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Nany Letures on In�nite-Dimensional Lie Groups

Karl-Hermann Neeb

Abstrat. These are leture note of a ourse given in Februaru and Marh 2002 in Nany. The

main purpose of this ourse was to present some of the main ideas of in�nite-dimensional Lie theory

and to explain how it di�ers from the �nite-dimensional lassial theory. After the introdution

where we present some of the main types of in�nite-dimensional Lie groups: lineare Lie groups

assoiated to ontinuous inverse algebras, groups of maps and di�eomorphism groups, we turn in

more detail to manifolds modeled on loally onvex spaes. In Setion III we present some of the

basi Lie theory of loally onvex Lie groups, inluding a disussion of the exponential funtion and

the non-existene of groups for Lie algebras. In the �nal Setion IV we disuss the topology of the

main lasses of in�nite-dimensional Lie groups with an emphasis on their homotopy groups.

I. Introdution

Lie groups arise most naturally as symmetry groups or automorphism groups of algebrai or

geometri strutures. This is true for �nite-dimensional Lie groups and remains valid for in�nite-

dimensional Lie groups. Moreover, it is well known from �nite-dimensional Lie theory that not

every automorphism group of an algebrai or geometri struture is a Lie group. Limitations of

this type remain valid for in�nite-dimensional Lie groups as well, although many important groups

whih are not �nite-dimensional Lie groups have a natural struture as an in�nite-dimensional

Lie group.

In this introdution we disuss several lasses of in�nite-dimensional Lie groups without

going into details. The main purpose is to give an impression of the enormous variety of in�nite-

dimensional Lie groups and to explain some of the di�erenes to the �nite-dimensional theory.

The onept of an in�nite-dimensional Lie group

Our general idea of a Lie group is that it should be a manifold G (de�ned suitably in

an in�nite-dimensional ontext) whih arries a group struture for whih multipliation and

inversion are smooth maps. Therefore the onept of an in�nite-dimensional Lie group relies

very muh on the orresponding onept of an in�nite-dimensional manifold.

The onept of a Banah{Lie group, i.e., a Lie group modeled on a Banah spae, has been

introdued by G. Birkho� in [Bi38℄. The step to more general lasses of in�nite-dimensional

Lie groups modeled on omplete loally onvex spaes ours �rst in an artile of Marsden and

Abraham [MA70℄ in the ontext of hydrodynamis. This Lie group onept has been worked out

by J. Milnor in his Les Houhes leture notes [Mil83℄ whih provide many basi results of the

general theory. The observation that the ompleteness ondition on the underlying loally onvex

spae an be omitted for the basi theory is due to H. Gl�okner ([Gl01a℄). This is important for

quotient onstrutions beause quotients of omplete loally onvex spaes need not be omplete.

There are other, weaker, onepts of Lie groups, resp., in�nite-dimensional manifolds. One

is based on the \onvenient setting" for global analysis developed by Fr�ohliher, Kriegl and

Mihor ([FK88℄ and [KM97℄). In the ontext of Fr�ehet manifolds this setting does not di�er
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from the one mentioned above, but for more general model spaes it provides a onept of a

smooth map whih does not neessarily imply ontinuity, hene leads to Lie groups whih are

not topologial groups. Another approah is based on the onept of a di�eologial spae due

to J.-M. Souriau ([So85℄) whih an be used to study spaes like quotients of R by non-disrete

subgroups in a di�erential geometri ontext.

Throughout these notes K 2 fR; C g and all vetor spaes are real or omplex.

I.1. Linear Lie groups

In �nite-dimensional Lie theory, a natural approah to Lie groups is via matrix groups, i.e.,

subgroups of the group GL

n

(R) of invertible real n�n-matries. Sine every �nite-dimensional

algebra an be embedded into a matrix algebra, this is equivalent to onsidering subgroups of

the unit groups A

�

:= fa 2 A: (9b 2 A)ab = ba = 1g of �nite-dimensional unital assoiative

algebras A . The advantage of this approah is that one an de�ne the exponential funtion quite

diretly and thus take a shortut to several deeper results on Lie groups. This approah also

works quite well in the ontext of Banah-Lie groups. Here the linear Lie groups are subgroups

of the unit groups A

�

of Banah algebras A . To get some feeling for this ontext, let us take a

look at some types of Banah algebras.

Examples I.1.1. (a) If X is a Banah spae, then the spae B(X) of all ontinuous operators

on X is a unital Banah algebra with respet to the operator norm

kAk := supfkA:xk:x 2 X; kxk � 1g:

Conversely, if A is a unital Banah algebra, then we have an embedding L:A ,! B(A)

given by the left regular representation L(a):b := ab of A on itself. Therefore Banah algebras

are algebras of operators on Banah spaes whih are losed in the operator norm.

(b) If A is a unital Banah algebra, then the same holds for all the matrix algebras M

n

(A),

n 2 N . To see this, we may w.l.o.g. assume that A is a losed subalgebra of some B(X), X a

Banah spae. We endow the spae X

n

with the norm

k(x

1

; : : : ; x

n

)k := max(kx

1

k; : : : ; kx

n

k)

and onsider on M

n

(A) the operator norm oming from the embedding M

n

(A) ,! B(X

n

). This

turns M

n

(A) into a unital Banah algebra.

So far this works also in a �nite-dimensional ontext, but in general we an also onsider

the Banah spae

X

1

:= l

1

(N; X) := f(x

n

)

n2N

: kxk

1

:= sup

n2N

kx

n

k <1g

of all bounded X -valued sequenes. Then we have for eah n 2 N an isometri embedding

�

n

:M

n

(A) ,! B(X

1

); �

n

(a):(x

i

)

i2N

:=

�

n

X

j=1

a

ij

x

j

�

i2N

:

Based on this observation, we identify M

n

(A) with a losed subalgebra of B(X

1

) and de�ne

M

1

(A) :=

[

n

M

n

(A) � B(X

1

):

The elements of M

1

(A) an be viewed as in�nite matries a = (a

ij

)

i;j2N

with entries in A ,

where the matrix oeÆients a

ij

tend to zero for inreasing i and j . Note that the ompletion

M

1

(A) depends on the hoie of the norm on the spaes X

n

. If we take a norm of the type

kxk

p

:=

�

P

n

j=1

kx

j

k

p

�

1

p

, 1 � p <1 , then we obtain a di�erent ompletion.
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() If X is a ompat spae and B is a Banah algebra, then the spae C(X;B) is a Banah

algebra with respet to the sup-norm

kfk := supfkf(x)k:x 2 Xg:

(d) If S is a semigroup and B is a Banah algebra, then the Banah spae

A := l

1

(S;B) :=

n

f :S ! B: kfk

1

:=

X

s2S

kf(s)k <1

o

is a Banah algebra with respet to the onvolution produt

(f � g)(u) :=

X

s;t2S;st=u

f(s)g(t):

Note that the �niteness of kfk

1

implies that only ountably many values of the funtion f are

non-zero. In the ase where S is a group, we an write the onvolution produt also in the form

(f � g)(u) :=

X

s2S

f(s)g(s

�1

u):

As the preeding disussion shows, there are many types of Banah algebras A , and their

unit groups A

�

are basi examples of Banah{Lie groups.

Examples I.1.2. Further examples of Banah{Lie groups whih are more like �nite-dimensional

lassial groups an be obtained as follows.

(a) If X is a Banah spae and �:X � X ! K is a ontinuous bilinear form, then the

orresponding orthogonal group

O(X; �) := fg 2 GL(X): (8x; y 2 X)�(g:x; g:y) = �(x; y)g

is a Banah{Lie group.

If � is skew-symmetri and non-degenerate in the sense that �(x;X) = f0g implies x = 0,

then we all (X; �) a sympleti Banah spae and

Sp(X; �) := O(X; �)

the orresponding sympleti group.

(b) If H is a omplex Hilbert spae, then the unitary group

U(H) := fg 2 GL(H): (8x; y 2 H)hg:x; g:yi = hx; yig

is an important example of a Banah{Lie group.

() If A is a Banah algebra, then its automorphism group Aut(A) is a Banah{Lie group.

For an assoiative algebra A we write A

+

for the algebra A� K with the multipliation

(a; s)(b; t) := (ab+ sb+ ta; st):

This is a unital algebra with unit 1 = (0; 1). For many purposes it is natural to extend the

onept of a Banah algebra to the more general onept of a ontinuous inverse algebra (.i.a.).

These are loally onvex algebras A with ontinuous multipliation suh that the group A

�

+

of

units of the algebra A

+

, endowed with the produt topology of A�K , is open and the inversion

is a ontinuous map A

�

+

! A

+

.

For eah .i.a. A the matrix algebras M

n

(A) are also .i.a. (see [Bos90℄). Further eah

losed Lie subalgebra g � M

n

(A) orresponds to some analyti subgroup G of GL

n

(A

+

)

([Gl01℄). In the ontext of in�nite-dimensional Lie theory over loally onvex spaes, these

groups form the natural generalizations of linear Lie groups.

Examples I.1.3. (a) Eah Banah algebra is a ontinuous inverse algebra.

(b) If B is a .i.a. and M is a ompat manifold, then the algebra C

1

(M;B) is a ontinuous

inverse algebra.

() Let B be a Banah algebra and �:G � B ! B a strongly ontinuous ation of the �nite-

dimensional Lie group G on B by isometri automorphisms. Then the spae B

1

of smooth

vetors for this ation is a dense subalgebra and a Fr�ehet .i.a. ([Bos90, Prop. A.2.9℄).
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I.2. Groups of ontinuous and smooth maps

In the ontext of Banah{Lie groups one onstruts Lie groups of mappings as follows. For

a ompat spae X and a Banah{Lie group K the group C(X;K) of ontinuous maps is a

Banah{Lie group with Lie algebra C(X; k), where k is the Lie algebra of K .

In the larger ontext of loally onvex Lie groups one also obtains for eah Lie group K

and a ompat smooth manifold M a Lie group struture on the group C

1

(M;K) of smooth

maps from M to K . This is a Fr�ehet{Lie group if K is a Fr�ehet{Lie group. Its Lie algebra is

the spae C

1

(M; k).

The passage from ontinuous maps to smooth maps is made neessary by the behavior of

entral extensions of these groups. The groups C

1

(M;K) have muh more entral extensions

as the groups C(M;K), hene exhibit a riher geometri struture.

A larger lass of groups is obtained as gauge groups of prinipal bundles. If a smooth map

q:P ! B de�nes a prinipal K -bundle, then we onsider the assoiated bundle q

K

:P

K

! B ,

where P

K

is the spae of K -orbits in the spae P � K with respet to the ation given by

k:(p; x) := (pk

�1

; kx) for k; x 2 K and p 2 P . The gauge group Gau(P ) is the group of smooth

setions of the bundle P

K

. If the bundle P is trivial, then P

K

�

=

B �K and q

K

(b; k) = b , so

that Gau(P )

�

=

C

1

(B;K).

I.3. Groups of homeomorphisms and di�eomorphisms

One a geometri struture on a spae is given, one onsiders its group of automorphisms.

In the spirit of Felix Klein's Erlangen Program, one may even say that the geometry or the

geometri struture is given by the orresponding group of automorphisms.

I.3.1. For a ompat topologial spae X we have the C

�

-algebra C(X; C ) of ontinuous

omplex valued funtions. From Gelfand's duality theory of ommutative C

�

-algebras we obtain

X

�

=

Hom

alg

(C(X;R);R) n f0g

in the sense that every non-zero algebra homomorphism C(X;R) ! R is given by a point

evaluation Æ

p

(f) = f(p). This implies that the spae X an be reovered from the Banah

algebra C(X;R) if we endow Hom

alg

(C(X;R);R) with the topology of pointwise onvergene.

We onlude that the Lie group Aut(C(X;R)) of automorphisms of this algebra, endowed

with the uniform operator topology, an be identi�ed with the group Homeo(X) of homeomor-

phisms of X ating on C(X;R) by

(:f)(x) := f(

�1

:x):

We laim that the uniform topology turns Homeo(X) into a disrete group. In fat, if  is a

non-trivial homeomorphism of X and p 2 X is moved by  , then there exists a ontinuous

funtion f 2 C(X;R) with kfk = 1, f(p) = 0 and f(

�1

(p)) = 1. Then k:f � fk � 1 implies

that k � 1k � 1. Therefore the group Homeo(X) is disrete with respet to the topology

inherited from the Banah algebra B(C(X;R)) .

Nevertheless, one onsiders ontinuous ations of onneted Lie groups G on X , where

the ontinuity of the ation means that the ation map �:G �X ! X is ontinuous. But this

does not mean that the orresponding homomorphism G ! Homeo(X) is ontinuous. We will

see that this phenomenon, i.e., that ertain automorphism groups are endowed with Lie group

strutures whih are too �ne for many purposes, reours at many levels of the theory

1

.

1

There are other reasonable topologies on the group Homeo(X) whih are oarser and therefore more suitable

to study transformation groups. A quite natural one is obtained as the initial topology with respet to the map

Homeo(X)!C(X;X)

2

;g 7!(g;g

�1

) with respet to the ompat open topology on C(X;X) .
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I.3.2. Now let M be a ompat smooth manifold and onsider the Fr�ehet algebra A :=

C

1

(M;R) of smooth funtions on M . Again one an show that

M

�

=

Hom(C

1

(M;R);R) n f0g

in the sense that every non-zero algebra homomorphism C

1

(M;R) ! R is given by a point

evaluation Æ

p

(f) := f(p) for some p 2 M (see Lemma I.3.5 below). Moreover, the smooth

struture on M is ompletely determined by the requirement that the maps M ! R; p 7! Æ

p

(f)

are smooth. This implies that the group Aut(C

1

(M;R)) of automorphisms of C

1

(M;R) an

be identi�ed with the group Di�(M) of all di�eomorphisms of M .

In sharp ontrast to the topologial ontext, the group Di�(M) has a non-trivial struture

as a Lie group modeled on the spae V(M) of (smooth) vetor �elds on M , whih then is

the Lie algebra of this group. Moreover, for a �nite-dimensional Lie group G , smooth ations

�:G�M !M orrespond to Lie group homomorphisms G! Di�(M). For G = R we obtain

in partiular the orrespondene between smooth ows on M , smooth vetor �elds on M , and

one-parameter subgroups of Di�(M).

If X 2 V(M) is a vetor �eld and Fl

X

:R ! Di�(M) the orresponding ow, then

exp:V(M)! Di�(M); X 7! Fl

X

(1)

is the exponential funtion of the Fr�ehet{Lie group Di�(M).

Other important groups of di�eomorphisms arise as subgroups of Di�(M). Of partiular

importane is the stabilizer subgroup Di�(M;�) of a volume form � on M (if M is orientable),

and the stabilizer Sp(M;!) of a sympleti form ! if (M;!) is sympleti (f. [KM97℄).

I.3.3. If M is a non-ompat � -ompat smooth manifold, then we still have

M

�

=

Hom(C

1

(M;R);R) n f0g and Di�(M)

�

=

Aut(C

1

(M;R));

but then there is no natural Lie group struture on Di�(M) suh that smooth ations of Lie

groups G on M orrespond to Lie group homomorphisms G! Di�(M).

Nevertheless, in the framework of the \onvenient setting" ([KM97℄), one an turn Di�(M)

into a Lie group with Lie algebra V



(M), the Lie algebra of all smooth vetor �elds with ompat

support. If M is ompat, this yields the natural Lie group struture on Di�(M), but if M is not

ompat, then the orresponding topology on Di�(M) is so �ne that the global ow generated

by a vetor �eld whose support is not ompat, does not lead to a ontinuous homomorphism

R ! Di�(M).

More reent investigations in this diretion show that, at least for M = R

n

, the natural

manifold struture on the group Di�



(M) of all di�eomorphisms ' whih oinide with id

M

outside a ompat set has a natural Lie group struture with Lie algebra V



(M) ([Gl02℄). Here

we do not have to refer to the onvenient setting with the advantage that Di�



(M) is a topologial

group. This Lie group struture on Di�



(M) an then be used to de�ne a Lie group struture

on Di�(M) for whih Di�



(M) is an open subgroup. This ontrasts the results of Tatsuuma,

Shimomura and Hirai, stating that the natural diret limit topology with respet to the subgroups

Di�

K

(M) := f' 2 Di�(M):' j

MnK

= id

MnK

g;

K a ompat subset of M , does not turn Di�



(M) into a topologial group beause the

multipliation is not ontinuous.

I.3.4. The situation for non-ompat manifolds is similar to the situation we enounter in the

theory of unitary group representations. Let H be a Hilbert spae and U(H) its unitary group.

This group has two natural topologies. The uniform topology on U(H) inherited from the Banah

algebra B(H) turns it into a Banah{Lie group, but this topology is rather �ne. The strong

operator topology (the topology of pointwise onvergene) turns U(H) into a topologial group

suh that ontinuous unitary representations of a topologial group G orrespond to ontinuous

group homomorphisms G ! U(H). If G is a �nite-dimensional Lie group, then a ontinuous
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unitary representation is ontinuous with respet to the uniform topology on U(H) if and only

if all operators of the derived representation are bounded, but this implies already that the

representation fators through a Lie group with ompat Lie algebra (f. [Si52℄, [Gu80℄). In some

sense the ondition that the operators of the derived representation are bounded is analogous

to the requirement that the vetor �elds orresponding to a smooth ation on a manifold have

ompat support. In this sense the uniform topology on U(H) shows similarities to the Lie

group struture on Di�(M) if M is non-ompat (see I.3.3). The ase of a ompat manifold

M orresponds to the ase of a �nite-dimensional Hilbert spae H , for whih the two topologies

on U(H) oinide.

Lemma I.3.5. If M is a ompat manifold and �:C

1

(M;R) ! R a non-zero algebra homo-

morphism, then there exists p 2M with �(f) = f(p) for all f 2 C

1

(M;R) .

Proof. Let N := ker� . If there exists p 2 M suh that all funtions in N vanish at p ,

then C

1

(M;R) = N � R1 implies � = Æ

p

. Let us assume that this is not the ase. Then there

exists for eah p 2 M a smooth funtion f

p

2 N with f

p

(p) 6= 0. Then the open sets f

�1

p

(R

�

)

form an open overing of M , and we �nd �nitely many points p

1

; : : : ; p

n

suh that M is overed

by the sets f

�1

p

j

(R

�

), whih means that the funtion f :=

P

n

j=1

f

2

p

j

2 N vanishes nowhere.

We onlude that the ideal N ontains a unit and therefore N = C

1

(M;R) , ontraditing our

assumption that � is non-zero.

Remark I.3.6. If M is non-ompat, then one has to modify the argument in the proof of

Lemma I.3.5 as follows. First we observe that, sine N is an ideal, we may assume that the

support of the funtions f

p

is ontained in a given neighborhood U

p

of p beause we may

multiply f

p

by any funtion supported in U

p

and not vanishing at p .

Let �:C

1

(M;R) ! R be a ontinuous algebra homomorphism (with respet to the

topology de�ned in Example II.1.4(b) below) and assume that � 6= Æ

p

for eah p 2 M . Hene

the ideal ker� ontains for eah p 2 M a funtion not vanishing at p . We hoose ompat

subsets K

n

� M with

S

n

K

n

= M and K

n

� K

0

n+1

. For p 2 K

n

nK

n�1

we pik a funtion

f

p

2 ker� in suh a way that supp(f

p

) � K

n+1

n K

n�1

and f

p

(p) 6= 0. Now we hoose the

points p

1

; : : : ; p

k

1

2 K

1

suh that

P

k

1

j=1

f

2

p

j

is positive on K

1

, then p

k

1

+1

; : : : ; p

k

2

suh that

P

k

2

j=1

f

2

p

j

is positive on K

2

, and so on. The preautions from above ensure a that the series

f :=

P

1

j=1

f

2

p

j

onverges in C

1

(M;R) beause on eah set K

n

it is eventually onstant. For

eah ontinuous harater �:C

1

(M;R) ! R whih is not a point evaluation we thus obtain an

invertible funtion f 2 ker� , whih implies � = 0. Here the ontinuity of � is needed to ensure

that ker� is losed and hene that f 2 ker� .

II. In�nite-dimensional manifolds

In this setion K always stands for R or C and V is a K -vetor spae.

II.1. Loally onvex spaes

De�nition II.1.1. (a) If p is a seminorm on a K -vetor spae V , then N

p

:= p

�1

(0) is a

subspae of V , and V

p

:= V=N

p

is a normed spae with kv + N

p

k := p(v). Let �

p

:V ! V

p

denote the orresponding quotient map.

(b) We all a set P of seminorms on V separating if p(v) = 0 for all p 2 P implies v = 0.

() If X is a set and f

j

:X ! X

j

, j 2 J , mappings into topologial spaes, then the oarsest

topology on X for whih all these maps are ontinuous is alled the initial topology on X with

respet to the family (f

j

)

j2J

. This topology is generated by the inverse images of open subsets

of the spaes X

j

under the maps f

j

.
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(d) To eah separating family P of seminorms on V we assoiate the initial topology �

P

on V

de�ned by the maps �

p

:V ! V

p

to the normed spaes V

p

. We all it the loally onvex topology

on V de�ned by P .

Sine the family P is separating, V is a Hausdor� spae. Further it is easy to show that

V is a topologial vetor spae in the sense that addition and salar multipliation on V are

ontinuous maps.

(e) A loally onvex spae V is alled a Fr�ehet spae if its topology an be de�ned by a ountable

family P = fp

n

:n 2 Ng of seminorms and if V is omplete with respet to the ompatible metri

d(x; y) :=

X

n2N

2

�n

p

n

(x� y)

1 + p

n

(x� y)

:

Exerise II.1. Let (V; �

P

) be a loally onvex spae.

(1) Show that a seminorm q on V is ontinuous if and only if there exists a � > 0 and

p

1

; : : : ; p

n

2 P suh that

q � �max(p

1

; : : : ; p

n

):

(2) Two sets P

1

and P

2

of seminorms on V de�ne the same loally onvex topology if and only

if all seminorms in P

2

are ontinuous w.r.t. �

P

1

and vie versa.

Remark II.1.2. (a) A sequene (x

n

)

n2N

in a loally onvex spae V is said to be a Cauhy

sequene if eah sequene �

p

(x

n

), p 2 P , is a Cauhy sequene in V

p

. We say that V is

sequentially omplete if every Cauhy sequene in V onverges.

(b) One has a natural notion of ompleteness of loally onvex spaes (every Cauhy �lter

onverges). Complete loally onvex spaes then orrespond to losed subspaes of produts

of Banah spaes

1

.

Examples II.1.3. (a) Let X be a topologial spae. For eah ompat subset K � X we

obtain a seminorm p

K

on C(X;R) by

p

K

(f) := supfjf(x)j:x 2 Kg:

The family P of these seminorms de�nes on C(X;R) the loally onvex topology of uniform

onvergene on ompat subsets of X .

If X is ompat, then we may take K = X and obtain a norm on C(X;R) whih de�nes

the topology; all other seminorms p

K

are redundant. In this ase C(X;R) is a Banah spae.

(b) The preeding example an be generalized to the spae C(X;V ), where X is a topologial

spae and V is a loally onvex spae. Then we de�ne for eah ompat subset K � X and eah

ontinuous seminorm q on V a seminorm

p

K;q

(f) := supfq(f(x)):x 2 Kg:

The family of these seminorms de�nes a loally onvex topology on C(X;V ) whih again oinides

with the topology of uniform onvergene on ompat subsets of X .

() If X is loally ompat and � -ompat, then there exists a sequene (K

n

)

n2N

of ompat

subsets of X with

S

n

K

n

and K

n

� K

0

n

. Then eah ompat subset of X lies in some K

n

, so

that eah seminorm p

K

is dominated by some p

K

n

. This implies that C(X;R) is metrizable,

and sine it is also omplete, it is a Fr�ehet spae.

1

In x31.6 of K�othe's book [K�o69℄ one �nds an example of a omplete loally onvex spae X and a losed

subspae Y�X for whih the quotient spae X=Y is not omplete. This does not happen if X is metrizable and

omplete, i.e., an F -spae. Then all quotients of X by losed subspaes are omplete.
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Example II.1.4. (a) Let U � R

n

be an open subset and onsider the algebra C

1

(U;R). For

eah multiindex m = (m

1

; : : : ;m

n

) 2 N

0

with jmj := m

1

+ : : :+m

n

we onsider the di�erential

operator

D

m

:= D

m

1

1

� � �D

m

n

n

:=

�

jmj

�

m

1

1

� � ��

m

n

n

:

We now obtain for eah m and eah ompat subset K � U a seminorm on C

1

(U;R) by

p

K;m

(f) := supfjD

m

f(x)j:x 2 Kg:

The family of all these seminorms de�nes a loally onvex topology on C

1

(U;R). Sine U

is loally ompat and � -ompat (exerise), the topology on C

1

(U;R) an be de�ned by a

ountable set of seminorms. Moreover, it is not hard to see that C

1

(U;R) is omplete with

respet to the orresponding metri, hene a Fr�ehet spae.

(b) Let M be a smooth n-dimensional manifold and onsider the vetor spae C

1

(M;R) . To

introdue a topology on this algebra, for eah ompat subset K � M for whih there exists a

hart ':U ! R

n

with K � U and for eah multiindex m 2 N

n

0

we de�ne a seminorm by

p

K;m

(f) := supfjD

m

(f Æ '

�1

)(x)j:x 2 '(K)g:

We thus obtain a natural Fr�ehet topology on C

1

(M;R) whih is alled the topology of loal

uniform onvergene of all partial derivatives.

() If M is a omplex manifold, then we onsider the algebra Hol(M; C ) of holomorphi funtions

on M as a subspae of C(M; C ), endowed with the topology of uniform onvergene on ompat

subsets of M (Example II.1.3). This topology turns Hol(M; C ) into a Fr�ehet spae. Moreover,

one an show that the injetive map Hol(M; C ) ,! C

1

(M; C )is also a topologial embedding.

De�nition II.1.5. Let V be a vetor spae and �

j

:V

j

! V linear maps, de�ned on loally

onvex spaes V

j

. We onsider the system P of all those seminorms p on V for whih all

ompositions p Æ �

j

are ontinuous seminorms on the spaes V

j

. By means of P , we obtain

on V a loally onvex topology alled the �nal loally onvex topology de�ned by the mappings

(�

j

)

j2J

.

This loally onvex topology has the universal property that a linear map ':V ! W into

a loally onvex spae W is ontinuous if and only if all the maps 'Æ�

j

, j 2 J , are ontinuous.

Example II.1.6. (a) Let X be a loally ompat spae and C



(X;R) the spae of ompatly

supported ontinuous funtions. For eah ompat subset K � X we then have a natural

inlusion

�

K

:C

K

(X;R) := ff 2 C



(X;R): supp(f) � Kg ,! C



(X;R):

Eah spae C

K

(X;R) is a Banah spae with respet to the norm

kfk

1

:= supfjf(x)j:x 2 Xg:

We endow C



(X;R) with the �nal loally onvex topology de�ned by the maps �

K

.

(b) Let M be a smooth manifold and onsider the spae C

1



(M;R) of smooth funtions with

ompat support. For eah ompat subset K �M we then have a natural inlusion

�

K

:C

1

K

(M;R) := ff 2 C

1



(M;R): supp(f) � Kg ,! C

1



(M;R):

We endow eah spae C

1

K

(M;R) with the subspae topology inherited from C

1

(M;R), whih

turns it into a Fr�ehet spae. On C

1



(M;R) we now obtain the �nal loally onvex topology

de�ned by the maps �

K

.



Nany Letures on In�nite-Dimensional Lie Groups 9

II.2. Calulus on loally onvex spaes

In this setion we explain briey how alulus works in loally onvex spaes. The main

point is that one uses an appropriate notion of di�erentiability whih for the speial ase of

Banah spaes di�ers from Fr�ehet di�erentiability but whih is more onvenient in the setup

of loally onvex spaes. Our basi referenes are [Ha82℄ and [Gl01a℄, where one �nds detailed

proofs. One readily observes that one one has the Fundamental Theorem of Calulus, then the

proofs of the Fr�ehet ase arry over to a more general setup where one still requires smooth

maps to be ontinuous (f. also [Mil83℄). A di�erent approah to di�erentiability in in�nite-

dimensional spaes in the so-alled onvenient setting an be found in [FK88℄ and [KM97a℄. A

entral feature of this approah is that smooth maps are no longer required to be ontinuous, but

for alulus over Fr�ehet spaes one �nds the same lass of smooth maps desribed by Hamilton

and Milnor. Another approah whih also gives up the ontinuity of smooth maps and requires

only their ontinuity on ompat sets is disussed by E. G. F. Thomas in [Th96℄. The onept

of a di�eologial spae due to J.-M. Souriau ([So85℄) goes even one step further. It is primarily

designed to study spaes like quotients of R by non-disrete subgroups in a di�erential geometri

ontext.

De�nition II.2.1. Let X and Y be topologial vetor spaes, U � X open and f :U ! Y

a map. Then the derivative of f at x in the diretion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The funtion f is alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is alled ontinuously di�erentiable or C

1

if it is di�erentiable at all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a ontinuous map. It is alled a C

n

-map if df is a C

n�1

-map, and C

1

(or smooth) if it is C

n

for all n 2 N . This is the notion of di�erentiability used in [Mil83℄, [Ha82℄, [Gl01a℄ and [Ne01℄.

(b) If X and Y are omplex vetor spaes, then the map f is alled holomorphi if it is C

1

and

for all x 2 U the map df(x):X ! Y is omplex linear (f. [Mil83, p. 1027℄). We will see below

that the maps df(x) are always real linear (Lemma II.2.3).

() Higher derivatives are de�ned for C

n

-maps by

d

n

f(x)(h

1

; : : : ; h

n

) := lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

Remark II.2.2. (a) If X and Y are Banah spaes, then the notion of ontinuous di�eren-

tiability is weaker than the usual notion of ontinuous Fr�ehet-di�erentiability in Banah spaes,

whih requires that the map x 7! df(x) is ontinuous with respet to the operator norm. Nev-

ertheless, one an show that a C

2

-map in the sense de�ned above is C

1

in the sense of Fr�ehet

di�erentiability, so that the two onepts lead to the same lass of C

1

-funtions (f. [Ne01, I.6

and I.7℄).

(b) We also note that the existene of linear maps whih are not ontinuous shows that the

ontinuity of f does not follow from the di�erentiability of f beause eah linear map f :X ! Y

is di�erentiable at eah x 2 X in the sense of De�nition II.2.1(a).

Now we reall the preise statements of the most fundamental fats needed in the following.

Lemma II.2.3. Let X and Y be loally onvex spaes and U � X an open subset.The following

assertions hold:
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(i) If f :U ! Y is C

1

and x 2 U , then df(x):X ! Y is a linear map and f is ontinuous.

If moreover x+ th 2 U holds for all t 2 [0; 1℄ , then

f(x+ h) = f(x) +

Z

1

0

df(x+ uh)(h) du:

In partiular f is loally onstant if and only if df = 0 .

(ii) If f is C

n

, then the funtions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

) , x 2 U , are symmetri

n-linear maps. For eah x 2 U and v 2 X with x + tv 2 U for t 2 [0; 1℄ we have the

Taylor formula

f(x+ v) = f(x) + df(x)(v) + : : :+

1

(n� 1)!

d

n�1

f(x)(v; : : : ; v)

+

1

(n� 1)!

Z

1

0

(1� t)

n�1

d

n

f(x+ tv)(v; : : : ; v) dt:

Proof. (i) The �rst part is [Ha82, Th. 3.2.5℄ and the integral representation is [Ha82, Th. 3.2.2℄

for Fr�ehet spaes. For the re�nement to loally onvex spaes see [Gl01a℄. This is based on the

observation that, although the integral

R

1

0

df(x+uh)(h) du exists a priori only in the ompletion

of Y , the fat that it equals the di�erene f(x + h) � f(x) implies that it is ontained in Y .

Therefore no ompleteness ondition on Y is needed to ensure the existene of the integral.

To see that f is ontinuous, let p be a ontinuous seminorm on Y and " > 0. Then there

exists a balaned 0-neighborhood U

1

� X with x + U

1

� U and p

�

df(x + uh)(h)

�

< " for

u 2 [0; 1℄ and h 2 U

1

. Hene

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ uh)(h)

�

du � ";

and thus f is ontinuous.

(ii) follows from [Ha82, Th. 3.6.2℄ and by iteration of (i).

Proposition II.2.4. (The hain rule) If X , Y and Z are loally onvex spaes, U � X and

V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x) for x 2 U:

Proof. [Ha82, Th. 3.3.4℄

Proposition II.2.5. If X

1

, X

2

and Y are loally onvex spaes, X = X

1

�X

2

, U � X is

open, and f :U ! Y is ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�

and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are ontinuous if and only if df exists and is ontinuous. In this ase we have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. [Ha82, Th. 3.4.3℄
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Remark II.2.6. (a) If f :X ! Y is a ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition II.2.5 it follows that a ontinuous k -linear map m:X

1

�: : :�X

k

! Y

is ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indutively one obtains that m is smooth with d

k+1

m = 0.

() If f :U ! Y is C

n+1

, then Lemma II.2.3(ii) and Proposition II.2.5 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in partiular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f is C

1

.

(d) If f :U ! Y is holomorphi, then the �nite-dimensional theory shows that for eah h 2 X the

funtion U ! Y; x 7! df(x)(h) is holomorphi. Hene d

2

f(x) is omplex bilinear and therefore

d(df) is omplex linear. Thus df :U �X ! Y is also holomorphi.

Example II.2.7. In the de�nition of C

1

-maps we have not required the underlying topologial

vetor spaes to be loally onvex and one may wonder whether this assumption is made for

onveniene or if there are some serious underlying reasons. The following example shows that

loal onvexity is ruial to have a alulus with the properties disussed in Lemma II.2.3.

Let V denote the spae of measurable funtions f : [0; 1℄! R for whih

jf j :=

Z

1

0

jf(x)j

1

2

dx

is �nite and observe that d(f; g) := jf � gj de�nes a metri on this spae beause the funtion

x 7!

p

x is subadditive on R

+

. We thus obtain a topologial vetor spae (V; d).

For a subset E � [0; 1℄ let �

E

denote its harateristi funtion. Consider the urve

: [0; 1℄! V; (t) := �

[0;t℄

:

Then

jh

�1

�

(t+ h)� (t)

�

j = jhj

�

1

2

jhj ! 0

for eah t 2 [0; 1℄ as h ! 0. Hene  is C

1

with d = 0. Sine  is not onstant, the

Fundamental Theorem of Calulus does not hold in V .

The defet in this example is aused by the non-loal onvexity of V . In fat, one an even

show that all ontinous linear funtionals on V vanish.

Remark II.2.8. In the ontext of Banah spaes one has an Inverse Funtion Theorem and also

an Impliit Funtion Theorem ([La99℄). Suh results annot be expeted in general for Fr�ehet

spaes (f. the exponential funtions of ertain Fr�ehet groups). Nevertheless, the reent paper

[Hi99℄ ontains an impliit funtion theorem for maps of the type f :E � F ! F , where F is a

Banah spae and E is Fr�ehet.

Remark II.2.9. (Pathologies of linear ODEs in Fr�ehet spaes)

(a) First we give an example of a linear ODE for whih solutions to initial value problems exist,

but are not unique. We onsider the Fr�ehet spae V := C

1

([0; 1℄;R) and the ontinuous linear

operator Lf := f

0

on this spae. We are asking for solutions of the initial value problem

(2:1) 

0

(t) = L(t); (0) = 

0

:
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Let us assume that supp(

0

) is a ompat subset of ℄0; 1[, so that 

0

permits smooth extensions

to a funtion on R . Let h be suh a funtion and onsider

:R ! V; (t)(x) := h(t+ x):

Then (0) = h j

[0;1℄

= 

0

and 

0

(t)(x) = h

0

(t+x) = (L(t))(x). It is lear that these solutions of

(2.1) depend on the hoie of the extension h of 

0

. Di�erent hoies lead to di�erent extensions.

Does every smooth funtion on [0; 1℄ have a smooth extension to R?

(b) Now we onsider the spae V := C

1

(S

1

; C ) whih we identify with the spae of 2� -periodi

smooth funtions on the real line. We onsider the linear operator Lf := �f

00

and the equation

(2.1), whih in this ase is the heat equation with reversed time. It is easy to analyze this equation

in terms of the Fourier expansion of  . So let

(t)(x) =

X

n2Z

a

n

(t)e

inx

be the Fourier expansion of (t). Then (2.1) implies a

0

n

(t) = n

2

a

n

(t) for eah n 2 Z , so that

a

n

(t) = a

n

(0)e

tn

2

holds for any solution  of (2.1). If the Fourier oeÆients a

n

(0) of 

0

do not

satisfy

X

n

ja

n

(0)je

"n

2

<1

for some " > 0 (whih need not be the ase for a smooth funtion 

0

), then (2.1) does not have

a solution on [0; "℄ .

Remark II.2.10. (a) We briey reall the basi de�nitions underlying the onvenient alulus

in [KM97℄. Let E be a loally onvex spae. The 

1

-topology on E is the �nal topology with

respet to the set C

1

(R; E). We all E onvenient if for eah smooth urve 

1

:R ! E there

exists a smooth urve 

2

:R ! E with 

0

2

= 

1

(f. [KM97, p.20℄).

Let U � E be an open subset and f :U ! F a funtion, where F is a loally onvex spae.

Then we all f onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This onept quite diretly implies nie artesian losedness properties for smooth maps (f.

[KM97, p.30℄).

(b) If E is a sequentially omplete loally onvex (s..l..) spae, then it is onvenient beause

the sequential ompleteness implies the existene of Riemann integrals of ontinuous E -valued

funtions on ompat intervals ([KM97, Th. 2.14℄). If E is a Fr�ehet spae, then the 

1

-topology

oinides with the original topology ([KM97, Th. 4.11℄).

Moreover, for an open subset U of a Fr�ehet spae, a map f :U ! F is onveniently

smooth if and only if it is smooth in the sense of De�nition II.2.1. This an be shown as follows.

Sine C

1

(R; E) is the same spae for both notions of di�erentiability, the hain rule shows that

smoothness in the sense of De�nition II.2.1 implies smoothness in the sense of onvenient alulus.

Now we assume that f :U ! F is onveniently smooth. Then the derivative df :U � E ! F

exists and de�nes a onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄).

Hene df :U � E ! F is also onveniently smooth, and thus ontinuous with respet to the



1

-topology. As E �E is a Fr�ehet spae, it follows that df is ontinuous. Therefore f is C

1

in the sense of De�nition II.2.1, and now one an iterate the argument.
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II.3. Di�erentiable manifolds

Sine we have a hain rule for C

1

-maps between loally onvex spaes, we an de�ne smooth

manifolds as one de�nes them in the �nite-dimensional ase (f. [Ha82℄, [Mil83℄, [Gl01a℄).

Let M be a Hausdor� topologial spae and X a loally onvex spae. An X -hart of an

open subset U � M is a homeomorphism ':U ! '(U) � X onto an open subset '(U) of X .

We denote suh a hart as a pair (';U). Two harts (';U) and ( ; V ) are said to be smoothly

ompatible if the map

 Æ '

�1

j

'(U\V )

:'(U \ V )!  (U \ V )

is smooth. From the hain rule it follows right aways that ompatibility of harts is an equivalene

relation on the set of all X -harts of M . An X -atlas of M is a family A := ('

i

; U

i

)

i2I

of pairwise

ompatible X -harts of M for whih

S

i

U

i

= M . A smooth X -struture on M is a maximal

X -atlas and a smooth X -manifold is a pair (M;A), where A is a maximal X -atlas on M .

Loally onvex spaes are regular in the sense that eah point has a neighborhood base

onsisting of losed sets, and this property is inherited by manifolds modeled on these spaes (f.

[Mil83℄).

One de�nes the tangent bundle �:TM !M as follows. Let A := ('

i

; U

i

)

i2I

be an X -atlas

of M . On the disjoint union of the set '(U

i

)�X we de�ne an equivalene relation by

(x; v) �

�

('

j

Æ '

�1

i

)(x); d('

j

Æ '

�1

i

)(x)(v)

�

for x 2 '

i

(U

i

\ U

j

) and write [x; v℄ for the equivalene lass of (x; v). Let p 2 U

i

. Then the

equivalene lasses of the form ['

i

(p); v℄ are alled tangent vetors in p . Sine all the di�erentials

d('

j

Æ'

�1

i

)(x) are invertible linear maps, it easily follows that the set T

p

(M) of all tangent vetors

in p forms a vetor spae isomorphi to X under the map X ! T

p

(M); v 7! [x; v℄ . Now we turn

the tangent bundle

TM :=

[

p2M

T

p

(M)

into a manifold by the harts

 

i

:TU

i

! '(U

i

)�X; ['

i

(x); v℄ 7! ('

i

(x); v):

It is easy to see that for eah open subset U of a loally onvex spae X we have TU

�

=

U �X

and in partiular TU

j

�

=

U

j

�X in the setting from above.

We will all a manifold modeled on a l.. spae, resp., Fr�ehet spae, resp., Banah spae a

loally onvex, resp., Fr�ehet, resp., Banah manifold.

Note that it is far more subtle to de�ne a otangent bundle beause this requires a loally

onvex topology on the dual spae E

0

of the underlying vetor spae E and therefore depends

on this topology.

Let M and N be smooth manifolds modeled on loally onvex spaes and f :M ! N

a smooth map. We write Tf :TM ! TN for the orresponding map indued on the level of

tangent vetors. Loally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;

where df(p):T

p

(M)! T

f(p)

(N) denotes the di�erential of f at p . In view of Remark II.2.6(),

the tangent map Tf is also smooth if f is smooth. In the following we will always identify M

with the zero setion in TM . In this sense we have Tf j

M

= f with Tf(M) � N � TN .

A vetor �eld X on M is a smooth setion of the tangent bundle TM ! M . We write

V(M) for the spae of all vetor �elds on M . If f 2 C

1

(M; C ) is a smooth funtion on M and

X 2 V(M), then we obtain a smooth funtion on M via

(X:f)(p) := df(p)

�

X(p)

�

:

Sine loally X(p) = (p;

e

X(p)

�

, where

e

X is a smooth funtion, we have X:f = df Æ X . Therefore

the smoothness of X:f follows from the smoothness of the maps df :TM ! C and X :M ! TM .
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Lemma II.3.1. If X;Y 2 V(M) , then there exists a vetor �eld [X;Y ℄ 2 V(M) whih is

uniquely determined by the property that on eah open subset U �M we have

(3:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U; C ) .

Proof. Loally the vetor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and Y (p) =

�

p;

e

Y (p)

�

. We de�ne a vetor �eld by

(3:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the hain rule. The requirement that

(3.1) holds on ontinuous linear funtionals f determines [X;Y ℄e uniquely. An easy alulation

shows that (3.2) de�nes in fat a smooth vetor �eld on M (f. Lemma II.3.3 below). Now the

assertion follows beause loally (3.1) is a onsequene of the hain rule.

Proposition II.3.2. (V(M); [�; �℄) is a Lie algebra.

Proof. The ruial part is to hek the Jaobi identity. This follows from the observation that

if U � X is an open subset of a loally onvex spae, then the mapping

�:V(U)! Der

�

C

1

(U; C )

�

; �(X)(f) = X:f

is injetive and satis�es �([X;Y ℄) = [�(X);�(Y )℄: Therefore the Jaobi identity in V(U) follows

from the Jaobi identity in the assoiative algebra End

�

C

1

(U; C )

�

.

For the appliations to Lie groups we will need the following lemma.

Lemma II.3.3. Let M and N be smooth manifolds and ':M ! N a smooth map. Suppose

that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) satisfy X

N

Æ' = T' ÆX

M

and Y

N

Æ' = T' Æ Y

M

.

Then [X

N

; Y

N

℄ Æ ' = T' Æ [X

M

; Y

M

℄:

Proof. It suÆes to perform a loal alulation. Therefore we may w.l.o.g. assume that

M � F is open, where F is a loally onvex spae and that N is a loally onvex spae. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ ' = d' Æ (id

F

�

e

Y

M

): Using the hain rule

we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whih, in view of Remark II.2.6(), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the seond derivative (Lemma II.2.3(ii)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:
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Di�erential forms

De�nition II.3.4. If M is a di�erentiable manifold and V a loally onvex spae, then a

V -valued k -form ! on M is a funtion ! whih assoiates to eah p 2M a k -linear alternating

map T

p

(M)

k

! V suh that in loal oordinates the map (p; v

1

; : : : ; v

k

) 7! !(p)(v

1

; : : : ; v

k

) is

smooth. We write 


k

(M;V ) for the spae of smooth k -forms on M with values in V . The

di�erentials

d: 


k

(M;V )! 


k+1

(M;V )

and the wedge produts

^: 


k

(M; C )�


l

(M; C )! 


k+l

(M; C )

are de�ned by the same formulas as in the �nite-dimensional ase.

The assumption that V is sequentially omplete is ruial in the following lemma to ensure

the existene of the Riemann integral de�ning ' .

Lemma II.3.5. (Poinar�e Lemma) Let E be loally onvex, V an s..l.. spae and U � E

an open subset whih is star-shaped with respet to 0 . Let ! 2 


k+1

(U; V ) be a V -valued losed

(k + 1)-form. Then ! is exat. Moreover, ! = d' for some ' 2 


k

(U; V ) with '(0) = 0 given

by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Proof. For the ase of Fr�ehet spaes Remark II.2.10 implies that the assertion follows from

[KM97, Lemma 33.20℄. On the other hand, one an prove it diretly in the ontext of loally

onvex spaes by using the fat that one may di�erentiate under the integral a funtion of the

type

R

1

0

H(t; x) dt , where H is a smooth funtion ℄� "; 1 + "[�U ! V (f. [KM97, p.32℄). The

existene of the integrals follows from the sequential ompleteness of V . For the alulations

needed for the proof we refer to [La99, Th. V.4.1℄.

Remark II.3.6. (a) The Poinar�e Lemma is the �rst step to de Rham's Theorem. To obtain de

Rham's Theorem for �nite-dimensional manifolds, one makes heavy use of smooth partitions of

unity whih do not always exist for in�nite-dimensional manifolds, not even for Banah manifolds.

(b) We all a smooth manifold M smoothly paraompat if every open over has a subordinated

smooth partition of unity. De Rham's Theorem holds for every smoothly paraompat Fr�ehet

manifold ([KM97,Thm. 34.7℄). Smoothly Hausdor� seond ountable manifolds modeled on a

smoothly regular spae are smoothly paraompat ([KM97, 27.4℄). Typial examples of smoothly

regular spaes are nulear Fr�ehet spaes ([KM97, Th. 16.10℄).

() Examples of Banah spaes whih are not smoothly paraompat are C([0; 1℄;R) and l

1

(N;R) .

On these spaes there exists no non-zero smooth funtion supported in the unit ball ([KM97,

14.11℄).

Proposition II.3.7. Let M be a onneted manifold, V an s..l.. spae and � 2 


1

(M;V )

a losed 1-form. Then there exists a onneted overing q:



M ! M and a smooth funtion

f :



M ! V with df = q

�

� .

Proof. (Sketh) We onsider the produt set P := M � V with the two projetion maps

F :P ! V and q:P !M . We de�ne a topology on P as follows. For eah pair (U; f) onsisting

of an open subset U � M and a smooth funtion f :U ! V with df = � j

U

the graph

�(f; U) := f(x; f(x)):x 2 Ug is a subset of P . These sets form a basis for a topology � on P .

With respet to this topology the mapping q:P ! M is a overing map. To see this, let

x 2 M . Sine M is a manifold, there exists a neighborhood U of x whih is di�eomorphi to

a onvex subset of a loally onvex spae. Then the Poinar�e Lemma implies for eah v 2 V
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the existene of a smooth funtion f

v

on U with df

v

= � j

U

and f

v

(x) = v . Sine U is

onneted, the funtion f

v

is uniquely determined by its value at x , so that f

v

= f

0

+ v .

Now q

�1

(U) = U � V =

S

v2V

�(f

v

; U) is a disjoint union of open subsets of P (here we use

the onnetedness of U ), and therefore q is a overing. We onlude that P arries a natural

manifold struture for whih q is a loal di�eomorphism. For this manifold struture the funtion

F :P ! V is smooth with dF = q

�

� .

Now we �x a point x

0

2 M and an element v

0

2 V . Then the onneted omponent



M

of (x

0

; v

0

) in P is a onneted overing manifold of M with the required properties.

Corollary II.3.8. If M is a simply onneted manifold and V an s..l.. spae, then

H

1

dR

(M;V ) vanishes.

Proof. Let � be a losed V -valued 1-form on M . Using Proposition II.3.7, we �nd a overing

q:



M !M and a smooth funtion f :



M ! V with df = q

�

� . Sine M is simply onneted, the

overing q is trivial, hene a di�eomorphism. Therefore � is exat.

Theorem II.3.9. Let M be a onneted manifold, V an s..l.. spae, x

0

2 M , and

�

1

(M) := �

1

(M;x

0

) . Then we have an inlusion

�:H

1

dR

(M;V ) ,! Hom(�

1

(M); V )

whih is given on a pieewise di�erentiable loop : [0; 1℄!M in x

0

for � 2 Z

1

dR

(M;V ) by

�(�)() := �([�℄)([℄) :=

Z



� :=

Z

1

0



�

�:

The homomorphism �([�℄) an also be alulated as follows: Let q:

f

M ! M be the universal

overing map, and write

f

M ��

1

(M)!

f

M; (x; g) 7! �

g

(x) for the right ation of �

1

(M) on

f

M .

Further pik f

�

2 C

1

(

f

M;V ) with df

�

= q

�

� . Then the funtion f

�

Æ �

g

� f

�

is onstant equal

to �([�℄)(g) .

Proof. (f. Theorem XIV.1.7 in [God71℄) Let q:

f

M ! M be a simply onneted overing

manifold and y

0

2 q

�1

(x

0

). In view of Corollary II.3.8, for eah losed 1-form � on M , the

losed 1-form q

�

� on

f

M is exat. Let f

�

2 C

1

(

f

M;V ) with

e

f

�

(y

0

) = 0 and d

e

f

�

= q

�

� .

Let

f

M � �

1

(M) !

f

M; (y; g) 7! �

g

(y) := y:g denote the ation of �

1

(M) on

f

M by dek

transformations. We put

�(�)(g) := f

�

(y

0

:g):

Then �(�)(1) = 0 and

�(�)(g

1

g

2

) = f

�

(y

0

:g

1

g

2

) = f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + f

�

(y

0

:g

1

)

= f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + �(�)(g

1

):

For eah g 2 �

1

(M) the funtion h := �

�

g

f

�

� f

�

satis�es h(y

0

) = �(�)(g) = f

�

(y

0

:g) and

dh = �

�

g

df

�

� df

�

= �

�

g

q

�

�� q

�

� = (q Æ �

g

)

�

�� q

�

� = q

�

�� q

�

� = 0:

Therefore h is onstantly �(�)(g), and we obtain �(�)(g

1

g

2

) = �(�)(g

2

) + �(�)(g

1

): This proves

that �(�) 2 Hom(�

1

(M); V ).

Suppose that �(�) = 0. Then �

�

g

f

�

� f

�

= 0 holds for eah g 2 �

1

(M), showing that the

funtion f

�

fators through a smooth funtion f :M ! V with fÆq = f

�

. Now q

�

df = df

�

= q

�

�

implies df = � , so that � is exat. Conversely, if � is exat, then the funtion f

�

is invariant

under �

1

(M), and we see that �(�) = 0. Therefore �:Z

1

dR

(M;V ) ! Hom(�

1

(M); V ) fators

through an inlusion H

1

dR

(M;V ) ,! Hom(�

1

(M); V ).

Finally, let [℄ 2 �

1

(M), where : [0; 1℄!M is pieewise smooth. Let e: [0; 1℄!

f

M be a

lift of  with e(0) = y

0

. Then

�([�℄)([℄) = f

�

([℄) = f

�

(e(1)) = f

�

(e(0)) +

Z

1

0

df

�

(e(t))

�

e

0

(t)

�

dt

= f

�

(y

0

) +

Z

1

0

(q

�

�)(e(t))

�

e

0

(t)

�

dt =

Z

1

0

�((t))

�



0

(t)

�

dt =

Z

1

0



�

� =

Z



�:
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The following lemma shows that exatness of a vetor-valued 1-form an be tested by

looking at the assoiated salar-valued 1-forms.

Lemma II.3.10. Let � 2 


1

(M;V ) be a losed 1-form. If for eah ontinuous linear funtional

� on V the 1-form � Æ � is exat, then � is exat.

Proof. If �Æ� is exat, then the group homomorphism �(�):�

1

(M)! V satis�es �Æ�(�) = 0

(Theorem II.3.9). If this holds for eah � 2 V

0

, then the fat that the ontinuous linear funtionals

on the loally onvex spae V separate points implies that �(�) = 0 and hene that � is exat.

To see that the map � is surjetive, one needs smooth paraompatness whih is not

always available, not even for Banah manifolds. For an in�nite-dimensional version of de

Rham's Theorem for smoothly paraompat manifolds we refer to [KM97, Thm. 34.7℄ (f. Remark

II.3.6(b)). The following proposition is a partiular onsequene:

Proposition II.3.11. If M is a onneted smoothly paraompat manifold, then the inlusion

map �:H

1

dR

(M;V )! Hom(�

1

(M); V ) is bijetive.

Proposition II.3.12. Let M be a onneted manifold, V an s..l.. spae and � � V a

disrete subgroup. Then V=� arries a natural manifold struture suh that the tangent spae at

every element of V=� an be anonially identi�ed with V . For a smooth funtion f :M ! V=�

we an thus identify the di�erential df with a V -valued 1-form on M . For a losed V -valued

1-form � on M the following onditions are equivalent:

(1) There exists a smooth funtion f :M ! V=� with df = � .

(2) �(�)

�

�

1

(M)

�

� � .

Proof. Let q:

f

M ! M denote the universal overing map and �x a point x

0

2

f

M . Then

the losed 1-form q

�

� on

f

M is exat (Theorem II.3.9), so that there exists a unique smooth

funtion

e

f :

f

M ! V with d

e

f = q

�

� and

e

f(x

0

) = 0. In Theorem II.3.9 we have seen that for

eah g 2 �

1

(M) we have

(3:3) �

�

g

e

f �

e

f = �(�)(g):

(1) ) (2): Let p:V ! V=� denote the quotient map. We may w.l.o.g. assume that f

�

q(x

0

)

�

=

p(0). The funtion p Æ

e

f :

f

M ! V=� satis�es d(p Æ

e

f) = q

�

� , and the same is true for

f Æ q:

f

M ! V=�. Sine both have the same value at x

0

, we see that p Æ

e

f = f Æ q . This

proves that p Æ

e

f is invariant under �

1

(M), and therefore (3.3) shows that �(�)

�

�

1

(M)

�

� �.

(2) ) (1): If (2) is satis�ed, then (3.3) implies that the funtion p Æ

e

f :

f

M ! V=� is �

1

(M)-

invariant, hene fators through a funtion f :M ! V=� with f Æ q = p Æ

e

f . Then f is smooth

and satis�es q

�

df = d

e

f = q

�

� , whih implies that df = � .

Smoothly non-trivial bundles

Remark II.3.13. Another remarkable pathology ourring already for Banah spaes is that

there exists a losed subspae F of a Banah spae E suh that the quotient map q:E ! E=F

has no smooth setions. The existene of a smooth loal setion �:U ! E around 0 2 E=F

would imply the existene of a losed omplement im(d�(0))

�

=

E=F to F in E , but suh a spae

does not exist. A simply example is the subspae 

0

(N;R) in l

1

(N;R) ([Wer95, Satz IV.6.5℄).

Nevertheless, the map q:E ! E=F de�nes the struture of a topologial F -prinipal

bundle over E=F whih has a ontinuous global setion by Mihael's Seletion Theorem ([Mi59℄).
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III. In�nite-dimensional Lie groups

III.1. In�nite-dimensional Lie groups and their Lie algebras

De�nition III.1.1. A loally onvex Lie group G is a loally onvex manifold endowed with

a group struture suh that the multipliation map and the inversion map are smooth.

In our treatment of Lie groups we basially follow [Mil83℄. Throughout this subsetion

G denotes a loally onvex Lie group. For g 2 G we write �

g

:G ! G; x 7! gx for the

left multipliation by g and �

g

:G ! G; x 7! xg for the right multipliation by g . Both are

di�eomorphisms of G . Moreover, we write m:G � G ! G; (x; y) 7! xy for the multipliation

map and �:G! G; x 7! x

�1

for the inversion.

De�nition III.1.2. Let G be a Lie group. Then for eah g 2 G the map



g

:G! G; x 7! gxg

�1

;

is a smooth automorphism, hene indues a ontinuous linear automorphism

Ad(g) := d

g

(1): g ! g:

We thus obtain an ation G� g ! g; (g;X) 7! Ad(g):X alled the adjoint ation of G on g .

Proposition III.1.3. For a Lie group G the following assertions hold:

(i) dm(g

1

; g

2

)(X

1

; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

and in partiular we have

dm(1;1)(X

1

; X

2

) = X

1

+X

2

:

(ii) d�(1):X = �X .

(iii) The mapping Tm:TG � TG ! TG de�nes a Lie group struture on TG with identity

element 0 2 T

1

(G) and inversion T� .

(iv) Let g := T

1

(G) denote the tangent spae at the identity. Then the mapping

�:G� g ! TG; (g;X) 7! d�

g

(1):X

is a di�eomorphism. Multipliation and inversion in TG are given by

�(g

1

; X

1

) ��(g

2

; X

2

) = �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

�(g;X)

�1

= �

�

g

�1

;�Ad(g):X

�

:

Proof. (i) We have

dm(g

1

; g

2

)(X

1

; X

2

) = dm(g

1

; g

2

)(X

1

; 0) + dm(g

1

; g

2

)(0; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

:

(ii) From m Æ (id

G

��) = 1 , we derive 0 = dm(1;1)

�

X; d�(1):X

�

= X + d�(1):X and hene the

assertion.

(iii) First we note that for a produt of two smooth manifolds M and N we have a anonial

di�eomorphism T (M�N)! TM�TN: Sine the multipliation map m:G�G! G is smooth,

the same holds for its tangent map

Tm:T (G�G)

�

=

TG� TG! TG:
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Let ":G! f1g denote the onstant map and u: f1g ! G the group homomorphism representing

the identity element. Then the group axioms for G are enoded in the relations m Æ (m� id) =

m Æ (id�m) (assoiativity), m Æ (� � id) = m Æ (id��) = " (inversion), and m Æ (u � id) =

mÆ(id�u) = id (unit element). Using the funtorial properties of T , we see that these properties

arry over to the orresponding maps on TG and show that TG is a Lie group with multipliation

Tm , inversion T� , and unit element �(1; 0).

(iv) The smoothness of � follows from the smoothness of Tm and �(g;X) = Tm(g;X) for

(g;X) 2 G � T

1

(G) � T (G) � T (G) and the fat that the restrition of Tm to G � T

1

(G) �

TG� TG is smooth.

To see that �

�1

is also smooth, let �:TG! G denote the anonial projetion. Then

�

�1

:TG! G� g; v 7!

�

�(v); d�

�(v)

�1

�

�(v)

�

:v

�

= (�(v); �(v)

�1

:v)

and the smoothness of the group operations on TG imply the smoothness of �

�1

.

To derive an expliit formula for the multipliation in terms of the trivialization given by

�, we alulate

�(g

1

; X

1

) � �(g

2

; X

2

) = dm(g

1

; g

2

)

�

d�

g

1

(1):X

1

; d�

g

2

(1):X

2

�

= d�

g

2

(g

1

)d�

g

1

(1):X

1

+ d�

g

1

(g

2

)d�

g

2

(1):X

2

= d�

g

1

g

2

(1)

�

d�

�1

g

2

(g

2

)d�

g

2

(1):X

1

+X

2

�

= �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

:

The formula for the inversion follows diretly from this formula.

One of the main onsequenes of Proposition III.1.3(iv) is that the tangent bundle of a Lie

group is trivial, so that we an identify V(G) with C

1

(G; g). We write V(G)

l

� V(G) for the

subspae of left invariant vetor �elds, i.e., those satisfying

(1:1) X(g) = d�

g

(1):X(1)

for all g 2 G or, equivalently, X Æ �

g

= T (�

g

) ÆX if we onsider X as a setion X : G ! TG

of the tangent bundle TG . These are the vetor �elds that orrespond to onstant funtions

G! g . We see in partiular that eah left invariant vetor �eld is smooth, so that the mapping

V(G)

l

! g; X 7! X(1)

is a bijetion. Moreover, Lemma II.3.3 implies that for X;Y 2 V(G)

l

we have

[X;Y ℄ Æ �

g

= T (�

g

) Æ [X;Y ℄;

i.e., that [X;Y ℄ 2 V(G)

l

. Hene there exists a unique Lie braket [�; �℄ on g satisfying

[X;Y ℄(1) = [X(1); Y (1)℄

for all left invariant vetor �elds on G .

De�nition III.1.4. The Lie algebra L(G) := (g; [�; �℄) := (T

1

(G); [�; �℄) is alled the Lie algebra

of G .

Proposition III.1.5. For a Lie group G the following assertions hold:

(i) If X

l

:G! TG is a left invariant vetor �eld with X

l

(1) = X , then X

r

: g 7! �X

l

(g)

�1

is

a right-invariant vetor �eld with X

r

(1) = X . The assignment g ! V(G)

r

; X 7! X

r

is an

antiisomorphism of Lie algebras.

(ii) If �:G �M ! M is a smooth ation of G on the smooth manifold M , then the map

T�:TG� TM ! TM is a smooth ation of TG on TM . The assignment

_�: g ! V(M); with _�(X)(p) := �d�(1; p)(X; 0)
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de�nes a homomorphism of Lie algebras.

Proof. (i) In view of Proposition III.1.3(ii), we have

X

r

(g)=� d�(g

�1

):X

l

(g

�1

)=� d�(g

�1

)d�

g

�1
(1):X=� d�

g

(1)d�(1):X=d�

g

(1):X

and this proves the �rst part. The seond part follows from Lemma II.3.3 whih shows that

[X

r

; Y

r

℄(g) = d�(g

�1

):[X

l

; Y

l

℄(g

�1

) = d�(g

�1

):[X;Y ℄

l

(g

�1

) = �[X;Y ℄

r

(g):

(ii) That T� de�nes an ation of TG on TM follows in the same way as in (iii) above by

applying T to the ommutative diagrams de�ning a group ation.

For the seond part we pik p 2 M and write '

p

:G ! M; g 7! g:p for the smooth orbit

map of p . Then the equivariane of '

p

means that '

p

Æ �

g

= '

g:p

. From this we derive

�d'

p

(g):X

r

(g) = �d'

p

(g)d�

g

(1):X = �d'

g:p

(1):X = _�(X)(g:p):

Therefore Lemma II.3.3 and (i) imply that

_�([X;Y ℄)(p) = �d'

p

(1)[X;Y ℄

r

(1) = d'

p

(1)[X

r

; Y

r

℄(1) = [ _�(X); _�(Y )℄(p):

Proposition III.1.6. The adjoint ation Ad:G � g ! g; (g; x) 7! Ad(g):x is smooth. The

operators

adx: g ! g; adx(y) := dAd(1; y)(x; 0)

satisfy

adx(y) = [x; y℄:

In partiular the braket in g is ontinuous.

Proof. The smoothness of the adjoint ation of G on g follows diretly from the smoothness

of the multipliation of the Lie group TG (Proposition III.1.3).

To alulate the linear maps adx: g ! g , we onsider a loal hart ':V ! g of G ,

where V � G is an open 1-neighborhood and '(1) = 0. Let W � V be an open symmetri

1-neighborhood with WW � V . Then we have on the open set '(W ) � g the smooth

multipliation

x � y := '('

�1

(x)'

�1

(y)); x; y 2 '(W ):

From Tm(1;1)(v; w) = v + w we immediately see that the Taylor series of � is given by

x � y = x+ y + b(x; y) +R(x; y);

where R(x; y) is a smooth funtion whose derivatives up to order 2 vanish at (0; 0), and

b: g� g ! g is a ontinuous bilinear map.

For x 2 W let �

�

x

:W ! W; y 7! x � y . Then the left invariant vetor �eld orresponding

to v 2 g is given on '(W ) by

v

l

(x) = d�

�

x

(0):v;

and in 0 the �rst and seond order term of its Taylor series is v + b(x; v). Therefore

[v; w℄ = [v

l

; w

l

℄(0) = dw

l

(0):v

l

(0)� dv

l

(0):w

l

(0) = dw

l

(0):v � dv

l

(0):w = b(v; w)� b(w; v):

This implies that the Lie braket on g is ontinuous.

For x 2 '(W ) we write x

�1

= �

1

(x) + �

2

(x) + S(x); where �

1

is linear, �

2

is quadrati

and S(x) stands for terms of order at least 3. Now

0 = x � x

�1

= x+ �

1

(x) + �

2

(x) + b(x; �

1

(x)) + : : :

and by omparing terms of order 1 and 2, we get �

1

(x) = �x and �

2

(x) = �b(x;�x) = b(x; x).

Therefore

(x � y) � x

�1

=

�

x+ y + b(x; y)

�

+

�

� x+ b(x; x)

�

+ b(x+ y;�x) + � � �

= y + b(x; y)� b(x; y) + � � � ;

and by taking the derivative w.r.t. x in 0 in the diretion z , we eventually get

ad z:y = b(z; y)� b(y; z) = [z; y℄:
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From topologial groups to Lie groups

The following lemma is helpful to obtain Lie group strutures on topologial groups.

Lemma III.1.7. Let G be a onneted topologial group and K = K

�1

be an open 1-

neighborhood in G . We further assume that K is a smooth manifold suh that the inversion

is smooth on K and there exists an open 1-neighborhood V � K with V

2

� K suh that the

group multipliation m:V � V ! K is smooth. Then there exists a unique struture of a Lie

group on G for whih the inlusion map K ,! G indues a di�eomorphism on open neighborhoods

of 1 .

Proof. (f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional ase) After shrinking

V and K , we may assume that there exists a di�eomorphism ':K ! '(K) � E , where E is a

loally onvex spae, that V satis�es V = V

�1

, V

4

� K , and that m:V

2

�V

2

! K is smooth.

For g 2 G we onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whih are homeomorphisms of gV onto '(V ). We laim that ('

g

; gV )

g2G

is a smooth atlas of

G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))

follows from the smoothness of the multipliation V

2

� V ! K . This proves that the harts

('

g

; gK)

g2G

form an atlas of G . Moreover, the onstrution implies that all left translations of

G are smooth maps.

The onstrution also shows that for eah g 2 V the onjugation 

g

:G! G; x 7! gxg

�1

is

smooth in a neighborhood of 1 . Sine the set of all these g is a submonoid of G ontaining V ,

it ontains V

n

for eah n 2 N , hene all of G beause G is onneted and thus generated by

V . Therefore all onjugations and hene all right multipliations are smooth. The smoothness

of the inversion follows from its smoothness on V and the fat that left and right multipliations

are smooth. Finally the smoothness of the multipliation follows from the smoothness at 1� 1

beause

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2



g

�1

2

(x)y = g

1

g

2

m

G

(

g

�1

2

(x); y):

The uniqueness of the Lie group struture is lear beause eah loally di�eomorphi bijetive

homomorphism between Lie groups is a di�eomorphism.

III.2. Homomorphisms of Lie groups and Lie algebras

In this setion we study the interplay between homomorphisms of Lie groups and Lie

algebras. This is very muh in the spirit of di�erentiation and integration in elementary alulus.

In the �nite-dimensional Lie theory one has three basi fats on homomorphisms between Lie

groups:

(1) Every homomorphism ':G! H between Lie groups indues a Lie algebra homomorphism

L('):L(G)! L(H).

(2) If G is onneted, then ' is determined uniquely by L(').
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(3) If G is simply onneted, then every Lie algebra homomorphism L(G)! L(H) is an L(')

for some group homomorphism ':G! H .

These results are still morally true for in�nite-dimensional Lie groups, but one has to

re�ne the assumptions. There are no problems with (1). Also (2) is still true, whih is slightly

remarkable beause solutions of ordinary di�erential equations on Fr�ehet spaes are in general

not uniquely determined by an initial ondition (Remark II.2.9). Nevertheless, we will see that

this uniqueness of solutions holds for the ODEs that we have to onsider for (2) beause we an

redue it to the fat that a C

1

-map with vanishing derivative is loally onstant (Lemma II.2.3).

Property (3) is more subtle. For that we will assume that H is a regular Lie group (de�ned

below). All Banah{Lie groups and all Lie groups whih are quotients of s..l.. spaes modulo

disrete subgroups are regular, and, moreover, no non-regular Lie group modeled on an s..l..

spae is known.

From Lie group homomorphisms to Lie algebra homomorphisms

Lemma III.2.1. Let ':G! H be a homomorphism of Lie groups. Then

L(') := d'(1):L(G)! L(H)

is a homomorphism of their Lie algebras.

Proof. Let x; y 2 L(G) = T

1

(G) and x

l

; y

l

the orresponding left invariant vetor �elds.

Then ' Æ �

g

= �

'(g)

Æ ' for eah g 2 G implies that

T' Æ x

l

= L(')(x)

l

Æ ' and T' Æ y

l

= L(')(y)

l

Æ '

and therefore

T' Æ [x

l

; y

l

℄ = [L(')(x)

l

;L(')(y)

l

℄ Æ '

(Lemma II.3.3). Evaluating at 1 , we obtain

L('):[x; y℄ = [L(')(x);L(')(y)℄:

Remark III.2.2. The preeding lemma implies that the assignment G 7! L(G) and ' 7! L(')

de�nes a funtor L from the ategory of loally onvex Lie groups to the ategory of loally onvex

Lie algebras.

De�nition III.2.3. (a) Let G be a Lie group and I � R an interval. For a smooth urve

: I ! G we de�ne its left logarithmi derivative Æ

l

(): I ! g by

Æ

l

()(t) := (t)

�1

:

0

(t) = d�

(t)

�1
((t)):

0

(t);

where (t)

�1

:

0

(t) has to be read in the group TG (f. Proposition III.1.3).

The right logarithmi derivative of  is likewise de�ned by

Æ

r

()(t) := 

0

(t):(t)

�1

= d�

(t)

�1
((t)):

0

(t):

(b) Let M be a smooth manifold. The notion of logarithmi derivative generalizes naturally

to smooth maps :M ! G . We de�ne the left logarithmi derivative Æ

l

() 2 


1

(M; g) (see

De�nition II.3.4) by

Æ

l

()(x) := (x)

�1

:d(x); T

x

M ! g

and the right logarithmi derivative by

Æ

r

()(x) := d(x):(x)

�1

; T

x

M ! g

Lemma III.2.4. For smooth funtions 

i

:M ! G , i = 1; 2 , we have

Æ

r

(

1



2

) = Æ

r

(

1

) + Ad(

1

) Æ Æ

r

(

2

)

and

Æ

l

(

1



2

) = Æ

l

(

2

) + Ad(

2

)

�1

Æ Æ

l

(

1

):

Proof. This follows from a straightforward veri�ation.
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The following lemma provides a uniqueness result for the equation

Æ

l

() = f; f 2 


1

(M; g):

Lemma III.2.5. If two smooth funtions 

1

; 

2

:M ! G have the same left logarithmi deriva-

tive and M is onneted, then there exists g 2 G with 

1

= �

g

Æ 

2

.

Proof. We have to show that the funtion x 7! 

1

(x)

2

(x)

�1

is loally onstant, hene

onstant beause M is onneted. First we obtain with Lemma III.2.4

Æ

l

(

1



�1

2

) = Æ

l

(

�1

2

) + Ad(

2

)Æ

l

(

1

) = Æ

l

(

�1

2

) + Ad(

2

)Æ

l

(

2

) = Æ

l

(

2



�1

2

) = 0:

This implies that d(

1



�1

2

) vanishes, and hene that 

1



�1

2

is loally onstant.

Lemma III.2.6. If f :M ! G is a smooth map and ':G ! H is a homomorphism of Lie

groups, then

Æ

l

(' Æ f) = L(') Æ Æ

l

(f) and Æ

r

(' Æ f) = L(') Æ Æ

r

(f):

Proof. Let x 2M . Then ' Æ �

g

= �

'(g)

Æ ' implies that

T' Æ T�

g

= T�

'(g)

Æ T':TG! TH:

Applying T' to the map df = f:Æ

l

(f):TM ! TG , we thus obtain

d(' Æ f) = (' Æ f):

�

L(') Æ Æ

l

(f)

�

and therefore

Æ

l

(' Æ f) = L(') Æ Æ

l

(f):

The orresponding assertion for the right logarithmi derivative is proved in a similar way.

Proposition III.2.7. Let G be a onneted Lie group and '

1

; '

2

:G ! H two Lie group

homomorphisms for whih the orresponding Lie algebra homomorphisms L('

1

) and L('

2

)

oinide. Then '

1

= '

2

.

Proof. ([Mil83, Lemma 7.1℄) Let g 2 G . Sine G is onneted, there exists a smooth urve

: [0; 1℄! G with (0) = 1 and (1) = g . Let '

1

; '

2

:G! H be two Lie group homomorphisms

with L('

1

) = L('

2

). Then Lemma III.2.6 implies that the two urves �

i

:= '

i

Æ : [0; 1℄ ! G

have the same left logarithmi derivative. Sine both urves have the value 1 in 0, they oinide

by Lemma III.2.5. Therefore

'

1

(g) = �

1

(1) = �

2

(1) = '

2

(g);

whih proves that '

1

= '

2

.

Corollary III.2.8. If G is a onneted Lie group, then kerAd = Z(G) .

Proof. Let 

g

(x) = gxg

�1

. In view of Lemma III.1.14, for g 2 G the onditions 

g

= id

G

and L(

g

) = Ad(g) = id

g

are equivalent. This implies the assertion.

Regular Lie groups
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De�nition III.2.9. A Lie group G is alled regular if for eah losed interval I � R , 0 2 I ,

and X 2 C

1

(I;L(G)) the initial value problem (IVP)

(2:1) (0) = 1; Æ

l

() = X;

has a solution 

X

2 C

1

(I;G) and the evolution map

evol

G

:C

1

(R;L(G)) ! G; X 7! 

X

(1)

is smooth.

For a regular Lie group G we de�ne the exponential funtion

exp:L(G)! G by exp(X) := 

X

(1);

where X 2 L(G) is onsidered as a onstant funtion R ! L(G). As a restrition of the smooth

funtion evol

G

, the exponential funtion is smooth.

For a general Lie group G we all a smooth funtion exp

G

: g ! G an exponential funtion

for G if for eah X 2 g the urve 

X

(t) := exp(tX) is a solution of the IVP (2.1). Aording to

Lemma III.2.5, suh a solution is unique whenever it exists. Therefore a Lie group has at most

one exponential funtion.

Remark III.2.10. (a) As a diret onsequene of the existene of solutions to ordinary dif-

ferential equations on open domains of Banah spaes and their smooth dependene on initial

values and parameters, every Banah{Lie group is regular.

(b) All known Lie groups modeled on s..l.. spaes are regular.

Let A � C([0; 1℄; C ) denote the subalgebra of all rational funtions endowed with the

indued norm kfk := sup

0�t�1

jf(t)j . In [Gl01, Set. 7℄ it is shown that the unit group A

�

of

the algebra A is a Lie group but that its exponential funtion is only de�ned on the subspae

C 1 of L(A

�

) = A .

() If V is an s..l.. vetor spae, then V is a regular Lie group beause the Fundamental

Theorem of Calulus holds for urves in V . The smoothness of the evolution map is trivial in

this ase beause it is a ontinuous linear map. Regularity is trivially inherited by all Lie groups

Z = V=�, where � � V is a disrete subgroup.

(d) If, onversely, Z is a regular Fr�ehet{Lie group, then the exponential funtion exp:V ! Z

0

is a universal overing homomorphism of the identity omponent Z

0

of Z . Hene Z

0

�

=

V=�,

where � := ker exp

�

=

�

1

(Z) ([MT99℄).

One of the main points of the notion of regularity is provided by the following theorem.

Theorem III.2.11. If H is a regular Lie group, G is a simply onneted Lie group, and

': g ! h is a ontinuous homomorphism of Lie algebras, then there exists a unique Lie group

homomorphism �:G! H with d�(1) = ' .

Proof. This is Theorem 8.1 in [Mil83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

follows from Proposition III.2.7. The idea is to proeed as follows. Sine G is onneted, there

exists for eah g 2 G a smooth funtion : [0; 1℄ ! G with g = (1) and (0) = 1 . Then the

regularity of H implies the existene of a solution �: [0; 1℄! H of the IVP

�(0) = 1 and Æ

l

(�) = ' Æ Æ

l

():

We now want to de�ne �(g) := �(1). It remains to verify that � is well de�ned and a smooth

Lie group homomorphism.

First we need the relation

(2:2) ' ÆAd((t)) = Ad(�(t)) Æ '; 0 � t � 1:
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To obtain this relation, we �rst observe that the urve 

v

(t) := Ad((t))

�1

:v satis�es the

di�erential equation



0

v

(t) = �[Æ

l

()(t);Ad((t))

�1

:v℄ = �[Æ

l

((t)); 

v

(t)℄:

Hene �(t) := Ad(�(t)):'(

v

(t)) satis�es

�

0

(t) = �Ad(�(t)) Æ ':[Æ

l

((t)); 

v

(t)℄ + Ad(�(t)):[Æ

l

(�(t)); ' Æ 

v

(t)℄ = 0:

We onlude that �(t) = �(0), whih implies Ad(�(t)) Æ ' = ' ÆAd((t)).

Now we an show that the de�nition of � attempted above will de�ne a group homomor-

phism. For urves �

i

, i = 1; 2, with Æ

l

(�

i

) = ' Æ Æ

l

(

i

) we use (2.2) to get

Æ

l

(�

1

�

2

) = Æ

l

(�

2

) + Ad(�

2

)

�1

Æ

l

(�

1

) = ' Æ

�

Æ

l

(

2

) + Ad(

2

)

�1

Æ

l

(

1

)

�

= ' Æ Æ

l

(

1



2

);

so that �

1

�

2

orresponds to the produt urve 

1



2

.

For the remaining arguments inluding that � is well de�ned, we refer to [Mil83℄.

Corollary III.2.12. Let G be a simply onneted Lie group, V an s..l.. spae, and

�: g ! V a ontinuous Lie algebra homomorphism. Then there exists a unique smooth group

homomorphism f :G! V with df(1) = � .

Proof. Sine every s..l.. vetor spae V is a regular Lie group (Remark III.2.10), the

assertion follows from Theorem III.2.11. Alternatively we an argue with Proposition II.3.12.

Lemma III.2.13. If G is a Lie group with exponential funtion exp: g ! G , then

d exp(0) = id

g

:

Proof. For X 2 g we have exp(X) = 

X

(1), where 

X

is a solution of the IVP

(0) = 1; Æ

l

() = X:

This implies in partiular that exp(tX) = 

tX

(1) = 

X

(t) and hene

d exp(X) = d

X

(0) = X:

The preeding lemma is not so useful in the in�nite-dimensional ontext as it is in the

�nite-dimensional or Banah ontext. For Banah{Lie groups it follows from the Inverse Funtion

Theorem that exp restrits to a di�eomorphism of some open 0-neighborhood in g to an open

1-neighborhood in G , so that we an use the exponential funtion to obtain harts around 1 . We

will see below that this onlusion does not work for Fr�ehet{Lie groups beause in this ontext

there is no general Inverse Funtion Theorem. This observation also implies that to integrate Lie

algebra homomorphisms to group homomorphisms it will in general not be enough to start with

the presription �(exp

G

x) := exp

H

'(x) in the ontext of Theorem III.2.11 beause the image

of exp

G

need not ontain an identity neighborhood in G .
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III.3. Some lasses of examples

Linear Lie groups

Proposition III.3.1. If A is a ontinuous inverse algebra, then its unit group A

�

is a Lie

group with Lie algebra A .

Proof. Sine A

�

is an open subset of A , it arries a natural manifold struture. Moreover,

the multipliation on A is bilinear and ontinuous, hene a smooth map. Therefore it remains

to see that the inversion �:A

�

! A

�

is smooth. The assumptions on a .i.a. imply that � is

ontinuous.

For a; b 2 A

�

we have

b

�1

� a

�1

= a

�1

(a� b)b

�1

;

whih implies that for t 2 R we get

�(a+ th)� �(a) = (a+ th)

�1

� a

�1

= a

�1

(�th)a

�1

= �ta

�1

ha

�1

:

Therefore � is everywhere di�erentiable with

d�(a)(h) = �a

�1

ha

�1

:

Now the ontinuity of � implies that d�:A

�

�A! A is ontinuous, hene that � is a C

1

-map.

Iterating this argument, we onlude from the hain rule that � is smooth.

Remark III.3.2. (a) If A is a unital Banah algebra, then A is a ontinuous inverse algebra

and therefore A

�

is a Lie group. This applies in partiular to the group GL(X) = B(X)

�

for a

Banah spae X .

(b) If A is a unital .i.a., so is M

n

(A), and therefore GL

n

(A) :=M

n

(A)

�

is a Lie group.

() If M is a ompat manifold and B is a .i.a., then A := C

1

(M;B) is a .i.a. with

unit group A

�

= C

1

(M;B

�

). For B = M

n

(C) for a .i.a. C we obtain in partiular that

C

1

(M;GL

n

(C))

�

=

GL

n

(C

1

(M;C)) is a Lie group.

Current groups

De�nition III.3.3. If X is a topologial spae and K a topologial group, then we onsider

C(X;K) with the group struture given by pointwise multipliation:

(fg)(x) := f(x)g(x); x 2 X:

For a ompat subset C of X and an identity neighborhood U � K we de�ne

W (C;U) := ff 2 C(X;K): f(C) � Ug:

The sets W (C;U) form a neighborhood basis for a group topology on C(X;K) alled the topology

of uniform onvergene on ompat subsets of X . In this sense C(X;K) arries a natural

struture of a topologial group.
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De�nition III.3.4. Let M be a �nite-dimensional manifold and K a Lie group. Then we

obtain a natural topology on the group G := C

1

(M;K) as follows.

Let k := L(K) denote the Lie algebra of K . Then the tangent bundle TK of K is a Lie

group isomorphi to koK , where K ats on k by the adjoint representation (Proposition III.2.2).

Iterating this proedure, we obtain a Lie group struture on all higher tangent bundles T

n

K ,

whih are di�eomorphi to k

2

n

�1

�K .

For eah n 2 N

0

we obtain topologial groups C(T

n

M;T

n

K) by using the topology of

uniform onvergene on ompat subsets of T

n

M (De�nition III.3.3). Therefore the anonial

inlusion map

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K)

leads to a natural topology on C

1

(M;K) turning it into a topologial group.

For ompat manifolds M these groups an even be turned into Lie groups with Lie algebra

C

1

(M; k). Here C

1

(M; k) is endowed with the topology de�ned above if we onsider k as an

additive Lie group. The harts of G an be obtained easily from those of K as follows. If

':U ! k is a hart of K , i.e., a di�eomorphism of an open subset U � K onto an open subset

'(U) of k , then the set U

M

:= ff 2 G: f(M) � Ug is an open subset of G and the maps

'

M

:U

M

! g := C

1

(M; k); f 7! ' Æ f

de�ne an atlas of G . For details we refer to [Gl01b℄.

If exp

K

: k ! K is an exponential funtion of K , then we immediately obtain an exponential

funtion

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�:

Di�eomorphism groups

In this subsetion we disuss the di�eomorphism group Di�(M) of a ompat manifold

M . We will explain how this group an be turned into a Lie group with Lie algebra g = V(M),

the Lie algebra of smooth vetor �elds on M .

One diÆulty arising for di�eomorphism groups is that, although they have an exponential

funtion, this exponential funtion is not a loal di�eomorphism of a 0-neighborhood in g onto

an identity neighborhood in G . Therefore we annot use the exponential funtion to de�ne harts

for G . But there is an easy way around this problem.

Let g be a Riemannian metri on M and

Exp:TM !M

be its exponential funtion, whih assigns to v 2 T

p

(M) the point (1), where : [0; 1℄! M is

the geodesi segment with (0) = p and 

0

(0) = v . We then obtain a smooth map

�:TM !M �M; v 7! (p;Exp v); v 2 T

p

(M):

There exists an open neighborhood U � TM of the zero setion suh that � maps U di�eo-

morphially onto an open neighborhood of the diagonal in M �M . Now

U

g

:= fX 2 V(M):X(M) � Ug

is an open subset of the Fr�ehet spae V(M), and we de�ne a map

':U

g

! C

1

(M;M); �(X)(p) := Exp(X(p)):

It is lear that '(0) = id

M

. It is not hard to show that after shrinking U

g

, we may w.l.o.g. assume

'(U

g

) � Di�(M). To see that Di�(M) arries a Lie group struture for whih ' is a hart, one

has to verify that the group operations are smooth in a 0-neighborhood when transfered to U

g

via ' . Then Lemma III.1.7 applies after Di�(M) is endowed with a group topology for whih

' is a homeomorphism.
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Remark III.3.5. (a) If M and N are ompat manifolds, then the mapping spae C

1

(M;N)

has a natural manifold struture for whih the tangent spae T

f

(C

1

(M;N)) oinides with the

spae of smooth setions of the bundle f

�

TN !M .

(b) For a ompat manifold the group Di�(M) is open in the spae C

1

(M;M), so that one an

also use (a) to get a natural manifold struture on Di�(M). To verify that Di�(M) is open, one

piks a Riemannian metri g on M and de�nes

Æ(f) := inf

n

d(f(x); f(y))

d(x; y)

:x 6= y 2M

o

:

Then one shows that Æ is ontinuous on C

1

(M;M) and that

Di�(M) = ff 2 C

1

(M;M): Æ(f) > 0g:

Below we show that the exponential funtion

exp:V(S

1

)! Di�(S

1

)

is not a loal di�eomorphism by proving that every identity neighborhood of Di�(S

1

) ontains

elements whih do not lie on a one-parameter group, hene are not ontained in the image of

exp.

Let G := Di�

+

(S

1

) denote the group of orientation preserving di�eomorphisms of S

1

, i.e.,

the identity omponent of Di�(S

1

). To get a better piture of this group, we �rst onstrut its

universal overing group

e

G . Let

e

G := f' 2 Di�(R): (8x 2 R)'(x + 2�) = '(x); '

0

> 0g:

We onsider the map

q:R ! S

1

:= R=2�Z; x 7! x+ 2�Z

as the universal overing map of S

1

. Then every di�eomorphism  2 Di�(S

1

) lifts to a

di�eomorphism

e

 of R ommuting with the translation ation of the group 2�Z

�

=

�

1

(S

1

),

whih means that

e

 (x + 2�) =

e

 (x) + 2� for eah x 2 R . The di�eomorphism

e

 is uniquely

determined by the hoie of an element in q

�1

( (q(0))). Moreover,  is orientation preserving

means that (

e

 )

0

> 0. Hene we have a surjetive homomorphism

q

G

:

e

G! G; q

G

(')(q(x)) := q('(x))

with kernel isomorphi to Z .

The Lie group struture of

e

G is rather simple. It an be de�ned by a global hart. Let

C

1

2�

(R;R) denote the Fr�ehet spae of 2� -periodi smooth funtions on R , whih is onsidered

as a losed subspae of the Fr�ehet spae C

1

(R;R). In this spae

U := f' 2 C

1

2�

(R;R):'

0

> �1g

is an open onvex subset and the map

�:U !

e

G; �(f)(x) := x+ f(x)

is a bijetion.

In fat, let f 2 U . Then �(f)(x+2�) = �(f)(x)+2� follows diretly from the requirement

that f is 2� -periodi, and �(f)

0

> 0 follows from f

0

> �1. Therefore �(f) is stritly inreasing,

hene a di�eomorphism of R onto the interval �(f)(R) . As the latter interval is invariant under

translation by 2� , we see that �(f) is surjetive and therefore �(f) 2

e

G . Conversely, it is easy

to see that �

�1

( )(x) =  (x) � x yields an inverse of �. We de�ne the manifold struture on

e

G by delaring � to be a global hart. With respet to this hart, the group operations in

e

G

are given by

m(f; g)(x) := f(g(x) + x) � x and �(f)(x) = (f + id

R

)

�1

(x) � x;

whih an be shown diretly to be smooth maps. We thus obtain on

e

G the struture of a Lie

group suh that �:U !

e

G is a di�eomorphism. In partiular

e

G is ontratible and therefore

simply onneted, so that the map q

G

:

e

G! G turns out to be the universal overing map of G .
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Theorem II.3.7. Every identity neighborhood in Di�(S

1

) ontains elements not ontained in

the image of the exponential funtion.

Proof. First we onstrut ertain elements in

e

G whih are lose to the identity. For 0 < " <

1

n

we onsider the funtion

f :R ! R; x 7! x+

�

n

+ " sin

2

(nx)

and observe that f 2

e

G follows from f

0

(x) = 1 + 2"n sin(nx) os(nx) = 1 + "n sin(2nx) > 0.

Step 1. For n large �xed and "! 0 we get elements in

e

G whih are arbitrarily lose to id

R

.

Step 2. q

G

(f) has a unique periodi orbit of order 2n on S

1

: Under q

G

(f) the point q(0) 2 S

1

is mapped to

�

n

et., so that we obtain the orbit

q(0)! q(

�

n

)! q(

2�

n

)! : : :! q(

(2n�1)�

n

)! q(0):

For 0 < x

0

<

�

n

we have for x

1

:= f(x

0

):

x

0

+

�

n

< x

1

<

2�

n

;

and for x

n

:= f(x

n�1

) the relations

0 < x

0

< x

1

�

�

n

< x

2

�

2�

n

< � � � <

�

n

:

Therefore x

k

�x

0

62 2�Z for eah k 2 N , and hene the orbit of q(x

0

) under q

G

(f) is not �nite.

This proves that q

G

(f) has a unique periodi orbit and that the order of this orbit is 2n .

Step 3. q

G

(f) 6= g

2

for all g 2 Di�(S

1

): We analyze the periodi orbits. Every perodi point of

g is a periodi point of g

2

and vie versa. If the period of x under g is odd, then the period of x

under g and g

2

is the same. If the period of x is 2m , then its orbit under g breaks up into two

orbits under g

2

, eah of order m . Therefore g

2

an never have a single periodi orbit of even

order, and this proves that q

G

(f) has no square root in Di�(S

1

). It follows in partiular that

q

G

(f) does not lie on any one-parameter subgroup, i.e., q

G

(f) 6= expX for eah X 2 V(M).

Remark III.3.8. (a) If M is a ompat manifold, then one an show that the identity

omponent Di�(M)

0

of Di�(M) is a simple group (Epstein, Hermann and Thurston; see [Ep70℄).

Being normal in Di�(M)

0

, the subgroup hexpV(M)i oinides with Di�(M)

0

. Hene every

di�eomorphism homotopi to the identity is a �nite produt of exponentials. This observation is

due to D. MDu�.

(b) Although Di�(M)

0

is a simple Lie group, its Lie algebra V(M) is far from being simple. For

eah subset K � M the set V

K

(M) of all vetor �elds supported in the set K is a Lie algebra

ideal whih is proper if K is not dense.

III.4. Non-enlargible Lie algebras

De�nition III.4.1. We all a loally onvex Lie algebra g with ontinuous Lie braket [�; �℄

enlargible if there exists a Lie group with Lie algebra g .

Examples III.4.2. If g is a �nite-dimensional Lie algebra, endowed with its unique loally

onvex topology, then g is enlargible. This is Lie's Third Theorem. One possibility to prove this

is �rst to use Ado's Theorem to �nd an embedding g ,! gl

n

(R) and then to endow the group

G := hexp gi � GL

n

(R) with a Lie group struture suh that L(G) = g .
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Example III.4.3. To onstrut an example of a non-enlargible Banah{Lie algebra, we proeed

as follows.

Let H be an in�nite-dimensional omplex Hilbert spae and U(H) its unitary group. This

is a Banah{Lie group with Lie algebra

L(U(H)) = u(H) := fX 2 B(H):X

�

= �Xg:

The enter of this Lie algebra is given by

z(u(H)) = Ri1:

We onsider the Banah{Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21):

We laim that g is not enlargible. Let us assume to the ontrary that G is a onneted Lie group

with Lie algebra g . Let

q: u(H)� u(H)! g

denote the quotient homomorphism. Aording to Kuiper's Theorem (Theorem IV.3.1 below),

the group U(H) and hene the group G

1

:= U(H) � U(H) is ontratible and therefore in

partiular simply onneted. Hene there exists a unique Lie group homomorphism

f :G

1

! G with L(f) = q:

We then have exp

G

Æq = f Æ exp

G

1

, and in partiular

expker q � kerf:

As Z(G

1

)

�

=

T

2

is a two-dimensional torus and exp ker q is a dense one-parameter subgroup of

Z(G

1

), the ontinuity of f further implies that Z(G

1

) � ker f and hene that z(g

1

) � kerL(f) =

ker q , whih is a ontradition.

The �rst systemati disussion of the non-enlargibility problem for Banah{Lie algebras is

given in [EK64℄, based on earlier results of van Est ([Est62℄).

Theorem III.4.4. (van Est{Korthagen, 1964) Let g and h be Banah{Lie algebras. If h is

enlargible and ': g ,! h is injetive, then g is enlargible.

Proof. (Idea) Let H be a Lie group with Lie algebra h . The main idea of the proof is to

endow the subgroup G := hexp'(g)i of H with a Lie group topology for whih L(G) = g . This

is muh more ompliated than in the �nite-dimensional ase beause it is harder to ontrol the

behavior of analyti subgroups, espeially when the image of ' is not losed.

Corollary III.4.5. If g is a Banah{Lie algebra, then g= ad z(g)

�

=

ad g is enlargible.

Proof. The adjoint representation ad: g ! der g fators through an injetive homomorphism

g=z(g) ,! der g , and

der g := fD 2 B(g): (8x; y 2 g) D([x; y℄) = [D(x); y℄ + [x;D(y)℄g:

is the Lie algebra of the Banah{Lie group Aut(g).

The preeding orollary redues the enlargibility problem for Banah{Lie groups to the

question when a entral extension of an enlargible Lie algebra is again enlargible. In this ontext

a entral extension is a surjetive morphism q:

b

g ! g of Banah{Lie algebras for whih z := ker q

is entral in

b

g . The Open Mapping Theorem implies that g

�

=

b

g=z as Banah{Lie algebras. Now

the question is the following: given a onneted Lie group G with Lie algebra g , when is there

a entral group extension Z ,!

b

G ! G \integrating" the orresponding Lie algebra extension?

Without going too muh into details, we ite the following theorem whih points into a diretion

whih an be followed with suess for general Lie groups (see [Ne02a℄).
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Theorem III.4.6. (van Est-Korthagen) Let G be a simply onneted Banah{Lie group and g

its Lie algebra. Then one an assoiate to eah entral Banah{Lie algebra extension z ,!

b

g ! g

a singular ohomology lass  2 H

2

(G; z)

�

=

Hom(�

2

(G); z) whih we interpret as a period map

per



:�

2

(G)! z:

Then a orresponding entral extension Z ,!

b

G!! G exists for a Lie group Z with Lie algebra

z if and only if im(per



) � z is disrete.

Remark III.4.7. (a) Let g be a Banah{Lie algebra and G

ad

a simply onneted Lie group

with Lie algebra g=z(g) (Corollary III.4.5). Then the preeding theorem implies in partiular

that g is enlargible if and only if the period homomorphism per

g

:�

2

(G

ad

)! z(g) assoiated to

the entral extension ad: g ! g=z(g) has disrete image.

The problem with this haraterization is that in general it might be quite hard to determine

the image of the period homomorphism.

(b) If g is enlargible and G is a simply onneted Lie group with Lie algebra g , then the

long exat homotopy sequene assoiated to the homomorphism q:G! G

ad

with kernel Z(G)

0

indues a surjetive onneting homomorphism

�

2

(G

ad

)! �

1

(Z(G))

(f. Remark IV.1.1 below) and by identifying the universal overing group of Z(G)

0

with

(z(g);+), one an show that this onneting homomorphism oinides with the period map.

Its image is the group �

1

(Z(G)), onsidered as a subgroup of z . With this piture in mind one

may think that the non-enlargibility on a Banah{Lie algebra g is aused by the non-existene

of a Lie group Z with Lie algebra z(g) and fundamental group im(per

g

).

() If g is �nite-dimensional, then G

ad

is also �nite-dimensional, and therefore �

2

(G

ad

) vanishes

by a theorem of E. Cartan (Remark IV.1.3). Hene the period homomorphism per

g

is trivial for

every �nite-dimensional Lie algebra g .

Example III.4.8. We onsider the Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21)

from Example III.4.3. Then z(g)

�

=

iR and one an show that the image of the period map is

given by

2�i(Z+

p

2Z)� iR

whih is not disrete.

Proposition III.4.9. Let G be a onneted omplex Lie group with Fr�ehet{Lie algebra g .

Then eah losed ideal of g is invariant under Ad(G) .

Proof. Let a E g be a losed ideal. Sine G is assumed to be onneted, it suÆes to show

that there exists a 1-neighborhood U � G with Ad(U):a � a . We may w.l.o.g. assume that

U is di�eomorphi to an open onvex 0-neighborhood in g . Then we �nd for every g 2 U a

onneted open subset V � C and a holomorphi map p:V ! G with p(0) = 1 and p(1) = g .

Let w

0

2 a and w(t) := Ad(p(t)):w

0

for t 2 V . We have to show that w(1) = Ad(g):w

0

2

a . For the right logarithmi derivative v := Æ

r

(p):V ! g we obtain the di�erential equation

w

0

(t) = Ad(p(t)):[p

�1

(t):p

0

(t); w

0

℄ = [Æ

r

(p)(t); w(t)℄ = [v(t); w(t)℄:

Sine the maps v and w are holomorphi, their Taylor expansions in 0 onverge:

v(t) =

X

n

v

n

t

n

and w(t) =

X

n

w

n

t

n
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for t lose to 0 in V . Then the di�erential equation for w an be written as

X

n

(n+ 1)w

n+1

t

n

= w

0

(t) = [v(t); w(t)℄ =

X

n

t

n

n

X

k=0

[v

k

; w

n�k

℄:

Comparing oeÆients now leads to

w

n+1

=

1

n+ 1

n

X

k=0

[v

k

; w

n�k

℄;

so that we obtain indutively w

n

2 a for eah n 2 N . Sine a is losed, it follows that w(t) 2 a

for t lose to 0. Applying the same argument in other points t

0

2 V , we see that the set w

�1

(a)

is an open losed subset of V , and therefore that a(1) 2 a beause a(0) 2 a and V is onneted.

The preeding proposition an be generalized to the larger lass of real analyti Lie groups,

whih we have not de�ned in these notes. Then this result an be used to onlude that the

Lie group Di�(M) does not possess an analyti Lie group struture. Indeed for eah non-dense

subset K �M the subspae

a

K

:= fX 2 V(M):X j

K

= 0g

is a losed ideal of V(M) not invariant under Di�(M) beause Ad('):a

K

= a

'(K)

for ' 2

Di�(M).

Theorem III.4.10. (Lempert) Let M be a ompat manifold, g := V(M) the Lie algebra of

smooth vetor �elds on M and g

C

its omplexi�ation. Then g

C

is not enlargible to a regular

Lie group.

Proof. (Sketh; see [Mil83℄) For eah subset K �M the subspae

a

K

:= fX 2 g

C

:X j

K

= 0g

is a losed ideal of g

C

.

Let G be a regular Lie group with Lie algebra g and let q:D ! Di�(M)

0

denote the

universal overing homomorphism of Di�(M)

0

. Then the inlusion homomorphism g ,! g

C

an

be integrated to a Lie group homomorphism ':D ! G . For g 2 D we then have

Ad('(g)):a

K

= a

'(g)(K)

;

ontraditing the invariane of a

K

under Ad(G).

Remark III.4.11. In [Omo81℄ Omori shows that for any non-ompat smooth manifold M

the Lie algebra V(M) is not enlargible.

IV. The topology of in�nite-dimensional Lie groups

There are several methods to study the topology of in�nite-dimensional Lie groups whih are

adapted to the di�erent lasses of groups onsidered above. We are mainly interested in the �rst

three homotopy groups of a Lie group G , namely �

0

(G) (the group of onneted omponents),

�

1

(G) (the fundamental group), and �

2

(G). The importane of �

0

(G) is lear beause one wants

to know whether a onretely given group is onneted or not. Information on the fundamental

group is important for the integration of Lie algebra homomorphisms to group homomorphisms

and hene in partiular for representation theory. The interest in �

2

(G) omes from the ruial

role this group plays for enlargibility of Lie algebras and for entral extensions of G .
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IV.1. Finite-dimensional Lie groups

Let G be a onneted �nite-dimensional Lie group with �nitely many onneted ompo-

nents and K � G a maximal ompat subgroup. Then G

�

=

K � R

d

as smooth manifolds holds

for some d 2 N

0

. This implies in partiular that the inlusion map K ,! G is a homotopy

equivalene, hene indues isomorphisms �

k

(K) ! �

k

(G) for eah k 2 N

0

. This redues all

questions on the topology of �nite-dimensional Lie groups to ompat groups.

Remark IV.1.1. A ruial tool to analyze homotopy groups of Lie groups and their homo-

geneous spaes is the long exat homotopy sequene of �ber bundles. If q:P ! B de�nes a

K -prinipal bundle and the spaes B and P are onneted, then the long exat homotopy

sequene reads as follows:

: : : �

3

(B)! �

2

(K)! �

2

(P )! �

2

(B)! �

1

(K)! �

1

(P )! �

1

(B)!! �

0

(K):

Lemma IV.1.2. If X is a semiloally simply onneted arwise onneted spae and q:

e

X ! X

is the universal overing of X , then q indues isomorphisms

�

k

(q):�

k

(

e

X)! �

k

(X); k � 2:

Proof. We onsider q:

e

X ! X as a prinipal bundle for the disrete group K := �

1

(X) and

apply the exat homotopy sequene (Remark IV.1.1). Sine K is disrete, we have �

k

(K) = 1

for k � 1, and the assertion follows from the exatness of the sequene.

Remark IV.1.3. We reall some results on the homotopy groups of ompat Lie groups K .

First we have Cartan's Theorem

�

2

(K) = 1

([Mi95, Th. 3.7℄), and further Bott's Theorem that for a ompat onneted simple Lie group K

we have

�

3

(K)

�

=

Z

([Mi95, Th. 3.9℄).

In [Mi95, pp. 969-970℄ one also �nds a table with �

k

(K) up to k = 15, showing that

�

4

(K)

�

=

8

>

<

>

:

Z

2

�Z

2

for K = SO(4)

Z

2

for K = Sp(n); SU(2); SO(3); SO(5)

1 for K = SU(n), n � 3 and SO(n), n � 6

1 for K = G

2

; F

4

; E

6

; E

7

; E

8

.

�

5

(K)

�

=

8

>

<

>

:

Z

2

�Z

2

for K = SO(4)

Z

2

for K = Sp(n); SU(2); SO(3); SO(5)

Z for K = SU(n), n � 3 and SO(6)

1 for K = SO(n), n � 7, G

2

; F

4

; E

6

; E

7

; E

8

.

Remark IV.1.4. (a) Let K be a onneted ompat Lie group, K

1

; : : : ;K

m

the onneted

simple normal subgroups of K , and Z(K) its enter. Then the multipliation map

Z(K)

0

�K

1

� : : :�K

m

! K

has �nite kernel, hene is a overing map. Therefore we obtain for eah k > 1 from Lemma IV.1.2

�

k

(K)

�

=

m

Y

j=1

�

k

(K

j

)
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beause Z(K)

0

is a torus, so that all its homotopy groups of degree � 2 vanish.

(b) If K is ompat and simple, then a generator of �

3

(K) an be obtained from a homomorphism

�: SU(2)

�

=

S

3

! K . More preisely, let � be a long root in the root system �

k

of k and

k(�) � k the orresponding su(2)-subalgebra. Then the orresponding homomorphi inlusion

SU(2)

�

=

S

3

! K represents a generator of �

3

(K) ([Bo58℄).

() A fundamental result in topology states that the spheres S

d

arry a Lie group struture if

and only if d 2 f0; 1; 3g .

For �nite-dimensional Lie groups this has the nie onsequene that for d = 1 and d = 3

eah homotopy lass S

d

! K an be represented by a group homomorphism. For d = 3 this

follows from (b) and for d = 1 it follows from the fat that for a maximal torus T � K the

homomorphism

Hom(T; T )

�

=

�

1

(T )! �

1

(K)

is surjetive.

(d) For a topologial group G and k � 1 the groups �

k

(G) are abelian. The groups

�

Q

k

(G) := Q 
 �

k

(G)

are alled the rational homotopy groups of G . For most purposes, inluding appliations to

the period maps arising for entral extensions, it suÆes to know the rational homotopy groups

beause eah homomorphism from �

k

(G) to a rational vetor spae fators through the natural

map �

k

:�

k

(G)! �

Q

k

(G) whih kills the torsion subgroup of �

k

(G).

We have seen above that a �nite-dimensional onneted Lie group is homotopy equivalent

to a ompat onneted Lie group, hene, up to a �nite overing to a produt of a torus and

�nitely many ompat simple Lie groups. For a simply onneted simple ompat Lie group it is

known that its rational homotopy groups are the same as those of a produt of odd-dimensional

spheres whose dimensions an be omputed from the orresponding root system. The rational

homotopy groups of the sphere are known to be

�

Q

k

(S

2d+1

)

�

=

n

Q for k = 2d+ 1

0 otherwise

and �

Q

k

(S

2d

)

�

=

n

Q for k = 2d and k = 4d� 1

0 otherwise.

We therefore have omplete information on the rational homotopy groups of �nite-dimensional

Lie groups. In partiular we note that if K is a �nite-dimensional Lie group, then �

2

(K) vanishes

and �

4

(K) is a torsion group beause the rational homotopy of K is the same as of a produt

of odd-dimensional spheres.

IV.2. Linear Lie groups

In this setion we briey disuss the unit group A

�

of a unital ontinuous inverse algebra

(.i.a.) A (Proposition III.3.1). It is quite hard to get diret aess to the homotopy groups

�

k

(GL

n

(A)) for a �xed n , but the situation beomes muh better if we let n tend to in�nity

and study the diret limit of the homotopy groups for inreasing n . In this sense we look at a

\stable" piture. The natural inlusions

(2:1) GL

n

(A) ,! GL

n+1

(A); a 7!

�

a 0

0 1

�

lead to a sequene of inlusions

A

�

= GL

1

(A)! : : :! GL

n

(A)! : : :

De�nition IV.2.1. For i 2 N we de�ne the topologial K -groups of A by

K

i

(A) := lim

�!

�

i�1

(GL

n

(A));
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where the onneting maps

�

i�1

(GL

n

(A))! �

i�1

(GL

n+1

(A))

are the group homomorphisms indued by the natural inlusions (2.1).

The de�nition of the group K

0

(A) is a bit more ompliated. For a topologial assoiative

algebra B let Idem(B) denote the set of idempotents in B and �

0

(Idem(B)) the set of ar-

omponents of Idem(B) with respet to the subspae topology indued by B . Now let

P (A) := lim

�!

�

0

(Idem(M

n

(A)))

as a set, and observe that this set admits a monoid struture given by

[e℄ + [f ℄ := [e� f ℄;

where for e 2 M

n

(A) and f 2 M

m

(A) the idempotent e� f 2 M

n+m

(A) is represented by the

matrix

�

e 0

0 f

�

. The free group or Grothendiek group G(P (A)) over the monoid P (A) is a

group with a monoid morphism �:P (A) ! G(P (A)) whih has the universal property that for

eah monoid morphism f :P (A) ! G , G a group, there exists a unique group homomorphism

f

G

:G(P (A)) ! G with f

G

Æ � = f . We de�ne

K

0

(A) := G(P (A)):

A more algebrai approah is to de�ne P (A) diretly as the set of isomorphism lasses of �nitely

generated projetive A-modules, whih leads to the same objet.

The use of K -theory for the topology of the unit groups of algebras is obvious from the

following theorem.

Theorem IV.2.2. (Bott periodiity) For a omplex unital .i.a. the following assertions hold:

(1) K

i

(A)

�

=

K

i+2

(A) for i 2 N

0

.

(2) K

i+1

(A)

�

=

�

i

(GL

1

(A)) if A is a Banah algebra.

Proof. [Bos90, Prop. A.1.5℄.

A major point of the K -groups of an algebra A is that K -theory provides tools like exat

sequenes whih an be used to get information on the groups K

0

(A) and K

1

(A) of a .i.a.. All

other K -groups are redundant for a omplex .i.a. by Bott periodiity.

Diretly relevant for the topology of A

�

are the homomorphisms

�

0

(A

�

)! K

1

(A); �

1

(A

�

)! K

0

(A) and �

2

(A

�

)! K

1

(A):

Remark IV.2.3. The de�nition of the K -groups implies almost diretly that they are stable

in the sense that the inlusion A ,!M

n

(A); a 7!

�

a 0

0 0

�

indues isomorphisms

K

i

(A)! K

i

(M

n

(A))

for eah n 2 N .

Examples IV.2.4. (a) If A = B(H) is the algebra of bounded operators on an in�nite-

dimensional omplex Hilbert spae, then we have for eah n 2 N the relations

GL

n

(B(H)) =M

n

(B(H))

�

�

=

B(H

n

)

�

�

=

GL(H

n

);

and all these groups are ontratible by Kuiper's Theorem IV.3.1 below. Therefore K

i

(B(H)) = 0

for eah i .
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(b) For A = C we have

K

0

(C )

�

=

lim

�!

�

1

(GL

n

(C ))

�

=

�

1

(C

�

)

�

=

Z and K

1

(C )

�

=

lim

�!

�

0

(GL

n

(C )) = 0:

For A =M

n

(C ) Remark IV.2.3 now leads to

K

0

(A)

�

=

K

0

(C )

�

=

Z and K

1

(A)

�

=

K

1

(C ) = 0:

() If X is a ompat spae and A = C(X; C ) with its natural Banah algebra struture, then

K

0

(A) = K

0

(X) and K

1

(A) = K

�1

(X) are the K -groups of the topologial spae X de�ned

by topologial K -theory via vetor bundles on X .

In partiular we have for the irle S

1

and, more generally, for tori T

d

:

K

0

(C(S

1

; C ))

�

=

K

1

(C(S

1

; C ))

�

=

Z and K

0

(C(T

d

; C ))

�

=

K

1

(C(T

d

; C ))

�

=

Z

2

d�1

:

Remark IV.2.5. (a) If ':A! B is a ontinuous morphism of .i.a.'s with dense range, then

K

j

('):K

j

(A)! K

j

(B) is an isomorphism for eah j .

(b) Let B be a omplex Banah algebra and �:R � B ! B a ontinuous isometri ation of R

on B by automorphisms. Let I � R be a ompat interval ontaining 0 and write B(I) � B

for the subalgebra of all those elements for whih the orbit map R ! B extends to a ontinuous

map R + iI ! B holomorphi on R + iI

0

. Then B(I) is a dense subalgebra of B and the

inlusion B(I) ,! B indues an isomorphism in K -theory ([Bos90, Th. 1.1.1℄).

Let 0 < r < 1 < R and onsider the annulus

A

r;R

:= fz 2 C : r � jzj � Rg:

We write O(A

r;R

) for the Banah algebra of ontinuous funtions on A

r;R

whih are holomorphi

on its interior. For B := C(S

1

; C ) and for the ation of R on B given by (t:f)(z) := f(ze

it

), the

preeding result implies that the restrition map O(A

r;R

) ,! C(S

1

; C ) indues an isomorphism

in K -theory. This leads to

K

0

(O(A

r;R

))

�

=

K

0

(C(S

1

; C ))

�

=

K

0

(S

1

)

�

=

Z

and

K

1

(O(A

r;R

))

�

=

K

1

(C(S

1

; C ))

�

=

�

0

(GL(C(S

1

; C )))

�

=

�

1

(GL(C ))

�

=

Z:

IV.3. Groups of operators on Hilbert spaes

Theorem IV.3.1. (Kuiper's Theorem for general Hilbert spaes) If H is an in�nite-

dimensional Hilbert spae over K = R; C or H , then the group GL(H;K ) of invertible K -linear

automorphisms of H is ontratible.

Kuiper's Theorem an be used to prove that many \lassial" groups of operators on a

Hilbert spae are ontratible. Below we briey disuss these appliations.

De�nition IV.3.2. (a) If H is a Hilbert spae over K 2 fR; C ; H g , then we de�ne

U(H;K ) := fg 2 GL(H;K ): g

�

g = gg

�

= 1g

as the unitary part of this group. We also write

O(H) := U(H;R); U(H) := U(H; C ) and Sp(H) := U(H; H ):
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(b) Let H be a omplex Hilbert spae and I be an antilinear isometry with I

2

2 f�1g . Then

GL(H; I) := fg 2 GL(H): Ig

�

I

�1

= g

�1

g

is a omplex Lie subgroup of GL(H). For I

2

= 1 we then have

U(H; I) := U(H) \GL(H; I)

�

=

O(H

R

) with H

R

:= fx 2 H : I:x = xg;

and for I

2

= �1 we have

U(H; I)

�

=

U(H; H )

�

=

Sp(H);

where the quaternioni struture on H is given by the subalgebra C 1 + C I

�

=

H of B(H;R) ,

the real linear endomorphisms of H .

() (Hermitian groups) Let H be a omplex Hilbert spae and H = H

+

�H

�

be an orthogonal

deomposition. Further let T = T

�

2 B(H) with H

�

= ker(T �1). We de�ne the orresponding

pseudo-unitary group

U(H

+

; H

�

) := fg 2 GL(H):Tg

�

T

�1

= g

�1

g:

We de�ne 
(x; y) := Imhx; yi and write H

R

for the real Hilbert spae underlying H . Then

Sp(H;
) := fg 2 GL(H

R

;R): (8v; w 2 H

R

) 
(g:v; g:w) = 
(v; w)g

is alled the sympleti group of H . If we start with the real Hilbert spae H

R

and onsider an

isometri omplex struture I on H

R

, then we an de�ne


(x; y) := �hI:x; yi = hx; I:yi

and put

Sp(H

R

; I) := fg 2 GL(H

R

;R): (8v; w 2 H

R

) 
(g:v; g:w) = 
(v; w)g:

It is easy to see that both onstrutions lead to isomorphi groups Sp(H

R

; I)

�

=

Sp(H;
).

Now let I be a onjugation on the omplex Hilbert spae H and H

+

� H a subspae for

whih we get an orthogonal deomposition H = H

+

�H

�

with H

�

:= I:H

+

. Then we de�ne

O

�

(H; I) := U(H; I) \ U(H

+

; H

�

):

Theorem IV.3.3. If H is an in�nite-dimensional Hilbert spae over K 2 fR; C ; H g , then

the following groups are ontratible:

(i) the group of K -linear automorphisms GL(H;K ) .

(ii) the group of isometri K -linear automorphisms U(H;K ) , and in partiular the groups

O(H) = U(H;R) , U(H) = U(H; C ) and Sp(H) = U(H; H ) .

(iii) the group GL(H; I) if H is omplex and I an antilinear isometry with I

2

2 f�1g . More-

over, GL(H; I) has a smooth polar deomposition.

(iv) the hermitian groups U(H

+

; H

�

) , where H = H

+

�H

�

is an orthogonal deomposition with

two in�nite-dimensional summands, Sp(H;
) , and O

�

(H; I) .

Proof. (i) is Theorem IV.3.1.

(ii) follows from (i) and the polar deomposition GL(H;K )

�

=

U(H;K ) � Herm(H;K ) of the

group GL(H;K ) with the unitary part U(H;K ).

(iii) In view of De�nition IV.3.2(b), the group U(H; I) is ontratible, beause it is one of the

groups in (ii). Hene the assertion follows from the polar deomposition of GL(H; I) whih an

be obtained as follows. We onsider the automorphism �(g) := I(g

�

)

�1

I

�1

of GL(H) and write

�

g

(x) := �Ix

�

I

�1

for the orresponding antilinear automorphism of its Lie algebra gl(H). Then

GL(H; I) = GL(H)

�

:= fg 2 GL(H): �(g) = gg:
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Let g = ue

x

be the polar deomposition of g 2 GL(H). Then �(g) = �(u)e

�

g

(x)

is the polar

deomposition of �(g), so that the uniqueness of this deomposition implies that �(g) = g , is

equivalent to �(u) = u and �

g

(x) = x , i.e., u 2 U(H; I) and x 2 Herm(H; I).

(iv) For the hermitian groups we will see below that they have polar deompositions with

U(H

+

; H

�

) \ U(H)

�

=

U(H

+

)�U(H

�

); Sp(H;
) \O(H

R

)

�

=

U(H)

and

O

�

(H; I) \ U(H)

�

=

U(H

+

);

where H

�

=

H

+

� I:H

+

as in De�nition IV.3.2(). Therefore (ii) implies that all these groups

are ontratible.

To prove the polar deomposition of U(H

+

; H

�

), let g 2 GL(H) with polar deomposition

g = ue

x

, u 2 U(H) and x = x

�

. For T as in De�nition IV.3.2() we onsider the automorphism

�(g) := T (g

�

)

�1

T

�1

of GL(H) and write �

g

(x) := �Tx

�

T

�1

for the orresponding antilinear

automorphism of its Lie algebra gl(H). Then �(g) = �(u)e

�

g

(x)

is the polar deomposition of

�(g), so that the uniqueness of this deomposition implies that �(g) = g is equivalent to �(u) = u

and �

g

(x) = x . Therefore g 2 U(H

+

; H

�

) if and only if

u 2 U(H

+

; H

�

) \ U(H)

�

=

U(H

+

)�U(H

�

) and x 2 u(H

+

; H

�

):

To see that Sp(H;
) is adapted to the polar deomposition, we observe that


(x; y) = Imhx; yi = Rehx; iyi = (x; Jy);

where (�; �) := Reh�; �i denotes the real salar produt on H

R

. Therefore g 2 Sp(H;
) is

equivalent to g

>

Jg = J , i.e., g = �(g) := J(g

>

)

�1

J

�1

. Then � is an involutive automorphism of

GL(H

R

) and �

g

(x) := �Jx

>

J

�1

is the orresponding Lie algebra automorphism. Let g = ue

x

be

the polar deomposition of g 2 GL(H

R

), where u 2 O(H

R

) and x

>

= x . Then �(g) = �(u)e

�

g

(x)

is the polar deomposition of �(g) beause ue

�x

is the polar deomposition of (g

>

)

�1

. Therefore

g 2 Sp(H;
) is equivalent to �(u) = u , i.e., u 2 U(H), and to Jx = �xJ , i.e., x is antilinear.

The argument for the group O

�

(H; I) is similar.

IV.4. Current groups

Let K be a Lie group and M a ompat onneted manifold. We write C

1

(M;K) for the

orresponding urrent group. In M we �x a base point x

M

and in any group we onsider the

unit element 1 as the base point. We write C

1

�

(M;K) � C

1

(M;K) for the subgroup of base

point-preserving maps.

We then have

C

1

(M;K)

�

=

C

1

�

(M;K)oK

as Lie groups, where we identify K with the subgroup of onstant maps. This relation already

leads to

(4:1) �

k

(C

1

(M;K))

�

=

�

k

(C

1

�

(M;K))� �

k

(K); k 2 N

0

:

For topologial spaes X and Y we write [X;Y ℄ for the set of homotopy lasses of

ontinuous maps f :X ! Y , and for pointed spaes (X; x

0

) and (Y; y

0

) we write [X;Y ℄

�

for the

set of all pointed homotopy lasses of ontinuous base-point-preserving maps. For two ompat

pointed spaes we de�ne

X _ Y := X � fy

0

g [ fx

0

g � Y � X � Y and X ^ Y := X � Y=X _ Y:

We then have for eah pointed topologial spae (Z; z

0

) a natural bijetion

C

�

(X;C

�

(Y; Z))

�

=

C

�

(X ^ Y; Z):

Moreover,

S

k

^ S

d

�

=

S

k+d

; k; d 2 N

0

;

so that

�

k

(C

�

(X;K))

�

=

�

0

(C

�

(S

k

; C

�

(X;K)))

�

=

�

0

(C

�

(S

k

^X;K)):
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Theorem IV.4.1. If M is a ompat manifold, then the inlusion map

C

1

(M;K) ,! C(M;K)

is a weak homotopy equivalene, i.e., indues isomorphisms of all homotopy groups. Therefore

we have for eah k an isomorphism

�

k

(C

1

(M;K))

�

=

�

k

(C(M;K))

�

=

�

k

(C

�

(M;K))� �

k

(K)

�

=

[S

k

^M;K℄

�

� �

k

(K):

Let X be a loally ompat spae and K a Lie group. Then we write C

0

(M;K) for

the Lie group of all ontinuous maps f :M ! K vanishing at in�nity in the sense that for

eah 1-neighborhood U � K there exists a ompat subset C � X with f(X n C) � U . If

X

!

:= X [ f!g denote the one-point ompati�ation of X , then this means that

C

0

(X;K)

�

=

C

�

(X

!

;K)

beause f 2 C

0

(X;K) is equivalent to the extendibility of f to a ontinuous map X

!

! K

mapping ! to 1 .

Theorem IV.4.2. If M is a non-ompat � -ompat manifold, then the inlusion map

C

1



(M;K) ,! C

0

(M;K)

is a weak homotopy equivalene, and we obtain isomorphisms

�

k

(C

1



(M;K))

�

=

�

k

(C

0

(M;K))

�

=

�

k

(C

�

(M

!

;K))

�

=

[S

k

^M

!

;K℄

�

:

With the above results, many alulations of homotopy groups of urrents groups an thus

be transfered into the ontinuous ontext, where one an use tools from topology to get more

expliit information.

Example IV.4.3. If M = S

d

is a d-dimensional sphere, then we have

(4:2) �

k

(C

�

(S

d

;K))

�

=

[S

k

^ S

d

;K℄

�

�

=

[S

k+d

;K℄

�

�

=

�

k+d

(K)

and therefore

�

k

(C(S

d

;K))

�

=

�

k

(K)� �

k+d

(K):

Example IV.4.4. We onsider the ase where M = T

d

is an d-dimensional torus. Then

C(T

d

;K)

�

=

C(T; C(T

d�1

;K))

�

=

C

�

�

T;

�

C(T

d�1

;K)

�

o C(T

d�1

;K)

implies that

�

k

(C(T

d

;K))

�

=

�

k+1

(C(T

d�1

;K))� �

k

(C(T

d�1

;K))

and by indution we obtain

�

k

(C(T

d

;K))

�

=

d

X

j=0

�

k+j

(K)

(

d

j

)

:

For d = 2 we get in partiular

�

k

(C(T

2

;K))

�

=

�

k

(K)� �

k+1

(K)

2

� �

k+2

(K)

whih also follows from the alulations for surfaes in the following setion. We also obtain for

general d :

�

2

(C(T

d

;K))

�

=

�

2

(K)� �

3

(K)

d

� �

4

(K)

(

d

2

)

� : : : :
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Oriented surfaes

In this subsetion � denotes an orientable ompat surfae of genus g and K is an arbitrary

topologial group.

1

Remark IV.4.5. We reall that � an be desribed as a CW-omplex by starting with a

bouquet

A

g

�

=

S

1

_ S

1

_ : : : _ S

1

| {z }

2g

of 2g -irles. We write a

1

; b

1

; : : : ; a

g

; b

g

for the orresponding generators of the fundamental

group of A

g

whih is a free group on 2g generators. Then we onsider the ontinuous map

:S

1

! A

g

orresponding to

[a

1

; b

1

℄ � � � [a

g

; b

g

℄ 2 �

1

(A

g

);

where [x; y℄ = xyx

�1

y

�1

denotes a ommutator. Now � is homeomorphi to the spae obtained

by identifying the points in �B

2

�

=

S

1

with their images in A

g

under  , i.e.,

�

�

=

A

g

[



B

2

:

In this sense we an identify A

g

with a subset of �. The most instrutive piture is to view B

2

as the interior of a regular polygon with 4g edges, where we identify ertain points on the edges

suh that in ounterlokwise order the sequene of edges orresponds to the loop

a

1

b

1

a

�1

1

b

�1

1

a

2

� � �a

�1

n

b

�1

n

:

Now A

g

orresponds to the polygon modulo these identi�ations.

This proedure shows that a ontinuous map f :A

g

! Z into a topologial spae Z extends

to a map � ! Z if and only if the orresponding map �B

2

! Z extends to the interior of B

2

,

whih in turn means that it is a zero-homotopi urve. Finally, this an be expressed by the

ondition that

�

1

(f):�

1

(A

g

)

�

=

Z�Z� � � � �Z

| {z }

2g

! �

1

(Z)

annihilates the ommutator a

1

b

1

a

�1

1

b

�1

1

a

2

� � � a

�1

n

b

�1

n

; hene fators to a homomorphism �

1

(�)!

�

1

(Z):

Conversely, if suh a homomorphism is given, then we an lift it to a homomorphism

�

1

(A

g

) ! �

1

(Z) whih an be trivially represented by a ontinuous map A

g

! Z . As we have

seen above, this map extends to �, showing that the map

(4:3) C

�

(�; Z)! Hom(�

1

(�); �

1

(Z))

is surjetive for any pointed spae Z .

Theorem IV.4.6. For eah topologial group K we have a homeomorphism

C(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

�K

and

�

k

(C(�;K))

�

=

�

k+2

(K)� �

k+1

(K)

2g

� �

k

(K) for all k 2 N

0

:

1

This subsetion is based on onversations with F. Wagemann and on some alulations in his dissertation

for the ase K=SU(2)

�

=

S

3

([Wa98, Lemma 3.1.1℄).
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Proof. Let (

1

; : : : ; 

2g

) be the natural generators of �

1

(�) oming from the maps S

1

!

A

g

,! � given by a

1

; b

1

; : : : ; a

g

; b

g

. From (4.3) we obtain for Z = S

1

with �

1

(Z)

�

=

Z and base

point 1 pointed ontinuous maps �

1

; : : : ; �

2g

: �! S

1

with

�

1

(�

j

)(

i

)

�

=

[�

j

Æ 

i

℄ = Æ

ij

:

We an even get maps with

�

j

Æ 

i

=

�

1 for i 6= j

id

S

1

for i = j

if we start with the ontinuous maps �

0

j

:A

g

! S

1

with the required property and observe that

all these maps extend ontinuously to � beause �

1

(�

0

j

):�

1

(A

g

) ! �

1

(S

1

)

�

=

Z annihilates all

ommutators sine Z is abelian.

Now we obtain for eah topologial group K a nie splitting of the restrition map

R:C

�

(�;K)! C

�

(A

g

;K)

�

=

C

�

(S

1

;K)

2g

by the extension map

E:C

�

(S

1

;K)

2g

! C

�

(�;K); (�

1

; : : : ; �

2g

) 7! (�

1

Æ �

1

) � � � (�

2g

Æ �

2g

):

Then RE = id follows diretly from the hoie of the maps �

j

. We onlude that

C

�

(�;K)! ker(R)� C

�

(S

1

;K)

2g

; f 7! (fE(R(f))

�1

; R(f))

is a homeomorphism whose inverse is given by (�; �) 7! �E(�). Next we observe that

kerR

�

=

C

�

(�=A

g

;K)

�

=

C

�

(S

2

;K);

so that we obtain a homeomorphism

C

�

(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

and hene a homeomorphism

(4:4) C(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

�K:

This implies that we have the group isomorphism

�

0

(C(�;K))

�

=

[�;K℄ = �

2

(K)� �

1

(K)

2g

� �

0

(K):

Combining (4.2) and (4.4) further leads to

�

k

(C(�;K))

�

=

�

k+2

(K)� �

k+1

(K)

2g

� �

k

(K) for all k 2 N

0

:

Remark IV.4.7. Suppose that g � 1. Then the universal overing spae

e

� of � is on-

tratible, showing that the only non-trivial homotopy group of � is �

1

(�). This means that

� is a K(�

1

(�); 1)-spae in the sense of Eilenberg{MaLane. The result above shows that the

natural homomorphism

[�;K℄

�

! Hom(�

1

(�); �

1

(K))

�

=

�

1

(K)

2g

has a kernel isomorphi to �

2

(K), hene is not injetive. This means that the homotopy lasses of

maps �! K are NOT lassi�ed by the sequene of homomorphisms �

k

(�)! �

k

(K), k 2 N

0

.
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Corollary IV.4.8. If K is 2-onneted, then C(�;K) is arwise onneted.

Proof. This follows diretly from Theorem IV.4.6.

We also give a seond diret proof. If K is 2-onneted, i.e.,

�

0

(K) = �

1

(K) = �

2

(K) = 1;

the inlusion 1 ,! K is a 2-equivalene in the sense of [Br93, Cor. 11.13℄. Sine � is two-

dimensional, this implies that the map [�;1℄ ! [�;K℄ is surjetive, and hene that [�;K℄ is a

singleton. This means that C(�;K) is arwise onneted.

Remark IV.4.9. Suppose that the topologial group K is semiloally simply onneted, so

that it has a universal overing group

e

K . This ondition is in partiular satis�ed if K is loally

ontratible.

Let q

K

:

e

K ! K denote the simply onneted overing homomorphism. For an arwise

onneted loally arwise onneted spae X , a ontinuous map f :X ! K lifts to a map

X !

e

K if and only if the homomorphism �

1

(f):�

1

(X)! �

1

(K) vanishes (f. [tD91, Satz 6.12℄).

Therefore we have an exat sequene of groups

C

�

(X;

e

K)

(q

K

)

�

��!C

�

(X;K)! Hom(�

1

(X); �

1

(K)):

If f 2 C

�

(X;K)

0

, then it is homotopi to a onstant map, so that �

1

(f) vanishes, and

therefore it is ontained in the range of (q

K

)

�

:h 7! q

K

Æ h . We thus obtain an exat sequene

�

0

(C

�

(X;

e

K))! �

0

(C

�

(X;K))! Hom(�

1

(X); �

1

(K)):

Holomorphi urrent groups

Let M be Stein manifold, i.e., a omplex manifold whih an be realized as a losed

submanifold of some C

n

. Further let K be a Banah{Lie group, then the groups C(M;K) and

Hol(M;K) are metrizable topologial groups with respet to the topology of uniform onvergene

on ompat subsets of M (Example II.1.6). In general these groups are not Lie groups and it

is an interesting open problem to haraterize those Stein manifolds M for whih they are. We

have a natural inlusion map

�: Hol(M;K) ,! C(M;K);

and one an show that this inlusion is a homotopy equivalene. This is based on results of

R. Palais whih imply that under ertain onditions (here the metrizability) weak homotopy

equivalenes are homotopy equivalenes. The statement about the weak homotopy equivalene is

then redued to Oka's Priniple whih asserts that the inlusion � indues a bijetion on the level

of onneted omponents. Further, one uses that for eah k 2 N the group C(S

k

;K) is also a

Banah{Lie group, so that Oka's Priniple applies to the topologial group Hol(M;C(S

k

;K))

�

=

C(S

k

;Hol(M;K))

1

.

These results are of partiular interest if M = � n F , where � is a ompat Riemann

surfae and F � � a �nite set.

IV.5. Di�eomorphism groups

In this setion we briey disuss the topology of the groups Di�(S

d

). For more details we

refer to [Mil83℄.

1

The author learned the trik of replaing the group K in this ontext by C(S

k

;K) from Bernhard Gramsh.
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For M = S

1

we have already seen in Setion II.3 that the universal overing group of

Di�

+

(S

1

) is ontratible. This implies that

�

k

(Di�(S

1

))

�

=

(

Z

2

for k = 0

Z for k = 1

0 otherwise.

For M = S

d

, d � 2, the situation gets more ompliated. Of ourse we have a natural

inlusion O(d + 1;R) ,! Di�(S

d

) and one may ask for whih dimension d this inlusion is a

homotopy equivalene. For d = 1; 2 this has been proved by S. Smale in 1959 and onjetured

by him for d = 3. This onjeture was proved in 1983 by Hather. For d = 4 the answer is not

known to the author, and for d > 4 the inlusion is not a homotopy equivalene ([Mil83℄).

For d = 2 this leads to the following information on the homotopy groups. As O(3;R)

�

=

SO(3;R) � Z

2

and the universal overing group SU(2; C ) of SO(3;R) is homeomorphi to S

3

,

we obtain from Remark IV.1.3:

�

k

(Di�(S

2

))

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z

2

for k = 0

Z

2

for k = 1

0 for k = 2

Z for k = 3

Z

2

for k = 4

Z

2

for k = 5.

For d = 3 we have O(4;R)

�

=

SO(4;R) oZ

2

and the universal overing group of SO(4;R)

is a two-fold overing by SU(2; C )

2

. This leads to

�

k

(Di�(S

3

))

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z

2

for k = 0

Z

2

for k = 1

0 for k = 2

Z

2

for k = 3

Z

2

2

for k = 4

Z

2

2

for k = 5.

The group �

0

(Di�

+

(S

d

)), whih is �nite for d � 5, has a remarkable di�erential geometri

interpretation. Its elements orrespond to oriented di�eomorphism lasses of smooth (d + 1)-

dimensional manifolds with the homotopy type of S

d+1

. For d 6= 2 this implies that they are

homeomorphi to S

d+1

by the Poinar�e onjeture, whih has been proved exept for d = 2.
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