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1. Introdu
tion: The abelian subgroup 
onje
ture

In this paper we formulate a new 
onje
ture and introdu
e methods to verify it in

many 
ases.

Conje
ture. (The Abelian Subgroup Conje
ture) Every in�nite 
ompa
t group G

has an abelian subgroup A of weight w(A) = w(G) .

As usual the weight w(X) of a topologi
al spa
e X is de�ned by

w(X) = minf
ardB : B is a basis of the topology of Xg:

When G is an in�nite metrizable 
ompa
t group, that is w(G) = �

0

, the 
onje
ture

states that G 
ontains an in�nite abelian subgroup. It is a 
onsequen
e of Wilson

[14℄ that this is the 
ase if every 
ompa
t torsion p-group 
ontains an in�nite abelian

subgroup; a purely group theoreti
 result by Hall and Kulatilak [3℄, and by Kargapolov

[11℄ from the early sixties states that an in�nite lo
ally �nite group has an in�nite

abelian subgroup. The �nishing tou
h was applied by Zelmanov [16℄ who proved that

every 
ompa
t p-torsion group is lo
ally �nite. Thus our Abelian Subgroup Conje
ture

is settled for 
ompa
t groups G with w(G) = �

0

. But this line of argument does not tell

us whether a non-metrizable 
ompa
t group G must 
ontain a non-metrizable 
ompa
t

abelian subgroup A , that is, whether w(G) > �

0

implies the existen
e of A su
h that

w(A) > �

0

. If true, our 
onje
ture would show this and more.

The following de�nition assists us in addressing our 
onje
ture and what we know

about it.

Definition 1 �1. (i) A subgroup A of a topologi
al group G is said to be large if

w(A) = w(G) and is said to be small if w(A) < w(G).

(ii) A topologi
al group G is 
alled an LAS-group if it has a large abelian subgroup.

�

Thus the Abelian Subgroup Conje
ture asserts that every 
ompa
t group is an LAS-

group.

�
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Proposition A. Let G be a lo
ally 
ompa
t group in whi
h the identity 
omponent

G

0

is large. Then G is an LAS-group.

Proof. Firstly assume that G is 
ompa
t. Then G 
ontains a maximal 
ompa
t


onne
ted abelian subgroup T (pro-torus in the language of [7℄) su
h that w(T ) = w(G

0

)

(see [7, pp. 465, 466, Theorem 9 �36(vi)℄). Sin
e G

0

is large we have w(G

0

) = w(G).

Thus w(T ) = w(G) and G is an LAS-group.

Now if G is lo
ally 
ompa
t then for a maximal 
ompa
t subgroup K of G

0

the

group G

0

is homeomorphi
 to the produ
t spa
e K � R

n

for some n (see [10℄ or [5℄).

Let T be a maximal pro-torus of K . By the pre
eding, w(T ) = w(K), but 
learly

w(K) = w(G

0

) and sin
e G

0

is large, w(G

0

) = w(G). �

Corollary B. Every 
onne
ted lo
ally 
ompa
t group is an LAS-group. �

So the Abelian Subgroup Conje
ture is true for 
onne
ted 
ompa
t groups.

Noti
e that any abelian subgroup of a dis
rete free group is 
ountable, and thus there

are dis
rete, hen
e lo
ally 
ompa
t, groups whi
h are not LAS-groups.

We shall prove the following:

Theorem C. (The Redu
tion Theorem) Let G be an in�nite 
ompa
t group and

N

/

G a 
losed normal small subgroup su
h that G=N is an LAS-group. Then G is an

LAS-group.

The next result is an easy 
onsequen
e of the Redu
tion Theorem.

Theorem D. (The Extension Theorem) Let G be an in�nite 
ompa
t group and

N a 
losed normal subgroup su
h that G=N and N are LAS-groups. Then G is an

LAS-group.

As a 
onsequen
e of Proposition A and Theorem D we obtain at on
e a result whi
h

will show that proving or disproving the Abelian Subgroup Conje
ture is a problem on

pro�nite groups.

Corollary E. (The Redu
tion Corollary) Let G be a 
ompa
t group and assume

that G=G

0

is an LAS-group. Then G is an LAS-group.

In [8℄ we 
alled a 
ompa
t group stri
tly redu
tive if it is (isomorphi
 to) a 
artesian

produ
t of 
ompa
t simple groups, where we 
all a group simple if it has no more than

two normal subgroups. A

ordingly a 
ompa
t simple group is either 
y
li
 of prime

order, or �nite simple, or is a 
entre-free 
ompa
t 
onne
ted simple Lie group. It is

important to point out that a 
ompa
t 
onne
ted Lie group is said to be a simple Lie

group if its Lie algebra is simple. A simple Lie group su
h as SU(2) is not ne
essarily a

simple group be
ause it 
an have a non-trivial �nite 
entre.

If fS

j

: j 2 Jg is a family of LAS-groups, then G =

Q

j2J

S

j

is either a �nite

group or an LAS-group: Indeed let A

j

be a 
losed abelian subgroup of S

j

su
h that

w(A

j

) = w(S

j

) and set A

def

=

Q

j2J

A

j

. For an in�nite group G we have w(G) =

sup(f
ardJg [ fw(S

j

) : j 2 Jg) (see e.g. [7, p. 764℄). Thus w(S) = w(A). As a


onsequen
e, the following lemma is quite elementary:

Lemma F. Every in�nite stri
tly redu
tive group is an LAS-group. �

The signi�
an
e of the 
lass of stri
tly redu
tive groups is 
lear from the next theorem

whi
h we proved in [8℄.

Countable Layer Theorem. Any 
ompa
t group G has a 
anoni
al 
ountable

des
ending sequen
e G = 


0

(G) � � � � � 


n

(G) � � � � of 
losed 
hara
teristi
 subgroups

of G with the two properties, that their interse
tion

T

1

n=1




n

(G) is Z

0

(G

0

) , the identity
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omponent of the 
entre of the identity 
omponent G

0

of G , and that ea
h quotient group

�

n

(G)

def

= 


n�1

(G)=


n

(G) is a stri
tly redu
tive group. �

In [7℄ there are numerous pie
es of information on the stru
ture of 
ompa
t groups

whi
h express the intuition that large 
ompa
t groups are \broad and wide" but not too

\deep." The Countable Layer Theorem 
on�rms this impression. We shall use it in this

paper to prove:

Theorem G. (The Dominant Layer Theorem for Pro�nite Groups) Assume that G

is an in�nite pro�nite group for whi
h there is a natural number n su
h that w

�




n

(G)

�

<

w(G) . Then G is an LAS-group.

The proofs of our results require some tools in addition to the Countable Layer

Theorem, and we shall �rst provide these.

2. The Automorphism group of a Stri
tly Redu
tive Group.

For a lo
ally 
ompa
t group the topology on the automorphism group is a re�nement

of the 
ompa
t open topology (
f. [7, p. 257℄). If B

j

, j = 1; 2 are bases for two topologies

O

j

on a set X , then fU\V : U 2 B

1

; V 2 B

2

g is a basis for O

1

_O

2

. Let X

j

= (X;O

j

)

and X = (X;O

1

_ O

2

). Sin
e 
learly w(X) � w(X

j

), we dedu
e

(�) w(X) = maxfw(X

1

); w(X

2

)g

if at least one of the topologies is in�nite.

Now we re
all that for a lo
ally 
ompa
t group G , the topology O of the automor-

phism group AutG is CO _ CO

�1

where OC is the 
ompa
t open topology indu
ed

from that of Hom(G;G) (
f. [7, p. 257℄). In [7, p. 361, Corollary 7 �75℄, it is shown that

for two lo
ally 
ompa
t abelian groups A and B one has

(��) w

�

Hom(A;B)

�

� maxfw(A); w(B)g:

The proof of Claim (b) of the required Proposition 7 �74 of [7℄ is readily modi�ed so

that the last line of that proof remains true for non-abelian groups; this is the only

pla
e where 
ommutativity is used. Thus Proposition 7.75 of [7℄ is available for lo
ally


ompa
t groups whi
h are not ne
essarily abelian. We shall write End(G) instead of

Hom(G;G).

Lemma 2 �1. Let G be an in�nite lo
ally 
ompa
t group. Then

w

�

Aut(G)

�

� w

�

End(G)

�

� w(G):

Proof. By the pre
eding remarks, we have w

�

End(G)

�

� w(G) from (��). Then by

the de�nition of the topology of Aut(G), in view of (�) above, we obtain w

�

Aut(G)

�

�

w

�

End(G)

�

. �

Now we return to stri
tly redu
tive 
ompa
t groups. Let us re
all some notation from

[8℄.

Notation. Let S denote a set of representatives for the set of isomorphism 
lasses

of the 
lass of all 
ompa
t simple groups. For a 
ompa
t group G and S 2 S , the

smallest 
losed subgroup G

S

of G 
ontaining all 
losed normal subgroups isomorphi


to S is 
alled the S -so
le of G .

We showed in [8℄, 2 �3 that for a stri
tly redu
tive 
ompa
t group G and the sequen
e

(G

S

)

S2S

of S -so
les of G , there is a sequen
e of 
ardinals

�

J(G;S)

�

S2S

su
h that

G

�

=

Y

S2S

G

S

; G

S

�

=

S

J(G;S)

:
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Proposition 2 �2. Let G =

Q

S2S

S

J(G;S)

be stri
tly redu
tive. Then every

automorphism f of G preserves G

S

, and the morphism

(f

S

)

S2S

7!

�

(s

S

)

S2S

7! (f

S

(s

S

))

S2S

�

:

Y

S2S

Aut(S

J(G;S)

)! Aut(G)

is an isomorphism.

Proof. This is a straightforward exer
ise. �

Proposition 2 �2 redu
es the stru
ture theory of Aut(G) to the determination of the

automorphism group of S

X

for a set X and S 2 S . The situation will be di�erent

a

ording as S is abelian or non-abelian.

Firstly we deal with the abelian 
ase

Proposition 2 �3. Assume that S 2 S is abelian, say, S = Z(p) , then

(i) AutS

X

�

=

GL

�

Z(p)

(X)

�

.

(ii) If X is in�nite, then w(AutS

X

) = 
ardX .

Proof. (i) The 
ompa
t abelian group G

def

= S

X

has 
hara
ter group

b

G whi
h 
an

be identi�ed with Z(p)

(X)

. Now � 7!

b

� : AutG ! Aut

b

G is an anti-isomorphism and

Aut

b

G

�

=

GL

�

Z(p)

(X)

�

. Every group has the anti-automorphism x 7! x

�1

.

(ii) Sin
e linear self-maps of Z(p)

(X)

are determined by their a
tion on a basis we have

an isomorphism GL(Z(p)

(X)

)

�

=

(Z(p)

(X)

)

X

and w

�

(Z(p)

(X)

)

X

�

= w

�

(Z(p)

(X)

)

X

�

=

maxf
ardX;w(Z(p)

(X)

)g (
f. [7, p. 763, 764, EA4 �3℄), and this 
ardinal equals 
ardX .�

Next we turn to the non-abelian 
ase

If G is a 
ompa
t group, let InnG � AutG denote the normal subgroup of inner

automorphisms and de�ne OutG

def

= (AutS)=(InnS), 
alled the outer automorphism

group.

We a
knowledge the fa
t that the outer automorphism group is not a group of auto-

morphisms, but the terminology is entren
hed in the literature.

Lemma 2 �4. If S 2 S , then OutG is a �nite soluble group.

Proof. If S is 
onne
ted, then OutG is isomorphi
 to the symmetry group of the

Dynkin diagram whi
h is a �nite soluble group. (Indeed it is abelian with one ex
eption,

D

4

whose automorphism group is S

3

.)

If S is a �nite simple group, then the S
hreier Conje
ture applies; it asserts that for

a �nite simple group the outer automorphism group Out(S) is a (�nite) soluble group,

and it is veri�ed by the 
lassi�
ation of �nite simple groups. �

Let X be a set. If F is a �nite �eld, su
h as Z(p), then any F -ve
tor spa
e of

dimension 
ardX is isomorphi
 to the dire
t sum V = F

(X)

and EndV

�

=

M

X�X

(F )

the ring of 
olumn �nite matri
es. These form a subset of the 
ompa
t spa
e F

X�X

with

the Ty
hono� topology. If EndV is equipped with the topology of pointwise 
onvergen
e

then the identi�
ation EndV ! M

X�X

(F ) is a homeomorphism. The group of units

of EndV is the automorphism group Aut V = GL(V ) and w(Aut V ) � w(V ) = 
ardX

if X is in�nite.

Now de�ne P (X) � X

X

to be the group of all bije
tions with the topology introdu
ed

in [7, p. 506℄. For ea
h �nite set E � X set W

id

(E) = ff 2 P (X) : (8x 2 E) f(x) = xg ;

then the set of all W

id

(E) as E ranges through the set of �nite subsets of X is a basis

for the identity neighbourhoods of a group topology for P (X).
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The group P (X) operates on Z(2)

(X)

by � �(r

x

)

x2X

= (r

�

�1

(x)

)

x2X

. Thus we obtain

a faithful representation

�:P (X)! GL

�

X;Z(2)

�

; �(�)

�

(r

x

)

x2X

�

= (r

�

�1

(x)

)

x2X

:

Lemma 2 �5. The representation �:P (X) ! GL

�

X;Z(2)

�

is a topologi
al embed-

ding.

Proof. An element � 2 P (X) is in W

id

(E) for some �nite subset E if and only if

�(�) �xes the basis ve
tors (Æ

xe

)

x2X

, e 2 E for the Krone
ker

Æ

xy

=

n

1 if x = y,

0 otherwise.

The proof of Lemma 9.83 of [7, p. 508℄ whi
h is expressed for a 
ompa
t 
onne
ted

simple group S applies also to any non-abelian �nite simple group and yields the

following.

Theorem 2 �6. (The Automorphism Group of Stri
tly Redu
tive Groups) Let

G =

Q

S2S

S

J(G;S)

be a stri
tly redu
tive group. Then AutG

�

=

Q

S2S

Aut(S

J(G;S)

) ,

and the groups AutS

J(G;S)

are determined as follows:

Assume that S is a 
ompa
t simple group and X is an arbitrary set.

Case A. Assume that S = Z(p) . Then AutS

X

�

=

GL(Z(p)

(X)

) and w(Aut S

X

) =


ardX .

Case B. Assume that S is non-abelian. Then

(i) Aut(S

X

)

�

=

Aut(S)

X

�

�

P (X) for a suitable automorphi
 a
tion

�:P (X)! Aut

�

[Aut(S)℄

X

�

.

(ii) If X is in�nite then w(AutS

X

) = w(S

X

) . The group InnS is isomorphi
 to S ,

and OutS = AutS= InnS is �nite and soluble.

(iii) If X is in�nite,

w

�

P (X)

�

� w

�

GL(X;Z(2))

�

� 
ardX:

Proof. The �rst assertion follows from 2 �2. Case A follows from 2 �3. Case B:

Assertion (i) is taken, mutatis mutandis, from the proof of Lemma 9.83 of [7, p. 508℄.

Proof of (ii): AutS is an extension of the normal subgroup InnS

�

=

S of inner

automorphisms by the �nite soluble group OutS . Thus we know that w

�

(AutS)

X

�

=

maxf�

0

; 
ardXg .

(iii) follows from Lemma 2 �5. �

The signi�
an
e of Theorem 2 �6 is that for any 
ompa
t group G with a normal

subgroup N whi
h is stri
tly redu
tive, we have a representation �:G ! AutN given

by �(g)(n) = gng

�1

; the stru
ture and size of AutN has just been determined in

Theorem 2 �6.

In this paper we do not need the full power of Theorem 2 �6. For most of our

appli
ations it suÆ
es to know the size of the automorphism group measured by its

weight. But Theorem 2 �6 is a viable result in its own right and is likely to be useful in

future appli
ations of the Countable Layer Theorem.

3. Abelian subgroups of a Compa
t Group

Re
all that the 
entralizer of a 
losed subgroup is 
losed, and that it is normal if the

subgroup is normal: indeed if g 2 G , then x 2 Z(N;G) implies

(gxg

�1

)n(gxg

�1

) = g

�

x(g

�1

ng)x

�1

�

g

�1

= g1g

�1

= 1:

For a subset N of G let Z(N;G) be the 
entralizer of N in G .
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Proposition 3 �1. Let G be an in�nite 
ompa
t group and N

/

G a 
losed normal

subgroup. Then

w

�

G=Z(N;G)

�

�

� w(N) if N is in�nite,

<1 if N is �nite.

In parti
ular, if N is small then Z(N;G) is very large.

Proof. (i) The fun
tion I :G ! AutN , I(x)(n) = xnx

�1

is a morphism of

topologi
al groups. Clearly ker I = Z(N;G). Sin
e G is 
ompa
t, so is G= ker I and

thus this group is embedded into AutN . Therefore, w(G=Z(N;G)) � w(AutN). If N

is in�nite, by Lemma 2 �1 we have w(AutN) � w(N) and thus

w

�

G=Z(N;G)

�

� w(N):

If N is �nite, then AutN is �nite and thus


ard

�

G=Z(N;G)

�

<1:

In the se
ond 
ase, as w(G) is in�nite, Z(N;G) is very large in G . In the �rst 
ase this

is true if w(N) < w(G). �

Remark 3 �2. Let N be a 
losed normal subgroup of a 
ompa
t group G .

(i) If N is abelian, then N � Z(G;N), and

(ii) if N is 
entre-free, then N \Z(N;G) = f1g and the produ
t NZ(N;G) is a dire
t

produ
t of 
ompa
t groups.

Proof. (i) Every abelian subgroup is 
ontained in its 
entralizer. (ii) Sin
e Z(N),

the 
entre of N , is N \Z(N;G) and sin
e all groups in sight are 
ompa
t, the assertion

follows. �

The following lemma pertains to the multilinear algebra of topologi
al groups in

general. In this lemma and its proof we shall write all groups additively. Let V be a


ompa
t abelian group and let V 
 V be the tensor produ
t of 
ompa
t abelian groups

[6℄ whi
h, together with the bilinear 
ontinuous fun
tion 
 : V � V ! V 
 V 
lassi�es


ontinuous Z-bilinear maps b:V � V ! W into a topologi
al group by providing a

unique morphism b

0

:V 
 V !W su
h that b(v; v

0

) = b

0

(v 
 b

0

).

Lemma 3 �3. For a 
ompa
t abelian group V

(i) the tensor produ
t V 
 V is totally dis
onne
ted, and

(ii) if V=V

0

is in�nite, then w(V 
 V ) = w(V=V

0

) .

Proof. We have Hom(V 
 V;T)

�

=

Hom(V;Hom(V;T)) = Hom(V;

b

V ). Sin
e

b

V is

dis
rete ea
h morphism �:V !

b

V annihilates the identity 
omponent V

0

and �(V ) is

�nite. Hen
e V

0

2 ker� and �(V ) � tor

b

V . Thus V 
 V

�

=

(V=V

0

) 
 (V=V

0

). Write

W = V=V

0

. Then W is totally dis
onne
ted. For a prime p let W

p

denote the p-

Sylow subgroup of V (
f. [7, p. 370℄). So




W

p

is the p-Sylow subgroup of

b

V . Then

(V 
 V )b

�

=

Hom(V;

b

V ) = Hom(V;

P

p




W

p

)

�

=

P

p

Hom(V;




W

p

) =

P

p

Hom(W

p

;




W

p

).

Thus

w(V 
 V ) = 
ard

�

(V 
 V )b = 
ard

�

X

p

Hom(W

p

;




W

p

)

�

:

Thus we have to determine the 
ardinality of

P

p

Hom(W

p

;




W

p

). If W is in�nite,


ard

�

X

p

Hom(W

p

;




W

p

)

�

= max

�

�

0

; sup

p


ard

�

Hom(W

p

;




W

p

)

�	

:
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If W

p

is in�nite, then the divisible hull of




W

p

has the same 
ardinality as




W

p

itself

and is therefore of the form Z(p

1

)

(X)

with 
ardX = w(W

p

). Then Hom(W

p

;




W

p

) is

isomorphi
 to a subgroup of Hom(W

p

;Z(p

1

)

(X)

)

�

=

Hom

�

W

p

;Z(p

1

)

�

(X)

=




W

p

(X)

and

the 
ardinal of this group is w(W

p

). Thus


ard

�

X

p

Hom(W

p

;




W

p

)

�

� max

�

�

0

; sup

p

w(W

p

)

	

= w(W ):

Thus for in�nite W = V=V

0

we have w(V 
 V ) � w(W ).

On the other hand, let S be the p-so
le of




W

p

, then S

�

=

Z(p)

(X)

, and Hom(W

p

;




W

p

)


ontains a subgroup isomorphi
 to a subgroup of

Hom(W

p

;Z(p)

(X)

)

�

=

Hom(W

p

; Z(p))

(X)

;

sin
e W

p

has epimorphisms onto Z(p), this group has 
ardinality at least 
ardX =

w(W

p

). This implies w(V 
 V ) � w(W ). This 
ompletes the proof. �

We are interested in symple
ti
 maps, that is, 
ontinuous bilinear fun
tions �:V �V !

H , i.e. those satisfying �(v; v) = 0 for all v 2 V ; be
ause of the polarisation tri
k

0 = �(v+w; v+w)�(v; v)+�(v; w)+�(w; v)+�(w;w) = �(v; w)+�(w; v), they satisfy

�(w; v) = ��(v; w).

Let �:V �V ! V 
V be the bilinear map given by �(v

1

; v

2

) = v

1


v

2

. For a 
ompa
t

abelian group V , let

V

2

V = (V 
 V )=h�(v; v) : v 2 V i and let p:V 
 V !

V

2

V be

the quotient map. For v; w 2 V set v ^ w = p

�

�(v; w)

�

. Then for any symple
ti
 map

�:V � V ! H there is a unique morphism of topologi
al groups f

�

:

V

2

V ! H su
h

that �(v; w) = f

�

(v ^ w).

Lemma 3 �4. Let V be an in�nite 
ompa
t abelian group and let K be a 
losed

subgroup of

V

2

V .

(i) Assume that (

V

2

V )=K is in�nite. Then there is a 
losed subgroup A of V su
h

that A ^ A � K and w(V=A) � w

�

(

V

2

V )=K

�

.

(ii) Assume that (

V

2

V )=K is �nite. then there is a 
losed subgroup A of �nite index

in V su
h that A ^A � K .

Proof. (i) Set D

def

= (

V

2

V )=K ; then D is totally dis
onne
ted by Lemma 3 �3(i).

Let F :V � V ! D be the unique bilinear map su
h that F (v; v

0

) = (v ^ v

0

) +K .

The family N (D) of 
ompa
t open subgroups of D has 
ardinality w(D). Let

f :

V

2

V ! D be the unique morphism su
h that F (v; w) = f(v ^ w). For ea
h

U 2 N (D) let W (U) = f

�1

(U). Then by the surje
tivity of f we have 
ardfW (U) :

U 2 N (D) = 
ardN (D). Moreover

T

U

W (U) = C . There is some open subgroup

A(U) � V su
h that (A(U) ^ A(U) � W (U). Set A =

T

U2N (D)

A(U). Then

A ^ A � W (U) for all U 2 N . Hen
e A � A � C . Then the �lter basis F 
onsisting

of the �nite interse
tions of the set fA(U)=A : U 2 N (D) interse
ts in the singleton

set fAg , and thus by the 
ompa
tness of V=A 
onverges to A . Sin
e F � N (V=A) we

know that F is 
o�nal in N (V=A) and thus 
ardF = 
ardN (V=A) = w(V=A). But


ardF = 
ardfA(U) : U 2 N (D)g � 
ardN (D) = w(D). Hen
e w(V=A) � w(D).

This 
ompletes the proof of (i).

(ii) If (

V

2

V )=K is �nite, the K is open in

V

2

V . Also V

0

^V = f0g � K . Hen
e by

the 
ompa
tness of V there is an open subgroup A of V su
h that A^A � A^V � K .

Sin
e V is 
ompa
t and A open, V=A is dis
rete and 
ompa
t, hen
e �nite. �
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Lemma 3 �5. Let V be an in�nite 
ompa
t abelian group and �:V � V ! H a

symple
ti
 map into a topologi
al group H and let C be the smallest 
losed subgroup of

H 
ontaining �(V � V ) . Then

(i) there is a 
losed subgroup A of V su
h that �(A�A) = f0g and w(V=A) � w(H) ,

and

(ii) C is totally dis
onne
ted and 
ompa
t, and w(C) � w(V ) .

Proof. (i) There is a morphism f :

V

2

V ! H su
h that �(v; w) = f(v ^ w). Let

K = kerf . Then w

�

(

V

2

V )=K

�

= w(im f) � w(H). Then by Lemma 3 �4 there is a


losed subgroup A of V su
h that w(V=A) � w

�

V

2

V )=K

�

� w(H) and A ^ A � K ,

i.e. �(A �A) = f1g

(ii) Re
all that V ^V generates a dense subgroup of

V

2

V when
e C = f(

V

2

V ). Then

by Lemma 3 �3, the homomorphi
 image C of a totally dis
onne
ted 
ompa
t group is


ompa
t totally dis
onne
ted. Thus we have w(C) = w

�

f(

V

2

V )

�

� w(V ^V ) � w(V ).

�

Let G

0

be the 
losure of the 
ommutator subgroup of a topologi
al group G .

Lemma 3 �6. Let N be a 
losed 
entral subgroup of a 
ompa
t group G su
h that

G=N is abelian. Then G 
ontains a 
losed abelian subgroup A � N su
h that w(G=A) �

w(G

0

) � w(N) if N is in�nite and G=A is �nite if G

0

is �nite.

Proof. Sin
e N is 
entral in G , the group G is nilpotent of 
lass at most two.

Then (x; y) 7! [x; y℄ = xyx

�1

y

�1

:G � G ! G

0

� N is bilinear. We note that

�:G=N � G=N ! N , �(xN; yN) = [x; y℄ is a symple
ti
 map (G=N) � (G=N) ! G

0

.

Then by Lemma 3 �4 if G

0

is in�nite, there is a 
losed subgroup A of G 
ontaining N

su
h that [A;A℄ = �(A=N �A=N) = f0g , that is, A is abelian and w(V=A) � w(G

0

) �

w(N). If G

0

is �nite, then A 
an be found to have �nite index in G . �

In De�nition 1.1 we 
alled a subgroup H of a topologi
al group G large if w(H) =

w(G) and we 
alled G an LAS-group if it has large abelian subgroups. In order to

fa
ilitate the formulation of some te
hni
al results we 
omplement these de�nitions as

follows.

Definition 3 �7. Let G be a topologi
al group. A subgroup H of G is 
alled very

large if w(G=H) < w(G). A topologi
al group is 
alled a VLAS-group if it has very

large abelian subgroups.

The set of 
ardinals fw(G=H) : H � G and H is an abelian subgroup of Gg has a

smallest element sin
e every set of 
ardinals is well-ordered. This smallest element is


alled the abelian index abind(G). �

In [8℄ we established a result of whi
h the following is a 
orollary:

Fa
t 3 �8. Let G be an in�nite 
ompa
t group and H a 
losed subgroup. Then

w(G) = maxfw(H); w(G=H)g:

�

These 
on
epts are intended for in�nite groups G . The following remarks are immediate:

Remarks 3 �9. Let G be an in�nite 
ompa
t group. For a small subgroup H we

have w(G) = w(G=H). If H is a very large subgroup of G , it is large, and thus a VLAS{

group is an LAS-group. The group G is a VLAS-group if an only if abind(G) < w(G).�

All abelian topologi
al groups are VLAS-groups. A �nite non-abelian group is never

an LAS-group unless it is singleton. In Corollary B of the Introdu
tion it was shown

that every 
onne
ted 
ompa
t group is an LAS-group. Sin
e for a maximal pro-torus
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T of a 
onne
ted 
ompa
t group G , the fa
tor spa
e G=T has weight w(G), a similar

statement is true for all other maximal abelian subgroups T , a 
ompa
t 
onne
ted group

is not a VLAS-group.

If H is a large subgroup of G and H is an LAS-group then G is an LAS-group, and an

analogous statement is true for VLAS-groups. By the Redu
tion Theorem (Theorem C

in Se
tion 1) whi
h we shall prove in 3 �10 below, if N is a small 
losed normal subgroup

and G=N is an LAS-group, then G is an LAS-group.

The following theorem is the enabling result for proofs by indu
tion.

Theorem 3 �10. (The Redu
tion Theorem) Let G be an in�nite 
ompa
t group

and N

/

G a small 
losed normal subgroup.

(i) If G=N is an LAS-group then G is an LAS-group. Indeed, if B is an abelian

subgroup of N there is a 
losed abelian subgroup A of G 
ontaining B su
h that

w(A) = w(G) .

(ii) If G=N is a VLAS-group, then G is a VLAS-group. More spe
i�
ally,

abind(G) � maxfw(N); abindG=Ng or abind(G) is �nite.

Proof. Sin
e G=N is an LAS- [VLAS-℄ group, G 
ontains a large subgroup H su
h

that N

/

H and H=N is a large [very large℄ abelian subgroup of G=N . Thus

w(H) = maxfw(N); w(H=N)g = maxfw(N); w(G=N)g = w(G); respe
tively,

w(G=H) = w

�

(G=N)=(H=N)

�

< w(G=N) � w(G);

in the se
ond 
ase we may assume that w(G=H) = abind(G=N).

By Proposition 3 �1 we have w

�

H=Z(N;H)

�

� w(N) if N is in�nite and know that

H=Z(N;H) is �nite otherwise. Then Z(N) = Z(N;H) \N is 
entral in Z(N;H) and

Z(N;H)=Z(N)

�

=

H=N is abelian. Now Lemma 3 �6 applies and shows that Z(N;H)


ontains an abelian subgroup A

1


ontaining Z(N) su
h that

w(Z(N;H)=A

1

) = w

�

(Z(N;H)=Z(N))=(A

1

=Z(N))

�

� w(Z(N;H)

0

) � w

�

Z(N)

�

provided Z(N;H)

0

is in�nite. Otherwise A

1


an be found so as to have �nite index in

Z(N;H). Thus w(H=A

1

) � w(N) or H=A

1

is �nite. If B is any abelian subgroup of N ,

then A

1

� Z(N;G) and B 
ommute elementwise. Hen
e A = A

1

B is a 
losed abelian

subgroup of G 
ontaining B and satisfying w(H=A) � w(N) or jH=Aj < 1 . Thus if

w(G=H) = abind(G=N), then abind(G) � w(G=A) � maxfw(N); abind(G=N)g . �

We observe that in 
ase (ii), the group A may likewise be 
hosen so as to in
lude any

given abelian subgroup of N .

SuÆ
ient 
onditions for G=N to be an LAS-group are not hard to �nd:

(i) G=N is abelian.

(ii) G=N is stri
tly redu
tive.

(iii) G=N is 
onne
ted.

In those 
ases, if N is a small 
losed normal subgroup of the in�nite 
ompa
t group G ,

then G is an LAS-group.

Theorem 3 �11. (The Extension Theorem) Let G be an in�nite 
ompa
t group

and N a 
losed normal subgroup. If both G=N and N are LAS-groups then G is an

LAS-group.

Proof. Either N is large, that is w(N) = w(G), or N is small, that is w(N) <

w(G). In the �rst 
ase, sin
e N is an LAS-group, so is G . In the se
ond 
ase, the

Redu
tion Theorem 3 �10 applies. �
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Corollary 3 �12. (The Redu
tion Corollary) Let G be a 
ompa
t group and

assume that G=G

0

is an LAS-group. Then G is an LAS-group.

Proof. By Proposition A of the Introdu
tion, G

0

is an LAS-group. Hen
e the


orollary is a dire
t 
onsequen
e of the Extension Theorem 3 �11. �

Another immediate 
onsequen
e of the Extension Theorem is

Corollary 3 �13. (Redu
tion mod Z

0

(G

0

)) Let G be a 
ompa
t group. If

G=Z

0

(G

0

) is an LAS-group, then G is an LAS-group. �

By this 
orollary, whenever we wish to use the Countable Layer Theorem for proving

that a 
ompa
t group G is an LAS-group we may assume that Z

0

(G

0

) = f1g .

A simple indu
tion argument yields the following 
onsequen
e of the Extension The-

orem 3 �11:

Corollary 3 �14. Let G be an in�nite 
ompa
t group and let N

1

� � � � � N

k

be

a �nite sequen
e of 
losed normal subgroups of G su
h that G=N

1

and N

j�1

=N

j

are

LAS-groups for j = 2; : : : ; k . Then G is an LAS-group. �

Re
all the 
on
ept of layers from the Countable Layer Theorem and the paragraph

following it in the Introdu
tion. The next result is an immediate 
onsequen
e:

Proposition 3 �15. If an in�nite 
ompa
t group has only a �nite number of layers,

then it is an LAS-group.

Proof. Apply Corollary 3 �14 with N

j

= 


j

(G) and noti
e that all of G=N

1

and

N

j�1

=N

j

are either stri
tly redu
tive or 
onne
ted abelian. �

4. Applying the Countable Layer Theorem

Let G be a 
ompa
t group and re
all the sequen
e of 
hara
teristi
 subgroups 


n

(G)

of the Countable Layer Theorem in the Introdu
tion.

Theorem 4 �1. (The Dominant Layer Theorem) Let G be a 
ompa
t group. If

there is a natural number n su
h that w

�




n

(G)=Z

0

(G

0

)

�

< w

�

G=Z

0

(G

0

)

�

then G is an

LAS-group.

Proof. By Proposition 3 �15, G=


n

(G) is an LAS-group. Therefore

�

G=Z

0

(G

0

)

�Æ�




n

(G)=Z

0

(G

0

)

�

is an LAS-group. By hypothesis, 


n

(G)=Z

0

(G

0

) is a small subgroup of G=Z

0

(G

0

).

Then by the Redu
tion Theorem 3 �10, the group G=Z

0

(G

0

) is an LAS-group and thus

by 3 �14, G is an LAS-group. �

The name of the theorem will be
ome more obvious when we formulate and prove

Theorem 4 �4 below.

Corollary 4 �2. Let G be a pro�nite group. If w(


n

(G)) < w(G) for some n ,

then G is an LAS-group. �

A

ordingly, if the Abelian Subgroup Conje
ture is false, then there exists a 
ounterex-

ample G where G is a pro�nite group su
h that w

�




n

(G)

�

= w(G) for all n = 1; 2 : : : .

In view of 3 �14, for further 
omments, we may just as well assume that Z

0

(G

0

) = f1g .

Then let us �nally express the 
ondition that w

�




n

(G)

�

< w(G) in terms of the layers

of the Countable Layer Theorem.
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Lemma 4 �3. Let G � N

1

� N

2

� N

3

� � � � be a des
ending sequen
e of in�nite

normal subgroups with

T

1

n=1

N

n

= f1g .

Proof. Then the following 
onditions are equivalent:

(i) w(N

1

) < w(G).

(ii) There is a 
ardinal � < w(G) su
h that w(N

n�1

=N

n

) � � for n = 2; 3; : : : .

Proof. (i) implies (ii): w(N

n�1

=N

n

) � w(N

n�1

) � w(N

1

). Thus let � = w(N

1

).

(ii))(i): Repeated appli
ation of Fa
t 3 �8 yields

w(N

1

=N

n

) = maxfw(N

1

=N

2

); : : : ; w(N

n�1

=N

n

)g:

Thus w(N

1

=N

n

) � � by (ii). From

T

n

N

n

= f1g and the 
ompa
tness of N

1

we


on
lude that N

1

�

=

lim

n

N

1

=N

n

and thus w(N

1

) = sup

n

w(N

1

=N

n

) � � < w(G). �

Let us now return to the Countable Layer Theorem in the Introdu
tion. The fa
tor

groups �

n

(G), n = 1; 2; : : : are 
alled the layers. We shall say that a layer �

n

(G) is

dominant if there is a 
ardinal � su
h that w(�

m

(G)) � � < w

�

�

n

(G)

�

for m 6= n .

Theorem 4 �4. (The Dominant Layer Theorem, Se
ond Version) Any in�nite


ompa
t group with a dominant layer is an LAS-group.

Proof. We may assume that Z

0

(G

0

) = f1g . Let �

n

(G) = 


n�1

(G)=


n

(G)

be a dominant layer with a minimal n . We apply Lemma 4 �3 with N

1

= 


n

(G),

N

2

= 


n+1

(G) et
. and obtain w

�




n

(G)

�

< w

�

G=


n

(G)

�

� w(G). Then Theorem 4 �1

proves the 
laim. �

Let us 
omment �nally that under the hypotheses of Theorems 4 �1 and 4 �4 we have

an additional pie
e of information.

Proposition 4 �5. Let G be an in�nite pro�nite group su
h that 


n

(G) is small

for some n 2 f1; 2; : : :g . Then G has a large subgroup S 
ontaining 


n

(G) whi
h


ontains an abelian subgroup A su
h that w(S=A) < w(S) ; that is, S is a VLAS-group.

Proof. We obtain S dire
tly from 3 �15 su
h that S=


n

(G) is abelian and w(S) =

w(G). Now we apply 3 �10(ii) with S in pla
e of G and 


n

(G) in pla
e of N and �nd

abind(S) � maxfw(
(G)); abind S=


n

(G)g = w

�




n

(G)

�

sin
e S=


n

(G) is abelian and

thus has abelian index zero. But w

�




n

(G)

�

< w(G) = w(S). Thus abind(S) < w(S).�
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Added in proof. In the meantime, WOLFGANG HERFORT pointed out (W. Herfort, The Abelian

Subgroup Conje
ture: A Counter Example, J. of Lie Theory 12 (2002), 305{308) that the free pro�nite

p -group F

p

(X) on any in�nite set X 
onverging to 1 has weight 
ard(X) and has the property that all of

its 
losed subgroups are free (see [12℄ or [15℄). Thus the only nondegenerate abelian 
losed subgroups are

isomorphi
 to the additive group Z

p

of p -adi
 integers, and thus all abelian subgroups have a 
ountable

weight. Hen
e F

p

(X) is a 
ounterexample to the Abelian Subgroup Conje
ture for any un
ountable set

X . (See our 
omment pre
eding Theorem C for the dis
rete 
ase.) In 
ontrast with the hypothesis of the

Dominant Layer Theorem 4 �4, the layers of F

p

(X) are all isomorphi
 to Z(p)

X

and thus have weight


ard(X) . The results of this paper remain valid and are a 
hallenge to �nd further suÆ
ient, perhaps

even ne
essary and suÆ
ient 
onditions for a pro�nite group to be an LAS-group.


