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Abstra
t

It is proved that the Stokes operator on a bounded domain, an exterior domain, or a perturbed

half-spa
e 
 admits a bounded H

1

-
al
ulus on L

q

(
) if q 2 (1;1).

1 Introdu
tion

Let A




be the Stokes operator in the Bana
h spa
e L

q;�

(
) of all q-integrable solenoidal ve
tor �elds

on a domain 
 � R

n

. In this arti
le we show that A




admits a bounded H

1

-
al
ulus for a fairly large


lass of domains 
 and for all q 2 (1;1). For an arbitrary Bana
h spa
e X , the 
lass H

1

(X) of all

operators admitting a bounded H

1

-
al
ulus has been studied by many authors [M
I86℄, [CDMY96℄,

[Fr�o98℄, [DHP01a℄. Sin
e it is 
ontained in BIP(X), the 
lass of all operators having bounded imaginary

powers, it enjoys all properties of this larger 
lass. For further information in this dire
tion see [PS93℄,

[MP97℄ and [DV87℄. For instan
e, the domain of fra
tional powers 
an be determined in terms of a


omplex interpolation spa
e. Another reason is the maximal L

q

-regularity of the asso
iated evolution

equation u

t

+Au(t) = f(t). However, there are also useful properties whi
h do not hold true for operators

in BIP(X) but whi
h are valid for operators belonging to H

1

(X). Among those let us mention that

BIP(X) is not stable under small perturbations. In fa
t, there seem to be only restri
tive perturbation

results known, [PS93℄. However, there is a perturbation result for the 
lass H

1

(X), whose assumptions


an be veri�ed in the parti
ular 
ase of the Stokes operator.

In 1981 Giga [Gig81℄ investigated the analyti
ity of the Stokes semigroup. In a subsequent paper [Gig85℄

he 
onsidered domains of fra
tional powers of the Stokes operator and proved that the Stokes operator

on a bounded C

1

-domain has bounded imaginary powers. Consequently, it has maximal L

q

-regularity.

In [GS91℄, it has been shown, that one 
an also obtain global in time L

q

� L

s

estimates. The paper

in hand extends the results of [Gig85℄ and several ways. By 
he
king the details in Giga's proof one

realizes that it is possible to generalize that result to the H

1

-
ase. This leads to a proof for the bounded

H

1

-
al
ulus for su
h domains. Our approa
h, however, is more dire
t and fairly self-
ontained, whereas

Giga's proof makes heavy use of pseudodi�erential operators and Seeley's theory on the des
ripton of

fra
tional powers of an ellipti
 system [See71℄. Moreover, our result in
ludes unbounded domains whi
h

might be of independent interest as well as domains with merely C

3

boundary. More pre
isely, exterior

domains and perturbed half-spa
es 
an be handled.

One 
an also treat the problem of extending the property of having bounded imaginary powers to the

allegedly stronger property of admitting a bounded H

1

-
al
ulus by purely fun
tional analyti
 methods.

This has re
ently be 
arried out by Kalton and Weis [KW℄.

It is known that the 
lass of all operators admitting a bounded H

1

-
al
ulus 
oin
ides with the (a priori

smaller) 
lass of all operators admitting an R-bounded H

1

-
al
ulus if the underlying Bana
h spa
e has

property (�), see [KW01℄ and [CdPSW00℄. Sin
e the spa
e L

q;�

(
) is known to enjoy this property for

any domain 
 and any q 2 [1;1℄, we 
an immediately 
on
lude that A




even admits an R-bounded H

1

-


al
ulus for the domains treated in Se
tion 3. This is relevant for perturbations of the Stokes operator for

the following reason: The 
lassi
al theorem of Dore and Venni [DV87℄ yields 
losedness of the operator

sum A+B if X is a UMD spa
e, both A and B belong to BIP(X), the resolvents of A and B 
ommute

and the sum of the power angles is less than �. Re
ently, Kalton and Weis [KW℄ proved an \assymetri
"

version of this theorem, where A is merely assumed to be se
torial, but B admits an R-bounded H

1

-


al
ulus.

Our strategy of proving that the Stokes operator A




admits a bounded H

1

-
al
ulus in L

q;�

(
) is to



apply the perturbation result for the bounded H

1

-
al
ulus to the Stokes operator on the bent half-spa
e.

Then we lo
alize the original problem on 
: Cover 
 by �nitely many balls and treat ea
h ball separately.

Those balls whi
h are entirely 
ontained in 
 turn out to be easy to handle by transforming the problem

to R

n

. On the other hand, if a ball meets the boundary of 
, it is possible to redu
e the problem to

the bent half-spa
e 
ase. It is therefore enough to know that the Stokes operator on the bent half-spa
e

admits a bounded H

1

-
al
ulus. Sin
e it is already known [DHP01b℄ that the Stokes operator on the

half-spa
e R

n

+

admits a bounded H

1

-
al
ulus it is quite natural to introdu
e an invertible transformation

whi
h maps the bent half-spa
e onto R

n

+

. This 
hange of 
oordinates leads to a transformation A

T

of

the 
orresponding Stokes operator. By 
hoosing the radii of the aforementioned balls small enough, the

bending fun
tion is as 
lose to zero as we please. This implies that also A

T

is 
lose to A

R

n

+

in the sense

of a re
ent perturbation result for H

1

-
al
ulus due to Pr�uss. Therefore A

T

must also have a bounded

H

1

-
al
ulus whi
h yields the result.

The arti
le is organized as follows. In Se
tion 2 we �x notation and re
all some auxillary tools on Stokes

operators, interpolation theory and H

1

-
al
ulus that will be needed in subsequent se
tions. Se
tion 3


ontains our main results. We start in Se
tion 3.1 by explaining the transition from the Stokes operator

on the bent half-spa
e to the operator A

T

mentioned above. The subsequent se
tions 
ontain the proof

of the bounded H

1

-
al
ulus for the Stokes operator on the bent half-spa
e, the bounded domain and

the perturbed half-spa
e respe
tively. Finally, we provide two appendi
es on regularity properties of the

Helmholtz proje
tion and on the domain of fra
tional powers of the Stokes operator. These appendi
es


ontain auxillary material whi
h seems not to be 
ontained in the standard literature.

A
knowlegments: The authors would like to thank Jan Pr�uss and Matthias Hieber for stimulating

dis
ussions whi
h helped to improve this arti
le.

2 Preliminaries

2.1 Notation

Throughout the arti
le we assume that n � 3. Let 
 � R

n

be an open set, and let m 2 N. By C

m

(
)

we denote the spa
e of all m-times 
ontinuously di�erentiable fun
tions and by C

m




(
) its subspa
e


onsisting of all fun
tions in C

m

(
) whi
h are 
ompa
tly supported. Further, let C

1




(
) := fu �




: u 2

C

1




(R

n

)g, and denote by C

m

b

(
) the Bana
h spa
e of all m-times 
ontinuously di�erentiable fun
tions

whose derivatives up to order m are bounded. For q 2 [1;1℄, L

q

(
) denotes the usual Lebesgue spa
e

of all q-integrable fun
tions and for s 2 R, W

s;q

(
) is the Sobolev spa
e of order s. If s = m 2 N and

q 2 (1;1), the norm in W

s;q

(
) is given by kuk

m;q

:=

�

P

m

j=0

R




jr

j

uj

q

dx

�

1=q

, where r

j

is the ve
tor

of all possible j-th order di�erentials. Moreover, W

s;q

0

(
) denotes the 
losure of C

1




(
) in W

s;q

(
).

We shall further need the homogenous Sobolev spa
e

^

W

1;q

(
) 
onsisting of all fun
tions u having �nite

Diri
hlet energy

R




jruj

q

dx, modulo 
onstants. It be
omes a Bana
h spa
e when equipped with the norm

kuk

^

W

1;q

(
)

:=

�

Z




jruj

q

dx

�

1=q

:

Its dual spa
e (

^

W

1;q

(
))

0

will o

ur frequently and is denoted by

^

W

�1;q

0

(
), where q

0

is the H�older


onjugated exponent given by 1=q + 1=q

0

= 1 and k � k

�1;q

always denotes the norm in this spa
e. For

further properties of these spa
es, in parti
ular for the proof of the density of C

1




(
) in

^

W

1;q

(
), we

refer to [FS94℄. If �
 is smooth enough, the tra
e operator de�ned by 
(u) := u �

�


maps W

s;q

(
)


ontinuously into W

s�1=q;q

(�
). Its kernel is exa
tly the spa
e W

s;q

(
) \W

1;q

0

(
). See [Ada78℄, p. 215.

For u 2 L

q

(
) and v 2 L

q

0

(
) we use the standard notation (u; v)




:=

R




uvdx.

Let us remark that we will use the same notations for the 
orresponding spa
es of ve
tor �elds on 
. For

a domain 
 � R

n

denote by L

q;�

(
) the spa
e of all q-integrable solenoidal ve
tor �elds on 
. For the


lass of domains treated in this arti
le (see Se
tion 2.2 for the pre
ise de�nition) is well-known that there

is a 
ompatible family (P


;q

)

q2(1;1)

of 
ontinuous proje
tions from L

q

(
) onto L

q;�

(
) su
h that P


;2

is

orthogonal. For the proofs, see [FM77℄, [M
C81℄, [Miy82℄, [BM88℄, [ST98℄. The operator P


;q

is 
alled

the Helmholtz proje
tion. Sin
e we restri
t ourselves to those values of q and q remains �xed throughout

the arti
le, we shall write P




for short. Clearly, the range G

q

(
) := (1 � P




)(L

q

(
)) is also a 
losed

2



subspa
e of L

q

(
).

If X and Y are Bana
h spa
es, the spa
e of all bounded linear operators from X to Y is denoted by

L(X;Y ), and L(X) is an abbreviation for L(X;X). For any 
losed operator A in X , its domain and range

are denoted by dom(A) and ran(A) respe
tively. Its resolvent set is denoted by �(A) and its spe
trum

by �(A).

Finally, �




denotes the Diri
hlet Lapla
ian in L

q

(
), de�ned on W

1;q

0

(
)\W

2;q

(
), and A




= �P




�




is the Stokes operator in L

q;�

(
), de�ned on W

1;q

0

(
) \W

2;q

(
) \ L

q;�

(
). For details on the Stokes

operator and on the Navier-Stokes equation we refer to the textbooks [Gal98℄ and [Soh01℄.

2.2 A priori estimates for the generalized Stokes resolvent problem

We will frequently make use of an inequality for the solution (u; p) of the generalized Stokes resolvent

problem

(SRP )




f;g

8

<

:

�u��u+rp = f on 
;

r � u = g on 
;


u = 0;

where 
 is a C

3

-domain whi
h is either bounded, exterior, R

n

, a bent half-spa
e or a perturbed half-spa
e.

In [FS94℄, Farwig and Sohr proved the following theorem.

Theorem 2.1 Let 1 < q < 1, 0 < � < �, n � 2, Æ > 0. Let f 2 L

q

(
), g 2 W

1;q

(
) \

^

W

�1;q

(
)

if 
 is unbounded or g 2 W

1;q

(
) with

R




gdx = 0 if 
 is bounded. Then there is a unique solution

(u; p) 2 dom(�




)�

^

W

1;q

(
) of (SRP )




f;g

and some 
onstant C = C(
; q; �; Æ) > 0 su
h that

k�uk

q

+ kr

2

uk

q

+ krpk

q

� C(kfk

q

+ krgk

q

+ k�gk

�1;q

)

and

k�uk

q

+ k ��u+rpk

q

� C(kfk

q

+ k�gk

�1;q

)

for all � 2 �

���

:= fz 2 C n f0g : j arg zj < � � �g with j�j � Æ. Moreover, if 
 = R

n

or 
 = R

n

+

or 
 is

bounded, then C is independent of Æ.

2.3 An interpolation property for the domain of the Diri
hlet Lapla
ian

We will frequently make use of the following interpolation property for the Diri
hlet Lapla
ian in L

q

(
):

If 1 < q <1, 0 < � < 1=2q and 
 is as in Se
tion 2.2, then

[L

q

(
); dom(�




)℄

�

=W

2�;q

(
); (1)

where [�; �℄

�

denotes 
omplex interpolation of order �. This 
an be seen as follows: It is well-known, see

[Tri78℄, that [L

q

(
);W

s;q

0

(
)℄

�

= W

�s;q

0

(
) and [L

q

(
);W

s;q

(
)℄

�

= W

�s;q

(
) for all � 2 [0; 1℄ and all

s > 0. The obvious in
lusion W

2;q

0

(
) � dom(�




) �W

2;q

(
) therefore implies

W

1;q

0

(
) = [L

q

(
);W

2;q

0

(
)℄

1=2

� [L

q

(
); dom(�




)℄

1=2

� [L

q

(
);W

2;q

(
)℄

1=2

=W

1;q

(
):

In parti
ular, the norm in [L

q

(
); dom(�




)℄

1=2

is equivalent to k � k

1;q

. By [Tri78℄, Theorem 1.9.3/1 (
),

dom(�




) is dense in [L

q

(
); dom(�




)℄

1=2

. Therefore we also have

[L

q

(
); dom(�




)℄

1=2

= dom(�




)

k�k

[L

q

(
);dom(�




)℄

1=2

= dom(�




)

k�k

1;q

�W

1;q

0

(
)

k�k

1;q

= W

1;q

0

(
);

i.e., we have [L

q

(
); dom(�




)℄

1=2

=W

1;q

0

(
). The reiteration property, [Tri78℄ Remark 1.9.3/1, gives us

[L

q

(
); dom(�




)℄

�

= [L

q

(
); [L

q

(
); dom(�




)℄

1=2

℄

2�

= [L

q

(
);W

1;q

0

(
)℄

2�

=W

2�;q

0

(
);

but W

2�;q

(
) =W

2�;q

0

(
) by our assumption on �, see again [Tri78℄, Theorem 4.3.2/1 (a).

3



2.4 Operators with bounded H

1

-
al
ulus

Re
all that a 
losed operator A on a 
omplex Bana
h spa
eX is 
alled se
torial, if it satis�es the following

two 
onditions:

(i) A is densely de�ned, inje
tive and has dense range,

(ii) (�1; 0) � �(A) and there is some M � 0 su
h that k�(�+A)

�1

k �M for all � > 0.

In this 
ase there is some � 2 [0; �) su
h that the se
tor

�

���

:= fz 2 C n f0g : j arg zj < � � �g:

is 
ontained in �(�A), and supfj�(�+A)

�1

j : � 2 �

���

g <1. The smallest su
h � is 
alled the spe
tral

angle of A and is denoted by �

A

. Oberserve that �(A) n f0g � �

�

A

. Moreover, if A is se
torial, and

�

A

�

�

2

, it generates a bounded and holomorphi
 C

0

-semigroup on X . For instan
e, the Stokes operator

in L

q;�

(
) generates a bounded and holomorphi
 semigroup for all domains treated in this arti
le.

A spe
ial 
lass of se
torial operators on whi
h we will fo
us throughout the arti
le is the set of operators

whi
h admit a bounded H

1

-
al
ulus. Before we 
an introdu
e these operators we need to de�ne for

� 2 (0; �) the spa
e

H

1

(�

�

) := fh : �

�

! C : h is holomorphi
 and boundedg

as well as its subspa
e H

1

0

(�

�

) given by

H

1

0

(�

�

) := fh 2 H

1

(�

�

) : jh(z)j � C

jzj

s

1 + jzj

2s

for some C � 0; s > 0g: (2)

Let A be a se
torial operator on X with spe
tral angle �

A

, and let � 2 (�

A

; �) and � 2 (�

A

; �). The path

� : R ! C ; �(t) :=

�

�te

i�

; t < 0;

te

�i�

; t � 0;

(3)

stays in the resolvent set of A with the only possible ex
eption at t = 0. In view of Cau
hy's integral

formula, for h 2 H

1

0

(�

�

), we may de�ne h(A) by the Bo
hner integral

h(A) :=

1

2�i

Z

�

h(�)(� �A)

�1

d�; (4)

whi
h exists a

ording to (2). A is said to admit a bounded H

1

-
al
ulus, if there is some C � 0 with

kh(A)xk � Ckhk

1

kxk (5)

for all h 2 H

1

0

(�

�

) and all x 2 X . The smallest possible � for whi
h inequality (5) holds is 
alled the

H

1

-angle of A and is denoted by �

1

A

. Clearly, we always have �

1

A

� �

A

. We denote by H

1

(X) the


lass of all se
torial operators that admit a bounded H

1

-
al
ulus. If A 2 H

1

(X), we may de�ne h(A)

for arbitrary h 2 H

1

(�

�

) by the following method. Put g(z) = z(1 + z)

�2

and let

h(A) =

1

2�i

�

Z

�

h(�)

�

(1 + �)

2

(��A)

�1

d�

�

(1 +A)

2

A

�1

= (hg)(A)g(A)

�1

;

initially de�ned on the dense subspa
e dom(A)\ ran(A) of X . It is known that inequality (5) is still valid

for those h. Consequently, h(A) extends to a unique element in L(X), again denoted by h(A). Moreover,

it is easy to see that this de�nition of h(A) is 
ompatible with the de�nition (4) in the 
ase h 2 H

1

0

(�

�

).

The following 
lasses of operators are known to admit a bounded H

1

-
al
ulus: Bounded operators,

normal se
torial operators in Hilbert spa
es (in parti
ular self-adjoint operators) and negative generators

of positive 
ontra
tion semigroups in L

p

-spa
es. For details see the survey arti
le [DHP01a℄. In [DHP01b℄,

it has been proved that also the Stokes operator in L

q;�

(R

n

+

) admits a bounded H

1

-
al
ulus if 1 < q <1.

4



Remark 2.2 For Bana
h spa
es X;Y , a densely de�ned linear operator A : dom(A)! X and a 
ontin-

uous isomorhism J : X ! Y the following easy statements are well-known. For details see e.g. [DHP01a℄,

Proposition 2.11.

(i) A generates a bounded holomorphi
 C

0

-semigroup on X , if and only if JAJ

�1

generates a bounded

holomorphi
 C

0

-semigroup on Y .

(ii) A 2 H

1

(X) if and only if JAJ

�1

2 H

1

(Y ). In that 
ase we also have �

1

A

= �

1

JAJ

�1

.

(iii) A 2 H

1

(X) if and only if A

�1

2 H

1

(Y ). If this is true, then �

1

A

= �

1

A

�1

.

3 The main result

This se
tion 
ontains our main result whi
h reads as follows.

Theorem 3.1 Let n � 3 and let 
 � R

n

be a C

3

-domain whi
h is either bounded, exterior, or a perturbed

half-spa
e. Then the Stokes operator A




admits a bounded H

1

-
al
ulus in L

q;�

(
) if 1 < q <1.

As already mentioned in the introdu
tion, we get the following slightly stronger assertion for free, be
ause

for 1 < q <1, L

q;�

(
) is a Bana
h spa
e with property (�). For details on R-boundedness and Bana
h

spa
es with property (�) we refer to [CdPSW00℄ and to [DJT95℄.

Theorem 3.2 Under the assumptions of Theorem 3.1, A




admits an R-bounded H

1

-
al
ulus in L

q;�

(
)

if 1 < q <1.

We shall prove Theorem 3.1 in several steps. First of all, we may assume that q < 2, the general


ase follows by taking adjoints. The Stokes operator A

H

!

on the bent half-spa
e H

!

asso
iated with ! is

introdu
ed in Se
tion 3.1. It is shown that A

H

!

is similar to some perturbation A

T

of the Stokes operator

A

R

n

+

on the half-spa
e R

n

+

. In view of Remark 2.2 (ii) A

H

!

admits a bounded H

1

-
al
ulus if this is true

for A

T

, whi
h is proved in Se
tion 3.2. In Se
tions 3.3 and 3.4 the general 
ase is proved by redu
ing the

problem to the 
ases already treated before.

3.1 The Stokes operator on bent half-spa
es

Given a three times 
ontinuously di�erentiable and 
ompa
tly supported fun
tion ! : R

n�1

! [0;1), let

H

!

:= fx = (x

0

; x

n

) 2 R

n

: x

n

> !(x

0

)g

Hω

R
ω (x) n−1

Figure 1: The bent half-spa
e determined by !

be the bent half-spa
e determined by !, see Fig-

ure 1. The transformation � : R

n

! R

n

de�ned

by �(x

0

; x

n

) := (x

0

; x

n

�!(x

0

)) maps H

!

onto the

half-spa
e R

n

+

= f(x

0

; x

n

) 2 R

n

: x

n

> 0g and

satis�es det�

0

(x) = 1 for all x 2 R

n

. Therefore

we may de�ne �(u) := u Æ �

�1

for any fun
tion

de�ned on H

!

. Clearly, � is a 
ontinuous isomor-

phism from W

s;q

(H

!

) to W

s;q

(R

n

+

) and also from W

s;q

0

(H

!

) to W

s;q

0

(R

n

+

) for s 2 [0; 3℄. In what follows,

we shall omit the subs
ript 
 if 
 = R

n

+

, i.e. we set P = P

R

n

+

, � = �

R

n

+

and A = A

R

n

+

.

Let � 2 C . It is easy to see that a pair (u; p) is a solution of the Stokes resolvent problem

(� ��

H

!

)u+rp = f; r � u = 0

on L

q

(H

!

) if and only if (~u; ~p) := (u Æ �

�1

; p Æ �

�1

) solves the equations

(�� (� +R

1

))~u+ (r+R

2

)~p = f Æ �

�1

; (r+R

2

) � ~u = 0 (6)

on L

q

(R

n

+

), where R

1

; R

2

are given by

R

1

= jr

0

!j

2

�

2

n

� 2(r

0

!; 0) � (r�

n

)� (�

0

!)�

n

; R

2

= ��

n

(r

0

!; 0): (7)
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Sin
e

�(L

q

(H

!

)) = �(L

q;�

(H

!

))� �(G

q

(H

!

))

it is natural to introdu
e the spa
es

C

1


;�;R

(R

n

+

) := fu 2 C

1




(R

n

+

) : (r+R

2

) � u = 0g

L

R

q;�

(R

n

+

) := �(L

q;�

(H

!

)) = C

1


;�;R

(R

n

+

)

k�k

q

as well as the proje
tion P

R

u = �P

H

!

�

�1

whi
h maps L

q

(R

n

+

) 
ontinuously onto L

R

q;�

(R

n

+

). In terms of

this modi�ed Helmholtz proje
tion equation (6) may be rephrased as the operator equation (�+A

R

)~u =

f Æ �

�1

, where A

R

= �P

R

(� +R

1

), de�ned on W

2;q

(R

n

+

) \W

1;q

0

(R

n

+

) \ L

R

q;�

(R

n

+

).

One problem in 
omparing A

R

and A

R

n

+

is that these operators a
t in the di�erent Bana
h spa
es

L

R

q;�

(R

n

+

) and L

q;�

(R

n

+

). To over
ome this problem we introdu
e the bounded linear operator T in

L

q

(R

n

+

) by Tu(x) = (�

�1

)

0

(x)u(x) = (I � S)u(x) with

Su = (0; : : : ; 0; (r

0

!; 0) � u)

and I being the identity in L

q

(R

n

+

). Note that T is invertible with T

�1

= I + S. Moreover, it is easy to


he
k that T maps L

R

q;�

(R

n

+

) 
ontinously onto L

q;�

(R

n

+

) as well as dom(A

R

) 
ontinuously onto dom(A).

3.2 H

1

-
al
ulus for the Stokes operator on bent half-spa
es

In this se
tion we use the notation of the previous se
tion. Our aim is to prove the following:

Theorem 3.3 Let 1 < q < 1 and let ! : R

n�1

! [0;1) be three times di�erentiable and 
ompa
tly

supported. The Stokes operator A

H

!

admits a bounded H

1

-
al
ulus on L

q;�

(H

!

) if k!k

C

1
is suÆ
iently

small.

This result will proved in several steps. We shall use the fa
t that the Stokes operator A

R

n

+

admits a

bounded H

1

-
al
ulus whi
h has been proved by Des
h, Hieber and Pr�uss, [DHP01b℄, by utilizing the

symmetry of R

n

+

to obtain an expli
it expression for the resolvent of A

R

n

+

. We shall apply a re
ent

perturbation result due to Pr�uss [DDH

+

02℄ to show that A

R

n

+

may be perturbed by a purely se
ond order

di�erential operator without destroying this property, provided the perturbation is relativly bounded with

small enough bound. The main ingredients for the treatment of the lower order terms are the inequalities

for the generalized Stokes resovent problem that have been stated in Theorem 2.1. We start by re
alling

the perturbation theorem.

Theorem 3.4 (Pr�uss): Let X be a UMD spa
e and let A be a linear operator in X whi
h admits a

bounded H

1

-
al
ulus. Let B be a 
losed linear operator in X satisfying the following 
onditions.

(i) dom(A) � dom(B) and kBxk � �kAxk for all x 2 dom(A) and some 
onstant � < 1,

(ii) there is some � 2 (0; 1) su
h that B(dom(A

1+�

)) � dom(A

�

),

(iii) There is a 
onstant C su
h that kA

�

Bxk � CkA

1+�

xk for all x 2 dom(A

1+�

).

Then A+B admits a bounded H

1

-
al
ulus provided that � is small enough.

Re
all that a Bana
h spa
e X is a UMD spa
e, if and only if the Hilbert transform a
ts boundedly in

L

q

(R; X) for all 2 (1;1) and note that every L

q

(
) spa
e with q 2 (1;1) and 
 being an open subset

of R

n

has this property. In order to apply Theorem 3.4 with A being the Stokes operator in R

n

+

we

de�ne A

T

:= TA

R

T

�1

on dom(A) as well as B := A

T

� A. From Remark 2.2 (ii) we get that A

H

!

admits a bounded H

1

-
al
ulus if and only if this is true for A

T

. However, we 
an not apply Theorem 3.4

dire
tly to A and B be
ause the inequality kBuk � �kAuk does not hold sin
e Bu 
ontains lower order

derivatives. Therefore we de
ompose B as B = B

1

+ B

2

where B

2

is purely of se
ond order. First note

that on dom(B)

B = TA

R

T

�1

�A

= �TP

R

(� +R

1

)(I + S) + T (I + S)P�

= �TP

R

R

1

T

�1

� T (P

R

� P )� + TSP�� TP

R

�S:

6



With e

n

= (0; : : : ; 0; 1) 2 R

n

we get for u 2W

2;q

(R

n

+

)

�Su = e

n

�(r

0

! � u

0

)

= e

n

0

�

r

0

�

0

! � u

0

+ 2

n�1

X

j=1

n�1

X

k=1

(�

j

�

k

!)�

k

u

j

+r

0

! ��u

0

1

A

(8)

and

R

1

T

�1

u = R

1

u+R

1

Su

= jr

0

!j

2

�

2

n

u��

0

!�

n

u� 2(r

0

!; 0) � �

n

ru

+e

n

�

jr

0

!j

2

�

2

n

r

0

! � u

0

��

0

!�

n

r

0

! � u

0

� 2(r

0

!; 0) � �

n

rr

0

! � u

0

�

= jr

0

!j

2

�

2

n

u��

0

!�

n

u� 2(r

0

!; 0) � �

n

ru

+e

n

0

�

jr

0

!j

2

�

2

n

r

0

! � u

0

��

0

!�

n

r

0

! � u

0

� 2(r

0

!; 0) �

n�1

X

j=1

(r

0

�

j

!)�

n

u

j

�2

n�1

X

j=1

n�1

X

k=1

(�

j

!)(�

k

!)�

k

�

n

u

j

1

A

: (9)

This yields

B = B

1

+B

2

where

B

2

u := �T (P

R

� P )� + TSP�� TP

R

�

jr

0

!j

2

�

2

n

u+ 2(r

0

!; 0) � �

n

ru

�

�TP

R

e

n

0

�

r

0

! ��u

0

� jr

0

!j

2

r

0

! � �

2

n

u

0

+ 2

n�1

X

j=1

n�1

X

k=1

(�

j

!)(�

k

!)�

k

�

n

u

j

1

A

and

B

1

:= B �B

2

:

Sin
e B

2

u 
ontains only se
ond order derivatives of u we may write

B

2

= �T (P

R

� P )� + TSP�+ TP

R

X

j�j=2

a

�

D

�

(10)

with 
ertain matri
es a

�

2 C

2




(R

n�1

)

n�n

. Similarly,

B

1

= TP

R

n

X

k=1

b

k

�

k

+ TP

R




with b

k

2 C

1




(R

n�1

)

n�n

and 
 2 C




(R

n�1

)

n�n

. Due to (8) and (9) we get for k!k

C

3

b

(R

n�1

)

� 1

X

j�j=2

ka

�

k

1

� Ck!k

C

1

b

(R

n�1

)

; (11)

n

X

k=1

kb

k

k

1

� Ck!k

C

2

b

(R

n�1

)

; (12)

k
k

1

� Ck!k

C

3

b

(R

n�1

)

: (13)

In what follows, we will apply the perturbation Theorem 3.4 only to B

2

whereas B

1

will be treated

dire
tly. To estimate the �rst term in (10) we need the following lemma.

Lemma 3.5 It holds

k(P

R

� P )uk

q

� Ckr

0

!k

1

kuk

q

for all u 2 L

q

(R

n

+

).

7



Proof. As is well known, see [Gal98℄ p. 107, we have Pu = u�rp with p 2

^

W

1;q

(R

n

+

) being the unique

solution of the weak Neumann problem

(rp;r') = (u;r'); ' 2

^

W

1;q

0

(R

n

+

); (14)

where (�; �) denotes dual pairing. Similarly, P

R

u = u�(r+R

2

)p

R

, where p

R

solves the following problem:

((r+R

2

)p

R

; (r+R

2

)') = (u; (r+R

2

)'); ' 2

^

W

1;q

0

(R

n

+

) (15)

(observe that

^

W

1;q

0

(R

n

+

) = fp 2 L

q

0

;lo


(R

n

+

) : (r + R

2

)p 2 L

q

0

;lo


(R

n

+

)g modulo 
onstants, sin
e k(r +

R

2

) � k

q

and kr � k

q

are equivalent norms on

^

W

1;q

0

(R

n

+

)). From (15) we 
on
lude

(rp

R

;r') = (u; (r+R

2

)')� ((R

2

p

R

;r') + (rp

R

; R

2

') + (R

2

p

R

; R

2

'))

= (u;r') + (u;R

2

')� ((r+R

2

)p

R

; R

2

')� (R

2

p

R

;r'): (16)

Subtra
ting (14) from (16) yields

(rp

R

�rp;r') = (u;R

2

')� ((r +R

2

)p

R

; R

2

')� (R

2

p

R

;r'):

Sin
e rp

R

;rp 2 G

q

and G

0

q

= G

q

0

we get

krp

R

�rpk

q

= sup

�2G

q

0

;k�k

q

0

=1

j(rp

R

�rp; �)j = sup

'2

^

W

1;q

0

;kr'k

q

0

=1

j(rp

R

�rp;r')j

� sup

'2

^

W

1;q

0

;kr'k

q

0

=1

(kuk

q

kR

2

'k

q

0

+ k(r+R

2

)p

R

k

q

kR

2

'k

q

0

+ kR

2

p

R

k

q

kr'k

q

0

)

� sup

'2

^

W

1;q

0

;kr'k

q

0

=1

kr

0

!k

1

(kuk

q

k�

n

'k

q

0

+ k(r+R

2

)p

R

k

q

k�

n

'k

q

0

+ k�

n

p

R

k

q

kr'k

q

0

)

� kr

0

!k

1

(kuk

q

+ k(r+R

2

)p

R

k

q

+ k�

n

p

R

k

q

) :

Sin
e

k�

n

p

R

k

q

� Ck(r+R

2

)p

R

k

q

= Ck(1� P

R

)uk

q

� Ckuk

q

we obtain the desired estimate. �

With this lemma at hand it is not diÆ
ult to verify the �rst 
ondition of Theorem 3.4.

Proposition 3.6 Condition (i) of Theorem 3.4 holds true for A being the Stokes operator in L

q;�

(R

n

+

)

and B

2

de�ned by identity (10), provided that k!k

C

1

b

(R

n�1

)

is small enough.

Proof. First note that dom(B) = dom(A) by the de�nition of B. We will treat the three di�erent terms

in (10) separately. Let u 2 dom(A). By the pre
eeding lemma and Proposition B.1 (b) with k = 2, the

�rst term 
an be estimated as follows.

kT (P

R

� P )�uk

q

� Ckr

0

!k

1

k�uk

q

� Ckr

0

!k

1

kAuk

q

:

The 
orresponding inequality for the se
ond term is trivial:

kTSP�uk

q

� Ckr

0

!k

1

kAuk

q

:

In view of inequality (11) and Proposition B.1, the third expression in (10) has the following upper bound:

kTP

R

X

j�j=2

a

�

D

�

uk

q

� C

X

j�j=2

ka

�

k

1

kD

�

uk

q

� Ck!k

C

1

b

(R

n�1

)

kAuk

q

:

These inequalities together immediately prove the assertion. �

In order to verify the se
ond and the third hypothesis of the perturbation theorem we need the following

lemma whi
h follows easily from Sobolev's inequality. Re
all that Sobolev's inequality states that for

n 2 N and q 2 (1; n)

kuk

L

q

�(R

n

)

� Ckruk

L

q

(R

n

)

; u 2W

1;q

(R

n

);

where q

�

is the Sobolev-
onjugated exponent given by 1=q

�

= 1=q � 1=n.

8



Lemma 3.7 Let n � 3, q 2 (1; n� 1). For any a 2 C

1

b

(R

n�1

) with 
ompa
t support there is a 
onstant

C > 0 su
h that

kr(au)k

L

q

(R

n

+

)

� Ckruk

L

q

(R

n

+

)

for all u 2W

1;q

(R

n

+

). On the LHS, a has to be regarded as a fun
tion of n variables in the obvious way.

Proof. Sin
e r(au) = aru + ura it is enough to prove that ku�

j

ak

L

q

(R

n

+

)

� Ckruk

L

q

(R

n

+

)

. With

K := supp(a) we get

ku�

j

ak

q

L

q

(R

n

+

)

=

Z

1

0

ku(�; x

n

)�

j

a(�)k

q

L

q

(R

n�1

)

dx

n

=

Z

1

0

ku(�; x

n

)�

j

a(�)k

q

L

q

(K)

dx

n

� C

Z

1

0

ku(�; x

n

)k

q

L

q

(K)

dx

n

:

Denoting by q

�

the Sobolev-
onjugated exponent, the 
al
ulation 
ontinues and Sobolev's inequality

yields

ku�

j

ak

q

L

q

(R

n

+

)

� C

Z

1

0

ku(�; x

n

)k

q

L

q

� (K)

dx

n

� C

Z

1

0

ku(�; x

n

)k

q

L

q

� (R

n�1

)

dx

n

� C

Z

1

0

kru(�; x

n

)k

q

L

q

(R

n�1

)

dx

n

= Ckruk

q

L

q

(R

n

+

)

:

�

For �xed � > 0 and any fun
tion u de�ned on R

n

+

we set

(J

�

u)(x) := u(�x):

Observe that J

�

is an isomorphism in ea
h of the spa
es W

s;q

(R

n

+

), s > 0, q � 1 with J

�1

�

= J

1=�

.

Moreover, it is also an isomorphism in L

q;�

(R

n

+

) and in dom(A

�

) with � > 0 be
ause J

�


ommutes

with the Helmholtz proje
tion P . For any bounded operator K in L

q

(R

n

+

), de�ne K

�

2 L(L

q

(R

n

+

)) by

K

�

:= J

�1

�

KJ

�

. Be
ause of

r

k

J

�

= �

k

J

�

r

k

; k 2 N;

we have for u 2 W

k;q

(R

n

+

)

kJ

�

uk

k;q

= �

�n=q

k

X

j=0

�

j

kr

j

uk

q

: (17)

This gives us for k = 0 the inequality

kK

�

uk

q

= kJ

�1

�

KJ

�

uk

q

= �

n=q

kKJ

�

uk

q

� �

n=q

kKk

L(L

q

(R

n

+

))

kJ

�

uk

q

= kKk

L(L

q

(R

n

+

))

kuk

q

:

By symmetry we also get kKuk

q

� kK

�

k

L(L

q

(R

n

+

))

kuk

q

. Hen
e we even have

kK

�

k

L(L

q

(R

n

+

))

= kKk

L(L

q

(R

n

+

))

: (18)

We shall further need an expression for the 
ommutator between J

�

and fra
tional powers of (A + �),

where � 2 �(�A). Commuting J

�

with the Stokes operator yields

(A+ �)J

�

= (�P�+ �)J

�

= (��

2

PJ

�

�+ �) = J

�

(�

2

A+ �);

whi
h implies

(A+ �)

�1

J

�

= J

�

(�

2

A+ �)

�1

:

By indu
tion we dedu
e

(A+ �)

k

J

�

= J

�

(�

2

A+ �)

k

for all k 2 Z and � > 0. Sin
e A admits a bounded H

1

-
al
ulus, so does rA for r > 0, see [DHP01a℄.

By this fa
t we obtain the same equality for 0 < � < 1:

(A+ �)

��

J

�

=

1

2�i

Z

�

(�+ z)

��

(z �A)

�1

J

�

dz

=

1

2�i

Z

�

(�+ z)

��

J

�

(z � �

2

A)

�1

dz

= J

�

(�

2

A+ �)

��

;

9



where � is the 
ontour de�ned in (3). Writing s 2 R as s = k � � with k 2 Z and 0 < � < 1 it follows

(A+ �)

s

J

�

= (A+ �)

k

(A+ �)

��

J

�

= J

�

(�

2

A+ �)

k

(�

2

A+ �)

��

= J

�

(�

2

A+ �)

s

(19)

for arbitrary s 2 R, � > 0 and � 2 �(�A).

With the aid of Lemma 3.7 we 
an prove the following proposition whi
h establishes the key-estimate for

verifying the remaining assumptions of the perturbation Theorem 3.4.

Proposition 3.8 Let � > 0 be �xed and let 1 < q < n� 1. De�ne B

2;�

:= J

�1

�

B

2

J

�

on dom(A). Then

B

2;�

(dom(A)) � L

q;�

(R

n

+

) and

(a) kB

2;�

(A+ 1)

�1

uk

q

� C�

2

kuk

q

, u 2 L

q;�

(R

n

+

),

(b) kB

2;�

(A+ 1)

�1

uk

1;q

� C�

2

kuk

dom(A

1=2

)

, u 2 dom(A

1=2

).

The 
onstant C does not depend on �.

Proof. We �rst rewrite B

2

as

B

2

= �T (P

R

� P )� + TSP�+ TP

R

X

j�j=2

a

�

D

�

= TP

R

(��+

X

j�j=2

a

�

D

�

) + T (I + S)P�

= TP

R

(��+

X

j�j=2

a

�

D

�

)�A:

From the last line it 
an be read o� that B

2;�

(dom(A)) � L

q;�

(R

n

+

).

(a) A

ording to (18) we get for u 2 L

q;�

(R

n

+

)

kB

2;�

(A+ 1)

�1

uk

q

= kJ

�1

�

(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

� kJ

�1

�

TP

R

J

�

J

�1

�

�J

�

(A+ 1)

�1

uk

q

+kJ

�1

�

TP

R

X

j�j=2

a

�

J

�

J

�1

�

D

�

J

�

(A+ 1)

�1

uk

q

+kJ

�1

�

PJ

�

J

�1

�

�J

�

(A+ 1)

�1

uk

q

� C

0

�

2kJ

�1

�

�J

�

(A+ 1)

�1

uk

q

+

X

j�j=2

kJ

�1

�

D

�

J

�

(A+ 1)

�1

uk

q

1

A

� C�

2

0

�

k�(A+ 1)

�1

uk

q

+

X

j�j=2

kD

�

(A+ 1)

�1

uk

q

1

A

� C�

2

kuk

q

:

(b) Sin
e q 2 (1; n� 1) we may apply Lemma 3.7 to obtain for u 2W

1;q

(R

n

+

)

krTuk

q

� kruk

q

+ krSuk

q

� kruk

q

+ Ckruk

q

� Ckruk

q

:

The same argument applied to a

�

gives us

kr

X

j�j=2

a

�

D

�

uk

q

� Ckr

3

uk

q

; u 2 W

3;q

(R

n

+

):

Be
ause k(r+R

2

) � k

q

and kr�k

q

are equivalent norms on W

1;q

(R

n

+

), it is easy to see that the regularity,

proved for P

H

!

in Appendix A.3, holds also true for P

R

= �P

H

!

�

�1

. This implies together with the

above two inequalities

krB

2;�

(A+ 1)

�1

uk

q

= krJ

�1

�

(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

10



= �

n=q

�

�1

kr(TP

R

(��+

X

j�j=2

a

�

D

�

)�A)J

�

(A+ 1)

�1

uk

q

� �

�1+n=q

 

krTP

R

�J

�

(A+ 1)

�1

uk

q

+krTP

R

X

j�j=2

a

�

D

�

J

�

(A+ 1)

�1

uk

q

+krP�J

�

(A+ 1)

�1

uk

q

!

� C�

�1+n=q

3kr

3

J

�

(A+ 1)

�1

uk

q

= C�

2+n=q

kJ

�

r

3

(A+ 1)

�1

uk

q

= C�

2

kr

3

(A+ 1)

�1

uk

q

:

In view of Proposition B.1, we 
an further estimate this last expression and obtain

krB

2;�

(A+ 1)

�1

uk

q

� C�

2

kA

3=2

(A+ 1)

�1

uk

q

= C�

2

kA(A+ 1)

�1

A

1=2

uk

q

� C�

2

kA

1=2

uk

q

:

This together with part (a) implies the assertion of (b). �

Proposition 3.9 Let 1 < q < n� 1 and let 0 < � <

1

2q

. Then 
onditions (ii) and (iii) of Theorem 3.4

hold true for A being the Stokes operator in L

q;�

(R

n

+

) and B = B

2

.

Proof. Sin
e A admits a bounded H

1

-
al
ulus it obviously has bounded imaginary powers whi
h implies

by [Tri78℄, Theorem 1.15.3 that

dom(A

�

) = [L

q;�

(R

n

+

); dom(A)℄

�

;

where [�; �℄

�

denotes 
omplex interpolation of order �. By general properties of interpolation fun
tors

(see [Tri78℄, Theorem 1.17.1.1) we have

[L

q;�

(R

n

+

); dom(A)℄

�

= [L

q;�

(R

n

+

); dom(A

1=2

)℄

2�

= [L

q

(R

n

+

); dom(�)℄

�

\ L

q;�

(R

n

+

):

The interpolation spa
e on the right hand side is known to be W

2�;q

(R

n

+

) by our assumption 0 < � <

1

2q

,

see Se
tion 2.3. Therefore we have

dom(A

�

) =W

2�;q

(R

n

+

) \ L

q;�

(R

n

+

):

By similar arguments we see that

[L

q;�

(R

n

+

);W

1;q

(R

n

+

) \ L

q;�

(R

n

+

)℄

2�

=W

2�;q

(R

n

+

) \ L

q;�

(R

n

+

) = dom(A

�

):

Proposition 3.8 implies that B

2;�

(A + 1)

�1

is a bounded operator in L

q;�

(R

n

+

) and also from

dom(A

1=2

) to W

1;q

�

(R

n

+

) := W

1;q

(R

n

+

) \ L

q;�

(R

n

+

). Again, by interpolation it is also bounded from

[L

q;�

(R

n

+

); dom(A

1=2

)℄

2�

to [L

q;�

(R

n

+

);W

1;q

�

(R

n

+

)℄

2�

, i.e.

B

2;�

(A+ 1)

�1

2 L(dom(A

�

))

with

kB

2;�

(A+ 1)

�1

k

L(dom(A

�

))

� kB

2;�

(A+ 1)

�1

k

2�

L(L

q;�

(R

n

+

))

kB

2;�

(A+ 1)

�1

k

1�2�

L(dom(A

1=2

);W

1;q

�

(R

n

+

))

� C�

2

:

By putting � = 1 we see that

B

2

(dom(A

1+�

)) = B

2;1

(dom(A

1+�

)) = B

2;1

(A+ 1)

�1

(dom(A

�

)) � dom(A

�

);

proving that 
ondition (ii) of Theorem 3.4 is satis�ed. For the proof of 
ondition (iii), we use the s
aling

method introdu
ed in [M
C81℄ and [BM88℄. For u 2 dom(A

1+�

) let v = (A+1)u. By using the fa
t that

k(A+ 1)

�

� k

q

and k � k

dom(A

�

)

are equivalent norms on dom(A

�

), see Proposition B.1, we get

k(A+ 1)

�

B

2;�

uk

q

= k(A+ 1)

�

B

2;�

(A+ 1)

�1

vk

q

� CkB

2;�

(A+ 1)

�1

vk

dom(A

�

)

� C�

2

kvk

dom(A

�

)

� C�

2

k(A+ 1)

�

vk

q

= C�

2

k(A+ 1)

1+�

uk

q

:

11



Next, for arbitrary w 2 dom(A), de�ne u 2 dom(A

�

) by u = J

�1

�

w. Then

k(A+ �

2

)

�

B

2

wk

q

= �

2�

�

�n=q

kJ

�1

�

(�

�2

A+ 1)

�

B

2

wk

q

= �

2��n=q

k(A+ 1)

�

J

�1

�

B

2

J

�

J

�1

�

wk

q

= �

2��n=q

k(A+ 1)

�

B

2;�

uk

q

� C�

�n=q+2�+2

k(A+ 1)

1+�

uk

q

= C�

�n=q+2�+2

k(A+ 1)

1+�

J

�1

�

wk

q

= C�

�n=q+2�+2

kJ

�1

�

(�

�2

A+ 1)

1+�

wk

q

= Ck�

2�+2

(�

�2

A+ 1)

1+�

wk

q

= Ck(A+ �

2

)

1+�

wk

q

:

Passing to the limit �! 0 yields

kA

�

B

2

wk

q

� CkA

1+�

wk

q

;

i.e., 
ondition (iii) of Theorem 3.4 is veri�ed. �

Proposition 3.6 und 3.9 now immediately imply the following.

Corollary 3.10 Let 1 < q < n� 1. The operator A+B

2

admits a bounded H

1

-
al
ulus on L

q;�

(R

n

+

) if

k!k

C

1

b

(R

n�1

)

is suÆ
iently small.

Proof. (of Theorem 3.3). Of 
ourse we want to apply Corollary 3.10. Therefore we �rst assume

q < n� 1. Let � 2 (�

1

A

; �), and �x � 2 (�

A

; �). By �

r;R

we denote the 
ontour

�

r;R

= fse

i�

: s 2 [r; R℄g [ fse

�i�

: s 2 [r; R℄g

for 0 � r < R � 1. Now we write

1

2�i

Z

�

h(�)(� �A�B)

�1

d� =

1

2�i

Z

�

0;1

h(�)(� �A�B)

�1

d�+

1

2�i

Z

�

1;1

h(�)(� �A�B)

�1

d�

and start by examining the latter integral on the RHS whi
h turns out be easy to handle: By the resolvent

identity we get

(��A�B)

�1

= (� �A�B

2

)

�1

+ (� �A�B

2

)

�1

B

1

(��A�B)

�1

:

It is easily seen that Gagliardo-Nirenberg's inequality (see [Fri69℄ and Appendix A.2) implies together

with Theorem 2.1 that

kr((��A

H

!

)

�1

)k

L(L

q;�

(H

!

);L

q

(H

!

))

� Cj�j

�1=2

:

Therefore

k(��A�B

2

)

�1

B

1

(��A�B)

�1

k

L(L

q;�

(H

!

);L

q

(H

!

))

� Cj�j

�3=2

for all � 2 C n�

�

A

with j�j � 1. Therefore we obtain
















1

2�i

Z

�

1;1

h(�)(� �A�B)

�1

fd�
















L

q

(R

n

+

)

� Ckhk

1

kfk

L

q

(R

n

+

)

; f 2 L

q;�

(R

n

+

); h 2 H

1

(�

�

):

This gives us
















1

2�i

Z

�

1;1

h(�)(� �A

H

!

)

�1

fd�
















L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

) sin
e we may write A

H

!

= �

�1

T

�1

(A + B)T�, where T and

� are isomorphisms.

The 
ase j�j � 1 is more involved. Here we redu
e the bent half-spa
e problem to problems on a half-spa
e

and a bounded domain through a lo
alization. Let R > 0 su
h that H

!

nB

R

(0) = R

n

+

nB

R

(0). We 
hoose

a 
ut-o� fun
tion �

0

2 C

1




(R

n

) satisfying 0 � �

0

� 1, �

0

� 1 on B

R

(0) and supp(�

0

) � B

2R

(0) and set

�

1

:= 1� �

0

. Further, we put 


1

:= R

n

+

and 
hoose a bounded domain 


0

� H

!

with B

2R

(0)\H

!

� 


0

and su
h that �


0

is C

3

. See Figure 2 for an illustration of this 
onstru
tion. For f 2 L

q;�

(H

!

), let

12



η = 1
1

η = 1
1

η
0

= 0

η
0

= 0

n−1
R

η = 1
0 1

= 0η

xω(  )

Ω

R 2R

0

Figure 2: Resolution of the unity subordinate 


0

, 


1

(u; p) 2 dom(A

H

!

) �

^

W

1;q

(H

!

) be the unique solution of the Stokes resolvent problem (SRP )

H

!

f;0

. It is

easy to see that the pair (�

j

u; �

j

p) solves the generalized Stokes resolvent problem (SRP )




j

f

j

;g

j

, where

f

j

= �

j

f � 2ru � r�

j

� u��

j

+ pr�

j

and g

j

= ur�

j

. In order to apply previous results on the Stokes

operator A




j

we have to split the solutions (u

j

; p

j

) of the above problems in the following way:

(�

j

u; �

j

p) = (v

j

; p

v

j

) + (w

j

; p

w

j

);

with (v

j

; p

v

j

); (w

j

; p

w

j

) being the unique solutions of (SRP )




j

P




j

f

j

;0

and (SRP )




j

(I�P




j

)f

j

;g

j

, respe
tively.

Sin
e (I � P




j

)f

j

2 G

q

(


j

), it 
an be written as the gradient of a fun
tion q 2

^

W

1;q

(


j

), i.e.

(I � P




j

)f

j

= rq

j

:

Hen
e, w

j


an also be regarded as the unique 
ow of the problem (SRP )




j

0;g

j

with pressure p

w

j

� q

j

. For

this reason we have to look at the two integrals on the right hand side of

Z

�

0;1

h(�)�

j

ud� =

Z

�

0;1

h(�)v

j

d�+

Z

�

0;1

h(�)w

j

d�; j = 0; 1: (20)

We begin with the 
ase j = 0. Clearly, f

0

satis�es the estimate

kf

0

k

L

q

(


0

)

� C

�

kfk

L

q

(H

!

)

+ kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

L

q

(


0

)

�

:

Sin
e u 2 W

1;q

0

(H

!

), it follows from Sobolev's inequality

kuk

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

;

and by Poin
ar�e's inequality

kpk

L

q

(


0

)

� Ckrpk

L

q

(


0

)

be
ause we may assume

R




0

p(x)dx = 0. In view of Theorem 2.1 we get the estimate

kf

0

k

L

q

(


0

)

� C

�

kfk

L

q

(H

!

)

+ kruk

L

q

(H

!

)

+ krpk

L

q

(H

!

)

�

� C

 

2 +

1

p

j�j

!

kfk

L

q

(H

!

)

;

for all � 2 C n�

�

A

with j�j � 1. Hen
e, having in mind that 0 2 �(A




0

), we know that k(��A




0

)

�1

k �

C=(1 + j�j). Therefore we obtain for the �rst integral in (20)

k

Z

�

0;1

h(�)v

0

d�k

L

q

(


0

)

= k

Z

�

0;1

h(�)(� �A




0

)

�1

P




0

f

0

d�k

L

q

(


0

)

� Ckhk

1

Z

1

0

1

jse

i�

+ 1j

kf

0

k

L

q

(


0

)

ds

� Ckhk

1

Z

1

0

1

jse

i�

+ 1j

�

1 +

1

p

s

�

dskfk

L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)
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for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). For w

0

we have a

ording to Theorem 2.1 and again Sobolev's

inequality the estimate

kw

0

k

L

q

(


0

)

� Ckg

0

k

�1;q

� Ckg

0

k

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckruk

L

q

(H

!

)

�

C

p

j�j

kfk

L

q

(H

!

)

: (21)

This implies for the se
ond integral in (20)

k

Z

�

0;1

h(�)w

0

d�k

L

q

(


0

)

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

).

In the se
ond 
ase, j = 1, we have to treat the terms of f

1

separately. For ea
h q 2 (1;1) there exists

� 2 (0; 1) and q

1

2 (1; q) satisfying

1

q

= �

�

1

q

1

�

2

n

�

+ (1� �)

1

q

1

= �

2�

n

+

1

q

1

:

Therefore we may apply Gagliardo-Nirenberg's inequality, see [Fri69℄, Theorem 9.3 for the R

n


ase and

Appendix A.2 for the half-spa
e 
ase. Using the fa
t that P is bounded in ea
h L

r

(R

n

+

), 1 < r <1, we

obtain

k(��A)

�1

P (ru � r�

1

)k

L

q

(R

n

+

)

� Ckr

2

(�� A)

�1

P (ru � r�

1

)k

�

L

q

1

(R

n

+

)

k(��A)

�1

P (ru � r�

1

)k

1��

L

q

1

(R

n

+

)

� Cj�j

��1

kru � r�

1

k

L

q

1

(R

n

+

)

:

Be
ause of suppr�

1

� 


0

we further get

kru � r�

1

k

L

q

1

(R

n

+

)

� Ckruk

L

q

1

(


0

)

� Ckruk

L

q

�(


0

)

� Ckr

2

uk

L

q

(H

!

)

: (22)

Consequently,

k(��A)

�1

P (ru � r�

1

)k

L

q

(R

n

+

)

� Cj�j

��1

kfk

L

q

(H

!

)

(23)

for all � 2 C n �

�

A

with j�j � 1. For the terms (� � A)

�1

P (u��

1

), (� � A)

�1

P (pr�

1

) one gets in a


ompletely analogous way an inequality like (23). This time, instead of (22), one has to use

ku��

1

k

L

q

1

(R

n

+

)

� Ckuk

L

q��

(H

!

)

� Ckruk

L

q

�(H

!

)

� Ckr

2

uk

L

q

(H

!

)

; (24)

whi
h we 
an get by applying Sobolev's inequality on H

!

(see Appendix A.1) and

kpk

L

q

(


0

)

� Ckrpk

L

q

(


0

)

;

respe
tively. With these preparations we obtain

k

Z

�

0;1

h(�)v

1

d�k

L

q

(R

n

+

)

= k

Z

�

0;1

h(�)(� �A)

�1

Pf

1

d�k

L

q

(R

n

+

)

� k

Z

�

0;1

h(�)(� �A)

�1

P (�

1

f)d�k

L

q

(R

n

+

)

+ k

Z

�

0;1

h(�)(� �A)

�1

P (2ru � r�

1

+ u��

1

+ pr�

1

)d�k

L

q

(R

n

+

)

� C

�

khk

1

kfk

L

q

(H

!

)

+ khk

1

Z

1

0

s

��1

dskfk

L

q

(H

!

)

�

� Ckhk

1

kfk

L

q

(H

!

)

for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). The estimate of the w

1

-term is 
ompletely analogous to the


ase j = 0.

Summarizing, we obtain

k

Z

�

0;1

h(�)(� �A

H

!

)

�1

fd�k

L

q

(R

n

+

)

= k

Z

�

0;1

h(�)ud�k

L

q

(H

!

)

�

X

j=0

k

Z

�

0;1

h(�)�

j

ud�k

L

q

(H

!

)

� Ckhk

1

kfk

L

q

(H

!

)
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for all f 2 L

q;�

(H

!

) and all h 2 H

1

(�

�

). This proves the assertion for q 2 (1; 2). The 
ase q = 2 is 
lear

be
ause A

H

!

is self-adjoint in L

2;�

(H

!

). The general 
ase follows from the 
ase q < 2 by taking adjoints.

�

3.3 H

1

-
al
ulus for the Stokes operator on bounded domains

Let 
 be a bounded C

3

-domain. It is well known that in this 
ase 0 2 �(A




), whi
h immediately implies

k

1

2�i

Z

�

0;1

h(�)(� �A




)

�1

d�k

L(L

q;�

(
))

� Ckhk

1

(25)

for all h 2 H

1

0

(�

�

) and some � 2 (0; �=2). Hen
e it suÆ
es to 
onsider the 
ase j�j � 1 to whi
h we

want to apply the following lo
alization method whi
h is des
ribed in more detail in [SS℄. For some Æ > 0

to be �xed later, 
onsider the open 
overing of �
 
onsisting of all open balls B

Æ

(x) of radius Æ, 
entered

at x 2 �
. By assumption, �
 is 
ompa
t, so we have

�
 �

N

[

j=1

B

Æ

(x

j

)

for some N = N(Æ) 2 N and 
ertain x

1

; : : : ; x

N

2 �
. Choose an open subset 


0

of 
 su
h that 


0

� 


and 
 � 


0

[

S

N

j=1

B

Æ

(x

j

). Put 


j

:= B

2Æ

(x

j

) \ 
, j = 1; : : : ; N , and let �

j

2 C

1




(R

n

), j = 1; : : : ; N ,

be su
h that �

j

� 1 on B

Æ

(x

j

) and supp(�

j

) � B

2Æ

(x

j

) as well as �

0

� 1 on 


0

and supp(�

0

) � 
. Next,

Ω

Ω

j

ω(x)

R

 −1n

Figure 3: The lo
alization method

for given f 2 L

q;�

(
), let (u; p) 2 dom(A




) �

^

W

1;q

(
) be the unique solution of the Stokes resolvent

problem (SRP )




f;0

. We get the lo
alized equations

(SRP )




j

f

j

;g

j

8

<

:

��

j

u���

j

u+r�

j

p = f

j

on 


j

;

r � �

j

u = g

j

on 


j

;


�

j

u = 0;

j = 0; : : : ; N , where f

j

= �

j

f � 2ru � r�

j

� u��

j

+ pr�

j

and g

j

= ur�

j

, whi
h shall be redu
ed either

to the bent half-spa
e 
ase (j = 1; : : : ; N) or to the R

n


ase (j = 0). To do so we have to rotate and

translate the lo
alized problems. However, it is easy to see that su
h transformations lead to an equivalent

Stokes resolvent problem. For example, if U and P solve the Stokes resolvent problem (SRP )

Q

F;G

on

some open subset Q � R

n

and x := V ~x := O~x + x

0

, where O is an orthogonal transformation, then

~

U(~x) := O

t

U(V ~x) and

~

P (~x) := P (V ~x) solve the equivalent Stokes resolvent problem (SRP )

V

�1

Q

~

F;

~

G

on

V

�1

Q where

~

F (~x) := O

t

F (V ~x) and

~

G(~x) := G(V ~x). Thus, for simpli
ity, we shall omit this kind of

transformations in the sequel.

Sin
e �
 2 C

3

we 
an, by 
hoosing Æ small enough, for ea
h j = 1; : : : ; N �nd a fun
tion !

j

2 C

3




(R

n�1

)

su
h that (with H

j

= H

!

j

)




j

� H

j

; B

2Æ

(x

j

) \ �
 � �H

j

15



and k!

j

k

C

1

� � with � as in Theorem 3.3. Thus, by extending the lo
alized fun
tions by 0 we 
an

regard every lo
alized equation as Stokes resolvent problem on H

j

, where H

0

:= R

n

. We 
annot apply

Theorem 3.3 dire
tly, be
ause div�

j

u = g

j

6= 0 in general. Therefore let L be the solution operator of

the problem

8

<

:

(1��)w +rp

w

= 0 on H;

r � w = g on H;


w = 0;

(26)

where H may be any domain in R

n

satisfying the assumptions of Theorem 2.1. A

ording to [FS94℄

Corollary 1.5 the operator

L :

^

W

�1;q

(H) \W

1;q

(H)!W

2;q

(H) \W

1;q

0

(H)

if H is unbounded or with L

q;0

(H) := fu 2 L

q

(H) :

R

H

udx = 0g

L : L

q;0

(H) \W

1;q

(H)!W

2;q

(H) \W

1;q

0

(H)

if H is bounded is 
ontinuous and satis�es in any 
ase both of the following estimates:

kLgk

q

� Ckgk

�1;q

and kLgk

2;q

� C(kgk

�1;q

+ krgk

q

) (27)

for all g 2 dom(L). Now we set w

j

:= Lg

j

and v

j

:= �

j

u� w

j

, i.e., we write �

j

u as

�

j

u = v

j

+ w

j

; j = 1; : : : ; N:

The v

j

's satisfy the equations

(���)v

j

+r(�

j

p� p

w

j

) = f

j

+ (1� �)w

j

= P

H

j

(f

j

+ (1� �)w

j

) + (I � P

H

j

)(f

j

+ (1� �)w

j

):

Now (I � P

H

j

)(f

j

+ (1� �)w

j

) is a gradient �eld, so it 
an be written in the form

(I � P

H

j

)(f

j

+ (1� �)w

j

) = rq

j

for some q

j

2

^

W

1;q

(H

j

), j = 1; : : : ; N . Thus v

j


an also be regarded as the Stokes 
ow of the unique

solution (v

j

; �

j

p� p

w

j

� q

j

) of the generalized Stokes resolvent problem (SRP )

H

j

P

H

j

(f

j

+(1��)w

j

);0

. Conse-

quently

v

j

= (A

H

j

+ �)

�1

P

H

j

(f

j

+ (1� �)w

j

)

The identity

�(A

H

j

+ �)

�1

P

H

j

w

j

= P

H

j

w

j

�A

H

j

(A

H

j

+ �)

�1

P

H

j

w

j

gives us the following formula for �

j

u

�

j

u = v

j

+ w

j

= (�+A

H

j

)

�1

P

H

j

f

j

+ (�+A

H

j

)

�1

P

H

j

w

j

+A

H

j

(�+A

H

j

)

�1

P

H

j

w

j

+ (1� P

H

j

)w

j

;

(28)

j = 1; : : : ; N . We treat these four addends separately and begin with the se
ond one. Sin
e r�

j

is


ompa
tly supported, we get by (27) and Poin
ar�e's inequality

kw

j

k

L

q

(H

j

)

= kLg

j

k

q

� Ckg

j

k

�1;q

= Cku � r�

j

k

�1;q

= sup

 2

^

W

1;q

0

(H

j

);kr k

q

0

=1

�

�

�

�

�

Z

supp(�

j

)\


ur�

j

 dx

�

�

�

�

�

� C sup

 2

^

W

1;q

0

(H

j

);kr k

q

0

=1

kuk

L

q

(
)

k k

L

q

0

(supp(�

j

)\
)

� Ckuk

L

q

(
)

� Cj�j

�1

kfk

L

q

(
)

:

This implies

k(�+A

H

j

)

�1

P

H

j

w

j

k

L

q

(H

j

)

� C

1

j�j

kP

H

j

w

j

k

L

q

(H

j

)

� C

1

j�j

kw

j

k

L

q

(H

j

)

� C

1

j�j

2

kfk

L

q

(
)

;
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for � 2 �

���

, j�j � 1. Hen
e

k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

=

1

2�

k

Z

�

1;1

h(�)((��) +A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

(29)

for all h 2 H

1

0

(�

�

), j = 1; : : : ; N .

The remaining three addends are more involved. For the �rst one of (28) we need the following prepa-

rations. For a bounded domain G � R

n

we use the following identi�
ation of the homogenous Sobolev

spa
e

^

W

1;q

(G) =W

1;q

(G) \ L

q;0

(G):

We want to remark that for an arbitrary 
 � R

n

and G � 
 for every p 2

^

W

1;q

(
) it is always possible

to 
hoose a 
onstant 
 = 
(G; p) su
h that p

G

= p+ 
 2 L

q;0

(G). The next lemma states an extra de
ay

in � of the pressure of the Stokes resolvent problem.

Lemma 3.11 Let � 2 (�=2; �), 1 < q <1, 
 � R

n

as in Theorem 2.1 and (u; p) 2 dom(A




)�

^

W

1;q

the

unique solution of the Stokes resolvent problem (SRP )




f;0

, where f 2 L

q;�

(
). Then, for ea
h � 2 (0;

1

2q

0

)

and for every bounded domain G � 
 of 
lass C

1;1

we have

kp

G

k

L

q;0

(G)

� Cj�j

��

kfk

L

q;�

(
)

; � 2 �

�

; j�j � 1

with some 
onstant C = C(G;�) > 0 independent of � and f .

Proof. It is easy to see that (L

q;0

(G))

0

= L

q

0

;0

(G). We estimate (p

G

; ')

G

:=

R

G

p

G

' for an arbitrary

' 2 L

q

0

;0

(G). A

ording to [Bog79℄, [Bog80℄ or [Gal98℄, for every ' 2 L

q

0

;0

(G) there is a solution

� 2W

1;q

0

0

(G) of the divergen
e problem

�

r � � = ' on G;

� = 0 on �G;

with

k�k

W

1;q

0

(G)

� Ck'k

L

q

0

;0

(G)

: (30)

Sin
e � 2 W

1;q

0

(G) we may regard � also as an element in W

1;q

(
). Using

rp

G

(x) = (I � P




)�u(x); x 2 
;

whi
h 
an be obtained by re
alling rp

G

= rp and applying (I � P




) to the �rst line of (SRP )




f;0

, we

may 
al
ulate

(p

G

; ')

G

= (p

G

;r � �)

G

= �(rp

G

; �)

G

= �(rp

G

; �)




= �((I � P




)�




u; �)




= (��




u; (I � P




)�)




:

Sin
e ��




has bounded imarinary powers, (see e.g. [PS93℄) we get by the interpolation property proved

in Se
tion 2.3 that

dom((��




)

�

) = [L

q

(
); dom(��




)℄

�

=W

2�;q

(
)

for q 2 (1;1) and � 2 [0;

1

2q

). Sin
e P




2 L(W

1;q

0

(
)), see [Fra00℄, we have

(I � P




)� 2W

1;q

0

(
) �W

2�;q

0

(
) = dom((��




)

�

):

Hen
e, the above 
al
ulation yields together with inequality (30)

j(p

G

; ')

G

j = j((��




)

1��

u; (��




)

�

(I � P




)�)




j

� k(��




)

1��

uk

L

q

(
)

k(��




)

�

(I � P




)�k

L

q

0

(
)

� Ck(��




)

1��

uk

L

q

(
)

k(I � P




)�k

W

1;q

0

(
)

� Ck(��




)

1��

uk

L

q

(
)

k�k

W

1;q

0

(G)

� Ck(��




)

1��

uk

L

q

(
)

k'k

L

q

0

;0

(G)

:
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To estimate the term (��




)

1��

u we write u in the form u = (� � �




)

�1

(f � rp

G

) and obtain by a

simple interpolation argument and Theorem 2.1

k(��




)

1��

uk

L

q

(
)

= k(��




)

1��

(���




)

�1

(f �rp

G

)k

L

q

(
)

� Cj�j

��

kfk

L

q

(
)

for all � 2 �

�

, j�j � 1. This gives us

j(p

G

; ')

G

j � Cj�j

��

kfk

L

q

(
)

k'k

L

q

0

;0

(G)

for all ' 2 L

q

0

;0

(G). Consequently,

kp

G

k

L

q;0

(G)

= sup

'2L

q

0

;0

(G);'6=0

j(p

G

; ')

G

j

k'k

L

q

0

;0

(G)

� Cj�j

��

kfk

L

q

(
)

;

and the lemma is proved. �

With the above lemma it is easy to verify the desired estimate for the �rst addend of (28). We have

(��A

H

j

)

�1

P

H

j

f

j

= (� �A

H

j

)

�1

P

H

j

(�

j

f � 2ru � r�

j

� u��

j

+ pr�

j

):

We may set p = p

G

sin
e p 2

^

W

1;q

(
), where G � 
 shall be a bounded domain of 
lass C

2

satisfying


 \ supp(r�

j

) � G for all j = 0; : : : ; N (in the situation here we 
an 
hoose G = 
). By using the

bounded H

1

-
al
ulus of A

H

j

, j = 0; : : : ; N , Theorem 2.1 and Lemma 3.11 we may estimate

k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

f

j

d�k

L

q

(H

j

)

� k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

�

j

fd�k

L

q

(H

j

)

+k

1

2�i

Z

�

1;1

h(�)(� �A

H

j

)

�1

P

H

j

(�2ru � r�

j

� u��

j

+ pr�

j

)d�k

L

q

(H

j

)

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

1

1

s

�

1

s

+

1

s

1=2

+

1

s

�

�

kfk

L

q

(G)

ds

�

� Ckhk

1

kfk

L

q

(
)

(31)

for all h 2 H

1

0

(�

�

), j = 0; : : : ; N , and any �xed � 2 (0;

1

2q

0

).

For the third addend of (28) we write w

j

as

w

j

= LM

r�

j

u

where M

r�

j

u := r�

j

� u. The estimate for the operator K

j

:= LM

r�

j

stated in the next lemma will be

useful.

Lemma 3.12 Let 1 < q <1, H

j

, K

j

and G � 
 de�ned as above. Then for some 
onstant C = C(G)

it holds

kK

j

uk

W

1;q

(H

j

)

� Ckuk

L

q

(G)

for all u 2 L

q

(G) and all j = 0; : : : ; N .

Proof. Set G

j

:= 
 \ suppr�

j

. For  2

^

W

1;q

(H

j

) \ C

1




(H

j

) with

R

G

j

 dx = 0 we have by Poin
ar�e's

inequality

kr�

j

 k

W

1;q

(G

j

)

� Ckr k

L

q

(G

j

)

� Ckr k

L

q

(H

j

)

: (32)

This yields

kM

r�

j

uk

^

W

�1;q

(H

j

)

= sup

 2C

1




(H

j

)

j

R

H

j

(u � r�

j

) dxj

kr k

L

q

(H

j

)

= sup

 2C

1




(H

j

)

j

R

G

u � (r�

j

 )dxj

kr�

j

 k

W

1;q

(G)

kr�

j

 k

W

1;q

(G

j

)

kr k

L

q

(H

j

)

� Ckuk

(W

1;q

(G))

0
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for all u 2W

1;q

(G) �

�

W

1;q

(G)

�

0

, j = 0; : : : ; N . Together with (27) this leads to

kK

j

uk

L

q

(H

j

)

= kLM

r�

j

uk

L

q

(H

j

)

� CkM

r�

j

uk

^

W

�1;q

(H

j

)

� Ckuk

(W

1;q

(G))

0

and

kK

j

uk

W

2;q

(H

j

)

� C

�

kM

r�

j

uk

^

W

�1;q

(H

j

)

+ krM

r�

j

uk

L

q

(H

j

)

�

� C

�

kuk

(W

1;q

(G))

0

+ kr(r�

j

� u)k

L

q

(H

j

)

�

� Ckuk

W

1;q

(G)

for all u 2 W

1;q

(G), j = 0; : : : ; N . Sin
e W

1;q

(G) is a dense subspa
e of

�

W

1;q

(G)

�

0

the �rst inequality

above implies that K

j


an be extended to a bounded operator from

�

W

1;q

(G)

�

0

to L

q

(H

j

). From the

se
ond one we get that K

j

is also bounded from W

1;q

(G) to W

2;q

(H

j

). By interpolation, K

j

is also

bounded from L

q

(G) =

h

�

W

1;q

(G)

�

0

;W

1;q

(G)

i

1=2

toW

1;q

(H

j

) = [L

q

(H

j

);W

2;q

(H

j

)℄

1=2

for j = 0; : : : ; N ,

whi
h yields the assertion. �

Using the fa
t that P

H

j

2 L(W

1;q

(H

j

)) and again the identity

dom(A

�

H

j

) = [L

q;�

(H

j

); dom(A

H

j

)℄

�

=W

2�;q

(H

j

); � 2 [0;

1

2q

)

(see also, [Tri78℄ and [Fra00℄), we dedu
e, if we set � :=

1

4q

, say,

P

H

j

w

j

2W

1;q

(H

j

) �W

2�;q

(H

j

) = dom(A

�

H

j

):

By a simple interpolation argument and Lemma 3.12 we get

kA

H

j

(��A

H

j

)

�1

P

H

j

w

j

k

L

q

(H

j

)

= kA

1��

H

j

(��A

H

j

)

�1

A

�

H

j

P

H

j

w

j

k

L

q

(H

j

)

� Cj�j

��

kA

�

H

j

P

H

j

w

j

k

L

q

(H

j

)

� Cj�j

��

kP

H

j

w

j

k

W

2�;q

(H

j

)

� Cj�j

��

kP

H

j

w

j

k

W

1;q

(H

j

)

� Cj�j

��

kw

j

k

W

1;q

(H

j

)

= Cj�j

��

kK

j

uk

W

1;q

(H

j

)

� Cj�j

��

kuk

L

q

(
)

� Cj�j

�1��

kfk

L

q

(
)

for j�j � 1. It follows

k

1

2�i

Z

�

1;1

h(�)A

H

j

(� �A

H

j

)

�1

P

H

j

w

j

d�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

(33)

for all h 2 H

1

0

(�

�

), j = 1; : : : ; N .

The estimate for the fourth addend of (28) will follow from Lemma 3.13 below. Be
ause we will need a

similar estimate in the next se
tion, we state this lemma, just as we did with Lemma 3.11, in a more

general form as is needed here. Let 
 � R

n

be a domain whi
h ful�lls the assumptions of Theorem 2.1.

For f 2 L

q;�

(
), let (u; p) the unique solution of (SRP )




f;0

whi
h exists a

ording to this theorem.

Further, let ' : R

n

! R be a smooth fun
tion su
h that r' has 
ompa
t support, suppr'\
 6= ;, and

let Q � R

n

be a (possibly unbounded) domain su
h that 
 \ suppr' � Q and �
 \ suppr' � �Q.

Lemma 3.13 Let L be the solution operator of problem (26) on the domain Q. Then, for the trivial

extension of u � r' on Q (also denoted by u � r') we have u � r' 2 dom(L) and

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

) with some 
onstant C that may depend on ' but not on f .

Proof. We have u � r' 2

^

W

�1;q

(Q) \W

1;q

(Q) if Q is unbounded, sin
e u � r' has 
ompa
t support.

Assume for the moment that f 2 dom(A




). Then we may write for h 2 H

1

0

(�

�

)

1

2�i

Z

�

h(�)u � r'd� = r' � h(A




)f = r' �

1

2�i

Z

�

h(�)

1 + �

(��A




)

�1

d�(1 +A




)f:

19



By this representation it is easy to see that we also have

1

2�i

Z

�

h(�)u � r'd� 2

^

W

�1;q

(Q) \W

1;q

(Q):

If Q is bounded we use

u � r' = r � u'

to get in view of u' �

�Q

= 0 and the Gauss Theorem that

u � r';

1

2�i

Z

�

h(�)u � r'd� 2W

1;q

(Q) \ L

q;0

(Q):

The 
ontinuity of L implies together with (27) that

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

= kL(r' � h(A




)f)k

q

� Ckr' � h(A




)fk

�1;q

:

To estimate the norm on the right hand side re
all that supp(u � r') � 
. By (1) and the identity

dom((��




)

�

) = [L

q

0

(
); dom(��




)℄

�

=W

2�;q

0

(
), � 2 (0;

1

2q

0

), we get for  2 C

1




(Q)

(r' � h(A




)f;  )

Q

=

�

r' � (1 +A




)

1

2�i

Z

�

h(�)

1 + �

(� �A




)

�1

fd�;  

�




=

�

(1��




)

1

2�i

Z

�

h(�)

1 + �

(��A




)

�1

d�f; P




 r'

�




=

�

1

2�i

Z

�

h(�)

1 + �

(1��




)

1��

(��A




)

�1

d�f; (1��




)

�

P




 r'

�




:

Completely analogous to (32) we get

k r'k

W

1;q

0

(
)

� Ckr k

L

q

0

(Q)

:

Thus, as in the proof of Lemma 3.11 we obtain

k(1��




)

�

P




 r'k

L

q

0

(
)

� Ck r'k

W

1;q

0

(
)

� Ckr k

L

q

0

(
)

and

k(1��




)

1��

(��A




)

�1

fk

L

q

(
)

� Cj�j

��

kfk

L

q

(
)

:

This yields

j (r' � h(A




)f;  )

Q

j � Ckhk

1

Z

1

0

1

(1 + s)s

�

kfk

L

q

(
)

dskr k

L

q

0

(
)

� Ckhk

1

kfk

L

q

(
)

kr k

L

q

0

(
)

for all h 2 H

1

0

(�

�

). Consequently,

k

1

2�i

Z

�

h(�)L(u � r')d�k

L

q

(Q)

� Ckr' � h(A




)fk

�1;q

= sup

 2C

1




(Q);r 6=0

j (r' � h(A




)f;  )

Q

j

kr k

L

q

0

(Q)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

) and the assertion follows. �

Similar to (21) we obtain the estimate

kL(u � r�

j

)k

L

q

(H

j

)

�

C

p

j�j

kfk

L

q

(
)

:
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Thus, setting H

j

= Q and �

j

= ', j 2 f0; : : : ; Ng we obtain by Lemma 3.13 for the fourth addend of

(28)

k

1

2�i

Z

�

1;1

h(�)(I � P

H

j

)w

j

d�k

L

q

(H

j

)

�

� C

 

k

1

2�i

Z

�

h(�)L(u � r�

j

)d�k

L

q

(H

j

)

+ k

1

2�i

Z

�

0;1

h(�)L(u � r�

j

)d�k

L

q

(H

j

)

!

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

0

kL(u � r�

j

)k

L

q

(H

j

)

ds

�

� C

�

khk

1

kfk

L

q

(
)

+ khk

1

Z

1

0

1

p

s

kfk

L

q

(
)

ds

�

� Ckhk

1

kfk

L

q

(
)

(34)

for all h 2 H

1

0

(�

�

). Combining (29), (33), (31) and (34) we get

k

1

2�i

Z

�

1;1

h(�)(� �A




)

�1

fd�k

L

q

(
)

= k

1

2�i

Z

�

1;1

h(�)ud�k

L

q

(
)

�

N

X

j=0

k

1

2�i

Z

�

1;1

h(�)�

j

ud�k

L

q

(


j

)

�

N

X

j=0

k

1

2�i

Z

�

1;1

h(�)�

j

ud�k

L

q

(H

j

)

� Ckhk

1

kfk

L

q

(
)

for all h 2 H

1

0

(�

�

). In view of (25) we thus have proved the following theorem.

Theorem 3.14 Let 1 < q <1 and 
 � R

n

be a bounded domain whose boundary is of 
lass C

3

. Then

the Stokes operator A




admits a bounded H

1

-
al
ulus in L

q;�

(
).

3.4 H

1

-
al
ulus for the Stokes operator on exterior domains and on per-

turbed half-spa
es

In this se
tion we 
onsider the Stokes operator A




, where 
 � R

n

is either an exterior domain, i.e.

the 
omplement of a 
ompa
t set, or a perturbed half-spa
e by whi
h we mean that there is a 
ompa
t

set K in R

n

su
h that R

n

+

n K = 
 n K, see Figure 4. We will show that the Stokes operator A




on

su
h a domain also admits a bounded H

1

-
al
ulus. This is more or less a 
onsequen
e of the results in

Subse
tions 3.1 and 3.3. Using the same lo
alization as in the proof of Theorem 3.3 we 
an redu
e the

perturbed half-spa
e problem to the 
ase of a bounded domain and the half-spa
e. If 
 is exterior we


an redu
e the problem to the bounded domain 
ase and to R

n

. Instead of repeating large parts of the

proofs of Theorem 3.3 and Theorem 3.14, we only explain the essential steps that di�er in this situation.

Theorem 3.15 Let 1 < q < 1 and 
 � R

n

be an exterior domain or a perturbed half-spa
e whose

boundary is of 
lass C

3

. Then the Stokes operator A




admits a bounded H

1

-
al
ulus in L

q;�

(
).

Proof. Let B

R

(0) a ball su
h that 
 nB

R

(0) = R

n

+

nB

R

(0) if 
 is a perturbed half-spa
e or 
 nB

R

(0) =

R

n

n B

R

(0) if 
 is an exterior domain. In both of the two 
ases we 
an use the same 
onstru
tion

of 


0

;


1

; �

0

; �

1

as in the proof of Theorem 3.3 with the only di�eren
e that we set 


0

= B

2R

(0) and




1

= R

n

if 
 is an exterior domain. As before, we split the H

1

integral into the two parts j�j � 1 and

j�j > 1. For the treatment of the former integral we only have to modify inequality (24) sin
e we applied

Sobolev's inequality for H

!

at this point. The remaining parts of the proof 
an be 
opied verbatim,

be
ause nowhere else we have used the spe
ial stru
ture of H

!

again. To obtain an estimate like (24) if


 is a perturbed half-spa
e or an exterior domain we will apply the following generalization of Poin
ar�e's

inequality on 


0

. If Q � R

n

is a bounded Lips
hitz domain and V is a 
losed subspa
e of W

1;q

(Q), then

there are equivalent:

(i) There is some u

0

2 V and some 
onstant C

0

� 0 su
h that u

0

+ � 2 V implies j�j � C

0

for � 2 R

n

.
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R 2R

Ω
c

Ω
0

R

n−1

Figure 4: Resolution of the identity for the perturbed half-spa
e

(ii) There is a 
onstant C > 0 su
h that

kuk

L

q

(Q)

� Ckruk

L

q

(Q)

; u 2 V:

A proof of that result 
an be found e.g. in [Alt99℄. If S � �Q is not a null set with respe
t to the

boundary measure it is easy to see, that W

1;q

0;S

(Q) := fu 2 W

1;q

(Q) : 
u �

S

= 0g is a 
losed subspa
e of

W

1;q

(Q), whi
h satis�es 
ondition (i) of the above equivalen
e. Thus, if we set S := �


0

\�
, we dedu
e

the validity of Poin
ar�e's inequality on W

1;q

0;S

(


0

). This gives us for the Stokes 
ow u 2 dom(A




) of the

solution (u; p) of (SRP )




f;0

, where f 2 L

q;�

(
),

ku��

1

k

L

q

1

(


1

)

� Ckuk

L

q

(


0

)

� Ckruk

L

q

(


0

)

; (35)

with q

1

as in Theorem 3.3. To see that we may estimate the last term again by Poin
ar�e's inequality we

have to verify (i) for the subspa
e

V := r

h

W

1;q

0;S

(


0

) \W

2;q

(


0

)

i

=

n

rv : v 2W

1;q

0;S

(


0

) \W

2;q

(


0

)

o

:

of W

1;q

(


0

). Clearly, (i) follows if we 
an show that there is no non-trivial 
onstant fun
tion in V . If

w = rv 2 V is 
onstant for some v 2W

1;q

0;S

(


0

) \W

2;q

(


0

), then v(x) =Mx+ b, where M 2 R

n�n

and

b 2 R

n

. Hen
e, the set of zeros for v is an aÆne subspa
e of R

n

. But the only aÆne subspa
e that 
ontains

S is R

n

, sin
e we may assume that �
 is not an aÆne subspa
e of R

n

(otherwise we are in the half-spa
e


ase). This implies v = 0 whi
h in turn implies w = 0. It remains to show that V is 
losed in W

1;q

(


0

).

This 
an be seen by dire
t 
al
ulation or by the following argument: We set X :=W

1;q

0;S

(


0

) \W

2;q

(


0

)

and

T : X !W

1;q

(


0

); Tu := ru:

Sin
e T is inje
tive its inverse is well-de�ned on ran(T ) = V . The boundedness of T implies the 
losedness

of T

�1

. We will show that T

�1

is 
ontinuous, whi
h immediately yields the 
losedness of its domain V .

By Poin
ar�e's inequality on W

1;q

0;S

(


0

) we obtain

kT

�1

uk

X

= kT

�1

uk

2;q

� C

�

kT

�1

uk

q

+ krT

�1

uk

1;q

�

� C

�

krT

�1

uk

q

+ krT

�1

uk

1;q

�

= C (kuk

q

+ kuk

1;q

) � Ckuk

1;q

= Ckuk

V

for all u 2 V proving the 
ontinuity of T

�1

. Consequently, Poin
ar�e's inequality is valid on V whi
h gives

us together with (35)

ku��

1

k

L

q

1

(


1

)

� Ckruk

L

q

(


0

)

� Ckr

2

uk

L

q

(


0

)

� Ckr

2

uk

L

q

(
)

:

So, repla
ing (24) by the above line the proof for j�j � 1 is �nished.

For j�j � 1 we 
an transfer the proof in Theorem 3.14 for that �'s. Instead of the lo
alization used there
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whi
h redu
es the problem on 
 to problems on H

!

and R

n

, we take the above lo
alization and redu
e it

to problems on the bounded domain 


0

and the unbounded domain 


1

(whi
h is either R

n

or R

n

+

). The

lo
alized equations remain un
hanged as well as formula (28) for the lo
alized fun
tions �

j

u, j = 0; 1.

This allows us to 
opy the proof of Theorem 3.14 without any further 
hange. Applying Theorem 3.14

to A




0

and using the bounded H

1

-
al
ulus of A

R

n

+

and A

R

n


omplete the proof of Theorem 3.15. �

A Regularity of the Helmholtz proje
tion

Lemma A.1 Let ! 2 C

1;1




(R

n�1

) and let H

!

be the bent half-spa
e asso
iated with ! as introdu
ed in

Se
tion 3.1. Further, let 1 < q; q

�

< 1 with

1

q

�

=

1

q

�

1

n

. Then the Sobolev inequality is valid for H

!

,

i.e. there is a C > 0 su
h that

kuk

q

�

� Ckruk

q

for all u 2W

1;q

(H

!

).

Proof. First re
all that R

n

+

is a so-
alled (";1) domain, i.e. there is some " > 0 with the following

property: For all x; y 2 R

n

+

there is a re
ti�able ar
 
, joining x to y and satisfying L(
) �

1

"

jx � yj as

well as

d(z) � "

jx� zjjy � zj

jx� yj

; z 2 
;

y

z

|x−z|

|y−z|

x

γ

|x−y|

Figure 5: The half-spa
e is

an (";1) domain

where L(
) denotes the length of 
 and d(z) = z

n

is the distan
e from z

to the boundary of R

n

+

. This 
an be easily seen by taking for 
 the upper

half of the 
ir
le with diameter being the segment 
onne
ting x and y, see

Figure 5. It is known, see [Jon81℄ for details, that unbounded (";1) domains

are extension domains for the Diri
hlet energy spa
e, i.e. there is a bounded

operator E :

^

W

1;q

(R

n

+

) !

^

W

1;q

(R

n

) with Ef �

R

n

+

= f for all f 2

^

W

1;q

(R

n

+

).

Sin
e �(x

0

; x

n

) = (x

0

; x

n

� !(x)) is a C

1

-di�eomorphism mapping H

!

to R

n

+

,

the assertion follows.

�

Remark A.2 A
tually, it 
an be shown that one has more general extension operators for unbounded

(";1) domains: If 
 is a domain of this type, N 2 N, and q

0

; : : : ; q

N

2 (1;1), there is an extension

operator

E :

N

\

j=0

^

W

j;q

j

(
)!

N

\

j=0

^

W

j;q

j

(R

n

) with kr

j

Euk

L

q

j

(R

n

)

� Ckr

j

uk

L

q

j

(
)

for all j = 1; : : : ; N and all u 2

T

N

j=0

^

W

j;q

j

(
). For details 
on
erning extension operators in Sobolev

spa
es, see [Chu92℄. As an easy 
onsequen
e, Gagliardo-Nirenberg's inequality extends to (";1) domains.

In parti
ular, it holds true for R

n

+

and the bent half-spa
e H

!

with ! as in Lemma A.1.

Let 
 be either a bounded domain or 
 = R

n

+

. It is well-known that the solution of the Neumann

problem on 
 asso
iated to the Helmholtz proje
tion admits higher regularity. This implies immediately

the regularity of P




, i.e. P




2 L(W

k;q

(
)) for 1 < q <1 and k 2 N [ f0g. The next proposition shows

that this also holds true for 
 = H

!

.

Proposition A.3 Let 1 < q < 1 and k 2 N [ f0g. Then the Helmholtz proje
tion P

H

!

is a bounded

operator in W

k;q

(H

!

). In parti
ular, if 1 < q < n, then

kr

k

P

H

!

uk

q

� Ckr

k

uk

q

; u 2 W

k;q

(H

!

):

Proof. Let �

0

; �

1

;


0

;


1

as in Theorem 3.3. The 
ase k = 0 is well-known, so we only prove the assertion

for k = 1. The general 
ase then follows by indu
tion. We 
onsider the lo
alized Neumann-Problems

(NP )

�

�(�

j

p) = �

j

divu+ 2r�

j

� rp+ p��

j

=: f

j

on 


j

;

�

��

(�

j

p) = (u�

j

+ pr�

j

) � � =: g

j

on �


j
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for j = 0; 1. From well-known regularity properties for the Neumann problem on R

n

+

(see [Fra00℄) we get

kr

2

�

1

pk

L

q

(


1

)

� C

�

kf

1

k

L

q

(


1

)

+ kg

1

k

^

W

1�1=q;q

(�


1

)

�

� C

�

kruk

L

q

(H

!

)

+ kpk

W

1;q

(


0

)

+ ku�

1

+ pr�

1

k

^

W

1�1=q;q

(�


1

)

�

;

where

^

W

1�1=q;q

(�


1

) is the tra
e Sobolev spa
e, treated in detail e.g. in [Gal98℄. By [Gal98℄, Theo-

rem II 8.2, we 
an estimate the latter term on the right hand side whi
h yields

kr

2

�

1

pk

L

q

(


1

)

� C

�

kruk

L

q

(H

!

)

+ kpk

W

1;q

(


0

)

+ ku�

1

+ pr�

1

k

^

W

1;q

(


1

)

�

� C

�

kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

W

1;q

(


0

)

�

:

By using regularity properties for the Neumann problem on bounded domains, we 
an treat the 
ase

j = 0 in a similar way whi
h gives us

kr

2

�

0

pk

L

q

(


0

)

� C

�

kruk

L

q

(H

!

)

+ kuk

L

q

(


0

)

+ kpk

W

1;q

(


0

)

�

:

It is always possible to 
hoose p su
h that

R




0

p(x)dx = 0. From Poin
ar�e's inequality and P

H

!

2

L(L

q

(H

!

)) we therefore obtain

kpk

L

q

(


0

)

� krpk

L

q

(


0

)

� krpk

L

q

(H

!

)

� kuk

L

q

(H

!

)

:

Hen
e, the above two estimates imply

kr

2

pk

L

q

(H

!

)

� kr

2

�

1

pk

L

q

(


1

)

+ kr

2

�

0

pk

L

q

(


0

)

� kuk

W

1;q

(H

!

)

;

whi
h gives us

kP

H

!

k

W

1;q

(H

!

)

� kuk

W

1;q

(H

!

)

:

Assume now 1 < q < n. With Lemma A.1 and the boundedness of 


0

we may 
on
lude

kuk

L

q

(


0

)

� Ckuk

L

q

�(


0

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

:

The Helmholtz-Proje
tion P

H

!

does not depend on q and is 
ontinuous for all 1 < q <1. Together with

Lemma A.1 this leads to

kpk

W

1;q

(


0

)

� krpk

L

q

(


0

)

� Ckrpk

L

q

�(H

!

)

� Ckuk

L

q

�(H

!

)

� Ckruk

L

q

(H

!

)

:

The above two estimates for r

2

�

1

p and r

2

�

0

p now imply

krP

H

!

uk

L

q

(H

!

)

� kruk

L

q

(H

!

)

+ kr

2

pk

L

q

(H

!

)

� Ckruk

L

q

(H

!

)

for u 2W

1;q

(H

!

). �

B Sobolev estimates for powers of the Stokes operator on R

n

+

Proposition B.1 Let 1 < q <1 and let A be the Stokes operator in L

q;�

(R

n

+

). Then

(a) For ea
h 0 < s < 1, the norms k(A+ 1)

s

� k

q

and k � k

dom(A

s

)

are equivalent,

(b) for ea
h k 2 N, the norms kA

k=2

� k

q

and kr

k

� k

q

are equivalent.

Proof. To prove (a), note that for r < 0, (A + 1)

r

is a bounded operator in L

q;�

(R

n

+

). From Re-

mark 2.2 (iii) we know that A

�1

2 H

1

(L

q;�

(R

n

+

)) with the same H

1

-angle whi
h immediately implies

that also (A

�1

+ 1)

r

is bounded on L

q;�

(R

n

+

) for r < 0. From

(A+ 1)

r

= (A

�1

+ 1)

r

A

r

;
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valid for all r 2 R, we 
an therefore 
on
lude

kuk

dom(A

s

)

= kuk

q

+ kA

s

uk

q

= k(A+ 1)

�s

(A+ 1)

s

uk

q

+ k(A

�1

+ 1)

�s

(A+ 1)

s

uk

q

� Ck(A+ 1)

s

uk

q

for all u 2 dom(A

s

). The 
onverse inequality 
an be proved by the same arguments:

k(A+ 1)

s

uk

q

= k(A+ 1)(A+ 1)

s�1

uk

q

� C

�

kA(A+ 1)

s�1

uk

q

+ k(A+ 1)

s�1

uk

q

�

� C

�

kA

1�s

(A+ 1)

s�1

A

s

uk

q

+ kuk

q

�

= C

�

k(A

�1

+ 1)

s�1

A

s

uk

q

+ kuk

q

�

� Ckuk

dom(A

s

)

:

To verify (b) we �rst establish the estimates

kuk

k;q

� Ck(A+ 1)

k=2

uk

q

� Ckuk

k;q

(36)

for ea
h k 2 N and all u 2 dom(A

k=2

). The equivalen
e of the norms in question is then obtained from

these estimates by the s
aling method whi
h was already used in the proof of Proposition 3.9. Sin
e

k � k

dom(A)

and k � k

2;q

are equivalent norms on dom(A), the resolvent (A + 1)

�1

is a bounded operator

from (L

q;�

(R

n

+

); k � k

q

) to (dom(A); k � k

2;q

). This implies for u 2 dom(A)

kuk

2;q

= k(A+ 1)

�1

(A+ 1)uk

2;q

� Ck(A+ 1)uk

q

� Ckuk

dom(A)

� Ckuk

2;q

: (37)

Sin
e A 2 H

1

(L

q;�

(R

n

+

)) we know from [Tri78℄ and [BM88℄ that

dom(A

1=2

) = [L

q;�

(R

n

+

); dom(A)℄

1=2

= [L

q

(R

n

+

); dom(�)℄

1=2

\ L

q;�

(R

n

+

)

= W

1;q

0

(R

n

+

) \ L

q;�

(R

n

+

):

In parti
ular, the norms k � k

dom(A

1=2

)

and k � k

1;q

are equivalent on dom(A

1=2

). By (a), the norm

k � k

dom(A

1=2

)

is also equivalent to k(A+ 1)

1=2

� k

q

. This yields

kuk

1;q

� Ck(A+ 1)

1=2

uk

q

� Ckuk

1;q

(38)

for all u 2 dom(A

1=2

). Consider the Stokes equations on the half-spa
e:

8

<

:

u��u+rp = f on R

n

+

;

r � u = 0 on R

n

+

;


u = 0:

(39)

For f 2 L

q;�

(R

n

+

) this equation has the unique solution u = (A+ 1)

�1

f 2 dom(A) whi
h satis�es

kuk

2;q

� Ckfk

q

; (40)

(see e.g. [FS94℄ or [Sol77℄). Moreover, for k 2 N [ f0g and g 2 W

k;q

(R

n

+

) we get from [Gal98℄ Theo-

rem IV.3.2, that for any solution v of the stationary equation

(SSE)

R

n

+

g;0

8

<

:

��v +rp = g on R

n

+

;

r � v = 0 on R

n

+

;


v = 0;

whi
h satis�es r

2

v 2 L

q

(R

n

+

) we have

kr

k+2

vk

q

� Ckgk

k;q

: (41)

Next, let f 2 W

1;q

(R

n

+

) \ L

q;�

(R

n

+

), u be the solution of (39) and put g = f � u 2 W

1;q

(R

n

+

). Trivially,

u is a solution of (SSE)

R

n

+

g;0

with r

2

u 2 L

q

(R

n

+

). Hen
e by (40) and (41) we get that r

3

u 2 L

q

(R

n

+

) with

kr

3

uk

q

� Ckgk

1;q

� C(kfk

1;q

+ kuk

1;q

) � Ckfk

1;q

:
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By indu
tion over k we obtain that for every k 2 N and ea
h f 2 W

k;q

(R

n

+

)\L

q;�

(R

n

+

) the solution u of

(39) satis�es

kuk

k+2;q

� Ckfk

k;q

:

Sin
e u = (A+1)

�1

f , this implies in view of the regularity of the Helmholtz proje
tion (Proposition A.3)

that

kuk

k+2;q

� Ckfk

k;q

= Ck(A+ 1)uk

k;q

� Ckuk

k+2;q

(42)

for all u 2 dom(A) \W

k;q

(R

n

+

). We will prove (36) by indu
tion: The inequalities (38) and (37) yield

(36) for k = 1 and k = 2 respe
tively. Suppose now u 2 dom(A

(k+2)=2

) and that (36) holds true for all

j � k + 1 2 N. This implies (A+ 1)u 2 dom(A

k=2

) �W

k;q

(R

n

+

) and with (42) we obtain

kuk

k+2;q

� Ck(A+ 1)uk

k;q

� Ck(A+ 1)

k=2

(A+ 1)uk

q

= Ck(A+ 1)

(k+2)=2

uk

q

:

Conversely, the 
al
ulation

k(A+ 1)

(k+2)=2

uk

q

= k(A+ 1)

k=2

(A+ 1)uk

q

� Ck(A+ 1)uk

k;q

� Ckuk

k+2;q

shows that (36) is valid for all k 2 N.

Now let w 2 dom(A

k=2

) and � > 0. As in the proof of Proposition 3.9 we set u = J

�1

�

w = w(

1

�

�) 2

dom(A

k=2

). By equality (19) we get

k(A+ �

2

)

k=2

wk

q

= �

k�n=q

k(A+ 1)

k=2

uk

q

:

Moreover, by (17) we have

�

k�n=q

kuk

k;q

= �

k�n=q

kJ

�1

�

wk

k;q

=

k

X

j=0

�

k�j

kr

j

wk

q

:

The above two inequalities imply together with (36) that

k

X

j=0

�

k�j

kr

j

wk

q

� Ck(A+ �

2

)

k=2

wk

q

� C

k

X

j=0

�

k�j

kr

j

wk

q

for all w 2 dom(A

k=2

) and all � > 0 (note that J

�

is an automorphism of this spa
e). Passing to the

limit �! 0 yields the assertion. �
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