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Abstract

We consider the nonstationary Stokes and Navier-Stokes flows in
aperture domains Q2 C R*,n > 3. We develop the L?-L" estimates
of the Stokes semigroup and apply them to the Navier-Stokes initial
value problem. As a result, we obtain the global existence of a unique
strong solution, which satisfies the vanishing flux condition through the
aperture and some sharp decay properties as ¢ — 0o, when the initial
velocity is sufficiently small in the L™ space. Such a global existence
theorem is up to now well known in the cases of the whole and half
spaces, bounded and exterior domains.

Mathematics Subject Classification (2000): 35Q30, 76D05

1 Introduction

In the present paper we study the global existence and asymptotic behavior
of a strong solution to the Navier-Stokes initial value problem in an aperture
domain  C R" with smooth boundary 9%:

ou+u-Vu =Au—Vp (x €, t>0),
V-u =0 (xeQ, t>0),
(1.1)
ulpgg =0 (t>0),
ulimg =a (x € ),
where u(z,t) = (uy(x,t), - ,un(z,t)) and p(z,t) denote the unknown veloc-
ity and pressure of a viscous incompressible fluid occupying €2, respectively,
while a(z) = (a1(z), -+ ,a,(x)) is a prescribed initial velocity. The aperture
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domain {2 is a compact perturbation of two separated half spaces Hy UH_,
where Hy = {z = (21, -+ ,z,) € R";xz, > 1}; to be precise, we call a
connected open set @ C R” an aperture domain (with thickness of the wall)
if there is a ball B C R" such that 2\ B = (Hy UH_)\ B. Thus the upper
and lower half spaces Hy are connected by an aperture (hole) M C QN B,
which is a smooth (n — 1)-dimensional manifold so that € consists of upper
and lower disjoint subdomains 24+ and M: Q@ =Q, UM UQ_.

The aperture domain is a particularly interesting class of domains with
noncompact boundaries because of the following remarkable feature, which
was in 1976 pointed out by Heywood [31]: the solution is not uniquely
determined by usual boundary conditions even for the stationary Stokes
system in this domain and therefore, in order to single out a unique solution,
we have to prescribe either the flux through the aperture M

d(u) = /MN - udo,

or the pressure drop at infinity (in a sense) between the upper and lower
subdomains Q4
[pl =~ lim p(z)— lim = p(z),
|| —o00,2eQ 4 |z|—o00,zeQ_
as an additional boundary condition. Here, N denotes the unit normal
vector on M directed to Q2_ and the flux ¢(u) is independent of the choice

of M since V- u = 0 in Q. Consider stationary solutions of (1.1); then one
can formally derive the energy relation

[ IVut@)Pdz = oo,
Q

from which the importance of these two physical quantities stems. Later on,
the observation of Heywood in the L? framework was developed by Farwig
and Sohr within the framework of L? theory for the stationary Stokes and
Navier-Stokes systems [19] and also the (generalized) Stokes resolvent system
[20], [16]. Especially, in the latter case, they clarified that the assertion
on the uniqueness depends on the class of solutions under consideration.
Indeed, the additional condition must be required for the uniqueness if ¢ >
n/(n — 1), but otherwise, the solution is unique without any additional
condition; for more details, see Farwig [16], Theorem 1.2.

The results of Farwig and Sohr [20] are also the first step to discuss the
nonstationary problem (1.1) in the LY space. They showed the Helmholtz
decomposition of the L? space of vector fields (see also Miyakawa [49])
LI(Q) = LE(Q) & LL(Q) for n > 2 and 1 < g < oo, where LL() is the
completion in L4(£2) of the class of all smooth, solenoidal and compactly
supported vector fields, and L%(Q) = {Vp € L1(Q);p € L?oc(ﬁ)}. The space
LZ(R2) is characterized as ([20], Lemma 3.1)



LL(Q) ={u e LI(Q);V-u=0,v-ulpg = 0,¢p(u) =0}, (1.2)

where v is the unit outer normal vector on 9). Here, the condition ¢(u) =0
follows from the other ones and may be omitted if ¢ < n/(n — 1), but
otherwise, the element of L& (£2) must possess this additional property. Using
the projection P, from L?(§2) onto L&(Q) associated with the Helmholtz
decomposition, we can define the Stokes operator A = A, = —F,A on
LL(Q) with a right domain as in section 2. Then the operator —A generates
a bounded analytic semigroup e *4 in each LI(Q),1 < ¢ < oo, for n > 2
([20], Theorem 2.5).

Besides [31] and [19] cited above, there are some other studies on the
stationary Stokes and Navier-Stokes systems in domains with noncompact
boundaries including aperture domains. We refer to Galdi [26], Pileckas [50]
and the references therein.

We are interested in strong solutions to the nonstationay problem (1.1).
However, there are no results on the global existence of such solutions in
the L? framework unless ¢ = 2, while a few local existence theorems are
known. In the 3-dimensional case, Heywood [31], [32] first constructed a lo-
cal solution to (1.1) with a prescribed either ¢(u(t)) or [p(t)], which should
satisfy some regularity assumptions with respect to the time variable, when
a € H%(Q) fulfills some compatibility conditions. Franzke [23] has recently
developed the LY theory of local solutions via the approach of Giga and
Miyakawa [29], which is traced back to Fujita and Kato [24], with use of
fractional powers of the Stokes operator. When a suitable ¢(u(t)) is pre-
scribed, his assumption on initial data is for instance that a € LI(Q),q > n,
together with some compatibility conditions. The reason why the case ¢ = n
is excluded is the lack of informations about purely imaginary powers of the
Stokes operator. In order to discuss also the case where [p(t)] is prescribed,
Franzke introduced another kind of Stokes operator associated with the pres-
sure drop condition, which generates a bounded analytic semigroup on the
space {u € LY(Q);V-u=0,v-ulgq =0} forn >3 andn/(n—1) <g<n
(based on a resolvent estimate due to Farwig [16]). Because of this restric-
tion on ¢, the LY theory with ¢ > n is not available under the pressure drop
condition and thus one cannot avoid a regularity assumption to some extent
on initial data.

It is possible to discuss the L? theory of global strong solutions for an
arbitrary unbounded domain (with smooth boundary) in a unified way since
the Stokes operator is a nonnegative selfadjoint one in L2; see Heywood [33]
(n = 3), Kozono and Ogawa [40] (n = 2), [41] (n = 3) and Kozono and Sohr
[43] (n = 4,5). Especially, from the viewpoint of the class of initial data,
optimal results were given by [40], [41] and [43]. In fact, they constructed

a global solution with various decay properties for small a € D(Ag/ -1/ 2)



(when n = 2, the smallness is not necessary). Here, we should recall the
continuous embedding relation D(A;/ =1/ 2) C L. For the aperture domain
Q their solutions u(¢) should satisfy the hidden flux condition ¢(u(t)) =0
on account of u(t) € L2(f2) together with (1.2). In his Doktorschrift [22]
Franzke studied, among others, the global existence of weak and strong
solutions in a 3-dimensional aperture domain when either ¢(u(t)) or [p(t)] is
prescribed (the global existence of the former for n > 2 is covered by Masuda
[47] when ¢(u(t)) = 0). As for the latter, indeed, the local strong solution in
the L2 space constructed by himself [21] was extended globally in time under
the condition that both a € H{ () (with compatibility conditions) and the
other data are small in a sense, however, his method gave no information
about the large time behavior of the solution.

The purpose of the present paper is to provide the global existence the-
orem for a unique strong solution u(t) of (1.1), which satisfies the flux con-
dition ¢(u(t)) = 0 and some decay properties with definite rates that seem
to be optimal, for instance,

[w(t)|l oo () + I V() | () = 0 (t—1/2) 7

as t — oo, when the initial velocity a is small enough in L?(Q),n > 3.
The space L™ is now well known as a reasonable class of initial data, from
the viewpoint of scaling invariance, to find a global strong solution within
the framework of L? theory. We derive further sharp decay properties of
the solution u(t) under the additional assumption a € L'(Q) N L?(€); for
instance, the dacay rate given above is improved as O(t~™/2). For the proof,
as is well known, it is crucial to establish the L9-L" estimates of the Stokes
semigroup

le™  Fllra) < CE £l Laa), (1.3)

Hve_tAfHLT(Q) < Ct_a_l/QHfHLq(Qp (1.4)

for all ¢ > 0 and f € LL(Q), where a« = (n/q — n/r)/2 > 0. Recently for
n > 3 Abels [1] has proved some partial results: (1.3) for 1 < ¢ <r < oo and
(1.4) for 1 < g < r < n. However, because of the lack of (1.4) for the most
important case ¢ = r = n, his results are not satisfactory for the construction
of the global strong solution possessing various time-asymptotic behaviors as
long as one follows the straightforward method of Kato [36] (without using
duality arguments in [42], [6], [44], [45] and [34]). In this paper we consider
the case n > 3 and prove

(1.3) for 1 < g <r <oo(g#o0,r#1),



and
(14) for1<qg<r<n(r#l)and1<g<n<r < o;

here, when g = 1, f should be taken from L*(Q)NL:(Q) for some s € (1, 00).
Estimate (1.4) is thus available, in other words, for r = n if ¢ = n, for
r € [q,00) if ¢ € (1,n), and for r € (1,00) if ¢ = 1.

Up to now we have the same global existence result as above for the
whole space (Kato [36]), the half space (Ukai [58]), bounded domains (Giga
and Miyakawa [29]) and exterior domains (Iwashita [35]) since the LI-L"
estimates (1.3) and (1.4) are well established for these four types of domains.
Let us give a brief survey on the literature concerning the L9-L" estimates.
For the whole space the Stokes semgroup is essentially the same as the
heat semigroup because the Laplace operator commutes with the Helmholtz
projection. For the half space Ukai [58] explicitly wrote down a solution
foumula of the Stokes system and derived (1.3) and (1.4) for n > 2 and
1 < g <71 < oo. See also Borchers and Miyakawa [3] for (1.3) with 1 <
g < r < oo and the following literarure concerning marginal cases, that is,
(1.3) for ¢ = r = 0o and (1.4) for ¢ = r = 1 or oco: Giga, Matsui and Y.
Shimizu [28], Y. Shimizu [54], Desch, Hieber and Priiss [15] and Shibata and
S. Shimizu [53]. For bounded domains (1.3) and (1.4) are deduced from the
result of Giga [27] on a characterization of the domains of fractional powers
of the Stokes operator. In this case, moreover, an exponential decay property
of the semigroup for large ¢ is available. For exterior domains with n > 3,
based on (1.3) for ¢ = r due to Borchers and Sohr [7], some partial results
were given by Iwashita [35], Giga and Sohr [30] and Borchers and Miyakawa
[4]; in particular, Iwashita proved (1.3) for 1 < ¢ <r < oo and (1.4) for 1 <
g < r < n, which made it possible to construct a global solution. Later on,
due to the following authors, (1.3) forn > 2, 1 < g <r < oo (¢ # oo,r # 1)
and (1.4) forn > 2, 1 < ¢ <r <n (r # 1) were also derived: Chen [11]
(n = 3), Shibata [52] (n = 3), Borchers and Varnhorn [9] (n = 2, (1.3) for
g = r), Dan and Shibata [13], [14] (n = 2), Dan, Kobayashi and Shibata [12]
(n = 2,3) and Maremonti and Solonnikov [46] (n > 2).

In the proof of the L9-L" estimates, it seems to be heuristically rea-
sonable to combine some local decay properties near the aperture with the
L9-L" estimates of the Stokes semigroup for the half space by means of a lo-
calization procedure since the aperture domain €2 is obtained from H; UH
by a perturbation within a compact region. Indeed, Abels [1] used this idea
that was well developed by Iwashita [35] and, later, Kobayashi and Shi-
bata [37] in the case of exterior domains. We should however note that the
boundary 92 is noncompact; thus, a difficulty is to deduce the sharp local
energy decay estimate

le™“ fllwram < C* U fllpag), > 1, (1.5)



for f € LL(Q),1 < ¢ < oo, where Qp = {z € Q;|z| < R}, but this is
the essential part of our proof (Lemma 5.3). Estimate (1.5) improves the
local energy decay given by Abels [1], in which a little slower rate t—m/2ate
was shown. In [1], similarly to Iwashita [35], a resolvent expansion around
the origin A = 0 was derived in some weighted function spaces. To this end,
Abels made use of the Ukai formula of the Stokes semigroup for the half space
([58]) and, in order to estimate the Riesz operator appearing in this formula,
he had to introduce Muckenhoupt weights, which caused some restrictions
although his analysis itself is of interest. On the other hand, Kobayashi
and Shibata [37] refined the proof of Iwashita in some sense and obtained
the LI-L" estimates of the Oseen semigroup for the 3-dimensional exterior
domain. As a particular case, the result of [37] includes the estimates of the
Stokes semigroup as well. In this paper we employ in principle the strategy
developed by [37] (without using any weighted function space) and extend
the method to general n > 3.

This paper consists of six sections. In the next section, after notation
is fixed, we present the precise statement of our main results: Theorem 2.1
on the L9-L" estimates of the Stokes semigroup, Theorem 2.2 on the global
existence and decay properties of the Navier-Stokes flow, and Theorem 2.3 on
some further asymptotic behaviors of the obtained flow under an additional
summability assumption on initial data. We obtain an information about a
pressure drop as well in the last theorem.

Section 3 is devoted to the investigation of the Stokes resolvent for the
half space H = H; or H_. We derive some regularity estimates near the
origin A = 0 of (A + Ay) 'Pyf when f € LI(H) has a bounded support,
where Ay = —PyA is the Stokes operator for the half space H (for the
notation, see section 2). Although the obtained estimates do not seem to be
optimal compared with those shown by [37] for the whole space, the results
are sufficient for our aim and the proof is rather elementary: in fact, we
represent the resolvent (A + Ay) ! in terms of the semigroup e *4# and,
with the aid of local energy decay properties of this semigroup, we have
only to perform several integrations by parts and to estimate the resulting
formulae. One needs neither Fourier analysis nor resolvent expansions.

In section 4, based on the results for the half space, we proceed to the
analysis of the Stokes resolvent for the aperture domain 2. To do so, in
an analogous way to [35], [37] and [1], we first construct the resolvent (A +
A)~LPf near the origin A = 0 for f € L(Q2) with bounded support by use
of the operator (A + Ag) Py, the Stokes flow in a bounded domain and
a cut-off function together with the result of Bogovskii [2] on the boundary
value problem for the equation of continuity. And then, for the same f as
above, we deduce essentially the same regularity estimates near the origin
A=0of (A\+ A)~LPf as shown in section 3.

In section 5 we prove (1.5) and thereby (1.4) for ¢ = r € (1,n] as well as
(1.3) for r = oo, from which the other cases follow. Some of the estimates



obtained in section 4 enable us to justify a representation formula of the
semigroup e A Pf in WH9(Qp) in terms of the Fourier inverse transform of
O (is+ A)"'Pf when f € LY(Q) has a bounded support, where n = 2m + 1
or n = 2m + 2 (see (5.3); we note that the formula is not valid for n = 2).
We then appeal to the lemma due to Shibata ([51]; see also [37] and a
recent development [53]), which tells us a relation between the regularity of
a function at the origin and the decay property of its Fourier inverse image,
so that we obtain another local energy decay estimate

le P fllwrap < CH ) oy, 21, (1.6)

for f € LY(2),1 < g < o0, with bounded support, where £ > 0 is arbitrary
(Lemma 5.1). Estimate (1.6) was shown in [1] only for solenoidal data
f € LL(R) with bounded support, from which (1.5) with the rate replaced by
t~"/20t¢ follows through an interpolation argument. But it is crucial for the
proof of (1.5) to use (1.6) even for data which are not solenoidal (so that the
support of Pf is unbounded). In order to deduce (1.5) from (1.6), we develop
the method in [35] and [37] based on a localization argument using a cut-off
function. In fact, we regard the Stokes flow for the aperture domain €2 as the
sum of the Stokes flows for the half spaces Hy and a certain perturbed flow.
Since the Stokes flow for the half space enjoys the LI-L*° decay estimate
with the rate t~"/2¢ (Borchers and Miyakawa [3]), our main task is to show
(1.5) for the perturbation part. In contrast to the case of exterior domains,
the support of the derivative of the cut-off function touches the boundary
01); indeed, this difficulty occurs in all stages of localization procedures
in the course of the proof (sections 4 and 5) and thus we have to carry
out such procedures carefully. Furthermore, the remainder term arising
from the above-mentioned localization argument involves the pressure of
the nonstationary Stokes system in the half space and, therefore, does not
belong to any solenoidal function space. Hence, in order to treat this term,
(1.6) is necessary for non-solenoidal data, while that is not the case for the
exterior problem.

Once Theorem 2.1 is established, one can prove the existence part of
Theorem 2.2 along the lines of Kato [36] (see also [24] and [29]) and therefore
the proof may be omitted. Thus, in the final section, we derive various decay
properties of the global strong solution as ¢ — oo to prove the remaining part
of Theorem 2.2 and Theorem 2.3. This will be done by applying effectively
the LI-L" estimates. Recently Wiegner [59] has discussed in detail sharp
decay properties of exterior Navier-Stokes flows. Our proof is somewhat
different from his and seems to be elementary. When a € L'(Q2) N L?(9),
some decay rates are better than those shown by [59] since, unlike exterior
Stokes flows, (1.4) is available for 1 < g <n <1 < c0.

Finally, we compare the result on Ve 4 with that for exterior Stokes
flows from the viewpoint of coercive estimates of derivatives. For the proof



of (1.4) there is another approach based on fractional powers of the Stokes
operator. When € is an exterior domain (n > 3), Borchers and Miyakawa
[4] developed such an approach and succeeded in the proof of

IVull sy < CIAYull o), u € D(AY?), (L.7)

for 1 < ¢ < n (this restriction is optimal as pointed out by themselves [5]),
which implies (1.4) for ¢ < r < n. Independently, as mentioned, Iwashita
[35] derived (1.4) for ¢ < r < n and, later, Maremonti and Solonnikov [46]
showed that the restriction r < n cannot be improved for exterior domains.
In our case of aperture domains, we have (1.4) for ¢ < n < r < oo, which is
a consequence of the estimate due to Farwig and Sohr ([20], Theorem 2.5)

IV2ullzao) < CllAullpag), u € D(4y), (1.8)

for 1 < g < n together with an embedding property ([20], Lemma 3.1); we
mention that (1.8) holds true for n = 2 as well. This argument does not work
for the exterior problem because (1.8) is valid only for 1 < ¢ <n/2 (n > 3)
as shown by Borchers and Sohr [7] (the restriction on ¢ is again optimal by,
for instance, [5]). Thus, as for (1.8), we have the better result. We wish we
could expect (1.7) for every ¢, which would imply (1.4) for 1 < ¢ < r < o0;
however, so far, no attempts have been made at the boundedness of purely
imaginary powers of the Stokes operator (see [27] and [30] for bounded and
exterior domains) and, unless ¢ = 2, estimate (1.7) remains open.

2 Results

Before stating our main results, we introduce notation used throught this
paper. We denote upper and lower half spaces by Hy = {z € R*; £z, > 1},
and sometimes write H = H, or H_ to state some assertions for the half
space. Set Bp = {z € R";|z| < R} for R > 0. Let @ C R"” be a given
aperture domain with smooth boundary 02, namely, there is Ry > 1 so
that

Q\ Bry = (Hy UH_) \ Bry;

in what follows we fix such Ry. Since §2 should be connected, there are some
apertures and one can take two disjoint subdomains €1 and a smooth (n—1)-
dimensional manifold M such that Q = QUM UQ_, Q4 \ Br, = Hi\ Bg,
and MUOM = 0Q,.NIQ_ C Bg,. We set Qr = QN Bg and Hr = HN Bg,
which is one of H4 p = H+ N Bg, for R > 1.

For a domain G C R”, integer 7 > 0 and 1 < ¢ < oo, we denote by
W34(G) the standard L?-Sobolev space with norm ||- || 4.¢ so that LY(G) =



W%4(@) with norm ||-||4,c. The space Wg’q(G) is the completion of C§°(G),
the class of C* functions having compact support in G, in the norm ||+ || 4.,
and W ~74(G) stands for its dual space with norm || - ||—; 4. For simplicity,
we use the abbreviations || || for || - ||¢,0 and ||-[|4 for |- |j¢,0 When G = Q.
We often use the same symbols for denoting the vector and scalar function
spaces if there is no confusion. It is convenient to introduce a Banach space

Lq

[R}(G) ={u € LYG);supp u C Gr}, G =Qor H,

for R > 1, where supp u denotes the support of the function . For a Banach
space X we denote by B(X) the Banach space which consists of all bounded
linear operators from X into itself.

Given R > Ry, we take (and fix) two cut-off functions ¢4 r satisfying

1 in Hyi\ Bryy,

0  in HyU Bg. (2.1)

ben € XS0, danlo) = {
In some localization procedures with use of the cut-off functions above, the
bounded domain of the form

Dipr={zeHy;R<|z| <R+ 1}

appears, and for this we need the following result of Bogovskii [2] which
provides a certain solution having an optimal regularity of the boundary
value problem for V - u = f with u = 0 on the boundary (see also Borchers
and Sohr [8], Theorem 2.4 (a)(b)(c) and Galdi [26], Chapter III): there is a
linear operator S+ g from C§°(D+ g) to C5°(D4 r)" such that for 1 < ¢ < oo
and integer j > 0

VIS4 rf

q,D+ r < Cijqu;Di,R7 (2-2)

with C = C(R, q,j) > 0 independent of f € C;°(Dx r) (where V7 denotes
all the j-th derivatives); and

V-Sirf=1,

for all f € C§°(D4 g) with fD:I:,R f(z)dx = 0. By (2.2) the operator St g
extends uniquely to a bounded operator from Wg’q(DiR) to Wgﬂ’q(Di,R)”.

For G = Q, H and a smooth bounded domain (n > 2), let Cg%,(G) be the
set of all solenoidal (divergence free) vector fields whose components belong
to C§°(G), and L§(G) the completion of C§% (G) in the norm || - [|g,¢. If,
in particular, G = , then the space LZ(2) is characterized as (1.2). The
space LY(G) of vector fields admits the Helmholtz decomposition

Li(G) = L3(G) @ L7(G), 1 <q< oo,



with LI(G) = {Vp € LYG);p € L} (G)}; see [25], [55] for bounded do-
mains, [3], 48] for G = H and [20], [49] for G = Q. Let P, be the
projection operator from L4(G) onto L(G) associated with the decomposi-
tion above. Then the Stokes operator A, is defined by the solenoidal part

of the Laplace operator, that is,
D(Agq) = WHHG) NWy"(G) N LE(G),  Agc = —Prad,

for 1 < ¢ < oo. The dual operator A}  of A coincides with Ay, 1) ¢

on LL(Q)* = Lg/ (q_l)(Q). We use, for simplicity, the abbreviations P, for
P, q and A, for Ay, and the subscript ¢ is also often omitted if there is no
confusion. The Stokes operator enjoys the parabolic resolvent estimate

1A+ A6) sy < C:/IN, (2.3)

for |argA| < m — ¢ (A # 0), where ¢ > 0 is arbitrary; see [48], [3], [17],
[18], [15] for G = H and [20] for G = Q. Estimate (2.3) implies that the
operator —Ag generates a bounded analytic semigroup {e~*4¢:t > 0} of
class (Cp) in each LI(G),1 < q < co. We write E(t) = e *4# which is one
of By (t) = e A=,

The first theorem provides the L9-L" estimates of the Stokes semigroup
e~t4 for the aperture domain €.

Theorem 2.1 Let n > 3.

1. Let 1 < g <r < o0 (¢ # oo,r # 1). There is a constant C =
C(Q,n,q,7) > 0 such that (1.3) holds for all t > 0 and f € L&(Q)

unless ¢ = 1; when q = 1, the assertion remains true if f is taken
from LY(Q) N LE(Q) for some s € (1,00).

2. Let1<q<r<mn(r#l)orl<g<n<r<oo. There is a constant
C =C(,n,q,r) > 0 such that (1.4) holds for allt > 0 and f € LL(§2)
unless g = 1; when g = 1, the assertion remains true if f is taken from
LY (Q) N L () for some s € (1,00).

3. Let1 < q<ooand f € LE(SY). Then

_tA i ast—0 ifqg<r < oo,
e~ flr = o(t™®) { 45t 00 gr<oo (2.4)
IVe™ £l = o(t™*7?) (2.5)

ast—0 ifqg<r<oo,
ast—o00 ifqg<r<mn, g<n<r<oo,

10



where o = (n/q —n/r)/2. Furthermore, for each precompact set K in
LL(Q) every convergence above is uniform with respect to f € K.

Remark 2.1. Estimate (1.4) for large ¢ is not proved in the following cases:
(i)n<g=r<oo, (ii) n < g <r < oo. For the case (i), the decay rate
t~™/24 will be shown in Lemma 5.4. Since we have (1.4) for ¢ < n < r < oo,
a better decay rate than ¢t "/2¢ can be derived for the case (ii) through
an interpolation argument; however, we do not know optimal decay rates of
Ve 4 in both the cases (i) and (ii). According to Maremonti and Solonnikov
[46], the decay rate t~"/24 is optimal for exterior Stokes flows whenever
r>n.

Remark 2.2. Let 1 < ¢ <r < oo (q # oo,7 # 1). The LI-L" estimate for
Ore~ 4 with the rate ! is nothing but a simple corollary to (1.3). In
fact, for example,

[0e 4 flloo < Ct /25| Ae”WDAf|| o < C/27Y £,

for t > 0 and f € L}(Q) N L:(Q).
By use of the Stokes operator A, one can formulate the problem (1.1)
subject to the vanishing flux condition

¢w@):A/Vw@Ma:Q t>0, (2.6)

as the Cauchy problem

Ou+ Au+ P(u-Vu) =0, t>0;u(0)=a, (2.7)

in LE(Q). Given a € L%(Q) and 0 < T < oo, a measurable function u
defined on Q x (0,7) is called a strong solution of (1.1) with (2.6) on (0,T)
if u is of class

w € C(0,7); L)) N C(0,T5 D(A,)) N CH(0,T; L))

together with lim; o ||u(t) — all, = 0 and satisfies (2.7) for 0 < ¢t < T in
L7().

The next theorem tells us the global existence of a strong solution with
several decay properties provided that ||al, is small enough.

Theorem 2.2 Let n > 3. There is a constant § = §(Q,n) > 0 with the
following property: if a € L}(Y) satisfies ||all, < 0, then the problem (1.1)
with (2.6) admits a unique strong solution u(t) on (0,00), which enjoys

nmm“:OQAQMﬂﬂ forn <r < oo, (2.8)
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IVa(t)|n = o (t_1/2> : (2.9)

18su(®)ln + | Au(®)]ln =0 (t71) (2.10)
as t — oo.

Remark 2.3. When one prescribes a nontrivial flux
$(u(t)) = F(t) € CH7([0,T)),

with some 6 > 0 and T' > 0, there is T, € (0, 7] such that the problem (1.1)
with the flux condition admits a unique strong solution on (0,7%) provided
that a € L"(Q2) satisfies the compatibility conditions V -a = 0,v - algpg =0
and ¢(a) = F(0). This improves a related result of Franzke [23] and can
be proved in the same manner as the proof of Theorem 2.2 with the aid
of the auxiliary function of Heywood ([31], Lemma 11), which is used for
the reduction of the problem to an equivalent one with the vanishing flux
condition (2.6). As is well known, (2.4) and (2.5) as ¢ — 0 play an important
role for the construction of the above local solution.

Remark 2.4. The solution obtained in Theorem 2.2 is unique within the
class

ue O([0,00); Lz(2),  Vu € C(0,00; L™(Q)),

without assuming any behavior near ¢ = 0 as pointed out by Brezis [10].
For the proof, one needs the final assertion of Theorem 2.1 on the uniform
behavior of the semigroup as ¢ — 0 on each precompact set K in L7(2)
together with the theory of local strong solutions mentioned in the previous
remark (with ¢(u) = F = 0). In fact, it follows from the above property of
the semigroup that the length of the existence interval of the local solution
can be taken uniformly with respect to a € K and that the convergence (6.4)
of the local solution as ¢ — 0 is also uniform with respect to a € K. These
two facts combined with the classical uniqueness theorem of Fujita-Kato
type [24] (assuming some behaviors in (6.4) near ¢ = 0) imply the desired
uniqueness result.

Remark 2.5. Consider the 3-dimensional stationary Navier-Stokes problem

w-Vw=Aw—-Vr, V- -w=0,

in © subject to w|pg = 0 and a nontrivial flux condition ¢(w) = v € R
When || is small enough, there is a unique solution w such that w € L4(2)
for 3/2 < ¢ < 6 and Vw € L"(Q) for 1 < r < 2 with |[Vw|3 = v[x];
see Galdi [26]. By use of Theorem 2.1 it is possible to show the asymptotic
stability of the small stationary solution w of the class above for small initial
disturbance in L3 (£2) in the sense that the disturbance u(t) decays like (2.8)
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and (2.9) as ¢t — oo. In fact, the above summability properties of Vw allow
us to deal with the term P(w-Vu+ - Vw) as a simple perturbation of the
Stokes operator, as was done by Chen [11] (Lemma 3.1) and Borchers and
Miyakawa [6] (Theorem 3.13); see Remark 6.1.

The final theorem shows further decay properties of the global solution
when we additionally impose L'-summability on the initial data.

Theorem 2.3 Let n > 3. There is a constant n = n(Q2,n) € (0,0] with
the following property: if a € L*(2) N L*(Y) satisfies ||a|l, < n, then the
solution u(t) obtained in Theorem 2.2 and the associated pressure p(t) enjoy

lu(®)]l, = O (t_(”_”/”/2> for1<r < oo, (2.11)
IVu(@)|l, = O (f("*"/’")/?*l/?) for1<r < oo, (2.12)
[l + [ Au(@)l, = O (52 forl<r<oo,  (213)

IVl + IVp@)ll, = O (£ D2 ort<r<n,  (214)

as t — oo. Moreover, for each t > 0 there exist two constants p4(t) € R
such that p(t) — p+(t) € L"(Q1) with

1p(6) = p=(®) s + [P0 = O (£ formf(n—1) < 7 < o0,
(2.15)

as t — oo, where [p(t)] = p+(t) — p—(t).

Remark 2.6. Indeed Vu(t) € L"(Q2) for r > n even in Theorem 2.2, but we
have asserted nothing about their decay rates since they do not seem to be
optimal; see Remark 2.1 for the Stokes flow. On the other hand, in Theorem
2.3 the decay rates of Vu(t) in L"(Q) for > n are better than ¢t="/2 for
exterior Navier-Stokes flows shown by Wiegner [59]. Taking Theorem 5.1 of
[15] for the Stokes flow in the half space into account, we would not expect
u(t) € L'(Q) in general. Thus the decay rates obtained in Theorem 2.3 seem
to be optimal; that is, for example, ||[u(t)||s = o(t~"/?) would not hold true.
Concerning the exterior problem, Kozono [38], [39] made it clear that the
Stokes and/or Navier-Stokes flows possess L!-summability and more rapid
decay properties than (2.11) only in a special situation.

Remark 2.7. In Theorem 2.2 one could not define a pressure drop (see Farwig
[16], Remark 2.2) since the solution never belongs to L"(2) for < n. Due
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to the additional summability assumption on the initial data, we obtain in
Theorem 2.3 the pressure drop written in the form

p(8)] = /Q (O + 1 - Vi — u)(t) - wdz,

where w € W24(Q), n/(n—1) < g < oo, is a unique solution (given by [20])
of the auxiliary problem

w—Aw+Vr=0, V- -w=0,

in 2 subject to w|pq = 0 and ¢(w) = 1. In fact, the formula above is derived
from the relations

/Q w - Vp(#t)ds = —[p(t)]p(w) = —[p(#)],

/ u(t) - Vrdr = —[r]¢p(u(t)) = 0.
Q

3 The Stokes resolvent for the half space

The resolvent v = (A + Ay) ' Py f together with the associated pressure 7
solves the system

w—Av+Vr=f V-uv=0,

in the half space H = Hy or H_ subject to v|gg = 0 for the external force
feLi(H),1<qg<oo,and A € C\(—00,0]. In this section we are concerned
with the analysis of v near A = 0. Our method is quite different from Abels
[1]. One needs the following local energy decay estimate of the semigroup
E(t) = e~*44  which is a simple consequence of (1.3) for Q = H.

Lemma 3.1 Leitn > 2,1 <qg<oo,d>1and R>1. For any small € > 0
and integer k > 0 there is a constant C = C(n,q,d, R,e, k) > 0 such that

INIOFE) Prr fllgr < CEIPFA+0T 2 fllgw,  (3:1)
fort>0,f¢€ L‘[’d}(H) and j =0,1,2.

Proof. We make use of the estimate

IVl < ClAY ully s, w e DAY, (3.2)
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for 1 <r < oo and j = 1,2 (Borchers and Miyakawa [3]). For 1 < p < ¢ <
r < oo it follows from (1.3) for Q@ = H, (3.2) and a property of the analytic
semigroup that

INTOFEW) Py fllgrn < CIAY T E@)Prrfllp
< Ot~k E(t/2) Py f .1
< Ct=I/2=k=n/p=n/r)[2) oK
< CrI2=k=n/p=n/m)12) £,

fort>0,f € L'[Id}(H) and j = 0,1,2. This estimate with p = ¢ = r implies
(3.1) for 0 < t < 1. We may assume that 0 < ¢/n < min{l/q,1 — 1/¢}; and
then one can take p and r so that 1 —1/p = 1/r = ¢/n and p < ¢ < r. Then
the estimate above yields (3.1) for ¢ > 1. This completes the proof. O

Lemma 3.1 is sufficient for our analysis of the resolvent in this section,
but the local energy decay estimate of the following form will be used in
section 5.

Lemma 3.2 Letn > 2,1 < g < oo and R > 1. Then there is a constant
C =C(n,q,R) >0 such that

1E@) fllog,mn + 1B @) fllgme < CA+8) | fllpea, 45 (3.3)
fort >0 and f € D(Ag.u).
Proof. The left hand side of (3.3) is bounded from above by

CllAE®)f

o1 +|E({)f

oi) < Cllflipcag )

which implies (3.3) for 0 <t < 1. For ¢t > 1 it follows from (1.3) for @ = H
with r = 0o that

IE@®) fllgn < CIE®) flloo,ur < Ct 729 flg,11-
The other terms

INIE(®) fllgra < CIIAYE@® flle < CEIRNE@/2) fllrmr (G =1,2),

10E®) fllg,m, < CEHIEE/2) fllr, 1,

decay more rapidly since we can take r € (¢,00) above as large as we want.
The proof is complete. [

We next employ Lemma 3.1 to show some regularity estimates near A = 0
of the Stokes resolvent in the localized space W24(Hg).
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Lemma 3.3 Letn > 3,1 < g<oo,d>1and R> 1. Given f € L'[Id](H),

set v(A) = (A + Ag) Py f. For any small € > 0 there is a constant C =
C(n,q,d,R,e) > 0 such that

m—1
AN oM 2.g,mn + D 180N, < OIS
k=0

q,H > (34)

for Re A\ >0 (A#0) and f € L([]d}(H), where

m:{ (n—1)/2 if n is odd,

n/2—1 if n is even,

1/2+¢ if mis odd,
€ if n is even.

Bzﬂ(s)zl—i—m—g—l—ez{

Furthermore, we have

{200 g
Floer

as X — 0 with Re A > 0, where

FELS B S0 G

w = /0 " B(t)Py fdt.

Proof. We recall the formula

v(\) = (A + Ag) 1Py f = /OOO e ME(t) Py fdt, (3.6)

which is valid in LL(H) for Re A > 0 and f € LY(H). In the other region
{A € C\ (—o0,0];Re A < 0} we usually utilize the analytic extension of the
semigroup {E(t); Re ¢t > 0} to obtain the similar formula. For the case Re
A =0 (XA # 0) which is important for us, however, thanks to the local energy
decay property (3.1), the formula (3.6) remains valid in the localized space
Li(Hpg) for f € L'[Id}(H) (the function w in (3.5) is well-defined in LY(HR)
by the same reasoning). We thus obtain from (3.1)

V9060 (MNlg.ata < / VI E(t) P f
0
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provided that

j=0,1 ifk=0; 7=0,1,2 ifn>5 1<k<m-—1;
j=2 ifk=mmn=2m+1;, =12 ifk=m,n=2m+42.

For {k,j} = {0,2} we have only to use (3.2) together with (2.3) to see that

IV*o(Mllg,x < CllAEON + An) ™ P fllg.n < CIf

q,H -
The remaining case k = m is the most important part of (3.4). Since

105 M l2g 1z < Cml|(A+ Ag) ="V P fllpa, )
< OmI{AIT™ + (A0 f

q,H >

we have the assertion for |A| > 1. For 0 < |A] < 1 and odd n (resp. even n),
we have already shown the estimate as above when j = 2 (resp. j = 1,2).
Thus, let 7 =0 or 1 forn =2m + 1 and 57 = 0 for n = 2m + 2. We divide
the integral of (3.6) into two parts

m _ LA > —At(__p\m _
3w(/\)—{ /0 + /I/M}e (—t)™B(t) Py fdt = wn (A) + wn(N).

Then (3.1) implies
IV9wr(Nlg,e < CINPH2) fllg,u,
for f € L[qd} (H). On the other hand, by integration by parts we get
= () w (3 s+ [T SRadcomE@ R,
A RY RY Al A

in LI(Hp) since (3.1) implies limy_, o t||E(t) Pr fllq, 7z = 0. With the aid
of (3.1) again we see that

1920l -
IV BN Pl + 55 [ 9700 BO P e
< CN P2 flgm,

IN

for f € L'[Id} (H). Collecting the estimates above leads us to (3.4). We next
show (3.5). Since [e™ — 1] < 2179|)\|%? for Re A > 0 and 6 € (0, 1], we have

IV7 (0(3) = w) g1z < 21‘9|>\|9/ t*|IV7 E(t) P f g, dt,
0

for j =0,1,2. From (3.1) together with a suitable choice of 8 (for instance,
6 < 1/2 for n = 3), we conclude (3.5). O

17



Remark 3.1. When n = 2, one can show |A|°||v||2q.1n < Cllfllqn (with
B = €) which corresponds to (3.4) with m = 0. However, this will not help
us since our key formula (5.3) is not valid for m = 0.
Remark 3.2. The Green tensor associated with the Stokes semigroup £/(t)
for the half space (as well as the projection Pp) was explicitly given by
Solonnikov [56], Maremonti and Solonnikov [46] (Section 2). In view of
the simple relation fooo(47rt)_”/26_|“7|2/4tdt =I'(n/2)/2(n — 2)a™?|z|"~2 for
n > 3, the function w in (3.5) is the solution written by the Green tensor
for the stationary Stokes problem in H and, thereby, we know the class of
w (for the latter Green tensor, see for instance [26]).

Finally, we derive further information on the regularity of the resolvent
along the imaginary axis.

Lemma 3.4 Letn>3,1 <qg<oo,d>1and R>1. Set
oM (s5) = 9 (is + A) "' Py (s € R\ {0}, k=m orm—1),

where © = +/—1. Then, for any small € > 0, there is a constant C' =
C(n,q,d,R,e) > 0 such that

124 (s + h) f — D (5) Flla.girn < Clhl|s) P2 £

q,H > (37)

105" (s + h) f — DT () fllog.rm < ClIs| P f

q,H > (38)

for h € R,|s| > 2|h| and f € L([Id}(H), where m and = B(e) are the same
as in Lemma 3.3.

Proof. Estimate (3.8) is a direct consequence of (3.4). In fact, we see that

s+h
19D (s 4 1) — 8D () fllagrre < / 19 (1) g

s+h
/ ‘T’_BdT
S

which together with the relation |s 4+ h| > |s| — |h| > |s|/2 implies (3.8). We
next show (3.7). By (3.6) with Re A =0 in LY(HR) we have

)

< Cl|fllg,a

O (s + h)f — 0 (s)f

1/]s| ()
— (—§)™ efist efiht_ m = (=)™ (w wo).
= (~i) {/ +/1/|5} (™M~ 1) B(E) Py flt = (~i)" (uy + )

For the convenience we introduce the function

Ey(t) = OFt™E(t) P f], k> 0.
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We then deduce from (3.1)

1R ()|, < CEHHL+ )72 fll g, (3.9)

fort > 0 and f € L[qd}(H). Taking |e~*" — 1| < |h|t into account, we see
from (3.9) that

|1

1/]s|
pottn <M /0 HVED(8) gt

1/]s|
< Ol o / gl 2+ gy
0
< Clhlls|#-1])f

q,H >

for f € L‘[]d}(H). By integration by parts we split wy = wa; + wos + wos,
where

th ; 1 i _; . 1
_ v —i(s+h)/]s] =\ _F —is/ls|(,—ih/]s| _ =
vn = e £ <\s\) e D (\s\)’

ih /OO Ci(sth)t
Wog = ————— e Fi(t)dt,
22 s(s+h) 1/]s] 1®)
way = — [ e Bttt _ 1) Py (¢)dt.
5 J1/s]

Since 1/|s(s + h)| < 2/|s|? for |s| > 2|h/, it follows from (3.9) that

lwarllo.grn < 3IAlISI 72 [0 (L/]5]) 2.
< COlh||s| 2742 (1 4 [s|) /240 f
< Clhlls| =1 f llg,

q,H

and that

o0

[w2zll2,q,1 §2!hH$!_2/1/ 11 (@), 2
S
oo

< Clhlls| 2| f i y |f“m*”/2+gdt

< CIhlls| =77 f llg,

for f € L([]d}(H ). We perform integration by parts once more to obtain
w3 = wa31 + wWa32 + wa3z With

h : 1 1 _. : 1
N s slp [ ) L —is/lsle—in/lsl _ Y\ p [ 2
P25 h)” ' (Isl> ae e ) 1( )
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h o
— —i(s+h)t
w2 = SR /1/5| e Fy(t)dt,
-1 [ . ,
w3 = —5 e~ (e — 1) Fy(t)dt.
57 J1/ls|

By the same way as in wo; + wee we find

|waz1 + wasall2,q,mp

3|h||s| {!|F1(1/18!)||2,q,HR +/
. 1/|s]

Clhlls| =P~ fllg,r,

0.9}

IN

!|F2(t)!|2,q,HRdt}

IA

for f € L'[Id} (H). Finally, we use (3.9) again to get

o0

lwsssllogire < Ihlls|~2 / VO
S

o
< Cllls| 21 fllon / /2 gy

/s
< Clhlls|=7Hf

q,H >

for f € L'[Id} (H). We gather all the estimates above to conclude (3.7). O
Remark 3.3. Estimate (3.7) together with (3.4) implies

o.¢]
190 s+ F = 07 (6) s < Ol
— 00

for h € Rand f € qu](H) (see Lemma 4.4 and its proof), which is related
to the assumption 0% Lemma 5.2. In Lemma 4.4 we will deduce the same
regularity of 9™(is + A)~'Pf for an aperture domain € as above when
f € L1(2) has a bounded support. For the Oseen resolvent system in the
3-dimensional whole space, Kobayashi and Shibata [37] (Lemma 3.6) showed
a sharper estimate; indeed, |h|'~# can be replaced by |h|*/2. Their method
is different from ours.

4 The Stokes resolvent

In this section, based on the results for the half space obtained in the pre-
vious section, we address ourselves to analogous regularity estimates near
A = 0 of the Stokes resolvent u = (A + A) 'Pf, which together with the
associated pressure p satisfies the system

Au—Au+Vp=f, V-u=0,

in an aperture domain 2 subject to u|spg = 0 and ¢(u) = 0, where f €
L1(2),1 < g <ooand X € C\ (—o00,0]. To this end, as in [35], [37] and [1],

20



we start with the construction of the resolvent near A = 0 for f € L9()
with bounded support. We fix a smooth bounded subdomain D so that
Qry+3 C D C Q. Given f € L), we set vg = A;}DPQ,Df and take a
pressure 7y associated to vg; they solve the Stokes system

—Avg+Vmy=f, V-v5=0,

in D subject to vg|sgp = 0, where f is understood as the restriction of f on
D. We further set

’Ui(w, A) = ()\ + Aq,Hi)ilpq,H:t [¢:|:,Rof]7

where 94 r, are the cut-off functions given by (2.1). One needs also the
case A =0

v (,0) = /0 " B (8)Pygra [t o 1,

which is the solution written by the Green tensor for the Stokes problem in
Hy (see Remark 3.2). We take the pressures 71 in H associated to vy so
that

/ (s (2, A) — mo(z) Y = 0, (4.1)
Dy ry+1

for each A. In this section, for simplicity, we use the abbreviations ¢4 for the
cut-off functions ¢+ gr,41 given by (2.1) and Sy for the Bogovskﬁ operators
S+ ro+1 introduced in section 2. With use of {vi,m+},{vg,mo} and 4
together with S1, we set

v =TS
=typor +P_v_+ (1= — )y (4.2)
=S¢ [(v4 —wo) - Vioi ] = S_[(v- — wo) - Vo], '
T = 7/)+7T+ + 7/1771'7 + (1 — 7/)+ — T,ZJ,)T('().

We here note that fDi B +1(vi — ) - Viprdz = 0 since V-vy = V-vg = 0.
» 1o

An elementary calculation shows that the pair {v, 7} satisfies

Aw—Av+Vr=f+QWNf, V-v=0, (4.3)

in § subject to v|pq = 0 and

qﬁ(v):/N-voda:/ V - wvpdz =0,
M Q4ND
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where

QN =1 (N f + Q20 f (4.4)
with
Q1A f =M1 =9y =P )vo — 2Vey - V(vy —vg) — 2V9_ - V(v_ — vp)
—(Apy)(vy —vo) — (A )(v- — o)
+(Vapy ) (my — mo) + (Vop_) (7 — mo)
—AS i [(v4 —vo) - Vi ] = AS_[(v- — o) - Vip_],
and

Q2(N)f = ASy[(vy —vo) - Vipi] + AS_[(v- — o) - Vip_].

By (2.2) we have Si[(v —vg) - Vipi] € W (D gos1). But one can obtain
the regularity of this term only up to WO2 I (unlike the exterior problem)
and this is the reason why the remaining term @(A) has been divided into
two parts.

We first derive the regularity estimates near A = 0 of T'(A) and Q(X).

Lemma 4.1 Let n > 3,1 < q < oo,d > Ry and R > Ry. For any
small € > 0 there are constants C1 = C1(Q,n,q,d,R,e) > 0 and Cy =
Cy(Q2,n,q,d,e) > 0 such that

m—1
APIBTT N fllzg.0n + Y 15T llz0.00 < Cillfllgs (4.5)
k=
for Re A >0 (A#0) and f € L'[Id}(Q); and
NP (105 Q) £l + Z 103N flly < Call £l (4.6)

for Re A > 0 with 0 < |A\| <2 and f € L‘[Jd](Q), where m and [ = B(e) are
the same as in Lemma 3.35.

Proof. In view of (4.2), we deduce (4.5) immediately from (3.4) together
with (2.2). One can show (4.6) likewise, but it remains to estimate the
pressures w1 contained in (4.4). By (4.1) we have

/ Hme(x,\dz =0, 1<k <m. (4.7)
D+ ry+1
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On the other hand, from the Stokes resolvent system we obtain
AKvy + kOF oy — Adkvy + VOkiny =0, 1<k <m,
in Hy. This combined with (4.7) gives

(V)5 me (Mg

ClIVIre M- 1.0.04 5y

ClIVOEvL (Mg s g2 + CINNKOL N g, 4 gy 10
+Ck[| 05 o ()

VANVAN

¢Hy Rry+27

for 1 < k < m. Similarly, for £ = 0, we use (4.1) to get

(Vi) (m£(A) — m0) [l
CIV(rL(A) = 7o)l -1,4,D4 rg 11

<
< ClIVoeWllg s gy T CIMvE N g, 12 942 + CllF -

It thus follows from (3.4) that

m—1

AP IVY2) 0 T Wlg + D 1Y) (s (V) = mo)llg < ClLS g,
k=0

for Re A >0 with0 < [A| <2and f € L‘[Jd](Q). This completes the proof.
Let us consider the case A = 0 and simply write v+ = vy (z,0). Since

[(v+ = v0) - Vpill2.4 < Cllfllg,

the operator [f — (vy —wvg) - Vopu] : LI(Q) — Wol’q(Di,ROH) is compact,
which combined with (2.2) implies that so is the operator QQ2(0) : L9(2) —

L'[Id}(Q), where d > Ry + 2. The other part Q(0)f fulfills

1Q1(0)fll1.g < Clifllg,

from which the compactness of Q1(0) : L4(Q) — L'[Id}(Q) follows; as a con-
sequence, Q(0) = Q1(0) + Q2(0) is a compact operator from L‘[Jd](Q), d >
Ry + 2, into itself. We will show that 1 + Q(0) is injective in L([]d}(Q). Let
fe L?d](Q) satisfy (1 + Q(0))f = 0. In view of (4.3), the pair {v,7} given

by (4.2) for such f should obey
—Av+Vr=0, V.-v=0,

in © subject to v|pa = 0 and ¢(v) = 0. Since f € Lfd](Q) for 1 <r <
min{n,q}, we have

V2u,Vr e L'(Q), Voe L™/ ((Q), v,x e L] (Q);
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especially, the summability of Vv at infinity is implied by the boundedness
of the support of f. It thus follows from Theorem 1.4 (i) of Farwig [16] that
v = V7 = 0; here, it should be remarked that the uniqueness holds without
any radiation condition (unlike the exterior problem discussed in [35] and
[37]). We go back to (4.2) to see that vy = Vg = f =0 in Hy \ Bg,+2 and
that vg = Vg = f = 0in Qp,41. Set Uy = (DUBg,)NHy. Both {vy, 7y}
and {vp, 7} then belong to W24(UL) x W14(U.) and are the solutions of
the Stokes system in Uy with zero boundary condition for the external force
f. They thus coincide with each other and, in view of (4.2) again, we have
vg = Vmp = f = 0 in D; after all, f = 0 in Q. Owing to the Fredholm
theorem, 1 + @Q(0) has a bounded inverse (1 + Q(0))~! on L([]d}(Q).
Set ¥, ={A € CGRe A > 0,0 < |A] < n} for n > 0. Since

QNS —Q0)fllq
< COllogN) =04 O)llng.m4 mger + Cllo-(A) = 0 (O)l1g,1_ s
FC o Mlg a4 gz + [0-Wllg 1 gg4r + v0llg, 0}

we obtain from (3.5)
1Q0) = Q) lpug, @y — 0

as A — 0 with Re A > 0, which implies the existence of a constant n > 0
such that 1 + Q(X) has also a bounded inverse (in terms of the Neumann

series) on L‘[Jd](Q) with uniform bounds

11+ QM) Mls(ze (0 < C, (4.8)

[d]

for A € X, U {0}. Since the resolvent is uniquely determined, one can
represent it for A € X, and f € L‘[Jd](Q), d> Ry +2, as

A+ ATIPF=TNA+ QW) . (4.9)

We are in a position to show an analogous result for the resolvent to
(3.4).
Lemma 4.2 Let n > 3,1 < ¢ < 00,d > Ry and R > Ry. Given f €

L([]d}(Q), set u(\) = (A + A)"LPf. For any small € > 0 there is a constant

C=C(Q,n,q,d,R,e) >0 such that

m—1
AP e 2,0, + D 105uM) 20,05 < ClIf llgs (4.10)
k=0

for Re A\ >0 (A#0) and f € L?d](Q), where m and 8 = B(e) are the same

as in Lemma 3.3.
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Proof. The problem is only near A = 0 because we have (2.3) for G = Q.
We may also assume d > Ry + 2 since L‘[]RO](Q) C L‘[Jd](Q) for such d. It thus

suffices to show (4.10) for A € ¥, by use of (4.9). For such A and 0 <k <m

we see that 0¥ (1 +Q(N)) ! € B(L?d](Q)); furthermore,

m—1

APIOR (L + QN ™ llg + D 105+ Q)™ flly < Clifllg,  (411)
k=0

for f € L([]d}(Q). In fact, we have the representation

RL+QWN) 'S
= —(1+ QM)A + QM) f + LML + ()~ f,
(4.12)
fork>1and f € L‘[Jd](Q), where L1 (\) = 0 and Li()\) with &£ > 2 consists of

finite sums of finite products of (1 + Q(N))™H,MQN), -+, 05 1Q(N). Con-
sequently, (4.6) together with (4.8) implies (4.11). In view of

b =S~ (B ) o : -1
okun =3 () ok ren Qo s,
=0

we conclude (4.10) from (4.5) and (4.11). O

In the last part of this section we will complete the regularity estimate
of the resolvent. To this end, we employ Lemma 3.4 to show the following
lemma.

Lemma 4.3 Letn > 3,1 < q<o0o,d> Ry and R > Ry. Set
T®) (s) = 0FT(is), QW(s)=0rQ(is) (seR\{0}, 0<k<m).

For any small € > 0 there is a constant C = C(Q,n,q,d, R,e) > 0 such that

IT® (s + 1) f = TO(5)fll2g.0q + 1QP (s + 1) f = QW (5)f g

Clhlls| =11 fllq ifk=m—1, (4.13)

Clhlls| M flly — if k=m,
<
Clhlllfllq ifn>5 0<k<m-—2,

for 2|h| < |s| <1 and f € L?d](Q), where m and § = [(e) are the same as
in Lemma 3.3. Concerning the first term of the left-hand side, (4.13) holds
true for h € R and |s| > 2|h|.
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Proof. Set
o (s) = vy (is), nF(s) = Fry(is) (s €R\{0}, k=morm—1).
It then follows from (4.2) together with (2.2) that

T (s + h)f = T (5) 20,00
< O™ (s +B) = 0™ () logutty p + Clo™ (s + B) = 0" (8) loq,t_ -

(m)

In order to estimate QU™ let us investigate the pressures w3 . Similarly
to the proof of Lemma 4.1 with the aid of (4.7), one can show

(V)™ (s + B) = 7™ ()},
CIVTL (s + h) = VL (8)| 14,02 ny o
OV (s + h) = Vo™ (5) g, 12 pg s
+C (s + h)ol™ (s + h) — 508 ()l g, Ha g 10
+Om ol V(s + h) = v (8) g,y e

IA A

This combined with estimates on the other terms by use of (2.2) yields

1QU™ (s + B) f — QU™ (s) £,

Cllol™ (s + h) = v () 1,114y 4
+O[0"™ (s + h) — 0" ()| 1q,_ g s
+C|s] o™ (s 4+ h) = o\™ (s)
+C1s[10 (s + h) = 0" ()l g.t1_ g 1

+OIRI0S™ (5 + W) lg,tr4 g0 + CIRIVT (5 + D) g, g1
+Omlol™ (s + h) = 0" (8) g,y g 1o

+Omlol™ V(s + 1) = 0" () g, pg s

IA

=

¢Hi ro+2

=

Hence (3.7), (3.8) and (3.4) imply (4.13) for the case k = m. For 0 < k <
m — 1 we have

7

s+h
IT®) (s + h) f = T® () fl2g.0n < / 1T+ (1) fll2.g.00d7

?

s+h
1) (s +h) f = QW (s)flly < / 1QEF(r)fllgdr

which together with (4.5) and (4.6) respectively lead us to (4.13). The proof
is thus complete. [

The regularity of the resolvent along the imaginary axis given by the
following lemma plays a crucial role in the next section.

26



Lemma 4.4 Letn > 3,1 < q<o0o,d> Ry and R > Ry. Set
3 (s) = aM(is+ A) P (s e R\ {0}).

For any small € > 0 there is a constant C = C(Q,n,q,d, R,e) > 0 such that

x
/‘H@WQ+Mf—@W@vmmmwscw1%ﬂm (4.14)

—00

for |h| < hp = min{n/4,1/2} and f € L([Id}(Q). Here, m and f = () are

the same as in Lemma 3.3, and n > 0 is the constant such that (4.9) is valid
for A€ X,.

Proof. We may assume d > Ry + 2 (as in the proof of Lemma 4.2). Given
h satisfying |h| < hg, we divide the integral into three parts

/)H@WQ+Mf—@m@UMmm%

—0oQ

:/ —{—/ —|—/ =L+ 1, + Is.
si<2lnl - JaAni<lsi<one  J)s/>2ho

With the aid of (4.10), we find

2.0.00d5 < ClBI"7 || £lg,

ngz/ ELRISY:
|s|<3|h|

for f € L'[Id}(Q). In order to estimate I, we use the representation

s (s)f =30 (™) 2 v,
>(7)

V() = 0l(1 + Q(is)) " € B(LIy () (0 <|s| <n, 0<j <m).



We first show

VO (s +h)f = VI(s)fl,

Clhlls| 1 fllg if j =m—1, (4.15)

Clalls| ="~ Iflly — if j =m,
<
Clh[lIfllq ifn>5 0<)<m-2,

for 2|h| < |s| < 2hp and f € L‘[Jd](Q). Similarly to the proof of (4.13) for
0<k<m-—1, (411) implies (4.15) for 0 < j < m — 1. Asin (4.12), we
have

Vim(s) = VO (5)Q™ (5)V IV (s) + Wi (s)VO(s),

where Wi (s) =0 and, for m > 2, Wy, (s) = i" Ly, (is) consists of finite sums
of finite products of VO(s), QM) (s),---,Q =V (s). Therefore, we collect
(4.6), (4.8), (4.13) and (4.15) for j = 0 to arrive at (4.15) for j = m. It thus
follows from (4.5), (4.11), (4.13) and (4.15) that

120 (s + ) f = S (5) llz.q.0 < ClAlISI* 1 £

for 2|h| < |s| < 2hp and f € L‘[Jd](Q). As a consequence, we are led to

L < Clhllfl, / 15| 1ds < CIA P £l
1s|>2|A]

for f € L?d](Q). Finally, to estimate I3, one does not need any localization.
In fact, since

s+h
M (s 4+ h)f — ™ (s)f = (=)™ (m + 1)!/ (it + A)~ "2 prar,

S

(2.3) gives

120 (s + ) f — @™ (5)fllz.0.0, < CIQ™ (s + h)f — 2™ (5)fll(a,)

< ClAlls|=" 0 £lg,

for |s| > 2hg (> 2]h|) and f € LY(2). Therefore, we obtain

I < Cl|f I, / s "0" D ds < ClR|1f .

‘S|>2h0

for f € L9(R2). Collecting the estimates above on I, I and I3, we conclude
(4.14). O
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5 Li-L" estimates of the Stokes semigroup

In this section we will prove Theorem 2.1. As explained in section 1, the
first step is to derive (1.6) for non-solenoidal data with bounded support.

Lemma 5.1 Letn > 3,1 < g < 00,d > Ry and R > Ry. For any small
e > 0 there is a constant C = C(Q,n,q,d,R,e) > 0 such that

le " P f|l1 g0, < CEH2(L+ 1) 2F2H £, (5.1)

fort >0 and f € L([Id ().

]
For the proof, the following lemma due to Shibata is crucial since we

know the regularity of the Stokes resolvent given by Lemmas 4.2 and 4.4.

Lemma 5.2 Let X be a Banach space with norm || - || and g € L'(R; X).
If there are constants 6 € (0,1) and M > 0 such that

o0 1 o0
[ N las +sup oty [ gts ) gt <
h#0 ‘h’ oo

of g enjoys
G < CM(L+[¢)~7,
with some C > 0 independent of t € R.

Remark 5.1. The assumption of Lemma 5.2 is equivalent to

g€ (DR X), W (R X)), .
where (-,)p,0c denotes the real interpolation (the space to which g belongs
is known as a Besov space).

Proof of Lemma 5.2. Although this lemma was already proved by Shibata
[51], we give our different proof which seems to be simpler. Since ||G(¢)|| <
M /2m, it suffices to consider the case [t| > 1. It is easily seen that if
ht # 2jmw (j =0,£1,£2,---), then

eiht

61t) = gy | elals+ 1) = o)
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from which the assumption leads us to

M|n|’

G| < —————.
GO < 5o

Taking h = 1/t immediately implies the desired estimate. [J
Proof of Lemma 5.1. Since

le=* APy

_ 1/2 - _
Lo < Clle™ PFIIpe, e A PFII? < Ct7 2 flly, (5.2)
for 0 <t <1and f € LYQ), we will concentrate ourselves on the proof of
(5.1) for t > 1, namely (1.6). Given R > Ry, weset ¢y =1 —1L r —9_ R,
where the cut-off functions ¢4 g are given by (2.1). One can justify the
following representation formula of the semigroup for f € L([]d}(Q):

,L'm o0 .

pe HAPf = / etypd ™) (5) fds, (5.3)
2mt™

where ®(™)(s) = 9™(is + A)~'P and m is the same as in Lemma 3.3. In

fact, starting from the standard Dunford integral representation, we perform

m-times integrations by parts and then move the path of integration to the

imaginary axis but avoid the origin A = 0, so that

Ye tAPf = 2:::”1 { / + /6 oo} ety (s) fds
+

-5
(1"
— At qm -1
— N'(A+A) " PfdA
i [, € RO+ AP
for any § > 0, where I's = {de?; —7/2 < 6 < 7/2} (this formula is valid for
f € LY(Q) without 9). Owing to (4.10), the last integral vanishes in L(2)
as 6 — 0 for f € L([]d}(Q); thus, we arrive at (5.3). Now, it follows from
(4.10) and (2.3) that

1/ 1lg
517

1/l

ds+C
5|51 |s|mt1/2

/ [ (5) |1 gds < C ds < C|f

- ls|<1

Further, (4.14) and the estimate above respectively imply that

1 o0
up s [ 8 s+ W]~ 98 () s < 1

0<|h|<ho

and that

1 o0
Sup TRITB / (9@ (s + h)f = @ (5)f|1,4s
zho o
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2 > m
<75 | lads < O
Hence, we can apply Lemma 5.2 with X = W4(Q) and g(s) = $®™(s)f
to the formula (5.3); as a consequence, we obtain

le” P flg0n < e PFllg < CE™ L+ £y,

for t > 0, which implies (5.1) for ¢ > 1 and f € L‘[Jd](Q). This completes the
proof. [
Remark 5.2. Tt is possible to show the decay rate t~™/2%¢ of the semigroup in
W?24(Qp) as well. This follows immediately from the proof given above with
X = W24(Q) forn > 5. When n = 3 or 4 (thus m = 1), as in Kobayashi and
Shibata [37], we have to introduce a cut-off function p € C§°(R; [0, 1]) with
p(s) = 1 near s = 0; then one can employ Lemma 5.2 with X = W?24(()
and g(s) = p(s)yp®™ (s)f to obtain the desired result since a rapid decay of
the remaining integral far from s = 0 is derived via integration by parts. We
did not follow this procedure because Lemma 5.1 is sufficient for the proof
of Theorem 2.1.

The next step is to deduce the sharp local energy decay estimate (1.5)
from Lemma 5.1.

Lemma 5.3 Letn > 3,1 < g < o0 and R > Ry. Then there is a constant
C=C(n,q,R) >0 such that

le™ 4 flLg0n < C24 £ llg, (5.4)

fort>2and f € LL(Q); and

le™ flligon + 10~ fllgan < CA+ O flln(a,), (5.5)
fort >0 and f € D(4,).

Proof. We employ a localization procedure which is similar to [35] and [37].
Given f € LL(Q), we set g = e~ f € D(A,) and intend to derive the decay
estimate of u(t) = e g = e~ (HDAf in WL9(Qp) for t > 1. We denote by
p the pressure associated to u. We make use of the cut-off functions given
by (2.1) and the Bogovskil operator introduced in section 2. Set

g+ = P+ Rot1 9 — S+, Ro+1[9 - Vit Rot1),

and
v4(t) = EL(t)g+-
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Note that [}, 19 Vi rosrdz = 0 and that g+ € D(Ag ) with
10

19::1D(ag uy) € Cllgtllzgme < Cligllzg < Cliglnea,) < ClIFIL, - (5.6)

by (2.2). We take the pressures w1 in Hp associated to vy in such a way
that

/ i (x,t)dr =0, (5.7)
Dy g,

for each ¢. In the course of the proof of this lemma, for simplicity, we
abbreviate ¢4 g, to ¢4+ and St g, to S+. We now define {uy,ps} by

ut(t) = Prv(t) — Sefvs(t) - Vopi], pa(t) = Ppame(t).

Then it follows from Lemma 3.2 together with (2.2) and (5.6) that

lu(?) Latie, < CL+ )T f],, (5-8)

for ¢ > 0, where L = max{R, Ry + 1}. Thus, in order to estimate u(t), let
us consider

which should obey
ov—Av+Vr=K, V-v=0,
in €2 subject to v|gpn =0, ¢(v) = ¢(u) =0 and
vli—o =vo =g — g+ —g- € Llp . () N D(4y),

where

K= 2V¢+ . VU+ + 2V¢_ . V’U_ + (A¢+)U+ + (A’(p_)’l)_
—AS oy - Vi | = AS [v_ - Vy_]
+S4[Ovy - Vi + S_[Opw— - Vo] — (Vi )mq — (Vi )m;

we here note that V- K # 0 as well as K|pq 7# 0 and we can obtain the
regularity of K only up to L? (in contrast to the exterior problem discussed
in [35] and [37]). By (5.7) and in view of the Stokes system in Hy we have

[(Vipe)me(®)lly < CNVTL)]]-1,4,D1 5,
< ClIVoe(@)llg, bz g1 + ClOwL )l 114 o410
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which together with (2.2) implies K (t) € L

[Ro+1](Q) and

KMl < Cllog gy g + Cllo— (Ol ry 1
+CHatv+(t)Hq,H+,R0+1 + CH@t’U, (t)Hq,H—,RO+1'

Therefore, Lemma 3.2 and (5.6) yield

1K (@)l < CL+ )21 f g, (5.9)

for £ > 0. In order to estimate

¢
v(t) = e oy +/ 6_(t_T)APK(T)dT,
0

we employ Lemma 5.1. By (5.1) with a suitable ¢ > 0 and (5.6) we find
le™ w0 ll1,g0, < CE = |luolly < CE] flg,
for ¢ > 1. We next combine (5.1) with (5.9) to get
t
[ G = oI
0

t
< Ol [ €=ty 1y

0
= Clfllq(1 + L),

where [} = fg /% and I = ftt/z An elementary calculation gives

CtY/2(1 + ¢/2) n/2n/20+3/2+e itg>n/2
L <4 CtVA(L44/2) /2112 log(1 4 4/2)  ifq=n/2 ¢ < Ct "™,
Ct_1/2(1 + t/z)—n/2+1/2+6 if g < n/2
for ¢ > 1 and

IQ S (1 + t/2)_n/2q/ 7'_1/2(1 + T)_n/2+1/2+€d7‘ S C(l + t/2)—n/2q’
0

for ¢ > 0. We collect the estimates above to obtain

lo(®) 1,05, < O£ lg, (5.10)
for t > 1. From (5.8) and (5.10) we deduce

(@) l1,g90n = [0(2) + ws () + u(Olg0n < CE £l
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for ¢ > 1 and f € LZ(Q), which proves (5.4). Let f € D(A,;). Then we
easily observe

et f

Lar + 1067 fllg0r < Cle ™ flipa,) < Clfllpeay),

for t > 0 and also we can estimate dye *4 f for large ¢; in fact, by virtue of
(5.4) just proved we get

10 A fllgon = le " Afllgan < C29)Af |,

for t > 2. This implies (5.5). O
We are interested in the L9 estimate of Ve *4 for large t, in particular,
the L™ estimate is quite important for us.

Lemma 5.4 Let n > 3 and 1 < q¢ < oco. Then there is a constant C =
C(2mn,q) > 0 such that

Hve—tAqu S Ct_min{l/Qan/Zq}Hqu7 (511)
fort > 2 and f € LE().

Proof. We fix R > Ry + 1. Since we have already known the decay rate
t~"/20 of Ve ' f|l,0n by Lemma 5.3, it suffices to derive the estimate
outside g, that is,

IVe ™  fllgasa, < Ct=mm2n2a g1, (5.12)

for t > 2 and f € LL(Q). In an analogous way to [35], [37] and [1], we make
use of the decay properties of the semigroup E4(t) for the half space. Given
f €LY, weset g =e Af € D(A,) and then u(t) = g = e~ (tHDAF,
We choose two pressures pL in € associated to w in such a way that

/ (2, t)dz = 0, (5.13)
Dy p1

for each t (p4 and p_ will be used independently). With use of the cut-off
functions given by (2.1) and the Bogovskii operator introduced in section 2,
we define {vy, 74} by

vy (t) = Yru(t) — Selu(t) - Vooi], 7e(t) = Yap+(t).

Here and in what follows, we use the abbreviations ¢4 for 94+ r_1 and S4
for S+ p—1. Since vy = u for € Q4 \ Qr = Hy \ B, we will show
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VoL (@)llg e < Ct= 202 g by, (5.14)

for t > 1, which combined with ||gl|p4,) < C|lf|lg implies (5.12) for ¢ > 2.
It is easily observed that {vy, w1} satisfies

Oy — Avy + Ve =Zy, V-vg =0,
in Hy subject to vi|pm, =0 and
V+|i=0 = ax = P+g — Stlg - Vihy],

where

Zy = —=2V¢y -Vu-— (Azbi)u + ASi[u . V?/Ji]
—S1[0u - Vipa] + (Vipi)pa.

Our task is now to estimate the gradient of

t
Ui(t) = Ei(t)ai + / Ei(t — T)PHiZi(T)dT. (515)
0
By virtue of (5.13) we have

|(Vips )p£(t)

ot < COIVpr®)|-1,4,0sn
< CIVu®)llg.on + Cllou®)lg0n,

from which together with (2.2) it follows that
12+ @)l < Cllu®)l[1g,08 + CllOru(?)llg0n-

Hence, (5.5) implies

1Prs Ze()llrtrs < CNZeOllgrs < CA+1) " Ngllpa,y,  (5.16)

for t > 0 and r € (1,q] since ZL(t) € L?R](Hi) C LfR}(Hi) for such r. In

view of (5.15), we deduce from (1.4) for 2 = H, together with (5.16)

Vvt (t)lg, 1
< Ctaxlg,m.
t
FCllgloay [ (=) AL 4t Ol 7y
< Ot Y2||glly + Cligllpeay (I + I),

35



for r € (1,q], where I} = fg/Q and I = ftt/z We take r so that 1 < r <
min{n/2, q}. Then we see that

Ct1/2(1 4 ¢/2) /2 +1 ifg>n/2
I < Ct Y21 41/2) M2+ log(1 +1/2)  ifq=n/2 » <Ct7 V2
Ct=12(1 + t/2)~(n/r=n/0)/2 if g <n/2

for ¢t > 0 and that

I < C(1+t/2)" "% if ¢ >n,
2=l Cc+t/2)72 ifg<n,

for ¢ > 0. Collecting the estimates above concludes (5.14). This completes
the proof. O

The following lemma is concerned with the L* estimate of the semigroup
(the restriction ¢ > n will be removed later).

Lemma 5.5 Let 3 < n < g < oo. There is a constant C = C(2,n,q) >0
such that

le™ 4 flloo < CE2If g, (5.17)
fort >0 and f € LE(R).

Proof. For fixed R > Ry + 1, estimate (5.4) together with the Sobolev
embedding property implies

le™ flloo.n < CE2) £lg,

for t > 2 and f € LE(2) on account of n < g < co. Along the lines of the
proof of Lemma 5.4, one can show

le™" Flloo.0\25 < CE2|flgs (5.18)

for t > 2. In fact, given f € LL(Q), we take the same g, {u, p+ } and {vy, 71},
and apply the L?-L> estimate (1.3) for @ = Hy to (5.15). Then, taking
(5.16) into account, we get

v+ ()| oo, Hs
< Ct*”/quGin,f{i
+Cllgllpay) /0 (t = 7)™2(1 4 ¢ — 1)~ O/r=1D/2(1 4 1y 2,

for r € (1, q]; we now choose r € (1,n/2) to find
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1o (8)lloc, 2 < Ot lgllp(a,),

for ¢ > 1, which proves (5.18) for ¢ > 2. We thus obtain (5.17) for ¢t > 2.
For 0 < t < 2, we recall (5.2) to see

le= flloo < Clle™  FIT T~ £157™/0 < Ct="21) £,

The proof is complete. [

We are now in a position to prove Theorem 2.1. Abels [1] showed (1.3)
for 1 < ¢ < r < oo; when we use this result, the first step of the following
proof will become shorter. However, in order to make the present paper self-
contained, we do not rely on any result of [1]. We emphasize that our proof
is based on (5.11) and (5.17), in other words, the other estimates follow from
them.

Proof of Theorem 2.1. The proof is divided into four steps.
Step 1. First of all, we observe (1.4) for ¢ = r € (1,n]. Indeed, it follows
from (5.2) for 0 < ¢ < 2 and (5.11) for ¢ > 2 that

IVe 4 flly < O 211 g, (5.19)

for t > 0 and f € LE(Q) provided 1 < ¢ < n. In this step we accomplish
the proof of (1.3) for 1 < ¢ <7 <00 (g # o0) and (1.4) for 1 < ¢ <r < n.
We begin with the removal of the restriction ¢ > n in Lemma 5.5. In view
of (5.19) and the Sobolev embedding property we have

le™ ™1l < CE2 N lg, (5.20)

for t > 0 and f € LEQ) when 1 < ¢ < n and 1/r = 1/q — 1/n. Let
n/(k+1) < ¢ < n/k with k = 1,2,--- ,n — 1. We put {(Zj}?:o in such
a way that 1/¢;41 = 1/¢; —1/n (j = 0,1,--- ,k — 1) with go = ¢. Since
n < g < 00, we make use of (5.17) with ¢ = g5 and (5.20) to obtain

le™* flloo < CE™"20 || WDAF g < OB 1],

for ¢ > 0, which proves (5.17) except for ¢ = n,n/2,--- ,n/(n — 1). But the
exceptional cases can be also deduced via interpolation. Thus the L9-L*°
estimate (5.17) has been established for all ¢ € (1,00). This together with
the L? boundedness (namely, (1.3) for ¢ = r) immediately gives (1.3) for
1 < ¢ <r < oo, from which combined with (5.19) we further obtain (1.4)
forl<g<r<mn.

Step 2. In this step we prove (1.4) for 1 < ¢ < n < r < 00, making
use of (1.8) due to [20]. Given r € (n,00), we take s € (n/2,n) so that
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1/s =1/r +1/n. When 1 < g < s, an embedding relation given by Lemma
3.1 of [20] together with (1.8) implies

Ve M4 f, < CIV2e ™ f|ls < CllAe A f|ls < CtYle DA g,

for ¢ > 0, from which together with (1.3) we obtain (1.4). If s < ¢ < n,
which implies r < g, with 1/g, = 1/q — 1/n, then by the same reasoning as
above

IVe ™ fll, < Ve f a0 | Ve A £1|o < CllAe A fII1 0 Vet f|18,

for t > 0, where 1/r = (1—-0)/g.+6/q=1/q— (1 —6)/n. Therefore, (5.19)
yields (1.4).

Step 3. Let f € L'(2) N LE(Q) for some s € (1,00). This step is devoted to
the case ¢ = 1, namely L'-L" estimate. Let 1 < r < co. We apply a simple
duality argument; in fact, the L9-L° estimate implies

(e . 9)l = [(f e 9 < IIflhlle glloe < O fll1llglly ey

for g € LZ;/(T_I)(Q), which gives (1.3) for ¢ = 1 < r < co. Combining this
with (5.17) and (1.4), respectively, we obtain (1.3) for ¢ = 1 < r = oo and
(1.4) forg=1<r < 0.

Step 4. Once the LI-L" estimates (1.3) and (1.4) are established, (2.4) and
(2.5) can be proved by means of a standard approximation procedure. We
show only the behavior as ¢t — 0o (which is the main concern in the present
paper). Let 1 < ¢ < oo and f € L5(Q). For any € > 0 we take f. € C§% ()
such that || f. — f|l; < e. It then follows from (1.3) that

le™ fllg < Ce + Ct==/D2| £ ||y,

for ¢ > 0, which immediately yields

: —tA o
Jim e £, =0, (5.21)

since € > 0 is arbitrary (one can give another proof by use of ker(4,) = {0}).
Let K be a precompact set in LL(Q). For any n > 0 there is a finite set
{fi}jL, C K so that {B,(f;)}]L, is a covering of K, where B, (f;) denotes
the open ball centered at f; with radius . Then we have

sup [le™ f|ly < Cn+ max [le™ f;]l,.
fex 1<j<m

Hence, from (5.21) we deduce

: —tA _
Jim sup le”" " fllg = 0. (5.22)

All the other decay properties as t — oo follow from (5.22) combined with
(1.3) and (1.4). We have completed the proof. [J
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6 The Navier-Stokes flow

In this section we apply the developed L?-L" estimates of the semigroup to
the Navier-Stokes initial value problem. In the proof of Theorems 2.2 and
2.3, we will not cite (1.3) and/or (1.4) if the application is evident. We first
prove Theorem 2.2.

Proof of Theorem 2.2. One can construct a unique global solution wu(t) of
the integral equation

t
u(t) = e=tq — / APy . Vu)(r)dr, ¢ >0, (6.1)
0
by means of a standard contraction mapping principle, in exactly the same

way as in Kato [36], provided that ||a||, < dp, where 6y = 6o(2,n) > 0 is a
constant. The solution u(t) satisfies

u(®)|], < Ct=H2+/2 4], for n < r < oo, (6.2)

IVu@)lln < Ct2(lalln, (6.3)

for t > 0 together with the singular behavior

lu(®)]ly = o (fl/?ﬂ/?r) for n < r < 00; ||[Vu(t)|ln = o (flﬂ) . (6.4)
as t — 0. Furthermore, due to the Holder estimate (6.9) below which is

implied by (6.2) and (6.3), the solution u(t) becomes actually a strong one
of (1.1) with (2.6) (see [24], [29] and [57]). We now prove

Tim [fu(®)l =0, (6.5
for still smaller a € L2(£2). To this end, we derive a certain decay property
of u(t), which is weaker than (2.11) but sufficient for the proof of (6.5),
assuming additionally a € L'(Q) N L%(2) with small ||all,. Given vy €
(0,1/2), we take ¢ € (n/2,n) so that v =n/2q — 1/2; then,

! 1/2
[u(®)lln < Ct™allg + C/O (t = 1) u(r) ol Va(r) ndr,

which together with (6.3) implies

@)l < Cllally + Cllalln sup 77 [[u(7)]a,
0<7<t
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for t > 0. Hence, for any v € (0,1/2) there are constants 0, = 6,(Q2,n,v) €
(0,60] and C = C(2,n,7y) > 0 such that if ||a|l, < &, then ||u(t)|, <
Ct7al|4 for t > 0, which together with (6.2) yields

lu(®)lln < CA+6)7"(lally + llalla), (6.6)

for ¢ > 0 (this decay rate is not sharp and will be improved in Theorem
2.3). From now on we fix v € (0,1/2) and set 0 = 3,(Q2,n,7v)/2. Given
a € Ly(S2) with [la||, < 6 and any € € (0,d], we take a. € C§5,(£2) so that
lae — all, < e. Since ||ag||n < O, the corresponding global solution fulfills
(6.6). We combine this fact with the continuous dependence: L7(2) 3
u(0) = uw € BC([0,00); L2(Q2)), where BC denotes the class of bounded
continuous functions. As a consequence, the global solution u(t) with u(0) =
a satisfies ||u(t)||, < Ce + C(1 4 t)77, which proves (6.5) (although the
method above was mentioned in [36] and is well known, we gave the proof
for completeness; see also Theorem 3 of Wiegner [59] for another proof).
Combining (6.5) with (6.2) for r = oo immediately leads us to (2.8) for
n <1 < oco. We next prove (2.8) for r = oo and (2.9). As is standard, we
rewrite the integral equation (6.1) in the form

t
u(t) = e=DAy(172) / e~=DAP(y . Vu)(r)dr, t>0.  (67)
t/2
Then we obtain
[w(®)]loo + IVu(t)]ln

t
< Ot V2 u(t/2))n + O // (t — 1) 3 () on | V(8) [,
t/2

from which together with (6.3) we at once deduce

2 ([u®) oo + IVu®)ln) < Cllut/2)|ln + Cllalln sup 7/ u(7) 20,
t/2<r<t

for ¢ > 0. Obviously, (6.5) and (2.8) for r = 2n conclude both (2.8) for
r = oo and (2.9). These immediately yield

1P (w - Vu)(®)lln < Cllu®) ool Ve®)ln = o(t™), (6.8)

as t — 00, which will be used to show (2.10) below. Fix 6 € (0,1/2)
arbitrarily. Since

lu(t) = u(7)lloo + IVu(t) = Vu(r)lln < C¢ = 7)'r7 > alla,  (6.9)
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for 0 < 7 < t, one can deduce from (6.7) the representation

Au(t) = Ae= DA (t)2) + {e~ DA 13 P(u - Vu)(t) + Az(t),  (6.10)
in L7(2), where
t
A1) = / e~ APL (0 V) (8) — (u- Vuu)(r) b
t/2
In fact, (6.9) implies

t
Azl < C/m(t =) (V) [+ () lloo)d

< Ot Y2 Vut)|ln + Ot~ sup 72 ]Ju(7) || o
t/2<T<t

for t > 0. As a direct consequence of (2.8) for r = 0o and (2.9), we see that
|Az(#)|l, = o(t™1), as t — oo. In view of (6.10), we collect (6.5), (6.8) and
the above decay property of Az(t) to obtain ||Au(t)|, = o(t ') as t — oo,
which together with (6.8) again shows (2.10). The proof is complete. [J
Remark 6.1. Consider briefly the 3-dimensional stability problem mentioned
in Remark 2.5. The problem is reduced to the global existence and asymp-
totic behavior of the solution to

¢
u(t) = e a — / e AP - Vu+w - Vu +u- Vw)(r)dr, >0,
0

where w is a stationary solution of class Vw € L"(2),1 < r < 2, and
a € L3(Q) is a given initial disturbance. Set

E(t) = sup 77*([u(r)]loo + [IVu(r)ll3) + sup 7% u(r)lls,
0<7<t 0<7<t

and fix r € (1,3/2) arbitrarily. Then the integral equation yields the a priori
estimate

E(t) < Cllalls + CE®)* + C(IVwllr + [[Vwll2) B (),

for ¢ > 0, which gives an affirmative answer to the stability problem provided
that both [|[Vw||, + |[[Vw]||2 and ||a||3 are small enough. In fact, by following
the argument of Chen [11], the above inequality for E(¢) is deduced from

et AP(w - Vu+ u- Vu)|o + |[Ve AP(w - Vu + u - V)]s
< C(IVwl, + [Vl (lulloo + [Valls) £5/4(1 + 1) =3/ 3/%

and

le"AP(w - Vu+u- Vw)llg
< C(IVwllr + [[Vwllo)(Jullso + [[Vullz) t71/2(1 + ¢)=3/2r+3/4,
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We next assume that a € L'(Q) N L%(Q) with ||all, < §. Let u(t) be the
global solution constructed in Theorem 2.2. Our particular concern is more
rapid decay properties of u(t). Starting from (6.2) and (6.3), we observe that
u(t) € WH(Q) for 1 < r < n and ¢t > 0 (without going back to approximate
solutions). In fact, there is a constant M = M(Q,n,r, ||al1,||al,,T) > 0
such that

IViu)|, < Ct7/%|a|, + C/ (t = 7) 72 =2 (1) [l [ V() ndr
< M2, '

forn/2 <r <n, j=0,1and 0 <t < T, where T" > 0 is arbitrarily fixed,;
and then,

IViut)l, < Ct72all, + C/ (t = )2 u(r)lop | Vu(r) |l 2rdr
0
< Mt/2,

forn/4 <r<mn/2, =0,1 and 0 <t <T. We repeat the process above to
get u(t) € WH(Q) for 1 < r < n with

sup ([[u(®)|l, + '/ Vu(t)|,) < M. (6.11)
0<t<T

Remark 6.2. Following the argument of Kato [36], we see that the above
constant M does not depend on T > 0 if ||al|, is still smaller. However, we
do not rely on his procedure because the smallness of initial data depends
on r > 1. Note that the constant n in Theorem 2.3 is independent of r > 1.

As the first step of our proof of Theorem 2.3, we show the following
lemma which gives a little slower decay rate than desired (later on, € > 0
will be removed so that estimates will become sharp).

Lemma 6.1 Letn >3 and a € L*(Q2) N L*(Q). For any small € > 0 there
are constants n, = n.(Q,n,e) € (0,9] and C = C(Q,n, ||al1, ||aln,e) > 0
such that if |la|ln, < n., then the solution u(t) obtained in Theorem 2.2
satisfies

||u(t)||n/(nfl) < C(l + t)71/2+8, (612)
(@) llon < CEHAL 4 1) 2HH2F, (6.13)
IVu(t)ln < Ct Y21+ 1) /22, (6.14)

fort > 0.
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Proof. We make use of (1.3) for » = oo to obtain

[Cata )AP(U Vu)(7),0)| = |((u- Vu)(r), e =D )]
< Ot —1) DR 1) I V(7 [l ll 2 llg (1),

for all ¢ € CF5,(2), which gives

IV e~ DAP (u - Vu)(7)lq

X 6.15
< Clt— 1) D22 () V() (6.15)

for 1 < ¢ < oo, j =0,1and 0 < 7 <t (the case j = 1 follows from
(1.4) and the case j = 0). Given € > 0, we take p € (1,n/(n — 1)) so that
1/p =1-2¢/n. From (6.15) with ¢ =n/(n — 1) it follows that

t
[u(®)lnjm-1) < CE 4 all, + C/O (t = 7)) g1y V() .

In an analogous way to the deduction of (6.6), one can take a constant ny =
no(2,m,€) € (0,0] such that if [|al|, < no, then |u(t)||,/n-1) < Ct=12+a|,
for t > 0, which together with (6.11) gives (6.12). To show (6.13) and (6.14),
we will derive

IVu(t)], < Ct=(=n/n/2=1/24 for =, 2n/3, (6.16)

for ¢ > 0. We divide the integral of (6.1) into two parts

¢ t/2 t
e~ =DAP(y . Vu)(r)dr = = w(t): .
/0 P(u- Vu)(r)d /0 + /t/Q ) +wlt)y,  (6.17)

then we obtain
IVu(t)|l, < Ct==m/DZ2TE g 4 1+ I,

for t > 0 (p is the same as above) with

t/2
I =[[Vo@)l, < C/O (t = )= IDPAR u(7) [ ey V() [

t
I = |[Vu(#)], < C/t/z(t =) Jlu(r)lloo V() I dr,

where (6.15) has been used in I;. Using (6.12) together with (6.2) and (6.3),
we see that

<o MR g, I < Cllall, sup ([ Vu(t)lr,
t/2<T<t
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for t > 0. Therefore, setting

E.(t) = OiugtT("fn/r)ﬂ“/zngVU(T)Hr for r =mn, 2n/3,

we get E,.(t) < Cllall, + Clla|ln + Collal|,£r(t) for t > 0, where Cyp > 0 is
independent of a. As a consequence, there is a constant 7, = 7.(Q,n,e) €
(0,m0] such that if [lall, < 7., then Ey(t) + Eoy,/3(t) < C for t > 0, which
proves (6.16). This combined with the Sobolev embedding, (6.2) for r = 2n
and (6.3) imply (6.13) and (6.14). O

Based on Lemma 6.1, we supply the proof of Theorem 2.3, by which we
conclude this paper.
Proof of Theorem 2.3. We fix € € (0,1/2) and put n = n(Q,n) = n.(Q,n, ).
Assuming ||lal|, < n, we first show (2.11). Since

le=“all, < Ct=0="/D2|ja])y,
for ¢t > 0, our task is to derive the required estimate of (6.17). By (6.15)
together with (6.12) and (6.14) we have
t/2 ,
ool <€ [ (= )| V(o)
< O nin/2 00771/2(1 )2y
< th(nfn/r)/Z’ 0

for 1 < r < oo and t > 0; here, note that the case r = oo follows from the
L9-L>° estimate (1.3) together with (6.15). If 1 < r < n/(n — 2), then the
same estimate of the integrand as above works well on w(t) too; as a result,
we have

Hw(t) HT S Ct*(nfn/r)/zin/2+1/2+2g7

for ¢t > 0. For r = 0o, we make use of (6.13) and (6.14) to get
¢
lw@)lle < C / (t = 7) 7 H[u(r) o | Vu(r) [ndr < CEm 222,
t/2

for ¢ > 0. We collect the estimates above to obtain (2.11) for 1 < r <
n/(n —2) and 7 = oo; and the remaining case n/(n —2) < r < oo follows
via interpolation as well.

We next show (2.12). Let 1 < r < n. In view of (6.7), we have

IVa@®)llr < Ct2lu(t/2) I + V@),

for ¢ > 0, where w(t) is the same as above. By (2.11) the proof is reduced
to the estimate of ||Vw(t)||,. If in particular 1 < r < n/(n — 1), then from
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(2.11), (6.14) and (6.15) we deduce

t
IVw (@) SC/ (¢ = 1) I () 1 IV (T)

t/2
< Otf(nfn/r)/an/2+6’

for ¢ > 0. If r = n, then one appeals again to (2.11) and (6.14) to find
¢

IVw@)ln < C/ (t = ) "V u(r) oo Vu(T) |ndr < CEH24E,
t/2

for t > 0. We thus obtain (2.12) for 1 < r < n/(n —1) and r = n; and the
case n/(n — 1) < r < n also follows via interpolation. It remains to show
the case n < r < 0o. From (1.4) for 1 < ¢ <n <r < oo we deduce

IVu(@)ll, < Ce=arMEZ2 u(/2)]l, + [V ()],
for t > 0, and the first term possesses the desired decay property on account

of (2.11). We take p in such a way that 1/n < 1/p < 1/n+ 1/r. Since we
have already known (2.12) for » = p as well as (2.11), we are led to

t
Vw(®)|y SC/ (t —7) PR (1) | oo || V() [ pd
t/2

< Ot7n+n/2r’

for ¢ > 0, which proves (2.12) for n < r < oc.
Finally, by use of (6.10), we show (2.13) and thereby (2.14) and (2.15).
From (2.11) and (2.12) it follows that

| e~ WDAu(t/2)ll, <t lult/2)], = O (£ (618)

as t — oo and that

1P(- Va)B)llr < Clu®ll V@)l = O (£ =12)  (6.19)

as t — oo. We are thus going to estimate

¢
|Az(t)[l, < CHVU(t)Hr/ (t =) Mlu(t) — u(r)|loodr
, t/2
+C/ (t— T)leu(T)HOOHVu(t) — Vu(r)|| dr = 1) + L.
t/2

With the aid of (6.9) and (2.12) we observe
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L=0 (t—<n—”/r>/2—1) , (6.20)

as t — 0o. We need also a Holder estimate of Vu(t) in L"(€2), which implies
the decay property of I as well as u € C(0,00; D(4,)) N CY(0, 00; L7 (Q)).
To this end, let us consider

ult) — ut?) t
= (T A ry2) - [ e AP V) (s)ds

T

— | {e A om0 Py V) (s)ds
T/2
= w (tu T) + w2 (tu T) + w3(t7 7-)7

for 0 < 7 < t. By a standard calculation with use of (2.11) we have

IV (t,7) [l < C(t = )P rmnDR=120 (6.21)

where 0 < 6 < 1. In order to estimate wy and ws, we take ¢ € (1,7] so that
0<1/q—1/n < 1/r; then we see from (6.19) in LL(Q) that

HVU}Q(t?T)HT < C(t o 7_)1/27(n/q*n/r)/277n+n/2q71/2’ (6.22)
and that
I9w3(t, 7l
< O/ (t — T)H(T _ S)*(n/qfn/r)/Zfl/ZfeHp(u - Vu)(s)]|4ds (6.23)
T/2

< C(t _ 7_)07_7n+n/2r70’

where 0 < 0 < 1/2 — (n/q — n/r)/2. Collecting (6.21), (6.22) and (6.23)
together with (2.11) yields

L=0 (t—"+"/2r—1/2) : (6.24)

as t — oo. From (6.18), (6.19), (6.20) and (6.24) we obtain (2.13). Due
to (1.8) and in view of the equation (1.1), we deduce (2.14) immediately
from (2.11), (2.12) and (2.13). By Lemma 3.1 of [20] there exist p1(t) € R
such that [p(t) — p+(®)llra + PO < CUVP@]g for 1 < q < n and
1/r =1/q —1/n. Hence, (2.14) implies (2.15). The proof is complete. [J
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