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The exponential funtion of loally

onneted ompat abelian groups
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Abstrat. It is shown that the following four onditions are equivalent for a ompat

onneted abelian group G: (i) the exponential funtion of G is open onto its image; (ii) G

has arbitrarily small onneted diret summands N suh that G=N is a �nite dimensional

torus; (iii) the ar omponent G

a

of the identity is loally arwise onneted; (iv) the

harater group

b

G is a torsion free group in whih every �nite rank pure subgroup is free

and is a diret summand.

Introdution

A morphism of topologial groups f :G ! H is said to be open onto its image

if for any open subset U of G its image f(U) is open in the subgroup f(G) of

H . This is tantamount to saying that the morphism f

0

:G= ker f ! f(G) indued

by f via f

0

(g ker f) = f(g) is an isomorphism of topologial groups. Equivalently,

this property an be expressed by saying that the orestrition f :G! f(G) to its

image is a quotient morphism.

We denote by T the additively written irle group R=Z. If G is a torus group

T

X

for an arbitrary set X , then the exponential funtion of G, whih we may

identify with the anonial quotient R

X

! T

X

, and whih therefore is readily

seen to be open, and thus, in partiular, open onto its image. It is surprising that

there are ompat onneted groups whih are not torus groups but for whih

the exponential funtion is open onto its image. The image of the exponential

funtion exp:L(G) ! G of a ompat onneted abelian group G is preisely the

ar omponent G

a

of the identity. (See [3℄, p. 389, Theorem 8.30(ii).) We shall

investigate when the orestrition exp

0

:L(G)! G

a

is open. In fat, we shall show

that a strong form of loal onnetivity is harateristi for this property. The

harater group G of the disrete group Z

N

is an example of a ompat onneted

abelian group of weight 2

�

0

for whih exp

0

:G! G

a

is open, while G

a

6= G.

It is well known that omplete topologial abelian groups may have inomplete

quotients in manifold ways [5℄. Yet it is noteworthy that this example will show

that the produt R

2

�

0

of a ontinuum ardinality of fators of the real line has an

inomplete quotient whose ompletion is ompat; this example is quite relevant

in the theory of projetive limits of �nite dimensional Lie groups of whih R

2

�

0

is

the simplest example whih is not loally ompat. (See [4℄).

We begin by foussing on a lass of torsion free abelian groups A haraterized

by the property that every �nite subset of A is ontained if a free diret summand;

the members of this lass we shall all S-groups. The lass of S groups ontains
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the lass of free groups but is properly smaller than the lass of abelian groups

whose ountable subgroups are free. A ompat onneted abelian group G will

eventually turn out to have an exponential funtion whih is open onto its image

ifand only if its harater group

b

G is an S-group.

1. Separable Abelian Groups

We shall write abelian groups additively. A subgroup G of an abelian group G is

said to split if there is a subgroup H of A suh that A = G�H . Likewise we say

that a short exat sequene

(E) 0! G

j

! A! B ! 0

is split if j(G) is a split subgroup of A. This is tantamount to saying that the

equivalene lass of (E) in Ext(B;G) is zero. (See e.g. [3℄, pp. 643 �.) A subgroup

G of an abelian group A splits automatially if it is divisible or A=G is free. (See

e.g. [3℄, pp. 637 and 6.27.)

A subgroup P of an abelian group A is alled a pure subgroup if the following

ondition is satis�ed.

(i) (8p 2 P; a 2 A; n 2 N)n�a = p)(9x 2 P )n�x = p.

One observes diretly (see also [3℄, p. 630) that for a torsion free group A, this

ondition is equivalent to any of the following onditions:

(ii) The fator group A=G is torsion free.

(iii) (8n 2 N; a 2 A)n�a 2 G)a 2 G.

In a torsion free abelian group A every subgroup G is ontained in a unique

pure subgroup [G℄ = fa 2 A : (9n 2 N)n�a 2 Gg. (See [3℄, p. 630) Moreover, the

following onditions are equivalent (see [3℄, p. 652)

(a) Every �nite rank pure subgroup of A is free.

(b) Every ountable subgroup of A is free.

An abelian group satisfying these onditions is said to be �

1

-free.

We are interested in a sublass of the lass of �

1

-free groups.

Proposition 1.1. Let A be a torsion free abelian group. Then the following on-

ditions are equivalent.

(i) (8a 2 A) [Z�a℄ is free and splits.

(ii) Every rank one pure subgroup is free and splits.

(iii) Every �nite rank pure subgroup is free and splits.

Proof. Clearly, (iii))(ii),(i). We must prove (i))(iii).

Step 1. We �rst note that if A satis�es (i) then every pure subgroup B of A

satis�es (i): Indeed let b 2 B; sine B is pure the pure subgroup [Z�b℄ generated

by b in B is pure in A, and as a subgroup of the free pure subgroup generated

by b in A it is free. Sine A satis�es (i), we have A = [Z�b℄ �K with a suitable
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subgroup K. By the modular law, B = [Z�b℄ � (K \ B). Setting H = K \ B we

obtain B = [Z�b℄�H as laimed.

Step 2. We laim that every �nite rank pure subgroup is free; in other words

we show that A is �

1

-free. Let G be a �nite rank pure subgroup of A and assume

that G is a ounterexample of minimal rank n. From (i) we know n > 1. Let

0 6= g 2 G. Sine G satis�es (i), G = [Z�g℄ � H and [Z�g℄ is free. Sine the

subgroup H has smaller rank than G, it is not a ounterexample and is therefore

free. Hene G is free and thus an't be a ounterexample.

Step 3. Now we prove that every �nite rank pure subgroup G splits. By Step

2, G =

L

N

m=1

Z�e

m

, where N 2 N. By (i) there is a subgroup H

1

of A suh that

A = Z�e

1

� H

1

and G = Z�e

1

� (H

1

\ G). Assume that H

1

� H

2

� � � � � H

n

,

n < N has been onstruted in suh a fashion that A = Z�e

1

� � � � � Z�e

m

�H

m

and G = Z�e

1

� � � � �Z�e

m

� (H

m

\G), m = 1; 2; : : : ; n. By the �rst step we may

apply (i) to the pure subgroup H

n

and �nd a subgroup H

n+1

of H

n

suh that

H

n

= Z�e

n+1

�H

n+1

and H

n

\G = Z�e

n+1

\ (H

n+1

\G). This yields a desending

family of subgroups H

n

suh that A =

L

n

m=1

Z�e

m

�H

n

and e

m

2 H

n

for m > n.

We set H = H

N

. Then A =

L

N

m=1

Z�e

m

�H

N

= G�H , as was to be shown. ut

De�nition 1.2. We say that an abelian group A is an S-group if it satis�es the

equivalent onditions of Proposition 1.1. ut

The S-groups have been alled separable [1℄ whih is not an advisable termi-

nology here beause we will deal with topologial abelian groups for whih the

adjetive separable refers to groups having a dense ountable subset, and this is

entirely di�erent. One might have alled S-groups strongly �

1

-free; our terminology

reets the \strongly" as well.

Every free group is an S-group, sine every subgroup of a free group is free,

and the quotient of a free group modulo a pure subgroup is free (see e.g. [3℄, p.

632, Proposition A1.24(ii)); thus every pure subgroup splits. A Whitehead group

is an abelian group A suh that Ext(A;Z) = f0g, that is, every extension

0! Z! G! A! 0

splits.

Example 1.3. The group A = Z

N

has the following properties:

(i) A is an S-group.

(ii) A is not a Whitehead group.

(iii) The subgroup Z

(N)

of A is a ountable free pure subgroup whih does not

split.

Proof. (i) and (ii): The group Z

N

is an �

1

-free group whih is not a Whitehead

group: see e.g. [3℄, p. 652, Example A1.65.

We verify Condition 1.1(ii) for A = Z

N

. Let P be a rank one pure subgroup of

A. Sine A is �

1

-free, P is free and thus P = Z�k with an element k = (k

n

)

n2N

. If

d = g::d:fk

n

: n 2 Ng > 0 denotes the greatest ommon divisor of fk

n

: n 2 Ng,
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then (k

n

=d)

n2N

2 P ; then there is an m 2 Z suh that k

n

=d = mk

n

for all nand

thus dm = 1, that is, d = 1. The dereasing sequene g..dfk

1

; k

2

; : : : ; k

n

g is

eventually onstant; that is, there is a natural number N suh that the integers

k

1

; : : : ; k

N

have the greatest ommon divisor 1. Then the subgroup P

N

generated in

the �nitely generated free group Z

N

by (k

1

; : : : ; k

N

) is is pure. By the Elementary

Divisor Theorem (see e.g. [3℄, p.623) applied to Z

N

, after hoosing a new basis,

we may assume that P

N

= Z�f0g� � � � � f0g. It is therefore no loss of generality

to assume that (k

n

)

n2N

= (1; 0; : : : ; 0; k

N+1

; k

N+2

; : : :). Set G = f0g�Z�Z� � � �.

Then Z

N

= P �G and Z

N

is an S-group as asserted.

(iii): If m�(k

n

)

n2N

2 Z

(N)

for some m 2 Z then mk

n

= 0 for all but a �nite

number of n 2 N. Then (k

n

)

n2N

. Thus Z

(N)

is a pure subgroup of Z

N

whih is

obviously ountable and free. The group Z

N

=Z

(N)

is a torsion free algebraially

ompat group and ontains a opy Z

p

of the p-adi integers for eah prime as a

diret summand. (See e.g. [2℄, p. 176, 42.2 and p. 169, 40.4.) Sine Z

p

ontains

ountable groups whih are not free (e.g.

1

q

1

Z for any prine q di�erent from p),

and sine Z

N

is �

1

-free, Z

N

annot ontain a subgroup isomorphi to A=Z

(N)

. ut

Example 1.4. There is an abelian group B with a subgroup C

�

=

Z suh that

B=C

�

=

Z

N

and that every morphism B ! Z annihilates C. The group B is an

�

1

-free group whih is not an S-group.

Proof. In [3℄, pp. 653, 654, the following lemmas are proved:

Lemma A. Let E = [0 ! C ,! B ! X ! 0℄ be any extension of C

�

=

Z by an

abelian group X. Then there is a homomorphism f :B ! Z whose restrition to C

is nontrivial if and only E represents an element of �nite order in Ext(X;Z). ut

Lemma B. Ext(Z

N

;Z) ontains 2

(2

�

0

)

elements of in�nite order. ut

Taken together, these Lemmas yield the existene of a torsion free group B

and a yli subgroup C suh that B=C

�

=

Z

N

, and that every morphism B ! Z

vanishes on C. The subgroup C is a subgroup of rank 1 whih does not split, and

sine B=C is torsion free, C is a pure subgroup of B. Thus B is not an S-group. If

P is a �nite rank pure subgroup of B, then

�

P+C

C

�

is a �nite rank pure subgroup

of B=C

�

=

A and is therefore �nitely generated free; its full inverse image P

0

in

B is a �nitely generated torsion free group and is, therefore, free. Thus P as a

subgroup of a free group is free. Hene B is an �

1

-free group. ut

In this area of the theory of abelian groups, Z

N

is a universal test example. For

instane, Proposition 1.1 annot be omplemented by another equivalent ondition

whih would say: Every ountable pure subgroup splits. The example shows, in

partiular, that the lass of S-groups is properly smaller than that of �

1

-free groups

and is not ontained in the lass of Whitehead groups and thus is properly bigger

than the lass of free groups.
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�

1

-free groups

�

�

S-groups

�

�

free groups

2. Strengthening Loal Connetivity

for Loally Compat Abelian Groups

A loally ompat abelian group G is ompletely haraterized by its Pontryagin

dual

b

G = Hom(G;T). (See e.g. [3℄, Chapters 7 and 8.) A topologial group G is

loally onneted if and only if its identity omponent G

0

is open in G and is

loally onneted; a onneted loally ompat abelian group G ontains a unique

harateristi maximal ompat subgroup C and a subgroup V

�

=

R

n

suh that

the morphism (v; ) 7! v+  : V �C ! G is an isomorphism of topologial groups.

(See e.g. [3℄, p. 348, Theorem 7.57.) In disussing loal onnetivity of a loally

ompat abelian group G, it is no loss of generality to assume that G is ompat

and onneted. A loally ompat abelian group G is ompat and onneted if

and only if its harater group

b

G is disrete and torsion free. (See e.g. [3℄, p. 297,

Proposition 7.5(i), and p. 369, Corollary 8.5.) Loal onnetivity of a ompat

onneted abelian group is haraterized as follows:

Proposition 2.1. For a ompat onneted abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small ompat onneted subgroups N suh that G=N is

a �nite dimensional torus group.

(ii) The harater group

b

G is the direted union of pure �nitely generated free

subgroups.

(iii)

b

G is �

1

-free.

(iv) G is loally onneted.

Proof. For a proof see [3℄, p. 396, Theorem 8.36. ut

We ompare this proposition with the following

Proposition 2.2. For a ompat onneted abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small ompat onneted subgroups N for whih there

is a �nite dimensional torus subgroup T

N

of G suh that (n; t) 7! n + t :

N � T

N

! G is an isomorphism of topologial groups.

(ii) The harater group

b

G is the direted union of �nitely generated free split

subgroups.
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(iii)

b

G is an S-group.

Proof. The equivalene of (i) and (ii) follows at one from duality.

(ii))(iii): By (ii), the abelian group

b

G is torsion free. Let P be a rank one pure

subgroup of

b

G. The P = [Z�a℄ for some a 2

b

G. By (ii) there is a �nitely generated

free split subgroup F of

b

G ontaining a. Sine a diret summand is a pure subgroup

we have P = [Z�a℄ � F . As a pure subgroup of a �nitely generated torsion free

group, P is a diret summand of F , and sine F is a diret summand of

b

G, P is a

split subgroup of

b

G.

(iii))(ii): As a torsion free abelian group,

b

G is the direted union of all of its

�nite rank pure subgroups P ; by (iii), every suh P is split and free, and thus (ii)

follows. ut

The omparison of Propositions 2.1 and 2.2 justi�es the following de�nition:

De�nition 2.3. A loally ompat abelian group is said to be strongly loally on-

neted if its identity omponent is open and its unique maximal ompat onneted

subgroup satis�es the equivalent onditions of Proposition 2.2.

In partiular, a ompat onneted abelian group is strongly loally onneted

if and only if its harater group is an S-group. ut

Example 2.4. Let G

def

=



Z

N

. Then G is a strongly loally onneted and onneted

but not arwise onneted ompat abelian group.

There is a ompat onneted, loally onneted, but not strongly loally on-

neted group H of weight 2

�

0

ontaining G suh that H=G is a irle group.

G has a metri torus group quotient whih is not a homomorphi retrat.

Proof. A ompat onneted abelian group H is arwise onneted if and only if

its harater group

b

H is a Whitehead group. (See e.g. [3℄, pp. 389, 390, Theorem

8.30(iv).) The laim thus follows by duality from Examples 1.3 and 1.4. ut

The lass of onneted strongly loally onneted ompat abelian groups is

properly larger than that of torus groups and properly smaller than that of on-

neted and loally onneted ompat abelian groups.

3. The Exponential Funtion of

Strongly Loally Conneted Groups

We shall investigate when the exponential funtion exp:L(G) ! G of a ompat

onneted abelian group G in the present ontext. For a detailed exposition of the

exponential funtion of ompat abelian groups we refer to [3℄, notably Chapters

7 and 8. We need to know here that L(G) = Hom(R; G) is the topologial vetor
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spae of all one parameter subgroups, i.e. ontinuous group morphisms X :R ! G,

where Hom(R; G) is given the topology of uniform onvergene on ompat sets.

The exponential funtion is given by evaluation via expX = X(1). By duality,

L(G) may also be viewed as the vetor spae Hom(

b

G;R) with the topology of

pointwise onvergene. We note that L(G) is isomorphi to a produt of opies

of R (see [3℄, p. 355, Theorem 7.66 (i) and pp. 325, 326, Theorem 7.30(ii)). For

any ompat abelian group G, the exponential funtion exp

G

:L(G) ! G (f. [3℄,

pp. 355, 356, Theorem 7.66) is a morphism of abelian topologial groups. Let

G

a

= imexp

G

denote the ar omponent of the zero element 0. (See [3℄, p. 389,

390, Theorem 8.30.) We note the exat sequene:

(exp) 0! K(G) ! L(G)

exp

G

����!G! Ext(

b

G;Z)! 0

where K(G) = ker exp

G

The orestrition exp

0

G

:L(G) ! G

a

of the exponential

funtion to its image is a surjetive morphism of topologial groups. A surjetive

morphism between topologial groups is open if and only if it is a quotient mor-

phism. Thus exp

0

G

is open i� the indued bijetive morphism of topologial groups

L(G)=K(L)! G

a

is an isomorphism of topologial groups.

Proposition 3.1. Let G be a onneted and strongly loally onneted ompat

abelian group. Then exp

0

G

:L(G)! G

a

is open.

Proof. Let P denote the set of pure �nite rank subgroups of

b

G. then P 2 P is

a �nitely generated free split subgroup of

b

G. We selet a subgroup S

P

�

b

G suh

that

b

G = P � S

P

. Let N

P

def

= P

?

denote the annihilator of P in G and T

P

= S

?

P

the annihilator of S

P

. By duality (n; t) 7! n+1 : N

P

�T

P

! G is an isomorphism

of topologial groups, that is, G = N

P

� T

P

algebraially and topologially. The

groups T

P

, G=N

P

and

b

P are naturally isomorphi by the Annihilator Mehanism

(see [3℄, p. 352, Theorem 7.64) and thus are �nite dimensional torus groups. The

morphism exp

N

P

� exp

T

P

: L(N

P

) � L(T

P

) ! N

P

� T

P

is naturally equivalent

to the exponential funtion of N

P

� T

P

. Let U

P

be the set of arwise onneted

open zero-neighborhoodsU of L(T

P

) mapped homoemorphially onto an open zero

neighborhood V of T

P

by exp

T

P

; suh neighborhoods U and V exist as T

P

is a Lie

group. Then (exp

N

P

� exp

T

P

)(L(N

P

)�U) = (N

P

)

a

�V = (N

P

�V )\(N

P

�T

P

)

a

.

It follows that exp

G

(L(N

P

)�U) is a an identity neighborhood ofG

a

in the topology

indued from that of G. We laim that fL(N

P

) � U : P 2 P ; U 2 U

P

g is a basis

for the open zero-neighborhoods of L(G), where L(N

P

) is naturally onsidered

as a o�nite dimensional vetor subspae of L(G). One this laim is established,

exp

0

G

:L(G)! G

a

is open and the proof of the proposition will be omplete.

Sine

b

G =

S

P = olim

P2P

P by duality, we have G = lim

P2P

G=N

P

The

funtor L = Hom(R;�) preserves projetive limits (see e.g. [3℄, p. 336, Proposi-

tion 7.38(iv); in fat L preserves all limits). Furthermore, L preserves quotients

(see [3℄, pp. 355, 356, Theorem 7.66(iv)). Hene L(G) = lim

P2P

L(G)=L(N

P

). Let

p

P

:L(G) ! L(G)=L(N

P

) denote the quotient morphism. For any zero neighbor-

hoodW of L(G), by basi properties of the limit, there is a P 2 P and a zero neigh-

borhood U 2 U

P

in L(T

P

)

�

=

L(G)=L(N

P

) suh that p

�1

P

�

(U +L(N

P

))=L(N

P

)

�

�
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W . (See e.g. [3℄, p. 21, Proposition 1.33(i)(a); this part of 1.33 has nothing to do

with ompatness). Sine p

�1

P

�

(U + L(N

P

)

�

= L(N

P

)� U , the laim is proved. ut

Corollary 3.2. (i) The unountable produt V

def

= R

R

has a losed totally dison-

neted algebraially free subgroup K of ountable rank suh that the quotient V=K

is inomplete and its ompletion G is a ompat onneted and strongly loally

onneted abelian group of ontinuum weight.

(ii) Let q:V ! V=K denote the quotient map and 

V=K

:V=K ! G be the

ompletion map. There is a morphism f :V ! C into a ompat hene omplete

group whose kernel is K and whih has the property that the fatorisation map

f

0

:G! C determined uniquely by f = f

0

Æ 

V=K

Æ q is not injetive.

Proof. (i): Let G =



Z

N

be the ompat abelian group of 2.4. The rank of Z

N

agrees with the ardinal of Z

N

and that is the ardinal 2

N

of the ontinuum. Then

L(G) = Hom(R; G) = Hom(Z

N

;R)

�

=

R

2

N

�

=

R

R

. Thus we take for V the additive

group of L(G) and K = K(G) and know that ":V=K ! G

a

is an isomorphism of

topologial groups by Proposition 3.1. The ompletion of G

a

is G, and w(G) =

ardZ

N

= 2

�

0

. The kernel K(G) is algebraially isomorphi to Hom(Z

N

;Z) (see

[3℄, p. 355, Theorem 7.66(ii)). But Hom(Z

N

;Z)

�

=

Z

(N)

(see [1℄, p. 61, Corollary

2.5). Thus K is free of ountable rank.

(ii): In [3℄, p. 652, Example A1.65 one �nds the onstrution of a harater

�:Z

N

! T of order 2 (i.e., 2�� = 0 in additive notation) whih does not fator in

the form

Z

N

'

����!R

p

����!T; p(r) = r +Z:

Then, as an element of G = Hom(Z

N

;T), the harater � is not in the image G

a

of Hom(Z

N

; p) = exp

G

: Hom(Z

N

;R) = L(G) ! G. Set Z = f0; �g. Then Z is a

losed subgroup of G suh that G

a

\Z = f0g. Put C = G=Z and let f

0

:G! C be

the quotient morphism whose kernel is Z. The restrition F :G

a

! C is injetive.

Let f :V ! C be de�ned by f(X) = F (exp

G

X). By (i) the orestrition q:V =

L(G)! G

a

of the exponential funtion is a quotient morphism, and F = fÆq is the

anonial epi-moni fatorisation of F . Sine G is isomorphi to the ompletion

G of G

a

and the inlusion G

a

! G is the ompletion morphism 

G

a

:G

a

! G, the

assertion follows. ut

The signi�ane of 3.2(ii) is as follows: In the ategory of all omplete topolog-

ial abelian groups, the ompletion of a quotient plays the role of a quotient in the

ategory as it has the expeted universal properties; nevertheless, it will in general

fail to have familiar properties as 3.2(ii) illustrates. The possible inompleteness of

quotients plays a somewhat disturbing role in a general theory of projetive limits

of �nite dimensional Lie groups. The simplest nontrivial projetive limits of �nite

dimensional Lie groups are the produts R

X

. The produt R

N

is metrizable and

omplete, hene every quotient is omplete. Corollary 3.2 shows that the \next
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largest produt", R

R

already has inomplete quotients, and it is remarkable that

there are suh quotients whose ompletion is ompat.

Proposition 3.3. Assume that the orestrition exp

0

G

:L(G) ! G

a

of the expo-

nential funtion of a ompat onneted abelian group is a quotient morphism.

Then

(i) G

a

has arbitrarily small open arwise onneted identity neighborhoods in the

topology indued from that of G.

(ii) G is loally onneted.

(iii)

b

G is �

1

-free.

Proof. (i) A quotient morphism is open. But L(G) is a loally onvex topologial

vetor spae and thus has arbitrarily small arwise onneted neighborhoods of

zero whih are mapped onto open identity neighborhoods of G

a

by exp

0

G

.

(ii) Let W be an identity neighborhood of G. Then there is an identity neigh-

borhood V suh that V

2

�W . By (i), G

a

has an open arwise onneted identity

neighborhood U satisfying U � V . Then the losure U of U in G is ontained in

V subseteqV V � W . There is an open set U

G

in G suh that U = U

G

\ G

a

, and

sine G

a

is dense in G we have U = U

G

. Also, sine U is arwise onneted, U

is onneted. is an identity neighborhood in G. Thus U is a onneted identity

neighborhood in G whih is ontained in W . Thus G is loally onneted.

(iii) This follows from 2.1 and (ii) above. ut

Thus the exponential funtion of a ompat onneted abelian group an be

open onto its image only if the group is loally onneted.

Proposition 3.4. If the ar omponent G

a

of the zero element of a ompat

onneted abelian group G is loally arwise onneted, then the orestrition

exp

0

G

:L(G) ! G

a

of the exponential funtion is open.

Proof. On the group G there is a �lterbasisN (G) onverging to 1 and onsisting of

losed ompat subgroupsN suh that G=N is a �nite dimensional torus. By [3℄, p.

355, 356, Theorem 7.66(iv), there are arbitrarily small identity neighborhoods of G

of the form N�V where V = exp

G

U for an open n-ell neighborhood U in a �nite

dimensional vetor subspae F of L(G) suh that (n;X) 7! n+ exp

G

X :N �U !

N �V is a homeomorphism. Now N

a

�V = (N �V )

a

is the ar omponent of 0 in

G

a

\ (N � V ). Sine G

a

is loally arwise onneted, ar omponens of open sets

of G

a

are open in G

a

, and thus N

a

�V is open in G

a

. Therefore G

a

has arbitrarily

small identity neighborhoods of the form N

a

� V . However, these are of the form

N

a

� V = exp

N

L(N) � exp

G

U = exp

G

(L(N) � U) = exp

0

G

(L(N) � U). Now

we know that G = lim

N2N (G)

G=N and just as in the proof of 3.1 we onlude

that therefore L(G) = lim

N2N (G)

L(G)=L(N) and that L(G) has arbitrarily small

neighborhoods of the form L(N)�U . This proves that exp

0

G

is an open morphism.ut
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4. A Charaterisation of

Strong Loal Connetivity

We have seen that the orestrition of the exponential funtion exp

0

G

:L(G)! G

a

of a ompat onneted abelian group G is open if G is strongly loally onneted.

We shall show in this setion that the onverse holds as well.

In order to form a topologial intuition, let us briey onsider the ase of a

�nite dimensional ompat abelian group. A ompat onneted group G is n-

dimensional for n = 0; 1; : : : i� and only if its harater group

b

G has rank n, that

is, dim

Q

Q 


b

G = n (see e.g. [3℄, p. 650); this is the ase i� dimL(G) = n (see [3℄,

p. 382, Theorem 8.22). If exp

0

:L(G)! G

a

is open, then G

a

is a quotient group of

the loally ompat group L(G)

�

=

R

n

and thus is loally ompat. Hene it is a

losed subgroup of G, (see e.g. [3℄, p. 777); sine it is also dense in G (see e.g. [3℄,

p. 359, Theorem 7.71) we have G

a

= G. Every ompat quotient group of R

n

is a

torus (see e.g. [3℄, p. 625, Theorem A1.12). Thus we reord:

Lemma 4.1. If the exponential funtion is open onto its image in a �nite-dimens-

ional ompat onneted group G, then G it is a torus. ut

In order to work towards the general ase, we let 1 denote the one element

group. In the following numbers 4.2 and 4.3, ommutativity plays no role and thus

we use the multipliative notation. All topologial groups we onsider are assumed

to be Hausdor�.

De�nition 4.2. A sequene of Hausdor� topologial groups and ontinuous mor-

phisms

1����!G

1

j

����!G

2

p

����!G

3

����!1

is said to be topologially exat if it is exat algebraially and if j is a topologial

embedding and p is a quotient map. ut

The following lemma will be ruial.

Lemma 4.3. Assume that the following is a ommutative diagram of topologial

groups

K

2

p

����! K

3

j

2

?

?

y

?

?

y

j

k

1����! L

1

����! L

2

q

����! L

3

����!1

e

1

?

?

y

e

2

?

?

y

?

?

y

e

3

1����! G

1

����! G

2

����!

r

G

3

����!1:

Hypotheses:

(a) The horizontal sequenes are topologially exat.

(b) j

2

, and j

3

are the inlusions of the kernels of e

n

.

() e

1

has a dense image.

(d) e

2

is open onto its image.
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Conlusions:

(i) p has a dense image. If, in addition, K

3

is disrete, then p is surjetive.

(ii) The morphism e

3

is open onto its image.

Proof. (i): Clearly, if p has dense image, then the disreteness of its range

implies its surjetivity. We shall show now that p has a dense image. By way of

ontradition we suppose that there is an open subset U of L

3

np(K

2

) whih meets

K

3

. From (d) we know that e

2

�

q

�1

(U)

�

is open in e

2

(L

2

). Thus e

2

�

q

�1

(U)

�

\G

1

is

open in e

2

(L

2

)\G

1

. Let u 2 U \K

3

. By (a) there is an x 2 L

2

suh that q(x) = u.

Then e

2

(x) 2 e

2

�

q

�1

(U)

�

, and p

�

e

2

(x)

�

= e

3

�

q(x)

�

= e

3

(u) 2 e

3

(K

3

) = f1g,

that is, e

2

(x) 2 L

1

. Thus e

2

�

q

�1

(U)

�

\ L

1

6= �. Then by () we have an a 2 L

1

suh that e

2

(a) = e

1

(a) 2 e

2

�

q

�1

(U)

�

\ L

1

. Thus there is an element b 2 L

2

suh

that q(b) 2 U and e

2

(b) = e

2

(a) 2 L

1

= ker q. Hene ba

�1

2 ker e

2

= K

2

and

q(ba

�1

) = q(b) 2 U . Thus U \ q(K

2

) 6= �. This is a ontradition whih proves

the (i).

(ii): We have to show that the orestrition e

0

3

:L

3

! e

3

(L

3

) is a quotient

morphism, that is, if X � L

3

is suh that XK

3

= X is losed in L

3

, then e

3

(X)\

e

3

(L

3

) = e

3

(X). For this last onlusion, in view of homogeneity, it suÆes to

show that 1 2 e

3

(X) implies 1 2 e

3

(X). The subset Y

def

= p

�1

(X) of L

2

is losed

and K

2

-saturated, that is, it satis�es Y K

2

= Y , sine p(Y K

2

) = XK

3

= X . We

may assume that L

1

� L

2

. The preimage r

�1

�

e

3

(X)

�

of e

3

(X) � G

2

in G

1

is

the saturated set e

2

(Y )G

1

. Sine r is a quotient map, and 1 2 e

3

(X), by () we

onlude that 1 2 e

2

(Y )G

1

= e

2

(Y )e

1

(L

1

) = e

2

(Y )e

1

(L

1

) = e

2

(Y L

1

) = e

2

(Y ). By

(d), the map e

2

is a quotient morphism onto its image, and Y = Y L

1

is losed

in L

2

; thus e

2

(Y ) is losed in e

2

(L

2

), i.e. e

2

(Y ) \ e

2

(L

2

) = e

2

(Y ). We onlude

1 2 e

2

(Y ) and thus 1 2 r

�

e

2

(Y )

�

= e

3

(X) whih we had to show. ut

We apply this to a ompat onneted abelian group G with a losed subgroup

N . Then

0! N ! G! G=N ! 0

is a topologially exat sequene, as is

0! L(N)! L(G)! L(G=N)! 0

by [3℄, pp. 355, 356, Theorem 7.66(iii). Write T

def

= G=N and let f :G! T be the

quotient morphism. Then we have a ommutative diagram of abelian topologial

groups with topologially exat rows.

(�)

K(G)

K(f)

����! K(T )

j

2

?

?

y

?

?

y

j

k

0����! L(N) ����! L(G)

L(f)

����! L(T ) ����!0

exp

N

?

?

y

exp

G

?

?

y

?

?

y

exp

T

0����! N ����! G ����!

f

T ����!0:



12 The exponential funtion of loally onneted ompat abelian groups

Proposition 4.4. Let G be a onneted ompat abelian group suh that

exp

0

G

:L(G)! G

a

is open. Then G is strongly loally onneted.

Proof. In view of De�nition 2.3 we have to show that

b

G is an S-group. Let P be

a rank one pure subgroup; we must show that P splits as a diret summand.

Sine

b

G is �

1

-free by Proposition 3.3, there is an isomorphism �:P ! Z, and

so

b

P

�

=

T. Set N = P

?

, the anniliator of P in G. Sine

b

G=P

�

=

b

N is torsion free,

N is a losed onneted subgroup suh that G=N

�

=

b

P is a one-torus; We shall

write f :G ! T

def

=

b

P for the quotient map and we shall identify

b

T with P by

onsidering

b

f :

b

T !

b

G as the inlusion map inl:P !

b

G.

Now we hek the hypotheses of Lemma 4.3. The preeding omments show

that (a) and (b) are satis�ed, and (d) is our hypothesis. Hypothesis () onerns

the exponential funtion exp

N

:L(N) ! N ; sine N is onneted, N

a

= imexp

N

is dense in N (see [3℄, p. 359, Theorem 7.71). Thus hypothesis 4.3() is satis�ed

as well. The exponential funtion exp

T

:L(T ) ! T of a one dimensional torus

is equivalent to the quotient map R ! T and therefore has a disrete kernel

isomorphi to Z. Thus Lemma 4.3(i) proves that K(f):K(G) ! K(t) is surjetive.

In view of [3℄, p. 355, Theorem 7.66(ii), we have a ommutative diagram

Hom(

b

G;P )

Hom(inl;P )

�������! Hom(P; P )

Hom(

b

G;�)

?

?

y

?

?

y

Hom(

b

T ;�)

Hom(

b

G;Z)

Hom(

b

f;Z)

�����! Hom(

b

T ;Z)

�

=

?

?

y

?

?

y

�

=

K(G) ����!

K(f)

K(T );

where Hom(inl; P ) is the restrition � 7! �jP : Hom(

b

G;P ) ! Hom(P; P ). This

map we now know to be surjetive. Hene there is a morphism p:

b

G! P suh that

pjP is the identity morphism of P . Thus p is a homomorphi retration and thus

P splits. ut

5. Summary: TheMain Result. Generalisations

Propositions 3.1, 3.3, 3.4, 4.4 yield the following main result:

Theorem 5.1. For a ompat onneted abelian group G and its zero ar-om-

ponent G

a

, the following onditions are equivalent:

(i) G is strongly loally onneted.

(ii) The exponential funtion exp

G

:L(G)! G is open onto its image.

(iii) G

a

is loally arwise onneted.

(iv)

b

G is an S-group, that is, every �nite rank pure subgroup of

b

G is free and is a

diret summand. ut
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Corollary 5.2. Let G be a metri ompat onneted abelian group. Then the

following statements are equivalent:

(i) G is strongly loally onneted.

(ii) The exponential funtion exp

G

:L(G)! G is open onto its image.

(iii) G

a

is loally arwise onneted.

(iv)

b

G is free and ountable.

(v) G is a torus.

(vi) G is arwise onneted.

(vii)G is loally onneted.

Proof. (vii))(i),(ii),(iii),

(iv

0

)

b

G is a ountable S-group.

is lear from Theorem 5.1. and the fat that G is metri i� the weight of G is

ountable i� is ountable (see [3℄, p. 772, Theorem A4.16, p. 361, Theorem 7.76.

A ountable abelian S-group os a ountable �

1

-free group and is therefore free,

that is, (iv

0

))(iv). By duality,

b

G is free i� G is a torus. By [3℄, pp. 404, 405,

Theorem 8.46(iii), Conditions (v), (vi), (vii) are equivalent for metri ompat

abelian groups. ut

Corollary 5.2 shows that the onepts emerging in Theorem 5.1 attain their true

signi�ane in the ase of nonmetri ompat onneted groups. By Example 2.4,

the harater group of the disrete group Z

N

is group satisfying the onditions of

Theorem 5.1 whih is not arwise onneted. By 5.2, this example is minimal if we

aept the ontinuum hypothesis. There are loally onneted onneted ompat

abelian groups of weight 2

�

0

whih are not strongly loally onneted.

Even though we have dealt with ompat onneted abelian groups, in view of

the known struture of loally ompat groups, the results of this note generalize

to arbitrary loally ompat groups. A topologial group G is loally onneted if

and only if its identity omponent G

0

is open in G and is loally onneted. The

inlusion morphism G

0

! G indues a homeomorphism of pointed topologial

spaes Hom(R; G

0

) ! Hom(R; G). If G is, say, a loally ompat group, more

generally, if G is any topologial group having a Lie algebra (see [4℄, Chapter 2),

then this homeomorphism is in fat an isomorphism of topologial Lie-algebras

L(G

0

) ! L(G). Thus, in partiular, for a loally ompat abelian group G, the

exponential funtion exp

G

:L(G) ! G is open onto its image if and only the

exponential funtion exp

G

0

:L(G

0

)! G

0

is open onto its image.

A onneted loally ompat abelian group G is isomorphi to R

n

� K with

a unique ompat onneted ompat subgroup K of G by the Vetor Group

Splitting Theorem (see [3℄, p. 348, Theorem 7.57(iii)), and L(G)

�

=

R

n

� L(K)

suh that the exponential funtion may be written in the form exp

G

:R

n

�L(K)!

R

n

�K, exp

G

(v;X) = (v; exp

K

X). Hene exp

G

is open onto its image if and only

if exp

K

is open onto its image.

We �nally note that by Pontryagin Duality, the largest ompat onneted

subgroup K of a loally ompat abelian group

b

G is the annihilator subgroup of
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the smallest open subgroupM of the harater group

b

G suh that

b

G=M is torsion

free.

With these observations, the Main Theorem 5.1 yields at one

Theorem 5.3. For a loally ompat abelian group G, the following statements

are equivalent.

(O) exp

0

G

:L(G)! G

a

is open.

(LC) G

0

is strongly loally onneted.

(LC

a

) G

a

is loally arwise onneted.

(S) The harater group

b

K of the unique largest ompat onneted subgroup

K of G is an S-group.

(S

0

) If M denotes the smallest open subgroup of

b

G suh that

b

G=M is torsion

free, then

b

G=M is an S-group. ut

We realize that this may be extended appropriately to loally ompat not

neessarily abelian groups; however, the exponential funtion then eases to be a

morphism and ondition (O) above has to be replaed by

(LO) exp

G

:L(G) ! G is open at 1. One needs to know the Iwasawa Splitting

Theorem saying that a loally ompat onneted group G is loally isomorphi

to L �K where L is a onneted �nite dimensional Lie group and K a ompat

normal subgroup of G. Then one needs to know strutural results on the ompat

onneted group K

0

whih are available through [3℄, Chapter 9.
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