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Abstract

In this paper we investigate how methods of deriving conceptual structures from or-
dinal data can be justified structurally. For the investigation we choose a categorical
approach which is elaborated for suitable functors from the category of all ordinal
structures to the category of all closure structures. The main result yields that
the best functors are those which correspond to contra-ordinal scaling, a method
developed in Formal Concept Analysis [GW99].

1 Ordinal Structures and Ordinal Contexts

Mathematically, the ordinal nature of data is conceived best by quasi-orders,
i.e., by reflexive transitive binary relations. Therefore, sets carrying a family of
quasi-orders have been proposed as basic structures of a mathematical theory
for ordinal data in [SW92]. In the present paper, we discuss how conceptual
structures can be derived from those “ordinal structures” which may support
meaningful interpretations of the represented data. A method of deriving con-
ceptual structures has already been offered in [SW92], but it has not been fully
justified as a “coherence-preserving” transformation between the two differ-
ent structure theories. In the following, we use notions of category theory to
approach a solution of the justification problem.

First we recall some basic definitions and results from [SW92].

Definition 1 An ordinal structure is defined as a pair S := (S, (<n)nen)
where S is a set and (<,)nen is a family of quasi-orders on S.

Ordinal structures may be transformed, without loss of information, into so-
called “ordinal contexts” which belong to the basic structures of Formal Con-
cept Analysis [GW99].
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Definition 2 An ordinal context is defined as a set structure
K:= (G7 M: (Wm7 Em)m€M7 [)

consisting of sets G and M, a family (W, Cp)menr of ordered sets, and a
ternary relation I C G X Uperr({m} x W) such that (g,m,v) € I and
(g,m,w) € I always imply v =w. The elements of G, M, and W,, are called
objects, attributes, and attribute values, respectively.

For each ordinal context (G, M, (Wi, Cin)menr, I), partial maps m : G — W,
are defined by m(g) = w : <= (g, m,w) € I. An ordinal context is called
complete if these maps are total. Every ordinal context can be completed by
adding a greatest element “blank” to W,, if the map m is not total. In the
following, ordinal contexts are supposed to be complete. An ordinal context
can be represented by a data table where the rows and the columns are denoted
by the objects and the attributes, respectively, and the value written in row
g and column m is just m(g).

Figure 1 shows an ordinal context in which the objects are sights, the attributes
are guide-books, and the values are numbers classifying the sights according
to the listed guide-books (see [GW99]).

Now, we describe the canonical correspondence between ordinal structures and
ordinal contexts:

- Let K:= (G, M, (W, C)men, I) be an ordinal context.
Then S(K) = (G, ($m)mem)) with g <., b : <= m(g) C,, m(h) is an
ordinal structure.

- Let S:= (S, (<n)nen)) be an ordinal structure. We define
E, := E<, to be the equivalence relation generated by the quasi-order <,,
C, to be the order relation on S/FE, with [z]|E, C, [y|F, : <= x <, v,
and Ig := {(z,n,[z]E,)|x € S,n € N}.
Then K(S) := (S, N, (S/E,, Cp)nen, Is) is an ordinal context.

- For every ordinal structure S, we obtain S(K(S)) = S and,
for every ordinal context K, we obtain K(S(K)) = K if and only if the

attributes of which are surjective (as maps).

2 Formal Contexts and Closure Structures

Formal Concept Analysis, as presented in [GW99], offers a mathematical the-
ory of conceptual structures which have been proven successful to support
meaningful interpretations of data. In particular, it allows to turn ordinal
contexts into informative conceptual structures, the so-called “concept lat-
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1 Arch of Septimus Severus 1 1 2 1
2 Arch of Titus 1 2 2 0
3 Basilica Julia 0 01 O
4 Basilica of Maxentius 1 0 0 O
5 Column of Phocas 01 2 O
6 Curia 0 0 0 1
7 House of Vestals 0 01 O
8 Porticus of the twelve gods 0 1 1 1
9 Temple of Antonius and Faustina | 1 1 3 1
10 Temple of Castor and Pollux 2 3 1
11 Temple of Romulus 0O 1 0 O
12 Temple of Saturn 0 0 2 1
13 Temple of Vespasian 0 0 2 0
14 Temple of Vesta 0 2 2 1

Fig. 1. Ordinal context about sights of the “Forum Romanum”

tices”. In this section we recall some basic notions and results from Formal
Concept Analysis and show how they can be related to ordinal structures.

Definition 3 A formal context is defined as a set structure K := (G, M, I)
consisting of sets G and M and a binary relation I C G x M. The elements of
G and M are called objects and attributes, respectively, and the relationship
gIm s read: the object g has the attribute m.

A formal context can be represented by a cross-table where the rows and
columns are denoted by the objects and attributes, respectively, and a cross
in row ¢ and column m indicates the relationship g/m. Each formal context
can be understood as an ordinal context (G, M, (Wi, Cpn)menr, ) where W,
is a one-element set for every m € M. The following assignments

A A :={me M : gIm for every g € A}  for A CG,
B— B :={g9€ G:glmfor every me B} forBC M



establish a Galois connection between the power sets of G and M. A (formal)
concept of the context (G, M,I) is defined as a pair (A, B) with A C G,
BCM,A =DB,and B'= A. The set A is called the extent and B the intent
of the concept (A, B). An order relation between the concepts of a context
(G, M, I), modelling the subconcept-superconcept-relation is defined by

(AlyBl) < (AQ,BQ) < Al - A2 (<:> BQ - Bl)

The ordered set B(G, M, I) of all concepts of the context (G, M, I) together
with the defined order relation is always a complete lattice, called the concept
lattice of (G, M, I). The set U(K) of all (concept) extents of K := (G, M, I)
ordered by set-theoretical inclusion is denoted by U(K). Since a concept (A, B)
is uniquely determined by its extent A, in particular A = N,,cp{m}, the
lattices B(G, M, I) and Y(K) are naturally isomorphic ({m}’ is the extent
of the concept ({m}',{m}") and called the attribute extent of m). The fact
that, in (G, M, I), intersections of extents are always extents again, yields that
(G, MG, M, I)) is a “closure structure” within the meaning of the following
definition:

Definition 4 A closure structure is defined as a pair $ := (S, 9) where S is
a set and $) 1s a closure system on S, i.e., a set of subsets of S containing S
itself and each intersection of its members. The corresponding closure operator

Hyg is defined by

Hy(A)=({BeH|AC B} forACS.

Now, we are able to describe a canonical correspondence between closure struc-
tures and formal contexts:

- Let K := (G, M, I) be a formal context.
Then H(K) := (G, U(G, M, 1)) is a closure structure.
- Let 9 := (5, $) be a closure structure.
Then K(9) := (S, 9, €) is a formal context.
- For every closure structure $), we obtain H(K($H)) = $ and,
for every formal context K, we obtain K($(K)) = K if and only if, in K|
the set of all extents equals the set of all attribute extents (i.e. U(K) =

{{m}'[m € M3}).

Because of the correspondence between ordinal structures and ordinal con-
texts described in Section 1, we are able to establish connections between
ordinal structures and formal contexts (together with their closure structures
of concept extents) by using methods of conceptual scaling offered in [GW89]



(s. also [GW99]). Two frequently used methods of conceptual scaling are “or-
dinal scaling” and “contra-ordinal scaling”:

- By ordinal scaling, an ordinal context K := (G, M, Wy, Ci)menr, I) is
transformed into the formal context K, := (G, M,, I,)
where M, := U e {m} x Wy, and gl,(m,w,,) : <= m

- By contra-ordinal scaling, an ordinal context K := (G, M
is transformed into the formal context K., := (

where M, .= X W,, and gl.o(Wp)men : = In € M : n(g) 2 wy,.
meM

3 Ordinal Closure Functors

In the previous sections, correspondences between ordinal structures and or-
dinal contexts as well as between closure structures and formal contexts have
been described. In addition, by methods of turning ordinal contexts into for-
mal contexts, it was made explicit how we may derive from ordinal contexts
conceptual structures, namely the closure structures of concept extents of the
resulting contexts (and, even more informative, their concept lattices). All
together yields procedures turning ordinal structures into closure structures
which allow the interpretation as conceptual hierarchies. Now, we want to
investigate how far those procedures can be justified as appropriate transfor-
mations of the theory of ordinal structures to the theory of closure structures.
For this, we use an understanding of “theories” which is given by suitably
chosen categories. Then the considered transformations can be represented
by covariant functors which should keep the given information as much as
possible. Figure 2 visualizes the transformations which are of interest.

ordinal structure ordinal context
S:= (5 (<p)nen) —m—m» K:= (G, M, W, Cm)mem, 1)

l |

closure structure formal context

$H:=(5,9) S K:= (G, M,I)

Fig. 2. Functorial transformations

The full description of Figure 2 as a categorical diagram is given in [PW02].
Here we restrict our considerations to covariant functors from the category
OS of all ordinal structures to the category C'S of all closure structures. First



we have to define the morphism of the categories O.S and C'S:

Definition 5 An OS-morphism from an ordinal structure S := (S, (<p)nen))
to an ordinal structure L := (T, (<,)pep)) is defined as a pair (¢,v) of maps
w:8 =T and ¢ : N — P where 1 is surjective and

<y = p(x) <ym) ¢(y) for all z,y € S.

Definition 6 A C'S-morphism from a closure structure $) := (S, ) to a clo-
sure structure R := (T, R) is defined as a map ¢ : S — T satisfying

v € Hy(A) = p(x) € Ha(p(A)) for allz € S and A C S.

By replacing the arrows = by double arrows <= in the definitions above,
we obtain the definitions of the so-called OS- and C'S-quasi-embeddings which
are used to specify “information preserving” covariant functors as the so-called
“strong ordinal closure functors”.

Definition 7 A covariant functor I' from the category OS to the category
CS is called an ordinal closure functor if I'(S) = (S, Hir(s)) for every ordinal
structure S and if T'(p, ) = ¢ for every OS-morphism (p, ).
An ordinal closure functor I' from OS to CS is called strong if, for every
OS-quasi-embedding (@, 1) between ordinal structures S and T, ¢ is a CS-
quasi-embedding between the closure structures I'(S) and I'(T).

The strong ordinal closure functors are models for the desired transformations
of the theory of ordinal structures to the theory of closure structures. In order
to describe all strong ordinal closure functors, we regard their effects to special
ordinal structures, namely quasi-ordered sets. Surprisingly, already the three
two-element quasi-ordered sets S; := (5;, <;) (i=0,1,2) with Sy = S} = Sy =
{s,t} and

<o = {(57 5)7 (tv t)}v <= {(57 5)7 (tv t)v (Svt)}v Soi= {(57 5)7 (tv t)v (Svt)v (tv S)}

are essential for our investigations. The following theorem allows us to restrict
our further investigations to strong ordinal closure functors [' with

() T(So) = (52, B(52)) and T(Sy) = (52, {0, {s}, 52}).

(For the proof of this theorem and the following theorems and propositions
we must refer to [PW02] because of space restrictions.)

Theorem 8 According to their effect to two-element quasi-ordered sets there
are four classes of strong ordinal closure functors I' from OS to C'S':

(1) T(Sy) = T(S1) = (52, {0, S2}),



(2) T(So)

Sp) = I'(51) = (52, B(52)),
(3) T(Sy) = (5, B(S2)) and I'(S,) = (52, {0, {5}, 52}),
(4) T(Sy) = (S2,B(S2)) and I'(S;) = (52, {0, {t}, S2}) (dual to (3)).

For all strong ordinal closure functors, we have I'(Sy) = (S, {0, S2}).

There is, up to duality, only one non-trivial case, namely the case in which
[ satisfies the condition (x); let us call T' in this case a non-trivial strong
ordinal closure functor. For those functors we can prove the following structure
theorem:

Theorem 9 A non-trivial strong ordinal closure functor I' maps each quasi-
ordered set S := (S, <) to the closure system isomorphic to (S,3(S)) where
J(S) is the set of all order ideals of S := (5, <).

The structure theorem yields that a non-trivial strong ordinal closure functor
is, up to isomorphism, uniquely-defined on all quasi-ordered sets. For lifting
this uniqueness result to arbitrary ordinal structures, the following proposi-
tions are useful:

Proposition 10 For a non-trivial strong ordinal closure functor I', an OS-
morphism (@, 1) between quasi-ordered sets S and T is an OS-quasi-embedding
if and only if ¢ is a CS-quasi-embedding between T'(S) and T'(T).

Proposition 11 Let S := (S, (<,)nen) be an ordinal structure and let E,, be
the equivalence relation on S generated by <,. Then

(@, 1) : 8 = (X (S/En), (Sp)pen)

neN

with 90(37) = ([x]En)nEN; 7/’(?) =p and (xn)nEN Ep (yn)nEN = Ly Sp Yp
(p € N) is an OS-quasi-embedding.

Now, we can summarize our investigations by the following theorem, for which

we need one more definition, namely that of the direct product of formal con-

texts: X (Gy, My, I) = (X Gy, X My, V) where (g)ierV (me)er : <
teT teT  teT

ds € T : gsIyms.

Theorem 12 (Main Theorem) Let I' be a non-trivial strong ordinal closure
functor. Then, for all quasi-ordered sets (S, <) and (Sp, <) (n € N), we have

(S, <) = (S,4(S, 8, #)) and

nenN neN

In general, T, (S) := (S, UK., )) with K := K(S) for ordinal structures S and



Lo, ) == @ for OS-morphisms (p, ) define a non-trivial strong ordinal
closure functor I'c,.

Our investigations have shown that, from the viewpoint of categorical struc-
ture theory, contra-ordinal scaling is the best method for deriving conceptual
structures from ordinal data. Of course, contents and purposes might never-
theless suggest other methods.

Finally we want to demonstrate our results by the example in Section 1. There
is given an ordinal context describing the classification of sights by different
guide-books. The corresponding ordinal structure consists of a set S of objects
(i.e. sights) and of four quasi-orders <; (i = 1,2, 3,4) on the values of the four
attributes (i.e. the guide-books). The defined non-trivial strong ordinal closure
functor I'., maps this ordinal structure to the closure structure represented in
Figure 3 by a line diagram of the corresponding lattice of concept extents. A
little circle in the diagram represents the extent consisting of all the sights the
labels of which are attached to a circle on some descending path starting from
the considered circle. According to the Main Theorem, the presented lattice
is isomorhic to a sublattice of the direct product of the chains ({0,1}, <),
({0,1,2}, <), ({0,1,2,3}, <), and ({0, 1}, <). In this sublattice, a sight is rep-
resented by the quadruple of those numbers which are in the row of the table
of Figure 1 headed by the name of the sight. Each V-irreducible quadruple is
also an “attribute label” of a A-irreducible element, namely the largest element
of the sublattice not above the V-irreducible quadruple. Via those “attribute
labels”, the object quadruples obtain their intensional meaning.

For our example, inspite of a missing categorical justification in general, ordi-
nal scaling yields a meaningful conceptual structure too which is represented
as a concept lattice in [GW99], p. 45.
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Fig. 3. Closure structure of concept extents of the ordinal data in Figure 1



