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Abstrat

This paper is devoted to relations between the spetrum (or ertain

kinds of a generalized spetrum) of a band-dominated operator A and of

the spetra of its approximations A

n

= P

n

AP

n

, obtained by ompressing

A onto the ranges of the orthogonal projetions P

n

. Partiular attention

is paid to the asymptoti behaviour of the spetra (or its generalizations)

of the operators A

n

. These results will appear as speial ases of some

general theorems on spetral approximation.

1 Introdution

Given a Hilbert spae H and a positive integer N , let E

N

stand for the linear

spae of all sequenes f = (f(x))

x2Z

N
with values in H suh that

kfk

2

:=

X

x2Z

N

kf(x)k

2

H

<1:

Clearly, E

N

is a Hilbert spae with respet to the inner produt

hf; gi :=

X

x2Z

N

hf(x); g(x)i

H

:

For k 2 Z

N

, we let V

k

refer to the shift operator on E

N

,

V

k

: f 7! g where g(x) := f(x� k);

and for every bounded funtion a : Z

N

! L(H), we onsider the operator M

a

of

multipliation by a,

M

a

: E

N

! E

N

; (M

a

f)(x) := a(x)f(x):

�
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A band-dominated operator on E

N

is a norm limit of a sequene of band operators

on E

N

, i.e. of operators whih are a �nite sum of operators M

a

V

k

where a and k

are as above.

For n 2 N , let P

n

refer to the projetion operator on E

N

whih maps the

sequene f to the sequene g where g(x) = f(x) if jxj � n and g(x) = 0 if

jxj > n. The operators A

n

:= P

n

AP

n

are alled the �nite setions of the band-

dominated operator A. The sequene (A

n

) is alled stable if there is an n

0

suh

that the operators A

n

: ImP

n

! ImP

n

are invertible for all n � n

0

and if the

norms of their inverses are uniformly bounded. A stability riterion for the �nite

setion method for a band-dominated operator A has been derived in [11℄.

The goal of the present paper is to examine the asymptoti behaviour of the

spetra (and of some of their generalizations) of the operators P

n

AP

n

. These

results will be obtained as speial ases of some general theorems on spetral

approximation. A onvenient way to formulate these general theorems uses the

language of C

�

-algebras. Thus, the appliation of these results to a onrete

approximation sequene suh as (P

n

AP

n

) requires not only a preise knowledge

on the stability properties of the sequene (P

n

AP

n

) itself, but for every sequene

in a C

�

-algebra of sequenes whih ontains (P

n

AP

n

).

The paper is organized as follows. We will start with realling the stability

results for the �nite setion method of band-dominated operators from [11℄ and

with extending these results to sequenes in a C

�

-algebra B generated by �nite

setions sequenes. The obtained generalization will be as follows: There is a

family fW

t

g of

�

-homomorphisms from B into L(E) suh that a sequene A =

(A

n

) in B is stable if and only if all operators W

t

(A) are invertible and if the

norms of their inverses are uniformly bounded.

The latter is an obvious di�erene to some of the C

�

-algebrai stability results

whih were previously derived for several lasses of approximation sequenes (see

[6, 7℄ for an overview). These former results are essentially of the following form:

With every sequene A in a ertain algebra of sequenes, there is assoiated a

family fW

t

(A)g of operators suh that the sequene A is stable if and only if all

operators W

t

(A) are invertible. Thus, the uniform boundedness of the inverses

of the operators W

t

(A) is not required in these previous examples. In [7℄ we

summarized some general results on the approximation of spetra whih hold

if the sequenes satisfy the more restritive form of the stability ondition just

mentioned. Thus, we will have to generalize the spetral approximation results

from [7℄ to a ontext whih allows us to inlude the �nite setion method for

band-dominated operators. This will be done in Setions 3 { 5. These results in

ombination with the stability result will yield the wanted assertions on spetral

approximation for �nite setions of band-dominated operators almost at one.

On this oasion, we will also extend the results from [7℄ into another diretion.

The natural disretization parameters for the approximation methods onsidered

in [7℄ are the positive integers. Thus, the disretization of an operator A by these

methods leads to a sequene (A

n

)

n2N

of disretized operators. But for operators
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whih at on L

2

(R

+

), for instane, the natural disretization parameters might

be the non-negative reals. Moreover, the disretization of an integral operator

on L

2

(R

+

) is usually done in two steps: �rst one ompresses the operator onto

the spae L

2

([0; t℄) with some t > 0, and then this ompression is disretized

by a standard quadrature or olloation method whih �nally leads to an �nite

linear system. Thus, the natural disretization parameters are the points in

R

+

� N in this ase. Similar situations appear when standard disretization

proedures are ombined with utting o� tehniques (see Chapter 5 in [8℄ or

Chapter 4 in [7℄ for �rst impressions and for further referenes), whih also leads

to disretization parameters in N � N or in R

+

� N . Consequently, we will

examine the spetral approximation problem for nets of approximation operators

rather than for sequenes, i.e. the points of a ertain direted set will serve us as

disretization parameters.

2 Algebras of �nite setions sequenes

The mentioned stability results for the �nite setions method for band-dominated

operators will be formulated in the language of limit operators. Let A 2 L(E

N

),

and let h be a sequene of points in Z

N

whih tends to in�nity. The operator A

h

is alled the limit operator of A with respet to h if, for every k 2 N ,

k(V

�h(n)

AV

h(n)

� A

h

)P

k

k ! 0 and kP

k

(V

�h(n)

AV

h(n)

� A

h

)k ! 0

as n ! 1. We say that A is rih if every sequene g, whih tends to in�nity,

possesses a subsequene h for whih the limit operator A

h

exists. If H is a

�nite-dimensional Hilbert spae, then every band-dominated operator on E

N

=

l

2

(Z

N

; H) is rih. The lass of all rih band-dominated operators on E

N

will be

denoted by A

rih

N

. This lass is a losed and symmetri subalgebra of L(E

N

). For

this and further results on limit operators, whih are ited here without proof,

we refer to [9, 10, 11℄.

In what follows, we will exlusively deal with the �nite setion method for

rih band-dominated operators. It will be onvenient to onsider, instead of

the one-sided sequene (P

n

AP

n

)

n2N

of operators ating on ImP

n

, the two-sided

sequene (P

n

AP

n

+ Q

n

)

n2Z

of operators ating on E

N

, where P

n

:= 0 if n < 0

and Q

n

:= I � P

n

for all n. Clearly, both sequenes are simultaneously stable or

not.

With every bounded sequene A = (A

n

)

n2Z

of operators on E

N

, we assoiate

an operator Op (A) on E

N+1

as follows. For, we write every vetor x 2 Z

N+1

as x = (x

0

; x

N+1

) 2 Z

N

� Z and, for every m 2 Z, we de�ne the operator of

restrition

R

m

: E

N+1

! E

N

; (R

m

f)(x

0

) := f(x

0

; m)
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and the operator of embedding

S

m

: E

N

! E

N+1

; (S

m

f)(x

0

; n) :=

�

f(x

0

) if n = m

0 if n 6= m:

Finally, we set

(Op (A)f)(x

0

; m) := (A

m

R

m

f)(x

0

):

It turns out that, if A is a rih band dominated operator on E

N

, then Op (A)

with A := (P

n

AP

n

+Q

n

)

n2Z

is a rih band-dominated operator on E

N+1

. We let

�

stab

(A) stand for the set of all operators R

m

BS

m

where m 2 Z and where B is

a limit operator of Op (A). In [11℄, the following is proved.

Theorem 2.1 Let A 2 A

rih

N

. Then the sequene A := (P

n

AP

n

+ Q

n

) is stable

if and only if all operators in �

stab

(A) are invertible and if the norms of their

inverses are uniformly bounded.

For A 2 A

rih

N

, let H

A

denote the set of all sequenes h for whih the limit

operator A

h

exists. If h 2 H

A

, then the limit operators B

h

exist for all operators

B whih belong to the smallest losed subalgebra C

�

(A) of L(E

N

) ontaining

the operators A, A

�

and the identity operator I. The algebra C

�

(A) is a unital

C

�

-algebra, and the mapping B 7! B

h

is a unital

�

-homomorphism from C

�

(A)

into L(E). We laim that

�

op

(B) = fB

h

: h 2 H

A

g for every operator B 2 C

�

(A) (1)

where �

op

(B) refers to the set of all limit operators of B. Indeed, let g 2 H be a

sequene for whih the limit operator B

g

exists. Sine A belongs to A

rih

N

, there

is a subsequene h of g whih lies in H

A

. Clearly, B

h

exists and is equal to B

g

.

With this observation, it is easy to hek that the proof of Theorem 2.1 given

in [11℄ arries over to the algebrai setting. For, we denote the algebra of all

bounded sequenes (A

n

)

n2Z

, provided with element-wise operations and with the

supremum norm, by F , and the smallest losed subalgebra of F , whih ontains

all sequenes (P

n

AP

n

+Q

n

) with A 2 A

rih

N

, by B

rih

N

.

Theorem 2.2 A sequene A 2 B

rih

N

is stable if and only if all operators in

�

stab

(A) are invertible and if the norms of their inverses are uniformly bounded.

For an equivalent formulation whih �ts to our purposes, we agree upon the

following de�nition.

De�nition 2.3 Let B be a C

�

-algebra with identity element e and, for every

element t of a set T , let B

t

be a C

�

-algebra with identity element e

t

, and let

W

t

be a

�

-homomorphism from B into B

t

with W

t

(e) = e

t

. We all fW

t

g

t2T

a

weakly suÆient family of homomorphisms for B if the following assertions are

equivalent for every b 2 B:
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(a) b is invertible in B.

(b) W

t

(b) is invertible in B

t

for every t 2 T , and

sup

t2T

k(W

t

(b))

�1

k <1:

We all fW

t

g

t2T

a suÆient family of homomorphisms for B if, for every b 2 B,

the assertion (a) is equivalent to

() W

t

(b) is invertible in B

t

for every t 2 T .

Let G stand for the set of all sequenes (A

n

) 2 F with limkA

n

k = 0. This set

forms a losed ideal of F , and a sequene A 2 F is stable if and only if its

oset A+ G is invertible in the quotient algebra F=G. Further, given a sequene

A = (A

n

) 2 B

rih

N

, let C

�

(A) denote the smallest losed subalgebra of F whih

ontains the sequenes A, A

�

:= (A

�

n

) and I := (I).

If h 2 H

Op(A)

and m 2 Z, then the limit operator (Op(B))

h

exists for every

sequene B 2 C

�

(A), and every limit operator of Op(B) arises in this way.

Thus, B 7! R

m

(Op(B))

h

S

m

is a

�

-homomorphism from C

�

(A) into L(E). Sine

the ideal C

�

(A) \ G lies in the kernel of that homomorphism, the mapping

W

h;m

: C

�

(A)=(C

�

(A) \ G)! L(E); B+ C

�

(A) \ G 7! R

m

(Op(B))

h

S

m

is orretly de�ned for every sequene h 2 H

Op(A)

and everym 2 Z. The following

is an immediate onsequene of Theorem 2.2.

Theorem 2.4 Let A 2 B

rih

N

. Then the set fW

h;m

g with h 2 H

Op(A)

and with

m running through Z forms a weakly suÆient family of homomorphisms for the

algebra C

�

(A)=(C

�

(A) \ G).

3 Weakly suÆient families and spetra

Now we turn over to a more general ontext. Throughout this setion, let B

be a C

�

-algebra with identity element e and let T be a non-empty set. Further

suppose that, for every t 2 T , we are given a C

�

-algebra B

t

with identity e

t

and

a

�

-homomorphism W

t

from B into B

t

with W

t

(e) = e

t

.

It is our goal to realize how ertain spetral quantities of b 2 B an be ex-

pressed by the orresponding spetral quantities of theW

t

(b), provided that fW

t

g

forms a weakly suÆient (a suÆient) family of homomorphisms. It will be on-

venient to use the following notation. Given a family (M

t

)

t2T

of subsets of C , we

set

sup

t2T

M

t

:= los ([

t2T

M

t

);

and we all sup

t2T

M

t

the maximum of the family (M

t

) (and write max

t2T

M

t

in

that ase) if [

t2T

M

t

is losed.
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Norms. We start with a relation between the norms of b and of W

t

(b). (In the

very weak sense that the spetrum of b is ontained in the losed ball with radius

kbk, the norms might also be onsidered as some kind of a spetral approxima-

tion.)

Theorem 3.1 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆient

family for B, then

kbk = sup

t2T

kW

t

(b)k

t

for every b 2 B: (2)

If the family fW

t

g

t2T

is suÆient, then the supremum in (2) is a maximum.

Proof.

�

-Homomorphisms are ontrative. Hene,

kbk � sup

t2T

kW

t

(b)k

t

for every b 2 B:

Suppose there is a b 2 B suh that kbk > sup

t2T

kW

t

(b)k

t

. Then, by the C

�

-

axiom,

kb

�

bk > sup

t2T

kW

t

(b

�

b)k

t

:

Set d := kb

�

bk�sup

t2T

kW

t

(b

�

b)k

t

. Then kW

t

(b

�

b)k � kb

�

bk�d < kb

�

bk for every

t 2 T . Hene, all operators W

t

(b

�

b � kb

�

bke) = W

t

(b

�

b) � kb

�

bke

t

are invertible,

and

k(W

t

(b

�

b� kb

�

bke))

�1

k = sup

x2�(W

t

(b

�

b))

j(x� kb

�

bk)

�1

j

� sup

x2[0;�(W

t

(b

�

b))℄

j(x� kb

�

bk)

�1

j = (kb

�

bk � �(W

t

(b

�

b)))

�1

< 1=d

where � denotes the spetral radius. Thus,

sup

t2T

k(W

t

(b

�

b� kb

�

bke))

�1

k � 1=d:

Sine fW

t

g is a weakly suÆient family by assumption, the latter estimate implies

the invertibility of b

�

b� kb

�

bke, whih is impossible. This shows (2). The result

for suÆient families if Theorem 5.39 in [7℄.

Spetra. As usual, we let

�(b) = �

B

(b) := f� 2 C : b� �e is not invertibleg:

Theorem 3.2 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆient

family for B, then

�

B

(b) = sup

t2T

�

B

t

(W

t

(b)) (3)

for all normal elements b of B. If the family fW

t

g

t2T

is suÆient, then the

supremum in (3) is a maximum, and the assertion holds for every b 2 B.
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Proof. The inlusion � in (3) is trivial and holds also in the ontext of general

Banah algebras. It remains to show that, for every normal element b 2 B,

� 62 sup

t2T

�

B

t

(W

t

(b)) ) � 62 �

B

(b):

Without loss, let � = 0. Then, sine sup

t2T

�

B

t

(W

t

(b)) is ompat, there is a

losed disk with enter 0 and with positive radius r whih has no points with

sup

t2T

�

B

t

(W

t

(b)) in ommon. Thus, W

t

(b) is invertible for every t 2 T , and

sine (W

t

(b))

�1

is normal, we get

k(W

t

(b))

�1

k = �((W

t

(b))

�1

)

= supf� 2 C : � 2 �((W

t

(b))

�1

)g

= inff� 2 C : � 2 �(W

t

(b))g

�1

< 1=r:

The weak suÆieny of fW

t

g implies the invertibility of b. The assertion for

suÆient families follows immediately from the de�nitions.

Pseudospetra. Let " > 0. The "-pseudospetrum of b 2 B is the set

�

"

(b) := f� 2 C : b� �e is not invertible or k(b� �e)

�1

k � 1="g:

Pseudospetra are non-empty and ompat, and for the pseudospetral radius of

an element b 2 B one has

maxfj�j : � 2 �

"

(b)g � kbk+ ": (4)

Basi properties of pseudospetra an be found in [1, 3, 7, 12, 14, 15℄. The

following result is based on arguments from [1℄.

Theorem 3.3 Let B, B

t

and W

t

be as above, and let " > 0. If fW

t

g

t2T

is a

weakly suÆient family for B, then

�

"

(b) = sup

t2T

�

"

(W

t

(b)) for every b 2 B: (5)

If the family fW

t

g

t2T

is suÆient, then the supremum in (5) is a maximum.

Again, one inlusion holds in a more general ontext. We formulate it separately.

Lemma 3.4 Let B and C be unital Banah algebras and W : B ! C be a unital

and ontrative homomorphism. Then

�

"

(W (b)) � �

"

(b) for every b 2 B:
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Proof. Let � 2 �

"

(W (b)). If W (b) � �e = W (b � �e) is not invertible, then

b � �e is not invertible. Hene, � 2 �

"

(b) in this ase. Let now W (b � �e) be

invertible and k(W (b � �e))

�1

k � 1=". If b � �e is not invertible, then we have

� 2 �

"

(b) again. If b � �e is invertible, then (W (b � �e))

�1

= W ((b � �e)

�1

),

whene kW ((b � �e)

�1

)k � 1=". Sine W is a ontration, this shows that

k(b� �e)

�1

k � 1=", i.e. � 2 �

"

(b).

In the proof of Theorem 3.3, we will employ the following result by Daniluk

whih states that the maximum priniple (whih, in general, does not hold for

operator-valued analyti funtions) holds for resolvent funtions.

Theorem 3.5 Let B be a C

�

-algebra with identity e, and let a 2 B be suh that

a � ze is invertible for all z in some open subset U of the omplex plane. If

k(a� ze)

�1

k � C for all z 2 U , then k(a� ze)

�1

k < C for all z 2 U .

A proof is in [7℄, Theorem 3.32.

Proof of Theorem 3.3. From the preeding lemma we onlude that

�

"

(W

t

(b)) � �

"

(b) for every b 2 B and t 2 T:

Sine pseudospetra are losed, this implies

sup

t2T

�

"

(W

t

(b)) � �

"

(b) for every b 2 B

for every family fW

t

g of

�

-homomorphisms. For the reverse inlusion, let fW

t

g

be a weakly suÆient family of

�

-homomorphisms, and let � 2 �

"

(b). If there is

a t 2 T suh that � 2 �

"

(W

t

(b)), then nothing is to prove. So let us assume that

all elements W

t

(b� �e) are invertible and that k(W

t

(b� �e))

�1

k < 1=". Then

sup

t2T

k(W

t

(b� �e))

�1

k � 1=":

Sine fW

t

g is a weakly suÆient family, the element b��e is invertible, and from

Theorem 3.1 we onlude that k(b��e)

�1

k � 1=". Sine � 2 �

"

(b) by hypothesis,

this shows that k(b� �e)

�1

k = 1=".

In every open neighborhood U of �, there is a

~

� suh that k(b�

~

�e)

�1

k > 1=".

Indeed, otherwise we would have k(b �

~

�e)

�1

k � 1=" for all

~

� 2 U whene, via

Theorem 3.5, k(b�

~

�e)

�1

k < 1=" for all

~

� 2 U inluding

~

� = �.

Thus, if k 2 N is suÆiently large, then there are �

k

2 C suh that

j�� �

k

j < 1=k and k(b� �

k

e)

�1

k �

1

"� 2=k

:

Further, again by Theorem 3.1, there are t

k

2 T suh that

kW

t

k

(b� �

k

e))

�1

k = k(W

t

k

(b)� �

k

e

t

k

)

�1

k �

1

"� 1=k

:

Sine

1

"�1=k

>

1

"

, we have �

k

2 �

"

(W

t

k

(b)), and sine �

k

! � as k ! 1, we get

� 2 sup

t2T

�

"

(W

t

(b)). Thus, (5) is veri�ed. The proof for suÆient families is in

[7℄, Corollary 5.40.
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Numerial ranges. Let B be a Banah algebra with identity e and S(B) its

state spae, i.e. the set of all f 2 B

�

with f(e) = 1 and kfk = 1. The numerial

range of b 2 B is the set

N(b) := ff(b) : f 2 S(B)g:

Numerial ranges are non-empty, ompat and onvex subsets of C . For a

bounded linear operator A on a Hilbert spae H, one also onsiders its spatial

numerial range

SN(A) := fhAx; xi : x 2 H; kxk = 1g:

Let A 2 L(H). Then the spatial numerial range SN

H

(A) (where A is onsidered

as a bounded linear operator on H) and the numerial range N

L(H)

(A) (where A

is onsidered as an element of the C

�

-algebra L(H)) are related by

N

L(H)

(A) = losSN

H

(A):

These and further properties of numerial ranges an be found in [4, 5, 7℄. The

proof of the following result on based on arguments from [13℄.

Theorem 3.6 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆient

family for B, then

N(b) = onv sup

t2T

N(W

t

(b)) for every b 2 B: (6)

One of the inlusions in (6) holds in the more general ontext of Banah algebras.

Lemma 3.7 Let B and C be unital Banah algebras and W : B ! C be a unital

and ontrative homomorphism. Then

N(W (b)) � N(b) for every b 2 B:

Proof. Let � 2 N(W (b)), and let f be a state of C with f(W (b)) = �. Sine

W is unital and ontrative, one has (f ÆW )(e) = 1 and kf ÆWk � 1, whene

kf ÆWk = 1. Thus, f ÆW is a state of B, whih implies that � 2 N(b).

Proof of Theorem 3.6. From Lemma 3.7 we infer that

[

t2T

N(W

t

(b)) � N(b):

Sine N(b) is a losed and onvex set, this implies the inlusion � in (6).

For the reverse inlusion, we think of eah B

t

as a C

�

-algebra of linear bounded

operators on a Hilbert spae H

t

(whih is possible by the GNS-onstrution). Let

H := �H

t

refer to the orthogonal sum of the Hilbert spaes H

t

, t 2 T , and write

W for the mapping from B into L(H) whih assoiates with every b 2 B the

operator

(x

t

)

t2T

7! (W

t

(b)x

t

)

t2T

:

9



This mapping is an isometry from B onto the C

�

-subalgebraW (B) of L(H). Thus,

N

B

(b) = N

W (B)

(W (b)). It is further a simple onsequene of the Hahn-Banah

Theorem that N

W (B)

(W (b)) = N

L(H)

(W (b)), whih implies that

N

B

(b) = N

W (B)

(W (b)) = N

L(H)

(W (b)) = losSN

H

(W (b)):

Thus, given � 2 N

B

(b) and " > 0, there is a vetor (x

t

)

t2T

2 H with norm 1 suh

that

j�� h(W

t

(b)x

t

); (x

t

)i

H

j =

�

�

�

�

�

��

X

t2T

hW

t

(b)x

t

; x

t

i

H

t

�

�

�

�

�

< ":

Let M denote the (at most ountable) set of all t 2 T with x

t

6= 0 and, for t 2 M ,

set y

t

:= x

t

=kx

t

k. Then we have

�

�

�

�

�

��

X

t2M

hW

t

(b)x

t

; x

t

i

H

t

�

�

�

�

�

=

�

�

�

�

�

��

X

t2M

kx

k

k

2

hW

t

(b)y

t

; y

t

i

H

t

�

�

�

�

�

< ":

Sine kx

t

k

2

� 0 and

P

t2M

kx

t

k

2

= k(x

t

)k

2

H

= 1, this shows that � an be approx-

imated by onvex linear ombinations of points hW

t

(b)y

t

; y

t

i 2 [

t2T

SN

H

t

(W

t

(b))

as losely as desired. Hene,

� 2 los onv [

t2T

SN

H

t

(W

t

(b)) � los onv [

t2T

N

L(H

t

)

(W

t

(b));

whih gives

� 2 los onv [

t2T

N

W

t

(B)

(W

t

(b)): (7)

Sine los onvM = onv losM for every bounded subset M of the omplex

plane, (7) is just the assertion.

4 Asymptoti behaviour of norms and spetra

Beginning with this setion, we let T = (T; �) be a direted set, i.e. � is a

partial order on T , and for eah pair s; t 2 T there is a u 2 T suh that u � s

and u � t. Further we assume that, for every t 2 T , we are given a C

�

-algebra B

t

with identity e

t

. By F we denote the set of all bounded funtions a on T whih

take at t 2 T a value a

t

2 B

t

. This set beomes a C

�

-algebra with identity when

provided with pointwise operations and with the supremum norm. The set G of

all nets (g

t

)

t2T

2 F with lim

t2T

kg

t

k = 0 forms a losed ideal of F .

Let a = (a

t

)

t2T

2 F . The following results relate the asymptoti behaviour

of the spetra (some kinds of generalized spetra) of the elements a

t

with the

spetrum (the generalized spetrum) of the oset of the net (a

t

) modulo the ideal

G and, hene, in terms of the stability spetrum of the sequene (A

n

) in ase

T = N . For, we de�ne the limes superior of a family (M

t

)

t2T

of subsets of the

omplex plane by

lim sup

t2T

M

t

:= \

t2T

sup

s�t

M

s

:
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Norms. Again, we start with a result on the asymptoti behaviour of norms.

Proposition 4.1 For all nets a = (a

t

) 2 F ,

ka+ Gk

F=G

= lim sup

t2T

ka

t

k:

Proof. Let a = (a

t

) 2 F . For every net g = (g

t

) 2 G,

lim sup ka

t

k = lim supka

t

+ g

t

k � sup ka

t

+ g

t

k = ka + gk

F

;

whene the estimate lim sup ka

t

k � ka+Gk. For the reverse inequality, let " > 0,

and hoose t

0

2 T suh that ka

t

k � lim supka

t

k + " for all t � t

0

. The net g,

de�ned by

g

t

:=

�

0 if t � t

0

�a

t

if t 6� t

0

;

belongs to G, and

ka + Gk � ka + gk = sup

t�t

0

ka

t

k � lim supka

t

k+ ":

Letting " go to zero yields the desired result.

Combining this result (where now T is N and � is �) with Theorems 3.1, 2.4

and 2.1, we get:

Theorem 4.2 Let A = (A

n

) 2 B

rih

N

. Then

lim supkA

n

k = kA+ Gk = supfkA

h

k : A

h

2 �

stab

(A)g:

Proof. The �rst equality follows from the preeding proposition. The the seond

one is a onsequene of Theorems 3.1 and 2.1 whih follows sine the operators

in �

stab

(A) are just the operators of the formW

h;m

(A) with h 2 H

Op(A)

and with

m 2 Z.

Spetra. Let (a

t

) 2 F . It turns out that the limes superior lim sup

t2T

�(a

t

) is

related to some kind of stability whih might be alled `spetral' stability. The

net (a

t

) is spetrally stable if there is a t

0

2 T suh that the a

t

are invertible and

the spetral radii �(a

�1

t

) of their inverses are uniformly bounded for all t � t

0

(whereas the ommon notion of stability requires the invertibility of a

t

for all

t � t

0

and the uniform boundedness of the norms ka

�1

t

k). Clearly, every stable

net is also spetrally stable.

Theorem 4.3 Let (a

t

) 2 F . Then � 2 lim sup

t2T

�(a

t

) if and only if the net

(a

t

� �e

t

) fails to be spetrally stable.

11



Proof. Let the net (a

t

��e

t

) be spetrally stable, i.e. there is a t

0

2 T suh that

sup

t�t

0

�((a

t

� �e

t

)

�1

) =: m <1:

Then, for all t � t

0

,

m � supfj�j : � 2 �((a

t

� �e

t

)

�1

)g = (inffj�j : � 2 �(a

t

� �e

t

)g)

�1

;

whene

1=m � inffj�j : � 2 �(a

t

)� �g = inffj�� �j : � 2 �(a

t

)g = dist (�; �(a

t

)):

Hene, � annot belong to lim sup�(a

t

).

Let, onversely, � 62 lim sup�(a

t

). Then there is an t

0

2 T suh that �

does not belong to los [

t�t

0

�(a

t

). The boundedness of the net (a

t

) implies the

ompatness of this set, hene,

dist (�; los [

t�t

0

�(a

t

)) =: m > 0:

Consequently,

dist (0; �(a

t

� �e

t

)) � m > 0 for all t � t

0

;

whih implies that a

t

� �e

t

is invertible and �((a

t

� �e

t

)

�1

) � 1=m for all t � t

0

.

Thus, the net (a

t

) is spetrally stable.

As we have just seen, the determination of lim sup�(a

t

) requires to investigate

the spetral stability of the nets (a

t

� �e

t

). This an be easily done for nets for

whih stability and spetral stability oinide.

Corollary 4.4 Let a = (a

t

) 2 F be a net of normal elements. Then

lim sup�(a

t

) = �

F=G

(a + G):

Proof. The spetral radius and the norm of a normal element oinide. Hene,

the sequene (a

t

��e

t

) is spetrally stable if and only if it is stable. The stability

of (a

t

� �e

t

) is equivalent to the invertibility of the oset (a

t

� �e

t

) + G.

These results lead to the following theorem in a similar way as we derived Theo-

rem 4.2.

Theorem 4.5 Let A = (A

n

) 2 B

rih

N

be a sequene of normal operators. Then

lim sup�(A

n

) = �(A+ G) = sup �(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).
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Pseudospetra and numerial ranges. Here are the analogous results for

pseudospetra and numerial ranges. In ase T = N , these results an be derived

in a similar way as in [7℄, Theorems 3.31 and 3.46. In the following setions we

will propose an alternative approah whih also works in the general ase.

Theorem 4.6 Let a = (a

t

) 2 F and " > 0. Then

lim sup�

"

(a

t

) = �

"

F=G

(a+ G):

Combining the preeding theorem with Theorems 2.4 and 3.3 we get the following

result for the pseudospetra of the �nite setions of a band-dominated operator.

Theorem 4.7 Let A = (A

n

) 2 B

rih

N

and " > 0. Then

lim sup�

"

(A

n

) = �

"

(A+ G) = sup �

"

(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).

Theorem 4.8 Let a = (a

t

) 2 F . Then

onv lim sup

n!1

N(a

t

) = N

F=G

(a + G):

Observe that the limes superior of a net of onvex sets need not to be onvex

again, whih explains the onv operator on the left hand side. The impliations

of Theorem 4.8 (in ombination with Theorems 2.4 and 3.6) for the �nite setion

method are as follows.

Theorem 4.9 Let A = (A

n

) 2 B

rih

N

. Then

onv lim supN(A

n

) = N

F=G

(A+ G) = supN(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).

5 Theorems of Weyl type for onrete set se-

quenes

In this setion, we will derive theorems of Weyl type for some set funtions. By

a set funtion on an algebra B, we mean a mapping from B into the set of all

subsets of the omplex plane. Then we say that a Weyl type theorem holds for

two set funtions �

C

on an algebra C and �

C=J

on the quotient C=J of C by its

ideal J if

�

C=J

(+ J ) = \

j2J

�

C

(b + j) for every  2 C:

13



Spetra. If �(b) is the spetrum of b, then there is no Weyl type theorem in

general. To have an example, let C = L(l

2

), J the ideal of the ompat operators

on l

2

, and  = V the forward shift operator on l

2

. Then  + j is a Fredholm

operator with non-vanishing index for every j 2 J , whene 0 2 �( + j). But V

is a Fredholm operator, hene, + J is invertible and 0 62 �(+ J ).

It turns out that there is a theorem of Weyl type for spetra in ase of the

algebra F and its ideal G.

Theorem 5.1 Let F and G be as above. Then, for every net a 2 F ,

�

F=G

(a+ G) = \

g2G

�

F

(a + g): (8)

One of the inlusions in (8) holds in a more general setting.

Lemma 5.2 Let C be a Banah algebra with identity and J a losed ideal of C.

Then, for every  2 C,

�

C=J

(+ J ) � \

j2J

�

C

(+ j):

Indeed, if W : C ! C=J denotes the anonial homomorphism, then

�(+ J ) = �(W ()) = �(W (+ j)) � �(+ j) for every j 2 J :

Proof of Theorem 5.1. The inlusion � in (8) follows from Lemma 5.2. For

the reverse inlusion, let � 62 �(a + G), i.e. the oset a � �e + G is invertible in

F=G. Then there are nets b 2 F and g; h 2 G suh that

(a� �e)b = e+ g and b(a� �e) = e + h:

Choose t

g

; t

h

2 T suh that kg

t

k < 1=2 for all t � t

g

and kh

t

k < 1=2 for all

t � t

h

, and let t

0

2 T be suh that t

0

� t

g

and t

0

� t

h

. Further, de�ne a

0

; b

0

2 F

by

a

0

t

:=

�

a

t

if t � t

0

(1 + �)e

t

if t 6� t

0

and b

0

t

:=

�

b

t

if t � t

0

e

t

if t 6� t

0

:

Then a� a

0

and b� b

0

belong to G, and

(a

0

� �e)b

0

= e+ g

0

and b

0

(a

0

� �e) = e + h

0

(9)

with

g

0

t

:=

�

g

t

if t � t

0

0 if t 6� t

0

and h

0

t

:=

�

h

t

if t � t

0

0 if t 6� t

0

:

In partiular, kg

0

k � 1=2. Thus, e+ g

0

is invertible if F , and its inverse is of the

form e+ k with k 2 G. Multiplying the �rst equality of (9) by e+ k from the left

hand side yields

(a+ s� �e)b

0

= e with s := ka

0

� (a� a

0

)� �k 2 G:

Repeating these arguments for the seond equality in (9), we get the invertibility

of b

0

and, hene, that of a + s � �e. Thus, � 62 �(a + s), whene �nally � 62

\

g2G

�(a + g).
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Pseudospetra. The example from the preeding paragraph also indiates

that, in general, one annot expet a theorem of Weyl type for pseudospetra.

But for the onrete algebra F and its ideal G, there is again suh a result.

Theorem 5.3 Let F and G be as above, and let " > 0. Then, for every net

a 2 F ,

�

"

F=G

(a+ G) = \

g2G

�

"

F

(a + g): (10)

Observe that again one inlusion in (10) holds in the ontext of Banah algebras,

whih follows easily from Lemma 3.4.

Lemma 5.4 Let C be a Banah algebra with identity, J a losed ideal of C, and

" > 0. Then, for every  2 C,

�

"

C=J

(+ J ) � \

j2J

�

"

C

(+ j):

Proof of Theorem 5.3. The inlusion � is a onsequene of the preeding

lemma, and for the reverse inlusion we proeed as in the proof of the preeding

theorem. If � 62 �

"

(a + G), then there is a net b 2 F with � := kb + Gk < 1=",

and there are nets g; h 2 G suh that

(a� �e)b = e+ g and b(a� �e) = e + h:

Further, sine kb + Gk < 1=", there is a net k 2 G with kb � kk < (� + 1=")=2.

Let 0 < Æ < (1=" � �)=2 and hoose t

k

2 T suh that kk

t

k < Æ for all t � t

k

.

This hoie implies that

kb

t

k � kb

t

� k

t

k+ kk

t

k � (� + 1=")=2 + Æ < " (11)

for all t � t

k

. Let further t

g

and t

h

be as in the proof of Theorem 5.1, and let

t

0

2 T be greater than both t

g

; t

h

and t

k

. Then we de�ne a

0

; b

0

2 F by

a

0

t

:=

�

a

t

if t � t

0

(�+ 1=�)e

t

if t 6� t

0

and b

0

t

:=

�

b

t

if t � t

0

�e

t

if t 6� t

0

:

Observe that

kb

0

k = sup

t2T

kb

0

t

k = maxfsup

t�t

0

kb

t

k; �g � maxf(� + 1=")=2 + Æ; �g < 1="

due to (11). The remaining steps are as in the proof of Theorem 5.1. They show

the existene of a net s 2 G suh that

(a+ s� �e)b

0

= b

0

(a+ s� �e) = e;

whene � 62 �

"

(a+ s).

Let us mention that a similar result also holds (with obvious modi�ations in
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the proof) for the so-alled strutured pseudospetra or spetral value sets of an

element a of a C

�

-algebra C, whih are de�ned by

�

"

b;

(a) := f� 2 C : a� �e is not invertible or kb(a� �e)

�1

k � 1="g

where b;  are �xed elements of C and " > 0. Let us also mention that in [2℄, there

is proved a version of Theorem 3.5 whih is then used to derive a modi�ation

of Theorem 3.3. This modi�ation holds for strutured pseudospetra of ertain

band matries the entries of whih are onstant along eah diagonal. Even though

this lass of matries seems to be very speial, the results from [2℄ are highly non-

trivial, and there seems to be no hope to extend these results to more general

lasses of band and band-dominated operators.

Numerial ranges. Here the situation is muh easier: one has a Weyl type

theorem for every Banah algebra with identity and every losed ideal of that

algebra.

Theorem 5.5 Let C be a Banah algebra with identity and J a losed ideal of

C. Then, for every  2 C,

N

C=J

(+ J ) � \

j2J

N

C

(+ j):

A proof is in [5℄, Setion 22, Lemma 3.

6 The limes superior of a family of set funtions

Reall that a set funtion � on a Banah algebra B with identity e is alled

� bounded if �(a) is a bounded subset of C for every a 2 B.

� semi-homogeneous if �(a+�e) � �+�(a) for every a 2 B and every � 2 C .

� upper semi-ontinuous at a 2 B if, for every " > 0, there is a Æ > 0 suh

that, for all b 2 B with kb�ak < Æ, �(b) lies in the "-neighborhood of �(a).

Let T , B

t

, F and G be as in the preeding setions. Assume further that, for

every t 2 T , we are given a set funtion �

t

on B

t

. To the family (�

t

)

t2T

, we

assoiate two set funtions �

sup

and �

limsup

on F by

�

sup

(a) := sup

t2T

�

t

(a

t

) = los [

t2T

�

t

(a

t

)

and

�

limsup

(a) := lim sup

t2T

�

t

(a

t

) = \

t2T

sup

s�t

�

s

(a

s

)

where a = (a

t

). Further we all the family (�

t

)

t2T

uniformly bounded if the set

funtion �

sup

is bounded, and we all this family uniformly upper semi-ontinuous

at a 2 F if, for every " > 0, there is a Æ > 0 suh that, for all b 2 F with

kb� ak < Æ and for all t 2 T , �

t

(b

t

) lies in the "-neighborhood of �

t

(a

t

).
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Theorem 6.1 Let T , B

t

, �

t

, F and G be as above, and let every set funtion �

t

be semi-homogeneous and the family (�

t

)

t2T

be uniformly bounded and uniformly

upper semi-ontinuous on F . Then, for every net a := (a

t

)

t2T

2 F ,

�

limsup

(a) = \

g2G

�

sup

(a+ g) (12)

or, equivalently,

lim sup

t2T

�

t

(a

t

) = \

g2G

sup

t2T

�

t

(a

t

+ g

t

):

Proof. Abbreviate the left and the right hand side of (12) by S

l

and S

r

, respe-

tively. We �rst show the inlusion S

r

� S

l

. Let � 2 \

g2G

sup

t2T

�

t

(a

t

+ g

t

) and

s 2 T . Choose r 2 C suh that

dist (�; r + sup

t6�s

�

t

(0)) � 1

whih is possible sine sup

t6�s

�

t

(0) � sup

t2T

�

t

(0) = �

sup

(0) is bounded by

assumption. Then de�ne g 2 F by

g

t

:=

�

0 if t � s

�a

t

+ re

t

if t 6� s:

The net g lies in G. Consequently,

� 2 sup

t2T

�

t

(a

t

+ g

t

) = los ([

t2T

�

t

(a

t

+ g

t

))

= los ([

t�s

�

t

(a

t

+ g

t

) [ [

t6�s

�

t

(a

t

+ g

t

))

= los ([

t�s

�

t

(a

t

) [ [

t6�s

�

t

(re

t

))

� los ([

t�s

�

t

(a

t

) [ (r + [

t6�s

�

t

(0)))

due to the semi-homogeneity. The hoie of r ensures that � 62 los (r+[

t6�s

�

t

(0)).

Hene,

� 2 los ([

t�s

�

t

(a

t

)) = sup

t�s

�

t

(a

t

)

whene � 2 S

l

.

To prove the reverse inlusion, let � 2 lim sup

t2T

�

t

(a

t

) and g = (g

t

) 2 G.

Due to the uniform upper semi-ontinuity at a + g 2 F , given " > 0, there is a

Æ > 0 suh that, for all b = (b

t

) 2 F with kb � (a + g)k < Æ, �

t

(b

t

) lies in the

"-neighborhood of �

t

(a

t

+ g

t

). Choose s 2 T suh that kg

t

k < Æ=2 for all t � s,

and de�ne b = (b

t

) 2 F by

b

t

:=

�

a

t

if t � s

a

t

+ g

t

if t 6� s:

17



Then kb� (a+ g)k � Æ=2 < Æ, and from � 2 S

l

we onlude

� 2 sup

t�s

�

t

(a

t

) = sup

t�s

�

t

(b

t

) = los ([

t�s

�

t

(b

t

))

� los [

t�s

("-neighborhood of �

t

(a

t

+ g

t

))

� los [

t2T

("-neighborhood of �

t

(a

t

+ g

t

)):

Thus, for every " > 0, there is a �

"

in the union over t of all "-neighborhoods of

�

t

(a

t

+ g

t

) for whih j�� �

"

j � ". Consequently,

� 2 los [

t2T

�

t

(a

t

+ g

t

):

Sine g 2 G is arbitrary, this shows that � 2 S

r

.

7 Appliations to onrete set funtions

Pseudospetra. Let us hek that the assumptions of Theorem 6.1 are satis-

�ed if the set funtions �

t

are spei�ed to be the "-pseudospetra. The semi-

homogeneity is evident in this ase, and the uniform boundedness follows from

(4).

Proposition 7.1 Let B

t

and F be as above, and let "

0

> 0. Let further �

t

= �

"

0

for every t 2 T . Then the family (�

t

)

t2T

is uniformly upper semi-ontinuous on

F .

Proof. Suppose there is a net a

(0)

2 F at whih the family (�

t

) is not uniformly

upper semi-ontinuous. Thus, there is an " > 0 suh that, for all n 2 N, there

is a net a

(n)

2 F with ka

(n)

� a

(0)

k < 1=n, and there are points t

n

2 T and

�

n

2 �

"

0

(a

(n)

t

n

) with

dist (�

n

; �

"

0

(a

(0)

t

n

)) � ":

Sine [

n

�

"

0

(a

(n)

t

n

) is bounded, there are n

1

< n

2

< : : : suh that the sequene

(�

n

k

) onverges to a �

�

2 C . For simpliity, let n

k

= k, i.e. let the sequene (�

n

)

onverge to �

�

. Consider

a

(n)

t

n

� �

n

e

t

n

= a

(0)

t

n

� �

�

e

t

n

+ (�

�

� �

n

)e

t

n

+ a

(n)

t

n

� a

(0)

t

n

; (13)

and hoose n

0

suh that j�

�

��

n

j < "=2 for all n � n

0

. Set further T

�

:= ft

n

: n �

n

0

g, and let F

�

refer to the produt of the algebras B

t

with t 2 T

�

. Evidently,

the family of homomorphisms

F

�

! B

t

; a! a

t

with t 2 T

�

is weakly suÆient for F

�

. Thus, if we denote the restrition of a

(0)

onto T

�

by

a

(0)

again, and if we onsider this restrition as an element of the algebra F

�

,

then we onlude from

dist (�

�

; �

"

0

(a

(0)

t

n

)) � dist (�

n

; �

"

0

(a

(0)

t

n

))� j�

�

� �

n

j � "� "=2 = "=2

18



(whih holds for all n � n

0

) and from Theorem 3.3 that �

�

62 �

"

0

F

�

(a

(0)

). Thus,

a

(0)

� �

�

e is "

0

-invertible in F

�

. Sine the set of all "

0

-invertible elements of a

Banah algebra is open, there is an "

1

> 0 suh that a

(0)

��

�

e+ s is "

0

-invertible

for all s 2 F

�

with ksk < "

1

. Choose n

1

> n

0

suh that

j�

�

� �j+ ka

(n)

t

n

� a

(0)

t

n

k < "

1

=2 for all n � n

1

:

Then the net

T

�

3 t

n

7!

(

a

(0)

t

n

� �

�

e if n < n

1

a

(0)

t

n

� �

�

e

t

n

+ (�

�

� �

n

)e

t

n

+ a

(n)

t

n

� a

(0)

t

n

if n � n

1

is "

0

-invertible in F

�

. Hene, the right hand side of (13) is "

0

-invertible for

suÆiently large n, whereas the left hand side of (13) fails to be "

0

-invertible by

onstrution. Contradition.

Now the proof of Theorem 4.6 follows easily: the Weyl theorem (Theorem 5.3)

implies that

�

"

F=G

(a+ G) = \

g2G

�

"

F

(a + g);

whih is equal to \

g2G

sup

t2T

�

t

(a

t

+ g

t

) by Theorem 3.3, applied to the family

of all homomorphisms a 7! a

t

. From Theorem 6.1 we �nally onlude that

\

g2G

sup

t2T

�

t

(a

t

+ g

t

) = lim sup

t2T

�

t

(a

t

):

Numerial ranges. For the proof of Theorem 4.8 we need an auxiliary result.

Lemma 7.2 Let (T; �) be a direted set and let (M

t

)

t2T

be a bounded and mono-

tonially dereasing (i.e. M

s

� M

t

whenever s � t) net of non-empty losed

subsets of C . Then

onv \

t2T

M

t

= \

t2T

onvM

t

:

Proof. Sine \

t

M

t

� \

t

onvM

t

, and sine the intersetion of onvex sets is

onvex again, the inlusion onv \

t

M

t

� \

t

onvM

t

is evident.

Conversely, let m 2 \

t

onvM

t

. Then, for every t 2 T , there are elements

m

t

1

; m

t

2

in M

t

as well as non-negative numbers �

t

1

; �

t

2

with �

t

1

+ �

t

2

= 1 suh that

m = �

t

1

m

t

1

+ �

t

2

m

t

2

: (14)

Due to the boundedness of the net (M

t

), there exists a onvergent subnet (y

s

1

)

s2S

of the net (m

t

1

)

t2T

with limit m

1

2 los [

t

M

t

. (Reall that (y

s

1

)

s2S

is a subnet

of (m

t

1

)

t2T

if S is a direted set and if there is a mapping f : S ! T suh that

y

s

1

= m

f(s)

1

for all s 2 S and suh that, given t

0

2 T , there is an s

0

2 S with

f(s) � t

0

for all s � s

0

.) We laim that m

1

2M

t

for every t 2 T .
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Let t

0

2 T and " > 0. Then there is an s

0

2 S suh that jy

s

1

� m

1

j < " for

all s � s

0

. Further we hoose s

1

2 S suh that f(s) � t

0

for all s � s

1

, and we

hoose s

�

2 S suh that both s

�

� s

0

and s

�

� s

1

. Then

jy

s

�

1

�m

1

j = jm

f(s

�

)

1

�m

1

j < "

and m

f(s

�

)

1

2 M

t

0

sine f(s

�

) � t

0

. Thus, dist (m

1

; M

t

0

) < " for all " > 0. Sine

M

t

0

is losed, this implies m

1

2M

t

0

and proves our laim.

For s 2 S, set y

s

2

:= m

f(s)

s

. The same arguments as above yield the ex-

istene of a onvergent subnet of (y

s

2

)

s2S

the limit m

2

of whih belongs to M

t

for every t 2 T . Repeating these onsiderations for the nets (�

t

1

) and (�

t

2

)

as well, we �nally get onvergent subnets (z

u

1

)

u2U

; (z

u

2

)

u2U

; (�

u

1

)

u2U

; (�

u

2

)

u2U

of

(m

t

1

)

t2T

; (m

t

2

)

t2T

; (�

t

1

)

t2T

; (�

t

2

)

t2T

with limitsm

1

; m

2

2 \

t

M

t

and �

1

; �

2

2 [0; 1℄,

�

1

+ �

2

= 1, respetively. From (14), we onlude that

m = �

u

1

z

u

1

+ �

u

2

z

u

2

for all u 2 U;

whene m 2 onv \

t2T

M

t

.

Proof of Theorem 4.8. Let a = (a

t

) 2 F . From the Weyl theorem (Theorem

5.5) we know that

N(a + G) = \

g2G

N(a + g);

and Theorem 3.6 (applied to the weakly suÆient family for F , onsisting of all

homomorphisms a 7! a

t

) further yields

N(a+ G) = \

g2G

onv sup

t2T

N(a

t

+ g

t

): (15)

Fix s 2 T , hoose m

s

2 N(a

s

), and set

g

(s)

t

:=

�

0 if t � s

�a

t

+m

s

e

t

if t 6� s:

Then the net g(s) belongs to the ideal G and, sine N(a

t

+ g

(s)

t

) = fm

s

g � N(a

s

)

for all t 6� s, we get

sup

t2T

N(a

t

+ g

(s)

t

) = los [

t�s

N(a

t

) = sup

t�s

N(a

t

):

Together with equality (15), this implies that

N(a + G) � \

s2T

onv sup

t�s

N(a

t

):

Applying Lemma 7.2 to the sets M

s

:= los [

t�s

N(a

s

) we get

N(a + G) � onv \

s2T

sup

t�s

N(a

t

) = onv lim sup

t2T

N(a

t

): (16)
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The proof of the reverse inlusion is based on Theorem 6.1, with the set funtions

�

t

being the numerial ranges. The hypotheses of that theorem are evidently

satis�ed: sine states are linear and unital, one has the homogenity, and sine

the norm of a state is 1, one has

maxfj�j : � 2 N(a)g � kak;

whene the uniform boundedness. Further, if f is a state, then jf(a) � f(b)j �

ka � bk whih yields the uniform upper semi-ontinuity. Thus, Theorem 6.1

applies and yields the equality

lim sup

t2T

N(a

t

) = \

g2G

sup

t2T

N(a

t

+ g

t

):

The right hand side is obviously ontained in \

g2G

onv sup

t2T

N(a

t

+g

t

), and this

set oinides with \

g2G

N(a+ g) due to Theorem 3.6 and, hene, with N(a+ G)

by the Weyl theorem. Thus, lim sup

t2T

N(a

t

) � N(a + G), and sine numerial

ranges are onvex, this �nally implies that

onv lim sup

t2T

N(a

t

) � N(a + G);

whih �nishes the proof of Theorem 4.8.
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