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Abstract

This paper is devoted to relations between the spectrum (or certain
kinds of a generalized spectrum) of a band-dominated operator A and of
the spectra of its approximations A,, = P, APF,, obtained by compressing
A onto the ranges of the orthogonal projections P,. Particular attention
is paid to the asymptotic behaviour of the spectra (or its generalizations)
of the operators A,,. These results will appear as special cases of some
general theorems on spectral approximation.

1 Introduction

Given a Hilbert space H and a positive integer N, let Ex stand for the linear
space of all sequences f = (f())zezny with values in H such that

IF1P = [1F (@) < oo
zeZN
Clearly, Fy is a Hilbert space with respect to the inner product
(£, 9) =D (f(@), g(=))u.
zeZN

For k € ZV, we let V}, refer to the shift operator on Fy,
Vi i f—g where g(x):= f(x —k),

and for every bounded function a : Z¥ — L(H), we consider the operator M, of
multiplication by a,
Mo : Ex = En,  (Maf)(2) := a(2)f(2).

*Supported by the German Research Foundation (DFG) under Grant Nr. 436 RUS
17/24/01.




A band-dominated operator on Ey is a norm limit of a sequence of band operators
on Ey, i.e. of operators which are a finite sum of operators M,V, where a and k
are as above.

For n € N, let P, refer to the projection operator on Fyn which maps the
sequence f to the sequence g where g(x) = f(z) if || < n and g(z) = 0 if
|z| > n. The operators A,, := P, AP, are called the finite sections of the band-
dominated operator A. The sequence (A,,) is called stable if there is an ng such
that the operators A, : Im P, — Im P, are invertible for all n > ng and if the
norms of their inverses are uniformly bounded. A stability criterion for the finite
section method for a band-dominated operator A has been derived in [11].

The goal of the present paper is to examine the asymptotic behaviour of the
spectra (and of some of their generalizations) of the operators P,AP,. These
results will be obtained as special cases of some general theorems on spectral
approximation. A convenient way to formulate these general theorems uses the
language of C*-algebras. Thus, the application of these results to a concrete
approximation sequence such as (P,AP,) requires not only a precise knowledge
on the stability properties of the sequence (P, AP,) itself, but for every sequence
in a C*-algebra of sequences which contains (P, AP,).

The paper is organized as follows. We will start with recalling the stability
results for the finite section method of band-dominated operators from [11] and
with extending these results to sequences in a C*-algebra B generated by finite
sections sequences. The obtained generalization will be as follows: There is a
family {W;} of *-homomorphisms from B into L(E) such that a sequence A =
(A,) in B is stable if and only if all operators W;(A) are invertible and if the
norms of their inverses are uniformly bounded.

The latter is an obvious difference to some of the C*-algebraic stability results
which were previously derived for several classes of approximation sequences (see
[6, 7] for an overview). These former results are essentially of the following form:
With every sequence A in a certain algebra of sequences, there is associated a
family {W;(A)} of operators such that the sequence A is stable if and only if all
operators W;(A) are invertible. Thus, the uniform boundedness of the inverses
of the operators W;(A) is not required in these previous examples. In [7] we
summarized some general results on the approximation of spectra which hold
if the sequences satisfy the more restrictive form of the stability condition just
mentioned. Thus, we will have to generalize the spectral approximation results
from [7] to a context which allows us to include the finite section method for
band-dominated operators. This will be done in Sections 3 — 5. These results in
combination with the stability result will yield the wanted assertions on spectral
approximation for finite sections of band-dominated operators almost at once.

On this occasion, we will also extend the results from [7] into another direction.
The natural discretization parameters for the approximation methods considered
in [7] are the positive integers. Thus, the discretization of an operator A by these
methods leads to a sequence (A;)nen of discretized operators. But for operators



which act on L?*(R"), for instance, the natural discretization parameters might
be the non-negative reals. Moreover, the discretization of an integral operator
on L*(R") is usually done in two steps: first one compresses the operator onto
the space L?([0, t]) with some ¢ > 0, and then this compression is discretized
by a standard quadrature or collocation method which finally leads to an finite
linear system. Thus, the natural discretization parameters are the points in
R* x N in this case. Similar situations appear when standard discretization
procedures are combined with cutting off techniques (see Chapter 5 in [8] or
Chapter 4 in [7] for first impressions and for further references), which also leads
to discretization parameters in N x N or in Rt x N. Consequently, we will
examine the spectral approximation problem for nets of approximation operators
rather than for sequences, i.e. the points of a certain directed set will serve us as
discretization parameters.

2 Algebras of finite sections sequences

The mentioned stability results for the finite sections method for band-dominated
operators will be formulated in the language of limit operators. Let A € L(Ey),
and let h be a sequence of points in Z” which tends to infinity. The operator A4,
is called the limit operator of A with respect to h if, for every k € N,

||(V—h(n)AVh(n) — Ah)PkH — 0 and HPk(V_h(n)AVh(n) — Ah)H — 0

as n — oo. We say that A is rich if every sequence g, which tends to infinity,
possesses a subsequence h for which the limit operator A, exists. If H is a
finite-dimensional Hilbert space, then every band-dominated operator on Ey =
I>(Z", H) is rich. The class of all rich band-dominated operators on Ey will be
denoted by A%, This class is a closed and symmetric subalgebra of L(Ey). For
this and further results on limit operators, which are cited here without proof,
we refer to [9, 10, 11].

In what follows, we will exclusively deal with the finite section method for
rich band-dominated operators. It will be convenient to consider, instead of
the one-sided sequence (P, AP, )nen of operators acting on Im P,, the two-sided
sequence (P, AP, + Q,)necz of operators acting on Ey, where P, := 0 if n < 0
and @, := I — P, for all n. Clearly, both sequences are simultaneously stable or
not.

With every bounded sequence A = (A,,)nez of operators on Ey, we associate
an operator Op (A) on Ey,; as follows. For, we write every vector x € Z"*!
as ¢ = (¢',x541) € ZY x Z and, for every m € Z, we define the operator of
restriction

Ry : Exny1— Ey, (Rpf)(@) = f(2',m)



and the operator of embedding

f(&") ifn=m

Sm  En — Enya, (Smf)(xl7n) = { 0 if n £ m.

Finally, we set
(Op (A)f)(xl> m) = (AmRmf) (J?’)

It turns out that, if A is a rich band dominated operator on Ey, then Op (A)
with A := (P, AP, + Qp)nez is a rich band-dominated operator on En;. We let
Ostab(A) stand for the set of all operators R, BS,, where m € Z and where B is
a limit operator of Op (A). In [11], the following is proved.

Theorem 2.1 Let A € A", Then the sequence A := (P,AP, + Q,) is stable
if and only if all operators in ouu(A) are invertible and if the norms of their
wnverses are uniformly bounded.

For A € Ah let H, denote the set of all sequences h for which the limit
operator A, exists. If h € H 4, then the limit operators By, exist for all operators
B which belong to the smallest closed subalgebra C*(A) of L(Ey) containing
the operators A, A* and the identity operator I. The algebra C*(A) is a unital
C*-algebra, and the mapping B + By, is a unital *~homomorphism from C*(A)
into L(E). We claim that

op(B) ={B : h € Ha} for every operator B € C*(A) (1)

where o,,(B) refers to the set of all limit operators of B. Indeed, let g € H be a
sequence for which the limit operator B, exists. Since A belongs to AV there
is a subsequence h of g which lies in H 4. Clearly, B), exists and is equal to B.

With this observation, it is easy to check that the proof of Theorem 2.1 given
in [11] carries over to the algebraic setting. For, we denote the algebra of all
bounded sequences (A,,)nez, provided with element-wise operations and with the
supremum norm, by F, and the smallest closed subalgebra of F, which contains
all sequences (P, AP, + Q) with A € A", by By

Theorem 2.2 A sequence A € BR" is stable if and only if all operators in
Ostar(A) are invertible and if the norms of their inverses are uniformly bounded.

For an equivalent formulation which fits to our purposes, we agree upon the
following definition.

Definition 2.3 Let B be a C*-algebra with identity element e and, for every
element t of a set T, let By be a C*-algebra with identity element e;, and let
Wy be a *-homomorphism from B into By with Wi(e) = e;. We call {Witier a
weakly sufficient family of homomorphisms for B if the following assertions are
equivalent for every b € B:



(a) b is invertible in B.
(b) Wi(b) is invertible in By for everyt € T, and

sup [|(W (b)) || < oo
el

We call {W, }1er a sufficient family of homomorphisms for B if, for every b € B,
the assertion (a) is equivalent to

(c) Wi(b) is invertible in By for everyt e T.

Let G stand for the set of all sequences (A4,) € F with lim ||A,]| = 0. This set
forms a closed ideal of F, and a sequence A € F is stable if and only if its
coset A + G is invertible in the quotient algebra F/G. Further, given a sequence
A = (4,) € B¥h, let C*(A) denote the smallest closed subalgebra of F which
contains the sequences A, A* := (A%) and I := (I).

If h € Hopay and m € Z, then the limit operator (Op(B)), exists for every
sequence B € C*(A), and every limit operator of Op(B) arises in this way.
Thus, B — R,,(Op(B)),Sy, is a *~homomorphism from C*(A) into L(E). Since
the ideal C*(A) NG lies in the kernel of that homomorphism, the mapping

Whm : C*(A)/(C*(A)NG) — L(E), B+C*(A)NG — R, (Op(B)),Sm

is correctly defined for every sequence h € Hopa) and every m € Z. The following
is an immediate consequence of Theorem 2.2.

Theorem 2.4 Let A € B, Then the set {W,,} with h € Hopay and with
m running through 7Z forms a weakly sufficient family of homomorphisms for the
algebra C*(A)/(C*(A) N G).

3 Weakly sufficient families and spectra

Now we turn over to a more general context. Throughout this section, let B
be a C*-algebra with identity element e and let 7" be a non-empty set. Further
suppose that, for every ¢ € T', we are given a C*-algebra B, with identity e, and
a *-homomorphism W; from B into B; with W;(e) = e;.

It is our goal to realize how certain spectral quantities of b € B can be ex-
pressed by the corresponding spectral quantities of the W;(b), provided that {W,}
forms a weakly sufficient (a sufficient) family of homomorphisms. It will be con-
venient to use the following notation. Given a family (M;);cr of subsets of C, we
set

sup M, := clos (Uger M),

teT
and we call sup,c;- M, the mazimum of the family (M,;) (and write max;eqr M, in
that case) if Uy M, is closed.



Norms. We start with a relation between the norms of b and of W;(b). (In the
very weak sense that the spectrum of b is contained in the closed ball with radius
||b]|, the norms might also be considered as some kind of a spectral approxima-
tion.)

Theorem 3.1 Let B, B, and W; be as above. If {W;}tier is a weakly sufficient
famaly for B, then

Iell = sup [We(b)ll,  for every b € B. 2)
te

If the family {Wi}ier is sufficient, then the supremum in (2) is a mazimum.
Proof. *~-Homomorphisms are contractive. Hence,

||b]] > sup [|W:(b)||; for every b € B.
tel

Suppose there is a b € B such that [|b]| > sup,cp ||[Wi(b)]|s. Then, by the C*-
axiom,

1670[] > sup [[Wi(b*D) -
tel

Set d := ||b*b|| —sup,ep ||[We(6*b)]|;. Then [[W,(6*b)|| < ||b*b|| —d < ||b*b|| for every
t € T. Hence, all operators W;(b*b — ||b*b||e) = Wy (b*b) — ||b*b||e; are invertible,
and
I (b0 — [[b0lle))~ | = sup [(x —[|b"b])7"]
x€a(We(b*b))
< sup (@ = ()bl = (1070)) = p(W (b)) < 1/d
z€[0,p(We(b7b))]
where p denotes the spectral radius. Thus,

sup [|(W(b"b — [|b"ble)) ™| < 1/d.
tel’

Since {W,} is a weakly sufficient family by assumption, the latter estimate implies
the invertibility of b*b — ||b*b||e, which is impossible. This shows (2). The result
for sufficient families if Theorem 5.39 in [7]. n

Spectra. As usual, we let
o(b) = op(b) ;== {A € C: b— Aeis not invertible}.
Theorem 3.2 Let B, B, and W; be as above. If {W;}tier is a weakly sufficient

family for B, then
o5(b) = sup o, (W(b)) (3)

tel’

for all normal elements b of B. If the family {Wiher is sufficient, then the
supremum in (3) is a mazimum, and the assertion holds for every b € B.
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Proof. The inclusion D in (3) is trivial and holds also in the context of general
Banach algebras. It remains to show that, for every normal element b € B,

A gsupog, (Wy(b)) = A& og(b).

el

Without loss, let A = 0. Then, since sup,c og,(Wy(b)) is compact, there is a
closed disk with center 0 and with positive radius » which has no points with
sup,cp o8, (Wi(b)) in common. Thus, W;(b) is invertible for every ¢t € T, and
since (W;(b))™! is normal, we get

12 (0) Ml = (W) )
= sup{A € C: A e o(W;(0)) 1)}
= inf{A e C: xeo(W;(b)} < 1/r.

The weak sufficiency of {W;} implies the invertibility of . The assertion for
sufficient families follows immediately from the definitions. [

Pseudospectra. Let ¢ > 0. The e-pseudospectrum of b € B is the set
o°(b) := {\ € C: b— Aeis not invertible or ||(b— Xe)~*|| > 1/¢}.

Pseudospectra are non-empty and compact, and for the pseudospectral radius of
an element b € B one has

max{|A|: A € o°(b)} < [|b]| +¢. (4)

Basic properties of pseudospectra can be found in [1, 3, 7, 12, 14, 15]. The
following result is based on arguments from [1].

Theorem 3.3 Let B, B, and Wy be as above, and let ¢ > 0. If {W;}ier is a
weakly sufficient family for B, then

o°(b) = supo®(Wy(b)) for everyb € B. (5)

teT
If the family {W;}ier is sufficient, then the supremum in (5) is a mazimum.
Again, one inclusion holds in a more general context. We formulate it separately.

Lemma 3.4 Let B and C be unital Banach algebras and W : B — C be a unital
and contractive homomorphism. Then

o (W (b)) C o°(b) for everyb € B.



Proof. Let A € o*(W(b)). If W(b) — Ae = W (b — Ae) is not invertible, then
b — Ae is not invertible. Hence, A € ¢°(b) in this case. Let now W (b — Xe) be
invertible and [[(W (b — Xe))'|| > 1/e. If b — Xe is not invertible, then we have
A € 0¢(b) again. If b — Xe is invertible, then (W (b — Xe))™!' = W((b — Xe)™}),
whence |[W((b — Xe)™')|| > 1/e. Since W is a contraction, this shows that
|(b—Xe) || > 1/e, i.e. X € o%(b). n

In the proof of Theorem 3.3, we will employ the following result by Daniluk
which states that the maximum principle (which, in general, does not hold for
operator-valued analytic functions) holds for resolvent functions.

Theorem 3.5 Let B be a C*-algebra with identity e, and let a € B be such that
a — ze 1is invertible for all z in some open subset U of the complex plane. If
|(a — ze)7|| < C for all z € U, then ||(a — ze)™!| < C for allz € U.

A proof is in [7], Theorem 3.32.

Proof of Theorem 3.3. From the preceding lemma we conclude that
o®(Wy(b)) Co°(b) foreverybe Bandt e T.
Since pseudospectra are closed, this implies
iu%) o (Wi (b)) C o°(b) for every be B
€

for every family {W;} of *-homomorphisms. For the reverse inclusion, let {IV,}
be a weakly sufficient family of *-homomorphisms, and let A € o¢(b). If there is
at € T such that A € o°(WW;(b)), then nothing is to prove. So let us assume that
all elements W, (b — Xe) are invertible and that [|(W;(b — Ae))™!|| < 1/e. Then

sup ||[(Wy(b — Xe)) 7| < 1/,
teT

Since {W;} is a weakly sufficient family, the element b — Ae is invertible, and from
Theorem 3.1 we conclude that ||(b—Ae) || < 1/e. Since A € o°(b) by hypothesis,
this shows that ||(b — Ae)7!| = 1/e.

In every open neighborhood U of A, there is a A such that (b~ Ae)7Y| > 1/e.
Indeed, otherwise we would have ||(b — )\e) Y] < 1/e for all A € U whence, via
Theorem 3.5, ||(b — Ae) || < 1/¢ for all A € U including X = \.

Thus, if £ € N is sufficiently large, then there are Ay € C such that

1
_ 1 — 1 > )
ANl <1k and b= M) 2 g
Further, again by Theorem 3.1, there are ¢, € 1" such that
B B 1
W, (b= Axe)) I = (Wi (0) = Awery) | 2 — Uk

Since —— > £, we have A, € 0°(W,, (b)), and since Ay — A as k — oo, we get
A € sup,ep 0°(Wi(b)). Thus, (5) is verified. The proof for sufficient families is in
[7], Corollary 5.40. n



Numerical ranges. Let B be a Banach algebra with identity e and S(B) its
state space, i.e. the set of all f € B* with f(e) =1 and ||f|| = 1. The numerical
range of b € B is the set

N(b) == {f(b) : f € S(B)}-

Numerical ranges are non-empty, compact and convex subsets of C. For a
bounded linear operator A on a Hilbert space H, one also considers its spatial
numerical range

SN(A) = {(Az,x) : x € H, ||z|| = 1}.

Let A € L(H). Then the spatial numerical range SNy (A) (where A is considered
as a bounded linear operator on H) and the numerical range Ny (A) (where A
is considered as an element of the C*-algebra L(H)) are related by

NL(H) (A) = clos SNH(A)

These and further properties of numerical ranges can be found in [4, 5, 7]. The
proof of the following result on based on arguments from [13].

Theorem 3.6 Let B, B, and W, be as above. If {W;}tier is a weakly sufficient
family for B, then

N(b) = conv sup N(Wy(b)) for everyb € B. (6)

ter
One of the inclusions in (6) holds in the more general context of Banach algebras.

Lemma 3.7 Let B and C be unital Banach algebras and W : B — C be a unital
and contractive homomorphism. Then

N(W (b)) C N(b) for everyb € B.

Proof. Let A € N(W (b)), and let f be a state of C with f(W (b)) = A. Since
W is unital and contractive, one has (f o W)(e) = 1 and ||f o W|| < 1, whence
||f oW = 1. Thus, f o W is a state of B, which implies that A € N(b). "

Proof of Theorem 3.6. From Lemma 3.7 we infer that
Uier N (W3 (b)) € N (D).

Since N(b) is a closed and convex set, this implies the inclusion 2 in (6).

For the reverse inclusion, we think of each B; as a C*-algebra of linear bounded
operators on a Hilbert space H; (which is possible by the GNS-construction). Let
H := ®H; refer to the orthogonal sum of the Hilbert spaces H;, t € T, and write
W for the mapping from B into L(H) which associates with every b € B the
operator

(e)ter = (Wi(b)Ti)ser-
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This mapping is an isometry from B onto the C*-subalgebra W (B) of L(H). Thus,
Np(b) = Nw i) (W (D). It is further a simple consequence of the Hahn-Banach
Theorem that Ny ) (W (b)) = Niy (W (b)), which implies that

Nis(h) = Ny (W (8)) = Nagany (W (b)) = clos SN (W (8)).

Thus, given A € Ng(b) and € > 0, there is a vector (z;)ier € H with norm 1 such
that

A= (Wi (0)ar), (@)l = [A =D AWilb)as, w0},
ter
Let M denote the (at most countable) set of all t € T with z; # 0 and, for t € M

set y; := x¢/||7¢]|. Then we have

<e.

A=Y Wiz am| = (A= Dl We®)ye, yda | < e
teM teM
Since ||z.||* > 0 and >, [|lze||” = ||(x¢) |7, = 1, this shows that A can be approx-

imated by convex linear combinations of points (W;(0)y, y1) € Uer SNy, (Wi (b))
as closely as desired. Hence,

A € closconv Uger SN, (Wi (b)) C clos conv User Nipa,) (Wi (b)),

which gives

A € clos conv Uger Ny, 3y (Wy(D)). (7)
Since closconv M = convclos M for every bounded subset M of the complex
plane, (7) is just the assertion. n

4 Asymptotic behaviour of norms and spectra

Beginning with this section, we let T = (T, >) be a directed set, i.e. > is a
partial order on 7', and for each pair s, t € T there is a u € T such that u > s
and u > t. Further we assume that, for every ¢t € T', we are given a C*-algebra B,
with identity e;. By F we denote the set of all bounded functions @ on T" which
take at t € T' a value a; € B;. This set becomes a C*-algebra with identity when
provided with pointwise operations and with the supremum norm. The set G of
all nets (g:)ier € F with limyer [|g[| = 0 forms a closed ideal of F.

Let a = (a¢)ier € F. The following results relate the asymptotic behaviour
of the spectra (some kinds of generalized spectra) of the elements a; with the
spectrum (the generalized spectrum) of the coset of the net (a;) modulo the ideal
G and, hence, in terms of the stability spectrum of the sequence (A,) in case
T = N. For, we define the limes superior of a family (M) of subsets of the
complex plane by

lim sup M; := Nyep sup M.
teT s>t
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Norms. Again, we start with a result on the asymptotic behaviour of norms.

Proposition 4.1 For all nets a = (a;) € F,

la +Gllz/g = Tim sup [Ja||.
ter

Proof. Let a = (a;) € F. For every net g = (¢;) € G,
lim sup ||a¢|| = limsup ||a; + ¢¢|| < sup ||a; + g4|| = ||a + g]|7,

whence the estimate limsup ||a¢|| < ||a+G||. For the reverse inequality, let € > 0,
and choose ty € T such that ||a| < limsup ||a|| + ¢ for all ¢ = t5. The net g,

defined by
0 ittt
%’{—%iﬁ%m

belongs to G, and

la+Gll < fla+ gl = sup fa,[| < T sup fla || +=.
>to

Letting ¢ go to zero yields the desired result. [

Combining this result (where now T is N and > is >) with Theorems 3.1, 2.4
and 2.1, we get:

Theorem 4.2 Let A = (A,) € BR". Then
lim sup [|An|| = | A + G| = sup{[|An[| : An € Osar(A)}-

Proof. The first equality follows from the preceding proposition. The the second
one is a consequence of Theorems 3.1 and 2.1 which follows since the operators
in 04q5(A) are just the operators of the form Wy, ,,(A) with h € Hop(a) and with
m € 2. [

Spectra. Let (a;) € F. It turns out that the limes superior lim sup,c; o(a;) is
related to some kind of stability which might be called ‘spectral’ stability. The
net (ay) is spectrally stable if there is a ty € T such that the a, are invertible and
the spectral radii p(a; ') of their inverses are uniformly bounded for all ¢t = t,
(whereas the common notion of stability requires the invertibility of a; for all
t = to and the uniform boundedness of the norms ||a; *||). Clearly, every stable
net is also spectrally stable.

Theorem 4.3 Let (a;) € F. Then X € limsup,cpo(a) if and only if the net
(ay — Aey) fails to be spectrally stable.
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Proof. Let the net (a; — \e;) be spectrally stable, i.e. there is a ¢y € T such that

sup p((a; — Ae;)™') =1 m < oo,
t>to

Then, for all ¢ > t;,

m = sup{|u| : i € o((ar — Aee) )} = (inf{|p| : p € o(a, — Aer)})
whence
I/m <inf{|u|: p€o(a) — A} =inf{|p — Al : p € o(ay)} = dist (A, o(ay)).

Hence, A cannot belong to lim sup o(ay).

Let, conversely, A ¢ limsupo(a;). Then there is an t, € T such that A
does not belong to clos Us.y, 0(a;). The boundedness of the net (a;) implies the
compactness of this set, hence,

dist (A, clos Uy, o(ay)) =:m > 0.
Consequently,
dist (0, o(a; — Aey)) > m >0 for all t > ¢,

which implies that a; — Ae; is invertible and p((a; — Aey) 1) < 1/m for all ¢ = .
Thus, the net (a;) is spectrally stable. n

As we have just seen, the determination of lim supo(a;) requires to investigate
the spectral stability of the nets (a; — Ae;). This can be easily done for nets for
which stability and spectral stability coincide.

Corollary 4.4 Let a = (a;) € F be a net of normal elements. Then
limsupo(a;) = ox/g(a+G).

Proof. The spectral radius and the norm of a normal element coincide. Hence,
the sequence (a; — Ae;) is spectrally stable if and only if it is stable. The stability
of (a; — Aet) is equivalent to the invertibility of the coset (a; — Ae;) + G. n

These results lead to the following theorem in a similar way as we derived Theo-
rem 4.2.

Theorem 4.5 Let A = (A,) € BR" be a sequence of normal operators. Then
limsupo(A4,) =0c(A +G) =supo(A)

where the supremum is taken over all operators Ay € ogiap(A).

12



Pseudospectra and numerical ranges. Here are the analogous results for
pseudospectra and numerical ranges. In case 7' = N, these results can be derived
in a similar way as in [7], Theorems 3.31 and 3.46. In the following sections we
will propose an alternative approach which also works in the general case.

Theorem 4.6 Let a = (a;) € F and e > 0. Then
limsupo®(a;) = 0% g(a + G).

Combining the preceding theorem with Theorems 2.4 and 3.3 we get the following
result for the pseudospectra of the finite sections of a band-dominated operator.

Theorem 4.7 Let A = (A,) € BR" and € > 0. Then

limsupo®(A,) =0 (A + G) =supo(Ap)
where the supremum is taken over all operators Ay € ogiap(A).
Theorem 4.8 Let a = (a;) € F. Then

conv limsup N(a;) = Ngjg(a + G).

n—00

Observe that the limes superior of a net of convex sets need not to be convex
again, which explains the conv operator on the left hand side. The implications
of Theorem 4.8 (in combination with Theorems 2.4 and 3.6) for the finite section
method are as follows.

Theorem 4.9 Let A = (A,) € B, Then
conv limsup N(A,) = Nr/g(A +G) =sup N(A4)

where the supremum is taken over all operators Ay € ogiap(A).

5 Theorems of Weyl type for concrete set se-
quences

In this section, we will derive theorems of Weyl type for some set functions. By
a set function on an algebra B, we mean a mapping from B into the set of all
subsets of the complex plane. Then we say that a Weyl type theorem holds for
two set functions ¥¢ on an algebra C and X¢,s on the quotient C/J of C by its
ideal 7 if

Ec/j(C—F J) = ﬂjejzc(b +j) for every c ¢ C.
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Spectra. If X(b) is the spectrum of b, then there is no Weyl type theorem in
general. To have an example, let C = L(I?), J the ideal of the compact operators
on [2, and ¢ = V the forward shift operator on 2. Then ¢ + j is a Fredholm
operator with non-vanishing index for every j € J, whence 0 € o(c+ j). But V
is a Fredholm operator, hence, ¢ + J is invertible and 0 € o(c + J).

It turns out that there is a theorem of Weyl type for spectra in case of the
algebra F and its ideal G.

Theorem 5.1 Let F and G be as above. Then, for every net a € F,
af/g(cH—Q) = ﬁgegaf(a+g). (8)
One of the inclusions in (8) holds in a more general setting.

Lemma 5.2 Let C be a Banach algebra with identity and J a closed ideal of C.
Then, for every c € C,

oci7(c+T) C Njegoe(c+ j).
Indeed, if W :C — C/J denotes the canonical homomorphism, then
olc+T)=cW(c)) =c(W(c+j)) Co(c+j) foreveryjeJ.

Proof of Theorem 5.1. The inclusion C in (8) follows from Lemma 5.2. For
the reverse inclusion, let A & o(a + G), i.e. the coset a — Ae + G is invertible in
F/G. Then there are nets b € F and g, h € G such that

(a—Xe)b=e+g¢g and b(a— Ae) =e+ h.

Choose t4, t, € T such that ||g;|| < 1/2 for all ¢t > ¢, and ||h]] < 1/2 for all
t > tp, and let ¢y € 1" be such that ¢y > t, and ty > t,. Further, define o/, V' € F

by
I ay 1ft>t0 ;. bt 1ft>t0
a '_{ (L+Ne, ift i o and bt'_{et if ¢ 3 to.

Then a — o' and b — b’ belong to G, and

(a"=Xe)) =e+g and V(d —Xe)=e+ 1 9)
with ; ;
L gt 1t>‘t0 L ht lt>‘t0
%’{Oiﬁ%m and m’{Oiﬁym

In particular, ||¢'|| < 1/2. Thus, e 4 ¢ is invertible if F, and its inverse is of the
form e+ k with & € G. Multiplying the first equality of (9) by e+ k from the left
hand side yields

(a+s—Xe)b =e with s:=kd —(a—d')— Nk €G.

Repeating these arguments for the second equality in (9), we get the invertibility
of 0’ and, hence, that of a + s — Ae. Thus, A € o(a + s), whence finally \ ¢
Ngego(a + g). n
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Pseudospectra. The example from the preceding paragraph also indicates
that, in general, one cannot expect a theorem of Weyl type for pseudospectra.
But for the concrete algebra F and its ideal G, there is again such a result.

Theorem 5.3 Let F and G be as above, and let € > 0. Then, for every net
a € F,
0760 +9G) = Ngegoz(a +g). (10)

Observe that again one inclusion in (10) holds in the context of Banach algebras,
which follows easily from Lemma 3.4.

Lemma 5.4 Let C be a Banach algebra with identity, J a closed ideal of C, and
e > 0. Then, for every c € C,

oc,7(c+T) C Njegog(c+ j).

Proof of Theorem 5.3. The inclusion C is a consequence of the preceding
lemma, and for the reverse inclusion we proceed as in the proof of the preceding
theorem. If A &€ o°(a + G), then there is a net b € F with 8 := ||b + G| < 1/e,
and there are nets g, h € G such that

(a—Xe)b=e+g¢g and b(a— Ae) =e+ h.

Further, since ||b+ G|| < 1/e, there is a net k € G with ||b — k|| < (8 + 1/¢)/2.
Let 0 < § < (1/e — 8)/2 and choose t; € T such that ||k;]|] < ¢ for all £ > .
This choice implies that

10l < Mlbe = Kl + (IRl < (8 +1/) /240 <& (11)

for all ¢t > t;. Let further ¢, and ¢, be as in the proof of Theorem 5.1, and let
to € T be greater than both ¢,, ¢, and ;. Then we define o/, V' € F by

. oa o=t o [ it
WY AN+1/B)e ift ity ONC T Bey ift it

Observe that

6] = sup 16| = max{flltp 1bell, B} < max{(F + 1/e)/2 + 0, 5} < 1/e
S 0

due to (11). The remaining steps are as in the proof of Theorem 5.1. They show
the existence of a net s € G such that

(a+s—Xde)b) =b'(a+s— Xe) =e,
whence A\ & 0°(a + s). n

Let us mention that a similar result also holds (with obvious modifications in
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the proof) for the so-called structured pseudospectra or spectral value sets of an
element a of a C*-algebra C, which are defined by

0;.(a) == {A € C:a— Aeis not invertible or [|b(a — Ae) 'c|| > 1/e}

where b, ¢ are fixed elements of C and ¢ > 0. Let us also mention that in [2], there
is proved a version of Theorem 3.5 which is then used to derive a modification
of Theorem 3.3. This modification holds for structured pseudospectra of certain
band matrices the entries of which are constant along each diagonal. Even though
this class of matrices seems to be very special, the results from [2] are highly non-
trivial, and there seems to be no hope to extend these results to more general
classes of band and band-dominated operators.

Numerical ranges. Here the situation is much easier: one has a Weyl type
theorem for every Banach algebra with identity and every closed ideal of that
algebra.

Theorem 5.5 Let C be a Banach algebra with identity and J a closed ideal of
C. Then, for every c € C,

Neyg(e+J) € NjegNele + 7).
A proof is in [5], Section 22, Lemma 3.

6 The limes superior of a family of set functions

Recall that a set function ¥ on a Banach algebra B with identity e is called
e bounded if ¥(a) is a bounded subset of C for every a € B.

e semi-homogeneous if ¥(a+Ae) C A+ X(a) for every a € B and every A € C.

o upper semi-continuous at a € B if, for every £ > 0, there is a § > 0 such
that, for all b € B with ||b—al| < 0, X(b) lies in the e-neighborhood of ¥(a).

Let T, B;, F and G be as in the preceding sections. Assume further that, for
every t € T, we are given a set function ¥; on B;. To the family (X;);er, we
associate two set functions ¥g,, and Yjimg,, on F by

Yaup(a) == sug Yi(ay) = clos Uger Ei(ay)
te

and

Elimsup(a/) = llr?eiup Et(at) = rjiﬁET Sl:-It) Es (as)

where a = (a;). Further we call the family (3;)icr uniformly bounded if the set
function X, is bounded, and we call this family uniformly upper semi-continuous
at a € F if, for every € > 0, there is a 6 > 0 such that, for all b € F with
|Ib —a|| <6 and for all t € T', ¥;(b;) lies in the e-neighborhood of ¥;(ay).
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Theorem 6.1 Let T, B,, ¥y, F and G be as above, and let every set function
be semi-homogeneous and the family (X;)er be uniformly bounded and uniformly
upper semi-continuous on F. Then, for every net a := (a;)ier € F,

Elimsup(a) = ﬂgeg Esup(a + g) (12)

or, equivalently,
lim sup ¥¢(a;) = Ngeg sup X¢(ar + ).
teT teT
Proof. Abbreviate the left and the right hand side of (12) by S; and S, respec-
tively. We first show the inclusion S, C ;. Let A € Nyeg sup,er Xi(ar + ¢¢) and
s € T. Choose r € C such that

dist (A, 7 +sup 2,(0)) > 1
t#s

which is possible since sup,,, %:(0) € sup;er 3:(0) = Ygp(0) is bounded by
assumption. Then define g € F by

] o ift > s
9=\ —ay +re, if t 3 s.

The net g lies in G. Consequently,

A€ Sll]}? Et(at + gt) = clos (UtETEt(at + gt))
te

= clos (UpsXi(ar + g1) U UpesXe(ar + g1))
= clos (UpsXi(ar) U UpesXi(rer))
C clos (UpesXi(ar) U (1 4+ Upes4(0)))

due to the semi-homogeneity. The choice of r ensures that A & clos (r+Ug.s2.(0)).
Hence,

A € clos (Up sX¢(ar)) = sup Xe(ayr)
t-s

whence \ € S|.

To prove the reverse inclusion, let A € limsup,., ¥i(a;) and g = (¢:) € G.
Due to the uniform upper semi-continuity at a + g € F, given € > 0, there is a
d > 0 such that, for all b = (b)) € F with |[b — (a + ¢)|| < J, X¢(by) lies in the
e-neighborhood of ¥;(a; + g;). Choose s € T such that ||g;|| < §/2 for all t > s,
and define b = (b;) € F by

A ift > s
b ag + g lft%s
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Then ||b— (a+ g)|| < /2 < 0, and from A € S; we conclude
A€ sup Et(at) = Sup Et(bt) = clos (Ut>82t(bt))

t>s t>s
clos U s (e-neighborhood of ¥4 (a; + g¢))

clos Uger (e-neighborhood of ¥, (a; + g)).

M 1N

Thus, for every € > 0, there is a A, in the union over ¢ of all e-neighborhoods of
Yi(a; + g¢) for which |A — A\.| < e. Consequently,

)\ € ClOS UteT Et(at + gt)

Since g € G is arbitrary, this shows that A € S,. n

7 Applications to concrete set functions

Pseudospectra. Let us check that the assumptions of Theorem 6.1 are satis-
fied if the set functions ¥, are specified to be the e-pseudospectra. The semi-
homogeneity is evident in this case, and the uniform boundedness follows from

(4).
Proposition 7.1 Let B, and F be as above, and let £ > 0. Let further Xy = o°°

for every t € T. Then the family (3;)ier s uniformly upper semi-continuous on

F.

Proof. Suppose there is a net a(’) € F at which the family () is not uniformly
upper semi-continuous. Thus, there is an € > 0 such that, for all n € N, there
is a net a™ € F with [|a™ — a@|| < 1/n, and there are points ¢, € T and
A € O’EO(GEZ)) with
dist (An, 0 (al”)) > €.

Since unago(a,ﬁjj)) is bounded, there are n; < ny < ... such that the sequence
(An,) converges to a A* € C. For simplicity, let ng = k, i.e. let the sequence (\,)
converge to A\*. Consider

a§j> — Ay, = a§2> — Ney, + (A" = N\pey, + aE? — agg), (13)

and choose ngy such that |\*—\,| < /2 for all n > ng. Set further 7* := {¢t,, : n >
no}, and let F* refer to the product of the algebras B, with ¢ € T*. Evidently,
the family of homomorphisms

f*—>Bt,CL—>CLt WlthtGT*

is weakly sufficient for F*. Thus, if we denote the restriction of a(® onto T* by
a® again, and if we consider this restriction as an element of the algebra F*,
then we conclude from

dist (A, 0°(af)) > dist (An, 0°0(al”)) — |A* = M\a| > 6 — /2 = £/2
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(which holds for all n > ng) and from Theorem 3.3 that \* ¢ 032 (a®). Thus,
al® — X*e is gg-invertible in F*. Since the set of all gg-invertible elements of a
Banach algebra is open, there is an £; > 0 such that al® — \*e + s is gg-invertible
for all s € F* with ||s|]| < ;. Choose n; > ngy such that

N = A+ [la —al”|| < £1/2 foralln > n,y.
Then the net

(0) x :
. a;,’ — \'e if n<m
ot { al” — Ne, + (N = A)er, +a™ —al” it n>n
tn tn n tn trn tn - 1

is gp-invertible in F*. Hence, the right hand side of (13) is gp-invertible for
sufficiently large n, whereas the left hand side of (13) fails to be gg-invertible by
construction. Contradiction. [

Now the proof of Theorem 4.6 follows easily: the Weyl theorem (Theorem 5.3)
implies that
0%gla+G) = Ngegor(a+g),

which is equal to Ngeg sup,er Xe(ar + g:) by Theorem 3.3, applied to the family
of all homomorphisms a — a;. From Theorem 6.1 we finally conclude that

Ngeg sup Xi(a; + g;) = limsup Xy (ay).
ter ter

Numerical ranges. For the proof of Theorem 4.8 we need an auxiliary result.

Lemma 7.2 Let (T, >) be a directed set and let (My)ier be a bounded and mono-
tonically decreasing (i.e. Mg C M, whenever s = t) net of non-empty closed
subsets of C. Then

conv Myer My = Nyer conv M.

Proof. Since N; M; C N;conv M;, and since the intersection of convex sets is
convex again, the inclusion conv N; M; C N, conv M, is evident.

Conversely, let m € NMyconv M;. Then, for every t € T, there are elements
mt, mb in M, as well as non-negative numbers A}, A5 with X! +\. =1 such that

m = Aim{ + \m),. (14)

Due to the boundedness of the net (M), there exists a convergent subnet (y7)secs
of the net (m!)er with limit m; € clos Uy M;. (Recall that (y$)ses is a subnet
of (m%)er if S is a directed set and if there is a mapping f : S — T such that
Y] = m{(s) for all s € S and such that, given ¢y € 7', there is an sq € S with

f(s) =ty for all s = sp.) We claim that my € M, for every t € T

19



Let tp € T and ¢ > 0. Then there is an sy € S such that |y; — m;| < ¢ for
all s > so. Further we choose s; € S such that f(s) = ¢ for all s > s1, and we
choose s* € S such that both s* > sy and s* > s;. Then

jyi" = ma| = |m{®) | <e
and m{(s*) € M,, since f(s*) = to. Thus, dist (my, My,) < ¢ for all ¢ > 0. Since
M,, is closed, this implies m; € M, and proves our claim.

For s € S, set y; := m!®. The same arguments as above yield the ex-
istence of a convergent subnet of (y5)secs the limit msy of which belongs to M,
for every ¢ € T. Repeating these considerations for the nets (A}) and (A)
as well, we finally get convergent subnets (21")ucv, (25)ucv, (W) uer, (143)ucr of
(mY)er, (M) ier, (A ier, (AY)ier with limits my, my € NyM; and py, pe € [0, 1],
p1 + po = 1, respectively. From (14), we conclude that

m = uizy + pyzy  for allu € U,
whence m € conv Nyer M. n

Proof of Theorem 4.8. Let a = (a;) € F. From the Weyl theorem (Theorem
5.5) we know that
N(a+G) = NgegN(a+g),

and Theorem 3.6 (applied to the weakly sufficient family for F, consisting of all
homomorphisms a — a;) further yields

N(a + g) = ngQ conv sup N(at + gt)- (15)
ter

Fix s € T, choose my € N(ay), and set

sy ] 0 if t>s
ge = —a; +mge; if t s,

Then the net g(s) belongs to the ideal G and, since N (a; +g§s)) ={ms} C N(as)
for all ¢ # s, we get

sup N(a; + g*) = clos Uyy N(a;) = sup N(ay).
ter t>s

Together with equality (15), this implies that

N(a+ G) C Nserconv sup N(ay).
t>s

Applying Lemma 7.2 to the sets M, := clos Uy s N(as) we get

N(a+ G) C conv Ngep sup N(a;) = conv limsup N (ay). (16)
t-s te’T
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The proof of the reverse inclusion is based on Theorem 6.1, with the set functions
Y being the numerical ranges. The hypotheses of that theorem are evidently
satisfied: since states are linear and unital, one has the homogenity, and since
the norm of a state is 1, one has

max{|A| : A € N(a)} < |af,

whence the uniform boundedness. Further, if f is a state, then |f(a) — f(b)] <
|l — b]| which yields the uniform upper semi-continuity. Thus, Theorem 6.1
applies and yields the equality

lim sup N(a;) = Ngeg sup N(a; + g¢).
ter teT
The right hand side is obviously contained in Nyegconv sup,cp N(a¢+g;), and this
set coincides with Nyeg N(a + ¢) due to Theorem 3.6 and, hence, with N(a + G)
by the Weyl theorem. Thus, limsup,.r N(a;) € N(a + G), and since numerical
ranges are convex, this finally implies that

conv limsup N(a;) C N(a + G),
teT

which finishes the proof of Theorem 4.8. [
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