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The exponential function oflocally
connected compact abelian groups

by
Karl H. Hofmann, Sidney A. Morris, and Detlev Poguntke

Abstract. It is shown that the following four conditions are equivalent for a compact
connected abelian group G: (i) the exponential function of G is open onto its image; (ii) G
has arbitrarily small connected direct summands N such that G/N is a finite dimensional
torus; (iii) the arc component Gq of the identity is locally arcwise connected; (iv) the

character group G is a torsion free group in which every finite rank pure subgroup is free
and is a direct summand.

Introduction

A morphism of topological groups f:G — H is said to be open onto its image
if for any open subset U of G its image f(U) is open in the subgroup f(G) of
H. This is tantamount to saying that the morphism f': G/ ker f — f(G) induced
by f via f'(gker f) = f(g) is an isomorphism of topological groups. Equivalently,
this property can be expressed by saying that the corestriction f: G — f(G) to its
image is a quotient morphism.

We denote by T the additively written circle group R/Z. If G is a torus group
TX for an arbitrary set X, then the exponential function of G, which we may
identify with the canonical quotient RX — TX, and which therefore is readily
seen to be open, and thus, in particular, open onto its image. It is surprising that
there are compact connected groups which are not torus groups but for which
the exponential function is open onto its image. The image of the exponential
function exp: £(G) — G of a compact connected abelian group G is precisely the
arc component G, of the identity. (See [3], p. 389, Theorem 8.30(ii).) We shall
investigate when the corestriction exp’: £(G) — G, is open. In fact, we shall show
that a strong form of local connectivity is characteristic for this property. The
character group G of the discrete group Z is an example of a compact connected
abelian group of weight 2%° for which exp’: G — G, is open, while G, # G.

It is well known that complete topological abelian groups may have incomplete
quotients in manifold ways [5]. Yet it is noteworthy that this example will show
that the product R2™ of a continuum cardinality of factors of the real line has an
incomplete quotient whose completion is compact; this example is quite relevant
in the theory of projective limits of finite dimensional Lie groups of which R is
the simplest example which is not locally compact. (See [4]).

We begin by focussing on a class of torsion free abelian groups A characterized
by the property that every finite subset of A is contained if a free direct summand;
the members of this class we shall call S-groups. The class of S groups contains
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the class of free groups but is properly smaller than the class of abelian groups
whose countable subgroups are free. A compact connected abelian group G will
eventually turn out to have an exponential function which is open onto its image
ifand only if its character group G is an S-group.

1. Separable Abelian Groups

We shall write abelian groups additively. A subgroup G of an abelian group G is
said to split if there is a subgroup H of A such that A = G ® H. Likewise we say
that a short exact sequence

(E) 0-GHA-B—0

is split if j(G) is a split subgroup of A. This is tantamount to saying that the
equivalence class of (F) in Ext(B, G) is zero. (See e.g. [3], pp. 643 ff.) A subgroup
G of an abelian group A splits automatically if it is divisible or A/G is free. (See
e.g. [3], pp. 637 and 6.27.)

A subgroup P of an abelian group A is called a pure subgroup if the following

condition is satisfied.

(i) (VWpeP,ac AneN)na=p=(Ix € P)nz=p.

One observes directly (see also [3], p. 630) that for a torsion free group A, this
condition is equivalent to any of the following conditions:

(ii) The factor group A/G is torsion free.

(iii) (Vn € Nya € A)n-a € G=a € G.

In a torsion free abelian group A every subgroup G is contained in a unique
pure subgroup [G] = {a € A: (In € N)n-a € G}. (See [3], p. 630) Moreover, the
following conditions are equivalent (see [3], p. 652)

(a) Every finite rank pure subgroup of A is free.
(b) Every countable subgroup of A is free.
An abelian group satisfying these conditions is said to be Ni-free.

We are interested in a subclass of the class of N;-free groups.

Proposition 1.1. Let A be a torsion free abelian group. Then the following con-
ditions are equivalent.

(i) (Va € A)[Z-a] is free and splits.

(ii) FEwvery rank one pure subgroup is free and splits.

(iii) Fvery finite rank pure subgroup is free and splits.

Proof. Clearly, (iii)=(ii)< (). We must prove (i)=>(iii).

Step 1. We first note that if A satisfies (i) then every pure subgroup B of A
satisfies (i): Indeed let b € B; since B is pure the pure subgroup [Z-b] generated
by b in B is pure in A, and as a subgroup of the free pure subgroup generated
by bin A it is free. Since A satisfies (i), we have A = [Z-b] ® K with a suitable
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subgroup K. By the modular law, B = [Z-b] & (K N B). Setting H = K N B we
obtain B = [Z-b] & H as claimed.

Step 2. We claim that every finite rank pure subgroup is free; in other words
we show that A is Ny-free. Let G be a finite rank pure subgroup of A and assume
that G is a counterexample of minimal rank n. From (i) we know n > 1. Let
0 # g € G. Since G satisfies (i), G = [Z-g] @ H and [Z-g] is free. Since the
subgroup H has smaller rank than G, it is not a counterexample and is therefore
free. Hence G is free and thus can’t be a counterexample.

Step 3. Now we prove that every finite rank pure subgroup G splits. By Step
2, G = @Z:l Z-ey,, where N € N. By (i) there is a subgroup H; of A such that
A=7Ze ®H and G = Z-e; ® (H; NG). Assume that H; D Hy D --- D H,,
n < N has been constructed in such a fashion that A =Z-e; ® --- ® Z-e,, ® H,,
and G=Ze @ - ®ZLe,®(H,NG), m=1,2,...,n By the first step we may
apply (i) to the pure subgroup H,, and find a subgroup H,4; of H,, such that
H, =Zent1 ®DHpy1 and H,NG = Z-ept1 N(Hyp1 NG). This yields a descending
family of subgroups H,, such that 4 = @szl Z-eym ® H, and e,, € H, for m > n.
We set H = Hy. Then A = @2:1 Z-e,, ® Hy = G ® H, as was to be shown. 0O

Definition 1.2. We say that an abelian group A is an S-group if it satisfies the
equivalent conditions of Proposition 1.1. O

The S-groups have been called separable [1] which is not an advisable termi-
nology here because we will deal with topological abelian groups for which the
adjective separable refers to groups having a dense countable subset, and this is
entirely different. One might have called S-groups strongly N1 -free; our terminology
reflects the “strongly” as well.

Every free group is an S-group, since every subgroup of a free group is free,
and the quotient of a free group modulo a pure subgroup is free (see e.g. [3], p.
632, Proposition A1.24(ii)); thus every pure subgroup splits. A Whitehead group
is an abelian group A such that Ext(A,7Z) = {0}, that is, every extension

0-Z—-G—=A—-0

splits.

Example 1.3. The group A = Z" has the following properties:

(i) Ais an S-group.

(ii) A is not a Whitehead group.

(iii) The subgroup ZM of A is a countable free pure subgroup which does not
split.

Proof. (i) and (ii): The group Z" is an R;-free group which is not a Whitehead
group: see e.g. [3], p. 652, Example A1.65.

We verify Condition 1.1(ii) for A = Z". Let P be a rank one pure subgroup of
A. Since A is Ny-free, P is free and thus P = Z-k with an element k = (k,)pen. If
d = g.c.d.{k, : n € N} > 0 denotes the greatest common divisor of {k, : n € N},
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then (kyp/d)nen € P; then there is an m € Z such that k,/d = mk, for all nand
thus dm = 1, that is, d = 1. The decreasing sequence g.c.d{k;, k2,...,k,} is
eventually constant; that is, there is a natural number N such that the integers
k1, ..., kn have the greatest common divisor 1. Then the subgroup Py generated in
the finitely generated free group Z" by (ki, ..., ky) is is pure. By the Elementary
Divisor Theorem (see e.g. [3], p.623) applied to Z¥, after choosing a new basis,
we may assume that Py = Z x {0} x --- x {0}. It is therefore no loss of generality
to assume that (ky,)nen = (1,0,...,0,kny1,knt2,...). Set G ={0} X Z XZ % ---.
Then ZY = P ® G and Z" is an S-group as asserted.

(iit): I m-(kn)nen € ZM for some m € Z then mk, = 0 for all but a finite
number of n € N. Then (ky)nen. Thus Z® is a pure subgroup of ZY which is
obviously countable and free. The group ZN/Z(N) is a torsion free algebraically
compact group and contains a copy Z, of the p-adic integers for each prime as a
direct summand. (See e.g. [2], p. 176, 42.2 and p. 169, 40.4.) Since Z, contains
countable groups which are not free (e.g. q%,oZ for any prine ¢ different from p),

and since ZN is N;-free, Z" cannot contain a subgroup isomorphic to A4/ZM. 0O

Example 1.4. There is an abelian group B with a subgroup C' 2 Z such that
B/C = ZN and that every morphism B — Z annihilates C. The group B is an
Ny -free group which is not an S-group.

Proof. In [3], pp. 653, 654, the following lemmas are proved:

Lemma A. Let E = [0 - C — B — X — 0] be any extension of C = Z by an
abelian group X. Then there is a homomorphism f: B — Z whose restriction to C'
is nontrivial if and only E represents an element of finite order in Ext(X,Z). O

Lemma B. Ext(ZY,Z) contains 22" elements of infinite order. O

Taken together, these Lemmas yield the existence of a torsion free group B
and a cyclic subgroup C' such that B/C = Z~, and that every morphism B — Z
vanishes on C. The subgroup C' is a subgroup of rank 1 which does not split, and
since B/C is torsion free, C' is a pure subgroup of B. Thus B is not an S-group. If
P is a finite rank pure subgroup of B, then [££€] is a finite rank pure subgroup
of B/C = A and is therefore finitely generated free; its full inverse image P’ in
B is a finitely generated torsion free group and is, therefore, free. Thus P as a

subgroup of a free group is free. Hence B is an N;-free group. O

In this area of the theory of abelian groups, Z" is a universal test example. For
instance, Proposition 1.1 cannot be complemented by another equivalent condition
which would say: Every countable pure subgroup splits. The example shows, in
particular, that the class of S-groups is properly smaller than that of 8;-free groups
and is not contained in the class of Whitehead groups and thus is properly bigger
than the class of free groups.
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N;-free groups

S-groups

free groups

2. Strengthening Local Connectivity
for Locally Compact Abelian Groups

A locally compact abelian group G is completely characterized by its Pontryagin
dual G = Hom(G, T). (See e.g. [3], Chapters 7 and 8.) A topological group G is
locally connected if and only if its identity component Gy is open in G and is
locally connected; a connected locally compact abelian group G contains a unique
characteristic maximal compact subgroup C and a subgroup V 22 R" such that
the morphism (v,¢) = v+c¢: V x C — G is an isomorphism of topological groups.
(See e.g. [3], p. 348, Theorem 7.57.) In discussing local connectivity of a locally
compact abelian group G, it is no loss of generality to assume that G is compact
and connected. A locally compact abelian group G is compact and connected if
and only if its character group G is discrete and torsion free. (See e.g. [3], p. 297,
Proposition 7.5(i), and p. 369, Corollary 8.5.) Local connectivity of a compact
connected abelian group is characterized as follows:

Proposition 2.1. For a compact connected abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small compact connected subgroups N such that G/N is
a finite dimensional torus group.

(ii) The character group G is the directed union of pure finitely generated free
subgroups.

(iii) G is Ny -free.

(iv) G is locally connected.

Proof. For a proof see [3], p. 396, Theorem 8.36. O
We compare this proposition with the following

Proposition 2.2. For a compact connected abelian group G, the following state-

ments are equivalent:

(i) There are arbitrarily small compact connected subgroups N for which there
is a finite dimensional torus subgroup Tn of G such that (n,t) — n +t :
N xTn — G is an isomorphism of topological groups.

(il) The character group G is the directed union of finitely generated free split
subgroups.
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(iii) G is an S-group.

Proof. The equivalence of (i) and (ii) follows at once from duality.

(ii)=(iii): By (ii), the abelian group G is torsion free. Let P be a rank one pure
subgroup of G. The P = [Z-a] for some a € G. By (ii) there is a finitely generated
free split subgroup F' of G containing a. Since a direct summand is a pure subgroup
we have P = [Z-a] C F. As a pure subgroup of a finitely generated torsion free
group, P is a direct summand of F, and since F' is a direct summand of @, Pisa
split subgroup of G. R

(iif)=(ii): As a torsion free abelian group, G is the directed union of all of its
finite rank pure subgroups P; by (iii), every such P is split and free, and thus (ii)
follows. O

The comparison of Propositions 2.1 and 2.2 justifies the following definition:

Definition 2.3. A locally compact abelian group is said to be strongly locally con-
nected if its identity component is open and its unique maximal compact connected
subgroup satisfies the equivalent conditions of Proposition 2.2.

In particular, a compact connected abelian group is strongly locally connected
if and only if its character group is an S-group. O

Example 2.4. Let G def 7N, Then G is a strongly locally connected and connected
but not arcwise connected compact abelian group.

There is a compact connected, locally connected, but not strongly locally con-
nected group H of weight 2% containing G such that H/G is a circle group.

G has a metric torus group quotient which is not a homomorphic retract.

Proof. A compact connected abelian group H is arcwise connected if and only if
its character group H is a Whitehead group. (See e.g. [3], pp- 389, 390, Theorem
8.30(iv).) The claim thus follows by duality from Examples 1.3 and 1.4. O

The class of connected strongly locally connected compact abelian groups is
properly larger than that of torus groups and properly smaller than that of con-
nected and locally connected compact abelian groups.

3. The Exponential Function of
Strongly Locally Connected Groups

We shall investigate when the exponential function exp: £(G) — G of a compact
connected abelian group G in the present context. For a detailed exposition of the
exponential function of compact abelian groups we refer to [3], notably Chapters
7 and 8. We need to know here that £(G) = Hom(R, G) is the topological vector
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space of all one parameter subgroups, i.e. continuous group morphisms X: R — G,
where Hom(R, G) is given the topology of uniform convergence on compact sets.
The exponential function is given by evaluation via exp X = X(1). By duality,
£(G) may also be viewed as the vector space Hom(CA}',R) with the topology of
pointwise convergence. We note that £(G) is isomorphic to a product of copies
of R (see [3], p. 355, Theorem 7.66 (i) and pp. 325, 326, Theorem 7.30(ii)). For
any compact abelian group G, the exponential function expq: £(G) — G (cf. [3],
pp. 355, 356, Theorem 7.66) is a morphism of abelian topological groups. Let
G, = imexp. denote the arc component of the zero element 0. (See [3], p. 389,
390, Theorem 8.30.) We note the exact sequence:

(exp) 0= R(G) = £(G)2G — Ext(G,7) = 0

where R(G) = kerexpg The corestriction expp: £(G) — G, of the exponential
function to its image is a surjective morphism of topological groups. A surjective
morphism between topological groups is open if and only if it is a quotient mor-
phism. Thus expy, is open iff the induced bijective morphism of topological groups
£(G)/R(L) — G, is an isomorphism of topological groups.

Proposition 3.1. Let G be a connected and strongly locally connected compact
abelian group. Then expy: £(G) — G, is open.

Proof. Let P denote the set of pure finite rank subgroups of G. then P €Pis

a finitely generated free split subgroup of G. We select a subgroup Sp C G such

that G = P @ Sp. Let Np 4f pL denote the annihilator of P in G and Tp = S#

the annihilator of Sp. By duality (n,t) = n+1: Np xTp — G is an isomorphism
of topological groups, that is, G = Np @ 1'p algebraically and topologically. The
groups Tp, G/Np and P are naturally isomorphic by the Annihilator Mechanism
(see [3], p. 352, Theorem 7.64) and thus are finite dimensional torus groups. The
morphism expy, X expp, : £(Np) x £(Tp) —+ Np x Tp is naturally equivalent
to the exponential function of Np X T'p. Let Up be the set of arcwise connected
open zero-neighborhoods U of £(Tp) mapped homoemorphically onto an open zero
neighborhood V' of T by expy, ; such neighborhoods U and V' exist as Tp is a Lie
group. Then (expy,, X expr, )(£(Np)xU) = (Np)axV = (NpxV)N(NpxTp)q.
It follows that expo (£(Np)@U) is a an identity neighborhood of G, in the topology
induced from that of G. We claim that {£(Np) @ U : P € P, U € Up} is a basis
for the open zero-neighborhoods of £(G), where £(Np) is naturally considered
as a cofinite dimensional vector subspace of £(G). One this claim is established,
expe: £(G) — G, is open and the proof of the proposition will be complete.
Since G = UP = colimpep P by duality, we have G = limpep G/Np The
functor £ = Hom(R, —) preserves projective limits (see e.g. [3], p. 336, Proposi-
tion 7.38(iv); in fact £ preserves all limits). Furthermore, £ preserves quotients
(see [3], pp- 355, 356, Theorem 7.66(iv)). Hence £(G) = limpep £(G)/L(Np). Let
pp: £(G) = £(G)/L£(Np) denote the quotient morphism. For any zero neighbor-
hood W of L(G), by basic properties of the limit, there is a P € P and a zero neigh-
borhood U € Up in &(Tp) = £(G)/L(Np) such that pp' (U + L£(Np))/L(Np)) C
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W. (See e.g. [3], p. 21, Proposition 1.33(i)(a); this part of 1.33 has nothing to do
with compactness). Since pp" (U + £(Np)) = £(Np) @ U, the claim is proved. O

Corollary 3.2. (i) The uncountable product V LIRR s a closed totally discon-
nected algebraically free subgroup K of countable rank such that the quotient V/K
is incomplete and its completion G is a compact connected and strongly locally
connected abelian group of continuum weight.

(ii) Let ¢:V — V/K denote the quotient map and v k:V/K — G be the
completion map. There is a morphism f:V — C into a compact hence complete
group whose kernel is K and which has the property that the factorisation map
f':G — C determined uniquely by f = f' o yy/k o q is not injective.

Proof. (i): Let G = ZN be the compact abelian group of 2.4. The rank of Z~
agrees with the cardinal of Z" and that is the cardinal 2V of the continuum. Then
£(G@) = Hom(R, @) = Hom(ZN,R) = R?" = R®. Thus we take for V the additive
group of £(@) and K = R(G) and know that e: V/K — G, is an isomorphism of
topological groups by Proposition 3.1. The completion of G, is G, and w(G) =
cardZY = 2%, The kernel £(G) is algebraically isomorphic to Hom(ZM,Z) (see
[3], p. 355, Theorem 7.66(ii)). But Hom(Z",Z) = Z™ (see [1], p. 61, Corollary
2.5). Thus K is free of countable rank.

(ii): In [3], p. 652, Example A1.65 one finds the construction of a character
x: ZN — T of order 2 (i.e., 2-x = 0 in additive notation) which does not factor in
the form

N2 SR—L T, p(r) =1+ Z.

Then, as an element of G = Hom(ZY, T), the character x is not in the image G,
of Hom(Z", p) = expg: Hom(ZN,R) = £(G) — G. Set Z = {0,x}. Then Z is a
closed subgroup of G such that G,NZ = {0}. Put C = G/Z and let f':G — C be
the quotient morphism whose kernel is Z. The restriction F: G, — C is injective.
Let f:V — C be defined by f(X) = F(expg X). By (i) the corestriction ¢:V =
£(G) = G, of the exponential function is a quotient morphism, and F' = foq is the
canonical epic-monic factorisation of F'. Since G is isomorphic to the completion
G of G4, and the inclusion GG, — G is the completion morphism v¢,: G, — G, the
assertion follows. O

The significance of 3.2(ii) is as follows: In the category of all complete topolog-
ical abelian groups, the completion of a quotient plays the role of a quotient in the
category as it has the expected universal properties; nevertheless, it will in general
fail to have familiar properties as 3.2(ii) illustrates. The possible incompleteness of
quotients plays a somewhat disturbing role in a general theory of projective limits
of finite dimensional Lie groups. The simplest nontrivial projective limits of finite
dimensional Lie groups are the products R¥. The product RY is metrizable and
complete, hence every quotient is complete. Corollary 3.2 shows that the “next
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largest product”, R® already has incomplete quotients, and it is remarkable that
there are such quotients whose completion is compact.

Proposition 3.3. Assume that the corestriction expy: £(G) — G, of the expo-

nential function of a compact connected abelian group is a quotient morphism.

Then

(i) Ga has arbitrarily small open arcwise connected identity neighborhoods in the
topology induced from that of G.

(ii) G is locally connected.

~

(iii) G is Ny-free.

Proof. (i) A quotient morphism is open. But £(G) is a locally convex topological
vector space and thus has arbitrarily small arcwise connected neighborhoods of
zero which are mapped onto open identity neighborhoods of G, by expy;.

(ii) Let W be an identity neighborhood of G. Then there is an identity neigh-
borhood V such that V2 C W. By (i), G, has an open arcwise connected identity
neighborhood U satisfying U C V. Then the closure U of U in G is contained in
VsubseteqVV C W. There is an open set Ug in G such that U = Ug N G,, and
since G, is dense in G we have U = Ug. Also, since U is arcwise connected, U
is connected. is an identity neighborhood in G. Thus U is a connected identity
neighborhood in G which is contained in W. Thus G is locally connected.

(iii) This follows from 2.1 and (ii) above. O

Thus the exponential function of a compact connected abelian group can be
open onto its image only if the group is locally connected.

Proposition 3.4. If the arc component G, of the zero element of a compact
connected abelian group G is locally arcwise connected, then the corestriction

expg: £(G) — G,

of the exponential function is open.

Proof. On the group G there is a filterbasis N'(G) converging to 1 and consisting of
closed compact subgroups N such that G/N is a finite dimensional torus. By [3], p.
355, 356, Theorem 7.66(iv), there are arbitrarily small identity neighborhoods of G
of the form N @V where V = exp U for an open n-cell neighborhood U in a finite
dimensional vector subspace § of £(G) such that (n,X) — n+expg X: N xU —
N @V is a homeomorphism. Now N, @V = (N @ V), is the arc component of 0 in
G.N (N @ V). Since G, is locally arcwise connected, arc componens of open sets
of G, are open in G, and thus N, &V is open in GG,. Therefore G, has arbitrarily
small identity neighborhoods of the form N, & V. However, these are of the form
Noe @V = expy £(N) @ expg U = expr(L(N) & U) = expr(L(N) & U). Now
we know that G = limyear(e) G/N and just as in the proof of 3.1 we conclude
that therefore £(G) = limyepr () £(G)/£(N) and that £(G) has arbitrarily small
neighborhoods of the form £(N)®U. This proves that expy; is an open morphism.O
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4. A Characterisation of
Strong Local Connectivity

We have seen that the corestriction of the exponential function expy: £(G) — G,
of a compact connected abelian group G is open if G is strongly locally connected.
We shall show in this section that the converse holds as well.

In order to form a topological intuition, let us briefly consider the case of a
finite dimensional compact abelian group. A compact connected group G is n-
dimensional for n = 0,1,... iff and only if its character group G has rank n, that
is, dimg Q ® G = n (see e.g. [3], p. 650); this is the case iff dim £(G) = n (see [3],
p. 382, Theorem 8.22). If exp’: £(G) — G, is open, then G, is a quotient group of
the locally compact group £(G) = R™ and thus is locally compact. Hence it is a
closed subgroup of G, (see e.g. [3], p. 777); since it is also dense in G (see e.g. [3],
p. 359, Theorem 7.71) we have G, = G. Every compact quotient group of R" is a
torus (see e.g. [3], p. 625, Theorem A1.12). Thus we record:

Lemma 4.1. If the exponential function is open onto its image in a finite-dimens-
ional compact connected group G, then G it is a torus. ad

In order to work towards the general case, we let 1 denote the one element
group. In the following numbers 4.2 and 4.3, commutativity plays no role and thus
we use the multiplicative notation. All topological groups we consider are assumed
to be Hausdorff.

Definition 4.2. A sequence of Hausdorff topological groups and continuous mor-
phisms

J P
1 )Gl G2 G3 »1

is said to be topologically exact if it is exact algebraically and if j is a topological
embedding and p is a quotient map. O

The following lemma will be crucial.

Lemma 4.3. Assume that the following is a commutative diagram of topological
groups
Ko L} K3
jzl ljk
1——» L, —— L, —L % L, — 1

1— ¢ —— G —— G3 ——1.
T

Hypotheses:

(a) The horizontal sequences are topologically ezxact.
(b) j2, and j3 are the inclusions of the kernels of e,,.
(¢) e has a dense image.

(d) eq is open onto its image.
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Conclusions:
(i) p has a dense image. If, in addition, K3 is discrete, then p is surjective.
(ii) The morphism es is open onto ils image.

Proof. (i):  Clearly, if p has dense image, then the discreteness of its range
implies its surjectivity. We shall show now that p has a dense image. By way of
contradiction we suppose that there is an open subset U of L\ p(K3) which meets
K3. From (d) we know that ez (¢~ *(U)) is open in e (Ls). Thus ez (¢ (U)) NG is
open in e3(L2) NGy . Let u € UNK3. By (a) there is an © € Ly such that ¢(z) = u.
Then ex(z) € e2(q7*(U)), and p(ea(z)) = e3(q(z)) = es(u) € es(Kz) = {1},
that is, es(x) € Ly. Thus e (¢~ (U)) N Ly # @. Then by (c) we have an a € L,
such that ex(a) = e1(a) € e2(q™'(U)) N L;. Thus there is an element b € Ly such
that ¢(b) € U and ex(b) = ez(a) € Ly = kerq. Hence ba™! € keres = K» and
q(ba™) = q(b) € U. Thus U N ¢q(K2) # . This is a contradiction which proves
the (i).

(ii): We have to show that the corestriction ef:Ls — e3(L3) is a quotient
morphism, that is, if X C Ls is such that X K3 = X is closed in Ls, then e3(X)N
e3(L3) = e3(X). For this last conclusion, in view of homogeneity, it suffices to

show that 1 € e3(X) implies 1 € e3(X). The subset ¥ et p H(X) of Ly is closed
and K»-saturated, that is, it satisfies Y Ky =Y, since p(Y K3) = XK3 = X. We
may assume that Ly C Ly. The preimage r='(e3(X)) of e3(X) C G in G is

the saturated set e2(Y)G;. Since r is a quotient map, and 1 € e3(X), by (c) we

conclude that 1 € ex(Y)G1 = ea(Y)er(L1) = ea(Y)er(L1) = ex(Y L) = e2(Y). By
(d), the map ey is a quotient morphism onto its image, and Y = Y'L; is closed

in Lo; thus e2(Y) is closed in ea(Ls), i.e. ea(Y) Nea(Ls) = e2(Y). We conclude
1 € e2(Y) and thus 1 € r(e2(Y)) = e3(X) which we had to show. O

We apply this to a compact connected abelian group G with a closed subgroup
N. Then

0>N—->G—->G/N->0
is a topologically exact sequence, as is
0— £(N)— £(G) = £L(G/N)—=0

by [3], pp. 355, 356, Theorem 7.66(iii). Write T def G/N and let f:G — T be the
quotient morphism. Then we have a commutative diagram of abelian topological
groups with topologically exact rows.

(%) 0— £(N) o) 2 ey — 0

—
expN l eXpG l
N — G
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Proposition 4.4. Let G be a connected compact abelian group such that
expe: £(G) =+ G4 is open. Then G is strongly locally connected.

Proof. In view of Definition 2.3 we have to show that G is an S-group. Let P be

a rank one pure subgroup; we must show that P splits as a direct summand.
Since G is N;-free by Proposition 3.3, there is an isomorphism 7: P — Z, and

so P = T. Set N = PL, the anniliator of P in G. Since G/P ~ N is torsion free,

N is a closed connected subgroup such that G/N = P is a one-torus; We shall

write f:G — T P for the quotient map and we shall identify T with P by
considering f T — G as the inclusion map incl: P — G.

Now we check the hypotheses of Lemma 4.3. The preceding comments show
that (a) and (b) are satisfied, and (d) is our hypothesis. Hypothesis (c) concerns
the exponential function expy: £(N) — N; since N is connected, N, = imexpy
is dense in N (see [3], p. 359, Theorem 7.71). Thus hypothesis 4.3(c) is satisfied
as well. The exponential function expp:£(T) — T of a one dimensional torus
is equivalent to the quotient map R — T and therefore has a discrete kernel
isomorphic to Z. Thus Lemma 4.3(i) proves that K(f): R(G) — K(t) is surjective.
In view of [3], p. 355, Theorem 7.66(ii), we have a commutative diagram

Hom(G,P) 2P Hom(p, P)

Hom(("m)l ~ Hom(T',7)
-~ Hom(f,Z) -~
Hom(G, Z) Hom(T',7Z)
AlG SN AT,
/()

where Hom(incl, P) is the restriction a +— a|P : Hom(CA}',P) — Hom(P, P). This
map we now know to be surjective. Hence there is a morphism p: G — P such that
p|P is the identity morphism of P. Thus p is a homomorphic retraction and thus
P splits. ad

5. Summary: The Main Result. Generalisations

Propositions 3.1, 3.3, 3.4, 4.4 yield the following main result:

Theorem 5.1. For a compact connected abelian group G and its zero arc-com-

ponent G, the following conditions are equivalent:

(i) @ is strongly locally connected.

(ii) The exponential function exps: £(G) — G is open onto its image.

(iil) G G is locally arcwise connected.

(iv) G is an S- -group, that is, every finite rank pure subgroup ofG is free and is a
direct summand. O
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Corollary 5.2. Let G be a metric compact connected abelian group. Then the
following statements are equivalent:

(i) @ is strongly locally connected.

(ii) The exponential function expy: £(G) — G is open onto its image.

(iii) G G is locally arcwise connected.

(iv) G is free and countable.

(v) G is a torus.

(vi) G is arcwise connected.

(vii) G is locally connected.

Proof. (vil)=(i)e(ii)e (i)

(iv’)CA}' is a countable S-group.

is clear from Theorem 5.1. and the fact that G is metric iff the weight of G is
countable iff is countable (see [3], p. 772, Theorem A4.16, p. 361, Theorem 7.76.
A countable abelian S-group os a countable X;-free group and is therefore free,
that is, (iv')=(iv). By duality, G is free iff G is a torus. By [3], pp. 404, 405,
Theorem 8.46(iii), Conditions (v), (vi), (vii) are equivalent for metric compact
abelian groups. O

Corollary 5.2 shows that the concepts emerging in Theorem 5.1 attain their true
significance in the case of nonmetric compact connected groups. By Example 2.4,
the character group of the discrete group Z" is group satisfying the conditions of
Theorem 5.1 which is not arcwise connected. By 5.2, this example is minimal if we
accept the continuum hypothesis. There are locally connected connected compact
abelian groups of weight 2%¢ which are not strongly locally connected.

Even though we have dealt with compact connected abelian groups, in view of
the known structure of locally compact groups, the results of this note generalize
to arbitrary locally compact groups. A topological group G is locally connected if
and only if its identity component Gy is open in G and is locally connected. The
inclusion morphism Gy — G induces a homeomorphism of pointed topological
spaces Hom(R, Gy) — Hom(R,G). If G is, say, a locally compact group, more
generally, if G is any topological group having a Lie algebra (see [4], Chapter 2),
then this homeomorphism is in fact an isomorphism of topological Lie-algebras
£(Go) — L£(G). Thus, in particular, for a locally compact abelian group G, the
exponential function expg: £(G) — G is open onto its image if and only the
exponential function expg,: £(Go) — Gy is open onto its image.

A connected locally compact abelian group G is isomorphic to R* x K with
a unique compact connected compact subgroup K of G by the Vector Group
Splitting Theorem (see [3], p. 348, Theorem 7.57(iii)), and £(G) =2 R x £(K)
such that the exponential function may be written in the form expq,: R* x £(K) —
R*® x K, expg (v, X) = (v, expy X). Hence exp, is open onto its image if and only
if expy is open onto its image.

We finally note that by Pontryagin Duality, the largest compact connected
subgroup K of a locally compact abelian group G is the annihilator subgroup of
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the smallest open subgroup M of the character group G such that G /M is torsion
free.
With these observations, the Main Theorem 5.1 yields at once

Theorem 5.3. For a locally compact abelian group G, the following statements

are equivalent.

(0)  expy: £(G) = G, is open.

(LC) Gl is strongly locally connected.

(LC,) Gy is locally arcwise connected.

(S) The character group K of the unique largest compact connected subgroup
K of G is an S-group. R R

(8" If M denotes the smallest open subgroup of G such that G/M is torsion
free, then (A}'/M is an S-group. O

We realize that this may be extended appropriately to locally compact not
necessarily abelian groups; however, the exponential function then ceases to be a
morphism and condition (O) above has to be replaced by
(LO) expg:£(G) — G is open at 1. One needs to know the Iwasawa Splitting
Theorem saying that a locally compact connected group G is locally isomorphic
to L x K where L is a connected finite dimensional Lie group and K a compact
normal subgroup of G. Then one needs to know structural results on the compact
connected group Ko which are available through [3], Chapter 9.
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