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Abstrat

In this paper we investigate how methods of deriving oneptual strutures from or-

dinal data an be justi�ed struturally. For the investigation we hoose a ategorial

approah whih is elaborated for suitable funtors from the ategory of all ordinal

strutures to the ategory of all losure strutures. The main result yields that

the best funtors are those whih orrespond to ontra-ordinal saling, a method

developed in Formal Conept Analysis [GW99℄.

1 Ordinal Strutures and Ordinal Contexts

Mathematially, the ordinal nature of data is oneived best by quasi-orders,

i.e., by reexive transitive binary relations. Therefore, sets arrying a family of

quasi-orders have been proposed as basi strutures of a mathematial theory

for ordinal data in [SW92℄. In the present paper, we disuss how oneptual

strutures an be derived from those \ordinal strutures" whih may support

meaningful interpretations of the represented data. A method of deriving on-

eptual strutures has already been o�ered in [SW92℄, but it has not been fully

justi�ed as a \oherene-preserving" transformation between the two di�er-

ent struture theories. In the following, we use notions of ategory theory to

approah a solution of the justi�ation problem.

First we reall some basi de�nitions and results from [SW92℄.

De�nition 1 An ordinal struture is de�ned as a pair S := (S; (�

n

)

n2N

)

where S is a set and (�

n

)

n2N

is a family of quasi-orders on S.

Ordinal strutures may be transformed, without loss of information, into so-

alled \ordinal ontexts" whih belong to the basi strutures of Formal Con-

ept Analysis [GW99℄.
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De�nition 2 An ordinal ontext is de�ned as a set struture

K := (G;M; (W

m

;v

m

)

m2M

; I)

onsisting of sets G and M , a family (W

m

;v

m

)

m2M

of ordered sets, and a

ternary relation I � G �

S

m2M

(fmg � W

m

) suh that (g;m; v) 2 I and

(g;m;w) 2 I always imply v = w. The elements of G, M , and W

m

are alled

objets, attributes, and attribute values, respetively.

For eah ordinal ontext (G;M; (W

m

;v

m

)

m2M

; I), partial maps m : G!W

m

are de�ned by m(g) = w : () (g;m;w) 2 I. An ordinal ontext is alled

omplete if these maps are total. Every ordinal ontext an be ompleted by

adding a greatest element \blank" to W

m

if the map m is not total. In the

following, ordinal ontexts are supposed to be omplete. An ordinal ontext

an be represented by a data table where the rows and the olumns are denoted

by the objets and the attributes, respetively, and the value written in row

g and olumn m is just m(g).

Figure 1 shows an ordinal ontext in whih the objets are sights, the attributes

are guide-books, and the values are numbers lassifying the sights aording

to the listed guide-books (see [GW99℄).

Now, we desribe the anonial orrespondene between ordinal strutures and

ordinal ontexts:

- Let K := (G;M; (W

m

;v

m

)

m2M

; I) be an ordinal ontext.

Then S(K ) := (G; (�

m

)

m2M

)) with g �

m

h : () m(g) v

m

m(h) is an

ordinal struture.

- Let S := (S; (�

n

)

n2N

)) be an ordinal struture. We de�ne

E

n

:= E

�

n

to be the equivalene relation generated by the quasi-order �

n

,

v

n

to be the order relation on S=E

n

with [x℄E

n

v

n

[y℄E

n

:() x �

n

y,

and I

S

:= f(x; n; [x℄E

n

)jx 2 S; n 2 Ng.

Then K (S ) := (S;N; (S=E

n

;v

n

)

n2N

; I

S

) is an ordinal ontext.

- For every ordinal struture S, we obtain S(K (S )) = S and,

for every ordinal ontext K , we obtain K (S (K ))

�

=

K if and only if the

attributes of whih are surjetive (as maps).

2 Formal Contexts and Closure Strutures

Formal Conept Analysis, as presented in [GW99℄, o�ers a mathematial the-

ory of oneptual strutures whih have been proven suessful to support

meaningful interpretations of data. In partiular, it allows to turn ordinal

ontexts into informative oneptual strutures, the so-alled \onept lat-
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 2  Arch of Titus

1  Arch of Septimus Severus

 3  Basilica Julia

4  Basilica of Maxentius

5  Column of Phocas

6  Curia

7  House of Vestals

 8  Porticus of the twelve gods

9  Temple of Antonius and Faustina

10  Temple of Castor and Pollux

 11  Temple of Romulus

  12  Temple of Saturn

13  Temple of Vespasian

14  Temple of Vesta
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Fig. 1. Ordinal ontext about sights of the \Forum Romanum"

ties". In this setion we reall some basi notions and results from Formal

Conept Analysis and show how they an be related to ordinal strutures.

De�nition 3 A formal ontext is de�ned as a set struture K := (G;M; I)

onsisting of sets G and M and a binary relation I � G�M . The elements of

G and M are alled objets and attributes, respetively, and the relationship

gIm is read: the objet g has the attribute m.

A formal ontext an be represented by a ross-table where the rows and

olumns are denoted by the objets and attributes, respetively, and a ross

in row g and olumn m indiates the relationship gIm. Eah formal ontext

an be understood as an ordinal ontext (G;M; (W

m

;v

m

)

m2M

; I) where W

m

is a one-element set for every m 2M . The following assignments

A 7!A

0

:= fm 2M : gIm for every g 2 Ag for A � G;

B 7!B

0

:= fg 2 G : gIm for every m 2 Bg for B �M
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establish a Galois onnetion between the power sets of G and M . A (formal)

onept of the ontext (G;M; I) is de�ned as a pair (A;B) with A � G,

B �M , A

0

= B, and B

0

= A. The set A is alled the extent and B the intent

of the onept (A;B). An order relation between the onepts of a ontext

(G;M; I), modelling the subonept-superonept-relation is de�ned by

(A

1

; B

1

) � (A

2

; B

2

) :() A

1

� A

2

(() B

2

� B

1

):

The ordered set B(G;M; I) of all onepts of the ontext (G;M; I) together

with the de�ned order relation is always a omplete lattie, alled the onept

lattie of (G;M; I). The set U(K ) of all (onept) extents of K := (G;M; I)

ordered by set-theoretial inlusion is denoted by U(K ). Sine a onept (A;B)

is uniquely determined by its extent A, in partiular A =

T

m2B

fmg

0

, the

latties B(G;M; I) and U(K ) are naturally isomorphi (fmg

0

is the extent

of the onept (fmg

0

; fmg

00

) and alled the attribute extent of m). The fat

that, in (G;M; I), intersetions of extents are always extents again, yields that

(G;U(G;M; I)) is a \losure struture" within the meaning of the following

de�nition:

De�nition 4 A losure struture is de�ned as a pair H := (S;H) where S is

a set and H is a losure system on S, i.e., a set of subsets of S ontaining S

itself and eah intersetion of its members. The orresponding losure operator

H

H

is de�ned by

H

H

(A) :=

\

fB 2 H j A � Bg for A � S:

Now, we are able to desribe a anonial orrespondene between losure stru-

tures and formal ontexts:

- Let K := (G;M; I) be a formal ontext.

Then H(K ) := (G;U(G;M; I)) is a losure struture.

- Let H := (S;H) be a losure struture.

Then K (H) := (S;H;2) is a formal ontext.

- For every losure struture H, we obtain H(K (H)) = H and,

for every formal ontext K , we obtain K (H(K ))

�

=

K if and only if, in K ,

the set of all extents equals the set of all attribute extents (i.e. U(K ) =

ffmg

0

jm 2Mg).

Beause of the orrespondene between ordinal strutures and ordinal on-

texts desribed in Setion 1, we are able to establish onnetions between

ordinal strutures and formal ontexts (together with their losure strutures

of onept extents) by using methods of oneptual saling o�ered in [GW89℄

4



(s. also [GW99℄). Two frequently used methods of oneptual saling are \or-

dinal saling" and \ontra-ordinal saling":

- By ordinal saling, an ordinal ontext K := (G;M; (W

m

;v

m

)

m2M

; I) is

transformed into the formal ontext K

o

:= (G;M

o

; I

o

)

where M

o

:=

S

m2M

fmg �W

m

and gI

o

(m;w

m

) :() m(g) v

m

w

m

.

- By ontra-ordinal saling, an ordinal ontext K := (G;M; (W

m

;v

m

)

m2M

; I)

is transformed into the formal ontext K

o

:= (G;M

o

; I

o

)

where M

o

:= �

m2M

W

m

and gI

o

(w

m

)

m2M

:() 9n 2M : n(g) 6w

n

w

n

.

3 Ordinal Closure Funtors

In the previous setions, orrespondenes between ordinal strutures and or-

dinal ontexts as well as between losure strutures and formal ontexts have

been desribed. In addition, by methods of turning ordinal ontexts into for-

mal ontexts, it was made expliit how we may derive from ordinal ontexts

oneptual strutures, namely the losure strutures of onept extents of the

resulting ontexts (and, even more informative, their onept latties). All

together yields proedures turning ordinal strutures into losure strutures

whih allow the interpretation as oneptual hierarhies. Now, we want to

investigate how far those proedures an be justi�ed as appropriate transfor-

mations of the theory of ordinal strutures to the theory of losure strutures.

For this, we use an understanding of \theories" whih is given by suitably

hosen ategories. Then the onsidered transformations an be represented

by ovariant funtors whih should keep the given information as muh as

possible. Figure 2 visualizes the transformations whih are of interest.

ordinal struture

S := (S; (�

n

)

n2N

)

ordinal ontext

K := (G;M; (W

m

;v

m

)

m2M

; I)

losure struture

H := (S;H)

formal ontext

K := (G;M; I)

-

�

-

�

? ?

Fig. 2. Funtorial transformations

The full desription of Figure 2 as a ategorial diagram is given in [PW02℄.

Here we restrit our onsiderations to ovariant funtors from the ategory

OS of all ordinal strutures to the ategory CS of all losure strutures. First
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we have to de�ne the morphism of the ategories OS and CS:

De�nition 5 An OS-morphism from an ordinal struture S := (S; (�

n

)

n2N

))

to an ordinal struture T := (T; (�

p

)

p2P

)) is de�ned as a pair (';  ) of maps

' : S ! T and  : N ! P where  is surjetive and

x �

n

y =) '(x) �

 (n)

'(y) for all x; y 2 S:

De�nition 6 A CS-morphism from a losure struture H := (S;H) to a lo-

sure struture K := (T;K) is de�ned as a map ' : S ! T satisfying

x 2 H

H

(A) =) '(x) 2 H

K

('(A)) for all x 2 S and A � S:

By replaing the arrows =) by double arrows () in the de�nitions above,

we obtain the de�nitions of the so-alled OS- and CS-quasi-embeddings whih

are used to speify \information preserving" ovariant funtors as the so-alled

\strong ordinal losure funtors".

De�nition 7 A ovariant funtor � from the ategory OS to the ategory

CS is alled an ordinal losure funtor if �(S) = (S;H

�(S)

) for every ordinal

struture S and if �(';  ) = ' for every OS-morphism (';  ).

An ordinal losure funtor � from OS to CS is alled strong if, for every

OS-quasi-embedding (';  ) between ordinal strutures S and T , ' is a CS-

quasi-embedding between the losure strutures �(S) and �(T ).

The strong ordinal losure funtors are models for the desired transformations

of the theory of ordinal strutures to the theory of losure strutures. In order

to desribe all strong ordinal losure funtors, we regard their e�ets to speial

ordinal strutures, namely quasi-ordered sets. Surprisingly, already the three

two-element quasi-ordered sets S

i

:= (S

i

;�

i

) (i=0,1,2) with S

0

= S

1

= S

2

=

fs; tg and

�

0

:= f(s; s); (t; t)g; �

1

:= f(s; s); (t; t); (s; t)g; �

2

:= f(s; s); (t; t); (s; t); (t; s)g

are essential for our investigations. The following theorem allows us to restrit

our further investigations to strong ordinal losure funtors � with

(?) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; fsg; S

2

g):

(For the proof of this theorem and the following theorems and propositions

we must refer to [PW02℄ beause of spae restritions.)

Theorem 8 Aording to their e�et to two-element quasi-ordered sets there

are four lasses of strong ordinal losure funtors � from OS to CS:

(1) �(S

0

) = �(S

1

) = (S

2

; f;; S

2

g),
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(2) �(S

0

) = �(S

1

) = (S

2

;P(S

2

)),

(3) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; fsg; S

2

g),

(4) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; ftg; S

2

g) (dual to (3)).

For all strong ordinal losure funtors, we have �(S

2

) = (S

2

; f;; S

2

g).

There is, up to duality, only one non-trivial ase, namely the ase in whih

� satis�es the ondition (?); let us all � in this ase a non-trivial strong

ordinal losure funtor. For those funtors we an prove the following struture

theorem:

Theorem 9 A non-trivial strong ordinal losure funtor � maps eah quasi-

ordered set S := (S;�) to the losure system isomorphi to (S; I(S)) where

I(S) is the set of all order ideals of S := (S;�).

The struture theorem yields that a non-trivial strong ordinal losure funtor

is, up to isomorphism, uniquely-de�ned on all quasi-ordered sets. For lifting

this uniqueness result to arbitrary ordinal strutures, the following proposi-

tions are useful:

Proposition 10 For a non-trivial strong ordinal losure funtor �, an OS-

morphism (';  ) between quasi-ordered sets S and T is an OS-quasi-embedding

if and only if ' is a CS-quasi-embedding between �(S) and �(T ).

Proposition 11 Let S := (S; (�

n

)

n2N

) be an ordinal struture and let E

n

be

the equivalene relation on S generated by �

n

. Then

(';  ) : S ! (�

n2N

(S=E

n

); (v

p

)

p2N

)

with '(x) := ([x℄E

n

)

n2N

,  (p) := p and (x

n

)

n2N

v

p

(y

n

)

n2N

: () x

p

�

p

y

p

(p 2 N) is an OS-quasi-embedding.

Now, we an summarize our investigations by the following theorem, for whih

we need one more de�nition, namely that of the diret produt of formal on-

texts: �

t2T

(G

t

;M

t

; I

t

) := (�

t2T

G

t

;�

t2T

M

t

;r) where (g

t

)

t2T

r(m

t

)

t2T

: ()

9s 2 T : g

s

I

s

m

s

.

Theorem 12 (Main Theorem) Let � be a non-trivial strong ordinal losure

funtor. Then, for all quasi-ordered sets (S;�) and (S

n

;�

n

) (n 2 N), we have

�(S;�) = (S;U(S; S; 6�)) and

�(�

n2N

(S

n

;�

n

)) = (�

n2N

S

n

;U(�

n2N

(S

n

; S

n

; 6�

n

))):

In general, �

o

(S) := (S;U(K

o

)) with K := K (S) for ordinal strutures S and
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�

o

(';  ) := ' for OS-morphisms (';  ) de�ne a non-trivial strong ordinal

losure funtor �

o

.

Our investigations have shown that, from the viewpoint of ategorial stru-

ture theory, ontra-ordinal saling is the best method for deriving oneptual

strutures from ordinal data. Of ourse, ontents and purposes might never-

theless suggest other methods.

Finally we want to demonstrate our results by the example in Setion 1. There

is given an ordinal ontext desribing the lassi�ation of sights by di�erent

guide-books. The orresponding ordinal struture onsists of a set S of objets

(i.e. sights) and of four quasi-orders �

i

(i = 1; 2; 3; 4) on the values of the four

attributes (i.e. the guide-books). The de�ned non-trivial strong ordinal losure

funtor �

o

maps this ordinal struture to the losure struture represented in

Figure 3 by a line diagram of the orresponding lattie of onept extents. A

little irle in the diagram represents the extent onsisting of all the sights the

labels of whih are attahed to a irle on some desending path starting from

the onsidered irle. Aording to the Main Theorem, the presented lattie

is isomorhi to a sublattie of the diret produt of the hains (f0; 1g;�),

(f0; 1; 2g;�), (f0; 1; 2; 3g;�), and (f0; 1g;�). In this sublattie, a sight is rep-

resented by the quadruple of those numbers whih are in the row of the table

of Figure 1 headed by the name of the sight. Eah _-irreduible quadruple is

also an \attribute label" of a ^-irreduible element, namely the largest element

of the sublattie not above the _-irreduible quadruple. Via those \attribute

labels", the objet quadruples obtain their intensional meaning.

For our example, inspite of a missing ategorial justi�ation in general, ordi-

nal saling yields a meaningful oneptual struture too whih is represented

as a onept lattie in [GW99℄, p. 45.
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Fig. 3. Closure struture of onept extents of the ordinal data in Figure 1
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