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Abstra
t. For a topologi
al group G we de�ne N (G) to be the set of all normal subgroups

N of G su
h that G=N is a �nite dimensional Lie group. Then G is said to be a pro-Lie

group if, �rstly, G is 
omplete, se
ondly, N (G) is a �lter basis, and thirdly, every identity

neighborhood of G 
ontains some N 2 N (G). It is easy to see that every pro-Lie group

G is a proje
tive limit lim

N2N (G)

G=N . The 
onverse emerges as a diÆ
ult question,

but it is shown here that any proje
tive limit of �nite dimensional Lie groups is a pro-

Lie group. It is also shown that a 
losed subgroup H of a pro-Lie group G is a pro-Lie

group, and that for any 
losed normal subgroup N of a pro-Lie group G, for any one

parameter subgroup Y :R! G=N there is a one parameter subgroup X:R! G su
h that

X(t)N = Y (t) for t 2 R. It is proved that the 
ategory of all pro-Lie groups and 
ontinuous

group homomorphisms between them is 
losed under the formation of all limits, and that

the Lie algebra fun
tor preserves limits and quotients.

1. Introdu
tion

In the theory of 
ompa
t and lo
ally 
ompa
t groups it has been 
ustomary to

study and use \proje
tive limits of Lie groups." By this one means usually that a

topologi
al group G is a proje
tive limit of Lie groups if it has arbitrarily small


ompa
t normal subgroups N su
h that G=N is a �nite dimensional Lie group.

Su
h a group is ne
essarily lo
ally 
ompa
t; 
onversely if G is a lo
ally 
ompa
t

group and U is a 
ompa
t identity neighborhood, then any 
losed normal subgroup


ontained in U is trivially 
ompa
t. At the root of this intuition of \proje
tive limits

of Lie groups" is,

| �rstly, the theory of 
ompa
t groups rea
hing ba
k to the twenties of the last


entury (for a re
ent presentation see [4℄),

| se
ondly, Iwasawa's fundamental paper of 1949 [7℄ giving de
isive stru
tural

information on lo
ally 
ompa
t groups being proje
tive limits of Lie groups

in this sense, and,

| thirdly, Yamabe's arti
le [10℄ in whi
h he showed that every lo
ally 
ompa
t

group G for whi
h the fa
tor group G=G

0

modulo the identity 
omponent is


ompa
t, is indeed a proje
tive limit of Lie groups in this sense.

Groups for whi
h G=G

0

is 
ompa
t are 
alled almost 
onne
ted. All of this was

made popular within the horizon of the theory of topologi
al groups through the

enormously in
uential book by Montgomery and Zippin [8℄.

We say that a topologi
al group G is a proje
tive limit of Lie groups, or, equiv-

alently, is Lie proje
tive if there is a proje
tive system

ff

jk

:G

k

! G

j

j j � k; (j; k) 2 J � Jg
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for a dire
ted index set J and for �nite dimensional Lie groups G

j

and if

G = lim

j2J

G

j

= f(g

j

)

j2J

2

Y

j2J

G

j

: (8j � k) g

j

= f

jk

(g

k

)g

is the proje
tive limit of this system.

We say that G is a pro-Lie group if G is a 
omplete topologi
al group and

every identity neighborhood 
ontains a normal subgroup N su
h that G=N is a

�nite dimensional Lie group, and that the interse
tion of every two su
h normal

subgroups 
ontains a third of the same type. Every pro-Lie group is a Lie proje
tive

group: Indeed let N (G) denote the �lter basis of all N su
h that G=N is a �nite

dimensional Lie group. Then the natural quotient maps G=N ! G=M for M � N

in N (G) form a proje
tive system su
h that G

�

=

lim

N2N (G)

G=N . The 
onverse,

namely, that a Lie proje
tive group is a pro-Lie group, is far from obvious, as one

experien
es as soon as one attempts a proof. But in this arti
le, our �rst order of

business is to prove that the two 
on
epts are indeed equivalent.

Both of these 
on
epts are vastly more general than the 
on
ept des
ribed in

the beginning of the introdu
tion. This is illustrated by any in�nite power R

X

or,

for that matter, by any in�nite produ
t of a family of non
ompa
t �nite dimen-

sional Lie groups whi
h are pro-Lie groups but are not lo
ally 
ompa
t. We shall

observe here (and give more details in a monograph under preparation [5℄) that

pro-Lie groups have an ex
ellent Lie Theory in the sense that ea
h pro-Lie group

G has a generally in�nite dimensional Lie algebra L(G) with an exponential fun
-

tion exp:L(G)! G whose image generates a dense subgroup of G

0

; we illustrated

the usefulness of this sort of Lie theory in our monograph on 
ompa
t groups [4℄.

The additive group of L(G) is itself a pro-Lie group. The 
ategory of all pro-Lie

groups will be re
ognized as being 
omplete and as being the smallest full sub
at-

egory of the 
ategory of all topologi
al groups and 
ontinuous group morphisms

(being 
losed under passing to isomorphi
 obje
ts) su
h that it 
ontains all �nite

dimensional Lie groups. It is relatively simple to prove that the 
ategory of Lie

proje
tive groups is 
omplete; it seems prohibitively diÆ
ult to show dire
tly that

the 
ategory of pro-Lie groups is 
omplete. Thus the 
ategory of Lie proje
tive

groups has good fun
torial properties while the 
ategory of pro-Lie groups has

good stru
tural properties, and it is therefore a great advantage to know that the

two 
ategories are indeed one and the same 
ategory. It is not easy at all to prove

that a 
losed subgroup H of a pro-Lie group G is again a pro-Lie group, but we

show this to be the 
ase here; the stumbling blo
ks are �rstly, that the 
ontinuous

algebrai
 isomorphism H=(H \N)! HN=N is not an isomorphism of topologi
al

groups in general and, se
ondly, that an easy 
riterion is not available that says

when a subgroup of a Lie group is an analyti
 group in the absen
e of 
losedness.

If G is a pro-Lie group and N is a 
losed normal subgroup then G=N has arbitrar-

ily small subgroups modulo whi
h this quotient is a �nite dimensional Lie group,

but, unfortunately, in general it fails to be 
omplete as we show elsewhere ([6℄

and [5℄). Nevertheless we show here that this does not impair the Lie theory of

pro-Lie groups in the following sense: If G is a pro-Lie group then the morphism

q:G! G=N indu
es a surje
tive morphism of Lie algebras.
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The bottom line: The 
ategory of pro-Lie groups is suitable in all respe
ts in

whi
h any 
ategory of lo
ally 
ompa
t groups is defe
tive:

� it is 
losed under all limits and 
ontains all �nite dimensional Lie groups;

� it has an ex
ellent|albeit in general in�nite dimensional|Lie theory;

� it is 
losed under passing to the additive groups of the Lie algebras.

And, in addition it still has the following property:

� it in
ludes all almost 
onne
ted lo
ally 
ompa
t groups and thus is the true

ba
kground theory for any Lie theory of lo
ally 
ompa
t groups.

The 
lassi
al example of a semidire
t produ
t (Z=2Z)

Z

�

�

Zwith the shift a
tion of

Z on the produ
t is a lo
ally 
ompa
t group whi
h is not a pro-Lie group; 
ertain

p-adi
 Lie groups su
h as SL(2;Q

p

) likewise are not pro-Lie groups in our sense.

The se
ond major result in this arti
le 
on
erns the Lie algebra fun
tor L from

the 
ategory of pro-Lie groups into the 
ategory of topologi
al Lie algebras. It is

not obvious whether or not a 
onne
ted nondegenerate pro-Lie group G has non-

degenerate one-parameter subgroups R ! G at all, that is, whether its Lie algebra

L(G) is nonzero. However, we shall show in this paper that for any quotient mor-

phism f :G ! H between pro-Lie groups, the indu
ed morphism of topologi
al

Lie algebras L(f):L(G) ! L(H) is surje
tive, and sin
e G has many nondegen-

erate quotients G=N whi
h are �nite dimensional Lie groups, this will answer the

question in the aÆrmative.

It is a 
onsequen
e of fairly general 
ategory theoreti
al 
onsiderations that L

preserves all limits and thus, notably, preserves kernels. The proof of the surje
-

tivity of L(f) for all quotient maps redu
es 
omparatively qui
kly to the proof

that L(f) is surje
tive whenever f is a quotient morphism G! R. Thus we have

to show that every quotient morphism G ! R splits. The proof of this fa
t is

surprisingly 
omplex, and, not surprisingly, it uses the Axiom of Choi
e.

For a re
ent thorough study of very general Lie algebra fun
tors we refer to a

forth
oming arti
le by H. Gl�o
kner [2℄ who dis
usses and strongly uses proje
tive

limits of �nite dimensional Lie groups.

2. Proje
tive limits

For a proof of the �rst ba
kground theorem on proje
tive limits, see [1℄, [2℄, [3℄, or

[5℄ 1.27 and 1.33.

Theorem 2.1. (Fundamental Theorem on Proje
tive Limits) Let G = lim

j2J

G

j

be a proje
tive limit of a proje
tive system

P = ff

jk

:G

k

! G

j

j (j; k) 2 J � J; j � kg

of topologi
al groups with limit morphisms f

j

:G! G

j

, and let U

j

denote the �lter

of identity neighborhoods of G

j

, U the �lter of identity neighborhoods of G, and N

the set fker f

j

j j 2 Jg. Then



4 Proje
tive Limits of Finite Dimensional Lie Groups

(i) U has a basis of identity neighborhoods ff

�1

k

(U) j k 2 J; U 2 U

k

g.

(ii) N is a �lter basis of 
losed normal subgroups 
onverging to 1.

If M � N in N and if �

MN

:G=N ! G=M is de�ned by �

MN

(gN) = gM , then

f�

MN

:G=N ! G=M j (M;N) 2 N �N ; M � Ng

is a proje
tive system of topologi
al groups, and there is a unique isomorphism

�: lim

N2N

G=N ! G su
h that the following diagram 
ommutes with j � k, M =

ker f

j

, N = ker f

k

, and with the morphisms f

0

j

:G= kerf

j

! G

j

indu
ed by the limit

map f

j

:G! G

j

:

� � � G=M

�

MN

 ���� G=N

�

N

 ���� lim

P2N (G)

G=P

f

0

j

?

?

y

?

?

y

f

0

k

?

?

y

�

� � � G

j

 ����

f

jk

G

k

f

k

 ���� G:

The limit maps �

N

are quotient morphisms.

(iii) Assume that all bonding maps f

jk

:G

j

! G

k

are quotient morphisms and that

all limit maps f

j

are surje
tive. Then the limit maps f

j

:G! G

j

are quotient

morphisms.

(iv) Set H

j

= f

j

(G) for ea
h j 2 J and let f

0

jk

:H

k

! H

j

be the morphisms de�ned

by f

jk

for j � k. Then

ff

0

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

is a proje
tive system of topologi
al groups and G = lim

j2J

H

j

. The limit

maps f

0

j

:G! H

j

are 
orestri
tions of the f

j

and they have dense images.

(v) Assume that all G

j

are 
omplete, then so is G.

(vi) Let G be a 
omplete topologi
al group and N a �lter basis of 
losed normal

subgroups 
onverging to the identity. Then 


G

:G! G

N

, 
(g) = (gN)

N2N (G)

is an isomorphism. That is, G

�

=

lim

N2N

G=N . ut

Our next theorem implies, in parti
ular, that a 
losed subgroup of a proje
tive

limit of �nite dimensional Lie groups is a proje
tive limit of �nite dimensional Lie

groups in a natural way. We remind the reader of the following terminology: A

�lter basis F in a topologi
al group G is 
alled a Cau
hy �lter basis if for ea
h

identity neighborhood U of G there is a member F 2 F su
h that FF

�1

� U .

(See. e.g. [5℄, Theorem 1.30 and the paragraph pre
eding it.)

Theorem 2.2. (The Closed Subgroup Theorem for Proje
tive Limits) Assume

that N is a �lter basis of 
losed normal subgroups of the 
omplete topologi
al group

G and assume that limN = 1 and that all quotient groups G=N are 
omplete for

N 2 N . Let H be a 
losed subgroup of G. For N 2 N set H

N

= HN . Then the

following 
on
lusions hold

(i) The isomorphism 


G

:G ! lim

N2N

G=N maps H isomorphi
ally onto

lim

N2N

H

N

=N .

(ii) Under the present hypotheses,

H

�

=

lim

N2N

H=(H \N)

�

=

lim

N2N

HN=N

�

=

lim

N2N

HN=N:
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(iii) The limit maps �

M

: lim

N2N

HN=N ! HM=M , M 2 N , are quotient

morphisms.

(iv) The standard morphisms H=(H \ N) ! HN=N are isomorphisms of

topologi
al groups.

Proof. (i) We note

(a) H

N

=N = H

N

=N � G=N;

and thus H

N

=N , as a 
losed subgroup of a 
omplete group is a 
omplete group.

Let U be the �lter of identity neighborhoods of G; for U 2 U �nd V 2 U su
h that

V V � U . Sin
e limN = 1 by hypothesis, there is an N 2 N su
h that N � V .

For any subset A of a topologi
al group, the 
losure A is the interse
tion of the

sets AW where W ranges through all identity neighborhoods. Thus H

N

= HN �

HNV � HV V � HU when
e

(b)

\

N2N

H

N

=

\

N2N

HN �

\

U2U

HU = H = H:

For M � N , the bonding map �

MN

:G=N ! G=M indu
es a bonding map

�

MN

:H

N

=N ! H

M

=M by restri
tion and 
orestri
tion, and

P

N

def

= f�

MN

: G=N ! G=M j (M;N) 2 N �N ;M � Ng;(
)

Q

N

def

= f�

MN

: H

N

=N ! H

M

=M j (M;N) 2 N �N ;M � Ng(d)

are proje
tive systems in whi
h the bonding maps have dense image. (In the former

system they are of 
ourse quotient morphisms. The proje
tive limits are written

lim

N2N

G=N and lim

N2N

H

N

=N , respe
tively. There is a unique morphism

": lim

N2N

H

N

=N ! lim

N2N

G=N; "

�

(g

N

N)

N2N

�

= (g

N

N)

N2N

su
h that the following diagram 
ommutes:

(e)

� � � H

M

=M

�

MN

 ���� H

N

=N  � � � lim

N2N

H

N

=N

in
l

M

?

?

y

?

?

y

in
l

N

?

?

y

"

� � � G=M

�

MN

 ���� G=N  � � � lim

N2N

G=N:

Sin
e G is 
omplete, by Theorem 2.1, there is an isomorphism




G

:G! lim

N2N

G=N;

and there is a a morphism Æ

H

:H ! lim

N2N

H

N

=N de�ned by Æ

H

(h) = (hN)

N2N

su
h that the following diagram 
ommutes:

(f)

H

Æ

H

����! lim

N2N

H

N

=N

in
l

?

?

y

?

?

y

"

G ����!




G

lim

N2N

G=N:
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We 
laim that Æ

H

is an isomorphism. For this purpose we de�ne a fun
tion

�: lim

N2N

H

N

=N ! H of whi
h we shall show that it is a morphism of topo-

logi
al groups and inverts Æ

H

.

Let (g

N

N)

N2N

2 lim

N2N

H

N

=N , that is, g

N

2 H

N

and M � N implies g

M

2

g

N

M , equivalently, g

N

2 g

M

M . Then F

def

= fg

N

N : N 2 Ng is a Cau
hy �lter

basis in G, and F does not depend on the parti
ular 
hoi
e of the representatives

g

N

of the 
osets g

N

N , but only on the 
osets. Sin
e G is 
omplete by hypothesis,

g = limF exists. Note that g is also the limit of the net (g

N

)

N2N

, irrespe
tive

of the 
hoi
e of the representatives g

N

. We 
laim that g 2 H

N

for all N 2 N .

Fix N 2 N and 
onsider N � P in N . Then g

P

P � g

N

N � H

N

, for all of

these P and thus g 2 H

N

= H

N

for all N 2 N ; this proves the 
laim. Therefore

g 2

T

N2N

H

N

= H by (b). We thus de�ne a fun
tion �: lim

N2N

H

N

=N ! H by

setting

(g) �

�

(g

N

N)

N2N

�

= limfg

N

N : N 2 Ng:

From this de�nition it follows that

�

�

(g

N

N)

N2N

(g

0

N

N)

N2N

�

= �

�

(g

N

g

0

N

N)

N2N

�

= lim g

N

g

0

N

=

lim g

N

lim g

0

N

= �

�

(g

N

N)

N2N

�

�

�

(g

0

N

N)

N2N

�

:

Thus � is a morphism of groups. Next we show that � is 
ontinuous at the iden-

tity. Let V 2 U ; pi
k a U 2 U su
h that UU � V ; by Theorem 2.1(i) we may

assume that U = UN = NU for some N 2 N . Now we de�ne U

M

� H

M

=M

by U

M

= H

M

=M for M 6= N and by U

N

= U=N and set

e

U = (

Q

M2N

U

M

) \

lim

M2N

H

M

=M . Now let g = (g

M

M)

M2N

2

e

U . Then g

N

N 2 U

N

= U=N . Hen
e

for N � P we have g

P

2 g

N

N � U . Thus �(g) = lim

M2N

g

M

2 U � UU � V .

This 
on
ludes the proof of the 
laim that �: lim

N2N

H

N

=N ! H is a morphism of

topologi
al groups. For h 2 H we have �

�

Æ

H

(h)

�

= �

�

(hN)

N2N

�

= lim

N2N

h =

h. Now let g = (g

N

N)

N2N

, then Æ

H

�

�(g)

�

= Æ

H

�

lim

N2N

g

N

�

= (hN)

N2N

with h = lim

N2N

g

N

. If now N 2 N then N � P implies g

P

2 g

N

N when
e

h = lim

P2N

g

P

2 g

N

N , and thus hN = g

N

N for all N 2 N . We 
on
lude

Æ

H

�

�(g)

�

= g. Therefore � and Æ

H

are inverses of ea
h other. We have shown that

H

�

=

lim

N2N

H

N

=N where H

N

=N is a 
losed subgroup of G=N for ea
h N from

the �lter basis N .

(ii) The �lter basis fH \ N : N 2 Ng in H 
onverges to 1. We know that




H

:H ! lim

N2N

H=(H \ N), 


H

(h) =

�

h(H \ N)

�

N2N

is an isomorphism by

Theorem 2.1. The bije
tive morphisms of topologi
al groupsH=(H\N)! HN=N ,

N 2 N , indu
e a bije
tive morphism j in the following sequen
e of morphisms

H




H

����! lim

N2N

H=(H \N)

j

����! lim

N2N

HN=N

in
l

����! lim

N2N

H

N

=N

�

����!H

whose 
omposition is the identity, i.e. �Æin
l ÆjÆ


H

= id, so that in
l Æ(jÆ


H

Æ�) =

id. Hen
e the in
lusion morphism in
l is an isomorphism.

(iii) We must show that the limit morphisms �

M

: lim

N2N

HN=N ! HM=M

are quotient morphisms. Indeed, let U be an identity neighborhood of the limit;

sin
e limN = 1 by hypothesis, we may assume that there is an N � M su
h
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that U ker�

N

= U . Then �

N

(U) is an identity neighborhood of HN=N . Sin
e

�

MN

:HN=N ! HM=M is a quotient morphism and �

M

= �

MN

Æ�

N

we 
on
lude

that �

M

(U) is open whi
h establishes the 
laim.

(iv) We must show that

�

�

h(H \N)

�

= hN; �:H=(H \N)! HN=N; �

�

h(H \N)

�

= hN;

is an isomorphism. In the proof of (ii) we saw that Æ = jÆ


H

:H ! lim

N2N

HN=N

is an isomorphism of topologi
al groups. By that whi
h we just saw, for ea
h

M 2 N , the morphism �

M

Æ j Æ 


H

:H ! HM=M is a quotient morphism. Its

kernel, however, is H \M . Hen
e in the 
anoni
al de
omposition

H

�

M

ÆjÆ


H

�����! HM=M

quot

?

?

y

x

?

?

id

HM=M

H=(H \M) ����!

�

G=M;

the morphism � is an isomorphism. ut

Corollary 2.3. Every 
losed subgroup H of a pro-Lie group G is Lie proje
tive.

Proof. We 
ontinue the notation of Theorem 2.2. As a 
losed subgroup of the

�nite dimensional Lie group G=N , the group HN=N is a �nite dimensional Lie

group. By 2.2(ii) we have H

�

=

lim

N2N (H)

HN=N , and thus H is a proje
tive limit

of �nite dimensional Lie groups. ut

A topologi
al group G is said to be a proto-Lie group if the the set N (G) of

all 
losed normal subgroups N of G su
h that G=N is a �nite dimensional Lie

group, is a �lter basis 
onverging to 1. Note that it is a pro-Lie group if it is, in

addition, 
omplete. A proto-Lie group is densely embedded into a pro-Lie group

via 


G

:G ! lim

N2N (G)

G=N , 


G

(g) = (gN)

N2N (G)

. For easy referen
e we quote

the following 
hara
terisation of of pro-Lie groups from [5℄:

Proposition 2.4. For a topologi
al group G, the following two 
onditions are

equivalent:

(i) G is a proto-Lie group.

(ii) There is a �lter basisM of 
losed normal subgroups 
onverging to 1 su
h that

G=M is a �nite-dimensional Lie group for ea
h M 2 M.

If these 
onditions hold, then M is 
o�nal in N (G). Moreover, if G is 
omplete,

then these 
onditions are equivalent to

(iii) G is a pro-Lie group.

If (iii) holds then G

�

=

lim

M2M

G=M .

Proof. Sin
e (i))(ii) is trivial by the de�nition of a proto-Lie group, we prove

(ii))(i). Clearly,M� N (G). We 
laim that

(�)

�

8N 2 N (G)

�

(9M 2 M) N �M:
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Firstly, 
ondition (8) implies that N (G) is 
losed under �nite interse
tions and

hen
e is a �lter basis: Let N

1

; N

2

2 N (G), then by (�) there are subgroups

M

1

; M

2

2 M with N

j

� M

j

for j = 1; 2. Sin
e M is a �lter basis, there is

anM 2 M su
h thatM

1

\M

2

�M . Hen
e N

1

\N

2

�M . Therefore G=(N

1

\N

2

)

is a quotient group of the �nite dimensional Lie group G=M and is therefore itself a

�nite dimensional Lie group. Hen
e N

1

\N

2

2 N (G). Se
ondly, sin
eM�N (G),

and sin
eM 
onverges to 1, the �lter basis N (G) 
onverges to 1 as well. And �-

nally, by (�),M is 
o�nal in N (G), when
e G

�

=

lim

M2M

G=M = lim

N2N (G)

G=N

by 
o�nality (see [5℄, Co�nality Lemma 1.21). Thus it remains to prove (�). So

let N 2 N (G) be given. Let U = UN be an open identity neighborhood of G

su
h that UN=N is an identity neighborhood of the �nite dimensional Lie group

G=N whi
h 
ontains no subgroups other than the singleton one. If p:G ! G=N

is the quotient map, then the image �lter basis p(M) 
onverges to the identity in

G=N . Hen
e there is an M su
h that p(M) � UN=N . Then the subgroup p(M) is

singleton, that is M � N , whi
h is what we had to show.

If G is 
omplete, then (i) shows that G is a pro-Lie group and by Theorem

2.1(vi) we then know that G

�

=

lim

M2M

G=M . ut

3. Weakly 
omplete ve
tor spa
es and Lie algebras.

For the 
on
ept of weakly 
omplete ve
tor spa
es see [4℄, p. 319�. Here is one way

of saying what a weakly 
omplete ve
tor spa
e is: A topologi
al ve
tor spa
e is

weakly 
omplete if there is an isomorphism of topologi
al ve
tor spa
es to some

produ
t ve
tor spa
e R

X

.

Lemma 3.1. Let f :V ! W be a morphism of weakly 
omplete ve
tor spa
es.

Then f(V ) is a 
losed ve
tor subspa
e of W .

Proof. We have a 
anoni
al de
omposition

V

f

����! W

q

?

?

y

x

?

?

j

V= ker f ����!

f

0

f(V );

where q(v) = v + ker f , j(w) = w, f

0

(v + kerf) = f(v). After repla
ing f by

f

0

we may assume without loss of generality that f is inje
tive and has a dense

image. Then f is both a moni
 and an epi
 in the 
ategory of weakly 
omplete

ve
tor spa
es sin
e it has a zero 
okernel. By the Duality Theorem for Real Ve
tor

Spa
es (see [4℄, p. 325, Theorem 7.30) the dual

b

f :




W !

b

V is a linear map between

real ve
tor spa
es whi
h is both a moni
 and an epi
. But then it is bije
tive, i.e.

is an isomorphism. By duality again, f =

b

b

f is an isomorphism and thus has an

inverse in the 
ategory of weakly 
omplete ve
tor spa
es. Hen
e it is bije
tive. In

parti
ular, it is surje
tive and thus the lemma is proved.
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Lemma 3.2. Let g = lim

k2J

g

k

be a proje
tive limit of a proje
tive system

f


jk

: g

k

! g

j

j j � k; (j; k) 2 J � Jg

of �nite dimensional real ve
tor spa
es in the 
ategory of weakly 
omplete ve
tor

spa
es. Let 


j

: g! g

j

denote the limit maps. Then for ea
h j 2 J there is an index

k

j

� j su
h that 


jk

j

(g

k

) � 


j

(g).

Proof. By Lemma 3.1 above, 


j

(g) is a 
losed ve
tor subspa
e of g

j

. By the Duality

Theorem for Real Ve
tor Spa
es (see [4℄, p. 324, Theorem 7.30, statement (ii) is

equivalent to the following assertion

(�) Let E = 
olim

k2J

E

k

be the dire
t limit of a dire
t system

f�

jk

:E

j

! E

k

j j � k; (j; k) 2 J � Jg

of �nite dimensional ve
tor spa
es. Fix an index j 2 J . Then there is an index

k

j

� j su
h that �

jk

j

vanishes on ker �

j

.

Now E is the dire
ted union of the images �

k

(E

k

). If x 2 E

j

is su
h that

�

jk

(x) 6= 0 for all k, then �

j

(x) 6= 0. Thus for ea
h x 2 ker�

j

there is a k

x

� j su
h

that �

jk

x

(x) = 0. Sin
e dimker �

j

� dimE

j

is �nite, ker�

j

is �nitely generated.

Statement (�) follows. ut

We re
ord that for a topologi
al group G, a one parameter subgroup is a 
on-

tinuous group morphism f :R ! G.

We shall deal with topologi
al groups that have a Lie algebra. The spa
e

Hom(R; G) of all one parameter subgroups X :R ! G endowed with the topol-

ogy of uniform 
onvergen
e on 
ompa
t sets is denoted L(G). A

ordingly L is a

limit preserving fun
tor from the 
ategory of topologi
al groups to the 
ategory

of pointed topologi
al spa
es. For suitably good spe
imen of topologi
al groups,

the assignment L has mu
h better properties, as we shall outline in the following

de�nition. For a real number r we set �(r) = r

2

.

De�nitions 3.3. Let G be a topologi
al group. Then it is said that G has a

Lie algebra or, equivalently, that G is a topologi
al group with a Lie algebra if the

following 
onditions hold:

(i) For all X;Y 2 L(G), the following limits exist pointwise:

X + Y

def

= lim

n!1

�

�

1

n

�X

��

1

n

�Y

�

�

n

;(1)

[X;Y ℄ Æ�

def

= lim

n!1


omm

�

1

n

�X;

1

n

�Y

�

n

2

(2)

and X + Y; [X;Y ℄ 2 L(G).

(ii) Addition (X;Y ) 7! X + Y : L(G) � L(G) ! L(G) and bra
ket multipli
ation

(X;Y ) 7! [X;Y ℄ : L(G)� L(G) ! L(G) are 
ontinuous.
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(iii) With respe
t to s
alar multipli
ation �, addition + and bra
ket multipli
ation

[�; �℄ the set L(G) is a real Lie algebra. ut

In parti
ular, if G has a Lie algebra, then L(G) is a topologi
al Lie algebra.

Note that a topologi
al group G has a Lie algebra if and only if the 
onne
ted


omponent G

0

of the identity has a Lie algebra.

A Lie algebra is said to be pro�nite dimensional if it is a proje
tive limit of

�nite dimensional real Lie algebras. The underlying ve
tor spa
e of a pro�nite

dimensional Lie algebra is a weakly 
omplete ve
tor spa
e.

Using the 
ontinuity of the fun
tor L, it is not hard to see that all Lie proje
tive

groups have a Lie algebra, and indeed a pro�nite dimensional one.

We shall have to deal with topologi
al groups G for whi
h we make some

standard assumptions:

Notation 3.4. For G there is a proje
tive system

ff

jk

:G

k

! G

j

j (j; k) 2 J � J; j � kg

of �nite dimensional Lie groups G

j

su
h that G = lim

j2J

G

j

. The limit maps are

denoted f

j

:G ! G

j

, the kernels ker f

j

of the limit maps will be abreviated by

K

j

. The �nite dimensional Lie algebras L(G

j

) will be written g

j

. Let us write

f

jk

def

= L(f

jk

) and f

j

def

= L(f

j

).

Proposition 3.5. There is a proje
tive system

ff

jk

: g

k

! g

j

j (j; k) 2 J � J; j � kg

of �nite dimensional real Lie algebras and Lie algebra morphisms su
h that

L(G) = lim

j2J

g

j

and that the 
ontinuous Lie algebra morphisms f

j

:L(G) ! g

j

are the limit mor-

phisms.

Proof. By Theorem [5℄ 2.25(ii), the fun
tor L from the 
ategory of all topologi-


al groups having a Lie algebra and 
ontinuous group morphisms between them

to the 
ategory of topologi
al Lie algebras is 
ontinuous and thus, in parti
ular

preserves proje
tive limits. Hen
e L(G)

�

=

lim

j2J

L(G

j

), and we may identify the

two pro�nite dimensional Lie algebras. ut

We set a

j

= f

j

�

L(G)

�

� g

j

for ea
h j 2 J , and let �

jk

: a

k

! a

j

be the

morphism of �nite dimensional Lie algebras indu
ed by f

jk

for j � k.

Lemma 3.6. The system

L

0

def

= f�

jk

: a

k

! a

j

j (j; k) 2 J � J; j � kg
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is a proje
tive system of �nite dimensional Lie algebras and surje
tive bonding

maps. We have

L(G) = lim

j2J

a

j

:

The limit maps �

j

:L(G)! a

j

are quotient morphisms.

Proof. We apply the Fundamental Theorem on Proje
tive Limits 2.1(iv) to the

system L and 
on
lude that limL

0

= limL. The limit maps �

j

:L(G) ! a

j

are

surje
tive and thus are quotient maps ([4℄, p. 3.26, Theorem 7.30). It also follows

that the bonding maps �

jk

: a

k

! a

j

are surje
tive. ut

The following diagram illustrates the situation:

a

j

 ����

�

jk

a

k

� � �  L(G) = lim

j2J

a

j

in
l

j

?

?

y

in
l

k

?

?

y

� � �

?

?

y

id

L(G)

g

j

 ����

f

jk

g

k

� � �  L(G) = lim

j2J

g

j

:

Now we apply Lemma 3.2 and obtain

Lemma 3.7. Under our general assumptions for G = lim

j2J

G

j

we have

(8j 2 J)(9k

j

� j; k

j

2 J) f

jk

j

�

(G

k

j

)

0

�

� A

j

:

Proof. From 3.2 we have

(8j 2 J)(9k

j

� j; k

j

2 J) f

jk

j

(g

k

j

) � a

j

:

The assertion now follows from the fa
t that as a �nite dimensional 
onne
ted

Lie group, G

k

j

)

0

is algebrai
ally generated by exp g

k

j

and that A

j

is algebrai
ally

generated by a

j

. Thus f

jk

j

�

(G

k

j

)

0

�

= f

jk

j

�

hexp g

k

j

)i

�

= hexpL(f

jk

j

)(g

k

j

)i �

hexp a

j

i = A

j

. ut

Now for ea
h j 2 J the subgroup A

j

def

= hexp

G

j

L(G

j

)i is an analyti
 subgroup

of G

j

su
h that L(A

j

) = a

j

. (For linear Lie groups a referen
e is [4℄, p. 155,

Theorem 5.52. The proof there does not depend of the assumption that G is a linear

Lie group.) The morphisms f

jk

:G

k

! G

j

indu
e morphisms  

jk

def

= f

jk

jA

k

:A

k

!

A

j

with L( 

jk

) = �

jk

and f

0

jk

: (G

k

)

0

! (G

j

)

0

. Then

f 

jk

:A

k

! A

j

j (j; k) 2 J � J; j � kg

is a proje
tive system of analyti
 groups; let A

def

= lim

j2J

A

j

be its limit. Ea
h

analyti
 group 
arries a topology whi
h is in general �ner than the indu
ed topol-

ogy, making the subgroup A

j

into a 
onne
ted Lie group H

j

su
h that L(H

j

) =

L(A

j

) = a

j

and that the morphisms  

jk

:A

j

! A

k

indu
e morphisms of Lie groups

'

jk

:H

k

! H

j

su
h that L('

jk

) = �

jk

. We have inje
tive morphisms

H

j

"

j

����!A

j

in
l

A

j

����!(G

j

)

0

in
l

(G

j

)

0

����!G

j
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where "

j

is the bije
tive morphism of topologi
al groups given by "

j

(h) = h and

in
l denotes the respe
tive in
lusion morphisms.

We 
onsider the proje
tive system

H

def

= f'

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

of �nite dimensional Lie groups and let H = lim

j2J

H

j

denote its limit; we note

that due to the 
ontinuity of the fun
tor L we have

(L) L(H) = lim

j2J

L(H

j

) = lim

j2J

a

j

= L(G):

It is not at all 
lear at this time that a pro-Lie group is 
onne
ted if its �nite

dimensional Lie group quotients are 
onne
ted. However, we observe the following

lemma whi
h we shall presently apply to H = lim

j2J

H

j

.

Lemma 3.8. Assume that H is a proje
tive limit lim

j2J

H

j

of �nite dimensional

Lie groups satisfying the following two hypotheses:

(i) For all j 2 J the Lie group H

j

is 
onne
ted, and

(ii) the limit maps '

j

:H ! H

j

, j 2 J indu
e surje
tive morphisms L('

j

):

L(H)! L(H

j

).

Then H is 
onne
ted.

Proof. Let h 2 H be an arbitrary element of G. We shall show that arbitrarily


lose to g there are elements from the ar
 
omponent of the identity of H ; thus

the ar
 
omponent of the identity is dense in H and thus H is indeed 
onne
ted.

For a proof let U be any identity neighborhood of H . By 1.27(i) we may assume

that su
h that U = '

�1

j

V ) for some identity neighborhood V of H

j

. Sin
e H

j

is 
onne
ted by hypothesis (i), and sin
e any 
onne
ted �nite dimensional Lie

group is algebrai
ally generated by the image of its exponential fun
tion, there are

elements X

1

; : : : ; X

n

2 L(H

j

) su
h that '

j

(h) = expX

1

� � � expX

n

. By hypothesis

(ii) the morphism L('

j

):L(H) ! L(H

j

) is surje
tive, and thus we �nd elements

Y

m

2 L(H), su
h that X

m

= L('

j

)(Y

m

) for all m = 1; : : : ; n. Now '

j

(h) =

exp

H

j

X

m

= exp

H

j

L('

j

)(Y

m

) = '

j

(exp

H

Y

m

)in H

j

for all m. Let �: [0; 1℄ ! H

denote the ar
 given by �(t) = exp

H

(t�Y

1

) � � � exp

H

(t�Y

n

). Then �(0) = 1 and

�(1) = exp

H

Y

1

� � � exp

H

Y

n

2 '

�1

j

�

'

j

(h)

�

� hU . This proves our 
laim and thus

�nishes the proof of the lemma. ut

Lemma 3.9. The system

H

def

= f'

jk

:H

k

! H

j

j (j; k) 2 J � J; j � kg

is a proje
tive system of quotient morphisms between �nite dimensional 
onne
ted

Lie groups and its limit H = lim

j2J

H

j

is a 
onne
ted pro-Lie group. The limit

maps '

j

:H ! H

j

are quotient morphisms.

Proof. Sin
e all L('

jk

) = �

jk

are surje
tive, the morphisms '

jk

are surje
tive,

and sin
e H

k

as a 
onne
ted �nite dimensional Lie group is �-
ompa
t and lo
ally


ompa
t and H

j

is lo
ally 
ompa
t, by the Open Mapping Theorem (see e.g. [4℄,
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p. 650) the morphisms '

jk

are quotient morphisms. Therefore, the limit maps

'

j

:H ! H

j

are quotient morphisms by Theorem 2.1(iii). It follows that H is a

pro-Lie group and that B

def

= fker'

j

: j 2 Jg is a 
o�nite �lter basis of N (H).

Now the pre
eding Lemma 3.8 applies to show that H is 
onne
ted. ut

We illustrate the situation in the following diagram showing the limits of the

various proje
tive systems we 
onsider:

H

j

 ����

'

jk

H

k

� � � H = lim

j2J

H

j

"

j

?

?

y

"

k

?

?

y

� � �

?

?

y

"

A

j

f

0

jk

 ���� A

k

� � � A = lim

j2J

A

j

in
l

A

j

?

?

y

in
l

A

k

?

?

y

� � �

?

?

y

in
l

A

(G

j

)

0

f

0

jk

 ���� (G

k

)

0

� � � G

0

=

�

lim

j2J

(G

j

)

0

�

0

in
l

(G

j

)

0

?

?

y

in
l

(G

k

)

0

?

?

y

� � �

?

?

y

in
l

G

0

G

j

f

jk

 ���� G

k

� � � G = lim

j2J

G

j

:

The universal property of the limit G gives us the morphisms ":H ! A and the

various in
lusion morphisms in
l �lling in diagram (1). Noti
e that L(H) = L(A) =

L(B) = L(G) and we may identify L(") and the various maps L(in
l) with id

L(G)

.

By the 
on
rete 
onstru
tion of the limits

we have

G = f(g

j

)

j2J

2

Y

j2J

G

j

j (8j � k in J) f

jk

(g

k

) = g

j

g;

A = f(a

j

)

j2J

2

Y

j2J

A

j

j (8j � k in J) f

jk

(a

k

) = a

j

g;

H = f(h

j

)

j2J

2

Y

j2J

H

j

j (8j � k in J) f

jk

(h

k

) = h

j

g:

Thus A is a subgroup of G and we may identify H with A ex
ept that its topology

may be �ner than the topology indu
ed from G on A.

The situation is again illustrated by the following diagram:

L(H)

=

����! L(A)

=

����! L(G)

exp

H

?

?

y

exp

A

?

?

y

?

?

y

exp

G

H ����!

"

A ����!

in
l

A

G

'

j

?

?

y

 

j

?

?

y

?

?

y

f

j

H

j

����!

"

j

A

j

����!

in
l

A

j

G

j

;

where " and all "

j

are bije
tive and all in
l are embeddings.

For a given Lie proje
tive group G = lim

j2J

G

j

a 
onne
ted pro-Lie group H

emerged almost out of nowhere and it is mapped under the bije
tive morphism "

onto the subgroup A of G. Clearly we must identify this subgroup of G

0

.

Lemma 3.10. H = G

0

.
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Proof. By Lemma 3.7,

(8j 2 J)(9j � k

j

2 J) f

jk

j

�

(G

k

j

)

0

�

� A

j

:

Now we noti
e that (G

k

j

)

0

is lo
ally ar
wise 
onne
ted and H

j

is A

j

equipped

with the ar
 
omponent topology (
f. [4℄, p. 156, Theorem 5.52(iv) and pp. 760 �.).

Hen
e the restri
tion and 
orestri
tion f

jk

j

j(G

j

k

)

0

: (G

j

k

)

0

! A

j

fa
tors through

"

j

:H

j

! A

j

for a morphism f

jk

j

: (G

k

j

)

0

! H

j

su
h that

f

0

jk

j

def

= in
l

A

j

Æ"

j

Æ f

jk

j

: (G

k

j

)

0

! (G

j

)

0

:

Temporarily, set

(�) G

0

def

= lim

j2J

(G

j

)

0

� G

0

in the 
ategory of topologi
al groups and 
ontinuous morphisms. Thus for ea
h

j 2 J there is a k

j

� j and a 
ommutative diagram

(G

j

)

0

�

f

0

jk

j

(G

k

j

)

0

� � � G

0

	�

�

�

�

�

f

jk

j

H

j

�

'

jk

j

H

k

j

� � � H

�

?

(G

j

)

0

in
l

j

Æ"

j

?

�

f

0

jk

j

(G

k

j

)

0

in
l

k

j

Æ"

k

j

?

� � � G

0

:

in
l

A

Æ"

?

It follows that there is a morphism �

j

def

= f

jk

j

j(G

k

j

)

0

Æ f

k

j

jG

0

: G

0

! H

j

whi
h

is independent of the 
hoi
e of k

j

in as mu
h as it agrees with f

jk

j

Æ f

k

j

k

Æ f

k

jG

0

for k � k

j

. We noti
e that for j � j

0

we get �

j

= '

jj

0

Æ �

0

j

:G

0

! H

j

. Thus the

universal property of H = lim

j2J

H

k

implies the existen
e of a unique morphism

�:H ! G

0

su
h that �

j

= '

j

Æ �.

From in
l

A

Æ" Æ f

jk

= f

jk

j

we 
on
lude that

in
l

A

Æ" Æ � = id

G

0

:

Thus in
l

A

Æ":H ! G

0

is a retra
tion, and sin
e it is inje
tive, it is an isomorphism.

As it is also an in
lusion map (ex
ept for 
ontinuity), we now see that it is an

isomorphism. This shows G

0

= H . Thus G

0

is 
onne
ted and so

(��) H = G

0

� G

0

:

Now (8) and (��) imply H = G

0

ut
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4. Are Lie Proje
tive Groups Pro-Lie Groups?

For easy referen
e we re
all the de�nition of N (G) and 
omplement it in a way

that will be useful to us:

De�nition 4.1. For a topologi
al group G let

N (G)

def

= fN

/

G : G=N is a Lie groupg;

N

0

(G)

def

= fN

/

G

0

: G

0

=N is a Lie groupg = N (G

0

):

ut

In a pro-Lie group, N (G) is a �lter basis whi
h 
onverges to 1.

We work in the setting of Notation 3.4. Re
all that K

j

def

= kerf

j

and that for

ea
h j 2 J we have an inje
tive morphism G=K

j

! G

j

.

Main Lemma 4.2. (The First Fundamental Lemma) Let G be proje
tive limit

lim

j2J

G

j

of �nite dimensional Lie groups. Then the following 
on
lusions hold:

(i) The identity 
omponent G

0

is a pro-Lie group and thus

G

0

�

=

lim

M2N

0

(G)

G

0

=M:

(ii) Set M

def

= fG

0

\K

j

: j 2 Jg. Then M is a 
o�nal subset of N

0

(G); that is,

for ea
h M 2 N

0

(G) there is a j 2 J su
h that G

0

\K

j

�M .

(iii) For ea
h j 2 J , the natural map

�

G

0

=(G

0

\ K

j

)

�

! (G

0

K

j

)=K

j

is an iso-

morphism, the group G

0

K

j

=K

j

is a Lie group and a 
losed subgroup of G=K

j

,

and

G

0

= lim

j2J

(G

0

K

j

)=K

j

:

Proof. (i) Sin
e G

0

is a pro-Lie group by Lemmas 3.8 and 3.9, we have G

�

=

lim

M2N

0

(G)

G

0

=M by Theorem 2.1(vi).

(ii) Sin
e limN

0

(G) = 1 and f

j

:G! G

j

is 
ontinuous for ea
h j 2 J , we have

lim f

j

(N

0

(G)) = 1. But G

j

is a Lie group and thus has no small subgroups. Hen
e

there is an M 2 N

0

(G) su
h that f

j

(M) = f1g, that is, M � K

j

. Thus we have a

quotient morphism G

0

=M ! G

0

=(G

0

\K

j

). Sin
e quotients of �nite dimensional

Lie groups are Lie groups, G

0

=(G

0

\K

j

) is a Lie group when
e G

0

\K

j

2 N

0

(G)

by De�nition 4.1. Hen
eM� N

0

(G).

By Theorem 2.1(i) we know that lim

j2J

K

j

= 1. Then lim

j2J

G

0

\K

j

= 1. Let

M 2 N

0

(G). Then G

0

=M is a Lie group, and thus there is an open identity neigh-

borhood U of G

0

su
h that UM = U and U=M has no nonsingleton subgroups.

Then there is a j 2 J su
h that G

0

\K

j

� U . Sin
e (G

0

\K

j

)M=M is a subgroup

of G

0

=M 
ontained in U=M we have G

0

\K

j

�M .

(iii) By (ii) above, G

0

=(G

0

\ K

j

) is a �nite dimensional Lie group. We set

N

def

= fK

j

: j 2 Jg. By 2.1 we know that limN = 1. So we 
an apply Theorem

2.2 with H = G

0

. In parti
ular, 2.2(iv) yields the assertions of (iii). ut
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Note that we have shown, in parti
ular, that every 
onne
ted Lie proje
tive

group is a pro-Lie group.

A topologi
al groupG is said to be protodis
rete if the �lter basis of open normal

subgroups 
onverges to 1. If G is in addition 
omplete, it is 
alled prodis
rete.

Proposition 4.3. (a) For a Lie proje
tive group G, the following statements are

equivalent:

(i) G is prodis
rete.

(ii) G is zero dimensional.

(iii) G is totally dis
onne
ted.

(iv) L(G) = f0g.

(b) A quotient of a protodis
rete group is protodis
rete.

Proof. First we prove (a):

(i))(ii): By (i) G is a 
losed subgroup of a produ
t of dis
rete groups and therefore

the �lter of its identity neighborhoods has a basis of open subgroups.

(ii))(iii))(iv): This is 
lear.

(iv))(i): Let G = lim

j2J

G

j

with a proje
tive system as in 3.4 and assume

that the limit maps f

j

:G ! G

j

have dense images. Let D

j

be the dis
rete group

G

j

=(G

j

)

0

and let

D = fF

jk

:D

k

! D

j

j j � k; (j; k) 2 J � Jg

be the proje
tive system indu
ed by P and let D = lim

j2J

D

j

. Then ea
h quotient

D= kerF

j

for the limit maps F

j

:D ! D

j

is dis
rete, and D = lim

j2J

D= kerF

j

by Theorem 2.1(ii). Hen
e D is a prodis
rete group. Now by hypothesis (v) we

have f0g = L(G) = lim

j2J

L(G

j

). Then by Lemma 3.6, for ea
h j 2 J , there is a

k

j

� j su
h that f

jk

j

(g

k

j

) = f0g, i.e. f

jk

�

(G

k

j

)

0

�

= f1g. Thus f

jk

j

fa
tors through

a morphism F

jk

j

:D

jk

j

! G

j

. We have a diagram

G

j

�

f

jk

j

G

k

j

� � � G

D

j

q

j

?

�

F

jk

j

D

k

j

q

k

?

� � � D

q

?

	�

�

�

�

�

F

jk

j

G

j

�

f

jk

G

k

j

� � � G:

p

?

By an argument entirely analogous to that in the proof of 3.9 regarding the diagram

in that proof we 
on
lude the existen
e of a morphism p:D ! G su
h that p Æ q =

id

G

. Thus G is a retra
t of D. But retra
ts of prodis
rete groups are easily seen

to be prodis
rete. This 
ompletes the proof.
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Proof of (b): If G is protodis
rete, N (G) is a �lter basis of open normal sub-

groups whi
h 
onverges to 1. Now let N be a 
losed normal subgroup of G. De�ne

U = fNU=U : U 2 N (G)g. Ea
hNU is an open and hen
e 
losed normal subgroup

of G and thus the NU=U are open-
losed subgroups of G=N , and we 
laim that U


onverges to the identity of G=N . LetW be an open identity neighborhood of G=N

and V its full inverse image in G=N . Then V is an open identity neighborhood of

G su
h that NV = V . Sin
e N (G) 
onverges to 1, there is a U 2 N (G) su
h that

U � V . Then NU � NV = V and thus NU=N � W . This proves the 
laim and

proves (b) in view of 2.4. ut

Main Lemma 4.4. (The Se
ond Fundamental Lemma) For any Lie proje
tive

group G, the 
omponent fa
tor group G=G

0

is protodis
rete; if it is 
omplete, then

it is prodis
rete.

Proof. We retain the notation of the proof of Proposition 4.3 and 
onsider the


ommutative diagram

(G

j

)

0

f

0

jk

 ���� (G

k

)

0

� � � G

0

= lim

j2J

(G

j

)

0

in
l

?

?

y

in
l

?

?

y

?

?

y

in
l

G

j

f

jk

 ���� G

k

� � � G = lim

j2J

G

j

quot

?

?

y

quot

?

?

y

?

?

y

�

D

j

F

jk

 ���� D

k

� � � D = lim

j2J

D

j

:

The morphism �:G ! D is the �ll-in map given by the universal property of the

limit in the last row. Sin
e the 
omposition

(G

j

)

0

in
l

����!G

j

quot

����!D

j

is 
onstant, so is the 
omposition

G

0

in
l

����!G

�

����!D:

Hen
e we have a unique morphism p:G=G

0

! D, p(gG

0

) = �(g). Assume that

g = (g

j

)

j2J

2 G is su
h that p

�

gG

0

�

= 1, i.e., (g

j

(G

j

)

0

)

j2J

= �(g) = 1 in

lim

j2J

D

j

; thus g 2

T

j2J

f

�1

j

�

(G

j

)

0

�

= lim

j2J

(G

j

)

0

= G

0

. This shows that p

is inje
tive. The sets F

�1

j

(1) are basi
 identity neighborhoods of D by 2.1(i). As

p

�1

F

�1

j

(1) = f

�1

j

�

(G

j

)

0

�

=G

0

and this is an open-
losed subgroup we see that p is

an embedding. Therefore G=G

0

may be identi�ed with the subgroup S

def

= im � =

f(g

j

(G

j

)

0

)

j2J

: (g

j

)

j2J

2 Gg of D.

Let N

j

= F

�1

j

(1). Then N

j

is an open-
losed normal subgroup of D and

S \ N

j

is an open-
losed normal subgroup of S. Sin
e lim

j2J

N

j

= 1 we have

lim

j2J

S \N

j

= 1. Hen
e G=G

0

�

=

S is a protodis
rete group and S =

T

j2J

SN

j

is prodis
rete. If G=G

0

is 
omplete, then G=G

0

�

=

S and G=G

0

is prodis
rete. ut

Before we 
ontinue, we re
ord an independent elementary lemma:
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Lemma 4.5. Let f :A ! B be a quotient morphism of topologi
al groups with

dis
rete kernel. Then there is an open symmetri
 identity neighborhood V of A

and an open symmetri
 identity neighborhood W of B su
h that f jV ):V ! W

is a homeomorphism, and for every subgroup K of B 
ontained in W there is a

subgroup S of A 
ontained in V su
h that f(S) = K.

Proof. Let U be a symmetri
 open identity neighborhood of A su
h that U

2

\

ker f = f1g. Then f(U) is an open symmetri
 identity neighborhood of B. Then

f jU :U ! f(U) is 
ontinuous, open and surje
tive; if u

1

; u � 2 2 U and f(u

1

) =

f(u

2

), then u

1

u

�1

2

2 (ker f) \ U

2

. Thus f jU is a homeomorphism. Now let V

be an open symmetri
 identity neighborhood in A su
h that V

2

� U , and set

W

def

= f(V ). Then f jV :V !W is a homeomorphism onto an open identity neigh-

borhood of B. De�ne ':W ! V to be its inverse and take w

1

; w

2

2 V su
h

that w

1

w

2

2 W . Set v

j

= '(w

j

), j = 1; 2 and v = '(w

1

w

2

). Then (f jU)(v) =

(f jV )'(w

1

w

2

) = w

1

w

2

. Further v

1

v

2

2 V

2

� U . Then (f jU)(v

1

v

2

) = f(v

1

)f(v

2

) =

(f jV )'(w

1

)(f jV )'(w

2

) = w

1

w

2

= (f jU)(v). Sin
e (f jU) is inje
tive, we 
on
lude

v = v

1

v

2

, that is, ':W ! V is a homeomoprhism su
h that

(�) (8w

1

; w

2

2W ) (w

1

w

2

2 W )) ('(w

1

w

2

) = '(w

1

)'(w

2

):

In parti
ular, if w 2 W then w

�1

2W and ww

�1

= 1 2W and thus '(w)'(w

�1

) =

'(1) = 1 and thus '(w

�1

) = '(w)

�1

. Now let K be a subgroup of B 
ontained

in W . Let g

1

; g

2

2 '(K) Then there are elements w

1

; w

2

2 K � W su
h that

g

j

= '(k

j

), j = 1; 2 and k

1

k

�1

2

2 K � W . Hen
e g

1

g

�1

2

= '(w

1

)'(w

2

)

�1

=

'(w

1

)'(w

�1

2

) = '(w

1

w

�1

2

) 2 '(K). It follows that '(K) � V is a subgroup of A.

ut

Main Lemma 4.6. (The Third Fundamental Lemma) Let G be a topologi
al

group su
h that G

0

is a �nite dimensional Lie group and assume that f :G! L is

an inje
tion into a �nite dimensional Lie group. If G=G

0

is a protodis
rete group,

then G is a �nite dimensional Lie group.

Proof. We must show that G

0

is open in G. First we make some redu
tions. Sin
e

f

�1

(L

0

) is open in G there is no loss in assuming that L = L

0

, i.e. that L is


onne
ted.

Let M = f(G

0

), then M is a 
losed normal subgroup of L and f indu
es

an inje
tive map G=f

�1

(M) ! L=M . Now G=f

�1

(M), being a quotient of the

protodis
rete group G=G

0

is protodis
rete by 4.3(b) and is, at the same time,

without small subgroups. Hen
e it is dis
rete, that is, f

�1

(M) is open. We may

therefore assume that G = f

�1

(M), i.e. that M = L. Thus we may assume that

f(G

0

) is dense in L.

Now we 
onsider the universal 
overing q:

e

L! L and form the pullba
k

P

F

����!

e

L

Q

?

?

y

?

?

y

q

G ����!

f

L:
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In terms of elements, we have p = f(g;

e

`) 2 G�

e

L : f(g) = q(

e

`)g. If p = (g;

e

`) 2 P

and F (p) = 1, then

e

` = 1, when
e f(g) = q(

e

`) = 1 and thus g = 1 as f is inje
tive.

Thus p = (1; 1) and this shows that F is inje
tive.

Next F maps kerQ isomorphi
ally onto ker q. Indeed let p = (g;

e

`) 2 kerQ.

Then 1 = Q(p) = g and then qF (p) = q(`) = f(g) = 1, that is, F (p) 2 ker q.

Conversely, if

e

`q 2 ker q, then 1 = q(

e

`) = f(1), when
e p

def

= (1; q) 2 P , and

Q(p) = 1, i.e. p 2 kerQ and F (p) = q. Now let V is an identity neighborhood of

e

L su
h that V \ ker q = f1g and assume that p = (g;

e

`) 2 kerQ\G� V ; then g =

Q(p) = 1 and 1 = f(g) = q(

e

`); thus

e

` 2 V \ ker q = f1g. Thus p = 1. Theferefore

kerQ is dis
rete in P . If (U�V )\P is an identity neighborhood then p = (u; v) 2 P

implies Q(p) = u and f(u) = q(v), when
e Q

�

(U�V )\P

�

U\f

�1

q(V ), and this is

an identity neighborhood. Thus the morphism Q is open and thus, sin
e its kernel

is open and hen
e implements a lo
al isomorphism.

Therefore G is a Lie group if and only if P is a Lie group. Thus we must show

that P is a Lie group, that is, that P

0

is open.

Now F (P

0

) is a normal analyti
 subgroup of

e

L, and normal analyti
 sub-

groups in simply 
onne
ted Lie groups are 
losed. The full inverse of f(G

0

) in

e

L is F (P

0

) ker q, and thus this group is dense, and F (P

0

) ker q=F (P

0

) is dense in

e

L=F (P

0

). Sin
e ker q is 
entral in

e

L, the group

e

L=F (P

0

) is abelian and simply


onne
ted, hen
e is isomorphi
 to a ve
tor group R

n

. Thus F indu
es an inje
tive

morphism of P=P

0

into the ve
tor group

e

L=F (P

0

) and thus has no small subgroups.

The quotient morphism

P

Q

����!G

quot

G

����!G=G

0

vanishes on P

0

and therefore fa
tors through P=P

0

:

quot

G

ÆQ = (P

quot

P

����!P=P

0

Q

�

����!G=G

0

):

We have kerQ

�

= P

1

=P

0

where P

1

= Q

�1

G

0

. The following is a diagram of abelian

topologi
al groups

Q=Q

0

�

����! R

n

?

?

y

Q

�

G=G

0

;

where � is an inje
tive morphism.

The morphism Q

0

def

= QjP

1

: P

1

! G

0

is a 
overing morphism of the Lie group

G

0

with kernel kerQ

�

=

ker q and thus is a Lie group 
ontaining the 
losed normal

subgroup P

0

= (P

1

)

0

. Then kerQ

�

= P

1

=P

0

is a totally dis
onne
ted Lie group

and is therefore dis
rete. Sin
e G=G

0

has arbitrarily small open subgroups by the

hypothesis of protodis
reteness, Lemma 4.5 applies to Q

�

and shows that P=P

0

has arbitrarily small open subgroups (that is, P=P

0

is a protodis
rete group). But

� inje
ts P=P

0

into R

n

, and thus P=P

0

has an identity neighborhood in whi
h the

singleton group fP

0

g is the only subgroup; this subgroup, therefore, is open and

thus P

0

is open whi
h is what we had to show. ut

Now we are ready for the prin
ipal result of the �rst part of the arti
le.
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Theorem 4.7. (The Pro-Lie Group Theorem) Every Lie proje
tive group is a

pro-Lie group.

Proof. By the First Fundamental Lemma 4.2, a Lie proje
tive group G has a

�lter basisM of 
losed normal subgroups M 
onverging to 1 su
h that G

0

M=M

is a 
onne
ted Lie subgroup of G=M , and that there is an inje
tive morphism of

G=M into a �nite dimensional Lie group. By the Se
ond Fundamental Lemma 4.4,

G=G

0

has a basis O of open normal subgroups 
onverging to the identity. It follows

that for ea
h M 2 M, the fa
tor group G=M has a �lter basis of open normal

subgroups U=M su
h that every open set V 
ontaining G

0

M=M 
ontains one of

the U=M , U 2 O. Thus every G=M ,M 2M, satis�es the hypotheses of the Third

Fundamental Lemma 4.6. As a 
onsequen
e of 4.6, G=M is a �nite dimensional

Lie group. Then by Proposition 2.4, it follows that G is a pro-Lie group. ut

Corollary 4.8. (The Closed Subgroup Theorem for pro-Lie Groups) A 
losed

subgroup of a pro-Lie group is a pro-Lie group.

Proof. This immediate from Corollary 2.3 and Theorem 4.6. ut

The Lie algebra L(G) of a pro-Lie group is lim

N2N (G)

L(G=N) with �nite

dimensional Lie algebras L(G=N) sin
e L preserve limits. So the additive group

of L(G) is a Lie proje
tive group. Hen
e it is a pro-Lie group by 4.6 and we may


on
lude what is also observed in [5℄:

Corollary 4.9. The underlying topologi
al ve
tor spa
e of the Lie algebra of a

pro-Lie group is a pro-Lie group in its own right and is a weakly 
omplete topolog-

i
al ve
tor spa
e. ut

5. The 
ategory of pro-Lie groups is 
omplete.

We shall hen
eforth denote by proLIEG R the full sub
ategory of the 
ategory

TOPG R of all topologi
al groups and 
ontinuous group homomorphisms between

them whose obje
ts are pro-Lie groups. After the Pro-Lie Group Theorem 4.7,

proLIEG R 
an also be des
ribed as the full sub
ategory of TOPG R of all proje
tive

limits of �nite dimensional Lie groups.

We begin with a basi
 lemma on limits in 
ategories. Re
all that a 
ategory is

said to be 
omplete if it has all limits.

Lemma 5.1. (The Limit Existen
e Theorem)

(i) If a 
ategory has arbitrary produ
ts and equalizers, then it is 
omplete.

(ii) If a 
ategory has arbitrary produ
ts and has interse
tions of retra
ts, then

it is 
omplete.

(iii) If a full sub
ategory A of a 
omplete 
ategory C is 
losed in C under the

formation of produ
ts and passing to interse
tions of retra
ts, then it is 
losed

under the formation of all limits and is therefore 
omplete.
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Proof. We refer to any sour
e on 
ategory theory or to [4℄, Appendix 3, or to [5℄

Theorem 1.10. ut

Theorem 5.2. (Completeness Theorem for pro-Lie Groups)

(i) The 
ategory proLIEG R of pro-Lie groups is 
losed in TOPG R under all

limits and is therefore 
omplete.

(ii) proLIEG R is the smallest full sub
ategory of TOPG R that 
ontains all �nite

dimensional Lie groups and is 
losed under the formation of all limits.

Proof. (i) We shall invoke Lemma 5.1(iii) and show that proLIEG R is 
losed in

TOPG R under the formation of produ
ts and the passing to 
losed subgroups;

sin
e any retra
t of a topologi
al group in TOPG R is a 
losed subgroup, this will

settle the 
laim. But by Corollary 4.9, the 
ategory of pro-Lie groups is 
losed

under the passage to 
losed subgroups so it remains to show that proLIEG R is


losed in TOPG R under the formation of arbitrary produ
ts.

So let fG

�

: � 2 Ag be a family of Lie proje
tive groups. We must show that

G

def

=

Q

�2A

G

�

is a Lie proje
tive group. Sin
e every G

�

is a proje
tive limit

of �nite dimensional Lie groups, it is a 
losed subgroup of a produ
t

Q

j2J

�

L

�

j

of �nite dimensional Lie groups. Thus G is isomorphi
 to a 
losed subgroup of

a produ
t P =

Q

�2A;j2J

�

L

�

j

of �nite dimensional Lie groups. Then P is is the

proje
tive limit of the proje
tive system of all �nite partial produ
ts and the


orresponding proje
tions. Hen
e P is Lie proje
tive and thus is a pro-Lie group

by the Pro-Lie-Group Theorem 4.7. Sin
e G a a 
losed subgroup of P it is a pro-Lie

group by 4.8. Thus (i) is proved.

(ii) Let C be any full sub
ategory of TOPG R whi
h 
ontains all �nite dimen-

sional Lie groups and is 
losed in TOPG R under the formation of all limits. Let

G be Lie proje
tive. Then G = lim

j2J

G

j

for a proje
tive system of �nite dimen-

sional Lie groups G

j

. Then all G

j

are 
ontained in C and sin
e C is 
losed under

the formation of all limits, G is in C. Thus proLIEG R � C. ut

6. The One Parameter Subgroup Lifting Theorem

Many 
ategories of topologi
al groups are stable under the passage to quotient

groups; the 
ategory of pro-Lie groups, regrettably, is not, as we see now.

Proposition 6.1. (The Quotient Theorem for Pro-Lie Groups) A quotient group

of a pro-Lie group is a proto-Lie group and thus is isomorphi
 as a topologi
al

group to a dense subgroup of a pro-Lie group. If the quotient group is 
omplete,

then it is a pro-Lie group.

Proof. (i) Let G be a pro-Lie group and K a 
losed normal subgroup. De�ne

f :G ! H

def

= G=K to be the open quotient morphism. For N 2 N (G) the set

NK is a 
losed subgroup of G 
ontaining K, and sin
e f is a quotient map and

NK is K-saturated, the set N

�

def

= f(NK) � H is 
losed and agrees with f(N).
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Then N

�

is a 
losed normal subgroup of H , and sin
e f is open, we have that

H=N

�

�

=

G=f

�1

(N

�

) = G=NK

�

=

(G=N)=(NK=N) is a �nite dimensional Lie

group as a quotient of a �nite dimensional Lie group. LetM = fN

�

j N 2 N (G)g.

ThenM is a �lter basis of 
losed normal subgroups ofH su
h that all fa
tor groups

H=M , M 2M are �nite dimensional Lie groups. Sin
e N (G) 
onverges to 1 as G

is a pro-Lie group, from the 
ontinuity of f we 
on
lude that f(N (G)) = ff(N) j

N 2 N (G)g 
onverges to 1 in H . But sin
e H is regular, i.e. the �lter of identity

neighborhoods has a basis of 
losed sets, M 
onverges to 1 in H . Thus H is a

proto-Lie group and we have a natural dense embedding morphism 


H

:H ! H

M

into the pro-Lie group H

M

def

= lim

N2N (H)

H=N . It follows by de�nition that the

group H is a pro-Lie group if an only if it is 
omplete. ut

The pro-Lie group R

R

has an in
omplete quotient group modulo a totally dis-


onne
ted and algebrai
ally free subgroup (see [6℄); hen
e 6.1 
annot be improved.

The lifting of one parameter subgroups deals with the following situation: As-

sume that f :G! H is a quotient morphism and Y 2 L(H); under whi
h 
ir
um-

stan
es is there an X 2 L(G) su
h that L(f)(X) = Y ?

Lemma 6.2. Assume that

(1)

P

'

����! R

�

?

?

y

?

?

y

Y

G ����!

f

H:

is a pullba
k of topologi
al groups. Set K

def

= ker'. Then the following 
onditions

are equivalent:

(i) K is a semidire
t fa
tor.

(ii) ' is a retra
tion.

(ii

0

) 'jP

0

:P

0

! R is a retra
tion, where P

0

is the identity 
omponent of P .

(iii) There is an X 2 L(G) su
h that L(f)(X) = Y .

(iv) There is a subgroup R of P su
h that KR = P and K \R = f1g, and further

that 'jR:R! R is open.

These 
onditions imply

(v) There is a 
losed subgroup R of P su
h that KR = P and K \ R = f1g.

Proof. (i),(ii): The equivalen
e of (i) and (ii) is a standard exer
ise in topologi
al

group theory (see e.g. [5℄, E1.5).

(ii))(ii

0

): If a morphism �:R ! P satis�es ' Æ � = id

R

, then �(R) � P

0

as R is


onne
ted, and thus its 
orestri
tion �:R ! P

0

satis�es ' Æ � = id

R

.

(ii

0

))(ii): Conversely, if �:R ! P

0

satis�es ' Æ � = id

R

, then its 
oextension

�:R ! P satis�es ' Æ � = id

R

.

(ii))(iii): If X

0

:R ! P is a one parameter subgroup satisfying ' ÆX

0

= id

R

then

X

def

= � Æ X

0

:R ! G is a one parameter subgroup of G su
h that L(f)(X) =

f ÆX = f Æ � ÆX

0

= Y Æ ' ÆX

0

= Y Æ id

R

= Y .
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(iii))(ii): Assume Y = L(f)(X) = f ÆX . Then for all r 2 R we have f

�

X(r)

�

=

Y (r). Now the expli
it form of the pullba
k is P = f(g; r) 2 G�R j f(g) = Y (r)g

and '(g; r) = r (see e.g. [5℄, Theorem 1.5). Hen
e (X(r); r) 2 P for all r 2 R and if

we set X

0

(r) = (X(r); r), then X

0

:R ! P is a morphism satisfying '

�

X

0

(r)

�

= r

for all r.

(i))(iv))(v) is trivial.

(iv))(ii): The fun
tion 'jR:R! R is 
ontinuous and open; and sin
e K\R =

f0g it is inje
tive, and sin
e KR = P it is surje
tive. Hen
e it is an isomor-

phism of topologi
al groups and thus is invertible; the 
oextension �:R ! P of

('jR)

�1

:R ! R satis�es ' Æ � = id

R

. ut

Lemma 6.3. If f in the pullba
k (1) is surje
tive, then ' is surje
tive. If f is

open, then ' is open. If f is a quotient morphism so is '.

Proof. Surje
tivity: if r 2 R then, sin
e f is surje
tive, there is a g 2 G su
h that

f(g) = Y (r).

Openness: The �lter of identity neighborhoods of P has a basis of open sets of the

form W = P \ (U � I), where U is an open identity neighborhood of G and I an

open interval around 0 in R. Then '(W ) = fr 2 I j (9g 2 U) f(g) = Y (r)g =

I \ Y

�1

�

f(U)

�

. Sin
e f is an open map, f(U) is an open subset of H and thus by

the 
ontinuity of Y , the set '(W ) is open.

Quotients: This assertion follows from the 
ombination of the pre
eding two. ut

Lemma 6.4. In the pullba
k (1), assume that the morphism f is a quotient mor-

phism and that G is a pro-Lie group. Then P is a pro-Lie group.

Proof. By Proposition 6.1, H is a proto-Lie group. Let 


H

:H ! H

N (H)

be the

natural 
ompletion morphism. Then we obtain a diagram

(1

0

)

P

'

����! R

�

?

?

y

?

?

y




H

ÆY

G ����!




H

Æf

H

N (H)

:

We 
laim that (1

0

) is a pullba
k in TOPG R: Thus we let T be a topologi
al group

and let �

G

:T ! G as well as �

R

:T ! R be morphisms of topologi
al groups su
h

that 


H

Æ f Æ �

G

= 


H

Æ Y Æ �

R

. Sin
e 


H

is inje
tive, f Æ �

H

= Y Æ �

R

. Sin
e (1)

is a pullba
k in TOPG R, there is a unique �:T ! P su
h that �

G

= � Æ � and

�

R

= ' Æ �. This shows that (1

0

) is a pullba
k as well.

The group R is a Lie group, hen
e trivially a pro-Lie group. Thus R; G;H

N (H)

are pro-Lie groups. By 5.2(i), the 
ategory proLIEG R is 
losed under the formation

of pullba
ks. We apply this to (1

0

) and 
on
lude that P is a pro-Lie group. ut

We now are ready for a proof of the lifting of one parameter subgroups. This is

not easy be
ause in the absen
e of 
ountability assumptions, this requires the Ax-

iom of Choi
e, and the absen
e of 
ompa
tness in the present situation for
es us to
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rely on 
ompleteness and the 
onvergen
e of Cau
hy �lters. The proof will require

from the reader a 
ertain fa
ility handling \multivalued morphisms" as a spe
ial

type of binary relations; but most of what is required will be self-explanatory in

the proof.

Lemma 6.5. (The One Parameter Subgroup Lifting Lemma) Let f :G ! H be

a quotient morphism of topologi
al groups and assume that G is a pro-Lie group.

Then every one parameter subgroup Y :R ! H lifts to one of G, that is, there is a

one parameter subgroup � of G su
h that Y = f Æ �.

Proof. We for the pullba
k

(1)

P

'

����! R

�

?

?

y

?

?

y

Y

G ����!

f

H

in the 
ategory of topologi
al groups. Sin
e f is assumed to be a quotient mor-

phism, by Lemma 3, the morphism ' is a quotient morphism, and by Lemma 6.4,

the pullba
k group P is a pro-Lie group. If we 
an show that ' is a homorphi


retra
tion, then by Lemma 6.2 we have an X 2 L(G) su
h that L(f)(X) = Y . This

redu
es our task to shoing that ' is a homomorphi
 retra
tion. Thus, in order to

simplify notation we may assume that H = R and that we have to show that f is

a retra
tion.

Let K = ker f . Sin
e fN

�

= f(N) j N 2 N (G)g 
onverges to 1 in R, and sin
e

there are no subgroups in ℄ � 1; 1[ other than f0g there is an N 2 N (G) su
h

that f(N) = N

�

= f0g, and thus N � K. Then for all N 2 N (G), N � N , the

morphism f indu
es a quotient morphism f

N

:G=N ! R, f

N

(gN) = f(g), and

f

N

(gN) = 0 i� f(g) = 0 i� g 2 K, that is, ker f

N

= K=N . If we let p

N

:K ! K=N

and q

N

:G ! G=N denote the quotient morphisms, then we have a 
ommutative

diagram

(2)

1 ! N

id

N

��! N

in
l

?

?

y

?

?

y

in
l

1 ! K

in
l

��! G

f

��! R ! 0

p

N

?

?

y

?

?

y

q

N

?

?

y

id

R

1 ! K=N

in
l

��! G=N

f

N

��! R ! 0

with exa
t rows and 
olumns. Due to the fa
t that the exponential map of a Lie

group is a lo
al homeomorphism at 0, an open morphism  :L

1

! L

2

between Lie

groups indu
es an open morphism L( ) between their Lie algebras:

L(L

1

)

L( )

��! L(L

2

)

exp

L

1

?

?

y

?

?

y

exp

L

2

L

1

��!

 

L

2

:
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An open morphism between topologi
al real ve
tor spa
es is automati
ally surje
-

tive, and thus L( ) is surje
tive. Hen
e there is a morphism �:R ! G=N su
h

that f

N

Æ � = id

R

. The binary relation �

def

= q

�1

N

Æ �:R ! G satis�es the following


onditions

(i) �(0) = N and every �(r) � G is a 
oset mod N.

(ii) The graph of � is a 
losed subgroup of R �G.

(iii) We have a 
ommutative diagram of binary relations of whi
h all but � are

fun
tions:

(3)

R

id

R

��! R

�

?

?

y

?

?

y

id

R

G

f

��! R

q

N

?

?

y

?

?

y

id

R

G=N ��!

f

N

R:

A binary relation �:R ! G satisfying (i), (ii) and (iii) will be 
alled a multivalued

morphism asso
iated with N . The set S of all multivalued morphisms �:R ! G

asso
iated with some N 2 N (G) is partially ordered under 
ontainment �. By

Zorn's Lemma we �nd a maximal �lter F � S. It is our goal to show thatM

def

=

f�(0) j � 2 Fg is 
o�nal in N (G). Assuming that this is proved, we note that for

ea
h r 2 R and � 2 F the subset �(r) is a 
osetNx = xN with N = �(0) 2 N (G),

and thus �(r)�(r)

�1

= Nx(Nx)

�1

= N ; sin
eM 
onverges to 1, we 
on
lude that

f�(r) j � 2 Fg is a Cau
hy �lter basis. Sin
e G is 
omplete, it 
onverges to an

element �(r) 2 G, giving us a fun
tion �:R ! G. As ea
h �(r), being a 
oset mod

N = �(0) 2M, is 
losed, we have � 2 �(r) for all � 2 F . Consequently, sin
e (3)

is 
ommutative for ea
h � 2 F for N = �(0) we have the following 
ommutative

diagram for all N 2 M:

(4)

R

id

R

��! R

�

?

?

y

?

?

y

id

R

G

f

��! R

q

N

?

?

y

?

?

y

id

R

G=N ��!

f

N

R:

The upper re
tangle shows that f Æ� = id

R

, and the fa
t that ea
h q

N

Æ�:R ! G

is a morphism of topologi
al groups shows that q

N

Æ �:R ! G=N is 
ontinuous.

Theorem 2.1(i) shows that G has arbitrarily small open identity neighborhoods

U satisfying UN = U for some N 2 M. Then if V is a zero neighborhood of R

su
h that q

N

�

�(V )

�

� U=N , then �(V ) 2 q

�1

N

(U=N) = U . This shows that � is


ontinuous. Hen
e � is the required 
oretra
tion for f .

Thus the remainder of the proof will show thatM is 
o�nal in N (G). Suppose

that this is not the 
ase. Then there exists an N 2 N (G), N � N su
h that

M 6� N for all M 2 M � N (G). Hen
e for all � 2 F we have q

N

(�) \ q

N

(K) =

MN=N for M = �(0). Let us temporarily �x M ; then M \N 2 N (G), and thus
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G

y

def

= G=(M \N) is a Lie group:

G

MN

�

�

� �

�

�

M N

�

�

� �

�

�

M \N

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

G

y

:

This shows that for �xed M everything takes pla
e in the Lie group G

y

in whi
h

M

y

def

= M=(M \N) and N

y

def

= N=(M \N) are 
losed normal Lie subgroups with

M

y

\N

y

= f1g. Thus �:M

y

! G=N , �

�

m(M \N)

�

= mN is a morphism of Lie

groups mapping M

y

bije
tively onto MN=N and indu
ing an isomorphism of Lie

algebras L(M

y

) ! L(MN=N) � L(G=N). Now M

y

is a 
losed normal subgroup

of the Lie group G

y

and thus M

y

=M

y

0

is a dis
rete normal subgroup of the Lie

group G

y

=M

y

0

. We let M

z

be the open subgroup of M

y


ontaining (M

y

)

0

and

being su
h that M

z

=M

y

0

= (M

y

=M

y

0

) \ (G

y

)

0

=M

y

0

. Hen
e M

z

=M

y

0

is a dis
rete

normal subgroup of a 
onne
ted Lie group. Hen
e it is �nitely generated and thus


ountable. Thus M

z

has 
ountably many 
omponents and therefore �(M

y

0

) is an

analyti
 subgroup M

an

� G=N agreeing with (MN=N)

0

and having Lie algebra

L(M

an

) = L(MN=N) = L

�

(MN=N)

0

�

. (See [4℄, p. 155, 156, 157.) A

ordingly,

fL(MN=N) jM 2Mg

is a �lter basis of �nite dimensional ve
tor subspa
es of L(G=N). Hen
e there

is a smallest element m = L(M

#

N=N) in it su
h that for all M � M

#

in M

we have L(MN=N) = m. Let us abbreviate q

(M

#

\N)

:G ! G=(M

#

\ N) by

q

#

:G ! G

#

, further f

(M

#

\N)

:G

#

! R by f

#

, and M

#

=(M

#

\ N) by M

#

.

Sin
e L(�):L(M

#

)! L(M

#

N=N) = m is an isomorphism we have

(5) q

#

��

M

M

#

\N

�

0

�

= q

#

(M

#

0

) for M �M

#

inM:

There is a � 2 F su
h thatM

#

= �

#

(0). Then for all � 2 F 
ontained in �

#

, the

subgroup q

#

(�) of the Lie group G

#

is 
ontained in q

#

(�

#

), satis�es q

#

(�(0)) =

M

#

0

and (f

#

Æq

#

Æ�)(R) = R. Thus for all r 2 R we have q

#

�

�

#

(r)

�

= q

#

�

�(r)

�

sin
e the right side is 
ontained in the left and both are 
osets mod M

#

. In the
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Lie group G

#

we have the 
on�guration

G

M

#

N

�

�

� �

�

�

M

#

N

�

�

� �

�

�

M

#

\N

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

G

#

;

and thus obtain q

#

(�) = q

#

(�

#

) for all � � �

#

in F . The de�nition of �

#

as

q

�1

M

#

Æ �

#

applies and gives a 
ommutative diagram of binary relations

(3

#

)

R

id

R

��! R

�

#

?

?

y

?

?

y

id

R

G

f

��! R

q

M

#

?

?

y

?

?

y

id

R

G=M

#

��!

f

M

#

R

with �

#

= q

M

#
Æ �

#

. We 
on
lude that S

def

= q

#

�

�

#

(R)

�

= �

#

(R)=(M

#

\ N)

is a 
losed subgroup of G

#

whose Lie algebra L(S) 
annot be 
ontained in K

#

=

K=(M

#

\ N) = kerf

#

. From dimG

#

=K

#

= 1 we 
on
lude L(G

#

) = L(K

#

) +

L(S) and L(S) = L(S)\L(K

#

)+R�X for a suitable element X 2 L(G

#

) satisfying

f

#

(exp

G#

X) = 1. Setting � :R ! S, �(r) = exp

G

#

r�X we obtain a 
oretra
tion

for f

#

:G

#

! R. The binary relation �

def

= (q

#

)

�1

Æ � :R ! G is a member of S.

Moreover, for all � 2 F we have q

#

(�)(r) � �(r) for all r 2 R. Hen
e � \ � is a

member of S. But now the maximality of F shows that �

#

2 F . But this implies

that M

#

\N = �(0) 2M and that is a 
ontradi
tion to our supposition allowing

us a 
hoi
e of an N su
h that M \ N 6= M for all M 2 M. This 
ontradi
tion

�nally 
ompletes the proof. ut

There are some subtleties here whi
h we should point out. In [4℄, p. 157 we

have seen the additive group h of a Bana
h spa
e mapped surje
tively onto an

abelian Lie group G (whi
h itself is quotient of a Bana
h spa
e modulo a dis
rete

subgroup) su
h that G has a one parameter subgroup whi
h does not lift to h. This


annot happen if the domain is separable, but it does happen in the 
ategory of not

ne
essarily �nite dimensional Lie groups. While being surje
tive, the morphism in

question is not open and the Open Mapping Theorem fails.

We have seen that the fun
tor L preserves all limits and thus, in parti
ular,

all kernels (sin
e ker f for a morphism f of topologi
al groups is nothing but the

equalizer of f and the 
onstant morphism). We shall say that a fun
tor F:A ! B

between 
ategories of topologi
al groups is stri
tly exa
t if it preserves kernels and
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quotients. As a 
orollary of the One Parameter Subgroup Lifting Lemma we obtain

the following Theorem

Theorem 6.6. (The Stri
t Exa
tness Theorem for L) The fun
tor L: proLIEG R !

proLIEA LG is stri
tly exa
t.

Proof. We observed that L preserves kernels be
ause kernels are limits. We have

to show that L preserves quotients.

Let f :G! H be a quotient morphism between pro-Lie groups. The morphism

L(f):L(G) ! L(H) is surje
tive by the One Parameter Subgroup Lifting Lemma

6.5. Now any surje
tive morphism of topologi
al ve
tor spa
es between weakly


omplete ve
tor spa
es splits (see e.g. [4℄, p. 326, Theorem 7.30(iv)) and thus is in

parti
ular a quotient morphism. Sin
e the underlying topologi
al ve
tor spa
es of

L(G) and L(H) are weakly 
omplete by 4.10, this applies to the morphism L(f)

and shows that it is a quotient morphism. ut

Corollary 6.7. (i) If N is a 
losed normal subgroup of a pro-Lie group G, then the

quotient morphism q:G ! G=N indu
es a map L(q):L(G) ! L(G=N) whi
h is a

quotient morphism with kernel L(N). A

ordingly there is a natural isomorphism

X + L(N) 7! L(f)(X) : L(G)=L(N)! L(G=N).

(ii) Let G be a pro-Lie group. Then fL(N) j N 2 N (G)g 
onverges to zero and

is 
o�nal in the �lter I(L)(G) of all ideals i su
h that L(G)=i is �nite dimensional.

Furthermore, L(G) is the proje
tive limit lim

N2N (G)

L(G)=L(N) of a proje
tive

system of bonding morphisms and limit maps all of whi
h are quotient morphisms,

and there is a 
ommutative diagram

L(G)

L(


G

)

���!
L(G

N (G)

) = L(lim

N2N (G)

G

N

)

�

=

lim

n2N (G)

L(G)

L(N)

exp

G

?

?

y

?

?

y

L(lim

N2N(G)

exp

G=N

)

G ��!




G

G

N (G)

= lim

N2N (G)

G=N:

Proof. (i) is an immediate 
onsequen
e of the Stri
t Exa
tness Theorem 6.6.

(ii) We know that L presevers limits. Thus

L(


G

):L(G)! L(G

N (G)

)

is an isomorphism. By (i) above, L(G=N)

�

=

L(G)=L(N) and thus

L(G)

�

=

lim

N2N (G)

L(G)=L(N):

Thus by 2.1(ii), the �lter basis fL(N) j N 2 N (G)g of the kernels of the limit

maps 
onverges to 0 and the proje
tive system of the L(G)=L(N) has the natural

quotient morphisms as bonding maps; by 2.1(ii) it follows that the limit maps

are quotient morphsms as well. It then follows that this �lter basis is 
o�nal in

N (L)(G). (Compare [5℄, 1.40.) ut
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For a topologi
al group G let E(G) denote the subgroup hexp

G

Gi generated

by the (images of the) one parameter subgroups and set E(G) = E(G).

Corollary 6.8. (i) For a pro-Lie group G, the subgroup E(G) is dense in G

0

, i.e.

E(G) = G

0

. In parti
ular, a 
onne
ted nonsingleton pro-Lie group has nontrivial

one parameter subgroups.

(ii) For a pro-Lie group G the following statements are equivalent:

(a) G is totally dis
onne
ted.

(b) L(G) = f0g.

(iii) If a morphism f :G ! H of pro-Lie groups is a quotient morphism then

the indu
ed morphism E(f): E (G) ! E(H) is surje
tive, that is E(H) = f

�

E(G)

�

.

As a 
onsequen
e H

0

= f(G

0

).

(iv) Let G be a pro-Lie group and assume that for all N from a basis of N (G)

the quotient G=N is 
onne
ted. Then G is 
onne
ted.

Proof. (i) First we show that nonsingleton 
onne
ted pro-Lie groups have nontriv-

ial one parameter subgroups, Let G be a nonsingleton 
onne
ted pro-Lie group.

There is a g 2 G, g 6= 1. Sin
e limN (G) = 1 there is an N 2 N (G) su
h that

g =2 N . Then G=N is a nonsingleton 
onne
ted Lie group. Thus L(G=N) 6= f0g.

Then L(G) 6= f0g by 6.7(i).

Next we let G be an arbitrary pro-Lie group. The 
losed subgroup E(G) =

hexp

G

L(G)i is fully 
hara
teristi
, hen
e normal. By the One Parameter Subgroup

Lifting Lemma 6.5, every one parameter subgroup of G=E(G) lifts to one in G

whi
h is 
ontained in E(G) by the de�nition of E(G). Hen
e L

�

G=E(G)

�

= f0g.

Thus G=E(G) is totally dis
onne
ted by what we just proved, and thus G

0

�

E(G) � G

0

.

(ii) (a))(b): If G

0

= f1g then E(G) = f1g and thus L(G) = f0g. (b))(a):

Assume L(G) = f0g, then G

0

= f1g by (i).

(iii) By 6.6, L(H) = L(f)

�

L(G)

�

, and thus exp

H

L(H) = exp

H

L(f)

�

L(G)

�

=

f

�

exp

G

L(G)

�

, and 
onsequently E(H) = hexp

H

L(H)i =




f

�

exp

G

L(G)

��

=

fhexp

G

L(G)i = f

�

E(G)

�

.

ThusH

0

= E(H) = f

�

E(G)

�

� f(G

0

) � H

0

= H

0

, and this shows f(G

0

) = H

0

.

(iv) Let q

N

:G! G=N denote the quotient morphism. By (iii) we have G=N =

E(G=N) = q

N

�

E(G)

�

. Thus G = E(G)N for all N 2 N (()G) and thus G

0

=

E(G) = E(G) = G. ut

The relation H

0

= f(G

0

) for a quotient morphism f 
annot be improved as

the example of the following quotient morphism of lo
ally 
ompa
t abelian groups

shows: Let G = R �Z

p

for the group of p-adi
 integers Z

p

, let H = G=f(n;�n) j

n 2 Zg

�

=

S

p

and let f be the 
orresponding quotient morphism. Note that H

is 
ompa
t and 
onne
ted. (Cf. [4℄, p. 19, Exer
ise E1.11. We 
onsider Z as a

subgroup of S

p

as well.) Then G

0

= R � f0g, and f(G

0

) = H

a

6= H = H

0

.

Corollary 6.9. An open morphism f :G! H of pro-Lie groups indu
es a quotient

(hen
e surje
tive) morphism L(f):L(G) ! L(H).
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Proof. Let f :G ! H be an open morphism of topologi
al groups. Then f(G)

is an open hen
e 
losed subgroup of H and thus a pro-Lie group by Corollary

4.8. The open and surje
tive 
orestri
tion G ! f(G) (indu
ing an isomorphism

of topologi
al groups G= kerf ! f(G)) is a quotiemn morphism between pro-

Lie groups and thus indu
es a quotient morphism L(f):L(G) ! L

�

f(G)

�

by the

Stri
t Exa
tness Theorem 6.6. Sin
e f(G) is open inH , then in
lusion j: f(G)! H

indu
es an isomorphism L(j):L

�

f(G)

�

! L(H) of topologi
al Lie algebras. Thus

L(f):L(G) ! L(H) is a quotient morphism. ut

This Corollary remains inta
t if G and H are merely topologi
al groups that

have open subgroups being pro-Lie groups. This applies, for instan
e, to all lo
ally


ompa
t groups G and H .
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