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ABSTRACT. We study the crossing number of links that are formed by edges of a triangulation T of

S

3 with n tetrahedra. We show that the crossing number is bounded from above by an exponential

function of n2 . In general, this bound can not be replaced by a subexponential bound. However, if

T is polytopal (resp. shellable) then there is a quadratic (resp. biquadratic) upper bound in n for the

crossing number. In our proof, we use a numerical invariant p(T ), called polytopality, that we have

introduced in [5].
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1. INTRODUCTION

The aim of this paper is to study properties of knots and links that are formed by edges of a

triangulation of the 3–dimensional sphere S3. For any n 2 N, letT
n

denote the set of triangulations

of S3 with n tetrahedra. The number of simplicial complexes with n tetrahedra is finite, and the

number of simple edge paths in a simplicial complex is finite as well. Therefore, there are only

finitely many equivalence classes of links in S

3 occuring in the 1–skeleton T 1 of some T 2 T

n

.

Thus, if f(�) is any numerical link invariant (e.g., bridge number, crossing number, k–th coefficient

of the Jones polynomial) then

F (n) = sup

T 2T

n

; L�T

1

f(L)

is a finite number for all n 2 N.

In [4] and [6], we obtained exponential upper and lower bounds for F (n) when f(L) is the

bridge number of L. However, there are infinitely many non-equivalent links whose bridge number

is smaller than F (n), for instance, two-bridge knots. The aim of this paper is to prove an upper

bound for F (n) when f(L) is the crossing number of L. Such an estimate is substantially stronger

than an estimate for the bridge number, in the sense that there are only finitely many equivalence

classes of links with a crossing number smaller than F (n).

We recall the notions of crossing number and bridge number of a link L � S

3. The crossing

number Cr(L) of L is the minimal number of crossings in a link diagram representing L. This is

a natural measure of complexity of links, and was already used in the knot tables of Tait and Little

in 1900. The bridge number has been introduced by H. Schubert [9] in 1954. It can be defined as

follows. Let I = [0; 1℄ denote the unit interval. Let H : S

2

� I ! S

3 be a smooth embedding with

L � H(S

2

� I). Let �
I

: S

2

� I ! I denote the projection to the second factor. On gets a map

h : L ! S

2 by h(p) = �

I

ÆH

�1

(p), for p 2 L. We call p 2 L a critical point of H with respect

to L if H(S

2

� fh(p)g) is not transversal to L in p. Thus, generically a critical point is an isolated

local maximum or minimum of h. We denote the number of critical points by 
(H;L). Now, the

bridge number of L is

b(L) =

1

2

min

H


(H;L);

where the minimum is taken over all embeddings H : S

2

� I ! S

3 with L � H(S

2

� I). The

factor 1

2

is needed to make this definition consistent with Schubert’s original definition [9].

Link invariants also arise in the study of polytopal and shellable triangulations of S3, as explained

in the next paragraphs. Recall that a triangulation of the d–dimensional sphere Sd is polytopal, if

it is isomorphic to the boundary complex of a convex (d + 1)–polytope. A triangulation of Sd is

1
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shellable, if there is an order �
1

; : : : ; �

n

of its d–simplices so that
S

k

i=1

�

i

is a d-dimensional closed

ball, for k = 1; : : : ; n � 1. For a more general definition of shellable cell complexes, see [10].

Any polytopal triangulation is shellable [2]. There are shellable triangulations of S3 that are not

polytopal, and there are triangulations of S3 that are not shellable [10].

Let T 2 T

n

be a triangulation of S3 with n tetrahedra, and let K � T

1 be a knot formed by k

edges of T . It follows from the work of Lickorish [7] that b(K) � k under the assumption that T is

shellable. Armentrout [1] obtained b(K) �

1

2

k under the assumption that the dual of T is shellable.

Recently Ehrenborg and Hachimori [3] obtained the sharp bounds b(K) �

1

2

k if T is shellable and

b(K) �

1

3

k if T is vertex decomposable (we will not define this notion here). In the same way, one

can show that if L � T

1 is a link (but not necessarily a knot) then b(L) is bounded from above by a

linear function of n, provided T satisfies one of the mentioned assumptions. These assumptions are

in fact very strong, since in general there is no subexponential upper bound for b(L) in terms of n;

see [5] or [6]. Without any geometric assumption on T , we found b(L) < 2

190n

2

by a complexity

analysis of the Rubinstein–Thompson algorithm for the recognition of S3, see [4].

By the following main theorem of this paper, the crossing number of a link in T 1 is also sensitive

for geometric properties of T .

Theorem 1. Let T be a triangulation of S3 with n tetrahedra, and let L � T

1 be a link.

1. If T is polytopal then Cr(L) < 4n

2.

2. If T or its dual cellular decomposition is shellable then Cr(L) < 10

9

n

4.

3. In general, Cr(L) < 2

810n

2

.

So far as known to the author, these are the first upper bounds for Cr(L) in terms of T . Certainly

these bounds are not optimal, we did not try to prove sharp bounds. However, since Cr(L) � b(L),

our results in [5] imply that the general bound in the third part of Theorem 1 can not be replaced

by a subexponential bound. Thus, the assumptions in the first two parts of Theorem 1 can not be

removed.

We outline the proof of Theorem 1. Let T 2 T

n

and let L � T

1. If T is polytopal, then one

can isotope its 2–skeleton in R3

� S

3 so that all edges become straight line segments. Thus, an

orthogonal projection yields a link diagram for L with at most one crossing for each pair of edges.

This yields the first part of Theorem 1.

The idea for the proof of the second and third part of Theorem 1 is to transform the triangulation

T into a polytopal triangulation ~

T by a finite number of local changes (e.g., stellar subdivisions),

so that ~

T

1 contains a copy ~

L of L, where the number of edges forming ~

L is controlled in terms

of the number of local changes. This reduces the problem to the first part of Theorem 1. For this

purpose, we use the notion of polytopality that we have introduced in [5]. The polytopality p(T ) is

a numerical invariant of a triangulation T of S3. Its definition is inspired by the bridge number of

links, see Section 2. In [5], we have shown how ~

T can be constructed from T , so that the number

of local changes is bounded from above by a quadratic function of p(T ). Since ~

T is polytopal, we

obtain a biquadratic upper bound for Cr(~L) = Cr(L) in terms of p(T ). We have shown [5] that

p(T ) � 7n if T or its dual is shellable, and p(T ) < 2

200n

2

in general. This yields the estimates

claimed in the second and third part of Theorem 1.

The rest of this paper is organized as follows. In Section 2 we define the polytopality p(T ) of

a triangulation T of S3 and recall from [5] how to construct from T a polytopal triangulation by a

series of local changes whose length is bounded in terms of p(T ). In Section 3, we start with a proof

of the first part of Theorem 1. Then, we formulate and prove a bound for the crossing number of a

link L � T

1 in terms of p(T ). This bound together with estimates for p(T ) from [5] immediately

yields the second and third part of Theorem 1.

2. POLYTOPALITY OF TRIANGULATIONS

Let T be a triangulation of S3. The aim of this section is to expose a numerical invariant p(T ),

called polytopality. Although its definition is purely topological, p(T ) turns out to be a measure for

the geometric complexity of T .
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We recall the definition of p(T ) from [5]. Let C be the dual cellular decomposition of T , with 1–

skeleton C1. Let H : S

2

�I ! S

3 be a smooth embedding with C1 � H(S

2

�I). Let �
I

: S

2

�I !

I denote the projection to the second factor. This gives rise to a map h : C

1

! S

2 by h(p) =

�

I

ÆH

�1

(p), for p 2 C1. We call p 2 C

1 a critical point of H with respect to C1 if H(S

2

�fh(p)g)

is not transversal to C1 in p. Thus, generically a critical point is a vertex of C1 or an isolated local

maximum or minimum of h in the interior of an edge of C. We denote the number of critical points

of H with respect to C1 by 
(H; C

1

) and define

p(T ) = min

H


(H; C

1

);

the polytopality of T , where the minimum is taken over all embeddings H : S

2

� I ! S

3 with

C

1

� H(S

2

� I).

The definition of polytopality is very similar to the definition of bridge number in Section 1. One

can think of p(T ) as a bridge number of the spatial graph C1 � S

3. We remark that already the

abstract graph C1 contains much information about T . For instance, if T is polytopal than it is

already determined by the abstract graph C1, see [10]. We obtained the following estimates.

Theorem 2 (see [5]). Let T 2T

n

.

1. If T is polytopal then p(T ) = n.

2. If T or its dual cellular decomposition is shellable then p(T ) � 7n.

3. In general, n � p(T ) < 2

200n

2

. The upper bound can not be replaced by a subexponential

bound.

It is not known to the author whether there is a non-polytopal triangulation T 2T

n

with p(T ) =

n. Theorem 2 shows that p(T ) is sensitive for geometric properties of T . However, the connection to

geometry is even stronger, since p(T ) measures to what extend T fails to be polytopal, as explained

in the rest of this section.

Definition 1. Let T
1

and T
2

be triangulations of S3, and let e be an edge of T
2

with �e = fa; bg.

Suppose that T
1

is obtained from T

2

by removing the open star of e and identifying the join a � �

with b � � for any simplex � in the link of e. Then T
2

is the result of an expansion of T
1

along e.

Since an expansion increases the number of vertices by one and the number of simplicial com-

plexes with a given number of vertices is finite, it is easy to see that the number of possible expan-

sions of T
1

is finite up to isotopy. Any stellar subdivision of a simplex of T is an expansion.

It is a consequence of the “Hauptvermutung” for 3–dimensional manifolds [8] that any triangu-

lation T of S3 can be turned into a polytopal triangulation by a series of expansions. We define

d(T ) as the length of a shortest series of expansions that transforms T into a polytopal triangulation.

Our next theorem shows that d(T ), defined in terms of discrete geometry, is closely related to p(T ),

defined in terms of topology.

Theorem 3 (see [5]). For any T 2T

n

holds

p(T )

2n+ 1

� n�

5

3

< d(T ) � 512(p(T ))

2

+ 869p(T ) + 376.

3. PROOF OF THEOREM 1

Proof of the first part of Theorem 1. Let T 2T

n

be a polytopal triangulation ofS3 withn tetrahedra

and let L � T

1 be a link formed by k edges. Since T has at most 2n edges, it suffices to prove

Cr(L) < k

2. Since T is polytopal, it has a so-called Schlegel diagram [10], i.e., the simplicial

complex obtained from T by removing a single tetrahedron can be embedded into R3 so that any

simplex is euclidian. In particular, the link L � T

1 is a union of k straight line segments. It is

possible to obtain a link diagram for L by an orthogonal projection onto some plane. Since an

orthogonal projection yields at most one crossing for any pair of edges, we obtainCr(L) < k

2.

In order to prove the second and third part of Theorem 1, we formulate and prove the following

estimate for Cr(L) in terms of p(T ).
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Theorem 4. Let T be a triangulation of S3, and let L � T

1 be a link formed by k edges of T . Then

Cr(L) <

�

k + 512(p(T ))

2

+ 869p(T ) + 376

�

2

:

Proof. By Theorem 3, there is a polytopal triangulation ~

T of S3, obtained from T be a series of at

most 512(p(T ))2 + 869p(T ) + 376 expansions. If a triangulation of S3 is obtained from T by a

single expansion, then its 1–skeleton contains a copy of L formed by at most k + 1 edges. Thus,

by induction on the number of expansions, there is a link ~

L �

~

T

1 equivalent to L, formed by at

most k+ 512(p(T ))

2

+ 869p(T ) + 376 edges. Since ~

T is polytopal, we obtain Cr(L) = Cr(

~

L) <

�

k + 512(p(T ))

2

+ 869p(T ) + 376

�

2

as in the proof of the first part of Theorem 1.

Proof of the second and third part of Theorem 1. Let T 2 T

n

, and let L � T

1 be a link. Since L is

formed by at most 2n edges, Theorems 2 and 4 immediately yield

Cr(L) <

�

25088n

2

+ 6085n+ 376

�

2

< 10

9

n

4

provided T is shellable, and in general

Cr(L) <

�

512 � 2

400n

2

+ 869 � 2

200n

2

+ 2n+ 376

�

2

< 2

810n

2

:
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