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Abstra
t

This paper is devoted to relations between the spe
trum (or 
ertain

kinds of a generalized spe
trum) of a band-dominated operator A and of

the spe
tra of its approximations A

n

= P

n

AP

n

, obtained by 
ompressing

A onto the ranges of the orthogonal proje
tions P

n

. Parti
ular attention

is paid to the asymptoti
 behaviour of the spe
tra (or its generalizations)

of the operators A

n

. These results will appear as spe
ial 
ases of some

general theorems on spe
tral approximation.

1 Introdu
tion

Given a Hilbert spa
e H and a positive integer N , let E

N

stand for the linear

spa
e of all sequen
es f = (f(x))

x2Z

N
with values in H su
h that

kfk

2

:=

X

x2Z

N

kf(x)k

2

H

<1:

Clearly, E

N

is a Hilbert spa
e with respe
t to the inner produ
t

hf; gi :=

X

x2Z

N

hf(x); g(x)i

H

:

For k 2 Z

N

, we let V

k

refer to the shift operator on E

N

,

V

k

: f 7! g where g(x) := f(x� k);

and for every bounded fun
tion a : Z

N

! L(H), we 
onsider the operator M

a

of

multipli
ation by a,

M

a

: E

N

! E

N

; (M

a

f)(x) := a(x)f(x):

�
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A band-dominated operator on E

N

is a norm limit of a sequen
e of band operators

on E

N

, i.e. of operators whi
h are a �nite sum of operators M

a

V

k

where a and k

are as above.

For n 2 N , let P

n

refer to the proje
tion operator on E

N

whi
h maps the

sequen
e f to the sequen
e g where g(x) = f(x) if jxj � n and g(x) = 0 if

jxj > n. The operators A

n

:= P

n

AP

n

are 
alled the �nite se
tions of the band-

dominated operator A. The sequen
e (A

n

) is 
alled stable if there is an n

0

su
h

that the operators A

n

: ImP

n

! ImP

n

are invertible for all n � n

0

and if the

norms of their inverses are uniformly bounded. A stability 
riterion for the �nite

se
tion method for a band-dominated operator A has been derived in [11℄.

The goal of the present paper is to examine the asymptoti
 behaviour of the

spe
tra (and of some of their generalizations) of the operators P

n

AP

n

. These

results will be obtained as spe
ial 
ases of some general theorems on spe
tral

approximation. A 
onvenient way to formulate these general theorems uses the

language of C

�

-algebras. Thus, the appli
ation of these results to a 
on
rete

approximation sequen
e su
h as (P

n

AP

n

) requires not only a pre
ise knowledge

on the stability properties of the sequen
e (P

n

AP

n

) itself, but for every sequen
e

in a C

�

-algebra of sequen
es whi
h 
ontains (P

n

AP

n

).

The paper is organized as follows. We will start with re
alling the stability

results for the �nite se
tion method of band-dominated operators from [11℄ and

with extending these results to sequen
es in a C

�

-algebra B generated by �nite

se
tions sequen
es. The obtained generalization will be as follows: There is a

family fW

t

g of

�

-homomorphisms from B into L(E) su
h that a sequen
e A =

(A

n

) in B is stable if and only if all operators W

t

(A) are invertible and if the

norms of their inverses are uniformly bounded.

The latter is an obvious di�eren
e to some of the C

�

-algebrai
 stability results

whi
h were previously derived for several 
lasses of approximation sequen
es (see

[6, 7℄ for an overview). These former results are essentially of the following form:

With every sequen
e A in a 
ertain algebra of sequen
es, there is asso
iated a

family fW

t

(A)g of operators su
h that the sequen
e A is stable if and only if all

operators W

t

(A) are invertible. Thus, the uniform boundedness of the inverses

of the operators W

t

(A) is not required in these previous examples. In [7℄ we

summarized some general results on the approximation of spe
tra whi
h hold

if the sequen
es satisfy the more restri
tive form of the stability 
ondition just

mentioned. Thus, we will have to generalize the spe
tral approximation results

from [7℄ to a 
ontext whi
h allows us to in
lude the �nite se
tion method for

band-dominated operators. This will be done in Se
tions 3 { 5. These results in


ombination with the stability result will yield the wanted assertions on spe
tral

approximation for �nite se
tions of band-dominated operators almost at on
e.

On this o

asion, we will also extend the results from [7℄ into another dire
tion.

The natural dis
retization parameters for the approximation methods 
onsidered

in [7℄ are the positive integers. Thus, the dis
retization of an operator A by these

methods leads to a sequen
e (A

n

)

n2N

of dis
retized operators. But for operators
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whi
h a
t on L

2

(R

+

), for instan
e, the natural dis
retization parameters might

be the non-negative reals. Moreover, the dis
retization of an integral operator

on L

2

(R

+

) is usually done in two steps: �rst one 
ompresses the operator onto

the spa
e L

2

([0; t℄) with some t > 0, and then this 
ompression is dis
retized

by a standard quadrature or 
ollo
ation method whi
h �nally leads to an �nite

linear system. Thus, the natural dis
retization parameters are the points in

R

+

� N in this 
ase. Similar situations appear when standard dis
retization

pro
edures are 
ombined with 
utting o� te
hniques (see Chapter 5 in [8℄ or

Chapter 4 in [7℄ for �rst impressions and for further referen
es), whi
h also leads

to dis
retization parameters in N � N or in R

+

� N . Consequently, we will

examine the spe
tral approximation problem for nets of approximation operators

rather than for sequen
es, i.e. the points of a 
ertain dire
ted set will serve us as

dis
retization parameters.

2 Algebras of �nite se
tions sequen
es

The mentioned stability results for the �nite se
tions method for band-dominated

operators will be formulated in the language of limit operators. Let A 2 L(E

N

),

and let h be a sequen
e of points in Z

N

whi
h tends to in�nity. The operator A

h

is 
alled the limit operator of A with respe
t to h if, for every k 2 N ,

k(V

�h(n)

AV

h(n)

� A

h

)P

k

k ! 0 and kP

k

(V

�h(n)

AV

h(n)

� A

h

)k ! 0

as n ! 1. We say that A is ri
h if every sequen
e g, whi
h tends to in�nity,

possesses a subsequen
e h for whi
h the limit operator A

h

exists. If H is a

�nite-dimensional Hilbert spa
e, then every band-dominated operator on E

N

=

l

2

(Z

N

; H) is ri
h. The 
lass of all ri
h band-dominated operators on E

N

will be

denoted by A

ri
h

N

. This 
lass is a 
losed and symmetri
 subalgebra of L(E

N

). For

this and further results on limit operators, whi
h are 
ited here without proof,

we refer to [9, 10, 11℄.

In what follows, we will ex
lusively deal with the �nite se
tion method for

ri
h band-dominated operators. It will be 
onvenient to 
onsider, instead of

the one-sided sequen
e (P

n

AP

n

)

n2N

of operators a
ting on ImP

n

, the two-sided

sequen
e (P

n

AP

n

+ Q

n

)

n2Z

of operators a
ting on E

N

, where P

n

:= 0 if n < 0

and Q

n

:= I � P

n

for all n. Clearly, both sequen
es are simultaneously stable or

not.

With every bounded sequen
e A = (A

n

)

n2Z

of operators on E

N

, we asso
iate

an operator Op (A) on E

N+1

as follows. For, we write every ve
tor x 2 Z

N+1

as x = (x

0

; x

N+1

) 2 Z

N

� Z and, for every m 2 Z, we de�ne the operator of

restri
tion

R

m

: E

N+1

! E

N

; (R

m

f)(x

0

) := f(x

0

; m)
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and the operator of embedding

S

m

: E

N

! E

N+1

; (S

m

f)(x

0

; n) :=

�

f(x

0

) if n = m

0 if n 6= m:

Finally, we set

(Op (A)f)(x

0

; m) := (A

m

R

m

f)(x

0

):

It turns out that, if A is a ri
h band dominated operator on E

N

, then Op (A)

with A := (P

n

AP

n

+Q

n

)

n2Z

is a ri
h band-dominated operator on E

N+1

. We let

�

stab

(A) stand for the set of all operators R

m

BS

m

where m 2 Z and where B is

a limit operator of Op (A). In [11℄, the following is proved.

Theorem 2.1 Let A 2 A

ri
h

N

. Then the sequen
e A := (P

n

AP

n

+ Q

n

) is stable

if and only if all operators in �

stab

(A) are invertible and if the norms of their

inverses are uniformly bounded.

For A 2 A

ri
h

N

, let H

A

denote the set of all sequen
es h for whi
h the limit

operator A

h

exists. If h 2 H

A

, then the limit operators B

h

exist for all operators

B whi
h belong to the smallest 
losed subalgebra C

�

(A) of L(E

N

) 
ontaining

the operators A, A

�

and the identity operator I. The algebra C

�

(A) is a unital

C

�

-algebra, and the mapping B 7! B

h

is a unital

�

-homomorphism from C

�

(A)

into L(E). We 
laim that

�

op

(B) = fB

h

: h 2 H

A

g for every operator B 2 C

�

(A) (1)

where �

op

(B) refers to the set of all limit operators of B. Indeed, let g 2 H be a

sequen
e for whi
h the limit operator B

g

exists. Sin
e A belongs to A

ri
h

N

, there

is a subsequen
e h of g whi
h lies in H

A

. Clearly, B

h

exists and is equal to B

g

.

With this observation, it is easy to 
he
k that the proof of Theorem 2.1 given

in [11℄ 
arries over to the algebrai
 setting. For, we denote the algebra of all

bounded sequen
es (A

n

)

n2Z

, provided with element-wise operations and with the

supremum norm, by F , and the smallest 
losed subalgebra of F , whi
h 
ontains

all sequen
es (P

n

AP

n

+Q

n

) with A 2 A

ri
h

N

, by B

ri
h

N

.

Theorem 2.2 A sequen
e A 2 B

ri
h

N

is stable if and only if all operators in

�

stab

(A) are invertible and if the norms of their inverses are uniformly bounded.

For an equivalent formulation whi
h �ts to our purposes, we agree upon the

following de�nition.

De�nition 2.3 Let B be a C

�

-algebra with identity element e and, for every

element t of a set T , let B

t

be a C

�

-algebra with identity element e

t

, and let

W

t

be a

�

-homomorphism from B into B

t

with W

t

(e) = e

t

. We 
all fW

t

g

t2T

a

weakly suÆ
ient family of homomorphisms for B if the following assertions are

equivalent for every b 2 B:

4



(a) b is invertible in B.

(b) W

t

(b) is invertible in B

t

for every t 2 T , and

sup

t2T

k(W

t

(b))

�1

k <1:

We 
all fW

t

g

t2T

a suÆ
ient family of homomorphisms for B if, for every b 2 B,

the assertion (a) is equivalent to

(
) W

t

(b) is invertible in B

t

for every t 2 T .

Let G stand for the set of all sequen
es (A

n

) 2 F with limkA

n

k = 0. This set

forms a 
losed ideal of F , and a sequen
e A 2 F is stable if and only if its


oset A+ G is invertible in the quotient algebra F=G. Further, given a sequen
e

A = (A

n

) 2 B

ri
h

N

, let C

�

(A) denote the smallest 
losed subalgebra of F whi
h


ontains the sequen
es A, A

�

:= (A

�

n

) and I := (I).

If h 2 H

Op(A)

and m 2 Z, then the limit operator (Op(B))

h

exists for every

sequen
e B 2 C

�

(A), and every limit operator of Op(B) arises in this way.

Thus, B 7! R

m

(Op(B))

h

S

m

is a

�

-homomorphism from C

�

(A) into L(E). Sin
e

the ideal C

�

(A) \ G lies in the kernel of that homomorphism, the mapping

W

h;m

: C

�

(A)=(C

�

(A) \ G)! L(E); B+ C

�

(A) \ G 7! R

m

(Op(B))

h

S

m

is 
orre
tly de�ned for every sequen
e h 2 H

Op(A)

and everym 2 Z. The following

is an immediate 
onsequen
e of Theorem 2.2.

Theorem 2.4 Let A 2 B

ri
h

N

. Then the set fW

h;m

g with h 2 H

Op(A)

and with

m running through Z forms a weakly suÆ
ient family of homomorphisms for the

algebra C

�

(A)=(C

�

(A) \ G).

3 Weakly suÆ
ient families and spe
tra

Now we turn over to a more general 
ontext. Throughout this se
tion, let B

be a C

�

-algebra with identity element e and let T be a non-empty set. Further

suppose that, for every t 2 T , we are given a C

�

-algebra B

t

with identity e

t

and

a

�

-homomorphism W

t

from B into B

t

with W

t

(e) = e

t

.

It is our goal to realize how 
ertain spe
tral quantities of b 2 B 
an be ex-

pressed by the 
orresponding spe
tral quantities of theW

t

(b), provided that fW

t

g

forms a weakly suÆ
ient (a suÆ
ient) family of homomorphisms. It will be 
on-

venient to use the following notation. Given a family (M

t

)

t2T

of subsets of C , we

set

sup

t2T

M

t

:= 
los ([

t2T

M

t

);

and we 
all sup

t2T

M

t

the maximum of the family (M

t

) (and write max

t2T

M

t

in

that 
ase) if [

t2T

M

t

is 
losed.
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Norms. We start with a relation between the norms of b and of W

t

(b). (In the

very weak sense that the spe
trum of b is 
ontained in the 
losed ball with radius

kbk, the norms might also be 
onsidered as some kind of a spe
tral approxima-

tion.)

Theorem 3.1 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆ
ient

family for B, then

kbk = sup

t2T

kW

t

(b)k

t

for every b 2 B: (2)

If the family fW

t

g

t2T

is suÆ
ient, then the supremum in (2) is a maximum.

Proof.

�

-Homomorphisms are 
ontra
tive. Hen
e,

kbk � sup

t2T

kW

t

(b)k

t

for every b 2 B:

Suppose there is a b 2 B su
h that kbk > sup

t2T

kW

t

(b)k

t

. Then, by the C

�

-

axiom,

kb

�

bk > sup

t2T

kW

t

(b

�

b)k

t

:

Set d := kb

�

bk�sup

t2T

kW

t

(b

�

b)k

t

. Then kW

t

(b

�

b)k � kb

�

bk�d < kb

�

bk for every

t 2 T . Hen
e, all operators W

t

(b

�

b � kb

�

bke) = W

t

(b

�

b) � kb

�

bke

t

are invertible,

and

k(W

t

(b

�

b� kb

�

bke))

�1

k = sup

x2�(W

t

(b

�

b))

j(x� kb

�

bk)

�1

j

� sup

x2[0;�(W

t

(b

�

b))℄

j(x� kb

�

bk)

�1

j = (kb

�

bk � �(W

t

(b

�

b)))

�1

< 1=d

where � denotes the spe
tral radius. Thus,

sup

t2T

k(W

t

(b

�

b� kb

�

bke))

�1

k � 1=d:

Sin
e fW

t

g is a weakly suÆ
ient family by assumption, the latter estimate implies

the invertibility of b

�

b� kb

�

bke, whi
h is impossible. This shows (2). The result

for suÆ
ient families if Theorem 5.39 in [7℄.

Spe
tra. As usual, we let

�(b) = �

B

(b) := f� 2 C : b� �e is not invertibleg:

Theorem 3.2 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆ
ient

family for B, then

�

B

(b) = sup

t2T

�

B

t

(W

t

(b)) (3)

for all normal elements b of B. If the family fW

t

g

t2T

is suÆ
ient, then the

supremum in (3) is a maximum, and the assertion holds for every b 2 B.
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Proof. The in
lusion � in (3) is trivial and holds also in the 
ontext of general

Bana
h algebras. It remains to show that, for every normal element b 2 B,

� 62 sup

t2T

�

B

t

(W

t

(b)) ) � 62 �

B

(b):

Without loss, let � = 0. Then, sin
e sup

t2T

�

B

t

(W

t

(b)) is 
ompa
t, there is a


losed disk with 
enter 0 and with positive radius r whi
h has no points with

sup

t2T

�

B

t

(W

t

(b)) in 
ommon. Thus, W

t

(b) is invertible for every t 2 T , and

sin
e (W

t

(b))

�1

is normal, we get

k(W

t

(b))

�1

k = �((W

t

(b))

�1

)

= supf� 2 C : � 2 �((W

t

(b))

�1

)g

= inff� 2 C : � 2 �(W

t

(b))g

�1

< 1=r:

The weak suÆ
ien
y of fW

t

g implies the invertibility of b. The assertion for

suÆ
ient families follows immediately from the de�nitions.

Pseudospe
tra. Let " > 0. The "-pseudospe
trum of b 2 B is the set

�

"

(b) := f� 2 C : b� �e is not invertible or k(b� �e)

�1

k � 1="g:

Pseudospe
tra are non-empty and 
ompa
t, and for the pseudospe
tral radius of

an element b 2 B one has

maxfj�j : � 2 �

"

(b)g � kbk+ ": (4)

Basi
 properties of pseudospe
tra 
an be found in [1, 3, 7, 12, 14, 15℄. The

following result is based on arguments from [1℄.

Theorem 3.3 Let B, B

t

and W

t

be as above, and let " > 0. If fW

t

g

t2T

is a

weakly suÆ
ient family for B, then

�

"

(b) = sup

t2T

�

"

(W

t

(b)) for every b 2 B: (5)

If the family fW

t

g

t2T

is suÆ
ient, then the supremum in (5) is a maximum.

Again, one in
lusion holds in a more general 
ontext. We formulate it separately.

Lemma 3.4 Let B and C be unital Bana
h algebras and W : B ! C be a unital

and 
ontra
tive homomorphism. Then

�

"

(W (b)) � �

"

(b) for every b 2 B:

7



Proof. Let � 2 �

"

(W (b)). If W (b) � �e = W (b � �e) is not invertible, then

b � �e is not invertible. Hen
e, � 2 �

"

(b) in this 
ase. Let now W (b � �e) be

invertible and k(W (b � �e))

�1

k � 1=". If b � �e is not invertible, then we have

� 2 �

"

(b) again. If b � �e is invertible, then (W (b � �e))

�1

= W ((b � �e)

�1

),

when
e kW ((b � �e)

�1

)k � 1=". Sin
e W is a 
ontra
tion, this shows that

k(b� �e)

�1

k � 1=", i.e. � 2 �

"

(b).

In the proof of Theorem 3.3, we will employ the following result by Daniluk

whi
h states that the maximum prin
iple (whi
h, in general, does not hold for

operator-valued analyti
 fun
tions) holds for resolvent fun
tions.

Theorem 3.5 Let B be a C

�

-algebra with identity e, and let a 2 B be su
h that

a � ze is invertible for all z in some open subset U of the 
omplex plane. If

k(a� ze)

�1

k � C for all z 2 U , then k(a� ze)

�1

k < C for all z 2 U .

A proof is in [7℄, Theorem 3.32.

Proof of Theorem 3.3. From the pre
eding lemma we 
on
lude that

�

"

(W

t

(b)) � �

"

(b) for every b 2 B and t 2 T:

Sin
e pseudospe
tra are 
losed, this implies

sup

t2T

�

"

(W

t

(b)) � �

"

(b) for every b 2 B

for every family fW

t

g of

�

-homomorphisms. For the reverse in
lusion, let fW

t

g

be a weakly suÆ
ient family of

�

-homomorphisms, and let � 2 �

"

(b). If there is

a t 2 T su
h that � 2 �

"

(W

t

(b)), then nothing is to prove. So let us assume that

all elements W

t

(b� �e) are invertible and that k(W

t

(b� �e))

�1

k < 1=". Then

sup

t2T

k(W

t

(b� �e))

�1

k � 1=":

Sin
e fW

t

g is a weakly suÆ
ient family, the element b��e is invertible, and from

Theorem 3.1 we 
on
lude that k(b��e)

�1

k � 1=". Sin
e � 2 �

"

(b) by hypothesis,

this shows that k(b� �e)

�1

k = 1=".

In every open neighborhood U of �, there is a

~

� su
h that k(b�

~

�e)

�1

k > 1=".

Indeed, otherwise we would have k(b �

~

�e)

�1

k � 1=" for all

~

� 2 U when
e, via

Theorem 3.5, k(b�

~

�e)

�1

k < 1=" for all

~

� 2 U in
luding

~

� = �.

Thus, if k 2 N is suÆ
iently large, then there are �

k

2 C su
h that

j�� �

k

j < 1=k and k(b� �

k

e)

�1

k �

1

"� 2=k

:

Further, again by Theorem 3.1, there are t

k

2 T su
h that

kW

t

k

(b� �

k

e))

�1

k = k(W

t

k

(b)� �

k

e

t

k

)

�1

k �

1

"� 1=k

:

Sin
e

1

"�1=k

>

1

"

, we have �

k

2 �

"

(W

t

k

(b)), and sin
e �

k

! � as k ! 1, we get

� 2 sup

t2T

�

"

(W

t

(b)). Thus, (5) is veri�ed. The proof for suÆ
ient families is in

[7℄, Corollary 5.40.
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Numeri
al ranges. Let B be a Bana
h algebra with identity e and S(B) its

state spa
e, i.e. the set of all f 2 B

�

with f(e) = 1 and kfk = 1. The numeri
al

range of b 2 B is the set

N(b) := ff(b) : f 2 S(B)g:

Numeri
al ranges are non-empty, 
ompa
t and 
onvex subsets of C . For a

bounded linear operator A on a Hilbert spa
e H, one also 
onsiders its spatial

numeri
al range

SN(A) := fhAx; xi : x 2 H; kxk = 1g:

Let A 2 L(H). Then the spatial numeri
al range SN

H

(A) (where A is 
onsidered

as a bounded linear operator on H) and the numeri
al range N

L(H)

(A) (where A

is 
onsidered as an element of the C

�

-algebra L(H)) are related by

N

L(H)

(A) = 
losSN

H

(A):

These and further properties of numeri
al ranges 
an be found in [4, 5, 7℄. The

proof of the following result on based on arguments from [13℄.

Theorem 3.6 Let B, B

t

and W

t

be as above. If fW

t

g

t2T

is a weakly suÆ
ient

family for B, then

N(b) = 
onv sup

t2T

N(W

t

(b)) for every b 2 B: (6)

One of the in
lusions in (6) holds in the more general 
ontext of Bana
h algebras.

Lemma 3.7 Let B and C be unital Bana
h algebras and W : B ! C be a unital

and 
ontra
tive homomorphism. Then

N(W (b)) � N(b) for every b 2 B:

Proof. Let � 2 N(W (b)), and let f be a state of C with f(W (b)) = �. Sin
e

W is unital and 
ontra
tive, one has (f ÆW )(e) = 1 and kf ÆWk � 1, when
e

kf ÆWk = 1. Thus, f ÆW is a state of B, whi
h implies that � 2 N(b).

Proof of Theorem 3.6. From Lemma 3.7 we infer that

[

t2T

N(W

t

(b)) � N(b):

Sin
e N(b) is a 
losed and 
onvex set, this implies the in
lusion � in (6).

For the reverse in
lusion, we think of ea
h B

t

as a C

�

-algebra of linear bounded

operators on a Hilbert spa
e H

t

(whi
h is possible by the GNS-
onstru
tion). Let

H := �H

t

refer to the orthogonal sum of the Hilbert spa
es H

t

, t 2 T , and write

W for the mapping from B into L(H) whi
h asso
iates with every b 2 B the

operator

(x

t

)

t2T

7! (W

t

(b)x

t

)

t2T

:

9



This mapping is an isometry from B onto the C

�

-subalgebraW (B) of L(H). Thus,

N

B

(b) = N

W (B)

(W (b)). It is further a simple 
onsequen
e of the Hahn-Bana
h

Theorem that N

W (B)

(W (b)) = N

L(H)

(W (b)), whi
h implies that

N

B

(b) = N

W (B)

(W (b)) = N

L(H)

(W (b)) = 
losSN

H

(W (b)):

Thus, given � 2 N

B

(b) and " > 0, there is a ve
tor (x

t

)

t2T

2 H with norm 1 su
h

that

j�� h(W

t

(b)x

t

); (x

t

)i

H

j =

�

�

�

�

�

��

X

t2T

hW

t

(b)x

t

; x

t

i

H

t

�

�

�

�

�

< ":

Let M denote the (at most 
ountable) set of all t 2 T with x

t

6= 0 and, for t 2 M ,

set y

t

:= x

t

=kx

t

k. Then we have

�

�

�

�

�

��

X

t2M

hW

t

(b)x

t

; x

t

i

H

t

�

�

�

�

�

=

�

�

�

�

�

��

X

t2M

kx

k

k

2

hW

t

(b)y

t

; y

t

i

H

t

�

�

�

�

�

< ":

Sin
e kx

t

k

2

� 0 and

P

t2M

kx

t

k

2

= k(x

t

)k

2

H

= 1, this shows that � 
an be approx-

imated by 
onvex linear 
ombinations of points hW

t

(b)y

t

; y

t

i 2 [

t2T

SN

H

t

(W

t

(b))

as 
losely as desired. Hen
e,

� 2 
los 
onv [

t2T

SN

H

t

(W

t

(b)) � 
los 
onv [

t2T

N

L(H

t

)

(W

t

(b));

whi
h gives

� 2 
los 
onv [

t2T

N

W

t

(B)

(W

t

(b)): (7)

Sin
e 
los 
onvM = 
onv 
losM for every bounded subset M of the 
omplex

plane, (7) is just the assertion.

4 Asymptoti
 behaviour of norms and spe
tra

Beginning with this se
tion, we let T = (T; �) be a dire
ted set, i.e. � is a

partial order on T , and for ea
h pair s; t 2 T there is a u 2 T su
h that u � s

and u � t. Further we assume that, for every t 2 T , we are given a C

�

-algebra B

t

with identity e

t

. By F we denote the set of all bounded fun
tions a on T whi
h

take at t 2 T a value a

t

2 B

t

. This set be
omes a C

�

-algebra with identity when

provided with pointwise operations and with the supremum norm. The set G of

all nets (g

t

)

t2T

2 F with lim

t2T

kg

t

k = 0 forms a 
losed ideal of F .

Let a = (a

t

)

t2T

2 F . The following results relate the asymptoti
 behaviour

of the spe
tra (some kinds of generalized spe
tra) of the elements a

t

with the

spe
trum (the generalized spe
trum) of the 
oset of the net (a

t

) modulo the ideal

G and, hen
e, in terms of the stability spe
trum of the sequen
e (A

n

) in 
ase

T = N . For, we de�ne the limes superior of a family (M

t

)

t2T

of subsets of the


omplex plane by

lim sup

t2T

M

t

:= \

t2T

sup

s�t

M

s

:
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Norms. Again, we start with a result on the asymptoti
 behaviour of norms.

Proposition 4.1 For all nets a = (a

t

) 2 F ,

ka+ Gk

F=G

= lim sup

t2T

ka

t

k:

Proof. Let a = (a

t

) 2 F . For every net g = (g

t

) 2 G,

lim sup ka

t

k = lim supka

t

+ g

t

k � sup ka

t

+ g

t

k = ka + gk

F

;

when
e the estimate lim sup ka

t

k � ka+Gk. For the reverse inequality, let " > 0,

and 
hoose t

0

2 T su
h that ka

t

k � lim supka

t

k + " for all t � t

0

. The net g,

de�ned by

g

t

:=

�

0 if t � t

0

�a

t

if t 6� t

0

;

belongs to G, and

ka + Gk � ka + gk = sup

t�t

0

ka

t

k � lim supka

t

k+ ":

Letting " go to zero yields the desired result.

Combining this result (where now T is N and � is �) with Theorems 3.1, 2.4

and 2.1, we get:

Theorem 4.2 Let A = (A

n

) 2 B

ri
h

N

. Then

lim supkA

n

k = kA+ Gk = supfkA

h

k : A

h

2 �

stab

(A)g:

Proof. The �rst equality follows from the pre
eding proposition. The the se
ond

one is a 
onsequen
e of Theorems 3.1 and 2.1 whi
h follows sin
e the operators

in �

stab

(A) are just the operators of the formW

h;m

(A) with h 2 H

Op(A)

and with

m 2 Z.

Spe
tra. Let (a

t

) 2 F . It turns out that the limes superior lim sup

t2T

�(a

t

) is

related to some kind of stability whi
h might be 
alled `spe
tral' stability. The

net (a

t

) is spe
trally stable if there is a t

0

2 T su
h that the a

t

are invertible and

the spe
tral radii �(a

�1

t

) of their inverses are uniformly bounded for all t � t

0

(whereas the 
ommon notion of stability requires the invertibility of a

t

for all

t � t

0

and the uniform boundedness of the norms ka

�1

t

k). Clearly, every stable

net is also spe
trally stable.

Theorem 4.3 Let (a

t

) 2 F . Then � 2 lim sup

t2T

�(a

t

) if and only if the net

(a

t

� �e

t

) fails to be spe
trally stable.

11



Proof. Let the net (a

t

��e

t

) be spe
trally stable, i.e. there is a t

0

2 T su
h that

sup

t�t

0

�((a

t

� �e

t

)

�1

) =: m <1:

Then, for all t � t

0

,

m � supfj�j : � 2 �((a

t

� �e

t

)

�1

)g = (inffj�j : � 2 �(a

t

� �e

t

)g)

�1

;

when
e

1=m � inffj�j : � 2 �(a

t

)� �g = inffj�� �j : � 2 �(a

t

)g = dist (�; �(a

t

)):

Hen
e, � 
annot belong to lim sup�(a

t

).

Let, 
onversely, � 62 lim sup�(a

t

). Then there is an t

0

2 T su
h that �

does not belong to 
los [

t�t

0

�(a

t

). The boundedness of the net (a

t

) implies the


ompa
tness of this set, hen
e,

dist (�; 
los [

t�t

0

�(a

t

)) =: m > 0:

Consequently,

dist (0; �(a

t

� �e

t

)) � m > 0 for all t � t

0

;

whi
h implies that a

t

� �e

t

is invertible and �((a

t

� �e

t

)

�1

) � 1=m for all t � t

0

.

Thus, the net (a

t

) is spe
trally stable.

As we have just seen, the determination of lim sup�(a

t

) requires to investigate

the spe
tral stability of the nets (a

t

� �e

t

). This 
an be easily done for nets for

whi
h stability and spe
tral stability 
oin
ide.

Corollary 4.4 Let a = (a

t

) 2 F be a net of normal elements. Then

lim sup�(a

t

) = �

F=G

(a + G):

Proof. The spe
tral radius and the norm of a normal element 
oin
ide. Hen
e,

the sequen
e (a

t

��e

t

) is spe
trally stable if and only if it is stable. The stability

of (a

t

� �e

t

) is equivalent to the invertibility of the 
oset (a

t

� �e

t

) + G.

These results lead to the following theorem in a similar way as we derived Theo-

rem 4.2.

Theorem 4.5 Let A = (A

n

) 2 B

ri
h

N

be a sequen
e of normal operators. Then

lim sup�(A

n

) = �(A+ G) = sup �(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).
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Pseudospe
tra and numeri
al ranges. Here are the analogous results for

pseudospe
tra and numeri
al ranges. In 
ase T = N , these results 
an be derived

in a similar way as in [7℄, Theorems 3.31 and 3.46. In the following se
tions we

will propose an alternative approa
h whi
h also works in the general 
ase.

Theorem 4.6 Let a = (a

t

) 2 F and " > 0. Then

lim sup�

"

(a

t

) = �

"

F=G

(a+ G):

Combining the pre
eding theorem with Theorems 2.4 and 3.3 we get the following

result for the pseudospe
tra of the �nite se
tions of a band-dominated operator.

Theorem 4.7 Let A = (A

n

) 2 B

ri
h

N

and " > 0. Then

lim sup�

"

(A

n

) = �

"

(A+ G) = sup �

"

(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).

Theorem 4.8 Let a = (a

t

) 2 F . Then


onv lim sup

n!1

N(a

t

) = N

F=G

(a + G):

Observe that the limes superior of a net of 
onvex sets need not to be 
onvex

again, whi
h explains the 
onv operator on the left hand side. The impli
ations

of Theorem 4.8 (in 
ombination with Theorems 2.4 and 3.6) for the �nite se
tion

method are as follows.

Theorem 4.9 Let A = (A

n

) 2 B

ri
h

N

. Then


onv lim supN(A

n

) = N

F=G

(A+ G) = supN(A

h

)

where the supremum is taken over all operators A

h

2 �

stab

(A).

5 Theorems of Weyl type for 
on
rete set se-

quen
es

In this se
tion, we will derive theorems of Weyl type for some set fun
tions. By

a set fun
tion on an algebra B, we mean a mapping from B into the set of all

subsets of the 
omplex plane. Then we say that a Weyl type theorem holds for

two set fun
tions �

C

on an algebra C and �

C=J

on the quotient C=J of C by its

ideal J if

�

C=J

(
+ J ) = \

j2J

�

C

(b + j) for every 
 2 C:
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Spe
tra. If �(b) is the spe
trum of b, then there is no Weyl type theorem in

general. To have an example, let C = L(l

2

), J the ideal of the 
ompa
t operators

on l

2

, and 
 = V the forward shift operator on l

2

. Then 
 + j is a Fredholm

operator with non-vanishing index for every j 2 J , when
e 0 2 �(
 + j). But V

is a Fredholm operator, hen
e, 
+ J is invertible and 0 62 �(
+ J ).

It turns out that there is a theorem of Weyl type for spe
tra in 
ase of the

algebra F and its ideal G.

Theorem 5.1 Let F and G be as above. Then, for every net a 2 F ,

�

F=G

(a+ G) = \

g2G

�

F

(a + g): (8)

One of the in
lusions in (8) holds in a more general setting.

Lemma 5.2 Let C be a Bana
h algebra with identity and J a 
losed ideal of C.

Then, for every 
 2 C,

�

C=J

(
+ J ) � \

j2J

�

C

(
+ j):

Indeed, if W : C ! C=J denotes the 
anoni
al homomorphism, then

�(
+ J ) = �(W (
)) = �(W (
+ j)) � �(
+ j) for every j 2 J :

Proof of Theorem 5.1. The in
lusion � in (8) follows from Lemma 5.2. For

the reverse in
lusion, let � 62 �(a + G), i.e. the 
oset a � �e + G is invertible in

F=G. Then there are nets b 2 F and g; h 2 G su
h that

(a� �e)b = e+ g and b(a� �e) = e + h:

Choose t

g

; t

h

2 T su
h that kg

t

k < 1=2 for all t � t

g

and kh

t

k < 1=2 for all

t � t

h

, and let t

0

2 T be su
h that t

0

� t

g

and t

0

� t

h

. Further, de�ne a

0

; b

0

2 F

by

a

0

t

:=

�

a

t

if t � t

0

(1 + �)e

t

if t 6� t

0

and b

0

t

:=

�

b

t

if t � t

0

e

t

if t 6� t

0

:

Then a� a

0

and b� b

0

belong to G, and

(a

0

� �e)b

0

= e+ g

0

and b

0

(a

0

� �e) = e + h

0

(9)

with

g

0

t

:=

�

g

t

if t � t

0

0 if t 6� t

0

and h

0

t

:=

�

h

t

if t � t

0

0 if t 6� t

0

:

In parti
ular, kg

0

k � 1=2. Thus, e+ g

0

is invertible if F , and its inverse is of the

form e+ k with k 2 G. Multiplying the �rst equality of (9) by e+ k from the left

hand side yields

(a+ s� �e)b

0

= e with s := ka

0

� (a� a

0

)� �k 2 G:

Repeating these arguments for the se
ond equality in (9), we get the invertibility

of b

0

and, hen
e, that of a + s � �e. Thus, � 62 �(a + s), when
e �nally � 62

\

g2G

�(a + g).
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Pseudospe
tra. The example from the pre
eding paragraph also indi
ates

that, in general, one 
annot expe
t a theorem of Weyl type for pseudospe
tra.

But for the 
on
rete algebra F and its ideal G, there is again su
h a result.

Theorem 5.3 Let F and G be as above, and let " > 0. Then, for every net

a 2 F ,

�

"

F=G

(a+ G) = \

g2G

�

"

F

(a + g): (10)

Observe that again one in
lusion in (10) holds in the 
ontext of Bana
h algebras,

whi
h follows easily from Lemma 3.4.

Lemma 5.4 Let C be a Bana
h algebra with identity, J a 
losed ideal of C, and

" > 0. Then, for every 
 2 C,

�

"

C=J

(
+ J ) � \

j2J

�

"

C

(
+ j):

Proof of Theorem 5.3. The in
lusion � is a 
onsequen
e of the pre
eding

lemma, and for the reverse in
lusion we pro
eed as in the proof of the pre
eding

theorem. If � 62 �

"

(a + G), then there is a net b 2 F with � := kb + Gk < 1=",

and there are nets g; h 2 G su
h that

(a� �e)b = e+ g and b(a� �e) = e + h:

Further, sin
e kb + Gk < 1=", there is a net k 2 G with kb � kk < (� + 1=")=2.

Let 0 < Æ < (1=" � �)=2 and 
hoose t

k

2 T su
h that kk

t

k < Æ for all t � t

k

.

This 
hoi
e implies that

kb

t

k � kb

t

� k

t

k+ kk

t

k � (� + 1=")=2 + Æ < " (11)

for all t � t

k

. Let further t

g

and t

h

be as in the proof of Theorem 5.1, and let

t

0

2 T be greater than both t

g

; t

h

and t

k

. Then we de�ne a

0

; b

0

2 F by

a

0

t

:=

�

a

t

if t � t

0

(�+ 1=�)e

t

if t 6� t

0

and b

0

t

:=

�

b

t

if t � t

0

�e

t

if t 6� t

0

:

Observe that

kb

0

k = sup

t2T

kb

0

t

k = maxfsup

t�t

0

kb

t

k; �g � maxf(� + 1=")=2 + Æ; �g < 1="

due to (11). The remaining steps are as in the proof of Theorem 5.1. They show

the existen
e of a net s 2 G su
h that

(a+ s� �e)b

0

= b

0

(a+ s� �e) = e;

when
e � 62 �

"

(a+ s).

Let us mention that a similar result also holds (with obvious modi�
ations in
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the proof) for the so-
alled stru
tured pseudospe
tra or spe
tral value sets of an

element a of a C

�

-algebra C, whi
h are de�ned by

�

"

b;


(a) := f� 2 C : a� �e is not invertible or kb(a� �e)

�1


k � 1="g

where b; 
 are �xed elements of C and " > 0. Let us also mention that in [2℄, there

is proved a version of Theorem 3.5 whi
h is then used to derive a modi�
ation

of Theorem 3.3. This modi�
ation holds for stru
tured pseudospe
tra of 
ertain

band matri
es the entries of whi
h are 
onstant along ea
h diagonal. Even though

this 
lass of matri
es seems to be very spe
ial, the results from [2℄ are highly non-

trivial, and there seems to be no hope to extend these results to more general


lasses of band and band-dominated operators.

Numeri
al ranges. Here the situation is mu
h easier: one has a Weyl type

theorem for every Bana
h algebra with identity and every 
losed ideal of that

algebra.

Theorem 5.5 Let C be a Bana
h algebra with identity and J a 
losed ideal of

C. Then, for every 
 2 C,

N

C=J

(
+ J ) � \

j2J

N

C

(
+ j):

A proof is in [5℄, Se
tion 22, Lemma 3.

6 The limes superior of a family of set fun
tions

Re
all that a set fun
tion � on a Bana
h algebra B with identity e is 
alled

� bounded if �(a) is a bounded subset of C for every a 2 B.

� semi-homogeneous if �(a+�e) � �+�(a) for every a 2 B and every � 2 C .

� upper semi-
ontinuous at a 2 B if, for every " > 0, there is a Æ > 0 su
h

that, for all b 2 B with kb�ak < Æ, �(b) lies in the "-neighborhood of �(a).

Let T , B

t

, F and G be as in the pre
eding se
tions. Assume further that, for

every t 2 T , we are given a set fun
tion �

t

on B

t

. To the family (�

t

)

t2T

, we

asso
iate two set fun
tions �

sup

and �

limsup

on F by

�

sup

(a) := sup

t2T

�

t

(a

t

) = 
los [

t2T

�

t

(a

t

)

and

�

limsup

(a) := lim sup

t2T

�

t

(a

t

) = \

t2T

sup

s�t

�

s

(a

s

)

where a = (a

t

). Further we 
all the family (�

t

)

t2T

uniformly bounded if the set

fun
tion �

sup

is bounded, and we 
all this family uniformly upper semi-
ontinuous

at a 2 F if, for every " > 0, there is a Æ > 0 su
h that, for all b 2 F with

kb� ak < Æ and for all t 2 T , �

t

(b

t

) lies in the "-neighborhood of �

t

(a

t

).
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Theorem 6.1 Let T , B

t

, �

t

, F and G be as above, and let every set fun
tion �

t

be semi-homogeneous and the family (�

t

)

t2T

be uniformly bounded and uniformly

upper semi-
ontinuous on F . Then, for every net a := (a

t

)

t2T

2 F ,

�

limsup

(a) = \

g2G

�

sup

(a+ g) (12)

or, equivalently,

lim sup

t2T

�

t

(a

t

) = \

g2G

sup

t2T

�

t

(a

t

+ g

t

):

Proof. Abbreviate the left and the right hand side of (12) by S

l

and S

r

, respe
-

tively. We �rst show the in
lusion S

r

� S

l

. Let � 2 \

g2G

sup

t2T

�

t

(a

t

+ g

t

) and

s 2 T . Choose r 2 C su
h that

dist (�; r + sup

t6�s

�

t

(0)) � 1

whi
h is possible sin
e sup

t6�s

�

t

(0) � sup

t2T

�

t

(0) = �

sup

(0) is bounded by

assumption. Then de�ne g 2 F by

g

t

:=

�

0 if t � s

�a

t

+ re

t

if t 6� s:

The net g lies in G. Consequently,

� 2 sup

t2T

�

t

(a

t

+ g

t

) = 
los ([

t2T

�

t

(a

t

+ g

t

))

= 
los ([

t�s

�

t

(a

t

+ g

t

) [ [

t6�s

�

t

(a

t

+ g

t

))

= 
los ([

t�s

�

t

(a

t

) [ [

t6�s

�

t

(re

t

))

� 
los ([

t�s

�

t

(a

t

) [ (r + [

t6�s

�

t

(0)))

due to the semi-homogeneity. The 
hoi
e of r ensures that � 62 
los (r+[

t6�s

�

t

(0)).

Hen
e,

� 2 
los ([

t�s

�

t

(a

t

)) = sup

t�s

�

t

(a

t

)

when
e � 2 S

l

.

To prove the reverse in
lusion, let � 2 lim sup

t2T

�

t

(a

t

) and g = (g

t

) 2 G.

Due to the uniform upper semi-
ontinuity at a + g 2 F , given " > 0, there is a

Æ > 0 su
h that, for all b = (b

t

) 2 F with kb � (a + g)k < Æ, �

t

(b

t

) lies in the

"-neighborhood of �

t

(a

t

+ g

t

). Choose s 2 T su
h that kg

t

k < Æ=2 for all t � s,

and de�ne b = (b

t

) 2 F by

b

t

:=

�

a

t

if t � s

a

t

+ g

t

if t 6� s:
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Then kb� (a+ g)k � Æ=2 < Æ, and from � 2 S

l

we 
on
lude

� 2 sup

t�s

�

t

(a

t

) = sup

t�s

�

t

(b

t

) = 
los ([

t�s

�

t

(b

t

))

� 
los [

t�s

("-neighborhood of �

t

(a

t

+ g

t

))

� 
los [

t2T

("-neighborhood of �

t

(a

t

+ g

t

)):

Thus, for every " > 0, there is a �

"

in the union over t of all "-neighborhoods of

�

t

(a

t

+ g

t

) for whi
h j�� �

"

j � ". Consequently,

� 2 
los [

t2T

�

t

(a

t

+ g

t

):

Sin
e g 2 G is arbitrary, this shows that � 2 S

r

.

7 Appli
ations to 
on
rete set fun
tions

Pseudospe
tra. Let us 
he
k that the assumptions of Theorem 6.1 are satis-

�ed if the set fun
tions �

t

are spe
i�ed to be the "-pseudospe
tra. The semi-

homogeneity is evident in this 
ase, and the uniform boundedness follows from

(4).

Proposition 7.1 Let B

t

and F be as above, and let "

0

> 0. Let further �

t

= �

"

0

for every t 2 T . Then the family (�

t

)

t2T

is uniformly upper semi-
ontinuous on

F .

Proof. Suppose there is a net a

(0)

2 F at whi
h the family (�

t

) is not uniformly

upper semi-
ontinuous. Thus, there is an " > 0 su
h that, for all n 2 N, there

is a net a

(n)

2 F with ka

(n)

� a

(0)

k < 1=n, and there are points t

n

2 T and

�

n

2 �

"

0

(a

(n)

t

n

) with

dist (�

n

; �

"

0

(a

(0)

t

n

)) � ":

Sin
e [

n

�

"

0

(a

(n)

t

n

) is bounded, there are n

1

< n

2

< : : : su
h that the sequen
e

(�

n

k

) 
onverges to a �

�

2 C . For simpli
ity, let n

k

= k, i.e. let the sequen
e (�

n

)


onverge to �

�

. Consider

a

(n)

t

n

� �

n

e

t

n

= a

(0)

t

n

� �

�

e

t

n

+ (�

�

� �

n

)e

t

n

+ a

(n)

t

n

� a

(0)

t

n

; (13)

and 
hoose n

0

su
h that j�

�

��

n

j < "=2 for all n � n

0

. Set further T

�

:= ft

n

: n �

n

0

g, and let F

�

refer to the produ
t of the algebras B

t

with t 2 T

�

. Evidently,

the family of homomorphisms

F

�

! B

t

; a! a

t

with t 2 T

�

is weakly suÆ
ient for F

�

. Thus, if we denote the restri
tion of a

(0)

onto T

�

by

a

(0)

again, and if we 
onsider this restri
tion as an element of the algebra F

�

,

then we 
on
lude from

dist (�

�

; �

"

0

(a

(0)

t

n

)) � dist (�

n

; �

"

0

(a

(0)

t

n

))� j�

�

� �

n

j � "� "=2 = "=2
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(whi
h holds for all n � n

0

) and from Theorem 3.3 that �

�

62 �

"

0

F

�

(a

(0)

). Thus,

a

(0)

� �

�

e is "

0

-invertible in F

�

. Sin
e the set of all "

0

-invertible elements of a

Bana
h algebra is open, there is an "

1

> 0 su
h that a

(0)

��

�

e+ s is "

0

-invertible

for all s 2 F

�

with ksk < "

1

. Choose n

1

> n

0

su
h that

j�

�

� �j+ ka

(n)

t

n

� a

(0)

t

n

k < "

1

=2 for all n � n

1

:

Then the net

T

�

3 t

n

7!

(

a

(0)

t

n

� �

�

e if n < n

1

a

(0)

t

n

� �

�

e

t

n

+ (�

�

� �

n

)e

t

n

+ a

(n)

t

n

� a

(0)

t

n

if n � n

1

is "

0

-invertible in F

�

. Hen
e, the right hand side of (13) is "

0

-invertible for

suÆ
iently large n, whereas the left hand side of (13) fails to be "

0

-invertible by


onstru
tion. Contradi
tion.

Now the proof of Theorem 4.6 follows easily: the Weyl theorem (Theorem 5.3)

implies that

�

"

F=G

(a+ G) = \

g2G

�

"

F

(a + g);

whi
h is equal to \

g2G

sup

t2T

�

t

(a

t

+ g

t

) by Theorem 3.3, applied to the family

of all homomorphisms a 7! a

t

. From Theorem 6.1 we �nally 
on
lude that

\

g2G

sup

t2T

�

t

(a

t

+ g

t

) = lim sup

t2T

�

t

(a

t

):

Numeri
al ranges. For the proof of Theorem 4.8 we need an auxiliary result.

Lemma 7.2 Let (T; �) be a dire
ted set and let (M

t

)

t2T

be a bounded and mono-

toni
ally de
reasing (i.e. M

s

� M

t

whenever s � t) net of non-empty 
losed

subsets of C . Then


onv \

t2T

M

t

= \

t2T


onvM

t

:

Proof. Sin
e \

t

M

t

� \

t


onvM

t

, and sin
e the interse
tion of 
onvex sets is


onvex again, the in
lusion 
onv \

t

M

t

� \

t


onvM

t

is evident.

Conversely, let m 2 \

t


onvM

t

. Then, for every t 2 T , there are elements

m

t

1

; m

t

2

in M

t

as well as non-negative numbers �

t

1

; �

t

2

with �

t

1

+ �

t

2

= 1 su
h that

m = �

t

1

m

t

1

+ �

t

2

m

t

2

: (14)

Due to the boundedness of the net (M

t

), there exists a 
onvergent subnet (y

s

1

)

s2S

of the net (m

t

1

)

t2T

with limit m

1

2 
los [

t

M

t

. (Re
all that (y

s

1

)

s2S

is a subnet

of (m

t

1

)

t2T

if S is a dire
ted set and if there is a mapping f : S ! T su
h that

y

s

1

= m

f(s)

1

for all s 2 S and su
h that, given t

0

2 T , there is an s

0

2 S with

f(s) � t

0

for all s � s

0

.) We 
laim that m

1

2M

t

for every t 2 T .
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Let t

0

2 T and " > 0. Then there is an s

0

2 S su
h that jy

s

1

� m

1

j < " for

all s � s

0

. Further we 
hoose s

1

2 S su
h that f(s) � t

0

for all s � s

1

, and we


hoose s

�

2 S su
h that both s

�

� s

0

and s

�

� s

1

. Then

jy

s

�

1

�m

1

j = jm

f(s

�

)

1

�m

1

j < "

and m

f(s

�

)

1

2 M

t

0

sin
e f(s

�

) � t

0

. Thus, dist (m

1

; M

t

0

) < " for all " > 0. Sin
e

M

t

0

is 
losed, this implies m

1

2M

t

0

and proves our 
laim.

For s 2 S, set y

s

2

:= m

f(s)

s

. The same arguments as above yield the ex-

isten
e of a 
onvergent subnet of (y

s

2

)

s2S

the limit m

2

of whi
h belongs to M

t

for every t 2 T . Repeating these 
onsiderations for the nets (�

t

1

) and (�

t

2

)

as well, we �nally get 
onvergent subnets (z

u

1

)

u2U

; (z

u

2

)

u2U

; (�

u

1

)

u2U

; (�

u

2

)

u2U

of

(m

t

1

)

t2T

; (m

t

2

)

t2T

; (�

t

1

)

t2T

; (�

t

2

)

t2T

with limitsm

1

; m

2

2 \

t

M

t

and �

1

; �

2

2 [0; 1℄,

�

1

+ �

2

= 1, respe
tively. From (14), we 
on
lude that

m = �

u

1

z

u

1

+ �

u

2

z

u

2

for all u 2 U;

when
e m 2 
onv \

t2T

M

t

.

Proof of Theorem 4.8. Let a = (a

t

) 2 F . From the Weyl theorem (Theorem

5.5) we know that

N(a + G) = \

g2G

N(a + g);

and Theorem 3.6 (applied to the weakly suÆ
ient family for F , 
onsisting of all

homomorphisms a 7! a

t

) further yields

N(a+ G) = \

g2G


onv sup

t2T

N(a

t

+ g

t

): (15)

Fix s 2 T , 
hoose m

s

2 N(a

s

), and set

g

(s)

t

:=

�

0 if t � s

�a

t

+m

s

e

t

if t 6� s:

Then the net g(s) belongs to the ideal G and, sin
e N(a

t

+ g

(s)

t

) = fm

s

g � N(a

s

)

for all t 6� s, we get

sup

t2T

N(a

t

+ g

(s)

t

) = 
los [

t�s

N(a

t

) = sup

t�s

N(a

t

):

Together with equality (15), this implies that

N(a + G) � \

s2T


onv sup

t�s

N(a

t

):

Applying Lemma 7.2 to the sets M

s

:= 
los [

t�s

N(a

s

) we get

N(a + G) � 
onv \

s2T

sup

t�s

N(a

t

) = 
onv lim sup

t2T

N(a

t

): (16)
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The proof of the reverse in
lusion is based on Theorem 6.1, with the set fun
tions

�

t

being the numeri
al ranges. The hypotheses of that theorem are evidently

satis�ed: sin
e states are linear and unital, one has the homogenity, and sin
e

the norm of a state is 1, one has

maxfj�j : � 2 N(a)g � kak;

when
e the uniform boundedness. Further, if f is a state, then jf(a) � f(b)j �

ka � bk whi
h yields the uniform upper semi-
ontinuity. Thus, Theorem 6.1

applies and yields the equality

lim sup

t2T

N(a

t

) = \

g2G

sup

t2T

N(a

t

+ g

t

):

The right hand side is obviously 
ontained in \

g2G


onv sup

t2T

N(a

t

+g

t

), and this

set 
oin
ides with \

g2G

N(a+ g) due to Theorem 3.6 and, hen
e, with N(a+ G)

by the Weyl theorem. Thus, lim sup

t2T

N(a

t

) � N(a + G), and sin
e numeri
al

ranges are 
onvex, this �nally implies that


onv lim sup

t2T

N(a

t

) � N(a + G);

whi
h �nishes the proof of Theorem 4.8.
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