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Abstra
t

In this paper we investigate how methods of deriving 
on
eptual stru
tures from or-

dinal data 
an be justi�ed stru
turally. For the investigation we 
hoose a 
ategori
al

approa
h whi
h is elaborated for suitable fun
tors from the 
ategory of all ordinal

stru
tures to the 
ategory of all 
losure stru
tures. The main result yields that

the best fun
tors are those whi
h 
orrespond to 
ontra-ordinal s
aling, a method

developed in Formal Con
ept Analysis [GW99℄.

1 Ordinal Stru
tures and Ordinal Contexts

Mathemati
ally, the ordinal nature of data is 
on
eived best by quasi-orders,

i.e., by re
exive transitive binary relations. Therefore, sets 
arrying a family of

quasi-orders have been proposed as basi
 stru
tures of a mathemati
al theory

for ordinal data in [SW92℄. In the present paper, we dis
uss how 
on
eptual

stru
tures 
an be derived from those \ordinal stru
tures" whi
h may support

meaningful interpretations of the represented data. A method of deriving 
on-


eptual stru
tures has already been o�ered in [SW92℄, but it has not been fully

justi�ed as a \
oheren
e-preserving" transformation between the two di�er-

ent stru
ture theories. In the following, we use notions of 
ategory theory to

approa
h a solution of the justi�
ation problem.

First we re
all some basi
 de�nitions and results from [SW92℄.

De�nition 1 An ordinal stru
ture is de�ned as a pair S := (S; (�

n

)

n2N

)

where S is a set and (�

n

)

n2N

is a family of quasi-orders on S.

Ordinal stru
tures may be transformed, without loss of information, into so-


alled \ordinal 
ontexts" whi
h belong to the basi
 stru
tures of Formal Con-


ept Analysis [GW99℄.
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De�nition 2 An ordinal 
ontext is de�ned as a set stru
ture

K := (G;M; (W

m

;v

m

)

m2M

; I)


onsisting of sets G and M , a family (W

m

;v

m

)

m2M

of ordered sets, and a

ternary relation I � G �

S

m2M

(fmg � W

m

) su
h that (g;m; v) 2 I and

(g;m;w) 2 I always imply v = w. The elements of G, M , and W

m

are 
alled

obje
ts, attributes, and attribute values, respe
tively.

For ea
h ordinal 
ontext (G;M; (W

m

;v

m

)

m2M

; I), partial maps m : G!W

m

are de�ned by m(g) = w : () (g;m;w) 2 I. An ordinal 
ontext is 
alled


omplete if these maps are total. Every ordinal 
ontext 
an be 
ompleted by

adding a greatest element \blank" to W

m

if the map m is not total. In the

following, ordinal 
ontexts are supposed to be 
omplete. An ordinal 
ontext


an be represented by a data table where the rows and the 
olumns are denoted

by the obje
ts and the attributes, respe
tively, and the value written in row

g and 
olumn m is just m(g).

Figure 1 shows an ordinal 
ontext in whi
h the obje
ts are sights, the attributes

are guide-books, and the values are numbers 
lassifying the sights a

ording

to the listed guide-books (see [GW99℄).

Now, we des
ribe the 
anoni
al 
orresponden
e between ordinal stru
tures and

ordinal 
ontexts:

- Let K := (G;M; (W

m

;v

m

)

m2M

; I) be an ordinal 
ontext.

Then S(K ) := (G; (�

m

)

m2M

)) with g �

m

h : () m(g) v

m

m(h) is an

ordinal stru
ture.

- Let S := (S; (�

n

)

n2N

)) be an ordinal stru
ture. We de�ne

E

n

:= E

�

n

to be the equivalen
e relation generated by the quasi-order �

n

,

v

n

to be the order relation on S=E

n

with [x℄E

n

v

n

[y℄E

n

:() x �

n

y,

and I

S

:= f(x; n; [x℄E

n

)jx 2 S; n 2 Ng.

Then K (S ) := (S;N; (S=E

n

;v

n

)

n2N

; I

S

) is an ordinal 
ontext.

- For every ordinal stru
ture S, we obtain S(K (S )) = S and,

for every ordinal 
ontext K , we obtain K (S (K ))

�

=

K if and only if the

attributes of whi
h are surje
tive (as maps).

2 Formal Contexts and Closure Stru
tures

Formal Con
ept Analysis, as presented in [GW99℄, o�ers a mathemati
al the-

ory of 
on
eptual stru
tures whi
h have been proven su

essful to support

meaningful interpretations of data. In parti
ular, it allows to turn ordinal


ontexts into informative 
on
eptual stru
tures, the so-
alled \
on
ept lat-
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 2  Arch of Titus

1  Arch of Septimus Severus

 3  Basilica Julia

4  Basilica of Maxentius

5  Column of Phocas

6  Curia

7  House of Vestals

 8  Porticus of the twelve gods

9  Temple of Antonius and Faustina

10  Temple of Castor and Pollux

 11  Temple of Romulus

  12  Temple of Saturn

13  Temple of Vespasian

14  Temple of Vesta
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Fig. 1. Ordinal 
ontext about sights of the \Forum Romanum"

ti
es". In this se
tion we re
all some basi
 notions and results from Formal

Con
ept Analysis and show how they 
an be related to ordinal stru
tures.

De�nition 3 A formal 
ontext is de�ned as a set stru
ture K := (G;M; I)


onsisting of sets G and M and a binary relation I � G�M . The elements of

G and M are 
alled obje
ts and attributes, respe
tively, and the relationship

gIm is read: the obje
t g has the attribute m.

A formal 
ontext 
an be represented by a 
ross-table where the rows and


olumns are denoted by the obje
ts and attributes, respe
tively, and a 
ross

in row g and 
olumn m indi
ates the relationship gIm. Ea
h formal 
ontext


an be understood as an ordinal 
ontext (G;M; (W

m

;v

m

)

m2M

; I) where W

m

is a one-element set for every m 2M . The following assignments

A 7!A

0

:= fm 2M : gIm for every g 2 Ag for A � G;

B 7!B

0

:= fg 2 G : gIm for every m 2 Bg for B �M
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establish a Galois 
onne
tion between the power sets of G and M . A (formal)


on
ept of the 
ontext (G;M; I) is de�ned as a pair (A;B) with A � G,

B �M , A

0

= B, and B

0

= A. The set A is 
alled the extent and B the intent

of the 
on
ept (A;B). An order relation between the 
on
epts of a 
ontext

(G;M; I), modelling the sub
on
ept-super
on
ept-relation is de�ned by

(A

1

; B

1

) � (A

2

; B

2

) :() A

1

� A

2

(() B

2

� B

1

):

The ordered set B(G;M; I) of all 
on
epts of the 
ontext (G;M; I) together

with the de�ned order relation is always a 
omplete latti
e, 
alled the 
on
ept

latti
e of (G;M; I). The set U(K ) of all (
on
ept) extents of K := (G;M; I)

ordered by set-theoreti
al in
lusion is denoted by U(K ). Sin
e a 
on
ept (A;B)

is uniquely determined by its extent A, in parti
ular A =

T

m2B

fmg

0

, the

latti
es B(G;M; I) and U(K ) are naturally isomorphi
 (fmg

0

is the extent

of the 
on
ept (fmg

0

; fmg

00

) and 
alled the attribute extent of m). The fa
t

that, in (G;M; I), interse
tions of extents are always extents again, yields that

(G;U(G;M; I)) is a \
losure stru
ture" within the meaning of the following

de�nition:

De�nition 4 A 
losure stru
ture is de�ned as a pair H := (S;H) where S is

a set and H is a 
losure system on S, i.e., a set of subsets of S 
ontaining S

itself and ea
h interse
tion of its members. The 
orresponding 
losure operator

H

H

is de�ned by

H

H

(A) :=

\

fB 2 H j A � Bg for A � S:

Now, we are able to des
ribe a 
anoni
al 
orresponden
e between 
losure stru
-

tures and formal 
ontexts:

- Let K := (G;M; I) be a formal 
ontext.

Then H(K ) := (G;U(G;M; I)) is a 
losure stru
ture.

- Let H := (S;H) be a 
losure stru
ture.

Then K (H) := (S;H;2) is a formal 
ontext.

- For every 
losure stru
ture H, we obtain H(K (H)) = H and,

for every formal 
ontext K , we obtain K (H(K ))

�

=

K if and only if, in K ,

the set of all extents equals the set of all attribute extents (i.e. U(K ) =

ffmg

0

jm 2Mg).

Be
ause of the 
orresponden
e between ordinal stru
tures and ordinal 
on-

texts des
ribed in Se
tion 1, we are able to establish 
onne
tions between

ordinal stru
tures and formal 
ontexts (together with their 
losure stru
tures

of 
on
ept extents) by using methods of 
on
eptual s
aling o�ered in [GW89℄
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(s. also [GW99℄). Two frequently used methods of 
on
eptual s
aling are \or-

dinal s
aling" and \
ontra-ordinal s
aling":

- By ordinal s
aling, an ordinal 
ontext K := (G;M; (W

m

;v

m

)

m2M

; I) is

transformed into the formal 
ontext K

o

:= (G;M

o

; I

o

)

where M

o

:=

S

m2M

fmg �W

m

and gI

o

(m;w

m

) :() m(g) v

m

w

m

.

- By 
ontra-ordinal s
aling, an ordinal 
ontext K := (G;M; (W

m

;v

m

)

m2M

; I)

is transformed into the formal 
ontext K


o

:= (G;M


o

; I


o

)

where M


o

:= �

m2M

W

m

and gI


o

(w

m

)

m2M

:() 9n 2M : n(g) 6w

n

w

n

.

3 Ordinal Closure Fun
tors

In the previous se
tions, 
orresponden
es between ordinal stru
tures and or-

dinal 
ontexts as well as between 
losure stru
tures and formal 
ontexts have

been des
ribed. In addition, by methods of turning ordinal 
ontexts into for-

mal 
ontexts, it was made expli
it how we may derive from ordinal 
ontexts


on
eptual stru
tures, namely the 
losure stru
tures of 
on
ept extents of the

resulting 
ontexts (and, even more informative, their 
on
ept latti
es). All

together yields pro
edures turning ordinal stru
tures into 
losure stru
tures

whi
h allow the interpretation as 
on
eptual hierar
hies. Now, we want to

investigate how far those pro
edures 
an be justi�ed as appropriate transfor-

mations of the theory of ordinal stru
tures to the theory of 
losure stru
tures.

For this, we use an understanding of \theories" whi
h is given by suitably


hosen 
ategories. Then the 
onsidered transformations 
an be represented

by 
ovariant fun
tors whi
h should keep the given information as mu
h as

possible. Figure 2 visualizes the transformations whi
h are of interest.

ordinal stru
ture

S := (S; (�

n

)

n2N

)

ordinal 
ontext

K := (G;M; (W

m

;v

m

)

m2M

; I)


losure stru
ture

H := (S;H)

formal 
ontext

K := (G;M; I)

-

�

-

�

? ?

Fig. 2. Fun
torial transformations

The full des
ription of Figure 2 as a 
ategori
al diagram is given in [PW02℄.

Here we restri
t our 
onsiderations to 
ovariant fun
tors from the 
ategory

OS of all ordinal stru
tures to the 
ategory CS of all 
losure stru
tures. First
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we have to de�ne the morphism of the 
ategories OS and CS:

De�nition 5 An OS-morphism from an ordinal stru
ture S := (S; (�

n

)

n2N

))

to an ordinal stru
ture T := (T; (�

p

)

p2P

)) is de�ned as a pair (';  ) of maps

' : S ! T and  : N ! P where  is surje
tive and

x �

n

y =) '(x) �

 (n)

'(y) for all x; y 2 S:

De�nition 6 A CS-morphism from a 
losure stru
ture H := (S;H) to a 
lo-

sure stru
ture K := (T;K) is de�ned as a map ' : S ! T satisfying

x 2 H

H

(A) =) '(x) 2 H

K

('(A)) for all x 2 S and A � S:

By repla
ing the arrows =) by double arrows () in the de�nitions above,

we obtain the de�nitions of the so-
alled OS- and CS-quasi-embeddings whi
h

are used to spe
ify \information preserving" 
ovariant fun
tors as the so-
alled

\strong ordinal 
losure fun
tors".

De�nition 7 A 
ovariant fun
tor � from the 
ategory OS to the 
ategory

CS is 
alled an ordinal 
losure fun
tor if �(S) = (S;H

�(S)

) for every ordinal

stru
ture S and if �(';  ) = ' for every OS-morphism (';  ).

An ordinal 
losure fun
tor � from OS to CS is 
alled strong if, for every

OS-quasi-embedding (';  ) between ordinal stru
tures S and T , ' is a CS-

quasi-embedding between the 
losure stru
tures �(S) and �(T ).

The strong ordinal 
losure fun
tors are models for the desired transformations

of the theory of ordinal stru
tures to the theory of 
losure stru
tures. In order

to des
ribe all strong ordinal 
losure fun
tors, we regard their e�e
ts to spe
ial

ordinal stru
tures, namely quasi-ordered sets. Surprisingly, already the three

two-element quasi-ordered sets S

i

:= (S

i

;�

i

) (i=0,1,2) with S

0

= S

1

= S

2

=

fs; tg and

�

0

:= f(s; s); (t; t)g; �

1

:= f(s; s); (t; t); (s; t)g; �

2

:= f(s; s); (t; t); (s; t); (t; s)g

are essential for our investigations. The following theorem allows us to restri
t

our further investigations to strong ordinal 
losure fun
tors � with

(?) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; fsg; S

2

g):

(For the proof of this theorem and the following theorems and propositions

we must refer to [PW02℄ be
ause of spa
e restri
tions.)

Theorem 8 A

ording to their e�e
t to two-element quasi-ordered sets there

are four 
lasses of strong ordinal 
losure fun
tors � from OS to CS:

(1) �(S

0

) = �(S

1

) = (S

2

; f;; S

2

g),
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(2) �(S

0

) = �(S

1

) = (S

2

;P(S

2

)),

(3) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; fsg; S

2

g),

(4) �(S

0

) = (S

2

;P(S

2

)) and �(S

1

) = (S

2

; f;; ftg; S

2

g) (dual to (3)).

For all strong ordinal 
losure fun
tors, we have �(S

2

) = (S

2

; f;; S

2

g).

There is, up to duality, only one non-trivial 
ase, namely the 
ase in whi
h

� satis�es the 
ondition (?); let us 
all � in this 
ase a non-trivial strong

ordinal 
losure fun
tor. For those fun
tors we 
an prove the following stru
ture

theorem:

Theorem 9 A non-trivial strong ordinal 
losure fun
tor � maps ea
h quasi-

ordered set S := (S;�) to the 
losure system isomorphi
 to (S; I(S)) where

I(S) is the set of all order ideals of S := (S;�).

The stru
ture theorem yields that a non-trivial strong ordinal 
losure fun
tor

is, up to isomorphism, uniquely-de�ned on all quasi-ordered sets. For lifting

this uniqueness result to arbitrary ordinal stru
tures, the following proposi-

tions are useful:

Proposition 10 For a non-trivial strong ordinal 
losure fun
tor �, an OS-

morphism (';  ) between quasi-ordered sets S and T is an OS-quasi-embedding

if and only if ' is a CS-quasi-embedding between �(S) and �(T ).

Proposition 11 Let S := (S; (�

n

)

n2N

) be an ordinal stru
ture and let E

n

be

the equivalen
e relation on S generated by �

n

. Then

(';  ) : S ! (�

n2N

(S=E

n

); (v

p

)

p2N

)

with '(x) := ([x℄E

n

)

n2N

,  (p) := p and (x

n

)

n2N

v

p

(y

n

)

n2N

: () x

p

�

p

y

p

(p 2 N) is an OS-quasi-embedding.

Now, we 
an summarize our investigations by the following theorem, for whi
h

we need one more de�nition, namely that of the dire
t produ
t of formal 
on-

texts: �

t2T

(G

t

;M

t

; I

t

) := (�

t2T

G

t

;�

t2T

M

t

;r) where (g

t

)

t2T

r(m

t

)

t2T

: ()

9s 2 T : g

s

I

s

m

s

.

Theorem 12 (Main Theorem) Let � be a non-trivial strong ordinal 
losure

fun
tor. Then, for all quasi-ordered sets (S;�) and (S

n

;�

n

) (n 2 N), we have

�(S;�) = (S;U(S; S; 6�)) and

�(�

n2N

(S

n

;�

n

)) = (�

n2N

S

n

;U(�

n2N

(S

n

; S

n

; 6�

n

))):

In general, �


o

(S) := (S;U(K


o

)) with K := K (S) for ordinal stru
tures S and
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�


o

(';  ) := ' for OS-morphisms (';  ) de�ne a non-trivial strong ordinal


losure fun
tor �


o

.

Our investigations have shown that, from the viewpoint of 
ategori
al stru
-

ture theory, 
ontra-ordinal s
aling is the best method for deriving 
on
eptual

stru
tures from ordinal data. Of 
ourse, 
ontents and purposes might never-

theless suggest other methods.

Finally we want to demonstrate our results by the example in Se
tion 1. There

is given an ordinal 
ontext des
ribing the 
lassi�
ation of sights by di�erent

guide-books. The 
orresponding ordinal stru
ture 
onsists of a set S of obje
ts

(i.e. sights) and of four quasi-orders �

i

(i = 1; 2; 3; 4) on the values of the four

attributes (i.e. the guide-books). The de�ned non-trivial strong ordinal 
losure

fun
tor �


o

maps this ordinal stru
ture to the 
losure stru
ture represented in

Figure 3 by a line diagram of the 
orresponding latti
e of 
on
ept extents. A

little 
ir
le in the diagram represents the extent 
onsisting of all the sights the

labels of whi
h are atta
hed to a 
ir
le on some des
ending path starting from

the 
onsidered 
ir
le. A

ording to the Main Theorem, the presented latti
e

is isomorhi
 to a sublatti
e of the dire
t produ
t of the 
hains (f0; 1g;�),

(f0; 1; 2g;�), (f0; 1; 2; 3g;�), and (f0; 1g;�). In this sublatti
e, a sight is rep-

resented by the quadruple of those numbers whi
h are in the row of the table

of Figure 1 headed by the name of the sight. Ea
h _-irredu
ible quadruple is

also an \attribute label" of a ^-irredu
ible element, namely the largest element

of the sublatti
e not above the _-irredu
ible quadruple. Via those \attribute

labels", the obje
t quadruples obtain their intensional meaning.

For our example, inspite of a missing 
ategori
al justi�
ation in general, ordi-

nal s
aling yields a meaningful 
on
eptual stru
ture too whi
h is represented

as a 
on
ept latti
e in [GW99℄, p. 45.
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Fig. 3. Closure stru
ture of 
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ept extents of the ordinal data in Figure 1
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