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1. Introdution: The abelian subgroup onjeture

In this paper we formulate a new onjeture and introdue methods to verify it in

many ases.

Conjeture. (The Abelian Subgroup Conjeture) Every in�nite ompat group G

has an abelian subgroup A of weight w(A) = w(G) .

As usual the weight w(X) of a topologial spae X is de�ned by

w(X) = minfardB : B is a basis of the topology of Xg:

When G is an in�nite metrizable ompat group, that is w(G) = �

0

, the onjeture

states that G ontains an in�nite abelian subgroup. It is a onsequene of Wilson

[14℄ that this is the ase if every ompat torsion p-group ontains an in�nite abelian

subgroup; a purely group theoreti result by Hall and Kulatilak [3℄, and by Kargapolov

[11℄ from the early sixties states that an in�nite loally �nite group has an in�nite

abelian subgroup. The �nishing touh was applied by Zelmanov [16℄ who proved that

every ompat p-torsion group is loally �nite. Thus our Abelian Subgroup Conjeture

is settled for ompat groups G with w(G) = �

0

. But this line of argument does not tell

us whether a non-metrizable ompat group G must ontain a non-metrizable ompat

abelian subgroup A , that is, whether w(G) > �

0

implies the existene of A suh that

w(A) > �

0

. If true, our onjeture would show this and more.

The following de�nition assists us in addressing our onjeture and what we know

about it.

Definition 1 �1. (i) A subgroup A of a topologial group G is said to be large if

w(A) = w(G) and is said to be small if w(A) < w(G).

(ii) A topologial group G is alled an LAS-group if it has a large abelian subgroup.

�

Thus the Abelian Subgroup Conjeture asserts that every ompat group is an LAS-

group.

�
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Proposition A. Let G be a loally ompat group in whih the identity omponent

G

0

is large. Then G is an LAS-group.

Proof. Firstly assume that G is ompat. Then G ontains a maximal ompat

onneted abelian subgroup T (pro-torus in the language of [7℄) suh that w(T ) = w(G

0

)

(see [7, pp. 465, 466, Theorem 9 �36(vi)℄). Sine G

0

is large we have w(G

0

) = w(G).

Thus w(T ) = w(G) and G is an LAS-group.

Now if G is loally ompat then for a maximal ompat subgroup K of G

0

the

group G

0

is homeomorphi to the produt spae K � R

n

for some n (see [10℄ or [5℄).

Let T be a maximal pro-torus of K . By the preeding, w(T ) = w(K), but learly

w(K) = w(G

0

) and sine G

0

is large, w(G

0

) = w(G). �

Corollary B. Every onneted loally ompat group is an LAS-group. �

So the Abelian Subgroup Conjeture is true for onneted ompat groups.

Notie that any abelian subgroup of a disrete free group is ountable, and thus there

are disrete, hene loally ompat, groups whih are not LAS-groups.

We shall prove the following:

Theorem C. (The Redution Theorem) Let G be an in�nite ompat group and

N

/

G a losed normal small subgroup suh that G=N is an LAS-group. Then G is an

LAS-group.

The next result is an easy onsequene of the Redution Theorem.

Theorem D. (The Extension Theorem) Let G be an in�nite ompat group and

N a losed normal subgroup suh that G=N and N are LAS-groups. Then G is an

LAS-group.

As a onsequene of Proposition A and Theorem D we obtain at one a result whih

will show that proving or disproving the Abelian Subgroup Conjeture is a problem on

pro�nite groups.

Corollary E. (The Redution Corollary) Let G be a ompat group and assume

that G=G

0

is an LAS-group. Then G is an LAS-group.

In [8℄ we alled a ompat group stritly redutive if it is (isomorphi to) a artesian

produt of ompat simple groups, where we all a group simple if it has no more than

two normal subgroups. Aordingly a ompat simple group is either yli of prime

order, or �nite simple, or is a entre-free ompat onneted simple Lie group. It is

important to point out that a ompat onneted Lie group is said to be a simple Lie

group if its Lie algebra is simple. A simple Lie group suh as SU(2) is not neessarily a

simple group beause it an have a non-trivial �nite entre.

If fS

j

: j 2 Jg is a family of LAS-groups, then G =

Q

j2J

S

j

is either a �nite

group or an LAS-group: Indeed let A

j

be a losed abelian subgroup of S

j

suh that

w(A

j

) = w(S

j

) and set A

def

=

Q

j2J

A

j

. For an in�nite group G we have w(G) =

sup(fardJg [ fw(S

j

) : j 2 Jg) (see e.g. [7, p. 764℄). Thus w(S) = w(A). As a

onsequene, the following lemma is quite elementary:

Lemma F. Every in�nite stritly redutive group is an LAS-group. �

The signi�ane of the lass of stritly redutive groups is lear from the next theorem

whih we proved in [8℄.

Countable Layer Theorem. Any ompat group G has a anonial ountable

desending sequene G = 


0

(G) � � � � � 


n

(G) � � � � of losed harateristi subgroups

of G with the two properties, that their intersetion

T

1

n=1




n

(G) is Z

0

(G

0

) , the identity
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omponent of the entre of the identity omponent G

0

of G , and that eah quotient group

�

n

(G)

def

= 


n�1

(G)=


n

(G) is a stritly redutive group. �

In [7℄ there are numerous piees of information on the struture of ompat groups

whih express the intuition that large ompat groups are \broad and wide" but not too

\deep." The Countable Layer Theorem on�rms this impression. We shall use it in this

paper to prove:

Theorem G. (The Dominant Layer Theorem for Pro�nite Groups) Assume that G

is an in�nite pro�nite group for whih there is a natural number n suh that w

�




n

(G)

�

<

w(G) . Then G is an LAS-group.

The proofs of our results require some tools in addition to the Countable Layer

Theorem, and we shall �rst provide these.

2. The Automorphism group of a Stritly Redutive Group.

For a loally ompat group the topology on the automorphism group is a re�nement

of the ompat open topology (f. [7, p. 257℄). If B

j

, j = 1; 2 are bases for two topologies

O

j

on a set X , then fU\V : U 2 B

1

; V 2 B

2

g is a basis for O

1

_O

2

. Let X

j

= (X;O

j

)

and X = (X;O

1

_ O

2

). Sine learly w(X) � w(X

j

), we dedue

(�) w(X) = maxfw(X

1

); w(X

2

)g

if at least one of the topologies is in�nite.

Now we reall that for a loally ompat group G , the topology O of the automor-

phism group AutG is CO _ CO

�1

where OC is the ompat open topology indued

from that of Hom(G;G) (f. [7, p. 257℄). In [7, p. 361, Corollary 7 �75℄, it is shown that

for two loally ompat abelian groups A and B one has

(��) w

�

Hom(A;B)

�

� maxfw(A); w(B)g:

The proof of Claim (b) of the required Proposition 7 �74 of [7℄ is readily modi�ed so

that the last line of that proof remains true for non-abelian groups; this is the only

plae where ommutativity is used. Thus Proposition 7.75 of [7℄ is available for loally

ompat groups whih are not neessarily abelian. We shall write End(G) instead of

Hom(G;G).

Lemma 2 �1. Let G be an in�nite loally ompat group. Then

w

�

Aut(G)

�

� w

�

End(G)

�

� w(G):

Proof. By the preeding remarks, we have w

�

End(G)

�

� w(G) from (��). Then by

the de�nition of the topology of Aut(G), in view of (�) above, we obtain w

�

Aut(G)

�

�

w

�

End(G)

�

. �

Now we return to stritly redutive ompat groups. Let us reall some notation from

[8℄.

Notation. Let S denote a set of representatives for the set of isomorphism lasses

of the lass of all ompat simple groups. For a ompat group G and S 2 S , the

smallest losed subgroup G

S

of G ontaining all losed normal subgroups isomorphi

to S is alled the S -sole of G .

We showed in [8℄, 2 �3 that for a stritly redutive ompat group G and the sequene

(G

S

)

S2S

of S -soles of G , there is a sequene of ardinals

�

J(G;S)

�

S2S

suh that

G

�

=

Y

S2S

G

S

; G

S

�

=

S

J(G;S)

:
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Proposition 2 �2. Let G =

Q

S2S

S

J(G;S)

be stritly redutive. Then every

automorphism f of G preserves G

S

, and the morphism

(f

S

)

S2S

7!

�

(s

S

)

S2S

7! (f

S

(s

S

))

S2S

�

:

Y

S2S

Aut(S

J(G;S)

)! Aut(G)

is an isomorphism.

Proof. This is a straightforward exerise. �

Proposition 2 �2 redues the struture theory of Aut(G) to the determination of the

automorphism group of S

X

for a set X and S 2 S . The situation will be di�erent

aording as S is abelian or non-abelian.

Firstly we deal with the abelian ase

Proposition 2 �3. Assume that S 2 S is abelian, say, S = Z(p) , then

(i) AutS

X

�

=

GL

�

Z(p)

(X)

�

.

(ii) If X is in�nite, then w(AutS

X

) = ardX .

Proof. (i) The ompat abelian group G

def

= S

X

has harater group

b

G whih an

be identi�ed with Z(p)

(X)

. Now � 7!

b

� : AutG ! Aut

b

G is an anti-isomorphism and

Aut

b

G

�

=

GL

�

Z(p)

(X)

�

. Every group has the anti-automorphism x 7! x

�1

.

(ii) Sine linear self-maps of Z(p)

(X)

are determined by their ation on a basis we have

an isomorphism GL(Z(p)

(X)

)

�

=

(Z(p)

(X)

)

X

and w

�

(Z(p)

(X)

)

X

�

= w

�

(Z(p)

(X)

)

X

�

=

maxfardX;w(Z(p)

(X)

)g (f. [7, p. 763, 764, EA4 �3℄), and this ardinal equals ardX .�

Next we turn to the non-abelian ase

If G is a ompat group, let InnG � AutG denote the normal subgroup of inner

automorphisms and de�ne OutG

def

= (AutS)=(InnS), alled the outer automorphism

group.

We aknowledge the fat that the outer automorphism group is not a group of auto-

morphisms, but the terminology is entrenhed in the literature.

Lemma 2 �4. If S 2 S , then OutG is a �nite soluble group.

Proof. If S is onneted, then OutG is isomorphi to the symmetry group of the

Dynkin diagram whih is a �nite soluble group. (Indeed it is abelian with one exeption,

D

4

whose automorphism group is S

3

.)

If S is a �nite simple group, then the Shreier Conjeture applies; it asserts that for

a �nite simple group the outer automorphism group Out(S) is a (�nite) soluble group,

and it is veri�ed by the lassi�ation of �nite simple groups. �

Let X be a set. If F is a �nite �eld, suh as Z(p), then any F -vetor spae of

dimension ardX is isomorphi to the diret sum V = F

(X)

and EndV

�

=

M

X�X

(F )

the ring of olumn �nite matries. These form a subset of the ompat spae F

X�X

with

the Tyhono� topology. If EndV is equipped with the topology of pointwise onvergene

then the identi�ation EndV ! M

X�X

(F ) is a homeomorphism. The group of units

of EndV is the automorphism group Aut V = GL(V ) and w(Aut V ) � w(V ) = ardX

if X is in�nite.

Now de�ne P (X) � X

X

to be the group of all bijetions with the topology introdued

in [7, p. 506℄. For eah �nite set E � X set W

id

(E) = ff 2 P (X) : (8x 2 E) f(x) = xg ;

then the set of all W

id

(E) as E ranges through the set of �nite subsets of X is a basis

for the identity neighbourhoods of a group topology for P (X).
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The group P (X) operates on Z(2)

(X)

by � �(r

x

)

x2X

= (r

�

�1

(x)

)

x2X

. Thus we obtain

a faithful representation

�:P (X)! GL

�

X;Z(2)

�

; �(�)

�

(r

x

)

x2X

�

= (r

�

�1

(x)

)

x2X

:

Lemma 2 �5. The representation �:P (X) ! GL

�

X;Z(2)

�

is a topologial embed-

ding.

Proof. An element � 2 P (X) is in W

id

(E) for some �nite subset E if and only if

�(�) �xes the basis vetors (Æ

xe

)

x2X

, e 2 E for the Kroneker

Æ

xy

=

n

1 if x = y,

0 otherwise.

The proof of Lemma 9.83 of [7, p. 508℄ whih is expressed for a ompat onneted

simple group S applies also to any non-abelian �nite simple group and yields the

following.

Theorem 2 �6. (The Automorphism Group of Stritly Redutive Groups) Let

G =

Q

S2S

S

J(G;S)

be a stritly redutive group. Then AutG

�

=

Q

S2S

Aut(S

J(G;S)

) ,

and the groups AutS

J(G;S)

are determined as follows:

Assume that S is a ompat simple group and X is an arbitrary set.

Case A. Assume that S = Z(p) . Then AutS

X

�

=

GL(Z(p)

(X)

) and w(Aut S

X

) =

ardX .

Case B. Assume that S is non-abelian. Then

(i) Aut(S

X

)

�

=

Aut(S)

X

�

�

P (X) for a suitable automorphi ation

�:P (X)! Aut

�

[Aut(S)℄

X

�

.

(ii) If X is in�nite then w(AutS

X

) = w(S

X

) . The group InnS is isomorphi to S ,

and OutS = AutS= InnS is �nite and soluble.

(iii) If X is in�nite,

w

�

P (X)

�

� w

�

GL(X;Z(2))

�

� ardX:

Proof. The �rst assertion follows from 2 �2. Case A follows from 2 �3. Case B:

Assertion (i) is taken, mutatis mutandis, from the proof of Lemma 9.83 of [7, p. 508℄.

Proof of (ii): AutS is an extension of the normal subgroup InnS

�

=

S of inner

automorphisms by the �nite soluble group OutS . Thus we know that w

�

(AutS)

X

�

=

maxf�

0

; ardXg .

(iii) follows from Lemma 2 �5. �

The signi�ane of Theorem 2 �6 is that for any ompat group G with a normal

subgroup N whih is stritly redutive, we have a representation �:G ! AutN given

by �(g)(n) = gng

�1

; the struture and size of AutN has just been determined in

Theorem 2 �6.

In this paper we do not need the full power of Theorem 2 �6. For most of our

appliations it suÆes to know the size of the automorphism group measured by its

weight. But Theorem 2 �6 is a viable result in its own right and is likely to be useful in

future appliations of the Countable Layer Theorem.

3. Abelian subgroups of a Compat Group

Reall that the entralizer of a losed subgroup is losed, and that it is normal if the

subgroup is normal: indeed if g 2 G , then x 2 Z(N;G) implies

(gxg

�1

)n(gxg

�1

) = g

�

x(g

�1

ng)x

�1

�

g

�1

= g1g

�1

= 1:

For a subset N of G let Z(N;G) be the entralizer of N in G .
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Proposition 3 �1. Let G be an in�nite ompat group and N

/

G a losed normal

subgroup. Then

w

�

G=Z(N;G)

�

�

� w(N) if N is in�nite,

<1 if N is �nite.

In partiular, if N is small then Z(N;G) is very large.

Proof. (i) The funtion I :G ! AutN , I(x)(n) = xnx

�1

is a morphism of

topologial groups. Clearly ker I = Z(N;G). Sine G is ompat, so is G= ker I and

thus this group is embedded into AutN . Therefore, w(G=Z(N;G)) � w(AutN). If N

is in�nite, by Lemma 2 �1 we have w(AutN) � w(N) and thus

w

�

G=Z(N;G)

�

� w(N):

If N is �nite, then AutN is �nite and thus

ard

�

G=Z(N;G)

�

<1:

In the seond ase, as w(G) is in�nite, Z(N;G) is very large in G . In the �rst ase this

is true if w(N) < w(G). �

Remark 3 �2. Let N be a losed normal subgroup of a ompat group G .

(i) If N is abelian, then N � Z(G;N), and

(ii) if N is entre-free, then N \Z(N;G) = f1g and the produt NZ(N;G) is a diret

produt of ompat groups.

Proof. (i) Every abelian subgroup is ontained in its entralizer. (ii) Sine Z(N),

the entre of N , is N \Z(N;G) and sine all groups in sight are ompat, the assertion

follows. �

The following lemma pertains to the multilinear algebra of topologial groups in

general. In this lemma and its proof we shall write all groups additively. Let V be a

ompat abelian group and let V 
 V be the tensor produt of ompat abelian groups

[6℄ whih, together with the bilinear ontinuous funtion 
 : V � V ! V 
 V lassi�es

ontinuous Z-bilinear maps b:V � V ! W into a topologial group by providing a

unique morphism b

0

:V 
 V !W suh that b(v; v

0

) = b

0

(v 
 b

0

).

Lemma 3 �3. For a ompat abelian group V

(i) the tensor produt V 
 V is totally disonneted, and

(ii) if V=V

0

is in�nite, then w(V 
 V ) = w(V=V

0

) .

Proof. We have Hom(V 
 V;T)

�

=

Hom(V;Hom(V;T)) = Hom(V;

b

V ). Sine

b

V is

disrete eah morphism �:V !

b

V annihilates the identity omponent V

0

and �(V ) is

�nite. Hene V

0

2 ker� and �(V ) � tor

b

V . Thus V 
 V

�

=

(V=V

0

) 
 (V=V

0

). Write

W = V=V

0

. Then W is totally disonneted. For a prime p let W

p

denote the p-

Sylow subgroup of V (f. [7, p. 370℄). So



W

p

is the p-Sylow subgroup of

b

V . Then

(V 
 V )b

�

=

Hom(V;

b

V ) = Hom(V;

P

p



W

p

)

�

=

P

p

Hom(V;



W

p

) =

P

p

Hom(W

p

;



W

p

).

Thus

w(V 
 V ) = ard

�

(V 
 V )b = ard

�

X

p

Hom(W

p

;



W

p

)

�

:

Thus we have to determine the ardinality of

P

p

Hom(W

p

;



W

p

). If W is in�nite,

ard

�

X

p

Hom(W

p

;



W

p

)

�

= max

�

�

0

; sup

p

ard

�

Hom(W

p

;



W

p

)

�	

:
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If W

p

is in�nite, then the divisible hull of



W

p

has the same ardinality as



W

p

itself

and is therefore of the form Z(p

1

)

(X)

with ardX = w(W

p

). Then Hom(W

p

;



W

p

) is

isomorphi to a subgroup of Hom(W

p

;Z(p

1

)

(X)

)

�

=

Hom

�

W

p

;Z(p

1

)

�

(X)

=



W

p

(X)

and

the ardinal of this group is w(W

p

). Thus

ard

�

X

p

Hom(W

p

;



W

p

)

�

� max

�

�

0

; sup

p

w(W

p

)

	

= w(W ):

Thus for in�nite W = V=V

0

we have w(V 
 V ) � w(W ).

On the other hand, let S be the p-sole of



W

p

, then S

�

=

Z(p)

(X)

, and Hom(W

p

;



W

p

)

ontains a subgroup isomorphi to a subgroup of

Hom(W

p

;Z(p)

(X)

)

�

=

Hom(W

p

; Z(p))

(X)

;

sine W

p

has epimorphisms onto Z(p), this group has ardinality at least ardX =

w(W

p

). This implies w(V 
 V ) � w(W ). This ompletes the proof. �

We are interested in sympleti maps, that is, ontinuous bilinear funtions �:V �V !

H , i.e. those satisfying �(v; v) = 0 for all v 2 V ; beause of the polarisation trik

0 = �(v+w; v+w)�(v; v)+�(v; w)+�(w; v)+�(w;w) = �(v; w)+�(w; v), they satisfy

�(w; v) = ��(v; w).

Let �:V �V ! V 
V be the bilinear map given by �(v

1

; v

2

) = v

1


v

2

. For a ompat

abelian group V , let

V

2

V = (V 
 V )=h�(v; v) : v 2 V i and let p:V 
 V !

V

2

V be

the quotient map. For v; w 2 V set v ^ w = p

�

�(v; w)

�

. Then for any sympleti map

�:V � V ! H there is a unique morphism of topologial groups f

�

:

V

2

V ! H suh

that �(v; w) = f

�

(v ^ w).

Lemma 3 �4. Let V be an in�nite ompat abelian group and let K be a losed

subgroup of

V

2

V .

(i) Assume that (

V

2

V )=K is in�nite. Then there is a losed subgroup A of V suh

that A ^ A � K and w(V=A) � w

�

(

V

2

V )=K

�

.

(ii) Assume that (

V

2

V )=K is �nite. then there is a losed subgroup A of �nite index

in V suh that A ^A � K .

Proof. (i) Set D

def

= (

V

2

V )=K ; then D is totally disonneted by Lemma 3 �3(i).

Let F :V � V ! D be the unique bilinear map suh that F (v; v

0

) = (v ^ v

0

) +K .

The family N (D) of ompat open subgroups of D has ardinality w(D). Let

f :

V

2

V ! D be the unique morphism suh that F (v; w) = f(v ^ w). For eah

U 2 N (D) let W (U) = f

�1

(U). Then by the surjetivity of f we have ardfW (U) :

U 2 N (D) = ardN (D). Moreover

T

U

W (U) = C . There is some open subgroup

A(U) � V suh that (A(U) ^ A(U) � W (U). Set A =

T

U2N (D)

A(U). Then

A ^ A � W (U) for all U 2 N . Hene A � A � C . Then the �lter basis F onsisting

of the �nite intersetions of the set fA(U)=A : U 2 N (D) intersets in the singleton

set fAg , and thus by the ompatness of V=A onverges to A . Sine F � N (V=A) we

know that F is o�nal in N (V=A) and thus ardF = ardN (V=A) = w(V=A). But

ardF = ardfA(U) : U 2 N (D)g � ardN (D) = w(D). Hene w(V=A) � w(D).

This ompletes the proof of (i).

(ii) If (

V

2

V )=K is �nite, the K is open in

V

2

V . Also V

0

^V = f0g � K . Hene by

the ompatness of V there is an open subgroup A of V suh that A^A � A^V � K .

Sine V is ompat and A open, V=A is disrete and ompat, hene �nite. �
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Lemma 3 �5. Let V be an in�nite ompat abelian group and �:V � V ! H a

sympleti map into a topologial group H and let C be the smallest losed subgroup of

H ontaining �(V � V ) . Then

(i) there is a losed subgroup A of V suh that �(A�A) = f0g and w(V=A) � w(H) ,

and

(ii) C is totally disonneted and ompat, and w(C) � w(V ) .

Proof. (i) There is a morphism f :

V

2

V ! H suh that �(v; w) = f(v ^ w). Let

K = kerf . Then w

�

(

V

2

V )=K

�

= w(im f) � w(H). Then by Lemma 3 �4 there is a

losed subgroup A of V suh that w(V=A) � w

�

V

2

V )=K

�

� w(H) and A ^ A � K ,

i.e. �(A �A) = f1g

(ii) Reall that V ^V generates a dense subgroup of

V

2

V whene C = f(

V

2

V ). Then

by Lemma 3 �3, the homomorphi image C of a totally disonneted ompat group is

ompat totally disonneted. Thus we have w(C) = w

�

f(

V

2

V )

�

� w(V ^V ) � w(V ).

�

Let G

0

be the losure of the ommutator subgroup of a topologial group G .

Lemma 3 �6. Let N be a losed entral subgroup of a ompat group G suh that

G=N is abelian. Then G ontains a losed abelian subgroup A � N suh that w(G=A) �

w(G

0

) � w(N) if N is in�nite and G=A is �nite if G

0

is �nite.

Proof. Sine N is entral in G , the group G is nilpotent of lass at most two.

Then (x; y) 7! [x; y℄ = xyx

�1

y

�1

:G � G ! G

0

� N is bilinear. We note that

�:G=N � G=N ! N , �(xN; yN) = [x; y℄ is a sympleti map (G=N) � (G=N) ! G

0

.

Then by Lemma 3 �4 if G

0

is in�nite, there is a losed subgroup A of G ontaining N

suh that [A;A℄ = �(A=N �A=N) = f0g , that is, A is abelian and w(V=A) � w(G

0

) �

w(N). If G

0

is �nite, then A an be found to have �nite index in G . �

In De�nition 1.1 we alled a subgroup H of a topologial group G large if w(H) =

w(G) and we alled G an LAS-group if it has large abelian subgroups. In order to

failitate the formulation of some tehnial results we omplement these de�nitions as

follows.

Definition 3 �7. Let G be a topologial group. A subgroup H of G is alled very

large if w(G=H) < w(G). A topologial group is alled a VLAS-group if it has very

large abelian subgroups.

The set of ardinals fw(G=H) : H � G and H is an abelian subgroup of Gg has a

smallest element sine every set of ardinals is well-ordered. This smallest element is

alled the abelian index abind(G). �

In [8℄ we established a result of whih the following is a orollary:

Fat 3 �8. Let G be an in�nite ompat group and H a losed subgroup. Then

w(G) = maxfw(H); w(G=H)g:

�

These onepts are intended for in�nite groups G . The following remarks are immediate:

Remarks 3 �9. Let G be an in�nite ompat group. For a small subgroup H we

have w(G) = w(G=H). If H is a very large subgroup of G , it is large, and thus a VLAS{

group is an LAS-group. The group G is a VLAS-group if an only if abind(G) < w(G).�

All abelian topologial groups are VLAS-groups. A �nite non-abelian group is never

an LAS-group unless it is singleton. In Corollary B of the Introdution it was shown

that every onneted ompat group is an LAS-group. Sine for a maximal pro-torus
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T of a onneted ompat group G , the fator spae G=T has weight w(G), a similar

statement is true for all other maximal abelian subgroups T , a ompat onneted group

is not a VLAS-group.

If H is a large subgroup of G and H is an LAS-group then G is an LAS-group, and an

analogous statement is true for VLAS-groups. By the Redution Theorem (Theorem C

in Setion 1) whih we shall prove in 3 �10 below, if N is a small losed normal subgroup

and G=N is an LAS-group, then G is an LAS-group.

The following theorem is the enabling result for proofs by indution.

Theorem 3 �10. (The Redution Theorem) Let G be an in�nite ompat group

and N

/

G a small losed normal subgroup.

(i) If G=N is an LAS-group then G is an LAS-group. Indeed, if B is an abelian

subgroup of N there is a losed abelian subgroup A of G ontaining B suh that

w(A) = w(G) .

(ii) If G=N is a VLAS-group, then G is a VLAS-group. More spei�ally,

abind(G) � maxfw(N); abindG=Ng or abind(G) is �nite.

Proof. Sine G=N is an LAS- [VLAS-℄ group, G ontains a large subgroup H suh

that N

/

H and H=N is a large [very large℄ abelian subgroup of G=N . Thus

w(H) = maxfw(N); w(H=N)g = maxfw(N); w(G=N)g = w(G); respetively,

w(G=H) = w

�

(G=N)=(H=N)

�

< w(G=N) � w(G);

in the seond ase we may assume that w(G=H) = abind(G=N).

By Proposition 3 �1 we have w

�

H=Z(N;H)

�

� w(N) if N is in�nite and know that

H=Z(N;H) is �nite otherwise. Then Z(N) = Z(N;H) \N is entral in Z(N;H) and

Z(N;H)=Z(N)

�

=

H=N is abelian. Now Lemma 3 �6 applies and shows that Z(N;H)

ontains an abelian subgroup A

1

ontaining Z(N) suh that

w(Z(N;H)=A

1

) = w

�

(Z(N;H)=Z(N))=(A

1

=Z(N))

�

� w(Z(N;H)

0

) � w

�

Z(N)

�

provided Z(N;H)

0

is in�nite. Otherwise A

1

an be found so as to have �nite index in

Z(N;H). Thus w(H=A

1

) � w(N) or H=A

1

is �nite. If B is any abelian subgroup of N ,

then A

1

� Z(N;G) and B ommute elementwise. Hene A = A

1

B is a losed abelian

subgroup of G ontaining B and satisfying w(H=A) � w(N) or jH=Aj < 1 . Thus if

w(G=H) = abind(G=N), then abind(G) � w(G=A) � maxfw(N); abind(G=N)g . �

We observe that in ase (ii), the group A may likewise be hosen so as to inlude any

given abelian subgroup of N .

SuÆient onditions for G=N to be an LAS-group are not hard to �nd:

(i) G=N is abelian.

(ii) G=N is stritly redutive.

(iii) G=N is onneted.

In those ases, if N is a small losed normal subgroup of the in�nite ompat group G ,

then G is an LAS-group.

Theorem 3 �11. (The Extension Theorem) Let G be an in�nite ompat group

and N a losed normal subgroup. If both G=N and N are LAS-groups then G is an

LAS-group.

Proof. Either N is large, that is w(N) = w(G), or N is small, that is w(N) <

w(G). In the �rst ase, sine N is an LAS-group, so is G . In the seond ase, the

Redution Theorem 3 �10 applies. �
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Corollary 3 �12. (The Redution Corollary) Let G be a ompat group and

assume that G=G

0

is an LAS-group. Then G is an LAS-group.

Proof. By Proposition A of the Introdution, G

0

is an LAS-group. Hene the

orollary is a diret onsequene of the Extension Theorem 3 �11. �

Another immediate onsequene of the Extension Theorem is

Corollary 3 �13. (Redution mod Z

0

(G

0

)) Let G be a ompat group. If

G=Z

0

(G

0

) is an LAS-group, then G is an LAS-group. �

By this orollary, whenever we wish to use the Countable Layer Theorem for proving

that a ompat group G is an LAS-group we may assume that Z

0

(G

0

) = f1g .

A simple indution argument yields the following onsequene of the Extension The-

orem 3 �11:

Corollary 3 �14. Let G be an in�nite ompat group and let N

1

� � � � � N

k

be

a �nite sequene of losed normal subgroups of G suh that G=N

1

and N

j�1

=N

j

are

LAS-groups for j = 2; : : : ; k . Then G is an LAS-group. �

Reall the onept of layers from the Countable Layer Theorem and the paragraph

following it in the Introdution. The next result is an immediate onsequene:

Proposition 3 �15. If an in�nite ompat group has only a �nite number of layers,

then it is an LAS-group.

Proof. Apply Corollary 3 �14 with N

j

= 


j

(G) and notie that all of G=N

1

and

N

j�1

=N

j

are either stritly redutive or onneted abelian. �

4. Applying the Countable Layer Theorem

Let G be a ompat group and reall the sequene of harateristi subgroups 


n

(G)

of the Countable Layer Theorem in the Introdution.

Theorem 4 �1. (The Dominant Layer Theorem) Let G be a ompat group. If

there is a natural number n suh that w

�




n

(G)=Z

0

(G

0

)

�

< w

�

G=Z

0

(G

0

)

�

then G is an

LAS-group.

Proof. By Proposition 3 �15, G=


n

(G) is an LAS-group. Therefore

�

G=Z

0

(G

0

)

�Æ�




n

(G)=Z

0

(G

0

)

�

is an LAS-group. By hypothesis, 


n

(G)=Z

0

(G

0

) is a small subgroup of G=Z

0

(G

0

).

Then by the Redution Theorem 3 �10, the group G=Z

0

(G

0

) is an LAS-group and thus

by 3 �14, G is an LAS-group. �

The name of the theorem will beome more obvious when we formulate and prove

Theorem 4 �4 below.

Corollary 4 �2. Let G be a pro�nite group. If w(


n

(G)) < w(G) for some n ,

then G is an LAS-group. �

Aordingly, if the Abelian Subgroup Conjeture is false, then there exists a ounterex-

ample G where G is a pro�nite group suh that w

�




n

(G)

�

= w(G) for all n = 1; 2 : : : .

In view of 3 �14, for further omments, we may just as well assume that Z

0

(G

0

) = f1g .

Then let us �nally express the ondition that w

�




n

(G)

�

< w(G) in terms of the layers

of the Countable Layer Theorem.
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Lemma 4 �3. Let G � N

1

� N

2

� N

3

� � � � be a desending sequene of in�nite

normal subgroups with

T

1

n=1

N

n

= f1g .

Proof. Then the following onditions are equivalent:

(i) w(N

1

) < w(G).

(ii) There is a ardinal � < w(G) suh that w(N

n�1

=N

n

) � � for n = 2; 3; : : : .

Proof. (i) implies (ii): w(N

n�1

=N

n

) � w(N

n�1

) � w(N

1

). Thus let � = w(N

1

).

(ii))(i): Repeated appliation of Fat 3 �8 yields

w(N

1

=N

n

) = maxfw(N

1

=N

2

); : : : ; w(N

n�1

=N

n

)g:

Thus w(N

1

=N

n

) � � by (ii). From

T

n

N

n

= f1g and the ompatness of N

1

we

onlude that N

1

�

=

lim

n

N

1

=N

n

and thus w(N

1

) = sup

n

w(N

1

=N

n

) � � < w(G). �

Let us now return to the Countable Layer Theorem in the Introdution. The fator

groups �

n

(G), n = 1; 2; : : : are alled the layers. We shall say that a layer �

n

(G) is

dominant if there is a ardinal � suh that w(�

m

(G)) � � < w

�

�

n

(G)

�

for m 6= n .

Theorem 4 �4. (The Dominant Layer Theorem, Seond Version) Any in�nite

ompat group with a dominant layer is an LAS-group.

Proof. We may assume that Z

0

(G

0

) = f1g . Let �

n

(G) = 


n�1

(G)=


n

(G)

be a dominant layer with a minimal n . We apply Lemma 4 �3 with N

1

= 


n

(G),

N

2

= 


n+1

(G) et. and obtain w

�




n

(G)

�

< w

�

G=


n

(G)

�

� w(G). Then Theorem 4 �1

proves the laim. �

Let us omment �nally that under the hypotheses of Theorems 4 �1 and 4 �4 we have

an additional piee of information.

Proposition 4 �5. Let G be an in�nite pro�nite group suh that 


n

(G) is small

for some n 2 f1; 2; : : :g . Then G has a large subgroup S ontaining 


n

(G) whih

ontains an abelian subgroup A suh that w(S=A) < w(S) ; that is, S is a VLAS-group.

Proof. We obtain S diretly from 3 �15 suh that S=


n

(G) is abelian and w(S) =

w(G). Now we apply 3 �10(ii) with S in plae of G and 


n

(G) in plae of N and �nd

abind(S) � maxfw(
(G)); abind S=


n

(G)g = w

�




n

(G)

�

sine S=


n

(G) is abelian and

thus has abelian index zero. But w

�




n

(G)

�

< w(G) = w(S). Thus abind(S) < w(S).�
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p
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its losed subgroups are free (see [12℄ or [15℄). Thus the only nondegenerate abelian losed subgroups are
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p

(X) is a ounterexample to the Abelian Subgroup Conjeture for any unountable set

X . (See our omment preeding Theorem C for the disrete ase.) In ontrast with the hypothesis of the

Dominant Layer Theorem 4 �4, the layers of F

p

(X) are all isomorphi to Z(p)

X
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