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Abstra
t. These are le
ture note of a 
ourse given in Februaru and Mar
h 2002 in Nan
y. The

main purpose of this 
ourse was to present some of the main ideas of in�nite-dimensional Lie theory

and to explain how it di�ers from the �nite-dimensional 
lassi
al theory. After the introdu
tion

where we present some of the main types of in�nite-dimensional Lie groups: lineare Lie groups

asso
iated to 
ontinuous inverse algebras, groups of maps and di�eomorphism groups, we turn in

more detail to manifolds modeled on lo
ally 
onvex spa
es. In Se
tion III we present some of the

basi
 Lie theory of lo
ally 
onvex Lie groups, in
luding a dis
ussion of the exponential fun
tion and

the non-existen
e of groups for Lie algebras. In the �nal Se
tion IV we dis
uss the topology of the

main 
lasses of in�nite-dimensional Lie groups with an emphasis on their homotopy groups.

I. Introdu
tion

Lie groups arise most naturally as symmetry groups or automorphism groups of algebrai
 or

geometri
 stru
tures. This is true for �nite-dimensional Lie groups and remains valid for in�nite-

dimensional Lie groups. Moreover, it is well known from �nite-dimensional Lie theory that not

every automorphism group of an algebrai
 or geometri
 stru
ture is a Lie group. Limitations of

this type remain valid for in�nite-dimensional Lie groups as well, although many important groups

whi
h are not �nite-dimensional Lie groups have a natural stru
ture as an in�nite-dimensional

Lie group.

In this introdu
tion we dis
uss several 
lasses of in�nite-dimensional Lie groups without

going into details. The main purpose is to give an impression of the enormous variety of in�nite-

dimensional Lie groups and to explain some of the di�eren
es to the �nite-dimensional theory.

The 
on
ept of an in�nite-dimensional Lie group

Our general idea of a Lie group is that it should be a manifold G (de�ned suitably in

an in�nite-dimensional 
ontext) whi
h 
arries a group stru
ture for whi
h multipli
ation and

inversion are smooth maps. Therefore the 
on
ept of an in�nite-dimensional Lie group relies

very mu
h on the 
orresponding 
on
ept of an in�nite-dimensional manifold.

The 
on
ept of a Bana
h{Lie group, i.e., a Lie group modeled on a Bana
h spa
e, has been

introdu
ed by G. Birkho� in [Bi38℄. The step to more general 
lasses of in�nite-dimensional

Lie groups modeled on 
omplete lo
ally 
onvex spa
es o

urs �rst in an arti
le of Marsden and

Abraham [MA70℄ in the 
ontext of hydrodynami
s. This Lie group 
on
ept has been worked out

by J. Milnor in his Les Hou
hes le
ture notes [Mil83℄ whi
h provide many basi
 results of the

general theory. The observation that the 
ompleteness 
ondition on the underlying lo
ally 
onvex

spa
e 
an be omitted for the basi
 theory is due to H. Gl�o
kner ([Gl01a℄). This is important for

quotient 
onstru
tions be
ause quotients of 
omplete lo
ally 
onvex spa
es need not be 
omplete.

There are other, weaker, 
on
epts of Lie groups, resp., in�nite-dimensional manifolds. One

is based on the \
onvenient setting" for global analysis developed by Fr�ohli
her, Kriegl and

Mi
hor ([FK88℄ and [KM97℄). In the 
ontext of Fr�e
het manifolds this setting does not di�er
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from the one mentioned above, but for more general model spa
es it provides a 
on
ept of a

smooth map whi
h does not ne
essarily imply 
ontinuity, hen
e leads to Lie groups whi
h are

not topologi
al groups. Another approa
h is based on the 
on
ept of a di�eologi
al spa
e due

to J.-M. Souriau ([So85℄) whi
h 
an be used to study spa
es like quotients of R by non-dis
rete

subgroups in a di�erential geometri
 
ontext.

Throughout these notes K 2 fR; C g and all ve
tor spa
es are real or 
omplex.

I.1. Linear Lie groups

In �nite-dimensional Lie theory, a natural approa
h to Lie groups is via matrix groups, i.e.,

subgroups of the group GL

n

(R) of invertible real n�n-matri
es. Sin
e every �nite-dimensional

algebra 
an be embedded into a matrix algebra, this is equivalent to 
onsidering subgroups of

the unit groups A

�

:= fa 2 A: (9b 2 A)ab = ba = 1g of �nite-dimensional unital asso
iative

algebras A . The advantage of this approa
h is that one 
an de�ne the exponential fun
tion quite

dire
tly and thus take a short
ut to several deeper results on Lie groups. This approa
h also

works quite well in the 
ontext of Bana
h-Lie groups. Here the linear Lie groups are subgroups

of the unit groups A

�

of Bana
h algebras A . To get some feeling for this 
ontext, let us take a

look at some types of Bana
h algebras.

Examples I.1.1. (a) If X is a Bana
h spa
e, then the spa
e B(X) of all 
ontinuous operators

on X is a unital Bana
h algebra with respe
t to the operator norm

kAk := supfkA:xk:x 2 X; kxk � 1g:

Conversely, if A is a unital Bana
h algebra, then we have an embedding L:A ,! B(A)

given by the left regular representation L(a):b := ab of A on itself. Therefore Bana
h algebras

are algebras of operators on Bana
h spa
es whi
h are 
losed in the operator norm.

(b) If A is a unital Bana
h algebra, then the same holds for all the matrix algebras M

n

(A),

n 2 N . To see this, we may w.l.o.g. assume that A is a 
losed subalgebra of some B(X), X a

Bana
h spa
e. We endow the spa
e X

n

with the norm

k(x

1

; : : : ; x

n

)k := max(kx

1

k; : : : ; kx

n

k)

and 
onsider on M

n

(A) the operator norm 
oming from the embedding M

n

(A) ,! B(X

n

). This

turns M

n

(A) into a unital Bana
h algebra.

So far this works also in a �nite-dimensional 
ontext, but in general we 
an also 
onsider

the Bana
h spa
e

X

1

:= l

1

(N; X) := f(x

n

)

n2N

: kxk

1

:= sup

n2N

kx

n

k <1g

of all bounded X -valued sequen
es. Then we have for ea
h n 2 N an isometri
 embedding

�

n

:M

n

(A) ,! B(X

1

); �

n

(a):(x

i

)

i2N

:=

�

n

X

j=1

a

ij

x

j

�

i2N

:

Based on this observation, we identify M

n

(A) with a 
losed subalgebra of B(X

1

) and de�ne

M

1

(A) :=

[

n

M

n

(A) � B(X

1

):

The elements of M

1

(A) 
an be viewed as in�nite matri
es a = (a

ij

)

i;j2N

with entries in A ,

where the matrix 
oeÆ
ients a

ij

tend to zero for in
reasing i and j . Note that the 
ompletion

M

1

(A) depends on the 
hoi
e of the norm on the spa
es X

n

. If we take a norm of the type

kxk

p

:=

�

P

n

j=1

kx

j

k

p

�

1

p

, 1 � p <1 , then we obtain a di�erent 
ompletion.
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(
) If X is a 
ompa
t spa
e and B is a Bana
h algebra, then the spa
e C(X;B) is a Bana
h

algebra with respe
t to the sup-norm

kfk := supfkf(x)k:x 2 Xg:

(d) If S is a semigroup and B is a Bana
h algebra, then the Bana
h spa
e

A := l

1

(S;B) :=

n

f :S ! B: kfk

1

:=

X

s2S

kf(s)k <1

o

is a Bana
h algebra with respe
t to the 
onvolution produ
t

(f � g)(u) :=

X

s;t2S;st=u

f(s)g(t):

Note that the �niteness of kfk

1

implies that only 
ountably many values of the fun
tion f are

non-zero. In the 
ase where S is a group, we 
an write the 
onvolution produ
t also in the form

(f � g)(u) :=

X

s2S

f(s)g(s

�1

u):

As the pre
eding dis
ussion shows, there are many types of Bana
h algebras A , and their

unit groups A

�

are basi
 examples of Bana
h{Lie groups.

Examples I.1.2. Further examples of Bana
h{Lie groups whi
h are more like �nite-dimensional


lassi
al groups 
an be obtained as follows.

(a) If X is a Bana
h spa
e and �:X � X ! K is a 
ontinuous bilinear form, then the


orresponding orthogonal group

O(X; �) := fg 2 GL(X): (8x; y 2 X)�(g:x; g:y) = �(x; y)g

is a Bana
h{Lie group.

If � is skew-symmetri
 and non-degenerate in the sense that �(x;X) = f0g implies x = 0,

then we 
all (X; �) a symple
ti
 Bana
h spa
e and

Sp(X; �) := O(X; �)

the 
orresponding symple
ti
 group.

(b) If H is a 
omplex Hilbert spa
e, then the unitary group

U(H) := fg 2 GL(H): (8x; y 2 H)hg:x; g:yi = hx; yig

is an important example of a Bana
h{Lie group.

(
) If A is a Bana
h algebra, then its automorphism group Aut(A) is a Bana
h{Lie group.

For an asso
iative algebra A we write A

+

for the algebra A� K with the multipli
ation

(a; s)(b; t) := (ab+ sb+ ta; st):

This is a unital algebra with unit 1 = (0; 1). For many purposes it is natural to extend the


on
ept of a Bana
h algebra to the more general 
on
ept of a 
ontinuous inverse algebra (
.i.a.).

These are lo
ally 
onvex algebras A with 
ontinuous multipli
ation su
h that the group A

�

+

of

units of the algebra A

+

, endowed with the produ
t topology of A�K , is open and the inversion

is a 
ontinuous map A

�

+

! A

+

.

For ea
h 
.i.a. A the matrix algebras M

n

(A) are also 
.i.a. (see [Bos90℄). Further ea
h


losed Lie subalgebra g � M

n

(A) 
orresponds to some analyti
 subgroup G of GL

n

(A

+

)

([Gl01
℄). In the 
ontext of in�nite-dimensional Lie theory over lo
ally 
onvex spa
es, these

groups form the natural generalizations of linear Lie groups.

Examples I.1.3. (a) Ea
h Bana
h algebra is a 
ontinuous inverse algebra.

(b) If B is a 
.i.a. and M is a 
ompa
t manifold, then the algebra C

1

(M;B) is a 
ontinuous

inverse algebra.

(
) Let B be a Bana
h algebra and �:G � B ! B a strongly 
ontinuous a
tion of the �nite-

dimensional Lie group G on B by isometri
 automorphisms. Then the spa
e B

1

of smooth

ve
tors for this a
tion is a dense subalgebra and a Fr�e
het 
.i.a. ([Bos90, Prop. A.2.9℄).
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I.2. Groups of 
ontinuous and smooth maps

In the 
ontext of Bana
h{Lie groups one 
onstru
ts Lie groups of mappings as follows. For

a 
ompa
t spa
e X and a Bana
h{Lie group K the group C(X;K) of 
ontinuous maps is a

Bana
h{Lie group with Lie algebra C(X; k), where k is the Lie algebra of K .

In the larger 
ontext of lo
ally 
onvex Lie groups one also obtains for ea
h Lie group K

and a 
ompa
t smooth manifold M a Lie group stru
ture on the group C

1

(M;K) of smooth

maps from M to K . This is a Fr�e
het{Lie group if K is a Fr�e
het{Lie group. Its Lie algebra is

the spa
e C

1

(M; k).

The passage from 
ontinuous maps to smooth maps is made ne
essary by the behavior of


entral extensions of these groups. The groups C

1

(M;K) have mu
h more 
entral extensions

as the groups C(M;K), hen
e exhibit a ri
her geometri
 stru
ture.

A larger 
lass of groups is obtained as gauge groups of prin
ipal bundles. If a smooth map

q:P ! B de�nes a prin
ipal K -bundle, then we 
onsider the asso
iated bundle q

K

:P

K

! B ,

where P

K

is the spa
e of K -orbits in the spa
e P � K with respe
t to the a
tion given by

k:(p; x) := (pk

�1

; kx) for k; x 2 K and p 2 P . The gauge group Gau(P ) is the group of smooth

se
tions of the bundle P

K

. If the bundle P is trivial, then P

K

�

=

B �K and q

K

(b; k) = b , so

that Gau(P )

�

=

C

1

(B;K).

I.3. Groups of homeomorphisms and di�eomorphisms

On
e a geometri
 stru
ture on a spa
e is given, one 
onsiders its group of automorphisms.

In the spirit of Felix Klein's Erlangen Program, one may even say that the geometry or the

geometri
 stru
ture is given by the 
orresponding group of automorphisms.

I.3.1. For a 
ompa
t topologi
al spa
e X we have the C

�

-algebra C(X; C ) of 
ontinuous


omplex valued fun
tions. From Gelfand's duality theory of 
ommutative C

�

-algebras we obtain

X

�

=

Hom

alg

(C(X;R);R) n f0g

in the sense that every non-zero algebra homomorphism C(X;R) ! R is given by a point

evaluation Æ

p

(f) = f(p). This implies that the spa
e X 
an be re
overed from the Bana
h

algebra C(X;R) if we endow Hom

alg

(C(X;R);R) with the topology of pointwise 
onvergen
e.

We 
on
lude that the Lie group Aut(C(X;R)) of automorphisms of this algebra, endowed

with the uniform operator topology, 
an be identi�ed with the group Homeo(X) of homeomor-

phisms of X a
ting on C(X;R) by

(
:f)(x) := f(


�1

:x):

We 
laim that the uniform topology turns Homeo(X) into a dis
rete group. In fa
t, if 
 is a

non-trivial homeomorphism of X and p 2 X is moved by 
 , then there exists a 
ontinuous

fun
tion f 2 C(X;R) with kfk = 1, f(p) = 0 and f(


�1

(p)) = 1. Then k
:f � fk � 1 implies

that k
 � 1k � 1. Therefore the group Homeo(X) is dis
rete with respe
t to the topology

inherited from the Bana
h algebra B(C(X;R)) .

Nevertheless, one 
onsiders 
ontinuous a
tions of 
onne
ted Lie groups G on X , where

the 
ontinuity of the a
tion means that the a
tion map �:G �X ! X is 
ontinuous. But this

does not mean that the 
orresponding homomorphism G ! Homeo(X) is 
ontinuous. We will

see that this phenomenon, i.e., that 
ertain automorphism groups are endowed with Lie group

stru
tures whi
h are too �ne for many purposes, reo

urs at many levels of the theory

1

.

1

There are other reasonable topologies on the group Homeo(X) whi
h are 
oarser and therefore more suitable

to study transformation groups. A quite natural one is obtained as the initial topology with respe
t to the map

Homeo(X)!C(X;X)

2

;g 7!(g;g

�1

) with respe
t to the 
ompa
t open topology on C(X;X) .
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I.3.2. Now let M be a 
ompa
t smooth manifold and 
onsider the Fr�e
het algebra A :=

C

1

(M;R) of smooth fun
tions on M . Again one 
an show that

M

�

=

Hom(C

1

(M;R);R) n f0g

in the sense that every non-zero algebra homomorphism C

1

(M;R) ! R is given by a point

evaluation Æ

p

(f) := f(p) for some p 2 M (see Lemma I.3.5 below). Moreover, the smooth

stru
ture on M is 
ompletely determined by the requirement that the maps M ! R; p 7! Æ

p

(f)

are smooth. This implies that the group Aut(C

1

(M;R)) of automorphisms of C

1

(M;R) 
an

be identi�ed with the group Di�(M) of all di�eomorphisms of M .

In sharp 
ontrast to the topologi
al 
ontext, the group Di�(M) has a non-trivial stru
ture

as a Lie group modeled on the spa
e V(M) of (smooth) ve
tor �elds on M , whi
h then is

the Lie algebra of this group. Moreover, for a �nite-dimensional Lie group G , smooth a
tions

�:G�M !M 
orrespond to Lie group homomorphisms G! Di�(M). For G = R we obtain

in parti
ular the 
orresponden
e between smooth 
ows on M , smooth ve
tor �elds on M , and

one-parameter subgroups of Di�(M).

If X 2 V(M) is a ve
tor �eld and Fl

X

:R ! Di�(M) the 
orresponding 
ow, then

exp:V(M)! Di�(M); X 7! Fl

X

(1)

is the exponential fun
tion of the Fr�e
het{Lie group Di�(M).

Other important groups of di�eomorphisms arise as subgroups of Di�(M). Of parti
ular

importan
e is the stabilizer subgroup Di�(M;�) of a volume form � on M (if M is orientable),

and the stabilizer Sp(M;!) of a symple
ti
 form ! if (M;!) is symple
ti
 (
f. [KM97℄).

I.3.3. If M is a non-
ompa
t � -
ompa
t smooth manifold, then we still have

M

�

=

Hom(C

1

(M;R);R) n f0g and Di�(M)

�

=

Aut(C

1

(M;R));

but then there is no natural Lie group stru
ture on Di�(M) su
h that smooth a
tions of Lie

groups G on M 
orrespond to Lie group homomorphisms G! Di�(M).

Nevertheless, in the framework of the \
onvenient setting" ([KM97℄), one 
an turn Di�(M)

into a Lie group with Lie algebra V




(M), the Lie algebra of all smooth ve
tor �elds with 
ompa
t

support. If M is 
ompa
t, this yields the natural Lie group stru
ture on Di�(M), but if M is not


ompa
t, then the 
orresponding topology on Di�(M) is so �ne that the global 
ow generated

by a ve
tor �eld whose support is not 
ompa
t, does not lead to a 
ontinuous homomorphism

R ! Di�(M).

More re
ent investigations in this dire
tion show that, at least for M = R

n

, the natural

manifold stru
ture on the group Di�




(M) of all di�eomorphisms ' whi
h 
oin
ide with id

M

outside a 
ompa
t set has a natural Lie group stru
ture with Lie algebra V




(M) ([Gl02℄). Here

we do not have to refer to the 
onvenient setting with the advantage that Di�




(M) is a topologi
al

group. This Lie group stru
ture on Di�




(M) 
an then be used to de�ne a Lie group stru
ture

on Di�(M) for whi
h Di�




(M) is an open subgroup. This 
ontrasts the results of Tatsuuma,

Shimomura and Hirai, stating that the natural dire
t limit topology with respe
t to the subgroups

Di�

K

(M) := f' 2 Di�(M):' j

MnK

= id

MnK

g;

K a 
ompa
t subset of M , does not turn Di�




(M) into a topologi
al group be
ause the

multipli
ation is not 
ontinuous.

I.3.4. The situation for non-
ompa
t manifolds is similar to the situation we en
ounter in the

theory of unitary group representations. Let H be a Hilbert spa
e and U(H) its unitary group.

This group has two natural topologies. The uniform topology on U(H) inherited from the Bana
h

algebra B(H) turns it into a Bana
h{Lie group, but this topology is rather �ne. The strong

operator topology (the topology of pointwise 
onvergen
e) turns U(H) into a topologi
al group

su
h that 
ontinuous unitary representations of a topologi
al group G 
orrespond to 
ontinuous

group homomorphisms G ! U(H). If G is a �nite-dimensional Lie group, then a 
ontinuous
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unitary representation is 
ontinuous with respe
t to the uniform topology on U(H) if and only

if all operators of the derived representation are bounded, but this implies already that the

representation fa
tors through a Lie group with 
ompa
t Lie algebra (
f. [Si52℄, [Gu80℄). In some

sense the 
ondition that the operators of the derived representation are bounded is analogous

to the requirement that the ve
tor �elds 
orresponding to a smooth a
tion on a manifold have


ompa
t support. In this sense the uniform topology on U(H) shows similarities to the Lie

group stru
ture on Di�(M) if M is non-
ompa
t (see I.3.3). The 
ase of a 
ompa
t manifold

M 
orresponds to the 
ase of a �nite-dimensional Hilbert spa
e H , for whi
h the two topologies

on U(H) 
oin
ide.

Lemma I.3.5. If M is a 
ompa
t manifold and �:C

1

(M;R) ! R a non-zero algebra homo-

morphism, then there exists p 2M with �(f) = f(p) for all f 2 C

1

(M;R) .

Proof. Let N := ker� . If there exists p 2 M su
h that all fun
tions in N vanish at p ,

then C

1

(M;R) = N � R1 implies � = Æ

p

. Let us assume that this is not the 
ase. Then there

exists for ea
h p 2 M a smooth fun
tion f

p

2 N with f

p

(p) 6= 0. Then the open sets f

�1

p

(R

�

)

form an open 
overing of M , and we �nd �nitely many points p

1

; : : : ; p

n

su
h that M is 
overed

by the sets f

�1

p

j

(R

�

), whi
h means that the fun
tion f :=

P

n

j=1

f

2

p

j

2 N vanishes nowhere.

We 
on
lude that the ideal N 
ontains a unit and therefore N = C

1

(M;R) , 
ontradi
ting our

assumption that � is non-zero.

Remark I.3.6. If M is non-
ompa
t, then one has to modify the argument in the proof of

Lemma I.3.5 as follows. First we observe that, sin
e N is an ideal, we may assume that the

support of the fun
tions f

p

is 
ontained in a given neighborhood U

p

of p be
ause we may

multiply f

p

by any fun
tion supported in U

p

and not vanishing at p .

Let �:C

1

(M;R) ! R be a 
ontinuous algebra homomorphism (with respe
t to the

topology de�ned in Example II.1.4(b) below) and assume that � 6= Æ

p

for ea
h p 2 M . Hen
e

the ideal ker� 
ontains for ea
h p 2 M a fun
tion not vanishing at p . We 
hoose 
ompa
t

subsets K

n

� M with

S

n

K

n

= M and K

n

� K

0

n+1

. For p 2 K

n

nK

n�1

we pi
k a fun
tion

f

p

2 ker� in su
h a way that supp(f

p

) � K

n+1

n K

n�1

and f

p

(p) 6= 0. Now we 
hoose the

points p

1

; : : : ; p

k

1

2 K

1

su
h that

P

k

1

j=1

f

2

p

j

is positive on K

1

, then p

k

1

+1

; : : : ; p

k

2

su
h that

P

k

2

j=1

f

2

p

j

is positive on K

2

, and so on. The pre
autions from above ensure a that the series

f :=

P

1

j=1

f

2

p

j


onverges in C

1

(M;R) be
ause on ea
h set K

n

it is eventually 
onstant. For

ea
h 
ontinuous 
hara
ter �:C

1

(M;R) ! R whi
h is not a point evaluation we thus obtain an

invertible fun
tion f 2 ker� , whi
h implies � = 0. Here the 
ontinuity of � is needed to ensure

that ker� is 
losed and hen
e that f 2 ker� .

II. In�nite-dimensional manifolds

In this se
tion K always stands for R or C and V is a K -ve
tor spa
e.

II.1. Lo
ally 
onvex spa
es

De�nition II.1.1. (a) If p is a seminorm on a K -ve
tor spa
e V , then N

p

:= p

�1

(0) is a

subspa
e of V , and V

p

:= V=N

p

is a normed spa
e with kv + N

p

k := p(v). Let �

p

:V ! V

p

denote the 
orresponding quotient map.

(b) We 
all a set P of seminorms on V separating if p(v) = 0 for all p 2 P implies v = 0.

(
) If X is a set and f

j

:X ! X

j

, j 2 J , mappings into topologi
al spa
es, then the 
oarsest

topology on X for whi
h all these maps are 
ontinuous is 
alled the initial topology on X with

respe
t to the family (f

j

)

j2J

. This topology is generated by the inverse images of open subsets

of the spa
es X

j

under the maps f

j

.



Nan
y Le
tures on In�nite-Dimensional Lie Groups 7

(d) To ea
h separating family P of seminorms on V we asso
iate the initial topology �

P

on V

de�ned by the maps �

p

:V ! V

p

to the normed spa
es V

p

. We 
all it the lo
ally 
onvex topology

on V de�ned by P .

Sin
e the family P is separating, V is a Hausdor� spa
e. Further it is easy to show that

V is a topologi
al ve
tor spa
e in the sense that addition and s
alar multipli
ation on V are


ontinuous maps.

(e) A lo
ally 
onvex spa
e V is 
alled a Fr�e
het spa
e if its topology 
an be de�ned by a 
ountable

family P = fp

n

:n 2 Ng of seminorms and if V is 
omplete with respe
t to the 
ompatible metri


d(x; y) :=

X

n2N

2

�n

p

n

(x� y)

1 + p

n

(x� y)

:

Exer
ise II.1. Let (V; �

P

) be a lo
ally 
onvex spa
e.

(1) Show that a seminorm q on V is 
ontinuous if and only if there exists a � > 0 and

p

1

; : : : ; p

n

2 P su
h that

q � �max(p

1

; : : : ; p

n

):

(2) Two sets P

1

and P

2

of seminorms on V de�ne the same lo
ally 
onvex topology if and only

if all seminorms in P

2

are 
ontinuous w.r.t. �

P

1

and vi
e versa.

Remark II.1.2. (a) A sequen
e (x

n

)

n2N

in a lo
ally 
onvex spa
e V is said to be a Cau
hy

sequen
e if ea
h sequen
e �

p

(x

n

), p 2 P , is a Cau
hy sequen
e in V

p

. We say that V is

sequentially 
omplete if every Cau
hy sequen
e in V 
onverges.

(b) One has a natural notion of 
ompleteness of lo
ally 
onvex spa
es (every Cau
hy �lter


onverges). Complete lo
ally 
onvex spa
es then 
orrespond to 
losed subspa
es of produ
ts

of Bana
h spa
es

1

.

Examples II.1.3. (a) Let X be a topologi
al spa
e. For ea
h 
ompa
t subset K � X we

obtain a seminorm p

K

on C(X;R) by

p

K

(f) := supfjf(x)j:x 2 Kg:

The family P of these seminorms de�nes on C(X;R) the lo
ally 
onvex topology of uniform


onvergen
e on 
ompa
t subsets of X .

If X is 
ompa
t, then we may take K = X and obtain a norm on C(X;R) whi
h de�nes

the topology; all other seminorms p

K

are redundant. In this 
ase C(X;R) is a Bana
h spa
e.

(b) The pre
eding example 
an be generalized to the spa
e C(X;V ), where X is a topologi
al

spa
e and V is a lo
ally 
onvex spa
e. Then we de�ne for ea
h 
ompa
t subset K � X and ea
h


ontinuous seminorm q on V a seminorm

p

K;q

(f) := supfq(f(x)):x 2 Kg:

The family of these seminorms de�nes a lo
ally 
onvex topology on C(X;V ) whi
h again 
oin
ides

with the topology of uniform 
onvergen
e on 
ompa
t subsets of X .

(
) If X is lo
ally 
ompa
t and � -
ompa
t, then there exists a sequen
e (K

n

)

n2N

of 
ompa
t

subsets of X with

S

n

K

n

and K

n

� K

0

n

. Then ea
h 
ompa
t subset of X lies in some K

n

, so

that ea
h seminorm p

K

is dominated by some p

K

n

. This implies that C(X;R) is metrizable,

and sin
e it is also 
omplete, it is a Fr�e
het spa
e.

1

In x31.6 of K�othe's book [K�o69℄ one �nds an example of a 
omplete lo
ally 
onvex spa
e X and a 
losed

subspa
e Y�X for whi
h the quotient spa
e X=Y is not 
omplete. This does not happen if X is metrizable and


omplete, i.e., an F -spa
e. Then all quotients of X by 
losed subspa
es are 
omplete.
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Example II.1.4. (a) Let U � R

n

be an open subset and 
onsider the algebra C

1

(U;R). For

ea
h multiindex m = (m

1

; : : : ;m

n

) 2 N

0

with jmj := m

1

+ : : :+m

n

we 
onsider the di�erential

operator

D

m

:= D

m

1

1

� � �D

m

n

n

:=

�

jmj

�

m

1

1

� � ��

m

n

n

:

We now obtain for ea
h m and ea
h 
ompa
t subset K � U a seminorm on C

1

(U;R) by

p

K;m

(f) := supfjD

m

f(x)j:x 2 Kg:

The family of all these seminorms de�nes a lo
ally 
onvex topology on C

1

(U;R). Sin
e U

is lo
ally 
ompa
t and � -
ompa
t (exer
ise), the topology on C

1

(U;R) 
an be de�ned by a


ountable set of seminorms. Moreover, it is not hard to see that C

1

(U;R) is 
omplete with

respe
t to the 
orresponding metri
, hen
e a Fr�e
het spa
e.

(b) Let M be a smooth n-dimensional manifold and 
onsider the ve
tor spa
e C

1

(M;R) . To

introdu
e a topology on this algebra, for ea
h 
ompa
t subset K � M for whi
h there exists a


hart ':U ! R

n

with K � U and for ea
h multiindex m 2 N

n

0

we de�ne a seminorm by

p

K;m

(f) := supfjD

m

(f Æ '

�1

)(x)j:x 2 '(K)g:

We thus obtain a natural Fr�e
het topology on C

1

(M;R) whi
h is 
alled the topology of lo
al

uniform 
onvergen
e of all partial derivatives.

(
) If M is a 
omplex manifold, then we 
onsider the algebra Hol(M; C ) of holomorphi
 fun
tions

on M as a subspa
e of C(M; C ), endowed with the topology of uniform 
onvergen
e on 
ompa
t

subsets of M (Example II.1.3). This topology turns Hol(M; C ) into a Fr�e
het spa
e. Moreover,

one 
an show that the inje
tive map Hol(M; C ) ,! C

1

(M; C )is also a topologi
al embedding.

De�nition II.1.5. Let V be a ve
tor spa
e and �

j

:V

j

! V linear maps, de�ned on lo
ally


onvex spa
es V

j

. We 
onsider the system P of all those seminorms p on V for whi
h all


ompositions p Æ �

j

are 
ontinuous seminorms on the spa
es V

j

. By means of P , we obtain

on V a lo
ally 
onvex topology 
alled the �nal lo
ally 
onvex topology de�ned by the mappings

(�

j

)

j2J

.

This lo
ally 
onvex topology has the universal property that a linear map ':V ! W into

a lo
ally 
onvex spa
e W is 
ontinuous if and only if all the maps 'Æ�

j

, j 2 J , are 
ontinuous.

Example II.1.6. (a) Let X be a lo
ally 
ompa
t spa
e and C




(X;R) the spa
e of 
ompa
tly

supported 
ontinuous fun
tions. For ea
h 
ompa
t subset K � X we then have a natural

in
lusion

�

K

:C

K

(X;R) := ff 2 C




(X;R): supp(f) � Kg ,! C




(X;R):

Ea
h spa
e C

K

(X;R) is a Bana
h spa
e with respe
t to the norm

kfk

1

:= supfjf(x)j:x 2 Xg:

We endow C




(X;R) with the �nal lo
ally 
onvex topology de�ned by the maps �

K

.

(b) Let M be a smooth manifold and 
onsider the spa
e C

1




(M;R) of smooth fun
tions with


ompa
t support. For ea
h 
ompa
t subset K �M we then have a natural in
lusion

�

K

:C

1

K

(M;R) := ff 2 C

1




(M;R): supp(f) � Kg ,! C

1




(M;R):

We endow ea
h spa
e C

1

K

(M;R) with the subspa
e topology inherited from C

1

(M;R), whi
h

turns it into a Fr�e
het spa
e. On C

1




(M;R) we now obtain the �nal lo
ally 
onvex topology

de�ned by the maps �

K

.
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II.2. Cal
ulus on lo
ally 
onvex spa
es

In this se
tion we explain brie
y how 
al
ulus works in lo
ally 
onvex spa
es. The main

point is that one uses an appropriate notion of di�erentiability whi
h for the spe
ial 
ase of

Bana
h spa
es di�ers from Fr�e
het di�erentiability but whi
h is more 
onvenient in the setup

of lo
ally 
onvex spa
es. Our basi
 referen
es are [Ha82℄ and [Gl01a℄, where one �nds detailed

proofs. One readily observes that on
e one has the Fundamental Theorem of Cal
ulus, then the

proofs of the Fr�e
het 
ase 
arry over to a more general setup where one still requires smooth

maps to be 
ontinuous (
f. also [Mil83℄). A di�erent approa
h to di�erentiability in in�nite-

dimensional spa
es in the so-
alled 
onvenient setting 
an be found in [FK88℄ and [KM97a℄. A


entral feature of this approa
h is that smooth maps are no longer required to be 
ontinuous, but

for 
al
ulus over Fr�e
het spa
es one �nds the same 
lass of smooth maps des
ribed by Hamilton

and Milnor. Another approa
h whi
h also gives up the 
ontinuity of smooth maps and requires

only their 
ontinuity on 
ompa
t sets is dis
ussed by E. G. F. Thomas in [Th96℄. The 
on
ept

of a di�eologi
al spa
e due to J.-M. Souriau ([So85℄) goes even one step further. It is primarily

designed to study spa
es like quotients of R by non-dis
rete subgroups in a di�erential geometri



ontext.

De�nition II.2.1. Let X and Y be topologi
al ve
tor spa
es, U � X open and f :U ! Y

a map. Then the derivative of f at x in the dire
tion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The fun
tion f is 
alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is 
alled 
ontinuously di�erentiable or C

1

if it is di�erentiable at all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a 
ontinuous map. It is 
alled a C

n

-map if df is a C

n�1

-map, and C

1

(or smooth) if it is C

n

for all n 2 N . This is the notion of di�erentiability used in [Mil83℄, [Ha82℄, [Gl01a℄ and [Ne01℄.

(b) If X and Y are 
omplex ve
tor spa
es, then the map f is 
alled holomorphi
 if it is C

1

and

for all x 2 U the map df(x):X ! Y is 
omplex linear (
f. [Mil83, p. 1027℄). We will see below

that the maps df(x) are always real linear (Lemma II.2.3).

(
) Higher derivatives are de�ned for C

n

-maps by

d

n

f(x)(h

1

; : : : ; h

n

) := lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

Remark II.2.2. (a) If X and Y are Bana
h spa
es, then the notion of 
ontinuous di�eren-

tiability is weaker than the usual notion of 
ontinuous Fr�e
het-di�erentiability in Bana
h spa
es,

whi
h requires that the map x 7! df(x) is 
ontinuous with respe
t to the operator norm. Nev-

ertheless, one 
an show that a C

2

-map in the sense de�ned above is C

1

in the sense of Fr�e
het

di�erentiability, so that the two 
on
epts lead to the same 
lass of C

1

-fun
tions (
f. [Ne01, I.6

and I.7℄).

(b) We also note that the existen
e of linear maps whi
h are not 
ontinuous shows that the


ontinuity of f does not follow from the di�erentiability of f be
ause ea
h linear map f :X ! Y

is di�erentiable at ea
h x 2 X in the sense of De�nition II.2.1(a).

Now we re
all the pre
ise statements of the most fundamental fa
ts needed in the following.

Lemma II.2.3. Let X and Y be lo
ally 
onvex spa
es and U � X an open subset.The following

assertions hold:
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(i) If f :U ! Y is C

1

and x 2 U , then df(x):X ! Y is a linear map and f is 
ontinuous.

If moreover x+ th 2 U holds for all t 2 [0; 1℄ , then

f(x+ h) = f(x) +

Z

1

0

df(x+ uh)(h) du:

In parti
ular f is lo
ally 
onstant if and only if df = 0 .

(ii) If f is C

n

, then the fun
tions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

) , x 2 U , are symmetri


n-linear maps. For ea
h x 2 U and v 2 X with x + tv 2 U for t 2 [0; 1℄ we have the

Taylor formula

f(x+ v) = f(x) + df(x)(v) + : : :+

1

(n� 1)!

d

n�1

f(x)(v; : : : ; v)

+

1

(n� 1)!

Z

1

0

(1� t)

n�1

d

n

f(x+ tv)(v; : : : ; v) dt:

Proof. (i) The �rst part is [Ha82, Th. 3.2.5℄ and the integral representation is [Ha82, Th. 3.2.2℄

for Fr�e
het spa
es. For the re�nement to lo
ally 
onvex spa
es see [Gl01a℄. This is based on the

observation that, although the integral

R

1

0

df(x+uh)(h) du exists a priori only in the 
ompletion

of Y , the fa
t that it equals the di�eren
e f(x + h) � f(x) implies that it is 
ontained in Y .

Therefore no 
ompleteness 
ondition on Y is needed to ensure the existen
e of the integral.

To see that f is 
ontinuous, let p be a 
ontinuous seminorm on Y and " > 0. Then there

exists a balan
ed 0-neighborhood U

1

� X with x + U

1

� U and p

�

df(x + uh)(h)

�

< " for

u 2 [0; 1℄ and h 2 U

1

. Hen
e

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ uh)(h)

�

du � ";

and thus f is 
ontinuous.

(ii) follows from [Ha82, Th. 3.6.2℄ and by iteration of (i).

Proposition II.2.4. (The 
hain rule) If X , Y and Z are lo
ally 
onvex spa
es, U � X and

V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x) for x 2 U:

Proof. [Ha82, Th. 3.3.4℄

Proposition II.2.5. If X

1

, X

2

and Y are lo
ally 
onvex spa
es, X = X

1

�X

2

, U � X is

open, and f :U ! Y is 
ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�

and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are 
ontinuous if and only if df exists and is 
ontinuous. In this 
ase we have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. [Ha82, Th. 3.4.3℄
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Remark II.2.6. (a) If f :X ! Y is a 
ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition II.2.5 it follows that a 
ontinuous k -linear map m:X

1

�: : :�X

k

! Y

is 
ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indu
tively one obtains that m is smooth with d

k+1

m = 0.

(
) If f :U ! Y is C

n+1

, then Lemma II.2.3(ii) and Proposition II.2.5 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in parti
ular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f is C

1

.

(d) If f :U ! Y is holomorphi
, then the �nite-dimensional theory shows that for ea
h h 2 X the

fun
tion U ! Y; x 7! df(x)(h) is holomorphi
. Hen
e d

2

f(x) is 
omplex bilinear and therefore

d(df) is 
omplex linear. Thus df :U �X ! Y is also holomorphi
.

Example II.2.7. In the de�nition of C

1

-maps we have not required the underlying topologi
al

ve
tor spa
es to be lo
ally 
onvex and one may wonder whether this assumption is made for


onvenien
e or if there are some serious underlying reasons. The following example shows that

lo
al 
onvexity is 
ru
ial to have a 
al
ulus with the properties dis
ussed in Lemma II.2.3.

Let V denote the spa
e of measurable fun
tions f : [0; 1℄! R for whi
h

jf j :=

Z

1

0

jf(x)j

1

2

dx

is �nite and observe that d(f; g) := jf � gj de�nes a metri
 on this spa
e be
ause the fun
tion

x 7!

p

x is subadditive on R

+

. We thus obtain a topologi
al ve
tor spa
e (V; d).

For a subset E � [0; 1℄ let �

E

denote its 
hara
teristi
 fun
tion. Consider the 
urve


: [0; 1℄! V; 
(t) := �

[0;t℄

:

Then

jh

�1

�


(t+ h)� 
(t)

�

j = jhj

�

1

2

jhj ! 0

for ea
h t 2 [0; 1℄ as h ! 0. Hen
e 
 is C

1

with d
 = 0. Sin
e 
 is not 
onstant, the

Fundamental Theorem of Cal
ulus does not hold in V .

The defe
t in this example is 
aused by the non-lo
al 
onvexity of V . In fa
t, one 
an even

show that all 
ontinous linear fun
tionals on V vanish.

Remark II.2.8. In the 
ontext of Bana
h spa
es one has an Inverse Fun
tion Theorem and also

an Impli
it Fun
tion Theorem ([La99℄). Su
h results 
annot be expe
ted in general for Fr�e
het

spa
es (
f. the exponential fun
tions of 
ertain Fr�e
het groups). Nevertheless, the re
ent paper

[Hi99℄ 
ontains an impli
it fun
tion theorem for maps of the type f :E � F ! F , where F is a

Bana
h spa
e and E is Fr�e
het.

Remark II.2.9. (Pathologies of linear ODEs in Fr�e
het spa
es)

(a) First we give an example of a linear ODE for whi
h solutions to initial value problems exist,

but are not unique. We 
onsider the Fr�e
het spa
e V := C

1

([0; 1℄;R) and the 
ontinuous linear

operator Lf := f

0

on this spa
e. We are asking for solutions of the initial value problem

(2:1) 


0

(t) = L
(t); 
(0) = 


0

:
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Let us assume that supp(


0

) is a 
ompa
t subset of ℄0; 1[, so that 


0

permits smooth extensions

to a fun
tion on R . Let h be su
h a fun
tion and 
onsider


:R ! V; 
(t)(x) := h(t+ x):

Then 
(0) = h j

[0;1℄

= 


0

and 


0

(t)(x) = h

0

(t+x) = (L
(t))(x). It is 
lear that these solutions of

(2.1) depend on the 
hoi
e of the extension h of 


0

. Di�erent 
hoi
es lead to di�erent extensions.

Does every smooth fun
tion on [0; 1℄ have a smooth extension to R?

(b) Now we 
onsider the spa
e V := C

1

(S

1

; C ) whi
h we identify with the spa
e of 2� -periodi


smooth fun
tions on the real line. We 
onsider the linear operator Lf := �f

00

and the equation

(2.1), whi
h in this 
ase is the heat equation with reversed time. It is easy to analyze this equation

in terms of the Fourier expansion of 
 . So let


(t)(x) =

X

n2Z

a

n

(t)e

inx

be the Fourier expansion of 
(t). Then (2.1) implies a

0

n

(t) = n

2

a

n

(t) for ea
h n 2 Z , so that

a

n

(t) = a

n

(0)e

tn

2

holds for any solution 
 of (2.1). If the Fourier 
oeÆ
ients a

n

(0) of 


0

do not

satisfy

X

n

ja

n

(0)je

"n

2

<1

for some " > 0 (whi
h need not be the 
ase for a smooth fun
tion 


0

), then (2.1) does not have

a solution on [0; "℄ .

Remark II.2.10. (a) We brie
y re
all the basi
 de�nitions underlying the 
onvenient 
al
ulus

in [KM97℄. Let E be a lo
ally 
onvex spa
e. The 


1

-topology on E is the �nal topology with

respe
t to the set C

1

(R; E). We 
all E 
onvenient if for ea
h smooth 
urve 


1

:R ! E there

exists a smooth 
urve 


2

:R ! E with 


0

2

= 


1

(
f. [KM97, p.20℄).

Let U � E be an open subset and f :U ! F a fun
tion, where F is a lo
ally 
onvex spa
e.

Then we 
all f 
onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This 
on
ept quite dire
tly implies ni
e 
artesian 
losedness properties for smooth maps (
f.

[KM97, p.30℄).

(b) If E is a sequentially 
omplete lo
ally 
onvex (s.
.l.
.) spa
e, then it is 
onvenient be
ause

the sequential 
ompleteness implies the existen
e of Riemann integrals of 
ontinuous E -valued

fun
tions on 
ompa
t intervals ([KM97, Th. 2.14℄). If E is a Fr�e
het spa
e, then the 


1

-topology


oin
ides with the original topology ([KM97, Th. 4.11℄).

Moreover, for an open subset U of a Fr�e
het spa
e, a map f :U ! F is 
onveniently

smooth if and only if it is smooth in the sense of De�nition II.2.1. This 
an be shown as follows.

Sin
e C

1

(R; E) is the same spa
e for both notions of di�erentiability, the 
hain rule shows that

smoothness in the sense of De�nition II.2.1 implies smoothness in the sense of 
onvenient 
al
ulus.

Now we assume that f :U ! F is 
onveniently smooth. Then the derivative df :U � E ! F

exists and de�nes a 
onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄).

Hen
e df :U � E ! F is also 
onveniently smooth, and thus 
ontinuous with respe
t to the




1

-topology. As E �E is a Fr�e
het spa
e, it follows that df is 
ontinuous. Therefore f is C

1

in the sense of De�nition II.2.1, and now one 
an iterate the argument.
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II.3. Di�erentiable manifolds

Sin
e we have a 
hain rule for C

1

-maps between lo
ally 
onvex spa
es, we 
an de�ne smooth

manifolds as one de�nes them in the �nite-dimensional 
ase (
f. [Ha82℄, [Mil83℄, [Gl01a℄).

Let M be a Hausdor� topologi
al spa
e and X a lo
ally 
onvex spa
e. An X -
hart of an

open subset U � M is a homeomorphism ':U ! '(U) � X onto an open subset '(U) of X .

We denote su
h a 
hart as a pair (';U). Two 
harts (';U) and ( ; V ) are said to be smoothly


ompatible if the map

 Æ '

�1

j

'(U\V )

:'(U \ V )!  (U \ V )

is smooth. From the 
hain rule it follows right aways that 
ompatibility of 
harts is an equivalen
e

relation on the set of all X -
harts of M . An X -atlas of M is a family A := ('

i

; U

i

)

i2I

of pairwise


ompatible X -
harts of M for whi
h

S

i

U

i

= M . A smooth X -stru
ture on M is a maximal

X -atlas and a smooth X -manifold is a pair (M;A), where A is a maximal X -atlas on M .

Lo
ally 
onvex spa
es are regular in the sense that ea
h point has a neighborhood base


onsisting of 
losed sets, and this property is inherited by manifolds modeled on these spa
es (
f.

[Mil83℄).

One de�nes the tangent bundle �:TM !M as follows. Let A := ('

i

; U

i

)

i2I

be an X -atlas

of M . On the disjoint union of the set '(U

i

)�X we de�ne an equivalen
e relation by

(x; v) �

�

('

j

Æ '

�1

i

)(x); d('

j

Æ '

�1

i

)(x)(v)

�

for x 2 '

i

(U

i

\ U

j

) and write [x; v℄ for the equivalen
e 
lass of (x; v). Let p 2 U

i

. Then the

equivalen
e 
lasses of the form ['

i

(p); v℄ are 
alled tangent ve
tors in p . Sin
e all the di�erentials

d('

j

Æ'

�1

i

)(x) are invertible linear maps, it easily follows that the set T

p

(M) of all tangent ve
tors

in p forms a ve
tor spa
e isomorphi
 to X under the map X ! T

p

(M); v 7! [x; v℄ . Now we turn

the tangent bundle

TM :=

[

p2M

T

p

(M)

into a manifold by the 
harts

 

i

:TU

i

! '(U

i

)�X; ['

i

(x); v℄ 7! ('

i

(x); v):

It is easy to see that for ea
h open subset U of a lo
ally 
onvex spa
e X we have TU

�

=

U �X

and in parti
ular TU

j

�

=

U

j

�X in the setting from above.

We will 
all a manifold modeled on a l.
. spa
e, resp., Fr�e
het spa
e, resp., Bana
h spa
e a

lo
ally 
onvex, resp., Fr�e
het, resp., Bana
h manifold.

Note that it is far more subtle to de�ne a 
otangent bundle be
ause this requires a lo
ally


onvex topology on the dual spa
e E

0

of the underlying ve
tor spa
e E and therefore depends

on this topology.

Let M and N be smooth manifolds modeled on lo
ally 
onvex spa
es and f :M ! N

a smooth map. We write Tf :TM ! TN for the 
orresponding map indu
ed on the level of

tangent ve
tors. Lo
ally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;

where df(p):T

p

(M)! T

f(p)

(N) denotes the di�erential of f at p . In view of Remark II.2.6(
),

the tangent map Tf is also smooth if f is smooth. In the following we will always identify M

with the zero se
tion in TM . In this sense we have Tf j

M

= f with Tf(M) � N � TN .

A ve
tor �eld X on M is a smooth se
tion of the tangent bundle TM ! M . We write

V(M) for the spa
e of all ve
tor �elds on M . If f 2 C

1

(M; C ) is a smooth fun
tion on M and

X 2 V(M), then we obtain a smooth fun
tion on M via

(X:f)(p) := df(p)

�

X(p)

�

:

Sin
e lo
ally X(p) = (p;

e

X(p)

�

, where

e

X is a smooth fun
tion, we have X:f = df Æ X . Therefore

the smoothness of X:f follows from the smoothness of the maps df :TM ! C and X :M ! TM .
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Lemma II.3.1. If X;Y 2 V(M) , then there exists a ve
tor �eld [X;Y ℄ 2 V(M) whi
h is

uniquely determined by the property that on ea
h open subset U �M we have

(3:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U; C ) .

Proof. Lo
ally the ve
tor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and Y (p) =

�

p;

e

Y (p)

�

. We de�ne a ve
tor �eld by

(3:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the 
hain rule. The requirement that

(3.1) holds on 
ontinuous linear fun
tionals f determines [X;Y ℄e uniquely. An easy 
al
ulation

shows that (3.2) de�nes in fa
t a smooth ve
tor �eld on M (
f. Lemma II.3.3 below). Now the

assertion follows be
ause lo
ally (3.1) is a 
onsequen
e of the 
hain rule.

Proposition II.3.2. (V(M); [�; �℄) is a Lie algebra.

Proof. The 
ru
ial part is to 
he
k the Ja
obi identity. This follows from the observation that

if U � X is an open subset of a lo
ally 
onvex spa
e, then the mapping

�:V(U)! Der

�

C

1

(U; C )

�

; �(X)(f) = X:f

is inje
tive and satis�es �([X;Y ℄) = [�(X);�(Y )℄: Therefore the Ja
obi identity in V(U) follows

from the Ja
obi identity in the asso
iative algebra End

�

C

1

(U; C )

�

.

For the appli
ations to Lie groups we will need the following lemma.

Lemma II.3.3. Let M and N be smooth manifolds and ':M ! N a smooth map. Suppose

that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) satisfy X

N

Æ' = T' ÆX

M

and Y

N

Æ' = T' Æ Y

M

.

Then [X

N

; Y

N

℄ Æ ' = T' Æ [X

M

; Y

M

℄:

Proof. It suÆ
es to perform a lo
al 
al
ulation. Therefore we may w.l.o.g. assume that

M � F is open, where F is a lo
ally 
onvex spa
e and that N is a lo
ally 
onvex spa
e. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ ' = d' Æ (id

F

�

e

Y

M

): Using the 
hain rule

we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whi
h, in view of Remark II.2.6(
), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the se
ond derivative (Lemma II.2.3(ii)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:
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Di�erential forms

De�nition II.3.4. If M is a di�erentiable manifold and V a lo
ally 
onvex spa
e, then a

V -valued k -form ! on M is a fun
tion ! whi
h asso
iates to ea
h p 2M a k -linear alternating

map T

p

(M)

k

! V su
h that in lo
al 
oordinates the map (p; v

1

; : : : ; v

k

) 7! !(p)(v

1

; : : : ; v

k

) is

smooth. We write 


k

(M;V ) for the spa
e of smooth k -forms on M with values in V . The

di�erentials

d: 


k

(M;V )! 


k+1

(M;V )

and the wedge produ
ts

^: 


k

(M; C )�


l

(M; C )! 


k+l

(M; C )

are de�ned by the same formulas as in the �nite-dimensional 
ase.

The assumption that V is sequentially 
omplete is 
ru
ial in the following lemma to ensure

the existen
e of the Riemann integral de�ning ' .

Lemma II.3.5. (Poin
ar�e Lemma) Let E be lo
ally 
onvex, V an s.
.l.
. spa
e and U � E

an open subset whi
h is star-shaped with respe
t to 0 . Let ! 2 


k+1

(U; V ) be a V -valued 
losed

(k + 1)-form. Then ! is exa
t. Moreover, ! = d' for some ' 2 


k

(U; V ) with '(0) = 0 given

by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Proof. For the 
ase of Fr�e
het spa
es Remark II.2.10 implies that the assertion follows from

[KM97, Lemma 33.20℄. On the other hand, one 
an prove it dire
tly in the 
ontext of lo
ally


onvex spa
es by using the fa
t that one may di�erentiate under the integral a fun
tion of the

type

R

1

0

H(t; x) dt , where H is a smooth fun
tion ℄� "; 1 + "[�U ! V (
f. [KM97, p.32℄). The

existen
e of the integrals follows from the sequential 
ompleteness of V . For the 
al
ulations

needed for the proof we refer to [La99, Th. V.4.1℄.

Remark II.3.6. (a) The Poin
ar�e Lemma is the �rst step to de Rham's Theorem. To obtain de

Rham's Theorem for �nite-dimensional manifolds, one makes heavy use of smooth partitions of

unity whi
h do not always exist for in�nite-dimensional manifolds, not even for Bana
h manifolds.

(b) We 
all a smooth manifold M smoothly para
ompa
t if every open 
over has a subordinated

smooth partition of unity. De Rham's Theorem holds for every smoothly para
ompa
t Fr�e
het

manifold ([KM97,Thm. 34.7℄). Smoothly Hausdor� se
ond 
ountable manifolds modeled on a

smoothly regular spa
e are smoothly para
ompa
t ([KM97, 27.4℄). Typi
al examples of smoothly

regular spa
es are nu
lear Fr�e
het spa
es ([KM97, Th. 16.10℄).

(
) Examples of Bana
h spa
es whi
h are not smoothly para
ompa
t are C([0; 1℄;R) and l

1

(N;R) .

On these spa
es there exists no non-zero smooth fun
tion supported in the unit ball ([KM97,

14.11℄).

Proposition II.3.7. Let M be a 
onne
ted manifold, V an s.
.l.
. spa
e and � 2 


1

(M;V )

a 
losed 1-form. Then there exists a 
onne
ted 
overing q:




M ! M and a smooth fun
tion

f :




M ! V with df = q

�

� .

Proof. (Sket
h) We 
onsider the produ
t set P := M � V with the two proje
tion maps

F :P ! V and q:P !M . We de�ne a topology on P as follows. For ea
h pair (U; f) 
onsisting

of an open subset U � M and a smooth fun
tion f :U ! V with df = � j

U

the graph

�(f; U) := f(x; f(x)):x 2 Ug is a subset of P . These sets form a basis for a topology � on P .

With respe
t to this topology the mapping q:P ! M is a 
overing map. To see this, let

x 2 M . Sin
e M is a manifold, there exists a neighborhood U of x whi
h is di�eomorphi
 to

a 
onvex subset of a lo
ally 
onvex spa
e. Then the Poin
ar�e Lemma implies for ea
h v 2 V
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the existen
e of a smooth fun
tion f

v

on U with df

v

= � j

U

and f

v

(x) = v . Sin
e U is


onne
ted, the fun
tion f

v

is uniquely determined by its value at x , so that f

v

= f

0

+ v .

Now q

�1

(U) = U � V =

S

v2V

�(f

v

; U) is a disjoint union of open subsets of P (here we use

the 
onne
tedness of U ), and therefore q is a 
overing. We 
on
lude that P 
arries a natural

manifold stru
ture for whi
h q is a lo
al di�eomorphism. For this manifold stru
ture the fun
tion

F :P ! V is smooth with dF = q

�

� .

Now we �x a point x

0

2 M and an element v

0

2 V . Then the 
onne
ted 
omponent




M

of (x

0

; v

0

) in P is a 
onne
ted 
overing manifold of M with the required properties.

Corollary II.3.8. If M is a simply 
onne
ted manifold and V an s.
.l.
. spa
e, then

H

1

dR

(M;V ) vanishes.

Proof. Let � be a 
losed V -valued 1-form on M . Using Proposition II.3.7, we �nd a 
overing

q:




M !M and a smooth fun
tion f :




M ! V with df = q

�

� . Sin
e M is simply 
onne
ted, the


overing q is trivial, hen
e a di�eomorphism. Therefore � is exa
t.

Theorem II.3.9. Let M be a 
onne
ted manifold, V an s.
.l.
. spa
e, x

0

2 M , and

�

1

(M) := �

1

(M;x

0

) . Then we have an in
lusion

�:H

1

dR

(M;V ) ,! Hom(�

1

(M); V )

whi
h is given on a pie
ewise di�erentiable loop 
: [0; 1℄!M in x

0

for � 2 Z

1

dR

(M;V ) by

�(�)(
) := �([�℄)([
℄) :=

Z




� :=

Z

1

0




�

�:

The homomorphism �([�℄) 
an also be 
al
ulated as follows: Let q:

f

M ! M be the universal


overing map, and write

f

M ��

1

(M)!

f

M; (x; g) 7! �

g

(x) for the right a
tion of �

1

(M) on

f

M .

Further pi
k f

�

2 C

1

(

f

M;V ) with df

�

= q

�

� . Then the fun
tion f

�

Æ �

g

� f

�

is 
onstant equal

to �([�℄)(g) .

Proof. (
f. Theorem XIV.1.7 in [God71℄) Let q:

f

M ! M be a simply 
onne
ted 
overing

manifold and y

0

2 q

�1

(x

0

). In view of Corollary II.3.8, for ea
h 
losed 1-form � on M , the


losed 1-form q

�

� on

f

M is exa
t. Let f

�

2 C

1

(

f

M;V ) with

e

f

�

(y

0

) = 0 and d

e

f

�

= q

�

� .

Let

f

M � �

1

(M) !

f

M; (y; g) 7! �

g

(y) := y:g denote the a
tion of �

1

(M) on

f

M by de
k

transformations. We put

�(�)(g) := f

�

(y

0

:g):

Then �(�)(1) = 0 and

�(�)(g

1

g

2

) = f

�

(y

0

:g

1

g

2

) = f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + f

�

(y

0

:g

1

)

= f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + �(�)(g

1

):

For ea
h g 2 �

1

(M) the fun
tion h := �

�

g

f

�

� f

�

satis�es h(y

0

) = �(�)(g) = f

�

(y

0

:g) and

dh = �

�

g

df

�

� df

�

= �

�

g

q

�

�� q

�

� = (q Æ �

g

)

�

�� q

�

� = q

�

�� q

�

� = 0:

Therefore h is 
onstantly �(�)(g), and we obtain �(�)(g

1

g

2

) = �(�)(g

2

) + �(�)(g

1

): This proves

that �(�) 2 Hom(�

1

(M); V ).

Suppose that �(�) = 0. Then �

�

g

f

�

� f

�

= 0 holds for ea
h g 2 �

1

(M), showing that the

fun
tion f

�

fa
tors through a smooth fun
tion f :M ! V with fÆq = f

�

. Now q

�

df = df

�

= q

�

�

implies df = � , so that � is exa
t. Conversely, if � is exa
t, then the fun
tion f

�

is invariant

under �

1

(M), and we see that �(�) = 0. Therefore �:Z

1

dR

(M;V ) ! Hom(�

1

(M); V ) fa
tors

through an in
lusion H

1

dR

(M;V ) ,! Hom(�

1

(M); V ).

Finally, let [
℄ 2 �

1

(M), where 
: [0; 1℄!M is pie
ewise smooth. Let e
: [0; 1℄!

f

M be a

lift of 
 with e
(0) = y

0

. Then

�([�℄)([
℄) = f

�

([
℄) = f

�

(e
(1)) = f

�

(e
(0)) +

Z

1

0

df

�

(e
(t))

�

e


0

(t)

�

dt

= f

�

(y

0

) +

Z

1

0

(q

�

�)(e
(t))

�

e


0

(t)

�

dt =

Z

1

0

�(
(t))

�




0

(t)

�

dt =

Z

1

0




�

� =

Z




�:
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The following lemma shows that exa
tness of a ve
tor-valued 1-form 
an be tested by

looking at the asso
iated s
alar-valued 1-forms.

Lemma II.3.10. Let � 2 


1

(M;V ) be a 
losed 1-form. If for ea
h 
ontinuous linear fun
tional

� on V the 1-form � Æ � is exa
t, then � is exa
t.

Proof. If �Æ� is exa
t, then the group homomorphism �(�):�

1

(M)! V satis�es �Æ�(�) = 0

(Theorem II.3.9). If this holds for ea
h � 2 V

0

, then the fa
t that the 
ontinuous linear fun
tionals

on the lo
ally 
onvex spa
e V separate points implies that �(�) = 0 and hen
e that � is exa
t.

To see that the map � is surje
tive, one needs smooth para
ompa
tness whi
h is not

always available, not even for Bana
h manifolds. For an in�nite-dimensional version of de

Rham's Theorem for smoothly para
ompa
t manifolds we refer to [KM97, Thm. 34.7℄ (
f. Remark

II.3.6(b)). The following proposition is a parti
ular 
onsequen
e:

Proposition II.3.11. If M is a 
onne
ted smoothly para
ompa
t manifold, then the in
lusion

map �:H

1

dR

(M;V )! Hom(�

1

(M); V ) is bije
tive.

Proposition II.3.12. Let M be a 
onne
ted manifold, V an s.
.l.
. spa
e and � � V a

dis
rete subgroup. Then V=� 
arries a natural manifold stru
ture su
h that the tangent spa
e at

every element of V=� 
an be 
anoni
ally identi�ed with V . For a smooth fun
tion f :M ! V=�

we 
an thus identify the di�erential df with a V -valued 1-form on M . For a 
losed V -valued

1-form � on M the following 
onditions are equivalent:

(1) There exists a smooth fun
tion f :M ! V=� with df = � .

(2) �(�)

�

�

1

(M)

�

� � .

Proof. Let q:

f

M ! M denote the universal 
overing map and �x a point x

0

2

f

M . Then

the 
losed 1-form q

�

� on

f

M is exa
t (Theorem II.3.9), so that there exists a unique smooth

fun
tion

e

f :

f

M ! V with d

e

f = q

�

� and

e

f(x

0

) = 0. In Theorem II.3.9 we have seen that for

ea
h g 2 �

1

(M) we have

(3:3) �

�

g

e

f �

e

f = �(�)(g):

(1) ) (2): Let p:V ! V=� denote the quotient map. We may w.l.o.g. assume that f

�

q(x

0

)

�

=

p(0). The fun
tion p Æ

e

f :

f

M ! V=� satis�es d(p Æ

e

f) = q

�

� , and the same is true for

f Æ q:

f

M ! V=�. Sin
e both have the same value at x

0

, we see that p Æ

e

f = f Æ q . This

proves that p Æ

e

f is invariant under �

1

(M), and therefore (3.3) shows that �(�)

�

�

1

(M)

�

� �.

(2) ) (1): If (2) is satis�ed, then (3.3) implies that the fun
tion p Æ

e

f :

f

M ! V=� is �

1

(M)-

invariant, hen
e fa
tors through a fun
tion f :M ! V=� with f Æ q = p Æ

e

f . Then f is smooth

and satis�es q

�

df = d

e

f = q

�

� , whi
h implies that df = � .

Smoothly non-trivial bundles

Remark II.3.13. Another remarkable pathology o

urring already for Bana
h spa
es is that

there exists a 
losed subspa
e F of a Bana
h spa
e E su
h that the quotient map q:E ! E=F

has no smooth se
tions. The existen
e of a smooth lo
al se
tion �:U ! E around 0 2 E=F

would imply the existen
e of a 
losed 
omplement im(d�(0))

�

=

E=F to F in E , but su
h a spa
e

does not exist. A simply example is the subspa
e 


0

(N;R) in l

1

(N;R) ([Wer95, Satz IV.6.5℄).

Nevertheless, the map q:E ! E=F de�nes the stru
ture of a topologi
al F -prin
ipal

bundle over E=F whi
h has a 
ontinuous global se
tion by Mi
hael's Sele
tion Theorem ([Mi59℄).
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III. In�nite-dimensional Lie groups

III.1. In�nite-dimensional Lie groups and their Lie algebras

De�nition III.1.1. A lo
ally 
onvex Lie group G is a lo
ally 
onvex manifold endowed with

a group stru
ture su
h that the multipli
ation map and the inversion map are smooth.

In our treatment of Lie groups we basi
ally follow [Mil83℄. Throughout this subse
tion

G denotes a lo
ally 
onvex Lie group. For g 2 G we write �

g

:G ! G; x 7! gx for the

left multipli
ation by g and �

g

:G ! G; x 7! xg for the right multipli
ation by g . Both are

di�eomorphisms of G . Moreover, we write m:G � G ! G; (x; y) 7! xy for the multipli
ation

map and �:G! G; x 7! x

�1

for the inversion.

De�nition III.1.2. Let G be a Lie group. Then for ea
h g 2 G the map




g

:G! G; x 7! gxg

�1

;

is a smooth automorphism, hen
e indu
es a 
ontinuous linear automorphism

Ad(g) := d


g

(1): g ! g:

We thus obtain an a
tion G� g ! g; (g;X) 7! Ad(g):X 
alled the adjoint a
tion of G on g .

Proposition III.1.3. For a Lie group G the following assertions hold:

(i) dm(g

1

; g

2

)(X

1

; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

and in parti
ular we have

dm(1;1)(X

1

; X

2

) = X

1

+X

2

:

(ii) d�(1):X = �X .

(iii) The mapping Tm:TG � TG ! TG de�nes a Lie group stru
ture on TG with identity

element 0 2 T

1

(G) and inversion T� .

(iv) Let g := T

1

(G) denote the tangent spa
e at the identity. Then the mapping

�:G� g ! TG; (g;X) 7! d�

g

(1):X

is a di�eomorphism. Multipli
ation and inversion in TG are given by

�(g

1

; X

1

) ��(g

2

; X

2

) = �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

�(g;X)

�1

= �

�

g

�1

;�Ad(g):X

�

:

Proof. (i) We have

dm(g

1

; g

2

)(X

1

; X

2

) = dm(g

1

; g

2

)(X

1

; 0) + dm(g

1

; g

2

)(0; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

:

(ii) From m Æ (id

G

��) = 1 , we derive 0 = dm(1;1)

�

X; d�(1):X

�

= X + d�(1):X and hen
e the

assertion.

(iii) First we note that for a produ
t of two smooth manifolds M and N we have a 
anoni
al

di�eomorphism T (M�N)! TM�TN: Sin
e the multipli
ation map m:G�G! G is smooth,

the same holds for its tangent map

Tm:T (G�G)

�

=

TG� TG! TG:
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Let ":G! f1g denote the 
onstant map and u: f1g ! G the group homomorphism representing

the identity element. Then the group axioms for G are en
oded in the relations m Æ (m� id) =

m Æ (id�m) (asso
iativity), m Æ (� � id) = m Æ (id��) = " (inversion), and m Æ (u � id) =

mÆ(id�u) = id (unit element). Using the fun
torial properties of T , we see that these properties


arry over to the 
orresponding maps on TG and show that TG is a Lie group with multipli
ation

Tm , inversion T� , and unit element �(1; 0).

(iv) The smoothness of � follows from the smoothness of Tm and �(g;X) = Tm(g;X) for

(g;X) 2 G � T

1

(G) � T (G) � T (G) and the fa
t that the restri
tion of Tm to G � T

1

(G) �

TG� TG is smooth.

To see that �

�1

is also smooth, let �:TG! G denote the 
anoni
al proje
tion. Then

�

�1

:TG! G� g; v 7!

�

�(v); d�

�(v)

�1

�

�(v)

�

:v

�

= (�(v); �(v)

�1

:v)

and the smoothness of the group operations on TG imply the smoothness of �

�1

.

To derive an expli
it formula for the multipli
ation in terms of the trivialization given by

�, we 
al
ulate

�(g

1

; X

1

) � �(g

2

; X

2

) = dm(g

1

; g

2

)

�

d�

g

1

(1):X

1

; d�

g

2

(1):X

2

�

= d�

g

2

(g

1

)d�

g

1

(1):X

1

+ d�

g

1

(g

2

)d�

g

2

(1):X

2

= d�

g

1

g

2

(1)

�

d�

�1

g

2

(g

2

)d�

g

2

(1):X

1

+X

2

�

= �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

:

The formula for the inversion follows dire
tly from this formula.

One of the main 
onsequen
es of Proposition III.1.3(iv) is that the tangent bundle of a Lie

group is trivial, so that we 
an identify V(G) with C

1

(G; g). We write V(G)

l

� V(G) for the

subspa
e of left invariant ve
tor �elds, i.e., those satisfying

(1:1) X(g) = d�

g

(1):X(1)

for all g 2 G or, equivalently, X Æ �

g

= T (�

g

) ÆX if we 
onsider X as a se
tion X : G ! TG

of the tangent bundle TG . These are the ve
tor �elds that 
orrespond to 
onstant fun
tions

G! g . We see in parti
ular that ea
h left invariant ve
tor �eld is smooth, so that the mapping

V(G)

l

! g; X 7! X(1)

is a bije
tion. Moreover, Lemma II.3.3 implies that for X;Y 2 V(G)

l

we have

[X;Y ℄ Æ �

g

= T (�

g

) Æ [X;Y ℄;

i.e., that [X;Y ℄ 2 V(G)

l

. Hen
e there exists a unique Lie bra
ket [�; �℄ on g satisfying

[X;Y ℄(1) = [X(1); Y (1)℄

for all left invariant ve
tor �elds on G .

De�nition III.1.4. The Lie algebra L(G) := (g; [�; �℄) := (T

1

(G); [�; �℄) is 
alled the Lie algebra

of G .

Proposition III.1.5. For a Lie group G the following assertions hold:

(i) If X

l

:G! TG is a left invariant ve
tor �eld with X

l

(1) = X , then X

r

: g 7! �X

l

(g)

�1

is

a right-invariant ve
tor �eld with X

r

(1) = X . The assignment g ! V(G)

r

; X 7! X

r

is an

antiisomorphism of Lie algebras.

(ii) If �:G �M ! M is a smooth a
tion of G on the smooth manifold M , then the map

T�:TG� TM ! TM is a smooth a
tion of TG on TM . The assignment

_�: g ! V(M); with _�(X)(p) := �d�(1; p)(X; 0)
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de�nes a homomorphism of Lie algebras.

Proof. (i) In view of Proposition III.1.3(ii), we have

X

r

(g)=� d�(g

�1

):X

l

(g

�1

)=� d�(g

�1

)d�

g

�1
(1):X=� d�

g

(1)d�(1):X=d�

g

(1):X

and this proves the �rst part. The se
ond part follows from Lemma II.3.3 whi
h shows that

[X

r

; Y

r

℄(g) = d�(g

�1

):[X

l

; Y

l

℄(g

�1

) = d�(g

�1

):[X;Y ℄

l

(g

�1

) = �[X;Y ℄

r

(g):

(ii) That T� de�nes an a
tion of TG on TM follows in the same way as in (iii) above by

applying T to the 
ommutative diagrams de�ning a group a
tion.

For the se
ond part we pi
k p 2 M and write '

p

:G ! M; g 7! g:p for the smooth orbit

map of p . Then the equivarian
e of '

p

means that '

p

Æ �

g

= '

g:p

. From this we derive

�d'

p

(g):X

r

(g) = �d'

p

(g)d�

g

(1):X = �d'

g:p

(1):X = _�(X)(g:p):

Therefore Lemma II.3.3 and (i) imply that

_�([X;Y ℄)(p) = �d'

p

(1)[X;Y ℄

r

(1) = d'

p

(1)[X

r

; Y

r

℄(1) = [ _�(X); _�(Y )℄(p):

Proposition III.1.6. The adjoint a
tion Ad:G � g ! g; (g; x) 7! Ad(g):x is smooth. The

operators

adx: g ! g; adx(y) := dAd(1; y)(x; 0)

satisfy

adx(y) = [x; y℄:

In parti
ular the bra
ket in g is 
ontinuous.

Proof. The smoothness of the adjoint a
tion of G on g follows dire
tly from the smoothness

of the multipli
ation of the Lie group TG (Proposition III.1.3).

To 
al
ulate the linear maps adx: g ! g , we 
onsider a lo
al 
hart ':V ! g of G ,

where V � G is an open 1-neighborhood and '(1) = 0. Let W � V be an open symmetri


1-neighborhood with WW � V . Then we have on the open set '(W ) � g the smooth

multipli
ation

x � y := '('

�1

(x)'

�1

(y)); x; y 2 '(W ):

From Tm(1;1)(v; w) = v + w we immediately see that the Taylor series of � is given by

x � y = x+ y + b(x; y) +R(x; y);

where R(x; y) is a smooth fun
tion whose derivatives up to order 2 vanish at (0; 0), and

b: g� g ! g is a 
ontinuous bilinear map.

For x 2 W let �

�

x

:W ! W; y 7! x � y . Then the left invariant ve
tor �eld 
orresponding

to v 2 g is given on '(W ) by

v

l

(x) = d�

�

x

(0):v;

and in 0 the �rst and se
ond order term of its Taylor series is v + b(x; v). Therefore

[v; w℄ = [v

l

; w

l

℄(0) = dw

l

(0):v

l

(0)� dv

l

(0):w

l

(0) = dw

l

(0):v � dv

l

(0):w = b(v; w)� b(w; v):

This implies that the Lie bra
ket on g is 
ontinuous.

For x 2 '(W ) we write x

�1

= �

1

(x) + �

2

(x) + S(x); where �

1

is linear, �

2

is quadrati


and S(x) stands for terms of order at least 3. Now

0 = x � x

�1

= x+ �

1

(x) + �

2

(x) + b(x; �

1

(x)) + : : :

and by 
omparing terms of order 1 and 2, we get �

1

(x) = �x and �

2

(x) = �b(x;�x) = b(x; x).

Therefore

(x � y) � x

�1

=

�

x+ y + b(x; y)

�

+

�

� x+ b(x; x)

�

+ b(x+ y;�x) + � � �

= y + b(x; y)� b(x; y) + � � � ;

and by taking the derivative w.r.t. x in 0 in the dire
tion z , we eventually get

ad z:y = b(z; y)� b(y; z) = [z; y℄:
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From topologi
al groups to Lie groups

The following lemma is helpful to obtain Lie group stru
tures on topologi
al groups.

Lemma III.1.7. Let G be a 
onne
ted topologi
al group and K = K

�1

be an open 1-

neighborhood in G . We further assume that K is a smooth manifold su
h that the inversion

is smooth on K and there exists an open 1-neighborhood V � K with V

2

� K su
h that the

group multipli
ation m:V � V ! K is smooth. Then there exists a unique stru
ture of a Lie

group on G for whi
h the in
lusion map K ,! G indu
es a di�eomorphism on open neighborhoods

of 1 .

Proof. (
f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional 
ase) After shrinking

V and K , we may assume that there exists a di�eomorphism ':K ! '(K) � E , where E is a

lo
ally 
onvex spa
e, that V satis�es V = V

�1

, V

4

� K , and that m:V

2

�V

2

! K is smooth.

For g 2 G we 
onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whi
h are homeomorphisms of gV onto '(V ). We 
laim that ('

g

; gV )

g2G

is a smooth atlas of

G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))

follows from the smoothness of the multipli
ation V

2

� V ! K . This proves that the 
harts

('

g

; gK)

g2G

form an atlas of G . Moreover, the 
onstru
tion implies that all left translations of

G are smooth maps.

The 
onstru
tion also shows that for ea
h g 2 V the 
onjugation 


g

:G! G; x 7! gxg

�1

is

smooth in a neighborhood of 1 . Sin
e the set of all these g is a submonoid of G 
ontaining V ,

it 
ontains V

n

for ea
h n 2 N , hen
e all of G be
ause G is 
onne
ted and thus generated by

V . Therefore all 
onjugations and hen
e all right multipli
ations are smooth. The smoothness

of the inversion follows from its smoothness on V and the fa
t that left and right multipli
ations

are smooth. Finally the smoothness of the multipli
ation follows from the smoothness at 1� 1

be
ause

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2




g

�1

2

(x)y = g

1

g

2

m

G

(


g

�1

2

(x); y):

The uniqueness of the Lie group stru
ture is 
lear be
ause ea
h lo
ally di�eomorphi
 bije
tive

homomorphism between Lie groups is a di�eomorphism.

III.2. Homomorphisms of Lie groups and Lie algebras

In this se
tion we study the interplay between homomorphisms of Lie groups and Lie

algebras. This is very mu
h in the spirit of di�erentiation and integration in elementary 
al
ulus.

In the �nite-dimensional Lie theory one has three basi
 fa
ts on homomorphisms between Lie

groups:

(1) Every homomorphism ':G! H between Lie groups indu
es a Lie algebra homomorphism

L('):L(G)! L(H).

(2) If G is 
onne
ted, then ' is determined uniquely by L(').
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(3) If G is simply 
onne
ted, then every Lie algebra homomorphism L(G)! L(H) is an L(')

for some group homomorphism ':G! H .

These results are still morally true for in�nite-dimensional Lie groups, but one has to

re�ne the assumptions. There are no problems with (1). Also (2) is still true, whi
h is slightly

remarkable be
ause solutions of ordinary di�erential equations on Fr�e
het spa
es are in general

not uniquely determined by an initial 
ondition (Remark II.2.9). Nevertheless, we will see that

this uniqueness of solutions holds for the ODEs that we have to 
onsider for (2) be
ause we 
an

redu
e it to the fa
t that a C

1

-map with vanishing derivative is lo
ally 
onstant (Lemma II.2.3).

Property (3) is more subtle. For that we will assume that H is a regular Lie group (de�ned

below). All Bana
h{Lie groups and all Lie groups whi
h are quotients of s.
.l.
. spa
es modulo

dis
rete subgroups are regular, and, moreover, no non-regular Lie group modeled on an s.
.l.
.

spa
e is known.

From Lie group homomorphisms to Lie algebra homomorphisms

Lemma III.2.1. Let ':G! H be a homomorphism of Lie groups. Then

L(') := d'(1):L(G)! L(H)

is a homomorphism of their Lie algebras.

Proof. Let x; y 2 L(G) = T

1

(G) and x

l

; y

l

the 
orresponding left invariant ve
tor �elds.

Then ' Æ �

g

= �

'(g)

Æ ' for ea
h g 2 G implies that

T' Æ x

l

= L(')(x)

l

Æ ' and T' Æ y

l

= L(')(y)

l

Æ '

and therefore

T' Æ [x

l

; y

l

℄ = [L(')(x)

l

;L(')(y)

l

℄ Æ '

(Lemma II.3.3). Evaluating at 1 , we obtain

L('):[x; y℄ = [L(')(x);L(')(y)℄:

Remark III.2.2. The pre
eding lemma implies that the assignment G 7! L(G) and ' 7! L(')

de�nes a fun
tor L from the 
ategory of lo
ally 
onvex Lie groups to the 
ategory of lo
ally 
onvex

Lie algebras.

De�nition III.2.3. (a) Let G be a Lie group and I � R an interval. For a smooth 
urve


: I ! G we de�ne its left logarithmi
 derivative Æ

l

(
): I ! g by

Æ

l

(
)(t) := 
(t)

�1

:


0

(t) = d�


(t)

�1
(
(t)):


0

(t);

where 
(t)

�1

:


0

(t) has to be read in the group TG (
f. Proposition III.1.3).

The right logarithmi
 derivative of 
 is likewise de�ned by

Æ

r

(
)(t) := 


0

(t):
(t)

�1

= d�


(t)

�1
(
(t)):


0

(t):

(b) Let M be a smooth manifold. The notion of logarithmi
 derivative generalizes naturally

to smooth maps 
:M ! G . We de�ne the left logarithmi
 derivative Æ

l

(
) 2 


1

(M; g) (see

De�nition II.3.4) by

Æ

l

(
)(x) := 
(x)

�1

:d
(x); T

x

M ! g

and the right logarithmi
 derivative by

Æ

r

(
)(x) := d
(x):
(x)

�1

; T

x

M ! g

Lemma III.2.4. For smooth fun
tions 


i

:M ! G , i = 1; 2 , we have

Æ

r

(


1




2

) = Æ

r

(


1

) + Ad(


1

) Æ Æ

r

(


2

)

and

Æ

l

(


1




2

) = Æ

l

(


2

) + Ad(


2

)

�1

Æ Æ

l

(


1

):

Proof. This follows from a straightforward veri�
ation.
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The following lemma provides a uniqueness result for the equation

Æ

l

(
) = f; f 2 


1

(M; g):

Lemma III.2.5. If two smooth fun
tions 


1

; 


2

:M ! G have the same left logarithmi
 deriva-

tive and M is 
onne
ted, then there exists g 2 G with 


1

= �

g

Æ 


2

.

Proof. We have to show that the fun
tion x 7! 


1

(x)


2

(x)

�1

is lo
ally 
onstant, hen
e


onstant be
ause M is 
onne
ted. First we obtain with Lemma III.2.4

Æ

l

(


1




�1

2

) = Æ

l

(


�1

2

) + Ad(


2

)Æ

l

(


1

) = Æ

l

(


�1

2

) + Ad(


2

)Æ

l

(


2

) = Æ

l

(


2




�1

2

) = 0:

This implies that d(


1




�1

2

) vanishes, and hen
e that 


1




�1

2

is lo
ally 
onstant.

Lemma III.2.6. If f :M ! G is a smooth map and ':G ! H is a homomorphism of Lie

groups, then

Æ

l

(' Æ f) = L(') Æ Æ

l

(f) and Æ

r

(' Æ f) = L(') Æ Æ

r

(f):

Proof. Let x 2M . Then ' Æ �

g

= �

'(g)

Æ ' implies that

T' Æ T�

g

= T�

'(g)

Æ T':TG! TH:

Applying T' to the map df = f:Æ

l

(f):TM ! TG , we thus obtain

d(' Æ f) = (' Æ f):

�

L(') Æ Æ

l

(f)

�

and therefore

Æ

l

(' Æ f) = L(') Æ Æ

l

(f):

The 
orresponding assertion for the right logarithmi
 derivative is proved in a similar way.

Proposition III.2.7. Let G be a 
onne
ted Lie group and '

1

; '

2

:G ! H two Lie group

homomorphisms for whi
h the 
orresponding Lie algebra homomorphisms L('

1

) and L('

2

)


oin
ide. Then '

1

= '

2

.

Proof. ([Mil83, Lemma 7.1℄) Let g 2 G . Sin
e G is 
onne
ted, there exists a smooth 
urve


: [0; 1℄! G with 
(0) = 1 and 
(1) = g . Let '

1

; '

2

:G! H be two Lie group homomorphisms

with L('

1

) = L('

2

). Then Lemma III.2.6 implies that the two 
urves �

i

:= '

i

Æ 
: [0; 1℄ ! G

have the same left logarithmi
 derivative. Sin
e both 
urves have the value 1 in 0, they 
oin
ide

by Lemma III.2.5. Therefore

'

1

(g) = �

1

(1) = �

2

(1) = '

2

(g);

whi
h proves that '

1

= '

2

.

Corollary III.2.8. If G is a 
onne
ted Lie group, then kerAd = Z(G) .

Proof. Let 


g

(x) = gxg

�1

. In view of Lemma III.1.14, for g 2 G the 
onditions 


g

= id

G

and L(


g

) = Ad(g) = id

g

are equivalent. This implies the assertion.

Regular Lie groups
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De�nition III.2.9. A Lie group G is 
alled regular if for ea
h 
losed interval I � R , 0 2 I ,

and X 2 C

1

(I;L(G)) the initial value problem (IVP)

(2:1) 
(0) = 1; Æ

l

(
) = X;

has a solution 


X

2 C

1

(I;G) and the evolution map

evol

G

:C

1

(R;L(G)) ! G; X 7! 


X

(1)

is smooth.

For a regular Lie group G we de�ne the exponential fun
tion

exp:L(G)! G by exp(X) := 


X

(1);

where X 2 L(G) is 
onsidered as a 
onstant fun
tion R ! L(G). As a restri
tion of the smooth

fun
tion evol

G

, the exponential fun
tion is smooth.

For a general Lie group G we 
all a smooth fun
tion exp

G

: g ! G an exponential fun
tion

for G if for ea
h X 2 g the 
urve 


X

(t) := exp(tX) is a solution of the IVP (2.1). A

ording to

Lemma III.2.5, su
h a solution is unique whenever it exists. Therefore a Lie group has at most

one exponential fun
tion.

Remark III.2.10. (a) As a dire
t 
onsequen
e of the existen
e of solutions to ordinary dif-

ferential equations on open domains of Bana
h spa
es and their smooth dependen
e on initial

values and parameters, every Bana
h{Lie group is regular.

(b) All known Lie groups modeled on s.
.l.
. spa
es are regular.

Let A � C([0; 1℄; C ) denote the subalgebra of all rational fun
tions endowed with the

indu
ed norm kfk := sup

0�t�1

jf(t)j . In [Gl01
, Se
t. 7℄ it is shown that the unit group A

�

of

the algebra A is a Lie group but that its exponential fun
tion is only de�ned on the subspa
e

C 1 of L(A

�

) = A .

(
) If V is an s.
.l.
. ve
tor spa
e, then V is a regular Lie group be
ause the Fundamental

Theorem of Cal
ulus holds for 
urves in V . The smoothness of the evolution map is trivial in

this 
ase be
ause it is a 
ontinuous linear map. Regularity is trivially inherited by all Lie groups

Z = V=�, where � � V is a dis
rete subgroup.

(d) If, 
onversely, Z is a regular Fr�e
het{Lie group, then the exponential fun
tion exp:V ! Z

0

is a universal 
overing homomorphism of the identity 
omponent Z

0

of Z . Hen
e Z

0

�

=

V=�,

where � := ker exp

�

=

�

1

(Z) ([MT99℄).

One of the main points of the notion of regularity is provided by the following theorem.

Theorem III.2.11. If H is a regular Lie group, G is a simply 
onne
ted Lie group, and

': g ! h is a 
ontinuous homomorphism of Lie algebras, then there exists a unique Lie group

homomorphism �:G! H with d�(1) = ' .

Proof. This is Theorem 8.1 in [Mil83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

follows from Proposition III.2.7. The idea is to pro
eed as follows. Sin
e G is 
onne
ted, there

exists for ea
h g 2 G a smooth fun
tion 
: [0; 1℄ ! G with g = 
(1) and 
(0) = 1 . Then the

regularity of H implies the existen
e of a solution �: [0; 1℄! H of the IVP

�(0) = 1 and Æ

l

(�) = ' Æ Æ

l

(
):

We now want to de�ne �(g) := �(1). It remains to verify that � is well de�ned and a smooth

Lie group homomorphism.

First we need the relation

(2:2) ' ÆAd(
(t)) = Ad(�(t)) Æ '; 0 � t � 1:
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To obtain this relation, we �rst observe that the 
urve 


v

(t) := Ad(
(t))

�1

:v satis�es the

di�erential equation




0

v

(t) = �[Æ

l

(
)(t);Ad(
(t))

�1

:v℄ = �[Æ

l

(
(t)); 


v

(t)℄:

Hen
e �(t) := Ad(�(t)):'(


v

(t)) satis�es

�

0

(t) = �Ad(�(t)) Æ ':[Æ

l

(
(t)); 


v

(t)℄ + Ad(�(t)):[Æ

l

(�(t)); ' Æ 


v

(t)℄ = 0:

We 
on
lude that �(t) = �(0), whi
h implies Ad(�(t)) Æ ' = ' ÆAd(
(t)).

Now we 
an show that the de�nition of � attempted above will de�ne a group homomor-

phism. For 
urves �

i

, i = 1; 2, with Æ

l

(�

i

) = ' Æ Æ

l

(


i

) we use (2.2) to get

Æ

l

(�

1

�

2

) = Æ

l

(�

2

) + Ad(�

2

)

�1

Æ

l

(�

1

) = ' Æ

�

Æ

l

(


2

) + Ad(


2

)

�1

Æ

l

(


1

)

�

= ' Æ Æ

l

(


1




2

);

so that �

1

�

2


orresponds to the produ
t 
urve 


1




2

.

For the remaining arguments in
luding that � is well de�ned, we refer to [Mil83℄.

Corollary III.2.12. Let G be a simply 
onne
ted Lie group, V an s.
.l.
. spa
e, and

�: g ! V a 
ontinuous Lie algebra homomorphism. Then there exists a unique smooth group

homomorphism f :G! V with df(1) = � .

Proof. Sin
e every s.
.l.
. ve
tor spa
e V is a regular Lie group (Remark III.2.10), the

assertion follows from Theorem III.2.11. Alternatively we 
an argue with Proposition II.3.12.

Lemma III.2.13. If G is a Lie group with exponential fun
tion exp: g ! G , then

d exp(0) = id

g

:

Proof. For X 2 g we have exp(X) = 


X

(1), where 


X

is a solution of the IVP


(0) = 1; Æ

l

(
) = X:

This implies in parti
ular that exp(tX) = 


tX

(1) = 


X

(t) and hen
e

d exp(X) = d


X

(0) = X:

The pre
eding lemma is not so useful in the in�nite-dimensional 
ontext as it is in the

�nite-dimensional or Bana
h 
ontext. For Bana
h{Lie groups it follows from the Inverse Fun
tion

Theorem that exp restri
ts to a di�eomorphism of some open 0-neighborhood in g to an open

1-neighborhood in G , so that we 
an use the exponential fun
tion to obtain 
harts around 1 . We

will see below that this 
on
lusion does not work for Fr�e
het{Lie groups be
ause in this 
ontext

there is no general Inverse Fun
tion Theorem. This observation also implies that to integrate Lie

algebra homomorphisms to group homomorphisms it will in general not be enough to start with

the pres
ription �(exp

G

x) := exp

H

'(x) in the 
ontext of Theorem III.2.11 be
ause the image

of exp

G

need not 
ontain an identity neighborhood in G .
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III.3. Some 
lasses of examples

Linear Lie groups

Proposition III.3.1. If A is a 
ontinuous inverse algebra, then its unit group A

�

is a Lie

group with Lie algebra A .

Proof. Sin
e A

�

is an open subset of A , it 
arries a natural manifold stru
ture. Moreover,

the multipli
ation on A is bilinear and 
ontinuous, hen
e a smooth map. Therefore it remains

to see that the inversion �:A

�

! A

�

is smooth. The assumptions on a 
.i.a. imply that � is


ontinuous.

For a; b 2 A

�

we have

b

�1

� a

�1

= a

�1

(a� b)b

�1

;

whi
h implies that for t 2 R we get

�(a+ th)� �(a) = (a+ th)

�1

� a

�1

= a

�1

(�th)a

�1

= �ta

�1

ha

�1

:

Therefore � is everywhere di�erentiable with

d�(a)(h) = �a

�1

ha

�1

:

Now the 
ontinuity of � implies that d�:A

�

�A! A is 
ontinuous, hen
e that � is a C

1

-map.

Iterating this argument, we 
on
lude from the 
hain rule that � is smooth.

Remark III.3.2. (a) If A is a unital Bana
h algebra, then A is a 
ontinuous inverse algebra

and therefore A

�

is a Lie group. This applies in parti
ular to the group GL(X) = B(X)

�

for a

Bana
h spa
e X .

(b) If A is a unital 
.i.a., so is M

n

(A), and therefore GL

n

(A) :=M

n

(A)

�

is a Lie group.

(
) If M is a 
ompa
t manifold and B is a 
.i.a., then A := C

1

(M;B) is a 
.i.a. with

unit group A

�

= C

1

(M;B

�

). For B = M

n

(C) for a 
.i.a. C we obtain in parti
ular that

C

1

(M;GL

n

(C))

�

=

GL

n

(C

1

(M;C)) is a Lie group.

Current groups

De�nition III.3.3. If X is a topologi
al spa
e and K a topologi
al group, then we 
onsider

C(X;K) with the group stru
ture given by pointwise multipli
ation:

(fg)(x) := f(x)g(x); x 2 X:

For a 
ompa
t subset C of X and an identity neighborhood U � K we de�ne

W (C;U) := ff 2 C(X;K): f(C) � Ug:

The sets W (C;U) form a neighborhood basis for a group topology on C(X;K) 
alled the topology

of uniform 
onvergen
e on 
ompa
t subsets of X . In this sense C(X;K) 
arries a natural

stru
ture of a topologi
al group.
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De�nition III.3.4. Let M be a �nite-dimensional manifold and K a Lie group. Then we

obtain a natural topology on the group G := C

1

(M;K) as follows.

Let k := L(K) denote the Lie algebra of K . Then the tangent bundle TK of K is a Lie

group isomorphi
 to koK , where K a
ts on k by the adjoint representation (Proposition III.2.2).

Iterating this pro
edure, we obtain a Lie group stru
ture on all higher tangent bundles T

n

K ,

whi
h are di�eomorphi
 to k

2

n

�1

�K .

For ea
h n 2 N

0

we obtain topologi
al groups C(T

n

M;T

n

K) by using the topology of

uniform 
onvergen
e on 
ompa
t subsets of T

n

M (De�nition III.3.3). Therefore the 
anoni
al

in
lusion map

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K)

leads to a natural topology on C

1

(M;K) turning it into a topologi
al group.

For 
ompa
t manifolds M these groups 
an even be turned into Lie groups with Lie algebra

C

1

(M; k). Here C

1

(M; k) is endowed with the topology de�ned above if we 
onsider k as an

additive Lie group. The 
harts of G 
an be obtained easily from those of K as follows. If

':U ! k is a 
hart of K , i.e., a di�eomorphism of an open subset U � K onto an open subset

'(U) of k , then the set U

M

:= ff 2 G: f(M) � Ug is an open subset of G and the maps

'

M

:U

M

! g := C

1

(M; k); f 7! ' Æ f

de�ne an atlas of G . For details we refer to [Gl01b℄.

If exp

K

: k ! K is an exponential fun
tion of K , then we immediately obtain an exponential

fun
tion

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�:

Di�eomorphism groups

In this subse
tion we dis
uss the di�eomorphism group Di�(M) of a 
ompa
t manifold

M . We will explain how this group 
an be turned into a Lie group with Lie algebra g = V(M),

the Lie algebra of smooth ve
tor �elds on M .

One diÆ
ulty arising for di�eomorphism groups is that, although they have an exponential

fun
tion, this exponential fun
tion is not a lo
al di�eomorphism of a 0-neighborhood in g onto

an identity neighborhood in G . Therefore we 
annot use the exponential fun
tion to de�ne 
harts

for G . But there is an easy way around this problem.

Let g be a Riemannian metri
 on M and

Exp:TM !M

be its exponential fun
tion, whi
h assigns to v 2 T

p

(M) the point 
(1), where 
: [0; 1℄! M is

the geodesi
 segment with 
(0) = p and 


0

(0) = v . We then obtain a smooth map

�:TM !M �M; v 7! (p;Exp v); v 2 T

p

(M):

There exists an open neighborhood U � TM of the zero se
tion su
h that � maps U di�eo-

morphi
ally onto an open neighborhood of the diagonal in M �M . Now

U

g

:= fX 2 V(M):X(M) � Ug

is an open subset of the Fr�e
het spa
e V(M), and we de�ne a map

':U

g

! C

1

(M;M); �(X)(p) := Exp(X(p)):

It is 
lear that '(0) = id

M

. It is not hard to show that after shrinking U

g

, we may w.l.o.g. assume

'(U

g

) � Di�(M). To see that Di�(M) 
arries a Lie group stru
ture for whi
h ' is a 
hart, one

has to verify that the group operations are smooth in a 0-neighborhood when transfered to U

g

via ' . Then Lemma III.1.7 applies after Di�(M) is endowed with a group topology for whi
h

' is a homeomorphism.
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Remark III.3.5. (a) If M and N are 
ompa
t manifolds, then the mapping spa
e C

1

(M;N)

has a natural manifold stru
ture for whi
h the tangent spa
e T

f

(C

1

(M;N)) 
oin
ides with the

spa
e of smooth se
tions of the bundle f

�

TN !M .

(b) For a 
ompa
t manifold the group Di�(M) is open in the spa
e C

1

(M;M), so that one 
an

also use (a) to get a natural manifold stru
ture on Di�(M). To verify that Di�(M) is open, one

pi
ks a Riemannian metri
 g on M and de�nes

Æ(f) := inf

n

d(f(x); f(y))

d(x; y)

:x 6= y 2M

o

:

Then one shows that Æ is 
ontinuous on C

1

(M;M) and that

Di�(M) = ff 2 C

1

(M;M): Æ(f) > 0g:

Below we show that the exponential fun
tion

exp:V(S

1

)! Di�(S

1

)

is not a lo
al di�eomorphism by proving that every identity neighborhood of Di�(S

1

) 
ontains

elements whi
h do not lie on a one-parameter group, hen
e are not 
ontained in the image of

exp.

Let G := Di�

+

(S

1

) denote the group of orientation preserving di�eomorphisms of S

1

, i.e.,

the identity 
omponent of Di�(S

1

). To get a better pi
ture of this group, we �rst 
onstru
t its

universal 
overing group

e

G . Let

e

G := f' 2 Di�(R): (8x 2 R)'(x + 2�) = '(x); '

0

> 0g:

We 
onsider the map

q:R ! S

1

:= R=2�Z; x 7! x+ 2�Z

as the universal 
overing map of S

1

. Then every di�eomorphism  2 Di�(S

1

) lifts to a

di�eomorphism

e

 of R 
ommuting with the translation a
tion of the group 2�Z

�

=

�

1

(S

1

),

whi
h means that

e

 (x + 2�) =

e

 (x) + 2� for ea
h x 2 R . The di�eomorphism

e

 is uniquely

determined by the 
hoi
e of an element in q

�1

( (q(0))). Moreover,  is orientation preserving

means that (

e

 )

0

> 0. Hen
e we have a surje
tive homomorphism

q

G

:

e

G! G; q

G

(')(q(x)) := q('(x))

with kernel isomorphi
 to Z .

The Lie group stru
ture of

e

G is rather simple. It 
an be de�ned by a global 
hart. Let

C

1

2�

(R;R) denote the Fr�e
het spa
e of 2� -periodi
 smooth fun
tions on R , whi
h is 
onsidered

as a 
losed subspa
e of the Fr�e
het spa
e C

1

(R;R). In this spa
e

U := f' 2 C

1

2�

(R;R):'

0

> �1g

is an open 
onvex subset and the map

�:U !

e

G; �(f)(x) := x+ f(x)

is a bije
tion.

In fa
t, let f 2 U . Then �(f)(x+2�) = �(f)(x)+2� follows dire
tly from the requirement

that f is 2� -periodi
, and �(f)

0

> 0 follows from f

0

> �1. Therefore �(f) is stri
tly in
reasing,

hen
e a di�eomorphism of R onto the interval �(f)(R) . As the latter interval is invariant under

translation by 2� , we see that �(f) is surje
tive and therefore �(f) 2

e

G . Conversely, it is easy

to see that �

�1

( )(x) =  (x) � x yields an inverse of �. We de�ne the manifold stru
ture on

e

G by de
laring � to be a global 
hart. With respe
t to this 
hart, the group operations in

e

G

are given by

m(f; g)(x) := f(g(x) + x) � x and �(f)(x) = (f + id

R

)

�1

(x) � x;

whi
h 
an be shown dire
tly to be smooth maps. We thus obtain on

e

G the stru
ture of a Lie

group su
h that �:U !

e

G is a di�eomorphism. In parti
ular

e

G is 
ontra
tible and therefore

simply 
onne
ted, so that the map q

G

:

e

G! G turns out to be the universal 
overing map of G .
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Theorem II.3.7. Every identity neighborhood in Di�(S

1

) 
ontains elements not 
ontained in

the image of the exponential fun
tion.

Proof. First we 
onstru
t 
ertain elements in

e

G whi
h are 
lose to the identity. For 0 < " <

1

n

we 
onsider the fun
tion

f :R ! R; x 7! x+

�

n

+ " sin

2

(nx)

and observe that f 2

e

G follows from f

0

(x) = 1 + 2"n sin(nx) 
os(nx) = 1 + "n sin(2nx) > 0.

Step 1. For n large �xed and "! 0 we get elements in

e

G whi
h are arbitrarily 
lose to id

R

.

Step 2. q

G

(f) has a unique periodi
 orbit of order 2n on S

1

: Under q

G

(f) the point q(0) 2 S

1

is mapped to

�

n

et
., so that we obtain the orbit

q(0)! q(

�

n

)! q(

2�

n

)! : : :! q(

(2n�1)�

n

)! q(0):

For 0 < x

0

<

�

n

we have for x

1

:= f(x

0

):

x

0

+

�

n

< x

1

<

2�

n

;

and for x

n

:= f(x

n�1

) the relations

0 < x

0

< x

1

�

�

n

< x

2

�

2�

n

< � � � <

�

n

:

Therefore x

k

�x

0

62 2�Z for ea
h k 2 N , and hen
e the orbit of q(x

0

) under q

G

(f) is not �nite.

This proves that q

G

(f) has a unique periodi
 orbit and that the order of this orbit is 2n .

Step 3. q

G

(f) 6= g

2

for all g 2 Di�(S

1

): We analyze the periodi
 orbits. Every perodi
 point of

g is a periodi
 point of g

2

and vi
e versa. If the period of x under g is odd, then the period of x

under g and g

2

is the same. If the period of x is 2m , then its orbit under g breaks up into two

orbits under g

2

, ea
h of order m . Therefore g

2


an never have a single periodi
 orbit of even

order, and this proves that q

G

(f) has no square root in Di�(S

1

). It follows in parti
ular that

q

G

(f) does not lie on any one-parameter subgroup, i.e., q

G

(f) 6= expX for ea
h X 2 V(M).

Remark III.3.8. (a) If M is a 
ompa
t manifold, then one 
an show that the identity


omponent Di�(M)

0

of Di�(M) is a simple group (Epstein, Hermann and Thurston; see [Ep70℄).

Being normal in Di�(M)

0

, the subgroup hexpV(M)i 
oin
ides with Di�(M)

0

. Hen
e every

di�eomorphism homotopi
 to the identity is a �nite produ
t of exponentials. This observation is

due to D. M
Du�.

(b) Although Di�(M)

0

is a simple Lie group, its Lie algebra V(M) is far from being simple. For

ea
h subset K � M the set V

K

(M) of all ve
tor �elds supported in the set K is a Lie algebra

ideal whi
h is proper if K is not dense.

III.4. Non-enlargible Lie algebras

De�nition III.4.1. We 
all a lo
ally 
onvex Lie algebra g with 
ontinuous Lie bra
ket [�; �℄

enlargible if there exists a Lie group with Lie algebra g .

Examples III.4.2. If g is a �nite-dimensional Lie algebra, endowed with its unique lo
ally


onvex topology, then g is enlargible. This is Lie's Third Theorem. One possibility to prove this

is �rst to use Ado's Theorem to �nd an embedding g ,! gl

n

(R) and then to endow the group

G := hexp gi � GL

n

(R) with a Lie group stru
ture su
h that L(G) = g .
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Example III.4.3. To 
onstru
t an example of a non-enlargible Bana
h{Lie algebra, we pro
eed

as follows.

Let H be an in�nite-dimensional 
omplex Hilbert spa
e and U(H) its unitary group. This

is a Bana
h{Lie group with Lie algebra

L(U(H)) = u(H) := fX 2 B(H):X

�

= �Xg:

The 
enter of this Lie algebra is given by

z(u(H)) = Ri1:

We 
onsider the Bana
h{Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21):

We 
laim that g is not enlargible. Let us assume to the 
ontrary that G is a 
onne
ted Lie group

with Lie algebra g . Let

q: u(H)� u(H)! g

denote the quotient homomorphism. A

ording to Kuiper's Theorem (Theorem IV.3.1 below),

the group U(H) and hen
e the group G

1

:= U(H) � U(H) is 
ontra
tible and therefore in

parti
ular simply 
onne
ted. Hen
e there exists a unique Lie group homomorphism

f :G

1

! G with L(f) = q:

We then have exp

G

Æq = f Æ exp

G

1

, and in parti
ular

expker q � kerf:

As Z(G

1

)

�

=

T

2

is a two-dimensional torus and exp ker q is a dense one-parameter subgroup of

Z(G

1

), the 
ontinuity of f further implies that Z(G

1

) � ker f and hen
e that z(g

1

) � kerL(f) =

ker q , whi
h is a 
ontradi
tion.

The �rst systemati
 dis
ussion of the non-enlargibility problem for Bana
h{Lie algebras is

given in [EK64℄, based on earlier results of van Est ([Est62℄).

Theorem III.4.4. (van Est{Korthagen, 1964) Let g and h be Bana
h{Lie algebras. If h is

enlargible and ': g ,! h is inje
tive, then g is enlargible.

Proof. (Idea) Let H be a Lie group with Lie algebra h . The main idea of the proof is to

endow the subgroup G := hexp'(g)i of H with a Lie group topology for whi
h L(G) = g . This

is mu
h more 
ompli
ated than in the �nite-dimensional 
ase be
ause it is harder to 
ontrol the

behavior of analyti
 subgroups, espe
ially when the image of ' is not 
losed.

Corollary III.4.5. If g is a Bana
h{Lie algebra, then g= ad z(g)

�

=

ad g is enlargible.

Proof. The adjoint representation ad: g ! der g fa
tors through an inje
tive homomorphism

g=z(g) ,! der g , and

der g := fD 2 B(g): (8x; y 2 g) D([x; y℄) = [D(x); y℄ + [x;D(y)℄g:

is the Lie algebra of the Bana
h{Lie group Aut(g).

The pre
eding 
orollary redu
es the enlargibility problem for Bana
h{Lie groups to the

question when a 
entral extension of an enlargible Lie algebra is again enlargible. In this 
ontext

a 
entral extension is a surje
tive morphism q:

b

g ! g of Bana
h{Lie algebras for whi
h z := ker q

is 
entral in

b

g . The Open Mapping Theorem implies that g

�

=

b

g=z as Bana
h{Lie algebras. Now

the question is the following: given a 
onne
ted Lie group G with Lie algebra g , when is there

a 
entral group extension Z ,!

b

G ! G \integrating" the 
orresponding Lie algebra extension?

Without going too mu
h into details, we 
ite the following theorem whi
h points into a dire
tion

whi
h 
an be followed with su

ess for general Lie groups (see [Ne02a℄).
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Theorem III.4.6. (van Est-Korthagen) Let G be a simply 
onne
ted Bana
h{Lie group and g

its Lie algebra. Then one 
an asso
iate to ea
h 
entral Bana
h{Lie algebra extension z ,!

b

g ! g

a singular 
ohomology 
lass 
 2 H

2

(G; z)

�

=

Hom(�

2

(G); z) whi
h we interpret as a period map

per




:�

2

(G)! z:

Then a 
orresponding 
entral extension Z ,!

b

G!! G exists for a Lie group Z with Lie algebra

z if and only if im(per




) � z is dis
rete.

Remark III.4.7. (a) Let g be a Bana
h{Lie algebra and G

ad

a simply 
onne
ted Lie group

with Lie algebra g=z(g) (Corollary III.4.5). Then the pre
eding theorem implies in parti
ular

that g is enlargible if and only if the period homomorphism per

g

:�

2

(G

ad

)! z(g) asso
iated to

the 
entral extension ad: g ! g=z(g) has dis
rete image.

The problem with this 
hara
terization is that in general it might be quite hard to determine

the image of the period homomorphism.

(b) If g is enlargible and G is a simply 
onne
ted Lie group with Lie algebra g , then the

long exa
t homotopy sequen
e asso
iated to the homomorphism q:G! G

ad

with kernel Z(G)

0

indu
es a surje
tive 
onne
ting homomorphism

�

2

(G

ad

)! �

1

(Z(G))

(
f. Remark IV.1.1 below) and by identifying the universal 
overing group of Z(G)

0

with

(z(g);+), one 
an show that this 
onne
ting homomorphism 
oin
ides with the period map.

Its image is the group �

1

(Z(G)), 
onsidered as a subgroup of z . With this pi
ture in mind one

may think that the non-enlargibility on a Bana
h{Lie algebra g is 
aused by the non-existen
e

of a Lie group Z with Lie algebra z(g) and fundamental group im(per

g

).

(
) If g is �nite-dimensional, then G

ad

is also �nite-dimensional, and therefore �

2

(G

ad

) vanishes

by a theorem of E. Cartan (Remark IV.1.3). Hen
e the period homomorphism per

g

is trivial for

every �nite-dimensional Lie algebra g .

Example III.4.8. We 
onsider the Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21)

from Example III.4.3. Then z(g)

�

=

iR and one 
an show that the image of the period map is

given by

2�i(Z+

p

2Z)� iR

whi
h is not dis
rete.

Proposition III.4.9. Let G be a 
onne
ted 
omplex Lie group with Fr�e
het{Lie algebra g .

Then ea
h 
losed ideal of g is invariant under Ad(G) .

Proof. Let a E g be a 
losed ideal. Sin
e G is assumed to be 
onne
ted, it suÆ
es to show

that there exists a 1-neighborhood U � G with Ad(U):a � a . We may w.l.o.g. assume that

U is di�eomorphi
 to an open 
onvex 0-neighborhood in g . Then we �nd for every g 2 U a


onne
ted open subset V � C and a holomorphi
 map p:V ! G with p(0) = 1 and p(1) = g .

Let w

0

2 a and w(t) := Ad(p(t)):w

0

for t 2 V . We have to show that w(1) = Ad(g):w

0

2

a . For the right logarithmi
 derivative v := Æ

r

(p):V ! g we obtain the di�erential equation

w

0

(t) = Ad(p(t)):[p

�1

(t):p

0

(t); w

0

℄ = [Æ

r

(p)(t); w(t)℄ = [v(t); w(t)℄:

Sin
e the maps v and w are holomorphi
, their Taylor expansions in 0 
onverge:

v(t) =

X

n

v

n

t

n

and w(t) =

X

n

w

n

t

n
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for t 
lose to 0 in V . Then the di�erential equation for w 
an be written as

X

n

(n+ 1)w

n+1

t

n

= w

0

(t) = [v(t); w(t)℄ =

X

n

t

n

n

X

k=0

[v

k

; w

n�k

℄:

Comparing 
oeÆ
ients now leads to

w

n+1

=

1

n+ 1

n

X

k=0

[v

k

; w

n�k

℄;

so that we obtain indu
tively w

n

2 a for ea
h n 2 N . Sin
e a is 
losed, it follows that w(t) 2 a

for t 
lose to 0. Applying the same argument in other points t

0

2 V , we see that the set w

�1

(a)

is an open 
losed subset of V , and therefore that a(1) 2 a be
ause a(0) 2 a and V is 
onne
ted.

The pre
eding proposition 
an be generalized to the larger 
lass of real analyti
 Lie groups,

whi
h we have not de�ned in these notes. Then this result 
an be used to 
on
lude that the

Lie group Di�(M) does not possess an analyti
 Lie group stru
ture. Indeed for ea
h non-dense

subset K �M the subspa
e

a

K

:= fX 2 V(M):X j

K

= 0g

is a 
losed ideal of V(M) not invariant under Di�(M) be
ause Ad('):a

K

= a

'(K)

for ' 2

Di�(M).

Theorem III.4.10. (Lempert) Let M be a 
ompa
t manifold, g := V(M) the Lie algebra of

smooth ve
tor �elds on M and g

C

its 
omplexi�
ation. Then g

C

is not enlargible to a regular

Lie group.

Proof. (Sket
h; see [Mil83℄) For ea
h subset K �M the subspa
e

a

K

:= fX 2 g

C

:X j

K

= 0g

is a 
losed ideal of g

C

.

Let G be a regular Lie group with Lie algebra g and let q:D ! Di�(M)

0

denote the

universal 
overing homomorphism of Di�(M)

0

. Then the in
lusion homomorphism g ,! g

C


an

be integrated to a Lie group homomorphism ':D ! G . For g 2 D we then have

Ad('(g)):a

K

= a

'(g)(K)

;


ontradi
ting the invarian
e of a

K

under Ad(G).

Remark III.4.11. In [Omo81℄ Omori shows that for any non-
ompa
t smooth manifold M

the Lie algebra V(M) is not enlargible.

IV. The topology of in�nite-dimensional Lie groups

There are several methods to study the topology of in�nite-dimensional Lie groups whi
h are

adapted to the di�erent 
lasses of groups 
onsidered above. We are mainly interested in the �rst

three homotopy groups of a Lie group G , namely �

0

(G) (the group of 
onne
ted 
omponents),

�

1

(G) (the fundamental group), and �

2

(G). The importan
e of �

0

(G) is 
lear be
ause one wants

to know whether a 
on
retely given group is 
onne
ted or not. Information on the fundamental

group is important for the integration of Lie algebra homomorphisms to group homomorphisms

and hen
e in parti
ular for representation theory. The interest in �

2

(G) 
omes from the 
ru
ial

role this group plays for enlargibility of Lie algebras and for 
entral extensions of G .



Nan
y Le
tures on In�nite-Dimensional Lie Groups 33

IV.1. Finite-dimensional Lie groups

Let G be a 
onne
ted �nite-dimensional Lie group with �nitely many 
onne
ted 
ompo-

nents and K � G a maximal 
ompa
t subgroup. Then G

�

=

K � R

d

as smooth manifolds holds

for some d 2 N

0

. This implies in parti
ular that the in
lusion map K ,! G is a homotopy

equivalen
e, hen
e indu
es isomorphisms �

k

(K) ! �

k

(G) for ea
h k 2 N

0

. This redu
es all

questions on the topology of �nite-dimensional Lie groups to 
ompa
t groups.

Remark IV.1.1. A 
ru
ial tool to analyze homotopy groups of Lie groups and their homo-

geneous spa
es is the long exa
t homotopy sequen
e of �ber bundles. If q:P ! B de�nes a

K -prin
ipal bundle and the spa
es B and P are 
onne
ted, then the long exa
t homotopy

sequen
e reads as follows:

: : : �

3

(B)! �

2

(K)! �

2

(P )! �

2

(B)! �

1

(K)! �

1

(P )! �

1

(B)!! �

0

(K):

Lemma IV.1.2. If X is a semilo
ally simply 
onne
ted ar
wise 
onne
ted spa
e and q:

e

X ! X

is the universal 
overing of X , then q indu
es isomorphisms

�

k

(q):�

k

(

e

X)! �

k

(X); k � 2:

Proof. We 
onsider q:

e

X ! X as a prin
ipal bundle for the dis
rete group K := �

1

(X) and

apply the exa
t homotopy sequen
e (Remark IV.1.1). Sin
e K is dis
rete, we have �

k

(K) = 1

for k � 1, and the assertion follows from the exa
tness of the sequen
e.

Remark IV.1.3. We re
all some results on the homotopy groups of 
ompa
t Lie groups K .

First we have Cartan's Theorem

�

2

(K) = 1

([Mi95, Th. 3.7℄), and further Bott's Theorem that for a 
ompa
t 
onne
ted simple Lie group K

we have

�

3

(K)

�

=

Z

([Mi95, Th. 3.9℄).

In [Mi95, pp. 969-970℄ one also �nds a table with �

k

(K) up to k = 15, showing that

�

4

(K)

�

=

8

>

<

>

:

Z

2

�Z

2

for K = SO(4)

Z

2

for K = Sp(n); SU(2); SO(3); SO(5)

1 for K = SU(n), n � 3 and SO(n), n � 6

1 for K = G

2

; F

4

; E

6

; E

7

; E

8

.

�

5

(K)

�

=

8

>

<

>

:

Z

2

�Z

2

for K = SO(4)

Z

2

for K = Sp(n); SU(2); SO(3); SO(5)

Z for K = SU(n), n � 3 and SO(6)

1 for K = SO(n), n � 7, G

2

; F

4

; E

6

; E

7

; E

8

.

Remark IV.1.4. (a) Let K be a 
onne
ted 
ompa
t Lie group, K

1

; : : : ;K

m

the 
onne
ted

simple normal subgroups of K , and Z(K) its 
enter. Then the multipli
ation map

Z(K)

0

�K

1

� : : :�K

m

! K

has �nite kernel, hen
e is a 
overing map. Therefore we obtain for ea
h k > 1 from Lemma IV.1.2

�

k

(K)

�

=

m

Y

j=1

�

k

(K

j

)
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be
ause Z(K)

0

is a torus, so that all its homotopy groups of degree � 2 vanish.

(b) If K is 
ompa
t and simple, then a generator of �

3

(K) 
an be obtained from a homomorphism

�: SU(2)

�

=

S

3

! K . More pre
isely, let � be a long root in the root system �

k

of k and

k(�) � k the 
orresponding su(2)-subalgebra. Then the 
orresponding homomorphi
 in
lusion

SU(2)

�

=

S

3

! K represents a generator of �

3

(K) ([Bo58℄).

(
) A fundamental result in topology states that the spheres S

d


arry a Lie group stru
ture if

and only if d 2 f0; 1; 3g .

For �nite-dimensional Lie groups this has the ni
e 
onsequen
e that for d = 1 and d = 3

ea
h homotopy 
lass S

d

! K 
an be represented by a group homomorphism. For d = 3 this

follows from (b) and for d = 1 it follows from the fa
t that for a maximal torus T � K the

homomorphism

Hom(T; T )

�

=

�

1

(T )! �

1

(K)

is surje
tive.

(d) For a topologi
al group G and k � 1 the groups �

k

(G) are abelian. The groups

�

Q

k

(G) := Q 
 �

k

(G)

are 
alled the rational homotopy groups of G . For most purposes, in
luding appli
ations to

the period maps arising for 
entral extensions, it suÆ
es to know the rational homotopy groups

be
ause ea
h homomorphism from �

k

(G) to a rational ve
tor spa
e fa
tors through the natural

map �

k

:�

k

(G)! �

Q

k

(G) whi
h kills the torsion subgroup of �

k

(G).

We have seen above that a �nite-dimensional 
onne
ted Lie group is homotopy equivalent

to a 
ompa
t 
onne
ted Lie group, hen
e, up to a �nite 
overing to a produ
t of a torus and

�nitely many 
ompa
t simple Lie groups. For a simply 
onne
ted simple 
ompa
t Lie group it is

known that its rational homotopy groups are the same as those of a produ
t of odd-dimensional

spheres whose dimensions 
an be 
omputed from the 
orresponding root system. The rational

homotopy groups of the sphere are known to be

�

Q

k

(S

2d+1

)

�

=

n

Q for k = 2d+ 1

0 otherwise

and �

Q

k

(S

2d

)

�

=

n

Q for k = 2d and k = 4d� 1

0 otherwise.

We therefore have 
omplete information on the rational homotopy groups of �nite-dimensional

Lie groups. In parti
ular we note that if K is a �nite-dimensional Lie group, then �

2

(K) vanishes

and �

4

(K) is a torsion group be
ause the rational homotopy of K is the same as of a produ
t

of odd-dimensional spheres.

IV.2. Linear Lie groups

In this se
tion we brie
y dis
uss the unit group A

�

of a unital 
ontinuous inverse algebra

(
.i.a.) A (Proposition III.3.1). It is quite hard to get dire
t a

ess to the homotopy groups

�

k

(GL

n

(A)) for a �xed n , but the situation be
omes mu
h better if we let n tend to in�nity

and study the dire
t limit of the homotopy groups for in
reasing n . In this sense we look at a

\stable" pi
ture. The natural in
lusions

(2:1) GL

n

(A) ,! GL

n+1

(A); a 7!

�

a 0

0 1

�

lead to a sequen
e of in
lusions

A

�

= GL

1

(A)! : : :! GL

n

(A)! : : :

De�nition IV.2.1. For i 2 N we de�ne the topologi
al K -groups of A by

K

i

(A) := lim

�!

�

i�1

(GL

n

(A));
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where the 
onne
ting maps

�

i�1

(GL

n

(A))! �

i�1

(GL

n+1

(A))

are the group homomorphisms indu
ed by the natural in
lusions (2.1).

The de�nition of the group K

0

(A) is a bit more 
ompli
ated. For a topologi
al asso
iative

algebra B let Idem(B) denote the set of idempotents in B and �

0

(Idem(B)) the set of ar
-


omponents of Idem(B) with respe
t to the subspa
e topology indu
ed by B . Now let

P (A) := lim

�!

�

0

(Idem(M

n

(A)))

as a set, and observe that this set admits a monoid stru
ture given by

[e℄ + [f ℄ := [e� f ℄;

where for e 2 M

n

(A) and f 2 M

m

(A) the idempotent e� f 2 M

n+m

(A) is represented by the

matrix

�

e 0

0 f

�

. The free group or Grothendie
k group G(P (A)) over the monoid P (A) is a

group with a monoid morphism �:P (A) ! G(P (A)) whi
h has the universal property that for

ea
h monoid morphism f :P (A) ! G , G a group, there exists a unique group homomorphism

f

G

:G(P (A)) ! G with f

G

Æ � = f . We de�ne

K

0

(A) := G(P (A)):

A more algebrai
 approa
h is to de�ne P (A) dire
tly as the set of isomorphism 
lasses of �nitely

generated proje
tive A-modules, whi
h leads to the same obje
t.

The use of K -theory for the topology of the unit groups of algebras is obvious from the

following theorem.

Theorem IV.2.2. (Bott periodi
ity) For a 
omplex unital 
.i.a. the following assertions hold:

(1) K

i

(A)

�

=

K

i+2

(A) for i 2 N

0

.

(2) K

i+1

(A)

�

=

�

i

(GL

1

(A)) if A is a Bana
h algebra.

Proof. [Bos90, Prop. A.1.5℄.

A major point of the K -groups of an algebra A is that K -theory provides tools like exa
t

sequen
es whi
h 
an be used to get information on the groups K

0

(A) and K

1

(A) of a 
.i.a.. All

other K -groups are redundant for a 
omplex 
.i.a. by Bott periodi
ity.

Dire
tly relevant for the topology of A

�

are the homomorphisms

�

0

(A

�

)! K

1

(A); �

1

(A

�

)! K

0

(A) and �

2

(A

�

)! K

1

(A):

Remark IV.2.3. The de�nition of the K -groups implies almost dire
tly that they are stable

in the sense that the in
lusion A ,!M

n

(A); a 7!

�

a 0

0 0

�

indu
es isomorphisms

K

i

(A)! K

i

(M

n

(A))

for ea
h n 2 N .

Examples IV.2.4. (a) If A = B(H) is the algebra of bounded operators on an in�nite-

dimensional 
omplex Hilbert spa
e, then we have for ea
h n 2 N the relations

GL

n

(B(H)) =M

n

(B(H))

�

�

=

B(H

n

)

�

�

=

GL(H

n

);

and all these groups are 
ontra
tible by Kuiper's Theorem IV.3.1 below. Therefore K

i

(B(H)) = 0

for ea
h i .
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(b) For A = C we have

K

0

(C )

�

=

lim

�!

�

1

(GL

n

(C ))

�

=

�

1

(C

�

)

�

=

Z and K

1

(C )

�

=

lim

�!

�

0

(GL

n

(C )) = 0:

For A =M

n

(C ) Remark IV.2.3 now leads to

K

0

(A)

�

=

K

0

(C )

�

=

Z and K

1

(A)

�

=

K

1

(C ) = 0:

(
) If X is a 
ompa
t spa
e and A = C(X; C ) with its natural Bana
h algebra stru
ture, then

K

0

(A) = K

0

(X) and K

1

(A) = K

�1

(X) are the K -groups of the topologi
al spa
e X de�ned

by topologi
al K -theory via ve
tor bundles on X .

In parti
ular we have for the 
ir
le S

1

and, more generally, for tori T

d

:

K

0

(C(S

1

; C ))

�

=

K

1

(C(S

1

; C ))

�

=

Z and K

0

(C(T

d

; C ))

�

=

K

1

(C(T

d

; C ))

�

=

Z

2

d�1

:

Remark IV.2.5. (a) If ':A! B is a 
ontinuous morphism of 
.i.a.'s with dense range, then

K

j

('):K

j

(A)! K

j

(B) is an isomorphism for ea
h j .

(b) Let B be a 
omplex Bana
h algebra and �:R � B ! B a 
ontinuous isometri
 a
tion of R

on B by automorphisms. Let I � R be a 
ompa
t interval 
ontaining 0 and write B(I) � B

for the subalgebra of all those elements for whi
h the orbit map R ! B extends to a 
ontinuous

map R + iI ! B holomorphi
 on R + iI

0

. Then B(I) is a dense subalgebra of B and the

in
lusion B(I) ,! B indu
es an isomorphism in K -theory ([Bos90, Th. 1.1.1℄).

Let 0 < r < 1 < R and 
onsider the annulus

A

r;R

:= fz 2 C : r � jzj � Rg:

We write O(A

r;R

) for the Bana
h algebra of 
ontinuous fun
tions on A

r;R

whi
h are holomorphi


on its interior. For B := C(S

1

; C ) and for the a
tion of R on B given by (t:f)(z) := f(ze

it

), the

pre
eding result implies that the restri
tion map O(A

r;R

) ,! C(S

1

; C ) indu
es an isomorphism

in K -theory. This leads to

K

0

(O(A

r;R

))

�

=

K

0

(C(S

1

; C ))

�

=

K

0

(S

1

)

�

=

Z

and

K

1

(O(A

r;R

))

�

=

K

1

(C(S

1

; C ))

�

=

�

0

(GL(C(S

1

; C )))

�

=

�

1

(GL(C ))

�

=

Z:

IV.3. Groups of operators on Hilbert spa
es

Theorem IV.3.1. (Kuiper's Theorem for general Hilbert spa
es) If H is an in�nite-

dimensional Hilbert spa
e over K = R; C or H , then the group GL(H;K ) of invertible K -linear

automorphisms of H is 
ontra
tible.

Kuiper's Theorem 
an be used to prove that many \
lassi
al" groups of operators on a

Hilbert spa
e are 
ontra
tible. Below we brie
y dis
uss these appli
ations.

De�nition IV.3.2. (a) If H is a Hilbert spa
e over K 2 fR; C ; H g , then we de�ne

U(H;K ) := fg 2 GL(H;K ): g

�

g = gg

�

= 1g

as the unitary part of this group. We also write

O(H) := U(H;R); U(H) := U(H; C ) and Sp(H) := U(H; H ):
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(b) Let H be a 
omplex Hilbert spa
e and I be an antilinear isometry with I

2

2 f�1g . Then

GL(H; I) := fg 2 GL(H): Ig

�

I

�1

= g

�1

g

is a 
omplex Lie subgroup of GL(H). For I

2

= 1 we then have

U(H; I) := U(H) \GL(H; I)

�

=

O(H

R

) with H

R

:= fx 2 H : I:x = xg;

and for I

2

= �1 we have

U(H; I)

�

=

U(H; H )

�

=

Sp(H);

where the quaternioni
 stru
ture on H is given by the subalgebra C 1 + C I

�

=

H of B(H;R) ,

the real linear endomorphisms of H .

(
) (Hermitian groups) Let H be a 
omplex Hilbert spa
e and H = H

+

�H

�

be an orthogonal

de
omposition. Further let T = T

�

2 B(H) with H

�

= ker(T �1). We de�ne the 
orresponding

pseudo-unitary group

U(H

+

; H

�

) := fg 2 GL(H):Tg

�

T

�1

= g

�1

g:

We de�ne 
(x; y) := Imhx; yi and write H

R

for the real Hilbert spa
e underlying H . Then

Sp(H;
) := fg 2 GL(H

R

;R): (8v; w 2 H

R

) 
(g:v; g:w) = 
(v; w)g

is 
alled the symple
ti
 group of H . If we start with the real Hilbert spa
e H

R

and 
onsider an

isometri
 
omplex stru
ture I on H

R

, then we 
an de�ne


(x; y) := �hI:x; yi = hx; I:yi

and put

Sp(H

R

; I) := fg 2 GL(H

R

;R): (8v; w 2 H

R

) 
(g:v; g:w) = 
(v; w)g:

It is easy to see that both 
onstru
tions lead to isomorphi
 groups Sp(H

R

; I)

�

=

Sp(H;
).

Now let I be a 
onjugation on the 
omplex Hilbert spa
e H and H

+

� H a subspa
e for

whi
h we get an orthogonal de
omposition H = H

+

�H

�

with H

�

:= I:H

+

. Then we de�ne

O

�

(H; I) := U(H; I) \ U(H

+

; H

�

):

Theorem IV.3.3. If H is an in�nite-dimensional Hilbert spa
e over K 2 fR; C ; H g , then

the following groups are 
ontra
tible:

(i) the group of K -linear automorphisms GL(H;K ) .

(ii) the group of isometri
 K -linear automorphisms U(H;K ) , and in parti
ular the groups

O(H) = U(H;R) , U(H) = U(H; C ) and Sp(H) = U(H; H ) .

(iii) the group GL(H; I) if H is 
omplex and I an antilinear isometry with I

2

2 f�1g . More-

over, GL(H; I) has a smooth polar de
omposition.

(iv) the hermitian groups U(H

+

; H

�

) , where H = H

+

�H

�

is an orthogonal de
omposition with

two in�nite-dimensional summands, Sp(H;
) , and O

�

(H; I) .

Proof. (i) is Theorem IV.3.1.

(ii) follows from (i) and the polar de
omposition GL(H;K )

�

=

U(H;K ) � Herm(H;K ) of the

group GL(H;K ) with the unitary part U(H;K ).

(iii) In view of De�nition IV.3.2(b), the group U(H; I) is 
ontra
tible, be
ause it is one of the

groups in (ii). Hen
e the assertion follows from the polar de
omposition of GL(H; I) whi
h 
an

be obtained as follows. We 
onsider the automorphism �(g) := I(g

�

)

�1

I

�1

of GL(H) and write

�

g

(x) := �Ix

�

I

�1

for the 
orresponding antilinear automorphism of its Lie algebra gl(H). Then

GL(H; I) = GL(H)

�

:= fg 2 GL(H): �(g) = gg:
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Let g = ue

x

be the polar de
omposition of g 2 GL(H). Then �(g) = �(u)e

�

g

(x)

is the polar

de
omposition of �(g), so that the uniqueness of this de
omposition implies that �(g) = g , is

equivalent to �(u) = u and �

g

(x) = x , i.e., u 2 U(H; I) and x 2 Herm(H; I).

(iv) For the hermitian groups we will see below that they have polar de
ompositions with

U(H

+

; H

�

) \ U(H)

�

=

U(H

+

)�U(H

�

); Sp(H;
) \O(H

R

)

�

=

U(H)

and

O

�

(H; I) \ U(H)

�

=

U(H

+

);

where H

�

=

H

+

� I:H

+

as in De�nition IV.3.2(
). Therefore (ii) implies that all these groups

are 
ontra
tible.

To prove the polar de
omposition of U(H

+

; H

�

), let g 2 GL(H) with polar de
omposition

g = ue

x

, u 2 U(H) and x = x

�

. For T as in De�nition IV.3.2(
) we 
onsider the automorphism

�(g) := T (g

�

)

�1

T

�1

of GL(H) and write �

g

(x) := �Tx

�

T

�1

for the 
orresponding antilinear

automorphism of its Lie algebra gl(H). Then �(g) = �(u)e

�

g

(x)

is the polar de
omposition of

�(g), so that the uniqueness of this de
omposition implies that �(g) = g is equivalent to �(u) = u

and �

g

(x) = x . Therefore g 2 U(H

+

; H

�

) if and only if

u 2 U(H

+

; H

�

) \ U(H)

�

=

U(H

+

)�U(H

�

) and x 2 u(H

+

; H

�

):

To see that Sp(H;
) is adapted to the polar de
omposition, we observe that


(x; y) = Imhx; yi = Rehx; iyi = (x; Jy);

where (�; �) := Reh�; �i denotes the real s
alar produ
t on H

R

. Therefore g 2 Sp(H;
) is

equivalent to g

>

Jg = J , i.e., g = �(g) := J(g

>

)

�1

J

�1

. Then � is an involutive automorphism of

GL(H

R

) and �

g

(x) := �Jx

>

J

�1

is the 
orresponding Lie algebra automorphism. Let g = ue

x

be

the polar de
omposition of g 2 GL(H

R

), where u 2 O(H

R

) and x

>

= x . Then �(g) = �(u)e

�

g

(x)

is the polar de
omposition of �(g) be
ause ue

�x

is the polar de
omposition of (g

>

)

�1

. Therefore

g 2 Sp(H;
) is equivalent to �(u) = u , i.e., u 2 U(H), and to Jx = �xJ , i.e., x is antilinear.

The argument for the group O

�

(H; I) is similar.

IV.4. Current groups

Let K be a Lie group and M a 
ompa
t 
onne
ted manifold. We write C

1

(M;K) for the


orresponding 
urrent group. In M we �x a base point x

M

and in any group we 
onsider the

unit element 1 as the base point. We write C

1

�

(M;K) � C

1

(M;K) for the subgroup of base

point-preserving maps.

We then have

C

1

(M;K)

�

=

C

1

�

(M;K)oK

as Lie groups, where we identify K with the subgroup of 
onstant maps. This relation already

leads to

(4:1) �

k

(C

1

(M;K))

�

=

�

k

(C

1

�

(M;K))� �

k

(K); k 2 N

0

:

For topologi
al spa
es X and Y we write [X;Y ℄ for the set of homotopy 
lasses of


ontinuous maps f :X ! Y , and for pointed spa
es (X; x

0

) and (Y; y

0

) we write [X;Y ℄

�

for the

set of all pointed homotopy 
lasses of 
ontinuous base-point-preserving maps. For two 
ompa
t

pointed spa
es we de�ne

X _ Y := X � fy

0

g [ fx

0

g � Y � X � Y and X ^ Y := X � Y=X _ Y:

We then have for ea
h pointed topologi
al spa
e (Z; z

0

) a natural bije
tion

C

�

(X;C

�

(Y; Z))

�

=

C

�

(X ^ Y; Z):

Moreover,

S

k

^ S

d

�

=

S

k+d

; k; d 2 N

0

;

so that

�

k

(C

�

(X;K))

�

=

�

0

(C

�

(S

k

; C

�

(X;K)))

�

=

�

0

(C

�

(S

k

^X;K)):
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Theorem IV.4.1. If M is a 
ompa
t manifold, then the in
lusion map

C

1

(M;K) ,! C(M;K)

is a weak homotopy equivalen
e, i.e., indu
es isomorphisms of all homotopy groups. Therefore

we have for ea
h k an isomorphism

�

k

(C

1

(M;K))

�

=

�

k

(C(M;K))

�

=

�

k

(C

�

(M;K))� �

k

(K)

�

=

[S

k

^M;K℄

�

� �

k

(K):

Let X be a lo
ally 
ompa
t spa
e and K a Lie group. Then we write C

0

(M;K) for

the Lie group of all 
ontinuous maps f :M ! K vanishing at in�nity in the sense that for

ea
h 1-neighborhood U � K there exists a 
ompa
t subset C � X with f(X n C) � U . If

X

!

:= X [ f!g denote the one-point 
ompa
ti�
ation of X , then this means that

C

0

(X;K)

�

=

C

�

(X

!

;K)

be
ause f 2 C

0

(X;K) is equivalent to the extendibility of f to a 
ontinuous map X

!

! K

mapping ! to 1 .

Theorem IV.4.2. If M is a non-
ompa
t � -
ompa
t manifold, then the in
lusion map

C

1




(M;K) ,! C

0

(M;K)

is a weak homotopy equivalen
e, and we obtain isomorphisms

�

k

(C

1




(M;K))

�

=

�

k

(C

0

(M;K))

�

=

�

k

(C

�

(M

!

;K))

�

=

[S

k

^M

!

;K℄

�

:

With the above results, many 
al
ulations of homotopy groups of 
urrents groups 
an thus

be transfered into the 
ontinuous 
ontext, where one 
an use tools from topology to get more

expli
it information.

Example IV.4.3. If M = S

d

is a d-dimensional sphere, then we have

(4:2) �

k

(C

�

(S

d

;K))

�

=

[S

k

^ S

d

;K℄

�

�

=

[S

k+d

;K℄

�

�

=

�

k+d

(K)

and therefore

�

k

(C(S

d

;K))

�

=

�

k

(K)� �

k+d

(K):

Example IV.4.4. We 
onsider the 
ase where M = T

d

is an d-dimensional torus. Then

C(T

d

;K)

�

=

C(T; C(T

d�1

;K))

�

=

C

�

�

T;

�

C(T

d�1

;K)

�

o C(T

d�1

;K)

implies that

�

k

(C(T

d

;K))

�

=

�

k+1

(C(T

d�1

;K))� �

k

(C(T

d�1

;K))

and by indu
tion we obtain

�

k

(C(T

d

;K))

�

=

d

X

j=0

�

k+j

(K)

(

d

j

)

:

For d = 2 we get in parti
ular

�

k

(C(T

2

;K))

�

=

�

k

(K)� �

k+1

(K)

2

� �

k+2

(K)

whi
h also follows from the 
al
ulations for surfa
es in the following se
tion. We also obtain for

general d :

�

2

(C(T

d

;K))

�

=

�

2

(K)� �

3

(K)

d

� �

4

(K)

(

d

2

)

� : : : :
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Oriented surfa
es

In this subse
tion � denotes an orientable 
ompa
t surfa
e of genus g and K is an arbitrary

topologi
al group.

1

Remark IV.4.5. We re
all that � 
an be des
ribed as a CW-
omplex by starting with a

bouquet

A

g

�

=

S

1

_ S

1

_ : : : _ S

1

| {z }

2g

of 2g -
ir
les. We write a

1

; b

1

; : : : ; a

g

; b

g

for the 
orresponding generators of the fundamental

group of A

g

whi
h is a free group on 2g generators. Then we 
onsider the 
ontinuous map


:S

1

! A

g


orresponding to

[a

1

; b

1

℄ � � � [a

g

; b

g

℄ 2 �

1

(A

g

);

where [x; y℄ = xyx

�1

y

�1

denotes a 
ommutator. Now � is homeomorphi
 to the spa
e obtained

by identifying the points in �B

2

�

=

S

1

with their images in A

g

under 
 , i.e.,

�

�

=

A

g

[




B

2

:

In this sense we 
an identify A

g

with a subset of �. The most instru
tive pi
ture is to view B

2

as the interior of a regular polygon with 4g edges, where we identify 
ertain points on the edges

su
h that in 
ounter
lo
kwise order the sequen
e of edges 
orresponds to the loop

a

1

b

1

a

�1

1

b

�1

1

a

2

� � �a

�1

n

b

�1

n

:

Now A

g


orresponds to the polygon modulo these identi�
ations.

This pro
edure shows that a 
ontinuous map f :A

g

! Z into a topologi
al spa
e Z extends

to a map � ! Z if and only if the 
orresponding map �B

2

! Z extends to the interior of B

2

,

whi
h in turn means that it is a zero-homotopi
 
urve. Finally, this 
an be expressed by the


ondition that

�

1

(f):�

1

(A

g

)

�

=

Z�Z� � � � �Z

| {z }

2g

! �

1

(Z)

annihilates the 
ommutator a

1

b

1

a

�1

1

b

�1

1

a

2

� � � a

�1

n

b

�1

n

; hen
e fa
tors to a homomorphism �

1

(�)!

�

1

(Z):

Conversely, if su
h a homomorphism is given, then we 
an lift it to a homomorphism

�

1

(A

g

) ! �

1

(Z) whi
h 
an be trivially represented by a 
ontinuous map A

g

! Z . As we have

seen above, this map extends to �, showing that the map

(4:3) C

�

(�; Z)! Hom(�

1

(�); �

1

(Z))

is surje
tive for any pointed spa
e Z .

Theorem IV.4.6. For ea
h topologi
al group K we have a homeomorphism

C(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

�K

and

�

k

(C(�;K))

�

=

�

k+2

(K)� �

k+1

(K)

2g

� �

k

(K) for all k 2 N

0

:

1

This subse
tion is based on 
onversations with F. Wagemann and on some 
al
ulations in his dissertation

for the 
ase K=SU(2)

�

=

S

3

([Wa98, Lemma 3.1.1℄).
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Proof. Let (


1

; : : : ; 


2g

) be the natural generators of �

1

(�) 
oming from the maps S

1

!

A

g

,! � given by a

1

; b

1

; : : : ; a

g

; b

g

. From (4.3) we obtain for Z = S

1

with �

1

(Z)

�

=

Z and base

point 1 pointed 
ontinuous maps �

1

; : : : ; �

2g

: �! S

1

with

�

1

(�

j

)(


i

)

�

=

[�

j

Æ 


i

℄ = Æ

ij

:

We 
an even get maps with

�

j

Æ 


i

=

�

1 for i 6= j

id

S

1

for i = j

if we start with the 
ontinuous maps �

0

j

:A

g

! S

1

with the required property and observe that

all these maps extend 
ontinuously to � be
ause �

1

(�

0

j

):�

1

(A

g

) ! �

1

(S

1

)

�

=

Z annihilates all


ommutators sin
e Z is abelian.

Now we obtain for ea
h topologi
al group K a ni
e splitting of the restri
tion map

R:C

�

(�;K)! C

�

(A

g

;K)

�

=

C

�

(S

1

;K)

2g

by the extension map

E:C

�

(S

1

;K)

2g

! C

�

(�;K); (�

1

; : : : ; �

2g

) 7! (�

1

Æ �

1

) � � � (�

2g

Æ �

2g

):

Then RE = id follows dire
tly from the 
hoi
e of the maps �

j

. We 
on
lude that

C

�

(�;K)! ker(R)� C

�

(S

1

;K)

2g

; f 7! (fE(R(f))

�1

; R(f))

is a homeomorphism whose inverse is given by (�; �) 7! �E(�). Next we observe that

kerR

�

=

C

�

(�=A

g

;K)

�

=

C

�

(S

2

;K);

so that we obtain a homeomorphism

C

�

(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

and hen
e a homeomorphism

(4:4) C(�;K)

�

=

C

�

(S

2

;K)� C

�

(S

1

;K)

2g

�K:

This implies that we have the group isomorphism

�

0

(C(�;K))

�

=

[�;K℄ = �

2

(K)� �

1

(K)

2g

� �

0

(K):

Combining (4.2) and (4.4) further leads to

�

k

(C(�;K))

�

=

�

k+2

(K)� �

k+1

(K)

2g

� �

k

(K) for all k 2 N

0

:

Remark IV.4.7. Suppose that g � 1. Then the universal 
overing spa
e

e

� of � is 
on-

tra
tible, showing that the only non-trivial homotopy group of � is �

1

(�). This means that

� is a K(�

1

(�); 1)-spa
e in the sense of Eilenberg{Ma
Lane. The result above shows that the

natural homomorphism

[�;K℄

�

! Hom(�

1

(�); �

1

(K))

�

=

�

1

(K)

2g

has a kernel isomorphi
 to �

2

(K), hen
e is not inje
tive. This means that the homotopy 
lasses of

maps �! K are NOT 
lassi�ed by the sequen
e of homomorphisms �

k

(�)! �

k

(K), k 2 N

0

.
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Corollary IV.4.8. If K is 2-
onne
ted, then C(�;K) is ar
wise 
onne
ted.

Proof. This follows dire
tly from Theorem IV.4.6.

We also give a se
ond dire
t proof. If K is 2-
onne
ted, i.e.,

�

0

(K) = �

1

(K) = �

2

(K) = 1;

the in
lusion 1 ,! K is a 2-equivalen
e in the sense of [Br93, Cor. 11.13℄. Sin
e � is two-

dimensional, this implies that the map [�;1℄ ! [�;K℄ is surje
tive, and hen
e that [�;K℄ is a

singleton. This means that C(�;K) is ar
wise 
onne
ted.

Remark IV.4.9. Suppose that the topologi
al group K is semilo
ally simply 
onne
ted, so

that it has a universal 
overing group

e

K . This 
ondition is in parti
ular satis�ed if K is lo
ally


ontra
tible.

Let q

K

:

e

K ! K denote the simply 
onne
ted 
overing homomorphism. For an ar
wise


onne
ted lo
ally ar
wise 
onne
ted spa
e X , a 
ontinuous map f :X ! K lifts to a map

X !

e

K if and only if the homomorphism �

1

(f):�

1

(X)! �

1

(K) vanishes (
f. [tD91, Satz 6.12℄).

Therefore we have an exa
t sequen
e of groups

C

�

(X;

e

K)

(q

K

)

�

��!C

�

(X;K)! Hom(�

1

(X); �

1

(K)):

If f 2 C

�

(X;K)

0

, then it is homotopi
 to a 
onstant map, so that �

1

(f) vanishes, and

therefore it is 
ontained in the range of (q

K

)

�

:h 7! q

K

Æ h . We thus obtain an exa
t sequen
e

�

0

(C

�

(X;

e

K))! �

0

(C

�

(X;K))! Hom(�

1

(X); �

1

(K)):

Holomorphi
 
urrent groups

Let M be Stein manifold, i.e., a 
omplex manifold whi
h 
an be realized as a 
losed

submanifold of some C

n

. Further let K be a Bana
h{Lie group, then the groups C(M;K) and

Hol(M;K) are metrizable topologi
al groups with respe
t to the topology of uniform 
onvergen
e

on 
ompa
t subsets of M (Example II.1.6). In general these groups are not Lie groups and it

is an interesting open problem to 
hara
terize those Stein manifolds M for whi
h they are. We

have a natural in
lusion map

�: Hol(M;K) ,! C(M;K);

and one 
an show that this in
lusion is a homotopy equivalen
e. This is based on results of

R. Palais whi
h imply that under 
ertain 
onditions (here the metrizability) weak homotopy

equivalen
es are homotopy equivalen
es. The statement about the weak homotopy equivalen
e is

then redu
ed to Oka's Prin
iple whi
h asserts that the in
lusion � indu
es a bije
tion on the level

of 
onne
ted 
omponents. Further, one uses that for ea
h k 2 N the group C(S

k

;K) is also a

Bana
h{Lie group, so that Oka's Prin
iple applies to the topologi
al group Hol(M;C(S

k

;K))

�

=

C(S

k

;Hol(M;K))

1

.

These results are of parti
ular interest if M = � n F , where � is a 
ompa
t Riemann

surfa
e and F � � a �nite set.

IV.5. Di�eomorphism groups

In this se
tion we brie
y dis
uss the topology of the groups Di�(S

d

). For more details we

refer to [Mil83℄.

1

The author learned the tri
k of repla
ing the group K in this 
ontext by C(S

k

;K) from Bernhard Grams
h.
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For M = S

1

we have already seen in Se
tion II.3 that the universal 
overing group of

Di�

+

(S

1

) is 
ontra
tible. This implies that

�

k

(Di�(S

1

))

�

=

(

Z

2

for k = 0

Z for k = 1

0 otherwise.

For M = S

d

, d � 2, the situation gets more 
ompli
ated. Of 
ourse we have a natural

in
lusion O(d + 1;R) ,! Di�(S

d

) and one may ask for whi
h dimension d this in
lusion is a

homotopy equivalen
e. For d = 1; 2 this has been proved by S. Smale in 1959 and 
onje
tured

by him for d = 3. This 
onje
ture was proved in 1983 by Hat
her. For d = 4 the answer is not

known to the author, and for d > 4 the in
lusion is not a homotopy equivalen
e ([Mil83℄).

For d = 2 this leads to the following information on the homotopy groups. As O(3;R)

�

=

SO(3;R) � Z

2

and the universal 
overing group SU(2; C ) of SO(3;R) is homeomorphi
 to S

3

,

we obtain from Remark IV.1.3:

�

k

(Di�(S

2

))

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z

2

for k = 0

Z

2

for k = 1

0 for k = 2

Z for k = 3

Z

2

for k = 4

Z

2

for k = 5.

For d = 3 we have O(4;R)

�

=

SO(4;R) oZ

2

and the universal 
overing group of SO(4;R)

is a two-fold 
overing by SU(2; C )

2

. This leads to

�

k

(Di�(S

3

))

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z

2

for k = 0

Z

2

for k = 1

0 for k = 2

Z

2

for k = 3

Z

2

2

for k = 4

Z

2

2

for k = 5.

The group �

0

(Di�

+

(S

d

)), whi
h is �nite for d � 5, has a remarkable di�erential geometri


interpretation. Its elements 
orrespond to oriented di�eomorphism 
lasses of smooth (d + 1)-

dimensional manifolds with the homotopy type of S

d+1

. For d 6= 2 this implies that they are

homeomorphi
 to S

d+1

by the Poin
ar�e 
onje
ture, whi
h has been proved ex
ept for d = 2.
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