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Abstrat. For a topologial group G we de�ne N (G) to be the set of all normal subgroups

N of G suh that G=N is a �nite dimensional Lie group. Then G is said to be a pro-Lie

group if, �rstly, G is omplete, seondly, N (G) is a �lter basis, and thirdly, every identity

neighborhood of G ontains some N 2 N (G). It is easy to see that every pro-Lie group

G is a projetive limit lim

N2N (G)

G=N . The onverse emerges as a diÆult question,

but it is shown here that any projetive limit of �nite dimensional Lie groups is a pro-

Lie group. It is also shown that a losed subgroup H of a pro-Lie group G is a pro-Lie

group, and that for any losed normal subgroup N of a pro-Lie group G, for any one

parameter subgroup Y :R! G=N there is a one parameter subgroup X:R! G suh that

X(t)N = Y (t) for t 2 R. It is proved that the ategory of all pro-Lie groups and ontinuous

group homomorphisms between them is losed under the formation of all limits, and that

the Lie algebra funtor preserves limits and quotients.

1. Introdution

In the theory of ompat and loally ompat groups it has been ustomary to

study and use \projetive limits of Lie groups." By this one means usually that a

topologial group G is a projetive limit of Lie groups if it has arbitrarily small

ompat normal subgroups N suh that G=N is a �nite dimensional Lie group.

Suh a group is neessarily loally ompat; onversely if G is a loally ompat

group and U is a ompat identity neighborhood, then any losed normal subgroup

ontained in U is trivially ompat. At the root of this intuition of \projetive limits

of Lie groups" is,

| �rstly, the theory of ompat groups reahing bak to the twenties of the last

entury (for a reent presentation see [4℄),

| seondly, Iwasawa's fundamental paper of 1949 [7℄ giving deisive strutural

information on loally ompat groups being projetive limits of Lie groups

in this sense, and,

| thirdly, Yamabe's artile [10℄ in whih he showed that every loally ompat

group G for whih the fator group G=G

0

modulo the identity omponent is

ompat, is indeed a projetive limit of Lie groups in this sense.

Groups for whih G=G

0

is ompat are alled almost onneted. All of this was

made popular within the horizon of the theory of topologial groups through the

enormously inuential book by Montgomery and Zippin [8℄.

We say that a topologial group G is a projetive limit of Lie groups, or, equiv-

alently, is Lie projetive if there is a projetive system

ff

jk

:G

k

! G

j

j j � k; (j; k) 2 J � Jg
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for a direted index set J and for �nite dimensional Lie groups G

j

and if

G = lim

j2J

G

j

= f(g

j

)

j2J

2

Y

j2J

G

j

: (8j � k) g

j

= f

jk

(g

k

)g

is the projetive limit of this system.

We say that G is a pro-Lie group if G is a omplete topologial group and

every identity neighborhood ontains a normal subgroup N suh that G=N is a

�nite dimensional Lie group, and that the intersetion of every two suh normal

subgroups ontains a third of the same type. Every pro-Lie group is a Lie projetive

group: Indeed let N (G) denote the �lter basis of all N suh that G=N is a �nite

dimensional Lie group. Then the natural quotient maps G=N ! G=M for M � N

in N (G) form a projetive system suh that G

�

=

lim

N2N (G)

G=N . The onverse,

namely, that a Lie projetive group is a pro-Lie group, is far from obvious, as one

experienes as soon as one attempts a proof. But in this artile, our �rst order of

business is to prove that the two onepts are indeed equivalent.

Both of these onepts are vastly more general than the onept desribed in

the beginning of the introdution. This is illustrated by any in�nite power R

X

or,

for that matter, by any in�nite produt of a family of nonompat �nite dimen-

sional Lie groups whih are pro-Lie groups but are not loally ompat. We shall

observe here (and give more details in a monograph under preparation [5℄) that

pro-Lie groups have an exellent Lie Theory in the sense that eah pro-Lie group

G has a generally in�nite dimensional Lie algebra L(G) with an exponential fun-

tion exp:L(G)! G whose image generates a dense subgroup of G

0

; we illustrated

the usefulness of this sort of Lie theory in our monograph on ompat groups [4℄.

The additive group of L(G) is itself a pro-Lie group. The ategory of all pro-Lie

groups will be reognized as being omplete and as being the smallest full subat-

egory of the ategory of all topologial groups and ontinuous group morphisms

(being losed under passing to isomorphi objets) suh that it ontains all �nite

dimensional Lie groups. It is relatively simple to prove that the ategory of Lie

projetive groups is omplete; it seems prohibitively diÆult to show diretly that

the ategory of pro-Lie groups is omplete. Thus the ategory of Lie projetive

groups has good funtorial properties while the ategory of pro-Lie groups has

good strutural properties, and it is therefore a great advantage to know that the

two ategories are indeed one and the same ategory. It is not easy at all to prove

that a losed subgroup H of a pro-Lie group G is again a pro-Lie group, but we

show this to be the ase here; the stumbling bloks are �rstly, that the ontinuous

algebrai isomorphism H=(H \N)! HN=N is not an isomorphism of topologial

groups in general and, seondly, that an easy riterion is not available that says

when a subgroup of a Lie group is an analyti group in the absene of losedness.

If G is a pro-Lie group and N is a losed normal subgroup then G=N has arbitrar-

ily small subgroups modulo whih this quotient is a �nite dimensional Lie group,

but, unfortunately, in general it fails to be omplete as we show elsewhere ([6℄

and [5℄). Nevertheless we show here that this does not impair the Lie theory of

pro-Lie groups in the following sense: If G is a pro-Lie group then the morphism

q:G! G=N indues a surjetive morphism of Lie algebras.
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The bottom line: The ategory of pro-Lie groups is suitable in all respets in

whih any ategory of loally ompat groups is defetive:

� it is losed under all limits and ontains all �nite dimensional Lie groups;

� it has an exellent|albeit in general in�nite dimensional|Lie theory;

� it is losed under passing to the additive groups of the Lie algebras.

And, in addition it still has the following property:

� it inludes all almost onneted loally ompat groups and thus is the true

bakground theory for any Lie theory of loally ompat groups.

The lassial example of a semidiret produt (Z=2Z)

Z

�

�

Zwith the shift ation of

Z on the produt is a loally ompat group whih is not a pro-Lie group; ertain

p-adi Lie groups suh as SL(2;Q

p

) likewise are not pro-Lie groups in our sense.

The seond major result in this artile onerns the Lie algebra funtor L from

the ategory of pro-Lie groups into the ategory of topologial Lie algebras. It is

not obvious whether or not a onneted nondegenerate pro-Lie group G has non-

degenerate one-parameter subgroups R ! G at all, that is, whether its Lie algebra

L(G) is nonzero. However, we shall show in this paper that for any quotient mor-

phism f :G ! H between pro-Lie groups, the indued morphism of topologial

Lie algebras L(f):L(G) ! L(H) is surjetive, and sine G has many nondegen-

erate quotients G=N whih are �nite dimensional Lie groups, this will answer the

question in the aÆrmative.

It is a onsequene of fairly general ategory theoretial onsiderations that L

preserves all limits and thus, notably, preserves kernels. The proof of the surje-

tivity of L(f) for all quotient maps redues omparatively quikly to the proof

that L(f) is surjetive whenever f is a quotient morphism G! R. Thus we have

to show that every quotient morphism G ! R splits. The proof of this fat is

surprisingly omplex, and, not surprisingly, it uses the Axiom of Choie.

For a reent thorough study of very general Lie algebra funtors we refer to a

forthoming artile by H. Gl�okner [2℄ who disusses and strongly uses projetive

limits of �nite dimensional Lie groups.

2. Projetive limits

For a proof of the �rst bakground theorem on projetive limits, see [1℄, [2℄, [3℄, or

[5℄ 1.27 and 1.33.

Theorem 2.1. (Fundamental Theorem on Projetive Limits) Let G = lim

j2J

G

j

be a projetive limit of a projetive system

P = ff

jk

:G

k

! G

j

j (j; k) 2 J � J; j � kg

of topologial groups with limit morphisms f

j

:G! G

j

, and let U

j

denote the �lter

of identity neighborhoods of G

j

, U the �lter of identity neighborhoods of G, and N

the set fker f

j

j j 2 Jg. Then
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(i) U has a basis of identity neighborhoods ff

�1

k

(U) j k 2 J; U 2 U

k

g.

(ii) N is a �lter basis of losed normal subgroups onverging to 1.

If M � N in N and if �

MN

:G=N ! G=M is de�ned by �

MN

(gN) = gM , then

f�

MN

:G=N ! G=M j (M;N) 2 N �N ; M � Ng

is a projetive system of topologial groups, and there is a unique isomorphism

�: lim

N2N

G=N ! G suh that the following diagram ommutes with j � k, M =

ker f

j

, N = ker f

k

, and with the morphisms f

0

j

:G= kerf

j

! G

j

indued by the limit

map f

j

:G! G

j

:

� � � G=M

�

MN

 ���� G=N

�

N

 ���� lim

P2N (G)

G=P

f

0

j

?

?

y

?

?

y

f

0

k

?

?

y

�

� � � G

j

 ����

f

jk

G

k

f

k

 ���� G:

The limit maps �

N

are quotient morphisms.

(iii) Assume that all bonding maps f

jk

:G

j

! G

k

are quotient morphisms and that

all limit maps f

j

are surjetive. Then the limit maps f

j

:G! G

j

are quotient

morphisms.

(iv) Set H

j

= f

j

(G) for eah j 2 J and let f

0

jk

:H

k

! H

j

be the morphisms de�ned

by f

jk

for j � k. Then

ff

0

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

is a projetive system of topologial groups and G = lim

j2J

H

j

. The limit

maps f

0

j

:G! H

j

are orestritions of the f

j

and they have dense images.

(v) Assume that all G

j

are omplete, then so is G.

(vi) Let G be a omplete topologial group and N a �lter basis of losed normal

subgroups onverging to the identity. Then 

G

:G! G

N

, (g) = (gN)

N2N (G)

is an isomorphism. That is, G

�

=

lim

N2N

G=N . ut

Our next theorem implies, in partiular, that a losed subgroup of a projetive

limit of �nite dimensional Lie groups is a projetive limit of �nite dimensional Lie

groups in a natural way. We remind the reader of the following terminology: A

�lter basis F in a topologial group G is alled a Cauhy �lter basis if for eah

identity neighborhood U of G there is a member F 2 F suh that FF

�1

� U .

(See. e.g. [5℄, Theorem 1.30 and the paragraph preeding it.)

Theorem 2.2. (The Closed Subgroup Theorem for Projetive Limits) Assume

that N is a �lter basis of losed normal subgroups of the omplete topologial group

G and assume that limN = 1 and that all quotient groups G=N are omplete for

N 2 N . Let H be a losed subgroup of G. For N 2 N set H

N

= HN . Then the

following onlusions hold

(i) The isomorphism 

G

:G ! lim

N2N

G=N maps H isomorphially onto

lim

N2N

H

N

=N .

(ii) Under the present hypotheses,

H

�

=

lim

N2N

H=(H \N)

�

=

lim

N2N

HN=N

�

=

lim

N2N

HN=N:
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(iii) The limit maps �

M

: lim

N2N

HN=N ! HM=M , M 2 N , are quotient

morphisms.

(iv) The standard morphisms H=(H \ N) ! HN=N are isomorphisms of

topologial groups.

Proof. (i) We note

(a) H

N

=N = H

N

=N � G=N;

and thus H

N

=N , as a losed subgroup of a omplete group is a omplete group.

Let U be the �lter of identity neighborhoods of G; for U 2 U �nd V 2 U suh that

V V � U . Sine limN = 1 by hypothesis, there is an N 2 N suh that N � V .

For any subset A of a topologial group, the losure A is the intersetion of the

sets AW where W ranges through all identity neighborhoods. Thus H

N

= HN �

HNV � HV V � HU whene

(b)

\

N2N

H

N

=

\

N2N

HN �

\

U2U

HU = H = H:

For M � N , the bonding map �

MN

:G=N ! G=M indues a bonding map

�

MN

:H

N

=N ! H

M

=M by restrition and orestrition, and

P

N

def

= f�

MN

: G=N ! G=M j (M;N) 2 N �N ;M � Ng;()

Q

N

def

= f�

MN

: H

N

=N ! H

M

=M j (M;N) 2 N �N ;M � Ng(d)

are projetive systems in whih the bonding maps have dense image. (In the former

system they are of ourse quotient morphisms. The projetive limits are written

lim

N2N

G=N and lim

N2N

H

N

=N , respetively. There is a unique morphism

": lim

N2N

H

N

=N ! lim

N2N

G=N; "

�

(g

N

N)

N2N

�

= (g

N

N)

N2N

suh that the following diagram ommutes:

(e)

� � � H

M

=M

�

MN

 ���� H

N

=N  � � � lim

N2N

H

N

=N

inl

M

?

?

y

?

?

y

inl

N

?

?

y

"

� � � G=M

�

MN

 ���� G=N  � � � lim

N2N

G=N:

Sine G is omplete, by Theorem 2.1, there is an isomorphism



G

:G! lim

N2N

G=N;

and there is a a morphism Æ

H

:H ! lim

N2N

H

N

=N de�ned by Æ

H

(h) = (hN)

N2N

suh that the following diagram ommutes:

(f)

H

Æ

H

����! lim

N2N

H

N

=N

inl

?

?

y

?

?

y

"

G ����!



G

lim

N2N

G=N:
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We laim that Æ

H

is an isomorphism. For this purpose we de�ne a funtion

�: lim

N2N

H

N

=N ! H of whih we shall show that it is a morphism of topo-

logial groups and inverts Æ

H

.

Let (g

N

N)

N2N

2 lim

N2N

H

N

=N , that is, g

N

2 H

N

and M � N implies g

M

2

g

N

M , equivalently, g

N

2 g

M

M . Then F

def

= fg

N

N : N 2 Ng is a Cauhy �lter

basis in G, and F does not depend on the partiular hoie of the representatives

g

N

of the osets g

N

N , but only on the osets. Sine G is omplete by hypothesis,

g = limF exists. Note that g is also the limit of the net (g

N

)

N2N

, irrespetive

of the hoie of the representatives g

N

. We laim that g 2 H

N

for all N 2 N .

Fix N 2 N and onsider N � P in N . Then g

P

P � g

N

N � H

N

, for all of

these P and thus g 2 H

N

= H

N

for all N 2 N ; this proves the laim. Therefore

g 2

T

N2N

H

N

= H by (b). We thus de�ne a funtion �: lim

N2N

H

N

=N ! H by

setting

(g) �

�

(g

N

N)

N2N

�

= limfg

N

N : N 2 Ng:

From this de�nition it follows that

�

�

(g

N

N)

N2N

(g

0

N

N)

N2N

�

= �

�

(g

N

g

0

N

N)

N2N

�

= lim g

N

g

0

N

=

lim g

N

lim g

0

N

= �

�

(g

N

N)

N2N

�

�

�

(g

0

N

N)

N2N

�

:

Thus � is a morphism of groups. Next we show that � is ontinuous at the iden-

tity. Let V 2 U ; pik a U 2 U suh that UU � V ; by Theorem 2.1(i) we may

assume that U = UN = NU for some N 2 N . Now we de�ne U

M

� H

M

=M

by U

M

= H

M

=M for M 6= N and by U

N

= U=N and set

e

U = (

Q

M2N

U

M

) \

lim

M2N

H

M

=M . Now let g = (g

M

M)

M2N

2

e

U . Then g

N

N 2 U

N

= U=N . Hene

for N � P we have g

P

2 g

N

N � U . Thus �(g) = lim

M2N

g

M

2 U � UU � V .

This onludes the proof of the laim that �: lim

N2N

H

N

=N ! H is a morphism of

topologial groups. For h 2 H we have �

�

Æ

H

(h)

�

= �

�

(hN)

N2N

�

= lim

N2N

h =

h. Now let g = (g

N

N)

N2N

, then Æ

H

�

�(g)

�

= Æ

H

�

lim

N2N

g

N

�

= (hN)

N2N

with h = lim

N2N

g

N

. If now N 2 N then N � P implies g

P

2 g

N

N whene

h = lim

P2N

g

P

2 g

N

N , and thus hN = g

N

N for all N 2 N . We onlude

Æ

H

�

�(g)

�

= g. Therefore � and Æ

H

are inverses of eah other. We have shown that

H

�

=

lim

N2N

H

N

=N where H

N

=N is a losed subgroup of G=N for eah N from

the �lter basis N .

(ii) The �lter basis fH \ N : N 2 Ng in H onverges to 1. We know that



H

:H ! lim

N2N

H=(H \ N), 

H

(h) =

�

h(H \ N)

�

N2N

is an isomorphism by

Theorem 2.1. The bijetive morphisms of topologial groupsH=(H\N)! HN=N ,

N 2 N , indue a bijetive morphism j in the following sequene of morphisms

H



H

����! lim

N2N

H=(H \N)

j

����! lim

N2N

HN=N

inl

����! lim

N2N

H

N

=N

�

����!H

whose omposition is the identity, i.e. �Æinl ÆjÆ

H

= id, so that inl Æ(jÆ

H

Æ�) =

id. Hene the inlusion morphism inl is an isomorphism.

(iii) We must show that the limit morphisms �

M

: lim

N2N

HN=N ! HM=M

are quotient morphisms. Indeed, let U be an identity neighborhood of the limit;

sine limN = 1 by hypothesis, we may assume that there is an N � M suh
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that U ker�

N

= U . Then �

N

(U) is an identity neighborhood of HN=N . Sine

�

MN

:HN=N ! HM=M is a quotient morphism and �

M

= �

MN

Æ�

N

we onlude

that �

M

(U) is open whih establishes the laim.

(iv) We must show that

�

�

h(H \N)

�

= hN; �:H=(H \N)! HN=N; �

�

h(H \N)

�

= hN;

is an isomorphism. In the proof of (ii) we saw that Æ = jÆ

H

:H ! lim

N2N

HN=N

is an isomorphism of topologial groups. By that whih we just saw, for eah

M 2 N , the morphism �

M

Æ j Æ 

H

:H ! HM=M is a quotient morphism. Its

kernel, however, is H \M . Hene in the anonial deomposition

H

�

M

ÆjÆ

H

�����! HM=M

quot

?

?

y

x

?

?

id

HM=M

H=(H \M) ����!

�

G=M;

the morphism � is an isomorphism. ut

Corollary 2.3. Every losed subgroup H of a pro-Lie group G is Lie projetive.

Proof. We ontinue the notation of Theorem 2.2. As a losed subgroup of the

�nite dimensional Lie group G=N , the group HN=N is a �nite dimensional Lie

group. By 2.2(ii) we have H

�

=

lim

N2N (H)

HN=N , and thus H is a projetive limit

of �nite dimensional Lie groups. ut

A topologial group G is said to be a proto-Lie group if the the set N (G) of

all losed normal subgroups N of G suh that G=N is a �nite dimensional Lie

group, is a �lter basis onverging to 1. Note that it is a pro-Lie group if it is, in

addition, omplete. A proto-Lie group is densely embedded into a pro-Lie group

via 

G

:G ! lim

N2N (G)

G=N , 

G

(g) = (gN)

N2N (G)

. For easy referene we quote

the following haraterisation of of pro-Lie groups from [5℄:

Proposition 2.4. For a topologial group G, the following two onditions are

equivalent:

(i) G is a proto-Lie group.

(ii) There is a �lter basisM of losed normal subgroups onverging to 1 suh that

G=M is a �nite-dimensional Lie group for eah M 2 M.

If these onditions hold, then M is o�nal in N (G). Moreover, if G is omplete,

then these onditions are equivalent to

(iii) G is a pro-Lie group.

If (iii) holds then G

�

=

lim

M2M

G=M .

Proof. Sine (i))(ii) is trivial by the de�nition of a proto-Lie group, we prove

(ii))(i). Clearly,M� N (G). We laim that

(�)

�

8N 2 N (G)

�

(9M 2 M) N �M:
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Firstly, ondition (8) implies that N (G) is losed under �nite intersetions and

hene is a �lter basis: Let N

1

; N

2

2 N (G), then by (�) there are subgroups

M

1

; M

2

2 M with N

j

� M

j

for j = 1; 2. Sine M is a �lter basis, there is

anM 2 M suh thatM

1

\M

2

�M . Hene N

1

\N

2

�M . Therefore G=(N

1

\N

2

)

is a quotient group of the �nite dimensional Lie group G=M and is therefore itself a

�nite dimensional Lie group. Hene N

1

\N

2

2 N (G). Seondly, sineM�N (G),

and sineM onverges to 1, the �lter basis N (G) onverges to 1 as well. And �-

nally, by (�),M is o�nal in N (G), whene G

�

=

lim

M2M

G=M = lim

N2N (G)

G=N

by o�nality (see [5℄, Co�nality Lemma 1.21). Thus it remains to prove (�). So

let N 2 N (G) be given. Let U = UN be an open identity neighborhood of G

suh that UN=N is an identity neighborhood of the �nite dimensional Lie group

G=N whih ontains no subgroups other than the singleton one. If p:G ! G=N

is the quotient map, then the image �lter basis p(M) onverges to the identity in

G=N . Hene there is an M suh that p(M) � UN=N . Then the subgroup p(M) is

singleton, that is M � N , whih is what we had to show.

If G is omplete, then (i) shows that G is a pro-Lie group and by Theorem

2.1(vi) we then know that G

�

=

lim

M2M

G=M . ut

3. Weakly omplete vetor spaes and Lie algebras.

For the onept of weakly omplete vetor spaes see [4℄, p. 319�. Here is one way

of saying what a weakly omplete vetor spae is: A topologial vetor spae is

weakly omplete if there is an isomorphism of topologial vetor spaes to some

produt vetor spae R

X

.

Lemma 3.1. Let f :V ! W be a morphism of weakly omplete vetor spaes.

Then f(V ) is a losed vetor subspae of W .

Proof. We have a anonial deomposition

V

f

����! W

q

?

?

y

x

?

?

j

V= ker f ����!

f

0

f(V );

where q(v) = v + ker f , j(w) = w, f

0

(v + kerf) = f(v). After replaing f by

f

0

we may assume without loss of generality that f is injetive and has a dense

image. Then f is both a moni and an epi in the ategory of weakly omplete

vetor spaes sine it has a zero okernel. By the Duality Theorem for Real Vetor

Spaes (see [4℄, p. 325, Theorem 7.30) the dual

b

f :



W !

b

V is a linear map between

real vetor spaes whih is both a moni and an epi. But then it is bijetive, i.e.

is an isomorphism. By duality again, f =

b

b

f is an isomorphism and thus has an

inverse in the ategory of weakly omplete vetor spaes. Hene it is bijetive. In

partiular, it is surjetive and thus the lemma is proved.
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Lemma 3.2. Let g = lim

k2J

g

k

be a projetive limit of a projetive system

f

jk

: g

k

! g

j

j j � k; (j; k) 2 J � Jg

of �nite dimensional real vetor spaes in the ategory of weakly omplete vetor

spaes. Let 

j

: g! g

j

denote the limit maps. Then for eah j 2 J there is an index

k

j

� j suh that 

jk

j

(g

k

) � 

j

(g).

Proof. By Lemma 3.1 above, 

j

(g) is a losed vetor subspae of g

j

. By the Duality

Theorem for Real Vetor Spaes (see [4℄, p. 324, Theorem 7.30, statement (ii) is

equivalent to the following assertion

(�) Let E = olim

k2J

E

k

be the diret limit of a diret system

f�

jk

:E

j

! E

k

j j � k; (j; k) 2 J � Jg

of �nite dimensional vetor spaes. Fix an index j 2 J . Then there is an index

k

j

� j suh that �

jk

j

vanishes on ker �

j

.

Now E is the direted union of the images �

k

(E

k

). If x 2 E

j

is suh that

�

jk

(x) 6= 0 for all k, then �

j

(x) 6= 0. Thus for eah x 2 ker�

j

there is a k

x

� j suh

that �

jk

x

(x) = 0. Sine dimker �

j

� dimE

j

is �nite, ker�

j

is �nitely generated.

Statement (�) follows. ut

We reord that for a topologial group G, a one parameter subgroup is a on-

tinuous group morphism f :R ! G.

We shall deal with topologial groups that have a Lie algebra. The spae

Hom(R; G) of all one parameter subgroups X :R ! G endowed with the topol-

ogy of uniform onvergene on ompat sets is denoted L(G). Aordingly L is a

limit preserving funtor from the ategory of topologial groups to the ategory

of pointed topologial spaes. For suitably good speimen of topologial groups,

the assignment L has muh better properties, as we shall outline in the following

de�nition. For a real number r we set �(r) = r

2

.

De�nitions 3.3. Let G be a topologial group. Then it is said that G has a

Lie algebra or, equivalently, that G is a topologial group with a Lie algebra if the

following onditions hold:

(i) For all X;Y 2 L(G), the following limits exist pointwise:

X + Y

def

= lim

n!1

�

�

1

n

�X

��

1

n

�Y

�

�

n

;(1)

[X;Y ℄ Æ�

def

= lim

n!1

omm

�

1

n

�X;

1

n

�Y

�

n

2

(2)

and X + Y; [X;Y ℄ 2 L(G).

(ii) Addition (X;Y ) 7! X + Y : L(G) � L(G) ! L(G) and braket multipliation

(X;Y ) 7! [X;Y ℄ : L(G)� L(G) ! L(G) are ontinuous.
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(iii) With respet to salar multipliation �, addition + and braket multipliation

[�; �℄ the set L(G) is a real Lie algebra. ut

In partiular, if G has a Lie algebra, then L(G) is a topologial Lie algebra.

Note that a topologial group G has a Lie algebra if and only if the onneted

omponent G

0

of the identity has a Lie algebra.

A Lie algebra is said to be pro�nite dimensional if it is a projetive limit of

�nite dimensional real Lie algebras. The underlying vetor spae of a pro�nite

dimensional Lie algebra is a weakly omplete vetor spae.

Using the ontinuity of the funtor L, it is not hard to see that all Lie projetive

groups have a Lie algebra, and indeed a pro�nite dimensional one.

We shall have to deal with topologial groups G for whih we make some

standard assumptions:

Notation 3.4. For G there is a projetive system

ff

jk

:G

k

! G

j

j (j; k) 2 J � J; j � kg

of �nite dimensional Lie groups G

j

suh that G = lim

j2J

G

j

. The limit maps are

denoted f

j

:G ! G

j

, the kernels ker f

j

of the limit maps will be abreviated by

K

j

. The �nite dimensional Lie algebras L(G

j

) will be written g

j

. Let us write

f

jk

def

= L(f

jk

) and f

j

def

= L(f

j

).

Proposition 3.5. There is a projetive system

ff

jk

: g

k

! g

j

j (j; k) 2 J � J; j � kg

of �nite dimensional real Lie algebras and Lie algebra morphisms suh that

L(G) = lim

j2J

g

j

and that the ontinuous Lie algebra morphisms f

j

:L(G) ! g

j

are the limit mor-

phisms.

Proof. By Theorem [5℄ 2.25(ii), the funtor L from the ategory of all topologi-

al groups having a Lie algebra and ontinuous group morphisms between them

to the ategory of topologial Lie algebras is ontinuous and thus, in partiular

preserves projetive limits. Hene L(G)

�

=

lim

j2J

L(G

j

), and we may identify the

two pro�nite dimensional Lie algebras. ut

We set a

j

= f

j

�

L(G)

�

� g

j

for eah j 2 J , and let �

jk

: a

k

! a

j

be the

morphism of �nite dimensional Lie algebras indued by f

jk

for j � k.

Lemma 3.6. The system

L

0

def

= f�

jk

: a

k

! a

j

j (j; k) 2 J � J; j � kg
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is a projetive system of �nite dimensional Lie algebras and surjetive bonding

maps. We have

L(G) = lim

j2J

a

j

:

The limit maps �

j

:L(G)! a

j

are quotient morphisms.

Proof. We apply the Fundamental Theorem on Projetive Limits 2.1(iv) to the

system L and onlude that limL

0

= limL. The limit maps �

j

:L(G) ! a

j

are

surjetive and thus are quotient maps ([4℄, p. 3.26, Theorem 7.30). It also follows

that the bonding maps �

jk

: a

k

! a

j

are surjetive. ut

The following diagram illustrates the situation:

a

j

 ����

�

jk

a

k

� � �  L(G) = lim

j2J

a

j

inl

j

?

?

y

inl

k

?

?

y

� � �

?

?

y

id

L(G)

g

j

 ����

f

jk

g

k

� � �  L(G) = lim

j2J

g

j

:

Now we apply Lemma 3.2 and obtain

Lemma 3.7. Under our general assumptions for G = lim

j2J

G

j

we have

(8j 2 J)(9k

j

� j; k

j

2 J) f

jk

j

�

(G

k

j

)

0

�

� A

j

:

Proof. From 3.2 we have

(8j 2 J)(9k

j

� j; k

j

2 J) f

jk

j

(g

k

j

) � a

j

:

The assertion now follows from the fat that as a �nite dimensional onneted

Lie group, G

k

j

)

0

is algebraially generated by exp g

k

j

and that A

j

is algebraially

generated by a

j

. Thus f

jk

j

�

(G

k

j

)

0

�

= f

jk

j

�

hexp g

k

j

)i

�

= hexpL(f

jk

j

)(g

k

j

)i �

hexp a

j

i = A

j

. ut

Now for eah j 2 J the subgroup A

j

def

= hexp

G

j

L(G

j

)i is an analyti subgroup

of G

j

suh that L(A

j

) = a

j

. (For linear Lie groups a referene is [4℄, p. 155,

Theorem 5.52. The proof there does not depend of the assumption that G is a linear

Lie group.) The morphisms f

jk

:G

k

! G

j

indue morphisms  

jk

def

= f

jk

jA

k

:A

k

!

A

j

with L( 

jk

) = �

jk

and f

0

jk

: (G

k

)

0

! (G

j

)

0

. Then

f 

jk

:A

k

! A

j

j (j; k) 2 J � J; j � kg

is a projetive system of analyti groups; let A

def

= lim

j2J

A

j

be its limit. Eah

analyti group arries a topology whih is in general �ner than the indued topol-

ogy, making the subgroup A

j

into a onneted Lie group H

j

suh that L(H

j

) =

L(A

j

) = a

j

and that the morphisms  

jk

:A

j

! A

k

indue morphisms of Lie groups

'

jk

:H

k

! H

j

suh that L('

jk

) = �

jk

. We have injetive morphisms

H

j

"

j

����!A

j

inl

A

j

����!(G

j

)

0

inl

(G

j

)

0

����!G

j
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where "

j

is the bijetive morphism of topologial groups given by "

j

(h) = h and

inl denotes the respetive inlusion morphisms.

We onsider the projetive system

H

def

= f'

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

of �nite dimensional Lie groups and let H = lim

j2J

H

j

denote its limit; we note

that due to the ontinuity of the funtor L we have

(L) L(H) = lim

j2J

L(H

j

) = lim

j2J

a

j

= L(G):

It is not at all lear at this time that a pro-Lie group is onneted if its �nite

dimensional Lie group quotients are onneted. However, we observe the following

lemma whih we shall presently apply to H = lim

j2J

H

j

.

Lemma 3.8. Assume that H is a projetive limit lim

j2J

H

j

of �nite dimensional

Lie groups satisfying the following two hypotheses:

(i) For all j 2 J the Lie group H

j

is onneted, and

(ii) the limit maps '

j

:H ! H

j

, j 2 J indue surjetive morphisms L('

j

):

L(H)! L(H

j

).

Then H is onneted.

Proof. Let h 2 H be an arbitrary element of G. We shall show that arbitrarily

lose to g there are elements from the ar omponent of the identity of H ; thus

the ar omponent of the identity is dense in H and thus H is indeed onneted.

For a proof let U be any identity neighborhood of H . By 1.27(i) we may assume

that suh that U = '

�1

j

V ) for some identity neighborhood V of H

j

. Sine H

j

is onneted by hypothesis (i), and sine any onneted �nite dimensional Lie

group is algebraially generated by the image of its exponential funtion, there are

elements X

1

; : : : ; X

n

2 L(H

j

) suh that '

j

(h) = expX

1

� � � expX

n

. By hypothesis

(ii) the morphism L('

j

):L(H) ! L(H

j

) is surjetive, and thus we �nd elements

Y

m

2 L(H), suh that X

m

= L('

j

)(Y

m

) for all m = 1; : : : ; n. Now '

j

(h) =

exp

H

j

X

m

= exp

H

j

L('

j

)(Y

m

) = '

j

(exp

H

Y

m

)in H

j

for all m. Let �: [0; 1℄ ! H

denote the ar given by �(t) = exp

H

(t�Y

1

) � � � exp

H

(t�Y

n

). Then �(0) = 1 and

�(1) = exp

H

Y

1

� � � exp

H

Y

n

2 '

�1

j

�

'

j

(h)

�

� hU . This proves our laim and thus

�nishes the proof of the lemma. ut

Lemma 3.9. The system

H

def

= f'

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

is a projetive system of quotient morphisms between �nite dimensional onneted

Lie groups and its limit H = lim

j2J

H

j

is a onneted pro-Lie group. The limit

maps '

j

:H ! H

j

are quotient morphisms.

Proof. Sine all L('

jk

) = �

jk

are surjetive, the morphisms '

jk

are surjetive,

and sine H

k

as a onneted �nite dimensional Lie group is �-ompat and loally

ompat and H

j

is loally ompat, by the Open Mapping Theorem (see e.g. [4℄,
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p. 650) the morphisms '

jk

are quotient morphisms. Therefore, the limit maps

'

j

:H ! H

j

are quotient morphisms by Theorem 2.1(iii). It follows that H is a

pro-Lie group and that B

def

= fker'

j

: j 2 Jg is a o�nite �lter basis of N (H).

Now the preeding Lemma 3.8 applies to show that H is onneted. ut

We illustrate the situation in the following diagram showing the limits of the

various projetive systems we onsider:

H

j

 ����

'

jk

H

k

� � � H = lim

j2J

H

j

"

j

?

?

y

"

k

?

?

y

� � �

?

?

y

"

A

j

f

0

jk

 ���� A

k

� � � A = lim

j2J

A

j

inl

A

j

?

?

y

inl

A

k

?

?

y

� � �

?

?

y

inl

A

(G

j

)

0

f

0

jk

 ���� (G

k

)

0

� � � G

0

=

�

lim

j2J

(G

j

)

0

�

0

inl

(G

j

)

0

?

?

y

inl

(G

k

)

0

?

?

y

� � �

?

?

y

inl

G

0

G

j

f

jk

 ���� G

k

� � � G = lim

j2J

G

j

:

The universal property of the limit G gives us the morphisms ":H ! A and the

various inlusion morphisms inl �lling in diagram (1). Notie that L(H) = L(A) =

L(B) = L(G) and we may identify L(") and the various maps L(inl) with id

L(G)

.

By the onrete onstrution of the limits

we have

G = f(g

j

)

j2J

2

Y

j2J

G

j

j (8j � k in J) f

jk

(g

k

) = g

j

g;

A = f(a

j

)

j2J

2

Y

j2J

A

j

j (8j � k in J) f

jk

(a

k

) = a

j

g;

H = f(h

j

)

j2J

2

Y

j2J

H

j

j (8j � k in J) f

jk

(h

k

) = h

j

g:

Thus A is a subgroup of G and we may identify H with A exept that its topology

may be �ner than the topology indued from G on A.

The situation is again illustrated by the following diagram:

L(H)

=

����! L(A)

=

����! L(G)

exp

H

?

?

y

exp

A

?

?

y

?

?

y

exp

G

H ����!

"

A ����!

inl

A

G

'

j

?

?

y

 

j

?

?

y

?

?

y

f

j

H

j

����!

"

j

A

j

����!

inl

A

j

G

j

;

where " and all "

j

are bijetive and all inl are embeddings.

For a given Lie projetive group G = lim

j2J

G

j

a onneted pro-Lie group H

emerged almost out of nowhere and it is mapped under the bijetive morphism "

onto the subgroup A of G. Clearly we must identify this subgroup of G

0

.

Lemma 3.10. H = G

0

.
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Proof. By Lemma 3.7,

(8j 2 J)(9j � k

j

2 J) f

jk

j

�

(G

k

j

)

0

�

� A

j

:

Now we notie that (G

k

j

)

0

is loally arwise onneted and H

j

is A

j

equipped

with the ar omponent topology (f. [4℄, p. 156, Theorem 5.52(iv) and pp. 760 �.).

Hene the restrition and orestrition f

jk

j

j(G

j

k

)

0

: (G

j

k

)

0

! A

j

fators through

"

j

:H

j

! A

j

for a morphism f

jk

j

: (G

k

j

)

0

! H

j

suh that

f

0

jk

j

def

= inl

A

j

Æ"

j

Æ f

jk

j

: (G

k

j

)

0

! (G

j

)

0

:

Temporarily, set

(�) G

0

def

= lim

j2J

(G

j

)

0

� G

0

in the ategory of topologial groups and ontinuous morphisms. Thus for eah

j 2 J there is a k

j

� j and a ommutative diagram

(G

j

)

0

�

f

0

jk

j

(G

k

j

)

0

� � � G

0

	�

�

�

�

�

f

jk

j

H

j

�

'

jk

j

H

k

j

� � � H

�

?

(G

j

)

0

inl

j

Æ"

j

?

�

f

0

jk

j

(G

k

j

)

0

inl

k

j

Æ"

k

j

?

� � � G

0

:

inl

A

Æ"

?

It follows that there is a morphism �

j

def

= f

jk

j

j(G

k

j

)

0

Æ f

k

j

jG

0

: G

0

! H

j

whih

is independent of the hoie of k

j

in as muh as it agrees with f

jk

j

Æ f

k

j

k

Æ f

k

jG

0

for k � k

j

. We notie that for j � j

0

we get �

j

= '

jj

0

Æ �

0

j

:G

0

! H

j

. Thus the

universal property of H = lim

j2J

H

k

implies the existene of a unique morphism

�:H ! G

0

suh that �

j

= '

j

Æ �.

From inl

A

Æ" Æ f

jk

= f

jk

j

we onlude that

inl

A

Æ" Æ � = id

G

0

:

Thus inl

A

Æ":H ! G

0

is a retration, and sine it is injetive, it is an isomorphism.

As it is also an inlusion map (exept for ontinuity), we now see that it is an

isomorphism. This shows G

0

= H . Thus G

0

is onneted and so

(��) H = G

0

� G

0

:

Now (8) and (��) imply H = G

0

ut
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4. Are Lie Projetive Groups Pro-Lie Groups?

For easy referene we reall the de�nition of N (G) and omplement it in a way

that will be useful to us:

De�nition 4.1. For a topologial group G let

N (G)

def

= fN

/

G : G=N is a Lie groupg;

N

0

(G)

def

= fN

/

G

0

: G

0

=N is a Lie groupg = N (G

0

):

ut

In a pro-Lie group, N (G) is a �lter basis whih onverges to 1.

We work in the setting of Notation 3.4. Reall that K

j

def

= kerf

j

and that for

eah j 2 J we have an injetive morphism G=K

j

! G

j

.

Main Lemma 4.2. (The First Fundamental Lemma) Let G be projetive limit

lim

j2J

G

j

of �nite dimensional Lie groups. Then the following onlusions hold:

(i) The identity omponent G

0

is a pro-Lie group and thus

G

0

�

=

lim

M2N

0

(G)

G

0

=M:

(ii) Set M

def

= fG

0

\K

j

: j 2 Jg. Then M is a o�nal subset of N

0

(G); that is,

for eah M 2 N

0

(G) there is a j 2 J suh that G

0

\K

j

�M .

(iii) For eah j 2 J , the natural map

�

G

0

=(G

0

\ K

j

)

�

! (G

0

K

j

)=K

j

is an iso-

morphism, the group G

0

K

j

=K

j

is a Lie group and a losed subgroup of G=K

j

,

and

G

0

= lim

j2J

(G

0

K

j

)=K

j

:

Proof. (i) Sine G

0

is a pro-Lie group by Lemmas 3.8 and 3.9, we have G

�

=

lim

M2N

0

(G)

G

0

=M by Theorem 2.1(vi).

(ii) Sine limN

0

(G) = 1 and f

j

:G! G

j

is ontinuous for eah j 2 J , we have

lim f

j

(N

0

(G)) = 1. But G

j

is a Lie group and thus has no small subgroups. Hene

there is an M 2 N

0

(G) suh that f

j

(M) = f1g, that is, M � K

j

. Thus we have a

quotient morphism G

0

=M ! G

0

=(G

0

\K

j

). Sine quotients of �nite dimensional

Lie groups are Lie groups, G

0

=(G

0

\K

j

) is a Lie group whene G

0

\K

j

2 N

0

(G)

by De�nition 4.1. HeneM� N

0

(G).

By Theorem 2.1(i) we know that lim

j2J

K

j

= 1. Then lim

j2J

G

0

\K

j

= 1. Let

M 2 N

0

(G). Then G

0

=M is a Lie group, and thus there is an open identity neigh-

borhood U of G

0

suh that UM = U and U=M has no nonsingleton subgroups.

Then there is a j 2 J suh that G

0

\K

j

� U . Sine (G

0

\K

j

)M=M is a subgroup

of G

0

=M ontained in U=M we have G

0

\K

j

�M .

(iii) By (ii) above, G

0

=(G

0

\ K

j

) is a �nite dimensional Lie group. We set

N

def

= fK

j

: j 2 Jg. By 2.1 we know that limN = 1. So we an apply Theorem

2.2 with H = G

0

. In partiular, 2.2(iv) yields the assertions of (iii). ut
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Note that we have shown, in partiular, that every onneted Lie projetive

group is a pro-Lie group.

A topologial groupG is said to be protodisrete if the �lter basis of open normal

subgroups onverges to 1. If G is in addition omplete, it is alled prodisrete.

Proposition 4.3. (a) For a Lie projetive group G, the following statements are

equivalent:

(i) G is prodisrete.

(ii) G is zero dimensional.

(iii) G is totally disonneted.

(iv) L(G) = f0g.

(b) A quotient of a protodisrete group is protodisrete.

Proof. First we prove (a):

(i))(ii): By (i) G is a losed subgroup of a produt of disrete groups and therefore

the �lter of its identity neighborhoods has a basis of open subgroups.

(ii))(iii))(iv): This is lear.

(iv))(i): Let G = lim

j2J

G

j

with a projetive system as in 3.4 and assume

that the limit maps f

j

:G ! G

j

have dense images. Let D

j

be the disrete group

G

j

=(G

j

)

0

and let

D = fF

jk

:D

k

! D

j

j j � k; (j; k) 2 J � Jg

be the projetive system indued by P and let D = lim

j2J

D

j

. Then eah quotient

D= kerF

j

for the limit maps F

j

:D ! D

j

is disrete, and D = lim

j2J

D= kerF

j

by Theorem 2.1(ii). Hene D is a prodisrete group. Now by hypothesis (v) we

have f0g = L(G) = lim

j2J

L(G

j

). Then by Lemma 3.6, for eah j 2 J , there is a

k

j

� j suh that f

jk

j

(g

k

j

) = f0g, i.e. f

jk

�

(G

k

j

)

0

�

= f1g. Thus f

jk

j

fators through

a morphism F

jk

j

:D

jk

j

! G

j

. We have a diagram

G

j

�

f

jk

j

G

k

j

� � � G

D

j

q

j

?

�

F

jk

j

D

k

j

q

k

?

� � � D

q

?

	�

�

�

�

�

F

jk

j

G

j

�

f

jk

G

k

j

� � � G:

p

?

By an argument entirely analogous to that in the proof of 3.9 regarding the diagram

in that proof we onlude the existene of a morphism p:D ! G suh that p Æ q =

id

G

. Thus G is a retrat of D. But retrats of prodisrete groups are easily seen

to be prodisrete. This ompletes the proof.
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Proof of (b): If G is protodisrete, N (G) is a �lter basis of open normal sub-

groups whih onverges to 1. Now let N be a losed normal subgroup of G. De�ne

U = fNU=U : U 2 N (G)g. EahNU is an open and hene losed normal subgroup

of G and thus the NU=U are open-losed subgroups of G=N , and we laim that U

onverges to the identity of G=N . LetW be an open identity neighborhood of G=N

and V its full inverse image in G=N . Then V is an open identity neighborhood of

G suh that NV = V . Sine N (G) onverges to 1, there is a U 2 N (G) suh that

U � V . Then NU � NV = V and thus NU=N � W . This proves the laim and

proves (b) in view of 2.4. ut

Main Lemma 4.4. (The Seond Fundamental Lemma) For any Lie projetive

group G, the omponent fator group G=G

0

is protodisrete; if it is omplete, then

it is prodisrete.

Proof. We retain the notation of the proof of Proposition 4.3 and onsider the

ommutative diagram

(G

j

)

0

f

0

jk

 ���� (G

k

)

0

� � � G

0

= lim

j2J

(G

j

)

0

inl

?

?

y

inl

?

?

y

?

?

y

inl

G

j

f

jk

 ���� G

k

� � � G = lim

j2J

G

j

quot

?

?

y

quot

?

?

y

?

?

y

�

D

j

F

jk

 ���� D

k

� � � D = lim

j2J

D

j

:

The morphism �:G ! D is the �ll-in map given by the universal property of the

limit in the last row. Sine the omposition

(G

j

)

0

inl

����!G

j

quot

����!D

j

is onstant, so is the omposition

G

0

inl

����!G

�

����!D:

Hene we have a unique morphism p:G=G

0

! D, p(gG

0

) = �(g). Assume that

g = (g

j

)

j2J

2 G is suh that p

�

gG

0

�

= 1, i.e., (g

j

(G

j

)

0

)

j2J

= �(g) = 1 in

lim

j2J

D

j

; thus g 2

T

j2J

f

�1

j

�

(G

j

)

0

�

= lim

j2J

(G

j

)

0

= G

0

. This shows that p

is injetive. The sets F

�1

j

(1) are basi identity neighborhoods of D by 2.1(i). As

p

�1

F

�1

j

(1) = f

�1

j

�

(G

j

)

0

�

=G

0

and this is an open-losed subgroup we see that p is

an embedding. Therefore G=G

0

may be identi�ed with the subgroup S

def

= im � =

f(g

j

(G

j

)

0

)

j2J

: (g

j

)

j2J

2 Gg of D.

Let N

j

= F

�1

j

(1). Then N

j

is an open-losed normal subgroup of D and

S \ N

j

is an open-losed normal subgroup of S. Sine lim

j2J

N

j

= 1 we have

lim

j2J

S \N

j

= 1. Hene G=G

0

�

=

S is a protodisrete group and S =

T

j2J

SN

j

is prodisrete. If G=G

0

is omplete, then G=G

0

�

=

S and G=G

0

is prodisrete. ut

Before we ontinue, we reord an independent elementary lemma:
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Lemma 4.5. Let f :A ! B be a quotient morphism of topologial groups with

disrete kernel. Then there is an open symmetri identity neighborhood V of A

and an open symmetri identity neighborhood W of B suh that f jV ):V ! W

is a homeomorphism, and for every subgroup K of B ontained in W there is a

subgroup S of A ontained in V suh that f(S) = K.

Proof. Let U be a symmetri open identity neighborhood of A suh that U

2

\

ker f = f1g. Then f(U) is an open symmetri identity neighborhood of B. Then

f jU :U ! f(U) is ontinuous, open and surjetive; if u

1

; u � 2 2 U and f(u

1

) =

f(u

2

), then u

1

u

�1

2

2 (ker f) \ U

2

. Thus f jU is a homeomorphism. Now let V

be an open symmetri identity neighborhood in A suh that V

2

� U , and set

W

def

= f(V ). Then f jV :V !W is a homeomorphism onto an open identity neigh-

borhood of B. De�ne ':W ! V to be its inverse and take w

1

; w

2

2 V suh

that w

1

w

2

2 W . Set v

j

= '(w

j

), j = 1; 2 and v = '(w

1

w

2

). Then (f jU)(v) =

(f jV )'(w

1

w

2

) = w

1

w

2

. Further v

1

v

2

2 V

2

� U . Then (f jU)(v

1

v

2

) = f(v

1

)f(v

2

) =

(f jV )'(w

1

)(f jV )'(w

2

) = w

1

w

2

= (f jU)(v). Sine (f jU) is injetive, we onlude

v = v

1

v

2

, that is, ':W ! V is a homeomoprhism suh that

(�) (8w

1

; w

2

2W ) (w

1

w

2

2 W )) ('(w

1

w

2

) = '(w

1

)'(w

2

):

In partiular, if w 2 W then w

�1

2W and ww

�1

= 1 2W and thus '(w)'(w

�1

) =

'(1) = 1 and thus '(w

�1

) = '(w)

�1

. Now let K be a subgroup of B ontained

in W . Let g

1

; g

2

2 '(K) Then there are elements w

1

; w

2

2 K � W suh that

g

j

= '(k

j

), j = 1; 2 and k

1

k

�1

2

2 K � W . Hene g

1

g

�1

2

= '(w

1

)'(w

2

)

�1

=

'(w

1

)'(w

�1

2

) = '(w

1

w

�1

2

) 2 '(K). It follows that '(K) � V is a subgroup of A.

ut

Main Lemma 4.6. (The Third Fundamental Lemma) Let G be a topologial

group suh that G

0

is a �nite dimensional Lie group and assume that f :G! L is

an injetion into a �nite dimensional Lie group. If G=G

0

is a protodisrete group,

then G is a �nite dimensional Lie group.

Proof. We must show that G

0

is open in G. First we make some redutions. Sine

f

�1

(L

0

) is open in G there is no loss in assuming that L = L

0

, i.e. that L is

onneted.

Let M = f(G

0

), then M is a losed normal subgroup of L and f indues

an injetive map G=f

�1

(M) ! L=M . Now G=f

�1

(M), being a quotient of the

protodisrete group G=G

0

is protodisrete by 4.3(b) and is, at the same time,

without small subgroups. Hene it is disrete, that is, f

�1

(M) is open. We may

therefore assume that G = f

�1

(M), i.e. that M = L. Thus we may assume that

f(G

0

) is dense in L.

Now we onsider the universal overing q:

e

L! L and form the pullbak

P

F

����!

e

L

Q

?

?

y

?

?

y

q

G ����!

f

L:
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In terms of elements, we have p = f(g;

e

`) 2 G�

e

L : f(g) = q(

e

`)g. If p = (g;

e

`) 2 P

and F (p) = 1, then

e

` = 1, whene f(g) = q(

e

`) = 1 and thus g = 1 as f is injetive.

Thus p = (1; 1) and this shows that F is injetive.

Next F maps kerQ isomorphially onto ker q. Indeed let p = (g;

e

`) 2 kerQ.

Then 1 = Q(p) = g and then qF (p) = q(`) = f(g) = 1, that is, F (p) 2 ker q.

Conversely, if

e

`q 2 ker q, then 1 = q(

e

`) = f(1), whene p

def

= (1; q) 2 P , and

Q(p) = 1, i.e. p 2 kerQ and F (p) = q. Now let V is an identity neighborhood of

e

L suh that V \ ker q = f1g and assume that p = (g;

e

`) 2 kerQ\G� V ; then g =

Q(p) = 1 and 1 = f(g) = q(

e

`); thus

e

` 2 V \ ker q = f1g. Thus p = 1. Theferefore

kerQ is disrete in P . If (U�V )\P is an identity neighborhood then p = (u; v) 2 P

implies Q(p) = u and f(u) = q(v), whene Q

�

(U�V )\P

�

U\f

�1

q(V ), and this is

an identity neighborhood. Thus the morphism Q is open and thus, sine its kernel

is open and hene implements a loal isomorphism.

Therefore G is a Lie group if and only if P is a Lie group. Thus we must show

that P is a Lie group, that is, that P

0

is open.

Now F (P

0

) is a normal analyti subgroup of

e

L, and normal analyti sub-

groups in simply onneted Lie groups are losed. The full inverse of f(G

0

) in

e

L is F (P

0

) ker q, and thus this group is dense, and F (P

0

) ker q=F (P

0

) is dense in

e

L=F (P

0

). Sine ker q is entral in

e

L, the group

e

L=F (P

0

) is abelian and simply

onneted, hene is isomorphi to a vetor group R

n

. Thus F indues an injetive

morphism of P=P

0

into the vetor group

e

L=F (P

0

) and thus has no small subgroups.

The quotient morphism

P

Q

����!G

quot

G

����!G=G

0

vanishes on P

0

and therefore fators through P=P

0

:

quot

G

ÆQ = (P

quot

P

����!P=P

0

Q

�

����!G=G

0

):

We have kerQ

�

= P

1

=P

0

where P

1

= Q

�1

G

0

. The following is a diagram of abelian

topologial groups

Q=Q

0

�

����! R

n

?

?

y

Q

�

G=G

0

;

where � is an injetive morphism.

The morphism Q

0

def

= QjP

1

: P

1

! G

0

is a overing morphism of the Lie group

G

0

with kernel kerQ

�

=

ker q and thus is a Lie group ontaining the losed normal

subgroup P

0

= (P

1

)

0

. Then kerQ

�

= P

1

=P

0

is a totally disonneted Lie group

and is therefore disrete. Sine G=G

0

has arbitrarily small open subgroups by the

hypothesis of protodisreteness, Lemma 4.5 applies to Q

�

and shows that P=P

0

has arbitrarily small open subgroups (that is, P=P

0

is a protodisrete group). But

� injets P=P

0

into R

n

, and thus P=P

0

has an identity neighborhood in whih the

singleton group fP

0

g is the only subgroup; this subgroup, therefore, is open and

thus P

0

is open whih is what we had to show. ut

Now we are ready for the prinipal result of the �rst part of the artile.
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Theorem 4.7. (The Pro-Lie Group Theorem) Every Lie projetive group is a

pro-Lie group.

Proof. By the First Fundamental Lemma 4.2, a Lie projetive group G has a

�lter basisM of losed normal subgroups M onverging to 1 suh that G

0

M=M

is a onneted Lie subgroup of G=M , and that there is an injetive morphism of

G=M into a �nite dimensional Lie group. By the Seond Fundamental Lemma 4.4,

G=G

0

has a basis O of open normal subgroups onverging to the identity. It follows

that for eah M 2 M, the fator group G=M has a �lter basis of open normal

subgroups U=M suh that every open set V ontaining G

0

M=M ontains one of

the U=M , U 2 O. Thus every G=M ,M 2M, satis�es the hypotheses of the Third

Fundamental Lemma 4.6. As a onsequene of 4.6, G=M is a �nite dimensional

Lie group. Then by Proposition 2.4, it follows that G is a pro-Lie group. ut

Corollary 4.8. (The Closed Subgroup Theorem for pro-Lie Groups) A losed

subgroup of a pro-Lie group is a pro-Lie group.

Proof. This immediate from Corollary 2.3 and Theorem 4.6. ut

The Lie algebra L(G) of a pro-Lie group is lim

N2N (G)

L(G=N) with �nite

dimensional Lie algebras L(G=N) sine L preserve limits. So the additive group

of L(G) is a Lie projetive group. Hene it is a pro-Lie group by 4.6 and we may

onlude what is also observed in [5℄:

Corollary 4.9. The underlying topologial vetor spae of the Lie algebra of a

pro-Lie group is a pro-Lie group in its own right and is a weakly omplete topolog-

ial vetor spae. ut

5. The ategory of pro-Lie groups is omplete.

We shall heneforth denote by proLIEG R the full subategory of the ategory

TOPG R of all topologial groups and ontinuous group homomorphisms between

them whose objets are pro-Lie groups. After the Pro-Lie Group Theorem 4.7,

proLIEG R an also be desribed as the full subategory of TOPG R of all projetive

limits of �nite dimensional Lie groups.

We begin with a basi lemma on limits in ategories. Reall that a ategory is

said to be omplete if it has all limits.

Lemma 5.1. (The Limit Existene Theorem)

(i) If a ategory has arbitrary produts and equalizers, then it is omplete.

(ii) If a ategory has arbitrary produts and has intersetions of retrats, then

it is omplete.

(iii) If a full subategory A of a omplete ategory C is losed in C under the

formation of produts and passing to intersetions of retrats, then it is losed

under the formation of all limits and is therefore omplete.
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Proof. We refer to any soure on ategory theory or to [4℄, Appendix 3, or to [5℄

Theorem 1.10. ut

Theorem 5.2. (Completeness Theorem for pro-Lie Groups)

(i) The ategory proLIEG R of pro-Lie groups is losed in TOPG R under all

limits and is therefore omplete.

(ii) proLIEG R is the smallest full subategory of TOPG R that ontains all �nite

dimensional Lie groups and is losed under the formation of all limits.

Proof. (i) We shall invoke Lemma 5.1(iii) and show that proLIEG R is losed in

TOPG R under the formation of produts and the passing to losed subgroups;

sine any retrat of a topologial group in TOPG R is a losed subgroup, this will

settle the laim. But by Corollary 4.9, the ategory of pro-Lie groups is losed

under the passage to losed subgroups so it remains to show that proLIEG R is

losed in TOPG R under the formation of arbitrary produts.

So let fG

�

: � 2 Ag be a family of Lie projetive groups. We must show that

G

def

=

Q

�2A

G

�

is a Lie projetive group. Sine every G

�

is a projetive limit

of �nite dimensional Lie groups, it is a losed subgroup of a produt

Q

j2J

�

L

�

j

of �nite dimensional Lie groups. Thus G is isomorphi to a losed subgroup of

a produt P =

Q

�2A;j2J

�

L

�

j

of �nite dimensional Lie groups. Then P is is the

projetive limit of the projetive system of all �nite partial produts and the

orresponding projetions. Hene P is Lie projetive and thus is a pro-Lie group

by the Pro-Lie-Group Theorem 4.7. Sine G a a losed subgroup of P it is a pro-Lie

group by 4.8. Thus (i) is proved.

(ii) Let C be any full subategory of TOPG R whih ontains all �nite dimen-

sional Lie groups and is losed in TOPG R under the formation of all limits. Let

G be Lie projetive. Then G = lim

j2J

G

j

for a projetive system of �nite dimen-

sional Lie groups G

j

. Then all G

j

are ontained in C and sine C is losed under

the formation of all limits, G is in C. Thus proLIEG R � C. ut

6. The One Parameter Subgroup Lifting Theorem

Many ategories of topologial groups are stable under the passage to quotient

groups; the ategory of pro-Lie groups, regrettably, is not, as we see now.

Proposition 6.1. (The Quotient Theorem for Pro-Lie Groups) A quotient group

of a pro-Lie group is a proto-Lie group and thus is isomorphi as a topologial

group to a dense subgroup of a pro-Lie group. If the quotient group is omplete,

then it is a pro-Lie group.

Proof. (i) Let G be a pro-Lie group and K a losed normal subgroup. De�ne

f :G ! H

def

= G=K to be the open quotient morphism. For N 2 N (G) the set

NK is a losed subgroup of G ontaining K, and sine f is a quotient map and

NK is K-saturated, the set N

�

def

= f(NK) � H is losed and agrees with f(N).
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Then N

�

is a losed normal subgroup of H , and sine f is open, we have that

H=N

�

�

=

G=f

�1

(N

�

) = G=NK

�

=

(G=N)=(NK=N) is a �nite dimensional Lie

group as a quotient of a �nite dimensional Lie group. LetM = fN

�

j N 2 N (G)g.

ThenM is a �lter basis of losed normal subgroups ofH suh that all fator groups

H=M , M 2M are �nite dimensional Lie groups. Sine N (G) onverges to 1 as G

is a pro-Lie group, from the ontinuity of f we onlude that f(N (G)) = ff(N) j

N 2 N (G)g onverges to 1 in H . But sine H is regular, i.e. the �lter of identity

neighborhoods has a basis of losed sets, M onverges to 1 in H . Thus H is a

proto-Lie group and we have a natural dense embedding morphism 

H

:H ! H

M

into the pro-Lie group H

M

def

= lim

N2N (H)

H=N . It follows by de�nition that the

group H is a pro-Lie group if an only if it is omplete. ut

The pro-Lie group R

R

has an inomplete quotient group modulo a totally dis-

onneted and algebraially free subgroup (see [6℄); hene 6.1 annot be improved.

The lifting of one parameter subgroups deals with the following situation: As-

sume that f :G! H is a quotient morphism and Y 2 L(H); under whih irum-

stanes is there an X 2 L(G) suh that L(f)(X) = Y ?

Lemma 6.2. Assume that

(1)

P

'

����! R

�

?

?

y

?

?

y

Y

G ����!

f

H:

is a pullbak of topologial groups. Set K

def

= ker'. Then the following onditions

are equivalent:

(i) K is a semidiret fator.

(ii) ' is a retration.

(ii

0

) 'jP

0

:P

0

! R is a retration, where P

0

is the identity omponent of P .

(iii) There is an X 2 L(G) suh that L(f)(X) = Y .

(iv) There is a subgroup R of P suh that KR = P and K \R = f1g, and further

that 'jR:R! R is open.

These onditions imply

(v) There is a losed subgroup R of P suh that KR = P and K \ R = f1g.

Proof. (i),(ii): The equivalene of (i) and (ii) is a standard exerise in topologial

group theory (see e.g. [5℄, E1.5).

(ii))(ii

0

): If a morphism �:R ! P satis�es ' Æ � = id

R

, then �(R) � P

0

as R is

onneted, and thus its orestrition �:R ! P

0

satis�es ' Æ � = id

R

.

(ii

0

))(ii): Conversely, if �:R ! P

0

satis�es ' Æ � = id

R

, then its oextension

�:R ! P satis�es ' Æ � = id

R

.

(ii))(iii): If X

0

:R ! P is a one parameter subgroup satisfying ' ÆX

0

= id

R

then

X

def

= � Æ X

0

:R ! G is a one parameter subgroup of G suh that L(f)(X) =

f ÆX = f Æ � ÆX

0

= Y Æ ' ÆX

0

= Y Æ id

R

= Y .
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(iii))(ii): Assume Y = L(f)(X) = f ÆX . Then for all r 2 R we have f

�

X(r)

�

=

Y (r). Now the expliit form of the pullbak is P = f(g; r) 2 G�R j f(g) = Y (r)g

and '(g; r) = r (see e.g. [5℄, Theorem 1.5). Hene (X(r); r) 2 P for all r 2 R and if

we set X

0

(r) = (X(r); r), then X

0

:R ! P is a morphism satisfying '

�

X

0

(r)

�

= r

for all r.

(i))(iv))(v) is trivial.

(iv))(ii): The funtion 'jR:R! R is ontinuous and open; and sine K\R =

f0g it is injetive, and sine KR = P it is surjetive. Hene it is an isomor-

phism of topologial groups and thus is invertible; the oextension �:R ! P of

('jR)

�1

:R ! R satis�es ' Æ � = id

R

. ut

Lemma 6.3. If f in the pullbak (1) is surjetive, then ' is surjetive. If f is

open, then ' is open. If f is a quotient morphism so is '.

Proof. Surjetivity: if r 2 R then, sine f is surjetive, there is a g 2 G suh that

f(g) = Y (r).

Openness: The �lter of identity neighborhoods of P has a basis of open sets of the

form W = P \ (U � I), where U is an open identity neighborhood of G and I an

open interval around 0 in R. Then '(W ) = fr 2 I j (9g 2 U) f(g) = Y (r)g =

I \ Y

�1

�

f(U)

�

. Sine f is an open map, f(U) is an open subset of H and thus by

the ontinuity of Y , the set '(W ) is open.

Quotients: This assertion follows from the ombination of the preeding two. ut

Lemma 6.4. In the pullbak (1), assume that the morphism f is a quotient mor-

phism and that G is a pro-Lie group. Then P is a pro-Lie group.

Proof. By Proposition 6.1, H is a proto-Lie group. Let 

H

:H ! H

N (H)

be the

natural ompletion morphism. Then we obtain a diagram

(1

0

)

P

'

����! R

�

?

?

y

?

?

y



H

ÆY

G ����!



H

Æf

H

N (H)

:

We laim that (1

0

) is a pullbak in TOPG R: Thus we let T be a topologial group

and let �

G

:T ! G as well as �

R

:T ! R be morphisms of topologial groups suh

that 

H

Æ f Æ �

G

= 

H

Æ Y Æ �

R

. Sine 

H

is injetive, f Æ �

H

= Y Æ �

R

. Sine (1)

is a pullbak in TOPG R, there is a unique �:T ! P suh that �

G

= � Æ � and

�

R

= ' Æ �. This shows that (1

0

) is a pullbak as well.

The group R is a Lie group, hene trivially a pro-Lie group. Thus R; G;H

N (H)

are pro-Lie groups. By 5.2(i), the ategory proLIEG R is losed under the formation

of pullbaks. We apply this to (1

0

) and onlude that P is a pro-Lie group. ut

We now are ready for a proof of the lifting of one parameter subgroups. This is

not easy beause in the absene of ountability assumptions, this requires the Ax-

iom of Choie, and the absene of ompatness in the present situation fores us to



24 Projetive Limits of Finite Dimensional Lie Groups

rely on ompleteness and the onvergene of Cauhy �lters. The proof will require

from the reader a ertain faility handling \multivalued morphisms" as a speial

type of binary relations; but most of what is required will be self-explanatory in

the proof.

Lemma 6.5. (The One Parameter Subgroup Lifting Lemma) Let f :G ! H be

a quotient morphism of topologial groups and assume that G is a pro-Lie group.

Then every one parameter subgroup Y :R ! H lifts to one of G, that is, there is a

one parameter subgroup � of G suh that Y = f Æ �.

Proof. We for the pullbak

(1)

P

'

����! R

�

?

?

y

?

?

y

Y

G ����!

f

H

in the ategory of topologial groups. Sine f is assumed to be a quotient mor-

phism, by Lemma 3, the morphism ' is a quotient morphism, and by Lemma 6.4,

the pullbak group P is a pro-Lie group. If we an show that ' is a homorphi

retration, then by Lemma 6.2 we have an X 2 L(G) suh that L(f)(X) = Y . This

redues our task to shoing that ' is a homomorphi retration. Thus, in order to

simplify notation we may assume that H = R and that we have to show that f is

a retration.

Let K = ker f . Sine fN

�

= f(N) j N 2 N (G)g onverges to 1 in R, and sine

there are no subgroups in ℄ � 1; 1[ other than f0g there is an N 2 N (G) suh

that f(N) = N

�

= f0g, and thus N � K. Then for all N 2 N (G), N � N , the

morphism f indues a quotient morphism f

N

:G=N ! R, f

N

(gN) = f(g), and

f

N

(gN) = 0 i� f(g) = 0 i� g 2 K, that is, ker f

N

= K=N . If we let p

N

:K ! K=N

and q

N

:G ! G=N denote the quotient morphisms, then we have a ommutative

diagram

(2)

1 ! N

id

N

��! N

inl

?

?

y

?

?

y

inl

1 ! K

inl

��! G

f

��! R ! 0

p

N

?

?

y

?

?

y

q

N

?

?

y

id

R

1 ! K=N

inl

��! G=N

f

N

��! R ! 0

with exat rows and olumns. Due to the fat that the exponential map of a Lie

group is a loal homeomorphism at 0, an open morphism  :L

1

! L

2

between Lie

groups indues an open morphism L( ) between their Lie algebras:

L(L

1

)

L( )

��! L(L

2

)

exp

L

1

?

?

y

?

?

y

exp

L

2

L

1

��!

 

L

2

:



Projetive Limits of Finite Dimensional Lie Groups 25

An open morphism between topologial real vetor spaes is automatially surje-

tive, and thus L( ) is surjetive. Hene there is a morphism �:R ! G=N suh

that f

N

Æ � = id

R

. The binary relation �

def

= q

�1

N

Æ �:R ! G satis�es the following

onditions

(i) �(0) = N and every �(r) � G is a oset mod N.

(ii) The graph of � is a losed subgroup of R �G.

(iii) We have a ommutative diagram of binary relations of whih all but � are

funtions:

(3)

R

id

R

��! R

�

?

?

y

?

?

y

id

R

G

f

��! R

q

N

?

?

y

?

?

y

id

R

G=N ��!

f

N

R:

A binary relation �:R ! G satisfying (i), (ii) and (iii) will be alled a multivalued

morphism assoiated with N . The set S of all multivalued morphisms �:R ! G

assoiated with some N 2 N (G) is partially ordered under ontainment �. By

Zorn's Lemma we �nd a maximal �lter F � S. It is our goal to show thatM

def

=

f�(0) j � 2 Fg is o�nal in N (G). Assuming that this is proved, we note that for

eah r 2 R and � 2 F the subset �(r) is a osetNx = xN with N = �(0) 2 N (G),

and thus �(r)�(r)

�1

= Nx(Nx)

�1

= N ; sineM onverges to 1, we onlude that

f�(r) j � 2 Fg is a Cauhy �lter basis. Sine G is omplete, it onverges to an

element �(r) 2 G, giving us a funtion �:R ! G. As eah �(r), being a oset mod

N = �(0) 2M, is losed, we have � 2 �(r) for all � 2 F . Consequently, sine (3)

is ommutative for eah � 2 F for N = �(0) we have the following ommutative

diagram for all N 2 M:

(4)

R

id

R

��! R

�

?

?

y

?

?

y

id

R

G

f

��! R

q

N

?

?

y

?

?

y

id

R

G=N ��!

f

N

R:

The upper retangle shows that f Æ� = id

R

, and the fat that eah q

N

Æ�:R ! G

is a morphism of topologial groups shows that q

N

Æ �:R ! G=N is ontinuous.

Theorem 2.1(i) shows that G has arbitrarily small open identity neighborhoods

U satisfying UN = U for some N 2 M. Then if V is a zero neighborhood of R

suh that q

N

�

�(V )

�

� U=N , then �(V ) 2 q

�1

N

(U=N) = U . This shows that � is

ontinuous. Hene � is the required oretration for f .

Thus the remainder of the proof will show thatM is o�nal in N (G). Suppose

that this is not the ase. Then there exists an N 2 N (G), N � N suh that

M 6� N for all M 2 M � N (G). Hene for all � 2 F we have q

N

(�) \ q

N

(K) =

MN=N for M = �(0). Let us temporarily �x M ; then M \N 2 N (G), and thus
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G

y

def

= G=(M \N) is a Lie group:

G

MN

�

�

� �

�

�

M N

�

�

� �

�

�

M \N

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

G

y

:

This shows that for �xed M everything takes plae in the Lie group G

y

in whih

M

y

def

= M=(M \N) and N

y

def

= N=(M \N) are losed normal Lie subgroups with

M

y

\N

y

= f1g. Thus �:M

y

! G=N , �

�

m(M \N)

�

= mN is a morphism of Lie

groups mapping M

y

bijetively onto MN=N and induing an isomorphism of Lie

algebras L(M

y

) ! L(MN=N) � L(G=N). Now M

y

is a losed normal subgroup

of the Lie group G

y

and thus M

y

=M

y

0

is a disrete normal subgroup of the Lie

group G

y

=M

y

0

. We let M

z

be the open subgroup of M

y

ontaining (M

y

)

0

and

being suh that M

z

=M

y

0

= (M

y

=M

y

0

) \ (G

y

)

0

=M

y

0

. Hene M

z

=M

y

0

is a disrete

normal subgroup of a onneted Lie group. Hene it is �nitely generated and thus

ountable. Thus M

z

has ountably many omponents and therefore �(M

y

0

) is an

analyti subgroup M

an

� G=N agreeing with (MN=N)

0

and having Lie algebra

L(M

an

) = L(MN=N) = L

�

(MN=N)

0

�

. (See [4℄, p. 155, 156, 157.) Aordingly,

fL(MN=N) jM 2Mg

is a �lter basis of �nite dimensional vetor subspaes of L(G=N). Hene there

is a smallest element m = L(M

#

N=N) in it suh that for all M � M

#

in M

we have L(MN=N) = m. Let us abbreviate q

(M

#

\N)

:G ! G=(M

#

\ N) by

q

#

:G ! G

#

, further f

(M

#

\N)

:G

#

! R by f

#

, and M

#

=(M

#

\ N) by M

#

.

Sine L(�):L(M

#

)! L(M

#

N=N) = m is an isomorphism we have

(5) q

#

��

M

M

#

\N

�

0

�

= q

#

(M

#

0

) for M �M

#

inM:

There is a � 2 F suh thatM

#

= �

#

(0). Then for all � 2 F ontained in �

#

, the

subgroup q

#

(�) of the Lie group G

#

is ontained in q

#

(�

#

), satis�es q

#

(�(0)) =

M

#

0

and (f

#

Æq

#

Æ�)(R) = R. Thus for all r 2 R we have q

#

�

�

#

(r)

�

= q

#

�

�(r)

�

sine the right side is ontained in the left and both are osets mod M

#

. In the
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Lie group G

#

we have the on�guration

G

M

#

N

�

�

� �

�

�

M

#

N

�

�

� �

�

�

M

#

\N

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

G

#

;

and thus obtain q

#

(�) = q

#

(�

#

) for all � � �

#

in F . The de�nition of �

#

as

q

�1

M

#

Æ �

#

applies and gives a ommutative diagram of binary relations

(3

#

)

R

id

R

��! R

�

#

?

?

y

?

?

y

id

R

G

f

��! R

q

M

#

?

?

y

?

?

y

id

R

G=M

#

��!

f

M

#

R

with �

#

= q

M

#
Æ �

#

. We onlude that S

def

= q

#

�

�

#

(R)

�

= �

#

(R)=(M

#

\ N)

is a losed subgroup of G

#

whose Lie algebra L(S) annot be ontained in K

#

=

K=(M

#

\ N) = kerf

#

. From dimG

#

=K

#

= 1 we onlude L(G

#

) = L(K

#

) +

L(S) and L(S) = L(S)\L(K

#

)+R�X for a suitable element X 2 L(G

#

) satisfying

f

#

(exp

G#

X) = 1. Setting � :R ! S, �(r) = exp

G

#

r�X we obtain a oretration

for f

#

:G

#

! R. The binary relation �

def

= (q

#

)

�1

Æ � :R ! G is a member of S.

Moreover, for all � 2 F we have q

#

(�)(r) � �(r) for all r 2 R. Hene � \ � is a

member of S. But now the maximality of F shows that �

#

2 F . But this implies

that M

#

\N = �(0) 2M and that is a ontradition to our supposition allowing

us a hoie of an N suh that M \ N 6= M for all M 2 M. This ontradition

�nally ompletes the proof. ut

There are some subtleties here whih we should point out. In [4℄, p. 157 we

have seen the additive group h of a Banah spae mapped surjetively onto an

abelian Lie group G (whih itself is quotient of a Banah spae modulo a disrete

subgroup) suh that G has a one parameter subgroup whih does not lift to h. This

annot happen if the domain is separable, but it does happen in the ategory of not

neessarily �nite dimensional Lie groups. While being surjetive, the morphism in

question is not open and the Open Mapping Theorem fails.

We have seen that the funtor L preserves all limits and thus, in partiular,

all kernels (sine ker f for a morphism f of topologial groups is nothing but the

equalizer of f and the onstant morphism). We shall say that a funtor F:A ! B

between ategories of topologial groups is stritly exat if it preserves kernels and
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quotients. As a orollary of the One Parameter Subgroup Lifting Lemma we obtain

the following Theorem

Theorem 6.6. (The Strit Exatness Theorem for L) The funtor L: proLIEG R !

proLIEA LG is stritly exat.

Proof. We observed that L preserves kernels beause kernels are limits. We have

to show that L preserves quotients.

Let f :G! H be a quotient morphism between pro-Lie groups. The morphism

L(f):L(G) ! L(H) is surjetive by the One Parameter Subgroup Lifting Lemma

6.5. Now any surjetive morphism of topologial vetor spaes between weakly

omplete vetor spaes splits (see e.g. [4℄, p. 326, Theorem 7.30(iv)) and thus is in

partiular a quotient morphism. Sine the underlying topologial vetor spaes of

L(G) and L(H) are weakly omplete by 4.10, this applies to the morphism L(f)

and shows that it is a quotient morphism. ut

Corollary 6.7. (i) If N is a losed normal subgroup of a pro-Lie group G, then the

quotient morphism q:G ! G=N indues a map L(q):L(G) ! L(G=N) whih is a

quotient morphism with kernel L(N). Aordingly there is a natural isomorphism

X + L(N) 7! L(f)(X) : L(G)=L(N)! L(G=N).

(ii) Let G be a pro-Lie group. Then fL(N) j N 2 N (G)g onverges to zero and

is o�nal in the �lter I(L)(G) of all ideals i suh that L(G)=i is �nite dimensional.

Furthermore, L(G) is the projetive limit lim

N2N (G)

L(G)=L(N) of a projetive

system of bonding morphisms and limit maps all of whih are quotient morphisms,

and there is a ommutative diagram

L(G)

L(

G

)

���!
L(G

N (G)

) = L(lim

N2N (G)

G

N

)

�

=

lim

n2N (G)

L(G)

L(N)

exp

G

?

?

y

?

?

y

L(lim

N2N(G)

exp

G=N

)

G ��!



G

G

N (G)

= lim

N2N (G)

G=N:

Proof. (i) is an immediate onsequene of the Strit Exatness Theorem 6.6.

(ii) We know that L presevers limits. Thus

L(

G

):L(G)! L(G

N (G)

)

is an isomorphism. By (i) above, L(G=N)

�

=

L(G)=L(N) and thus

L(G)

�

=

lim

N2N (G)

L(G)=L(N):

Thus by 2.1(ii), the �lter basis fL(N) j N 2 N (G)g of the kernels of the limit

maps onverges to 0 and the projetive system of the L(G)=L(N) has the natural

quotient morphisms as bonding maps; by 2.1(ii) it follows that the limit maps

are quotient morphsms as well. It then follows that this �lter basis is o�nal in

N (L)(G). (Compare [5℄, 1.40.) ut
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For a topologial group G let E(G) denote the subgroup hexp

G

Gi generated

by the (images of the) one parameter subgroups and set E(G) = E(G).

Corollary 6.8. (i) For a pro-Lie group G, the subgroup E(G) is dense in G

0

, i.e.

E(G) = G

0

. In partiular, a onneted nonsingleton pro-Lie group has nontrivial

one parameter subgroups.

(ii) For a pro-Lie group G the following statements are equivalent:

(a) G is totally disonneted.

(b) L(G) = f0g.

(iii) If a morphism f :G ! H of pro-Lie groups is a quotient morphism then

the indued morphism E(f): E (G) ! E(H) is surjetive, that is E(H) = f

�

E(G)

�

.

As a onsequene H

0

= f(G

0

).

(iv) Let G be a pro-Lie group and assume that for all N from a basis of N (G)

the quotient G=N is onneted. Then G is onneted.

Proof. (i) First we show that nonsingleton onneted pro-Lie groups have nontriv-

ial one parameter subgroups, Let G be a nonsingleton onneted pro-Lie group.

There is a g 2 G, g 6= 1. Sine limN (G) = 1 there is an N 2 N (G) suh that

g =2 N . Then G=N is a nonsingleton onneted Lie group. Thus L(G=N) 6= f0g.

Then L(G) 6= f0g by 6.7(i).

Next we let G be an arbitrary pro-Lie group. The losed subgroup E(G) =

hexp

G

L(G)i is fully harateristi, hene normal. By the One Parameter Subgroup

Lifting Lemma 6.5, every one parameter subgroup of G=E(G) lifts to one in G

whih is ontained in E(G) by the de�nition of E(G). Hene L

�

G=E(G)

�

= f0g.

Thus G=E(G) is totally disonneted by what we just proved, and thus G

0

�

E(G) � G

0

.

(ii) (a))(b): If G

0

= f1g then E(G) = f1g and thus L(G) = f0g. (b))(a):

Assume L(G) = f0g, then G

0

= f1g by (i).

(iii) By 6.6, L(H) = L(f)

�

L(G)

�

, and thus exp

H

L(H) = exp

H

L(f)

�

L(G)

�

=

f

�

exp

G

L(G)

�

, and onsequently E(H) = hexp

H

L(H)i =




f

�

exp

G

L(G)

��

=

fhexp

G

L(G)i = f

�

E(G)

�

.

ThusH

0

= E(H) = f

�

E(G)

�

� f(G

0

) � H

0

= H

0

, and this shows f(G

0

) = H

0

.

(iv) Let q

N

:G! G=N denote the quotient morphism. By (iii) we have G=N =

E(G=N) = q

N

�

E(G)

�

. Thus G = E(G)N for all N 2 N (()G) and thus G

0

=

E(G) = E(G) = G. ut

The relation H

0

= f(G

0

) for a quotient morphism f annot be improved as

the example of the following quotient morphism of loally ompat abelian groups

shows: Let G = R �Z

p

for the group of p-adi integers Z

p

, let H = G=f(n;�n) j

n 2 Zg

�

=

S

p

and let f be the orresponding quotient morphism. Note that H

is ompat and onneted. (Cf. [4℄, p. 19, Exerise E1.11. We onsider Z as a

subgroup of S

p

as well.) Then G

0

= R � f0g, and f(G

0

) = H

a

6= H = H

0

.

Corollary 6.9. An open morphism f :G! H of pro-Lie groups indues a quotient

(hene surjetive) morphism L(f):L(G) ! L(H).
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Proof. Let f :G ! H be an open morphism of topologial groups. Then f(G)

is an open hene losed subgroup of H and thus a pro-Lie group by Corollary

4.8. The open and surjetive orestrition G ! f(G) (induing an isomorphism

of topologial groups G= kerf ! f(G)) is a quotiemn morphism between pro-

Lie groups and thus indues a quotient morphism L(f):L(G) ! L

�

f(G)

�

by the

Strit Exatness Theorem 6.6. Sine f(G) is open inH , then inlusion j: f(G)! H

indues an isomorphism L(j):L

�

f(G)

�

! L(H) of topologial Lie algebras. Thus

L(f):L(G) ! L(H) is a quotient morphism. ut

This Corollary remains intat if G and H are merely topologial groups that

have open subgroups being pro-Lie groups. This applies, for instane, to all loally

ompat groups G and H .
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