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ally
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Abstra
t. It is shown that the following four 
onditions are equivalent for a 
ompa
t


onne
ted abelian group G: (i) the exponential fun
tion of G is open onto its image; (ii) G

has arbitrarily small 
onne
ted dire
t summands N su
h that G=N is a �nite dimensional

torus; (iii) the ar
 
omponent G

a

of the identity is lo
ally ar
wise 
onne
ted; (iv) the


hara
ter group

b

G is a torsion free group in whi
h every �nite rank pure subgroup is free

and is a dire
t summand.

Introdu
tion

A morphism of topologi
al groups f :G ! H is said to be open onto its image

if for any open subset U of G its image f(U) is open in the subgroup f(G) of

H . This is tantamount to saying that the morphism f

0

:G= ker f ! f(G) indu
ed

by f via f

0

(g ker f) = f(g) is an isomorphism of topologi
al groups. Equivalently,

this property 
an be expressed by saying that the 
orestri
tion f :G! f(G) to its

image is a quotient morphism.

We denote by T the additively written 
ir
le group R=Z. If G is a torus group

T

X

for an arbitrary set X , then the exponential fun
tion of G, whi
h we may

identify with the 
anoni
al quotient R

X

! T

X

, and whi
h therefore is readily

seen to be open, and thus, in parti
ular, open onto its image. It is surprising that

there are 
ompa
t 
onne
ted groups whi
h are not torus groups but for whi
h

the exponential fun
tion is open onto its image. The image of the exponential

fun
tion exp:L(G) ! G of a 
ompa
t 
onne
ted abelian group G is pre
isely the

ar
 
omponent G

a

of the identity. (See [3℄, p. 389, Theorem 8.30(ii).) We shall

investigate when the 
orestri
tion exp

0

:L(G)! G

a

is open. In fa
t, we shall show

that a strong form of lo
al 
onne
tivity is 
hara
teristi
 for this property. The


hara
ter group G of the dis
rete group Z

N

is an example of a 
ompa
t 
onne
ted

abelian group of weight 2

�

0

for whi
h exp

0

:G! G

a

is open, while G

a

6= G.

It is well known that 
omplete topologi
al abelian groups may have in
omplete

quotients in manifold ways [5℄. Yet it is noteworthy that this example will show

that the produ
t R

2

�

0

of a 
ontinuum 
ardinality of fa
tors of the real line has an

in
omplete quotient whose 
ompletion is 
ompa
t; this example is quite relevant

in the theory of proje
tive limits of �nite dimensional Lie groups of whi
h R

2

�

0

is

the simplest example whi
h is not lo
ally 
ompa
t. (See [4℄).

We begin by fo
ussing on a 
lass of torsion free abelian groups A 
hara
terized

by the property that every �nite subset of A is 
ontained if a free dire
t summand;

the members of this 
lass we shall 
all S-groups. The 
lass of S groups 
ontains
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the 
lass of free groups but is properly smaller than the 
lass of abelian groups

whose 
ountable subgroups are free. A 
ompa
t 
onne
ted abelian group G will

eventually turn out to have an exponential fun
tion whi
h is open onto its image

ifand only if its 
hara
ter group

b

G is an S-group.

1. Separable Abelian Groups

We shall write abelian groups additively. A subgroup G of an abelian group G is

said to split if there is a subgroup H of A su
h that A = G�H . Likewise we say

that a short exa
t sequen
e

(E) 0! G

j

! A! B ! 0

is split if j(G) is a split subgroup of A. This is tantamount to saying that the

equivalen
e 
lass of (E) in Ext(B;G) is zero. (See e.g. [3℄, pp. 643 �.) A subgroup

G of an abelian group A splits automati
ally if it is divisible or A=G is free. (See

e.g. [3℄, pp. 637 and 6.27.)

A subgroup P of an abelian group A is 
alled a pure subgroup if the following


ondition is satis�ed.

(i) (8p 2 P; a 2 A; n 2 N)n�a = p)(9x 2 P )n�x = p.

One observes dire
tly (see also [3℄, p. 630) that for a torsion free group A, this


ondition is equivalent to any of the following 
onditions:

(ii) The fa
tor group A=G is torsion free.

(iii) (8n 2 N; a 2 A)n�a 2 G)a 2 G.

In a torsion free abelian group A every subgroup G is 
ontained in a unique

pure subgroup [G℄ = fa 2 A : (9n 2 N)n�a 2 Gg. (See [3℄, p. 630) Moreover, the

following 
onditions are equivalent (see [3℄, p. 652)

(a) Every �nite rank pure subgroup of A is free.

(b) Every 
ountable subgroup of A is free.

An abelian group satisfying these 
onditions is said to be �

1

-free.

We are interested in a sub
lass of the 
lass of �

1

-free groups.

Proposition 1.1. Let A be a torsion free abelian group. Then the following 
on-

ditions are equivalent.

(i) (8a 2 A) [Z�a℄ is free and splits.

(ii) Every rank one pure subgroup is free and splits.

(iii) Every �nite rank pure subgroup is free and splits.

Proof. Clearly, (iii))(ii),(i). We must prove (i))(iii).

Step 1. We �rst note that if A satis�es (i) then every pure subgroup B of A

satis�es (i): Indeed let b 2 B; sin
e B is pure the pure subgroup [Z�b℄ generated

by b in B is pure in A, and as a subgroup of the free pure subgroup generated

by b in A it is free. Sin
e A satis�es (i), we have A = [Z�b℄ �K with a suitable
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subgroup K. By the modular law, B = [Z�b℄ � (K \ B). Setting H = K \ B we

obtain B = [Z�b℄�H as 
laimed.

Step 2. We 
laim that every �nite rank pure subgroup is free; in other words

we show that A is �

1

-free. Let G be a �nite rank pure subgroup of A and assume

that G is a 
ounterexample of minimal rank n. From (i) we know n > 1. Let

0 6= g 2 G. Sin
e G satis�es (i), G = [Z�g℄ � H and [Z�g℄ is free. Sin
e the

subgroup H has smaller rank than G, it is not a 
ounterexample and is therefore

free. Hen
e G is free and thus 
an't be a 
ounterexample.

Step 3. Now we prove that every �nite rank pure subgroup G splits. By Step

2, G =

L

N

m=1

Z�e

m

, where N 2 N. By (i) there is a subgroup H

1

of A su
h that

A = Z�e

1

� H

1

and G = Z�e

1

� (H

1

\ G). Assume that H

1

� H

2

� � � � � H

n

,

n < N has been 
onstru
ted in su
h a fashion that A = Z�e

1

� � � � � Z�e

m

�H

m

and G = Z�e

1

� � � � �Z�e

m

� (H

m

\G), m = 1; 2; : : : ; n. By the �rst step we may

apply (i) to the pure subgroup H

n

and �nd a subgroup H

n+1

of H

n

su
h that

H

n

= Z�e

n+1

�H

n+1

and H

n

\G = Z�e

n+1

\ (H

n+1

\G). This yields a des
ending

family of subgroups H

n

su
h that A =

L

n

m=1

Z�e

m

�H

n

and e

m

2 H

n

for m > n.

We set H = H

N

. Then A =

L

N

m=1

Z�e

m

�H

N

= G�H , as was to be shown. ut

De�nition 1.2. We say that an abelian group A is an S-group if it satis�es the

equivalent 
onditions of Proposition 1.1. ut

The S-groups have been 
alled separable [1℄ whi
h is not an advisable termi-

nology here be
ause we will deal with topologi
al abelian groups for whi
h the

adje
tive separable refers to groups having a dense 
ountable subset, and this is

entirely di�erent. One might have 
alled S-groups strongly �

1

-free; our terminology

re
e
ts the \strongly" as well.

Every free group is an S-group, sin
e every subgroup of a free group is free,

and the quotient of a free group modulo a pure subgroup is free (see e.g. [3℄, p.

632, Proposition A1.24(ii)); thus every pure subgroup splits. A Whitehead group

is an abelian group A su
h that Ext(A;Z) = f0g, that is, every extension

0! Z! G! A! 0

splits.

Example 1.3. The group A = Z

N

has the following properties:

(i) A is an S-group.

(ii) A is not a Whitehead group.

(iii) The subgroup Z

(N)

of A is a 
ountable free pure subgroup whi
h does not

split.

Proof. (i) and (ii): The group Z

N

is an �

1

-free group whi
h is not a Whitehead

group: see e.g. [3℄, p. 652, Example A1.65.

We verify Condition 1.1(ii) for A = Z

N

. Let P be a rank one pure subgroup of

A. Sin
e A is �

1

-free, P is free and thus P = Z�k with an element k = (k

n

)

n2N

. If

d = g:
:d:fk

n

: n 2 Ng > 0 denotes the greatest 
ommon divisor of fk

n

: n 2 Ng,
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then (k

n

=d)

n2N

2 P ; then there is an m 2 Z su
h that k

n

=d = mk

n

for all nand

thus dm = 1, that is, d = 1. The de
reasing sequen
e g.
.dfk

1

; k

2

; : : : ; k

n

g is

eventually 
onstant; that is, there is a natural number N su
h that the integers

k

1

; : : : ; k

N

have the greatest 
ommon divisor 1. Then the subgroup P

N

generated in

the �nitely generated free group Z

N

by (k

1

; : : : ; k

N

) is is pure. By the Elementary

Divisor Theorem (see e.g. [3℄, p.623) applied to Z

N

, after 
hoosing a new basis,

we may assume that P

N

= Z�f0g� � � � � f0g. It is therefore no loss of generality

to assume that (k

n

)

n2N

= (1; 0; : : : ; 0; k

N+1

; k

N+2

; : : :). Set G = f0g�Z�Z� � � �.

Then Z

N

= P �G and Z

N

is an S-group as asserted.

(iii): If m�(k

n

)

n2N

2 Z

(N)

for some m 2 Z then mk

n

= 0 for all but a �nite

number of n 2 N. Then (k

n

)

n2N

. Thus Z

(N)

is a pure subgroup of Z

N

whi
h is

obviously 
ountable and free. The group Z

N

=Z

(N)

is a torsion free algebrai
ally


ompa
t group and 
ontains a 
opy Z

p

of the p-adi
 integers for ea
h prime as a

dire
t summand. (See e.g. [2℄, p. 176, 42.2 and p. 169, 40.4.) Sin
e Z

p


ontains


ountable groups whi
h are not free (e.g.

1

q

1

Z for any prine q di�erent from p),

and sin
e Z

N

is �

1

-free, Z

N


annot 
ontain a subgroup isomorphi
 to A=Z

(N)

. ut

Example 1.4. There is an abelian group B with a subgroup C

�

=

Z su
h that

B=C

�

=

Z

N

and that every morphism B ! Z annihilates C. The group B is an

�

1

-free group whi
h is not an S-group.

Proof. In [3℄, pp. 653, 654, the following lemmas are proved:

Lemma A. Let E = [0 ! C ,! B ! X ! 0℄ be any extension of C

�

=

Z by an

abelian group X. Then there is a homomorphism f :B ! Z whose restri
tion to C

is nontrivial if and only E represents an element of �nite order in Ext(X;Z). ut

Lemma B. Ext(Z

N

;Z) 
ontains 2

(2

�

0

)

elements of in�nite order. ut

Taken together, these Lemmas yield the existen
e of a torsion free group B

and a 
y
li
 subgroup C su
h that B=C

�

=

Z

N

, and that every morphism B ! Z

vanishes on C. The subgroup C is a subgroup of rank 1 whi
h does not split, and

sin
e B=C is torsion free, C is a pure subgroup of B. Thus B is not an S-group. If

P is a �nite rank pure subgroup of B, then

�

P+C

C

�

is a �nite rank pure subgroup

of B=C

�

=

A and is therefore �nitely generated free; its full inverse image P

0

in

B is a �nitely generated torsion free group and is, therefore, free. Thus P as a

subgroup of a free group is free. Hen
e B is an �

1

-free group. ut

In this area of the theory of abelian groups, Z

N

is a universal test example. For

instan
e, Proposition 1.1 
annot be 
omplemented by another equivalent 
ondition

whi
h would say: Every 
ountable pure subgroup splits. The example shows, in

parti
ular, that the 
lass of S-groups is properly smaller than that of �

1

-free groups

and is not 
ontained in the 
lass of Whitehead groups and thus is properly bigger

than the 
lass of free groups.
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�

1

-free groups

�

�

S-groups

�

�

free groups

2. Strengthening Lo
al Conne
tivity

for Lo
ally Compa
t Abelian Groups

A lo
ally 
ompa
t abelian group G is 
ompletely 
hara
terized by its Pontryagin

dual

b

G = Hom(G;T). (See e.g. [3℄, Chapters 7 and 8.) A topologi
al group G is

lo
ally 
onne
ted if and only if its identity 
omponent G

0

is open in G and is

lo
ally 
onne
ted; a 
onne
ted lo
ally 
ompa
t abelian group G 
ontains a unique


hara
teristi
 maximal 
ompa
t subgroup C and a subgroup V

�

=

R

n

su
h that

the morphism (v; 
) 7! v+ 
 : V �C ! G is an isomorphism of topologi
al groups.

(See e.g. [3℄, p. 348, Theorem 7.57.) In dis
ussing lo
al 
onne
tivity of a lo
ally


ompa
t abelian group G, it is no loss of generality to assume that G is 
ompa
t

and 
onne
ted. A lo
ally 
ompa
t abelian group G is 
ompa
t and 
onne
ted if

and only if its 
hara
ter group

b

G is dis
rete and torsion free. (See e.g. [3℄, p. 297,

Proposition 7.5(i), and p. 369, Corollary 8.5.) Lo
al 
onne
tivity of a 
ompa
t


onne
ted abelian group is 
hara
terized as follows:

Proposition 2.1. For a 
ompa
t 
onne
ted abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small 
ompa
t 
onne
ted subgroups N su
h that G=N is

a �nite dimensional torus group.

(ii) The 
hara
ter group

b

G is the dire
ted union of pure �nitely generated free

subgroups.

(iii)

b

G is �

1

-free.

(iv) G is lo
ally 
onne
ted.

Proof. For a proof see [3℄, p. 396, Theorem 8.36. ut

We 
ompare this proposition with the following

Proposition 2.2. For a 
ompa
t 
onne
ted abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small 
ompa
t 
onne
ted subgroups N for whi
h there

is a �nite dimensional torus subgroup T

N

of G su
h that (n; t) 7! n + t :

N � T

N

! G is an isomorphism of topologi
al groups.

(ii) The 
hara
ter group

b

G is the dire
ted union of �nitely generated free split

subgroups.



6 The exponential fun
tion of lo
ally 
onne
ted 
ompa
t abelian groups

(iii)

b

G is an S-group.

Proof. The equivalen
e of (i) and (ii) follows at on
e from duality.

(ii))(iii): By (ii), the abelian group

b

G is torsion free. Let P be a rank one pure

subgroup of

b

G. The P = [Z�a℄ for some a 2

b

G. By (ii) there is a �nitely generated

free split subgroup F of

b

G 
ontaining a. Sin
e a dire
t summand is a pure subgroup

we have P = [Z�a℄ � F . As a pure subgroup of a �nitely generated torsion free

group, P is a dire
t summand of F , and sin
e F is a dire
t summand of

b

G, P is a

split subgroup of

b

G.

(iii))(ii): As a torsion free abelian group,

b

G is the dire
ted union of all of its

�nite rank pure subgroups P ; by (iii), every su
h P is split and free, and thus (ii)

follows. ut

The 
omparison of Propositions 2.1 and 2.2 justi�es the following de�nition:

De�nition 2.3. A lo
ally 
ompa
t abelian group is said to be strongly lo
ally 
on-

ne
ted if its identity 
omponent is open and its unique maximal 
ompa
t 
onne
ted

subgroup satis�es the equivalent 
onditions of Proposition 2.2.

In parti
ular, a 
ompa
t 
onne
ted abelian group is strongly lo
ally 
onne
ted

if and only if its 
hara
ter group is an S-group. ut

Example 2.4. Let G

def

=




Z

N

. Then G is a strongly lo
ally 
onne
ted and 
onne
ted

but not ar
wise 
onne
ted 
ompa
t abelian group.

There is a 
ompa
t 
onne
ted, lo
ally 
onne
ted, but not strongly lo
ally 
on-

ne
ted group H of weight 2

�

0


ontaining G su
h that H=G is a 
ir
le group.

G has a metri
 torus group quotient whi
h is not a homomorphi
 retra
t.

Proof. A 
ompa
t 
onne
ted abelian group H is ar
wise 
onne
ted if and only if

its 
hara
ter group

b

H is a Whitehead group. (See e.g. [3℄, pp. 389, 390, Theorem

8.30(iv).) The 
laim thus follows by duality from Examples 1.3 and 1.4. ut

The 
lass of 
onne
ted strongly lo
ally 
onne
ted 
ompa
t abelian groups is

properly larger than that of torus groups and properly smaller than that of 
on-

ne
ted and lo
ally 
onne
ted 
ompa
t abelian groups.

3. The Exponential Fun
tion of

Strongly Lo
ally Conne
ted Groups

We shall investigate when the exponential fun
tion exp:L(G) ! G of a 
ompa
t


onne
ted abelian group G in the present 
ontext. For a detailed exposition of the

exponential fun
tion of 
ompa
t abelian groups we refer to [3℄, notably Chapters

7 and 8. We need to know here that L(G) = Hom(R; G) is the topologi
al ve
tor
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spa
e of all one parameter subgroups, i.e. 
ontinuous group morphisms X :R ! G,

where Hom(R; G) is given the topology of uniform 
onvergen
e on 
ompa
t sets.

The exponential fun
tion is given by evaluation via expX = X(1). By duality,

L(G) may also be viewed as the ve
tor spa
e Hom(

b

G;R) with the topology of

pointwise 
onvergen
e. We note that L(G) is isomorphi
 to a produ
t of 
opies

of R (see [3℄, p. 355, Theorem 7.66 (i) and pp. 325, 326, Theorem 7.30(ii)). For

any 
ompa
t abelian group G, the exponential fun
tion exp

G

:L(G) ! G (
f. [3℄,

pp. 355, 356, Theorem 7.66) is a morphism of abelian topologi
al groups. Let

G

a

= imexp

G

denote the ar
 
omponent of the zero element 0. (See [3℄, p. 389,

390, Theorem 8.30.) We note the exa
t sequen
e:

(exp) 0! K(G) ! L(G)

exp

G

����!G! Ext(

b

G;Z)! 0

where K(G) = ker exp

G

The 
orestri
tion exp

0

G

:L(G) ! G

a

of the exponential

fun
tion to its image is a surje
tive morphism of topologi
al groups. A surje
tive

morphism between topologi
al groups is open if and only if it is a quotient mor-

phism. Thus exp

0

G

is open i� the indu
ed bije
tive morphism of topologi
al groups

L(G)=K(L)! G

a

is an isomorphism of topologi
al groups.

Proposition 3.1. Let G be a 
onne
ted and strongly lo
ally 
onne
ted 
ompa
t

abelian group. Then exp

0

G

:L(G)! G

a

is open.

Proof. Let P denote the set of pure �nite rank subgroups of

b

G. then P 2 P is

a �nitely generated free split subgroup of

b

G. We sele
t a subgroup S

P

�

b

G su
h

that

b

G = P � S

P

. Let N

P

def

= P

?

denote the annihilator of P in G and T

P

= S

?

P

the annihilator of S

P

. By duality (n; t) 7! n+1 : N

P

�T

P

! G is an isomorphism

of topologi
al groups, that is, G = N

P

� T

P

algebrai
ally and topologi
ally. The

groups T

P

, G=N

P

and

b

P are naturally isomorphi
 by the Annihilator Me
hanism

(see [3℄, p. 352, Theorem 7.64) and thus are �nite dimensional torus groups. The

morphism exp

N

P

� exp

T

P

: L(N

P

) � L(T

P

) ! N

P

� T

P

is naturally equivalent

to the exponential fun
tion of N

P

� T

P

. Let U

P

be the set of ar
wise 
onne
ted

open zero-neighborhoodsU of L(T

P

) mapped homoemorphi
ally onto an open zero

neighborhood V of T

P

by exp

T

P

; su
h neighborhoods U and V exist as T

P

is a Lie

group. Then (exp

N

P

� exp

T

P

)(L(N

P

)�U) = (N

P

)

a

�V = (N

P

�V )\(N

P

�T

P

)

a

.

It follows that exp

G

(L(N

P

)�U) is a an identity neighborhood ofG

a

in the topology

indu
ed from that of G. We 
laim that fL(N

P

) � U : P 2 P ; U 2 U

P

g is a basis

for the open zero-neighborhoods of L(G), where L(N

P

) is naturally 
onsidered

as a 
o�nite dimensional ve
tor subspa
e of L(G). One this 
laim is established,

exp

0

G

:L(G)! G

a

is open and the proof of the proposition will be 
omplete.

Sin
e

b

G =

S

P = 
olim

P2P

P by duality, we have G = lim

P2P

G=N

P

The

fun
tor L = Hom(R;�) preserves proje
tive limits (see e.g. [3℄, p. 336, Proposi-

tion 7.38(iv); in fa
t L preserves all limits). Furthermore, L preserves quotients

(see [3℄, pp. 355, 356, Theorem 7.66(iv)). Hen
e L(G) = lim

P2P

L(G)=L(N

P

). Let

p

P

:L(G) ! L(G)=L(N

P

) denote the quotient morphism. For any zero neighbor-

hoodW of L(G), by basi
 properties of the limit, there is a P 2 P and a zero neigh-

borhood U 2 U

P

in L(T

P

)

�

=

L(G)=L(N

P

) su
h that p

�1

P

�

(U +L(N

P

))=L(N

P

)

�

�
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W . (See e.g. [3℄, p. 21, Proposition 1.33(i)(a); this part of 1.33 has nothing to do

with 
ompa
tness). Sin
e p

�1

P

�

(U + L(N

P

)

�

= L(N

P

)� U , the 
laim is proved. ut

Corollary 3.2. (i) The un
ountable produ
t V

def

= R

R

has a 
losed totally dis
on-

ne
ted algebrai
ally free subgroup K of 
ountable rank su
h that the quotient V=K

is in
omplete and its 
ompletion G is a 
ompa
t 
onne
ted and strongly lo
ally


onne
ted abelian group of 
ontinuum weight.

(ii) Let q:V ! V=K denote the quotient map and 


V=K

:V=K ! G be the


ompletion map. There is a morphism f :V ! C into a 
ompa
t hen
e 
omplete

group whose kernel is K and whi
h has the property that the fa
torisation map

f

0

:G! C determined uniquely by f = f

0

Æ 


V=K

Æ q is not inje
tive.

Proof. (i): Let G =




Z

N

be the 
ompa
t abelian group of 2.4. The rank of Z

N

agrees with the 
ardinal of Z

N

and that is the 
ardinal 2

N

of the 
ontinuum. Then

L(G) = Hom(R; G) = Hom(Z

N

;R)

�

=

R

2

N

�

=

R

R

. Thus we take for V the additive

group of L(G) and K = K(G) and know that ":V=K ! G

a

is an isomorphism of

topologi
al groups by Proposition 3.1. The 
ompletion of G

a

is G, and w(G) =


ardZ

N

= 2

�

0

. The kernel K(G) is algebrai
ally isomorphi
 to Hom(Z

N

;Z) (see

[3℄, p. 355, Theorem 7.66(ii)). But Hom(Z

N

;Z)

�

=

Z

(N)

(see [1℄, p. 61, Corollary

2.5). Thus K is free of 
ountable rank.

(ii): In [3℄, p. 652, Example A1.65 one �nds the 
onstru
tion of a 
hara
ter

�:Z

N

! T of order 2 (i.e., 2�� = 0 in additive notation) whi
h does not fa
tor in

the form

Z

N

'

����!R

p

����!T; p(r) = r +Z:

Then, as an element of G = Hom(Z

N

;T), the 
hara
ter � is not in the image G

a

of Hom(Z

N

; p) = exp

G

: Hom(Z

N

;R) = L(G) ! G. Set Z = f0; �g. Then Z is a


losed subgroup of G su
h that G

a

\Z = f0g. Put C = G=Z and let f

0

:G! C be

the quotient morphism whose kernel is Z. The restri
tion F :G

a

! C is inje
tive.

Let f :V ! C be de�ned by f(X) = F (exp

G

X). By (i) the 
orestri
tion q:V =

L(G)! G

a

of the exponential fun
tion is a quotient morphism, and F = fÆq is the


anoni
al epi
-moni
 fa
torisation of F . Sin
e G is isomorphi
 to the 
ompletion

G of G

a

and the in
lusion G

a

! G is the 
ompletion morphism 


G

a

:G

a

! G, the

assertion follows. ut

The signi�
an
e of 3.2(ii) is as follows: In the 
ategory of all 
omplete topolog-

i
al abelian groups, the 
ompletion of a quotient plays the role of a quotient in the


ategory as it has the expe
ted universal properties; nevertheless, it will in general

fail to have familiar properties as 3.2(ii) illustrates. The possible in
ompleteness of

quotients plays a somewhat disturbing role in a general theory of proje
tive limits

of �nite dimensional Lie groups. The simplest nontrivial proje
tive limits of �nite

dimensional Lie groups are the produ
ts R

X

. The produ
t R

N

is metrizable and


omplete, hen
e every quotient is 
omplete. Corollary 3.2 shows that the \next
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largest produ
t", R

R

already has in
omplete quotients, and it is remarkable that

there are su
h quotients whose 
ompletion is 
ompa
t.

Proposition 3.3. Assume that the 
orestri
tion exp

0

G

:L(G) ! G

a

of the expo-

nential fun
tion of a 
ompa
t 
onne
ted abelian group is a quotient morphism.

Then

(i) G

a

has arbitrarily small open ar
wise 
onne
ted identity neighborhoods in the

topology indu
ed from that of G.

(ii) G is lo
ally 
onne
ted.

(iii)

b

G is �

1

-free.

Proof. (i) A quotient morphism is open. But L(G) is a lo
ally 
onvex topologi
al

ve
tor spa
e and thus has arbitrarily small ar
wise 
onne
ted neighborhoods of

zero whi
h are mapped onto open identity neighborhoods of G

a

by exp

0

G

.

(ii) Let W be an identity neighborhood of G. Then there is an identity neigh-

borhood V su
h that V

2

�W . By (i), G

a

has an open ar
wise 
onne
ted identity

neighborhood U satisfying U � V . Then the 
losure U of U in G is 
ontained in

V subseteqV V � W . There is an open set U

G

in G su
h that U = U

G

\ G

a

, and

sin
e G

a

is dense in G we have U = U

G

. Also, sin
e U is ar
wise 
onne
ted, U

is 
onne
ted. is an identity neighborhood in G. Thus U is a 
onne
ted identity

neighborhood in G whi
h is 
ontained in W . Thus G is lo
ally 
onne
ted.

(iii) This follows from 2.1 and (ii) above. ut

Thus the exponential fun
tion of a 
ompa
t 
onne
ted abelian group 
an be

open onto its image only if the group is lo
ally 
onne
ted.

Proposition 3.4. If the ar
 
omponent G

a

of the zero element of a 
ompa
t


onne
ted abelian group G is lo
ally ar
wise 
onne
ted, then the 
orestri
tion

exp

0

G

:L(G) ! G

a

of the exponential fun
tion is open.

Proof. On the group G there is a �lterbasisN (G) 
onverging to 1 and 
onsisting of


losed 
ompa
t subgroupsN su
h that G=N is a �nite dimensional torus. By [3℄, p.

355, 356, Theorem 7.66(iv), there are arbitrarily small identity neighborhoods of G

of the form N�V where V = exp

G

U for an open n-
ell neighborhood U in a �nite

dimensional ve
tor subspa
e F of L(G) su
h that (n;X) 7! n+ exp

G

X :N �U !

N �V is a homeomorphism. Now N

a

�V = (N �V )

a

is the ar
 
omponent of 0 in

G

a

\ (N � V ). Sin
e G

a

is lo
ally ar
wise 
onne
ted, ar
 
omponens of open sets

of G

a

are open in G

a

, and thus N

a

�V is open in G

a

. Therefore G

a

has arbitrarily

small identity neighborhoods of the form N

a

� V . However, these are of the form

N

a

� V = exp

N

L(N) � exp

G

U = exp

G

(L(N) � U) = exp

0

G

(L(N) � U). Now

we know that G = lim

N2N (G)

G=N and just as in the proof of 3.1 we 
on
lude

that therefore L(G) = lim

N2N (G)

L(G)=L(N) and that L(G) has arbitrarily small

neighborhoods of the form L(N)�U . This proves that exp

0

G

is an open morphism.ut



10 The exponential fun
tion of lo
ally 
onne
ted 
ompa
t abelian groups

4. A Chara
terisation of

Strong Lo
al Conne
tivity

We have seen that the 
orestri
tion of the exponential fun
tion exp

0

G

:L(G)! G

a

of a 
ompa
t 
onne
ted abelian group G is open if G is strongly lo
ally 
onne
ted.

We shall show in this se
tion that the 
onverse holds as well.

In order to form a topologi
al intuition, let us brie
y 
onsider the 
ase of a

�nite dimensional 
ompa
t abelian group. A 
ompa
t 
onne
ted group G is n-

dimensional for n = 0; 1; : : : i� and only if its 
hara
ter group

b

G has rank n, that

is, dim

Q

Q 


b

G = n (see e.g. [3℄, p. 650); this is the 
ase i� dimL(G) = n (see [3℄,

p. 382, Theorem 8.22). If exp

0

:L(G)! G

a

is open, then G

a

is a quotient group of

the lo
ally 
ompa
t group L(G)

�

=

R

n

and thus is lo
ally 
ompa
t. Hen
e it is a


losed subgroup of G, (see e.g. [3℄, p. 777); sin
e it is also dense in G (see e.g. [3℄,

p. 359, Theorem 7.71) we have G

a

= G. Every 
ompa
t quotient group of R

n

is a

torus (see e.g. [3℄, p. 625, Theorem A1.12). Thus we re
ord:

Lemma 4.1. If the exponential fun
tion is open onto its image in a �nite-dimens-

ional 
ompa
t 
onne
ted group G, then G it is a torus. ut

In order to work towards the general 
ase, we let 1 denote the one element

group. In the following numbers 4.2 and 4.3, 
ommutativity plays no role and thus

we use the multipli
ative notation. All topologi
al groups we 
onsider are assumed

to be Hausdor�.

De�nition 4.2. A sequen
e of Hausdor� topologi
al groups and 
ontinuous mor-

phisms

1����!G

1

j

����!G

2

p

����!G

3

����!1

is said to be topologi
ally exa
t if it is exa
t algebrai
ally and if j is a topologi
al

embedding and p is a quotient map. ut

The following lemma will be 
ru
ial.

Lemma 4.3. Assume that the following is a 
ommutative diagram of topologi
al

groups

K

2

p

����! K

3

j

2

?

?

y

?

?

y

j

k

1����! L

1

����! L

2

q

����! L

3

����!1

e

1

?

?

y

e

2

?

?

y

?

?

y

e

3

1����! G

1

����! G

2

����!

r

G

3

����!1:

Hypotheses:

(a) The horizontal sequen
es are topologi
ally exa
t.

(b) j

2

, and j

3

are the in
lusions of the kernels of e

n

.

(
) e

1

has a dense image.

(d) e

2

is open onto its image.
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Con
lusions:

(i) p has a dense image. If, in addition, K

3

is dis
rete, then p is surje
tive.

(ii) The morphism e

3

is open onto its image.

Proof. (i): Clearly, if p has dense image, then the dis
reteness of its range

implies its surje
tivity. We shall show now that p has a dense image. By way of


ontradi
tion we suppose that there is an open subset U of L

3

np(K

2

) whi
h meets

K

3

. From (d) we know that e

2

�

q

�1

(U)

�

is open in e

2

(L

2

). Thus e

2

�

q

�1

(U)

�

\G

1

is

open in e

2

(L

2

)\G

1

. Let u 2 U \K

3

. By (a) there is an x 2 L

2

su
h that q(x) = u.

Then e

2

(x) 2 e

2

�

q

�1

(U)

�

, and p

�

e

2

(x)

�

= e

3

�

q(x)

�

= e

3

(u) 2 e

3

(K

3

) = f1g,

that is, e

2

(x) 2 L

1

. Thus e

2

�

q

�1

(U)

�

\ L

1

6= �. Then by (
) we have an a 2 L

1

su
h that e

2

(a) = e

1

(a) 2 e

2

�

q

�1

(U)

�

\ L

1

. Thus there is an element b 2 L

2

su
h

that q(b) 2 U and e

2

(b) = e

2

(a) 2 L

1

= ker q. Hen
e ba

�1

2 ker e

2

= K

2

and

q(ba

�1

) = q(b) 2 U . Thus U \ q(K

2

) 6= �. This is a 
ontradi
tion whi
h proves

the (i).

(ii): We have to show that the 
orestri
tion e

0

3

:L

3

! e

3

(L

3

) is a quotient

morphism, that is, if X � L

3

is su
h that XK

3

= X is 
losed in L

3

, then e

3

(X)\

e

3

(L

3

) = e

3

(X). For this last 
on
lusion, in view of homogeneity, it suÆ
es to

show that 1 2 e

3

(X) implies 1 2 e

3

(X). The subset Y

def

= p

�1

(X) of L

2

is 
losed

and K

2

-saturated, that is, it satis�es Y K

2

= Y , sin
e p(Y K

2

) = XK

3

= X . We

may assume that L

1

� L

2

. The preimage r

�1

�

e

3

(X)

�

of e

3

(X) � G

2

in G

1

is

the saturated set e

2

(Y )G

1

. Sin
e r is a quotient map, and 1 2 e

3

(X), by (
) we


on
lude that 1 2 e

2

(Y )G

1

= e

2

(Y )e

1

(L

1

) = e

2

(Y )e

1

(L

1

) = e

2

(Y L

1

) = e

2

(Y ). By

(d), the map e

2

is a quotient morphism onto its image, and Y = Y L

1

is 
losed

in L

2

; thus e

2

(Y ) is 
losed in e

2

(L

2

), i.e. e

2

(Y ) \ e

2

(L

2

) = e

2

(Y ). We 
on
lude

1 2 e

2

(Y ) and thus 1 2 r

�

e

2

(Y )

�

= e

3

(X) whi
h we had to show. ut

We apply this to a 
ompa
t 
onne
ted abelian group G with a 
losed subgroup

N . Then

0! N ! G! G=N ! 0

is a topologi
ally exa
t sequen
e, as is

0! L(N)! L(G)! L(G=N)! 0

by [3℄, pp. 355, 356, Theorem 7.66(iii). Write T

def

= G=N and let f :G! T be the

quotient morphism. Then we have a 
ommutative diagram of abelian topologi
al

groups with topologi
ally exa
t rows.

(�)

K(G)

K(f)

����! K(T )

j

2

?

?

y

?

?

y

j

k

0����! L(N) ����! L(G)

L(f)

����! L(T ) ����!0

exp

N

?

?

y

exp

G

?

?

y

?

?

y

exp

T

0����! N ����! G ����!

f

T ����!0:
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Proposition 4.4. Let G be a 
onne
ted 
ompa
t abelian group su
h that

exp

0

G

:L(G)! G

a

is open. Then G is strongly lo
ally 
onne
ted.

Proof. In view of De�nition 2.3 we have to show that

b

G is an S-group. Let P be

a rank one pure subgroup; we must show that P splits as a dire
t summand.

Sin
e

b

G is �

1

-free by Proposition 3.3, there is an isomorphism �:P ! Z, and

so

b

P

�

=

T. Set N = P

?

, the anniliator of P in G. Sin
e

b

G=P

�

=

b

N is torsion free,

N is a 
losed 
onne
ted subgroup su
h that G=N

�

=

b

P is a one-torus; We shall

write f :G ! T

def

=

b

P for the quotient map and we shall identify

b

T with P by


onsidering

b

f :

b

T !

b

G as the in
lusion map in
l:P !

b

G.

Now we 
he
k the hypotheses of Lemma 4.3. The pre
eding 
omments show

that (a) and (b) are satis�ed, and (d) is our hypothesis. Hypothesis (
) 
on
erns

the exponential fun
tion exp

N

:L(N) ! N ; sin
e N is 
onne
ted, N

a

= imexp

N

is dense in N (see [3℄, p. 359, Theorem 7.71). Thus hypothesis 4.3(
) is satis�ed

as well. The exponential fun
tion exp

T

:L(T ) ! T of a one dimensional torus

is equivalent to the quotient map R ! T and therefore has a dis
rete kernel

isomorphi
 to Z. Thus Lemma 4.3(i) proves that K(f):K(G) ! K(t) is surje
tive.

In view of [3℄, p. 355, Theorem 7.66(ii), we have a 
ommutative diagram

Hom(

b

G;P )

Hom(in
l;P )

�������! Hom(P; P )

Hom(

b

G;�)

?

?

y

?

?

y

Hom(

b

T ;�)

Hom(

b

G;Z)

Hom(

b

f;Z)

�����! Hom(

b

T ;Z)

�

=

?

?

y

?

?

y

�

=

K(G) ����!

K(f)

K(T );

where Hom(in
l; P ) is the restri
tion � 7! �jP : Hom(

b

G;P ) ! Hom(P; P ). This

map we now know to be surje
tive. Hen
e there is a morphism p:

b

G! P su
h that

pjP is the identity morphism of P . Thus p is a homomorphi
 retra
tion and thus

P splits. ut

5. Summary: TheMain Result. Generalisations

Propositions 3.1, 3.3, 3.4, 4.4 yield the following main result:

Theorem 5.1. For a 
ompa
t 
onne
ted abelian group G and its zero ar
-
om-

ponent G

a

, the following 
onditions are equivalent:

(i) G is strongly lo
ally 
onne
ted.

(ii) The exponential fun
tion exp

G

:L(G)! G is open onto its image.

(iii) G

a

is lo
ally ar
wise 
onne
ted.

(iv)

b

G is an S-group, that is, every �nite rank pure subgroup of

b

G is free and is a

dire
t summand. ut
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Corollary 5.2. Let G be a metri
 
ompa
t 
onne
ted abelian group. Then the

following statements are equivalent:

(i) G is strongly lo
ally 
onne
ted.

(ii) The exponential fun
tion exp

G

:L(G)! G is open onto its image.

(iii) G

a

is lo
ally ar
wise 
onne
ted.

(iv)

b

G is free and 
ountable.

(v) G is a torus.

(vi) G is ar
wise 
onne
ted.

(vii)G is lo
ally 
onne
ted.

Proof. (vii))(i),(ii),(iii),

(iv

0

)

b

G is a 
ountable S-group.

is 
lear from Theorem 5.1. and the fa
t that G is metri
 i� the weight of G is


ountable i� is 
ountable (see [3℄, p. 772, Theorem A4.16, p. 361, Theorem 7.76.

A 
ountable abelian S-group os a 
ountable �

1

-free group and is therefore free,

that is, (iv

0

))(iv). By duality,

b

G is free i� G is a torus. By [3℄, pp. 404, 405,

Theorem 8.46(iii), Conditions (v), (vi), (vii) are equivalent for metri
 
ompa
t

abelian groups. ut

Corollary 5.2 shows that the 
on
epts emerging in Theorem 5.1 attain their true

signi�
an
e in the 
ase of nonmetri
 
ompa
t 
onne
ted groups. By Example 2.4,

the 
hara
ter group of the dis
rete group Z

N

is group satisfying the 
onditions of

Theorem 5.1 whi
h is not ar
wise 
onne
ted. By 5.2, this example is minimal if we

a

ept the 
ontinuum hypothesis. There are lo
ally 
onne
ted 
onne
ted 
ompa
t

abelian groups of weight 2

�

0

whi
h are not strongly lo
ally 
onne
ted.

Even though we have dealt with 
ompa
t 
onne
ted abelian groups, in view of

the known stru
ture of lo
ally 
ompa
t groups, the results of this note generalize

to arbitrary lo
ally 
ompa
t groups. A topologi
al group G is lo
ally 
onne
ted if

and only if its identity 
omponent G

0

is open in G and is lo
ally 
onne
ted. The

in
lusion morphism G

0

! G indu
es a homeomorphism of pointed topologi
al

spa
es Hom(R; G

0

) ! Hom(R; G). If G is, say, a lo
ally 
ompa
t group, more

generally, if G is any topologi
al group having a Lie algebra (see [4℄, Chapter 2),

then this homeomorphism is in fa
t an isomorphism of topologi
al Lie-algebras

L(G

0

) ! L(G). Thus, in parti
ular, for a lo
ally 
ompa
t abelian group G, the

exponential fun
tion exp

G

:L(G) ! G is open onto its image if and only the

exponential fun
tion exp

G

0

:L(G

0

)! G

0

is open onto its image.

A 
onne
ted lo
ally 
ompa
t abelian group G is isomorphi
 to R

n

� K with

a unique 
ompa
t 
onne
ted 
ompa
t subgroup K of G by the Ve
tor Group

Splitting Theorem (see [3℄, p. 348, Theorem 7.57(iii)), and L(G)

�

=

R

n

� L(K)

su
h that the exponential fun
tion may be written in the form exp

G

:R

n

�L(K)!

R

n

�K, exp

G

(v;X) = (v; exp

K

X). Hen
e exp

G

is open onto its image if and only

if exp

K

is open onto its image.

We �nally note that by Pontryagin Duality, the largest 
ompa
t 
onne
ted

subgroup K of a lo
ally 
ompa
t abelian group

b

G is the annihilator subgroup of
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the smallest open subgroupM of the 
hara
ter group

b

G su
h that

b

G=M is torsion

free.

With these observations, the Main Theorem 5.1 yields at on
e

Theorem 5.3. For a lo
ally 
ompa
t abelian group G, the following statements

are equivalent.

(O) exp

0

G

:L(G)! G

a

is open.

(LC) G

0

is strongly lo
ally 
onne
ted.

(LC

a

) G

a

is lo
ally ar
wise 
onne
ted.

(S) The 
hara
ter group

b

K of the unique largest 
ompa
t 
onne
ted subgroup

K of G is an S-group.

(S

0

) If M denotes the smallest open subgroup of

b

G su
h that

b

G=M is torsion

free, then

b

G=M is an S-group. ut

We realize that this may be extended appropriately to lo
ally 
ompa
t not

ne
essarily abelian groups; however, the exponential fun
tion then 
eases to be a

morphism and 
ondition (O) above has to be repla
ed by

(LO) exp

G

:L(G) ! G is open at 1. One needs to know the Iwasawa Splitting

Theorem saying that a lo
ally 
ompa
t 
onne
ted group G is lo
ally isomorphi


to L �K where L is a 
onne
ted �nite dimensional Lie group and K a 
ompa
t

normal subgroup of G. Then one needs to know stru
tural results on the 
ompa
t


onne
ted group K

0

whi
h are available through [3℄, Chapter 9.
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