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Nancy Lectures on Infinite-Dimensional Lie Groups

Karl-Hermann Neeb

Abstract. These are lecture note of a course given in Februaru and March 2002 in Nancy. The
main purpose of this course was to present some of the main ideas of infinite-dimensional Lie theory
and to explain how it differs from the finite-dimensional classical theory. After the introduction
where we present some of the main types of infinite-dimensional Lie groups: lineare Lie groups
associated to continuous inverse algebras, groups of maps and diffeomorphism groups, we turn in
more detail to manifolds modeled on locally convex spaces. In Section III we present some of the
basic Lie theory of locally convex Lie groups, including a discussion of the exponential function and
the non-existence of groups for Lie algebras. In the final Section IV we discuss the topology of the
main classes of infinite-dimensional Lie groups with an emphasis on their homotopy groups.

I. Introduction

Lie groups arise most naturally as symmetry groups or automorphism groups of algebraic or
geometric structures. This is true for finite-dimensional Lie groups and remains valid for infinite-
dimensional Lie groups. Moreover, it is well known from finite-dimensional Lie theory that not
every automorphism group of an algebraic or geometric structure is a Lie group. Limitations of
this type remain valid for infinite-dimensional Lie groups as well, although many important groups
which are not finite-dimensional Lie groups have a natural structure as an infinite-dimensional
Lie group.

In this introduction we discuss several classes of infinite-dimensional Lie groups without
going into details. The main purpose is to give an impression of the enormous variety of infinite-
dimensional Lie groups and to explain some of the differences to the finite-dimensional theory.

The concept of an infinite-dimensional Lie group

Our general idea of a Lie group is that it should be a manifold G (defined suitably in
an infinite-dimensional context) which carries a group structure for which multiplication and
inversion are smooth maps. Therefore the concept of an infinite-dimensional Lie group relies
very much on the corresponding concept of an infinite-dimensional manifold.

The concept of a Banach—Lie group, i.e., a Lie group modeled on a Banach space, has been
introduced by G. Birkhoff in [Bi38]. The step to more general classes of infinite-dimensional
Lie groups modeled on complete locally convex spaces occurs first in an article of Marsden and
Abraham [MAT70] in the context of hydrodynamics. This Lie group concept has been worked out
by J. Milnor in his Les Houches lecture notes [Mil83] which provide many basic results of the
general theory. The observation that the completeness condition on the underlying locally convex
space can be omitted for the basic theory is due to H. Glockner ([G101a]). This is important for
quotient constructions because quotients of complete locally convex spaces need not be complete.

There are other, weaker, concepts of Lie groups, resp., infinite-dimensional manifolds. One
is based on the “convenient setting” for global analysis developed by Frohlicher, Kriegl and
Michor ([FK88] and [KM97]). In the context of Fréchet manifolds this setting does not differ
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from the one mentioned above, but for more general model spaces it provides a concept of a
smooth map which does not necessarily imply continuity, hence leads to Lie groups which are
not topological groups. Another approach is based on the concept of a diffeological space due
to J.-M. Souriau ([So85]) which can be used to study spaces like quotients of R by non-discrete
subgroups in a differential geometric context.

Throughout these notes K € {R, C} and all vector spaces are real or complex.

I.1. Linear Lie groups

In finite-dimensional Lie theory, a natural approach to Lie groups is via matrix groups, i.e.,
subgroups of the group GL,,(R) of invertible real n x n-matrices. Since every finite-dimensional
algebra can be embedded into a matrix algebra, this is equivalent to considering subgroups of
the unit groups A* = {a € A: (I € A)ab = ba = 1} of finite-dimensional unital associative
algebras A. The advantage of this approach is that one can define the exponential function quite
directly and thus take a shortcut to several deeper results on Lie groups. This approach also
works quite well in the context of Banach-Lie groups. Here the linear Lie groups are subgroups
of the unit groups A* of Banach algebras A. To get some feeling for this context, let us take a
look at some types of Banach algebras.

Examples I.1.1. (a) If X is a Banach space, then the space B(X) of all continuous operators
on X is a unital Banach algebra with respect to the operator norm

Al == sup{||A.z||:x € X, [l2|| < 1}.

Conversely, if A is a unital Banach algebra, then we have an embedding L: A — B(A)
given by the left regular representation L(a).b := ab of A on itself. Therefore Banach algebras
are algebras of operators on Banach spaces which are closed in the operator norm.

(b) If A is a unital Banach algebra, then the same holds for all the matrix algebras M, (A),
n € N. To see this, we may w.l.o.g. assume that A is a closed subalgebra of some B(X), X a
Banach space. We endow the space X™ with the norm

(@1, -] = max(flza]l, - [leal])

and consider on M, (A4) the operator norm coming from the embedding M,,(A) — B(X™). This
turns M,,(A) into a unital Banach algebra.

So far this works also in a finite-dimensional context, but in general we can also consider
the Banach space

X20=17(N X)) = {(zn)nen: [[2]lco 1= suppen [|lzn ]| < oo}

of all bounded X -valued sequences. Then we have for each n € N an isometric embedding

mn

Nn: M (A) = B(X®), nu(a).(%i)ien := (Zaijwj)iel\!'

j=1

Based on this observation, we identify M,,(A) with a closed subalgebra of B(X*°) and define

My (4) = Ma(4) C B(X™).

The elements of My, (A) can be viewed as infinite matrices @ = (a;5); jeny with entries in A4,
where the matrix coeflicients a;; tend to zero for increasing ¢ and j. Note that the completion
Mo (A) depends on the choice of the norm on the spaces X™. If we take a norm of the type

1
|||p := (Z?:l llz;|IP)?, 1 < p < oo, then we obtain a different completion.
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(¢) If X is a compact space and B is a Banach algebra, then the space C(X, B) is a Banach
algebra with respect to the sup-norm

I fIl == sup{[| f(2)[]:x € X}
(d) If S is a semigroup and B is a Banach algebra, then the Banach space

A= 1(8,B) = {£:5 5 Billfll = Y 1)) < oo

seS
is a Banach algebra with respect to the convolution product

(frg)u) =Y [fls)g()
s,teS,st=u
Note that the finiteness of || f||; implies that only countably many values of the function f are
non-zero. In the case where S is a group, we can write the convolution product also in the form

(fxg)(w) =) f(s)g(s  u). u
seS
As the preceding discussion shows, there are many types of Banach algebras A, and their
unit groups A* are basic examples of Banach—Lie groups.

Examples I.1.2. Further examples of Banach—Lie groups which are more like finite-dimensional
classical groups can be obtained as follows.

(a) If X is a Banach space and §:X x X — K is a continuous bilinear form, then the
corresponding orthogonal group

O(X, B) :={g € GL(X): (Vz,y € X)B(g.7,9.y) = B(x,y)}
is a Banach-Lie group.

If 5 is skew-symmetric and non-degenerate in the sense that f(z, X) = {0} implies 2 =0,
then we call (X, ) a symplectic Banach space and

Sp(X, B) = O(X, §)

the corresponding symplectic group.
(b) If H is a complex Hilbert space, then the unitary group

U(H) := {g € GL(H): (Va,y € H){g.x,9.y) = (z,y)}

is an important example of a Banach—Lie group.
(c) If A is a Banach algebra, then its automorphism group Aut(A) is a Banach—Lie group. =

For an associative algebra A we write A4 for the algebra A x K with the multiplication
(a,s)(b,t) := (ab+ sb + ta, st).

This is a unital algebra with unit 1 = (0,1). For many purposes it is natural to extend the
concept of a Banach algebra to the more general concept of a continuous inverse algebra (c.i.a.).
These are locally convex algebras A with continuous multiplication such that the group A% of
units of the algebra A, , endowed with the product topology of A x K, is open and the inversion
is a continuous map AY — A, .

For each c.i.a. A the matrix algebras M, (A) are also c.i.a. (see [Bos90]). Further each
closed Lie subalgebra g C M, (A) corresponds to some analytic subgroup G of GL,(A")
([Gl01c]). In the context of infinite-dimensional Lie theory over locally convex spaces, these
groups form the natural generalizations of linear Lie groups.

Examples [.1.3. (a) Each Banach algebra is a continuous inverse algebra.

(b) If B is a ci.a. and M is a compact manifold, then the algebra C*°(M, B) is a continuous
inverse algebra.

(c) Let B be a Banach algebra and a:G x B — B a strongly continuous action of the finite-
dimensional Lie group G on B by isometric automorphisms. Then the space B*° of smooth
vectors for this action is a dense subalgebra and a Fréchet c.i.a. ([Bos90, Prop. A.2.9]). =
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1.2. Groups of continuous and smooth maps

In the context of Banach—Lie groups one constructs Lie groups of mappings as follows. For
a compact space X and a Banach-Lie group K the group C(X,K) of continuous maps is a
Banach-Lie group with Lie algebra C(X, ), where £ is the Lie algebra of K.

In the larger context of locally convex Lie groups one also obtains for each Lie group K
and a compact smooth manifold M a Lie group structure on the group C*°(M, K) of smooth
maps from M to K. This is a Fréchet—Lie group if K is a Fréchet—Lie group. Its Lie algebra is
the space C°(M,¥).

The passage from continuous maps to smooth maps is made necessary by the behavior of
central extensions of these groups. The groups C*°(M, K) have much more central extensions
as the groups C'(M, K), hence exhibit a richer geometric structure.

A larger class of groups is obtained as gauge groups of principal bundles. If a smooth map
q: P — B defines a principal K -bundle, then we consider the associated bundle ggx: Pk — B,
where Py is the space of K -orbits in the space P x K with respect to the action given by
k.(p,z) := (pk~ ', kz) for k,z € K and p € P. The gauge group Gau(P) is the group of smooth
sections of the bundle Py . If the bundle P is trivial, then Px = B x K and qx(b,k) = b, so
that Gau(P) = C*°(B, K).

I.3. Groups of homeomorphisms and diffeomorphisms

Once a geometric structure on a space is given, one considers its group of automorphisms.
In the spirit of Felix Klein’s Erlangen Program, one may even say that the geometry or the
geometric structure is given by the corresponding group of automorphisms.
I.3.1. For a compact topological space X we have the C*-algebra C(X,C) of continuous
complex valued functions. From Gelfand’s duality theory of commutative C*-algebras we obtain

X = Homalg(C(Xa R)v ]R) \ {O}

in the sense that every non-zero algebra homomorphism C(X,R) — R is given by a point
evaluation d,(f) = f(p). This implies that the space X can be recovered from the Banach
algebra C'(X,R) if we endow Hom,is(C(X,R),R) with the topology of pointwise convergence.

We conclude that the Lie group Aut(C(X,R)) of automorphisms of this algebra, endowed
with the uniform operator topology, can be identified with the group Homeo(X) of homeomor-
phisms of X acting on C'(X,R) by

(v-f)(@) = f(v " ).

We claim that the uniform topology turns Homeo(X) into a discrete group. In fact, if v is a
non-trivial homeomorphism of X and p € X is moved by +, then there exists a continuous
function f € C(X,R) with ||f|| =1, f(p) =0 and f(y~*(p)) = 1. Then ||y.f — f|| > 1 implies
that ||y — 1| > 1. Therefore the group Homeo(X) is discrete with respect to the topology
inherited from the Banach algebra B(C'(X,R)).

Nevertheless, one considers continuous actions of connected Lie groups G on X, where
the continuity of the action means that the action map a:G x X — X is continuous. But this
does not mean that the corresponding homomorphism G — Homeo(X) is continuous. We will
see that this phenomenon, i.e., that certain automorphism groups are endowed with Lie group
structures which are too fine for many purposes, reoccurs at many levels of the theory®.

L There are other reasonable topologies on the group Homeo(X) which are coarser and therefore more suitable
to study transformation groups. A quite natural one is obtained as the initial topology with respect to the map
Homeo(X)—C(X,X)?,9—(g,9~ ') with respect to the compact open topology on C(X,X).
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I[.3.2. Now let M be a compact smooth manifold and consider the Fréchet algebra A :=
C*(M,R) of smooth functions on M. Again one can show that

M = Hom(C™(M,R),R) \ {0}

in the sense that every non-zero algebra homomorphism C*(M,R) — R is given by a point
evaluation 0,(f) = f(p) for some p € M (see Lemma 1.3.5 below). Moreover, the smooth
structure on M is completely determined by the requirement that the maps M — R, p — d,(f)
are smooth. This implies that the group Aut(C*°(M,R)) of automorphisms of C*°(M,R) can
be identified with the group Diff (M) of all diffeomorphisms of M .

In sharp contrast to the topological context, the group Diff (M) has a non-trivial structure
as a Lie group modeled on the space V(M) of (smooth) vector fields on M, which then is
the Lie algebra of this group. Moreover, for a finite-dimensional Lie group G, smooth actions
a:G x M — M correspond to Lie group homomorphisms G — Diff(M). For G = R we obtain
in particular the correspondence between smooth flows on M, smooth vector fields on M, and
one-parameter subgroups of Diff (M).

If X € V(M) is a vector field and Flx:R — Diff (M) the corresponding flow, then

exp: V(M) — Diff (M), X — Flx(1)

is the exponential function of the Fréchet—Lie group Diff (M).

Other important groups of diffeomorphisms arise as subgroups of Diff (A). Of particular
importance is the stabilizer subgroup Diff (M, u) of a volume form g on M (if M is orientable),
and the stabilizer Sp(M,w) of a symplectic form w if (M,w) is symplectic (cf. [KM97]).

1.3.3. If M is a non-compact o-compact smooth manifold, then we still have
M =2 Hom(C*(M,R),R) \ {0} and Diff(M) = Aut(C*°(M,R)),

but then there is no natural Lie group structure on Diff (M) such that smooth actions of Lie
groups G on M correspond to Lie group homomorphisms G — Diff (M) .

Nevertheless, in the framework of the “convenient setting” ([KM97]), one can turn Diff (M)
into a Lie group with Lie algebra V.(M ), the Lie algebra of all smooth vector fields with compact
support. If M is compact, this yields the natural Lie group structure on Diff (M), but if M is not
compact, then the corresponding topology on Diff (M) is so fine that the global flow generated
by a vector field whose support is not compact, does not lead to a continuous homomorphism
R — Diff (M).

More recent investigations in this direction show that, at least for M = R™, the natural
manifold structure on the group Diff.(M) of all diffeomorphisms ¢ which coincide with idas
outside a compact set has a natural Lie group structure with Lie algebra V.(M) ([G102]). Here
we do not have to refer to the convenient setting with the advantage that Diff.(M) is a topological
group. This Lie group structure on Diff .(M) can then be used to define a Lie group structure
on Diff (M) for which Diff.(M) is an open subgroup. This contrasts the results of Tatsuuma,
Shimomura and Hirai, stating that the natural direct limit topology with respect to the subgroups

Diff x (M) := {p € Dt (M): ¢ |asr\x = idan\x },

K a compact subset of M, does not turn Diff.(M) into a topological group because the
multiplication is not continuous.

I.3.4. The situation for non-compact manifolds is similar to the situation we encounter in the
theory of unitary group representations. Let H be a Hilbert space and U(H) its unitary group.
This group has two natural topologies. The uniform topology on U(H) inherited from the Banach
algebra B(H) turns it into a Banach-Lie group, but this topology is rather fine. The strong
operator topology (the topology of pointwise convergence) turns U(H) into a topological group
such that continuous unitary representations of a topological group G correspond to continuous
group homomorphisms G — U(H). If G is a finite-dimensional Lie group, then a continuous
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unitary representation is continuous with respect to the uniform topology on U(H) if and only
if all operators of the derived representation are bounded, but this implies already that the
representation factors through a Lie group with compact Lie algebra (cf. [Si52], [Gu80]). In some
sense the condition that the operators of the derived representation are bounded is analogous
to the requirement that the vector fields corresponding to a smooth action on a manifold have
compact support. In this sense the uniform topology on U(H) shows similarities to the Lie
group structure on Diff(M) if M is non-compact (see 1.3.3). The case of a compact manifold
M corresponds to the case of a finite-dimensional Hilbert space H , for which the two topologies
on U(H) coincide.

Lemma 1.3.5. If M is a compact manifold and x: C®(M,R) — R a non-zero algebra homo-
morphism, then there exists p € M with x(f) = f(p) for all f € C*(M,R).

Proof. Let N := kerx. If there exists p € M such that all functions in N vanish at p,
then C*°(M,R) = N @ Rl implies x = d,. Let us assume that this is not the case. Then there
exists for each p € M a smooth function f, € N with f,(p) # 0. Then the open sets f, ' (R*)
form an open covering of M, and we find finitely many points p1, ..., p, such that M is covered
by the sets f, '(R*), which means that the function f := >"_, f7 € N vanishes nowhere.
We conclude that the ideal N contains a unit and therefore N = C*°(M,R), contradicting our
assumption that x is non-zero. n

Remark I.3.6. If M is non-compact, then one has to modify the argument in the proof of
Lemma 1.3.5 as follows. First we observe that, since N is an ideal, we may assume that the
support of the functions f, is contained in a given neighborhood U, of p because we may
multiply f, by any function supported in U, and not vanishing at p.

Let x:C®(M,R) — R be a continuous algebra homomorphism (with respect to the
topology defined in Example I1.1.4(b) below) and assume that x # 0, for each p € M. Hence
the ideal ker x contains for each p € M a function not vanishing at p. We choose compact
subsets K, C M with (J,, K,, = M and K, C Kg_H. For p € K, \ K,,—1 we pick a function
fp € kerx in such a way that supp(fy) C Knpt1 \ Kp—1 and fp(p) # 0. Now we choose the
points p1,...,pr, € K; such that 251:1 fgj is positive on K, then pg,+1,...,pr, such that
Zfil fgj is positive on K5, and so on. The precautions from above ensure a that the series
f= Z;’il fgj converges in C*°(M,R) because on each set K, it is eventually constant. For
each continuous character y: C*°(M,R) — R which is not a point evaluation we thus obtain an
invertible function f € ker x, which implies x = 0. Here the continuity of x is needed to ensure
that kery is closed and hence that f € kery. ]

II. Infinite-dimensional manifolds

In this section K always stands for R or C and V is a K-vector space.

I1.1. Locally convex spaces

Definition II.1.1.  (a) If p is a seminorm on a K-vector space V, then N, := p~1(0) is a
subspace of V', and V,, := V/N,, is a normed space with ||[v + N,|| := p(v). Let a,:V — V),
denote the corresponding quotient map.

(b) We call a set P of seminorms on V' separating if p(v) =0 for all p € P implies v = 0.

(¢) If X is aset and f;: X — X;, j € J, mappings into topological spaces, then the coarsest
topology on X for which all these maps are continuous is called the initial topology on X with
respect to the family (f;);cs. This topology is generated by the inverse images of open subsets
of the spaces X; under the maps f;.
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(d) To each separating family P of seminorms on V' we associate the initial topology 7» on V
defined by the maps oy,: V' — V,, to the normed spaces V,,. We call it the locally convez topology
on V defined by P.

Since the family P is separating, V is a Hausdorff space. Further it is easy to show that
V is a topological vector space in the sense that addition and scalar multiplication on V are
continuous maps.
(e) A locally convex space V is called a Fréchet space if its topology can be defined by a countable
family P = {p,:n € N} of seminorms and if V' is complete with respect to the compatible metric

diz,y) =Y 2%w -

L T

Exercise II.1. Let (V,7p) be a locally convex space.
(1) Show that a seminorm ¢ on V is continuous if and only if there exists a A > 0 and
P1,---,Pn € P such that

g < Amax(pi,...,pn)-

(2) Two sets P; and P of seminorms on V' define the same locally convex topology if and only
if all seminorms in Py are continuous w.r.t. 7p, and vice versa. ]

Remark I1.1.2. (a) A sequence (z,)nen in a locally convex space V' is said to be a Cauchy
sequence if each sequence ap(z,), p € P, is a Cauchy sequence in V,. We say that V is
sequentially complete if every Cauchy sequence in V' converges.

(b) One has a natural notion of completeness of locally convex spaces (every Cauchy filter
converges). Complete locally convex spaces then correspond to closed subspaces of products
of Banach spaces !. n

Examples I1.1.3. (a) Let X be a topological space. For each compact subset K C X we
obtain a seminorm pxg on C(X,R) by

pr(f) = sup{|f(2)|:z € K}.

The family P of these seminorms defines on C(X,R) the locally convex topology of uniform
convergence on compact subsets of X.

If X is compact, then we may take K = X and obtain a norm on C(X,R) which defines
the topology; all other seminorms pg are redundant. In this case C(X,R) is a Banach space.
(b) The preceding example can be generalized to the space C(X,V), where X is a topological
space and V is a locally convex space. Then we define for each compact subset K C X and each
continuous seminorm ¢ on V' a seminorm

prc,g(f) == sup{q(f(z)):z € K}.

The family of these seminorms defines a locally convex topology on C'(X, V) which again coincides
with the topology of uniform convergence on compact subsets of X .

(¢) If X is locally compact and o-compact, then there exists a sequence (K, )nen of compact
subsets of X with (J,, K, and K,, C K?. Then each compact subset of X lies in some K, , so
that each seminorm pg is dominated by some pg, . This implies that C'(X,R) is metrizable,
and since it is also complete, it is a Fréchet space. u

L'In §31.6 of K6the’s book [K&69] one finds an example of a complete locally convex space X and a closed
subspace YCX for which the quotient space X/Y is not complete. This does not happen if X is metrizable and

complete, i.e., an F-space. Then all quotients of X by closed subspaces are complete.
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Example I1.1.4. (a) Let U C R™ be an open subset and consider the algebra C*°(U,R). For
each multiindex m = (mq,...,m,) € Ny with |m|:=m + ...+ m, we consider the differential
operator
||
pm o= pe = O

n 8{n1 .. gln °
We now obtain for each m and each compact subset K C U a seminorm on C*°(U,R) by

pi,m(f) =sup{| D™ f(z)|:x € K}.

The family of all these seminorms defines a locally convex topology on C*°(U,R). Since U
is locally compact and o-compact (exercise), the topology on C°°(U,R) can be defined by a
countable set of seminorms. Moreover, it is not hard to see that C°°(U,R) is complete with
respect to the corresponding metric, hence a Fréchet space.

(b) Let M be a smooth n-dimensional manifold and consider the vector space C*°(M,R). To
introduce a topology on this algebra, for each compact subset K C M for which there exists a
chart ¢:U — R* with K C U and for each multiindex m € Nj we define a seminorm by

prm(f) = sup{|D™(f o ™ 1) ()| € p(K)}.

We thus obtain a natural Fréchet topology on C*°(M,R) which is called the topology of local
uniform convergence of all partial derivatives.

(c) If M is a complex manifold, then we consider the algebra Hol(M, C) of holomorphic functions
on M as a subspace of C(M,C), endowed with the topology of uniform convergence on compact
subsets of M (Example I1.1.3). This topology turns Hol(M,C) into a Fréchet space. Moreover,
one can show that the injective map Hol(M,C) — C*° (M, C)is also a topological embedding.m

Definition II.1.5. Let V be a vector space and «;:V; — V linear maps, defined on locally
convex spaces Vj. We consider the system P of all those seminorms p on V for which all
compositions p o a; are continuous seminorms on the spaces V;. By means of P, we obtain
on V a locally convex topology called the final locally convex topology defined by the mappings
(aj)jer -

This locally convex topology has the universal property that a linear map ¢:V — W into
a locally convex space W is continuous if and only if all the maps poa;, j € J, are continuous.m

Example II.1.6. (a) Let X be a locally compact space and C.(X,R) the space of compactly
supported continuous functions. For each compact subset K C X we then have a natural
inclusion

ax: O (X,K) := {f € C.(X, R):supp(f) C K} < C.(X, R).

Each space Ck (X, R) is a Banach space with respect to the norm

[flleo := sup{[f(2)]: = € X}.

We endow C.(X,R) with the final locally convex topology defined by the maps ay .
(b) Let M be a smooth manifold and consider the space CZ°(M,R) of smooth functions with
compact support. For each compact subset K C M we then have a natural inclusion

ag: O (M, R) :={f € CZ(M,R):supp(f) C K} = C° (M, R).
We endow each space C32(M,R) with the subspace topology inherited from C*(M,R), which

turns it into a Fréchet space. On C°(M,R) we now obtain the final locally convex topology
defined by the maps agx . ]
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I1.2. Calculus on locally convex spaces

In this section we explain briefly how calculus works in locally convex spaces. The main
point is that one uses an appropriate notion of differentiability which for the special case of
Banach spaces differs from Fréchet differentiability but which is more convenient in the setup
of locally convex spaces. Our basic references are [Ha82] and [Gl01a], where one finds detailed
proofs. One readily observes that once one has the Fundamental Theorem of Calculus, then the
proofs of the Fréchet case carry over to a more general setup where one still requires smooth
maps to be continuous (cf. also [Mil83]). A different approach to differentiability in infinite-
dimensional spaces in the so-called convenient setting can be found in [FK88] and [KM97a]. A
central feature of this approach is that smooth maps are no longer required to be continuous, but
for calculus over Fréchet spaces one finds the same class of smooth maps described by Hamilton
and Milnor. Another approach which also gives up the continuity of smooth maps and requires
only their continuity on compact sets is discussed by E. G. F. Thomas in [Th96]. The concept
of a diffeological space due to J.-M. Souriau ([So85]) goes even one step further. It is primarily
designed to study spaces like quotients of R by non-discrete subgroups in a differential geometric
context.

Definition I1.2.1. Let X and Y be topological vector spaces, U C X open and f:U — Y
a map. Then the derivative of f at x in the direction of h is defined as

(@) (h) = lim 3 (o -+ 1h) — (x)

whenever the limit exists. The function f is called differentiable at x if df (x)(h) exists for all
h e X. It is called continuously differentiable or C! if it is differentiable at all points of U and

df:UxX =Y, (2,h) v df(z)(h)

is a continuous map. It is called a C™-map if df is a C"~!-map, and C*> (or smooth) if it is C™
for all n € N. This is the notion of differentiability used in [Mil83], [Ha82], [Gl01a] and [NeO1].
(b) If X and Y are complex vector spaces, then the map f is called holomorphic if it is C' and
for all © € U the map df(z): X — Y is complex linear (cf. [Mil83, p. 1027]). We will see below
that the maps df (x) are always real linear (Lemma I1.2.3).

(c) Higher derivatives are defined for C™-maps by

dnf(l’>(h17 RS hn) = tlg% % (dnilf(w + thn)(hla e hn71> - dnilf(‘q‘)(hl: AR hnfl))' u
Remark I1.2.2. (a) If X and Y are Banach spaces, then the notion of continuous differen-
tiability is weaker than the usual notion of continuous Fréchet-differentiability in Banach spaces,
which requires that the map x — df (x) is continuous with respect to the operator norm. Nev-
ertheless, one can show that a C?-map in the sense defined above is C' in the sense of Fréchet
differentiability, so that the two concepts lead to the same class of C'*° -functions (cf. [Ne01, 1.6
and L1.7]).

(b) We also note that the existence of linear maps which are not continuous shows that the
continuity of f does not follow from the differentiability of f because each linear map f: X — Y
is differentiable at each x € X in the sense of Definition I1.2.1(a). u

Now we recall the precise statements of the most fundamental facts needed in the following.

Lemma I1.2.3. Let X and Y be locally convex spaces and U C X an open subset. The following
assertions hold:
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() If U =Y is Ct and x € U, then df (z): X — Y is a linear map and f is continuous.
If moreover x + th € U holds for all t € [0,1], then

flx+h) :f(x)—l—/o df (x 4+ uh)(h) du.

In particular f is locally constant if and only if df =0.

(ii) If f is C™, then the functions (hy,...,hy) — d"f(x)(hi,..., hy), © € U, are symmetric
n-linear maps. For each © € U and v € X with x +tv € U for t € [0,1] we have the
Taylor formula

Sz +0) = f(2) + df@)0) + ... +ﬁdn*ﬂx><v, )

1 ' n—1_jm
+m/o (1 —t)" " f(z + tv) (v, ..., v) dt.

Proof. (i) The first part is [Ha82, Th. 3.2.5] and the integral representation is [Ha82, Th. 3.2.2]
for Fréchet spaces. For the refinement to locally convex spaces see [Gl01a]. This is based on the

observation that, although the integral fol df (x +uh)(h) du exists a priori only in the completion
of Y, the fact that it equals the difference f(x + h) — f(x) implies that it is contained in Y.
Therefore no completeness condition on Y is needed to ensure the existence of the integral.

To see that f is continuous, let p be a continuous seminorm on Y and € > 0. Then there
exists a balanced 0-neighborhood U; C X with  + U; C U and p(df(z + uh)(h)) < ¢ for
u € [0,1] and h € U;. Hence

p(f(z+h) - f(2) < / p(df (z +uh)(h)) du < e,

and thus f is continuous.
(ii) follows from [Ha82, Th. 3.6.2] and by iteration of (i). ]

Proposition I1.2.4.  (The chain rule) If X, Y and Z are locally convex spaces, U C X and
V CY areopen, and f1:U =V, fo:V = Z are C*, then foo f1:U — Z is C' with

d(fz 0 fi)(@) = df2(fr(x)) odfi(z) for xeU.
Proof. [Ha82, Th. 3.3.4] =

Proposition I1.2.5. If X;, X5 and Y are locally convex spaces, X = X; x Xo, U C X is
open, and f:U — Y s continuous, then the partial derivatives

di f(@1,32)(h) = tlg% %(f(v’l?l +th,x) — f(x1,72))

and .
do f (21, 22)(h) := lim ;(f(wlawz +th) = f(z1,72))

exist and are continuous if and only if df exists and is continuous. In this case we have
df (1, 22) (b1, he) = di f(z1,22)(h1) + da f (21, 22) (he).

Proof. [Ha82, Th. 3.4.3] u
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Remark 11.2.6. (a) If f: X — Y is a continuous linear map, then f is smooth with

for all z,h € X, and d"f =0 for n > 2.
(b) From (a) and Proposition I1.2.5 it follows that a continuous k-linear map m: X; x...x X, = Y
is continuously differentiable with

dm(z)(hy, ... he) = m(hy, @, wp) + - m(@, - Tp—, i)

Inductively one obtains that m is smooth with d*t'm = 0.
(c) If f:U —Y is C"!, then Lemma I1.2.3(ii) and Proposition II.2.5 imply that

d(d f)(x, hay. .. h) (s k1, k) = d" T f (@) (e, B, y)
+ dnf(l'>(k1,h2, .. ,hn) 4+ ...+ dnf(l'>(h1, . .,hnfl,k»,I).

It follows in particular that, whenever f is C™, then f is C™*! if and only if d"f is C'.

(d) If f:U — Y is holomorphic, then the finite-dimensional theory shows that for each A € X the
function U — Y,z — df (z)(h) is holomorphic. Hence d?f(z) is complex bilinear and therefore
d(df) is complex linear. Thus df:U x X — Y is also holomorphic. u

Example I1.2.7. In the definition of C'-maps we have not required the underlying topological
vector spaces to be locally convex and one may wonder whether this assumption is made for
convenience or if there are some serious underlying reasons. The following example shows that
local convexity is crucial to have a calculus with the properties discussed in Lemma, I1.2.3.

Let V' denote the space of measurable functions f:[0,1] — R for which

1
f] = / (@)} de

is finite and observe that d(f,g) := |f — g| defines a metric on this space because the function
x — /7 is subadditive on R" . We thus obtain a topological vector space (V,d).
For a subset E C [0,1] let xg denote its characteristic function. Consider the curve

7:[0,1] =V, () := Xx[0,4-

Then .
|h=t(y(t + ) = y(8))| = [h]"2[h| = 0

for each t € [0,1] as h — 0. Hence v is C' with dy = 0. Since v is not constant, the
Fundamental Theorem of Calculus does not hold in V.

The defect in this example is caused by the non-local convexity of V. In fact, one can even
show that all continous linear functionals on V' vanish. n

Remark I1.2.8. In the context of Banach spaces one has an Inverse Function Theorem and also
an Implicit Function Theorem ([La99]). Such results cannot be expected in general for Fréchet
spaces (cf. the exponential functions of certain Fréchet groups). Nevertheless, the recent paper
[Hi99] contains an implicit function theorem for maps of the type f: E x F' — F, where F is a
Banach space and FE is Fréchet. u

Remark I1.2.9. (Pathologies of linear ODEs in Fréchet spaces)

(a) First we give an example of a linear ODE for which solutions to initial value problems exist,
but are not unique. We consider the Fréchet space V := C*°([0,1],R) and the continuous linear
operator Lf := f' on this space. We are asking for solutions of the initial value problem

(2.1) Y () =Ly(t), ~(0)="0.
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Let us assume that supp(7o) is a compact subset of )0, 1], so that ~y permits smooth extensions
to a function on R. Let A be such a function and consider

vR—=>V, ~()(x) = h(t+ z).

Then v(0) = hljo,11 = Y0 and '(t)(z) = h'(t+2) = (Ly(t))(x). It is clear that these solutions of

(2.1) depend on the choice of the extension h of -y . Different choices lead to different extensions.
Does every smooth function on [0, 1] have a smooth extension to R?

(b) Now we consider the space V := C>°(S!,C) which we identify with the space of 2r-periodic

smooth functions on the real line. We consider the linear operator Lf := —f" and the equation

(2.1), which in this case is the heat equation with reversed time. It is easy to analyze this equation

in terms of the Fourier expansion of v. So let

Y(O(@) =Y an(t)e™

nez

be the Fourier expansion of (¢). Then (2.1) implies a/,(t) = n’a,(t) for each n € Z, so that
an(t) = an(O)et"2 holds for any solution v of (2.1). If the Fourier coefficients a,(0) of v do not
satisfy

3 Jan(0)]e < oo
n

for some € > 0 (which need not be the case for a smooth function 7 ), then (2.1) does not have
a solution on [0,¢]. =

Remark I1.2.10. (a) We briefly recall the basic definitions underlying the convenient calculus
in [KM97]. Let E be a locally convex space. The ¢ -topology on E is the final topology with
respect to the set C®°(R, E). We call E convenient if for each smooth curve ¢;:R — E there
exists a smooth curve c2:R — E with ¢, = ¢; (cf. [KM97, p.20]).

Let U C E be an open subset and f:U — F a function, where F' is a locally convex space.
Then we call f conveniently smooth if

FfoC™(R,U) C C®(R,F).

This concept quite directly implies nice cartesian closedness properties for smooth maps (cf.
[KM97, p.30]).

(b) If E is a sequentially complete locally convex (s.c.l.c.) space, then it is convenient because
the sequential completeness implies the existence of Riemann integrals of continuous FE-valued
functions on compact intervals ([KM97, Th. 2.14]). If E is a Fréchet space, then the ¢ -topology
coincides with the original topology ([KM97, Th. 4.11]).

Moreover, for an open subset U of a Fréchet space, a map f:U — F' is conveniently
smooth if and only if it is smooth in the sense of Definition II.2.1. This can be shown as follows.
Since C*°(R, E) is the same space for both notions of differentiability, the chain rule shows that
smoothness in the sense of Definition I1.2.1 implies smoothness in the sense of convenient calculus.
Now we assume that f:U — F is conveniently smooth. Then the derivative df:U x E — F
exists and defines a conveniently smooth map df: U — L(E,F) C C*(E, F) ([KM97, Th. 3.18]).
Hence df:U x E — F is also conveniently smooth, and thus continuous with respect to the
c®-topology. As E x E is a Fréchet space, it follows that df is continuous. Therefore f is C*
in the sense of Definition I1.2.1, and now one can iterate the argument. ]
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I1.3. Differentiable manifolds

Since we have a chain rule for C'' -maps between locally convex spaces, we can define smooth
manifolds as one defines them in the finite-dimensional case (cf. [Ha82], [Mil83], [Gl01a]).

Let M be a Hausdorff topological space and X a locally convex space. An X -chart of an
open subset U C M is a homeomorphism ¢:U — ¢(U) C X onto an open subset @(U) of X.
We denote such a chart as a pair (p,U). Two charts (p,U) and (¢, V) are said to be smoothly
compatible if the map

Yo Howrnvye(UNV) = UNV)

is smooth. From the chain rule it follows right aways that compatibility of charts is an equivalence
relation on the set of all X -charts of M. An X -atlas of M is afamily A := (p;,U;);er of pairwise
compatible X -charts of M for which |J,U; = M. A smooth X -structure on M is a maximal
X -atlas and a smooth X -manifold is a pair (M, .A4), where A is a maximal X -atlas on M.

Locally convex spaces are regular in the sense that each point has a neighborhood base
consisting of closed sets, and this property is inherited by manifolds modeled on these spaces (cf.
[Mil83]).

One defines the tangent bundle 7: TM — M as follows. Let A := (p;,U;);er be an X -atlas
of M. On the disjoint union of the set ¢(U;) x X we define an equivalence relation by

(,0) ~ (95 0 07 ) (@), d(p; 0 97 ") (2)(v))

for z € ¢;(U; NU;) and write [x,v] for the equivalence class of (z,v). Let p € U;. Then the
equivalence classes of the form [¢;(p), v] are called tangent vectors in p. Since all the differentials
d(p;jop; ") (z) are invertible linear maps, it easily follows that the set T),(M) of all tangent vectors
in p forms a vector space isomorphic to X under the map X — T,(M),v — [z,v]. Now we turn
the tangent bundle
T™ := | ] T,(M)
peEM

into a manifold by the charts
i TU; = o(Ui) x X, [pi(x),v] = (pi(2),v).

It is easy to see that for each open subset U of a locally convex space X we have TU 2 U x X
and in particular TU; = U; x X in the setting from above.

We will call a manifold modeled on a l.c. space, resp., Fréchet space, resp., Banach space a
locally convez, resp., Fréchet, resp., Banach manifold.

Note that it is far more subtle to define a cotangent bundle because this requires a locally
convex topology on the dual space E’ of the underlying vector space E and therefore depends
on this topology.

Let M and N be smooth manifolds modeled on locally convex spaces and f: M — N
a smooth map. We write Tf:TM — TN for the corresponding map induced on the level of
tangent vectors. Locally this map is given by

Tf(x,h) = (f(2),df (x)(h)),

where df (p): Tp(M) — Ty()(IN) denotes the differential of f at p. In view of Remark I1.2.6(c),
the tangent map 7'f is also smooth if f is smooth. In the following we will always identify M
with the zero section in T'M . In this sense we have T'f |y = f with Tf(M) C N CTN.

A wvector field X on M is a smooth section of the tangent bundle 7'M — M. We write
V(M) for the space of all vector fields on M. If f € C*°(M,C) is a smooth function on M and
X € V(M), then we obtain a smooth function on M via

(X./)(p) = df (p) (X (p))-

Since locally X (p) = (p, )N((p)) , where X is a smooth function, we have X.f = df o X . Therefore
the smoothness of X.f follows from the smoothness of the maps df:TM — C and X: M — TM.
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Lemma I1.3.1. If X,Y € V(M), then there exists a vector field [X,Y]| € V(M) which is
uniquely determined by the property that on each open subset U C M we have

(3.1) [X,Y].f=X.(Y.f) -Y.(X.])

for all f e C=(U,C).

Proof Locally the vector fields X and Y are given as X(p) = (p,)N((p)) and Y(p) =
(p, ( )) We define a vector field by

(3.2) [X,Y]p) = dY (p)(X(p)) — dX (p)(Y (p))-

Then the smoothness of the right hand side follows from the chain rule. The requirement that
(3.1) holds on continuous linear functionals f determines [X, Y] uniquely. An easy calculation
shows that (3.2) defines in fact a smooth vector field on M (cf. Lemma I1.3.3 below). Now the
assertion follows because locally (3.1) is a consequence of the chain rule. |

Proposition I1.3.2.  (V(M),[-,-]) is a Lie algebra.

Proof. The crucial part is to check the Jacobi identity. This follows from the observation that
if U C X is an open subset of a locally convex space, then the mapping

®:V(U) - Der (C*(U,C)), @(X)(f)=X.f

is injective and satisfies ®([X,Y]) = [®(X), ®(Y)]. Therefore the Jacobi identity in V(U) follows

from the Jacobi identity in the associative algebra End (C*°(U,C)). =
For the applications to Lie groups we will need the following lemma.

Lemma I1.3.3. Let M and N be smooth manifolds and ¢: M — N a smooth map. Suppose

that Xn, YN € V(N) and Xy, Y € V(M) satisfy Xnop =TpoXpy and Ynop =TpoY)y.
Then [XN,YN] SR :T(pO [XM,YM]

Proof. It suffices to perform a local calculation. Therefore we may w.l.o.g. assume that
M C F is open, where F' is a locally convex space and that NV is a locally convex space. Then

[Xn, YaT(p(0)) = dVn (0(0)-Xn (0(p) — dXn (9(p)) .Y (¢(p)).

Next we note that our assumption implies that Yy o p=dpo (idp xlN/M). Using the chain rule
we obtain

dYn (¢(p))dip(p) = d(de) (p, Y (p)) o (idr, dYar (p))

which, in view of Remark I1.2.6(c), leads to

diN/N( (»)) XN( p))

dYn (¢(p)) dip(p). X (p)
d(de) (p, Yau ( )) o (idp,dYn (p)) - Xar(p)
d*o(p) (Yar (p), Xas (p) + dio(p) (A1 (p)- X n1 (p))-

Now the symmetry of the second derivative (Lemma I1.2.3(ii)) implies that

(X, YaT(e(p) =de(p) (dYar (). X nr (p) — dX 01 (p).Yar (p) =deo(p) ([ Xz, Yar[(0))- n
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Differential forms

Definition I1.3.4. If M is a differentiable manifold and V' a locally convex space, then a
V -valued k-form w on M is a function w which associates to each p € M a k-linear alternating
map T,(M)* — V such that in local coordinates the map (p,vy,...,vx) = w(p)(v1,...,v) is
smooth. We write Q*(M,V) for the space of smooth k-forms on M with values in V. The
differentials

d:QF(M, V) — QML (M, V)

and the wedge products
A:QF(M,C) x QY(M,C) — Q¥ (M, C)

are defined by the same formulas as in the finite-dimensional case. ]

The assumption that V is sequentially complete is crucial in the following lemma to ensure
the existence of the Riemann integral defining ¢.

Lemma I1.3.5. (Poincaré Lemma) Let E be locally conver, V an s.c.l.c. space and U C E
an open subset which is star-shaped with respect to 0. Let w € Q¥ (U, V) be a V -valued closed
(k + 1) -form. Then w is exact. Moreover, w = dp for some p € QF(U, V) with ¢(0) =0 given
by

cp(w)(vl,...,vk):/o thw(te)(z, v, ..., v) dt.

Proof. For the case of Fréchet spaces Remark I1.2.10 implies that the assertion follows from
[KM97, Lemma 33.20]. On the other hand, one can prove it directly in the context of locally
convex spaces by using the fact that one may differentiate under the integral a function of the
type fol H(t,z)dt, where H is a smooth function | —¢,1 +¢[xU — V (cf. [KM97, p.32]). The
existence of the integrals follows from the sequential completeness of V. For the calculations
needed for the proof we refer to [La99, Th. V.4.1]. n

Remark I1.3.6. (a) The Poincaré Lemma is the first step to de Rham’s Theorem. To obtain de
Rham’s Theorem for finite-dimensional manifolds, one makes heavy use of smooth partitions of
unity which do not always exist for infinite-dimensional manifolds, not even for Banach manifolds.
(b) We call a smooth manifold M smoothly paracompact if every open cover has a subordinated
smooth partition of unity. De Rham’s Theorem holds for every smoothly paracompact Fréchet
manifold ([KM97,Thm. 34.7]). Smoothly Hausdorff second countable manifolds modeled on a
smoothly regular space are smoothly paracompact ([KM97, 27.4]). Typical examples of smoothly
regular spaces are nuclear Fréchet spaces ([KM97, Th. 16.10]).

(c) Examples of Banach spaces which are not smoothly paracompact are C([0,1],R) and I}(N, R).
On these spaces there exists no non-zero smooth function supported in the unit ball ([KM97,
14.11)). ]

Proposition I1.3.7.  Let M be a connected manifold, V an s.c.l.c. space and o € Q(M,V)
a closed 1-form. Then there exists a connected covering q:M\ — M and a smooth function
M=V with df = q*«.
Proof. (Sketch) We consider the product set P := M x V with the two projection maps
F:P —V and ¢: P — M. We define a topology on P as follows. For each pair (U, f) consisting
of an open subset U C M and a smooth function f:U — V with df = a |y the graph
L(f,U) :={(z, f(x)):x € U} is a subset of P. These sets form a basis for a topology 7 on P.
With respect to this topology the mapping ¢: P — M is a covering map. To see this, let
x € M. Since M is a manifold, there exists a neighborhood U of z which is diffeomorphic to
a convex subset of a locally convex space. Then the Poincaré Lemma implies for each v € V
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the existence of a smooth function f, on U with df, = a |y and f,(x) = v. Since U is
connected, the function f, is uniquely determined by its value at z, so that f, = fo + v.
Now ¢~ '(U) = U xV = U,ey L(fo,U) is a disjoint union of open subsets of P (here we use
the connectedness of U), and therefore ¢ is a covering. We conclude that P carries a natural
manifold structure for which ¢ is a local diffeomorphism. For this manifold structure the function
F:P — 'V is smooth with dF = q*«. -

Now we fix a point xg € M and an element vy € V. Then the connected component M
of (zg,v0) in P is a connected covering manifold of M with the required properties. u

Corollary II.3.8. If M is a simply connected manifold and V an s.c.l.c. space, then
Hlp (M,V) vanishes.

Proof. Let a bea closed V -valued 1-form on M . Using Proposition I.3.7, we find a covering
q: M — M and a smooth function f: M — V with df = ¢*«a. Since M is simply connected, the
covering ¢ is trivial, hence a diffeomorphism. Therefore « is exact. u

Theorem I1.3.9. Let M be a connected manifold, V an s.cl.c. space, ©y € M, and
m (M) :=7m(M,x0). Then we have an inclusion

C:Hig(M,V) < Hom(m (M), V)
which is given on a piecewise differentiable loop v:[0,1] = M in xo for a € Ziz (M,V) by

@) = Clepih = [ o= | e,

The homomorphism (([a]) can also be calculated as follows: Let q: M — M be the universal
covering map, and write M x 7w (M) = M, (z, g) — wg(x) for the right action of m (M) on M.
Further pick fo € C (M, V) with df, = ¢*a. Then the function fq o pg — fo is constant equal
to (([e)(9) -

Proof.  (cf. Theorem XIV.1.7 in [God71]) Let ¢: M — M be a simply connected covering
manifold and yo € ¢ *(mo). In view of Corollary I1.3.8, for each closed 1-form « on M, the

closed 1-form ¢*a on M is exact. Let fo € C°(M,V) with fa(yo) =0 and df. = ¢*a.

Let M x m (M) — M, (y,g) — tg(y) = y.g denote the action of (M) on M by deck
transformations. We put

((a)(9) := fa(yo-9)-
Then ((a)(1) =0 and

C(@)(9192) = fa(yo-9192) = fa(y0-9192) — fa(yo-91) + fa(yo-g1)
= fa(Y0-9192) — fa(yo-g1) + C(a)(g1)-
For each g € (M) the function h:= py fo — fo satisfies h(yo) = ((@)(9) = fa(y0-g) and
dh = pydfa — dfo = pyq"a —¢"a = (go py)*a —¢*a = q"a — ¢*a = 0.
Therefore h is constantly ((a)(g), and we obtain ((a)(g192) = ((a)(g2) + ((a)(g1)- This proves
that ((«) € Hom(m (M), V).

Suppose that ((a) = 0. Then pj fo — fo = 0 holds for each g € m (M), showing that the
function f, factors through a smooth function f: M — V with foq = f,. Now ¢*df = df, = ¢*«
implies df = «, so that « is exact. Conversely, if « is exact, then the function f, is invariant
under 71 (M), and we see that ((a) = 0. Therefore (: Zlg (M,V) — Hom(m (M), V) factors
through an inclusion H}y (M,V) < Hom(m (M), V).

Finally, let [y] € m1 (M), where 7:[0,1] = M is piecewise smooth. Let 7:[0,1] — M be a
lift of v with 5(0) = yo. Then

e (D) = foa(DD) = fa(7(1)) = fa(3(0)) + /0 dfa(F(1) (¥ (1)) dt

= fulo) + / (")) (7' (1)) dt = / a(v (1) (+/() dt = / Vo= / .

0
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The following lemma shows that exactness of a vector-valued 1-form can be tested by
looking at the associated scalar-valued 1-forms.

Lemma I1.3.10. Let a € QY (M,V) be a closed 1-form. If for each continuous linear functional
A on V the 1-form Ao« is exact, then « is exact.

Proof. If Aoa is exact, then the group homomorphism ((a): 7 (M) — V satisfies Ao((a) =0
(Theorem I1.3.9). If this holds for each A € V', then the fact that the continuous linear functionals
on the locally convex space V' separate points implies that ((«) = 0 and hence that « is exact.m

To see that the map ( is surjective, one needs smooth paracompactness which is not
always available, not even for Banach manifolds. For an infinite-dimensional version of de
Rham’s Theorem for smoothly paracompact manifolds we refer to [KM97, Thm. 34.7] (cf. Remark
I1.3.6(b)). The following proposition is a particular consequence:

Proposition I1.3.11.  If M is a connected smoothly paracompact manifold, then the inclusion
map ¢: Hig (M, V) — Hom(m (M), V) is bijective. L]

Proposition I1.3.12. Let M be a connected manifold, V an s.c.l.c. space and T CV a
discrete subgroup. Then V/T' carries a natural manifold structure such that the tangent space at
every element of V/T' can be canonically identified with V. For a smooth function f: M — V/T
we can thus identify the differential df with a V -valued 1-form on M . For a closed V -valued
1-form « on M the following conditions are equivalent:

(1) There ezists a smooth function f:M — V/T' with df = «.

(2) ¢(a)(m(M)) CT.

Proof. Let ¢: M —> M denote the universal covering map and fix a point zg € M. Then
the closed 1-form ¢*a on M is exact (Theorem I1.3.9), so that there exists a unique smooth
function f: M — V with df = ¢*a and f(zo) = 0. In Theorem I1.3.9 we have seen that for
each g € m (M) we have

(3.3) o f — f=C¢la)(g)-

(1) = (2): Let p:V — V/I' denote the quotient map. We may w.l.o.g. assume that f(g(zo)) =
p(0). The function p o va — V/T' satisfies d(p o f) = ¢*a, and the same is true for
fo q:M — V/I'. Since both have the same value at xo, we see that po f = fogq. This
proves that po f is invariant under 7 (M), and therefore (3.3) shows that ¢(a)(m (M)) CT.

(2) = (1): If (2) is satisfied, then (3.3) implies that the function p o fiM — V/T is m (M)-
invariant, hence factors through a function f: M — V/T with fog=po f Then f is smooth
and satisfies ¢*df = df: q¢*a, which implies that df = «. ]

Smoothly non-trivial bundles

Remark I1.3.13. Another remarkable pathology occurring already for Banach spaces is that
there exists a closed subspace F' of a Banach space E such that the quotient map ¢: E — E/F
has no smooth sections. The existence of a smooth local section ¢:U — E around 0 € E/F
would imply the existence of a closed complement im(do(0)) =2 E/F to F in E, but such a space

does not exist. A simply example is the subspace co(N,R) in {®(N,R) ([Wer95, Satz IV.6.5]).
Nevertheless, the map ¢: E — E/F defines the structure of a topological F'-principal
bundle over E/F which has a continuous global section by Michael’s Selection Theorem ([Mi59]).
]
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III. Infinite-dimensional Lie groups

II1.1. Infinite-dimensional Lie groups and their Lie algebras

Definition III.1.1. A locally convezx Lie group G is a locally convex manifold endowed with
a group structure such that the multiplication map and the inversion map are smooth. ]

In our treatment of Lie groups we basically follow [Mil83]. Throughout this subsection
G denotes a locally convex Lie group. For ¢ € G we write A\;:G — G,z — gz for the
left multiplication by g and p,:G — G,z — xg for the right multiplication by g. Both are
diffeomorphisms of G. Moreover, we write m:G x G — G, (x,y) — xy for the multiplication
map and 1:G = G,z — x~! for the inversion.

Definition III1.1.2. Let G be a Lie group. Then for each g € G the map

cg:G =G, z— grg™!,

is a smooth automorphism, hence induces a continuous linear automorphism
Ad(g) :==dcg(1):9 — g.
We thus obtain an action G x g — g, (g9, X) — Ad(g).X called the adjoint action of G on g. =

Proposition II1.1.3.  For a Lie group G the following assertions hold:
1) dm(g1,92)(X1,X2) =dpg,(91)-X1 + dAg, (92).X> and in particular we have

dm(l, 1)(X1,X2) = X1 + XQ.

(i) dnp(1).X =-X.

(i) The mapping Tm: TG x TG — TG defines a Lie group structure on TG with identity
element 0 € T1(G) and inversion Tn.

(iv) Let g:=T1(G) denote the tangent space at the identity. Then the mapping

®:Gxg—->TGE, (9,X)—dr\(1).X
is a diffeomorphism. Multiplication and inversion in TG are given by
®(g1, X1) - ®(g2, X2) = (9192, Ad(g2) ™" X1 + X>)
®(g, X)"' = @(¢g7", — Ad(g).X).
Proof. (i) We have
dm(g1, 92)(X1, X2) = dm(g1, 92)(X1,0) + dm(g1, 92)(0, X3) = dpg, (g1). X1 + dAg, (g2). Xo.

(ii) From mo (idg xn) = 1, we derive 0 = dm(1,1)(X,dn(1).X) = X + dn(1).X and hence the
assertion.

(iii) First we note that for a product of two smooth manifolds M and N we have a canonical
diffeomorphism T'(M x N) — T M x T'N. Since the multiplication map m: G x G — G is smooth,
the same holds for its tangent map

Tm:T(GxG)=2TExTG - TG.



Nancy Lectures on Infinite-Dimensional Lie Groups 19

Let ¢:G — {1} denote the constant map and u: {1} — G the group homomorphism representing
the identity element. Then the group axioms for G are encoded in the relations m o (m x id) =
m o (id xm) (associativity), m o (n x id) = m o (id xn) = € (inversion), and m o (u x id) =
mo(id xu) = id (unit element). Using the functorial properties of T', we see that these properties
carry over to the corresponding maps on T'G and show that T'G is a Lie group with multiplication
T'm, inversion T'n, and unit element ®(1,0).

(iv) The smoothness of ® follows from the smoothness of T'm and ®(g,X) = T'm(g,X) for
(9,X) € G xT1(G) C T(G) x T(G) and the fact that the restriction of Tm to G x T1(G) C
TG x TG is smooth.

To see that ! is also smooth, let m: TG — G denote the canonical projection. Then

¢ LTG - Gxg, v~ (m(v), dA(p)-1 (7(v)) 0) = (m(v), m(v) " )

and the smoothness of the group operations on T'G imply the smoothness of &~ 1.
To derive an explicit formula for the multiplication in terms of the trivialization given by
&, we calculate

(I’(gl, X1> - @(92, XQ) = dm(gl, gg) (d)\gl (1)X1, d)\g2 (1)X2)
= dpg, (91)dAg, (1). X1 + dAg, (92)dAg, (1).X>
= dAg, g, (1) (dA;; (92)dpg, (1). X1 + X2)
= ®(g192, Ad(g2) 7" X1 + X2).
The formula for the inversion follows directly from this formula. ]

One of the main consequences of Proposition II1.1.3(iv) is that the tangent bundle of a Lie
group is trivial, so that we can identify V(G) with C*(G,g). We write V(G)! C V(G) for the
subspace of left invariant vector fields, i.e., those satisfying

(L1) X(g) = dAg(1).X (1)

for all g € G or, equivalently, X o A\, = T'(A;) o X if we consider X as a section X : @ - T'G
of the tangent bundle T'G'. These are the vector fields that correspond to constant functions
G — g. We see in particular that each left invariant vector field is smooth, so that the mapping

V@) =g, X~ X(1)
is a bijection. Moreover, Lemma I1.3.3 implies that for X,Y € V(G)" we have
[X,Y]oXg =T(Ag) o [X,Y],
i.e., that [X,Y] € V(G)!. Hence there exists a unique Lie bracket [-,-] on g satisfying
[X,Y](1) = [X(1), Y (1)]
for all left invariant vector fields on G'.

Definition ITI.1.4.  The Lie algebra L(G) := (g, [, ]) := (T1(G), [, ]) is called the Lie algebra
of G. ]

Proposition II1.1.5.  For a Lie group G the following assertions hold:
() If X;:G — TG is a left invariant vector field with X;(1) = X, then X,:g — —X;(g)~! is
a right-invariant vector field with X, (1) = X . The assignment g — V(G)", X — X, is an
antiisomorphism of Lie algebras.
(i) If 0:G x M — M is a smooth action of G on the smooth manifold M, then the map
To:TGxTM — TM is a smooth action of TG on TM . The assignment

o:g—> VM), with &(X)(p):=—do(1,p)(X,0)
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defines a homomorphism of Lie algebras.

Proof. (i) In view of Proposition III.1.3(ii), we have
X (9)=—dn(g™").Xi(g™")= — dn(g™")d\g-1(1).X = — dpy(1)dn(1). X =dp,(1).X
and this proves the first part. The second part follows from Lemma II1.3.3 which shows that
[X:, Y )(9) = dn(g™).[X0, Yi](97") = dn(9™).[X, Y]i(g™") = =X, Y] (9).

(ii) That To defines an action of TG on TM follows in the same way as in (iii) above by
applying T to the commutative diagrams defining a group action.

For the second part we pick p € M and write ¢,:G — M, g — g.p for the smooth orbit
map of p. Then the equivariance of ¢, means that ¢, o pg = 4. From this we derive

—dipp(9)-Xr(9) = —dpp(9)dpy(1).X = —dipy »(1).X = 6(X)(g.p)-
Therefore Lemma I1.3.3 and (i) imply that

o([X,Y])(p) = —dpp(1[X, Y] (1) = dipp(1)[ X, Y3 ] (1) = [6(X), 5 (Y)](p)- u
Proposition II1.1.6.  The adjoint action Ad:G x g — ¢,(g,z) — Ad(g).x is smooth. The
operators

adz:g — g, adz(y) :=dAd(1,y)(z,0)
satisfy
adx(y) = [z,y]-

In particular the bracket in g is continuous.
Proof. The smoothness of the adjoint action of G on g follows directly from the smoothness
of the multiplication of the Lie group T'G (Proposition III.1.3).

To calculate the linear maps adx:g — g, we consider a local chart p:V — g of G,
where V' C @ is an open 1-neighborhood and ¢(1) = 0. Let W C V be an open symmetric

1-neighborhood with WW C V. Then we have on the open set (W) C g the smooth
multiplication

zxy =™ (@) Y), =y € p(W).
From Tm(1,1)(v,w) = v+ w we immediately see that the Taylor series of * is given by
rxy=x+y+bz,y)+ Rz,y),

where R(x,y) is a smooth function whose derivatives up to order 2 vanish at (0,0), and
b:g x g — g is a continuous bilinear map.
For x € W let A;:W — W,y — o xy. Then the left invariant vector field corresponding
to v € g is given on (W) by
vi(z) = dA%(0).v,

and in 0 the first and second order term of its Taylor series is v + b(x,v). Therefore
[v, w] = [vr, w;](0) = dw;(0).v;(0) — dvy(0).w;(0) = dw;(0).v — dv(0).w = b(v, w) — b(w, v).
This implies that the Lie bracket on g is continuous.

For z € p(W) we write 71 = a1 (x) + az(z) + S(z), where «; is linear, ay is quadratic
and S(z) stands for terms of order at least 3. Now

O=z*2 ' =2+ a(z)+ as(z) + bz, ar(z)) + ...

and by comparing terms of order 1 and 2, we get a;(x) = —z and as(z) = —b(x, —z) = b(x, ).
Therefore

(zry)xa ' = (z+y+bz,y) + (—z+b(x,2) +ble+y,—x)+---
:y+b(w,y)—b(w,y)~l—-~-,

and by taking the derivative w.r.t. « in 0 in the direction z, we eventually get

ad z.y = b(z,y) — b(y, 2) = [z, 9] [
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From topological groups to Lie groups

The following lemma is helpful to obtain Lie group structures on topological groups.

Lemma IIL.1.7. Let G be a connected topological group and K = K~' be an open 1-
neighborhood in G. We further assume that K is a smooth manifold such that the inversion
is smooth on K and there exists an open 1-neighborhood V C K with V? C K such that the
group multiplication m:V x V. — K is smooth. Then there exists a unique structure of a Lie
group on G for which the inclusion map K — G induces a diffeomorphism on open neighborhoods
of 1.

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite-dimensional case) After shrinking
V and K, we may assume that there exists a diffeomorphism ¢: K — p(K) C E, where E is a
locally convex space, that V satisfies V = V1, V* C K, and that m:V? x V2 — K is smooth.
For g € G we consider the maps

g9V = E, pg(x) = (g ')

which are homeomorphisms of gV onto ¢(V). We claim that (¢4, 9V )geq is a smooth atlas of
G.

Let g1,92 € G and put W := aV NgV. If W # @, then g;lgl e VV1t =V2 The
smoothness of the map

Iﬁ =Py © (pg_ll |<pgl(W): Pg1 (W) — Pgo (W)

given by
(@) = gy (05,1 (1)) = @go (G107 (1)) = (g5 107" (z))

follows from the smoothness of the multiplication V2 x V — K. This proves that the charts
(pg, 9K )gec form an atlas of G. Moreover, the construction implies that all left translations of
G are smooth maps.

The construction also shows that for each g € V' the conjugation ¢,: G — G,z +— gxg™' is
smooth in a neighborhood of 1. Since the set of all these ¢ is a submonoid of G' containing V,
it contains V™ for each n € N, hence all of G because G is connected and thus generated by
V. Therefore all conjugations and hence all right multiplications are smooth. The smoothness
of the inversion follows from its smoothness on V and the fact that left and right multiplications
are smooth. Finally the smoothness of the multiplication follows from the smoothness at 1 x 1
because

ma (917, 92y) = 91292y = g192¢,1 (2)y = grgama (¢ (7), y)-

The uniqueness of the Lie group structure is clear because each locally diffeomorphic bijective
homomorphism between Lie groups is a diffeomorphism. ]

I11.2. Homomorphisms of Lie groups and Lie algebras

In this section we study the interplay between homomorphisms of Lie groups and Lie
algebras. This is very much in the spirit of differentiation and integration in elementary calculus.
In the finite-dimensional Lie theory one has three basic facts on homomorphisms between Lie
groups:

(1) Every homomorphism ¢:G — H between Lie groups induces a Lie algebra homomorphism
L(p):L(G) — L(H).
(2) If G is connected, then ¢ is determined uniquely by L(¢p).
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(3) If G is simply connected, then every Lie algebra homomorphism L(G) — L(H) is an L(y)
for some group homomorphism ¢:G — H.

These results are still morally true for infinite-dimensional Lie groups, but one has to
refine the assumptions. There are no problems with (1). Also (2) is still true, which is slightly
remarkable because solutions of ordinary differential equations on Fréchet spaces are in general
not uniquely determined by an initial condition (Remark I1.2.9). Nevertheless, we will see that
this uniqueness of solutions holds for the ODEs that we have to consider for (2) because we can
reduce it to the fact that a C'-map with vanishing derivative is locally constant (Lemma I1.2.3).
Property (3) is more subtle. For that we will assume that H is a regular Lie group (defined
below). All Banach-Lie groups and all Lie groups which are quotients of s.c.l.c. spaces modulo
discrete subgroups are regular, and, moreover, no non-regular Lie group modeled on an s.c.l.c.
space is known.

From Lie group homomorphisms to Lie algebra homomorphisms

Lemma II1.2.1. Let ¢o:G — H be a homomorphism of Lie groups. Then
L(p) :=dp(1):L(G) — L(H)

is a homomorphism of their Lie algebras.
Proof. Let z,y € L(G) = T1(G) and z;,y; the corresponding left invariant vector fields.
Then 9o Ay = Ay o ¢ for each g € G implies that

Toowm =L(p)(x)icp and Tpoy =L(p)(ylioy
and therefore

Tolz,y] = [L{p) (@), L) (yh]o e

(Lemma I1.3.3). Evaluating at 1, we obtain

L(p).[z, y] = [L(p)(x), L(p)(y)]- .

Remark IT1.2.2. The preceding lemma implies that the assignment G — L(G) and ¢ — L(p)
defines a functor L from the category of locally convex Lie groups to the category of locally convex
Lie algebras. ]

Definition IT1.2.3. (a) Let G be a Lie group and I C R an interval. For a smooth curve
v: 1 — G we define its left logarithmic derivative 6'(y): I — g by

§'()(@) = ()1 (1) = dAy -1 (7(1) A (1),
where v(t)~1.7/(t) has to be read in the group T'G (cf. Proposition III.1.3).
The right logarithmic derivative of v is likewise defined by
8" (@) =2 O () = dpyy-1 (7(8) A (1)

(b) Let M be a smooth manifold. The notion of logarithmic derivative generalizes naturally
to smooth maps v: M — G. We define the left logarithmic derivative §'(vy) € QY(M,g) (see
Definition I1.3.4) by

8" () (@) = y(2) " dy(2), ToM — g

and the right logarithmic derivative by
0" (7)(2) = dy(@) (@)™, ToM —g u
Lemma II1.2.4. For smooth functions v;: M — G, i = 1,2, we have
6"(7172) = 0"(m) + Ad(m) 0 6"(72)

and
8 (n2) = 8'(72) + Ad(y2) " 0 8 ().
Proof. This follows from a straightforward verification. ]



Nancy Lectures on Infinite-Dimensional Lie Groups 23

The following lemma provides a uniqueness result for the equation

J(=f feQ(M,g).

Lemma IT1.2.5. If two smooth functions v1,7v2: M — G have the same left logarithmic deriva-
tive and M is connected, then there exists g € G with v1 = Ag0 Y.

Proof. = We have to show that the function z — ~;(z)y2(x)"! is locally constant, hence

constant because M is connected. First we obtain with Lemma I11.2.4

§'(my ) = 0" (00 + Ad(12)0" () = 0" (95 1) + Ad(12)d" (32) = 0" (1272 ) = 0.
This implies that d(y17vy ) vanishes, and hence that Y1Y2 ! is locally constant. ]

Lemma II1.2.6. If f:M — G is a smooth map and p:G — H is a homomorphism of Lie
groups, then

(o f)=L(p)od'(f) and & (pof)=L(p)od" ()
Proof. Let x € M. Then po)\; = A, (,) o ¢ implies that

TooTAg=TAyg)0oTp:TG — TH.
Applying T to the map df = f.6!(f):TM — TG, we thus obtain

d(wo f)=(po f).(L(w) 2 d'(f))

and therefore

d'(p o f) =L(p) 0 8'(f).

The corresponding assertion for the right logarithmic derivative is proved in a similar way.m

Proposition III1.2.7. Let G be a connected Lie group and ¢1,p2:G — H two Lie group
homomorphisms for which the corresponding Lie algebra homomorphisms L(p;) and L(ps)
coincide. Then o1 = .

Proof. ([Mil83, Lemma 7.1]) Let g € G. Since G is connected, there exists a smooth curve
v:[0,1] = G with v(0) =1 and y(1) = g. Let ¢1,p2: G — H be two Lie group homomorphisms
with L(y1) = L(pz2). Then Lemma II1.2.6 implies that the two curves n; := ¢; 074:[0,1] = G
have the same left logarithmic derivative. Since both curves have the value 1 in 0, they coincide
by Lemma III1.2.5. Therefore

p1(9) = m (1) = n2(1) = p2(9),
which proves that ¢; = 3. |

Corollary I11.2.8. If G is a connected Lie group, then ker Ad = Z(G).
Proof. Let c¢y(z) = grg™". In view of Lemma II1.1.14, for g € G the conditions ¢, = idg

and L(c,) = Ad(g) = idg are equivalent. This implies the assertion. [

Regular Lie groups
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Definition II1.2.9. A Lie group G is called regular if for each closed interval I C R, 0 € I,
and X € C°(I,L(G)) the initial value problem (IVP)

(2.1) 70 =1, () =X,
has a solution yx € C*°(I,G) and the evolution map
evolg: C*¥ (R L(G)) - G, X — vyx(1)

is smooth.
For a regular Lie group G we define the exponential function

exp: L(G) = G by exp(X):=vx(1),

where X € L(G) is considered as a constant function R — L(G). As a restriction of the smooth
function evolg, the exponential function is smooth. [ ]

For a general Lie group G' we call a smooth function exps:g — G an exponential function
for G if for each X € g the curve vx (t) := exp(tX) is a solution of the IVP (2.1). According to
Lemma II1.2.5, such a solution is unique whenever it exists. Therefore a Lie group has at most
one exponential function.

Remark III.2.10. (a) As a direct consequence of the existence of solutions to ordinary dif-
ferential equations on open domains of Banach spaces and their smooth dependence on initial
values and parameters, every Banach—Lie group is regular.

(b) All known Lie groups modeled on s.c.l.c. spaces are regular.

Let A C C([0,1],C) denote the subalgebra of all rational functions endowed with the
induced norm || f]| := supg<i<y |F(t)|. In [GlO1c, Sect. 7] it is shown that the unit group A* of
the algebra A is a Lie group but that its exponential function is only defined on the subspace
C1 of L(A*)=A.

(¢c) If V is an s.cl.c. vector space, then V is a regular Lie group because the Fundamental
Theorem of Calculus holds for curves in V. The smoothness of the evolution map is trivial in
this case because it is a continuous linear map. Regularity is trivially inherited by all Lie groups
Z =V/T', where I' C V is a discrete subgroup.

(d) If, conversely, Z is a regular Fréchet—Lie group, then the exponential function exp:V — Zj
is a universal covering homomorphism of the identity component Zy of Z. Hence Zy = V/T,
where I' := kerexp 2 11 (Z) ([MT99)]). =

One of the main points of the notion of regularity is provided by the following theorem.

Theorem II1.2.11. If H is a regular Lie group, G is a simply connected Lie group, and
w:g = b is a continuous homomorphism of Lie algebras, then there exists a unique Lie group
homomorphism a:G — H with da(1) = ¢.

Proof. This is Theorem 8.1 in [Mil83] (see also [KM97, Th. 40.3]). The uniqueness assertion
follows from Proposition II[.2.7. The idea is to proceed as follows. Since G is connected, there
exists for each g € G a smooth function 7:[0,1] - G with g = (1) and y(0) = 1. Then the
regularity of H implies the existence of a solution 7:[0,1] = H of the IVP

n0)=1 and & (n) =pod(y).

We now want to define a(g) := n(1). It remains to verify that « is well defined and a smooth
Lie group homomorphism.
First we need the relation

(2.2) o Ad(Y() = Ad((t) o, 0<t< L.
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To obtain this relation, we first observe that the curve ~,(t) := Ad(y(t)) !.v satisfies the
differential equation

To(t) = =[0' () (1), Ad(v(£) 7 o] = = [0' (4(8)), 70 (D).

Hence B(t) := Ad(n(t)).p(v,(t)) satisfies

B'(t) = — Ad(n(#)) © ¢.[0' (v(1)), 7 (] + Ad(5(t)).18' (n(2)), ¢ © 7 (£)] = 0.

We conclude that 5(t) = £(0), which implies Ad(n(t)) o v = ¢ o Ad(7(2)).
Now we can show that the definition of o attempted above will define a group homomor-
phism. For curves n;, i = 1,2, with §'(n;) = ¢ 0 8'(7;) we use (2.2) to get

' (mm2) = 6'(n2) + Ad(n2) ™' 6' (m) = p o (6'(12) + Ad(12) "6 (1)) = @0 &' (1172),

so that 7172 corresponds to the product curve 17y, .
For the remaining arguments including that « is well defined, we refer to [Mil83]. |

Corollary III.2.12. Let G be a simply connected Lie group, V an s.c.l.c. space, and
a:g = V a continuous Lie algebra homomorphism. Then there exists a unique smooth group
homomorphism f:G —V with df (1) = «.

Proof. Since every s.c.l.c. vector space V is a regular Lie group (Remark III1.2.10), the
assertion follows from Theorem II[.2.11. Alternatively we can argue with Proposition 11.3.12. =

Lemma I11.2.13. If G is a Lie group with exponential function exp:g — G, then

dexp(0) =idyg.

Proof. For X € g we have exp(X) = yx(1), where yx is a solution of the IVP
10)=1, §'(y)=X.
This implies in particular that exp(tX) = vx (1) = vx(¢) and hence
dexp(X) = dyx(0) = X. ]

The preceding lemma is not so useful in the infinite-dimensional context as it is in the
finite-dimensional or Banach context. For Banach—Lie groups it follows from the Inverse Function
Theorem that exp restricts to a diffeomorphism of some open 0-neighborhood in g to an open
1-neighborhood in GG, so that we can use the exponential function to obtain charts around 1. We
will see below that this conclusion does not work for Fréchet—Lie groups because in this context
there is no general Inverse Function Theorem. This observation also implies that to integrate Lie
algebra homomorphisms to group homomorphisms it will in general not be enough to start with
the prescription a(expg @) := expy ¢(z) in the context of Theorem III1.2.11 because the image
of exp, need not contain an identity neighborhood in G'.
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II1.3. Some classes of examples

Linear Lie groups

Proposition II1.3.1. If A is a continuous inverse algebra, then its unit group A* is a Lie
group with Lie algebra A.

Proof. Since A* is an open subset of A, it carries a natural manifold structure. Moreover,
the multiplication on A is bilinear and continuous, hence a smooth map. Therefore it remains
to see that the inversion n: A* — A* is smooth. The assumptions on a c.i.a. imply that 7 is
continuous.
For a,b € A* we have
bl—atl=ata—-0bb"

which implies that for ¢t € R we get
n(a+th) —n(a) = (a+th)™ —a ! =a ' (~th)a™ = —ta *ha™".
Therefore n is everywhere differentiable with
dn(a)(h) = —a" ha™*.

Now the continuity of 1 implies that di: AX x A — A is continuous, hence that 7 is a C!-map.
Iterating this argument, we conclude from the chain rule that » is smooth. ]

Remark I11.3.2. (a) If A is a unital Banach algebra, then A is a continuous inverse algebra
and therefore A* is a Lie group. This applies in particular to the group GL(X) = B(X)* for a
Banach space X .

(b) If A is a unital ci.a., sois My(A), and therefore GLy,(A) := M, (A)* is a Lie group.

(¢c) If M is a compact manifold and B is a c.i.a., then A := C*°(M,B) is a ci.a. with
unit group A* = C*(M,B*). For B = M,(C) for a c.i.a. C we obtain in particular that
C>(M,GL,(C)) = GL,,(C*(M,(C)) is a Lie group. ]

Current groups

Definition II1.3.3. If X is a topological space and K a topological group, then we consider
C(X, K) with the group structure given by pointwise multiplication:

(F9)(x) := f(x)g(x), =€ X.
For a compact subset C' of X and an identity neighborhood U C K we define
W(C,U) = {f € C(X, K): f(C) C U}.
The sets W (C, U) form a neighborhood basis for a group topology on C (X, K) called the topology

of uniform convergence on compact subsets of X. In this sense C(X,K) carries a natural
structure of a topological group. ]
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Definition I11.3.4. Let M be a finite-dimensional manifold and K a Lie group. Then we
obtain a natural topology on the group G := C*°(M, K) as follows.

Let ¢ := L(K) denote the Lie algebra of K. Then the tangent bundle TK of K is a Lie
group isomorphic to €x K, where K acts on £ by the adjoint representation (Proposition I11.2.2).
Iterating this procedure, we obtain a Lie group structure on all higher tangent bundles T" K,
which are diffeomorphic to £2" ! x K.

For each n € Ny we obtain topological groups C(T"M,T"™K) by using the topology of
uniform convergence on compact subsets of 7™M (Definition II1.3.3). Therefore the canonical
inclusion map

C*(M,K)— [[ c@"M,T"K)
nENp
leads to a natural topology on C'*° (M, K) turning it into a topological group.

For compact manifolds M these groups can even be turned into Lie groups with Lie algebra
C>(M,t). Here C*°(M,¥) is endowed with the topology defined above if we consider ¢ as an
additive Lie group. The charts of G can be obtained easily from those of K as follows. If
@:U — ¥ is a chart of K, i.e., a diffeomorphism of an open subset U C K onto an open subset
@(U) of &, then the set Up := {f € G: f(M) CU} is an open subset of G and the maps

om:Uy = g:=C7(M,8), f—pof

define an atlas of G. For details we refer to [GI01b].
If expg: € — K is an exponential function of K, then we immediately obtain an exponential

function
expg:g =C®(M,t) - G=C*(M,K), & expgof. n

Diffeomorphism groups

In this subsection we discuss the diffeomorphism group Diff (M) of a compact manifold
M . We will explain how this group can be turned into a Lie group with Lie algebra g = V(M),
the Lie algebra of smooth vector fields on M .

One difficulty arising for diffeomorphism groups is that, although they have an exponential
function, this exponential function is not a local diffeomorphism of a 0-neighborhood in g onto
an identity neighborhood in G'. Therefore we cannot use the exponential function to define charts
for G. But there is an easy way around this problem.

Let g be a Riemannian metric on M and

Exp:TM — M

be its exponential function, which assigns to v € T,(M) the point (1), where :[0,1] — M is
the geodesic segment with v(0) = p and 7'(0) = v. We then obtain a smooth map

®:TM —MxM, v~ (p,Expv), veT,(M).

There exists an open neighborhood U C T'M of the zero section such that ® maps U diffeo-
morphically onto an open neighborhood of the diagonal in M x M. Now

Ug:={XeV(M):X(M)CU}
is an open subset of the Fréchet space V(M), and we define a map
p:Ug = CF(M, M), &(X)(p) := Exp(X(p)).

It is clear that ¢(0) = idas. It is not hard to show that after shrinking Uy, we may w.l.0.g. assume
@(Uy) C Diff(M). To see that Diff (M) carries a Lie group structure for which ¢ is a chart, one
has to verify that the group operations are smooth in a 0-neighborhood when transfered to Uy
via . Then Lemma III.1.7 applies after Diff (M) is endowed with a group topology for which
@ is a homeomorphism.
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Remark IT1.3.5. (a) If M and N are compact manifolds, then the mapping space C*° (M, N)
has a natural manifold structure for which the tangent space T (C*° (M, N)) coincides with the
space of smooth sections of the bundle f*T'N — M.

(b) For a compact manifold the group Diff (M) is open in the space C*°(M, M), so that one can
also use (a) to get a natural manifold structure on Diff (M). To verify that Diff (M) is open, one
picks a Riemannian metric g on M and defines

o(f) = inf{id(fézz’i;y)):x £y E M}

Then one shows that ¢ is continuous on C*°(M, M) and that
Diff(M) = {f € C*(M, M):6(f) > 0}. u
Below we show that the exponential function
exp: V(S') — Diff(Sh)

is not a local diffeomorphism by proving that every identity neighborhood of Diff(S!) contains
elements which do not lie on a one-parameter group, hence are not contained in the image of
exp.

Let G := Diff { (S!) denote the group of orientation preserving diffeomorphisms of S!; i.e.,

the identity component of Diff(S!). To get a better picture of this group, we first construct its
universal covering group G. Let
G := {¢ € Diff(R): (V& € R)p(z + 2r) = o(z),¢' > 0}.
We consider the map
¢R—SY=R/27Z, z+ x+27Z

as the universal covering map of S!. Then every diffeomorphism ¢ € Diff(S!) lifts to a
diffeomorphism 1 of R commuting with the translation action of the group 27Z = m;(S?!),
which means that ¢¥(z + 27) = ¢¥(z) + 27 for each z € R. The diffeomorphism ¢ is uniquely

determined by the choice of an element in ¢~!(¢/(q(0))). Moreover, v is orientation preserving
means that (1)’ > 0. Hence we have a surjective homomorphism

46:G = G, qa(p)(a() = q(p(x))

with kernel isomorphic to Z.

The Lie group structure of G is rather simple. It can be defined by a global chart. Let
C32(R,R) denote the Fréchet space of 27-periodic smooth functions on R, which is considered
as a closed subspace of the Fréchet space C*°(R,R). In this space

U:={peC(RR):¢ > -1}
is an open convex subset and the map
U =G, o(f)(z):=z+ f(z)
is a bijection.

In fact, let f € U. Then ®(f)(x+27) = ®(f)(z)+27 follows directly from the requirement
that f is 2w-periodic, and ®(f)’ > 0 follows from f’ > —1. Therefore ®(f) is strictly increasing,
hence a diffeomorphism of R onto the interval ®(f)(RR). As the latter interval is invariant under
translation by 27, we see that ®(f) is surjective and therefore ®(f) € G. Conversely, it is easy
to see that ®~1(¢)(z) = ¢(z) — x yields an inverse of &. We define the manifold structure on

G by declaring @ to be a global chart. With respect to this chart, the group operations in G
are given by

m(f,9)(x) = f(g(z) +2) —x and  9(f)(z) = (f +idp) " (2) — =,

which can be shown directly to be smooth maps. We thus obtain on G the structure of a Lie
group such that ®:U — G is a diffeomorphism. In particular G is contractible and therefore
simply connected, so that the map gg: G — G turns out to be the universal covering map of G.
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Theorem I1.3.7.  Every identity neighborhood in Diff(S') contains elements not contained in
the image of the exponential function.

Proof. First we construct certain elements in G which are close to the identity. For 0 < e < %
we consider the function

FROR oo o+~ +esin?(n)
n

and observe that f € G follows from f'(z) = 1+ 2ensin(nz) cos(nz) = 1 + ensin(2nz) > 0.
Step 1. For n large fixed and € — 0 we get elements in G which are arbitrarily close to idg.

Step 2. q¢(f) has a unique periodic orbit of order 2n on S*: Under g¢(f) the point ¢(0) € St

is mapped to T etc., so that we obtain the orbit

q(0) = q(%) = q(22) — ... = q(Z=1T) 5 4(0).

n

For 0 < xp < & we have for x; := f(zo):
s 2w
To+— <21 < —,
n n

and for x, := f(x,—-1) the relations

T 27 s
O<axg<ar; ——<To—— < -+ < —
n n n

Therefore x — xg & 27Z for each k € N, and hence the orbit of ¢(xo) under gq(f) is not finite.
This proves that ¢ (f) has a unique periodic orbit and that the order of this orbit is 2n.

Step 3. qo(f) # g for all g € Diff(S!): We analyze the periodic orbits. Every perodic point of
g is a periodic point of g? and vice versa. If the period of & under ¢ is odd, then the period of
under g and g¢2 is the same. If the period of z is 2m, then its orbit under g breaks up into two
orbits under g2, each of order m. Therefore g can never have a single periodic orbit of even
order, and this proves that gg(f) has no square root in Diff(S!). It follows in particular that
gc(f) does not lie on any one-parameter subgroup, i.e., go(f) # exp X foreach X € V(M). =

Remark IIL.3.8. (a) If M is a compact manifold, then one can show that the identity
component Diff (M)o of Diff (M) is a simple group (Epstein, Hermann and Thurston; see [Ep70]).
Being normal in Diff(M ), the subgroup (expV(M)) coincides with Diff(M),. Hence every
diffeomorphism homotopic to the identity is a finite product of exponentials. This observation is
due to D. McDuft.

(b) Although Diff (M )y is a simple Lie group, its Lie algebra V(M) is far from being simple. For
each subset K C M the set Vi (M) of all vector fields supported in the set K is a Lie algebra
ideal which is proper if K is not dense. u

I11.4. Non-enlargible Lie algebras

Definition ITI.4.1. We call a locally convex Lie algebra g with continuous Lie bracket [, ]
enlargible if there exists a Lie group with Lie algebra g. ]

Examples I11.4.2. If g is a finite-dimensional Lie algebra, endowed with its unique locally
convex topology, then g is enlargible. This is Lie’s Third Theorem. One possibility to prove this
is first to use Ado’s Theorem to find an embedding g — gl,,(R) and then to endow the group
G := (expg) C GL,(R) with a Lie group structure such that L(G) = g. ]
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Example I11.4.3. To construct an example of a non-enlargible Banach—Lie algebra, we proceed
as follows.

Let H be an infinite-dimensional complex Hilbert space and U(H) its unitary group. This
is a Banach-Lie group with Lie algebra

LUH))=uH):={XeB(H):X"=-X}.
The center of this Lie algebra is given by
3(u(H)) = Ril.
We consider the Banach-Lie algebra
g:= (w(H) ®u(H))/Ri(1,V21).

We claim that g is not enlargible. Let us assume to the contrary that G is a connected Lie group
with Lie algebra g. Let
guH)®uH) =g

denote the quotient homomorphism. According to Kuiper’s Theorem (Theorem IV.3.1 below),
the group U(H) and hence the group Gy := U(H) x U(H) is contractible and therefore in
particular simply connected. Hence there exists a unique Lie group homomorphism

f:Gi =G with L(f)=gq.
We then have expg oq = f o expg, , and in particular
expker g C ker f.

As Z(Gy) = T? is a two-dimensional torus and expker ¢ is a dense one-parameter subgroup of
Z(G1), the continuity of f further implies that Z(G1) C ker f and hence that 3(g1) C ker L(f) =
ker ¢, which is a contradiction. [ ]

The first systematic discussion of the non-enlargibility problem for Banach-Lie algebras is
given in [EK64], based on earlier results of van Est ([Est62]).

Theorem II1.4.4. (van Est-Korthagen, 1964) Let g and b be Banach—Lie algebras. If b is
enlargible and ©:g — b is injective, then g is enlargible.

Proof. (Idea) Let H be a Lie group with Lie algebra h. The main idea of the proof is to
endow the subgroup G := (exp p(g)) of H with a Lie group topology for which L(G) = g. This
is much more complicated than in the finite-dimensional case because it is harder to control the
behavior of analytic subgroups, especially when the image of ¢ is not closed. u

Corollary I11.4.5. If g is a Banach-Lie algebra, then g/ad3(g) = adg is enlargible.

Proof. The adjoint representation ad: g — derg factors through an injective homomorphism
9/3(g) = derg, and

derg :={D € B(g): (Va,y € g) D([z,y]) = [D(x),y] + [z, D(y)]}-
is the Lie algebra of the Banach—Lie group Aut(g). [

The preceding corollary reduces the enlargibility problem for Banach-Lie groups to the
question when a central extension of an enlargible Lie algebra is again enlargible. In this context
a central extension is a surjective morphism ¢:g — g of Banach—Lie algebras for which 3 := kergq
is central in g. The Open Mapping Theorem implies that g = g/3 as Banach-Lie algebras. Now
the question is the following: given a connected Lie group G with Lie algebra g, when is there
a central group extension Z — G — G “integrating” the corresponding Lie algebra extension?
Without going too much into details, we cite the following theorem which points into a direction
which can be followed with success for general Lie groups (see [Ne02al).
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Theorem I11.4.6.  (van Est-Korthagen) Let G be a simply connected Banach—Lie group and g
its Lie algebra. Then one can associate to each central Banach—Lie algebra extension 3 < g — g
a singular cohomology class ¢ € H*(G,3) = Hom(my(G),3) which we interpret as a period map

per,: 2 (G) — 3.

Then a corresponding central extension Z — G —» G exists for a Lie group Z with Lie algebra
3 if and only if im(per,) C 3 is discrete. [

Remark IT1.4.7. (a) Let g be a Banach-Lie algebra and G,q a simply connected Lie group
with Lie algebra g/3(g) (Corollary II1.4.5). Then the preceding theorem implies in particular
that g is enlargible if and only if the period homomorphism per;: 72(Gaqa) — 3(g) associated to
the central extension ad:g — g/3(g) has discrete image.

The problem with this characterization is that in general it might be quite hard to determine
the image of the period homomorphism.
(b) If g is enlargible and G is a simply connected Lie group with Lie algebra g, then the
long exact homotopy sequence associated to the homomorphism ¢: G — Gaq with kernel Z(G)o
induces a surjective connecting homomorphism

m2(Gaa) = m(Z(G))

(cf. Remark IV.1.1 below) and by identifying the universal covering group of Z(G)o with
(3(g),+), one can show that this connecting homomorphism coincides with the period map.
Its image is the group m (Z(G)), considered as a subgroup of 3. With this picture in mind one
may think that the non-enlargibility on a Banach-Lie algebra g is caused by the non-existence
of a Lie group Z with Lie algebra 3(g) and fundamental group im(per,).

(c) If g is finite-dimensional, then G,q is also finite-dimensional, and therefore 72 (G,q) vanishes
by a theorem of E. Cartan (Remark IV.1.3). Hence the period homomorphism per, is trivial for
every finite-dimensional Lie algebra g. ]

Example II1.4.8. We consider the Lie algebra
g:= (uw(H)®u(H))/Ri(1,V21)

from Example II1.4.3. Then 3(g) = iR and one can show that the image of the period map is
given by
2mi(Z + V2Z) C iR

which is not discrete. n

Proposition I11.4.9.  Let G be a connected complex Lie group with Fréchet-Lie algebra g.
Then each closed ideal of g is invariant under Ad(G).

Proof. Let a < g be a closed ideal. Since G is assumed to be connected, it suffices to show
that there exists a 1-neighborhood U C G with Ad(U).a C a. We may w.l.o.g. assume that
U is diffeomorphic to an open convex 0-neighborhood in g. Then we find for every g € U a
connected open subset ¥V C C and a holomorphic map p:V — G with p(0) =1 and p(1) =g.

Let wp € a and w(t) := Ad(p(t)).wo for t € V.. We have to show that w(l) = Ad(g).wo €
a. For the right logarithmic derivative v := 6"(p): V — g we obtain the differential equation

w'(t) = Ad(p(t)).[p™! (1)1 (£), wo] = [6" (D) (1), w(t)] = [v(t), w(B)]-

Since the maps v and w are holomorphic, their Taylor expansions in 0 converge:

v(t) = Zvnt" and  w(t) = ant"
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for t close to 0 in V. Then the differential equation for w can be written as

n

S0+ Dwaat" = o () = o), w(®)] = 31" S o, wai].

n n k=0

Comparing coefficients now leads to

Wpt1 = ntl [Wc, wn—k]a

k=0

so that we obtain inductively w, € a for each n € N. Since a is closed, it follows that w(t) € a
for ¢ close to 0. Applying the same argument in other points to € V', we see that the set w!(a)
is an open closed subset of V', and therefore that a(1) € a because a(0) € a and V is connected.m

The preceding proposition can be generalized to the larger class of real analytic Lie groups,
which we have not defined in these notes. Then this result can be used to conclude that the
Lie group Diff (M) does not possess an analytic Lie group structure. Indeed for each non-dense
subset K C M the subspace

ag ={X e V(M): X |k =0}

is a closed ideal of V(M) not invariant under Diff(A/) because Ad(p).ax = a,x) for ¢ €
Diff(M).

Theorem I11.4.10.  (Lempert) Let M be a compact manifold, g := V(M) the Lie algebra of
smooth vector fields on M and gc its complexification. Then gc is not enlargible to a reqular
Lie group.

Proof.  (Sketch; see [Mil83]) For each subset K C M the subspace
ag 1= {X S g(c:X|K = 0}

is a closed ideal of gc¢ .

Let G be a regular Lie group with Lie algebra g and let ¢: D — Diff(M)o denote the
universal covering homomorphism of Diff (M ). Then the inclusion homomorphism g < gc can
be integrated to a Lie group homomorphism ¢: D — G. For g € D we then have

Ad(p(g))-ax = du(g) (k)
contradicting the invariance of ax under Ad(G). =

Remark III.4.11. In [Omo81] Omori shows that for any non-compact smooth manifold M
the Lie algebra V(M) is not enlargible. =

IV. The topology of infinite-dimensional Lie groups

There are several methods to study the topology of infinite-dimensional Lie groups which are
adapted to the different classes of groups considered above. We are mainly interested in the first
three homotopy groups of a Lie group G, namely 7o (G) (the group of connected components),
71 (G) (the fundamental group), and w2 (G). The importance of mo(G) is clear because one wants
to know whether a concretely given group is connected or not. Information on the fundamental
group is important for the integration of Lie algebra homomorphisms to group homomorphisms
and hence in particular for representation theory. The interest in w2 (G) comes from the crucial
role this group plays for enlargibility of Lie algebras and for central extensions of G.
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IV.1. Finite-dimensional Lie groups

Let G be a connected finite-dimensional Lie group with finitely many connected compo-
nents and K C G a maximal compact subgroup. Then G = K x R? as smooth manifolds holds
for some d € Ny. This implies in particular that the inclusion map K — G is a homotopy
equivalence, hence induces isomorphisms 7, (K) — 7,(G) for each k € Ny. This reduces all
questions on the topology of finite-dimensional Lie groups to compact groups.

Remark IV.1.1. A crucial tool to analyze homotopy groups of Lie groups and their homo-
geneous spaces is the long exact homotopy sequence of fiber bundles. If ¢: P — B defines a
K -principal bundle and the spaces B and P are connected, then the long exact homotopy
sequence reads as follows:

7T3(B) — WQ(K) — 7T2(P> — 7T2(B) — 7T1(K) — 7T1(P) — 7T1(B) —» 7T0(K). L]

Lemma IV.1.2. If X is a semilocally simply connected arcwise connected space and q: XX
is the universal covering of X, then q induces isomorphisms

(@) e (X) = m(X), k> 2.

Proof. We consider ¢: X — X as a principal bundle for the discrete group K := 7, (X) and
apply the exact homotopy sequence (Remark IV.1.1). Since K is discrete, we have 7 (K) =1
for k£ > 1, and the assertion follows from the exactness of the sequence. ]

Remark IV.1.3. We recall some results on the homotopy groups of compact Lie groups K.
First we have Cartan’s Theorem
T2 (K) =1

([Mi95, Th. 3.7]), and further Bott’s Theorem that for a compact connected simple Lie group K
we have

7T3(K)

1

Z

([Mi95, Th. 3.9]).
In [Mi95, pp. 969-970] one also finds a table with 7 (K) up to k = 15, showing that

Z2 D Z2 for K = 80(4)

(K & Zo for K = Sp(n),SU(2),S0(3),50(5)
1 for K = SU(n), n > 3 and SO(n), n > 6
1 fOI‘K:Gz,F4,E6,E7,E8.
ZQ D ZQ for K = SO(4)
) Zs for K = Sp(n),SU(2),S50(3),50(5)
™ (K) =4 for K = SU(n), n > 3 and SO(6)
1 for K =S0(n), n > 7, Ga, Fy, Eg, E7, Eg.

Remark IV.1.4. (a) Let K be a connected compact Lie group, K, ..., K, the connected
simple normal subgroups of K, and Z(K) its center. Then the multiplication map

Z(K)ox Ky x...x K, - K

has finite kernel, hence is a covering map. Therefore we obtain for each £ > 1 from Lemma IV.1.2

T (K) = HW(KJ')
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because Z(K)p is a torus, so that all its homotopy groups of degree > 2 vanish.

(b) If K is compact and simple, then a generator of 75 (K’) can be obtained from a homomorphism
n:SU(2) = S® — K. More precisely, let o be a long root in the root system Ap of € and
t(a) C € the corresponding su(2)-subalgebra. Then the corresponding homomorphic inclusion
SU(2) = S? —+ K represents a generator of w3(K) ([Bo58]).

(¢) A fundamental result in topology states that the spheres S¢ carry a Lie group structure if
and only if d € {0,1,3}.

For finite-dimensional Lie groups this has the nice consequence that for d =1 and d = 3
each homotopy class S¢ = K can be represented by a group homomorphism. For d = 3 this
follows from (b) and for d = 1 it follows from the fact that for a maximal torus 7' C K the
homomorphism

Hom(T,T) = m (T) — m (K)

is surjective.
(d) For a topological group G and k > 1 the groups m;(G) are abelian. The groups

wg(G) = Q1 (G)

are called the rational homotopy groups of G. For most purposes, including applications to
the period maps arising for central extensions, it suffices to know the rational homotopy groups
because each homomorphism from 7;(G) to a rational vector space factors through the natural
map 7g: 7, (G) — 72 (G) which kills the torsion subgroup of 74 (G).

We have seen above that a finite-dimensional connected Lie group is homotopy equivalent
to a compact connected Lie group, hence, up to a finite covering to a product of a torus and
finitely many compact simple Lie groups. For a simply connected simple compact Lie group it is
known that its rational homotopy groups are the same as those of a product of odd-dimensional
spheres whose dimensions can be computed from the corresponding root system. The rational
homotopy groups of the sphere are known to be

Qq2d4+y ~ JQ fork=2d+1 Q/q2dy ~ JQ fork=2dand k =4d -1
(S )= {O otherwise and g (87) = {0 otherwise.

We therefore have complete information on the rational homotopy groups of finite-dimensional
Lie groups. In particular we note that if K is a finite-dimensional Lie group, then 79 (K) vanishes
and 74 (K) is a torsion group because the rational homotopy of K is the same as of a product
of odd-dimensional spheres. ]

IV.2. Linear Lie groups

In this section we briefly discuss the unit group A* of a unital continuous inverse algebra
(c.i.a.) A (Proposition I11.3.1). It is quite hard to get direct access to the homotopy groups
7k (GL,(A)) for a fixed n, but the situation becomes much better if we let n tend to infinity
and study the direct limit of the homotopy groups for increasing n. In this sense we look at a
“stable” picture. The natural inclusions

2.1) GL,(A) & GLnsi(4), ars (8 2)

lead to a sequence of inclusions
A*=GLi(4A) > ... 2> GL,(4) — ...
Definition I'V.2.1. For i € N we define the topological K -groups of A by

Kz(A) = hi? Wifl(GLn(A))v
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where the connecting maps
7i-1(GLa(4)) = w1 (GLas1(A))

are the group homomorphisms induced by the natural inclusions (2.1).

The definition of the group Ky(A) is a bit more complicated. For a topological associative
algebra B let Idem(B) denote the set of idempotents in B and m(Idem(B)) the set of arc-
components of Idem(B) with respect to the subspace topology induced by B. Now let

P(A) :=lim mo(Idem(M,(4)))
—
as a set, and observe that this set admits a monoid structure given by

[e] + [f]:==e® f],
where for e € M, (A) and f € M,,,(A) the idempotent ¢ ® f € M, +,,(A4) is represented by the

matrix (8 ?f) The free group or Grothendieck group G(P(A)) over the monoid P(A) is a

group with a monoid morphism ¢: P(A) — G(P(A)) which has the universal property that for
each monoid morphism f: P(4) — G, G a group, there exists a unique group homomorphism
fa:G(P(A)) — G with fg o= f. We define

A more algebraic approach is to define P(A) directly as the set of isomorphism classes of finitely
generated projective A-modules, which leads to the same object. ]

The use of K -theory for the topology of the unit groups of algebras is obvious from the
following theorem.

Theorem IV.2.2.  (Bott periodicity) For a complex unital c.i.a. the following assertions hold:
(1) Kl(A) = KH_Q(A) fOT’ 1€ N() .

(2) Kiy1(A) 2 mi(GLs(A)) if A is a Banach algebra.

Proof. [Bos90, Prop. A.1.5]. =

A major point of the K -groups of an algebra A is that K -theory provides tools like exact
sequences which can be used to get information on the groups Ko(A4) and K;(A) of a ci.a.. All
other K -groups are redundant for a complex c.i.a. by Bott periodicity.

Directly relevant for the topology of A* are the homomorphisms

7T0(AX) —)Kl(A), 7T1(A><> —)Ko(A> and 7T2(A><) —)Kl(A>
Remark IV.2.3. The definition of the K -groups implies almost directly that they are stable
in the sense that the inclusion A < M, (4),a — (8 8) induces isomorphisms
Ki(A) = Ki(Mn(A))
for each n € N. ]

Examples IV.2.4. (a) If A = B(H) is the algebra of bounded operators on an infinite-
dimensional complex Hilbert space, then we have for each n € N the relations

GLn(B(H)) = My (B(H))* = B(H")" = GL(H"),

and all these groups are contractible by Kuiper’s Theorem IV.3.1 below. Therefore K;(B(H)) =0
for each <.
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(b) For A =C we have

Ko(C) = lim m (GL,(C)) = m(C*)=Z and K;(C)= lim 719(GLn(C)) = 0.

For A = M,(C) Remark IV.2.3 now leads to

(¢) If X is a compact space and A = C'(X,C) with its natural Banach algebra structure, then
Ko(A) = K°(X) and K;(A) = K }(X) are the K-groups of the topological space X defined
by topological K -theory via vector bundles on X .

In particular we have for the circle S! and, more generally, for tori T¢:

Ko(C(S',C) 2Ky (CELC) =L and  Ko(C(T40) = Ky(C(T4C) =22, m

Remark IV.2.5. (a) If ¢: A — B is a continuous morphism of c.i.a.’s with dense range, then
K;(p): K;(A) = K;(B) is an isomorphism for each j.

(b) Let B be a complex Banach algebra and a: R x B — B a continuous isometric action of R
on B by automorphisms. Let I C R be a compact interval containing 0 and write B(I) C B
for the subalgebra of all those elements for which the orbit map R — B extends to a continuous
map R + il — B holomorphic on R + iI°. Then B(I) is a dense subalgebra of B and the
inclusion B(I) < B induces an isomorphism in K -theory ([Bos90, Th. 1.1.1]).

Let 0 < r <1 < R and consider the annulus

A, pi={z€C:ir <|z| <R}
We write O(A, r) for the Banach algebra of continuous functions on A, r which are holomorphic
on its interior. For B := C(S!,C) and for the action of R on B given by (¢.f)(z) := f(ze'), the
preceding result implies that the restriction map O(A, g) < C(S!,C) induces an isomorphism
in K -theory. This leads to
Ko(O(Arp)) = Ko(C(S1,C)) = K°(SY) 2 2

and
K\(O(4rr)) = K (C(S),C)) = m(GL(C(S,C))) = m (GL(C)) = Z. .

IV.3. Groups of operators on Hilbert spaces
Theorem IV.3.1. (Kuiper’s Theorem for general Hilbert spaces) If H is an infinite-

dimensional Hilbert space over K =R, C or H, then the group GL(H,K) of invertible K-linear
automorphisms of H is contractible. ]

Kuiper’s Theorem can be used to prove that many “classical” groups of operators on a
Hilbert space are contractible. Below we briefly discuss these applications.

Definition IV.3.2. (a) If H is a Hilbert space over K € {R,C,H }, then we define
U(H,K) :={g € GL(H,K):g*g =99 =1}
as the unitary part of this group. We also write

O(H):=U(H,R), U(H):=U(H,C) and Sp(H):=U(H H).
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(b) Let H be a complex Hilbert space and I be an antilinear isometry with I? € {£1}. Then
GL(H,I):={g € GL(H):Ig*I"' = g7'}
is a complex Lie subgroup of GL(H). For I? = 1 we then have
U(H,I):=UH)NGL(H,I) 2 0O(Hr) with Hp:={z€ H:l.x=u},

and for I? = —1 we have
U(H,I) = U(H,H) = Sp(H),

where the quaternionic structure on H is given by the subalgebra C1 + CI = H of B(H,R),
the real linear endomorphisms of H .

(¢) (Hermitian groups) Let H be a complex Hilbert space and H = Hy & H_ be an orthogonal
decomposition. Further let T'=T* € B(H) with Hy = ker(T'F1). We define the corresponding
pseudo-unitary group

U(Hy,H ):={g € GL(H):Tg*T™' =g~ '}.
We define Q(z,y) := Im(z,y) and write H® for the real Hilbert space underlying H . Then
Sp(H, Q) := {g € GL(H®,R): (Vv,w € H®) Q(g.v, g.w) = Q(v,w)}

is called the symplectic group of H . If we start with the real Hilbert space H® and consider an
isometric complex structure I on H®, then we can define

Qx,y) = —(IT.x,y) = (x,L.y)

and put
Sp(H®, 1) := {g € GL(H®,R): (Vo,w € H*) Q(g.v,g.w) = Qv,w)}.

It is easy to see that both constructions lead to isomorphic groups Sp(H®, ) = Sp(H, ).
Now let I be a conjugation on the complex Hilbert space H and Hy C H a subspace for
which we get an orthogonal decomposition H = H, ® H_ with H_ :=I.H, . Then we define

O*(H,I):=U(H,I)NU(H,, H_). n

Theorem IV.3.3. If H is an infinite-dimensional Hilbert space over K € {R,C,H }, then

the following groups are contractible:

(i) the group of K-linear automorphisms GL(H,K).

(i) the group of isometric K-linear automorphisms U(H,K), and in particular the groups
O(H)=U(H,R), UH)=U(H,C) and Sp(H) = U(H,H).

(iii) the group GL(H,I) if H is complex and I an antilinear isometry with I? € {£1}. More-
over, GL(H,I) has a smooth polar decomposition.

(iv) the hermitian groups U(Hy,H_), where H = H{ ® H_ is an orthogonal decomposition with
two infinite-dimensional summands, Sp(H,Q), and O*(H,I).

Proof. (i) is Theorem IV.3.1.

(ii) follows from (i) and the polar decomposition GL(H,K) = U(H,K) x Herm(H,K) of the

group GL(H,K) with the unitary part U(H,K).

(iii) In view of Definition IV.3.2(b), the group U(H,I) is contractible, because it is one of the

groups in (ii). Hence the assertion follows from the polar decomposition of GL(H,I) which can

be obtained as follows. We consider the automorphism 7(g) := I(g*) 1! of GL(H) and write

Tg(x) := —Iz*I~! for the corresponding antilinear automorphism of its Lie algebra gl(H). Then

GL(H,I) =GL(H)" := {g € GL(H):7(9) = g}
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Let g = ue® be the polar decomposition of g € GL(H). Then 7(g) = 7(u)e™s(®) is the polar
decomposition of 7(g), so that the uniqueness of this decomposition implies that 7(g9) = g, is
equivalent to 7(u) = u and 74(z) =, i.e., w € U(H,I) and = € Herm(H, I).
(iv) For the hermitian groups we will see below that they have polar decompositions with

UH ,H_.)NU(H) = U(Hy) x UH_), Sp(H,Q)NO(H®)=U(H)
and

O"(H,I)NnU(H) 2 U(H,),

where H =2 H_ @ [.H; as in Definition IV.3.2(c). Therefore (ii) implies that all these groups
are contractible.

To prove the polar decomposition of U(Hy,H_), let g € GL(H) with polar decomposition
g=ue®, u € UH) and & = 2*. For T as in Definition IV.3.2(c) we consider the automorphism
7(g9) := T(g*)*T~"! of GL(H) and write 74(z) := —T2*T~! for the corresponding antilinear
automorphism of its Lie algebra gl(H). Then 7(g) = 7(u)e™®) is the polar decomposition of

7(g), so that the uniqueness of this decomposition implies that 7(g) = ¢ is equivalent to 7(u) = u
and 74(z) = x. Therefore g € U(H,, H_) if and only if

weUHy, H.)NUH) = UHL)xUH-) and zecu(Hy H_).
To see that Sp(H, ) is adapted to the polar decomposition, we observe that
Uz,y) = Im(z,y) = Re(z, iy) = (=, Jy),
where (-,-) := Re(,-) denotes the real scalar product on H®. Therefore g € Sp(H,Q) is
equivalent to g' Jg = J,i.e., g = 7(g9) := J(g")~'J~!. Then 7 is an involutive automorphism of
GL(H®) and 74(x) := —Ja T J~! is the corresponding Lie algebra automorphism. Let g = ue® be
the polar decomposition of g € GL(H®), where u € O(H®) and 2" = . Then 7(g) = 7(u)e™s(*)
is the polar decomposition of 7(g) because ue ™~ is the polar decomposition of (g")~!. Therefore
g € Sp(H, Q) is equivalent to 7(u) = u, i.e.,, u € U(H), and to Jx = —zJ, i.e., z is antilinear.
The argument for the group O*(H,I) is similar. =

IV.4. Current groups

Let K be a Lie group and M a compact connected manifold. We write C*° (M, K) for the
corresponding current group. In M we fix a base point xj; and in any group we consider the
unit element 1 as the base point. We write C°(M, K) C C*°(M, K) for the subgroup of base
point-preserving maps.

We then have

C®(M,K)=CX(M,K)x K
as Lie groups, where we identify K with the subgroup of constant maps. This relation already
leads to

(4.1) e (C® (M, K)) = 1 (C® (M, K)) x m(K), ke Np.

For topological spaces X and Y we write [X,Y] for the set of homotopy classes of
continuous maps f: X — Y, and for pointed spaces (X, zg) and (Y, yo) we write [X, Y], for the
set of all pointed homotopy classes of continuous base-point-preserving maps. For two compact
pointed spaces we define

XVY =X x{yo}U{zo} xY CXxY and XAY: =XxY/XVY.
We then have for each pointed topological space (Z,zp) a natural bijection
C.(X,C.(Y,2)) 2 C.(X ANY, 2).

Moreover,
SkAS? =Sk k deN,

so that
m(Co(X, K)) = mo(Cu(S¥, CL (X, K))) = mo(Cu(S* A X, K)).
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Theorem IV.4.1. If M is a compact manifold, then the inclusion map
C*®(M,K)— C(M,K)

is a weak homotopy equivalence, i.e., induces isomorphisms of all homotopy groups. Therefore
we have for each k an isomorphism

T (C®(M,K)) = 1, (C(M,K)) = 1 (Co (M, K)) x T (K) 2 [S¥ A M, K], x mp,(K). n

Let X be a locally compact space and K a Lie group. Then we write Cy(M, K) for
the Lie group of all continuous maps f: M — K vanishing at infinity in the sense that for
each 1-neighborhood U C K there exists a compact subset C C X with f(X\C) CU. If
X, = X U {w} denote the one-point compactification of X , then this means that

Co(X,K) = C\ (X, K)

because f € Cop(X,K) is equivalent to the extendibility of f to a continuous map X, — K
mapping w to 1.

Theorem I1V.4.2. If M is a non-compact o -compact manifold, then the inclusion map
Cr(M,K) — Co(M,K)
is a weak homotopy equivalence, and we obtain isomorphisms
Tk (C° (M, K)) = 7 (Co(M, K)) = 71, (Cu(M,,, K)) = [S¥ A M, K].. n

With the above results, many calculations of homotopy groups of currents groups can thus
be transfered into the continuous context, where one can use tools from topology to get more
explicit information.

Example IV.4.3. If M =S?is a d-dimensional sphere, then we have
(4.2) e (C(S% K)) 2 [SFASY K], = [SFH K], = Ty a(K)

and therefore
Wk(C(Sd,K))gﬂ'k(K)><7Tk+d(K). | |

Example IV.4.4. We consider the case where M = T? is an d-dimensional torus. Then
C(Tdv K) = C(T, C(Tdil,K)) =~ C* (T, (C"(']I‘dfl7 K)) X C(Tdfl’ K)

implies that
e (C(T, K)) = w1 (C(TT, K)) © o (C(T7H, K))

and by induction we obtain
d d
T (C(TLK)) 2 3 gy (K) ).
§=0

For d = 2 we get in particular
T (C(T2, K)) = 1 (K) © g1 (K)? @ T2 (K)

which also follows from the calculations for surfaces in the following section. We also obtain for

general d:
d

m(C(T K)) = 1o (K) @ 73 (K) & my(K) &) @
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Oriented surfaces
In this subsection ¥ denotes an orientable compact surface of genus g and K is an arbitrary

topological group.!

Remark IV.4.5. We recall that ¥ can be described as a CW-complex by starting with a
bouquet

A, =S'vstv...vS§!
2
of 2g-circles. We write ai,b1,...,a4,by for the corresponding generators of the fundamental

group of A, which is a free group on 2g generators. Then we consider the continuous map
7:St = A, corresponding to
la1,b1] - - - [ag, by € m1(Ay),

where [z,y] = ryz~'y~! denotes a commutator. Now X is homeomorphic to the space obtained
by identifying the points in OB* = S! with their images in A, under v, i.e.,

YA U, B

In this sense we can identify 4, with a subset of ¥. The most instructive picture is to view B?
as the interior of a regular polygon with 4g edges, where we identify certain points on the edges
such that in counterclockwise order the sequence of edges corresponds to the loop

arbya;tbrtay - -a, bt

Now A, corresponds to the polygon modulo these identifications.

This procedure shows that a continuous map f: 4, — Z into a topological space Z extends
to a map ¥ — Z if and only if the corresponding map OB? — Z extends to the interior of B2,
which in turn means that it is a zero-homotopic curve. Finally, this can be expressed by the
condition that

T (f):mi(Ay) R LxLx---x7 — m(Z)

29

annihilates the commutator a;bya; *b; as - - -a; ' !, hence factors to a homomorphism 7, (X) —
1 (Z)

Conversely, if such a homomorphism is given, then we can lift it to a homomorphism
m(Ag) = m1(Z) which can be trivially represented by a continuous map A, — Z. As we have
seen above, this map extends to X, showing that the map

(4.3) Ci(X,Z) —» Hom(m (X), m(2))

is surjective for any pointed space Z. ]

Theorem IV.4.6.  For each topological group K we have a homeomorphism
C(EZ,K)=C.(S*,K) x C.(SLK)* x K

and
Wk(C(E,K)) gﬂ'k_ll_z(K) X 7Tk+1(K)2g X Wk(K) fOT all k€ No.

L' This subsection is based on conversations with F. Wagemann and on some calculations in his dissertation
for the case K=SU(2)>~S3 ([Wa98, Lemma 3.1.1]).
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Proof.  Let (71,...,724) be the natural generators of m1(X) coming from the maps S! —
A, — X given by ay,bi,...,a4,by. From (4.3) we obtain for Z = S with 7,(Z) = Z and base
point 1 pointed continuous maps xi,...,x24: % — S with

o

T (x;) (i) =[x 0 vl = 04
We can even get maps with

_J1 for i #j
Xﬂ”ﬂ‘{idsl for i = j

if we start with the continuous maps X?i A, — S' with the required property and observe that

all these maps extend continuously to ¥ because m1(x$):m1(4y) = 71(S') = Z annihilates all
commutators since Z is abelian.
Now we obtain for each topological group K a nice splitting of the restriction map
R:C.(%,K) = Cu(Ay, K) = C.(S*, K)*
by the extension map
E:C.(SY K)* — Cu(X,K), (a1,...,a2,) (a1 0x1) - (azg 0 X2g)-
Then RE =id follows directly from the choice of the maps x;. We conclude that
Cu(%, K) = ker(R) x Cu(SL, K)*,  f = (FE(R(S)™", R(f))
is a homeomorphism whose inverse is given by («, 8) — aE(8). Next we observe that
ker R = C,.(8/A,, K) = C.(S% K),
so that we obtain a homeomorphism
C.(%,K) 2 C,.(S* K) x C. (S, K)*
and hence a homeomorphism
(4.4) C(%,K) =2 C.(S* K) x C.(SY, K)* x K.
This implies that we have the group isomorphism
m0(C(%,K)) 2[5, K] = ma(K) x 71 (K)? x mo(K).

Combining (4.2) and (4.4) further leads to

1 (C(Z, K)) 2 mppo(K) X mp1 (K)?9 x mp(K)  forall k€ Ny. n
Remark IV.4.7. Suppose that g > 1. Then the universal covering space Y of ¥ is con-
tractible, showing that the only non-trivial homotopy group of ¥ is m;(X). This means that
Y is a K(m(X),1)-space in the sense of Eilenberg—MacLane. The result above shows that the
natural homomorphism

(¥, K]. — Hom(m (%), 7 (K)) = 7 (K)*

has a kernel isomorphic to w2 (K), hence is not injective. This means that the homotopy classes of
maps ¥ — K are NOT classified by the sequence of homomorphisms 7 (X) = 7 (K), k € Ny =
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Corollary IV.4.8. If K is 2-connected, then C(X,K) is arcwise connected.

Proof. This follows directly from Theorem IV.4.6.
We also give a second direct proof. If K is 2-connected, i.e.,

7T0(K) :7T1(K) = 7T2(K) = 1,

the inclusion 1 < K is a 2-equivalence in the sense of [Br93, Cor. 11.13]. Since ¥ is two-
dimensional, this implies that the map [E,1] — [¥, K] is surjective, and hence that [¥, K] is a
singleton. This means that C (X, K) is arcwise connected. u

Remark IV.4.9. Suppose that the topological group K is semilocally simply connected, so
that it has a universal covering group K. This condition is in particular satisfied if K is locally
contractible.

Let qK:IN( — K denote the simply connected covering homomorphism. For an arcwise
connected locally arcwise connected space X, a continuous map f:X — K lifts to a map
X — K if and only if the homomorphism 7 (f): 71 (X) = 71 (K) vanishes (cf. [tD91, Satz 6.12]).
Therefore we have an exact sequence of groups

O (X, K) 50, (X, K) - Hom(m (X), 71 (K)).

If f e Cu(X,K)p, then it is homotopic to a constant map, so that m;(f) vanishes, and
therefore it is contained in the range of (gx).«:h — gk o h. We thus obtain an exact sequence

To(Cy (X, K)) = m(C, (X, K)) = Hom(m (X), 71 (K)). n

Holomorphic current groups

Let M be Stein manifold, i.e., a complex manifold which can be realized as a closed
submanifold of some C™. Further let K be a Banach—Lie group, then the groups C'(M, K) and
Hol(M, K) are metrizable topological groups with respect to the topology of uniform convergence
on compact subsets of M (Example I1.1.6). In general these groups are not Lie groups and it
is an interesting open problem to characterize those Stein manifolds M for which they are. We
have a natural inclusion map

n:Hol(M, K) — C(M, K),

and one can show that this inclusion is a homotopy equivalence. This is based on results of
R. Palais which imply that under certain conditions (here the metrizability) weak homotopy
equivalences are homotopy equivalences. The statement about the weak homotopy equivalence is
then reduced to Oka’s Principle which asserts that the inclusion 7 induces a bijection on the level
of connected components. Further, one uses that for each k¥ € N the group C(S*, K) is also a
Banach-Lie group, so that Oka’s Principle applies to the topological group Hol(M, C(S*, K)) =
C(S¥, Hol(M, K)) *.

These results are of particular interest if M = ¥ \ F', where ¥ is a compact Riemann
surface and F' C X a finite set.

IV.5. Diffeomorphism groups

In this section we briefly discuss the topology of the groups Diff(S¢). For more details we
refer to [Mil83].

I The author learned the trick of replacing the group K in this context by C(S*,K) from Bernhard Gramsch.
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For M = S! we have already seen in Section II.3 that the universal covering group of
Diff . (S') is contractible. This implies that

Zo for k=0
me(DIF(SY) =<{ 7 fork=1
0 otherwise.

For M = S?, d > 2, the situation gets more complicated. Of course we have a natural
inclusion O(d + 1,R) — Diff(S%) and one may ask for which dimension d this inclusion is a
homotopy equivalence. For d = 1,2 this has been proved by S. Smale in 1959 and conjectured
by him for d = 3. This conjecture was proved in 1983 by Hatcher. For d = 4 the answer is not
known to the author, and for d > 4 the inclusion is not a homotopy equivalence ([Mil83]).

For d = 2 this leads to the following information on the homotopy groups. As O(3,R) =
SO(3,R) x Zs and the universal covering group SU(2,C) of SO(3,R) is homeomorphic to S?,

we obtain from Remark IV.1.3:

Zo for k=0

Zy fork=1

ey ~ ) 0 for k=2

Tk (lef(Sz)) Y7z fork=3
Zoy for k=4

Zo for k =5.

For d =3 we have O(4,R) = SO(4,R) x Zy and the universal covering group of SO(4, R)
is a two-fold covering by SU(2,C)?. This leads to

Zo for k=0

ZQ for k=1

. ~ )0 fork=2

71, (Diff (S?)) = 72 fork—3
73 fork=4

7% for k=>5.

The group mo(Diff 1 (S9)), which is finite for d > 5, has a remarkable differential geometric
interpretation. Its elements correspond to oriented diffeomorphism classes of smooth (d + 1)-
dimensional manifolds with the homotopy type of S¥*1. For d # 2 this implies that they are
homeomorphic to S?*! by the Poincaré conjecture, which has been proved except for d = 2.
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