ON THE GLOBAL ERROR OF ITO-TAYLOR SCHEMES FOR
STRONG APPROXIMATION OF SCALAR STOCHASTIC
DIFFERENTIAL EQUATIONS

NORBERT HOFMANN AND THOMAS MULLER-GRONBACH

ABSTRACT. We analyze the global error of Ito-Taylor schemes for pathwise approxi-
mation of scalar stochastic differential equations on the interval [0, 1]. The error of an
approximation is defined by its expected L,-distance to the solution, and the number
n of multiple It6 integrals that are evaluated is used as a rough measure of its compu-
tational cost. We show that the optimal order of convergence is n=/2 for 1 < p < oo
and (n/Inn)~'/2 for p = oo. Consequently, there are no Ité-Taylor methods of higher
order with respect to the global error on [0, 1]. These results are in sharp contrast to
the corresponding well known result for the error at the discretization points where
arbitrary high orders can be achieved.

1. INTRODUCTION

Consider a scalar stochastic differential equation
(1) dX (t) = a(t, X(t)) dt + o(t, X (t)) dW (1), t €[0,1],

with initial value X (0), drift coefficient a, diffusion coefficient o and a one-dimensional
driving Brownian motion W. An [to-Taylor scheme for pathwise approximation of the
solution X of (1) is based on a truncated Ito-Taylor expansion of X, which is a stochas-
tic analogue to the deterministic Taylor formula, see, e.g., Wagner and Platen (1978),
Kloeden and Platen (1995), and Milstein (1995). For a given truncation parameter
v € N/2 and a finite discretization T C [0, 1], it recursively computes approximate
values

Xp(t), teT,

to the solution X at the discretization points. Essentially, these values are given by
weighted sums of multiple [t6 integrals, where the weights are determined by the drift
and diffusion coefficients and their derivatives up to some order. A global approximation
7; on [0, 1] is obtained by piecewise linear interpolation. The most prominent examples

are the Fuler approximation YlT/ ? and the Milstein approximation YlT.
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As a rough measure for the computational cost of an It6-Taylor approximation 7;
one may use the number n(X,) of multiple It6 integrals that are evaluated. This
number is proportional to the cardinality #1" of the discretization 7',

where the proportionality constant K, is increasing in the truncation parameter .

Up to now Ito-Taylor approximations have mainly been analyzed with respect to
their error at the discretization points. Let p > 1. Under suitable regularity conditions
on the initial value and the drift and diffusion coefficients it holds

2) (Bnax[X7(t) - X0)11) " < e (n(X7)) 7,

where the constant ¢ does not depend on the discretization 7', see Kloeden and Platen
(1995). Thus, for a fixed truncation parameter 7 the order of convergence is at least -y
in terms of the computational cost.

In the present paper we analyze the global error of 1to-Taylor approximations on the
interval [0, 1]. We measure the pathwise distance between X and X, in the L,-norm

1/p
X — X (/ | X (%) (t)]pdt> ifl1<p<oo
— Arllp =
sup | X (t) — X, (t)] if p = o0,
t€[0,1]

and we define the error of 7; by averaging over all trajectories, i.e.,

epa(X7) = (B(|X = X79)"".

for some ¢ € [1,00).
Our results for the global error are in sharp contrast with (2). Consider a sequence
of Ito-Taylor approximations X ;N with computational cost

n(Y;N) < N.
If p < oo then, by Theorem 1,

?

_ 1 e\
lininf N2 (X)) 2 ¢, (/ (Blo(t, X (1)) )dt>
0

N—oo

where the constant ¢, > 0 only depends on p. Furthermore, if the discretization Ty is
chosen in an appropriate way then

i (0(67,0)" 07,0 = - [ (Blote X017 )

(p+2)/2p

N—00

holds for the corresponding Milstein approximation Y%N. Hence the best order of con-
vergence is (n(Y;N))_l/ 2 for every truncation parameter 7, and asymptotically the
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Milstein approximation is optimal. Even more, it turns out that a sequence an of
[t6-Taylor approximations can not be asymptotically optimal if v > 1.

If p = oo then the best order of convergence is (n(Y%V)/ In n(Y%V))_l/Q regardless of
7, and an appropriate chosen Euler approximation (y = 1/2) is asymptotically optimal,
see Theorem 2.

[t6-Taylor approximations are introduced in Section 2. In Section 3 we discuss com-
putational cost and minimal errors. Our results on the global error are presented in
Section 4 for p < oo and Section 5 for p = co. Proofs are postponed to Section 6.

2. ITO-TAYLOR SCHEMES

We briefly introduce It6-Taylor schemes for pathwise approximation of the solution
X of (1) following the lines in Kloeden and Platen (1995).
Let M denote the set of all multi-indices with entries zero or one, i.e.,

M= J{o, 1} u{w},
AEN
where v is the multi-index of length zero. To every multi-index @ € M we associate
the number

lef] = Ale) + C(e),

where A(«) denotes the length and ((«) the number of the zero components of .
Moreover, if A(a) > 1 we use —« to denote the multi-index obtained by canceling the
first component of «.

For o € M and 0 < s <t <1 the corresponding multiple It6 integral I, ,, is defined
by

[a7s,t =1

if « = v, and

t to
Lose = / / W (11) .. AW (t2)
if o =(ay,...,a)) € M\ {v}, where Wy(t) =t and Wy (t) = W(t). For example,

t
](0)78,,5 =1—s, 1(0,1),57,5 = / (u — S) dW(u),

Iy,s0 = W(t) = W(s), Ta,0)5 = / (W (u) — W(s)) du,
Lnayse =1/2- (W(t) = W(s))* = (t —5)) .

Next, consider the differential operators

2

0 0 0
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and
0
or

associated with equation (1). Then, for & € M the corresponding It6 coefficient func-
tion f, : [0,1] x R — R is recursively defined by

I'=0-

x if a =v,
fa(t7 *73) = o ]
L lf—a(tVT) 1fa:(0[1,... ,&A)GM\{V}.
Thus
foy =, fon =0 +a-00Y +1/2.6%. o),
fay=o, fao =0 aOb,
0.1).

f(1,1) =00
Finally, let v € N/2, put
A =faeM: ol <2y or Aa)=Cla) =5 +1/2},
and consider a discretization
(3) T={t,...,t,} C]0,1],

where 0 < t; < -++ < t, = 1. Put t{; = 0. The corresponding so-called Ito-Taylor
scheme of strong order -y is defined by

X7 (to) = X(0)

and
(4) t£+1 Z fa té» .IavtlvtlJrl

acAy
for ¢ = 0,...,n — 1, provided all the derivatives of a and o appearing in (4) exist.
Piecewise linear interpolation of the data (t,, X, (t;)) yields the global approximation
X

For example,

Arz = {r,(0), (1)},
Al = {V> (0)7 (1)7 (17 1)}:
Aspz = {r,(0),(1),(0,0), (1,0),(0,1),(1,1),(1,1,1)}

and the corresponding It6-Taylor schemes of strong order v = 1/2,1 and 3/2 are the
Euler scheme, the Milstein scheme and the Wagner-Platen scheme, respectively.



3. COMPUTATIONAL COST AND MINIMAL ERRORS

As a rough measure for the computational cost of an It6-Taylor approximation X;
we use the number n(7¥) of multiple Ito integrals that are evaluated. Note that some
of the multiple It6-integrals appearing in (4) are deterministic or may be expressed by
other integrals, e.g.,

L)t tes = terr — oy Ty ten = 1/2 U8y 000000 — L0010 t040)
[(0,1),tl,tl+1 - [(0)7t[7tl+1 ° [(1)7t[7tl+1 - [(1,0),tl,tl+1'

Thus, for example,
~1/2 1
n(Xy") = n(Xy) = #T

since both the Fuler approximation YIT/Q and the Milstein approximation YIT are only
based on the evaluation of W at the points ¢, € T'. For the Wagner-Platen approxima-

tion Y?’T/z one has
(X)) =2- 4T

since additionally the evaluation of the integrals j;i‘_l W (s) ds, ty € T, is needed for
the calculation of this approximation. In general, it holds

n(Xg) = K, - #T,
with K, = K =1, K3/ = 2, and
27y -1 < K, < #A,
for v > 2.

Remark 1. The lower bound 27 — 1 for the constant K, is due to the fact that at
least #1' additional multiple Ito integrals have to be evaluated when switching from

Y; to Y;H/Z. Clearly, this bound is not sharp in general. For instance, if 7 = 20
then at least 210 multiple It6 integrals have to be evaluated for every ¢, € T, i.e.,
Koy > 210 > 39 =27 — 1.

Remark 2. In our analysis we do not adress the problem of simulating multiple Ito-
integrals but rather assume that realizations of those functionals are made available by

some random number generator. Under this assumption the computational cost ¢(X.)
of an Ito-Taylor approximation X % is determined by

e the number of multiple It0 integrals that are evaluated,

e the number of evaluations of the drift and diffusion coefficients and their partial
derivatives,

e the number of arithmetical operations that are performed.
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Clearly, ¢(X;) > n(X}), but for large v the cost ¢(X,) will be much larger than

n(X}). The use of n(X,) as a measure of cost favours It6-Taylor approximations of
higher orders.

For v € N/2 let
X7 ={X): <y, 1€TCl0,1], #7T < 0o}
denote the class of all Ito-Taylor approximations of strong order at most . Put
Xy ={XeX": n(X) <N}
for N € N. Then
epg(X}) = infle,o(X) : X € X3}
is the minimal error that can be achieved by It6-Taylor approximations from the class
X7 that evaluate at most /N multiple [t0 integrals.
4. L,-APPROXIMATION, p < 00.
For v € N/2 we define
B(A) ={ae M\ A, : —a € A}
Fix v € [1,00) N N/2 as well as p € [1, 00[, and put p* = max(p,2). We assume

(A,) All partial derivatives of @ and o that appear in f,, o € A, UB(A,), do exist.
Furthermore, there is a constant /' > 0 such that

|fa(tax) - fa(t7y)| <K- |gj - y|7
[fals, 2) = fa(t, 2)] < K- (1+ |a]) - [s — 1],

for all s,¢t € [0,1],z,y € Rand o € A, UB(A,).
(M,+) The initial value X (0) is independent of W and

E|X(0)]" < .
(S) The process o(t, X (t)),t € [0,1], does not vanish with probability one, i.e.,
P(sup |o(t, X(t))] > 0) > 0.
0<t<1

Note that (A,) yields the linear growth condition
[falt, 2)] < ¢ (14 |x]).

Furthermore, (A,) and (M,-) imply that a pathwise unique strong solution of equation
(1) with initial value X (0) exists. Moreover, the solution satisfies

(5) E| X% < 0.

Deterministic equations (1) are excluded by condition (5).
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Let m, denote the p-th root of the p-th absolute moment of a standard normal
variable, i.e.,

m, = (/_OO Y|/ (2m)" 72 - exp(—y?/2) dy) l/p,

o0

o= ([ -0 ) "

To every equation (1) we associate the constant

and put

(p+2)/2p

1
Cp e mp . gp . (/0 (hp(t))Zp/(PJrZ) dt) :

where the function h, is defined by
hy(t) = (Elo(t, X)), telo1].

For example, Cy = 1/v/6 - [\ (Elo(t, X (t))|2)"/? dt. Note that (S) implies C, > 0.

Furthermore, we use

5max(T) = g:ér,l,‘r,ﬂéq(t”l - tZ)

to denote the maximum step-size of a discretization (3).

Theorem 1. (i) The minimal errors satisfy

lim NY2.e,, (X)) = C,.

N—x
(i) Let T, = {1, ... ™Y with

tén) 1

1
/ (hp () **? dt = — / (b)) P dt, ¢=1,... ,n.
t 0

(n) n
-1
If hy, > 0 then the corresponding Milstein approzimation satisfies

. —1 —1
lim (n(XTn))l/z ) 6p,p(XTn) = C).

n—00

(iii) For everyy € [1,7] N N/2 and every sequence of discretizations T,, with mazimum
step-size Smax (Tn) = o((#1},)~1/?) it holds

i (D () _

o (X Y2 - (X,
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Due to Theorem 1(i) the order of convergence of the minimal errors is N~*/2. Con-
sequently, there is no Ito-Taylor approximation of higher order with respect to L,
approximation, p < co. Furthermore, by Theorem 1(ii) the optimal rate of convergence
is achieved by the Milstein approximation if the discretization is chosen in an ap-
propriate way. Finally, Theorem 1(iii) states that asymptotically, for any reasonable
discretization the Milstein approximation is optimal. Even more, the performance of
[to-Taylor approximations gets worse the more multiple [to-integrals are involved.

Remark 3. Theorem 1(iii) indicates that, for global approximation, It6-Taylor meth-
ods of strong order v > 1 do not use the supplied multiple It integrals in an efficient
way. For instance, let T'= {1/n, ... ,1} and consider the corresponding Wagner-Platen
approximation 7?}/ 2, which evaluates

£/n
W(E/n),/ Wis)ds, (=1,... ..
(£-1)/n

For the trivial equation
dX(t) =dW(t), X(0) =0,

we obtain the piecewise linear interpolation of W at the discretization points, i.e.,

~3/2
Xy (t) = W(t/n) +n(t = (€ =1)/n) - (W(l/n) = W((£ = 1)/n))
for (¢ —1)/n <t < ¢/n. Thus, Y?’T/Z makes no use of the integrals f(i/jbl)/n W (s) ds.
Straightforward calculation yields
e2a(X0%) = (6 - #T) V2.
On the other hand, consider the approximation )N(T given by
= —3/2 : t/n —3/2
Xr(t) =X, (t)—6n°(l/n—1t)(t— (L —1)/n)- / (W(s) - X, (s)) ds
(t=1)/n

for (¢ —1)/n < t < {/n. Clearly, X, evaluates the same multiple Ito integrals as Y?’T/Q,

but
e22(Xr) = (15 1)1/,

Remark 4. An Ito-Taylor approximation 7; is based on a fixed discretization T of
the unit interval. The discretization may be adapted to the particular equation (1)
as in Theorem 1(ii), but once T has been chosen, the same multiple It6 integrals are
evaluated for every trajectory of the solution X. Considerable improvements of the
asymptotic constant C, in Theorem 1 are achieved with methods that are adaptive
also with respect to the trajectories of X. Moreover, these methods are much easier
to implement than the Milstein approximation from Theorem 1(ii), which requires the
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knowledge of the function h,. See Hofmann et al. (2001a, 2001b) and Miiller-Gronbach
(2001a) for results and further details.

5. Ls-APPROXIMATION

Fix 7 € N/2 as well as ¢ € [1,00[, and put ¢* = max(q, 2). Throughout this section
we assume that the conditions (A,), (M) and (S) are satisfied.
We use < to denote the weak equivalence of sequences of real numbers, i.e.,

a, < b, if c1 < ay/by, < ¢y
for sufficiently large n with positive constants ¢y, cs.
Theorem 2. (i) The minimal errors satisfy

€ooq(Xyy) < (In N/N)Y2
as well as
so.q (XX
lim 20N al 1]72) =
N7 oo q(Xy7)
(ii) For every v € [1/2,7] N N/2 and every sequence of discretizations T,, with
mazimum step-size Omax(Tn) = o((In #T1,) /#T,,) it holds
L) ) e (K)o
00 —1/2 /21172 /2, T 7
(n(Xg, )/ Inn(Xg )2 eooo( X7, )
Thus, for L.-approximation the order of convergence of the minimal errors is (In N/N)
regardless of v, and the best Euler-approximation is asymptotically optimal. Similar to

the case of L,-approximation, p < oo, the performance of an Ito-Taylor approximation
X ; gets worse with increasing -.

1/2

Remark 5. In contrast to Theorem 1, Theorem 2 does not provide asymptotic con-
stants for the rate of convergence of the minimal errors eoo,q(X}V/z). Furthermore, it is
unknown how to choose the discretization such that the corresponding Euler approxi-
mation is asymptotically optimal.

Asymptotic constants can, however, be determined in the case of an equidistant
discretization 7;, = {1/n,...,1}. Due to Theorem 2(ii) and Miiller-Gronbach (2001b,
Theorem 2) it holds

lim (n(X7,)/ Inn(X7)"? enoy(X7,) = K3 2712 (B(sup |o(t, X (1))
n—00 0<t<1
for every 7 € [1/2,7] N N/2.

Remark 6. Miiller-Gronbach (2001b) provides adaptive methods for L..-approximation,
which asymptotically are superior to any Ito-Taylor approximation. These methods are
easy to implement and use only function values of the driving Brownian motion V.
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6. PROOFS

Fix v € N/2, r € [1,00] and put 7* = max(r, 2). Throughout the sequel we assume
that the conditions (A,) and (M,~) are satisfied. Moreover, we use ¢ to denote unspec-

ified positive constants, which only depend on v, r, and the constants from conditions
(A,) and (M,~).

6.1. Preliminary estimates. We provide a moment estimate for multiple 1t6 inte-
grals.

Lemma 1. Let a e M, 0<s<t<1andb>1. Then
E |Ia,s,t|2" < (b(2b — 1))b(A(a)—<(a)) (- S)bHaH'

Proof. The proof is by induction on the length A(«) of a.

Clearly, the estimate holds for A(«) = 0, i.e., @ = v. Next, assume that the assertion
of the Lemma is satisfied for all multi-indices of length k. Let a = (aq,... ,ax41) be a
multi-index of length k£ + 1 and put a— = (ay, ..., a).

If agy1 = 0 then AMa—) — ((a—) = AM(a) — ((«) and || — || + 2 = ||«||- Hence

t 2b
/ I pudu
S

t
(=5 [ Bl du
< (b(2b — 1))PAem)=Clam)) (¢ — g)bllle=l+2)
= (b(2b — 1))bA(@)=¢(@D) . (4 _ g)bllall,

If agyr =1 then AM(a—) — ((a—) +1 = M) — ((«) and [Ja — || + 1 = [|||. Thus, by
the Burkholder inequality,

El|l,..|"=E

2b

t
E ‘[aysat‘zb =FE / [af,gvu dW(U)

<000~ 1) -9+ [ Bl sul® du

< (b(2b — 1))PN@)=Cla)+1) (t — 5)ila=I+)

— (b(2b — 1))XN@=C@) . (4 _ g)plall
which completes the proof. O
_For a discretization (3) and 7 € [1/2,7] N N/2 we define the process X, on [0,1] by
X/ (to) = X(0) and

Xi) =Y Falte. X2(t0) - Loy

OLEA;
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for t € [ty, te11], € =0,...,n — 1. Note that )?; coincides with the Ito-Taylor approx-

imation Y% at the discretization points. However, )N(;? is not a numerical method for
the global approximation of X since it is based on the whole trajectory of the driving
Brownian motion W. The following estimate is due to Kloeden and Platen (1995).

Lemma 2.
1/r

(BIX = X7[5)"" < e (Sman(T))".

Next we estimate the L..-distance between Ito-Taylor approximations of different
order.

Lemma 3. Let vy, € [1/2,7] N N/2 with v; < vo. Then
(BIX7 = X7 %) < e (Gnan(D)) ™%

If v > 1 then

—1/2

=1 1/2

r\L/r
Hoo) S c- (6maX(T))
Proof. Note that

E|[X7" = X7 |5 < e B X7 — X%

It thus suffices to prove Lemma 3 with X in place of X. Moreover, we may assume

Yo =71+ 1/2.
Put

F(t) = B sup [X72(s) = X2 (s)])

0<s<t

for 0 <t < 1. By Lemma 2 and (5),

sup f(t) < oo.
0<t<1

Fix t € [0,1]. We have
(6) X - X = Y Ya+ > Zal),

acAy, \{v} a€A, 1172\ Ay
where
t n—1
~71+1/2 ~ 1
Yo (2) :/ > (fa(t&X% (t0)) = falte, X7 (tz))) Ao ys Lt (s) AWay, (5)
0 y=0
and

t n—1

< 71+1/2
Za(t) = /0 Z fa(te, X; (te)) - Lo y,s - 1]tlatl+1](8) dWOé/\(a)(S)'
=0
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Let o € A, \ {v}. If ay(a) = 0 then

E( sup |Ya(s) |’")

0<s<t

r

t n—1
~71+1/2 ~mM
< C'/ E‘Z(fa(te»X¥ 210) — Lalte, X2 (1) Loty Vparnn)(8)] ds
0 =0

tn—1
nt+1/2 Y T T
= [ S Bl X7 00) = Falte X ) - Bl () ds.
0

£=0

Using the Burkholder inequality, we obtain the same estimate in the case ajq) = 1.
Thus, by (A,) and Lemma 1,

(1) E(sup |Ya(s)[")

0<s<t
at 1/2
~ N1+ —7 r ,

S < / Z E|X,1’Z (tZ) - X; (te)| ’ E|Ia_7tlas| : 1}tlatl+l] (S) ds
0 =0
tn—1

<c / S F(s) - (5 — )70 Ly () d
0 y—o

where the last estimate is a consequence of ||a — || > 0.
Now let a € A, 1172 \ A,,. By the same reasoning as above we obtain

t n—1
r ~ 71tl/2 r r
B(sup |Za(s))') < c- / S Bl falte, X7 2 G0) - Bllatal () ds.
S5 0 r=0

Hence, by (A,), Lemma 1, Lemma 2 and (5),

(8)  E(sup [Za(s)])

0<s<t

tn—
— 1/2 r /2 ||ae—
< C'/ 1+ BXF T2 00r) - (s =t /21y, 4, (s) ds
0
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Note that [|a|| > 2y, + 1 for a € A, 412 \ A,,. Combining (6) with (7) and (8) we
thus obtain

() < e # (A, \ (1} - / 7(s) ds

te-# ((Ayge \Ay) N axe = 0}) - (Gmax (7)) 2
+c- # ((Afyﬁ_l/g \ Aryl) N {Oz : CY)\(a) = 1}) . (5maX(T))r.le.
If 1 = 1/2 then (A 1172 \ Ay) N {a : ) = 0} = 0 and therefore
¢
FH) < e / F(s) ds + - (Sman(T))
0

Otherwise we have
t
[ty <e / F(s) ds + ¢+ (Omax(T))" 1.
0

Now apply Gronwall’s Lemma to complete the proof. O

Finally, we estimate the L.-error of an Ito-Taylor approximation. Let

n—1 1/r
A(T) = my - g, - (Z Elo(te, X (t)]" - (teer — u))r/%l) .
=0

Lemma 4. If v > 1 then

err(X7) = 4:(T)] < ¢+ Guas(T).
for all ¥y € [1,7] N N/2.
Proof. Due to Lemma 3, for 3/2 <7 <,

=7 —3/2 7  <=3/2m\ /7
(9) lerr(X0) = enr (X0 )| < (EIX 7 = X710 Y < ¢ bnax(T)
Next, let 7 € {1,3/2} N [1,7]. Lemma 2 yields
—75 —7 S0\ L/
(10) e (X1) — (EIX 7 = X7 < ¢+ Sman(T).

Put Uy = (tg, X,/ (t;)) and let Wr denote the piccewise linear interpolation of W at the
points t, € T. Fix t € [ty, tg41]. Then

~ . t— 1ty
X0 -X0 = 3 SaW0) (Tant = 7 Tatiess)
ac A\ {v} bevy =t
vy
= f(1)(Ue) ’ (W(t) - WT(t))
t—1,
+ Z fa(Uy) - (Ia,tg,t — m : a,tg,t[_;,_l)-

acA7\{,(0),(1)}
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Note that [|a|| > 2 for a € A5\ {v, (0), (1)}. Hence, by (A,), Lemmas 1, 2, and (5),

HY a0 (e

t —t
Q€A \{1,(0),(1)} trt e

T

: aatlatl+1)

<co Y B (gl + Hagrrn )
a€ Az \{v,(0),(1)}

—c- > ElfalU) - (Elageil” + Ellag s, ])
ac Ay \{,(0),(1)}
S (1 BRI G (1))
ac A7\ {1,(0),(1)}
< ¢ (dmax(T))".

(A
o

We thus conclude that

(11)
‘(Enﬁ —EY (2 / Bl - (o) - W) dt)"”

Let 2 denote the o-algebra that is generated by (X (0), W (ty1), ..., W (t,)). Conditioned
on A the process W — Wr is a Brownian bridge on each subinterval [y, to41]. It follows

< ¢ Opmax(T)-

b1 .
/ E(W(t) — Wr(t)[" | ) dt = m] - g - (tegr — )"/ *H

ty

by straightforward calculations, and consequently

(12) Z/HIE\U o) - (W (#) —WT(t))\rdt)l/r

1/r
=m, - (Z E|O’ U( tg_;,.l - t()r/Q—H) .

Due to (A,) and Lemma 2,
Elo(Up) — o(te, X (t0))]" < ¢+ (6max(T))"
Hence

1/r

(13) \mT-gr-(nzlErom)r-(tm—tew?“) ~ A(D)| £ ¢+ (Bua(T) ™

Now, combine (9) with (10), (11), (12), and (13) to complete the proof. O
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6.2. Proof of Theorem 1. Consider an arbitrary sequence of methods Y%JVV € Xy
with vy € [1,7] N N/2.
Lemma 5.

lim inf N/2. em(Y;g) > C,.

N—oo

Proof. Take a sequence of positive integers ky such that

lim N/ky = Jim ey /N =0.
—00

N—00
Since ky = o(IN) we may assume that
{g/l{NZ 621, ,kN—l}CTN.
Due to Lemma 4,
ere(Xgy) = Ar(Tn) = ¢/kn.
Hence, by the Holder inequality,
liminf N2 .¢,, (Y%g)
n—0o0
> liminf (#13)Y? - A (Ty)
N—o00

#Tn -1

S N Ny e\ 2/ (r+2) N AL (7 +2)/2r
> liminf m, g (Y0 (Blof”, X)) (1) - i)
=0
=C,

Clearly, Lemma 5 yields the lower bounds in Theorem 1(i),(ii).

Next, let g : [0,1] — ]0, 00[ be continuous, and define a sequence of discretizations
Ta(g) = {t{, ..., 13"} by

(n)
"

1
/ g(t)dt:f-/g(t)dt, (=1, .n.
0 noJo

Recall the definition of the function A, in Section 4.
Lemma 6.

. 1 1/2 -1
hm (n(XTn(g) )) ’ 67’,7’ (XTn (9))

=g ([ 0y oy an) " (o ar)”
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Proof. Note that n(Y%n(g)) =n and dyax(T,,(¢)) = 1/n. Hence, by Lemma 4,

. =1 1/2 -1
lim ‘(n(XTn(g))) 'eTﬂ“(XTn(g)) —ntl?. AT(Tn(g))‘ =0.

n—0o0

By the mean value theorem, we have

1
10— 1 = 1/(n- g(€)) - / g(t) dt

with £ < ¢ < ¢ . Thus

A (Tu(9))
=g (S ) o) ) ([ )

Since g is bounded away from zero, we obtain
1/2

i %40 0) = (b)) - oty a) " / oar)”

n—0o0

which completes the proof. O

Let £ > 0 and consider the function
ga = (hT + 6)2T/(T+2).

By Lemma 6,
limsup N2 e, (X)) < limsup N*% e, (Y%N(gs))

N—o0 N—x

1 (r+2)/2r
<m g (/ gE(t) dt) :
0

Letting € tend to zero yields the upper bound in Theorem 1(i).

Clearly, Lemma 6 implies Theorem 1(ii) by taking g = A2/ 2.

It remains to prove Theorem 1(iii). Let ¥ € [1,7] N N/2 and consider a sequence of
discretizations 7,, with maximum step-size

(14) Smax (Tr) = o((#T,,) 2.
Note that
— 1
n(X,,) =Ky #T, = K5 -n(Xy,).
Furthermore, by Lemma 4,

—=7 —1
lerr (X7,) = ers(X,)| < € Omax(Tn).



17
Thus

(XD ey (Rg)
(n(Xp )2 - e, (X,)

(#Tn) /2. 5max (Tn)
1

(X)) 2 erp(X ) |

SC'Kq'

By (14) and Theorem 1(i) the right hand side tends to zero with n tending to infinity.

6.3. Proof of Theorem 2. The relation
(15) oo (XN?) = (In N/N)/?

follows from Miiller-Gronbach (2001b, Theorem 2 and Theorem 3).
To prove the second part of Theorem 2(i) choose a sequence of It6-Taylor approxi-
mations X, € X}, such that

Coor (XN7) > €oor (X10) — 1/NY2,
Due to Lemma 3,

eoovr(y%g) 2 em,r(y%]<,2) - C/N1/2.

Thus
1y CorXY) e NP
(X)) T e (X))
It remains to observe that
‘ N-1/2 . N-1/2
W D TR

by (15).

In order to prove Theorem 2(ii) let ¥ € [1/2,7] N N/2 and consider a sequence of
discretizations 1}, with maximum step-size

(16) Sma(Th) = o((In #T,,) /#T5,).
Note that
n(X7,) = K5 - #T, = K5 - n(X,).

Furthermore, by Lemma 3,

‘eW,T(Y;n) - eOO,T(YZ{Zz)‘ S c: (5max(Tn))
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Thus

(X7 )/ Inn(X 7 )2 - e r (X )
(X2 (X )2 e (X407

~ K5

(In#T3) "2 - oo p (X )
= C- Kﬁ . T _1/2 —_ 1
(In #T,, —I—anq) / -eoo’T(XTn )
Omax(Thn) (In#T,,)/?
<e-Kye—monl LK —1].
R < R (T AR Ok

By (16) and Theorem 2(i) the last sum tends to zero with n tending to infinity.
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