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Abstract. For a topological group G we define N'(G) to be the set of all normal subgroups
N of G such that G/N is a finite dimensional Lie group. Then G is said to be a pro-Lie
group if, firstly, G is complete, secondly, N'(G) is a filter basis, and thirdly, every identity
neighborhood of G contains some N € N(G). It is easy to see that every pro-Lie group
G is a projective limit HmNeN(G) G/N. The converse emerges as a difficult question,
but it is shown here that any projective limit of finite dimensional Lie groups is a pro-
Lie group. It is also shown that a closed subgroup H of a pro-Lie group G is a pro-Lie
group, and that for any closed normal subgroup N of a pro-Lie group G, for any one
parameter subgroup Y:R — G/N there is a one parameter subgroup X:R — G such that
X(t)N =Y (t) for t € R. It is proved that the category of all pro-Lie groups and continuous
group homomorphisms between them is closed under the formation of all limits, and that
the Lie algebra functor preserves limits and quotients.

1. Introduction

In the theory of compact and locally compact groups it has been customary to

study and use “projective limits of Lie groups.” By this one means usually that a

topological group G is a projective limit of Lie groups if it has arbitrarily small

compact normal subgroups N such that G/N is a finite dimensional Lie group.

Such a group is necessarily locally compact; conversely if G is a locally compact

group and U is a compact identity neighborhood, then any closed normal subgroup

contained in U is trivially compact. At the root of this intuition of “projective limits
of Lie groups” is,

— firstly, the theory of compact groups reaching back to the twenties of the last
century (for a recent presentation see [4]),

— secondly, Iwasawa’s fundamental paper of 1949 [7] giving decisive structural
information on locally compact groups being projective limits of Lie groups
in this sense, and,

— thirdly, Yamabe’s article [10] in which he showed that every locally compact
group G for which the factor group G/G¢ modulo the identity component is
compact, is indeed a projective limit of Lie groups in this sense.

Groups for which G/Gy is compact are called almost connected. All of this was

made popular within the horizon of the theory of topological groups through the

enormously influential book by Montgomery and Zippin [8].

We say that a topological group G is a projective limit of Lie groups, or, equiv-
alently, is Lie projective if there is a projective system

{fjka _>Gj |]§k7 (]7k) €Jx J}
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for a directed index set J and for finite dimensional Lie groups G; and if

G=lmG; = {(9))jes € [1 G+ (Vi <k)gj = Firlon)}
jeJ

is the projective limit of this system.

We say that G is a pro-Lie group if G is a complete topological group and
every identity neighborhood contains a normal subgroup N such that G/N is a
finite dimensional Lie group, and that the intersection of every two such normal
subgroups contains a third of the same type. Every pro-Lie group is a Lie projective
group: Indeed let NV (G) denote the filter basis of all N such that G/N is a finite
dimensional Lie group. Then the natural quotient maps G/N — G /M for M O N
in NV(G) form a projective system such that G = limyepr(q) G/N. The converse,
namely, that a Lie projective group is a pro-Lie group, is far from obvious, as one
experiences as soon as one attempts a proof. But in this article, our first order of
business is to prove that the two concepts are indeed equivalent.

Both of these concepts are vastly more general than the concept described in
the beginning of the introduction. This is illustrated by any infinite power RX or,
for that matter, by any infinite product of a family of noncompact finite dimen-
sional Lie groups which are pro-Lie groups but are not locally compact. We shall
observe here (and give more details in a monograph under preparation [5]) that
pro-Lie groups have an excellent Lie Theory in the sense that each pro-Lie group
G has a generally infinite dimensional Lie algebra £(G) with an exponential func-
tion exp: £(G) — G whose image generates a dense subgroup of Gy; we illustrated
the usefulness of this sort of Lie theory in our monograph on compact groups [4].
The additive group of £(G) is itself a pro-Lie group. The category of all pro-Lie
groups will be recognized as being complete and as being the smallest full subcat-
egory of the category of all topological groups and continuous group morphisms
(being closed under passing to isomorphic objects) such that it contains all finite
dimensional Lie groups. It is relatively simple to prove that the category of Lie
projective groups is complete; it seems prohibitively difficult to show directly that
the category of pro-Lie groups is complete. Thus the category of Lie projective
groups has good functorial properties while the category of pro-Lie groups has
good structural properties, and it is therefore a great advantage to know that the
two categories are indeed one and the same category. It is not easy at all to prove
that a closed subgroup H of a pro-Lie group G is again a pro-Lie group, but we
show this to be the case here; the stumbling blocks are firstly, that the continuous
algebraic isomorphism H/(HNN) — HN/N is not an isomorphism of topological
groups in general and, secondly, that an easy criterion is not available that says
when a subgroup of a Lie group is an analytic group in the absence of closedness.
If G is a pro-Lie group and N is a closed normal subgroup then G/N has arbitrar-
ily small subgroups modulo which this quotient is a finite dimensional Lie group,
but, unfortunately, in general it fails to be complete as we show elsewhere ([6]
and [5]). Nevertheless we show here that this does not impair the Lie theory of
pro-Lie groups in the following sense: If GG is a pro-Lie group then the morphism
¢: G — G/N induces a surjective morphism of Lie algebras.



Projective Limits of Finite Dimensional Lie Groups 3

The bottom line: The category of pro-Lie groups is suitable in all respects in
which any category of locally compact groups is defective:
e it is closed under all limits and contains all finite dimensional Lie groups;
e it has an excellent—albeit in general infinite dimensional—Lie theory;
e it is closed under passing to the additive groups of the Lie algebras.
And, in addition it still has the following property:
e it includes all almost connected locally compact groups and thus is the true
background theory for any Lie theory of locally compact groups.

The classical example of a semidirect product (Z /2Z)%x ,Z with the shift action of
Z on the product is a locally compact group which is not a pro-Lie group; certain
p-adic Lie groups such as SL(2,Q,) likewise are not pro-Lie groups in our sense.

The second major result in this article concerns the Lie algebra functor £ from
the category of pro-Lie groups into the category of topological Lie algebras. It is
not obvious whether or not a connected nondegenerate pro-Lie group G has non-
degenerate one-parameter subgroups R — G at all, that is, whether its Lie algebra
£(G) is nonzero. However, we shall show in this paper that for any quotient mor-
phism f:G — H between pro-Lie groups, the induced morphism of topological
Lie algebras £(f): £(G) — £(H) is surjective, and since G has many nondegen-
erate quotients G/N which are finite dimensional Lie groups, this will answer the
question in the affirmative.

It is a consequence of fairly general category theoretical considerations that £
preserves all limits and thus, notably, preserves kernels. The proof of the surjec-
tivity of £(f) for all quotient maps reduces comparatively quickly to the proof
that £(f) is surjective whenever f is a quotient morphism G — R. Thus we have
to show that every quotient morphism G — R splits. The proof of this fact is
surprisingly complex, and, not surprisingly, it uses the Axiom of Choice.

For a recent thorough study of very general Lie algebra functors we refer to a
forthcoming article by H. Gléckner [2] who discusses and strongly uses projective
limits of finite dimensional Lie groups.

2. Projective limits

For a proof of the first background theorem on projective limits, see [1], [2], [3], or
[5] 1.27 and 1.33.

Theorem 2.1. (Fundamental Theorem on Projective Limits) Let G = lim;jey G
be a projective limit of a projective system

P={fix:Gr = G | (j,k) € J x J, j <k}

of topological groups with limit morphisms f;: G — G, and let U; denote the filter
of identity neighborhoods of G, U the filter of identity neighborhoods of G, and N
the set {ker f; | j € J}. Then
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(i) U has a basis of identity neighborhoods {f7*(U) | k € J, U € Uy}.
(ii) N is a filter basis of closed normal subgroups converging to 1.
IfM DN inN and if vyn:G/N — G/M is defined by viyn (gN) = gM, then

{vin:GIN = G/M | (M,N) € N x N, M D N}

is a projective system of topological groups, and there is a unique isomorphism
n:limyen G/N — G such that the following diagram commutes with j <k, M =
ker f;, N = ker fi,, and with the morphisms f;: G/ ker f; — G induced by the limit
map fi:G — Gj:

14

G/IM ™ G/N +— limpen() G/P

f}l lfé ln
Ir

G; %f Gy, +—— G.
ik

The limit maps vy are quotient morphisms.

(iii) Assume that all bonding maps fji: G; — Gy are quotient morphisms and that
all limit maps f; are surjective. Then the limit maps f;: G — G are quotient
morphisms.

(iv) Set Hj = f;(G) for each j € J and let fj;: Hy, — Hj be the morphisms defined
by fix for j < k. Then

{fix: He = Hj | (4, k) € ] x J, j < k}

is a projective system of topological groups and G = limjcy H;. The limit
maps f;:G — Hj are corestrictions of the f; and they have dense images.
(v) Assume that all G; are complete, then so is G.
(vi) Let G be a complete topological group and N a filter basis of closed normal
subgroups converging to the identity. Then v6:G — Gnr, 7(9) = (9N )Nen(@)
is an isomorphism. That is, G = limyen G/N. O

Our next theorem implies, in particular, that a closed subgroup of a projective
limit of finite dimensional Lie groups is a projective limit of finite dimensional Lie
groups in a natural way. We remind the reader of the following terminology: A
filter basis F in a topological group G is called a Cauchy filter basis if for each
identity neighborhood U of G there is a member F' € F such that FF~! C U.
(See. e.g. [5], Theorem 1.30 and the paragraph preceding it.)

Theorem 2.2. (The Closed Subgroup Theorem for Projective Limits) Assume
that N is a filter basis of closed normal subgroups of the complete topological group
G and assume that lim N = 1 and that all quotient groups G/N are complete for
N € N. Let H be a closed subgroup of G. For N € N set Hy = HN. Then the
following conclusions hold

(i) The isomorphism vg:G — limyey G/N maps H isomorphically onto
limNeN HN/N

(i) Under the present hypotheses,

H = lim H/(HDN) =~ lim HN/N% lim HN/N.
NeN NeN NeN
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(i) The limit maps pp:limyey HN/N — HM /M, M € N, are quotient
morphisms.

(iv) The standard morphisms H/(H N N) — HN/N are isomorphisms of
topological groups.

Proof. (i) We note

(a) HN/N:HN/NQG/N,

and thus Hy /N, as a closed subgroup of a complete group is a complete group.
Let U be the filter of identity neighborhoods of G; for U € U find V € U such that
VV C U. Since lim A = 1 by hypothesis, there is an N € A such that N C V.
For any subset A of a topological group, the closure A is the intersection of the
sets AW where W ranges through all identity neighborhoods. Thus Hy = HN C
HNV C HVV C HU whence

(b) (1 Hv= (| ENC (| HU=H =H.
NeN NeN veld

For M D N, the bonding map vyn:G/N — G/M induces a bonding map
umn:Hy /N — Hpr /M by restriction and corestriction, and

(c) Py € vy 1 G/N = G/M | (M,N) e N x N,M D N},
(d) On & i : Hy/N = Hy /M | (M,N) € N x N, M D N}

are projective systems in which the bonding maps have dense image. (In the former
system they are of course quotient morphisms. The projective limits are written
limyen G/N and limyepn Hy /N, respectively. There is a unique morphism

e: im Hy/N = lim G/N, e((gnN)nen) = (gvN)nen

such that the following diagram commutes:

Hy /M &2 Hyx/N < - limyen Hy/N
(e) inclys J{ J{inclN J{E
o GIM &Y G/N + oo limyen G/N.

Since G is complete, by Theorem 2.1, there is an isomorphism
: li N
vo: G — dim G/N,
and there is a a morphism dy: H — limyen Hy /N defined by dg(h) = (AN )yen
such that the following diagram commutes:

H 2 limyey Hy/N

(N incll ls

G —— limyen G/N.
G
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We claim that g is an isomorphism. For this purpose we define a function
o:limyey Hy/N — H of which we shall show that it is a morphism of topo-
logical groups and inverts .

Let (gvN)nen € limyen Hy /N, that is, gy € Hy and M D N implies gy €

gy M, equivalently, g5 € gy M. Then F def {gnN : N € N} is a Cauchy filter
basis in G, and F does not depend on the particular choice of the representatives
gn of the cosets gy IV, but only on the cosets. Since G is complete by hypothesis,
g = lim F exists. Note that g is also the limit of the net (gn)nen, irrespective
of the choice of the representatives gn. We claim that ¢ € Hy for all N € N.
Fix N € N and consider N D P in N. Then gpP C gyvN C Hy, for all of
these P and thus g € Hy = Hy for all N € N; this proves the claim. Therefore
9 € Nyen Hy = H by (b). We thus define a function o:limyey Hy/N — H by
setting

(9) o((gnN)newx) =lim{gyN : N € N'}.
From this definition it follows that

o((gnN)nen (gnN)nven) = o((gngnN)nen) =lim gy gy =
lim gy lim gy = o ((gnN)vewn)o ((gnN)new)-

Thus o is a morphism of groups. Next we show that ¢ is continuous at the iden-
tity. Let V' € U; pick a U € U such that UU C V; by Theorem 2.1(i) we may
assume that U = UN = NU for some N € N. Now we define Uy C Hpy /M
by Uy = Hyp /M for M # N and by Uy = U/N and set U = (ITaren Unr) 0
limpyren Hpyr /M. Now let g = (g M) pren € U. Then gnN € Uy = U/N. Hence
for N D P we have gp € gvN C U. Thus o(g) = limyen gy € U CUU C V.
This concludes the proof of the claim that o:limyey Hy /N — H is a morphism of
topological groups. For h € H we have o(6g(h)) = o((hN)nen) = limyen h =
h. Now let g = (gNN)NENa then (SH(O'(g)) = (SH(liHlNENgN) = (hN)NEN
with h = limyen gy. If now N € N then N D P implies gp € gyN whence
h = limpen gp € gy N, and thus hN = gyN for all N € N. We conclude
6 (0(g)) = g Therefore o and dy are inverses of each other. We have shown that
H = limyeny Hy /N where Hy /N is a closed subgroup of G/N for each N from
the filter basis V.

(ii) The filter basis {H NN : N € N'} in H converges to 1. We know that
Yu:H — limyey H/(H N N), ya(h) = (M(H N N))NGN is an isomorphism by
Theorem 2.1. The bijective morphisms of topological groups H/(HNN) — HN/N,
N € N, induce a bijective morphism j in the following sequence of morphisms

H—" lim H/(HNN)—— lim HN/N—2% lim Hy/N—2—H

NeN NeN NeN
whose composition is the identity, i.e. ooincl ojoyy = id, so that inclo(joyyoo) =
id. Hence the inclusion morphism incl is an isomorphism.

(iii) We must show that the limit morphisms par: limyey HN/N — HM /M
are quotient morphisms. Indeed, let U be an identity neighborhood of the limit;
since lim N = 1 by hypothesis, we may assume that there is an N C M such
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that Ukeruny = U. Then pun(U) is an identity neighborhood of HN/N. Since
umn:HN/N — HM/M is a quotient morphism and ppr = pasn oy we conclude
that ppr(U) is open which establishes the claim.

(iv) We must show that

n(h(HNN)) = hN,n: H/(H N N) = HN/N, n(h(H N N)) = hN,

is an isomorphism. In the proof of (ii) we saw that § = joyy: H — limyeny HN/N
is an isomorphism of topological groups. By that which we just saw, for each
M € N, the morphism pps o joyy:H — HM/M is a quotient morphism. Its
kernel, however, is H N M. Hence in the canonical decomposition

H HMOINY MM
quotl idagn/m

H/(HnN M) — G/M,

the morphism 7 is an isomorphism. d
Corollary 2.3. Every closed subgroup H of a pro-Lie group G is Lie projective.

Proof. We continue the notation of Theorem 2.2. As a closed subgroup of the
finite dimensional Lie group G/N, the group HN/N is a finite dimensional Lie
group. By 2.2(ii) we have H = lim ¢ () HN/N, and thus H is a projective limit
of finite dimensional Lie groups. a

A topological group G is said to be a proto-Lie group if the the set N (G) of
all closed normal subgroups N of G such that G/N is a finite dimensional Lie
group, is a filter basis converging to 1. Note that it is a pro-Lie group if it is, in
addition, complete. A proto-Lie group is densely embedded into a pro-Lie group
via 76: G = limyea(a) G/N, va(g9) = (9N)nen(a)- For easy reference we quote
the following characterisation of of pro-Lie groups from [5]:

Proposition 2.4. For a topological group G, the following two conditions are
equivalent:
(i) G is a proto-Lie group.
(ii) There is a filter basis M of closed normal subgroups converging to 1 such that
G/M is a finite-dimensional Lie group for each M € M.
If these conditions hold, then M is cofinal in N'(G). Moreover, if G is complete,
then these conditions are equivalent to
(iii) G is a pro-Lie group.
If (iii) holds then G =2 limprepm G/M.

Proof. Since (i)=-(ii) is trivial by the definition of a proto-Lie group, we prove
(i))=(i). Clearly, M C N(G). We claim that

(*) (VN € N(G))(3M € M) N D M.
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Firstly, condition (8) implies that N (G) is closed under finite intersections and
hence is a filter basis: Let Ny, No» € N(G), then by (x) there are subgroups
My, My € M with N; D M; for j = 1,2. Since M is a filter basis, there is
an M € M such that M; N M, O M. Hence Ny NNy O M. Therefore G/(N; N N2)
is a quotient group of the finite dimensional Lie group G/M and is therefore itself a
finite dimensional Lie group. Hence N1 N Ny € N(G). Secondly, since M C N (G),
and since M converges to 1, the filter basis N'(G) converges to 1 as well. And fi-
nally, by (%), M is cofinal in N'(G), whence G = limpyepm G/M = limyep ) G/N
by cofinality (see [5], Cofinality Lemma 1.21). Thus it remains to prove (x). So
let N € N(G) be given. Let U = UN be an open identity neighborhood of G
such that UN/N is an identity neighborhood of the finite dimensional Lie group
G/N which contains no subgroups other than the singleton one. If p:G — G/N
is the quotient map, then the image filter basis p(M) converges to the identity in
G/N. Hence there is an M such that p(M) C UN/N. Then the subgroup p(M) is
singleton, that is M C NN, which is what we had to show.

If G is complete, then (i) shows that G is a pro-Lie group and by Theorem
2.1(vi) we then know that G 2 limprepm G/M. O

3. Weakly complete vector spaces and Lie algebras.

For the concept of weakly complete vector spaces see [4], p. 319ff. Here is one way
of saying what a weakly complete vector space is: A topological vector space is
weakly complete if there is an isomorphism of topological vector spaces to some
product vector space RX .

Lemma 3.1. Let f:V — W be a morphism of weakly complete vector spaces.
Then f(V) is a closed vector subspace of W.

Proof. We have a canonical decomposition

Vv SN

i L

V/ker f T> f),

where g(v) = v+ ker f, j(w) = w, f'(v+ ker f) = f(v). After replacing f by
f' we may assume without loss of generality that f is injective and has a dense
image. Then f is both a monic and an epic in the category of weakly complete
vector spaces since it has a zero cokernel. By the Duality Theorem for Real Vector
Spaces (see [4], p. 325, Theorem 7.30) the dual f: W — V is a linear map between
real vector spaces which is both a monic ang an epic. But then it is bijective, i.e.

is an isomorphism. By duality again, f = ? is an isomorphism and thus has an
inverse in the category of weakly complete vector spaces. Hence it is bijective. In
particular, it is surjective and thus the lemma is proved.
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Lemma 3.2. Let g = limgey g be a projective limit of a projective system
{vik:oe = 9517 <k, (j,k) € T x J}

of finite dimensional real vector spaces in the category of weakly complete vector
spaces. Let vj: g — g; denote the limit maps. Then for each j € J there is an index

k;j > j such that v, (gx) € v (9).

Proof. By Lemma 3.1 above, v;(g) is a closed vector subspace of g;. By the Duality
Theorem for Real Vector Spaces (see [4], p. 324, Theorem 7.30, statement (ii) is
equivalent to the following assertion

(¥) Let E = colimyey Ey, be the direct limit of a direct system

{njk:Ej _>Ek |]§k7 (]7k) €Jx J}

of finite dimensional vector spaces. Fix an index j € J. Then there is an index
k; > j such that nj; vanishes on kern;.

Now E is the directed union of the images n;(Ey). If « € E; is such that
nir(x) # 0 for all k, then n;(x) # 0. Thus for each = € kern; there is a k; > j such
that n;z, (z) = 0. Since dimkern; < dim E; is finite, kern; is finitely generated.
Statement (x) follows. O

We record that for a topological group G, a one parameter subgroup is a con-
tinuous group morphism f:R — G.

We shall deal with topological groups that have a Lie algebra. The space
Hom(R, @) of all one parameter subgroups X:R — G endowed with the topol-
ogy of uniform convergence on compact sets is denoted £(G). Accordingly £ is a
limit preserving functor from the category of topological groups to the category
of pointed topological spaces. For suitably good specimen of topological groups,
the assignment £ has much better properties, as we shall outline in the following

definition. For a real number r we set O(r) = r2.

Definitions 3.3. Let G be a topological group. Then it is said that G has a
Lie algebra or, equivalently, that G is a topological group with a Lie algebra if the
following conditions hold:

(i) For all X,Y € £(G), the following limits exist pointwise:

1 1 n
(1) X+V % lim ((—~X) (—~Y)) ,
n— o0 n n
2
1.1.\"
(2) [X,Y]oO% lim comm (—-X, —~Y>
n— o0 n n

and X +Y, [X,Y] € £G).
(il) Addition (X,Y) = X +Y : £(G) x £(G) — £(G) and bracket multiplication
(X,Y) = [X,Y]: £(G) x £(G) = £(G) are continuous.
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(iii) With respect to scalar multiplication -, addition + and bracket multiplication
[-,-] the set £(G) is a real Lie algebra. O

In particular, if G has a Lie algebra, then £(G) is a topological Lie algebra.
Note that a topological group G has a Lie algebra if and only if the connected
component G of the identity has a Lie algebra.

A Lie algebra is said to be profinite dimensional if it is a projective limit of
finite dimensional real Lie algebras. The underlying vector space of a profinite
dimensional Lie algebra is a weakly complete vector space.

Using the continuity of the functor £, it is not hard to see that all Lie projective
groups have a Lie algebra, and indeed a profinite dimensional one.

We shall have to deal with topological groups G for which we make some
standard assumptions:

Notation 3.4. For G there is a projective system
{fin:Gr = G5 | (. k) € I x J, j <k}

of finite dimensional Lie groups G; such that G = lim;c; G;. The limit maps are
denoted f;:G — Gj, the kernels ker f; of the limit maps will be abreviated by

K. The finite dimensional Lie algebras £(G;) will be written g;. Let us write

fir € e(f5r) and 1; € £(f)).

Proposition 3.5. There is a projective system
{fjk:gk _>gj | (Jak) €J x J7 .] S k}
of finite dimensional real Lie algebras and Lie algebra morphisms such that
L£(G) = lim g,
(@) =limg,

and that the continuous Lie algebra morphisms §;: £(G) — g; are the limit mor-
phisms.

Proof. By Theorem [5] 2.25(ii), the functor £ from the category of all topologi-
cal groups having a Lie algebra and continuous group morphisms between them
to the category of topological Lie algebras is continuous and thus, in particular
preserves projective limits. Hence £(G) = limjes £(G;), and we may identify the
two profinite dimensional Lie algebras. O

We set a; = §;(£(G)) C g; for each j € J, and let aj:a;, — a; be the
morphism of finite dimensional Lie algebras induced by f; for j < k.

Lemma 3.6. The system

ﬁ’déf{ajk:ak%aj|(j,k)€J><J,j§k}
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is a projective system of finite dimensional Lie algebras and surjective bonding
maps. We have
£(G) = lim a;.
(©) = lima,

The limit maps aj: £(G) = a; are quotient morphisms.
Proof. We apply the Fundamental Theorem on Projective Limits 2.1(iv) to the
system £ and conclude that lim £’ = lim £. The limit maps «;: £(G) — a; are

surjective and thus are quotient maps ([4], p. 3.26, Theorem 7.30). It also follows
that the bonding maps ajr: a; — a; are surjective. ad

The following diagram illustrates the situation:

a; ——— Q -- < S(G) = limjeJ a;
ke
incljJ( inclkl .. lidx(c)
g; <f— gr - < L(G) = limjeyg;.
ik

Now we apply Lemma 3.2 and obtain

Lemma 3.7. Under our general assumptions for G = limjcy G; we have

(Vj e J)3k; > j, kj € J) fir; ((Gr;)o) C Aj.

Proof. From 3.2 we have
(Vi € J)(3k; > J, kj € J) fjw; (an;) C a;.

The assertion now follows from the fact that as a finite dimensional connected
Lie group, Gy, )o is algebraically generated by exp gi, and that A; is algebraically
generated by aj. Thus fix; ((Gk,)o) = fin; ((expar;))) = (exp £(fir;)(ok,)) C
(exp Clj> = Aj. O

Now for each j € J the subgroup A; def (expg, £(G;)) is an analytic subgroup
of G; such that £(A;) = a;. (For linear Lie groups a reference is [4], p. 155,
Theorem 5.52. The proof there does not depend of the assumption that G is a linear
Lie group.) The morphisms f;,: G — G; induce morphisms def finlAg: Ap —
A; with £(¢jr) = a;i and jok: (Gr)o — (Gj)o. Then

{hjr: Ar = Aj | (4, k) € I x J, j < k}

is a projective system of analytic groups; let A def lim;je; A; be its limit. Each
analytic group carries a topology which is in general finer than the induced topol-
ogy, making the subgroup A; into a connected Lie group H; such that £(H;) =
£(A;) = a; and that the morphisms ¢;: A; — A, induce morphisms of Lie groups
@;r: Hy, — H; such that £(p;i) = a;jr. We have injective morphisms

€5 inclAj incl(G].)Oﬂ '

H; »Aj (Gj)o G;
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where ¢; is the bijective morphism of topological groups given by ¢;(h) = h and
incl denotes the respective inclusion morphisms.
We consider the projective system

HE g Hi = Hy | (G,k) € T % J, j < k)
of finite dimensional Lie groups and let H = lim;c; H; denote its limit; we note
that due to the continuity of the functor £ we have

() S(H) = lim £(H;) = lim a; = £(G).

It is not at all clear at this time that a pro-Lie group is connected if its finite
dimensional Lie group quotients are connected. However, we observe the following
lemma which we shall presently apply to H = lim;cy H;.

Lemma 3.8. Assume that H is a projective limit limjcy H; of finite dimensional
Lie groups satisfying the following two hypotheses:

(i) For all j € J the Lie group Hj is connected, and

(ii) the limit maps ¢;: H — Hj, j € J induce surjective morphisms £(p;):
Then H is connected.

Proof. Let h € H be an arbitrary element of G. We shall show that arbitrarily
close to g there are elements from the arc component of the identity of H; thus
the arc component of the identity is dense in H and thus H is indeed connected.
For a proof let U be any identity neighborhood of H. By 1.27(i) we may assume
that such that U = <p;1V) for some identity neighborhood V' of H;. Since H;
is connected by hypothesis (i), and since any connected finite dimensional Lie
group is algebraically generated by the image of its exponential function, there are
elements X,...,X,, € £(H;) such that ¢;(h) = exp X, ---exp X,,. By hypothesis
(ii) the morphism £(p;): £(H) — £(H;) is surjective, and thus we find elements
Y € £(H), such that X,, = £(p;)(Yim) for all m = 1,...,n. Now ¢;(h) =
expy, Xm = expy; £(p;)(Yn) = pj(expy Yin)in Hj for all m. Let a:[0,1] — H
denote the arc given by a(t) = expy(¢-Y1)---expy(¢-Yy). Then a(0) = 1 and
a(l) =expy Y1 ---expy Y, € goj_l (¢;(h)) C hU. This proves our claim and thus
finishes the proof of the lemma. O

Lemma 3.9. The system

def : :
H = {(pijk _>HJ | (.77k> €Jx J7.7 S k}
is a projective system of quotient morphisms between finite dimensional connected
Lie groups and its limit H = lim;cy H; is a connected pro-Lie group. The limit
maps w;: H — H; are quotient morphisms.

Proof. Since all £(p;i) = «a;j are surjective, the morphisms ;; are surjective,
and since Hy as a connected finite dimensional Lie group is o-compact and locally
compact and Hj is locally compact, by the Open Mapping Theorem (see e.g. [4],
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p. 650) the morphisms ¢;; are quotient morphisms. Therefore, the limit maps
w;: H — Hj are quotient morphisms by Theorem 2.1(iii). It follows that H is a
pro-Lie group and that B et {kerp; : j € J} is a cofinite filter basis of N'(H).
Now the preceding Lemma 3.8 applies to show that H is connected. ad

We illustrate the situation in the following diagram showing the limits of the
various projective systems we consider:

Hj — Hy, H:liijJHj
Pik
€5 Ek LIRS g
PR N | A= limjes A
j k - f— lijJ j
inclA]. inclAk e inclyg
0
ik .
(Gjlo +—— (Gr)o --- Go= (limjes(Gy)o),
incl(G].)O incl(Gk)o .. inclg,
fik .
Gj — Gk G:hijJGj.

The universal property of the limit G' gives us the morphisms e: H — A and the
various inclusion morphisms incl filling in diagram (1). Notice that £(H) = £(4) =
£(B) = £(G) and we may identify £(¢) and the various maps £(incl) with idg(g).
By the concrete construction of the limits

we have
G ={(95)jes € [ Gi | (Vi <kin J) fi(g) = g5},
jes
A={(aj)jes € [T 45| Vi <k in J) fir(ar) = a;},
jes
H ={(hj)jes € [[ Hi | (¥j <k in J) fi(ha) = Ry}
jeJ

Thus A is a subgroup of G and we may identify H with A except that its topology
may be finer than the topology induced from G on A.
The situation is again illustrated by the following diagram:

LH) —— £4) —— £(G)

expy l expy l lexpg

V’J’J{ € ¢jJ{ incla i
Hj m— Aj — Gj 5
&j inClAj

where € and all €; are bijective and all incl are embeddings.

For a given Lie projective group G = lim;cy G; a connected pro-Lie group H
emerged almost out of nowhere and it is mapped under the bijective morphism &
onto the subgroup A of G. Clearly we must identify this subgroup of Gy.

Lemma 3.10. H = Gy.
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Proof. By Lemma 3.7,
(Vj € J)(3j < kj € J) fir; ((Gry)o) C Ay

Now we notice that (G, )o is locally arcwise connected and Hj; is A; equipped
with the arc component topology (cf. [4], p. 156, Theorem 5.52(iv) and pp. 760 ff.).
Hence the restriction and corestriction fj; (G}, )o: (G, )o — A; factors through

e;: Hj — Aj for a morphism f; : (G, )o — Hj such that

def . -
Jij = incly; ogj o fik; 2 (Gr;)o = (Gj)o.

Temporarily, set

(*) G° ¥ lim(G,)o 2 Go
jeJ

in the category of topological groups and continuous morphisms. Thus for each
J € J there is a k; > j and a commutative diagram

GO
154
H
incl; og; incly; oeg; incly oe
(Gjo ~—5— (Gr,)o -+ GO

Jk;

It follows that there is a morphism 3; T 1(Gry)o o fi;|G° - G° — Hj which
is independent of the choice of k; in as much as it agrees with ?jkj o fr;k© fr|G°
for k > k;. We notice that for j < j' we get 3; = @;; © B}:GO — Hj. Thus the
universal property of H = limjcs Hj, implies the existence of a unique morphism
B: H — G° such that 8; = ¢, o 8.

From incly o o f;;, = fjx; we conclude that

incl4 oe o f =1idgo .

Thus incly oe: H — GO is a retraction, and since it is injective, it is an isomorphism.
As it is also an inclusion map (except for continuity), we now see that it is an
isomorphism. This shows G° = H. Thus G? is connected and so

(%) H=G" CGo.
Now (8) and (x*) imply H = Gy O
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4. Are Lie Projective Groups Pro-Lie Groups?

For easy reference we recall the definition of A'(G) and complement it in a way
that will be useful to us:

Definition 4.1. For a topological group G let

N(G) déf{N 4G : G/N is a Lie group},

NMo(G) déf{N 4Gy : Go/N is a Lie group} = N(Gp). O

In a pro-Lie group, N'(G) is a filter basis which converges to 1.

We work in the setting of Notation 3.4. Recall that K 4 ker f; and that for
each j € J we have an injective morphism G/K; = Gj.

Main Lemma 4.2. (The First Fundamental Lemma) Let G' be projective limit
lim;cy G; of finite dimensional Lie groups. Then the following conclusions hold:
(i) The identity component G is a pro-Lie group and thus

Go = 1 Go/M.
= N (@) of

(ii) Set M ef {GoNKj:je€ J}. Then M is a cofinal subset of No(G); that is,

for each M € No(G) there is a j € J such that Go N K; C M.

(iii) For each j € J, the natural map (Go/(Go N K;)) — (GoK;)/K; is an iso-
morphism, the group GoK;/K; is a Lie group and a closed subgroup of G/ Kj;,
and

Go = hm(GoKJ)/KJ
J€J

Proof. (i) Since Gy is a pro-Lie group by Lemmas 3.8 and 3.9, we have G =
limpre (o) Go/M by Theorem 2.1(vi).

(i) Since lim Ny(G@) =1 and f;: G — G; is continuous for each j € J, we have
lim f;(Np(G)) = 1. But G is a Lie group and thus has no small subgroups. Hence
there is an M € Ny(G) such that f;(M) = {1}, that is, M C K;. Thus we have a
quotient morphism Go/M — Go/(Go N Kj). Since quotients of finite dimensional
Lie groups are Lie groups, Go/(Go N Kj) is a Lie group whence Go N K; € Np(G)
by Definition 4.1. Hence M C Ny(G).

By Theorem 2.1(i) we know that lim;cy K; = 1. Then lim;ey GoNK; = 1. Let
M € Ny(G). Then Go/M is a Lie group, and thus there is an open identity neigh-
borhood U of Gy such that UM = U and U/M has no nonsingleton subgroups.
Then there is a j € J such that GoNK; C U. Since (Go N K;)M /M is a subgroup
of Go/M contained in U/M we have Go N K; C M.

(iii) By (ii) above, Gy/(Go N Kj;) is a finite dimensional Lie group. We set

N {K; : j € J}. By 2.1 we know that lim A" = 1. So we can apply Theorem
2.2 with H = Gy. In particular, 2.2(iv) yields the assertions of (iii). O
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Note that we have shown, in particular, that every connected Lie projective
group is a pro-Lie group.

A topological group G is said to be protodiscrete if the filter basis of open normal
subgroups converges to 1. If GG is in addition complete, it is called prodiscrete.

Proposition 4.3. (a) For a Lie projective group G, the following statements are
equivalent:

(1) G is prodiscrete.

(ii) G is zero dimensional.

(iii) G is totally disconnected.

(iv) £(G@) = {0}.

(b) A quotient of a protodiscrete group is protodiscrete.

Proof. First we prove (a):
(i)=(ii): By (i) G is a closed subgroup of a product of discrete groups and therefore
the filter of its identity neighborhoods has a basis of open subgroups.

(ii)=(iii)=(iv): This is clear.

(iv)=(i): Let G = limjcs G; with a projective system as in 3.4 and assume
that the limit maps f;: G — G have dense images. Let D; be the discrete group
Gj/(Gj)o and let

D={Fj:Dp— D;|j<k, (j,k)€JxJ}
be the projective system induced by P and let D = limjcy D;. Then each quotient
D/ ker Fj for the limit maps F;: D — D; is discrete, and D = limjecs D/ ker F
by Theorem 2.1(ii). Hence D is a prodiscrete group. Now by hypothesis (v) we
have {0} = £(G) = limjc; £(G,). Then by Lemma 3.6, for each j € J, there is a
k; > j such that fjx, (ge,) = {0}, i.e. fr (G, )o) = {1}. Thus f;s; factors through
a morphism Fj,: D, — G;. We have a diagram

fik;
G~ Gy, G
qj qk q
Fip.
p; % p,. D
ijj P
G G, . G.
T Fi

By an argument entirely analogous to that in the proof of 3.9 regarding the diagram
in that proof we conclude the existence of a morphism p: D — G such that pogq =
idg. Thus G is a retract of D. But retracts of prodiscrete groups are easily seen
to be prodiscrete. This completes the proof.
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Proof of (b): If G is protodiscrete, AN'(G) is a filter basis of open normal sub-
groups which converges to 1. Now let IV be a closed normal subgroup of G. Define
U={NU/U :U € N(G)}. Each NU is an open and hence closed normal subgroup
of G and thus the NU/U are open-closed subgroups of G/N, and we claim that I
converges to the identity of G/N. Let W be an open identity neighborhood of G/N
and V its full inverse image in G/N. Then V is an open identity neighborhood of
G such that NV = V. Since N (G) converges to 1, there is a U € N'(G) such that
U CV.Then NU C NV =V and thus NU/N C W. This proves the claim and
proves (b) in view of 2.4. O

Main Lemma 4.4. (The Second Fundamental Lemma) For any Lie projective
group G, the component factor group G /Gy is protodiscrete; if it is complete, then
it 1s prodiscrete.

Proof. We retain the notation of the proof of Proposition 4.3 and consider the
commutative diagram

4
fjk

(Gj)o (Grlo -+ Go = limjes(Gy)o
incll incll lincl
fik .
Gj — Gy e Go= llmjeJGj
quotl quotl lp
Dj (—ij Dk D = limjgj Dj.

The morphism p: G — D is the fill-in map given by the universal property of the
limit in the last row. Since the composition

(Gj)() incl Gj quot Dj

is constant, so is the composition

Go—4,G—LD.
Hence we have a unique morphism p:G/Go — D, p(gGo) = p(g). Assume that
9 = (9j)jes € G is such that p(gGo) = 1, i.e., (9;(Gj)o)jes = p(g) = 1 in
limjes Dj; thus g € (;¢; f;l((Gj)o) = limjes(Gj)o = Go. This shows that p
is injective. The sets ijl(l) are basic identity neighborhoods of D by 2.1(i). As

p_le_l(l) = fj_1 ((Gj)())/GO and this is an open-closed subgroup we see that p is

an embedding. Therefore G/Gy may be identified with the subgroup S efim p=
{(9i(Gj)o)ies : (95)jes € G} of D.

Let N; = Fj_l(l). Then N; is an open-closed normal subgroup of D and
S N Nj is an open-closed normal subgroup of S. Since limje; N; = 1 we have
limjes SN N; = 1. Hence G/Gy = S is a protodiscrete group and S = ﬂjeJ SN;
is prodiscrete. If G/Gy is complete, then G /Gy = S and G /G is prodiscrete. O

Before we continue, we record an independent elementary lemma;:
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Lemma 4.5. Let f: A — B be a quotient morphism of topological groups with
discrete kernel. Then there is an open symmetric identity neighborhood V of A
and an open symmetric identity neighborhood W of B such that f|V):V — W
is a homeomorphism, and for every subgroup K of B contained in W there is a
subgroup S of A contained in V such that f(S) =K.

Proof. Let U be a symmetric open identity neighborhood of A such that U? N
ker f = {1}. Then f(U) is an open symmetric identity neighborhood of B. Then
fIU:U — f(U) is continuous, open and surjective; if uy,u —2 € U and f(u1) =
f(uz), then uju,* € (ker f) N U2, Thus f|U is a homeomorphism. Now let V'

be an open symmetric identity neighborhood in A such that V2 C U, and set

w f(V). Then f|V:V — W is a homeomorphism onto an open identity neigh-

borhood of B. Define ¢: W — V to be its inverse and take wi,ws € V such
that wiws € W. Set v; = ¢(w;), j = 1,2 and v = p(wrws). Then (f|U)(v) =
(fIV)p(wiws) = wyws. Further vivy € V2 C U. Then (f|U)(viv2) = f(v1) f(v2) =
(FIV)e(wr)(fIV)p(wz) = wiws = (f|U)(v). Since (f|U) is injective, we conclude
v = v1ve, that is, ¢: W — V is a homeomoprhism such that

(%) Vw1, ws € W) (wrwa € W) = (p(wiws) = @(wy)p(ws).

In particular, if w € W thenw ™! € W and ww™! =1 € W and thus p(w)p(w™1) =
©(1) = 1 and thus p(w™!) = p(w)~!. Now let K be a subgroup of B contained
in W. Let g1,92 € ©(K) Then there are elements wy,ws € K C W such that
g; = @(kj), 5 = 1,2 and kik;' € K C W. Hence gi1g5" = o(wi)p(ws)~' =
o(wr)p(wy ) = pwiwy*) € p(K). Tt follows that ¢(K) C V is a subgroup of A.

O

Main Lemma 4.6. (The Third Fundamental Lemma) Let G be a topological
group such that Gy is a finite dimensional Lie group and assume that f:G — L is
an injection into a finite dimensional Lie group. If G/Gyq is a protodiscrete group,
then G is a finite dimensional Lie group.

Proof. We must show that Gy is open in G. First we make some reductions. Since
fY(Lo) is open in G there is no loss in assuming that L = Ly, i.e. that L is
connected.

Let M = f(Gy), then M is a closed normal subgroup of L and f induces
an injective map G/f~*(M) — L/M. Now G/f~*(M), being a quotient of the
protodiscrete group G/Gy is protodiscrete by 4.3(b) and is, at the same time,
without small subgroups. Hence it is discrete, that is, f~*(M) is open. We may
therefore assume that G = f~1(M), i.e. that M = L. Thus we may assume that
f(Gyp) is dense in L.

Now we consider the universal covering g: L — L and form the pullback

F

rp 5 I
o| K
G —— L.

f
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In terms of elements, we have p = {(g,Z) €eG@xL:f(g)= q(Z)} Ifp=(g,0)€P
and F(p) = 1, then (= 1, whence f(g) = q(Z) =1 and thus g = 1 as f is injective.
Thus p = (1,1) and this shows that F is injective.

Next F' maps ker ) isomorphically onto ker ¢q. Indeed let p = (g,Z) € ker Q.
Then 1 = Q(p) = g and then ¢F(p) = q(¢) = f(g) = 1, that is, F(p) € kerq.
Conversely, if fg € kergq, then 1 = q(Z) = f(1), whence p ef (1,q) € P, and
Q(p) =1, ie p € ker@ and F(p) = q. Now let V is an identity neighborhood of
L such that V Nkerq = {1} and assume that p = (g,¢) € ker QNG x V; then g =
Q(p) =1 and 1 = f(g) = q(f); thus £ € V Nkerq = {1}. Thus p = 1. Theferefore
ker ) is discrete in P. If (U xV)NP is an identity neighborhood then p = (u,v) € P
implies Q(p) = w and f(u) = q(v), whence Q ((Ux V)NP)UN f~*¢q(V), and this is
an identity neighborhood. Thus the morphism @ is open and thus, since its kernel
is open and hence implements a local isomorphism.

Therefore G is a Lie group if and only if P is a Lie group. Thus we must show
that P is a Lie group, that is, that F, is open. B

Now F(P,) is a normal analytic subgroup of L, and normal analytic sub-
groups in simply connected Lie groups are closed. The full inverse of f(Gp) in
L is F(Py)kerg, and thus this group is dense, and F(Pp)ker q/F(Pp) is dense in
L/F(P,). Since kerq is central in L, the group L/F(Pp) is abelian and simply
connected, hence is isomorphic to a vector group R"*. Thus F' induces an injective
morphism of P/ P, into the vector group L/F(Py) and thus has no small subgroups.
The quotient morphism

Q quotg
P———G—=G/Gy

vanishes on Py and therefore factors through P/P:
quotg oQ) = (P »P/ Py < »G/Go).

We have ker Q* = Py /Py where P, = Q~'Gy. The following is a diagram of abelian
topological groups
Q/Qo —L> R™
Q" where ¢ is an injective morphism.

G /G,

quotp

The morphism @’ clef Q|Py : P1 = Gy is a covering morphism of the Lie group

Gy with kernel ker ) = ker ¢ and thus is a Lie group containing the closed normal
subgroup Py = (P1)o. Then ker@Q* = P,/F, is a totally disconnected Lie group
and is therefore discrete. Since G/Gy has arbitrarily small open subgroups by the
hypothesis of protodiscreteness, Lemma 4.5 applies to @* and shows that P/F,
has arbitrarily small open subgroups (that is, P/Pp is a protodiscrete group). But
¢ injects P/ Py into R™, and thus P/P, has an identity neighborhood in which the
singleton group {Py} is the only subgroup; this subgroup, therefore, is open and
thus Py is open which is what we had to show. ad

Now we are ready for the principal result of the first part of the article.
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Theorem 4.7. (The Pro-Lie Group Theorem) Every Lie projective group is a
pro-Lie group.

Proof. By the First Fundamental Lemma 4.2, a Lie projective group G has a
filter basis M of closed normal subgroups M converging to 1 such that GoM /M
is a connected Lie subgroup of G/M, and that there is an injective morphism of
G/M into a finite dimensional Lie group. By the Second Fundamental Lemma 4.4,
G /Gy has a basis O of open normal subgroups converging to the identity. It follows
that for each M € M, the factor group G/M has a filter basis of open normal
subgroups U/M such that every open set V containing GoM /M contains one of
the U/M, U € O. Thus every G/M, M € M, satisfies the hypotheses of the Third
Fundamental Lemma 4.6. As a consequence of 4.6, G/M is a finite dimensional
Lie group. Then by Proposition 2.4, it follows that G is a pro-Lie group. ad

Corollary 4.8. (The Closed Subgroup Theorem for pro-Lie Groups) A closed
subgroup of a pro-Lie group is a pro-Lie group.

Proof. This immediate from Corollary 2.3 and Theorem 4.6. O

The Lie algebra £(G) of a pro-Lie group is limyep(q) £(G/N) with finite
dimensional Lie algebras £(G/N) since £ preserve limits. So the additive group
of £(G) is a Lie projective group. Hence it is a pro-Lie group by 4.6 and we may
conclude what is also observed in [5]:

Corollary 4.9. The underlying topological vector space of the Lie algebra of a
pro-Lie group is a pro-Lie group in its own right and is a weakly complete topolog-
tcal vector space. ad

5. The category of pro-Lie groups is complete.

We shall henceforth denote by proLIEGR the full subcategory of the category
TOPGR of all topological groups and continuous group homomorphisms between
them whose objects are pro-Lie groups. After the Pro-Lie Group Theorem 4.7,
prol HGR can also be described as the full subcategory of TOPGR of all projective
limits of finite dimensional Lie groups.

We begin with a basic lemma on limits in categories. Recall that a category is
said to be complete if it has all limits.

Lemma 5.1. (The Limit Existence Theorem)

(i) If a category has arbitrary products and equalizers, then it is complete.

(ii) If a category has arbitrary products and has intersections of retracts, then
it 1s complete.

(iii) If a full subcategory A of a complete category C is closed in C under the
formation of products and passing to intersections of retracts, then it is closed
under the formation of all limits and is therefore complete.
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Proof. We refer to any source on category theory or to [4], Appendix 3, or to [5]
Theorem 1.10. O

Theorem 5.2. (Completeness Theorem for pro-Lie Groups)

(i) The category prollBGR of pro-Lie groups is closed in TOPGR wunder all
limits and is therefore complete.

(ii) prolLIEGR is the smallest full subcategory of TOPGR that contains all finite
dimensional Lie groups and is closed under the formation of all limits.

Proof. (i) We shall invoke Lemma 5.1(iii) and show that proLIEGR is closed in
TOPGR under the formation of products and the passing to closed subgroups;
since any retract of a topological group in TOPGR is a closed subgroup, this will
settle the claim. But by Corollary 4.9, the category of pro-Lie groups is closed
under the passage to closed subgroups so it remains to show that prolI EGR is
closed in TOPGR under the formation of arbitrary products.

So let {G, : @ € A} be a family of Lie projective groups. We must show that
el [Ioca Ga is a Lie projective group. Since every G, is a projective limit
of finite dimensional Lie groups, it is a closed subgroup of a product [] jego Lf
of finite dimensional Lie groups. Thus G is isomorphic to a closed subgroup of
a product P = HaeA,jeJa L% of finite dimensional Lie groups. Then P is is the
projective limit of the projective system of all finite partial products and the
corresponding projections. Hence P is Lie projective and thus is a pro-Lie group
by the Pro-Lie-Group Theorem 4.7. Since G a a closed subgroup of P it is a pro-Lie
group by 4.8. Thus (i) is proved.

(ii) Let C be any full subcategory of TOPGR which contains all finite dimen-
sional Lie groups and is closed in TOPGR under the formation of all limits. Let
G be Lie projective. Then G' = limjcy G; for a projective system of finite dimen-
sional Lie groups Gj. Then all G; are contained in C and since C is closed under
the formation of all limits, G is in C. Thus proLIEGR C C. O

6. The One Parameter Subgroup Lifting Theorem

Many categories of topological groups are stable under the passage to quotient
groups; the category of pro-Lie groups, regrettably, is not, as we see now.

Proposition 6.1. (The Quotient Theorem for Pro-Lie Groups) A quotient group
of a pro-Lie group is a proto-Lie group and thus is isomorphic as a topological
group to a dense subgroup of a pro-Lie group. If the quotient group is complete,
then it is a pro-Lie group.

Proof. (i) Let G be a pro-Lie group and K a closed normal subgroup. Define
f:G— H def G/K to be the open quotient morphism. For N € N(G) the set
NK is a closed subgroup of G containing K, and since f is a quotient map and

NK is K-saturated, the set N* def f(NK) C H is closed and agrees with f(N).
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Then N* is a closed normal subgroup of H, and since f is open, we have that
H/N* = G/f7Y(N*) = G/NK = (G/N)/(NK/N) is a finite dimensional Lie
group as a quotient of a finite dimensional Lie group. Let M = {N* | N € N (G)}.
Then M is a filter basis of closed normal subgroups of H such that all factor groups
H/M, M € M are finite dimensional Lie groups. Since N (G) converges to 1 as G
is a pro-Lie group, from the continuity of f we conclude that f(N(G)) = {f(NV) |
N € N(G)} converges to 1 in H. But since H is regular, i.e. the filter of identity
neighborhoods has a basis of closed sets, M converges to 1 in H. Thus H is a
proto-Lie group and we have a natural dense embedding morphism vg: H — H g

into the pro-Lie group H g def limyepy H/N. It follows by definition that the
group H is a pro-Lie group if an only if it is complete. a

The pro-Lie group R* has an incomplete quotient group modulo a totally dis-
connected and algebraically free subgroup (see [6]); hence 6.1 cannot be improved.

The lifting of one parameter subgroups deals with the following situation: As-
sume that f:G — H is a quotient morphism and Y € £(H); under which circum-
stances is there an X € £(G) such that £(f)(X) =Y7?

Lemma 6.2. Assume that

P 25 R

(1 d v

GT)H'

is a pullback of topological groups. Set K 4l ker . Then the following conditions

are equivalent:

(i) K is a semidirect factor.

(il) ¢ is a retraction.

(ii") p|Po: Po = R is a retraction, where Py is the identity component of P.

(iii) There is an X € £(G) such that £(f)(X) =Y.

(iv) There is a subgroup R of P such that KR = P and KN R = {1}, and further
that p|R: R — R is open.

These conditions imply

(v) There is a closed subgroup R of P such that KR =P and KN R = {1}.

Proof. (1)< (ii): The equivalence of (i) and (ii) is a standard exercise in topological
group theory (see e.g. [5], EL.5).

(ii)=-(ii'): If a morphism o: R — P satisfies ¢ o o = idg, then o(R) C P, as R is
connected, and thus its corestriction g: R — P, satisfies p o ¢ = idg.

(ii")=(ii): Conversely, if 0:R — P, satisfies ¢ o 0 = idg, then its coextension
7: R — P satisfies ¢ 07 = idg.

(ii)=(iii): If X":R — P is a one parameter subgroup satisfying ¢ o X’ = idg then
X ¥ 20X R - G is a one parameter subgroup of G such that £(f)(X) =
foX=fomroX' =YopoX' =Yoidg =Y.
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(iii)=>(ii): Assume Y = £(f)(X) = f o X. Then for all € R we have f(X(r)) =
Y (r). Now the explicit form of the pullback is P = {(g,r) e G xR | f(g) =Y (r)}
and ¢(g,r) = r (see e.g. [5], Theorem 1.5). Hence (X (r),r) € P for all r € R and if
we set X'(r) = (X(r),r), then X":R — P is a morphism satisfying ¢ (X'(r)) =r
for all r.

(1)=(iv)=(v) is trivial.

(iv)=(ii): The function @|R: R — R is continuous and open; and since KNR =
{0} it is injective, and since KR = P it is surjective. Hence it is an isomor-
phism of topological groups and thus is invertible; the coextension ¢:R — P of
(p|R)™1:R — R satisfies p o 0 = idg. O

Lemma 6.3. If f in the pullback (1) is surjective, then ¢ is surjective. If f is
open, then  is open. If f is a quotient morphism so is @.

Proof. Surjectivity: if r € R then, since f is surjective, there is a ¢ € G such that
flg)=Y(r).

Openness: The filter of identity neighborhoods of P has a basis of open sets of the
form W = PN (U x I), where U is an open identity neighborhood of G and I an
open interval around 0 in R Then o(W) ={r eI | (3g € U) f(g9) = Y(r)} =
INY~Y(f(U)). Since f is an open map, f(U) is an open subset of H and thus by
the continuity of Y, the set (W) is open.

Quotients: This assertion follows from the combination of the preceding two. O

Lemma 6.4. In the pullback (1), assume that the morphism f is a quotient mor-
phism and that G is a pro-Lie group. Then P is a pro-Lie group.

Proof. By Proposition 6.1, H is a proto-Lie group. Let vy: H — Hyr gy be the
natural completion morphism. Then we obtain a diagram

p —“*5 R
(1) | [uey

G —— H/\/(H)-

We claim that (1') is a pullback in TOPGR: Thus we let T" be a topological group
and let ag: T — G as well as ag: T — R be morphisms of topological groups such
that vy o f oag = vy oY o ag. Since vy is injective, foay =Y o ag. Since (1)
is a pullback in TOPGR, there is a unique £&: 7 — P such that ag = 7o £ and
ar = ¢ o &. This shows that (1’) is a pullback as well.

The group R is a Lie group, hence trivially a pro-Lie group. Thus R, G, Hpr(m)
are pro-Lie groups. By 5.2(i), the category prolLI EGR is closed under the formation
of pullbacks. We apply this to (1') and conclude that P is a pro-Lie group. O

We now are ready for a proof of the lifting of one parameter subgroups. This is
not easy because in the absence of countability assumptions, this requires the Ax-
iom of Choice, and the absence of compactness in the present situation forces us to
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rely on completeness and the convergence of Cauchy filters. The proof will require
from the reader a certain facility handling “multivalued morphisms” as a special
type of binary relations; but most of what is required will be self-explanatory in
the proof.

Lemma 6.5. (The One Parameter Subgroup Lifting Lemma) Let f:G — H be
a quotient morphism of topological groups and assume that G is a pro-Lie group.
Then every one parameter subgroup Y:R — H lifts to one of G, that is, there is a
one parameter subgroup o of G such that Y = foo.

Proof. We for the pullback

P 2 R
1) | |¥

G T) H
in the category of topological groups. Since f is assumed to be a quotient mor-
phism, by Lemma 3, the morphism ¢ is a quotient morphism, and by Lemma 6.4,
the pullback group P is a pro-Lie group. If we can show that ¢ is a homorphic
retraction, then by Lemma 6.2 we have an X € £(G) such that £(f)(X) =Y. This
reduces our task to shoing that ¢ is a homomorphic retraction. Thus, in order to
simplify notation we may assume that H = R and that we have to show that f is
a retraction. _

Let K = ker f. Since {N* = f(N) | N € N(G)} converges to 1 in R, and since
there are no subgroups in | — 1,1[ other than {0} there is an N € N(G) such
that f(N) = N* = {0}, and thus N C K. Then for all N € N(G), N D N, the
morphism f induces a quotient morphism fx:G/N — R, fnv(gN) = f(g), and
fn(gN) =0iff f(g) =0iff g € K, that is, ker fy = K/N.If we let py: K — K/N
and gn:G — G/N denote the quotient morphisms, then we have a commutative
diagram

>
5
>

1 —

incl incl

—
—

Ly R 5 0

PN aN idp

1 » K/N 2 /N 5 R 5 0

incl

(2) 1 -

—=

with exact rows and columns. Due to the fact that the exponential map of a Lie
group is a local homeomorphism at 0, an open morphism : L; — L, between Lie
groups induces an open morphism £(¢)) between their Lie algebras:

£(L) 2 g(L)

oo, | [

—
L1 — L2.
¥
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An open morphism between topological real vector spaces is automatically surjec-
tive, and thus £(v) is surjective. Hence there is a morphism 0:R — G/N such

that fy oo =idg. The binary relation X def qg,l o0:R — G satisfies the following
conditions

(i) 3(0) = N and every X(r) C G is a coset mod N.

(i) The graph of ¥ is a closed subgroup of R x G.

(iii) We have a commutative diagram of binary relations of which all but ¥ are

functions:
R & R
zl lid_g
f
(3) — R
qN lidq
G/IN — R
fn

A binary relation X: R — G satisfying (i), (ii) and (iii) will be called a multivalued
morphism associated with N. The set S of all multivalued morphisms 3:R — G

associated with some N € AN(G) is partially ordered under containment C. By

Zorn’s Lemma we find a maximal filter F C S. It is our goal to show that M def

{Z(0) | ¥ € F} is cofinal in N'(G). Assuming that this is proved, we note that for
eachr € Rand ¥ € F the subset X(r) is a coset Nz = zN with N = £(0) € N (G),
and thus X(r)X(r)~! = Nz(Nz)~! = N; since M converges to 1, we conclude that
{Z(r) | ¥ € F} is a Cauchy filter basis. Since G is complete, it converges to an
element o(r) € G, giving us a function o: R — G. As each X(r), being a coset mod
N =3(0) € M, is closed, we have o € 3(r) for all ¥ € F. Consequently, since (3)
is commutative for each ¥ € F for N = £(0) we have the following commutative
diagram for all N € M:

(4) R

Q
R
-

G/N f—> R.

The upper rectangle shows that f oo = idg, and the fact that each gy 0 X: R - G
is a morphism of topological groups shows that gy o 0:R — G/N is continuous.
Theorem 2.1(i) shows that G has arbitrarily small open identity neighborhoods
U satisfying UN = U for some N € M. Then if V is a zero neighborhood of R
such that gy (0(V)) C U/N, then o(V) € ¢5'(U/N) = U. This shows that o is
continuous. Hence o is the required coretraction for f.

Thus the remainder of the proof will show that M is cofinal in N'(G). Suppose
that this is not the case. Then there exists an N € N(G), N D N such that
M ¢ N for all M € M C N(G). Hence for all ¥ € F we have qn(X) Ngn(K) =
MN/N for M = ¥(0). Let us temporarily fix M; then M NN € N(G), and thus
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1 def . .
G' = G/(M N N) is a Lie group:

G

|
M/ \N Gt
NS

MNN )

This shows that for fixed M everything takes place in the Lie group G' in which
Mt M/(MAN) and Nt % N/(M N N) are closed normal Lie subgroups with
MTN Nt ={1}. Thus p: MT — G/N, p(m(M N N)) = mN is a morphism of Lie
groups mapping M bijectively onto M N/N and inducing an isomorphism of Lie
algebras (M) — £(MN/N) C £(G/N). Now M is a closed normal subgroup
of the Lie group G and thus MT/M{ is a discrete normal subgroup of the Lie
group G /M. We let M*¥ be the open subgroup of M' containing (M), and
being such that M¥/M{ = (Mt/MJ) N (G1)o/M]. Hence M¥/M] is a discrete
normal subgroup of a connected Lie group. Hence it is finitely generated and thus
countable. Thus M7 has countably many components and therefore u(M(;r ) is an
analytic subgroup My, C G/N agreeing with (M N/N)y and having Lie algebra
£(Myn) = £(MN/N) = £((MN/N)o). (See [4], p. 155, 156, 157.) Accordingly,

{E(MN/N) | M € M}

is a filter basis of finite dimensional vector subspaces of £(G/N). Hence there
is a smallest element m = £(MxN/N) in it such that for all M < My in M
we have £(MN/N) = m. Let us abbreviate qa,nn):G — G/(Myx N N) by
q*:G — G#, further f(M#mN):G# — R by f#, and My/(Myg N N) by M#.
Since £(p): £(M#*) — £(M#N/N) = m is an isomorphism we have

M
(5) q* (<7> ) = ¢#(MZ) for M C My in M.
M#nN/, 0 #

There is a 2 € F such that M# = $#(0). Then for all ¥ € F contained in ¥#, the
subgroup ¢ (%) of the Lie group G# is contained in ¢# (X#), satisfies ¢# (2(0)) =
M and (f# og# o X)(R) = R. Thus for all 7 € R we have ¢# (S#(r)) = ¢# (2(r))
since the right side is contained in the left and both are cosets mod M#. In the
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Lie group G# we have the configuration
G

M#*N

M#/// \\\N .
NS

M#*¥NN

and thus obtain ¢#(X) = ¢# (X#) for all ¥ C ¥# in F. The definition of ¥# as
q;/[l# o o# applies and gives a commutative diagram of binary relations

R 5 R
Ak

(3%) ¢ LR
qM#l ld

G/M#* — R

fM#

with o# = gy4 o X#. We conclude that § % ¢#(S#(R)) = $#(R)/(M# N N)
is a closed subgroup of G# whose Lie algebra £(S) cannot be contained in K# =
K/(M# N N) = ker f#. From dim G#/K# = 1 we conclude £(G#) = £(K#) +
£(S) and £(S) = £(S)NL(K#)+R- X for a suitable element X € £(G#) satisfying
f#(expgy X) = L. Setting 7:R — S, 7(r) = expgs r-X we obtain a coretraction

for f#:G#* — R. The binary relation X def (¢*) ' or:R — G is a member of S.
Moreover, for all 3 € F we have ¢# (X)(r) D 7(r) for all 7 € R. Hence XN X is a
member of S. But now the maximality of F shows that ¥# € F. But this implies
that M# NN = X(0) € M and that is a contradiction to our supposition allowing
us a choice of an NV such that M NN # M for all M € M. This contradiction
finally completes the proof. O

There are some subtleties here which we should point out. In [4], p. 157 we
have seen the additive group b of a Banach space mapped surjectively onto an
abelian Lie group G (which itself is quotient of a Banach space modulo a discrete
subgroup) such that G has a one parameter subgroup which does not lift to h. This
cannot happen if the domain is separable, but it does happen in the category of not
necessarily finite dimensional Lie groups. While being surjective, the morphism in
question is not open and the Open Mapping Theorem fails.

We have seen that the functor £ preserves all limits and thus, in particular,
all kernels (since ker f for a morphism f of topological groups is nothing but the
equalizer of f and the constant morphism). We shall say that a functor §: A — B
between categories of topological groups is strictly exact if it preserves kernels and
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quotients. As a corollary of the One Parameter Subgroup Lifting Lemma we obtain
the following Theorem

Theorem 6.6. (The Strict Exactness Theorem for £) The functor £: proLIEGR —
proll EALG is strictly exact.

Proof. We observed that £ preserves kernels because kernels are limits. We have
to show that £ preserves quotients.

Let f: G — H be a quotient morphism between pro-Lie groups. The morphism
£(f): £(G) — £(H) is surjective by the One Parameter Subgroup Lifting Lemma
6.5. Now any surjective morphism of topological vector spaces between weakly
complete vector spaces splits (see e.g. [4], p. 326, Theorem 7.30(iv)) and thus is in
particular a quotient morphism. Since the underlying topological vector spaces of
£(G) and £(H) are weakly complete by 4.10, this applies to the morphism £(f)
and shows that it is a quotient morphism. O

Corollary 6.7. (i) If N is a closed normal subgroup of a pro-Lie group G, then the
quotient morphism q: G — G /N induces a map £(q): £(G) — £(G/N) which is a
quotient morphism with kernel £(N). Accordingly there is a natural isomorphism
X+ L(N)— L(f)(X): £(G)/L(N) = £(G/N).

(ii) Let G be a pro-Lie group. Then {£(N) | N € N(G)} converges to zero and
is cofinal in the filter Z(£)(G) of all ideals i such that £(G) /i is finite dimensional.

Furthermore, £(G) is the projective limit imyenr(a) £(G)/E£(N) of a projective
system of bonding morphisms and limit maps all of which are quotient morphisms,
and there is a commutative diagram

< . - .
£@) Y eGye) = Llimyen $) = lmenic) o)
eXpGl ls(limNeN(G) expg/n)
G ? GN(G) = theN(G) G/N

Proof. (i) is an immediate consequence of the Strict Exactness Theorem 6.6.
(i) We know that £ presevers limits. Thus
L£(76): £(G) = L(Gr(e)
is an isomorphism. By (i) above, £(G/N) = £(G)/L(N) and thus
2(G) = i L(G)/L(N).
(@)= lim  S(G)/EN)

Thus by 2.1(ii), the filter basis {£(N) | N € N(G)} of the kernels of the limit
maps converges to 0 and the projective system of the £(G)/£(N) has the natural
quotient morphisms as bonding maps; by 2.1(ii) it follows that the limit maps

are quotient morphsms as well. It then follows that this filter basis is cofinal in
N(L)(G). (Compare [5], 1.40.) O
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For a topological group G let E(G) denote the subgroup (expg G) generated
by the (images of the) one parameter subgroups and set E(G) = E(G).

Corollary 6.8. (i) For a pro-Lie group G, the subgroup E(G) is dense in Gy, i.e.
E(G) = Gy. In particular, a connected nonsingleton pro-Lie group has nontrivial
one parameter subgroups.

(ii) For a pro-Lie group G the following statements are equivalent:

(a) G is totally disconnected.
(b) £(G) ={0}.

(iii) If a morphism f:G — H of pro-Lie groups is a quotient morphism then
the induced morphism E(f):E(G) — E(H) is surjective, that is E(H) = f(E(G)).
As a consequence Hy = f(Go).

(iv) Let G be a pro-Lie group and assume that for all N from a basis of N'(G)
the quotient G /N is connected. Then G is connected.

Proof. (i) First we show that nonsingleton connected pro-Lie groups have nontriv-
ial one parameter subgroups, Let G be a nonsingleton connected pro-Lie group.
There is a g € G, g # 1. Since im N (G) = 1 there is an N € N(G) such that
g ¢ N. Then G/N is a nonsingleton connected Lie group. Thus £(G/N) # {0}.
Then £(G) # {0} by 6.7(i).

Next we let G be an arbitrary pro-Lie group. The closed subgroup E(G) =
(expg £(G)) is fully characteristic, hence normal. By the One Parameter Subgroup
Lifting Lemma 6.5, every one parameter subgroup of G/E(G) lifts to one in G
which is contained in E(G) by the definition of E(G). Hence £(G/E(G)) = {0}.
Thus G/E(G) is totally disconnected by what we just proved, and thus Gy C
E(G) C Gy.

(ii) (a)=(b): If Go = {1} then E(G) = {1} and thus £(G) = {0}. (b)=(a):
Assume £(G) = {0}, then Gy = {1} by (i).

(iii) By 6.6, £(H) = £(f)(£(G)), and thus expy £(H) = expy £(f)(L£(G)) =
f(expg £(G)), and consequently E(H) = (expy £(H)) = (f(expg £(@))) =
Flexpg £(G)) = f(E(G)).

Thus Hy = E(H) = f(E(G)) C f(Go) € Ho = Hy, and this shows f(Gy) = Ho.

(iv) Let gn: G — G/N denote the quotient morphism. By (iii) we have G/N =
E(G/N) = qn(E(G)). Thus G = E(G)N for all N € N(()G) and thus Gy =
E(G) =E(G) =G. O

The relation Hy = f(Gp) for a quotient morphism f cannot be improved as
the example of the following quotient morphism of locally compact abelian groups
shows: Let G = R x Z, for the group of p-adic integers Zy, let H = G/{(n,—n) |
n € Z} =2 S, and let f be the corresponding quotient morphism. Note that H
is compact and connected. (Cf. [4], p. 19, Exercise E1.11. We consider Z as a
subgroup of S, as well.) Then Gy = R x {0}, and f(Go) = H, # H = H,.

Corollary 6.9. An open morphism f:G — H of pro-Lie groups induces a quotient
(hence surjective) morphism L£(f): £(G) — £(H).
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Proof. Let f:G — H be an open morphism of topological groups. Then f(G)
is an open hence closed subgroup of H and thus a pro-Lie group by Corollary
4.8. The open and surjective corestriction G — f(G) (inducing an isomorphism
of topological groups G/ker f — f(G)) is a quotiemn morphism between pro-
Lie groups and thus induces a quotient morphism £(f): £(G@) — £(f(G)) by the
Strict Exactness Theorem 6.6. Since f(G) is open in H, then inclusion j: f(G) - H
induces an isomorphism £(j): £(f(G)) — £(H) of topological Lie algebras. Thus
£(f): £(G) — £(H) is a quotient morphism. O

This Corollary remains intact if G and H are merely topological groups that
have open subgroups being pro-Lie groups. This applies, for instance, to all locally
compact groups G and H.
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