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Abstra
t. We analyze the global error of Itô-Taylor s
hemes for pathwise approxi-

mation of s
alar sto
hasti
 di�erential equations on the interval [0; 1℄. The error of an

approximation is de�ned by its expe
ted L

p

-distan
e to the solution, and the number

n of multiple Itô integrals that are evaluated is used as a rough measure of its 
ompu-

tational 
ost. We show that the optimal order of 
onvergen
e is n

�1=2

for 1 � p <1

and (n= lnn)

�1=2

for p =1. Consequently, there are no Itô-Taylor methods of higher

order with respe
t to the global error on [0; 1℄. These results are in sharp 
ontrast to

the 
orresponding well known result for the error at the dis
retization points where

arbitrary high orders 
an be a
hieved.

1. Introdu
tion

Consider a s
alar sto
hasti
 di�erential equation

dX(t) = a(t; X(t)) dt+ �(t; X(t)) dW (t); t 2 [0; 1℄;(1)

with initial value X(0), drift 
oeÆ
ient a, di�usion 
oeÆ
ient � and a one-dimensional

driving Brownian motion W . An Itô-Taylor s
heme for pathwise approximation of the

solutionX of (1) is based on a trun
ated Itô-Taylor expansion of X, whi
h is a sto
has-

ti
 analogue to the deterministi
 Taylor formula, see, e.g., Wagner and Platen (1978),

Kloeden and Platen (1995), and Milstein (1995). For a given trun
ation parameter


 2 N=2 and a �nite dis
retization T � [0; 1℄, it re
ursively 
omputes approximate

values

X




T

(t); t 2 T;

to the solution X at the dis
retization points. Essentially, these values are given by

weighted sums of multiple Itô integrals, where the weights are determined by the drift

and di�usion 
oeÆ
ients and their derivatives up to some order. A global approximation

X




T

on [0; 1℄ is obtained by pie
ewise linear interpolation. The most prominent examples

are the Euler approximation X

1=2

T

and the Milstein approximation X

1

T

.
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As a rough measure for the 
omputational 
ost of an Itô-Taylor approximation X




T

one may use the number n(X




T

) of multiple Itô integrals that are evaluated. This

number is proportional to the 
ardinality #T of the dis
retization T ,

n(X




T

) = K




�#T;

where the proportionality 
onstant K




is in
reasing in the trun
ation parameter 
.

Up to now Itô-Taylor approximations have mainly been analyzed with respe
t to

their error at the dis
retization points. Let p � 1. Under suitable regularity 
onditions

on the initial value and the drift and di�usion 
oeÆ
ients it holds

�

E(max

t2T

jX




T

(t)�X(t)j

p

)

�

1=p

� 
 �

�

n(X




T

)

�

�


;(2)

where the 
onstant 
 does not depend on the dis
retization T , see Kloeden and Platen

(1995). Thus, for a �xed trun
ation parameter 
 the order of 
onvergen
e is at least 


in terms of the 
omputational 
ost.

In the present paper we analyze the global error of Itô-Taylor approximations on the

interval [0; 1℄. We measure the pathwise distan
e between X and X




T

in the L

p

-norm

kX �X




T

k

p

=

8

>

>

<

>

>

:

�

Z

1

0

jX(t)�X




T

(t)j

p

dt

�

1=p

if 1 � p <1

sup

t2[0;1℄

jX(t)�X




T

(t)j if p =1;

and we de�ne the error of X




T

by averaging over all traje
tories, i.e.,

e

p;q

(X




T

) =

�

E(kX �X




T

k

q

p

)

�

1=q

:

for some q 2 [1;1).

Our results for the global error are in sharp 
ontrast with (2). Consider a sequen
e

of Itô-Taylor approximations X




T

N

with 
omputational 
ost

n(X




T

N

) � N:

If p <1 then, by Theorem 1,

lim inf

N!1

N

1=2

� e

p;p

(X




T

N

) � 


p

�

�

Z

1

0

�

Ej�(t; X(t))j

p

�

2=(p+2)

dt

�

(p+2)=2p

;

where the 
onstant 


p

> 0 only depends on p. Furthermore, if the dis
retization T

N

is


hosen in an appropriate way then

lim

N!1

�

n(X

1

T

N

)

�

1=2

� e

p;p

(X

1

T

N

) = 


p

�

�

Z

1

0

�

Ej�(t; X(t))j

p

�

2=(p+2)

dt

�

(p+2)=2p

holds for the 
orresponding Milstein approximation X

1

T

N

. Hen
e the best order of 
on-

vergen
e is (n(X




T

N

))

�1=2

for every trun
ation parameter 
, and asymptoti
ally the
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Milstein approximation is optimal. Even more, it turns out that a sequen
e X




T

n

of

Itô-Taylor approximations 
an not be asymptoti
ally optimal if 
 > 1.

If p =1 then the best order of 
onvergen
e is (n(X




T

N

)= lnn(X




T

N

))

�1=2

regardless of


, and an appropriate 
hosen Euler approximation (
 = 1=2) is asymptoti
ally optimal,

see Theorem 2.

Itô-Taylor approximations are introdu
ed in Se
tion 2. In Se
tion 3 we dis
uss 
om-

putational 
ost and minimal errors. Our results on the global error are presented in

Se
tion 4 for p <1 and Se
tion 5 for p =1. Proofs are postponed to Se
tion 6.

2. It

^

o-Taylor s
hemes

We brie
y introdu
e Itô-Taylor s
hemes for pathwise approximation of the solution

X of (1) following the lines in Kloeden and Platen (1995).

Let M denote the set of all multi-indi
es with entries zero or one, i.e.,

M =

[

�2N

f0; 1g

�

[ f�g;

where � is the multi-index of length zero. To every multi-index � 2 M we asso
iate

the number

k�k = �(�) + �(�);

where �(�) denotes the length and �(�) the number of the zero 
omponents of �.

Moreover, if �(�) � 1 we use �� to denote the multi-index obtained by 
an
eling the

�rst 
omponent of �.

For � 2 M and 0 � s < t � 1 the 
orresponding multiple Itô integral I

�;s;t

is de�ned

by

I

�;s;t

= 1

if � = �, and

I

�;s;t

=

Z

t

s

� � �

Z

t

2

s

dW

�

1

(t

1

) : : : dW

�

�

(t

�

)

if � = (�

1

; : : : ; �

�

) 2 M n f�g, where W

0

(t) = t and W

1

(t) = W (t). For example,

I

(0);s;t

= t� s; I

(0;1);s;t

=

Z

t

s

(u� s) dW (u);

I

(1);s;t

=W (t)�W (s); I

(1;0);s;t

=

Z

t

s

(W (u)�W (s)) du;

I

(1;1);s;t

= 1=2 �

�

(W (t)�W (s))

2

� (t� s)

�

:

Next, 
onsider the di�erential operators

L

0

=

�

�t

+ a �

�

�x

+ 1=2 � �

2

�

�

2

�x

2



4 HOFMANN AND M

�

ULLER-GRONBACH

and

L

1

= � �

�

�x

asso
iated with equation (1). Then, for � 2 M the 
orresponding Itô 
oeÆ
ient fun
-

tion f

�

: [0; 1℄� R ! R is re
ursively de�ned by

f

�

(t; x) =

(

x if � = �;

L

�

1

f

��

(t; x) if � = (�

1

; : : : ; �

�

) 2 M n f�g:

Thus

f

(0)

= a; f

(0;1)

= �

(1;0)

+ a � �

(0;1)

+ 1=2 � �

2

� �

(0;2)

;

f

(1)

= �; f

(1;0)

= � � a

(0;1)

;

f

(1;1)

= � � �

(0;1)

:

Finally, let 
 2 N=2, put

A




= f� 2 M : k�k � 2
 or �(�) = �(�) = 
 + 1=2g;

and 
onsider a dis
retization

T = ft

1

; : : : ; t

n

g �℄0; 1℄;(3)

where 0 < t

1

< � � � < t

n

= 1. Put t

0

= 0. The 
orresponding so-
alled Itô-Taylor

s
heme of strong order 
 is de�ned by

X




T

(t

0

) = X(0)

and

X




T

(t

`+1

) =

X

�2A




f

�

(t

`

; X




T

(t

`

)) � I

�; t

`

; t

`+1

(4)

for ` = 0; : : : ; n � 1, provided all the derivatives of a and � appearing in (4) exist.

Pie
ewise linear interpolation of the data (t

`

; X




T

(t

`

)) yields the global approximation

X




T

.

For example,

A

1=2

= f�; (0); (1)g;

A

1

= f�; (0); (1); (1; 1)g;

A

3=2

= f�; (0); (1); (0; 0); (1; 0); (0; 1); (1; 1); (1; 1; 1)g

and the 
orresponding Itô-Taylor s
hemes of strong order 
 = 1=2; 1 and 3=2 are the

Euler s
heme, the Milstein s
heme and the Wagner-Platen s
heme, respe
tively.
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3. Computational 
ost and minimal errors

As a rough measure for the 
omputational 
ost of an Itô-Taylor approximation X




T

we use the number n(X




T

) of multiple Itô integrals that are evaluated. Note that some

of the multiple Itô-integrals appearing in (4) are deterministi
 or may be expressed by

other integrals, e.g.,

I

(0); t

`

; t

`+1

= t

`+1

� t

`

; I

(1;1); t

`

; t

`+1

= 1=2 � (I

2

(1); t

`

; t

`+1

� I

(0); t

`

; t

`+1

);

I

(0;1); t

`

; t

`+1

= I

(0); t

`

; t

`+1

� I

(1); t

`

; t

`+1

� I

(1;0); t

`

; t

`+1

:

Thus, for example,

n(X

1=2

T

) = n(X

1

T

) = #T

sin
e both the Euler approximation X

1=2

T

and the Milstein approximation X

1

T

are only

based on the evaluation of W at the points t

`

2 T . For the Wagner-Platen approxima-

tion X

3=2

T

one has

n(X

3=2

T

) = 2 �#T

sin
e additionally the evaluation of the integrals

R

t

`

t

`�1

W (s) ds, t

`

2 T , is needed for

the 
al
ulation of this approximation. In general, it holds

n(X




T

) = K




�#T;

with K

1=2

= K

1

= 1, K

3=2

= 2, and

2
 � 1 � K




< #A




for 
 � 2.

Remark 1. The lower bound 2
 � 1 for the 
onstant K




is due to the fa
t that at

least #T additional multiple Itô integrals have to be evaluated when swit
hing from

X




T

to X


+1=2

T

. Clearly, this bound is not sharp in general. For instan
e, if 
 = 20

then at least 210 multiple Itô integrals have to be evaluated for every t

`

2 T , i.e.,

K

20

� 210 > 39 = 2
 � 1.

Remark 2. In our analysis we do not adress the problem of simulating multiple Itô-

integrals but rather assume that realizations of those fun
tionals are made available by

some random number generator. Under this assumption the 
omputational 
ost 
(X




T

)

of an Itô-Taylor approximation X




T

is determined by

� the number of multiple Itô integrals that are evaluated,

� the number of evaluations of the drift and di�usion 
oeÆ
ients and their partial

derivatives,

� the number of arithmeti
al operations that are performed.
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Clearly, 
(X




T

) � n(X




T

), but for large 
 the 
ost 
(X




T

) will be mu
h larger than

n(X




T

). The use of n(X




T

) as a measure of 
ost favours Itô-Taylor approximations of

higher orders.

For 
 2 N=2 let

X




= fX

e


T

: e
 � 
; 1 2 T � ℄0; 1℄; #T <1g

denote the 
lass of all Itô-Taylor approximations of strong order at most 
. Put

X




N

= fX 2 X




: n(X) � Ng

for N 2 N. Then

e

p;q

(X




N

) = inffe

p;q

(X) : X 2 X




N

g

is the minimal error that 
an be a
hieved by Itô-Taylor approximations from the 
lass

X




that evaluate at most N multiple Itô integrals.

4. L

p

-Approximation, p <1.

For 
 2 N=2 we de�ne

B(A




) = f� 2 M nA




: �� 2 A




g:

Fix 
 2 [1;1) \ N=2 as well as p 2 [1;1[, and put p

�

= max(p; 2). We assume

(A




) All partial derivatives of a and � that appear in f

�

; � 2 A




[ B(A




), do exist.

Furthermore, there is a 
onstant K > 0 su
h that

jf

�

(t; x)� f

�

(t; y)j � K � jx� yj;

jf

�

(s; x)� f

�

(t; x)j � K � (1 + jxj) � js� tj;

for all s; t 2 [0; 1℄; x; y 2 R and � 2 A




[ B(A




).

(M

p

�

) The initial value X(0) is independent of W and

EjX(0)j

p

�

<1:

(S) The pro
ess �(t; X(t)); t 2 [0; 1℄, does not vanish with probability one, i.e.,

P ( sup

0�t�1

j�(t; X(t))j > 0) > 0:

Note that (A




) yields the linear growth 
ondition

jf

�

(t; x)j � 
 � (1 + jxj):

Furthermore, (A




) and (M

p

�

) imply that a pathwise unique strong solution of equation

(1) with initial value X(0) exists. Moreover, the solution satis�es

EkXk

p

�

1

<1:(5)

Deterministi
 equations (1) are ex
luded by 
ondition (S).
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Let m

p

denote the p{th root of the p{th absolute moment of a standard normal

variable, i.e.,

m

p

=

�

Z

1

�1

jyj

p

=(2�)

1=2

� exp(�y

2

=2) dy

�

1=p

;

and put

g

p

=

�

Z

1

0

(t(1� t))

p=2

dt

�

1=p

:

To every equation (1) we asso
iate the 
onstant

C

p

= m

p

� g

p

�

�

Z

1

0

�

h

p

(t)

�

2p=(p+2)

dt

�

(p+2)=2p

;

where the fun
tion h

p

is de�ned by

h

p

(t) =

�

Ej�(t; X(t))j

p

�

1=p

; t 2 [0; 1℄:

For example, C

2

= 1=

p

6 �

R

1

0

(Ej�(t; X(t))j

2

)

1=2

dt. Note that (S) implies C

p

> 0.

Furthermore, we use

Æ

max

(T ) = max

`=0;::: ;n�1

(t

`+1

� t

`

)

to denote the maximum step-size of a dis
retization (3).

Theorem 1. (i) The minimal errors satisfy

lim

N!1

N

1=2

� e

p;p

(X




N

) = C

p

:

(ii) Let T

n

= ft

(n)

1

; : : : ; t

(n)

n

g with

Z

t

(n)

`

t

(n)

`�1

�

h

p

(t)

�

2p=(p+2)

dt =

1

n

Z

1

0

�

h

p

(t)

�

2p=(p+2)

dt; ` = 1; : : : ; n:

If h

p

> 0 then the 
orresponding Milstein approximation satis�es

lim

n!1

(n(X

1

T

n

))

1=2

� e

p;p

(X

1

T

n

) = C

p

:

(iii) For every e
 2 [1; 
℄ \ N=2 and every sequen
e of dis
retizations T

n

with maximum

step-size Æ

max

(T

n

) = o((#T

n

)

�1=2

) it holds

lim

n!1

(n(X

e


T

n

))

1=2

� e

p;p

(X

e


T

n

)

(n(X

1

T

n

))

1=2

� e

p;p

(X

1

T

n

)

= K

1=2

e


:
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Due to Theorem 1(i) the order of 
onvergen
e of the minimal errors is N

�1=2

. Con-

sequently, there is no Itô-Taylor approximation of higher order with respe
t to L

p

{

approximation, p <1. Furthermore, by Theorem 1(ii) the optimal rate of 
onvergen
e

is a
hieved by the Milstein approximation if the dis
retization is 
hosen in an ap-

propriate way. Finally, Theorem 1(iii) states that asymptoti
ally, for any reasonable

dis
retization the Milstein approximation is optimal. Even more, the performan
e of

Itô-Taylor approximations gets worse the more multiple Itô-integrals are involved.

Remark 3. Theorem 1(iii) indi
ates that, for global approximation, Itô-Taylor meth-

ods of strong order 
 > 1 do not use the supplied multiple Itô integrals in an eÆ
ient

way. For instan
e, let T = f1=n; : : : ; 1g and 
onsider the 
orresponding Wagner-Platen

approximation X

3=2

T

, whi
h evaluates

W (`=n);

Z

`=n

(`�1)=n

W (s) ds; ` = 1; : : : ; n:

For the trivial equation

dX(t) = dW (t); X(0) = 0;

we obtain the pie
ewise linear interpolation of W at the dis
retization points, i.e.,

X

3=2

T

(t) = W (`=n) + n(t� (`� 1)=n) � (W (`=n)�W ((`� 1)=n))

for (` � 1)=n � t � `=n. Thus, X

3=2

T

makes no use of the integrals

R

`=n

(`�1)=n

W (s) ds.

Straightforward 
al
ulation yields

e

2;2

(X

3=2

T

) = (6 �#T )

�1=2

:

On the other hand, 
onsider the approximation

e

X

T

given by

e

X

T

(t) = X

3=2

T

(t)� 6n

3

(`=n� t)(t� (`� 1)=n) �

Z

`=n

(`�1)=n

�

W (s)�X

3=2

T

(s)

�

ds

for (`� 1)=n � t � `=n. Clearly,

e

X

T

evaluates the same multiple Itô integrals as X

3=2

T

,

but

e

2;2

(

e

X

T

) = (15 �#T )

�1=2

:

Remark 4. An Itô-Taylor approximation X




T

is based on a �xed dis
retization T of

the unit interval. The dis
retization may be adapted to the parti
ular equation (1)

as in Theorem 1(ii), but on
e T has been 
hosen, the same multiple Itô integrals are

evaluated for every traje
tory of the solution X. Considerable improvements of the

asymptoti
 
onstant C

p

in Theorem 1 are a
hieved with methods that are adaptive

also with respe
t to the traje
tories of X. Moreover, these methods are mu
h easier

to implement than the Milstein approximation from Theorem 1(ii), whi
h requires the
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knowledge of the fun
tion h

p

. See Hofmann et al. (2001a, 2001b) and M�uller-Gronba
h

(2001a) for results and further details.

5. L

1

-Approximation

Fix 
 2 N=2 as well as q 2 [1;1[, and put q

�

= max(q; 2). Throughout this se
tion

we assume that the 
onditions (A




), (M

q

�

) and (S) are satis�ed.

We use � to denote the weak equivalen
e of sequen
es of real numbers, i.e.,

a

n

� b

n

if 


1

� a

n

=b

n

� 


2

for suÆ
iently large n with positive 
onstants 


1

; 


2

.

Theorem 2. (i) The minimal errors satisfy

e

1;q

(X




N

) � (lnN=N)

1=2

as well as

lim

N!1

e

1;q

(X




N

)

e

1;q

(X

1=2

N

)

= 1:

(ii) For every e
 2 [1=2; 
℄ \ N=2 and every sequen
e of dis
retizations T

n

with

maximum step-size Æ

max

(T

n

) = o((ln#T

n

)=#T

n

) it holds

lim

n!1

(n(X

e


T

n

)= lnn(X

e


T

n

))

1=2

� e

1;q

(X

e


T

n

)

(n(X

1=2

T

n

)= lnn(X

1=2

T

n

))

1=2

� e

1;q

(X

1=2

T

n

)

= K

1=2

e


:

Thus, for L

1

-approximation the order of 
onvergen
e of the minimal errors is (lnN=N)

1=2

regardless of 
, and the best Euler-approximation is asymptoti
ally optimal. Similar to

the 
ase of L

p

-approximation, p <1, the performan
e of an Itô-Taylor approximation

X




T

gets worse with in
reasing 
.

Remark 5. In 
ontrast to Theorem 1, Theorem 2 does not provide asymptoti
 
on-

stants for the rate of 
onvergen
e of the minimal errors e

1;q

(X

1=2

N

). Furthermore, it is

unknown how to 
hoose the dis
retization su
h that the 
orresponding Euler approxi-

mation is asymptoti
ally optimal.

Asymptoti
 
onstants 
an, however, be determined in the 
ase of an equidistant

dis
retization T

n

= f1=n; : : : ; 1g. Due to Theorem 2(ii) and M�uller-Gronba
h (2001b,

Theorem 2) it holds

lim

n!1

(n(X

e


T

n

)= lnn(X

e


T

n

))

1=2

� e

1;q

(X

e


T

n

) = K

1=2

e


� 2

�1=2

�

�

E( sup

0�t�1

j�(t; X(t)j

q

�

1=q

for every e
 2 [1=2; 
℄ \ N=2.

Remark 6. M�uller-Gronba
h (2001b) provides adaptive methods for L

1

-approximation,

whi
h asymptoti
ally are superior to any Itô-Taylor approximation. These methods are

easy to implement and use only fun
tion values of the driving Brownian motion W .
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6. Proofs

Fix 
 2 N=2, r 2 [1;1[ and put r

�

= max(r; 2). Throughout the sequel we assume

that the 
onditions (A




) and (M

r

�

) are satis�ed. Moreover, we use 
 to denote unspe
-

i�ed positive 
onstants, whi
h only depend on 
, r, and the 
onstants from 
onditions

(A




) and (M

r

�

).

6.1. Preliminary estimates. We provide a moment estimate for multiple Itô inte-

grals.

Lemma 1. Let � 2 M; 0 � s < t � 1 and b � 1. Then

E jI

�;s;t

j

2b

� (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

:

Proof. The proof is by indu
tion on the length �(�) of �.

Clearly, the estimate holds for �(�) = 0, i.e., � = �. Next, assume that the assertion

of the Lemma is satis�ed for all multi-indi
es of length k. Let � = (�

1

; : : : ; �

k+1

) be a

multi-index of length k + 1 and put �� = (�

1

; : : : ; �

k

).

If �

k+1

= 0 then �(��)� �(��) = �(�)� �(�) and k�� k+ 2 = k�k. Hen
e

E jI

�;s;t

j

2b

= E

�

�

�

�

Z

t

s

I

��;�;u

du

�

�

�

�

2b

� (t� s)

2b�1

�

Z

t

s

E jI

��;s;u

j

2b

du

� (b(2b� 1))

b(�(��)��(��))

� (t� s)

b(k��k+2)

= (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

:

If �

k+1

= 1 then �(��) � �(��) + 1 = �(�)� �(�) and k� � k + 1 = k�k. Thus, by

the Burkholder inequality,

E jI

�;s;t

j

2b

= E

�

�

�

�

Z

t

s

I

��;s;u

dW (u)

�

�

�

�

2b

� (b(2b� 1))

b

� (t� s)

b�1

�

Z

t

s

E jI

��;s;u

j

2b

du

� (b(2b� 1))

b(�(��)��(��)+1)

� (t� s)

b(k��k+1)

= (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

;

whi
h 
ompletes the proof.

For a dis
retization (3) and e
 2 [1=2; 
℄ \ N=2 we de�ne the pro
ess

e

X

e


T

on [0; 1℄ by

e

X

e


T

(t

0

) = X(0) and

e

X

e


T

(t) =

X

�2A

e


f

�

(t

`

; X

e


T

(t

`

)) � I

�;t

`

;t
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for t 2 [t

`

; t

`+1

℄, ` = 0; : : : ; n� 1. Note that

e

X

e


T


oin
ides with the Itô-Taylor approx-

imation X

e


T

at the dis
retization points. However,

e

X

e


T

is not a numeri
al method for

the global approximation of X sin
e it is based on the whole traje
tory of the driving

Brownian motion W . The following estimate is due to Kloeden and Platen (1995).

Lemma 2.

�

EkX �

e

X

e


T

k

r

1

�

1=r

� 
 �

�

Æ

max

(T )

�

e


:

Next we estimate the L

1

-distan
e between Itô-Taylor approximations of di�erent

order.

Lemma 3. Let 


1

; 


2

2 [1=2; 
℄ \ N=2 with 


1

< 


2

. Then

�

EkX




2

T

�X




1

T

k

r

1

�

1=r

� 
 �

�

Æ

max

(T )

�




1

�1=2

:

If 
 � 1 then

�

EkX

1

T

�X

1=2

T

k

r

1

�

1=r

� 
 �

�

Æ

max

(T )

�

1=2

:

Proof. Note that

EkX




2

T

�X




1

T

k

r

1

� 
 � Ek

e

X




2

T

�

e

X




1

T

k

r

1

:

It thus suÆ
es to prove Lemma 3 with

e

X in pla
e of X. Moreover, we may assume




2

= 


1

+ 1=2.

Put

f(t) = E

�

sup

0�s�t

�

� e

X




1

+1=2

T

(s)�

e

X




1

T

(s)

�

�

r

�

for 0 � t � 1. By Lemma 2 and (5),

sup

0�t�1

f(t) <1:

Fix t 2 [0; 1℄. We have

e

X




1

+1=2

T

(t)�

e

X




1

T

(t) =

X

�2A




1

nf�g

Y

�

(t) +

X

�2A




1

+1=2

nA




1

Z

�

(t);(6)

where

Y

�

(t) =

Z

t

0

n�1

X

`=0

�

f

�

(t

`

; X




1

+1=2

T

(t

`

))� f

�

(t

`

; X




1

T

(t

`

))

�

� I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s) dW

�

�(�)

(s)

and

Z

�

(t) =

Z

t

0

n�1

X

`=0

f

�

(t

`

; X




1

+1=2

T

(t

`

)) � I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s) dW

�

�(�)

(s):
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Let � 2 A




1

n f�g. If �

�(�)

= 0 then

E

�

sup

0�s�t

jY

�

(s)j

r

�

� 
 �

Z

t

0

E

�

�

�

n�1

X

`=0

�

f

�

(t

`

; X




1

+1=2

T

(t

`

))� f

�

(t

`

; X




1

T

(t

`

))

�

� I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s)

�

�

�

r

ds

= 
 �

Z

t

0

n�1

X

`=0

Ejf

�

(t

`

; X




1

+1=2

T

(t

`

))� f

�

(t

`

; X




1

T

(t

`

))j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds:

Using the Burkholder inequality, we obtain the same estimate in the 
ase �

�(�)

= 1.

Thus, by (A




) and Lemma 1,

E

�

sup

0�s�t

jY

�

(s)j

r

�

(7)

� 
 �

Z

t

0

n�1

X

`=0

EjX




1

+1=2

T

(t

`

)�X




1

T

(t

`

)j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds

� 
 �

Z

t

0

n�1

X

`=0

f(s) � (s� t

`

)

r=2�k��k

� 1

℄t

`

;t

`+1

℄

(s) ds

� 
 �

�

Æ

max

(T )

�

r=2�k��k

�

Z

t

0

f(s) ds �

� 
 �

Z

t

0

f(s) ds;

where the last estimate is a 
onsequen
e of k�� k � 0.

Now let � 2 A




1

+1=2

n A




1

. By the same reasoning as above we obtain

E

�

sup

0�s�t

jZ

�

(s)j

r

�

� 
 �

Z

t

0

n�1

X

`=0

Ejf

�

(t

`

; X




1

+1=2

T

(t

`

))j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds:

Hen
e, by (A




), Lemma 1, Lemma 2 and (5),

E

�

sup

0�s�t

jZ

�

(s)j

r

�

(8)

� 
 �

Z

t

0

n�1

X

`=0

�

1 + EjX




1

+1=2

T

(t

`

)j

r

�

� (s� t

`

)

r=2�k��k

� 1

℄t

`

;t

`+1

℄

(s) ds

� 
 �

�

Æ

max

(T )

�

r=2�k��k

:
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Note that k�k � 2


1

+ 1 for � 2 A




1

+1=2

n A




1

. Combining (6) with (7) and (8) we

thus obtain

f(t) � 
 �#(A




1

n f�g) �

Z

t

0

f(s) ds

+ 
 �#

�

(A




1

+1=2

n A




1

) \ f� : �

�(�)

= 0g

�

�

�

Æ

max

(T )

�

r�(


1

�1=2)

+ 
 �#

�

(A




1

+1=2

n A




1

) \ f� : �

�(�)

= 1g

�

�

�

Æ

max

(T )

�

r�


1

:

If 


1

= 1=2 then (A




1

+1=2

n A




1

) \ f� : �

�(�)

= 0g = ; and therefore

f(t) � 
 �

Z

t

0

f(s) ds+ 
 �

�

Æ

max

(T )

�

r=2

:

Otherwise we have

f(t) � 
 �

Z

t

0

f(s) ds+ 
 �

�

Æ

max

(T )

�

r�(


1

�1=2)

:

Now apply Gronwall's Lemma to 
omplete the proof.

Finally, we estimate the L

r

-error of an Itô-Taylor approximation. Let

A

r

(T ) = m

r

� g

r

�

 

n�1

X

`=0

Ej�(t

`

; X(t

`

)j

r

� (t

`+1

� t

`

))

r=2+1

!

1=r

:

Lemma 4. If 
 � 1 then

�

�

e

r;r

(X

e


T

)� A

r

(T )

�

�

� 
 � Æ

max

(T ):

for all e
 2 [1; 
℄ \ N=2.

Proof. Due to Lemma 3, for 3=2 � e
 � 
,

�

�

e

r;r

(X

e


T

)� e

r;r

(X

3=2

T

)

�

�

�

�

EkX

e


T

�X

3=2

T

k

r

r

�

1=r

� 
 � Æ

max

(T )(9)

Next, let e
 2 f1; 3=2g \ [1; 
℄. Lemma 2 yields

�

�

e

r;r

(X

e


T

)�

�

EkX

e


T

�

e

X

e


T

k

r

r

�

1=r

�

�

� 
 � Æ

max

(T ):(10)

Put U

`

= (t

`

;

e

X

e


T

(t

`

)) and let

f

W

T

denote the pie
ewise linear interpolation of W at the

points t

`

2 T . Fix t 2 [t

`

; t

`+1

℄. Then

e

X

e


T

(t)�X

e


T

(t) =

X

�2A

e


nf�g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

= f

(1)

(U

`

) � (W (t)�

f

W

T

(t))

+

X

�2A

e


nf�;(0);(1)g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

:
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Note that k�k � 2 for � 2 A

e


n f�; (0); (1)g. Hen
e, by (A




), Lemmas 1, 2, and (5),

E

�

�

�

X

�2A

e


nf�;(0);(1)g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

�

�

�

r

� 
 �

X

�2A

e


nf�;(0);(1)g

E

�

jf

�

(U

`

)j

r

� (jI

�;t

`

;t

j

r

+ jI

�;t

`

;t

`+1

j

r

)

�

= 
 �

X

�2A

e


nf�;(0);(1)g

Ejf

�

(U

`

)j

r

�

�

EjI

�;t

`

;t

j

r

+ EjI

�;t

`

;t

`+1

j

r

�

� 
 �

X

�2A

e


nf�;(0);(1)g

�

1 + EjX

e


T

(t

`

)j

r

�

�

�

Æ

max

(T )

�

r=2�k�k

� 
 �

�

Æ

max

(T )

�

r

:

We thus 
on
lude that

�

�

�

�

�

EkX

e


T

�

e

X

e


T

k

r

r

�

1=r

�

�

n�1

X

`=0

Z

t

`+1

t

`

E

�

�

�(U

`

) � (W (t)�

f

W

T

(t))

�

�

r

dt

�

1=r

�

�

�

�

� 
 � Æ

max

(T ):

(11)

Let A denote the �-algebra that is generated by (X(0);W (t

1

); : : : ;W (t

n

)). Conditioned

on A the pro
ess W �

f

W

T

is a Brownian bridge on ea
h subinterval [t

`

; t

`+1

℄. It follows

Z

t

`+1

t

`

E

�

jW (t)�

f

W

T

(t)j

r

�

�

A

n

�

dt = m

r

r

� g

r

r

� (t

`+1

� t

`

)

r=2+1

by straightforward 
al
ulations, and 
onsequently

�

n�1

X

`=0

Z

t

`+1

t

`

E

�

�

�(U

`

) � (W (t)�

f

W

T

(t))

�

�

r

dt

�

1=r

(12)

= m

r

� g

r

�

�

n�1

X

`=0

Ej�(U

`

)j

r

� (t

`+1

� t

`

)

r=2+1

�

1=r

:

Due to (A




) and Lemma 2,

Ej�(U

`

)� �(t

`

; X(t

`

))j

r

� 
 �

�

Æ

max

(T )

�

r

:

Hen
e

�

�

�

m

r

� g

r

�

�

n�1

X

`=0

Ej�(U

`

)j

r

� (t

`+1

� t

`

)

r=2+1

�

1=r

� A

r

(T )

�

�

�

� 
 �

�

Æ

max

(T )

�

3=2

:(13)

Now, 
ombine (9) with (10), (11), (12), and (13) to 
omplete the proof.
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6.2. Proof of Theorem 1. Consider an arbitrary sequen
e of methods X




N

T

N

2 X




N

with 


N

2 [1; 
℄ \ N=2.

Lemma 5.

lim inf

N!1

N

1=2

� e

r;r

(X




N

T

N

) � C

r

:

Proof. Take a sequen
e of positive integers k

N

su
h that

lim

N!1

N=k

2

N

= lim

N!1

k

N

=N = 0:

Sin
e k

N

= o(N) we may assume that

f`=k

N

: ` = 1; : : : ; k

N

� 1g � T

N

:

Due to Lemma 4,

e

r;r

(X




N

T

N

) � A

r

(T

N

)� 
=k

N

:

Hen
e, by the H�older inequality,

lim inf

n!1

N

1=2

� e

r;r

(X




N

T

N

)

� lim inf

N!1

(#T

N

)

1=2

� A

r

(T

N

)

� lim inf

n!1

m

r

� g

r

�

�

#T

N

�1

X

`=0

�

Ej�(t

(N)

`

; X(t

(N)

`

))j

r

�

2=(r+2)

� (t

(N)

`+1

� t

(N)

`

)

�

(r+2)=2r

= C

r

Clearly, Lemma 5 yields the lower bounds in Theorem 1(i),(ii).

Next, let g : [0; 1℄ ! ℄0;1[ be 
ontinuous, and de�ne a sequen
e of dis
retizations

T

n

(g) = ft

(n)

1

; : : : ; t

(n)

n

g by

Z

t

(n)

`

0

g(t) dt =

`

n

�

Z

1

0

g(t) dt; ` = 1; : : : ; n:

Re
all the de�nition of the fun
tion h

r

in Se
tion 4.

Lemma 6.

lim

n!1

�

n(X

1

T

n

(g)

)

�

1=2

� e

r;r

(X

1

T

n

(g)

)

= m

r

� g

r

�

�

Z

1

0

(h

r

(t)))

r

� (g(t))

�r=2

dt

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

:
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Proof. Note that n(X

1

T

n

(g)

) = n and Æ

max

(T

n

(g)) = 1=n. Hen
e, by Lemma 4,

lim

n!1

�

�

�

n(X

1

T

n

(g)

)

�

1=2

� e

r;r

(X

1

T

n

(g)

)� n

1=2

� A

r

(T

n

(g))

�

�

= 0:

By the mean value theorem, we have

t

(n)

`+1

� t

(n)

`

= 1=(n � g(�

(n)

`

)) �

Z

1

0

g(t) dt

with t

(n)

`

� �

(n)

`

� t

(n)

`+1

. Thus

A

r

(T

n

(g))

= n

�1=2

m

r

� g

r

�

�

n�1

X

`=0

�

h

r

(t

(n)

`

)

�

r

�

�

g(�

(n)

`

)

�

�r=2

� (t

(n)

`+1

� t

(n)

`

)

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

:

Sin
e g is bounded away from zero, we obtain

lim

n!1

n

1=2

� A

r

(T

n

(g)) = m

r

� g

r

�

�

Z

1

0

(h

r

(t)))

r

� (g(t))

�r=2

dt

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

;

whi
h 
ompletes the proof.

Let " > 0 and 
onsider the fun
tion

g

"

= (h

r

+ ")

2r=(r+2)

:

By Lemma 6,

lim sup

N!1

N

1=2

� e

r;r

(X




N

) � lim sup

N!1

N

1=2

� e

r;r

(X

1

T

N

(g

"

)

)

� m

r

� g

r

�

�

Z

1

0

g

"

(t) dt

�

(r+2)=2r

:

Letting " tend to zero yields the upper bound in Theorem 1(i).

Clearly, Lemma 6 implies Theorem 1(ii) by taking g = h

2r=(r+2)

r

.

It remains to prove Theorem 1(iii). Let e
 2 [1; 
℄ \ N=2 and 
onsider a sequen
e of

dis
retizations T

n

with maximum step-size

Æ

max

(T

n

) = o

�

(#T

n

)

�1=2

�

:(14)

Note that

n(X

e


T

n

) = K

e


�#T

n

= K

e


� n(X

1

T

n

):

Furthermore, by Lemma 4,

�

�

e

r;r

(X

e


T

n

)� e

r;r

(X

1

T

n

)

�

�

� 
 � Æ

max

(T

n

):
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Thus

�

�

�

�

�

(n(X

e


T

n

))

1=2

� e

r;r

(X

e


T

n

)

(n(X

1

T

n

))

1=2

� e

r;r

(X

1

T

n

)

�K

e


�

�

�

�

�

� 
 �K

e


�

�

�

�

�

�

(#T

n

)

1=2

� Æ

max

(T

n

)

(n(X

1

T

n

))

1=2

� e

r;r

(X

1

T

n

)

�

�

�

�

�

:

By (14) and Theorem 1(i) the right hand side tends to zero with n tending to in�nity.

6.3. Proof of Theorem 2. The relation

e

1;r

(X

1=2

N

) � (lnN=N)

1=2

(15)

follows from M�uller-Gronba
h (2001b, Theorem 2 and Theorem 3).

To prove the se
ond part of Theorem 2(i) 
hoose a sequen
e of Itô-Taylor approxi-

mations X




N

T

N

2 X




N

su
h that

e

1;r

(X

1=2

N

) � e

1;r

(X




N

T

N

)� 1=N

1=2

:

Due to Lemma 3,

e

1;r

(X




N

T

N

) � e

1;r

(X

1=2

T

N

)� 
=N

1=2

:

Thus

1 �

e

1;r

(X




N

)

e

1;r

(X

1=2

N

)

� 1�


 �N

�1=2

e

1;r

(X

1=2

T

N

)

:

It remains to observe that

lim sup

N!1

N

�1=2

e

1;r

(X

1=2

T

N

)

� lim sup

N!1

N

�1=2

e

1;r

(X

1=2

N

)

= 0

by (15).

In order to prove Theorem 2(ii) let e
 2 [1=2; 
℄ \ N=2 and 
onsider a sequen
e of

dis
retizations T

n

with maximum step-size

Æ

max

(T

n

) = o((ln#T

n

)=#T

n

):(16)

Note that

n(X

e


T

n

) = K

e


�#T

n

= K

e


� n(X

1=2

T

n

):

Furthermore, by Lemma 3,

�

�

e

1;r

(X

e


T

n

)� e

1;r

(X

1=2

T

n

)

�

�

� 
 �

�

Æ

max

(T

n

)

�

1=2

:
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Thus

�

�

�

�

�

(n(X

e


T

n

)= lnn(X

e


T

n

))

1=2

� e

1;r

(X

e


T

n

)

(n(X

1=2

T

n

)= lnn(X

1=2

T

n

))

1=2

� e

1;r

(X

1=2

T

n

)

�K

e


�

�

�

�

�

= 
 �K

e


�

�

�

�

�

�

(ln#T

n

)

1=2

� e

1;r

(X

e


T

n

)

(ln#T

n

+ lnK

e


)

1=2

� e

1;r

(X

1=2

T

n

)

� 1

�

�

�

�

�

� 
 �K

e


�

Æ

max

(T

n

)

e

1;r

(X

1=2

T

n

)

+K

e


�

�

�

�

�

�

(ln#T

n

)

1=2

(ln#T

n

+ lnK

e


)

1=2

� 1

�

�

�

�

�

:

By (16) and Theorem 2(i) the last sum tends to zero with n tending to in�nity.
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