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Abstra
t

We 
onsider the nonstationary Stokes and Navier-Stokes 
ows in

aperture domains 
 � R

n

; n � 3. We develop the L

q

-L

r

estimates

of the Stokes semigroup and apply them to the Navier-Stokes initial

value problem. As a result, we obtain the global existen
e of a unique

strong solution, whi
h satis�es the vanishing 
ux 
ondition through the

aperture and some sharp de
ay properties as t ! 1, when the initial

velo
ity is suÆ
iently small in the L

n

spa
e. Su
h a global existen
e

theorem is up to now well known in the 
ases of the whole and half

spa
es, bounded and exterior domains.
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1 Introdu
tion

In the present paper we study the global existen
e and asymptoti
 behavior

of a strong solution to the Navier-Stokes initial value problem in an aperture

domain 
 � R

n

with smooth boundary �
:

8

>

>

<

>

>

:

�

t

u+ u � ru = �u�rp (x 2 
; t > 0);

r � u = 0 (x 2 
; t � 0);

uj

�


= 0 (t > 0);

uj

t=0

= a (x 2 
);

(1.1)

where u(x; t) = (u

1

(x; t); � � � ; u

n

(x; t)) and p(x; t) denote the unknown velo
-

ity and pressure of a vis
ous in
ompressible 
uid o

upying 
, respe
tively,

while a(x) = (a

1

(x); � � � ; a

n

(x)) is a pres
ribed initial velo
ity. The aperture

�
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domain 
 is a 
ompa
t perturbation of two separated half spa
es H

+

[H

�

,

where H

�

= fx = (x

1

; � � � ; x

n

) 2 R

n

;�x

n

> 1g; to be pre
ise, we 
all a


onne
ted open set 
 � R

n

an aperture domain (with thi
kness of the wall)

if there is a ball B � R

n

su
h that 
 nB = (H

+

[H

�

) nB. Thus the upper

and lower half spa
es H

�

are 
onne
ted by an aperture (hole) M � 
 \B,

whi
h is a smooth (n� 1)-dimensional manifold so that 
 
onsists of upper

and lower disjoint subdomains 


�

and M : 
 = 


+

[M [ 


�

.

The aperture domain is a parti
ularly interesting 
lass of domains with

non
ompa
t boundaries be
ause of the following remarkable feature, whi
h

was in 1976 pointed out by Heywood [31℄: the solution is not uniquely

determined by usual boundary 
onditions even for the stationary Stokes

system in this domain and therefore, in order to single out a unique solution,

we have to pres
ribe either the 
ux through the aperture M

�(u) =

Z

M

N � ud�;

or the pressure drop at in�nity (in a sense) between the upper and lower

subdomains 


�

[p℄ = lim

jxj!1;x2


+

p(x)� lim

jxj!1;x2


�

p(x);

as an additional boundary 
ondition. Here, N denotes the unit normal

ve
tor on M dire
ted to 


�

and the 
ux �(u) is independent of the 
hoi
e

of M sin
e r � u = 0 in 
. Consider stationary solutions of (1.1); then one


an formally derive the energy relation

Z




jru(x)j

2

dx = [p℄�(u);

from whi
h the importan
e of these two physi
al quantities stems. Later on,

the observation of Heywood in the L

2

framework was developed by Farwig

and Sohr within the framework of L

q

theory for the stationary Stokes and

Navier-Stokes systems [19℄ and also the (generalized) Stokes resolvent system

[20℄, [16℄. Espe
ially, in the latter 
ase, they 
lari�ed that the assertion

on the uniqueness depends on the 
lass of solutions under 
onsideration.

Indeed, the additional 
ondition must be required for the uniqueness if q >

n=(n � 1), but otherwise, the solution is unique without any additional


ondition; for more details, see Farwig [16℄, Theorem 1.2.

The results of Farwig and Sohr [20℄ are also the �rst step to dis
uss the

nonstationary problem (1.1) in the L

q

spa
e. They showed the Helmholtz

de
omposition of the L

q

spa
e of ve
tor �elds (see also Miyakawa [49℄)

L

q

(
) = L

q

�

(
) � L

q

�

(
) for n � 2 and 1 < q < 1, where L

q

�

(
) is the


ompletion in L

q

(
) of the 
lass of all smooth, solenoidal and 
ompa
tly

supported ve
tor �elds, and L

q

�

(
) = frp 2 L

q

(
); p 2 L

q

lo


(
)g. The spa
e

L

q

�

(
) is 
hara
terized as ([20℄, Lemma 3.1)
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L

q

�

(
) = fu 2 L

q

(
);r � u = 0; � � uj

�


= 0; �(u) = 0g; (1.2)

where � is the unit outer normal ve
tor on �
. Here, the 
ondition �(u) = 0

follows from the other ones and may be omitted if q � n=(n � 1), but

otherwise, the element of L

q

�

(
) must possess this additional property. Using

the proje
tion P

q

from L

q

(
) onto L

q

�

(
) asso
iated with the Helmholtz

de
omposition, we 
an de�ne the Stokes operator A = A

q

= �P

q

� on

L

q

�

(
) with a right domain as in se
tion 2. Then the operator �A generates

a bounded analyti
 semigroup e

�tA

in ea
h L

q

�

(
); 1 < q < 1, for n � 2

([20℄, Theorem 2.5).

Besides [31℄ and [19℄ 
ited above, there are some other studies on the

stationary Stokes and Navier-Stokes systems in domains with non
ompa
t

boundaries in
luding aperture domains. We refer to Galdi [26℄, Pile
kas [50℄

and the referen
es therein.

We are interested in strong solutions to the nonstationay problem (1.1).

However, there are no results on the global existen
e of su
h solutions in

the L

q

framework unless q = 2, while a few lo
al existen
e theorems are

known. In the 3-dimensional 
ase, Heywood [31℄, [32℄ �rst 
onstru
ted a lo-


al solution to (1.1) with a pres
ribed either �(u(t)) or [p(t)℄, whi
h should

satisfy some regularity assumptions with respe
t to the time variable, when

a 2 H

2

(
) ful�lls some 
ompatibility 
onditions. Franzke [23℄ has re
ently

developed the L

q

theory of lo
al solutions via the approa
h of Giga and

Miyakawa [29℄, whi
h is tra
ed ba
k to Fujita and Kato [24℄, with use of

fra
tional powers of the Stokes operator. When a suitable �(u(t)) is pre-

s
ribed, his assumption on initial data is for instan
e that a 2 L

q

(
); q > n,

together with some 
ompatibility 
onditions. The reason why the 
ase q = n

is ex
luded is the la
k of informations about purely imaginary powers of the

Stokes operator. In order to dis
uss also the 
ase where [p(t)℄ is pres
ribed,

Franzke introdu
ed another kind of Stokes operator asso
iated with the pres-

sure drop 
ondition, whi
h generates a bounded analyti
 semigroup on the

spa
e fu 2 L

q

(
);r � u = 0; � � uj

�


= 0g for n � 3 and n=(n� 1) < q < n

(based on a resolvent estimate due to Farwig [16℄). Be
ause of this restri
-

tion on q, the L

q

theory with q � n is not available under the pressure drop


ondition and thus one 
annot avoid a regularity assumption to some extent

on initial data.

It is possible to dis
uss the L

2

theory of global strong solutions for an

arbitrary unbounded domain (with smooth boundary) in a uni�ed way sin
e

the Stokes operator is a nonnegative selfadjoint one in L

2

�

; see Heywood [33℄

(n = 3), Kozono and Ogawa [40℄ (n = 2), [41℄ (n = 3) and Kozono and Sohr

[43℄ (n = 4; 5). Espe
ially, from the viewpoint of the 
lass of initial data,

optimal results were given by [40℄, [41℄ and [43℄. In fa
t, they 
onstru
ted

a global solution with various de
ay properties for small a 2 D(A

n=4�1=2

2

)

3



(when n = 2, the smallness is not ne
essary). Here, we should re
all the


ontinuous embedding relation D(A

n=4�1=2

2

) � L

n

�

. For the aperture domain


 their solutions u(t) should satisfy the hidden 
ux 
ondition �(u(t)) = 0

on a

ount of u(t) 2 L

2

�

(
) together with (1.2). In his Doktors
hrift [22℄

Franzke studied, among others, the global existen
e of weak and strong

solutions in a 3-dimensional aperture domain when either �(u(t)) or [p(t)℄ is

pres
ribed (the global existen
e of the former for n � 2 is 
overed by Masuda

[47℄ when �(u(t)) = 0). As for the latter, indeed, the lo
al strong solution in

the L

2

spa
e 
onstru
ted by himself [21℄ was extended globally in time under

the 
ondition that both a 2 H

1

0

(
) (with 
ompatibility 
onditions) and the

other data are small in a sense, however, his method gave no information

about the large time behavior of the solution.

The purpose of the present paper is to provide the global existen
e the-

orem for a unique strong solution u(t) of (1.1), whi
h satis�es the 
ux 
on-

dition �(u(t)) = 0 and some de
ay properties with de�nite rates that seem

to be optimal, for instan
e,

ku(t)k

L

1

(
)

+ kru(t)k

L

n

(
)

= o

�

t

�1=2

�

;

as t ! 1, when the initial velo
ity a is small enough in L

n

�

(
); n � 3.

The spa
e L

n

is now well known as a reasonable 
lass of initial data, from

the viewpoint of s
aling invarian
e, to �nd a global strong solution within

the framework of L

q

theory. We derive further sharp de
ay properties of

the solution u(t) under the additional assumption a 2 L

1

(
) \ L

n

�

(
); for

instan
e, the da
ay rate given above is improved as O(t

�n=2

). For the proof,

as is well known, it is 
ru
ial to establish the L

q

-L

r

estimates of the Stokes

semigroup

ke

�tA

fk

L

r

(
)

� Ct

��

kfk

L

q

(
)

; (1.3)

kre

�tA

fk

L

r

(
)

� Ct

���1=2

kfk

L

q

(
)

; (1.4)

for all t > 0 and f 2 L

q

�

(
), where � = (n=q � n=r)=2 � 0. Re
ently for

n � 3 Abels [1℄ has proved some partial results: (1.3) for 1 < q � r <1 and

(1.4) for 1 < q � r < n. However, be
ause of the la
k of (1.4) for the most

important 
ase q = r = n, his results are not satisfa
tory for the 
onstru
tion

of the global strong solution possessing various time-asymptoti
 behaviors as

long as one follows the straightforward method of Kato [36℄ (without using

duality arguments in [42℄, [6℄, [44℄, [45℄ and [34℄). In this paper we 
onsider

the 
ase n � 3 and prove

(1.3) for 1 � q � r � 1 (q 6=1; r 6= 1);

4



and

(1.4) for 1 � q � r � n (r 6= 1) and 1 � q < n < r <1;

here, when q = 1, f should be taken from L

1

(
)\L

s

�

(
) for some s 2 (1;1).

Estimate (1.4) is thus available, in other words, for r = n if q = n, for

r 2 [q;1) if q 2 (1; n), and for r 2 (1;1) if q = 1.

Up to now we have the same global existen
e result as above for the

whole spa
e (Kato [36℄), the half spa
e (Ukai [58℄), bounded domains (Giga

and Miyakawa [29℄) and exterior domains (Iwashita [35℄) sin
e the L

q

-L

r

estimates (1.3) and (1.4) are well established for these four types of domains.

Let us give a brief survey on the literature 
on
erning the L

q

-L

r

estimates.

For the whole spa
e the Stokes semgroup is essentially the same as the

heat semigroup be
ause the Lapla
e operator 
ommutes with the Helmholtz

proje
tion. For the half spa
e Ukai [58℄ expli
itly wrote down a solution

foumula of the Stokes system and derived (1.3) and (1.4) for n � 2 and

1 < q � r < 1. See also Bor
hers and Miyakawa [3℄ for (1.3) with 1 �

q < r � 1 and the following literarure 
on
erning marginal 
ases, that is,

(1.3) for q = r = 1 and (1.4) for q = r = 1 or 1: Giga, Matsui and Y.

Shimizu [28℄, Y. Shimizu [54℄, Des
h, Hieber and Pr�uss [15℄ and Shibata and

S. Shimizu [53℄. For bounded domains (1.3) and (1.4) are dedu
ed from the

result of Giga [27℄ on a 
hara
terization of the domains of fra
tional powers

of the Stokes operator. In this 
ase, moreover, an exponential de
ay property

of the semigroup for large t is available. For exterior domains with n � 3,

based on (1.3) for q = r due to Bor
hers and Sohr [7℄, some partial results

were given by Iwashita [35℄, Giga and Sohr [30℄ and Bor
hers and Miyakawa

[4℄; in parti
ular, Iwashita proved (1.3) for 1 < q � r <1 and (1.4) for 1 <

q � r � n, whi
h made it possible to 
onstru
t a global solution. Later on,

due to the following authors, (1.3) for n � 2; 1 � q � r � 1 (q 6=1; r 6= 1)

and (1.4) for n � 2; 1 � q � r � n (r 6= 1) were also derived: Chen [11℄

(n = 3), Shibata [52℄ (n = 3), Bor
hers and Varnhorn [9℄ (n = 2, (1.3) for

q = r), Dan and Shibata [13℄, [14℄ (n = 2), Dan, Kobayashi and Shibata [12℄

(n = 2; 3) and Maremonti and Solonnikov [46℄ (n � 2).

In the proof of the L

q

-L

r

estimates, it seems to be heuristi
ally rea-

sonable to 
ombine some lo
al de
ay properties near the aperture with the

L

q

-L

r

estimates of the Stokes semigroup for the half spa
e by means of a lo-


alization pro
edure sin
e the aperture domain 
 is obtained from H

+

[H

�

by a perturbation within a 
ompa
t region. Indeed, Abels [1℄ used this idea

that was well developed by Iwashita [35℄ and, later, Kobayashi and Shi-

bata [37℄ in the 
ase of exterior domains. We should however note that the

boundary �
 is non
ompa
t; thus, a diÆ
ulty is to dedu
e the sharp lo
al

energy de
ay estimate

ke

�tA

fk

W

1;q

(


R

)

� Ct

�n=2q

kfk

L

q

(
)

; t � 1; (1.5)
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for f 2 L

q

�

(
); 1 < q < 1, where 


R

= fx 2 
; jxj < Rg, but this is

the essential part of our proof (Lemma 5.3). Estimate (1.5) improves the

lo
al energy de
ay given by Abels [1℄, in whi
h a little slower rate t

�n=2q+"

was shown. In [1℄, similarly to Iwashita [35℄, a resolvent expansion around

the origin � = 0 was derived in some weighted fun
tion spa
es. To this end,

Abels made use of the Ukai formula of the Stokes semigroup for the half spa
e

([58℄) and, in order to estimate the Riesz operator appearing in this formula,

he had to introdu
e Mu
kenhoupt weights, whi
h 
aused some restri
tions

although his analysis itself is of interest. On the other hand, Kobayashi

and Shibata [37℄ re�ned the proof of Iwashita in some sense and obtained

the L

q

-L

r

estimates of the Oseen semigroup for the 3-dimensional exterior

domain. As a parti
ular 
ase, the result of [37℄ in
ludes the estimates of the

Stokes semigroup as well. In this paper we employ in prin
iple the strategy

developed by [37℄ (without using any weighted fun
tion spa
e) and extend

the method to general n � 3.

This paper 
onsists of six se
tions. In the next se
tion, after notation

is �xed, we present the pre
ise statement of our main results: Theorem 2.1

on the L

q

-L

r

estimates of the Stokes semigroup, Theorem 2.2 on the global

existen
e and de
ay properties of the Navier-Stokes 
ow, and Theorem 2.3 on

some further asymptoti
 behaviors of the obtained 
ow under an additional

summability assumption on initial data. We obtain an information about a

pressure drop as well in the last theorem.

Se
tion 3 is devoted to the investigation of the Stokes resolvent for the

half spa
e H = H

+

or H

�

. We derive some regularity estimates near the

origin � = 0 of (� + A

H

)

�1

P

H

f when f 2 L

q

(H) has a bounded support,

where A

H

= �P

H

� is the Stokes operator for the half spa
e H (for the

notation, see se
tion 2). Although the obtained estimates do not seem to be

optimal 
ompared with those shown by [37℄ for the whole spa
e, the results

are suÆ
ient for our aim and the proof is rather elementary: in fa
t, we

represent the resolvent (� + A

H

)

�1

in terms of the semigroup e

�tA

H

and,

with the aid of lo
al energy de
ay properties of this semigroup, we have

only to perform several integrations by parts and to estimate the resulting

formulae. One needs neither Fourier analysis nor resolvent expansions.

In se
tion 4, based on the results for the half spa
e, we pro
eed to the

analysis of the Stokes resolvent for the aperture domain 
. To do so, in

an analogous way to [35℄, [37℄ and [1℄, we �rst 
onstru
t the resolvent (�+

A)

�1

Pf near the origin � = 0 for f 2 L

q

(
) with bounded support by use

of the operator (� + A

H

)

�1

P

H

, the Stokes 
ow in a bounded domain and

a 
ut-o� fun
tion together with the result of Bogovski

�

i [2℄ on the boundary

value problem for the equation of 
ontinuity. And then, for the same f as

above, we dedu
e essentially the same regularity estimates near the origin

� = 0 of (�+A)

�1

Pf as shown in se
tion 3.

In se
tion 5 we prove (1.5) and thereby (1.4) for q = r 2 (1; n℄ as well as

(1.3) for r = 1, from whi
h the other 
ases follow. Some of the estimates

6



obtained in se
tion 4 enable us to justify a representation formula of the

semigroup e

�tA

Pf in W

1;q

(


R

) in terms of the Fourier inverse transform of

�

m

s

(is+A)

�1

Pf when f 2 L

q

(
) has a bounded support, where n = 2m+1

or n = 2m + 2 (see (5.3); we note that the formula is not valid for n = 2).

We then appeal to the lemma due to Shibata ([51℄; see also [37℄ and a

re
ent development [53℄), whi
h tells us a relation between the regularity of

a fun
tion at the origin and the de
ay property of its Fourier inverse image,

so that we obtain another lo
al energy de
ay estimate

ke

�tA

Pfk

W

1;q

(


R

)

� Ct

�n=2+"

kfk

L

q

(
)

; t � 1; (1.6)

for f 2 L

q

(
); 1 < q < 1, with bounded support, where " > 0 is arbitrary

(Lemma 5.1). Estimate (1.6) was shown in [1℄ only for solenoidal data

f 2 L

q

�

(
) with bounded support, from whi
h (1.5) with the rate repla
ed by

t

�n=2q+"

follows through an interpolation argument. But it is 
ru
ial for the

proof of (1.5) to use (1.6) even for data whi
h are not solenoidal (so that the

support of Pf is unbounded). In order to dedu
e (1.5) from (1.6), we develop

the method in [35℄ and [37℄ based on a lo
alization argument using a 
ut-o�

fun
tion. In fa
t, we regard the Stokes 
ow for the aperture domain 
 as the

sum of the Stokes 
ows for the half spa
es H

�

and a 
ertain perturbed 
ow.

Sin
e the Stokes 
ow for the half spa
e enjoys the L

q

-L

1

de
ay estimate

with the rate t

�n=2q

(Bor
hers and Miyakawa [3℄), our main task is to show

(1.5) for the perturbation part. In 
ontrast to the 
ase of exterior domains,

the support of the derivative of the 
ut-o� fun
tion tou
hes the boundary

�
; indeed, this diÆ
ulty o

urs in all stages of lo
alization pro
edures

in the 
ourse of the proof (se
tions 4 and 5) and thus we have to 
arry

out su
h pro
edures 
arefully. Furthermore, the remainder term arising

from the above-mentioned lo
alization argument involves the pressure of

the nonstationary Stokes system in the half spa
e and, therefore, does not

belong to any solenoidal fun
tion spa
e. Hen
e, in order to treat this term,

(1.6) is ne
essary for non-solenoidal data, while that is not the 
ase for the

exterior problem.

On
e Theorem 2.1 is established, one 
an prove the existen
e part of

Theorem 2.2 along the lines of Kato [36℄ (see also [24℄ and [29℄) and therefore

the proof may be omitted. Thus, in the �nal se
tion, we derive various de
ay

properties of the global strong solution as t!1 to prove the remaining part

of Theorem 2.2 and Theorem 2.3. This will be done by applying e�e
tively

the L

q

-L

r

estimates. Re
ently Wiegner [59℄ has dis
ussed in detail sharp

de
ay properties of exterior Navier-Stokes 
ows. Our proof is somewhat

di�erent from his and seems to be elementary. When a 2 L

1

(
) \ L

n

�

(
),

some de
ay rates are better than those shown by [59℄ sin
e, unlike exterior

Stokes 
ows, (1.4) is available for 1 � q < n < r <1.

Finally, we 
ompare the result on re

�tA

with that for exterior Stokes


ows from the viewpoint of 
oer
ive estimates of derivatives. For the proof

7



of (1.4) there is another approa
h based on fra
tional powers of the Stokes

operator. When 
 is an exterior domain (n � 3), Bor
hers and Miyakawa

[4℄ developed su
h an approa
h and su

eeded in the proof of

kruk

L

q

(
)

� CkA

1=2

uk

L

q

(
)

; u 2 D(A

1=2

q

); (1.7)

for 1 < q < n (this restri
tion is optimal as pointed out by themselves [5℄),

whi
h implies (1.4) for q � r < n. Independently, as mentioned, Iwashita

[35℄ derived (1.4) for q � r � n and, later, Maremonti and Solonnikov [46℄

showed that the restri
tion r � n 
annot be improved for exterior domains.

In our 
ase of aperture domains, we have (1.4) for q < n < r <1, whi
h is

a 
onsequen
e of the estimate due to Farwig and Sohr ([20℄, Theorem 2.5)

kr

2

uk

L

q

(
)

� CkAuk

L

q

(
)

; u 2 D(A

q

); (1.8)

for 1 < q < n together with an embedding property ([20℄, Lemma 3.1); we

mention that (1.8) holds true for n = 2 as well. This argument does not work

for the exterior problem be
ause (1.8) is valid only for 1 < q < n=2 (n � 3)

as shown by Bor
hers and Sohr [7℄ (the restri
tion on q is again optimal by,

for instan
e, [5℄). Thus, as for (1.8), we have the better result. We wish we


ould expe
t (1.7) for every q, whi
h would imply (1.4) for 1 < q � r <1;

however, so far, no attempts have been made at the boundedness of purely

imaginary powers of the Stokes operator (see [27℄ and [30℄ for bounded and

exterior domains) and, unless q = 2, estimate (1.7) remains open.

2 Results

Before stating our main results, we introdu
e notation used throught this

paper. We denote upper and lower half spa
es by H

�

= fx 2 R

n

;�x

n

> 1g,

and sometimes write H = H

+

or H

�

to state some assertions for the half

spa
e. Set B

R

= fx 2 R

n

; jxj < Rg for R > 0. Let 
 � R

n

be a given

aperture domain with smooth boundary �
, namely, there is R

0

> 1 so

that


 n B

R

0

= (H

+

[H

�

) nB

R

0

;

in what follows we �x su
h R

0

. Sin
e 
 should be 
onne
ted, there are some

apertures and one 
an take two disjoint subdomains 


�

and a smooth (n�1)-

dimensional manifoldM su
h that 
 = 


+

[M [


�

;


�

nB

R

0

= H

�

nB

R

0

andM [�M = �


+

\�


�

� B

R

0

. We set 


R

= 
\B

R

and H

R

= H\B

R

,

whi
h is one of H

�;R

= H

�

\B

R

, for R > 1.

For a domain G � R

n

, integer j � 0 and 1 � q � 1, we denote by

W

j;q

(G) the standard L

q

-Sobolev spa
e with norm k �k

j;q;G

so that L

q

(G) =

8



W

0;q

(G) with norm k�k

q;G

. The spa
e W

j;q

0

(G) is the 
ompletion of C

1

0

(G),

the 
lass of C

1

fun
tions having 
ompa
t support in G, in the norm k�k

j;q;G

,

and W

�j;q

(G) stands for its dual spa
e with norm k � k

�j;q;G

. For simpli
ity,

we use the abbreviations k �k

q

for k �k

q;


and k �k

j;q

for k �k

j;q;


when G = 
.

We often use the same symbols for denoting the ve
tor and s
alar fun
tion

spa
es if there is no 
onfusion. It is 
onvenient to introdu
e a Bana
h spa
e

L

q

[R℄

(G) = fu 2 L

q

(G); supp u � G

R

g; G = 
 or H;

for R > 1, where supp u denotes the support of the fun
tion u. For a Bana
h

spa
e X we denote by B(X) the Bana
h spa
e whi
h 
onsists of all bounded

linear operators from X into itself.

Given R � R

0

, we take (and �x) two 
ut-o� fun
tions  

�;R

satisfying

 

�;R

2 C

1

(R

n

; [0; 1℄);  

�;R

(x) =

�

1 in H

�

n B

R+1

;

0 in H

�

[B

R

:

(2.1)

In some lo
alization pro
edures with use of the 
ut-o� fun
tions above, the

bounded domain of the form

D

�;R

= fx 2 H

�

;R < jxj < R+ 1g

appears, and for this we need the following result of Bogovski

�

i [2℄ whi
h

provides a 
ertain solution having an optimal regularity of the boundary

value problem for r � u = f with u = 0 on the boundary (see also Bor
hers

and Sohr [8℄, Theorem 2.4 (a)(b)(
) and Galdi [26℄, Chapter III): there is a

linear operator S

�;R

from C

1

0

(D

�;R

) to C

1

0

(D

�;R

)

n

su
h that for 1 < q <1

and integer j � 0

kr

j+1

S

�;R

fk

q;D

�;R

� Ckr

j

fk

q;D

�;R

; (2.2)

with C = C(R; q; j) > 0 independent of f 2 C

1

0

(D

�;R

) (where r

j

denotes

all the j-th derivatives); and

r � S

�;R

f = f;

for all f 2 C

1

0

(D

�;R

) with

R

D

�;R

f(x)dx = 0. By (2.2) the operator S

�;R

extends uniquely to a bounded operator fromW

j;q

0

(D

�;R

) toW

j+1;q

0

(D

�;R

)

n

.

For G = 
;H and a smooth bounded domain (n � 2), let C

1

0;�

(G) be the

set of all solenoidal (divergen
e free) ve
tor �elds whose 
omponents belong

to C

1

0

(G), and L

q

�

(G) the 
ompletion of C

1

0;�

(G) in the norm k � k

q;G

. If,

in parti
ular, G = 
, then the spa
e L

q

�

(
) is 
hara
terized as (1.2). The

spa
e L

q

(G) of ve
tor �elds admits the Helmholtz de
omposition

L

q

(G) = L

q

�

(G)� L

q

�

(G); 1 < q <1;

9



with L

q

�

(G) = frp 2 L

q

(G); p 2 L

q

lo


(G)g; see [25℄, [55℄ for bounded do-

mains, [3℄, [48℄ for G = H and [20℄, [49℄ for G = 
. Let P

q;G

be the

proje
tion operator from L

q

(G) onto L

q

�

(G) asso
iated with the de
omposi-

tion above. Then the Stokes operator A

q;G

is de�ned by the solenoidal part

of the Lapla
e operator, that is,

D(A

q;G

) =W

2;q

(G) \W

1;q

0

(G) \ L

q

�

(G); A

q;G

= �P

q;G

�;

for 1 < q < 1. The dual operator A

�

q;G

of A

q;G


oin
ides with A

q=(q�1);G

on L

q

�

(
)

�

= L

q=(q�1)

�

(
). We use, for simpli
ity, the abbreviations P

q

for

P

q;


and A

q

for A

q;


, and the subs
ript q is also often omitted if there is no


onfusion. The Stokes operator enjoys the paraboli
 resolvent estimate

k(�+A

G

)

�1

k

B(L

q

�

(G))

� C

"

=j�j; (2.3)

for j arg �j � � � " (� 6= 0), where " > 0 is arbitrary; see [48℄, [3℄, [17℄,

[18℄, [15℄ for G = H and [20℄ for G = 
. Estimate (2.3) implies that the

operator �A

G

generates a bounded analyti
 semigroup fe

�tA

G

; t � 0g of


lass (C

0

) in ea
h L

q

�

(G); 1 < q <1. We write E(t) = e

�tA

H

, whi
h is one

of E

�

(t) = e

�tA

H

�

.

The �rst theorem provides the L

q

-L

r

estimates of the Stokes semigroup

e

�tA

for the aperture domain 
.

Theorem 2.1 Let n � 3.

1. Let 1 � q � r � 1 (q 6= 1; r 6= 1). There is a 
onstant C =

C(
; n; q; r) > 0 su
h that (1.3) holds for all t > 0 and f 2 L

q

�

(
)

unless q = 1; when q = 1, the assertion remains true if f is taken

from L

1

(
) \ L

s

�

(
) for some s 2 (1;1).

2. Let 1 � q � r � n (r 6= 1) or 1 � q < n < r <1. There is a 
onstant

C = C(
; n; q; r) > 0 su
h that (1.4) holds for all t > 0 and f 2 L

q

�

(
)

unless q = 1; when q = 1, the assertion remains true if f is taken from

L

1

(
) \ L

s

�

(
) for some s 2 (1;1).

3. Let 1 < q <1 and f 2 L

q

�

(
). Then

ke

�tA

fk

r

= o(t

��

)

�

as t! 0 if q < r � 1;

as t!1 if q � r � 1;

(2.4)

kre

�tA

fk

r

= o(t

���1=2

) (2.5)

�

as t! 0 if q � r � 1;

as t!1 if q � r � n; q < n < r <1;
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where � = (n=q� n=r)=2. Furthermore, for ea
h pre
ompa
t set K in

L

q

�

(
) every 
onvergen
e above is uniform with respe
t to f 2 K.

Remark 2.1. Estimate (1.4) for large t is not proved in the following 
ases:

(i) n < q = r < 1, (ii) n � q < r < 1. For the 
ase (i), the de
ay rate

t

�n=2q

will be shown in Lemma 5.4. Sin
e we have (1.4) for q < n < r <1,

a better de
ay rate than t

�n=2q


an be derived for the 
ase (ii) through

an interpolation argument; however, we do not know optimal de
ay rates of

re

�tA

in both the 
ases (i) and (ii). A

ording to Maremonti and Solonnikov

[46℄, the de
ay rate t

�n=2q

is optimal for exterior Stokes 
ows whenever

r > n.

Remark 2.2. Let 1 � q � r � 1 (q 6= 1; r 6= 1). The L

q

-L

r

estimate for

�

t

e

�tA

with the rate t

���1

is nothing but a simple 
orollary to (1.3). In

fa
t, for example,

k�

t

e

�tA

fk

1

� Ct

�n=2s

kAe

�(t=2)A

fk

s

� Ct

�n=2�1

kfk

1

;

for t > 0 and f 2 L

1

(
) \ L

s

�

(
).

By use of the Stokes operator A, one 
an formulate the problem (1.1)

subje
t to the vanishing 
ux 
ondition

�(u(t)) =

Z

M

N � u(t)d� = 0; t � 0; (2.6)

as the Cau
hy problem

�

t

u+Au+ P (u � ru) = 0; t > 0;u(0) = a; (2.7)

in L

q

�

(
). Given a 2 L

n

�

(
) and 0 < T � 1, a measurable fun
tion u

de�ned on 
� (0; T ) is 
alled a strong solution of (1.1) with (2.6) on (0; T )

if u is of 
lass

u 2 C([0; T );L

n

�

(
)) \ C(0; T ;D(A

n

)) \C

1

(0; T ;L

n

�

(
))

together with lim

t!0

ku(t) � ak

n

= 0 and satis�es (2.7) for 0 < t < T in

L

n

�

(
).

The next theorem tells us the global existen
e of a strong solution with

several de
ay properties provided that kak

n

is small enough.

Theorem 2.2 Let n � 3. There is a 
onstant Æ = Æ(
; n) > 0 with the

following property: if a 2 L

n

�

(
) satis�es kak

n

� Æ, then the problem (1.1)

with (2.6) admits a unique strong solution u(t) on (0;1), whi
h enjoys

ku(t)k

r

= o

�

t

�1=2+n=2r

�

for n � r �1; (2.8)

11



kru(t)k

n

= o

�

t

�1=2

�

; (2.9)

k�

t

u(t)k

n

+ kAu(t)k

n

= o

�

t

�1

�

; (2.10)

as t!1.

Remark 2.3. When one pres
ribes a nontrivial 
ux

�(u(t)) = F (t) 2 C

1;�

([0; T ℄);

with some � > 0 and T > 0, there is T

�

2 (0; T ℄ su
h that the problem (1.1)

with the 
ux 
ondition admits a unique strong solution on (0; T

�

) provided

that a 2 L

n

(
) satis�es the 
ompatibility 
onditions r � a = 0; � � aj

�


= 0

and �(a) = F (0). This improves a related result of Franzke [23℄ and 
an

be proved in the same manner as the proof of Theorem 2.2 with the aid

of the auxiliary fun
tion of Heywood ([31℄, Lemma 11), whi
h is used for

the redu
tion of the problem to an equivalent one with the vanishing 
ux


ondition (2.6). As is well known, (2.4) and (2.5) as t! 0 play an important

role for the 
onstru
tion of the above lo
al solution.

Remark 2.4. The solution obtained in Theorem 2.2 is unique within the


lass

u 2 C([0;1);L

n

�

(
)); ru 2 C(0;1;L

n

(
));

without assuming any behavior near t = 0 as pointed out by Brezis [10℄.

For the proof, one needs the �nal assertion of Theorem 2.1 on the uniform

behavior of the semigroup as t ! 0 on ea
h pre
ompa
t set K in L

n

�

(
)

together with the theory of lo
al strong solutions mentioned in the previous

remark (with �(u) = F = 0). In fa
t, it follows from the above property of

the semigroup that the length of the existen
e interval of the lo
al solution


an be taken uniformly with respe
t to a 2 K and that the 
onvergen
e (6.4)

of the lo
al solution as t! 0 is also uniform with respe
t to a 2 K. These

two fa
ts 
ombined with the 
lassi
al uniqueness theorem of Fujita-Kato

type [24℄ (assuming some behaviors in (6.4) near t = 0) imply the desired

uniqueness result.

Remark 2.5. Consider the 3-dimensional stationary Navier-Stokes problem

w � rw = �w �r�; r � w = 0;

in 
 subje
t to wj

�


= 0 and a nontrivial 
ux 
ondition �(w) = 
 2 R.

When j
j is small enough, there is a unique solution w su
h that w 2 L

q

(
)

for 3=2 < q � 6 and rw 2 L

r

(
) for 1 < r � 2 with krwk

2

2

= 
[�℄;

see Galdi [26℄. By use of Theorem 2.1 it is possible to show the asymptoti


stability of the small stationary solution w of the 
lass above for small initial

disturban
e in L

3

�

(
) in the sense that the disturban
e u(t) de
ays like (2.8)
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and (2.9) as t!1. In fa
t, the above summability properties of rw allow

us to deal with the term P (w � ru+u � rw) as a simple perturbation of the

Stokes operator, as was done by Chen [11℄ (Lemma 3.1) and Bor
hers and

Miyakawa [6℄ (Theorem 3.13); see Remark 6.1.

The �nal theorem shows further de
ay properties of the global solution

when we additionally impose L

1

-summability on the initial data.

Theorem 2.3 Let n � 3. There is a 
onstant � = �(
; n) 2 (0; Æ℄ with

the following property: if a 2 L

1

(
) \ L

n

�

(
) satis�es kak

n

� �, then the

solution u(t) obtained in Theorem 2.2 and the asso
iated pressure p(t) enjoy

ku(t)k

r

= O

�

t

�(n�n=r)=2

�

for 1 < r � 1; (2.11)

kru(t)k

r

= O

�

t

�(n�n=r)=2�1=2

�

for 1 < r <1; (2.12)

k�

t

u(t)k

r

+ kAu(t)k

r

= O

�

t

�(n�n=r)=2�1

�

for 1 < r <1; (2.13)

kr

2

u(t)k

r

+ krp(t)k

r

= O

�

t

�(n�n=r)=2�1

�

for 1 < r < n; (2.14)

as t ! 1. Moreover, for ea
h t > 0 there exist two 
onstants p

�

(t) 2 R

su
h that p(t)� p

�

(t) 2 L

r

(


�

) with

kp(t)� p

�

(t)k

r;


�

+ j[p(t)℄j = O

�

t

�(n�n=r)=2�1=2

�

for n=(n� 1) < r <1;

(2.15)

as t!1, where [p(t)℄ = p

+

(t)� p

�

(t).

Remark 2.6. Indeed ru(t) 2 L

r

(
) for r > n even in Theorem 2.2, but we

have asserted nothing about their de
ay rates sin
e they do not seem to be

optimal; see Remark 2.1 for the Stokes 
ow. On the other hand, in Theorem

2.3 the de
ay rates of ru(t) in L

r

(
) for r > n are better than t

�n=2

for

exterior Navier-Stokes 
ows shown by Wiegner [59℄. Taking Theorem 5.1 of

[15℄ for the Stokes 
ow in the half spa
e into a

ount, we would not expe
t

u(t) 2 L

1

(
) in general. Thus the de
ay rates obtained in Theorem 2.3 seem

to be optimal; that is, for example, ku(t)k

1

= o(t

�n=2

) would not hold true.

Con
erning the exterior problem, Kozono [38℄, [39℄ made it 
lear that the

Stokes and/or Navier-Stokes 
ows possess L

1

-summability and more rapid

de
ay properties than (2.11) only in a spe
ial situation.

Remark 2.7. In Theorem 2.2 one 
ould not de�ne a pressure drop (see Farwig

[16℄, Remark 2.2) sin
e the solution never belongs to L

r

(
) for r < n. Due
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to the additional summability assumption on the initial data, we obtain in

Theorem 2.3 the pressure drop written in the form

[p(t)℄ =

Z




(�

t

u+ u � ru� u)(t) � wdx;

where w 2W

2;q

(
); n=(n�1) < q <1, is a unique solution (given by [20℄)

of the auxiliary problem

w ��w +r� = 0; r � w = 0;

in 
 subje
t to wj

�


= 0 and �(w) = 1. In fa
t, the formula above is derived

from the relations

Z




w � rp(t)dx = �[p(t)℄�(w) = �[p(t)℄;

Z




u(t) � r�dx = �[�℄�(u(t)) = 0:

3 The Stokes resolvent for the half spa
e

The resolvent v = (�+ A

H

)

�1

P

H

f together with the asso
iated pressure �

solves the system

�v ��v +r� = f; r � v = 0;

in the half spa
e H = H

+

or H

�

subje
t to vj

�H

= 0 for the external for
e

f 2 L

q

(H); 1 < q <1, and � 2 C n(�1; 0℄. In this se
tion we are 
on
erned

with the analysis of v near � = 0. Our method is quite di�erent from Abels

[1℄. One needs the following lo
al energy de
ay estimate of the semigroup

E(t) = e

�tA

H

, whi
h is a simple 
onsequen
e of (1.3) for 
 = H.

Lemma 3.1 Let n � 2; 1 < q <1; d > 1 and R > 1. For any small " > 0

and integer k � 0 there is a 
onstant C = C(n; q; d;R; "; k) > 0 su
h that

kr

j

�

k

t

E(t)P

H

fk

q;H

R

� Ct

�j=2�k

(1 + t)

�n=2+"

kfk

q;H

; (3.1)

for t > 0; f 2 L

q

[d℄

(H) and j = 0; 1; 2.

Proof. We make use of the estimate

kr

j

uk

r;H

� CkA

j=2

H

uk

r;H

; u 2 D(A

j=2

r;H

); (3.2)
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for 1 < r <1 and j = 1; 2 (Bor
hers and Miyakawa [3℄). For 1 < p � q �

r <1 it follows from (1.3) for 
 = H, (3.2) and a property of the analyti


semigroup that

kr

j

�

k

t

E(t)P

H

fk

q;H

R

� CkA

j=2+k

H

E(t)P

H

fk

r;H

� Ct

�j=2�k

kE(t=2)P

H

fk

r;H

� Ct

�j=2�k�(n=p�n=r)=2

kfk

p;H

� Ct

�j=2�k�(n=p�n=r)=2

kfk

q;H

;

for t > 0; f 2 L

q

[d℄

(H) and j = 0; 1; 2. This estimate with p = q = r implies

(3.1) for 0 < t < 1. We may assume that 0 < "=n < minf1=q; 1 � 1=qg; and

then one 
an take p and r so that 1�1=p = 1=r = "=n and p < q < r. Then

the estimate above yields (3.1) for t � 1. This 
ompletes the proof. �

Lemma 3.1 is suÆ
ient for our analysis of the resolvent in this se
tion,

but the lo
al energy de
ay estimate of the following form will be used in

se
tion 5.

Lemma 3.2 Let n � 2; 1 < q < 1 and R > 1. Then there is a 
onstant

C = C(n; q;R) > 0 su
h that

kE(t)fk

2;q;H

R

+ k�

t

E(t)fk

q;H

R

� C(1 + t)

�n=2q

kfk

D(A

q;H

)

; (3.3)

for t � 0 and f 2 D(A

q;H

).

Proof. The left hand side of (3.3) is bounded from above by

C(kA

H

E(t)fk

q;H

+ kE(t)fk

q;H

) � Ckfk

D(A

q;H

)

;

whi
h implies (3.3) for 0 � t < 1. For t � 1 it follows from (1.3) for 
 = H

with r =1 that

kE(t)fk

q;H

R

� CkE(t)fk

1;H

� Ct

�n=2q

kfk

q;H

:

The other terms

kr

j

E(t)fk

q;H

R

� CkA

j=2

H

E(t)fk

r;H

� Ct

�j=2

kE(t=2)fk

r;H

(j = 1; 2);

k�

t

E(t)fk

q;H

R

� Ct

�1

kE(t=2)fk

r;H

;

de
ay more rapidly sin
e we 
an take r 2 (q;1) above as large as we want.

The proof is 
omplete. �

We next employ Lemma 3.1 to show some regularity estimates near � = 0

of the Stokes resolvent in the lo
alized spa
e W

2;q

(H

R

).
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Lemma 3.3 Let n � 3; 1 < q < 1; d > 1 and R > 1. Given f 2 L

q

[d℄

(H),

set v(�) = (� + A

H

)

�1

P

H

f . For any small " > 0 there is a 
onstant C =

C(n; q; d;R; ") > 0 su
h that

j�j

�

k�

m

�

v(�)k

2;q;H

R

+

m�1

X

k=0

k�

k

�

v(�)k

2;q;H

R

� Ckfk

q;H

; (3.4)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(H), where

m =

�

(n� 1)=2 if n is odd;

n=2� 1 if n is even;

� = �(") = 1 +m�

n

2

+ " =

�

1=2 + " if n is odd;

" if n is even:

Furthermore, we have

sup

�

kv(�)� wk

2;q;H

R

kfk

q;H

; f 6= 0; f 2 L

q

[d℄

(H)

�

! 0; (3.5)

as �! 0 with Re � � 0, where

w =

Z

1

0

E(t)P

H

fdt:

Proof. We re
all the formula

v(�) = (�+A

H

)

�1

P

H

f =

Z

1

0

e

��t

E(t)P

H

fdt; (3.6)

whi
h is valid in L

q

�

(H) for Re � > 0 and f 2 L

q

(H). In the other region

f� 2 C n (�1; 0℄; Re � � 0g we usually utilize the analyti
 extension of the

semigroup fE(t); Re t > 0g to obtain the similar formula. For the 
ase Re

� = 0 (� 6= 0) whi
h is important for us, however, thanks to the lo
al energy

de
ay property (3.1), the formula (3.6) remains valid in the lo
alized spa
e

L

q

(H

R

) for f 2 L

q

[d℄

(H) (the fun
tion w in (3.5) is well-de�ned in L

q

(H

R

)

by the same reasoning). We thus obtain from (3.1)

kr

j

�

k

�

v(�)k

q;H

R

�

Z

1

0

t

k

kr

j

E(t)P

H

fk

q;H

R

dt � Ckfk

q;H

;

16



provided that

j = 0; 1 if k = 0; j = 0; 1; 2 if n � 5; 1 � k � m� 1;

j = 2 if k = m;n = 2m+ 1; j = 1; 2 if k = m;n = 2m+ 2:

For fk; jg = f0; 2g we have only to use (3.2) together with (2.3) to see that

kr

2

v(�)k

q;H

R

� CkA

H

(�+A

H

)

�1

P

H

fk

q;H

� Ckfk

q;H

:

The remaining 
ase k = m is the most important part of (3.4). Sin
e

k�

m

�

v(�)k

2;q;H

R

� Cm!k(�+A

H

)

�(m+1)

P

H

fk

D(A

q;H

)

� Cm!fj�j

�m

+ j�j

�(m+1)

gkfk

q;H

;

we have the assertion for j�j � 1. For 0 < j�j < 1 and odd n (resp. even n),

we have already shown the estimate as above when j = 2 (resp. j = 1; 2).

Thus, let j = 0 or 1 for n = 2m + 1 and j = 0 for n = 2m + 2. We divide

the integral of (3.6) into two parts

�

m

�

v(�) =

(

Z

1=j�j

0

+

Z

1

1=j�j

)

e

��t

(�t)

m

E(t)P

H

fdt = w

1

(�) + w

2

(�):

Then (3.1) implies

kr

j

w

1

(�)k

q;H

R

� Cj�j

��+j=2

kfk

q;H

;

for f 2 L

q

[d℄

(H). On the other hand, by integration by parts we get

w

2

(�) =

e

��=j�j

�

�

�1

j�j

�

m

E

�

1

j�j

�

P

H

f +

Z

1

1=j�j

e

��t

�

�

t

[(�t)

m

E(t)P

H

f ℄dt;

in L

q

(H

R

) sin
e (3.1) implies lim

t!1

t

m

kE(t)P

H

fk

q;H

R

= 0. With the aid

of (3.1) again we see that

kr

j

w

2

(�)k

q;H

R

�

1

j�j

m+1

kr

j

E(1=j�j)P

H

fk

q;H

R

+

1

j�j

Z

1

1=j�j

kr

j

�

t

[t

m

E(t)P

H

f ℄ k

q;H

R

dt

� Cj�j

��+j=2

kfk

q;H

;

for f 2 L

q

[d℄

(H). Colle
ting the estimates above leads us to (3.4). We next

show (3.5). Sin
e je

��t

�1j � 2

1��

j�j

�

t

�

for Re � � 0 and � 2 (0; 1℄, we have

kr

j

(v(�) � w)k

q;H

R

� 2

1��

j�j

�

Z

1

0

t

�

kr

j

E(t)P

H

fk

q;H

R

dt;

for j = 0; 1; 2. From (3.1) together with a suitable 
hoi
e of � (for instan
e,

� < 1=2 for n = 3), we 
on
lude (3.5). �
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Remark 3.1. When n = 2, one 
an show j�j

�

kvk

2;q;H

R

� Ckfk

q;H

(with

� = ") whi
h 
orresponds to (3.4) with m = 0. However, this will not help

us sin
e our key formula (5.3) is not valid for m = 0.

Remark 3.2. The Green tensor asso
iated with the Stokes semigroup E(t)

for the half spa
e (as well as the proje
tion P

H

) was expli
itly given by

Solonnikov [56℄, Maremonti and Solonnikov [46℄ (Se
tion 2). In view of

the simple relation

R

1

0

(4�t)

�n=2

e

�jxj

2

=4t

dt = �(n=2)=2(n� 2)�

n=2

jxj

n�2

for

n � 3, the fun
tion w in (3.5) is the solution written by the Green tensor

for the stationary Stokes problem in H and, thereby, we know the 
lass of

w (for the latter Green tensor, see for instan
e [26℄).

Finally, we derive further information on the regularity of the resolvent

along the imaginary axis.

Lemma 3.4 Let n � 3; 1 < q <1; d > 1 and R > 1. Set

�

(k)

H

(s) = �

k

s

(is+A

H

)

�1

P

H

(s 2 R n f0g; k = m or m� 1);

where i =

p

�1. Then, for any small " > 0, there is a 
onstant C =

C(n; q; d;R; ") > 0 su
h that

k�

(m)

H

(s+ h)f � �

(m)

H

(s)fk

2;q;H

R

� Cjhjjsj

���1

kfk

q;H

; (3.7)

k�

(m�1)

H

(s+ h)f � �

(m�1)

H

(s)fk

2;q;H

R

� Cjhjjsj

��

kfk

q;H

; (3.8)

for h 2 R; jsj > 2jhj and f 2 L

q

[d℄

(H), where m and � = �(") are the same

as in Lemma 3.3.

Proof. Estimate (3.8) is a dire
t 
onsequen
e of (3.4). In fa
t, we see that

k�

(m�1)

H

(s+ h)f � �

(m�1)

H

(s)fk

2;q;H

R

�

�

�

�

�

Z

s+h

s

k�

(m)

H

(�)fk

2;q;H

R

d�

�

�

�

�

� Ckfk

q;H

�

�

�

�

Z

s+h

s

j� j

��

d�

�

�

�

�

;

whi
h together with the relation js+hj � jsj � jhj � jsj=2 implies (3.8). We

next show (3.7). By (3.6) with Re � = 0 in L

q

(H

R

) we have

�

(m)

H

(s+ h)f � �

(m)

H

(s)f

= (�i)

m

(

Z

1=jsj

0

+

Z

1

1=jsj

)

e

�ist

(e

�iht

� 1)t

m

E(t)P

H

fdt = (�i)

m

(w

1

+ w

2

):

For the 
onvenien
e we introdu
e the fun
tion

F

k

(t) = �

k

t

[t

m

E(t)P

H

f ℄; k � 0:

18



We then dedu
e from (3.1)

kF

k

(t)k

2;q;H

R

� Ct

�k+m�1

(1 + t)

�n=2+1+"

kfk

q;H

; (3.9)

for t > 0 and f 2 L

q

[d℄

(H). Taking je

�iht

� 1j � jhjt into a

ount, we see

from (3.9) that

kw

1

k

2;q;H

R

� jhj

Z

1=jsj

0

tkF

0

(t)k

2;q;H

R

dt

� Cjhjkfk

q;H

Z

1=jsj

0

t

1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). By integration by parts we split w

2

= w

21

+ w

22

+ w

23

,

where

w

21

=

ih

s(s+ h)

e

�i(s+h)=jsj

F

0

�

1

jsj

�

�

i

s

e

�is=jsj

(e

�ih=jsj

� 1)F

0

�

1

jsj

�

;

w

22

=

ih

s(s+ h)

Z

1

1=jsj

e

�i(s+h)t

F

1

(t)dt;

w

23

=

�i

s

Z

1

1=jsj

e

�ist

(e

�iht

� 1)F

1

(t)dt:

Sin
e 1=js(s+ h)j � 2=jsj

2

for jsj > 2jhj, it follows from (3.9) that

kw

21

k

2;q;H

R

� 3jhjjsj

�2

kF

0

(1=jsj)k

2;q;H

R

� Cjhjjsj

�2�m+n=2�"

(1 + jsj)

�n=2+1+"

kfk

q;H

� Cjhjjsj

���1

kfk

q;H

;

and that

kw

22

k

2;q;H

R

� 2jhjjsj

�2

Z

1

1=jsj

kF

1

(t)k

2;q;H

R

dt

� Cjhjjsj

�2

kfk

q;H

Z

1

1=jsj

t

�1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). We perform integration by parts on
e more to obtain

w

23

= w

231

+ w

232

+ w

233

with

w

231

=

h

s

2

(s+ h)

e

�i(s+h)=jsj

F

1

�

1

jsj

�

�

1

s

2

e

�is=jsj

(e

�ih=jsj

� 1)F

1

�

1

jsj

�

;

19



w

232

=

h

s

2

(s+ h)

Z

1

1=jsj

e

�i(s+h)t

F

2

(t)dt;

w

233

=

�1

s

2

Z

1

1=jsj

e

�ist

(e

�iht

� 1)F

2

(t)dt:

By the same way as in w

21

+ w

22

we �nd

kw

231

+ w

232

k

2;q;H

R

� 3jhjjsj

�3

(

kF

1

(1=jsj)k

2;q;H

R

+

Z

1

1=jsj

kF

2

(t)k

2;q;H

R

dt

)

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). Finally, we use (3.9) again to get

kw

233

k

2;q;H

R

� jhjjsj

�2

Z

1

1=jsj

tkF

2

(t)k

2;q;H

R

dt

� Cjhjjsj

�2

kfk

q;H

Z

1

1=jsj

t

�1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). We gather all the estimates above to 
on
lude (3.7). �

Remark 3.3. Estimate (3.7) together with (3.4) implies

Z

1

�1

k�

(m)

H

(s+ h)f � �

(m)

H

(s)fk

2;q;H

R

ds � Cjhj

1��

kfk

q;H

;

for h 2 R and f 2 L

q

[d℄

(H) (see Lemma 4.4 and its proof), whi
h is related

to the assumption of Lemma 5.2. In Lemma 4.4 we will dedu
e the same

regularity of �

m

s

(is + A)

�1

Pf for an aperture domain 
 as above when

f 2 L

q

(
) has a bounded support. For the Oseen resolvent system in the

3-dimensional whole spa
e, Kobayashi and Shibata [37℄ (Lemma 3.6) showed

a sharper estimate; indeed, jhj

1��


an be repla
ed by jhj

1=2

. Their method

is di�erent from ours.

4 The Stokes resolvent

In this se
tion, based on the results for the half spa
e obtained in the pre-

vious se
tion, we address ourselves to analogous regularity estimates near

� = 0 of the Stokes resolvent u = (� + A)

�1

Pf , whi
h together with the

asso
iated pressure p satis�es the system

�u��u+rp = f; r � u = 0;

in an aperture domain 
 subje
t to uj

�


= 0 and �(u) = 0, where f 2

L

q

(
); 1 < q <1 and � 2 C n (�1; 0℄. To this end, as in [35℄, [37℄ and [1℄,
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we start with the 
onstru
tion of the resolvent near � = 0 for f 2 L

q

(
)

with bounded support. We �x a smooth bounded subdomain D so that




R

0

+3

� D � 
. Given f 2 L

q

(
), we set v

0

= A

�1

q;D

P

q;D

f and take a

pressure �

0

asso
iated to v

0

; they solve the Stokes system

��v

0

+r�

0

= f; r � v

0

= 0;

in D subje
t to v

0

j

�D

= 0, where f is understood as the restri
tion of f on

D. We further set

v

�

(x; �) = (�+A

q;H

�

)

�1

P

q;H

�

[ 

�;R

0

f ℄;

where  

�;R

0

are the 
ut-o� fun
tions given by (2.1). One needs also the


ase � = 0

v

�

(x; 0) =

Z

1

0

E

�

(t)P

q;H

�

[ 

�;R

0

f ℄dt;

whi
h is the solution written by the Green tensor for the Stokes problem in

H

�

(see Remark 3.2). We take the pressures �

�

in H

�

asso
iated to v

�

so

that

Z

D

�;R

0

+1

f�

�

(x; �)� �

0

(x)gdx = 0; (4.1)

for ea
h �. In this se
tion, for simpli
ity, we use the abbreviations  

�

for the


ut-o� fun
tions  

�;R

0

+1

given by (2.1) and S

�

for the Bogovski

�

i operators

S

�;R

0

+1

introdu
ed in se
tion 2. With use of fv

�

; �

�

g; fv

0

; �

0

g and  

�

together with S

�

, we set

8

>

>

<

>

>

:

v = T (�)f

=  

+

v

+

+  

�

v

�

+ (1�  

+

�  

�

)v

0

�S

+

[(v

+

� v

0

) � r 

+

℄� S

�

[(v

�

� v

0

) � r 

�

℄;

� =  

+

�

+

+  

�

�

�

+ (1�  

+

�  

�

)�

0

:

(4.2)

We here note that

R

D

�;R

0

+1

(v

�

� v

0

) � r 

�

dx = 0 sin
e r � v

�

= r � v

0

= 0.

An elementary 
al
ulation shows that the pair fv; �g satis�es

�v ��v +r� = f +Q(�)f; r � v = 0; (4.3)

in 
 subje
t to vj

�


= 0 and

�(v) =

Z

M

N � v

0

d� =

Z




+

\D

r � v

0

dx = 0;
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where

Q(�)f = Q

1

(�)f +Q

2

(�)f (4.4)

with

Q

1

(�)f = �(1�  

+

�  

�

)v

0

� 2r 

+

� r(v

+

� v

0

)� 2r 

�

� r(v

�

� v

0

)

�(� 

+

)(v

+

� v

0

)� (� 

�

)(v

�

� v

0

)

+(r 

+

)(�

+

� �

0

) + (r 

�

)(�

�

� �

0

)

��S

+

[(v

+

� v

0

) � r 

+

℄� �S

�

[(v

�

� v

0

) � r 

�

℄;

and

Q

2

(�)f = �S

+

[(v

+

� v

0

) � r 

+

℄ + �S

�

[(v

�

� v

0

) � r 

�

℄:

By (2.2) we have S

�

[(v

�

� v

0

) �r 

�

℄ 2W

2;q

0

(D

�;R

0

+1

). But one 
an obtain

the regularity of this term only up to W

2;q

0

(unlike the exterior problem)

and this is the reason why the remaining term Q(�) has been divided into

two parts.

We �rst derive the regularity estimates near � = 0 of T (�) and Q(�).

Lemma 4.1 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. For any

small " > 0 there are 
onstants C

1

= C

1

(
; n; q; d;R; ") > 0 and C

2

=

C

2

(
; n; q; d; ") > 0 su
h that

j�j

�

k�

m

�

T (�)fk

2;q;


R

+

m�1

X

k=0

k�

k

�

T (�)fk

2;q;


R

� C

1

kfk

q

; (4.5)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(
); and

j�j

�

k�

m

�

Q(�)fk

q

+

m�1

X

k=0

k�

k

�

Q(�)fk

q

� C

2

kfk

q

; (4.6)

for Re � � 0 with 0 < j�j � 2 and f 2 L

q

[d℄

(
), where m and � = �(") are

the same as in Lemma 3.3.

Proof. In view of (4.2), we dedu
e (4.5) immediately from (3.4) together

with (2.2). One 
an show (4.6) likewise, but it remains to estimate the

pressures �

�


ontained in (4.4). By (4.1) we have

Z

D

�;R

0

+1

�

k

�

�

�

(x; �)dx = 0; 1 � k � m: (4.7)
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On the other hand, from the Stokes resolvent system we obtain

��

k

�

v

�

+ k�

k�1

�

v

�

���

k

�

v

�

+r�

k

�

�

�

= 0; 1 � k � m;

in H

�

. This 
ombined with (4.7) gives

k(r 

�

)�

k

�

�

�

(�)k

q

� Ckr�

k

�

�

�

(�)k

�1;q;D

�;R

0

+1

� Ckr�

k

�

v

�

(�)k

q;H

�;R

0

+2

+ Cj�jk�

k

�

v

�

(�)k

q;H

�;R

0

+2

+Ckk�

k�1

�

v

�

(�)k

q;H

�;R

0

+2

;

for 1 � k � m. Similarly, for k = 0, we use (4.1) to get

k(r 

�

)(�

�

(�)� �

0

)k

q

� Ckr(�

�

(�)� �

0

)k

�1;q;D

�;R

0

+1

� Ckrv

�

(�)k

q;H

�;R

0

+2

+ Cj�jkv

�

(�)k

q;H

�;R

0

+2

+ Ckfk

q

:

It thus follows from (3.4) that

j�j

�

k(r 

�

)�

m

�

�

�

(�)k

q

+

m�1

X

k=0

k(r 

�

)�

k

�

(�

�

(�)� �

0

)k

q

� Ckfk

q

;

for Re � � 0 with 0 < j�j � 2 and f 2 L

q

[d℄

(
). This 
ompletes the proof. �

Let us 
onsider the 
ase � = 0 and simply write v

�

= v

�

(x; 0). Sin
e

k(v

�

� v

0

) � r 

�

k

2;q

� Ckfk

q

;

the operator [f 7! (v

�

� v

0

) � r 

�

℄ : L

q

(
) ! W

1;q

0

(D

�;R

0

+1

) is 
ompa
t,

whi
h 
ombined with (2.2) implies that so is the operator Q

2

(0) : L

q

(
)!

L

q

[d℄

(
), where d � R

0

+ 2. The other part Q

1

(0)f ful�lls

kQ

1

(0)fk

1;q

� Ckfk

q

;

from whi
h the 
ompa
tness of Q

1

(0) : L

q

(
) ! L

q

[d℄

(
) follows; as a 
on-

sequen
e, Q(0) = Q

1

(0) + Q

2

(0) is a 
ompa
t operator from L

q

[d℄

(
); d �

R

0

+ 2, into itself. We will show that 1 + Q(0) is inje
tive in L

q

[d℄

(
). Let

f 2 L

q

[d℄

(
) satisfy (1 +Q(0))f = 0. In view of (4.3), the pair fv; �g given

by (4.2) for su
h f should obey

��v +r� = 0; r � v = 0;

in 
 subje
t to vj

�


= 0 and �(v) = 0. Sin
e f 2 L

r

[d℄

(
) for 1 < r <

minfn; qg, we have

r

2

v;r� 2 L

r

(
); rv 2 L

nr=(n�r)

(
); v; � 2 L

r

lo


(
);
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espe
ially, the summability of rv at in�nity is implied by the boundedness

of the support of f . It thus follows from Theorem 1.4 (i) of Farwig [16℄ that

v = r� = 0; here, it should be remarked that the uniqueness holds without

any radiation 
ondition (unlike the exterior problem dis
ussed in [35℄ and

[37℄). We go ba
k to (4.2) to see that v

�

= r�

�

= f = 0 in H

�

nB

R

0

+2

and

that v

0

= r�

0

= f = 0 in 


R

0

+1

. Set U

�

= (D[B

R

0

)\H

�

. Both fv

�

; �

�

g

and fv

0

; �

0

g then belong to W

2;q

(U

�

) �W

1;q

(U

�

) and are the solutions of

the Stokes system in U

�

with zero boundary 
ondition for the external for
e

f . They thus 
oin
ide with ea
h other and, in view of (4.2) again, we have

v

0

= r�

0

= f = 0 in D; after all, f = 0 in 
. Owing to the Fredholm

theorem, 1 +Q(0) has a bounded inverse (1 +Q(0))

�1

on L

q

[d℄

(
).

Set �

�

= f� 2 C ; Re � � 0; 0 < j�j � �g for � > 0. Sin
e

kQ(�)f �Q(0)fk

q

� Ckv

+

(�)� v

+

(0)k

1;q;H

+;R

0

+2

+ Ckv

�

(�)� v

�

(0)k

1;q;H

�;R

0

+2

+Cj�jfkv

+

(�)k

q;H

+;R

0

+2

+ kv

�

(�)k

q;H

�;R

0

+2

+ kv

0

k

q;D

g;

we obtain from (3.5)

kQ(�)�Q(0)k

B(L

q

[d℄

(
))

! 0;

as � ! 0 with Re � � 0, whi
h implies the existen
e of a 
onstant � > 0

su
h that 1 + Q(�) has also a bounded inverse (in terms of the Neumann

series) on L

q

[d℄

(
) with uniform bounds

k(1 +Q(�))

�1

k

B(L

q

[d℄

(
))

� C; (4.8)

for � 2 �

�

[ f0g. Sin
e the resolvent is uniquely determined, one 
an

represent it for � 2 �

�

and f 2 L

q

[d℄

(
); d � R

0

+ 2, as

(�+A)

�1

Pf = T (�)(1 +Q(�))

�1

f: (4.9)

We are in a position to show an analogous result for the resolvent to

(3.4).

Lemma 4.2 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. Given f 2

L

q

[d℄

(
), set u(�) = (� + A)

�1

Pf . For any small " > 0 there is a 
onstant

C = C(
; n; q; d;R; ") > 0 su
h that

j�j

�

k�

m

�

u(�)k

2;q;


R

+

m�1

X

k=0

k�

k

�

u(�)k

2;q;


R

� Ckfk

q

; (4.10)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(
), where m and � = �(") are the same

as in Lemma 3.3.
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Proof. The problem is only near � = 0 be
ause we have (2.3) for G = 
.

We may also assume d � R

0

+2 sin
e L

q

[R

0

℄

(
) � L

q

[d℄

(
) for su
h d. It thus

suÆ
es to show (4.10) for � 2 �

�

by use of (4.9). For su
h � and 0 � k � m

we see that �

k

�

(1 +Q(�))

�1

2 B(L

q

[d℄

(
)); furthermore,

j�j

�

k�

m

�

(1 +Q(�))

�1

fk

q

+

m�1

X

k=0

k�

k

�

(1 +Q(�))

�1

fk

q

� Ckfk

q

; (4.11)

for f 2 L

q

[d℄

(
). In fa
t, we have the representation

�

k

�

(1 +Q(�))

�1

f

= �(1 +Q(�))

�1

[�

k

�

Q(�)℄(1 +Q(�))

�1

f + L

k

(�)(1 +Q(�))

�1

f;

(4.12)

for k � 1 and f 2 L

q

[d℄

(
), where L

1

(�) = 0 and L

k

(�) with k � 2 
onsists of

�nite sums of �nite produ
ts of (1 +Q(�))

�1

; �

�

Q(�); � � � ; �

k�1

�

Q(�). Con-

sequently, (4.6) together with (4.8) implies (4.11). In view of

�

k

�

u(�) =

k

X

j=0

�

k

j

�

�

k�j

�

T (�) �

j

�

(1 +Q(�))

�1

f;

we 
on
lude (4.10) from (4.5) and (4.11). �

In the last part of this se
tion we will 
omplete the regularity estimate

of the resolvent. To this end, we employ Lemma 3.4 to show the following

lemma.

Lemma 4.3 Let n � 3; 1 < q <1; d � R

0

and R � R

0

. Set

T

(k)

(s) = �

k

s

T (is); Q

(k)

(s) = �

k

s

Q(is) (s 2 R n f0g; 0 � k � m):

For any small " > 0 there is a 
onstant C = C(
; n; q; d;R; ") > 0 su
h that

kT

(k)

(s+ h)f � T

(k)

(s)fk

2;q;


R

+ kQ

(k)

(s+ h)f �Q

(k)

(s)fk

q

�

8

<

:

Cjhjjsj

���1

kfk

q

if k = m;

Cjhjjsj

��

kfk

q

if k = m� 1;

Cjhjkfk

q

if n � 5; 0 � k � m� 2;

(4.13)

for 2jhj < jsj � 1 and f 2 L

q

[d℄

(
), where m and � = �(") are the same as

in Lemma 3.3. Con
erning the �rst term of the left-hand side, (4.13) holds

true for h 2 R and jsj > 2jhj.
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Proof. Set

v

(k)

�

(s) = �

k

s

v

�

(is); �

(k)

�

(s) = �

k

s

�

�

(is) (s 2 R n f0g; k = m or m� 1):

It then follows from (4.2) together with (2.2) that

kT

(m)

(s+ h)f � T

(m)

(s)fk

2;q;


R

� Ckv

(m)

+

(s+ h)� v

(m)

+

(s)k

2;q;H

+;R

+ Ckv

(m)

�

(s+ h)� v

(m)

�

(s)k

2;q;H

�;R

:

In order to estimate Q

(m)

, let us investigate the pressures �

(m)

�

. Similarly

to the proof of Lemma 4.1 with the aid of (4.7), one 
an show

k(r 

�

)f�

(m)

�

(s+ h)� �

(m)

�

(s)gk

q

� Ckr�

(m)

�

(s+ h)�r�

(m)

�

(s)k

�1;q;D

�;R

0

+1

� Ckrv

(m)

�

(s+ h)�rv

(m)

�

(s)k

q;H

�;R

0

+2

+Ck(s+ h)v

(m)

�

(s+ h)� sv

(m)

�

(s)k

q;H

�;R

0

+2

+Cmkv

(m�1)

�

(s+ h)� v

(m�1)

�

(s)k

q;H

�;R

0

+2

:

This 
ombined with estimates on the other terms by use of (2.2) yields

kQ

(m)

(s+ h)f �Q

(m)

(s)fk

q

� Ckv

(m)

+

(s+ h)� v

(m)

+

(s)k

1;q;H

+;R

0

+2

+Ckv

(m)

�

(s+ h)� v

(m)

�

(s)k

1;q;H

�;R

0

+2

+Cjsjkv

(m)

+

(s+ h)� v

(m)

+

(s)k

q;H

+;R

0

+2

+Cjsjkv

(m)

�

(s+ h)� v

(m)

�

(s)k

q;H

�;R

0

+2

+Cjhjkv

(m)

+

(s+ h)k

q;H

+;R

0

+2

+ Cjhjkv

(m)

�

(s+ h)k

q;H

�;R

0

+2

+Cmkv

(m�1)

+

(s+ h)� v

(m�1)

+

(s)k

q;H

+;R

0

+2

+Cmkv

(m�1)

�

(s+ h)� v

(m�1)

�

(s)k

q;H

�;R

0

+2

:

Hen
e (3.7), (3.8) and (3.4) imply (4.13) for the 
ase k = m. For 0 � k �

m� 1 we have

kT

(k)

(s+ h)f � T

(k)

(s)fk

2;q;


R

�

�

�

�

�

Z

s+h

s

kT

(k+1)

(�)fk

2;q;


R

d�

�

�

�

�

;

kQ

(k)

(s+ h)f �Q

(k)

(s)fk

q

�

�

�

�

�

Z

s+h

s

kQ

(k+1)

(�)fk

q

d�

�

�

�

�

;

whi
h together with (4.5) and (4.6) respe
tively lead us to (4.13). The proof

is thus 
omplete. �

The regularity of the resolvent along the imaginary axis given by the

following lemma plays a 
ru
ial role in the next se
tion.
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Lemma 4.4 Let n � 3; 1 < q <1; d � R

0

and R � R

0

. Set

�

(m)

(s) = �

m

s

(is+A)

�1

P (s 2 R n f0g):

For any small " > 0 there is a 
onstant C = C(
; n; q; d;R; ") > 0 su
h that

Z

1

�1

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

ds � Cjhj

1��

kfk

q

; (4.14)

for jhj < h

0

= minf�=4; 1=2g and f 2 L

q

[d℄

(
). Here, m and � = �(") are

the same as in Lemma 3.3, and � > 0 is the 
onstant su
h that (4.9) is valid

for � 2 �

�

.

Proof. We may assume d � R

0

+ 2 (as in the proof of Lemma 4.2). Given

h satisfying jhj < h

0

, we divide the integral into three parts

Z

1

�1

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

ds

=

Z

jsj�2jhj

+

Z

2jhj<jsj�2h

0

+

Z

jsj>2h

0

= I

1

+ I

2

+ I

3

:

With the aid of (4.10), we �nd

I

1

� 2

Z

jsj�3jhj

k�

(m)

(s)fk

2;q;


R

ds � Cjhj

1��

kfk

q

;

for f 2 L

q

[d℄

(
). In order to estimate I

2

, we use the representation

�

(m)

(s)f =

m

X

j=0

�

m

j

�

T

(m�j)

(s) V

(j)

(s)f;

where

V

(j)

(s) = �

j

s

(1 +Q(is))

�1

2 B(L

q

[d℄

(
)) (0 < jsj � �; 0 � j � m):

Then,

�

(m)

(s+ h)f � �

(m)

(s)f

=

m

X

j=0

�

m

j

�

[T

(m�j)

(s+ h)� T

(m�j)

(s)℄ V

(j)

(s+ h)f

+

m

X

j=0

�

m

j

�

T

(m�j)

(s) [V

(j)

(s+ h)� V

(j)

(s)℄f:
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We �rst show

kV

(j)

(s+ h)f � V

(j)

(s)fk

q

�

8

<

:

Cjhjjsj

���1

kfk

q

if j = m;

Cjhjjsj

��

kfk

q

if j = m� 1;

Cjhjkfk

q

if n � 5; 0 � j �m� 2;

(4.15)

for 2jhj < jsj � 2h

0

and f 2 L

q

[d℄

(
). Similarly to the proof of (4.13) for

0 � k � m � 1, (4.11) implies (4.15) for 0 � j � m � 1. As in (4.12), we

have

V

(m)

(s) = �V

(0)

(s)Q

(m)

(s)V

(0)

(s) +W

m

(s)V

(0)

(s);

where W

1

(s) = 0 and, for m � 2, W

m

(s) = i

m

L

m

(is) 
onsists of �nite sums

of �nite produ
ts of V

0

(s); Q

(1)

(s); � � � ; Q

(m�1)

(s). Therefore, we 
olle
t

(4.6), (4.8), (4.13) and (4.15) for j = 0 to arrive at (4.15) for j = m. It thus

follows from (4.5), (4.11), (4.13) and (4.15) that

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

� Cjhjjsj

���1

kfk

q

;

for 2jhj < jsj � 2h

0

and f 2 L

q

[d℄

(
). As a 
onsequen
e, we are led to

I

2

� Cjhjkfk

q

Z

jsj>2jhj

jsj

���1

ds � Cjhj

1��

kfk

q

;

for f 2 L

q

[d℄

(
). Finally, to estimate I

3

, one does not need any lo
alization.

In fa
t, sin
e

�

(m)

(s+ h)f � �

(m)

(s)f = (�i)

m+1

(m+ 1)!

Z

s+h

s

(i� +A)

�(m+2)

Pfd�;

(2.3) gives

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

� Ck�

(m)

(s+ h)f � �

(m)

(s)fk

D(A

q

)

� Cjhjjsj

�(m+1)

kfk

q

;

for jsj > 2h

0

(> 2jhj) and f 2 L

q

(
). Therefore, we obtain

I

3

� Cjhjkfk

q

Z

jsj>2h

0

jsj

�(m+1)

ds � Cjhjkfk

q

;

for f 2 L

q

(
). Colle
ting the estimates above on I

1

; I

2

and I

3

, we 
on
lude

(4.14). �
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5 L

q

-L

r

estimates of the Stokes semigroup

In this se
tion we will prove Theorem 2.1. As explained in se
tion 1, the

�rst step is to derive (1.6) for non-solenoidal data with bounded support.

Lemma 5.1 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. For any small

" > 0 there is a 
onstant C = C(
; n; q; d;R; ") > 0 su
h that

ke

�tA

Pfk

1;q;


R

� Ct

�1=2

(1 + t)

�n=2+1=2+"

kfk

q

; (5.1)

for t > 0 and f 2 L

q

[d℄

(
).

For the proof, the following lemma due to Shibata is 
ru
ial sin
e we

know the regularity of the Stokes resolvent given by Lemmas 4.2 and 4.4.

Lemma 5.2 Let X be a Bana
h spa
e with norm k � k and g 2 L

1

(R;X).

If there are 
onstants � 2 (0; 1) and M > 0 su
h that

Z

1

�1

kg(s)kds + sup

h6=0

1

jhj

�

Z

1

�1

kg(s+ h)� g(s)kds �M;

then the Fourier inverse image

G(t) =

1

2�

Z

1

�1

e

ist

g(s)ds

of g enjoys

kG(t)k � CM(1 + jtj)

��

;

with some C > 0 independent of t 2 R.

Remark 5.1. The assumption of Lemma 5.2 is equivalent to

g 2

�

L

1

(R;X); W

1;1

(R;X)

�

�;1

;

where (�; �)

�;1

denotes the real interpolation (the spa
e to whi
h g belongs

is known as a Besov spa
e).

Proof of Lemma 5.2. Although this lemma was already proved by Shibata

[51℄, we give our di�erent proof whi
h seems to be simpler. Sin
e kG(t)k �

M=2�, it suÆ
es to 
onsider the 
ase jtj > 1. It is easily seen that if

ht 6= 2j� (j = 0;�1;�2; � � � ), then

G(t) =

e

iht

2�(1 � e

iht

)

Z

1

�1

e

ist

(g(s+ h)� g(s))ds;

29



from whi
h the assumption leads us to

kG(t)k �

M jhj

�

2�j1 � e

iht

j

:

Taking h = 1=t immediately implies the desired estimate. �

Proof of Lemma 5.1. Sin
e

ke

�tA

Pfk

1;q

� Cke

�tA

Pfk

1=2

D(A

q

)

ke

�tA

Pfk

1=2

q

� Ct

�1=2

kfk

q

; (5.2)

for 0 < t < 1 and f 2 L

q

(
), we will 
on
entrate ourselves on the proof of

(5.1) for t � 1, namely (1.6). Given R � R

0

, we set  = 1 �  

+;R

�  

�;R

,

where the 
ut-o� fun
tions  

�;R

are given by (2.1). One 
an justify the

following representation formula of the semigroup for f 2 L

q

[d℄

(
):

 e

�tA

Pf =

i

m

2�t

m

Z

1

�1

e

ist

 �

(m)

(s)fds; (5.3)

where �

(m)

(s) = �

m

s

(is + A)

�1

P and m is the same as in Lemma 3.3. In

fa
t, starting from the standard Dunford integral representation, we perform

m-times integrations by parts and then move the path of integration to the

imaginary axis but avoid the origin � = 0, so that

 e

�tA

Pf =

i

m

2�t

m

�

Z

�Æ

�1

+

Z

1

Æ

�

e

ist

 �

(m)

(s)fds

+

(�1)

m

2�it

m

Z

�

Æ

e

�t

 �

m

�

(�+A)

�1

Pfd�;

for any Æ > 0, where �

Æ

= fÆe

i�

;��=2 � � � �=2g (this formula is valid for

f 2 L

q

(
) without  ). Owing to (4.10), the last integral vanishes in L

q

(
)

as Æ ! 0 for f 2 L

q

[d℄

(
); thus, we arrive at (5.3). Now, it follows from

(4.10) and (2.3) that

Z

1

�1

k �

(m)

(s)fk

1;q

ds � C

Z

jsj�1

kfk

q

jsj

�

ds+ C

Z

jsj>1

kfk

q

jsj

m+1=2

ds � Ckfk

q

:

Further, (4.14) and the estimate above respe
tively imply that

sup

0<jhj<h

0

1

jhj

1��

Z

1

�1

k �

(m)

(s+ h)f �  �

(m)

(s)fk

1;q

ds � Ckfk

q

;

and that

sup

jhj�h

0

1

jhj

1��

Z

1

�1

k �

(m)

(s+ h)f �  �

(m)

(s)fk

1;q

ds
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�

2

h

1��

0

Z

1

�1

k �

(m)

(s)fk

1;q

ds � Ckfk

q

:

Hen
e, we 
an apply Lemma 5.2 with X = W

1;q

(
) and g(s) =  �

(m)

(s)f

to the formula (5.3); as a 
onsequen
e, we obtain

ke

�tA

Pfk

1;q;


R

� k e

�tA

Pfk

1;q

� Ct

�m

(1 + t)

�1+�

kfk

q

;

for t > 0, whi
h implies (5.1) for t � 1 and f 2 L

q

[d℄

(
). This 
ompletes the

proof. �

Remark 5.2. It is possible to show the de
ay rate t

�n=2+"

of the semigroup in

W

2;q

(


R

) as well. This follows immediately from the proof given above with

X =W

2;q

(
) for n � 5. When n = 3 or 4 (thusm = 1), as in Kobayashi and

Shibata [37℄, we have to introdu
e a 
ut-o� fun
tion � 2 C

1

0

(R; [0; 1℄) with

�(s) = 1 near s = 0; then one 
an employ Lemma 5.2 with X = W

2;q

(
)

and g(s) = �(s) �

(m)

(s)f to obtain the desired result sin
e a rapid de
ay of

the remaining integral far from s = 0 is derived via integration by parts. We

did not follow this pro
edure be
ause Lemma 5.1 is suÆ
ient for the proof

of Theorem 2.1.

The next step is to dedu
e the sharp lo
al energy de
ay estimate (1.5)

from Lemma 5.1.

Lemma 5.3 Let n � 3; 1 < q < 1 and R � R

0

. Then there is a 
onstant

C = C(
; n; q; R) > 0 su
h that

ke

�tA

fk

1;q;


R

� Ct

�n=2q

kfk

q

; (5.4)

for t � 2 and f 2 L

q

�

(
); and

ke

�tA

fk

1;q;


R

+ k�

t

e

�tA

fk

q;


R

� C(1 + t)

�n=2q

kfk

D(A

q

)

; (5.5)

for t � 0 and f 2 D(A

q

).

Proof. We employ a lo
alization pro
edure whi
h is similar to [35℄ and [37℄.

Given f 2 L

q

�

(
), we set g = e

�A

f 2 D(A

q

) and intend to derive the de
ay

estimate of u(t) = e

�tA

g = e

�(t+1)A

f in W

1;q

(


R

) for t � 1. We denote by

p the pressure asso
iated to u. We make use of the 
ut-o� fun
tions given

by (2.1) and the Bogovski

�

i operator introdu
ed in se
tion 2. Set

g

�

=  

�;R

0

+1

g � S

�;R

0

+1

[g � r 

�;R

0

+1

℄;

and

v

�

(t) = E

�

(t)g

�

:
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Note that

R

D

�;R

0

+1

g � r 

�;R

0

+1

dx = 0 and that g

�

2 D(A

q;H

�

) with

kg

�

k

D(A

q;H

�

)

� Ckg

�

k

2;q;H

�

� Ckgk

2;q

� Ckgk

D(A

q

)

� Ckfk; (5.6)

by (2.2). We take the pressures �

�

in H

�

asso
iated to v

�

in su
h a way

that

Z

D

�;R

0

�

�

(x; t)dx = 0; (5.7)

for ea
h t. In the 
ourse of the proof of this lemma, for simpli
ity, we

abbreviate  

�;R

0

to  

�

and S

�;R

0

to S

�

. We now de�ne fu

�

; p

�

g by

u

�

(t) =  

�

v

�

(t)� S

�

[v

�

(t) � r 

�

℄; p

�

(t) =  

�

�

�

(t):

Then it follows from Lemma 3.2 together with (2.2) and (5.6) that

ku

�

(t)k

1;q;


R

� Ckv

�

(t)k

1;q;H

�;L

� C(1 + t)

�n=2q

kfk

q

; (5.8)

for t � 0, where L = maxfR;R

0

+ 1g. Thus, in order to estimate u(t), let

us 
onsider

v(t) = u(t)� u

+

(t)� u

�

(t); �(t) = p(t)� p

+

(t)� p

�

(t);

whi
h should obey

�

t

v ��v +r� = K; r � v = 0;

in 
 subje
t to vj

�


= 0; �(v) = �(u) = 0 and

vj

t=0

= v

0

= g � g

+

� g

�

2 L

q

[R

0

+2℄

(
) \D(A

q

);

where

K = 2r 

+

� rv

+

+ 2r 

�

� rv

�

+ (� 

+

)v

+

+ (� 

�

)v

�

��S

+

[v

+

� r 

+

℄��S

�

[v

�

� r 

�

℄

+S

+

[�

t

v

+

� r 

+

℄ + S

�

[�

t

v

�

� r 

�

℄� (r 

+

)�

+

� (r 

�

)�

�

;

we here note that r � K 6= 0 as well as Kj

�


6= 0 and we 
an obtain the

regularity of K only up to L

q

(in 
ontrast to the exterior problem dis
ussed

in [35℄ and [37℄). By (5.7) and in view of the Stokes system in H

�

we have

k(r 

�

)�

�

(t)k

q

� Ckr�

�

(t)k

�1;q;D

�;R

0

� Ckrv

�

(t)k

q;H

�;R

0

+1

+ Ck�

t

v

�

(t)k

q;H

�;R

0

+1

;
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whi
h together with (2.2) implies K(t) 2 L

q

[R

0

+1℄

(
) and

kK(t)k

q

� Ckv

+

(t)k

1;q;H

+;R

0

+1

+ Ckv

�

(t)k

1;q;H

�;R

0

+1

+Ck�

t

v

+

(t)k

q;H

+;R

0

+1

+Ck�

t

v

�

(t)k

q;H

�;R

0

+1

:

Therefore, Lemma 3.2 and (5.6) yield

kK(t)k

q

� C(1 + t)

�n=2q

kfk

q

; (5.9)

for t � 0. In order to estimate

v(t) = e

�tA

v

0

+

Z

t

0

e

�(t��)A

PK(�)d�;

we employ Lemma 5.1. By (5.1) with a suitable " > 0 and (5.6) we �nd

ke

�tA

v

0

k

1;q;


R

� Ct

�n=2+"

kv

0

k

q

� Ct

�n=2q

kfk

q

;

for t � 1. We next 
ombine (5.1) with (5.9) to get

Z

t

0

ke

�(t��)A

PK(�)k

1;q;


R

d�

� Ckfk

q

Z

t

0

(t� �)

�1=2

(1 + t� �)

�n=2+1=2+"

(1 + �)

�n=2q

d�

= Ckfk

q

(I

1

+ I

2

);

where I

1

=

R

t=2

0

and I

2

=

R

t

t=2

. An elementary 
al
ulation gives

I

1

�

8

<

:

Ct

�1=2

(1 + t=2)

�n=2�n=2q+3=2+"

if q > n=2

Ct

�1=2

(1 + t=2)

�n=2+1=2+"

log(1 + t=2) if q = n=2

Ct

�1=2

(1 + t=2)

�n=2+1=2+"

if q < n=2

9

=

;

� Ct

�n=2q

;

for t � 1 and

I

2

� (1 + t=2)

�n=2q

Z

1

0

�

�1=2

(1 + �)

�n=2+1=2+"

d� � C(1 + t=2)

�n=2q

;

for t > 0. We 
olle
t the estimates above to obtain

kv(t)k

1;q;


R

� Ct

�n=2q

kfk

q

; (5.10)

for t � 1. From (5.8) and (5.10) we dedu
e

ku(t)k

1;q;


R

= kv(t) + u

+

(t) + u

�

(t)k

1;q;


R

� Ct

�n=2q

kfk

q

;
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for t � 1 and f 2 L

q

�

(
), whi
h proves (5.4). Let f 2 D(A

q

). Then we

easily observe

ke

�tA

fk

1;q;


R

+ k�

t

e

�tA

fk

q;


R

� Cke

�tA

fk

D(A

q

)

� Ckfk

D(A

q

)

;

for t � 0 and also we 
an estimate �

t

e

�tA

f for large t; in fa
t, by virtue of

(5.4) just proved we get

k�

t

e

�tA

fk

q;


R

= ke

�tA

Afk

q;


R

� Ct

�n=2q

kAfk

q

;

for t � 2. This implies (5.5). �

We are interested in the L

q

estimate of re

�tA

for large t, in parti
ular,

the L

n

estimate is quite important for us.

Lemma 5.4 Let n � 3 and 1 < q < 1. Then there is a 
onstant C =

C(
; n; q) > 0 su
h that

kre

�tA

fk

q

� Ct

�minf1=2;n=2qg

kfk

q

; (5.11)

for t � 2 and f 2 L

q

�

(
).

Proof. We �x R � R

0

+ 1. Sin
e we have already known the de
ay rate

t

�n=2q

of kre

�tA

fk

q;


R

by Lemma 5.3, it suÆ
es to derive the estimate

outside 


R

, that is,

kre

�tA

fk

q;


�

n


R

� Ct

�minf1=2;n=2qg

kfk

q

; (5.12)

for t � 2 and f 2 L

q

�

(
). In an analogous way to [35℄, [37℄ and [1℄, we make

use of the de
ay properties of the semigroup E

�

(t) for the half spa
e. Given

f 2 L

q

�

(
), we set g = e

�A

f 2 D(A

q

) and then u(t) = e

�tA

g = e

�(t+1)A

f .

We 
hoose two pressures p

�

in 
 asso
iated to u in su
h a way that

Z

D

�;R�1

p

�

(x; t)dx = 0; (5.13)

for ea
h t (p

+

and p

�

will be used independently). With use of the 
ut-o�

fun
tions given by (2.1) and the Bogovski

�

i operator introdu
ed in se
tion 2,

we de�ne fv

�

; �

�

g by

v

�

(t) =  

�

u(t)� S

�

[u(t) � r 

�

℄; �

�

(t) =  

�

p

�

(t):

Here and in what follows, we use the abbreviations  

�

for  

�;R�1

and S

�

for S

�;R�1

. Sin
e v

�

= u for x 2 


�

n 


R

= H

�

n B

R

, we will show
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krv

�

(t)k

q;H

�

� Ct

�minf1=2;n=2qg

kgk

D(A

q

)

; (5.14)

for t � 1, whi
h 
ombined with kgk

D(A

q

)

� Ckfk

q

implies (5.12) for t � 2.

It is easily observed that fv

�

; �

�

g satis�es

�

t

v

�

��v

�

+r�

�

= Z

�

; r � v

�

= 0;

in H

�

subje
t to v

�

j

�H

�

= 0 and

v

�

j

t=0

= a

�

=  

�

g � S

�

[g � r 

�

℄;

where

Z

�

= �2r 

�

� ru� (� 

�

)u+�S

�

[u � r 

�

℄

�S

�

[�

t

u � r 

�

℄ + (r 

�

)p

�

:

Our task is now to estimate the gradient of

v

�

(t) = E

�

(t)a

�

+

Z

t

0

E

�

(t� �)P

H

�

Z

�

(�)d�: (5.15)

By virtue of (5.13) we have

k(r 

�

)p

�

(t)k

q;H

�

� Ckrp

�

(t)k

�1;q;D

�;R�1

� Ckru(t)k

q;


R

+Ck�

t

u(t)k

q;


R

;

from whi
h together with (2.2) it follows that

kZ

�

(t)k

q;H

�

� Cku(t)k

1;q;


R

+ Ck�

t

u(t)k

q;


R

:

Hen
e, (5.5) implies

kP

H

�

Z

�

(t)k

r;H

�

� CkZ

�

(t)k

q;H

�

� C(1 + t)

�n=2q

kgk

D(A

q

)

; (5.16)

for t � 0 and r 2 (1; q℄ sin
e Z

�

(t) 2 L

q

[R℄

(H

�

) � L

r

[R℄

(H

�

) for su
h r. In

view of (5.15), we dedu
e from (1.4) for 
 = H

�

together with (5.16)

krv

�

(t)k

q;H

�

� Ct

�1=2

ka

�

k

q;H

�

+Ckgk

D(A

q

)

Z

t

0

(t� �)

�1=2

(1 + t� �)

�(n=r�n=q)=2

(1 + �)

�n=2q

d�

� Ct

�1=2

kgk

q

+ Ckgk

D(A

q

)

(I

1

+ I

2

);
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for r 2 (1; q℄, where I

1

=

R

t=2

0

and I

2

=

R

t

t=2

. We take r so that 1 < r <

minfn=2; qg. Then we see that

I

1

�

8

<

:

Ct

�1=2

(1 + t=2)

�n=2r+1

if q > n=2

Ct

�1=2

(1 + t=2)

�n=2r+1

log(1 + t=2) if q = n=2

Ct

�1=2

(1 + t=2)

�(n=r�n=q)=2

if q < n=2

9

=

;

� Ct

�1=2

;

for t > 0 and that

I

2

�

�

C(1 + t=2)

�n=2q

if q > n;

C(1 + t=2)

�1=2

if q � n;

for t > 0. Colle
ting the estimates above 
on
ludes (5.14). This 
ompletes

the proof. �

The following lemma is 
on
erned with the L

1

estimate of the semigroup

(the restri
tion q > n will be removed later).

Lemma 5.5 Let 3 � n < q < 1. There is a 
onstant C = C(
; n; q) > 0

su
h that

ke

�tA

fk

1

� Ct

�n=2q

kfk

q

; (5.17)

for t > 0 and f 2 L

q

�

(
).

Proof. For �xed R � R

0

+ 1, estimate (5.4) together with the Sobolev

embedding property implies

ke

�tA

fk

1;


R

� Ct

�n=2q

kfk

q

;

for t � 2 and f 2 L

q

�

(
) on a

ount of n < q < 1. Along the lines of the

proof of Lemma 5.4, one 
an show

ke

�tA

fk

1;


�

n


R

� Ct

�n=2q

kfk

q

; (5.18)

for t � 2. In fa
t, given f 2 L

q

�

(
), we take the same g; fu; p

�

g and fv

�

; �

�

g,

and apply the L

q

-L

1

estimate (1.3) for 
 = H

�

to (5.15). Then, taking

(5.16) into a

ount, we get

kv

�

(t)k

1;H

�

� Ct

�n=2q

ka

�

k

q;H

�

+Ckgk

D(A

q

)

Z

t

0

(t� �)

�n=2q

(1 + t� �)

�(n=r�n=q)=2

(1 + �)

�n=2q

d� ;

for r 2 (1; q℄; we now 
hoose r 2 (1; n=2) to �nd
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kv

�

(t)k

1;H

�

� Ct

�n=2q

kgk

D(A

q

)

;

for t � 1, whi
h proves (5.18) for t � 2. We thus obtain (5.17) for t � 2.

For 0 < t < 2, we re
all (5.2) to see

ke

�tA

fk

1

� Cke

�tA

fk

n=q

1;q

ke

�tA

fk

1�n=q

q

� Ct

�n=2q

kfk

q

:

The proof is 
omplete. �

We are now in a position to prove Theorem 2.1. Abels [1℄ showed (1.3)

for 1 < q � r < 1; when we use this result, the �rst step of the following

proof will be
ome shorter. However, in order to make the present paper self-


ontained, we do not rely on any result of [1℄. We emphasize that our proof

is based on (5.11) and (5.17), in other words, the other estimates follow from

them.

Proof of Theorem 2.1. The proof is divided into four steps.

Step 1. First of all, we observe (1.4) for q = r 2 (1; n℄. Indeed, it follows

from (5.2) for 0 < t < 2 and (5.11) for t � 2 that

kre

�tA

fk

q

� Ct

�1=2

kfk

q

; (5.19)

for t > 0 and f 2 L

q

�

(
) provided 1 < q � n. In this step we a

omplish

the proof of (1.3) for 1 < q � r � 1 (q 6=1) and (1.4) for 1 < q � r � n.

We begin with the removal of the restri
tion q > n in Lemma 5.5. In view

of (5.19) and the Sobolev embedding property we have

ke

�tA

fk

r

� Ct

�1=2

kfk

q

; (5.20)

for t > 0 and f 2 L

q

�

(
) when 1 < q < n and 1=r = 1=q � 1=n. Let

n=(k + 1) < q < n=k with k = 1; 2; � � � ; n � 1. We put fq

j

g

k

j=0

in su
h

a way that 1=q

j+1

= 1=q

j

� 1=n (j = 0; 1; � � � ; k � 1) with q

0

= q. Sin
e

n < q

k

<1, we make use of (5.17) with q = q

k

and (5.20) to obtain

ke

�tA

fk

1

� Ct

�n=2q

k

ke

�(t=2)A

fk

q

k

� Ct

�n=2q

k

�k=2

kfk

q

;

for t > 0, whi
h proves (5.17) ex
ept for q = n; n=2; � � � ; n=(n� 1). But the

ex
eptional 
ases 
an be also dedu
ed via interpolation. Thus the L

q

-L

1

estimate (5.17) has been established for all q 2 (1;1). This together with

the L

q

boundedness (namely, (1.3) for q = r) immediately gives (1.3) for

1 < q � r � 1, from whi
h 
ombined with (5.19) we further obtain (1.4)

for 1 < q � r � n.

Step 2. In this step we prove (1.4) for 1 < q < n < r < 1, making

use of (1.8) due to [20℄. Given r 2 (n;1), we take s 2 (n=2; n) so that
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1=s = 1=r + 1=n. When 1 < q � s, an embedding relation given by Lemma

3.1 of [20℄ together with (1.8) implies

kre

�tA

fk

r

� Ckr

2

e

�tA

fk

s

� CkAe

�tA

fk

s

� Ct

�1

ke

�(t=2)A

fk

s

;

for t > 0, from whi
h together with (1.3) we obtain (1.4). If s < q < n,

whi
h implies r < q

�

with 1=q

�

= 1=q � 1=n, then by the same reasoning as

above

kre

�tA

fk

r

� kre

�tA

fk

1��

q

�

kre

�tA

fk

�

q

� CkAe

�tA

fk

1��

q

kre

�tA

fk

�

q

;

for t > 0, where 1=r = (1� �)=q

�

+ �=q = 1=q� (1� �)=n. Therefore, (5.19)

yields (1.4).

Step 3. Let f 2 L

1

(
)\L

s

�

(
) for some s 2 (1;1). This step is devoted to

the 
ase q = 1, namely L

1

-L

r

estimate. Let 1 < r <1. We apply a simple

duality argument; in fa
t, the L

q

-L

1

estimate implies

j(e

�tA

f; g)j = j(f; e

�tA

g)j � kfk

1

ke

�tA

gk

1

� Ct

�(n�n=r)=2

kfk

1

kgk

r=(r�1)

;

for g 2 L

r=(r�1)

�

(
), whi
h gives (1.3) for q = 1 < r < 1. Combining this

with (5.17) and (1.4), respe
tively, we obtain (1.3) for q = 1 < r = 1 and

(1.4) for q = 1 < r <1.

Step 4. On
e the L

q

-L

r

estimates (1.3) and (1.4) are established, (2.4) and

(2.5) 
an be proved by means of a standard approximation pro
edure. We

show only the behavior as t!1 (whi
h is the main 
on
ern in the present

paper). Let 1 < q <1 and f 2 L

q

�

(
). For any " > 0 we take f

"

2 C

1

0;�

(
)

su
h that kf

"

� fk

q

< ". It then follows from (1.3) that

ke

�tA

fk

q

� C"+ Ct

�(n�n=q)=2

kf

"

k

1

;

for t > 0, whi
h immediately yields

lim

t!1

ke

�tA

fk

q

= 0; (5.21)

sin
e " > 0 is arbitrary (one 
an give another proof by use of ker(A

q

) = f0g).

Let K be a pre
ompa
t set in L

q

�

(
). For any � > 0 there is a �nite set

ff

j

g

m

j=1

� K so that fB

�

(f

j

)g

m

j=1

is a 
overing of K, where B

�

(f

j

) denotes

the open ball 
entered at f

j

with radius �. Then we have

sup

f2K

ke

�tA

fk

q

� C� + max

1�j�m

ke

�tA

f

j

k

q

:

Hen
e, from (5.21) we dedu
e

lim

t!1

sup

f2K

ke

�tA

fk

q

= 0: (5.22)

All the other de
ay properties as t ! 1 follow from (5.22) 
ombined with

(1.3) and (1.4). We have 
ompleted the proof. �
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6 The Navier-Stokes 
ow

In this se
tion we apply the developed L

q

-L

r

estimates of the semigroup to

the Navier-Stokes initial value problem. In the proof of Theorems 2.2 and

2.3, we will not 
ite (1.3) and/or (1.4) if the appli
ation is evident. We �rst

prove Theorem 2.2.

Proof of Theorem 2.2. One 
an 
onstru
t a unique global solution u(t) of

the integral equation

u(t) = e

�tA

a�

Z

t

0

e

�(t��)A

P (u � ru)(�)d�; t > 0; (6.1)

by means of a standard 
ontra
tion mapping prin
iple, in exa
tly the same

way as in Kato [36℄, provided that kak

n

� Æ

0

, where Æ

0

= Æ

0

(
; n) > 0 is a


onstant. The solution u(t) satis�es

ku(t)k

r

� Ct

�1=2+n=2r

kak

n

for n � r � 1; (6.2)

kru(t)k

n

� Ct

�1=2

kak

n

; (6.3)

for t > 0 together with the singular behavior

ku(t)k

r

= o

�

t

�1=2+n=2r

�

for n < r � 1; kru(t)k

n

= o

�

t

�1=2

�

; (6.4)

as t ! 0. Furthermore, due to the H�older estimate (6.9) below whi
h is

implied by (6.2) and (6.3), the solution u(t) be
omes a
tually a strong one

of (1.1) with (2.6) (see [24℄, [29℄ and [57℄). We now prove

lim

t!1

ku(t)k

n

= 0; (6.5)

for still smaller a 2 L

n

�

(
). To this end, we derive a 
ertain de
ay property

of u(t), whi
h is weaker than (2.11) but suÆ
ient for the proof of (6.5),

assuming additionally a 2 L

1

(
) \ L

n

�

(
) with small kak

n

. Given 
 2

(0; 1=2), we take q 2 (n=2; n) so that 
 = n=2q � 1=2; then,

ku(t)k

n

� Ct

�


kak

q

+ C

Z

t

0

(t� �)

�1=2

ku(�)k

n

kru(�)k

n

d�;

whi
h together with (6.3) implies

t




ku(t)k

n

� Ckak

q

+ Ckak

n

sup

0<��t

�




ku(�)k

n

;
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for t > 0. Hen
e, for any 
 2 (0; 1=2) there are 
onstants Æ

�

= Æ

�

(
; n; 
) 2

(0; Æ

0

℄ and C = C(
; n; 
) > 0 su
h that if kak

n

� Æ

�

, then ku(t)k

n

�

Ct

�


kak

q

for t > 0, whi
h together with (6.2) yields

ku(t)k

n

� C(1 + t)

�


(kak

1

+ kak

n

); (6.6)

for t � 0 (this de
ay rate is not sharp and will be improved in Theorem

2.3). From now on we �x 
 2 (0; 1=2) and set Æ = Æ

�

(
; n; 
)=2. Given

a 2 L

n

�

(
) with kak

n

� Æ and any " 2 (0; Æ℄, we take a

"

2 C

1

0;�

(
) so that

ka

"

� ak

n

< ". Sin
e ka

"

k

n

� Æ

�

, the 
orresponding global solution ful�lls

(6.6). We 
ombine this fa
t with the 
ontinuous dependen
e: L

n

�

(
) 3

u(0) 7! u 2 BC([0;1);L

n

�

(
)), where BC denotes the 
lass of bounded


ontinuous fun
tions. As a 
onsequen
e, the global solution u(t) with u(0) =

a satis�es ku(t)k

n

� C" + C(1 + t)

�


, whi
h proves (6.5) (although the

method above was mentioned in [36℄ and is well known, we gave the proof

for 
ompleteness; see also Theorem 3 of Wiegner [59℄ for another proof).

Combining (6.5) with (6.2) for r = 1 immediately leads us to (2.8) for

n � r < 1. We next prove (2.8) for r = 1 and (2.9). As is standard, we

rewrite the integral equation (6.1) in the form

u(t) = e

�(t=2)A

u(t=2)�

Z

t

t=2

e

�(t��)A

P (u � ru)(�)d�; t > 0: (6.7)

Then we obtain

ku(t)k

1

+ kru(t)k

n

� Ct

�1=2

ku(t=2)k

n

+ C

Z

t

t=2

(t� �)

�3=4

ku(�)k

2n

kru(t)k

n

d� ;

from whi
h together with (6.3) we at on
e dedu
e

t

1=2

(ku(t)k

1

+ kru(t)k

n

) � Cku(t=2)k

n

+ Ckak

n

sup

t=2���t

�

1=4

ku(�)k

2n

;

for t > 0. Obviously, (6.5) and (2.8) for r = 2n 
on
lude both (2.8) for

r =1 and (2.9). These immediately yield

kP (u � ru)(t)k

n

� Cku(t)k

1

kru(t)k

n

= o(t

�1

); (6.8)

as t ! 1, whi
h will be used to show (2.10) below. Fix � 2 (0; 1=2)

arbitrarily. Sin
e

ku(t)� u(�)k

1

+ kru(t)�ru(�)k

n

� C(t� �)

�

�

�1=2��

kak

n

; (6.9)
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for 0 < � < t, one 
an dedu
e from (6.7) the representation

Au(t) = Ae

�(t=2)A

u(t=2) + fe

�(t=2)A

� 1gP (u � ru)(t) +Az(t); (6.10)

in L

n

�

(
), where

z(t) =

Z

t

t=2

e

�(t��)A

Pf(u � ru)(t)� (u � ru)(�)gd�:

In fa
t, (6.9) implies

kAz(t)k

n

� C

Z

t

t=2

(t� �)

�1+�

�

�1=2��

(kru(t)k

n

+ ku(�)k

1

)d�

� Ct

�1=2

kru(t)k

n

+Ct

�1

sup

t=2���t

�

1=2

ku(�)k

1

;

for t > 0. As a dire
t 
onsequen
e of (2.8) for r =1 and (2.9), we see that

kAz(t)k

n

= o(t

�1

), as t ! 1. In view of (6.10), we 
olle
t (6.5), (6.8) and

the above de
ay property of Az(t) to obtain kAu(t)k

n

= o(t

�1

) as t ! 1,

whi
h together with (6.8) again shows (2.10). The proof is 
omplete. �

Remark 6.1. Consider brie
y the 3-dimensional stability problem mentioned

in Remark 2.5. The problem is redu
ed to the global existen
e and asymp-

toti
 behavior of the solution to

u(t) = e

�tA

a�

Z

t

0

e

�(t��)A

P (u � ru+ w � ru+ u � rw)(�)d�; t > 0;

where w is a stationary solution of 
lass rw 2 L

r

(
); 1 < r � 2, and

a 2 L

3

�

(
) is a given initial disturban
e. Set

E(t) = sup

0<��t

�

1=2

(ku(�)k

1

+ kru(�)k

3

) + sup

0<��t

�

1=4

ku(�)k

6

;

and �x r 2 (1; 3=2) arbitrarily. Then the integral equation yields the a priori

estimate

E(t) � Ckak

3

+ CE(t)

2

+ C(krwk

r

+ krwk

2

)E(t);

for t > 0, whi
h gives an aÆrmative answer to the stability problem provided

that both krwk

r

+ krwk

2

and kak

3

are small enough. In fa
t, by following

the argument of Chen [11℄, the above inequality for E(t) is dedu
ed from

ke

�tA

P (w � ru+ u � rw)k

1

+ kre

�tA

P (w � ru+ u � rw)k

3

� C(krwk

r

+ krwk

2

)(kuk

1

+ kruk

3

) t

�3=4

(1 + t)

�3=2r+3=4

;

and

ke

�tA

P (w � ru+ u � rw)k

6

� C(krwk

r

+ krwk

2

)(kuk

1

+ kruk

3

) t

�1=2

(1 + t)

�3=2r+3=4

:
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We next assume that a 2 L

1

(
)\L

n

�

(
) with kak

n

� Æ. Let u(t) be the

global solution 
onstru
ted in Theorem 2.2. Our parti
ular 
on
ern is more

rapid de
ay properties of u(t). Starting from (6.2) and (6.3), we observe that

u(t) 2W

1;r

(
) for 1 < r < n and t > 0 (without going ba
k to approximate

solutions). In fa
t, there is a 
onstant M = M(
; n; r; kak

1

; kak

n

; T ) > 0

su
h that

kr

j

u(t)k

r

� Ct

�j=2

kak

r

+ C

Z

t

0

(t� �)

�1+n=2r�j=2

ku(�)k

n

kru(�)k

n

d�

�Mt

�j=2

;

for n=2 � r < n; j = 0; 1 and 0 < t � T , where T > 0 is arbitrarily �xed;

and then,

kr

j

u(t)k

r

� Ct

�j=2

kak

r

+ C

Z

t

0

(t� �)

�j=2

ku(�)k

2r

kru(�)k

2r

d�

�Mt

�j=2

;

for n=4 � r < n=2; j = 0; 1 and 0 < t � T . We repeat the pro
ess above to

get u(t) 2W

1;r

(
) for 1 < r < n with

sup

0<t�T

(ku(t)k

r

+ t

1=2

kru(t)k

r

) �M: (6.11)

Remark 6.2. Following the argument of Kato [36℄, we see that the above


onstant M does not depend on T > 0 if kak

n

is still smaller. However, we

do not rely on his pro
edure be
ause the smallness of initial data depends

on r > 1. Note that the 
onstant � in Theorem 2.3 is independent of r > 1.

As the �rst step of our proof of Theorem 2.3, we show the following

lemma whi
h gives a little slower de
ay rate than desired (later on, " > 0

will be removed so that estimates will be
ome sharp).

Lemma 6.1 Let n � 3 and a 2 L

1

(
) \ L

n

�

(
). For any small " > 0 there

are 
onstants �

�

= �

�

(
; n; ") 2 (0; Æ℄ and C = C(
; n; kak

1

; kak

n

; ") > 0

su
h that if kak

n

� �

�

, then the solution u(t) obtained in Theorem 2.2

satis�es

ku(t)k

n=(n�1)

� C(1 + t)

�1=2+"

; (6.12)

ku(t)k

2n

� Ct

�1=4

(1 + t)

�n=2+1=2+"

; (6.13)

kru(t)k

n

� Ct

�1=2

(1 + t)

�n=2+1=2+"

; (6.14)

for t > 0.
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Proof. We make use of (1.3) for r =1 to obtain

j(e

�(t��)A

P (u � ru)(�); ')j = j((u � ru)(�); e

�(t��)A

')j

� C(t� �)

�(n�n=q)=2

ku(�)k

n=(n�1)

kru(�)k

n

k'k

q=(q�1)

;

for all ' 2 C

1

0;�

(
), whi
h gives

kr

j

e

�(t��)A

P (u � ru)(�)k

q

� C(t� �)

�(n�n=q)=2�j=2

ku(�)k

n=(n�1)

kru(�)k

n

;

(6.15)

for 1 < q < 1; j = 0; 1 and 0 < � < t (the 
ase j = 1 follows from

(1.4) and the 
ase j = 0). Given " > 0, we take p 2 (1; n=(n � 1)) so that

1=p = 1� 2"=n. From (6.15) with q = n=(n� 1) it follows that

ku(t)k

n=(n�1)

� Ct

�1=2+"

kak

p

+ C

Z

t

0

(t� �)

�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�:

In an analogous way to the dedu
tion of (6.6), one 
an take a 
onstant �

0

=

�

0

(
; n; ") 2 (0; Æ℄ su
h that if kak

n

� �

0

, then ku(t)k

n=(n�1)

� Ct

�1=2+"

kak

p

for t > 0, whi
h together with (6.11) gives (6.12). To show (6.13) and (6.14),

we will derive

kru(t)k

r

� Ct

�(n�n=r)=2�1=2+"

for r = n; 2n=3; (6.16)

for t > 0. We divide the integral of (6.1) into two parts

Z

t

0

e

�(t��)A

P (u � ru)(�)d� =

Z

t=2

0

+

Z

t

t=2

= v(t) + w(t); (6.17)

then we obtain

kru(t)k

r

� Ct

�(n�n=r)=2�1=2+"

kak

p

+ I

1

+ I

2

;

for t > 0 (p is the same as above) with

I

1

= krv(t)k

r

� C

Z

t=2

0

(t� �)

�(n�n=r)=2�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�;

I

2

= krw(t)k

r

� C

Z

t

t=2

(t� �)

�1=2

ku(�)k

1

kru(�)k

r

d�;

where (6.15) has been used in I

1

. Using (6.12) together with (6.2) and (6.3),

we see that

I

1

� Ct

�(n�n=r)=2�1=2+"

kak

n

; I

2

� Ckak

n

sup

t=2���t

kru(t)k

r

;
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for t > 0. Therefore, setting

E

r

(t) = sup

0<��t

�

(n�n=r)=2+1=2�"

kru(�)k

r

for r = n; 2n=3;

we get E

r

(t) � Ckak

p

+ Ckak

n

+ C

0

kak

n

E

r

(t) for t > 0, where C

0

> 0 is

independent of a. As a 
onsequen
e, there is a 
onstant �

�

= �

�

(
; n; ") 2

(0; �

0

℄ su
h that if kak

n

� �

�

, then E

n

(t) + E

2n=3

(t) � C for t > 0, whi
h

proves (6.16). This 
ombined with the Sobolev embedding, (6.2) for r = 2n

and (6.3) imply (6.13) and (6.14). �

Based on Lemma 6.1, we supply the proof of Theorem 2.3, by whi
h we


on
lude this paper.

Proof of Theorem 2.3. We �x " 2 (0; 1=2) and put � = �(
; n) = �

�

(
; n; ").

Assuming kak

n

� �, we �rst show (2.11). Sin
e

ke

�tA

ak

r

� Ct

�(n�n=r)=2

kak

1

;

for t > 0, our task is to derive the required estimate of (6.17). By (6.15)

together with (6.12) and (6.14) we have

kv(t)k

r

� C

Z

t=2

0

(t� �)

�(n�n=r)=2

ku(�)k

n=(n�1)

kru(�)k

n

d�

� Ct

�(n�n=r)=2

Z

1

0

�

�1=2

(1 + �)

�n=2+2"

d�

� Ct

�(n�n=r)=2

;

for 1 < r � 1 and t > 0; here, note that the 
ase r = 1 follows from the

L

q

-L

1

estimate (1.3) together with (6.15). If 1 < r < n=(n � 2), then the

same estimate of the integrand as above works well on w(t) too; as a result,

we have

kw(t)k

r

� Ct

�(n�n=r)=2�n=2+1=2+2"

;

for t > 0. For r =1, we make use of (6.13) and (6.14) to get

kw(t)k

1

� C

Z

t

t=2

(t� �)

�3=4

ku(�)k

2n

kru(�)k

n

d� � Ct

�n+1=2+2"

;

for t > 0. We 
olle
t the estimates above to obtain (2.11) for 1 < r <

n=(n � 2) and r = 1; and the remaining 
ase n=(n � 2) � r < 1 follows

via interpolation as well.

We next show (2.12). Let 1 < r � n. In view of (6.7), we have

kru(t)k

r

� Ct

�1=2

ku(t=2)k

r

+ krw(t)k

r

;

for t > 0, where w(t) is the same as above. By (2.11) the proof is redu
ed

to the estimate of krw(t)k

r

. If in parti
ular 1 < r < n=(n � 1), then from
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(2.11), (6.14) and (6.15) we dedu
e

krw(t)k

r

� C

Z

t

t=2

(t� �)

�(n�n=r)=2�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�

� Ct

�(n�n=r)=2�n=2+"

;

for t > 0. If r = n, then one appeals again to (2.11) and (6.14) to �nd

krw(t)k

n

� C

Z

t

t=2

(t� �)

�1=2

ku(�)k

1

kru(�)k

n

d� � Ct

�n+1=2+"

;

for t > 0. We thus obtain (2.12) for 1 < r < n=(n� 1) and r = n; and the


ase n=(n � 1) � r < n also follows via interpolation. It remains to show

the 
ase n < r <1. From (1.4) for 1 < q < n < r <1 we dedu
e

kru(t)k

r

� Ct

�(n=q�n=r)=2�1=2

ku(t=2)k

q

+ krw(t)k

r

;

for t > 0, and the �rst term possesses the desired de
ay property on a

ount

of (2.11). We take p in su
h a way that 1=n < 1=p < 1=n + 1=r. Sin
e we

have already known (2.12) for r = p as well as (2.11), we are led to

krw(t)k

r

� C

Z

t

t=2

(t� �)

�(n=p�n=r)=2�1=2

ku(�)k

1

kru(�)k

p

d�

� Ct

�n+n=2r

;

for t > 0, whi
h proves (2.12) for n < r <1.

Finally, by use of (6.10), we show (2.13) and thereby (2.14) and (2.15).

From (2.11) and (2.12) it follows that

kAe

�(t=2)A

u(t=2)k

r

� Ct

�1

ku(t=2)k

r

= O

�

t

�(n�n=r)=2�1

�

; (6.18)

as t!1 and that

kP (u � ru)(t)k

r

� Cku(t)k

1

kru(t)k

r

= O

�

t

�n+n=2r�1=2

�

; (6.19)

as t!1. We are thus going to estimate

kAz(t)k

r

� Ckru(t)k

r

Z

t

t=2

(t� �)

�1

ku(t)� u(�)k

1

d�

+C

Z

t

t=2

(t� �)

�1

ku(�)k

1

kru(t)�ru(�)k

r

d� = I

1

+ I

2

:

With the aid of (6.9) and (2.12) we observe
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I

1

= O

�

t

�(n�n=r)=2�1

�

; (6.20)

as t!1. We need also a H�older estimate of ru(t) in L

r

(
), whi
h implies

the de
ay property of I

2

as well as u 2 C(0;1;D(A

r

)) \ C

1

(0;1;L

r

�

(
)).

To this end, let us 
onsider

u(t)� u(�)

= fe

�(t��=2)A

� e

�(�=2)A

gu(�=2) �

Z

t

�

e

�(t�s)A

P (u � ru)(s)ds

�

Z

�

�=2

fe

�(t�s)A

� e

�(��s)A

gP (u � ru)(s)ds

= w

1

(t; �) + w

2

(t; �) + w

3

(t; �);

for 0 < � < t. By a standard 
al
ulation with use of (2.11) we have

krw

1

(t; �)k

r

� C(t� �)

�

�

�(n�n=r)=2�1=2��

; (6.21)

where 0 < � < 1. In order to estimate w

2

and w

3

, we take q 2 (1; r℄ so that

0 < 1=q � 1=n < 1=r; then we see from (6.19) in L

q

�

(
) that

krw

2

(t; �)k

r

� C(t� �)

1=2�(n=q�n=r)=2

�

�n+n=2q�1=2

; (6.22)

and that

krw

3

(t; �)k

r

� C

Z

�

�=2

(t� �)

�

(� � s)

�(n=q�n=r)=2�1=2��

kP (u � ru)(s)k

q

ds

� C(t� �)

�

�

�n+n=2r��

;

(6.23)

where 0 < � < 1=2 � (n=q � n=r)=2. Colle
ting (6.21), (6.22) and (6.23)

together with (2.11) yields

I

2

= O

�

t

�n+n=2r�1=2

�

; (6.24)

as t ! 1. From (6.18), (6.19), (6.20) and (6.24) we obtain (2.13). Due

to (1.8) and in view of the equation (1.1), we dedu
e (2.14) immediately

from (2.11), (2.12) and (2.13). By Lemma 3.1 of [20℄ there exist p

�

(t) 2 R

su
h that kp(t) � p

�

(t)k

r;


�

+ j[p(t)℄j � Ckrp(t)k

q

for 1 < q < n and

1=r = 1=q � 1=n. Hen
e, (2.14) implies (2.15). The proof is 
omplete. �
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