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Abstrat

It is proved that the Stokes operator on a bounded domain, an exterior domain, or a perturbed

half-spae 
 admits a bounded H

1

-alulus on L

q

(
) if q 2 (1;1).

1 Introdution

Let A




be the Stokes operator in the Banah spae L

q;�

(
) of all q-integrable solenoidal vetor �elds

on a domain 
 � R

n

. In this artile we show that A




admits a bounded H

1

-alulus for a fairly large

lass of domains 
 and for all q 2 (1;1). For an arbitrary Banah spae X , the lass H

1

(X) of all

operators admitting a bounded H

1

-alulus has been studied by many authors [MI86℄, [CDMY96℄,

[Fr�o98℄, [DHP01a℄. Sine it is ontained in BIP(X), the lass of all operators having bounded imaginary

powers, it enjoys all properties of this larger lass. For further information in this diretion see [PS93℄,

[MP97℄ and [DV87℄. For instane, the domain of frational powers an be determined in terms of a

omplex interpolation spae. Another reason is the maximal L

q

-regularity of the assoiated evolution

equation u

t

+Au(t) = f(t). However, there are also useful properties whih do not hold true for operators

in BIP(X) but whih are valid for operators belonging to H

1

(X). Among those let us mention that

BIP(X) is not stable under small perturbations. In fat, there seem to be only restritive perturbation

results known, [PS93℄. However, there is a perturbation result for the lass H

1

(X), whose assumptions

an be veri�ed in the partiular ase of the Stokes operator.

In 1981 Giga [Gig81℄ investigated the analytiity of the Stokes semigroup. In a subsequent paper [Gig85℄

he onsidered domains of frational powers of the Stokes operator and proved that the Stokes operator

on a bounded C

1

-domain has bounded imaginary powers. Consequently, it has maximal L

q

-regularity.

In [GS91℄, it has been shown, that one an also obtain global in time L

q

� L

s

estimates. The paper

in hand extends the results of [Gig85℄ and several ways. By heking the details in Giga's proof one

realizes that it is possible to generalize that result to the H

1

-ase. This leads to a proof for the bounded

H

1

-alulus for suh domains. Our approah, however, is more diret and fairly self-ontained, whereas

Giga's proof makes heavy use of pseudodi�erential operators and Seeley's theory on the desripton of

frational powers of an ellipti system [See71℄. Moreover, our result inludes unbounded domains whih

might be of independent interest as well as domains with merely C

3

boundary. More preisely, exterior

domains and perturbed half-spaes an be handled.

One an also treat the problem of extending the property of having bounded imaginary powers to the

allegedly stronger property of admitting a bounded H

1

-alulus by purely funtional analyti methods.

This has reently be arried out by Kalton and Weis [KW℄.

It is known that the lass of all operators admitting a bounded H

1

-alulus oinides with the (a priori

smaller) lass of all operators admitting an R-bounded H

1

-alulus if the underlying Banah spae has

property (�), see [KW01℄ and [CdPSW00℄. Sine the spae L

q;�

(
) is known to enjoy this property for

any domain 
 and any q 2 [1;1℄, we an immediately onlude that A




even admits an R-bounded H

1

-

alulus for the domains treated in Setion 3. This is relevant for perturbations of the Stokes operator for

the following reason: The lassial theorem of Dore and Venni [DV87℄ yields losedness of the operator

sum A+B if X is a UMD spae, both A and B belong to BIP(X), the resolvents of A and B ommute

and the sum of the power angles is less than �. Reently, Kalton and Weis [KW℄ proved an \assymetri"

version of this theorem, where A is merely assumed to be setorial, but B admits an R-bounded H

1

-

alulus.

Our strategy of proving that the Stokes operator A




admits a bounded H

1

-alulus in L

q;�

(
) is to



apply the perturbation result for the bounded H

1

-alulus to the Stokes operator on the bent half-spae.

Then we loalize the original problem on 
: Cover 
 by �nitely many balls and treat eah ball separately.

Those balls whih are entirely ontained in 
 turn out to be easy to handle by transforming the problem

to R

n

. On the other hand, if a ball meets the boundary of 
, it is possible to redue the problem to

the bent half-spae ase. It is therefore enough to know that the Stokes operator on the bent half-spae

admits a bounded H

1

-alulus. Sine it is already known [DHP01b℄ that the Stokes operator on the

half-spae R

n

+

admits a bounded H

1

-alulus it is quite natural to introdue an invertible transformation

whih maps the bent half-spae onto R

n

+

. This hange of oordinates leads to a transformation A

T

of

the orresponding Stokes operator. By hoosing the radii of the aforementioned balls small enough, the

bending funtion is as lose to zero as we please. This implies that also A

T

is lose to A

R

n

+

in the sense

of a reent perturbation result for H

1

-alulus due to Pr�uss. Therefore A

T

must also have a bounded

H

1

-alulus whih yields the result.

The artile is organized as follows. In Setion 2 we �x notation and reall some auxillary tools on Stokes

operators, interpolation theory and H

1

-alulus that will be needed in subsequent setions. Setion 3

ontains our main results. We start in Setion 3.1 by explaining the transition from the Stokes operator

on the bent half-spae to the operator A

T

mentioned above. The subsequent setions ontain the proof

of the bounded H

1

-alulus for the Stokes operator on the bent half-spae, the bounded domain and

the perturbed half-spae respetively. Finally, we provide two appendies on regularity properties of the

Helmholtz projetion and on the domain of frational powers of the Stokes operator. These appendies

ontain auxillary material whih seems not to be ontained in the standard literature.

Aknowlegments: The authors would like to thank Jan Pr�uss and Matthias Hieber for stimulating

disussions whih helped to improve this artile.

2 Preliminaries

2.1 Notation

Throughout the artile we assume that n � 3. Let 
 � R

n

be an open set, and let m 2 N. By C

m

(
)

we denote the spae of all m-times ontinuously di�erentiable funtions and by C

m



(
) its subspae

onsisting of all funtions in C

m

(
) whih are ompatly supported. Further, let C

1



(
) := fu �




: u 2

C

1



(R

n

)g, and denote by C

m

b

(
) the Banah spae of all m-times ontinuously di�erentiable funtions

whose derivatives up to order m are bounded. For q 2 [1;1℄, L

q

(
) denotes the usual Lebesgue spae

of all q-integrable funtions and for s 2 R, W

s;q

(
) is the Sobolev spae of order s. If s = m 2 N and

q 2 (1;1), the norm in W

s;q

(
) is given by kuk

m;q

:=

�

P

m

j=0

R




jr

j

uj

q

dx

�

1=q

, where r

j

is the vetor

of all possible j-th order di�erentials. Moreover, W

s;q

0

(
) denotes the losure of C

1



(
) in W

s;q

(
).

We shall further need the homogenous Sobolev spae

^

W

1;q

(
) onsisting of all funtions u having �nite

Dirihlet energy

R




jruj

q

dx, modulo onstants. It beomes a Banah spae when equipped with the norm

kuk

^

W

1;q

(
)

:=

�

Z




jruj

q

dx

�

1=q

:

Its dual spae (

^

W

1;q

(
))

0

will our frequently and is denoted by

^

W

�1;q

0

(
), where q

0

is the H�older

onjugated exponent given by 1=q + 1=q

0

= 1 and k � k

�1;q

always denotes the norm in this spae. For

further properties of these spaes, in partiular for the proof of the density of C

1



(
) in

^

W

1;q

(
), we

refer to [FS94℄. If �
 is smooth enough, the trae operator de�ned by (u) := u �

�


maps W

s;q

(
)

ontinuously into W

s�1=q;q

(�
). Its kernel is exatly the spae W

s;q

(
) \W

1;q

0

(
). See [Ada78℄, p. 215.

For u 2 L

q

(
) and v 2 L

q

0

(
) we use the standard notation (u; v)




:=

R




uvdx.

Let us remark that we will use the same notations for the orresponding spaes of vetor �elds on 
. For

a domain 
 � R

n

denote by L

q;�

(
) the spae of all q-integrable solenoidal vetor �elds on 
. For the

lass of domains treated in this artile (see Setion 2.2 for the preise de�nition) is well-known that there

is a ompatible family (P


;q

)

q2(1;1)

of ontinuous projetions from L

q

(
) onto L

q;�

(
) suh that P


;2

is

orthogonal. For the proofs, see [FM77℄, [MC81℄, [Miy82℄, [BM88℄, [ST98℄. The operator P


;q

is alled

the Helmholtz projetion. Sine we restrit ourselves to those values of q and q remains �xed throughout

the artile, we shall write P




for short. Clearly, the range G

q

(
) := (1 � P




)(L

q

(
)) is also a losed

2



subspae of L

q

(
).

If X and Y are Banah spaes, the spae of all bounded linear operators from X to Y is denoted by

L(X;Y ), and L(X) is an abbreviation for L(X;X). For any losed operator A in X , its domain and range

are denoted by dom(A) and ran(A) respetively. Its resolvent set is denoted by �(A) and its spetrum

by �(A).

Finally, �




denotes the Dirihlet Laplaian in L

q

(
), de�ned on W

1;q

0

(
)\W

2;q

(
), and A




= �P




�




is the Stokes operator in L

q;�

(
), de�ned on W

1;q

0

(
) \W

2;q

(
) \ L

q;�

(
). For details on the Stokes

operator and on the Navier-Stokes equation we refer to the textbooks [Gal98℄ and [Soh01℄.

2.2 A priori estimates for the generalized Stokes resolvent problem

We will frequently make use of an inequality for the solution (u; p) of the generalized Stokes resolvent

problem

(SRP )




f;g

8

<

:

�u��u+rp = f on 
;

r � u = g on 
;

u = 0;

where 
 is a C

3

-domain whih is either bounded, exterior, R

n

, a bent half-spae or a perturbed half-spae.

In [FS94℄, Farwig and Sohr proved the following theorem.

Theorem 2.1 Let 1 < q < 1, 0 < � < �, n � 2, Æ > 0. Let f 2 L

q

(
), g 2 W

1;q

(
) \

^

W

�1;q

(
)

if 
 is unbounded or g 2 W

1;q

(
) with

R




gdx = 0 if 
 is bounded. Then there is a unique solution

(u; p) 2 dom(�




)�

^

W

1;q

(
) of (SRP )




f;g

and some onstant C = C(
; q; �; Æ) > 0 suh that

k�uk

q

+ kr

2

uk

q

+ krpk

q

� C(kfk

q

+ krgk

q

+ k�gk

�1;q

)

and

k�uk

q

+ k ��u+rpk

q

� C(kfk

q

+ k�gk

�1;q

)

for all � 2 �

���

:= fz 2 C n f0g : j arg zj < � � �g with j�j � Æ. Moreover, if 
 = R

n

or 
 = R

n

+

or 
 is

bounded, then C is independent of Æ.

2.3 An interpolation property for the domain of the Dirihlet Laplaian

We will frequently make use of the following interpolation property for the Dirihlet Laplaian in L

q

(
):

If 1 < q <1, 0 < � < 1=2q and 
 is as in Setion 2.2, then

[L

q

(
); dom(�




)℄

�

=W

2�;q

(
); (1)

where [�; �℄

�

denotes omplex interpolation of order �. This an be seen as follows: It is well-known, see

[Tri78℄, that [L

q

(
);W

s;q

0

(
)℄

�

= W

�s;q

0

(
) and [L

q

(
);W

s;q

(
)℄

�

= W

�s;q

(
) for all � 2 [0; 1℄ and all

s > 0. The obvious inlusion W

2;q

0

(
) � dom(�




) �W

2;q

(
) therefore implies

W

1;q

0

(
) = [L

q

(
);W

2;q

0

(
)℄

1=2

� [L

q

(
); dom(�




)℄

1=2

� [L

q

(
);W

2;q

(
)℄

1=2

=W

1;q

(
):

In partiular, the norm in [L

q

(
); dom(�




)℄

1=2

is equivalent to k � k

1;q

. By [Tri78℄, Theorem 1.9.3/1 (),

dom(�




) is dense in [L

q

(
); dom(�




)℄

1=2

. Therefore we also have

[L

q

(
); dom(�




)℄

1=2

= dom(�




)

k�k

[L

q

(
);dom(�




)℄

1=2

= dom(�




)

k�k

1;q

�W

1;q

0

(
)

k�k

1;q

= W

1;q

0

(
);

i.e., we have [L

q

(
); dom(�




)℄

1=2

=W

1;q

0

(
). The reiteration property, [Tri78℄ Remark 1.9.3/1, gives us

[L

q

(
); dom(�




)℄

�

= [L

q

(
); [L

q

(
); dom(�




)℄

1=2

℄

2�

= [L

q

(
);W

1;q

0

(
)℄

2�

=W

2�;q

0

(
);

but W

2�;q

(
) =W

2�;q

0

(
) by our assumption on �, see again [Tri78℄, Theorem 4.3.2/1 (a).

3



2.4 Operators with bounded H

1

-alulus

Reall that a losed operator A on a omplex Banah spaeX is alled setorial, if it satis�es the following

two onditions:

(i) A is densely de�ned, injetive and has dense range,

(ii) (�1; 0) � �(A) and there is some M � 0 suh that k�(�+A)

�1

k �M for all � > 0.

In this ase there is some � 2 [0; �) suh that the setor

�

���

:= fz 2 C n f0g : j arg zj < � � �g:

is ontained in �(�A), and supfj�(�+A)

�1

j : � 2 �

���

g <1. The smallest suh � is alled the spetral

angle of A and is denoted by �

A

. Oberserve that �(A) n f0g � �

�

A

. Moreover, if A is setorial, and

�

A

�

�

2

, it generates a bounded and holomorphi C

0

-semigroup on X . For instane, the Stokes operator

in L

q;�

(
) generates a bounded and holomorphi semigroup for all domains treated in this artile.

A speial lass of setorial operators on whih we will fous throughout the artile is the set of operators

whih admit a bounded H

1

-alulus. Before we an introdue these operators we need to de�ne for

� 2 (0; �) the spae

H

1

(�

�

) := fh : �

�

! C : h is holomorphi and boundedg

as well as its subspae H

1

0

(�

�

) given by

H

1

0

(�

�

) := fh 2 H

1

(�

�

) : jh(z)j � C

jzj

s

1 + jzj

2s

for some C � 0; s > 0g: (2)

Let A be a setorial operator on X with spetral angle �

A

, and let � 2 (�

A

; �) and � 2 (�

A

; �). The path

� : R ! C ; �(t) :=

�

�te

i�

; t < 0;

te

�i�

; t � 0;

(3)

stays in the resolvent set of A with the only possible exeption at t = 0. In view of Cauhy's integral

formula, for h 2 H

1

0

(�

�

), we may de�ne h(A) by the Bohner integral

h(A) :=

1

2�i

Z

�

h(�)(� �A)

�1

d�; (4)

whih exists aording to (2). A is said to admit a bounded H

1

-alulus, if there is some C � 0 with

kh(A)xk � Ckhk

1

kxk (5)

for all h 2 H

1

0

(�

�

) and all x 2 X . The smallest possible � for whih inequality (5) holds is alled the

H

1

-angle of A and is denoted by �

1

A

. Clearly, we always have �

1

A

� �

A

. We denote by H

1

(X) the

lass of all setorial operators that admit a bounded H

1

-alulus. If A 2 H

1

(X), we may de�ne h(A)

for arbitrary h 2 H

1

(�

�

) by the following method. Put g(z) = z(1 + z)

�2

and let

h(A) =

1

2�i

�

Z

�

h(�)

�

(1 + �)

2

(��A)

�1

d�

�

(1 +A)

2

A

�1

= (hg)(A)g(A)

�1

;

initially de�ned on the dense subspae dom(A)\ ran(A) of X . It is known that inequality (5) is still valid

for those h. Consequently, h(A) extends to a unique element in L(X), again denoted by h(A). Moreover,

it is easy to see that this de�nition of h(A) is ompatible with the de�nition (4) in the ase h 2 H

1

0

(�

�

).

The following lasses of operators are known to admit a bounded H

1

-alulus: Bounded operators,

normal setorial operators in Hilbert spaes (in partiular self-adjoint operators) and negative generators

of positive ontration semigroups in L

p

-spaes. For details see the survey artile [DHP01a℄. In [DHP01b℄,

it has been proved that also the Stokes operator in L

q;�

(R

n

+

) admits a bounded H

1

-alulus if 1 < q <1.

4



Remark 2.2 For Banah spaes X;Y , a densely de�ned linear operator A : dom(A)! X and a ontin-

uous isomorhism J : X ! Y the following easy statements are well-known. For details see e.g. [DHP01a℄,

Proposition 2.11.

(i) A generates a bounded holomorphi C

0

-semigroup on X , if and only if JAJ

�1

generates a bounded

holomorphi C

0

-semigroup on Y .

(ii) A 2 H

1

(X) if and only if JAJ

�1

2 H

1

(Y ). In that ase we also have �

1

A

= �

1

JAJ

�1

.

(iii) A 2 H

1

(X) if and only if A

�1

2 H

1

(Y ). If this is true, then �

1

A

= �

1

A

�1

.

3 The main result

This setion ontains our main result whih reads as follows.

Theorem 3.1 Let n � 3 and let 
 � R

n

be a C

3

-domain whih is either bounded, exterior, or a perturbed

half-spae. Then the Stokes operator A




admits a bounded H

1

-alulus in L

q;�

(
) if 1 < q <1.

As already mentioned in the introdution, we get the following slightly stronger assertion for free, beause

for 1 < q <1, L

q;�

(
) is a Banah spae with property (�). For details on R-boundedness and Banah

spaes with property (�) we refer to [CdPSW00℄ and to [DJT95℄.

Theorem 3.2 Under the assumptions of Theorem 3.1, A




admits an R-bounded H

1

-alulus in L

q;�

(
)

if 1 < q <1.

We shall prove Theorem 3.1 in several steps. First of all, we may assume that q < 2, the general

ase follows by taking adjoints. The Stokes operator A

H

!

on the bent half-spae H

!

assoiated with ! is

introdued in Setion 3.1. It is shown that A

H

!

is similar to some perturbation A

T

of the Stokes operator

A

R

n

+

on the half-spae R

n

+

. In view of Remark 2.2 (ii) A

H

!

admits a bounded H

1

-alulus if this is true

for A

T

, whih is proved in Setion 3.2. In Setions 3.3 and 3.4 the general ase is proved by reduing the

problem to the ases already treated before.

3.1 The Stokes operator on bent half-spaes

Given a three times ontinuously di�erentiable and ompatly supported funtion ! : R

n�1

! [0;1), let

H

!

:= fx = (x

0

; x

n

) 2 R

n

: x

n

> !(x

0

)g

Hω

R
ω (x) n−1

Figure 1: The bent half-spae determined by !

be the bent half-spae determined by !, see Fig-

ure 1. The transformation � : R

n

! R

n

de�ned

by �(x

0

; x

n

) := (x

0

; x

n

�!(x

0

)) maps H

!

onto the

half-spae R

n

+

= f(x

0

; x

n

) 2 R

n

: x

n

> 0g and

satis�es det�

0

(x) = 1 for all x 2 R

n

. Therefore

we may de�ne �(u) := u Æ �

�1

for any funtion

de�ned on H

!

. Clearly, � is a ontinuous isomor-

phism from W

s;q

(H

!

) to W

s;q

(R

n

+

) and also from W

s;q

0

(H

!

) to W

s;q

0

(R

n

+

) for s 2 [0; 3℄. In what follows,

we shall omit the subsript 
 if 
 = R

n

+

, i.e. we set P = P

R

n

+

, � = �

R

n

+

and A = A

R

n

+

.

Let � 2 C . It is easy to see that a pair (u; p) is a solution of the Stokes resolvent problem

(� ��

H

!

)u+rp = f; r � u = 0

on L

q

(H

!

) if and only if (~u; ~p) := (u Æ �

�1

; p Æ �

�1

) solves the equations

(�� (� +R

1

))~u+ (r+R

2

)~p = f Æ �

�1

; (r+R

2

) � ~u = 0 (6)

on L

q

(R

n

+

), where R

1

; R

2

are given by

R

1

= jr

0

!j

2

�

2

n

� 2(r

0

!; 0) � (r�

n

)� (�

0

!)�

n

; R

2

= ��

n

(r

0

!; 0): (7)
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Sine

�(L

q

(H

!

)) = �(L

q;�

(H

!

))� �(G

q

(H

!

))

it is natural to introdue the spaes

C

1

;�;R

(R

n

+

) := fu 2 C

1



(R

n

+

) : (r+R

2

) � u = 0g

L

R

q;�

(R

n

+

) := �(L

q;�

(H

!

)) = C

1

;�;R

(R

n

+

)

k�k

q

as well as the projetion P

R

u = �P

H

!

�

�1

whih maps L

q

(R

n

+

) ontinuously onto L

R

q;�

(R

n

+

). In terms of

this modi�ed Helmholtz projetion equation (6) may be rephrased as the operator equation (�+A

R

)~u =

f Æ �

�1

, where A

R

= �P

R

(� +R

1

), de�ned on W

2;q

(R

n

+

) \W

1;q

0

(R

n

+

) \ L

R

q;�

(R

n

+

).

One problem in omparing A

R

and A

R

n

+

is that these operators at in the di�erent Banah spaes

L

R

q;�

(R

n

+

) and L

q;�

(R

n

+

). To overome this problem we introdue the bounded linear operator T in

L

q

(R

n

+

) by Tu(x) = (�

�1

)

0

(x)u(x) = (I � S)u(x) with

Su = (0; : : : ; 0; (r

0

!; 0) � u)

and I being the identity in L

q

(R

n

+

). Note that T is invertible with T

�1

= I + S. Moreover, it is easy to

hek that T maps L

R

q;�

(R

n

+

) ontinously onto L

q;�

(R

n

+

) as well as dom(A

R

) ontinuously onto dom(A).

3.2 H

1

-alulus for the Stokes operator on bent half-spaes

In this setion we use the notation of the previous setion. Our aim is to prove the following:

Theorem 3.3 Let 1 < q < 1 and let ! : R

n�1

! [0;1) be three times di�erentiable and ompatly

supported. The Stokes operator A

H

!

admits a bounded H

1

-alulus on L

q;�

(H

!

) if k!k

C

1
is suÆiently

small.

This result will proved in several steps. We shall use the fat that the Stokes operator A

R

n

+

admits a

bounded H

1

-alulus whih has been proved by Desh, Hieber and Pr�uss, [DHP01b℄, by utilizing the

symmetry of R

n

+

to obtain an expliit expression for the resolvent of A

R

n

+

. We shall apply a reent

perturbation result due to Pr�uss [DDH

+

02℄ to show that A

R

n

+

may be perturbed by a purely seond order

di�erential operator without destroying this property, provided the perturbation is relativly bounded with

small enough bound. The main ingredients for the treatment of the lower order terms are the inequalities

for the generalized Stokes resovent problem that have been stated in Theorem 2.1. We start by realling

the perturbation theorem.

Theorem 3.4 (Pr�uss): Let X be a UMD spae and let A be a linear operator in X whih admits a

bounded H

1

-alulus. Let B be a losed linear operator in X satisfying the following onditions.

(i) dom(A) � dom(B) and kBxk � �kAxk for all x 2 dom(A) and some onstant � < 1,

(ii) there is some � 2 (0; 1) suh that B(dom(A

1+�

)) � dom(A

�

),

(iii) There is a onstant C suh that kA

�

Bxk � CkA

1+�

xk for all x 2 dom(A

1+�

).

Then A+B admits a bounded H

1

-alulus provided that � is small enough.

Reall that a Banah spae X is a UMD spae, if and only if the Hilbert transform ats boundedly in

L

q

(R; X) for all 2 (1;1) and note that every L

q

(
) spae with q 2 (1;1) and 
 being an open subset

of R

n

has this property. In order to apply Theorem 3.4 with A being the Stokes operator in R

n

+

we

de�ne A

T

:= TA

R

T

�1

on dom(A) as well as B := A

T

� A. From Remark 2.2 (ii) we get that A

H

!

admits a bounded H

1

-alulus if and only if this is true for A

T

. However, we an not apply Theorem 3.4

diretly to A and B beause the inequality kBuk � �kAuk does not hold sine Bu ontains lower order

derivatives. Therefore we deompose B as B = B

1

+ B

2

where B

2

is purely of seond order. First note

that on dom(B)

B = TA

R

T

�1

�A

= �TP

R

(� +R

1

)(I + S) + T (I + S)P�

= �TP

R

R

1

T

�1

� T (P

R

� P )� + TSP�� TP

R

�S:

6



With e

n

= (0; : : : ; 0; 1) 2 R

n

we get for u 2W

2;q

(R

n

+

)

�Su = e

n

�(r

0

! � u

0

)

= e

n

0

�

r

0

�

0

! � u

0

+ 2

n�1

X

j=1

n�1

X

k=1

(�

j

�

k

!)�

k

u

j

+r

0

! ��u

0

1

A

(8)

and

R

1

T

�1

u = R

1

u+R

1

Su

= jr

0

!j

2

�

2

n

u��

0

!�

n

u� 2(r

0

!; 0) � �

n

ru

+e

n

�

jr

0

!j

2

�

2

n

r

0

! � u

0

��

0

!�

n

r

0

! � u

0

� 2(r

0

!; 0) � �

n

rr

0

! � u

0

�

= jr

0

!j

2

�

2

n

u��

0

!�

n

u� 2(r

0

!; 0) � �

n

ru

+e

n

0

�

jr

0

!j

2

�

2

n

r

0

! � u

0

��

0

!�

n

r

0

! � u

0

� 2(r

0

!; 0) �

n�1

X

j=1

(r

0

�

j

!)�

n

u

j

�2

n�1

X

j=1

n�1

X

k=1

(�

j

!)(�

k

!)�

k

�

n

u

j

1

A

: (9)

This yields

B = B

1

+B

2

where

B

2

u := �T (P

R

� P )� + TSP�� TP

R

�

jr

0

!j

2

�

2

n

u+ 2(r

0

!; 0) � �

n

ru

�

�TP

R

e

n

0

�

r

0

! ��u

0

� jr

0

!j

2

r

0

! � �

2

n

u

0

+ 2

n�1

X

j=1

n�1

X

k=1

(�

j

!)(�

k

!)�

k

�

n

u

j

1

A

and

B

1

:= B �B

2

:

Sine B

2

u ontains only seond order derivatives of u we may write

B

2

= �T (P

R

� P )� + TSP�+ TP

R

X

j�j=2

a

�

D

�

(10)

with ertain matries a

�

2 C

2



(R

n�1

)

n�n

. Similarly,

B

1

= TP

R

n

X

k=1

b

k

�

k

+ TP

R



with b

k

2 C

1



(R

n�1

)

n�n

and  2 C



(R

n�1

)

n�n

. Due to (8) and (9) we get for k!k

C

3

b

(R

n�1

)

� 1

X

j�j=2

ka

�

k

1

� Ck!k

C

1

b

(R

n�1

)

; (11)

n

X

k=1

kb

k

k

1

� Ck!k

C

2

b

(R

n�1

)

; (12)

kk

1

� Ck!k

C

3

b

(R

n�1

)

: (13)

In what follows, we will apply the perturbation Theorem 3.4 only to B

2

whereas B

1

will be treated

diretly. To estimate the �rst term in (10) we need the following lemma.

Lemma 3.5 It holds

k(P

R

� P )uk

q

� Ckr

0

!k

1

kuk

q

for all u 2 L

q

(R

n

+

).

7



Proof. As is well known, see [Gal98℄ p. 107, we have Pu = u�rp with p 2

^

W

1;q

(R

n

+

) being the unique

solution of the weak Neumann problem

(rp;r') = (u;r'); ' 2

^

W

1;q

0

(R

n

+

); (14)

where (�; �) denotes dual pairing. Similarly, P

R

u = u�(r+R

2

)p

R

, where p

R

solves the following problem:

((r+R

2

)p

R

; (r+R

2

)') = (u; (r+R

2

)'); ' 2

^

W

1;q

0

(R

n

+

) (15)

(observe that

^

W

1;q

0

(R

n

+

) = fp 2 L

q

0

;lo

(R

n

+

) : (r + R

2

)p 2 L

q

0

;lo

(R

n

+

)g modulo onstants, sine k(r +

R

2

) � k

q

and kr � k

q

are equivalent norms on

^

W

1;q

0

(R

n

+

)). From (15) we onlude

(rp

R

;r') = (u; (r+R

2

)')� ((R

2

p

R

;r') + (rp

R

; R

2

') + (R

2

p

R

; R

2

'))

= (u;r') + (u;R

2

')� ((r+R

2

)p

R

; R

2

')� (R

2

p

R

;r'): (16)

Subtrating (14) from (16) yields

(rp

R

�rp;r') = (u;R

2

')� ((r +R

2

)p

R

; R

2

')� (R

2

p

R

;r'):

Sine rp

R

;rp 2 G

q

and G

0

q

= G

q

0

we get

krp

R

�rpk

q

= sup

�2G

q

0

;k�k

q

0

=1

j(rp

R

�rp; �)j = sup

'2

^

W

1;q

0

;kr'k

q

0

=1

j(rp

R

�rp;r')j

� sup

'2

^

W

1;q

0

;kr'k

q

0

=1

(kuk

q

kR

2

'k

q

0

+ k(r+R

2

)p

R

k

q

kR

2

'k

q

0

+ kR

2

p

R

k

q

kr'k

q

0

)

� sup

'2

^

W

1;q

0

;kr'k

q

0

=1

kr

0

!k

1

(kuk

q

k�

n

'k

q

0

+ k(r+R

2

)p

R

k

q

k�

n

'k

q

0

+ k�

n

p

R

k

q

kr'k

q

0

)

� kr

0

!k

1

(kuk

q

+ k(r+R

2

)p

R

k

q

+ k�

n

p

R

k

q

) :

Sine

k�

n

p

R

k

q

� Ck(r+R

2

)p

R

k

q

= Ck(1� P

R

)uk

q

� Ckuk

q

we obtain the desired estimate. �

With this lemma at hand it is not diÆult to verify the �rst ondition of Theorem 3.4.

Proposition 3.6 Condition (i) of Theorem 3.4 holds true for A being the Stokes operator in L

q;�

(R

n

+

)

and B

2

de�ned by identity (10), provided that k!k

C

1

b

(R

n�1

)

is small enough.

Proof. First note that dom(B) = dom(A) by the de�nition of B. We will treat the three di�erent terms

in (10) separately. Let u 2 dom(A). By the preeeding lemma and Proposition B.1 (b) with k = 2, the

�rst term an be estimated as follows.

kT (P

R

� P )�uk

q

� Ckr

0

!k

1

k�uk

q

� Ckr

0

!k

1

kAuk

q

:

The orresponding inequality for the seond term is trivial:

kTSP�uk

q

� Ckr

0

!k

1

kAuk

q

:

In view of inequality (11) and Proposition B.1, the third expression in (10) has the following upper bound:

kTP

R

X

j�j=2

a

�

D

�

uk

q

� C

X

j�j=2

ka

�

k

1

kD

�

uk

q

� Ck!k

C

1

b

(R

n�1

)

kAuk

q

:

These inequalities together immediately prove the assertion. �

In order to verify the seond and the third hypothesis of the perturbation theorem we need the following

lemma whih follows easily from Sobolev's inequality. Reall that Sobolev's inequality states that for

n 2 N and q 2 (1; n)

kuk

L

q

�(R

n

)

� Ckruk

L

q

(R

n

)

; u 2W

1;q

(R

n

);

where q

�

is the Sobolev-onjugated exponent given by 1=q

�

= 1=q � 1=n.

8



Lemma 3.7 Let n � 3, q 2 (1; n� 1). For any a 2 C

1

b

(R

n�1

) with ompat support there is a onstant

C > 0 suh that

kr(au)k

L

q

(R

n

+

)

� Ckruk

L

q

(R

n

+

)

for all u 2W

1;q

(R

n

+

). On the LHS, a has to be regarded as a funtion of n variables in the obvious way.

Proof. Sine r(au) = aru + ura it is enough to prove that ku�

j

ak

L

q

(R

n

+

)

� Ckruk

L

q

(R

n

+

)

. With

K := supp(a) we get

ku�

j

ak

q

L

q

(R

n

+

)

=

Z

1

0

ku(�; x

n

)�

j

a(�)k

q

L

q

(R

n�1

)

dx

n

=

Z

1

0

ku(�; x

n

)�

j

a(�)k

q

L

q

(K)

dx

n

� C

Z

1

0

ku(�; x

n

)k

q

L

q

(K)

dx

n

:

Denoting by q

�

the Sobolev-onjugated exponent, the alulation ontinues and Sobolev's inequality

yields

ku�

j

ak

q

L

q

(R

n

+

)

� C

Z

1

0

ku(�; x

n

)k

q

L

q

� (K)

dx

n

� C

Z

1

0

ku(�; x

n

)k

q

L

q

� (R

n�1

)

dx

n

� C

Z

1

0

kru(�; x

n

)k

q

L

q

(R

n�1

)

dx

n

= Ckruk

q

L

q

(R

n

+

)

:

�

For �xed � > 0 and any funtion u de�ned on R

n

+

we set

(J

�

u)(x) := u(�x):

Observe that J

�

is an isomorphism in eah of the spaes W

s;q

(R

n

+

), s > 0, q � 1 with J

�1

�

= J

1=�

.

Moreover, it is also an isomorphism in L

q;�

(R

n

+

) and in dom(A

�

) with � > 0 beause J

�

ommutes

with the Helmholtz projetion P . For any bounded operator K in L

q

(R

n

+

), de�ne K

�

2 L(L

q

(R

n

+

)) by

K

�

:= J

�1

�

KJ

�

. Beause of

r

k

J

�

= �

k

J

�

r

k

; k 2 N;

we have for u 2 W

k;q

(R

n

+

)

kJ

�

uk

k;q

= �

�n=q

k

X

j=0

�

j

kr

j

uk

q

: (17)

This gives us for k = 0 the inequality

kK

�

uk

q

= kJ

�1

�

KJ

�

uk

q

= �

n=q

kKJ

�

uk

q

� �

n=q

kKk

L(L

q

(R

n

+

))

kJ

�

uk

q

= kKk

L(L

q

(R

n

+

))

kuk

q

:

By symmetry we also get kKuk

q

� kK

�

k

L(L

q

(R

n

+

))

kuk

q

. Hene we even have

kK

�

k

L(L

q

(R

n

+

))

= kKk

L(L

q

(R

n

+

))

: (18)

We shall further need an expression for the ommutator between J

�

and frational powers of (A + �),

where � 2 �(�A). Commuting J

�

with the Stokes operator yields

(A+ �)J

�

= (�P�+ �)J

�

= (��

2

PJ

�

�+ �) = J

�

(�

2

A+ �);

whih implies

(A+ �)

�1

J

�

= J

�

(�

2

A+ �)

�1

:

By indution we dedue

(A+ �)

k

J

�

= J

�

(�

2

A+ �)

k

for all k 2 Z and � > 0. Sine A admits a bounded H

1

-alulus, so does rA for r > 0, see [DHP01a℄.

By this fat we obtain the same equality for 0 < � < 1:

(A+ �)

��

J

�

=

1

2�i

Z

�

(�+ z)

��

(z �A)

�1

J

�

dz

=

1

2�i

Z

�

(�+ z)

��

J

�

(z � �

2

A)

�1

dz

= J

�

(�

2

A+ �)

��

;

9



where � is the ontour de�ned in (3). Writing s 2 R as s = k � � with k 2 Z and 0 < � < 1 it follows

(A+ �)

s

J

�

= (A+ �)

k

(A+ �)

��

J

�

= J

�

(�

2

A+ �)

k

(�

2

A+ �)

��

= J

�

(�

2

A+ �)

s

(19)

for arbitrary s 2 R, � > 0 and � 2 �(�A).

With the aid of Lemma 3.7 we an prove the following proposition whih establishes the key-estimate for

verifying the remaining assumptions of the perturbation Theorem 3.4.

Proposition 3.8 Let � > 0 be �xed and let 1 < q < n� 1. De�ne B

2;�

:= J

�1

�

B

2

J

�

on dom(A). Then

B

2;�

(dom(A)) � L

q;�

(R

n

+

) and

(a) kB

2;�

(A+ 1)

�1

uk

q

� C�

2

kuk

q

, u 2 L

q;�

(R

n

+

),

(b) kB

2;�

(A+ 1)

�1

uk

1;q

� C�

2

kuk

dom(A

1=2

)

, u 2 dom(A

1=2

).

The onstant C does not depend on �.

Proof. We �rst rewrite B

2

as

B

2

= �T (P

R

� P )� + TSP�+ TP

R

X

j�j=2

a

�

D

�

= TP

R

(��+

X

j�j=2

a

�

D

�

) + T (I + S)P�

= TP

R

(��+

X

j�j=2

a

�

D

�

)�A:

From the last line it an be read o� that B

2;�

(dom(A)) � L

q;�

(R

n

+

).

(a) Aording to (18) we get for u 2 L

q;�

(R

n

+

)

kB

2;�

(A+ 1)

�1

uk

q

= kJ

�1

�

(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

� kJ

�1

�

TP

R

J

�

J

�1

�

�J

�

(A+ 1)

�1

uk

q

+kJ

�1

�

TP

R

X

j�j=2

a

�

J

�

J

�1

�

D

�

J

�

(A+ 1)

�1

uk

q

+kJ

�1

�

PJ

�

J

�1

�

�J

�

(A+ 1)

�1

uk

q

� C

0

�

2kJ

�1

�

�J

�

(A+ 1)

�1

uk

q

+

X

j�j=2

kJ

�1

�

D

�

J

�

(A+ 1)

�1

uk

q

1

A

� C�

2

0

�

k�(A+ 1)

�1

uk

q

+

X

j�j=2

kD

�

(A+ 1)

�1

uk

q

1

A

� C�

2

kuk

q

:

(b) Sine q 2 (1; n� 1) we may apply Lemma 3.7 to obtain for u 2W

1;q

(R

n

+

)

krTuk

q

� kruk

q

+ krSuk

q

� kruk

q

+ Ckruk

q

� Ckruk

q

:

The same argument applied to a

�

gives us

kr

X

j�j=2

a

�

D

�

uk

q

� Ckr

3

uk

q

; u 2 W

3;q

(R

n

+

):

Beause k(r+R

2

) � k

q

and kr�k

q

are equivalent norms on W

1;q

(R

n

+

), it is easy to see that the regularity,

proved for P

H

!

in Appendix A.3, holds also true for P

R

= �P

H

!

�

�1

. This implies together with the

above two inequalities

krB

2;�

(A+ 1)

�1

uk

q

= krJ

�1

�

(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

10



= �

n=q

�

�1

kr(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

� �

�1+n=q

 

krTP

R

�J

�

(A+ 1)

�1

uk

q

+krTP

R

X

j�j=2

a

�

D

�

J

�

(A+ 1)

�1

uk

q

+krP�J

�

(A+ 1)

�1

uk

q

!

� C�

�1+n=q

3kr

3

J

�

(A+ 1)

�1

uk

q

= C�

2+n=q

kJ

�

r

3

(A+ 1)

�1

uk

q

= C�

2

kr

3

(A+ 1)

�1

uk

q

:

In view of Proposition B.1, we an further estimate this last expression and obtain

krB

2;�

(A+ 1)

�1

uk

q

� C�

2

kA

3=2

(A+ 1)

�1

uk

q

= C�

2

kA(A+ 1)

�1

A

1=2

uk

q

� C�

2

kA

1=2

uk

q

:

This together with part (a) implies the assertion of (b). �

Proposition 3.9 Let 1 < q < n� 1 and let 0 < � <

1

2q

. Then onditions (ii) and (iii) of Theorem 3.4

hold true for A being the Stokes operator in L

q;�

(R

n

+

) and B = B

2

.

Proof. Sine A admits a bounded H

1

-alulus it obviously has bounded imaginary powers whih implies

by [Tri78℄, Theorem 1.15.3 that

dom(A

�

) = [L

q;�

(R

n

+

); dom(A)℄

�

;

where [�; �℄

�

denotes omplex interpolation of order �. By general properties of interpolation funtors

(see [Tri78℄, Theorem 1.17.1.1) we have

[L

q;�

(R

n

+

); dom(A)℄

�

= [L

q;�

(R

n

+

); dom(A

1=2

)℄

2�

= [L

q

(R

n

+

); dom(�)℄

�

\ L

q;�

(R

n

+

):

The interpolation spae on the right hand side is known to be W

2�;q

(R

n

+

) by our assumption 0 < � <

1

2q

,

see Setion 2.3. Therefore we have

dom(A

�

) =W

2�;q

(R

n

+

) \ L

q;�

(R

n

+

):

By similar arguments we see that

[L

q;�

(R

n

+

);W

1;q

(R

n

+

) \ L

q;�

(R

n

+

)℄

2�

=W

2�;q

(R

n

+

) \ L

q;�

(R

n

+

) = dom(A

�

):

Proposition 3.8 implies that B

2;�

(A + 1)

�1

is a bounded operator in L

q;�

(R

n

+

) and also from

dom(A

1=2

) to W

1;q

�

(R

n

+

) := W

1;q

(R

n

+

) \ L

q;�

(R

n

+

). Again, by interpolation it is also bounded from

[L

q;�

(R

n

+

); dom(A

1=2

)℄

2�

to [L

q;�

(R

n

+

);W

1;q

�

(R

n

+

)℄

2�

, i.e.

B

2;�

(A+ 1)

�1

2 L(dom(A

�

))

with

kB

2;�

(A+ 1)

�1

k

L(dom(A

�

))

� kB

2;�

(A+ 1)

�1

k

2�

L(L

q;�

(R

n

+

))

kB

2;�

(A+ 1)

�1

k

1�2�

L(dom(A

1=2

);W

1;q

�

(R

n

+

))

� C�

2

:

By putting � = 1 we see that

B

2

(dom(A

1+�

)) = B

2;1

(dom(A

1+�

)) = B

2;1

(A+ 1)

�1

(dom(A

�

)) � dom(A

�

);

proving that ondition (ii) of Theorem 3.4 is satis�ed. For the proof of ondition (iii), we use the saling

method introdued in [MC81℄ and [BM88℄. For u 2 dom(A

1+�

) let v = (A+1)u. By using the fat that

k(A+ 1)

�

� k

q

and k � k

dom(A

�

)

are equivalent norms on dom(A

�

), see Proposition B.1, we get

k(A+ 1)

�

B

2;�

uk

q

= k(A+ 1)

�

B

2;�

(A+ 1)

�1

vk

q

� CkB

2;�

(A+ 1)

�1

vk

dom(A

�

)

� C�

2

kvk

dom(A

�

)

� C�

2

k(A+ 1)

�

vk

q

= C�

2

k(A+ 1)

1+�

uk

q

:
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Next, for arbitrary w 2 dom(A), de�ne u 2 dom(A

�

) by u = J

�1

�

w. Then

k(A+ �

2

)

�

B

2

wk

q

= �

2�

�

�n=q

kJ

�1

�

(�

�2

A+ 1)

�

B

2

wk

q

= �

2��n=q

k(A+ 1)

�

J

�1

�

B

2

J

�

J

�1

�

wk

q

= �

2��n=q

k(A+ 1)

�

B

2;�

uk

q

� C�

�n=q+2�+2

k(A+ 1)

1+�

uk

q

= C�

�n=q+2�+2

k(A+ 1)

1+�

J

�1

�

wk

q

= C�

�n=q+2�+2

kJ

�1

�

(�

�2

A+ 1)

1+�

wk

q

= Ck�

2�+2

(�

�2

A+ 1)

1+�

wk

q

= Ck(A+ �

2

)

1+�

wk

q

:

Passing to the limit �! 0 yields

kA

�

B

2

wk

q

� CkA

1+�

wk

q

;

i.e., ondition (iii) of Theorem 3.4 is veri�ed. �

Proposition 3.6 und 3.9 now immediately imply the following.

Corollary 3.10 Let 1 < q < n� 1. The operator A+B

2

admits a bounded H

1

-alulus on L

q;�

(R

n

+

) if

k!k

C

1

b

(R

n�1

)

is suÆiently small.

Proof. (of Theorem 3.3). Of ourse we want to apply Corollary 3.10. Therefore we �rst assume

q < n� 1. Let � 2 (�

1

A

; �), and �x � 2 (�

A

; �). By �

r;R

we denote the ontour

�

r;R

= fse

i�

: s 2 [r; R℄g [ fse

�i�

: s 2 [r; R℄g

for 0 � r < R � 1. Now we write

1

2�i

Z

�

h(�)(� �A�B)

�1

d� =

1

2�i

Z

�

0;1

h(�)(� �A�B)

�1

d�+

1

2�i

Z

�

1;1

h(�)(� �A�B)

�1

d�

and start by examining the latter integral on the RHS whih turns out be easy to handle: By the resolvent

identity we get

(��A�B)

�1

= (� �A�B

2

)

�1

+ (� �A�B

2

)

�1

B

1

(��A�B)

�1

:

It is easily seen that Gagliardo-Nirenberg's inequality (see [Fri69℄ and Appendix A.2) implies together

with Theorem 2.1 that

kr((��A

H

!

)

�1

)k

L(L

q;�

(H

!

);L

q

(H

!

))

� Cj�j

�1=2

:

Therefore

k(��A�B

2

)

�1

B

1

(��A�B)

�1

k

L(L

q;�

(H

!

);L

q

(H

!

))

� Cj�j

�3=2

for all � 2 C n�

�

A

with j�j � 1. Therefore we obtain











1

2�i

Z

�

1;1

h(�)(� �A�B)

�1

fd�











L

q

(R

n

+

)

� Ckhk

1

kfk

L

q

(R

n

+

)

; f 2 L

q;�

(R

n

+

); h 2 H

1

(�

�

):

This gives us











1

2�i

Z

�

1;1

h(�)(� �A

H

!

)

�1

fd�











L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

) sine we may write A

H

!

= �

�1

T

�1

(A + B)T�, where T and

� are isomorphisms.

The ase j�j � 1 is more involved. Here we redue the bent half-spae problem to problems on a half-spae

and a bounded domain through a loalization. Let R > 0 suh that H

!

nB

R

(0) = R

n

+

nB

R

(0). We hoose

a ut-o� funtion �

0

2 C

1



(R

n

) satisfying 0 � �

0

� 1, �

0

� 1 on B

R

(0) and supp(�

0

) � B

2R

(0) and set

�

1

:= 1� �

0

. Further, we put 


1

:= R

n

+

and hoose a bounded domain 


0

� H

!

with B

2R

(0)\H

!

� 


0

and suh that �


0

is C

3

. See Figure 2 for an illustration of this onstrution. For f 2 L

q;�

(H

!

), let

12



η = 1
1

η = 1
1

η
0

= 0

η
0

= 0

n−1
R

η = 1
0 1

= 0η

xω(  )

Ω

R 2R

0

Figure 2: Resolution of the unity subordinate 


0

, 


1

(u; p) 2 dom(A

H

!

) �

^

W

1;q

(H

!

) be the unique solution of the Stokes resolvent problem (SRP )

H

!

f;0

. It is

easy to see that the pair (�

j

u; �

j

p) solves the generalized Stokes resolvent problem (SRP )




j

f

j

;g

j

, where

f

j

= �

j

f � 2ru � r�

j

� u��

j

+ pr�

j

and g

j

= ur�

j

. In order to apply previous results on the Stokes

operator A




j

we have to split the solutions (u

j

; p

j

) of the above problems in the following way:

(�

j

u; �

j

p) = (v

j

; p

v

j

) + (w

j

; p

w

j

);

with (v

j

; p

v

j

); (w

j

; p

w

j

) being the unique solutions of (SRP )




j

P




j

f

j

;0

and (SRP )




j

(I�P




j

)f

j

;g

j

, respetively.

Sine (I � P




j

)f

j

2 G

q

(


j

), it an be written as the gradient of a funtion q 2

^

W

1;q

(


j

), i.e.

(I � P




j

)f

j

= rq

j

:

Hene, w

j

an also be regarded as the unique ow of the problem (SRP )




j

0;g

j

with pressure p

w

j

� q

j

. For

this reason we have to look at the two integrals on the right hand side of

Z

�

0;1

h(�)�

j

ud� =

Z

�

0;1

h(�)v

j

d�+

Z

�

0;1

h(�)w

j

d�; j = 0; 1: (20)

We begin with the ase j = 0. Clearly, f

0

satis�es the estimate

kf

0

k

L

q

(


0

)

� C

�

kfk

L

q

(H

!

)

+ kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

L

q

(


0

)

�

:

Sine u 2 W

1;q

0

(H

!

), it follows from Sobolev's inequality

kuk

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

;

and by Poinar�e's inequality

kpk

L

q

(


0

)

� Ckrpk

L

q

(


0

)

beause we may assume

R




0

p(x)dx = 0. In view of Theorem 2.1 we get the estimate

kf

0

k

L

q

(


0

)

� C

�

kfk

L

q

(H

!

)

+ kruk

L

q

(H

!

)

+ krpk

L

q

(H

!

)

�

� C

 

2 +

1

p

j�j

!

kfk

L

q

(H

!

)

;

for all � 2 C n�

�

A

with j�j � 1. Hene, having in mind that 0 2 �(A




0

), we know that k(��A




0

)

�1

k �

C=(1 + j�j). Therefore we obtain for the �rst integral in (20)

k

Z

�

0;1

h(�)v

0

d�k

L

q

(


0

)

= k

Z

�

0;1

h(�)(� �A




0

)

�1

P




0

f

0

d�k

L

q

(


0

)

� Ckhk

1

Z

1

0

1

jse

i�

+ 1j

kf

0

k

L

q

(


0

)

ds

� Ckhk

1

Z

1

0

1

jse

i�

+ 1j

�

1 +

1

p

s

�

dskfk

L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)
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for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). For w

0

we have aording to Theorem 2.1 and again Sobolev's

inequality the estimate

kw

0

k

L

q

(


0

)

� Ckg

0

k

�1;q

� Ckg

0

k

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckruk

L

q

(H

!

)

�

C

p

j�j

kfk

L

q

(H

!

)

: (21)

This implies for the seond integral in (20)

k

Z

�

0;1

h(�)w

0

d�k

L

q

(


0

)

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

).

In the seond ase, j = 1, we have to treat the terms of f

1

separately. For eah q 2 (1;1) there exists

� 2 (0; 1) and q

1

2 (1; q) satisfying

1

q

= �

�

1

q

1

�

2

n

�

+ (1� �)

1

q

1

= �

2�

n

+

1

q

1

:

Therefore we may apply Gagliardo-Nirenberg's inequality, see [Fri69℄, Theorem 9.3 for the R

n

ase and

Appendix A.2 for the half-spae ase. Using the fat that P is bounded in eah L

r

(R

n

+

), 1 < r <1, we

obtain

k(��A)

�1

P (ru � r�

1

)k

L

q

(R

n

+

)

� Ckr

2

(�� A)

�1

P (ru � r�

1

)k

�

L

q

1

(R

n

+

)

k(��A)

�1

P (ru � r�

1

)k

1��

L

q

1

(R

n

+

)

� Cj�j

��1

kru � r�

1

k

L

q

1

(R

n

+

)

:

Beause of suppr�

1

� 


0

we further get

kru � r�

1

k

L

q

1

(R

n

+

)

� Ckruk

L

q

1

(


0

)

� Ckruk

L

q

�(


0

)

� Ckr

2

uk

L

q

(H

!

)

: (22)

Consequently,

k(��A)

�1

P (ru � r�

1

)k

L

q

(R

n

+

)

� Cj�j

��1

kfk

L

q

(H

!

)

(23)

for all � 2 C n �

�

A

with j�j � 1. For the terms (� � A)

�1

P (u��

1

), (� � A)

�1

P (pr�

1

) one gets in a

ompletely analogous way an inequality like (23). This time, instead of (22), one has to use

ku��

1

k

L

q

1

(R

n

+

)

� Ckuk

L

q��

(H

!

)

� Ckruk

L

q

�(H

!

)

� Ckr

2

uk

L

q

(H

!

)

; (24)

whih we an get by applying Sobolev's inequality on H

!

(see Appendix A.1) and

kpk

L

q

(


0

)

� Ckrpk

L

q

(


0

)

;

respetively. With these preparations we obtain

k

Z

�

0;1

h(�)v

1

d�k

L

q

(R

n

+

)

= k

Z

�

0;1

h(�)(� �A)

�1

Pf

1

d�k

L

q

(R

n

+

)

� k

Z

�

0;1

h(�)(� �A)

�1

P (�

1

f)d�k

L

q

(R

n

+

)

+ k

Z

�

0;1

h(�)(� �A)

�1

P (2ru � r�

1

+ u��

1

+ pr�

1

)d�k

L

q

(R

n

+

)

� C

�

khk

1

kfk

L

q

(H

!

)

+ khk

1

Z

1

0

s

��1

dskfk

L

q

(H

!

)

�

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). The estimate of the w

1

-term is ompletely analogous to the

ase j = 0.

Summarizing, we obtain

k

Z

�

0;1

h(�)(� �A

H

!

)

�1

fd�k

L

q

(R

n

+

)

= k

Z

�

0;1

h(�)ud�k

L

q

(H

!

)

�

X

j=0

k

Z

�

0;1

h(�)�

j

ud�k

L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)
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for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). This proves the assertion for q 2 (1; 2). The ase q = 2 is lear

beause A

H

!

is self-adjoint in L

2;�

(H

!

). The general ase follows from the ase q < 2 by taking adjoints.

�

3.3 H

1

-alulus for the Stokes operator on bounded domains

Let 
 be a bounded C

3

-domain. It is well known that in this ase 0 2 �(A




), whih immediately implies

k

1

2�i

Z

�

0;1

h(�)(� �A




)

�1

d�k

L(L

q;�

(
))

� Ckhk

1

(25)

for all h 2 H

1

0

(�

�

) and some � 2 (0; �=2). Hene it suÆes to onsider the ase j�j � 1 to whih we

want to apply the following loalization method whih is desribed in more detail in [SS℄. For some Æ > 0

to be �xed later, onsider the open overing of �
 onsisting of all open balls B

Æ

(x) of radius Æ, entered

at x 2 �
. By assumption, �
 is ompat, so we have

�
 �

N

[

j=1

B

Æ

(x

j

)

for some N = N(Æ) 2 N and ertain x

1

; : : : ; x

N

2 �
. Choose an open subset 


0

of 
 suh that 


0

� 


and 
 � 


0

[

S

N

j=1

B

Æ

(x

j

). Put 


j

:= B

2Æ

(x

j

) \ 
, j = 1; : : : ; N , and let �

j

2 C

1



(R

n

), j = 1; : : : ; N ,

be suh that �

j

� 1 on B

Æ

(x

j

) and supp(�

j

) � B

2Æ

(x

j

) as well as �

0

� 1 on 


0

and supp(�

0

) � 
. Next,

Ω

Ω

j

ω(x)

R

 −1n

Figure 3: The loalization method

for given f 2 L

q;�

(
), let (u; p) 2 dom(A




) �

^

W

1;q

(
) be the unique solution of the Stokes resolvent

problem (SRP )




f;0

. We get the loalized equations

(SRP )




j

f

j

;g

j

8

<

:

��

j

u���

j

u+r�

j

p = f

j

on 


j

;

r � �

j

u = g

j

on 


j

;

�

j

u = 0;

j = 0; : : : ; N , where f

j

= �

j

f � 2ru � r�

j

� u��

j

+ pr�

j

and g

j

= ur�

j

, whih shall be redued either

to the bent half-spae ase (j = 1; : : : ; N) or to the R

n

ase (j = 0). To do so we have to rotate and

translate the loalized problems. However, it is easy to see that suh transformations lead to an equivalent

Stokes resolvent problem. For example, if U and P solve the Stokes resolvent problem (SRP )

Q

F;G

on

some open subset Q � R

n

and x := V ~x := O~x + x

0

, where O is an orthogonal transformation, then

~

U(~x) := O

t

U(V ~x) and

~

P (~x) := P (V ~x) solve the equivalent Stokes resolvent problem (SRP )

V

�1

Q

~

F;

~

G

on

V

�1

Q where

~

F (~x) := O

t

F (V ~x) and

~

G(~x) := G(V ~x). Thus, for simpliity, we shall omit this kind of

transformations in the sequel.

Sine �
 2 C

3

we an, by hoosing Æ small enough, for eah j = 1; : : : ; N �nd a funtion !

j

2 C

3



(R

n�1

)

suh that (with H

j

= H

!

j

)




j

� H

j

; B

2Æ

(x

j

) \ �
 � �H

j

15



and k!

j

k

C

1

� � with � as in Theorem 3.3. Thus, by extending the loalized funtions by 0 we an

regard every loalized equation as Stokes resolvent problem on H

j

, where H

0

:= R

n

. We annot apply

Theorem 3.3 diretly, beause div�

j

u = g

j

6= 0 in general. Therefore let L be the solution operator of

the problem

8

<

:

(1��)w +rp

w

= 0 on H;

r � w = g on H;

w = 0;

(26)

where H may be any domain in R

n

satisfying the assumptions of Theorem 2.1. Aording to [FS94℄

Corollary 1.5 the operator

L :

^

W

�1;q

(H) \W

1;q

(H)!W

2;q

(H) \W

1;q

0

(H)

if H is unbounded or with L

q;0

(H) := fu 2 L

q

(H) :

R

H

udx = 0g

L : L

q;0

(H) \W

1;q

(H)!W

2;q

(H) \W

1;q

0

(H)

if H is bounded is ontinuous and satis�es in any ase both of the following estimates:

kLgk

q

� Ckgk

�1;q

and kLgk

2;q

� C(kgk

�1;q

+ krgk

q

) (27)

for all g 2 dom(L). Now we set w

j

:= Lg

j

and v

j

:= �

j

u� w

j

, i.e., we write �

j

u as

�

j

u = v

j

+ w

j

; j = 1; : : : ; N:

The v

j

's satisfy the equations

(���)v

j

+r(�

j

p� p

w

j

) = f

j

+ (1� �)w

j

= P

H

j

(f

j

+ (1� �)w

j

) + (I � P

H

j

)(f

j

+ (1� �)w

j

):

Now (I � P

H

j

)(f

j

+ (1� �)w

j

) is a gradient �eld, so it an be written in the form

(I � P

H

j

)(f

j

+ (1� �)w

j

) = rq

j

for some q

j

2

^

W

1;q

(H

j

), j = 1; : : : ; N . Thus v

j

an also be regarded as the Stokes ow of the unique

solution (v

j

; �

j

p� p

w

j

� q

j

) of the generalized Stokes resolvent problem (SRP )

H

j

P

H

j

(f

j

+(1��)w

j

);0

. Conse-

quently

v

j

= (A

H

j

+ �)

�1

P

H

j

(f

j

+ (1� �)w

j

)

The identity

�(A

H

j

+ �)

�1

P

H

j

w

j

= P

H

j

w

j

�A

H

j

(A

H

j

+ �)

�1

P

H

j

w

j

gives us the following formula for �

j

u

�

j

u = v

j

+ w

j

= (�+A

H

j

)

�1

P

H

j

f

j

+ (�+A

H

j

)

�1

P

H

j

w

j

+A

H

j

(�+A

H

j

)

�1

P

H

j

w

j

+ (1� P

H

j

)w

j

;

(28)

j = 1; : : : ; N . We treat these four addends separately and begin with the seond one. Sine r�

j

is

ompatly supported, we get by (27) and Poinar�e's inequality

kw

j

k

L

q

(H

j

)

= kLg

j

k

q

� Ckg

j

k

�1;q

= Cku � r�

j

k

�1;q

= sup

 2

^

W

1;q

0

(H

j

);kr k

q

0

=1

�

�

�

�

�

Z

supp(�

j

)\


ur�

j

 dx

�

�

�

�

�

� C sup

 2

^

W

1;q

0

(H

j

);kr k

q

0

=1

kuk

L

q

(
)

k k

L

q

0

(supp(�

j

)\
)

� Ckuk

L

q

(
)

� Cj�j

�1

kfk

L

q

(
)

:

This implies

k(�+A

H

j

)

�1

P

H

j

w

j

k

L

q

(H

j

)

� C

1

j�j

kP

H

j

w

j

k

L

q

(H

j

)

� C

1

j�j

kw

j

k

L

q

(H

j

)

� C

1

j�j

2

kfk

L

q

(
)

;
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for � 2 �

���

, j�j � 1. Hene

k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

=

1

2�

k

Z

�

1;1

h(�)((��) +A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

(29)

for all h 2 H

1

0

(�

�

), j = 1; : : : ; N .

The remaining three addends are more involved. For the �rst one of (28) we need the following prepa-

rations. For a bounded domain G � R

n

we use the following identi�ation of the homogenous Sobolev

spae

^

W

1;q

(G) =W

1;q

(G) \ L

q;0

(G):

We want to remark that for an arbitrary 
 � R

n

and G � 
 for every p 2

^

W

1;q

(
) it is always possible

to hoose a onstant  = (G; p) suh that p

G

= p+  2 L

q;0

(G). The next lemma states an extra deay

in � of the pressure of the Stokes resolvent problem.

Lemma 3.11 Let � 2 (�=2; �), 1 < q <1, 
 � R

n

as in Theorem 2.1 and (u; p) 2 dom(A




)�

^

W

1;q

the

unique solution of the Stokes resolvent problem (SRP )




f;0

, where f 2 L

q;�

(
). Then, for eah � 2 (0;

1

2q

0

)

and for every bounded domain G � 
 of lass C

1;1

we have

kp

G

k

L

q;0

(G)

� Cj�j

��

kfk

L

q;�

(
)

; � 2 �

�

; j�j � 1

with some onstant C = C(G;�) > 0 independent of � and f .

Proof. It is easy to see that (L

q;0

(G))

0

= L

q

0

;0

(G). We estimate (p

G

; ')

G

:=

R

G

p

G

' for an arbitrary

' 2 L

q

0

;0

(G). Aording to [Bog79℄, [Bog80℄ or [Gal98℄, for every ' 2 L

q

0

;0

(G) there is a solution

� 2W

1;q

0

0

(G) of the divergene problem

�

r � � = ' on G;

� = 0 on �G;

with

k�k

W

1;q

0

(G)

� Ck'k

L

q

0

;0

(G)

: (30)

Sine � 2 W

1;q

0

(G) we may regard � also as an element in W

1;q

(
). Using

rp

G

(x) = (I � P




)�u(x); x 2 
;

whih an be obtained by realling rp

G

= rp and applying (I � P




) to the �rst line of (SRP )




f;0

, we

may alulate

(p

G

; ')

G

= (p

G

;r � �)

G

= �(rp

G

; �)

G

= �(rp

G

; �)




= �((I � P




)�




u; �)




= (��




u; (I � P




)�)




:

Sine ��




has bounded imarinary powers, (see e.g. [PS93℄) we get by the interpolation property proved

in Setion 2.3 that

dom((��




)

�

) = [L

q

(
); dom(��




)℄

�

=W

2�;q

(
)

for q 2 (1;1) and � 2 [0;

1

2q

). Sine P




2 L(W

1;q

0

(
)), see [Fra00℄, we have

(I � P




)� 2W

1;q

0

(
) �W

2�;q

0

(
) = dom((��




)

�

):

Hene, the above alulation yields together with inequality (30)

j(p

G

; ')

G

j = j((��




)

1��

u; (��




)

�

(I � P




)�)




j

� k(��




)

1��

uk

L

q

(
)

k(��




)

�

(I � P




)�k

L

q

0

(
)

� Ck(��




)

1��

uk

L

q

(
)

k(I � P




)�k

W

1;q

0

(
)

� Ck(��




)

1��

uk

L

q

(
)

k�k

W

1;q

0

(G)

� Ck(��




)

1��

uk

L

q

(
)

k'k

L

q

0

;0

(G)

:
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To estimate the term (��




)

1��

u we write u in the form u = (� � �




)

�1

(f � rp

G

) and obtain by a

simple interpolation argument and Theorem 2.1

k(��




)

1��

uk

L

q

(
)

= k(��




)

1��

(���




)

�1

(f �rp

G

)k

L

q

(
)

� Cj�j

��

kfk

L

q

(
)

for all � 2 �

�

, j�j � 1. This gives us

j(p

G

; ')

G

j � Cj�j

��

kfk

L

q

(
)

k'k

L

q

0

;0

(G)

for all ' 2 L

q

0

;0

(G). Consequently,

kp

G

k

L

q;0

(G)

= sup

'2L

q

0

;0

(G);'6=0

j(p

G

; ')

G

j

k'k

L

q

0

;0

(G)

� Cj�j

��

kfk

L

q

(
)

;

and the lemma is proved. �

With the above lemma it is easy to verify the desired estimate for the �rst addend of (28). We have

(��A

H

j

)

�1

P

H

j

f

j

= (� �A

H

j

)

�1

P

H

j

(�

j

f � 2ru � r�

j

� u��

j

+ pr�

j

):

We may set p = p

G

sine p 2

^

W

1;q

(
), where G � 
 shall be a bounded domain of lass C

2

satisfying


 \ supp(r�

j

) � G for all j = 0; : : : ; N (in the situation here we an hoose G = 
). By using the

bounded H

1

-alulus of A

H

j

, j = 0; : : : ; N , Theorem 2.1 and Lemma 3.11 we may estimate

k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

f

j

d�k

L

q

(H

j

)

� k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

�

j

fd�k

L

q

(H

j

)

+k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

(�2ru � r�

j

� u��

j

+ pr�

j

)d�k

L

q

(H

j

)

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

1

1

s

�

1

s

+

1

s

1=2

+

1

s

�

�

kfk

L

q

(G)

ds

�

� Ckhk

1

kfk

L

q

(
)

(31)

for all h 2 H

1

0

(�

�

), j = 0; : : : ; N , and any �xed � 2 (0;

1

2q

0

).

For the third addend of (28) we write w

j

as

w

j

= LM

r�

j

u

where M

r�

j

u := r�

j

� u. The estimate for the operator K

j

:= LM

r�

j

stated in the next lemma will be

useful.

Lemma 3.12 Let 1 < q <1, H

j

, K

j

and G � 
 de�ned as above. Then for some onstant C = C(G)

it holds

kK

j

uk

W

1;q

(H

j

)

� Ckuk

L

q

(G)

for all u 2 L

q

(G) and all j = 0; : : : ; N .

Proof. Set G

j

:= 
 \ suppr�

j

. For  2

^

W

1;q

(H

j

) \ C

1



(H

j

) with

R

G

j

 dx = 0 we have by Poinar�e's

inequality

kr�

j

 k

W

1;q

(G

j

)

� Ckr k

L

q

(G

j

)

� Ckr k

L

q

(H

j

)

: (32)

This yields

kM

r�

j

uk

^

W

�1;q

(H

j

)

= sup

 2C

1



(H

j

)

j

R

H

j

(u � r�

j

) dxj

kr k

L

q

(H

j

)

= sup

 2C

1



(H

j

)

j

R

G

u � (r�

j

 )dxj

kr�

j

 k

W

1;q

(G)

kr�

j

 k

W

1;q

(G

j

)

kr k

L

q

(H

j

)

� Ckuk

(W

1;q

(G))

0
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for all u 2W

1;q

(G) �

�

W

1;q

(G)

�

0

, j = 0; : : : ; N . Together with (27) this leads to

kK

j

uk

L

q

(H

j

)

= kLM

r�

j

uk

L

q

(H

j

)

� CkM

r�

j

uk

^

W

�1;q

(H

j

)

� Ckuk

(W

1;q

(G))

0

and

kK

j

uk

W

2;q

(H

j

)

� C

�

kM

r�

j

uk

^

W

�1;q

(H

j

)

+ krM

r�

j

uk

L

q

(H

j

)

�

� C

�

kuk

(W

1;q

(G))

0

+ kr(r�

j

� u)k

L

q

(H

j

)

�

� Ckuk

W

1;q

(G)

for all u 2 W

1;q

(G), j = 0; : : : ; N . Sine W

1;q

(G) is a dense subspae of

�

W

1;q

(G)

�

0

the �rst inequality

above implies that K

j

an be extended to a bounded operator from

�

W

1;q

(G)

�

0

to L

q

(H

j

). From the

seond one we get that K

j

is also bounded from W

1;q

(G) to W

2;q

(H

j

). By interpolation, K

j

is also

bounded from L

q

(G) =

h

�

W

1;q

(G)

�

0

;W

1;q

(G)

i

1=2

toW

1;q

(H

j

) = [L

q

(H

j

);W

2;q

(H

j

)℄

1=2

for j = 0; : : : ; N ,

whih yields the assertion. �

Using the fat that P

H

j

2 L(W

1;q

(H

j

)) and again the identity

dom(A

�

H

j

) = [L

q;�

(H

j

); dom(A

H

j

)℄

�

=W

2�;q

(H

j

); � 2 [0;

1

2q

)

(see also, [Tri78℄ and [Fra00℄), we dedue, if we set � :=

1

4q

, say,

P

H

j

w

j

2W

1;q

(H

j

) �W

2�;q

(H

j

) = dom(A

�

H

j

):

By a simple interpolation argument and Lemma 3.12 we get

kA

H

j

(��A

H

j

)

�1

P

H

j

w

j

k

L

q

(H

j

)

= kA

1��

H

j

(��A

H

j

)

�1

A

�

H

j

P

H

j

w

j

k

L

q

(H

j

)

� Cj�j

��

kA

�

H

j

P

H

j

w

j

k

L

q

(H

j

)

� Cj�j

��

kP

H

j

w

j

k

W

2�;q

(H

j

)

� Cj�j

��

kP

H

j

w

j

k

W

1;q

(H

j

)

� Cj�j

��

kw

j

k

W

1;q

(H

j

)

= Cj�j

��

kK

j

uk

W

1;q

(H

j

)

� Cj�j

��

kuk

L

q

(
)

� Cj�j

�1��

kfk

L

q

(
)

for j�j � 1. It follows

k

1

2�i

Z

�

1;1

h(�)A

H

j

(� �A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

(33)

for all h 2 H

1

0

(�

�

), j = 1; : : : ; N .

The estimate for the fourth addend of (28) will follow from Lemma 3.13 below. Beause we will need a

similar estimate in the next setion, we state this lemma, just as we did with Lemma 3.11, in a more

general form as is needed here. Let 
 � R

n

be a domain whih ful�lls the assumptions of Theorem 2.1.

For f 2 L

q;�

(
), let (u; p) the unique solution of (SRP )




f;0

whih exists aording to this theorem.

Further, let ' : R

n

! R be a smooth funtion suh that r' has ompat support, suppr'\
 6= ;, and

let Q � R

n

be a (possibly unbounded) domain suh that 
 \ suppr' � Q and �
 \ suppr' � �Q.

Lemma 3.13 Let L be the solution operator of problem (26) on the domain Q. Then, for the trivial

extension of u � r' on Q (also denoted by u � r') we have u � r' 2 dom(L) and

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

) with some onstant C that may depend on ' but not on f .

Proof. We have u � r' 2

^

W

�1;q

(Q) \W

1;q

(Q) if Q is unbounded, sine u � r' has ompat support.

Assume for the moment that f 2 dom(A




). Then we may write for h 2 H

1

0

(�

�

)

1

2�i

Z

�

h(�)u � r'd� = r' � h(A




)f = r' �

1

2�i

Z

�

h(�)

1 + �

(��A




)

�1

d�(1 +A




)f:
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By this representation it is easy to see that we also have

1

2�i

Z

�

h(�)u � r'd� 2

^

W

�1;q

(Q) \W

1;q

(Q):

If Q is bounded we use

u � r' = r � u'

to get in view of u' �

�Q

= 0 and the Gauss Theorem that

u � r';

1

2�i

Z

�

h(�)u � r'd� 2W

1;q

(Q) \ L

q;0

(Q):

The ontinuity of L implies together with (27) that

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

= kL(r' � h(A




)f)k

q

� Ckr' � h(A




)fk

�1;q

:

To estimate the norm on the right hand side reall that supp(u � r') � 
. By (1) and the identity

dom((��




)

�

) = [L

q

0

(
); dom(��




)℄

�

=W

2�;q

0

(
), � 2 (0;

1

2q

0

), we get for  2 C

1



(Q)

(r' � h(A




)f;  )

Q

=

�

r' � (1 +A




)

1

2�i

Z

�

h(�)

1 + �

(� �A




)

�1

fd�;  

�




=

�

(1��




)

1

2�i

Z

�

h(�)

1 + �

(��A




)

�1

d�f; P




 r'

�




=

�

1

2�i

Z

�

h(�)

1 + �

(1��




)

1��

(��A




)

�1

d�f; (1��




)

�

P




 r'

�




:

Completely analogous to (32) we get

k r'k

W

1;q

0

(
)

� Ckr k

L

q

0

(Q)

:

Thus, as in the proof of Lemma 3.11 we obtain

k(1��




)

�

P




 r'k

L

q

0

(
)

� Ck r'k

W

1;q

0

(
)

� Ckr k

L

q

0

(
)

and

k(1��




)

1��

(��A




)

�1

fk

L

q

(
)

� Cj�j

��

kfk

L

q

(
)

:

This yields

j (r' � h(A




)f;  )

Q

j � Ckhk

1

Z

1

0

1

(1 + s)s

�

kfk

L

q

(
)

dskr k

L

q

0

(
)

� Ckhk

1

kfk

L

q

(
)

kr k

L

q

0

(
)

for all h 2 H

1

0

(�

�

). Consequently,

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

� Ckr' � h(A




)fk

�1;q

= sup

 2C

1



(Q);r 6=0

j (r' � h(A




)f;  )

Q

j

kr k

L

q

0

(Q)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

) and the assertion follows. �

Similar to (21) we obtain the estimate

kL(u � r�

j

)k

L

q

(H

j

)

�

C

p

j�j

kfk

L

q

(
)

:
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Thus, setting H

j

= Q and �

j

= ', j 2 f0; : : : ; Ng we obtain by Lemma 3.13 for the fourth addend of

(28)

k

1

2�i

Z

�

1;1

h(�)(I � P

H

j

)w

j

d�k

L

q

(H

j

)

�

� C

 

k

1

2�i

Z

�

h(�)L(u � r�

j

)d�k

L

q

(H

j

)

+ k

1

2�i

Z

�

0;1

h(�)L(u � r�

j

)d�k

L

q

(H

j

)

!

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

0

kL(u � r�

j

)k

L

q

(H

j

)

ds

�

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

0

1

p

s

kfk

L

q

(
)

ds

�

� Ckhk

1

kfk

L

q

(
)

(34)

for all h 2 H

1

0

(�

�

). Combining (29), (33), (31) and (34) we get

k

1

2�i

Z

�

1;1

h(�)(� �A




)

�1

fd�k

L

q

(
)

= k

1

2�i

Z

�

1;1

h(�)ud�k

L

q

(
)

�

N

X

j=0

k

1

2�i

Z

�

1;1

h(�)�

j

ud�k

L

q

(


j

)

�

N

X

j=0

k

1

2�i

Z

�

1;1

h(�)�

j

ud�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

). In view of (25) we thus have proved the following theorem.

Theorem 3.14 Let 1 < q <1 and 
 � R

n

be a bounded domain whose boundary is of lass C

3

. Then

the Stokes operator A




admits a bounded H

1

-alulus in L

q;�

(
).

3.4 H

1

-alulus for the Stokes operator on exterior domains and on per-

turbed half-spaes

In this setion we onsider the Stokes operator A




, where 
 � R

n

is either an exterior domain, i.e.

the omplement of a ompat set, or a perturbed half-spae by whih we mean that there is a ompat

set K in R

n

suh that R

n

+

n K = 
 n K, see Figure 4. We will show that the Stokes operator A




on

suh a domain also admits a bounded H

1

-alulus. This is more or less a onsequene of the results in

Subsetions 3.1 and 3.3. Using the same loalization as in the proof of Theorem 3.3 we an redue the

perturbed half-spae problem to the ase of a bounded domain and the half-spae. If 
 is exterior we

an redue the problem to the bounded domain ase and to R

n

. Instead of repeating large parts of the

proofs of Theorem 3.3 and Theorem 3.14, we only explain the essential steps that di�er in this situation.

Theorem 3.15 Let 1 < q < 1 and 
 � R

n

be an exterior domain or a perturbed half-spae whose

boundary is of lass C

3

. Then the Stokes operator A




admits a bounded H

1

-alulus in L

q;�

(
).

Proof. Let B

R

(0) a ball suh that 
 nB

R

(0) = R

n

+

nB

R

(0) if 
 is a perturbed half-spae or 
 nB

R

(0) =

R

n

n B

R

(0) if 
 is an exterior domain. In both of the two ases we an use the same onstrution

of 


0

;


1

; �

0

; �

1

as in the proof of Theorem 3.3 with the only di�erene that we set 


0

= B

2R

(0) and




1

= R

n

if 
 is an exterior domain. As before, we split the H

1

integral into the two parts j�j � 1 and

j�j > 1. For the treatment of the former integral we only have to modify inequality (24) sine we applied

Sobolev's inequality for H

!

at this point. The remaining parts of the proof an be opied verbatim,

beause nowhere else we have used the speial struture of H

!

again. To obtain an estimate like (24) if


 is a perturbed half-spae or an exterior domain we will apply the following generalization of Poinar�e's

inequality on 


0

. If Q � R

n

is a bounded Lipshitz domain and V is a losed subspae of W

1;q

(Q), then

there are equivalent:

(i) There is some u

0

2 V and some onstant C

0

� 0 suh that u

0

+ � 2 V implies j�j � C

0

for � 2 R

n

.
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R 2R

Ω
c

Ω
0

R

n−1

Figure 4: Resolution of the identity for the perturbed half-spae

(ii) There is a onstant C > 0 suh that

kuk

L

q

(Q)

� Ckruk

L

q

(Q)

; u 2 V:

A proof of that result an be found e.g. in [Alt99℄. If S � �Q is not a null set with respet to the

boundary measure it is easy to see, that W

1;q

0;S

(Q) := fu 2 W

1;q

(Q) : u �

S

= 0g is a losed subspae of

W

1;q

(Q), whih satis�es ondition (i) of the above equivalene. Thus, if we set S := �


0

\�
, we dedue

the validity of Poinar�e's inequality on W

1;q

0;S

(


0

). This gives us for the Stokes ow u 2 dom(A




) of the

solution (u; p) of (SRP )




f;0

, where f 2 L

q;�

(
),

ku��

1

k

L

q

1

(


1

)

� Ckuk

L

q

(


0

)

� Ckruk

L

q

(


0

)

; (35)

with q

1

as in Theorem 3.3. To see that we may estimate the last term again by Poinar�e's inequality we

have to verify (i) for the subspae

V := r

h

W

1;q

0;S

(


0

) \W

2;q

(


0

)

i

=

n

rv : v 2W

1;q

0;S

(


0

) \W

2;q

(


0

)

o

:

of W

1;q

(


0

). Clearly, (i) follows if we an show that there is no non-trivial onstant funtion in V . If

w = rv 2 V is onstant for some v 2W

1;q

0;S

(


0

) \W

2;q

(


0

), then v(x) =Mx+ b, where M 2 R

n�n

and

b 2 R

n

. Hene, the set of zeros for v is an aÆne subspae of R

n

. But the only aÆne subspae that ontains

S is R

n

, sine we may assume that �
 is not an aÆne subspae of R

n

(otherwise we are in the half-spae

ase). This implies v = 0 whih in turn implies w = 0. It remains to show that V is losed in W

1;q

(


0

).

This an be seen by diret alulation or by the following argument: We set X :=W

1;q

0;S

(


0

) \W

2;q

(


0

)

and

T : X !W

1;q

(


0

); Tu := ru:

Sine T is injetive its inverse is well-de�ned on ran(T ) = V . The boundedness of T implies the losedness

of T

�1

. We will show that T

�1

is ontinuous, whih immediately yields the losedness of its domain V .

By Poinar�e's inequality on W

1;q

0;S

(


0

) we obtain

kT

�1

uk

X

= kT

�1

uk

2;q

� C

�

kT

�1

uk

q

+ krT

�1

uk

1;q

�

� C

�

krT

�1

uk

q

+ krT

�1

uk

1;q

�

= C (kuk

q

+ kuk

1;q

) � Ckuk

1;q

= Ckuk

V

for all u 2 V proving the ontinuity of T

�1

. Consequently, Poinar�e's inequality is valid on V whih gives

us together with (35)

ku��

1

k

L

q

1

(


1

)

� Ckruk

L

q

(


0

)

� Ckr

2

uk

L

q

(


0

)

� Ckr

2

uk

L

q

(
)

:

So, replaing (24) by the above line the proof for j�j � 1 is �nished.

For j�j � 1 we an transfer the proof in Theorem 3.14 for that �'s. Instead of the loalization used there
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whih redues the problem on 
 to problems on H

!

and R

n

, we take the above loalization and redue it

to problems on the bounded domain 


0

and the unbounded domain 


1

(whih is either R

n

or R

n

+

). The

loalized equations remain unhanged as well as formula (28) for the loalized funtions �

j

u, j = 0; 1.

This allows us to opy the proof of Theorem 3.14 without any further hange. Applying Theorem 3.14

to A




0

and using the bounded H

1

-alulus of A

R

n

+

and A

R

n

omplete the proof of Theorem 3.15. �

A Regularity of the Helmholtz projetion

Lemma A.1 Let ! 2 C

1;1



(R

n�1

) and let H

!

be the bent half-spae assoiated with ! as introdued in

Setion 3.1. Further, let 1 < q; q

�

< 1 with

1

q

�

=

1

q

�

1

n

. Then the Sobolev inequality is valid for H

!

,

i.e. there is a C > 0 suh that

kuk

q

�

� Ckruk

q

for all u 2W

1;q

(H

!

).

Proof. First reall that R

n

+

is a so-alled (";1) domain, i.e. there is some " > 0 with the following

property: For all x; y 2 R

n

+

there is a reti�able ar , joining x to y and satisfying L() �

1

"

jx � yj as

well as

d(z) � "

jx� zjjy � zj

jx� yj

; z 2 ;

y

z

|x−z|

|y−z|

x

γ

|x−y|

Figure 5: The half-spae is

an (";1) domain

where L() denotes the length of  and d(z) = z

n

is the distane from z

to the boundary of R

n

+

. This an be easily seen by taking for  the upper

half of the irle with diameter being the segment onneting x and y, see

Figure 5. It is known, see [Jon81℄ for details, that unbounded (";1) domains

are extension domains for the Dirihlet energy spae, i.e. there is a bounded

operator E :

^

W

1;q

(R

n

+

) !

^

W

1;q

(R

n

) with Ef �

R

n

+

= f for all f 2

^

W

1;q

(R

n

+

).

Sine �(x

0

; x

n

) = (x

0

; x

n

� !(x)) is a C

1

-di�eomorphism mapping H

!

to R

n

+

,

the assertion follows.

�

Remark A.2 Atually, it an be shown that one has more general extension operators for unbounded

(";1) domains: If 
 is a domain of this type, N 2 N, and q

0

; : : : ; q

N

2 (1;1), there is an extension

operator

E :

N

\

j=0

^

W

j;q

j

(
)!

N

\

j=0

^

W

j;q

j

(R

n

) with kr

j

Euk

L

q

j

(R

n

)

� Ckr

j

uk

L

q

j

(
)

for all j = 1; : : : ; N and all u 2

T

N

j=0

^

W

j;q

j

(
). For details onerning extension operators in Sobolev

spaes, see [Chu92℄. As an easy onsequene, Gagliardo-Nirenberg's inequality extends to (";1) domains.

In partiular, it holds true for R

n

+

and the bent half-spae H

!

with ! as in Lemma A.1.

Let 
 be either a bounded domain or 
 = R

n

+

. It is well-known that the solution of the Neumann

problem on 
 assoiated to the Helmholtz projetion admits higher regularity. This implies immediately

the regularity of P




, i.e. P




2 L(W

k;q

(
)) for 1 < q <1 and k 2 N [ f0g. The next proposition shows

that this also holds true for 
 = H

!

.

Proposition A.3 Let 1 < q < 1 and k 2 N [ f0g. Then the Helmholtz projetion P

H

!

is a bounded

operator in W

k;q

(H

!

). In partiular, if 1 < q < n, then

kr

k

P

H

!

uk

q

� Ckr

k

uk

q

; u 2 W

k;q

(H

!

):

Proof. Let �

0

; �

1

;


0

;


1

as in Theorem 3.3. The ase k = 0 is well-known, so we only prove the assertion

for k = 1. The general ase then follows by indution. We onsider the loalized Neumann-Problems

(NP )

�

�(�

j

p) = �

j

divu+ 2r�

j

� rp+ p��

j

=: f

j

on 


j

;

�

��

(�

j

p) = (u�

j

+ pr�

j

) � � =: g

j

on �


j
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for j = 0; 1. From well-known regularity properties for the Neumann problem on R

n

+

(see [Fra00℄) we get

kr

2

�

1

pk

L

q

(


1

)

� C

�

kf

1

k

L

q

(


1

)

+ kg

1

k

^

W

1�1=q;q

(�


1

)

�

� C

�

kruk

L

q

(H

!

)

+ kpk

W

1;q

(


0

)

+ ku�

1

+ pr�

1

k

^

W

1�1=q;q

(�


1

)

�

;

where

^

W

1�1=q;q

(�


1

) is the trae Sobolev spae, treated in detail e.g. in [Gal98℄. By [Gal98℄, Theo-

rem II 8.2, we an estimate the latter term on the right hand side whih yields

kr

2

�

1

pk

L

q

(


1

)

� C

�

kruk

L

q

(H

!

)

+ kpk

W

1;q

(


0

)

+ ku�

1

+ pr�

1

k

^

W

1;q

(


1

)

�

� C

�

kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

W

1;q

(


0

)

�

:

By using regularity properties for the Neumann problem on bounded domains, we an treat the ase

j = 0 in a similar way whih gives us

kr

2

�

0

pk

L

q

(


0

)

� C

�

kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

W

1;q

(


0

)

�

:

It is always possible to hoose p suh that

R




0

p(x)dx = 0. From Poinar�e's inequality and P

H

!

2

L(L

q

(H

!

)) we therefore obtain

kpk

L

q

(


0

)

� krpk

L

q

(


0

)

� krpk

L

q

(H

!

)

� kuk

L

q

(H

!

)

:

Hene, the above two estimates imply

kr

2

pk

L

q

(H

!

)

� kr

2

�

1

pk

L

q

(


1

)

+ kr

2

�

0

pk

L

q

(


0

)

� kuk

W

1;q

(H

!

)

;

whih gives us

kP

H

!

k

W

1;q

(H

!

)

� kuk

W

1;q

(H

!

)

:

Assume now 1 < q < n. With Lemma A.1 and the boundedness of 


0

we may onlude

kuk

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

:

The Helmholtz-Projetion P

H

!

does not depend on q and is ontinuous for all 1 < q <1. Together with

Lemma A.1 this leads to

kpk

W

1;q

(


0

)

� krpk

L

q

(


0

)

� Ckrpk

L

q

�(H

!

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

:

The above two estimates for r

2

�

1

p and r

2

�

0

p now imply

krP

H

!

uk

L

q

(H

!

)

� kruk

L

q

(H

!

)

+ kr

2

pk

L

q

(H

!

)

� Ckruk

L

q

(H

!

)

for u 2W

1;q

(H

!

). �

B Sobolev estimates for powers of the Stokes operator on R

n

+

Proposition B.1 Let 1 < q <1 and let A be the Stokes operator in L

q;�

(R

n

+

). Then

(a) For eah 0 < s < 1, the norms k(A+ 1)

s

� k

q

and k � k

dom(A

s

)

are equivalent,

(b) for eah k 2 N, the norms kA

k=2

� k

q

and kr

k

� k

q

are equivalent.

Proof. To prove (a), note that for r < 0, (A + 1)

r

is a bounded operator in L

q;�

(R

n

+

). From Re-

mark 2.2 (iii) we know that A

�1

2 H

1

(L

q;�

(R

n

+

)) with the same H

1

-angle whih immediately implies

that also (A

�1

+ 1)

r

is bounded on L

q;�

(R

n

+

) for r < 0. From

(A+ 1)

r

= (A

�1

+ 1)

r

A

r

;
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valid for all r 2 R, we an therefore onlude

kuk

dom(A

s

)

= kuk

q

+ kA

s

uk

q

= k(A+ 1)

�s

(A+ 1)

s

uk

q

+ k(A

�1

+ 1)

�s

(A+ 1)

s

uk

q

� Ck(A+ 1)

s

uk

q

for all u 2 dom(A

s

). The onverse inequality an be proved by the same arguments:

k(A+ 1)

s

uk

q

= k(A+ 1)(A+ 1)

s�1

uk

q

� C

�

kA(A+ 1)

s�1

uk

q

+ k(A+ 1)

s�1

uk

q

�

� C

�

kA

1�s

(A+ 1)

s�1

A

s

uk

q

+ kuk

q

�

= C

�

k(A

�1

+ 1)

s�1

A

s

uk

q

+ kuk

q

�

� Ckuk

dom(A

s

)

:

To verify (b) we �rst establish the estimates

kuk

k;q

� Ck(A+ 1)

k=2

uk

q

� Ckuk

k;q

(36)

for eah k 2 N and all u 2 dom(A

k=2

). The equivalene of the norms in question is then obtained from

these estimates by the saling method whih was already used in the proof of Proposition 3.9. Sine

k � k

dom(A)

and k � k

2;q

are equivalent norms on dom(A), the resolvent (A + 1)

�1

is a bounded operator

from (L

q;�

(R

n

+

); k � k

q

) to (dom(A); k � k

2;q

). This implies for u 2 dom(A)

kuk

2;q

= k(A+ 1)

�1

(A+ 1)uk

2;q

� Ck(A+ 1)uk

q

� Ckuk

dom(A)

� Ckuk

2;q

: (37)

Sine A 2 H

1

(L

q;�

(R

n

+

)) we know from [Tri78℄ and [BM88℄ that

dom(A

1=2

) = [L

q;�

(R

n

+

); dom(A)℄

1=2

= [L

q

(R

n

+

); dom(�)℄

1=2

\ L

q;�

(R

n

+

)

= W

1;q

0

(R

n

+

) \ L

q;�

(R

n

+

):

In partiular, the norms k � k

dom(A

1=2

)

and k � k

1;q

are equivalent on dom(A

1=2

). By (a), the norm

k � k

dom(A

1=2

)

is also equivalent to k(A+ 1)

1=2

� k

q

. This yields

kuk

1;q

� Ck(A+ 1)

1=2

uk

q

� Ckuk

1;q

(38)

for all u 2 dom(A

1=2

). Consider the Stokes equations on the half-spae:

8

<

:

u��u+rp = f on R

n

+

;

r � u = 0 on R

n

+

;

u = 0:

(39)

For f 2 L

q;�

(R

n

+

) this equation has the unique solution u = (A+ 1)

�1

f 2 dom(A) whih satis�es

kuk

2;q

� Ckfk

q

; (40)

(see e.g. [FS94℄ or [Sol77℄). Moreover, for k 2 N [ f0g and g 2 W

k;q

(R

n

+

) we get from [Gal98℄ Theo-

rem IV.3.2, that for any solution v of the stationary equation

(SSE)

R

n

+

g;0

8

<

:

��v +rp = g on R

n

+

;

r � v = 0 on R

n

+

;

v = 0;

whih satis�es r

2

v 2 L

q

(R

n

+

) we have

kr

k+2

vk

q

� Ckgk

k;q

: (41)

Next, let f 2 W

1;q

(R

n

+

) \ L

q;�

(R

n

+

), u be the solution of (39) and put g = f � u 2 W

1;q

(R

n

+

). Trivially,

u is a solution of (SSE)

R

n

+

g;0

with r

2

u 2 L

q

(R

n

+

). Hene by (40) and (41) we get that r

3

u 2 L

q

(R

n

+

) with

kr

3

uk

q

� Ckgk

1;q

� C(kfk

1;q

+ kuk

1;q

) � Ckfk

1;q

:
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By indution over k we obtain that for every k 2 N and eah f 2 W

k;q

(R

n

+

)\L

q;�

(R

n

+

) the solution u of

(39) satis�es

kuk

k+2;q

� Ckfk

k;q

:

Sine u = (A+1)

�1

f , this implies in view of the regularity of the Helmholtz projetion (Proposition A.3)

that

kuk

k+2;q

� Ckfk

k;q

= Ck(A+ 1)uk

k;q

� Ckuk

k+2;q

(42)

for all u 2 dom(A) \W

k;q

(R

n

+

). We will prove (36) by indution: The inequalities (38) and (37) yield

(36) for k = 1 and k = 2 respetively. Suppose now u 2 dom(A

(k+2)=2

) and that (36) holds true for all

j � k + 1 2 N. This implies (A+ 1)u 2 dom(A

k=2

) �W

k;q

(R

n

+

) and with (42) we obtain

kuk

k+2;q

� Ck(A+ 1)uk

k;q

� Ck(A+ 1)

k=2

(A+ 1)uk

q

= Ck(A+ 1)

(k+2)=2

uk

q

:

Conversely, the alulation

k(A+ 1)

(k+2)=2

uk

q

= k(A+ 1)

k=2

(A+ 1)uk

q

� Ck(A+ 1)uk

k;q

� Ckuk

k+2;q

shows that (36) is valid for all k 2 N.

Now let w 2 dom(A

k=2

) and � > 0. As in the proof of Proposition 3.9 we set u = J

�1

�

w = w(

1

�

�) 2

dom(A

k=2

). By equality (19) we get

k(A+ �

2

)

k=2

wk

q

= �

k�n=q

k(A+ 1)

k=2

uk

q

:

Moreover, by (17) we have

�

k�n=q

kuk

k;q

= �

k�n=q

kJ

�1

�

wk

k;q

=

k

X

j=0

�

k�j

kr

j

wk

q

:

The above two inequalities imply together with (36) that

k

X

j=0

�

k�j

kr

j

wk

q

� Ck(A+ �

2

)

k=2

wk

q

� C

k

X

j=0

�

k�j

kr

j

wk

q

for all w 2 dom(A

k=2

) and all � > 0 (note that J

�

is an automorphism of this spae). Passing to the

limit �! 0 yields the assertion. �
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