and the splitting Cartan subalgebra hN[g, g] = span A, and L(X, A)
also is a highest weight module for [g, g] (cf. Exercise II1.3).

Since g is locally finite, it can be written as a directed union of finite-
dimensional subalgebras g;, j € J, as in Proposition 111.3. These subalgebras
can be obtained as follows: Let A; C A be a finite subset which is full in the set
that A; = ANspanA;. Then we consider g; := span Aj + ZaeAj g¢. It is not
hard to see that g is a directed union of these finite-dimensional subalgebras for
which (gj)r is a compact real form. In view of Proposition III.3, the assertion
now follows from the corresponding result for finite-dimensional Lie algebras,
where we already know that the fact that A; is dominant integral implies that
L(A;, A;’) is finite-dimensional (Theorem I.1), so that the compactness of the
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simply connected group U; corresponding to u; := (g;)r implies that the repre-
sentation of this group on L(A;j, Aj) can be made unitary by averaging a given
positive definite hermitian form.

(ii) This part follows from the corresponding assertion for finite-dimensional Lie
algebras (cf. [Bou90, Ch. 8]) and the trivial observation that W = (J;c; Wj,
where W; C W is the subgroup generated by the reflections 7., o € A;.

(iii) Let X € g and v € L(\,AT). We have to show that v is contained in a
finite-dimensional X -invariant subspace. We write X as X, + X, with X, € §
and X € [g,g]. Now let g; be as in (iii) so large that v € U(g;).vx and X, € g;.
Then [X,g;] C g; implies that the finite-dimensional subspace U(g;).vx is X-
invariant because X.vx € Cuy + X;.ux C U(gj).vx. [

The preceding theorem applies in particular to the Lie algebras sl(J,C),
gl(J,C), sp(J,C), 0(2J,C) and o(2J + 1,C) with their natural involutions
defined by z* = —% "

Example IT1.7. The unitary highest weight modules of the Lie algebra gl(.J, C)
with respect to the positive system AL = {e; —ex:j < k,j,k € J} are
parametrized by functionals A = (Aj)jes € b* = C7 which we also write as

A= Z/\jéj

=

or as functions A\:J — R, 7 — A;. If A = A*, then the highest weight module
L(A) of gl(J,C) is unitary if and only if A\; — A\ € Ny for j < k.

Given a linear order < on J we have particular dominant integral func-

tionals given by
WM - — Z €5,
jeM
where M C J is a subset satisfying M < J \ M (it is a lower set for the order
=<). These functionals wy; are called the fundamental weights. Note that for

M = J we get w; = tr. For more details on the relation between fundamental
weights and general weights we refer to the discussion in [Ne98|. ]

If g is finite-dimensional, then the preceding theorem directly yields a
classification of the unitary highest weight modules for the compact real form
u = gr because every simple highest weight module is finite-dimensional and
every simple finite-dimensional module is isomorphic to some L(A,At) for a
fixed positive system AT (Theorem I.1). In the infinite-dimensional case there
are many different positive systems which are not conjugate under the Weyl
group W (cf. Remark II.9), so that we cannot expect such a simple situation.
To obtain a classification of the unitary highest weight modules, we therefore have
to discuss when two unitary highest weight modules L(A, AT) and L(A, AT) are
isomorphic.
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The classification of unitary highest weight modules
In this section g is a locally finite split involutive Lie algebra with A = Ay.

Proposition III.8. If V' is an wrreducible g-module with h-weight system
Pv C bh*, and AT a positive system such that X € Py satisfies

AEPy CA—RT[AY],

then V= L(\, A™T).
Proof. Let vy € V be an h-weight vector of weight A\. For o € A" we then
have g®.vy C VAT, If g®.vy is non-zero, this means that

At a € Py CA—RYAT],

hence that a € AT N —RT[AT] = @, a contradiction. Thus vy is a primitive
element in V' with respect to AT, and therefore the irreducibility of V' implies

that V is an irreducible highest weight module of highest weight A, i.e., isomor-
phic to L(A, AT). ]

Corollary III.9. Two wunitary highest weight modules L(\,A™%) and
L(\, AT) are isomorphic.

Proof.  According to Theorem II1.6, both modules have the same set of weights
satisfying the condition of Proposition IIL.8, so that L(A\,AT) = L(A\,AT). =

In view of the preceding corollary, we may define
L(\) := L(\,A™)

if AT is a positive system such that L(\, AT) is unitary because the isomorphy
class of L(A, AT) does not depend on the choice of AT. The next question is
when two unitary highest weight modules L(A) and L(p) are isomorphic. To
answer this question, we will need the following elementary lemma:

Lemma II1.10. If E is a subset of the real vector space V', then Ext(conv E) C

E.
Proof. Since every element of conv(F) is a finite convex combination of
elements of F, it clearly suffices to prove the assertion for a finite subset E.

We use induction over |E|. For |F| = 1 the assertion is trivial. If the
assertion holds for set of at most n elements and |E| = n + 1, then we write
E =FE'"U{e} with e € £ and |E'| =n. Now

conv(E) = | (Aconv(E') + (1 - Ne),
A€[0,1]

and therefore Ext (conv(E)) C Ext (conv(E')) U {e} C E' U {e} = E. n
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Lemma IIL.11. If L(\, A") is unitary, then

Ext (conv(Py)) = W.A.

Proof. In view of Proposition II1.2(i), we have conv(Py) C A — RT[AT]
and the convex cone RT[AT] is pointed, so that A € Ext (conv(Py)). On the
other hand P, is invariant under the Weyl group W (Exercise 11.9), which
implies that W.A C Ext (conv(Py)). Moreover, Theorem IIL.6 shows that
conv(Py) = conv(W.A), so that Lemma II1.10 leads to

Ext (conv(Py)) € W.A.
This completes the proof. [ ]

Lemma II1.12. Two unitary highest weight modules L(\) and L(p) are iso-
morphic iof and only if p€ W.\.

Proof. If pw € W.A, then Theorem III.6 implies that the set of weights of
L(X) and L(p) coincides, hence that both are isomorphic (Proposition II1.8). If,

[

conversely, L(A) 22 L(u), then both have the same set of weights, so that Lemma
II1.11 yields
p € Ext (conv(P,)) = Ext (conv(Py)) = W.A. ]

The remaining question is how we can see if for a functional A € h* there
exists a positive system AT such that L(A,AT) is unitary. To answer this
question we generalize a useful concept from the theory of finite root systems to
our setting.

Definition III1.13. A subset X C A 1is called closed if
(E+EX)NACY.
It is called parabolic if it is closed and satisfies
YU-Y¥=A. |

Note that closed subsets correspond to subalgebras p(¥) := b+ > 5 g%
(Exercise!).

Proposition 111.14.  Every parabolic system ¥ contains a positive system.
Proof. (a) Let Xt : =X\ —X. Then

(E+EHnACET.
Let « € ¥ and 8 € X7 with o+ 8 € A. Since ¥ is closed, we have o+ 8 € 2.

If this root is not contained in X7, then —a — 3 € X, so that the closedness of
¥ leads to —f = (—a — ) + 8 € X, a contradiction.
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(b) Using Zorn’s Lemma, we find a maximal closed subset I' C ¥ satisfying
I'Nn—I= . In view of (a), we then have

((ruz+)+(ruz+)) NACTUSY,
and further
ruxh)n—-(ruxhHcTn-NHuEn-sHu(-xnxt) =0.

Therefore the maximality of I' implies that X C T".
(¢) TU-T = A. Suppose that this is not the case and pick « € A not in " or
—I'. In view of (b), we then have o € ¥N—X. The maximality of I" implies that
it cannot be enlarged by «, which means that there exists a finite-dimensional
subspace F C span A containing a such that the finite closed subset I'g :=T'NFE
cannot be put into a positive system I'y of Ay := AN FE containing «.

The property I'o N =Ly = @ implies that by := span Ay + > wer, 8% is a
solvable subalgebra of gg := span Ao + > ac A, 87+ Let b be a maximal solvable
subalgebra of gy containing by. Then

b =spanAg + Z g
aEAS‘

for a positive system AJ of Ag (cf. [Bou90, Ch. VIIL, §3.1, Prop. 5]). Now
a € A U—A{ leads to a contradiction which proves that T U —T' = A.

(d) T is a positive system: It suffices to show that for every finite-dimensional
subspace E C span A the set I' N F is a positive system in Ay := AN E, but

this follows from the existence of a linearly independent basis of Al ([Bou90,
Ch. VIII]). n

Example III.15. We consider the root system A = A;. If ¥ C A is a positive
system, then
J3nk = ej —ex € 2U{0}

defines a partial order on J. Since the positive systems in A correspond to
linear orders on J, it is easy to see that the positive systems contained in X
correspond to the linear orderings < refining the partial order <y . In this setting
Proposition 1I1.14 means that each partial order on a set J can be refined to a
linear order. [ ]

Now we are ready to address the complete classification of unitary highest
weight modules.

Theorem II1.16. Let P:={A € h*: \* = X\, (Va € A) A(&) € Z} denote the
group of symmetric weights. If L(\, A™) is unitary, then A € P and, conversely,
for each A € P there exists a positive system AT such that L(\, AT) is unitary.
The subset P C b* is invariant under the action of the Weyl group, and the map
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A= L(A) induces a bijection of the orbit space P/W onto the set of isomorphy
classes of unitary highest weight modules.

Proof.  The necessity of A € P follows from Theorem IIL.6. Now let A € P
and consider the set
Yy = {CY S A)\(OV!) S No}

We claim that X, is a parabolic system. It is clear that X, U —X), = A. Now
let a, 8 € ¥\ with a4+ 8 € A. Then the theory of finite root systems, applied
to A := AnNspan{a, f}, implies that

(3.2) (a+B) e R &+ RYS.

In fact, there exists a scalar product (-,-) on span Ay which permits us to identify

this space with span{c, 8} in such a way that ¥ corresponds to 3—1) for v € Ay

([Bou90, Ch. VIII, §2, no. 2, Th. 2]). This implies for v = a + 3 the relation
(3.2) which in turn shows that Xy is closed, hence a parabolic system. Now we
use Proposition I11.14 to see that there exists a positive system AT C 3. Then
L(\, AT) is unitary by Theorem IIL.6.

The remainder follows directly from Lemma II1.12. ]

Exercises for Section III

Exercise III.1. Let h be an abelian Lie algebra and V' an h-module which is
spanned by simultaneous h-eigenvectors. We call V' an h-weight module. Then
the following assertions hold:

i)y V= ®MEPV V.

(ii) Every submodule W C V satisfies

W= wnvy = w~

HEPv HEPY

(iii) Suppose that b is involutive and that (-,-) is a contravariant hermitian form
on V and let a € b*. We put a*(z) := a(z*). Then (V* V8") = {0} for
a # [. If, in addition, o* = a for each weight in Py, then the weight
decomposition of V' is orthogonal with respect to (-,-). |

Exercise I11.2. Let g be a finite-dimensional complex semisimple Lie algebra.

(i) If gr is areal form defined by an involution * which is compatible with a root
decomposition, then the Cartan subalgebra hr := HhNgr of gr is compactly
embedded in the sense that the closure of the group e"® in Aut(gr) is
compact.

(ii) Find a real form of a complex semisimple Lie algebra which does not contain
a compactly embedded Cartan subalgebra. Then gr does not occur for any
involution compatible with a root decomposition. [ ]
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Exercise ITI.3. Let (g,h) be a split Lie algebra.

(i) g = [g,8] +b and for each highest weight module V with highest weight
vector vy we have V = U(g).vy.

(i) If no root vanishes on by := hN[g, g, then by is a splitting Cartan subalgebra
of [g, 9]

(iii) If ho is a splitting Cartan subalgebra of [g, g], then a highest weight mod-
ule L(A\,AT) of g is unitary if the corresponding highest weight module
L(Alpy, AT) of [g,g] is unitary. ]

Exercise III.4. We consider g = s[(2,C) with AT = {a} and the functional
A € b* with A(@) = n € Ny. Let L(A,AT) be the corresponding (n + 1)-
dimensional simple g-module with the canonical basis f/.vy, j =0,...,n. We
endow g with the involution with gg = su(1,1). Determine the signature of the
canonical hermitian on the subspaces C f7.vy . [ |
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IV. Banach—Lie groups

In this section we will briefly discuss the crucial points where infinite-dimensional
Lie theory for Banach-Lie groups differs from the familiar finite-dimensional
theory. Moreover, we will explain some tools that can be used to deal with
specific groups quite efficiently.

General Lie theory for Banach—Lie groups

Throughout this section, we will assume some familiarity with the basic
concepts and results of differential calculus in Banach spaces which does not
differ very much from differential calculus in R™: If U is an open subset of the
Banach space E, and F' a Banach space, then a map f:U — F' is said to be
differentiable in p € U if there exists a continuous linear map df (p): E — F such
that

f(p+wv) = f(p)+df(p)-v+o(]v]]).

We call f a C'-map or continuously differentiable if it is differentiable in every
point of U and the map df:U — B(FE, F) is continuous. We call f a C?-map
if df is C! etc. We say that f is C° or smooth if f is C™ for every n € N. So
essentially everything works as in R™, provided it is formulated in a coordinate
free way. This holds in particular for the definition of manifolds, submanifolds,
tangent bundles and vector fields (which are always viewed as smooth sections
of the tangent bundle). For the details we refer to [La99].

Definition IV.1. A Banach—Lie group G is a manifold modeled over a Banach
space such that the multiplication map GxG — G, (x,y) — xy and the inversion
G — G,z — z~! are smooth maps. We write A\,(z) = gz, resp., p,(z) = xg for
the left, resp., right multiplication on G' ([La99, §VL.5]).

The Lie algebra g of G can be obtained as in the finite-dimensional case:
Each X € T1(G) (the tangent space in the identity element 1) corresponds to a
unique left invariant vector field X; with

Xi(g) == dA,(1).X, g€G.

The space of left invariant vector fields is closed under the Lie bracket of vector
fields ([La99, Prop. II1.5.1]), hence inherits a Lie algebra structure. In this sense
we obtain on g := T71(G) a continuous Lie bracket which is uniquely determined
by [X,Y]; = [X1,Y;]. To emphasize the functorial dependence of g of G, we
frequently write L(G) for the Lie algebra of G. If || - || is a norm on g defining
the topology, then the continuity of the Lie bracket means that there exists a
constant C' > 0 with

I Y]l < CIUXIY]) forall X,Y cg
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(Exercise IV.10). A Banach space (g,|| - ||) which at the same time is a Lie
algebra with a continuous Lie bracket is called a Banach—Lie algebra.

The existence and uniquenes results for ordinary differential equations also
hold in the setting of Banach spaces (cf. [La99, §§1V.1/2]). By integrating the flow
of a left-invariant vector field X;, we therefore obtain the exponential function

exp:g — G, exp(X):=yx(1),

where vx:R — G is a solution of the initial value problem

vy (t) = Xi(vx(t)), ~vx(0)=1.

The exponential function is a smooth map with dexp(0) = idg. In view of the
Inverse Function Theorem, this implies that one can use the exponential function
to construct canonical charts of G. As for finite-dimensional groups, one can
show that these charts define on G the structure of an analytic Lie group (the
transition maps in charts are analytic).

The left invariance of the vector field X; implies in particular that the
integral curve yx:R — G is a Lie group homomorphism (R, +) — G. It can be
shown that all continuous Lie group homomorphism are of this type, so that we
have a natural bijection

g - Hom(R,G), X — vx. u

Since essentially all Lie groups arising in these notes will be Banach-Lie
groups, we will simply call them Lie groups.
The following results carry over from finite-dimensional Lie theory:

Theorem IV.2. Let G and H be Banach-Lie groups.
(a) For X,Y € L(G) we have the Trotter product formula

exp(X +Y) = lim <exp(%X) eXp(%Y)yl

n— 00

and the commutator formula

TL2

exp([X, Y]):nli_{xgo<exp(%X) exp(LY) exp(— LX) eXp(—%Y)) .
(b) Let ¢:G — H be a continuous homomorphism between Banach—Lie groups.
Then ¢ is smooth and L(y) := de(1): L(G) — L(H) is a continuous homomor-
phism of Banach—Lie algebras.
(c) If, conversely, ¢:L(G) — L(H) is a continuous homomorphism of Lie
algebras and G 1is connected and simply connected, then there exists a unique
continuous homomorphism ¢:G — H with L(p) = 1.

Proof.  (Sketch) (a) This follows from analyzing the the product

1
X*Y :=exply (expXexpY) =X +Y + FOY]+
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on an open neighborhood W C g for which there exists an open 0-neighborhood
V C W for which exp|y:V — exp(V) is a diffeomorphism and

exp(W) exp(W) C exp(V).

(b) For every X € g the homomorphism ¢ o vyx:R — H is a continuous one-
parameter group, hence can be written as

povx = Yyx), W(X)€L(H)

(Definition IV.1). We conclude that

Y 0expg = expy oY.

Using (a), one shows that ¢ is linear and a Lie algebra homomorphism. Since
expg and expy are local diffeomorphisms, it follows that ¢: L(G) — L(H) is
continuous.

(¢) This is done as in the finite-dimensional case. n

The fact that Banach—Lie groups are locally contractible implies in particu-
lar that for each Banach-Lie group G there exists a simply connected covering
group G, which also carries a unique Banach-Lie group structure such that
the map ¢:G — G is a covering homomorphism of Lie groups. In the light of
this fact, Theorem IV.2(c) is a very important tool to “integrate” Lie algebra
representations to group representations.

Corollary IV.3.  For every closed subgroup H C G the subset
L(H) ={X € gexp(RX) C H}

s a closed Lie subalgebra of g.

Proof. This is a direct consequence of Theorem IV.2(a). u

Remark IV.4. (Lie subgroups) (a) Let G be a Lie group with Lie algebra
g. There exist various notions of Lie subgroups in the literature. The weakest
one is that of Maissen ([Ma62]) who shows that for every closed subalgebra
h C g there exists a connected Lie group H; with Lie algebra h and an injective

homomorphism of Lie groups
nHp — G

with n(Hg) = H := (expbh). The main idea is to refine the topology on the
subgroup H in such a way that the exponential function exp:h — Hy yields
a local homeomorphism. The same approach is discussed in a slightly more
restricted context in Theorem 5.52 in [HoMo98], where it is shown that for
separable subalgebras h we have

L(H):={X € gexp(RX) C H} =b.
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For non-separable subalgebras h this is no longer true in general, as the following
counterexample shows ([HoMo98, p.157]): We counsider the abelian Lie group
g:= (R, R) x R, where the group structure is given by the addition. We write
(e;)rer for the canonical topological basis elements of I1(R,R) (cf. Exercise
IV.11). Then the subgroup D generated by the pairs (e,,—r), 7 € R, is closed
and discrete, so that G := g/D is an abelian Lie group. Now we consider the
closed subalgebra b := I}(R,R) of g. As h+ D =g, we have H :=exph = G,
and therefore
(0,1) € L(H) \ b.

(b) In [La99] S. Lang calls a subgroup H C G a Lie subgroup if H carries a Lie
group structure for which there exists an immersion 7: H — G. In view of the
definition of an immersion, this concept requires the Lie algebra h of g to be a
closed subalgebra of g which is complemented in the sense that there exists a
closed vector space complement. Conversely, it is shown in [La99] that for every
complemented closed subalgebra h C g there exists a Lie subgroup in this sense
([La99, Th. VL.5.4]). For a finite-dimensional Lie group G, this concept describes
the analytic subgroups of G because every subalgebra of a finite-dimensional Lie
algebra is closed and complemented. As the dense wind in the two-dimensional
torus G = T? shows, subgroups of this type need not be closed. We also note
that the closed subspace
¢o(N, R) C I%(N, R)

of sequences converging to 0 is not complemented ([Wil78, Ex. 14-4-9]; see also
[We95, Satz IV.6.5] for an elementary proof), hence not a Lie subgroup in the
sense of Lang, but a Lie subgroup in the sense of Maissen.

(¢) The stronges concept is the one used in [Bou90, Ch. 3. Here a Lie subgroup H
is required to be a submanifold which implies in particular that it is locally closed
and therefore closed. On the other hand this implies that the quotient space G/H
has a natural manifold structure for which the quotient map ¢:G — G/H is a
submersion ([Bou90, Ch. 3, §1.6, Prop. 11)).

(d) For finite-dimensional Lie groups closed subgroups are Lie subgroups, but
for Banach—Lie groups this is no longer true. What remains true is that locally
compact subgroups are Lie subgroups (cf. [HoMo098, Th. 5.41(vi)]). How bad
closed subgroups can be is illustrated by the following example due to K. H. Hof-
mann: We consider the real Hilbert space G := L?([0,1],R) as a Banach-Lie
group. Then the subgroup H := L?(]0,1],Z) of all those functions which almost
everywhere take values in Z is a closed subgroup. Since the one-parameter sub-
groups of G are of the form Rf, f € G, we have L(H) = {0}. On the other
hand, the group H is arcwise connected and even contractible because the map
F:[0,1] x H — H given by

R P

is continuous with F(1, f) = f and F(0, f) =0. u

The following lemma is a useful criterion to verify that subgroups of given
Lie groups are Lie groups.
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Proposition IV.5. Let G be a Lie group and H C G a closed subgroup for
which there exists an open 0-neighborhood V- C g such that exp |y:V — U :=
exp(V') is a diffeomorphism and

exp(VNL(H))=UnNH.

Then H carries a natural Lie group structure such that L(H) is the Lie algebra
of H and the exponential map of H 1is given by the restriction

expy = expg |um): L(H) — H.

If, in addition, g contains a closed subspace E complementing L(H), then
H is a submanifold of G and the homogeneous space G/H carries a natural
manifold structure such that the canonical map 7 G — G/H is a submersion.

Proof.  (Sketch) We put b := L(H). The idea of the proof is to use the
exponential function to define an atlas of H. This is done by first observing
that the restriction of exp to a suitable open 0-neighborhood V4 in b yields a
homeomorphism ¢: Vi, — ¢(V4) onto a 1-neighborhood ¢(Vy) C H. Now one
proceeds as in the finite-dimensional case (see also Maissen’s approach, Remark
IV.4).

If, in addition, a closed complement E exists for h, then H is a Lie
subgroup in the sense of Lang and the inclusion map n: H — G is an immersion.
This implies that there exists an open 1-neighborhood Ug C H such that Uy
is a submanifold of G. Choosing Ug such that it is contained in U, we see that
1 has an open neighborhood U’ such that H N U’ is a submanifold of G'. In
view of the homogeneity of G, it follows that H is a submanifold of G in the
sense of Bourbaki. |

Definition IV.6. Let G be a Lie group and h C g a closed subalgebra.
We call the subgroup H := (exph) generated by the exponential image of h the
corresponding analytic subgroup of G. According to Maissen’s results, this group
has a natural Lie group structure such that the map H < G is a morphism of
Lie groups (see also [HoMo098, Cor. 5.34]).

For a closed subgroup H C GG we consider the closed Lie subalgebra

b:= L(H) = {X € g:exp(RX) C H}

of g (Corollary IV.3) and say that H is a Lie subgroup if there exists an open
0-neighborhood V' C g such that exp |y is a diffeomorphism onto an open
subset exp(V) and exp(V Nh) = (expV) N H. Then Proposition IV.5 implies
that H carries a natural Lie group structure such that the map H — G is a
homomorphism of Lie groups which is a homeomorphism onto its image.

We call a Lie subgroup H complemented if g contains a closed subspace
E complementing the closed subalgebra h. If this condition is satisfied, then H
is a submanifold in the sense of Bourbaki, and in particular the homogeneous
space G/H carries a natural manifold structure such that the canonical map
m:G — G/H is a submersion (Proposition IV.5). u
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Remark IV.7. If G is a Hilbert-Lie group, i.e., the topology on g comes from
a real Hilbert space structure on g, then every closed subspace h C g has a
closed complement, so that every Lie subgroup is complemented. [ ]

Linear Lie groups

Now the natural question is how to find infinite-dimensional Lie groups.
In the finite-dimensional context the most natural examples are matrix groups,
i.e., groups of operators on finite-dimensional vector spaces. In the infinite-
dimensional context the situation is similar. The most natural examples are
groups of operators on Banach spaces.

Definition IV.8. A Banach algebra is a Banach space A endowed with an
associative algebra structure such that the norm on A is submultiplicative:

eyl < llz)l - llyll, =,y € A
We call A unital if A contains an identity element 1. In this case we write
G(A):={a€ A:(Fbec A)ab=ba =1}
for the group of units of A. [ ]

Proposition IV.9. If A is a unital Banach algebra, then G(A) is a Lie group
with Lie algebra A (endowed with the commutator bracket) and the exponential
function

x .n
x
exp: A —» G(A), exp(z)=¢€":= Z o
n=0
Proof.  First we observe that for |z|| < 1 the Neumann series Y o  z"
converges to an element y € A satisfying y(1 —z) = (1 —z)y = 1. We conclude
that
U:={gecA|g—1] <1} C G(4),

and that on U the inversion is given by the convergent power series

o0

g_l = Z(l - g)nv

n=0

hence an analytic function and therefore in particular smooth.

For every element g € G the multiplication A\;: A — A is a homeomor-
phism, so that A\,.U = gU is an open neighborhood of g in A which is contained
in G(A). This proves that G(A) is open. Since the multiplication m: Ax A — A
is bilinear, it restricts to a smooth map G(A) x G(A) — G(A). To see that the
inversion is a smooth function, we observe that for « € U we have

(gu)~F=u"tg7,
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so that the smoothness of the inversion on gU follows from the smoothness on U.
To see that exp is the exponential function of the Lie group G(A), we
observe that the left invariant vector fields on G(A) are given by X;(g9) = ¢X,

so that the corresponding integral curves starting in 1 are vx (t) = e**, and this

implies that exp(X) = vx(1) = e¥. [ |

Corollary IV.10.  If E is a Banach space, then the group GL(E) of invertible
bounded linear maps E — E is a Lie group with Lie algebra B(E), the algebra
of all bounded operators on E.

Proof. The group GL(F) is the unit group of the unital Banach algebra
B(E). n

Let E be a Banach space. We call a Lie subgroup H C GL(E) a linear
Lie group (cf. [HoMo98, Ch. V], where linear Lie groups are discussed in a quite
elementary fashion). The following lemma is a useful criterion to see that certain
closed subgroups are Lie subgroups.

Lemma IV.11. If ¢o:G; — G s a continuous homomorphism of Lie groups
and H C G a Lie subgroup, then Hy := o~ Y(H) also is a Lie subgroup. In
particular ker ¢ is a Lie subgroup of Gy .

Proof. = We choose an open 0-neighborhood V' C g such that expg |v is a

diffeomorphism onto the open subset U := expg V of G, and exps(V Nh) =

U N H. Then we choose an open 0-neighborhood V; C L(p)~'(V) such that

expg, v, is a diffeomorphism onto Uy := expg (V1). We put Hy := ¢~ '(H).
Let X € V1 with expg, X € Uy N Hy. Then

p(expg, X) = expg(L(p).X) e UNH
with L(¢).X € V. Hence L(¢).X € h and therefore
X eb ={Y € girexp(RY) C Hi},

which is the closed Lie subalgebra corresponding to the closed subgroup H; of
G; (cf. Corollary IV.3). This implies that U; N Hy C exp(V1 N hy) and therefore
equality because the converse inclusion is trivial. ]

Lemma IV.12. Let E be a Banach space and F C E a closed subspace. Then
H:={g € GL(E):g.F C F}
is a Lie subgroup of GL(FE).

Proof. Let V C g be an open 0-neighborhood such that exp|y:V — exp V is
a diffeomorphism and ||expz — 1] < 1 for all € V. Then the inverse function

log: = (exp|y) texpV — g
is given by the converging power series
o0 (_1)n~|—1

log(g) =) |

n=1

(g—1)"

(this requires a proof!). For g = exp X € (expV) N H we then obtain X.F C F
directly from the power series. [ ]
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Algebraic Lie subgroups

We will now discuss a very convenient criterion which in many concrete
cases can be used to verify that a closed subgroup H of a Lie group is a Lie
subgroup. To this end, we will need the concept of a polynomial function and of
an algebraic subgroup.

Definition IV.13. (a) Let F and V be Banach spaces. A function f: E -V
is called a homogeneous polynomial of degree k if there exists a symmetric k-

linear function f: E* — V with
f(x)= f(z,...,z) forall ze€EFE.

Polynomial functions of degree 0 are constant functions and polynomial functions
of degree 1 are linear maps. Polynomial functions of degree 2 are also called
quadratic maps. In this case f can be obtained quite directly by

fla,y) = =(flz+y)—fle—y)) = %(f(fv+y)—f(fv—y)—f(—$+y)+f(—w—y))~

=

For polynomials of degree k we have the general formula

Flhoh) = oo S (e flenh ot 2h).

n .
ee{l,-1}n

We write Py (E, F) for the space of continuous F'-valued homogeneous polynomi-
als of degree k on E. A polynomial is a finite sum of homogeneous polynomials,
so that P(E, F) := @, Px(E, F) is the space of continuous F-valued polyno-
mials on E. If f =3, fi is a polynomial, then we say that f is of degree d if
fa#0 and fr =0 for k> d.

(b) Let A be a Banach algebra over K =R or C. A subgroup G C G(A4) is
called algebraic if there exists a d € Ny and a set F of Banach space valued
polynomial functions on A x A of degree < d such that

G={geGA):(VfeF)f(g.g~") =0}. m

Proposition IV.14. (Harris/Kaup) Every algebraic subgroup G C G(A) is a
Lie subgroup.

Proof. In view of the Hahn-Banach Theorem, we may assume that

d
FCP:=PP(AxAK),
k=0
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the Banach space of scalar-valued continuous polynomials on A x A of degree
< d. The space P carries a natural Banach space structure such that the action
of G(A) on P given by

(w(9).f)(z,y) := f(zg,9™"y)

yields a continuous homomorphism m: G(A) — GL(P) (Exercise IV.6(d)).
Replacing F by

F:={feP:(Vgeq)f(g,97") =0},

we may assume that F = F'. The space F' is a closed subspace of P. We claim
that
G={geG(A):n(g9).F C F}.

In fact, if g,z € G and f € F', then
(7(9)-f)(w,a™") = f(zg,g'z™") =0,

showing that 7(g).f € F. If, conversely, g ¢ G, then there exists an f € F' with

0# flg,97") = (n(9).F)(1,1).

It follows in particular that w(g).f & F'.
We conclude that

G =n"1({g € GL(P):n(g).F C F}),
so that the assertion follows from Lemma IV.11 combined with Lemma IV.12. m

Examples IV.15. (a) If A is a unital Banach algebra and M(n, A) is the
algebra of (n x n)-matrices with entries in A, then M(n, A) also is a Banach
algebra. In fact, on the space A™ = A x ... x A we consider the norm given by

] := max{{lz],..., lzall}.
Then A™ is a Banach space and we have a natural embedding
M(n, A) — B(A")

which we use to define a norm on M(n, A). It is not hard to verify that M(n, A)
is closed in B(A™), hence a Banach algebra. We write GL(n, A) := G(M(n, A))
for the unit group of this Banach algebra.

(b) As we will see below, it sometimes is convenient to refine the construction in
(b) as follows. Let J < A be an ideal which is a Banach algebra in its own right
such that the multiplication map

AxJ—J, (a,b)—ab
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is continuous, i.e., there exists a C' > 0 with ||ab||; < C||al|a|[b]|s for a € A and
b € J. After replacing the norm on A by the equivalent norm

lal|" := max(||al| 4, sup{[labl|;: [[bll; < 1}) < max(1, C)|la] 4,

we may assume that [|abl|s < ||a||al|b||; holds for a € A and b € J.
We consider the algebra

M(2, A, J) :z{(Z Z):a,deA,b,ceJ}

endowed with the norm

a b
H (c d> H = 2max{||al|a, [[0]]7, llcll.r, [|d]|a}-

Then ||zy|| < ||z||||y|| holds for z,y € M(2, A, J) (Exercise!), so that M(2, A, .J)
is a Banach algebra.
A similar construction works for (n x n)-matrices, where one defines

M(n, A, J) == {(2ij)i,j=1,.n. € M(n, A):i # j = x5 € J}

and
i)l = m el L. # i il ari = 1,....m}.

We write GL(n, 4, J) for the unit group of this Banach algebra.
(¢) If A is a Banach algebra without a unit element, then we endow the space

A=AaC
with the Banach algebra structure given by
(@, 2)|| := llall + 2] and  (a,z)(a’,2) == (ad’ + za + 2a, 22").

Then A 2 Ax {0} is a closed ideal in A, and we have an algebra homomorphism
e: A — C given by ¢(a,z) = z. We define

S(A) :=e71(1) N G(A).

This is a closed subgroup of G(A) and {(a,1):||a|| < 1} is an open 1-neighbor-
hood in S(A). Therefore S(A) is a Lie subgroup of G(A) with the Lie algebra
A and the exponential function

exp: A —» S(4), xz+—e” = (e’ —1,1).
(d) If J < A is an ideal and A is a unital Banach algebra, then

S(J) = G(A) N (1 +J)
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is the kernel of the homomorphism
G(A) = G(A)), g g+,

where G(A/J) denotes the unit group of the unital algebra A/J which is not
required to carry a natural Banach space structure. Moreover, we have for
J:=C1+ J C A the relation

G(J)=GA)NJT =C*-5(J).

If, in addition, J is closed, then S(J) is a closed subgroup of G(A) and a
Lie group with Lie algebra J. Moreover, A/J carries a natural Banach algebra
structure given by
|la+ J|| := inf{|la + b]|:b € J},

and the quotient map A — A/J is continuous, so that we have an exact sequence
of Lie groups
{1} —» S(J) = G(A) — G(A/J).

Here the map on the right hand side need not be surjective. A typical example is
A = B(H) and J = K(H) (the ideal of compact operators) for an infinite-
dimensional Hilbert space (there are Fredholm operators with non-vanishing
index). It is easy to see that for every norm on J for which J is a Banach
algebra, the group S(J) coincides, as a set, with the invertible elements in the

algebra J from (d) above. In this sense both constructions lead to the same
objects. [ ]

Classical Banach—Lie groups of operators

In this subsection we will introduce various types of groups of operators
on a Hilbert space generalizing the finite-dimensional classical groups on real,
complex and quaternionic vector spaces.

Definition IV.16. (Complex classical groups) Let H be a complex Hilbert
space. Then we have the following three types of complex classical groups.

(1) The full linear group GL(H) := G(B(H)).

(2) Let I: H — H be an antilinear isometry with I? = 1. The corresponding
orthogonal group is defined by

O(H,I):={gc GL(H):g~' = Ig*1™'}.
Applying Proposition IV.14 with the complex linear function

f:B(H)— B(H), f(z,y):=1Iz"I"1—y
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shows that O(H, ) is a Lie group with the Lie algebra
o(H,I):={X € B(H): IX*T"' + X =0}

(Exercise!). This group can also be described as an isometry group of the
symmetric complex bilinear form SB(v,w) := (v, I.w) because

O(H,I)=0(H,p) :={g € GL(H): (Vv,w € H) B(g.v,g.w) = B(v,w)}

(cf. Exercise IV.12).
(3) Let I: H — H be an antilinear isometry with 12 = —1. The corresponding
symplectic group is defined by

Sp(H,I):={ge€ GL(H):g~' = Ig*1"'}.
As in (2), this is a Lie group with Lie algebra
sp(H,1):={X ¢ B(H):IX*I""+ X = 0}.

This group can also be described as an isometry group of the skew-symmetric
complex bilinear form f(v,w) := (v, [.w) because

Sp(H,I)=Sp(H,p):={g € GL(H): Vv,w € H) B(g9.v,9.w) = B(v,w)}.
(cf. Exercise IV.12). u

Definition IV.17.  (Unitary real forms of the complex classical groups) That
there are three types of complex classical groups is related to the fact that there
are three finite-dimensional real skew-fields: K = R, C,H. Here the group
GL(H) is related to C. For an antilinear involution I the subspace

Hp:={ve H:I.v=v}

is a real form of the complex space H, and for an antilinear involution I
with 12 = —1 the algebra C1 + CI is isomorphic to H, so that we obtain
a quaternionic structure on H . In this case we also write Hy for the pair (H,I)
meaning the complex Hilbert space H endowed with an antilinear isometric
involution, i.e., a quaternionic structure.

Accordingly we obtain the following groups of K-linear invertible isome-
tries:
(1) For K = C we get the unitary group

U(H) :={g € GL(H): 99" = g"g = 1}.
This is a real algebraic subgroup of GL(H) with Lie algebra

w(H) = {X € B(H): X + X* = 0}.
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(2) For K =R we get the orthogonal group of the real Hilbert space Hy:

O(Hgr) :=0O(H,I)NU(H) ={g € UH): gl = 1g}
>~ {g € GL(Hg):99' =g'g=1}.

This is an algebraic subgroup of U(H) with Lie algebra
o(Hg) := {X € B(Hg): X + X" = 0}.
(3) For K = H we finally get the quaternionic unitary group:

Sp(Hu) := Sp(H, I)NU(H) = {g € U(H): gl = Ig}
= {g € GL(Hu): 99" = g"g = 1}.

This is an algebraic subgroup of U(H) with Lie algebra
ED(HR) = {X € B(HH):X+X* = 0}

The groups U(H), O(Hg), resp., Sp(Hpy ), are called the unitary real forms
of the complex Lie groups GL(H), O(H,I), resp., Sp(H,I). ]

Remark IV.18. Other real forms can be constructed as follows:
(1) For GL(H): The groups U(H,,H_) corresponding to indefinite hermitian
forms of the type

Blay +z_,yr +y-) = (@4, y4) — (2, y-),

where H = H, & H_ is an orthogonal decomposition and z;,y; € Hy,
r_,y_ € H_.

(2) For O(H, I): The groups O(Hy , Hy ) corresponding to indefinite symmetric
bilinear forms of the type

Blar+o_,yr +y-) = (@4, y4) — (#-,y-)

on a real Hilbert space Hgr with the direct sum decomposition Hg = Hr +®Hr
and v,y € Hg 1, v_,y_ € Hg _.

(3) For Sp(H,I) (H = 1%(2J,C)) the subgroup Sp(Hg,I) preserving the sub-
space [2(2J,R) which coincides with the group {g € Sp(H,I):go = og}, where

o(x)=T. u
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Smaller classical groups

Definition IV.19. Let H be a complex Hilbert space. We write Bg,(H) <
B(H) for the ideal of all operators of finite rank. This space is spanned by the
rank one operators P, x,y € H, which are given by

P, ,(v) == (v,y)z.
We also put P, := P, ,. We define the trace of a finite rank operator A by

tr(A) ==Y (A.ej,e;) = tr(Alar)),

j=1

where eq,...,e, is an orthonormal basis of the finite-dimensional subspace
A(H) C H. For a rank-one operator we get

tr Py = (z,9).
We define the trace norm
|- [li: B(H) = [0,00], || Al|1 := sup{|tr(AB)|: B € Bgn(H),||B|| < 1}.

Note that the right hand side is well defined because AB € Bgn(H). It turns
out that

Bi(H) :={A e B(H): ||A|1 < oo}
is an ideal of B(H) on which ||-||; is a complete norm satisfying

| tr(AB)| < [|A[l]|Bll, A€ Bi(H),B e B(H)

(cf. [RS78]). The elements of By(H) are called trace class operators. Important
properties of this space are:

(a) The trace extends to a continuous linear functional tr: B;(H) — C such that
tr(ab) = tr(ba), a € B1(H),be€ B(H)

and
tr(a) = |la||y  for positive a.
(b) If (e;)jes is an orthonormal basis of H and A € By(H), then

tr(A) = Z(A.ej,ej>.

JjeJ
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With the aid of the trace norm we can define a continuous scale of ideals
of B(H) as follows. For every p € [1,00[ the subsets

By(H) = {X € B(H): |(XX")*||l, < oo},

are ideals of B(H) which are Banach spaces with respect to the norms

1X1p = (X X*)=N]

For p =1 this leads to another formula

[ Xl =/ tr(VXX¥)

for the trace norm. The spaces B,(H) are called the Schatten ideals and its ele-
ments operators of Schatten class p. (Compare this definition with the definition
of the spaces LP(X, &, ) for a measure space (X, S, p).)

For p = 2 we obtain the particularly important space By(H) of Hilbert-
Schmidt operators. The norm on this space satisfies

X2 = XXl = tr(X X7),
showing that it is defined by the scalar product
(X,Y) :=tr(XY™)

which indeed turns By(H) into a Hilbert space. If (e;);jes is an orthonormal
basis of H and A € By(H), then

(X, Y) =D (Y*Xeejej) =Y (Xoej,Yej) = > (Xeej,en)(en, Ye;)
JjeJ JjeJ 3,keJ

and in particular

1XI3 =D 1 X.e501%.

JjeJ

We write Bo(H) := K(H) for the ideal of compact operators in B(H)
endowed with the operator norm. We then have for 1 <p <gq

Bi(H) € By(H) € By(H) € Boo(H) = K(H),
and moreover

leylly < eyl lzylly < lllpllyll,  and  [le]l <l

for x,y € B(H).
For a more detailed discussion of these operator ideals and their norms we
refer to [RS78]. u
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Definition IV.20.  The constructions of Examples IV.15(c),(d) lead to Lie
groups
GL,(H) :=GL(H)N (1 + B,(H))

with Lie algebra gl,(H) := B,(H). The group GLy(H) is called the Fredholm
group. The group
Up(H) := U(H) N (1 + By(H))

is a Lie subgroup with Lie algebra
u,(H) ;= w(H) N B,(H) = {X € B,(H): X* = —X}.

With
Herm,,(H) := Herm(H) N B, (H)

we then have

gl,(H) = u,(H) ® Herm,, (H) = u,(H) @ iu,(H). n

Determinant functions

We consider the Banach-Lie algebra g := B1(H) = gl;(H) and the corre-
sponding Banach-Lie group G := GL1(H) introduced in Definition IV.20.

Proposition IV.21.  There exists a unique holomorphic character
det: GLi(H) - C*

with L(det) = tr. Let
SL(H) := ker det

and define for a unit vector v € H a holomorphic homomorphism

v:C* — GL1(H), v(2)(w) = {zw forw e Cu

w  forw € vt.
Then det oy =id¢ and
GL1(H) =SL(H)y(C*) > SL(H) x C*.

Moreover, the group SL(H) is simply connected.

Proof. (a) First we prove the existence of the determinant function det. Let
q: GAril(H) — GL1(H) denote the universal covering group. Since tr: gy (H) — C
vanishes on commutators, it is a Lie algebra homomorphism. Its continuity
follows from |tr(X)| < [|X]|1 for X € gl;(H). Hence there exists a holomorphic

character o .
det: GLy(H) - C*  with  L(det) = tr.
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It remains to show that det factors through the covering map ¢. Let v € H
be a unit vector and define v as above. Then it follows from Theorem A.10 that
v induces an isomorphism

m1(7): m(C*) 2 Z — 7 (GL1(H)).

In particular its natural lift 7: C = C e GL1(H) satisfies
3(m1(C%)) = 1 (GLa (H)).

In view of troL(v) = id¢, we have
(ié/toﬁzexpcxz(c — C*,

showing that 71 (GL1(H)) C kerdet, and therefore there exists a unique holo-
morphic homomorphism

det: GLy(H) — C*

with L(det) = tr.
(b) In view of Lemma IV.11, SL(H) is a Lie subgroup of GL;(H) whose Lie
algebra is given by

sl(H) :={X € B1(H):tr X = 0}.

We claim that the mapping
¢:SL(H) x C* — GL1(H), (A4,2)—v(2)A

is a biholomorphic isomorphism of Banach Lie groups, where the semidirect
product structure is given by the conjugation action of y(z) on the normal
subgroup SL(H).

The preceding argument implies that det oy = id¢x which shows that @
is surjective and SL(H) N ~(C*) = {1}, which means that ® is a bijection.
It is clear that @ is holomorphic, and since ®~!(g) = (gy(detg)™!,det g), the
mapping @ is biholomorphic.

(¢) To see that SL(H) is simply connected, we only have to use the product
decomposition
GL1(H) 2 SL(H)y(C*) 2 SL(H) x C*

and to recall that m;(v):Z — 71 (GL1(H)) is surjective. m

Notes on Section IV

For a more detailed discussion of the Schatten ideals and the determinant
function we refer to [RS78] and in particular [RS78, Th. XIII.105].
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Exercises for Section IV

Exercise IV.1. (a) Let m: G x G — G be a smooth associative multiplication
on the manifold G' with identity element 1. Show that the differential in (1,1)
is given by

dm(1,1): Ty (G) x T1(G) = To(G), (v, w) — v+ w.

(b) Show that the smoothness of the inversion in the definition of a Banach-Lie
group is redundant because the Inverse Function Theorem can be applied to the
map

GxG—-GxG, (xz,y)— (z,zy)

whose differential in (1,1) is given by the map (v, w) — (v,v + w). n

Exercise IV.2. Let F be a Banach space. Show that every continuous group
homomorphism v: (R, +) — (F,+) can be written as y(t) = tv for some v € £ .m

Exercise IV.3. Let E be a Banach space.
(1) If F is a closed subspace of £ and H :={g € GL(E):g.F C F}, then

L(H)={Y € B(E):Y.F C F}.
(2) For each v € F and H :={g € GL(FE):g.v = v} we have
L(H)={Y € B(E):Y.v=0}. ]

Exercise IV.4. Let A be a Banach space and m: A x A — A a continuous
linear map. Then the group

Aut(A,m) = {g € GL(A): (Va,b € A) m(g.a,9.b) = g.m(a,b)}

of automorphisms of the “algebra” (A, m) is a Lie group whose Lie algebra is
the space

der(A,m) :={X € B(A): (Va,b € A) X.m(a,b) = m(X.a,b) + m(a, X.b)}
of derivations of (A, m). u

Exercise IV.5. (a) Let G and N be Lie groups and ¢:G — Aut(IN) be a
homomorphism such that the map G x N — N, (g,n) — ¢(g)(n) is smooth.
Then the semidirect product group G x N with the multiplication

(n,9)(n',9") := (np(g)(n'), 99")

is a Lie group with Lie algebra n < g.
(b) Let H be a Hilbert space. Show that the motion group

Mot (H) := H x U(H)
is a Lie group with Lie algeba H x u(H). u
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Exercise IV.6. Let E and F be Banach spaces and B*(E, F) be the space
of continuous k-linear maps E*¥ — F.

(a) Then B*(E,F) is a Banach space with respect to the norm
LIV = supdllf (e, szl i € Bzl -l < 15
(b) The assignment

(m(g)-f)(z1,. .., 25) == flg™ " 21,..., 97 "ap)

defines a continuous homomorphism 7: GL(E) — GL(BY(E,F)). Hint: The
map n: B(E) — B(B*(E, F)) with

(n(A).f)(a:l, coy ) = f(Axy, ..., Axg)

is a continuous k-linear map.

(¢) Calculate the derived Lie algebra representation dm: B(E) — B(B*(E, F)).
(d) We identify the space Py (E, F') of F-valued continuous polynomial functions
of degree k on E with the closed subspace Sym”(E, F) C B*(E, F). Then the
norm on this space is given by

11V = sup{|[f(@)[|: =[] < 1}

and the assignment

defines a continuous homomorphism 7: GL(E) — GL(Px(E, F)). m

Exercise IV.7. (a) Let H be a complex Hilbert space. Show that there exists

an antilinear isometric map I: H — H with I? =1.

(b) If I; and I are two such maps, then there exists a unitary operator g € U(H)
with Iy = gl1g~t.

(¢) Show that for a fixed complex Hilbert space H all groups O(H,I) are
isomorphic. [ ]

Exercise IV.8. (a) Let H be an infinite-dimensional or even-dimensional
complex Hilbert space. Show that there exists an antilinear isometric map
I:H — H with I? = —1.

(b) If I; and Iy are two such maps, then there exists a unitary operator g € U(H)
with I, = glig~'.

(c) Show that for a fixed complex Hilbert space H all groups Sp(H,I) are
isomorphic. [ ]
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Exercise IV.9. Let H be a complex Hilbert space and I an antilinear isometry
with I? = +1. We consider the complex bilinear form

B(v,w) := (v, [.w).

(1) B is symmetric (skew-symmetric) if 12 =1 (I? = —1).
(2) For I? =1 we have

O(H,I)={g9 € GL(H): (Vv,w € H) B(g.v,g9.w) = B(v,w)}
and the Lie algebra of this subgroup is
o(H,I)={X € B(H):IX*I"' + X =0}
={X € B(H): (Yv,w € H) f(X.v,w) + B(v, X.w) = 0}.
(3) For I? = —1 we have
Sp(H,I) ={g9 € GL(H): (Vv,w € H) B(g.v,9.w) = B(v,w)}
and the Lie algebra of this subgroup is
sp(H,I)={X € B(H): IX*I™' + X = 0}
={X € B(H): Y,w e H) B(X.v,w) + B(v, X.w) = 0}.

(4) If I? =1 and dim H = oo, there exists an orthonormal basis (e;)je2s of H
with I.e; =e_;, j € 2J. Then

H=[?(2J,C) 2 *(J,C)®1*(—J,C) =2 I*(J,C)DI*J,C),

and with respect to this decomposition, we write elements of B(H) as 2 X 2-
block matrices. For Q.(v,w) = (w,v) we then have

O(H,I)={g e GL(H):g™" =Qg'Q}

and for g = ((z Z) this means that

b +da" =1, ed"+dc" =0 and ab' +ba’ =0.

(5) If I? = —1, then there exists an orthonormal basis (e;)je2s of H with
R Ny ] € J,
lej= {—e_j, je—J.
Then
. - . 0 -1
So(H.1) = (9 € GLUY g~ = ~QoTQ) win Q= (] ),

and for g = (Z Z) this means that

cla=a'e, d'b=b"d and a'd—c'b=1. [ ]
Exercise IV.10. Let E, F and G be Banach spaces. Show that for a bilinear
map [: FE X F' — G the following are equivalent:
(1) B is continuous.
(2) p is continuous in (0,0).
(3) (3C>0)(Vz € E)(Vy € F) |B(z, y)l| < Cll ]l [yl m
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Exercise IV.11. Let J be a set. For a tuple x = (2;);es € (RT)” we define

Zacj = sup{ij:F cJ ﬁnite}.

JEJ JEF

Show that

I'(J,R) := {CU = (z)jer: Y |wj] < OO}

JjeJ
is a Banach space with respect to
(=) 1.
jeJ

Define e; € I*(J,R) by (ej); = d;;. Show that the subgroup I' generated by
{ej:j € J} is discrete. u
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V. Holomorphic representations of classical Banach—Lie groups

We have seen in Section III how the unitary highest weight modules of
an involutive split locally finite Lie algebra g with respect to a “compact” real
form u = gr can be classified. Our goal is to realize such representations by
holomorphic sections of a holomorphic line bundle over some coadjoint orbit
which at the same time is a complex Kahler manifold.

In the preceding section we have discussed several aspects of the general
theory of Banach-Lie groups and in particular the groups GL,(H) with the Lie
algebras B,(H) which for H = [?(J,C) can be viewed as Banach versions of
the locally finite Lie algebra gl(J,C), which is a completely algebraic object.
In this section we will make our first step towards a geometric realization of the
representations (px, L(A)) of g (mainly for g = gl(J, C)) by discussing conditions
under which they can be integrated to holomorphic representations of certain
complex Lie groups (GL1(H) for g = gl(J,C)). In the next section we will
then discuss coadjoint orbits of Banach—Lie groups and how one can construct
holomorphic line bundles thereon.

For the sake of simplicity of the exposition, we state several results in
this section only for gl(J,C) and the corresponding groups. One can develop
the whole theory in the context of groups associated to L*-algebras which then
makes it possible to deal with all special cases simultaneously, but this theory

requires a more elaborate background which is superfluous in the special case of
gl(J,C).

The norm function of a unitary highest weight module

Let (g,h) be a split locally finite involutive Lie algebra with A = Ag.
Since g is locally finite, each element X € g defines an inner automorphism
e®dX of g because for each Y € g the series

oo 1 .
Xy =) —(ad X)"Y
n=0

converges since X and Y generate a finite-dimensional subalgebra of g. We call
the group
Inn(ggr) := ({e2Y:Y* = —Y})

the group of unitary inner automorphisms of g.

Lemma V.1. For a unitary highest weight representation (px, L(\)) of g the
following assertions hold:
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(i) For each X € g the operator e®X) on L(\) is well defined and satisfies

(5.1) (e ()* = (ePr (X)),
In particular eP>X) s unitary for X* = —X, i.e., X € u=gg.
(i) For X,Y € g we have
(5.2) eP X oy (V)e P E) = p, (e24XY).
(ili) The function s:g — [0,00],s(X) := [|pA(X)]| is a convex function which is

positively homogeneous in the sense that
s(zX) =|z|s(X) for X e€g,2z€C,

and it is invariant under the involution x and the group Inn(gr). For X € b
we have

s(X) = sup |(Pa, X)| = sup [W.\, X)|.

Proof. (i) For each element X € g the operator px(X) is locally finite on
L(A) (Theorem III1.6(iii)), so that we find for each v € L(\) a finite-dimensional
px(X)-invariant subspace E containing v. Now

o0

1
eP X y = Z gpA(X)".v

n=0

converges because the series for e”* (X7 converges in End(E).

An easy verification shows that, as an operator on the pre-Hilbert space
L(XA), we have px(X)* = pa(X™*) because L(\) is a unitary g-module. This
implies that for v,w € L(\) we have

<€PA(X)'U7 w) = (v, ePA(X*).w>

which means that the operator e”>(X) has an adjoint given by (5.1).

(ii) Now let X,Y € g and gy C g be a finite-dimensional subalgebra containing
both. Then e*Y.X is well defined. Since each v € L()) is contained in a
finite-dimensional gp-invariant subspace, we now easily obtain

6/?A(X)p>\(y)e—pA(X) _ p}\(eadX.Y).

(iii) That s is convex, positively homogeneous and s*-invariant follows from the
corresponding properties of the norm function on the algebra

{A € End(L()\)): (3A* € End(L(A))(Yv,w € L(A)) (Awv,w) = (v, A*.w)}

(cf. [Ne99a, Prop. 11.3.5]). For each element Y = —Y™* € g we further get by
combining (i) and (ii):

S(eadY.X) — Hp)\(eadY-X)H — HePA(Y)pA(X)e—PA(Y)H = HpA(X)H = S(X)7

showing that s is Inn(ggr)-invariant.
The formula for s(X), X € b, follows directly from the weight decompo-
sition of L(A) and the description of the set of weights in Theorem II1.6. u
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Proposition V.2.  Assume that g is simple. Then for a unitary highest weight
representation the following are equivalent:

(1) There exists an element X € g with ||pax(X)]| < co.

(2) [loA(X)]| < oo forall X €g.

(3) AA) is a bounded subset of Z.

Proof. (1) = (2): We consider the subset
gs = {X € g:s(X) < o0}.

The properties of the function s:g — [0, 00] (Lemma V.1(iii)) imply that g, is a
complex subspace of g which is invariant under the group Inn(gg). For X € g,
and Y* = —Y the curve €24V X lies in a finite-dimensional subspace of g,
so taking derivatives leads to [Y, X] € gs and therefore to [ggr, gs] C gs which in
turn implies that [g,gs] C gs. This means that gy is a non-zero ideal of g and
therefore equal to g because g was assumed to be simple.

(2) = (3): As in the finite-dimensional case, one shows that the Weyl group W
has at most two orbits in A and likewise in A for its natural action on b given
by

To-Z = —a(x)d, x€bh

(Exercise V.2). We write A = W.{ay, az}. Then we also have A = W.{d1, ds}.
For a € A we now obtain
IA(@)] < sup{|A(w.¢;)|:w e W, j=1,2} <sup{|[{(w.\, &;)|:weW,j=1,2}
< max(||pa(dn)l], [[pa(d2)]))-

(3) = (1): Let @« € A. Then

1oA(@)]] = sup [(W.A, &)| = sup [(A, W.a)| < sup [(X, A)] < oo. u
Corollary V.3.  Assume that g is reductive. If A(A) is a bounded subset of
Z, then ||px(X)|| < oo forall X € g.

Proof. The assumption that g is reductive means that g = 3(g) ®[g, g]. Since
3(g) acts by scalar multiples of the identity on L(A) (Proposition II1.2(i)), all
the operators in px(3(g)) are bounded anyway. Therefore it suffices to assume
that g is semisimple. The proof of (3) = (1) in Proposition V.2 implies that
lloa(@)|] < oo for all @ € A. Since g coincides with the smallest Inn(gg)-
invariant complex subspace containing A, the fact that s71(R) is such a subspace
implies the assertion. [ ]

The boundedness of A(A) is sufficient, but not necessary for all the oper-
ators px(X), X € g, to be bounded. In fact, g might be an infinite direct sum
of simple ideals g;, 7 € I, such that

sup |(A, Aj)| < oo
for each individual ¢ € I, but

sup |[(A, A)| = oo.
Then we still have ||px(X)|| < oo for each X € g.
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Holomorphic highest weight representations of GL;(H)

In this subsection we apply the general results of the preceding section to
holomorphic highest weight representations of the complex Banach—Lie group
GLy(H).

Let L(A) be a unitary highest weight module of gl(J,C). As in Example
II1.7, we represent A by an element of C7 2 h*.

Lemma V.4. For a unitary highest weight module L(\) of gl(J,C) the fol-
lowing are equivalent:
(1) A(A) is bounded.
(2) A= (N)jes is bounded as an element of C”, hence an element of 1°°(.J,C).
3) lea(X)| < 2|| Moo || X |1 for all X € g, where ||-||1 denotes the trace norm.
Proof. (1) = (2): Let & € A. The values of A on the coroots Ej; — Ey, are

given by A\; — A, j,k € J. It is clear that A is bounded if the set of all these
numbers is bounded.

(2) = (3): Let ||A||oo := sup{|Aj|:j € J}. Then for each X € bh the relation
conv(Py) = conv(W.\) (Theorem II1.6) and the fact that ¥V acts isometrically
on [*°(J) imply for X € b that
oA (X)) < [[A][oo [ X1
For X = X* € gl(J,C) there exists a g € U(J,C) with Ad(g).X = gXg~t€bh
(Exercise V.3). We now obtain
oA = lloalgX g™ < (Moo llg X g™ I = IIA|ool 1 X 11
For a general element X € g this leads to
X+X* X-X*
X) =s(

s(@)=s{—5—+—
1 * *
§||)\||oo(||X + X1+ X = X [1)
Moo (X + 12X (1) = 2[A [0 [[ X1

) < 5 (X + X7) 4 5(i(X ~ X*)))

[N

IN

(3) = (1): We have ||&||; = 2 for every coroot & = Ej;; — Ej; for a =¢; —¢;.
Therefore (3) implies that

MA@ < [loa(@)]] < 2[[Mlso il = 4l Ao m

Definition V.5. We call a holomorphic representation m: GL,(H) — GL(#)
a highest weight representation if
(1) “H contains a dense subspace which is a highest weight module for the Lie
algebra gl(J,C) C gl,(H) (for H =1?(J,C)), and
(2) w(g*) =mn(g)* forall g € GL,(H).
The preceding condition means in particular that the subgroup U,(H) acts
unitarily on H. [ ]
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We now use Lemma V.4 to obtain a classification of all holomorphic highest
weight representations of the group GLi(H) and its universal covering group

GL: (H).

Theorem V.6. Let AT C A be a positive system and A\ = \* = > AjEj €
b*. Then X is the highest weight of a holomorphic highest weight representation
of GL1(H) if and only if the following conditions are satisfied:

(i) X is dominant integral, i.e., \j — A\, € Ny for j <k, and

(ii) A is bounded.

The corresponding representation factors through GLi(H) if and only if, in
addition,

(i) \j €Z forall j€J.

Proof. Let ), denote the completion of the pre-Hilbert space L(A). First

we observe that a unitary highest weight representation of gl(.J,C) extends to a
continuous Lie algebra representation

px:gly(H) = B(H))

if and only if A is bounded (Lemma V.4). Therefore the first part of the theorem
follows from Theorem III.6 (see also Example II1.7) because the continuous
representations py:gly (H) — B(H,) are in one-to-one correspondence with the
holomorphic representations my: GL1 (H) — GL(#,) with L(my) = px (Theorem
IV.2(c)).

So let us assume that A is bounded and that L(\) is unitary. Pick j € J
and consider the holomorphic homomorphism

v:C — GLy(H), =z e*Hii,
In view of Proposition IV.21, the canonical lift
3:C — GLy(H), 2z~ exp(zEj;)

satisfies
We conclude that 7 factors through GL;(H) if and only if

1 = 2™ Fii) = gy (exp 2miEy;),

which, in view of Theorem IIIL.6, is equivalent to A; € Z. This is equivalent to
A €EZ for all ke J. [

Remark V.7. Let J be aset and H =[?(J,C).

(a) If the order < on .J is such that J has m smallest elements j; < ... < jp,
then the fundamental weights @y, = €5, + ... +¢€j,, kK < m correspond to the
irreducible representations (A*, A*(H)) of GL(H) on the space A¥(H) given by

A (@) (i A Avg) = (gor) A A(gaog).
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A primitive element for gl(J,C) is given by e;, A...Aej, . For k =1 we obtain
the identical representation of B(H) on H. For J = N with the natural order
we have in particular wy = €1+ ...+ e, for each k£ € N.

If M C J satisfies M < M¢ := J\ M and J\ M is finite, then we
can describe the representation corresponding to A = wy; — wy as follows. Let
7:H — H be the antilinear isometry given by (3, ;zje5) = > c;Tje;. For
A € B(H) we put AT := 7A*r and note that B(H) — B(H),A— AT, is a
linear antiautomorphism of the algebra B(H).

We claim that for k := |[M¢| < oo the representation of GL(H) on AF(H)
given by A¥(g) := A¥(gT)~! is a holomorphic highest weight representation
with highest weight A := wy — wy = —wpe (cf. Example I111.7). In fact, let
M¢ = {j1,...,ji} and put vy :=e;, A...Aej,. It is clear that v\ generates a
dense gl(J, C)-submodule of A*(H). Furthermore for X € h we have

Xy = —dA*(X 7)oy = —dAF(X) s = wae (X)vs.

Hence EJTk = Ey; leads to j < k to Ejp.vx = 0. This means that vy is a
primitive element with respect to A%, and thus (/NX’“, AF(H )) is a holomorphic
highest weight representation of GL(H) with highest weight —w e .

(b) (The infinite wedge representations) A particular interesting case covered by

the preceding theorem is given by J = Z endowed with the natural order and
M ={m € Z:m < k}. In this case

k
)\:’WM: Z Ej-

j=—o0

Here H can be identified with a the Hilbert space with the orthonormal basis

wM
€, Negy  Neg o Ao, where 1 > i1 > tg_2 > ...,

and there exists jo € Z with ¢; = j for j < jo. Then the dense subspace
spanned by these basis vectors carries a unitary highest weight representation of
the Lie algebra gl(Z,C) of finite Z x Z-matrices which is one of the “infinite
wedge representations” described in [KR87].

(c) For each s € R the functional swj; = str is dominant integral and bounded.

The corresponding representation of éle(H ) is given by the character
det®: GLy(H) — C*, g det(g)®

(see the proof of Proposition IV.21).

Suppose that A satisfies conditions (i) and (ii) in Theorem V.6 and put
s := Aj for some j € J. Then X — str satisfies (i)-(iii), hence defines a
holomorphic representation of GL;(H). This shows that the representation
mx @ det ™ of GLy(H) factors to GLy(H). So apart from the real powers of
the determinant the holomorphic highest weight representations of (/}\il(H ) are
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more or less the same than the holomorphic highest weight representations of
GLi(H).
(d) Theorem V.6 can also be used to obtain a classification of all holomorphic
highest weight representations of GL1(H) in the same spirit as in the finite
dimensional case. Suppose that A satisfies (i) and (ii).

Pick jo € J and put m :=min{\;:j € J}. If My :={j€ J:A\; >m+k},
then My, < J\ My, for all k € Z, and an elementary consideration leads to the
representation

n
A=mwj+ Z M,
k=1
of A as a finite sum of fundamental weights, where n > max{\;:j € J} —m. We
conclude in particular that L(A) and also # can be realized in a finite tensor
product of the Hilbert spaces corresponding to the fundamental weights. ]

Remark V.8. (a) The constructions in this section can also be carried out
for the other three types of simple split locally finite Lie algebras, where the
boundedness of A\ leads to a holomorphic representation of the corresponding
groups

Spy(H,I):=Sp(H,I)NGLy(H) and O(H,I):=0(H,I)NnGLi(H)
(cf. [Ne98)).
(b) In [Ne98] one also finds a classification of all holomorphic representations of
the groups GL,(H), p > 1. These representations are direct sums of highest
weight representations with finite highest weights. For p = 1 the situation is
more complicated in three respects:

(1) First one has much more highest weight representations because the
boundedness condition is much weaker than the condition that at most finitely
many Aj are non-zero.

(2) Second the global holomorphic representation theory of the group
GL1(H) is more complicated in the sense that it also has holomorphic factor
representations of type II and III. These are not direct sums of irreducible rep-
resentations.

(3) There are irreducible holomorphic representations which are not highest
weight representations. This is discussed in the following example. ]

Example V.9. We consider the Lie algebra g := gl(N,C) as the union of
the subalgebras g, = gl(2n,C), n € N, and fix the standard positive system

At = {e; —ep:j < k}. For each n € N we consider the dominant integral
weight
Ap o= (1,1, 1,—1,—1,...,—1)
n ‘cz;rles n t;rrnes

with respect to At := A, N AT and A,, := {a € A:g* C g,}. Then the set
Py, of weights of the highest weight module L(A,,, g,) of g, is given by

2n 2n
'P)\n = {Zajgj:aj € {—1,0, 1},Zaj = 0},
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as follows easily from Py, = conv(W,.\,) N (A, + Z[A,]), where A, C b
denotes the roots of g,,. In particular each weight a € Py, can be written as

o= Zaj— Zgj, where |Ni|=|N2|<n and N;NNs=0.
JENL JEN2
We see in particular that A,_; is contained in Py, and that the corresponding
weight space generates a g,,_1-submodule of highest weight A,,_;. Using a fixed
choice of embeddings

L()\nv gn) — L(/\n~|—17 gn~|—1)7 nc N7
we obtain a simple weight module V := lim L(A,, g,) of g. The weight system
H

of this module is given by
m m
Py = P = { D ajeim e Naj € {-1,0,11, 3 a; = 0},

neN Jj=1 Jj=1
If € Py is an extreme point of conv(Py), then there exists an n € N with
o = 2321 aje; € Pr,. Then a € Ext(convPy,) = W,.A,. This means
that |{j:a; = 1}| = n. Then « is not extremal in conv(Py, ), hence not
in conv(Py). This contradiction shows that the set Ext ( conv(Py)) of extreme
points of conv(Py) is empty, and hence that V' is not a highest weight module
(cf. Lemma II1.10).

The fact that all the highest weight modules L(),,, g,,) are unitary implies
that the embeddings L(A,, 8n) < L(An+1,8n+1) can be turned into isometric
embeddings, so that we obtain on V' the structure of a unitary g-module.

As the set Py is bounded in [*°(N,C), a similar argument as in the proof
of Lemma V.4 shows that there exists a constant C' > 0 with

lov (X)) < ClIXT),

where || - ||1 is the trace norm. Then py integrates to a holomorphic represen-
tation
my:GL1(H) — GL(Hy),

where Hy is the completion of V' with respect to the inner product. As the
construction shows, the representation my is not a highest weight representation.
[ |

One should observe that our construction of representations always as-
sumed a fixed choice of a splitting Cartan subalgebra. Although Cartan subal-
gebras of gl(J,C) are conjugate under the group Aut(g) of automorphisms of
g, not every such automorphism fixes the highest weight representations, i.e.,
induces an operator on the corresponding representation space. Therefore it is
an interesting question how unitary highest weight representations with respect
to one Cartan subalgebra h behave with respect to another Cartan subalgebra
h. One possible strategy is to attach unitary highest weight representation to
certain coadjoint orbits and then to study the geometry of these orbits and how
bigger groups of automorphisms permute the orbits. Some results related to this
approach will be discussed in the next sections.
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Notes on Section V

Most of the material of this section has been adapted from [Ne98]. A
discussion of the boundedness condition for highest weight representations of
inductive limit groups can also be found in [NRW99, Prop. 3.14]. The arguments
used there are quite different from ours. Also related is the approach of Neretin
to realize the spin representation of the infinite-dimensional orthogonal group in
a Fréchet space ([Ner87]).

The problem of integrating representations of infinite-dimensional Lie al-
gebras to group representations becomes quite difficult if the Lie algebra acts
by unbounded operators. Laredo has recently made significant progress on this
problem ([Lar99]). The case of unitary highest weight representations of loop
groups and the Virasoro group is due to Goodman and Wallach ([GW84] and
[GW85]; see also [Se81]).

In the literature one finds many results on representations of the unitary
groups U,(H). In [Seb7] I. E. Segal studies unitary representations of the
full group U(H) called physical representations which are characterized by the
condition that their differential maps finite rank hermitian projections to positive
operators. Segal shows that physical representations decompose discretely into
irreducible physical representations which are precisely those occuring in the
decomposition of finite tensor products of the identity representation. Later
A. A. Kirillov ([Ki73]) and also G. I. Ol'shanskii ([Ol78, Th. 1.11]) proved
that all strongly continuous representations of the Banach-Lie group U (H),
H separable, are type I, they even decompose as direct sums of irreducible
representations.

We have mentioned in Remark V.8 that the group GL;(H) has holomor-
phic representations of type II and III. The same is true for unitary strongly
continuous representations of the group Uz(H) ([Bo90]). In the same paper
Boyer develops a Borel-Weil theory for the (linear) coadjoint orbits of the group
Us(H), which only leads to those highest weight representations where the high-
est weight has finitely many non-zero entries.

Highest weight representations of particularly interest in physics are the
spin representations of the group O;(H). For a detailed discussion of these
representations we refer to [CP89], [PS86], [Ot95] and [Ner96|.

Exercises for Section V
Exercise V.1. Show that for a split Lie algebra (g, bh) there exists an action
of the Weyl group W on b satisfying r,(z) = = — a(x)d for all « € A;. Hint:

Consider h as a subspace of (h*)*. u

Exercise V.2. Show that for a locally finite split simple Lie algebra g the
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set A contains at most two W-orbits. Hint: Assume that W does not act
transitively and pick two non-conjugate roots {«ay,«s}. Then for each o € A
there exists a finite-dimensional subalgebra go with {«y,as,a} C Ag. Now use
the finite-dimensional result. u

Exercise V.3. Let (g,h) be a locally finite split Lie algebra with A = Ay.
Show that for each element ¥ = Y™ € g there exists an element X = —-X* € g
with e XY € p. Hint: Choose a finite-dimensional *-invariant split subalgebra
containing X and Y and then argue with the corresponding result for compact
Lie algebras. u
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V1. Geometry of coadjoint orbits of Banach—Lie groups

In the preceding section we have seen that for each bounded highest weight
A, for which L(A) is unitary, we obtain a holomorphic highest weight repre-
sentation of G := GL1(H) on the corresponding Hilbert space Hy. A closer
inspection of this situation would show that if one considers the constructions
of Section I for complex homogeneous space of the type G1/P;, then one would
obtain a realization of 4, by a holomorphic section in a line bundle over a space
which is not a Hilbert manifold and therefore cannot be a strong Kahler mani-
fold. Motivated by this observation, we now take a closer look at the geometry of
coadjoint orbits of Banach—Lie groups to find the appropriate Kahler manifolds.
For our guiding example gl(J, C), this will lead to rather complete information
in the case G =Uy(H) =U(H)N (1 + B2(H)).

Let G be a real connected Banach-Lie group, g its Lie algebra, and g*
the topological dual space consisting of the continuous linear functionals on g.
As for finite-dimensional groups, the coadjoint representation

Ad*:G — GL(g*), Ad*(g).8:= o Ad(g)"

of G plays a crucial role in the process of obtaining natural realizations of
representations of G. For finite-dimensional groups, coadjoint orbits

Of := Ad*(G).f

always carry a natural manifold structure by identifying them with the homo-
mogeneous space G /Gy, where Gy := {g € G:Ad™(g).f = f} is the stabilizer
of f in G'. Unfortunately, for an infinite-dimensional group G, the topological
space G/G¢ need not have a natural manifold structure. This problem suggests
that in many cases in which G/G; does not exist as a manifold its geometry
should be reflected by geometric objects directly related to G'. In fact, this point
of view turns out to be quite successful in many respects.

In this spirit a G-invariant symplectic structure on G/G¢ should corre-
spond to a left invariant closed 2-form on G which is degenerate along the
cosets of Gy. So we first take a closed look at left-invariant 2-forms on G.

The tangent bundle T'G' of G is trivial, and a convenient trivialization is
given by the map

UV:Gxg—=TG, Y(g)(X):=dr(1).X,

where A\g(x) = g is the left multiplication on G'. We therefore obtain a bijection
w — w; assigning to each continuous alternating p-form w € Alt?(g; R) a left-
invariant differential p-form w; on G given by

WI(g)(dAg(]_)Xl, .. ,d)\g(]_)Xp) = W(Xl, .. .,Xp), g < G,Xl, .. .,Xp cg.
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Lemma VI.1. Let w € AltY(g,R). The left-invariant p-form w; on G is
closed if and only if

Z(—l)i—’_jw([Xi,Xj],Xl, . . -7552'7 e .,Xj, e .,Xp_|_1) =0
1<j
holds for all Xy,...,X,41 € 9.

Proof. For X € g we write X; € V(G) for the corresponding left invariant
vector field on G, i.e., X;(g) = dA\;(1).X. A left invariant p-form w; on G is
closed if and only if dw; vanishes on p + 1-tuples of left invariant vector fields.
Moreover, dw;((X1)i,-..,(Xp+1)1) is a constant function. To calculate its value
in the identity, we observe that each function

——

wl((Xl)l, ce ey (X,')l, ceey (Xp_|_1)l)
is constant, so that
(dwz((Xl)z» s (X)) ) (1)

p+1

_Z lwl((Xl)ly"'7(Xi)l7"'7(Xp—|—1)l)(1)

+Z D (K)o, (X (X0 Koo O (X))
1<J

=) ()M w([Xi, Xj], X1, Xir - X K1)

1<J

Definition VI.2. We conclude in particular that a bilinear form w:gxg — R
defines a closed left invariant 2-form €2 := w; on G if and only if w is a Lie
algebra 2 -cocycle, i.e.,

w(z, [y, 2]) + wly, [z, 2]) + w(z,[z,y]) =0, =z,y,2z€g.

We write Z2(g,R) for the space of continuous real-valued 2-cocycles on g.

Let € Q?(G) be a left invariant closed 2-form defined by w € Z2(g,R).
Then there exists a left invariant 1-form g with dg = Q if and only if there
exists a continuous linear functional f € g* with w(z,y) = f([z,y]) for z,y € g,
i.e., the 2-cocycle w is a 2-coboundary. The space of continuous 2-coboundaries
is denoted BZ(g,R), and the quotient space

H{(g,R) := Z;(g,R)/B; (9. R)
is the second continuous real-valued Lie algebra cohomology of g. ]

Below we will discuss modifications of the coadjoint action to certain affine
actions, so we first have a closer look at the affine group of a Banach space.
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Definition VI.3. (a) Let V be a Banach space. We consider the affine group
Aff(V) 2 V x GL(V) which acts on V' by (z,9).v = g.v+ z. On the space
V :=V xR the group Aff(V) acts by linear maps (z,g).(v, z) := (g.v + 2z, 2),
and we thus obtain a realization of Aff(V) as a linear Lie subgroup of GL(V).
The corresponding Lie algebra is aff(V) =2V x gl(V) with the bracket

(v, A), (v, A")] = (A" — A’ v, [A, AT]).

(b) A homomorphism p: g — aff(V') is therefore given by a pair (p;, ) consisting
of a linear representation p;: g — gl(V) and map 0:g — V satisfying

(6.1) 0([z,y]) = m(2).0(y) — pi(y).0(x), for wzyeg.

A map 6:g — V satisfying (6.1) is called a 1-cocycle with values in the g-
representation (p;, V).

(¢) On the group level a homomorphism p: G — Aff(V) is given by a pair (p;, ©)
of a linear representation p;: G — GL(V) and map ©: G — V satisfying

(6.2) O(g192) = m(91)-O(g2) +O(g1) for g1,92 € G.

A map ©:G — V satisfying (6.2) is called a 1-cocycle with values in the G-

representation (p;, V). Typical examples of 1-cocycles are maps of the form
©(g) :==pi(g)v—v, veV

These cocycles are called trivial (coboundaries). n

Lemma VI.4. Let w € Z%(g,R) be a continuous 2-cocycle. Then 0(z)(y) :=
w(z,y) is a 1-cocycle with values in the coadjoint representation (ad”, g*), where
ad®(x).0 = —fBoadx. If G is simply connected, then there exists a unique affine
representation

Ad;: G — Aff(g®),  Adj(g) = (O(g), Ad"(9))
with dO(1) = 6.
Proof. That 0 is a 1-cocycle with values in the coadjoint representation
(ad™, g*) follows from
0([z,y])(2) = w(lz,yl, 2) = —w(y, [z,2]) + w(z, [y, 2])
= (ad™(2).0(y))(2) — (ad”(y).0(z))(2).

We therefore obtain an affine representation of g on g* given by
adg: g = aff(g"), ad;(z) = (0(z),ad"(z)).

If G is simply connected, then Theorem IV.2(c) implies that the affine
representation ad’, integrates to an affine representation

Adj:G — Aff(g"), Ad(g9) = (©(g), Ad"(9)),

where ©:G — g* is a smooth 1-cocycle for G with values in the coadjoint
representation. The group cocycle is related to the Lie algebra cocycle 6 by
dO(1) = 0 and the uniqueness of © follows from the uniqueness assertion in
Theorem IV.2(c). |
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The affine actions of G' on g* obtained by this process are generalizations
of the coadjoint action. The action Ad;, of G on g* is equivalent to a linear
representation if and only if it has a fixed point f € g*. This means that
ad; (g).f = {0}, i.e., w(z,:) = foadx for all x € g, which in turn means that
w(z,y) = f([z,y]), i-e., w is a coboundary.

Remark VI.5. (a) The cocycle w € Z?(g,R) defines a Lie algebra structure

on g:=g®dR by
[($, Z)v (mlwzl)] = ([xvx,]vw(mvm/))v

which is a central extension of g by R. The affine action Ad;, of G on g*
corresponds to a linear action on g* given by

Ad/;\(g).(a, A) = (Ad"(g).a+ AO(g), A).

This means that the affine action of G on g* is equivalent to a linear action on
the affine hyperplane g* x {1} in g*.
(b) The main reason for preferring the affine action is that to understand the
action on g* in a proper sense as a coadjoint action, we would need a group G
with L(G) = g, but such groups need not exist (see the example below). On
the other hand, one knows that in all cases the action of the simply connected
group with Lie algebra g has a natural linear action on g, even if G is not a
Banach-Lie group (cf. [Ne0Oc]).

One of the most simple examples of a Banach-Lie algebra for which no
corresponding group exists is the quotient

g:= (u(H) ® u(H))/3

where 3 := R(i1,v/2i1) and H is an infinite-dimensional complex Hilbert space
(cf. [EK64]). n

Now we turn to the geometric structure of orbits of the action Ad,. The
following theorem generalized the observation of Kirillov, Kostant and Souriau,
that every coadjoint orbit of a finite-dimensional Lie group carries a natural
invariant symplectic structure.

We recall that a weakly symplectic manifold is a pair (M, ) of a manifold
M and a non-degenerate closed 2-form (2. It is called strongly symplectic if for
each p € M the injective map

T, (M) = T,(M)", v = (v, )

is surjective. Note that each finite-dimensional weakly symplectic manifold is
also strongly symplectic (cf. Exercise VI.1).

Theorem VI.6. Suppose that the affine representation Ad], of G on g*
exists. Let f € g* and w € Z%(g,R). If the stabilizer G is complemented, then
the orbit O = Ad;,(G).f carries the structure of a weakly symplectic manifold.
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Proof. Let f € g*. Then the stabilizer gy of f is given by

gr={regad,(z).f=0} ={r € g:b(z)= foadz}
={rcguw() - f(]) =0}

The corresponding subgroup Gy C G is a Lie subgroup (Exercise IV.3).
Let us assume, in addition, that G; is complemented (which is the case if G
is a Hilbert-Lie group). Then we identify Oy with G/Gy and obtain on Oy a
natural manifold structure such that G' acts smoothly and transitively on Op.
The tangent space T7(Of) can be identified with g/gs on which we have the
skew-symmetric bilinear form given by

Qp(ady(2).f,ad;, (y).f) = w(z,y) — f([z,y])

which is well defined, non-degenerate (see (6.3)) and Gy-invariant (Exercise!).
Hence there exists a G-invariant 2-form €2 on O which coincides with this form
on T¢(O¢). Let m:G — Of = G/Gy denote the orbit map. Then 7*Q is the
left invariant 2-form on G which in 1 coincides with w + df € Z2(g,R), where
df (z,y) := f([ly,z]). This implies that

dn*Q) = n*dQ = 0,
showing that d€2 =0, i.e.,  is closed. [ |

(6.3)

Remark VI.7. If g is topologically isomorphic to a Hilbert space, then the
assumption of Theorem VI.6 is automatically satisfied. |

Remark VI.8. Let w € Z2(g,R) and Ad} be as above. For a € g* we
consider the equivalent cocycle

wi=w+t+da, w(r,y)=w(ry) —alz,y).
Then 6(z) = 0(z) + ad*(x).a, and therefore
6(g) = O(g) + Ad*(g).. — .
This implies that the translation map 7,:g* — g*, 8 — 0 + « satisfies
(6.4) Ad;,(9) 0 Ta = Ta 0 Ad>(g).

Therefore the two affine actions Ad;, and Ad> are equivalent. For the corre-
sponding orbits this means that

0[3 = 6[3_a + «,

and one easily checks that this isomorphism preserves the symplectic structure,
so that it suffices to study the orbits of the type

O, 1= 0 := Ad%(G).0 = O(G) C g".

If, in addition, « vanishes on the commutator algebra, then da = 0, so

that w = w. In this case (6.4) means that 7, commutes with the affine action
Ad}. u
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Complex structures on homogeneous spaces

The most direct way to obtain complex structures on homogeneous spaces
is to realize them as open submanifolds of complex manifolds. To see how to find
such embeddings systematically, let us assume that M = G/H is a homogeneous
space of a Banach-Lie group G for which H is a complemented Lie subgroup,
so that M carries a natural real manifold structure.

Remark VI.8. Let us assume that M also carries an invariant complex struc-
ture, i.e., M is a complex manifold such that G acts by biholomorphic mappings.
Then the natural Lie algebra homomorphism ¢:g — V(M) given by

) d

o(X)(p):= | ,_, exp(~tX).p
extends to a complex linear homomorphism &¢: gec — Vo (M), where Vyo (M)
denote the Lie algebra of holomorphic vector fields on M. Let

p = {X € gc:oc(X)(xo) = 0},
where 29 = 1H € M is the base point. We write X — X for the complex
conjugation on gc. Then p has the following properties:
(C1) p is a closed Ad(H)-invariant subalgebra of the Banach—Lie algebra gc .
(C2)pNp=hc, and
(C3)p+p=gc.
(C1) follows from the relation
oc (Ad(h).X)(xp) = miso(h).0c (X)(xo),

where migo: H — GL(T,,(M)) is the isotropy representation of H in z. To
verify (C2), we observe that the complex Lie algebra p Np is conjugation-
invariant, hence satisfies

pNp=(mNpNglc=(pNgc =hec.
For condition (C3) we note that M = G/H implies that

Ty (M) = 6(g)(x0),
so that gc C g+ p. This in turn means that
(X -X:Xege}={X-X:Xep}={X-X:Xep+p},

so that (C3) follows because pNp is the complexification of the subspace of the
purely imaginary elements it contains.

In the finite-dimensional case one can show that a subalgebra p C gc¢
satisfying (1)—(3) is already enough to obtain on M = G/H an invariant complex
structure (cf. [Ki76, p.203]). We do not expect that (C1)—(C3) would be enough
in the infinite-dimensional case. For the arguments in [Ki76] to work one needs at
least the additional assumption that p is complemented in g, and this should be
enough. Since we will need complex structures only in quite specific situations, let
us formulate a sufficient set of conditions for the existence of a complex structure.
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Proposition VI.9. We assume that G s contained as a Lie subgroup in
a complex Banach—Lie group Gg¢ with Lie algebra gc on which we have an
antiholomorphic automorphism o such that

L(o)(X)=X, X €gc.

Let H be a complemented Lie subgroup of the connected Lie group G, g := L(G),
h := L(H), and p C gc a closed complex subalgebra for which the following
assertions hold:
(1) P :=(expp) is a complemented Lie subgroup of G¢ .
(2) PNG=H.
(3) p+g=gc.

Then the orbit mapping G — G¢ /P,g — gP, induces an open embedding
of G/H as an open G -orbit in the complex manifold G¢ /P .

Proof. = We consider the orbit map 7: G — G¢ /P, g — g.xp, where zy = 1P is
the base point in G¢ /P. This is a smooth map which is constant on the H -left
cosets gH in G, hence factors to a smooth map 7: M — G¢ /P which is injective
because of (2). Its differential in x¢ corresponds to the canonical map

g/b— gc/p

which, in view of (2), is injective, and, according to (3), is surjective. Therefore
the Inverse Function Theorem shows that 7 is a local diffeomorphism in zy. Since
7 is also G -equivariant, it follows that 7 is an open embedding of manifolds. m

The assumption (2) in Proposition V1.9 implies pNg = h which is equivalent
to (C2), and (3) is easily seen to be equivalent to (C3).

Complex structures on coadjoint orbits

Now we turn more specifically to coadjoint orbits in the sense of Theorem
VI.6. So we consider a homogeneous space M = G/H which is a coadjoint orbit
of the type O, considered in Theorem VI.6. Then we want, in addition, that the
complex structure I (viewed as the multiplication by ¢ in each tangent space),
preserves the symplectic form. Taking the homogeneity of M into account, it
suffices to verify this condition in the base point xy = 0. The tangent space
Ty, (M) =Tp(0O,) can naturally be identified with g/h by the map

8/b = To(0.), X + b ad(X).0 = 6(X).

Let us write Z* := —Z for Z € gc. In view of p +p = gc, we may write each
element X € gas Z —Z*, Z €p (the map gc — g, Z — Z — Z* is surjective
and p and p have the same image). Suppose that M carries a complex structure
defined by p. Then T, (M) = g/h = gc /p describes the complex structure on
the tangent space. We write 6: gc — Tp(O,,) for the complex linear extension of
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g with respect to the complex structure on Tp(O,, ). Writing X as Z — Z* for
Z € p, we obtain for the multiplication with ¢ on Ty(O,,) the formula

1O(X)=1.0(Z—2")=10(Z)=0(Z)=0(i(Z + Z*))
with i(Z + Z*) € u. Now
Q(0(Z — Z%), 1.0(W — W*))
w(Z — Z*i(W + W*))
= wiZ,W*) +w(iW, Z*) + w(iZ, W) + w(—iZ*, W*),
= w(iZ, W*) + w(iW, Z%) + 2Re (w(iZ, W)),

TV
symmetric skew—symmetric

so that the requirement that this form is symmetric means that Rew vanishes
on p X p, which is the same as
(C4) w(p x p) = {0}.

If p satisfies (C1)—(C4), we call it a complez polarization in w. Our calcu-
lation above has shown that this condition means that if a complex structure is
obtained from Proposition V1.9, then (C4) guarantees that the complex structure
is compatible with the symplectic structure in the sense that multiplication by
I is a symplectic isomorphism in each tangent space. If (M, ) is a weakly sym-
plectic manifold endowed with a complex manifold structure for which I satisfies
this condition, we call the triple (M, 2, I) a pseudo-Kdhler manifold.

We call it a Kdhler manifold if, in addition, we have 0 < Q¢(v,I.v) for
0 # v. For a complex polarization this means that for Z € p \ hc we have

0 < Qo(ad’(Z—2%).8,1ad%(Z2—2*).8) = w(Z—Z*, —iZ —iZ*) = —2iw(Z, Z*).

So we formulate an additional condition on p:
(Ch)For all Z € p\ hc we have —iw(Z, Z*) > 0.

Notes on Section VI

For finite-dimensional split involutive Lie algebras Kahler structures on
coadjoint orbits have been studied in some detail [Ne95a]. For finite-dimensional
Lie algebras coadjoint orbits of the highest weights of unitary highest weight rep-
resentations are always coadjoint Kahler orbits ([Ne95b]). For further material
on Kahler orbits for compact groups, we refer to [GS84]. A detailed analy-
sis of homogeneous Kahler manifolds is undertaken in [DoNa88] by Dorfmeister
and Nakajima, where they prove the Fundamental Conjecture for Homogeneous
Kahler Manifolds which essentially leads to a classification of all homogeneous
Kéhler manifolds. All infinite-dimensional homogeneous strongly Kahler mani-
folds we are aware of have the same fibration structure given in the classification
for the finite-dimensional case. It seems that the geometry becomes much less
controllable for weakly Kahler manifolds.
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Exercises for Section VI

Exercise VI.1. We consider the Banach space E := [1(Z\ {0},R) with the
continuous alternating bilinear form

w(z,y) == Zacjy_j — T_;Y;-

Jj>0

We then define a constant 2-form @ on E by €, := w for all p € E'. Show
that (E,€Q) is a weakly symplectic manifold which is not strongly symplectic.
Hint: The image of the natural map £ — E* = [*°(Z\ {0},R) is the subspace
IMZ\ {0}, R). [

Exercise VI.2. It is instructive to visualize the constructions in this section
for the case of abelian Lie algebras. Let g be an abelian Banach-Lie algebra
which we also consider as a group G = g with exp = id.
(a) Z2(g,R) = Alt*(g;R) is the space of continuous alternating bilinear forms
w on g.
(b) The affine action of G on g* corresponding to w is given by Ad} (z).f =
B+ w(x,-). Its orbits are affine subspaces of g*.
(c) Suppose that w is non-degenerate and that g has a complex structure I for
which there exists a real subspace n C g satisfying:
(1) g=ndIn.
(2) w vanishes on n x n.
(3) w is I-invariant.
Show that the complex subspace

p:={v—ilviven} Cgc

is a complex polarization in w which is complemented. When is it a Kahler
polarization? [ ]

Exercise VI.3. Let (V,) be a symplectic vector space, i.e., &:V xV — R

is a non-degenerate alternating bilinear form. For a complex structure I on V

the following are equivalent:

(a) € is I-invariant, i.e., I € Sp(V,Q).

() Qv, [.w) = Y w, [.v) for v,w e V.

(c) The complex bilinear extension Q: Ve x Vo — V of Q satisfies Q(v,w) =0
for vy we V*ti={z —ilz:z e V}. ]
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VI1I. Coadjoint orbits and complex line bundles for U,(H)

In this section we complete the picture for the special case of the group
U := Uz(H). This means that we will describe Kéhler coadjoint orbits of this
group and realize all unitary highest weight representations L(\) of gl(J,C) (for
H =1?(J,C)) with bounded X in a space of holomorphic sections of a complex
line bundle over such orbits. This picture will show in particular that the group
GL;(H) acting on the Hilbert space H is far from being maximal.

Although the material in this section is formulated, for simplicity, only for
the group Us(H), it works in the more general setting of L*-algebras.

Coadjoint Kéhler orbits for uy(H)

To fix the notation, we write
U:=Us(H), G:=GLs(H), u=L{U)=uy(H), g=L(G)=DB(H).

We also identify u with u* using the trace form (z,y) := tr(zy). Then the
coadjoint action is given by Ad*(g).z = Ad(g).x = gzg~!. As we have seen in
Section VI, to understand the affine coadjoint actions from a higher viewpoint,
we first have to describe the space Z2(u,R) or real-valued 2-cocycles.

Lemma VIL.1. Every continuous cocycle w € Z2(u,R) can be written as
w(z,y) = tr(Alz,y]) for some A€ B(H) with A* = —A.

Proof. In [dIH72, Prop. I1.9] it is shown that the complex bilinear extension
we € Z%(g,C) can be written as wc (z,y) = tr(B[z,y]) for some B € B(H).
For C* = C and = € u we have tr(Cx) € iR, so that w(z,y) € R for z,y € u
implies that tr((B + B*)[z,y]) = 0 for all z,y € u. Hence we obtain with
A:= 1(B — B*) the relation w(z,y) = tr(Alz,y]). u

In the following we assume that w € Z2(u,R) is given by A = —A* € B(H)
as in Lemma VII.1 by

w(z,y) = tr(Alz, y]) = tr([4, 2]y).
This means that the corresponding Lie algebra cocycle 8:u — u is given by
O(x) = [A, x].
Note that ad A: Bo(H) — By(H) is a continuous map and that By(H) is an

ideal in B(H). Having such a concrete formula for the cocycle, it is easy to
describe the corresponding group cocycle which exists although the group U is
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not simply connected (in view of Proposition A.4 and Theorems A.10/11 we have
m(U) 2 Z):
0:U —u, ©O(g)=gAg~'— A

Note that for g € U = Uz(H) and A € B(H) we have
gAg~" = (9 -1 Ag™" + A(g™" — 1) € Ba(H)
and that for A* = —A we also get O(g9)* = —O(g).

Remark VII.2. In this case it would also be possible to work with a central
extension of the group U. In view of Proposition A.4 and Theorems A.10/11,
the group m2(U) is trivial, so that the results in [Ne0Oc] imply the existence of
a central extension R

R—-U—=U

corresponding to the Lie algebra extension Ut = u @, R defined by w € Z2?(u,R)
with the bracket
[($, Z)v(wlvzl)] = ([xvx,]vw(mvm/))' .

The next problem is to find the geometrically well behaved coadjoint orbits
in u. As we have seen in Section VI, it suffices to consider the orbit

O, :=0(G) Cu

of 0 (Remark VI.8). Since we are looking for strong Ké&hler orbits, a natural
question is when these orbits are submanifolds of u. Infinitesimally this leads to
the question when the tangent space Tp(O,,) = 0(u) = [A,u] is a closed subspace
of u.

For a normal operator A € B(H) we write A = A. ® A4 (continuous and
discrete part of A) according to the orthogonal decomposition H = H, & Hy,
where Hy is the Hilbert space direct sum of the eigenspaces of A, H. = H, ,
Ad = A|Hd7 and AC :A|HC-

Lemma VIL.3. For A= —A* € B(H) the following assertions hold:

(i) If X € u commutes with A, then XA. = A. X =0, and X wvanishes on
H.. Moreover, ker(ad A) C Ba(Hy).

(ii) The map ad A:u — u has closed range if and only if A is diagonalizable
with finite spectrum.

Proof. (i) The stabilizer of 0 € O, in u is the centralizer of A in u. We
recall that every operator X € u is compact and normal, hence diagonalizable
and all eigenspaces corresponding to non-zero eigenvalues are finite-dimensional.
If X € u commutes with A, then it preserves the eigenspaces of A, hence
commutes with A, and A;. Therefore A, preserves the finite-dimensional non-
trivial eigenspaces of X on which it acts trivially because it does not have any
eigenvector for a non-zero eigenvalue. Therefore XA, = A.X = 0. Since A(H.)
is dense in H,, it follows that H. C ker X and imX C (ker X)- C Hy, so
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that we can identify X with an element of Bo(Hg). In this sense we have
ker(ad A) C B2(Hy).
(i) We consider the hermitian operator ad A on the complex Hilbert space
g = By(H). Then im(ad A) = [A, g] is the complexification of the space [A,u],
showing that this space is a closed subspace of u if and only if ad A has closed
range on g. Since ad A is normal, this condition is equivalent to 0 being an
isolated point in the spectrum Spec(ad A) of ad A (Exercise VIL.1).

We note that Bo(H.) C (kerad A)t = imad A follows directly from (i).
The trivial fact that Ay commutes with Bo(H.) entails that ad A, resp., ad A,
restricts to an invertible operator Bg(H.) — Ba(H.). Let E be the spectral
measure of A, and A # p € Spec(A.). Then there exist disjoint compact e-
neighborhoods Uy of A and U, of p in C. We recall the rank-one operators
P, w(z) = (z,v)w on H. For unit vectors v € E(Uy) and w € E(U,) we now
get

||[Acv Pv,w]||2 - <PAC.v,w - Pv,AC.un PAC.U,U} - PU,Ac.w>

= ||Acv|)® + ||Ae-w|]? — 2(Acv, v){Apw, w).

If € tends to 0, then this number tends to A% + % — 2Au = (A — p)2. Since X is
not isolated in the spectrum of A., we conclude that the expression ||[A¢, Pyw]||?
can be arbitrarily small, contradicting the invertibility of ad A, on Bs(H.). We
conclude that A. =0, i.e., A = Ay is diagonalizable on H .

Now we apply the same argument with eigenvectors v, resp., w of A
corresponding to the eigenvalues A, resp., u, and obtain

[Av Pv,w] = ()‘ - N)Pv,w-

Since 0 is isolated in Spec(ad A), we conclude that every point in Spec(A) is
isolated, and hence that this compact set is finite. [ ]

Motivated by Lemma VII.3, we now restrict our attention to those cocycles
w for which A is diagonalizable with finite spectrum. Let A; > ... > A\; denote
the eigenvalues of the hermitian operator iA and Hj; := ker(iA — A;1) be the
corresponding eigenspace. We then have an orthogonal decomposition

H=H,®...0 H.

Accordingly we write operators B € B(H) as block k x k-matrices with entries
bij € B(Hj, Hl) .

The stabilizer of 0 € O, coincides with the centralizer of A, hence is
isomorphic to

U := Uy(Hy) x ... x Uz(Hyg) = {u € U: (Vi # j)u;; = 0}.
We want to show that O, carries a natural structure of a strong Kahler

manifold compatible with the symplectic structure. So we have to find a Kahler
polarization p in w.
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Lemma VII1.4. The closed subalgebra
pi={X = (Xij)ij=1,..k €91 < j= Xy =0}

15 a complemented subalgebra which is a compler Kahler polarization in the
cocycle w in the sense that (CP1)-(CP5) are satisfied.
For k = 3 the elements of p have the form

X1 0 0
Xo1 Xoo 0
X311 X3z Xazs.

Proof. That p is complemented is clear because
n:={X = (Xij)ij=1,.k €90 >j=X;; =0}

is a closed subspace of g complementing p.

We have to verify conditions (C1)—(C5) from Section VI. From the explicit
description of the stabilizer group U® we immediately derive that p is Ad(UY)-
invariant, which is (C1). The relations

pNp=uz and p+p=g
are also trivially satisfied. To verify (C4), let X,Y € p. Then

W(X,Y) = r(A[X,Y]) = 3 —id; (X5, Vj5) = 0

j=1

follows from the fact that [Bo(H;), Bo(H; )] C sl(H;) for each j (Exercise VIIL.2).
For (C5) we calculate for Z € p:

—iw(Z2,2%) = —ite(A[Z, 27)) = —ite([A, Z2), Z27) = —i Y te([A, Zu) Z55)

ik
=iy tr( =il — M) ZZig) = Y (M — N) r(ZinZiy)
ik ik
=> =) Zxll3 > 0
ik
for Z & u . n

Lemma VIL5. Let P := (expp) C G denote the analytic subgroup corre-
sponding to p. Then

P = {(gij) € GLQ(H)Z <j= 9gij = 0}

In particular P s a complemented Lie subgroup of G.
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Proof.  We have to show that the group P’ on the right hand side is connected.
It is a semidirect product N x G°, where

k
GO = {(gij) S GLQ(H)Z 75 j = gij — 0} = H GLQ(Hj)
j=1
and o
N = {(gij) € GLQ(H):gjj =1,1<y=gij= 0}.
For the group N the exponential function exp:®n — N is a diffeomorphism whose
inverse is given by

log: N —n: log(g) = Z #(g -1)" = Z #(g - 1"

Therefore the connectedness of the right hand side above follows from the con-
nectedness of the groups GLz(Hj;) (Theorem A.10) or directly from the obser-
vation that N =1 +n. |

Theorem VIL.6. If A is diagonalizable with discrete spectrum and w(x,y) =
tr(Alz,y]), then the coadjoint orbit O, is a strong Kdhler orbit, i.e., a Kdhler
orbit which is a strongly symplectic manifold.

Proof. In view of Lemmas VII.4 and VIL5, we have exactly the situation
asked for in Proposition VI.9, so that we obtain an open embedding

0, 2U/U° — G/P,

which yields on Oy the structure of a complex manifold. Since p is a Kahler
polarization, we see that O, is a Kahler manifold.

It remains to show that the symplectic structure on the tangent space
To(0O,) yields an isomorphism to the dual space. We identify Tp(O,,) with

g/p=n={X=(Xij)ij=1,.k €Eg:i>j= Xi =0}

as in the proof of Lemma VII.4. Then the real scalar product corresponding to
the Kahler structure is given for Z € n by

—iw(Z*, Z) = Y (A = A Z5l5 = D (A — M)l Zll5.
k<j i<k
The fact that the differences A; — A, 7 < k, are all positive shows that n is a
complex Hilbert space with respect to the above scalar product, hence that O,
is a strong Kahler orbit. [ ]

We will see in Remark VII.19 below that the natural inclusion map U/U°® —
G/P is in fact a bijection, i.e., U acts transitively on G/P.

So far our geometric approach has provided us with a certain set of Kahler
orbits of the Lie algebra us(H) in the sense of affine coadjoint actions. These
orbits are coadjoint orbits in the usual sense if and only if im(A) =) A0 Hj s
finite-dimensional, which is quite restrictive. In the next subsection we turn to
the construction of the corresponding holomorphic line bundles and show that
we can realize all holomorphic unitary highest weight representations in Hilbert
spaces of holomorphic sections of such bundles.
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Construction of the complex line bundles

In this subsection we start with an orthogonal decomposition
H=H,&...® Hy
of the complex Hilbert space H. We consider the Banach algebra

Br,l(Hl,...,Hk)
= {A = (ai;) € B(H): (Vi # j) aij € Ba(Hj, H;), (Vj) aj; € B1(H;)}

with the norm
X1 = max{{lag;lle, g =1, k; lagll, s # 1}
(Example VIL.3) and
Bres(Hu, ..., Hy) = {A = (a;;) € B(H): (Vi # j)aij € Ba(Hj, H;)}
with the norm
1 X1 o= max{|lag;l[, s = 1,.... ki llall, j # 1}
(Example VIL4).
Lemma VIL.7. (a) GLyes := GL(H) N Byes(H1, ..., Hy) is a group, and
Ures 1= GLyes NU(H) = {(9:i5) € U(H): (Vi > j) gij € B2(H;, H;), g;; Fredholm}.

(b) Gy :=GL(H)N (14 By 1(Hy, ..., Hy)) is a group.

Proof. (a) Let g € G, 1. For the first assertion we only have to show that
(97 1) € B2(Hy, H;) holds for i # [. First we observe that

1=gii(9™ i + Zgij(g_l)ji € gii(g™ )i + Ba(H,).
J#i

We also have
gis (9™ ==Y 9i (97 -

J#e
Multiplying this equation with (g=1);;, we obtain

(97 Diigii(g™ i = =D (g Niigii (9™ )t € Bo(Hy, Hy),
J#i
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so that
(971 € (97 Y wigii (97 i + Ba(Hy, Hy) € Bo(Hy, Hy).

For the second part we first observe that each element g € U, trivially
satisfies g;; € Bo(Hj,H;) for ¢ > j. Let us assume, conversely, that these
conditions are satisfied. From ¢g*g = 1 we then get for n,m € {1,...,k} the

relations
5nm1 - Zgl*nglm-
l
For m =1 < n this leads to

0=g1,911 +g§n921 +...+ g}ingkll.

€B2 (Hlan)

Since g1 is a Fredholm operator (it has finite-dimensional kernel and cokernel),
we derive that g1, € Ba(Hy, H1) for n > 1 (Example VIL.7). For m < n we
now assume that gy, € Ba(Hy, H;) for [ < m. Then we obtain

0= GinGim +GmnImm + > GinGim ,

I<m I>m
N’ N’
€B2(Hm7Hn) €B2(Hm7Hn)

so that ¢ . Gmm € Ba(Hpy,Hy,), and we see as above that g, is Hilbert—
Schmidt.

(b) Let g € G,.. Then (a) implies that for j # [ we have (¢71); € B2(H;, Hj).
We further have

1= g”-(g_l)ii—i—z 9i5(9™ )i € A+B1(H:)) (g™ Da+Bi(H;) C (g™ i+B1(Hy),
J#i

so that g~ € 1+ B, 1(Hi, ..., Hy). n

We recall from Lemma VIL.5 the subgroup P C G which we write in the
canonical way as a semidirect product

P~ N xG°,

where B

Accordingly we put
We also consider the corresponding subgroup of G, i:

PT71 ZZPQGTJ%NX]G?.
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Since the group P, ; is a submanifold of the Banach-Lie group G, ;, the
quotient space M := G, 1/P.1 carries a natural complex manifold structure
modeled over the Hilbert space n. It is clear that for G; := GL;(H) and
P, := PNGL;(H) we obtain an injection G1/Py, = Gy 1/Pr1,9P1 — gP 1.

We construct holomorphic line bundles on M as follows. Since the group
&Y is isomorphic to the product H?:l GL1(H; ), we have for each

A=(A,...,\p) €ZF

a holomorphic character
k
x:GY = C*, x(g) = [ ] det(g;;)™
j=1

which we immediately extend to a holomorphic character x:P.1 — C* with
N C ker x. Actually every holomorphic character of P, ; has this form (Exercise
VIL5).

Now we define an action of P.; on G, x C by

1

p.(g9,2) = (gp~ ", x(p)2), p€Pr1,2€C,ge G,

and obtain a the homogeneous complex line bundle
Ly =Gr1xXp,,C—>M

as the quotient manifold with respect to this action (the same arguments as in
Section I apply). We write [g,z] for the element of £, corresponding to the
orbit of (g,z) under the action of P,; and I'(L,) for the space of holomorphic
sections.

We will now address the question when the bundle £, has non-zero holo-
morphic sections. First we will see that a simple SL;-reduction argument yields
a necessary condition of which we will see later that it also is sufficient.

Lemma VIL.8. IfT'(L,) # {0}, then

(7.1) AL > A

Proof. = We assume that ¢ < j and pick unit vectors v € H; and w € Hj.
Then
h:=P,,—Pyw e=PFP, and [f:=P,,

satisfy the commutator relations of s[(2,C) (Example I1.2), so that
g(v,w) :=span{P, 4, Py v, Py — Puw.w} = 5l(2,C).
We put G(v,w) := (expg(v,w)) = SL(2,C) C G, 1. Then

P(v,w):=PFP,1 NG(v,w)
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is a parabolic subgroup of G(v,w) with Lie algebra
p(v,w)=Ch+Cf,
and the restriction of the character x to p(u,w) satisfies
dx(h) = Ai — Aj.

If £, has non-zero holomorphic sections, then it has a non-zero holomorphic
section not vanishing in the base point, and therefore the bundle Ly, », over
G(v,w)/P(v,w) has non-zero holomorphic sections (cf. the proof of Theorem
I.5). In view of Theorem 1.4, this implies A; — A; € Ny. [ |

The next step is to show that if A satisfies (7.1) (we call such a A\ domi-
nant), then £, is non-zero. In [HH94a] this is done by a direct construction of
holomorphic sections. Here we will give a general argument which is universal
for all types of groups U coming from L*-algebras g (see the comments at the
end of this section).

We start with the information we have from Section V. We choose an
orthonormal basis (e;)jes in H subordinated to the decomposition of H into
the subspaces Hy,...,H. If A satisfies (7.1), we can view it as an element of
[>°(J,C), so that we obtain with Theorem V.6 a holomorphic highest weight
representation (my, Hy) of G1 := GLi(H) with highest weight A.

Pick a highest weight vector vy € Hx. We define 6 € H} by d(v) := (v, va)
and consider on #3} the holomorphic representation defined by (g.8)(v) :=
B(g~1.w). For the complex Lie subgroup P := G1 N P we then have

p.d =x(p)o forall peP.
We now have a map
U:Hy — Hol(G1), ¥(v)(g) := (g.0)(v) = (3, g w) = (g7 v, v)).
Then ¥ is a (G1-equivariant linear map with respect to the natural representation

of G1 on Hol(Gy) given by (g.f)(z) := f(¢9~'z), and each function f in the
range of W satisfies

flgp) =x() "' f(9), geGipe Py

Since G1/P1 C G,1/P,1 is a proper subset, these functions on G are not
sufficient to define holomorphic sections of L, , we first have to extend them to
the bigger group G, 1. The following lemmas prepare the holomorphic extension
of the function fy ;1 := U(vy) to Gy 1.

Lemma VIL9. For gi,9o € G the commutator (g1,92) := 919297 "g5 = is
contained in Gy, i.e., (G,G) C Gy.
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Proof. We write g1 =1+ 2 and go = 1+ y with z,y € Bo(H). Then we
also have
(1+z)"'=14+2" and A+y)t=1+y

with /.y’ € B2(H) and

1=1+2)(1+2)=1+z+ 2" + a2,
so that x + ' = —za’ € By(H). Likewise we get y +y' € B1(H), and therefore
(91,92) = 1+2)(1+y)(1+2")1+y) € 1+a+2'+y+y' + B1(H) C 1+ B1(H).
This shows that (g1,92) € GL1(H). u

Lemma VII.10. The map
O:NxGy xN = Gpr1, (2,9,9)— zgy
15 a surjective holomorphic submersion with the property that
O(z,9,y) = 2(«',9",y') = g € NigNy.

Proof. (1) First we show that & is surjective. In view of Lemma VILO,
the group G,1/G1 (which we only consider as an abstract group) is abelian.
Therefore the image of NN in Gr1/G1 is a subgroup, so that NG1N = NNG;
is a subgroup of G,.1. Since it also contains the open subset NGYN (this requires
a generalization of Exercise 1.5 to Banach—Lie groups), it is an open subgroup, so
that the connectedness of G, ; (a similar argument as in Theorem A.10 applies)
implies that G, ; = X.

(2) Since N acts smoothly by conjugation on the group G, we can form the
corresponding semidirect product group G; x N. Now we consider the right
action of the group N x (G1 x N) on Gy,1 given by

z.(n, (g,m)) := n"tzgm.

Then, up to the diffeomorphism (n, g;,n’) = (n™t,g1,n'), ® is an orbit mapping
for this action, so that it suffices to prove that d®(1,1,1) is surjective with
splitting kernel ([La99, Prop. 2.2]). The map d®(1,1,1) is simply the addition
map

nXg xnN—g =ndglen

which obviously is surjective. The closed subspace n x g{ x 0 of n x g; x 0 is a
closed complement of the kernel of d®(1,1,1). Therefore ® is a submersion in
(1,1,1) and hence everywhere.

(3) Description of the fibers: Replacing = by (2')~'z and y by y(y')~!, we may
assume that ' =y’ = 1. Then ¢’ = xgy, so that the normality of G; in G,
implies that zy € G1. Let a:=2x—1€n and b:=y —1 €n. Then

zy=1+a)(1+b)=14+a+b+abel+ B(H)

implies that a +b € g1 = B1(H). Now g1 = n; @ g} ® 7y implies that o € ny
and b € ny, showing that x € N; and y € N;. [
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Proposition VII.11. The function fx1 = W(vx) on Gy extends to a holo-
morphic function fx on G, 1 with fx(nigns) = fa(g) for ny € N, ngo € N and
g € Gy1. Moreover, we have

Igp™) = x()/rl9), 9€GripePry.
Proof. We consider the holomorphic function
F:NxGixN—=C, (z,9,9) fri(g)

In view of fx1(nigns) = fai1(g) for ny € N1, na € Ny and g € Gy, the
function F' is constant on the fibers of the map ® (Lemma VIIL.10). Since @
is a submersion onto G 1, the function F' factors through ® to a holomorphic
function on G, ; with the required properties.

For p=ng, € P11 = N % G? this further leads to

Plgp™) = falggrh) = x(91) fr(9) = x(0) fr(9),

first for g € G and then by continuity for all g € G . [ |

The following theorem is a generalization of the geometric part of the Borel—
Weil Theorem to the line bundles £, over G/P =G, 1/P;1.

Theorem VII.12.  (Helminck and Helminck) The bundle L, has non-zero
holomorphic sections if and only if

AL >0 > g

Proof. The first half follows from Lemma VIIL.8, and for the converse we use
Proposition VIL.11 to see that the space I'g, ,(£,) is non-zero, and therefore
that £, has non-zero holomorphic sections. [ ]

Reproducing kernel Hilbert spaces

Let M be a complex manifold and # C Hol(M) a Hilbert space of
holomorphic functions such that for each z € M the evaluation map

H—-C, [ f(2)

is continuous. In view of Riesz’ Theorem, there exists an element K, € H with
f(z) =(f,K,) for all z€ M. We call the function

K:MxM—C, K(z,w):=Ky,(z)=(Ky, K,)

the reproducing kernel of the Hilbert space H and H a reproducing kernel Hilbert
space.
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The function K has the following properties:
(P1) K is a positive definite kernel, i.e., for z1,...,2, € M the matrix

(K (2i24))ij=1,..,n

is positive semidefinite.
(P2) The functions K,,:z +— K(z,w) are holomorphic.

If, conversely, K: M x M — C is a function satisfying (P1), (P2) and
(P3) The function M — R, z — K(z, 2), is locally bounded,
then one can show that there exists a unique reproducing kernel Hilbert space
Hx C Hol(M) with reproducing kernel K (cf. [Ne99a, Prop. 1.1.9(iii)]).

The main idea of the construction is to consider the space

HY := span{K,:w € M}
and show that is has a positive hermitian form (-,-) satisfying
(f,K,)=f(z) forall ze& M.

Next one uses (P3) to show that the completion Hx of HY can also be viewed
as a space of holomorphic functions on M .

Realizing H, in I'(Ly)

So far we have shown that the bundle £, has non-zero holomorphic sec-
tions. The next step is to see that the whole Hilbert space H) can be realized
by holomorphic sections of L) .

We consider G 1 as a complex semigroup with involution given by g — g*.
A function f:G,; — C is called positive definite if for all g1,...,9, € G, 1 the
matrix f(gig;-‘)ijjzlen is positive semidefinite.

Lemma VII.13. The function fx on G, 1 from Proposition VIL.11 is positive
definite.

Proof. Since G is dense in G, 1, it suffices to assume that gq,...,9, € G1.
For z,y € G we have

I(zy®) = ((zy*) " oa,oa) = (7 oa g hon),
so that we obtain for c¢q,...,¢, € C:
ZCiC_ij(gig;) = Zcic_j<gi_l'v)\7.gj_l'v)\> = || Zcigfl-v,\||2 > 0. -
i, i,J 4

Lemma VII1.14. There exists a Hilbert subspace

Hf)\ g FGr,l (EX)
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containing all left-translates g.fx, g € Gy 1, of fx such that for all v € Hy, and
g € Gy1 we have

(7.2) v(g) = (v, (g71)" fx)-
Proof. First we consider the kernel K on G, ; given by

K(z,y) = faly*x).

Lemma VII.13 means that K is positive definite, and, moreover, x — K (z,x) =
fa(z*z) is a locally bounded function because fy is holomorphic and there-
fore continuous. Now [Ne99a, Prop. 1.19(iii)] implies the existence of a Hilbert
subspace My, C Hol(G, 1) containing all left-translates g.fx, g € Gy1, and
satisfying (7.2).

Next we observe that Lemma VIIL.13 implies in particular fx(g*) = fx(9)
for g € G, 1 and therefore

(0" -F)(9) = ()7 ) = falg'p™) = x(0) falg™) = x(0) fA(9)-

For each v € Hy,, g € G, 1 and p € P.; we now get

v, (g7 ) = (v (97D X (D)-Fr)
xX(P)(v, (g7 )" fr

Therefore Hy, C g,  (Ly)- u

v(gp™)

~
I
>
—
S
~—
<
—~
Q
~—

Lemma VII.15. The restriction map Hol(Gy1) — Hol(G1) induces a surjec-
tive isometry

’I’:/HfA — \IJ(H)\) = H)\.
Proof. First we observe that r is injective because G is dense in G, ;.
For v € H) and g € G4 we have

T(v)(g) = (g~ v, 0a) = (T(g™"0), U(wa)) = (g7 T(v), fa)
= (¥(v), (971" fa1)

and ¥(G1.vy) = G1.(fa,1) is a total subset of W(Hy). This means that W(#H,)
is a reproducing kernel Hilbert space with kernel

Ki(z,y) = ((y~)" @ (va), (7). T(va)) = fa(y").
Now we can apply [Ne99a, Prop. 1.2.1(iii)] because r is injective. n

The outcome of this construction is that we have realized the Hilbert space
H in the space of holomorphic sections of £y in such a way that the bigger
group G, 1 acts on a dense subspace containing the highest weight vector fy.
This picture is still not optimal because there are larger groups acting on the
bundle £, and therefore on the space of holomorphic sections.
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Enlarging the groups

The group G} := H§:1 GL(H;) € G, acts smoothly by automorphisms on
the group G, 1, so that we can form the semidirect product Banach-Lie group
Gy X Gg. We consider the identity component

GT = GLres(Hh ceey Hk)()

The connected components of the group GLyes := GLyes(Hi, ..., Hg)o are
given by the group homomorphism
ind: GLyes — ZF~, g — (ind(g;5)) dim H;=co

where ko := |{j:dim H; = oo}|. The image of this group homomorphism is the
set of those tuples (n;) with » . n; =0, showing that

WO(GLres) — Zkoo_l
(cf. [HH94b, Prop. 2.3.1]).

Lemma VII.16. We have surjective homomorphisms

n:Gr1 x Gy — Gy (a,d) — ad
and

nu:Up 1 U —U,., (a,d)+ ad.
Proof. The inclusion GMGO C G, holds trivially. For the converse, let
g € G,. Then each g;; is a Fredholm operator, and since G, is connected by
definition, it is a Fredholm operator of index 0 (Exercise). Hence there exists
a finite rank operator b; mapping ker(g;;) bijectively onto im(g;;)*. Then
d;j == g;j; + b; € GL(H;) satisfies

953 = 955 +bj —bj € (g5 + b;)(1 + B1(H;)).
Therefore d := diag(d;) € GY satisfies d~1g € G,1.
The first part implies in particular that the group G, is connected because

G} and G, are connected, so that its polar decomposition (cf. Proposition A.5
for a related case) shows that U, is connected. Therefore ny is a homomorphism

of connected Banach-Lie groups, and since u, = u,. 1 —|—ug, it is open and therefore
surjective. [ ]

The kernel of 7 is the subgroup

k
K :={(a,a™):a € Gy}, where G}=GiNG, 1= H GL1(H;).
j=1
The normal subgroup K < G,; x Gy is a closed normal subgroup which is
a submanifold in the sense of Banach manifolds (cf. [La99]; Corollary V.5).
Therefore the quotient group (G, 1 XGY)/K carries a unique Lie group structure
for which the map
n:(Gr1 X G))/K — Gy, [a,d]— ad

is an isomorphism.
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Definition VII.17. The group
K =2 GV =2 GLy(Hy) x ... x GLy(Hy)
has a natural holomorphic homomorphism
A:GY = Z:=(C*)F, g (det(g)))j=1... k-

Since this homomorphism is invariant under conjugation with elements of GY,
the graph

DA™Y = {(k,Ak) ) ke K} CK X ZC (G xGY) x Z

is a central subgroup which is a submanifold (Exercise VII.6), so that we may
form the quotient group

Gr = ((Gra x G) x Z)/T(ATY)

whose elements are written as [a,d, 2] := (a,d,2)['(A~1). This group has a
natural homomorphism

q: G, — Gr, q([a,d,z]):=ad
whose kernel coincides with
(K x Z)/T(A™Y) = Z = (C*)k,
We thus obtain a central extension
Z > CA}TLGT

of G;. On the subgroup G, ; the central extension has a natural splitting given
by R
0:Gr1 =Gy, o(g):=][(g,1,1)]. [ ]

Let 131« := ¢ '(P,). Then P, 2 N x G implies that
(7.3) P2NxG)~Nx (G x Z)

because we can use the homomorphism o: N — @T to split off this group. We
define a holomorphic character

k
~ 5 ~ Aj
X: P —C*, X(n,d,z):= | | 257
i=1

One easily verifies that X is compatible with x in the sense that X oo(p) = x(p)
for p € P, 1. We form the corresponding complex line bundle

[’X = GT XI’D\T C.
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We then have a natural holomorphic map

¢:£x_>2x7 [972]'_> [O‘(g),z]
because for p € P, 1 we have

[o(gp™), x(p)z] = [0(9)o(p) ™1, X(c(p))2] = [0(9), 2.

Since the canonical map
G'r,l/Pr,l — ar/ﬁr = G’/‘/Pr

is biholomorphic (cf. Lemma VII.16), it easily follows that the map ¢ is a
biholomorphic isomorphism of complex line bundles. In particular the space

D(Ly) 2 T(Ly)

has a natural realization in Hol(G, ), and we have a natural action of the complex
group G, on this space.
The action of the diagonal group Gj C kerx C P, on L, satisfies

d.[o(g), 2] = [do(g), 2] = [o(dgd™")d, 2] = [0 (dgd™"), 2],

so that
d.[d " gd, f(d~'gd)] = [g, f(d " gd)]

implies that the action of Gy on I'g, ,(Ly) is given by

(7.4) (d.f)(g) = f(d""gd).

For f € I'g,,(Ly) and the corresponding section s:Gy1/Pp 1 = ~ G, /P, —
L, the map nos:G, 1/PT > G, /P — EX is a holomorphic section, and the

corresponding function f on G, satisfies f( (9)) = f(g) for g € G, 1. It is
uniquely determined by its values on G, because

-~ ~

G, = 0(Gr1)G) = 0(Gy 1) PO

T

and

-~

Flar™Y) =xw)f(9), geGrpe P

Now we have all means to extend the representation of Gy on Hy to a
unitary representation of U and an unbounded representation of G
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Theorem VII.18. Let L(A\,AT) be a unitary highest weight module of
gl(J,C) with X € [°°(J,Z). Then the holomorphic action of the group G =
GL1(H) on Hy extends to a representation of the group C/}\'T on a dense subspace
of Hx, and the action of the unitary group ﬁr extends to a continuous unitary
action on the whole space Hy .

Proof. Let f)\ € Fé\r (EX) denote the function corresponding to fy €
I, (Ly). In view of (7.4) and the fact that fy on G, is invariant under
the action of G, the function f)\ is GY-invariant. It also is N -invariant, so that
(7.3) implies that for p = (n,d, z) € P, we have

p = x(Z) = x(2) fr = x0) fa

~

For a sequence of elements g¢1,...,9, € G, we write g; = o(z;)p; with
T; € Gr,l and p; € P.. Then

Agrai) = x@;) () ) (o(m) o (x5))
= X(py) "X (py) alo(@) o),

so that Lemma VII.13 implies that f\)\ is a positive definite function on @T . Now
the same arguments as for G, ; show that G,.fy C H, (viewed as a subspace of

F(EX), so that @r has a representation on a dense subspace of Hj .
For u € ﬁr and x,y € C/}'\T we have

~

P((uy)* (ua) = faly*uruz) = frly*),

which implies that the action of the group Ur on the dense subspace span(@,«.ﬁ\)
extends to a continuous unitary action on H, (cf. [Ne99a, Prop. IV.1.9]). u

Remark VII.19. (The relation to restricted flag manifolds) Let
F = (F1,...,Fy)
be a flag in the complex Hilbert space H , i.e.,
KC...CF,=H
are closed subspaces of H. The flag F can also be represented by the sequence
E:=E(F) = (Ey,...,Ey)

of closed subspaces defined by F; := F; N Fj{1 (where Fy := {0}). Then
H=F &...® E\ is an orthogonal decomposition.

We call F and F' close if there exists an element g € G, with g.F; = FJ’
for all 5. If this is the case, then one easily verifies that the orthogonal projections
pr;: F J’ — Fj are Fredholm operators of index 0 and the orthogonal projections
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Pr;: P J’ — F J-L are Hilbert-Schmidt (Exercise!). Suppose, conversely, that this is
the case for two flags F and F’ and E; and E} be as above. Then it is not
hard to see that the orthogonal projections p,-j:E; — FE,; are Hilbert—Schmidt
for i > j and Fredholm of index 0 for i = j (Exercise). It follows in particular
that F; and E; have the same Hilbert dimension, so that there exists a unitary
operator u € U(H) with u.E; = E} for j =1,...,k. Writing u as a (k x k)-
block matrix with respect to the decomposition H = E; & ...® Ey, we see that
the diagonal blocks wu;; as Fredholm of index 0 and the lower diagonal blocks
uij, ¢ > j, are Hilbert-Schmidt. In view of Lemma VIL.7(i), this implies that
u € Upes(E1, ..., Ex)o = U,. This means that for the flag F corresponding to
&, we have

G..F=U.F.
Lemma VII.16 further implies that
G, F=G,1.7¥ and U..F=U,1.F.
We conclude in particular that U D U, ; acts transitively on G/P = G, /P, 1

G, 1.F. This means that G /P can be identified with the coadjoint orbit O,
U/U° C u*,

m R IR

Concluding remarks

In this section we have seen that the Borel-Weil picture for finite-dimen-
sional complex reductive groups carries over to the group G = GL2(H), H a
complex Hilbert space. Our first step was to identify H with some [2(J,C), so
that we obtain a dense locally finite subalgebra gl(J,C) whose unitary highest
weight modules can be classified by algebraic means. Then we globalized the
picture by integrating those representations with bounded highest weight A to
holomorphic representations of the group GL;(H). The next step was to consider
Kahler structures on (affine) coadjoint orbits of u* for u = uy(H). In this context
we have seen that the condition that such a coadjoint orbit has a closed tangent
space already leads to orbits defined by tuples (Aq,...,Ax) and an orthogonal
decomposition of the space H. Eventually we realized the Hilbert space H, as
a space of holomorphic sections of a complex line bundle over such a coadjoint
orbit. This led us to much bigger groups such as G,., resp., U,., where the first
group acts “holomorphically” on a dense subspace of H, and the latter acts
unitarily on the whole space.

Although there was no time in these lectures to discuss the more general
approach via L*-algebra, let us briefly describe the main ideas. An L*-algebra
is a complex Hilbert space g which at the same time is a complex Lie algebra
such that the scalar product satisfies

([w,y],2) = (v, [2%,2]), = y,2z€8.
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This means that the adjoint of the operator ad x is ad x*. Typical examples of
simple L*-algebras are

By(H), spy(H,I) and oy(H,1T),

and these are all infinite-dimensional simple L*-algebras (cf. [CGM90], [Neh93]
and [St99b]).

For each L*-algebra there is a natural complex Lie group G and a “com-
pact” real form U. First one determines the space Z2(u,R) and then one shows
that for a coadjoint orbit O, w € Z2(u,R), the closedness of the tangent space
implies that it meats the dual of a Cartan subalgebra h C g which is a maximal
abelian *-invariant subalgebra. Results of Schue ([Sch60]) imply that g has an
orthogonal root decomposition with respect to h, and that the subalgebra gen-
erated by the root spaces is a locally finite semisimple Lie algebra gg. Section
I1I contains in particular a classification of all unitary highest weight modules of
this Lie algebra, and there is also an analog of Section V, where g; is a natural
Banach-Lie algebra which for g = Bo(H) is sl(H). Sections VI and VII also
generalize to this context, where one simply has to verify that the arguments we
have used above can be carried over.

The advantage of the L*-approach is comparable to the advantage of
considering finite-dimensional reductive Lie algebras instead of studying classical
simple Lie algebras cases by case.

Notes on Section VII

In [Bo80] Boyer describes the representations of the group U = Uy(H)
in holomorphic sections in line bundles over coadjoint orbits of this group in
u*. This approach is quite restrictive, because the condition that the diagonal
matrix defined by A is Hilbert-Schmidt implies that A has finite support. Rep-
resentations in spaces of holomorphic sections of associated line bundles are only
constructed for the case where A is integral and either positive or negative, but
not in the mixed case. It is also shown that the norm-continuous unitary repre-
sentations of Us are elementary in the sense that they are direct sums of highest
weight representations (cf. [Ne98] and Section V).

A more general approach is described in [HH94a] and [HH94b], where for a
separable Hilbert space H the homogeneous manifolds G/P considered in this
section are constructed directly as restricted flag manifolds (cf. Remark VIIL.19).
The case where k = 2 leads to the restricted Graimannian G /P which has been
discussed earlier in [PS86].
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Exercises for Section VII

Exercise VII.1. Let H be a complex Hilbert space and A a normal bounded
operator on H. Then im(A) is closed if and only if 0 is isolated in the spectrum
o(A) of A. Hint: Reduce to the case where A is injective. n

Exercise VII.2. Let H be a Hilbert space. Show that
[B2(H), B2(H)] C sl(H).
Hint: || XY ||y < [|X|]2]|Y ]2 for X,Y € Bo(H). [ |

Exercise VIL.3. Show that the space Byes1(Hj1, ..., Hy) is a complex Banach-
x-algebra with respect to the composition, the natural involution, and the norm

1 X = max{|la;[l1,j = 1,..., Kk [lajll, j # I}
Hint: || XY < || X]|2]|Y]2 for X,V € Bo(H). -

Exercise VIL.4. Show that the space Byes(Hi, ..., Hy) is a complex Banach-
x-algebra with respect to the composition, the natural involution, and the norm

1 X := max{llaj;[l,j = 1,.... ks l|azll, j # 1}
Hint: || XY ||y < ||X|[|[Y]2 for X € B(H(, Y € Bo(H). -

Exercise VIL.5. Show that each holomorphic character x: P.1 & N x GY —
C™ is of the form

k
x(n,g) = | det(g;;)™
Jj=1

for A € ZF. n

Exercise VII.6. If M and N are Banach manifolds, M; C M is a submani-
fold, and f: M7 — N is a smooth map, then the graph

I(f) = A{(z, f(2)):x € M1}

is a submanifold of M x N. ]

Exercise VIL.7. (a) If g € GLcs, then each diagonal entry g;;, j =1,...,k,
is a Fredholm operator.

(b) If A is a Fredholm operator on H and B € B(H) with AB € By(H), then
B € By(H). Hint: Consider A*AB € By(H) and write this operator in 2 x 2-
block form according to im(A*A) and ker(A*A). n
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Exercise VII.8. We consider the Lie algebra g, = B, 1(H,...,H}) and
define a continuous linear functional

k
tI‘:gTvl—>C, X’—)ZtI'ij.

=1

Show that tr is a Lie algebra homomorphism which integrates to a holomorphic

character
det: Gr,l — C.

Hint: [By(H), Bo(H)] C sl(H). n
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Appendix. The topology of classical Banach—Lie groups

In this appendix we collect some useful results on the homotopy groups
of groups of operators on a Hilbert space. A crucial tool for the analysis of
the topology of operator groups is the polar decomposition which is discussed
for several types of groups in the first subsection. A more general context for
polar decompositions based on the geometric context of symmetric spaces of
seminegative curvature is described in [Ne99b]. We then explain how certain
general results of Palais can be used to analyze the topology of groups like
GL,(H).

Polar decompositions

For the following lemma we recall the definition of the spectrum of an
element of a Banach algebra A:

Spec(a) :={A € C:a— AL € G(A)}.
Lemma A.1. Let A be a complex unital Banach algebra and
D := {a € A:inf Re Spec(a) > 0}.

For an a € D we choose a contour I' in C4 := {z € C:Rez > 0} surrounding
the spectrum Spec(a) and define

log(a) := 2%” é(log AN(A1 —a)"tdA

Then we obtain a holomorphic function log: D — A. If x is an antilinear anti-
automorphism of A, then we have log(a*) = log(a)*.

Proof. That D is open follows from [Ru73, Th. 10.20], and the holomorphy
of log from [Ru73, Th. 10.38]. For any antilinear antiautomorphism of A we
have f(a*) = f(a)* for any real-valued polynomial f € R[X], and this implies
that log(a*) = log(a)* because, according to Runge’s Theorem, on Spec(a) the
log-function is a uniform limit of polynomials (cf. [Ru86]). ]

Proposition A.2. If H is a complex Hilbert space, then the polar map
p:U(H) x Herm(H) — GL(H), (u, X) > ue®

1 a diffeomorphism.
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Proof. Let g € GL(H). Then g*g is a positive hermitian operator, so that
the continuous functional calculus provides a unique hermitian operator

X = %log(g*g).
Let u:= ge~*. Then

UU* — ge_ng* — g(g*g)—lg* =1

and
wu=e Fgtge X = e KXe2Xe X =1,

We conclude that every operator g € GL(H) has a unique decomposition g =

ueX with X € Herm(H). This means that p is bijective. It is also clear that p

is a smooth map.

1 is also smooth, we have to verify that the function

To see that p—
log: {g € GL(H) N Herm(H ): inf Spec(g) > 0} — Herm(H)
is smooth. This follows directly from Lemma A.1. [ ]

Remark A.3. Our proof for the polar decomposition works also for abstract
C* -algebras, where it provides a diffeomorphism

p:U(A) x Herm(A) — G(A4), (u, X) > ue,

where

U(A) ={a € Araa” = a"a = 1}.

For commutative algebras A = C(X,C), X a compact space, this is the trivial
decomposition

C(X,T) x C(X,R) — C(X,C*), (u, f)+ ue’. m
Proposition A.4.  For every p € [1,00] the polar map
p:Uy(H) x Herm, (H) — GL,(H), (u,X) > ue™

1 a diffeomorphism.

Proof. @ We consider the Banach- «-subalgebra
B,(H)=C1+ B,(H) C B(H).

In Example IV.15(d) we have seen that

B,(H) N GL(H) = G(B,(H)),

so that the spectrum Spec,(X) of an element X € By,(H) coincides with the
spectrum Spec(X) of X as an element of B(H). Therefore Lemma A.1 implies
that for g € GL,(H) we have log(g*g) € B,(H), and that the map

log: {9 € GL,(H) N Herm, (H): inf Spec(g) > 0} — Herm,,(H)

is smooth. This implies the assertion. [ ]
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For an orthogonal decomposition H = H_ @& H, we write operators on H
as (2 x 2)-block matrices and define the unital Banach- x-algebra

Bres(H_, Hy) := { (Z Z) € B(H):b€ By(H,, H_),c € 32(H_,H+)}

with the norm ||z|| := 2 max{||al|, ||b||2, ||cl|2, ||d||} (cf. Example IV.15(b)). We
further consider

GLyes(H_, Hy) := GL(H) N Bres(H_, H.)
(cf. Lemma VIL7),
Uves(H_, H) := U(H) O Byos(H_, H)

and
Hermyes(H_, Hy) := Herm(H) N Byes(H_, Hy).

Proposition A.5. For every orthogonal decomposition H = H_ © H, the
polar map

P: Upes(H_, Hy) x Hermyes(H_, Hy) — GLyos(H_, Hy),  (u, X) > ue®

1 a diffeomorphism.

Proof. In view of Lemma VIL.7, the group GLyes(H_, Hy) is the unit group
of the Banach algebra A := Bies(H_,Hy). It follows in particular that the
spectrum Spec 4(X) of an element X € A coincides with the spectrum Spec(X)
of X as an element of B(H). Therefore Lemma A.1 implies that for g €
GLyes(H_,Hy) = G(A) we have log(g*g) € A, and that the map

log: {g € G(A) NHerm(H ):inf Spec(g) > 0} — Herm,es(H)
is smooth. This implies the assertion. [ ]
Remark A.6. We consider the convex domain
Q:={X €eHerm(H): X > 0,1—- X € By(H)}
which can be identified with the open convex domain
{Y € Hermy(H):1 —-Y > 0} = {Y € Hermy(H ): sup Spec(Y) < 1},

where X >> 0 means that Spec(X) CJ0, o0].
The group GL(H) acts on Herm(H) by g.A := gAg*. We claim that

Go:={9€GL(H):g.QCQ} ={gecGL(H):¢9"g € GL2(H)}
= U(H) exp (Hermy(H)).
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In fact, if g.©Q2 C €, then we have in particular that g.1 = gg* € Q, so that
gg9* € GLo(H) and therefore also g*g = g~ 1(g99%)g € GLo(H). If, conversely,
g*g € GLa(H) and X € Q, then

g X -1=9gXg"—gg"+99" —1=9(X —1)g" + 99" — 1 € Bo(H).

The preceding calculations show that the group G is the natural sym-
metry group of the domain €2. Similar observations can be made for real and
quaternionic Hilbert spaces.

To construct a natural Lie group structure on the group G, we first observe
that the polar decomposition implies that

G2 = U(H) exp(Hermy(H)) = U(H) Uy(H) exp(Hermy(H)) = U(H) GLy(H).
We first consider the semidirect product group
S :=GLy(H) x U(H).

Then
N :={(g9,97"):9 € Uz(H)} = Uy(H)

is a closed normal subgroup of S. It is the kernel of the multiplication map
m:S —» Ga, (a,b) — ab

which is in particular continuous with respect to the uniform topology on Gs.
The group S has a natural Banach—Lie group structure. The group S is diffeo-
morphic to

Hermy(H) x Ug(H) x U(H) =2 Hermy(H) x N x U(H),

showing that N is a submanifold of S. Hence S/N carries a natural Lie group
structure such that it is diffeomorphic to U(H) x Hermy(H) (cf. Remark IV.4).m

Some general results on homotopy groups

Lemma A.7. If X is a Hausdorff space which is carries the direct limit topology
with respect to the subspaces X, , n € N, with X,, C X,,41, then

—

for every k € Ny .

Proof. We claim that each compact subset K C X is contained in some X,,.
If this is not so, then for each n € N we pick z,, € K\ X,,. Theset M := {x,:n €
N} satisfies MNX,, C {x1,...,Tm-1}. Therefore M NX,, is closed for each m,
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so that M is a closed subset of X. Thus M C K implies that M is compact.
The same argument applies to the subsets M,, := {xm, Tm11,...} € M. Now
Nmen Mm # O follows from the compactness of the sets M,,. On the other
hand M,,11 N X,, = O implies that

) Mm X\ | Xm=0.

meN meEN

This contradiction shows that there exists an n € N with K C X,,.

Now let v:S¥ — X be a continuous map. Then v(S¥) is a compact subset
of X, hence contained in some X,,, and since X,, — X is an embedding, the
corestriction v: S¥ — X,, is continuous. Therefore the natural map

lim 7 (X,,) — 7 (X)

—

is surjective. To see that it is injective, we apply the same argument to the range
of a homotopy of two continuous maps v;: S¥ — X, and 7s: Sk — X, - We find
that there exists ng > max(ni,n2) such that 7 (©ng ny) (V1)) = Tk (@ng.n. ) ([(12]) 5
where ¢, n,: X1 — X3 and ¢y, p,: Xo — X3 are the embeddings. [

The following theorem is quite useful to calculate homotopy groups:

Theorem A.8. Let Vi and Vs be locally convex topological vector spaces
and f:V1 — Va2 a continuous linear map with dense range. Let U C Vo be an
open subset and put U := f~1(U) and f = f - Assume that Vi and V> are

metrizable or, more generally, that U and U are paracompact. Then f U—U
1s a homotopy equivalence.

Proof. Thisis Theorem 16 in [Pa66]. A quite direct proof of the corresponding
result for Banach spaces can be found in [At67, p.164]. [

The following theorem is particularly useful for separable spaces:

Theorem A.9. Let V be a locally convex space and (E,)nen an increasing
sequence of finite-dimensional subspaces of V' such that their union is dense
m V. Given an open subset U C V, let U, := U N E,, and consider the
direct limit topological space Uy, = h_r)n U,. Then if V is metrizable or, more

generally, if U s paracompact, then the inclusion map Uy — U 1s a homotopy
equivalence.

Proof. This is the corollary to Theorem 17 in [Pa66]. ]

Theorem A.10. Let H be an infinite-dimensional Hilbert space over K = R,
C or H and p € [1,00]. Then for every k € Ny we have

7, (GLy(H)) =2 h_r}n T (GL(n, K)).
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Proof. Let Hy C H be a separable closed subspace. We write operators on
H as (2 x 2)-block matrices with respect to the decomposition H = H, & HZ.
First we show that the natural inclusion map

GLy(H,) — GL,(H), AH(;&; 2)

induces isomorphism for all homotopy groups.

Let X be a separable compact space and v: X — GL,(H) be a continuous
map. Then for every z € X the the range of y(x) — 1 is a separable subspace
because the operator y(z)—1 is compact. Since X is separable, the closure H, of
the space spanned by all the separable subspaces im(y(z)—1) and im(y(z)*—1),
x € X, is separable. Let v € U(H) with u.H., = H. Since U(H) is connected
(an easy consequence of the Spectral Theorem for Unitary Operators), there
exists a continuous curve «a:[0,1] — U(H) with «(0) =1 and «(1) = w. Then
h(t,x) := a(t)y(x) is a homotopy of v to a map whose range is contained in H.
Applying this to X = S¥ and X = S¥x[0, 1], we conclude that the inclusion map
GL,(Hs) — GL,(H) induces isomorphism of all homotopy groups. Therefore
we may assume that H = Hy = [2(N,K).

Let e,, n € N, be the canonical orthonormal basis and consider the
corresponding subspaces E,, := span{ey,...,e,}. Then the affine subspaces

1+ B(E,) €1+ By(H)

form an ascending chain of finite-dimensional subspaces whose union is dense
(Exercise!). Now Theorem A.9 implies that the inclusion map

lim GL(E,) = lim (1 + B(B,)) N GL(H) — GLy(H) = (1 + B,(H)) N GL(H)

is a homotopy equivalence. Hence the assertion follows from Lemma A.7. ]

The main point in Theorem A.10 is that it permits to describe the homo-
topy groups of all the groups GL,,(H) explicitly by the Bott Periodicity Theorem.

Theorem A.11. (Bott Periodicity Theorem) Let K € {R,C,H}, d :=
dimp K and
GL(00,K) :=lim GL(n,K).
H

Then for k < d(n+1) —3 and q € N the maps
7(GL(n,K)) — 7 (GL(n + ¢, K))
are isomorphism, so that
7 (GL(00, K)) = 7 (GL(n, K)).
Moreover, we have the periodicity relations

g2 (GL(00, €)) 2 1 (GL(00, C)),  mnpa(GL(00, R)) 2 7, (GL (00, H))
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and
Tn4a(GL(00, H)) & 7, (GL(00, R)).

Therefore the homotopy groups of GL(oc0,K) are determined by the following
table:

GL(0, R) GL(00,C) GL(00, H)
0 Z2 {1} {1}
T Z2 Y/ {1}
2 {1} {1} {1}
T3 Z Z 7

Proof.  The first part is [Hu94, Th. 8.4.1] and the second part [Hu94, Cor. 9.5.2
and Rem. 9.5.4]. u

The preceding theorem implies in particular that for a complex Hilbert
space w1 (GLy(H)) = Z, so that it is a natural question how to describe the

universal covering group GL,(H). Below we will see how this can be done for
p € N. Here the case p =1 is quite special.

Higher order determinants

Definition A.12.  (a) Let H be a Hilbert space and X € By(H). Then
(1 + X)e™™ — 1 € By(H) follows from 1+ X — eX = X?(---). Hence the
generalized determinant

deta(1+ X) :=det (1 + X)e™¥)

makes sense for X € By(H) (cf. [Mi89, Prop. 6.2.3]). This means that for
g € GLo(H) we have
dety(g) = det(ge'™9).

For g € GL1(H) this simplifies to dety(g) = det(g)e™ =9,
(b) The construction in (a) can be generalized to all p € N as follows. For
X € B,(H) we define

det,, (1 + X) := det(1 + Ry(X)),

where
Ry(X) = -1+ (1+ X)exp (Z(_w’%).

The function det,, is called the Carleman—Fredholm determinant of order p. For
p =1 it is simply called the Fredholm determinant and for p = 2 the Hilbert-

Carleman determinant ([GGKO00, Section IX.1]). Then R,(X) € B(H) for
every X € B,(H) because R, is defined by an everywhere convergent power
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series which starts with a term of the form A\, X? + A\, 1 XPt1 + ... € By(H).
This is most easily seen by observing that

p—1 o]

zJ zJ
—log(1 + 2) Z T,
J=1 Jj=p J
so that
p-1 ZJ s zJ
9(z) == —1+ (1 +2) eXP(Z 7):—1+GXP Z 7)
J=1 Jj=p

for |z|] < 1. We conclude that g(z) = 2P f(z) for some holomorphic function

on the open unit disc in C. Since g is entire, the function f is entire with
g(z) = 2P f(z) for all z € C which implies that

X = Ry(X) =g(X) € XPB(H) C Bi(H)
is a holomorphic function. Therefore
det,: 1+ By(H) —» C
is a holomorphic function. [ ]

Remark A.13. Let 7:C* — GL,(H) be the holomorphic group homomor-
phism from Proposition IV.21. Then

_1 .
(dety o) (=) = d Sy ey
1) (2) = det((z)) det (‘exp (Y (-1
i=1
r p—=1, \j(1— V(Z))j p— 1—2
= zet ( J=1( 1y’ A{J ) = ze 1( )J( ) — zef(z)

for some polynomial function f:C — C. We conclude that the winding number
of the function det, oy:C* — C* is 1, and hence that

dety: 1 (GLy(H)) — m (C*) 2 Z

is an isomorphism. This provides a natural construction of the universal covering
space by a pullback construction

GL,(H) :={(g, 2) € GL,(H) x C:det,(g) = ¢*}.
For p =1 this leads immediately to the group
GL1(H) 2 SL(H) x C

(cf. Proposition IV.21). u
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