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Abstrat. We analyze the global error of Itô-Taylor shemes for pathwise approxi-

mation of salar stohasti di�erential equations on the interval [0; 1℄. The error of an

approximation is de�ned by its expeted L

p

-distane to the solution, and the number

n of multiple Itô integrals that are evaluated is used as a rough measure of its ompu-

tational ost. We show that the optimal order of onvergene is n

�1=2

for 1 � p <1

and (n= lnn)

�1=2

for p =1. Consequently, there are no Itô-Taylor methods of higher

order with respet to the global error on [0; 1℄. These results are in sharp ontrast to

the orresponding well known result for the error at the disretization points where

arbitrary high orders an be ahieved.

1. Introdution

Consider a salar stohasti di�erential equation

dX(t) = a(t; X(t)) dt+ �(t; X(t)) dW (t); t 2 [0; 1℄;(1)

with initial value X(0), drift oeÆient a, di�usion oeÆient � and a one-dimensional

driving Brownian motion W . An Itô-Taylor sheme for pathwise approximation of the

solutionX of (1) is based on a trunated Itô-Taylor expansion of X, whih is a stohas-

ti analogue to the deterministi Taylor formula, see, e.g., Wagner and Platen (1978),

Kloeden and Platen (1995), and Milstein (1995). For a given trunation parameter

 2 N=2 and a �nite disretization T � [0; 1℄, it reursively omputes approximate

values

X



T

(t); t 2 T;

to the solution X at the disretization points. Essentially, these values are given by

weighted sums of multiple Itô integrals, where the weights are determined by the drift

and di�usion oeÆients and their derivatives up to some order. A global approximation

X



T

on [0; 1℄ is obtained by pieewise linear interpolation. The most prominent examples

are the Euler approximation X

1=2

T

and the Milstein approximation X

1

T

.
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As a rough measure for the omputational ost of an Itô-Taylor approximation X



T

one may use the number n(X



T

) of multiple Itô integrals that are evaluated. This

number is proportional to the ardinality #T of the disretization T ,

n(X



T

) = K



�#T;

where the proportionality onstant K



is inreasing in the trunation parameter .

Up to now Itô-Taylor approximations have mainly been analyzed with respet to

their error at the disretization points. Let p � 1. Under suitable regularity onditions

on the initial value and the drift and di�usion oeÆients it holds

�

E(max

t2T

jX



T

(t)�X(t)j

p

)

�

1=p

�  �

�

n(X



T

)

�

�

;(2)

where the onstant  does not depend on the disretization T , see Kloeden and Platen

(1995). Thus, for a �xed trunation parameter  the order of onvergene is at least 

in terms of the omputational ost.

In the present paper we analyze the global error of Itô-Taylor approximations on the

interval [0; 1℄. We measure the pathwise distane between X and X



T

in the L

p

-norm

kX �X



T

k

p

=

8

>

>

<

>

>

:

�

Z

1

0

jX(t)�X



T

(t)j

p

dt

�

1=p

if 1 � p <1

sup

t2[0;1℄

jX(t)�X



T

(t)j if p =1;

and we de�ne the error of X



T

by averaging over all trajetories, i.e.,

e

p;q

(X



T

) =

�

E(kX �X



T

k

q

p

)

�

1=q

:

for some q 2 [1;1).

Our results for the global error are in sharp ontrast with (2). Consider a sequene

of Itô-Taylor approximations X



T

N

with omputational ost

n(X



T

N

) � N:

If p <1 then, by Theorem 1,

lim inf

N!1

N

1=2

� e

p;p

(X



T

N

) � 

p

�

�

Z

1

0

�

Ej�(t; X(t))j

p

�

2=(p+2)

dt

�

(p+2)=2p

;

where the onstant 

p

> 0 only depends on p. Furthermore, if the disretization T

N

is

hosen in an appropriate way then

lim

N!1

�

n(X

1

T

N

)

�

1=2

� e

p;p

(X

1

T

N

) = 

p

�

�

Z

1

0

�

Ej�(t; X(t))j

p

�

2=(p+2)

dt

�

(p+2)=2p

holds for the orresponding Milstein approximation X

1

T

N

. Hene the best order of on-

vergene is (n(X



T

N

))

�1=2

for every trunation parameter , and asymptotially the
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Milstein approximation is optimal. Even more, it turns out that a sequene X



T

n

of

Itô-Taylor approximations an not be asymptotially optimal if  > 1.

If p =1 then the best order of onvergene is (n(X



T

N

)= lnn(X



T

N

))

�1=2

regardless of

, and an appropriate hosen Euler approximation ( = 1=2) is asymptotially optimal,

see Theorem 2.

Itô-Taylor approximations are introdued in Setion 2. In Setion 3 we disuss om-

putational ost and minimal errors. Our results on the global error are presented in

Setion 4 for p <1 and Setion 5 for p =1. Proofs are postponed to Setion 6.

2. It

^

o-Taylor shemes

We briey introdue Itô-Taylor shemes for pathwise approximation of the solution

X of (1) following the lines in Kloeden and Platen (1995).

Let M denote the set of all multi-indies with entries zero or one, i.e.,

M =

[

�2N

f0; 1g

�

[ f�g;

where � is the multi-index of length zero. To every multi-index � 2 M we assoiate

the number

k�k = �(�) + �(�);

where �(�) denotes the length and �(�) the number of the zero omponents of �.

Moreover, if �(�) � 1 we use �� to denote the multi-index obtained by aneling the

�rst omponent of �.

For � 2 M and 0 � s < t � 1 the orresponding multiple Itô integral I

�;s;t

is de�ned

by

I

�;s;t

= 1

if � = �, and

I

�;s;t

=

Z

t

s

� � �

Z

t

2

s

dW

�

1

(t

1

) : : : dW

�

�

(t

�

)

if � = (�

1

; : : : ; �

�

) 2 M n f�g, where W

0

(t) = t and W

1

(t) = W (t). For example,

I

(0);s;t

= t� s; I

(0;1);s;t

=

Z

t

s

(u� s) dW (u);

I

(1);s;t

=W (t)�W (s); I

(1;0);s;t

=

Z

t

s

(W (u)�W (s)) du;

I

(1;1);s;t

= 1=2 �

�

(W (t)�W (s))

2

� (t� s)

�

:

Next, onsider the di�erential operators

L

0

=

�

�t

+ a �

�

�x

+ 1=2 � �

2

�

�

2

�x

2
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and

L

1

= � �

�

�x

assoiated with equation (1). Then, for � 2 M the orresponding Itô oeÆient fun-

tion f

�

: [0; 1℄� R ! R is reursively de�ned by

f

�

(t; x) =

(

x if � = �;

L

�

1

f

��

(t; x) if � = (�

1

; : : : ; �

�

) 2 M n f�g:

Thus

f

(0)

= a; f

(0;1)

= �

(1;0)

+ a � �

(0;1)

+ 1=2 � �

2

� �

(0;2)

;

f

(1)

= �; f

(1;0)

= � � a

(0;1)

;

f

(1;1)

= � � �

(0;1)

:

Finally, let  2 N=2, put

A



= f� 2 M : k�k � 2 or �(�) = �(�) =  + 1=2g;

and onsider a disretization

T = ft

1

; : : : ; t

n

g �℄0; 1℄;(3)

where 0 < t

1

< � � � < t

n

= 1. Put t

0

= 0. The orresponding so-alled Itô-Taylor

sheme of strong order  is de�ned by

X



T

(t

0

) = X(0)

and

X



T

(t

`+1

) =

X

�2A



f

�

(t

`

; X



T

(t

`

)) � I

�; t

`

; t

`+1

(4)

for ` = 0; : : : ; n � 1, provided all the derivatives of a and � appearing in (4) exist.

Pieewise linear interpolation of the data (t

`

; X



T

(t

`

)) yields the global approximation

X



T

.

For example,

A

1=2

= f�; (0); (1)g;

A

1

= f�; (0); (1); (1; 1)g;

A

3=2

= f�; (0); (1); (0; 0); (1; 0); (0; 1); (1; 1); (1; 1; 1)g

and the orresponding Itô-Taylor shemes of strong order  = 1=2; 1 and 3=2 are the

Euler sheme, the Milstein sheme and the Wagner-Platen sheme, respetively.
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3. Computational ost and minimal errors

As a rough measure for the omputational ost of an Itô-Taylor approximation X



T

we use the number n(X



T

) of multiple Itô integrals that are evaluated. Note that some

of the multiple Itô-integrals appearing in (4) are deterministi or may be expressed by

other integrals, e.g.,

I

(0); t

`

; t

`+1

= t

`+1

� t

`

; I

(1;1); t

`

; t

`+1

= 1=2 � (I

2

(1); t

`

; t

`+1

� I

(0); t

`

; t

`+1

);

I

(0;1); t

`

; t

`+1

= I

(0); t

`

; t

`+1

� I

(1); t

`

; t

`+1

� I

(1;0); t

`

; t

`+1

:

Thus, for example,

n(X

1=2

T

) = n(X

1

T

) = #T

sine both the Euler approximation X

1=2

T

and the Milstein approximation X

1

T

are only

based on the evaluation of W at the points t

`

2 T . For the Wagner-Platen approxima-

tion X

3=2

T

one has

n(X

3=2

T

) = 2 �#T

sine additionally the evaluation of the integrals

R

t

`

t

`�1

W (s) ds, t

`

2 T , is needed for

the alulation of this approximation. In general, it holds

n(X



T

) = K



�#T;

with K

1=2

= K

1

= 1, K

3=2

= 2, and

2 � 1 � K



< #A



for  � 2.

Remark 1. The lower bound 2 � 1 for the onstant K



is due to the fat that at

least #T additional multiple Itô integrals have to be evaluated when swithing from

X



T

to X

+1=2

T

. Clearly, this bound is not sharp in general. For instane, if  = 20

then at least 210 multiple Itô integrals have to be evaluated for every t

`

2 T , i.e.,

K

20

� 210 > 39 = 2 � 1.

Remark 2. In our analysis we do not adress the problem of simulating multiple Itô-

integrals but rather assume that realizations of those funtionals are made available by

some random number generator. Under this assumption the omputational ost (X



T

)

of an Itô-Taylor approximation X



T

is determined by

� the number of multiple Itô integrals that are evaluated,

� the number of evaluations of the drift and di�usion oeÆients and their partial

derivatives,

� the number of arithmetial operations that are performed.
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Clearly, (X



T

) � n(X



T

), but for large  the ost (X



T

) will be muh larger than

n(X



T

). The use of n(X



T

) as a measure of ost favours Itô-Taylor approximations of

higher orders.

For  2 N=2 let

X



= fX

e

T

: e � ; 1 2 T � ℄0; 1℄; #T <1g

denote the lass of all Itô-Taylor approximations of strong order at most . Put

X



N

= fX 2 X



: n(X) � Ng

for N 2 N. Then

e

p;q

(X



N

) = inffe

p;q

(X) : X 2 X



N

g

is the minimal error that an be ahieved by Itô-Taylor approximations from the lass

X



that evaluate at most N multiple Itô integrals.

4. L

p

-Approximation, p <1.

For  2 N=2 we de�ne

B(A



) = f� 2 M nA



: �� 2 A



g:

Fix  2 [1;1) \ N=2 as well as p 2 [1;1[, and put p

�

= max(p; 2). We assume

(A



) All partial derivatives of a and � that appear in f

�

; � 2 A



[ B(A



), do exist.

Furthermore, there is a onstant K > 0 suh that

jf

�

(t; x)� f

�

(t; y)j � K � jx� yj;

jf

�

(s; x)� f

�

(t; x)j � K � (1 + jxj) � js� tj;

for all s; t 2 [0; 1℄; x; y 2 R and � 2 A



[ B(A



).

(M

p

�

) The initial value X(0) is independent of W and

EjX(0)j

p

�

<1:

(S) The proess �(t; X(t)); t 2 [0; 1℄, does not vanish with probability one, i.e.,

P ( sup

0�t�1

j�(t; X(t))j > 0) > 0:

Note that (A



) yields the linear growth ondition

jf

�

(t; x)j �  � (1 + jxj):

Furthermore, (A



) and (M

p

�

) imply that a pathwise unique strong solution of equation

(1) with initial value X(0) exists. Moreover, the solution satis�es

EkXk

p

�

1

<1:(5)

Deterministi equations (1) are exluded by ondition (S).
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Let m

p

denote the p{th root of the p{th absolute moment of a standard normal

variable, i.e.,

m

p

=

�

Z

1

�1

jyj

p

=(2�)

1=2

� exp(�y

2

=2) dy

�

1=p

;

and put

g

p

=

�

Z

1

0

(t(1� t))

p=2

dt

�

1=p

:

To every equation (1) we assoiate the onstant

C

p

= m

p

� g

p

�

�

Z

1

0

�

h

p

(t)

�

2p=(p+2)

dt

�

(p+2)=2p

;

where the funtion h

p

is de�ned by

h

p

(t) =

�

Ej�(t; X(t))j

p

�

1=p

; t 2 [0; 1℄:

For example, C

2

= 1=

p

6 �

R

1

0

(Ej�(t; X(t))j

2

)

1=2

dt. Note that (S) implies C

p

> 0.

Furthermore, we use

Æ

max

(T ) = max

`=0;::: ;n�1

(t

`+1

� t

`

)

to denote the maximum step-size of a disretization (3).

Theorem 1. (i) The minimal errors satisfy

lim

N!1

N

1=2

� e

p;p

(X



N

) = C

p

:

(ii) Let T

n

= ft

(n)

1

; : : : ; t

(n)

n

g with

Z

t

(n)

`

t

(n)

`�1

�

h

p

(t)

�

2p=(p+2)

dt =

1

n

Z

1

0

�

h

p

(t)

�

2p=(p+2)

dt; ` = 1; : : : ; n:

If h

p

> 0 then the orresponding Milstein approximation satis�es

lim

n!1

(n(X

1

T

n

))

1=2

� e

p;p

(X

1

T

n

) = C

p

:

(iii) For every e 2 [1; ℄ \ N=2 and every sequene of disretizations T

n

with maximum

step-size Æ

max

(T

n

) = o((#T

n

)

�1=2

) it holds

lim

n!1

(n(X

e

T

n

))

1=2

� e

p;p

(X

e

T

n

)

(n(X

1

T

n

))

1=2

� e

p;p

(X

1

T

n

)

= K

1=2

e

:
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Due to Theorem 1(i) the order of onvergene of the minimal errors is N

�1=2

. Con-

sequently, there is no Itô-Taylor approximation of higher order with respet to L

p

{

approximation, p <1. Furthermore, by Theorem 1(ii) the optimal rate of onvergene

is ahieved by the Milstein approximation if the disretization is hosen in an ap-

propriate way. Finally, Theorem 1(iii) states that asymptotially, for any reasonable

disretization the Milstein approximation is optimal. Even more, the performane of

Itô-Taylor approximations gets worse the more multiple Itô-integrals are involved.

Remark 3. Theorem 1(iii) indiates that, for global approximation, Itô-Taylor meth-

ods of strong order  > 1 do not use the supplied multiple Itô integrals in an eÆient

way. For instane, let T = f1=n; : : : ; 1g and onsider the orresponding Wagner-Platen

approximation X

3=2

T

, whih evaluates

W (`=n);

Z

`=n

(`�1)=n

W (s) ds; ` = 1; : : : ; n:

For the trivial equation

dX(t) = dW (t); X(0) = 0;

we obtain the pieewise linear interpolation of W at the disretization points, i.e.,

X

3=2

T

(t) = W (`=n) + n(t� (`� 1)=n) � (W (`=n)�W ((`� 1)=n))

for (` � 1)=n � t � `=n. Thus, X

3=2

T

makes no use of the integrals

R

`=n

(`�1)=n

W (s) ds.

Straightforward alulation yields

e

2;2

(X

3=2

T

) = (6 �#T )

�1=2

:

On the other hand, onsider the approximation

e

X

T

given by

e

X

T

(t) = X

3=2

T

(t)� 6n

3

(`=n� t)(t� (`� 1)=n) �

Z

`=n

(`�1)=n

�

W (s)�X

3=2

T

(s)

�

ds

for (`� 1)=n � t � `=n. Clearly,

e

X

T

evaluates the same multiple Itô integrals as X

3=2

T

,

but

e

2;2

(

e

X

T

) = (15 �#T )

�1=2

:

Remark 4. An Itô-Taylor approximation X



T

is based on a �xed disretization T of

the unit interval. The disretization may be adapted to the partiular equation (1)

as in Theorem 1(ii), but one T has been hosen, the same multiple Itô integrals are

evaluated for every trajetory of the solution X. Considerable improvements of the

asymptoti onstant C

p

in Theorem 1 are ahieved with methods that are adaptive

also with respet to the trajetories of X. Moreover, these methods are muh easier

to implement than the Milstein approximation from Theorem 1(ii), whih requires the
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knowledge of the funtion h

p

. See Hofmann et al. (2001a, 2001b) and M�uller-Gronbah

(2001a) for results and further details.

5. L

1

-Approximation

Fix  2 N=2 as well as q 2 [1;1[, and put q

�

= max(q; 2). Throughout this setion

we assume that the onditions (A



), (M

q

�

) and (S) are satis�ed.

We use � to denote the weak equivalene of sequenes of real numbers, i.e.,

a

n

� b

n

if 

1

� a

n

=b

n

� 

2

for suÆiently large n with positive onstants 

1

; 

2

.

Theorem 2. (i) The minimal errors satisfy

e

1;q

(X



N

) � (lnN=N)

1=2

as well as

lim

N!1

e

1;q

(X



N

)

e

1;q

(X

1=2

N

)

= 1:

(ii) For every e 2 [1=2; ℄ \ N=2 and every sequene of disretizations T

n

with

maximum step-size Æ

max

(T

n

) = o((ln#T

n

)=#T

n

) it holds

lim

n!1

(n(X

e

T

n

)= lnn(X

e

T

n

))

1=2

� e

1;q

(X

e

T

n

)

(n(X

1=2

T

n

)= lnn(X

1=2

T

n

))

1=2

� e

1;q

(X

1=2

T

n

)

= K

1=2

e

:

Thus, for L

1

-approximation the order of onvergene of the minimal errors is (lnN=N)

1=2

regardless of , and the best Euler-approximation is asymptotially optimal. Similar to

the ase of L

p

-approximation, p <1, the performane of an Itô-Taylor approximation

X



T

gets worse with inreasing .

Remark 5. In ontrast to Theorem 1, Theorem 2 does not provide asymptoti on-

stants for the rate of onvergene of the minimal errors e

1;q

(X

1=2

N

). Furthermore, it is

unknown how to hoose the disretization suh that the orresponding Euler approxi-

mation is asymptotially optimal.

Asymptoti onstants an, however, be determined in the ase of an equidistant

disretization T

n

= f1=n; : : : ; 1g. Due to Theorem 2(ii) and M�uller-Gronbah (2001b,

Theorem 2) it holds

lim

n!1

(n(X

e

T

n

)= lnn(X

e

T

n

))

1=2

� e

1;q

(X

e

T

n

) = K

1=2

e

� 2

�1=2

�

�

E( sup

0�t�1

j�(t; X(t)j

q

�

1=q

for every e 2 [1=2; ℄ \ N=2.

Remark 6. M�uller-Gronbah (2001b) provides adaptive methods for L

1

-approximation,

whih asymptotially are superior to any Itô-Taylor approximation. These methods are

easy to implement and use only funtion values of the driving Brownian motion W .
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6. Proofs

Fix  2 N=2, r 2 [1;1[ and put r

�

= max(r; 2). Throughout the sequel we assume

that the onditions (A



) and (M

r

�

) are satis�ed. Moreover, we use  to denote unspe-

i�ed positive onstants, whih only depend on , r, and the onstants from onditions

(A



) and (M

r

�

).

6.1. Preliminary estimates. We provide a moment estimate for multiple Itô inte-

grals.

Lemma 1. Let � 2 M; 0 � s < t � 1 and b � 1. Then

E jI

�;s;t

j

2b

� (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

:

Proof. The proof is by indution on the length �(�) of �.

Clearly, the estimate holds for �(�) = 0, i.e., � = �. Next, assume that the assertion

of the Lemma is satis�ed for all multi-indies of length k. Let � = (�

1

; : : : ; �

k+1

) be a

multi-index of length k + 1 and put �� = (�

1

; : : : ; �

k

).

If �

k+1

= 0 then �(��)� �(��) = �(�)� �(�) and k�� k+ 2 = k�k. Hene

E jI

�;s;t

j

2b

= E

�

�

�

�

Z

t

s

I

��;�;u

du

�

�

�

�

2b

� (t� s)

2b�1

�

Z

t

s

E jI

��;s;u

j

2b

du

� (b(2b� 1))

b(�(��)��(��))

� (t� s)

b(k��k+2)

= (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

:

If �

k+1

= 1 then �(��) � �(��) + 1 = �(�)� �(�) and k� � k + 1 = k�k. Thus, by

the Burkholder inequality,

E jI

�;s;t

j

2b

= E

�

�

�

�

Z

t

s

I

��;s;u

dW (u)

�

�

�

�

2b

� (b(2b� 1))

b

� (t� s)

b�1

�

Z

t

s

E jI

��;s;u

j

2b

du

� (b(2b� 1))

b(�(��)��(��)+1)

� (t� s)

b(k��k+1)

= (b(2b� 1))

b(�(�)��(�))

� (t� s)

bk�k

;

whih ompletes the proof.

For a disretization (3) and e 2 [1=2; ℄ \ N=2 we de�ne the proess

e

X

e

T

on [0; 1℄ by

e

X

e

T

(t

0

) = X(0) and

e

X

e

T

(t) =

X

�2A

e

f

�

(t

`

; X

e

T

(t

`

)) � I

�;t

`

;t
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for t 2 [t

`

; t

`+1

℄, ` = 0; : : : ; n� 1. Note that

e

X

e

T

oinides with the Itô-Taylor approx-

imation X

e

T

at the disretization points. However,

e

X

e

T

is not a numerial method for

the global approximation of X sine it is based on the whole trajetory of the driving

Brownian motion W . The following estimate is due to Kloeden and Platen (1995).

Lemma 2.

�

EkX �

e

X

e

T

k

r

1

�

1=r

�  �

�

Æ

max

(T )

�

e

:

Next we estimate the L

1

-distane between Itô-Taylor approximations of di�erent

order.

Lemma 3. Let 

1

; 

2

2 [1=2; ℄ \ N=2 with 

1

< 

2

. Then

�

EkX



2

T

�X



1

T

k

r

1

�

1=r

�  �

�

Æ

max

(T )

�



1

�1=2

:

If  � 1 then

�

EkX

1

T

�X

1=2

T

k

r

1

�

1=r

�  �

�

Æ

max

(T )

�

1=2

:

Proof. Note that

EkX



2

T

�X



1

T

k

r

1

�  � Ek

e

X



2

T

�

e

X



1

T

k

r

1

:

It thus suÆes to prove Lemma 3 with

e

X in plae of X. Moreover, we may assume



2

= 

1

+ 1=2.

Put

f(t) = E

�

sup

0�s�t

�

� e

X



1

+1=2

T

(s)�

e

X



1

T

(s)

�

�

r

�

for 0 � t � 1. By Lemma 2 and (5),

sup

0�t�1

f(t) <1:

Fix t 2 [0; 1℄. We have

e

X



1

+1=2

T

(t)�

e

X



1

T

(t) =

X

�2A



1

nf�g

Y

�

(t) +

X

�2A



1

+1=2

nA



1

Z

�

(t);(6)

where

Y

�

(t) =

Z

t

0

n�1

X

`=0

�

f

�

(t

`

; X



1

+1=2

T

(t

`

))� f

�

(t

`

; X



1

T

(t

`

))

�

� I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s) dW

�

�(�)

(s)

and

Z

�

(t) =

Z

t

0

n�1

X

`=0

f

�

(t

`

; X



1

+1=2

T

(t

`

)) � I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s) dW

�

�(�)

(s):
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Let � 2 A



1

n f�g. If �

�(�)

= 0 then

E

�

sup

0�s�t

jY

�

(s)j

r

�

�  �

Z

t

0

E

�

�

�

n�1

X

`=0

�

f

�

(t

`

; X



1

+1=2

T

(t

`

))� f

�

(t

`

; X



1

T

(t

`

))

�

� I

��;t

`

;s

� 1

℄t

`

;t

`+1

℄

(s)

�

�

�

r

ds

=  �

Z

t

0

n�1

X

`=0

Ejf

�

(t

`

; X



1

+1=2

T

(t

`

))� f

�

(t

`

; X



1

T

(t

`

))j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds:

Using the Burkholder inequality, we obtain the same estimate in the ase �

�(�)

= 1.

Thus, by (A



) and Lemma 1,

E

�

sup

0�s�t

jY

�

(s)j

r

�

(7)

�  �

Z

t

0

n�1

X

`=0

EjX



1

+1=2

T

(t

`

)�X



1

T

(t

`

)j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds

�  �

Z

t

0

n�1

X

`=0

f(s) � (s� t

`

)

r=2�k��k

� 1

℄t

`

;t

`+1

℄

(s) ds

�  �

�

Æ

max

(T )

�

r=2�k��k

�

Z

t

0

f(s) ds �

�  �

Z

t

0

f(s) ds;

where the last estimate is a onsequene of k�� k � 0.

Now let � 2 A



1

+1=2

n A



1

. By the same reasoning as above we obtain

E

�

sup

0�s�t

jZ

�

(s)j

r

�

�  �

Z

t

0

n�1

X

`=0

Ejf

�

(t

`

; X



1

+1=2

T

(t

`

))j

r

�EjI

��;t

`

;s

j

r

� 1

℄t

`

;t

`+1

℄

(s) ds:

Hene, by (A



), Lemma 1, Lemma 2 and (5),

E

�

sup

0�s�t

jZ

�

(s)j

r

�

(8)

�  �

Z

t

0

n�1

X

`=0

�

1 + EjX



1

+1=2

T

(t

`

)j

r

�

� (s� t

`

)

r=2�k��k

� 1

℄t

`

;t

`+1

℄

(s) ds

�  �

�

Æ

max

(T )

�

r=2�k��k

:
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Note that k�k � 2

1

+ 1 for � 2 A



1

+1=2

n A



1

. Combining (6) with (7) and (8) we

thus obtain

f(t) �  �#(A



1

n f�g) �

Z

t

0

f(s) ds

+  �#

�

(A



1

+1=2

n A



1

) \ f� : �

�(�)

= 0g

�

�

�

Æ

max

(T )

�

r�(

1

�1=2)

+  �#

�

(A



1

+1=2

n A



1

) \ f� : �

�(�)

= 1g

�

�

�

Æ

max

(T )

�

r�

1

:

If 

1

= 1=2 then (A



1

+1=2

n A



1

) \ f� : �

�(�)

= 0g = ; and therefore

f(t) �  �

Z

t

0

f(s) ds+  �

�

Æ

max

(T )

�

r=2

:

Otherwise we have

f(t) �  �

Z

t

0

f(s) ds+  �

�

Æ

max

(T )

�

r�(

1

�1=2)

:

Now apply Gronwall's Lemma to omplete the proof.

Finally, we estimate the L

r

-error of an Itô-Taylor approximation. Let

A

r

(T ) = m

r

� g

r

�

 

n�1

X

`=0

Ej�(t

`

; X(t

`

)j

r

� (t

`+1

� t

`

))

r=2+1

!

1=r

:

Lemma 4. If  � 1 then

�

�

e

r;r

(X

e

T

)� A

r

(T )

�

�

�  � Æ

max

(T ):

for all e 2 [1; ℄ \ N=2.

Proof. Due to Lemma 3, for 3=2 � e � ,

�

�

e

r;r

(X

e

T

)� e

r;r

(X

3=2

T

)

�

�

�

�

EkX

e

T

�X

3=2

T

k

r

r

�

1=r

�  � Æ

max

(T )(9)

Next, let e 2 f1; 3=2g \ [1; ℄. Lemma 2 yields

�

�

e

r;r

(X

e

T

)�

�

EkX

e

T

�

e

X

e

T

k

r

r

�

1=r

�

�

�  � Æ

max

(T ):(10)

Put U

`

= (t

`

;

e

X

e

T

(t

`

)) and let

f

W

T

denote the pieewise linear interpolation of W at the

points t

`

2 T . Fix t 2 [t

`

; t

`+1

℄. Then

e

X

e

T

(t)�X

e

T

(t) =

X

�2A

e

nf�g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

= f

(1)

(U

`

) � (W (t)�

f

W

T

(t))

+

X

�2A

e

nf�;(0);(1)g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

:
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Note that k�k � 2 for � 2 A

e

n f�; (0); (1)g. Hene, by (A



), Lemmas 1, 2, and (5),

E

�

�

�

X

�2A

e

nf�;(0);(1)g

f

�

(U

`

) �

�

I

�; t

`

; t

�

t� t

`

t

`+1

� t

`

� I

�; t

`

; t

`+1

�

�

�

�

r

�  �

X

�2A

e

nf�;(0);(1)g

E

�

jf

�

(U

`

)j

r

� (jI

�;t

`

;t

j

r

+ jI

�;t

`

;t

`+1

j

r

)

�

=  �

X

�2A

e

nf�;(0);(1)g

Ejf

�

(U

`

)j

r

�

�

EjI

�;t

`

;t

j

r

+ EjI

�;t

`

;t

`+1

j

r

�

�  �

X

�2A

e

nf�;(0);(1)g

�

1 + EjX

e

T

(t

`

)j

r

�

�

�

Æ

max

(T )

�

r=2�k�k

�  �

�

Æ

max

(T )

�

r

:

We thus onlude that

�

�

�

�

�

EkX

e

T

�

e

X

e

T

k

r

r

�

1=r

�

�

n�1

X

`=0

Z

t

`+1

t

`

E

�

�

�(U

`

) � (W (t)�

f

W

T

(t))

�

�

r

dt

�

1=r

�

�

�

�

�  � Æ

max

(T ):

(11)

Let A denote the �-algebra that is generated by (X(0);W (t

1

); : : : ;W (t

n

)). Conditioned

on A the proess W �

f

W

T

is a Brownian bridge on eah subinterval [t

`

; t

`+1

℄. It follows

Z

t

`+1

t

`

E

�

jW (t)�

f

W

T

(t)j

r

�

�

A

n

�

dt = m

r

r

� g

r

r

� (t

`+1

� t

`

)

r=2+1

by straightforward alulations, and onsequently

�

n�1

X

`=0

Z

t

`+1

t

`

E

�

�

�(U

`

) � (W (t)�

f

W

T

(t))

�

�

r

dt

�

1=r

(12)

= m

r

� g

r

�

�

n�1

X

`=0

Ej�(U

`

)j

r

� (t

`+1

� t

`

)

r=2+1

�

1=r

:

Due to (A



) and Lemma 2,

Ej�(U

`

)� �(t

`

; X(t

`

))j

r

�  �

�

Æ

max

(T )

�

r

:

Hene

�

�

�

m

r

� g

r

�

�

n�1

X

`=0

Ej�(U

`

)j

r

� (t

`+1

� t

`

)

r=2+1

�

1=r

� A

r

(T )

�

�

�

�  �

�

Æ

max

(T )

�

3=2

:(13)

Now, ombine (9) with (10), (11), (12), and (13) to omplete the proof.
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6.2. Proof of Theorem 1. Consider an arbitrary sequene of methods X



N

T

N

2 X



N

with 

N

2 [1; ℄ \ N=2.

Lemma 5.

lim inf

N!1

N

1=2

� e

r;r

(X



N

T

N

) � C

r

:

Proof. Take a sequene of positive integers k

N

suh that

lim

N!1

N=k

2

N

= lim

N!1

k

N

=N = 0:

Sine k

N

= o(N) we may assume that

f`=k

N

: ` = 1; : : : ; k

N

� 1g � T

N

:

Due to Lemma 4,

e

r;r

(X



N

T

N

) � A

r

(T

N

)� =k

N

:

Hene, by the H�older inequality,

lim inf

n!1

N

1=2

� e

r;r

(X



N

T

N

)

� lim inf

N!1

(#T

N

)

1=2

� A

r

(T

N

)

� lim inf

n!1

m

r

� g

r

�

�

#T

N

�1

X

`=0

�

Ej�(t

(N)

`

; X(t

(N)

`

))j

r

�

2=(r+2)

� (t

(N)

`+1

� t

(N)

`

)

�

(r+2)=2r

= C

r

Clearly, Lemma 5 yields the lower bounds in Theorem 1(i),(ii).

Next, let g : [0; 1℄ ! ℄0;1[ be ontinuous, and de�ne a sequene of disretizations

T

n

(g) = ft

(n)

1

; : : : ; t

(n)

n

g by

Z

t

(n)

`

0

g(t) dt =

`

n

�

Z

1

0

g(t) dt; ` = 1; : : : ; n:

Reall the de�nition of the funtion h

r

in Setion 4.

Lemma 6.

lim

n!1

�

n(X

1

T

n

(g)

)

�

1=2

� e

r;r

(X

1

T

n

(g)

)

= m

r

� g

r

�

�

Z

1

0

(h

r

(t)))

r

� (g(t))

�r=2

dt

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

:
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Proof. Note that n(X

1

T

n

(g)

) = n and Æ

max

(T

n

(g)) = 1=n. Hene, by Lemma 4,

lim

n!1

�

�

�

n(X

1

T

n

(g)

)

�

1=2

� e

r;r

(X

1

T

n

(g)

)� n

1=2

� A

r

(T

n

(g))

�

�

= 0:

By the mean value theorem, we have

t

(n)

`+1

� t

(n)

`

= 1=(n � g(�

(n)

`

)) �

Z

1

0

g(t) dt

with t

(n)

`

� �

(n)

`

� t

(n)

`+1

. Thus

A

r

(T

n

(g))

= n

�1=2

m

r

� g

r

�

�

n�1

X

`=0

�

h

r

(t

(n)

`

)

�

r

�

�

g(�

(n)

`

)

�

�r=2

� (t

(n)

`+1

� t

(n)

`

)

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

:

Sine g is bounded away from zero, we obtain

lim

n!1

n

1=2

� A

r

(T

n

(g)) = m

r

� g

r

�

�

Z

1

0

(h

r

(t)))

r

� (g(t))

�r=2

dt

�

1=r

�

�

Z

1

0

g(t) dt

�

1=2

;

whih ompletes the proof.

Let " > 0 and onsider the funtion

g

"

= (h

r

+ ")

2r=(r+2)

:

By Lemma 6,

lim sup

N!1

N

1=2

� e

r;r

(X



N

) � lim sup

N!1

N

1=2

� e

r;r

(X

1

T

N

(g

"

)

)

� m

r

� g

r

�

�

Z

1

0

g

"

(t) dt

�

(r+2)=2r

:

Letting " tend to zero yields the upper bound in Theorem 1(i).

Clearly, Lemma 6 implies Theorem 1(ii) by taking g = h

2r=(r+2)

r

.

It remains to prove Theorem 1(iii). Let e 2 [1; ℄ \ N=2 and onsider a sequene of

disretizations T

n

with maximum step-size

Æ

max

(T

n

) = o

�

(#T

n

)

�1=2

�

:(14)

Note that

n(X

e

T

n

) = K

e

�#T

n

= K

e

� n(X

1

T

n

):

Furthermore, by Lemma 4,

�

�

e

r;r

(X

e

T

n

)� e

r;r

(X

1

T

n

)

�

�

�  � Æ

max

(T

n

):
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Thus

�

�

�

�

�

(n(X

e

T

n

))

1=2

� e

r;r

(X

e

T

n

)

(n(X

1

T

n

))

1=2

� e

r;r

(X

1

T

n

)

�K

e

�

�

�

�

�

�  �K

e

�

�

�

�

�

�

(#T

n

)

1=2

� Æ

max

(T

n

)

(n(X

1

T

n

))

1=2

� e

r;r

(X

1

T

n

)

�

�

�

�

�

:

By (14) and Theorem 1(i) the right hand side tends to zero with n tending to in�nity.

6.3. Proof of Theorem 2. The relation

e

1;r

(X

1=2

N

) � (lnN=N)

1=2

(15)

follows from M�uller-Gronbah (2001b, Theorem 2 and Theorem 3).

To prove the seond part of Theorem 2(i) hoose a sequene of Itô-Taylor approxi-

mations X



N

T

N

2 X



N

suh that

e

1;r

(X

1=2

N

) � e

1;r

(X



N

T

N

)� 1=N

1=2

:

Due to Lemma 3,

e

1;r

(X



N

T

N

) � e

1;r

(X

1=2

T

N

)� =N

1=2

:

Thus

1 �

e

1;r

(X



N

)

e

1;r

(X

1=2

N

)

� 1�

 �N

�1=2

e

1;r

(X

1=2

T

N

)

:

It remains to observe that

lim sup

N!1

N

�1=2

e

1;r

(X

1=2

T

N

)

� lim sup

N!1

N

�1=2

e

1;r

(X

1=2

N

)

= 0

by (15).

In order to prove Theorem 2(ii) let e 2 [1=2; ℄ \ N=2 and onsider a sequene of

disretizations T

n

with maximum step-size

Æ

max

(T

n

) = o((ln#T

n

)=#T

n

):(16)

Note that

n(X

e

T

n

) = K

e

�#T

n

= K

e

� n(X

1=2

T

n

):

Furthermore, by Lemma 3,

�

�

e

1;r

(X

e

T

n

)� e

1;r

(X

1=2

T

n

)

�

�

�  �

�

Æ

max

(T

n

)

�

1=2

:
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Thus

�

�

�

�

�

(n(X

e

T

n

)= lnn(X

e

T

n

))

1=2

� e

1;r

(X

e

T

n

)

(n(X

1=2

T

n

)= lnn(X

1=2

T

n

))

1=2

� e

1;r

(X

1=2

T

n

)

�K

e

�

�

�

�

�

=  �K

e

�

�

�

�

�

�

(ln#T

n

)

1=2

� e

1;r

(X

e

T

n

)

(ln#T

n

+ lnK

e

)

1=2

� e

1;r

(X

1=2

T

n

)

� 1

�

�

�

�

�

�  �K

e

�

Æ

max

(T

n

)

e

1;r

(X

1=2

T

n

)

+K

e

�

�

�

�

�

�

(ln#T

n

)

1=2

(ln#T

n

+ lnK

e

)

1=2

� 1

�

�

�

�

�

:

By (16) and Theorem 2(i) the last sum tends to zero with n tending to in�nity.
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