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Abstrat

We onsider the nonstationary Stokes and Navier-Stokes ows in

aperture domains 
 � R

n

; n � 3. We develop the L

q

-L

r

estimates

of the Stokes semigroup and apply them to the Navier-Stokes initial

value problem. As a result, we obtain the global existene of a unique

strong solution, whih satis�es the vanishing ux ondition through the

aperture and some sharp deay properties as t ! 1, when the initial

veloity is suÆiently small in the L

n

spae. Suh a global existene

theorem is up to now well known in the ases of the whole and half

spaes, bounded and exterior domains.

Mathematis Subjet Classi�ation (2000): 35Q30, 76D05

1 Introdution

In the present paper we study the global existene and asymptoti behavior

of a strong solution to the Navier-Stokes initial value problem in an aperture

domain 
 � R

n

with smooth boundary �
:

8

>

>

<

>

>

:

�

t

u+ u � ru = �u�rp (x 2 
; t > 0);

r � u = 0 (x 2 
; t � 0);

uj

�


= 0 (t > 0);

uj

t=0

= a (x 2 
);

(1.1)

where u(x; t) = (u

1

(x; t); � � � ; u

n

(x; t)) and p(x; t) denote the unknown velo-

ity and pressure of a visous inompressible uid oupying 
, respetively,

while a(x) = (a

1

(x); � � � ; a

n

(x)) is a presribed initial veloity. The aperture

�
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domain 
 is a ompat perturbation of two separated half spaes H

+

[H

�

,

where H

�

= fx = (x

1

; � � � ; x

n

) 2 R

n

;�x

n

> 1g; to be preise, we all a

onneted open set 
 � R

n

an aperture domain (with thikness of the wall)

if there is a ball B � R

n

suh that 
 nB = (H

+

[H

�

) nB. Thus the upper

and lower half spaes H

�

are onneted by an aperture (hole) M � 
 \B,

whih is a smooth (n� 1)-dimensional manifold so that 
 onsists of upper

and lower disjoint subdomains 


�

and M : 
 = 


+

[M [ 


�

.

The aperture domain is a partiularly interesting lass of domains with

nonompat boundaries beause of the following remarkable feature, whih

was in 1976 pointed out by Heywood [31℄: the solution is not uniquely

determined by usual boundary onditions even for the stationary Stokes

system in this domain and therefore, in order to single out a unique solution,

we have to presribe either the ux through the aperture M

�(u) =

Z

M

N � ud�;

or the pressure drop at in�nity (in a sense) between the upper and lower

subdomains 


�

[p℄ = lim

jxj!1;x2


+

p(x)� lim

jxj!1;x2


�

p(x);

as an additional boundary ondition. Here, N denotes the unit normal

vetor on M direted to 


�

and the ux �(u) is independent of the hoie

of M sine r � u = 0 in 
. Consider stationary solutions of (1.1); then one

an formally derive the energy relation

Z




jru(x)j

2

dx = [p℄�(u);

from whih the importane of these two physial quantities stems. Later on,

the observation of Heywood in the L

2

framework was developed by Farwig

and Sohr within the framework of L

q

theory for the stationary Stokes and

Navier-Stokes systems [19℄ and also the (generalized) Stokes resolvent system

[20℄, [16℄. Espeially, in the latter ase, they lari�ed that the assertion

on the uniqueness depends on the lass of solutions under onsideration.

Indeed, the additional ondition must be required for the uniqueness if q >

n=(n � 1), but otherwise, the solution is unique without any additional

ondition; for more details, see Farwig [16℄, Theorem 1.2.

The results of Farwig and Sohr [20℄ are also the �rst step to disuss the

nonstationary problem (1.1) in the L

q

spae. They showed the Helmholtz

deomposition of the L

q

spae of vetor �elds (see also Miyakawa [49℄)

L

q

(
) = L

q

�

(
) � L

q

�

(
) for n � 2 and 1 < q < 1, where L

q

�

(
) is the

ompletion in L

q

(
) of the lass of all smooth, solenoidal and ompatly

supported vetor �elds, and L

q

�

(
) = frp 2 L

q

(
); p 2 L

q

lo

(
)g. The spae

L

q

�

(
) is haraterized as ([20℄, Lemma 3.1)
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L

q

�

(
) = fu 2 L

q

(
);r � u = 0; � � uj

�


= 0; �(u) = 0g; (1.2)

where � is the unit outer normal vetor on �
. Here, the ondition �(u) = 0

follows from the other ones and may be omitted if q � n=(n � 1), but

otherwise, the element of L

q

�

(
) must possess this additional property. Using

the projetion P

q

from L

q

(
) onto L

q

�

(
) assoiated with the Helmholtz

deomposition, we an de�ne the Stokes operator A = A

q

= �P

q

� on

L

q

�

(
) with a right domain as in setion 2. Then the operator �A generates

a bounded analyti semigroup e

�tA

in eah L

q

�

(
); 1 < q < 1, for n � 2

([20℄, Theorem 2.5).

Besides [31℄ and [19℄ ited above, there are some other studies on the

stationary Stokes and Navier-Stokes systems in domains with nonompat

boundaries inluding aperture domains. We refer to Galdi [26℄, Pilekas [50℄

and the referenes therein.

We are interested in strong solutions to the nonstationay problem (1.1).

However, there are no results on the global existene of suh solutions in

the L

q

framework unless q = 2, while a few loal existene theorems are

known. In the 3-dimensional ase, Heywood [31℄, [32℄ �rst onstruted a lo-

al solution to (1.1) with a presribed either �(u(t)) or [p(t)℄, whih should

satisfy some regularity assumptions with respet to the time variable, when

a 2 H

2

(
) ful�lls some ompatibility onditions. Franzke [23℄ has reently

developed the L

q

theory of loal solutions via the approah of Giga and

Miyakawa [29℄, whih is traed bak to Fujita and Kato [24℄, with use of

frational powers of the Stokes operator. When a suitable �(u(t)) is pre-

sribed, his assumption on initial data is for instane that a 2 L

q

(
); q > n,

together with some ompatibility onditions. The reason why the ase q = n

is exluded is the lak of informations about purely imaginary powers of the

Stokes operator. In order to disuss also the ase where [p(t)℄ is presribed,

Franzke introdued another kind of Stokes operator assoiated with the pres-

sure drop ondition, whih generates a bounded analyti semigroup on the

spae fu 2 L

q

(
);r � u = 0; � � uj

�


= 0g for n � 3 and n=(n� 1) < q < n

(based on a resolvent estimate due to Farwig [16℄). Beause of this restri-

tion on q, the L

q

theory with q � n is not available under the pressure drop

ondition and thus one annot avoid a regularity assumption to some extent

on initial data.

It is possible to disuss the L

2

theory of global strong solutions for an

arbitrary unbounded domain (with smooth boundary) in a uni�ed way sine

the Stokes operator is a nonnegative selfadjoint one in L

2

�

; see Heywood [33℄

(n = 3), Kozono and Ogawa [40℄ (n = 2), [41℄ (n = 3) and Kozono and Sohr

[43℄ (n = 4; 5). Espeially, from the viewpoint of the lass of initial data,

optimal results were given by [40℄, [41℄ and [43℄. In fat, they onstruted

a global solution with various deay properties for small a 2 D(A

n=4�1=2

2

)

3



(when n = 2, the smallness is not neessary). Here, we should reall the

ontinuous embedding relation D(A

n=4�1=2

2

) � L

n

�

. For the aperture domain


 their solutions u(t) should satisfy the hidden ux ondition �(u(t)) = 0

on aount of u(t) 2 L

2

�

(
) together with (1.2). In his Doktorshrift [22℄

Franzke studied, among others, the global existene of weak and strong

solutions in a 3-dimensional aperture domain when either �(u(t)) or [p(t)℄ is

presribed (the global existene of the former for n � 2 is overed by Masuda

[47℄ when �(u(t)) = 0). As for the latter, indeed, the loal strong solution in

the L

2

spae onstruted by himself [21℄ was extended globally in time under

the ondition that both a 2 H

1

0

(
) (with ompatibility onditions) and the

other data are small in a sense, however, his method gave no information

about the large time behavior of the solution.

The purpose of the present paper is to provide the global existene the-

orem for a unique strong solution u(t) of (1.1), whih satis�es the ux on-

dition �(u(t)) = 0 and some deay properties with de�nite rates that seem

to be optimal, for instane,

ku(t)k

L

1

(
)

+ kru(t)k

L

n

(
)

= o

�

t

�1=2

�

;

as t ! 1, when the initial veloity a is small enough in L

n

�

(
); n � 3.

The spae L

n

is now well known as a reasonable lass of initial data, from

the viewpoint of saling invariane, to �nd a global strong solution within

the framework of L

q

theory. We derive further sharp deay properties of

the solution u(t) under the additional assumption a 2 L

1

(
) \ L

n

�

(
); for

instane, the daay rate given above is improved as O(t

�n=2

). For the proof,

as is well known, it is ruial to establish the L

q

-L

r

estimates of the Stokes

semigroup

ke

�tA

fk

L

r

(
)

� Ct

��

kfk

L

q

(
)

; (1.3)

kre

�tA

fk

L

r

(
)

� Ct

���1=2

kfk

L

q

(
)

; (1.4)

for all t > 0 and f 2 L

q

�

(
), where � = (n=q � n=r)=2 � 0. Reently for

n � 3 Abels [1℄ has proved some partial results: (1.3) for 1 < q � r <1 and

(1.4) for 1 < q � r < n. However, beause of the lak of (1.4) for the most

important ase q = r = n, his results are not satisfatory for the onstrution

of the global strong solution possessing various time-asymptoti behaviors as

long as one follows the straightforward method of Kato [36℄ (without using

duality arguments in [42℄, [6℄, [44℄, [45℄ and [34℄). In this paper we onsider

the ase n � 3 and prove

(1.3) for 1 � q � r � 1 (q 6=1; r 6= 1);

4



and

(1.4) for 1 � q � r � n (r 6= 1) and 1 � q < n < r <1;

here, when q = 1, f should be taken from L

1

(
)\L

s

�

(
) for some s 2 (1;1).

Estimate (1.4) is thus available, in other words, for r = n if q = n, for

r 2 [q;1) if q 2 (1; n), and for r 2 (1;1) if q = 1.

Up to now we have the same global existene result as above for the

whole spae (Kato [36℄), the half spae (Ukai [58℄), bounded domains (Giga

and Miyakawa [29℄) and exterior domains (Iwashita [35℄) sine the L

q

-L

r

estimates (1.3) and (1.4) are well established for these four types of domains.

Let us give a brief survey on the literature onerning the L

q

-L

r

estimates.

For the whole spae the Stokes semgroup is essentially the same as the

heat semigroup beause the Laplae operator ommutes with the Helmholtz

projetion. For the half spae Ukai [58℄ expliitly wrote down a solution

foumula of the Stokes system and derived (1.3) and (1.4) for n � 2 and

1 < q � r < 1. See also Borhers and Miyakawa [3℄ for (1.3) with 1 �

q < r � 1 and the following literarure onerning marginal ases, that is,

(1.3) for q = r = 1 and (1.4) for q = r = 1 or 1: Giga, Matsui and Y.

Shimizu [28℄, Y. Shimizu [54℄, Desh, Hieber and Pr�uss [15℄ and Shibata and

S. Shimizu [53℄. For bounded domains (1.3) and (1.4) are dedued from the

result of Giga [27℄ on a haraterization of the domains of frational powers

of the Stokes operator. In this ase, moreover, an exponential deay property

of the semigroup for large t is available. For exterior domains with n � 3,

based on (1.3) for q = r due to Borhers and Sohr [7℄, some partial results

were given by Iwashita [35℄, Giga and Sohr [30℄ and Borhers and Miyakawa

[4℄; in partiular, Iwashita proved (1.3) for 1 < q � r <1 and (1.4) for 1 <

q � r � n, whih made it possible to onstrut a global solution. Later on,

due to the following authors, (1.3) for n � 2; 1 � q � r � 1 (q 6=1; r 6= 1)

and (1.4) for n � 2; 1 � q � r � n (r 6= 1) were also derived: Chen [11℄

(n = 3), Shibata [52℄ (n = 3), Borhers and Varnhorn [9℄ (n = 2, (1.3) for

q = r), Dan and Shibata [13℄, [14℄ (n = 2), Dan, Kobayashi and Shibata [12℄

(n = 2; 3) and Maremonti and Solonnikov [46℄ (n � 2).

In the proof of the L

q

-L

r

estimates, it seems to be heuristially rea-

sonable to ombine some loal deay properties near the aperture with the

L

q

-L

r

estimates of the Stokes semigroup for the half spae by means of a lo-

alization proedure sine the aperture domain 
 is obtained from H

+

[H

�

by a perturbation within a ompat region. Indeed, Abels [1℄ used this idea

that was well developed by Iwashita [35℄ and, later, Kobayashi and Shi-

bata [37℄ in the ase of exterior domains. We should however note that the

boundary �
 is nonompat; thus, a diÆulty is to dedue the sharp loal

energy deay estimate

ke

�tA

fk

W

1;q

(


R

)

� Ct

�n=2q

kfk

L

q

(
)

; t � 1; (1.5)

5



for f 2 L

q

�

(
); 1 < q < 1, where 


R

= fx 2 
; jxj < Rg, but this is

the essential part of our proof (Lemma 5.3). Estimate (1.5) improves the

loal energy deay given by Abels [1℄, in whih a little slower rate t

�n=2q+"

was shown. In [1℄, similarly to Iwashita [35℄, a resolvent expansion around

the origin � = 0 was derived in some weighted funtion spaes. To this end,

Abels made use of the Ukai formula of the Stokes semigroup for the half spae

([58℄) and, in order to estimate the Riesz operator appearing in this formula,

he had to introdue Mukenhoupt weights, whih aused some restritions

although his analysis itself is of interest. On the other hand, Kobayashi

and Shibata [37℄ re�ned the proof of Iwashita in some sense and obtained

the L

q

-L

r

estimates of the Oseen semigroup for the 3-dimensional exterior

domain. As a partiular ase, the result of [37℄ inludes the estimates of the

Stokes semigroup as well. In this paper we employ in priniple the strategy

developed by [37℄ (without using any weighted funtion spae) and extend

the method to general n � 3.

This paper onsists of six setions. In the next setion, after notation

is �xed, we present the preise statement of our main results: Theorem 2.1

on the L

q

-L

r

estimates of the Stokes semigroup, Theorem 2.2 on the global

existene and deay properties of the Navier-Stokes ow, and Theorem 2.3 on

some further asymptoti behaviors of the obtained ow under an additional

summability assumption on initial data. We obtain an information about a

pressure drop as well in the last theorem.

Setion 3 is devoted to the investigation of the Stokes resolvent for the

half spae H = H

+

or H

�

. We derive some regularity estimates near the

origin � = 0 of (� + A

H

)

�1

P

H

f when f 2 L

q

(H) has a bounded support,

where A

H

= �P

H

� is the Stokes operator for the half spae H (for the

notation, see setion 2). Although the obtained estimates do not seem to be

optimal ompared with those shown by [37℄ for the whole spae, the results

are suÆient for our aim and the proof is rather elementary: in fat, we

represent the resolvent (� + A

H

)

�1

in terms of the semigroup e

�tA

H

and,

with the aid of loal energy deay properties of this semigroup, we have

only to perform several integrations by parts and to estimate the resulting

formulae. One needs neither Fourier analysis nor resolvent expansions.

In setion 4, based on the results for the half spae, we proeed to the

analysis of the Stokes resolvent for the aperture domain 
. To do so, in

an analogous way to [35℄, [37℄ and [1℄, we �rst onstrut the resolvent (�+

A)

�1

Pf near the origin � = 0 for f 2 L

q

(
) with bounded support by use

of the operator (� + A

H

)

�1

P

H

, the Stokes ow in a bounded domain and

a ut-o� funtion together with the result of Bogovski

�

i [2℄ on the boundary

value problem for the equation of ontinuity. And then, for the same f as

above, we dedue essentially the same regularity estimates near the origin

� = 0 of (�+A)

�1

Pf as shown in setion 3.

In setion 5 we prove (1.5) and thereby (1.4) for q = r 2 (1; n℄ as well as

(1.3) for r = 1, from whih the other ases follow. Some of the estimates

6



obtained in setion 4 enable us to justify a representation formula of the

semigroup e

�tA

Pf in W

1;q

(


R

) in terms of the Fourier inverse transform of

�

m

s

(is+A)

�1

Pf when f 2 L

q

(
) has a bounded support, where n = 2m+1

or n = 2m + 2 (see (5.3); we note that the formula is not valid for n = 2).

We then appeal to the lemma due to Shibata ([51℄; see also [37℄ and a

reent development [53℄), whih tells us a relation between the regularity of

a funtion at the origin and the deay property of its Fourier inverse image,

so that we obtain another loal energy deay estimate

ke

�tA

Pfk

W

1;q

(


R

)

� Ct

�n=2+"

kfk

L

q

(
)

; t � 1; (1.6)

for f 2 L

q

(
); 1 < q < 1, with bounded support, where " > 0 is arbitrary

(Lemma 5.1). Estimate (1.6) was shown in [1℄ only for solenoidal data

f 2 L

q

�

(
) with bounded support, from whih (1.5) with the rate replaed by

t

�n=2q+"

follows through an interpolation argument. But it is ruial for the

proof of (1.5) to use (1.6) even for data whih are not solenoidal (so that the

support of Pf is unbounded). In order to dedue (1.5) from (1.6), we develop

the method in [35℄ and [37℄ based on a loalization argument using a ut-o�

funtion. In fat, we regard the Stokes ow for the aperture domain 
 as the

sum of the Stokes ows for the half spaes H

�

and a ertain perturbed ow.

Sine the Stokes ow for the half spae enjoys the L

q

-L

1

deay estimate

with the rate t

�n=2q

(Borhers and Miyakawa [3℄), our main task is to show

(1.5) for the perturbation part. In ontrast to the ase of exterior domains,

the support of the derivative of the ut-o� funtion touhes the boundary

�
; indeed, this diÆulty ours in all stages of loalization proedures

in the ourse of the proof (setions 4 and 5) and thus we have to arry

out suh proedures arefully. Furthermore, the remainder term arising

from the above-mentioned loalization argument involves the pressure of

the nonstationary Stokes system in the half spae and, therefore, does not

belong to any solenoidal funtion spae. Hene, in order to treat this term,

(1.6) is neessary for non-solenoidal data, while that is not the ase for the

exterior problem.

One Theorem 2.1 is established, one an prove the existene part of

Theorem 2.2 along the lines of Kato [36℄ (see also [24℄ and [29℄) and therefore

the proof may be omitted. Thus, in the �nal setion, we derive various deay

properties of the global strong solution as t!1 to prove the remaining part

of Theorem 2.2 and Theorem 2.3. This will be done by applying e�etively

the L

q

-L

r

estimates. Reently Wiegner [59℄ has disussed in detail sharp

deay properties of exterior Navier-Stokes ows. Our proof is somewhat

di�erent from his and seems to be elementary. When a 2 L

1

(
) \ L

n

�

(
),

some deay rates are better than those shown by [59℄ sine, unlike exterior

Stokes ows, (1.4) is available for 1 � q < n < r <1.

Finally, we ompare the result on re

�tA

with that for exterior Stokes

ows from the viewpoint of oerive estimates of derivatives. For the proof

7



of (1.4) there is another approah based on frational powers of the Stokes

operator. When 
 is an exterior domain (n � 3), Borhers and Miyakawa

[4℄ developed suh an approah and sueeded in the proof of

kruk

L

q

(
)

� CkA

1=2

uk

L

q

(
)

; u 2 D(A

1=2

q

); (1.7)

for 1 < q < n (this restrition is optimal as pointed out by themselves [5℄),

whih implies (1.4) for q � r < n. Independently, as mentioned, Iwashita

[35℄ derived (1.4) for q � r � n and, later, Maremonti and Solonnikov [46℄

showed that the restrition r � n annot be improved for exterior domains.

In our ase of aperture domains, we have (1.4) for q < n < r <1, whih is

a onsequene of the estimate due to Farwig and Sohr ([20℄, Theorem 2.5)

kr

2

uk

L

q

(
)

� CkAuk

L

q

(
)

; u 2 D(A

q

); (1.8)

for 1 < q < n together with an embedding property ([20℄, Lemma 3.1); we

mention that (1.8) holds true for n = 2 as well. This argument does not work

for the exterior problem beause (1.8) is valid only for 1 < q < n=2 (n � 3)

as shown by Borhers and Sohr [7℄ (the restrition on q is again optimal by,

for instane, [5℄). Thus, as for (1.8), we have the better result. We wish we

ould expet (1.7) for every q, whih would imply (1.4) for 1 < q � r <1;

however, so far, no attempts have been made at the boundedness of purely

imaginary powers of the Stokes operator (see [27℄ and [30℄ for bounded and

exterior domains) and, unless q = 2, estimate (1.7) remains open.

2 Results

Before stating our main results, we introdue notation used throught this

paper. We denote upper and lower half spaes by H

�

= fx 2 R

n

;�x

n

> 1g,

and sometimes write H = H

+

or H

�

to state some assertions for the half

spae. Set B

R

= fx 2 R

n

; jxj < Rg for R > 0. Let 
 � R

n

be a given

aperture domain with smooth boundary �
, namely, there is R

0

> 1 so

that


 n B

R

0

= (H

+

[H

�

) nB

R

0

;

in what follows we �x suh R

0

. Sine 
 should be onneted, there are some

apertures and one an take two disjoint subdomains 


�

and a smooth (n�1)-

dimensional manifoldM suh that 
 = 


+

[M [


�

;


�

nB

R

0

= H

�

nB

R

0

andM [�M = �


+

\�


�

� B

R

0

. We set 


R

= 
\B

R

and H

R

= H\B

R

,

whih is one of H

�;R

= H

�

\B

R

, for R > 1.

For a domain G � R

n

, integer j � 0 and 1 � q � 1, we denote by

W

j;q

(G) the standard L

q

-Sobolev spae with norm k �k

j;q;G

so that L

q

(G) =

8



W

0;q

(G) with norm k�k

q;G

. The spae W

j;q

0

(G) is the ompletion of C

1

0

(G),

the lass of C

1

funtions having ompat support in G, in the norm k�k

j;q;G

,

and W

�j;q

(G) stands for its dual spae with norm k � k

�j;q;G

. For simpliity,

we use the abbreviations k �k

q

for k �k

q;


and k �k

j;q

for k �k

j;q;


when G = 
.

We often use the same symbols for denoting the vetor and salar funtion

spaes if there is no onfusion. It is onvenient to introdue a Banah spae

L

q

[R℄

(G) = fu 2 L

q

(G); supp u � G

R

g; G = 
 or H;

for R > 1, where supp u denotes the support of the funtion u. For a Banah

spae X we denote by B(X) the Banah spae whih onsists of all bounded

linear operators from X into itself.

Given R � R

0

, we take (and �x) two ut-o� funtions  

�;R

satisfying

 

�;R

2 C

1

(R

n

; [0; 1℄);  

�;R

(x) =

�

1 in H

�

n B

R+1

;

0 in H

�

[B

R

:

(2.1)

In some loalization proedures with use of the ut-o� funtions above, the

bounded domain of the form

D

�;R

= fx 2 H

�

;R < jxj < R+ 1g

appears, and for this we need the following result of Bogovski

�

i [2℄ whih

provides a ertain solution having an optimal regularity of the boundary

value problem for r � u = f with u = 0 on the boundary (see also Borhers

and Sohr [8℄, Theorem 2.4 (a)(b)() and Galdi [26℄, Chapter III): there is a

linear operator S

�;R

from C

1

0

(D

�;R

) to C

1

0

(D

�;R

)

n

suh that for 1 < q <1

and integer j � 0

kr

j+1

S

�;R

fk

q;D

�;R

� Ckr

j

fk

q;D

�;R

; (2.2)

with C = C(R; q; j) > 0 independent of f 2 C

1

0

(D

�;R

) (where r

j

denotes

all the j-th derivatives); and

r � S

�;R

f = f;

for all f 2 C

1

0

(D

�;R

) with

R

D

�;R

f(x)dx = 0. By (2.2) the operator S

�;R

extends uniquely to a bounded operator fromW

j;q

0

(D

�;R

) toW

j+1;q

0

(D

�;R

)

n

.

For G = 
;H and a smooth bounded domain (n � 2), let C

1

0;�

(G) be the

set of all solenoidal (divergene free) vetor �elds whose omponents belong

to C

1

0

(G), and L

q

�

(G) the ompletion of C

1

0;�

(G) in the norm k � k

q;G

. If,

in partiular, G = 
, then the spae L

q

�

(
) is haraterized as (1.2). The

spae L

q

(G) of vetor �elds admits the Helmholtz deomposition

L

q

(G) = L

q

�

(G)� L

q

�

(G); 1 < q <1;

9



with L

q

�

(G) = frp 2 L

q

(G); p 2 L

q

lo

(G)g; see [25℄, [55℄ for bounded do-

mains, [3℄, [48℄ for G = H and [20℄, [49℄ for G = 
. Let P

q;G

be the

projetion operator from L

q

(G) onto L

q

�

(G) assoiated with the deomposi-

tion above. Then the Stokes operator A

q;G

is de�ned by the solenoidal part

of the Laplae operator, that is,

D(A

q;G

) =W

2;q

(G) \W

1;q

0

(G) \ L

q

�

(G); A

q;G

= �P

q;G

�;

for 1 < q < 1. The dual operator A

�

q;G

of A

q;G

oinides with A

q=(q�1);G

on L

q

�

(
)

�

= L

q=(q�1)

�

(
). We use, for simpliity, the abbreviations P

q

for

P

q;


and A

q

for A

q;


, and the subsript q is also often omitted if there is no

onfusion. The Stokes operator enjoys the paraboli resolvent estimate

k(�+A

G

)

�1

k

B(L

q

�

(G))

� C

"

=j�j; (2.3)

for j arg �j � � � " (� 6= 0), where " > 0 is arbitrary; see [48℄, [3℄, [17℄,

[18℄, [15℄ for G = H and [20℄ for G = 
. Estimate (2.3) implies that the

operator �A

G

generates a bounded analyti semigroup fe

�tA

G

; t � 0g of

lass (C

0

) in eah L

q

�

(G); 1 < q <1. We write E(t) = e

�tA

H

, whih is one

of E

�

(t) = e

�tA

H

�

.

The �rst theorem provides the L

q

-L

r

estimates of the Stokes semigroup

e

�tA

for the aperture domain 
.

Theorem 2.1 Let n � 3.

1. Let 1 � q � r � 1 (q 6= 1; r 6= 1). There is a onstant C =

C(
; n; q; r) > 0 suh that (1.3) holds for all t > 0 and f 2 L

q

�

(
)

unless q = 1; when q = 1, the assertion remains true if f is taken

from L

1

(
) \ L

s

�

(
) for some s 2 (1;1).

2. Let 1 � q � r � n (r 6= 1) or 1 � q < n < r <1. There is a onstant

C = C(
; n; q; r) > 0 suh that (1.4) holds for all t > 0 and f 2 L

q

�

(
)

unless q = 1; when q = 1, the assertion remains true if f is taken from

L

1

(
) \ L

s

�

(
) for some s 2 (1;1).

3. Let 1 < q <1 and f 2 L

q

�

(
). Then

ke

�tA

fk

r

= o(t

��

)

�

as t! 0 if q < r � 1;

as t!1 if q � r � 1;

(2.4)

kre

�tA

fk

r

= o(t

���1=2

) (2.5)

�

as t! 0 if q � r � 1;

as t!1 if q � r � n; q < n < r <1;
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where � = (n=q� n=r)=2. Furthermore, for eah preompat set K in

L

q

�

(
) every onvergene above is uniform with respet to f 2 K.

Remark 2.1. Estimate (1.4) for large t is not proved in the following ases:

(i) n < q = r < 1, (ii) n � q < r < 1. For the ase (i), the deay rate

t

�n=2q

will be shown in Lemma 5.4. Sine we have (1.4) for q < n < r <1,

a better deay rate than t

�n=2q

an be derived for the ase (ii) through

an interpolation argument; however, we do not know optimal deay rates of

re

�tA

in both the ases (i) and (ii). Aording to Maremonti and Solonnikov

[46℄, the deay rate t

�n=2q

is optimal for exterior Stokes ows whenever

r > n.

Remark 2.2. Let 1 � q � r � 1 (q 6= 1; r 6= 1). The L

q

-L

r

estimate for

�

t

e

�tA

with the rate t

���1

is nothing but a simple orollary to (1.3). In

fat, for example,

k�

t

e

�tA

fk

1

� Ct

�n=2s

kAe

�(t=2)A

fk

s

� Ct

�n=2�1

kfk

1

;

for t > 0 and f 2 L

1

(
) \ L

s

�

(
).

By use of the Stokes operator A, one an formulate the problem (1.1)

subjet to the vanishing ux ondition

�(u(t)) =

Z

M

N � u(t)d� = 0; t � 0; (2.6)

as the Cauhy problem

�

t

u+Au+ P (u � ru) = 0; t > 0;u(0) = a; (2.7)

in L

q

�

(
). Given a 2 L

n

�

(
) and 0 < T � 1, a measurable funtion u

de�ned on 
� (0; T ) is alled a strong solution of (1.1) with (2.6) on (0; T )

if u is of lass

u 2 C([0; T );L

n

�

(
)) \ C(0; T ;D(A

n

)) \C

1

(0; T ;L

n

�

(
))

together with lim

t!0

ku(t) � ak

n

= 0 and satis�es (2.7) for 0 < t < T in

L

n

�

(
).

The next theorem tells us the global existene of a strong solution with

several deay properties provided that kak

n

is small enough.

Theorem 2.2 Let n � 3. There is a onstant Æ = Æ(
; n) > 0 with the

following property: if a 2 L

n

�

(
) satis�es kak

n

� Æ, then the problem (1.1)

with (2.6) admits a unique strong solution u(t) on (0;1), whih enjoys

ku(t)k

r

= o

�

t

�1=2+n=2r

�

for n � r �1; (2.8)
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kru(t)k

n

= o

�

t

�1=2

�

; (2.9)

k�

t

u(t)k

n

+ kAu(t)k

n

= o

�

t

�1

�

; (2.10)

as t!1.

Remark 2.3. When one presribes a nontrivial ux

�(u(t)) = F (t) 2 C

1;�

([0; T ℄);

with some � > 0 and T > 0, there is T

�

2 (0; T ℄ suh that the problem (1.1)

with the ux ondition admits a unique strong solution on (0; T

�

) provided

that a 2 L

n

(
) satis�es the ompatibility onditions r � a = 0; � � aj

�


= 0

and �(a) = F (0). This improves a related result of Franzke [23℄ and an

be proved in the same manner as the proof of Theorem 2.2 with the aid

of the auxiliary funtion of Heywood ([31℄, Lemma 11), whih is used for

the redution of the problem to an equivalent one with the vanishing ux

ondition (2.6). As is well known, (2.4) and (2.5) as t! 0 play an important

role for the onstrution of the above loal solution.

Remark 2.4. The solution obtained in Theorem 2.2 is unique within the

lass

u 2 C([0;1);L

n

�

(
)); ru 2 C(0;1;L

n

(
));

without assuming any behavior near t = 0 as pointed out by Brezis [10℄.

For the proof, one needs the �nal assertion of Theorem 2.1 on the uniform

behavior of the semigroup as t ! 0 on eah preompat set K in L

n

�

(
)

together with the theory of loal strong solutions mentioned in the previous

remark (with �(u) = F = 0). In fat, it follows from the above property of

the semigroup that the length of the existene interval of the loal solution

an be taken uniformly with respet to a 2 K and that the onvergene (6.4)

of the loal solution as t! 0 is also uniform with respet to a 2 K. These

two fats ombined with the lassial uniqueness theorem of Fujita-Kato

type [24℄ (assuming some behaviors in (6.4) near t = 0) imply the desired

uniqueness result.

Remark 2.5. Consider the 3-dimensional stationary Navier-Stokes problem

w � rw = �w �r�; r � w = 0;

in 
 subjet to wj

�


= 0 and a nontrivial ux ondition �(w) =  2 R.

When jj is small enough, there is a unique solution w suh that w 2 L

q

(
)

for 3=2 < q � 6 and rw 2 L

r

(
) for 1 < r � 2 with krwk

2

2

= [�℄;

see Galdi [26℄. By use of Theorem 2.1 it is possible to show the asymptoti

stability of the small stationary solution w of the lass above for small initial

disturbane in L

3

�

(
) in the sense that the disturbane u(t) deays like (2.8)
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and (2.9) as t!1. In fat, the above summability properties of rw allow

us to deal with the term P (w � ru+u � rw) as a simple perturbation of the

Stokes operator, as was done by Chen [11℄ (Lemma 3.1) and Borhers and

Miyakawa [6℄ (Theorem 3.13); see Remark 6.1.

The �nal theorem shows further deay properties of the global solution

when we additionally impose L

1

-summability on the initial data.

Theorem 2.3 Let n � 3. There is a onstant � = �(
; n) 2 (0; Æ℄ with

the following property: if a 2 L

1

(
) \ L

n

�

(
) satis�es kak

n

� �, then the

solution u(t) obtained in Theorem 2.2 and the assoiated pressure p(t) enjoy

ku(t)k

r

= O

�

t

�(n�n=r)=2

�

for 1 < r � 1; (2.11)

kru(t)k

r

= O

�

t

�(n�n=r)=2�1=2

�

for 1 < r <1; (2.12)

k�

t

u(t)k

r

+ kAu(t)k

r

= O

�

t

�(n�n=r)=2�1

�

for 1 < r <1; (2.13)

kr

2

u(t)k

r

+ krp(t)k

r

= O

�

t

�(n�n=r)=2�1

�

for 1 < r < n; (2.14)

as t ! 1. Moreover, for eah t > 0 there exist two onstants p

�

(t) 2 R

suh that p(t)� p

�

(t) 2 L

r

(


�

) with

kp(t)� p

�

(t)k

r;


�

+ j[p(t)℄j = O

�

t

�(n�n=r)=2�1=2

�

for n=(n� 1) < r <1;

(2.15)

as t!1, where [p(t)℄ = p

+

(t)� p

�

(t).

Remark 2.6. Indeed ru(t) 2 L

r

(
) for r > n even in Theorem 2.2, but we

have asserted nothing about their deay rates sine they do not seem to be

optimal; see Remark 2.1 for the Stokes ow. On the other hand, in Theorem

2.3 the deay rates of ru(t) in L

r

(
) for r > n are better than t

�n=2

for

exterior Navier-Stokes ows shown by Wiegner [59℄. Taking Theorem 5.1 of

[15℄ for the Stokes ow in the half spae into aount, we would not expet

u(t) 2 L

1

(
) in general. Thus the deay rates obtained in Theorem 2.3 seem

to be optimal; that is, for example, ku(t)k

1

= o(t

�n=2

) would not hold true.

Conerning the exterior problem, Kozono [38℄, [39℄ made it lear that the

Stokes and/or Navier-Stokes ows possess L

1

-summability and more rapid

deay properties than (2.11) only in a speial situation.

Remark 2.7. In Theorem 2.2 one ould not de�ne a pressure drop (see Farwig

[16℄, Remark 2.2) sine the solution never belongs to L

r

(
) for r < n. Due
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to the additional summability assumption on the initial data, we obtain in

Theorem 2.3 the pressure drop written in the form

[p(t)℄ =

Z




(�

t

u+ u � ru� u)(t) � wdx;

where w 2W

2;q

(
); n=(n�1) < q <1, is a unique solution (given by [20℄)

of the auxiliary problem

w ��w +r� = 0; r � w = 0;

in 
 subjet to wj

�


= 0 and �(w) = 1. In fat, the formula above is derived

from the relations

Z




w � rp(t)dx = �[p(t)℄�(w) = �[p(t)℄;

Z




u(t) � r�dx = �[�℄�(u(t)) = 0:

3 The Stokes resolvent for the half spae

The resolvent v = (�+ A

H

)

�1

P

H

f together with the assoiated pressure �

solves the system

�v ��v +r� = f; r � v = 0;

in the half spae H = H

+

or H

�

subjet to vj

�H

= 0 for the external fore

f 2 L

q

(H); 1 < q <1, and � 2 C n(�1; 0℄. In this setion we are onerned

with the analysis of v near � = 0. Our method is quite di�erent from Abels

[1℄. One needs the following loal energy deay estimate of the semigroup

E(t) = e

�tA

H

, whih is a simple onsequene of (1.3) for 
 = H.

Lemma 3.1 Let n � 2; 1 < q <1; d > 1 and R > 1. For any small " > 0

and integer k � 0 there is a onstant C = C(n; q; d;R; "; k) > 0 suh that

kr

j

�

k

t

E(t)P

H

fk

q;H

R

� Ct

�j=2�k

(1 + t)

�n=2+"

kfk

q;H

; (3.1)

for t > 0; f 2 L

q

[d℄

(H) and j = 0; 1; 2.

Proof. We make use of the estimate

kr

j

uk

r;H

� CkA

j=2

H

uk

r;H

; u 2 D(A

j=2

r;H

); (3.2)
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for 1 < r <1 and j = 1; 2 (Borhers and Miyakawa [3℄). For 1 < p � q �

r <1 it follows from (1.3) for 
 = H, (3.2) and a property of the analyti

semigroup that

kr

j

�

k

t

E(t)P

H

fk

q;H

R

� CkA

j=2+k

H

E(t)P

H

fk

r;H

� Ct

�j=2�k

kE(t=2)P

H

fk

r;H

� Ct

�j=2�k�(n=p�n=r)=2

kfk

p;H

� Ct

�j=2�k�(n=p�n=r)=2

kfk

q;H

;

for t > 0; f 2 L

q

[d℄

(H) and j = 0; 1; 2. This estimate with p = q = r implies

(3.1) for 0 < t < 1. We may assume that 0 < "=n < minf1=q; 1 � 1=qg; and

then one an take p and r so that 1�1=p = 1=r = "=n and p < q < r. Then

the estimate above yields (3.1) for t � 1. This ompletes the proof. �

Lemma 3.1 is suÆient for our analysis of the resolvent in this setion,

but the loal energy deay estimate of the following form will be used in

setion 5.

Lemma 3.2 Let n � 2; 1 < q < 1 and R > 1. Then there is a onstant

C = C(n; q;R) > 0 suh that

kE(t)fk

2;q;H

R

+ k�

t

E(t)fk

q;H

R

� C(1 + t)

�n=2q

kfk

D(A

q;H

)

; (3.3)

for t � 0 and f 2 D(A

q;H

).

Proof. The left hand side of (3.3) is bounded from above by

C(kA

H

E(t)fk

q;H

+ kE(t)fk

q;H

) � Ckfk

D(A

q;H

)

;

whih implies (3.3) for 0 � t < 1. For t � 1 it follows from (1.3) for 
 = H

with r =1 that

kE(t)fk

q;H

R

� CkE(t)fk

1;H

� Ct

�n=2q

kfk

q;H

:

The other terms

kr

j

E(t)fk

q;H

R

� CkA

j=2

H

E(t)fk

r;H

� Ct

�j=2

kE(t=2)fk

r;H

(j = 1; 2);

k�

t

E(t)fk

q;H

R

� Ct

�1

kE(t=2)fk

r;H

;

deay more rapidly sine we an take r 2 (q;1) above as large as we want.

The proof is omplete. �

We next employ Lemma 3.1 to show some regularity estimates near � = 0

of the Stokes resolvent in the loalized spae W

2;q

(H

R

).
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Lemma 3.3 Let n � 3; 1 < q < 1; d > 1 and R > 1. Given f 2 L

q

[d℄

(H),

set v(�) = (� + A

H

)

�1

P

H

f . For any small " > 0 there is a onstant C =

C(n; q; d;R; ") > 0 suh that

j�j

�

k�

m

�

v(�)k

2;q;H

R

+

m�1

X

k=0

k�

k

�

v(�)k

2;q;H

R

� Ckfk

q;H

; (3.4)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(H), where

m =

�

(n� 1)=2 if n is odd;

n=2� 1 if n is even;

� = �(") = 1 +m�

n

2

+ " =

�

1=2 + " if n is odd;

" if n is even:

Furthermore, we have

sup

�

kv(�)� wk

2;q;H

R

kfk

q;H

; f 6= 0; f 2 L

q

[d℄

(H)

�

! 0; (3.5)

as �! 0 with Re � � 0, where

w =

Z

1

0

E(t)P

H

fdt:

Proof. We reall the formula

v(�) = (�+A

H

)

�1

P

H

f =

Z

1

0

e

��t

E(t)P

H

fdt; (3.6)

whih is valid in L

q

�

(H) for Re � > 0 and f 2 L

q

(H). In the other region

f� 2 C n (�1; 0℄; Re � � 0g we usually utilize the analyti extension of the

semigroup fE(t); Re t > 0g to obtain the similar formula. For the ase Re

� = 0 (� 6= 0) whih is important for us, however, thanks to the loal energy

deay property (3.1), the formula (3.6) remains valid in the loalized spae

L

q

(H

R

) for f 2 L

q

[d℄

(H) (the funtion w in (3.5) is well-de�ned in L

q

(H

R

)

by the same reasoning). We thus obtain from (3.1)

kr

j

�

k

�

v(�)k

q;H

R

�

Z

1

0

t

k

kr

j

E(t)P

H

fk

q;H

R

dt � Ckfk

q;H

;
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provided that

j = 0; 1 if k = 0; j = 0; 1; 2 if n � 5; 1 � k � m� 1;

j = 2 if k = m;n = 2m+ 1; j = 1; 2 if k = m;n = 2m+ 2:

For fk; jg = f0; 2g we have only to use (3.2) together with (2.3) to see that

kr

2

v(�)k

q;H

R

� CkA

H

(�+A

H

)

�1

P

H

fk

q;H

� Ckfk

q;H

:

The remaining ase k = m is the most important part of (3.4). Sine

k�

m

�

v(�)k

2;q;H

R

� Cm!k(�+A

H

)

�(m+1)

P

H

fk

D(A

q;H

)

� Cm!fj�j

�m

+ j�j

�(m+1)

gkfk

q;H

;

we have the assertion for j�j � 1. For 0 < j�j < 1 and odd n (resp. even n),

we have already shown the estimate as above when j = 2 (resp. j = 1; 2).

Thus, let j = 0 or 1 for n = 2m + 1 and j = 0 for n = 2m + 2. We divide

the integral of (3.6) into two parts

�

m

�

v(�) =

(

Z

1=j�j

0

+

Z

1

1=j�j

)

e

��t

(�t)

m

E(t)P

H

fdt = w

1

(�) + w

2

(�):

Then (3.1) implies

kr

j

w

1

(�)k

q;H

R

� Cj�j

��+j=2

kfk

q;H

;

for f 2 L

q

[d℄

(H). On the other hand, by integration by parts we get

w

2

(�) =

e

��=j�j

�

�

�1

j�j

�

m

E

�

1

j�j

�

P

H

f +

Z

1

1=j�j

e

��t

�

�

t

[(�t)

m

E(t)P

H

f ℄dt;

in L

q

(H

R

) sine (3.1) implies lim

t!1

t

m

kE(t)P

H

fk

q;H

R

= 0. With the aid

of (3.1) again we see that

kr

j

w

2

(�)k

q;H

R

�

1

j�j

m+1

kr

j

E(1=j�j)P

H

fk

q;H

R

+

1

j�j

Z

1

1=j�j

kr

j

�

t

[t

m

E(t)P

H

f ℄ k

q;H

R

dt

� Cj�j

��+j=2

kfk

q;H

;

for f 2 L

q

[d℄

(H). Colleting the estimates above leads us to (3.4). We next

show (3.5). Sine je

��t

�1j � 2

1��

j�j

�

t

�

for Re � � 0 and � 2 (0; 1℄, we have

kr

j

(v(�) � w)k

q;H

R

� 2

1��

j�j

�

Z

1

0

t

�

kr

j

E(t)P

H

fk

q;H

R

dt;

for j = 0; 1; 2. From (3.1) together with a suitable hoie of � (for instane,

� < 1=2 for n = 3), we onlude (3.5). �
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Remark 3.1. When n = 2, one an show j�j

�

kvk

2;q;H

R

� Ckfk

q;H

(with

� = ") whih orresponds to (3.4) with m = 0. However, this will not help

us sine our key formula (5.3) is not valid for m = 0.

Remark 3.2. The Green tensor assoiated with the Stokes semigroup E(t)

for the half spae (as well as the projetion P

H

) was expliitly given by

Solonnikov [56℄, Maremonti and Solonnikov [46℄ (Setion 2). In view of

the simple relation

R

1

0

(4�t)

�n=2

e

�jxj

2

=4t

dt = �(n=2)=2(n� 2)�

n=2

jxj

n�2

for

n � 3, the funtion w in (3.5) is the solution written by the Green tensor

for the stationary Stokes problem in H and, thereby, we know the lass of

w (for the latter Green tensor, see for instane [26℄).

Finally, we derive further information on the regularity of the resolvent

along the imaginary axis.

Lemma 3.4 Let n � 3; 1 < q <1; d > 1 and R > 1. Set

�

(k)

H

(s) = �

k

s

(is+A

H

)

�1

P

H

(s 2 R n f0g; k = m or m� 1);

where i =

p

�1. Then, for any small " > 0, there is a onstant C =

C(n; q; d;R; ") > 0 suh that

k�

(m)

H

(s+ h)f � �

(m)

H

(s)fk

2;q;H

R

� Cjhjjsj

���1

kfk

q;H

; (3.7)

k�

(m�1)

H

(s+ h)f � �

(m�1)

H

(s)fk

2;q;H

R

� Cjhjjsj

��

kfk

q;H

; (3.8)

for h 2 R; jsj > 2jhj and f 2 L

q

[d℄

(H), where m and � = �(") are the same

as in Lemma 3.3.

Proof. Estimate (3.8) is a diret onsequene of (3.4). In fat, we see that

k�

(m�1)

H

(s+ h)f � �

(m�1)

H

(s)fk

2;q;H

R

�

�

�

�

�

Z

s+h

s

k�

(m)

H

(�)fk

2;q;H

R

d�

�

�

�

�

� Ckfk

q;H

�

�

�

�

Z

s+h

s

j� j

��

d�

�

�

�

�

;

whih together with the relation js+hj � jsj � jhj � jsj=2 implies (3.8). We

next show (3.7). By (3.6) with Re � = 0 in L

q

(H

R

) we have

�

(m)

H

(s+ h)f � �

(m)

H

(s)f

= (�i)

m

(

Z

1=jsj

0

+

Z

1

1=jsj

)

e

�ist

(e

�iht

� 1)t

m

E(t)P

H

fdt = (�i)

m

(w

1

+ w

2

):

For the onveniene we introdue the funtion

F

k

(t) = �

k

t

[t

m

E(t)P

H

f ℄; k � 0:

18



We then dedue from (3.1)

kF

k

(t)k

2;q;H

R

� Ct

�k+m�1

(1 + t)

�n=2+1+"

kfk

q;H

; (3.9)

for t > 0 and f 2 L

q

[d℄

(H). Taking je

�iht

� 1j � jhjt into aount, we see

from (3.9) that

kw

1

k

2;q;H

R

� jhj

Z

1=jsj

0

tkF

0

(t)k

2;q;H

R

dt

� Cjhjkfk

q;H

Z

1=jsj

0

t

1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). By integration by parts we split w

2

= w

21

+ w

22

+ w

23

,

where

w

21

=

ih

s(s+ h)

e

�i(s+h)=jsj

F

0

�

1

jsj

�

�

i

s

e

�is=jsj

(e

�ih=jsj

� 1)F

0

�

1

jsj

�

;

w

22

=

ih

s(s+ h)

Z

1

1=jsj

e

�i(s+h)t

F

1

(t)dt;

w

23

=

�i

s

Z

1

1=jsj

e

�ist

(e

�iht

� 1)F

1

(t)dt:

Sine 1=js(s+ h)j � 2=jsj

2

for jsj > 2jhj, it follows from (3.9) that

kw

21

k

2;q;H

R

� 3jhjjsj

�2

kF

0

(1=jsj)k

2;q;H

R

� Cjhjjsj

�2�m+n=2�"

(1 + jsj)

�n=2+1+"

kfk

q;H

� Cjhjjsj

���1

kfk

q;H

;

and that

kw

22

k

2;q;H

R

� 2jhjjsj

�2

Z

1

1=jsj

kF

1

(t)k

2;q;H

R

dt

� Cjhjjsj

�2

kfk

q;H

Z

1

1=jsj

t

�1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). We perform integration by parts one more to obtain

w

23

= w

231

+ w

232

+ w

233

with

w

231

=

h

s

2

(s+ h)

e

�i(s+h)=jsj

F

1

�

1

jsj

�

�

1

s

2

e

�is=jsj

(e

�ih=jsj

� 1)F

1

�

1

jsj

�

;
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w

232

=

h

s

2

(s+ h)

Z

1

1=jsj

e

�i(s+h)t

F

2

(t)dt;

w

233

=

�1

s

2

Z

1

1=jsj

e

�ist

(e

�iht

� 1)F

2

(t)dt:

By the same way as in w

21

+ w

22

we �nd

kw

231

+ w

232

k

2;q;H

R

� 3jhjjsj

�3

(

kF

1

(1=jsj)k

2;q;H

R

+

Z

1

1=jsj

kF

2

(t)k

2;q;H

R

dt

)

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). Finally, we use (3.9) again to get

kw

233

k

2;q;H

R

� jhjjsj

�2

Z

1

1=jsj

tkF

2

(t)k

2;q;H

R

dt

� Cjhjjsj

�2

kfk

q;H

Z

1

1=jsj

t

�1+m�n=2+"

dt

� Cjhjjsj

���1

kfk

q;H

;

for f 2 L

q

[d℄

(H). We gather all the estimates above to onlude (3.7). �

Remark 3.3. Estimate (3.7) together with (3.4) implies

Z

1

�1

k�

(m)

H

(s+ h)f � �

(m)

H

(s)fk

2;q;H

R

ds � Cjhj

1��

kfk

q;H

;

for h 2 R and f 2 L

q

[d℄

(H) (see Lemma 4.4 and its proof), whih is related

to the assumption of Lemma 5.2. In Lemma 4.4 we will dedue the same

regularity of �

m

s

(is + A)

�1

Pf for an aperture domain 
 as above when

f 2 L

q

(
) has a bounded support. For the Oseen resolvent system in the

3-dimensional whole spae, Kobayashi and Shibata [37℄ (Lemma 3.6) showed

a sharper estimate; indeed, jhj

1��

an be replaed by jhj

1=2

. Their method

is di�erent from ours.

4 The Stokes resolvent

In this setion, based on the results for the half spae obtained in the pre-

vious setion, we address ourselves to analogous regularity estimates near

� = 0 of the Stokes resolvent u = (� + A)

�1

Pf , whih together with the

assoiated pressure p satis�es the system

�u��u+rp = f; r � u = 0;

in an aperture domain 
 subjet to uj

�


= 0 and �(u) = 0, where f 2

L

q

(
); 1 < q <1 and � 2 C n (�1; 0℄. To this end, as in [35℄, [37℄ and [1℄,
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we start with the onstrution of the resolvent near � = 0 for f 2 L

q

(
)

with bounded support. We �x a smooth bounded subdomain D so that




R

0

+3

� D � 
. Given f 2 L

q

(
), we set v

0

= A

�1

q;D

P

q;D

f and take a

pressure �

0

assoiated to v

0

; they solve the Stokes system

��v

0

+r�

0

= f; r � v

0

= 0;

in D subjet to v

0

j

�D

= 0, where f is understood as the restrition of f on

D. We further set

v

�

(x; �) = (�+A

q;H

�

)

�1

P

q;H

�

[ 

�;R

0

f ℄;

where  

�;R

0

are the ut-o� funtions given by (2.1). One needs also the

ase � = 0

v

�

(x; 0) =

Z

1

0

E

�

(t)P

q;H

�

[ 

�;R

0

f ℄dt;

whih is the solution written by the Green tensor for the Stokes problem in

H

�

(see Remark 3.2). We take the pressures �

�

in H

�

assoiated to v

�

so

that

Z

D

�;R

0

+1

f�

�

(x; �)� �

0

(x)gdx = 0; (4.1)

for eah �. In this setion, for simpliity, we use the abbreviations  

�

for the

ut-o� funtions  

�;R

0

+1

given by (2.1) and S

�

for the Bogovski

�

i operators

S

�;R

0

+1

introdued in setion 2. With use of fv

�

; �

�

g; fv

0

; �

0

g and  

�

together with S

�

, we set

8

>

>

<

>

>

:

v = T (�)f

=  

+

v

+

+  

�

v

�

+ (1�  

+

�  

�

)v

0

�S

+

[(v

+

� v

0

) � r 

+

℄� S

�

[(v

�

� v

0

) � r 

�

℄;

� =  

+

�

+

+  

�

�

�

+ (1�  

+

�  

�

)�

0

:

(4.2)

We here note that

R

D

�;R

0

+1

(v

�

� v

0

) � r 

�

dx = 0 sine r � v

�

= r � v

0

= 0.

An elementary alulation shows that the pair fv; �g satis�es

�v ��v +r� = f +Q(�)f; r � v = 0; (4.3)

in 
 subjet to vj

�


= 0 and

�(v) =

Z

M

N � v

0

d� =

Z




+

\D

r � v

0

dx = 0;
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where

Q(�)f = Q

1

(�)f +Q

2

(�)f (4.4)

with

Q

1

(�)f = �(1�  

+

�  

�

)v

0

� 2r 

+

� r(v

+

� v

0

)� 2r 

�

� r(v

�

� v

0

)

�(� 

+

)(v

+

� v

0

)� (� 

�

)(v

�

� v

0

)

+(r 

+

)(�

+

� �

0

) + (r 

�

)(�

�

� �

0

)

��S

+

[(v

+

� v

0

) � r 

+

℄� �S

�

[(v

�

� v

0

) � r 

�

℄;

and

Q

2

(�)f = �S

+

[(v

+

� v

0

) � r 

+

℄ + �S

�

[(v

�

� v

0

) � r 

�

℄:

By (2.2) we have S

�

[(v

�

� v

0

) �r 

�

℄ 2W

2;q

0

(D

�;R

0

+1

). But one an obtain

the regularity of this term only up to W

2;q

0

(unlike the exterior problem)

and this is the reason why the remaining term Q(�) has been divided into

two parts.

We �rst derive the regularity estimates near � = 0 of T (�) and Q(�).

Lemma 4.1 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. For any

small " > 0 there are onstants C

1

= C

1

(
; n; q; d;R; ") > 0 and C

2

=

C

2

(
; n; q; d; ") > 0 suh that

j�j

�

k�

m

�

T (�)fk

2;q;


R

+

m�1

X

k=0

k�

k

�

T (�)fk

2;q;


R

� C

1

kfk

q

; (4.5)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(
); and

j�j

�

k�

m

�

Q(�)fk

q

+

m�1

X

k=0

k�

k

�

Q(�)fk

q

� C

2

kfk

q

; (4.6)

for Re � � 0 with 0 < j�j � 2 and f 2 L

q

[d℄

(
), where m and � = �(") are

the same as in Lemma 3.3.

Proof. In view of (4.2), we dedue (4.5) immediately from (3.4) together

with (2.2). One an show (4.6) likewise, but it remains to estimate the

pressures �

�

ontained in (4.4). By (4.1) we have

Z

D

�;R

0

+1

�

k

�

�

�

(x; �)dx = 0; 1 � k � m: (4.7)
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On the other hand, from the Stokes resolvent system we obtain

��

k

�

v

�

+ k�

k�1

�

v

�

���

k

�

v

�

+r�

k

�

�

�

= 0; 1 � k � m;

in H

�

. This ombined with (4.7) gives

k(r 

�

)�

k

�

�

�

(�)k

q

� Ckr�

k

�

�

�

(�)k

�1;q;D

�;R

0

+1

� Ckr�

k

�

v

�

(�)k

q;H

�;R

0

+2

+ Cj�jk�

k

�

v

�

(�)k

q;H

�;R

0

+2

+Ckk�

k�1

�

v

�

(�)k

q;H

�;R

0

+2

;

for 1 � k � m. Similarly, for k = 0, we use (4.1) to get

k(r 

�

)(�

�

(�)� �

0

)k

q

� Ckr(�

�

(�)� �

0

)k

�1;q;D

�;R

0

+1

� Ckrv

�

(�)k

q;H

�;R

0

+2

+ Cj�jkv

�

(�)k

q;H

�;R

0

+2

+ Ckfk

q

:

It thus follows from (3.4) that

j�j

�

k(r 

�

)�

m

�

�

�

(�)k

q

+

m�1

X

k=0

k(r 

�

)�

k

�

(�

�

(�)� �

0

)k

q

� Ckfk

q

;

for Re � � 0 with 0 < j�j � 2 and f 2 L

q

[d℄

(
). This ompletes the proof. �

Let us onsider the ase � = 0 and simply write v

�

= v

�

(x; 0). Sine

k(v

�

� v

0

) � r 

�

k

2;q

� Ckfk

q

;

the operator [f 7! (v

�

� v

0

) � r 

�

℄ : L

q

(
) ! W

1;q

0

(D

�;R

0

+1

) is ompat,

whih ombined with (2.2) implies that so is the operator Q

2

(0) : L

q

(
)!

L

q

[d℄

(
), where d � R

0

+ 2. The other part Q

1

(0)f ful�lls

kQ

1

(0)fk

1;q

� Ckfk

q

;

from whih the ompatness of Q

1

(0) : L

q

(
) ! L

q

[d℄

(
) follows; as a on-

sequene, Q(0) = Q

1

(0) + Q

2

(0) is a ompat operator from L

q

[d℄

(
); d �

R

0

+ 2, into itself. We will show that 1 + Q(0) is injetive in L

q

[d℄

(
). Let

f 2 L

q

[d℄

(
) satisfy (1 +Q(0))f = 0. In view of (4.3), the pair fv; �g given

by (4.2) for suh f should obey

��v +r� = 0; r � v = 0;

in 
 subjet to vj

�


= 0 and �(v) = 0. Sine f 2 L

r

[d℄

(
) for 1 < r <

minfn; qg, we have

r

2

v;r� 2 L

r

(
); rv 2 L

nr=(n�r)

(
); v; � 2 L

r

lo

(
);
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espeially, the summability of rv at in�nity is implied by the boundedness

of the support of f . It thus follows from Theorem 1.4 (i) of Farwig [16℄ that

v = r� = 0; here, it should be remarked that the uniqueness holds without

any radiation ondition (unlike the exterior problem disussed in [35℄ and

[37℄). We go bak to (4.2) to see that v

�

= r�

�

= f = 0 in H

�

nB

R

0

+2

and

that v

0

= r�

0

= f = 0 in 


R

0

+1

. Set U

�

= (D[B

R

0

)\H

�

. Both fv

�

; �

�

g

and fv

0

; �

0

g then belong to W

2;q

(U

�

) �W

1;q

(U

�

) and are the solutions of

the Stokes system in U

�

with zero boundary ondition for the external fore

f . They thus oinide with eah other and, in view of (4.2) again, we have

v

0

= r�

0

= f = 0 in D; after all, f = 0 in 
. Owing to the Fredholm

theorem, 1 +Q(0) has a bounded inverse (1 +Q(0))

�1

on L

q

[d℄

(
).

Set �

�

= f� 2 C ; Re � � 0; 0 < j�j � �g for � > 0. Sine

kQ(�)f �Q(0)fk

q

� Ckv

+

(�)� v

+

(0)k

1;q;H

+;R

0

+2

+ Ckv

�

(�)� v

�

(0)k

1;q;H

�;R

0

+2

+Cj�jfkv

+

(�)k

q;H

+;R

0

+2

+ kv

�

(�)k

q;H

�;R

0

+2

+ kv

0

k

q;D

g;

we obtain from (3.5)

kQ(�)�Q(0)k

B(L

q

[d℄

(
))

! 0;

as � ! 0 with Re � � 0, whih implies the existene of a onstant � > 0

suh that 1 + Q(�) has also a bounded inverse (in terms of the Neumann

series) on L

q

[d℄

(
) with uniform bounds

k(1 +Q(�))

�1

k

B(L

q

[d℄

(
))

� C; (4.8)

for � 2 �

�

[ f0g. Sine the resolvent is uniquely determined, one an

represent it for � 2 �

�

and f 2 L

q

[d℄

(
); d � R

0

+ 2, as

(�+A)

�1

Pf = T (�)(1 +Q(�))

�1

f: (4.9)

We are in a position to show an analogous result for the resolvent to

(3.4).

Lemma 4.2 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. Given f 2

L

q

[d℄

(
), set u(�) = (� + A)

�1

Pf . For any small " > 0 there is a onstant

C = C(
; n; q; d;R; ") > 0 suh that

j�j

�

k�

m

�

u(�)k

2;q;


R

+

m�1

X

k=0

k�

k

�

u(�)k

2;q;


R

� Ckfk

q

; (4.10)

for Re � � 0 (� 6= 0) and f 2 L

q

[d℄

(
), where m and � = �(") are the same

as in Lemma 3.3.
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Proof. The problem is only near � = 0 beause we have (2.3) for G = 
.

We may also assume d � R

0

+2 sine L

q

[R

0

℄

(
) � L

q

[d℄

(
) for suh d. It thus

suÆes to show (4.10) for � 2 �

�

by use of (4.9). For suh � and 0 � k � m

we see that �

k

�

(1 +Q(�))

�1

2 B(L

q

[d℄

(
)); furthermore,

j�j

�

k�

m

�

(1 +Q(�))

�1

fk

q

+

m�1

X

k=0

k�

k

�

(1 +Q(�))

�1

fk

q

� Ckfk

q

; (4.11)

for f 2 L

q

[d℄

(
). In fat, we have the representation

�

k

�

(1 +Q(�))

�1

f

= �(1 +Q(�))

�1

[�

k

�

Q(�)℄(1 +Q(�))

�1

f + L

k

(�)(1 +Q(�))

�1

f;

(4.12)

for k � 1 and f 2 L

q

[d℄

(
), where L

1

(�) = 0 and L

k

(�) with k � 2 onsists of

�nite sums of �nite produts of (1 +Q(�))

�1

; �

�

Q(�); � � � ; �

k�1

�

Q(�). Con-

sequently, (4.6) together with (4.8) implies (4.11). In view of

�

k

�

u(�) =

k

X

j=0

�

k

j

�

�

k�j

�

T (�) �

j

�

(1 +Q(�))

�1

f;

we onlude (4.10) from (4.5) and (4.11). �

In the last part of this setion we will omplete the regularity estimate

of the resolvent. To this end, we employ Lemma 3.4 to show the following

lemma.

Lemma 4.3 Let n � 3; 1 < q <1; d � R

0

and R � R

0

. Set

T

(k)

(s) = �

k

s

T (is); Q

(k)

(s) = �

k

s

Q(is) (s 2 R n f0g; 0 � k � m):

For any small " > 0 there is a onstant C = C(
; n; q; d;R; ") > 0 suh that

kT

(k)

(s+ h)f � T

(k)

(s)fk

2;q;


R

+ kQ

(k)

(s+ h)f �Q

(k)

(s)fk

q

�

8

<

:

Cjhjjsj

���1

kfk

q

if k = m;

Cjhjjsj

��

kfk

q

if k = m� 1;

Cjhjkfk

q

if n � 5; 0 � k � m� 2;

(4.13)

for 2jhj < jsj � 1 and f 2 L

q

[d℄

(
), where m and � = �(") are the same as

in Lemma 3.3. Conerning the �rst term of the left-hand side, (4.13) holds

true for h 2 R and jsj > 2jhj.
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Proof. Set

v

(k)

�

(s) = �

k

s

v

�

(is); �

(k)

�

(s) = �

k

s

�

�

(is) (s 2 R n f0g; k = m or m� 1):

It then follows from (4.2) together with (2.2) that

kT

(m)

(s+ h)f � T

(m)

(s)fk

2;q;


R

� Ckv

(m)

+

(s+ h)� v

(m)

+

(s)k

2;q;H

+;R

+ Ckv

(m)

�

(s+ h)� v

(m)

�

(s)k

2;q;H

�;R

:

In order to estimate Q

(m)

, let us investigate the pressures �

(m)

�

. Similarly

to the proof of Lemma 4.1 with the aid of (4.7), one an show

k(r 

�

)f�

(m)

�

(s+ h)� �

(m)

�

(s)gk

q

� Ckr�

(m)

�

(s+ h)�r�

(m)

�

(s)k

�1;q;D

�;R

0

+1

� Ckrv

(m)

�

(s+ h)�rv

(m)

�

(s)k

q;H

�;R

0

+2

+Ck(s+ h)v

(m)

�

(s+ h)� sv

(m)

�

(s)k

q;H

�;R

0

+2

+Cmkv

(m�1)

�

(s+ h)� v

(m�1)

�

(s)k

q;H

�;R

0

+2

:

This ombined with estimates on the other terms by use of (2.2) yields

kQ

(m)

(s+ h)f �Q

(m)

(s)fk

q

� Ckv

(m)

+

(s+ h)� v

(m)

+

(s)k

1;q;H

+;R

0

+2

+Ckv

(m)

�

(s+ h)� v

(m)

�

(s)k

1;q;H

�;R

0

+2

+Cjsjkv

(m)

+

(s+ h)� v

(m)

+

(s)k

q;H

+;R

0

+2

+Cjsjkv

(m)

�

(s+ h)� v

(m)

�

(s)k

q;H

�;R

0

+2

+Cjhjkv

(m)

+

(s+ h)k

q;H

+;R

0

+2

+ Cjhjkv

(m)

�

(s+ h)k

q;H

�;R

0

+2

+Cmkv

(m�1)

+

(s+ h)� v

(m�1)

+

(s)k

q;H

+;R

0

+2

+Cmkv

(m�1)

�

(s+ h)� v

(m�1)

�

(s)k

q;H

�;R

0

+2

:

Hene (3.7), (3.8) and (3.4) imply (4.13) for the ase k = m. For 0 � k �

m� 1 we have

kT

(k)

(s+ h)f � T

(k)

(s)fk

2;q;


R

�

�

�

�

�

Z

s+h

s

kT

(k+1)

(�)fk

2;q;


R

d�

�

�

�

�

;

kQ

(k)

(s+ h)f �Q

(k)

(s)fk

q

�

�

�

�

�

Z

s+h

s

kQ

(k+1)

(�)fk

q

d�

�

�

�

�

;

whih together with (4.5) and (4.6) respetively lead us to (4.13). The proof

is thus omplete. �

The regularity of the resolvent along the imaginary axis given by the

following lemma plays a ruial role in the next setion.
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Lemma 4.4 Let n � 3; 1 < q <1; d � R

0

and R � R

0

. Set

�

(m)

(s) = �

m

s

(is+A)

�1

P (s 2 R n f0g):

For any small " > 0 there is a onstant C = C(
; n; q; d;R; ") > 0 suh that

Z

1

�1

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

ds � Cjhj

1��

kfk

q

; (4.14)

for jhj < h

0

= minf�=4; 1=2g and f 2 L

q

[d℄

(
). Here, m and � = �(") are

the same as in Lemma 3.3, and � > 0 is the onstant suh that (4.9) is valid

for � 2 �

�

.

Proof. We may assume d � R

0

+ 2 (as in the proof of Lemma 4.2). Given

h satisfying jhj < h

0

, we divide the integral into three parts

Z

1

�1

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

ds

=

Z

jsj�2jhj

+

Z

2jhj<jsj�2h

0

+

Z

jsj>2h

0

= I

1

+ I

2

+ I

3

:

With the aid of (4.10), we �nd

I

1

� 2

Z

jsj�3jhj

k�

(m)

(s)fk

2;q;


R

ds � Cjhj

1��

kfk

q

;

for f 2 L

q

[d℄

(
). In order to estimate I

2

, we use the representation

�

(m)

(s)f =

m

X

j=0

�

m

j

�

T

(m�j)

(s) V

(j)

(s)f;

where

V

(j)

(s) = �

j

s

(1 +Q(is))

�1

2 B(L

q

[d℄

(
)) (0 < jsj � �; 0 � j � m):

Then,

�

(m)

(s+ h)f � �

(m)

(s)f

=

m

X

j=0

�

m

j

�

[T

(m�j)

(s+ h)� T

(m�j)

(s)℄ V

(j)

(s+ h)f

+

m

X

j=0

�

m

j

�

T

(m�j)

(s) [V

(j)

(s+ h)� V

(j)

(s)℄f:
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We �rst show

kV

(j)

(s+ h)f � V

(j)

(s)fk

q

�

8

<

:

Cjhjjsj

���1

kfk

q

if j = m;

Cjhjjsj

��

kfk

q

if j = m� 1;

Cjhjkfk

q

if n � 5; 0 � j �m� 2;

(4.15)

for 2jhj < jsj � 2h

0

and f 2 L

q

[d℄

(
). Similarly to the proof of (4.13) for

0 � k � m � 1, (4.11) implies (4.15) for 0 � j � m � 1. As in (4.12), we

have

V

(m)

(s) = �V

(0)

(s)Q

(m)

(s)V

(0)

(s) +W

m

(s)V

(0)

(s);

where W

1

(s) = 0 and, for m � 2, W

m

(s) = i

m

L

m

(is) onsists of �nite sums

of �nite produts of V

0

(s); Q

(1)

(s); � � � ; Q

(m�1)

(s). Therefore, we ollet

(4.6), (4.8), (4.13) and (4.15) for j = 0 to arrive at (4.15) for j = m. It thus

follows from (4.5), (4.11), (4.13) and (4.15) that

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

� Cjhjjsj

���1

kfk

q

;

for 2jhj < jsj � 2h

0

and f 2 L

q

[d℄

(
). As a onsequene, we are led to

I

2

� Cjhjkfk

q

Z

jsj>2jhj

jsj

���1

ds � Cjhj

1��

kfk

q

;

for f 2 L

q

[d℄

(
). Finally, to estimate I

3

, one does not need any loalization.

In fat, sine

�

(m)

(s+ h)f � �

(m)

(s)f = (�i)

m+1

(m+ 1)!

Z

s+h

s

(i� +A)

�(m+2)

Pfd�;

(2.3) gives

k�

(m)

(s+ h)f � �

(m)

(s)fk

2;q;


R

� Ck�

(m)

(s+ h)f � �

(m)

(s)fk

D(A

q

)

� Cjhjjsj

�(m+1)

kfk

q

;

for jsj > 2h

0

(> 2jhj) and f 2 L

q

(
). Therefore, we obtain

I

3

� Cjhjkfk

q

Z

jsj>2h

0

jsj

�(m+1)

ds � Cjhjkfk

q

;

for f 2 L

q

(
). Colleting the estimates above on I

1

; I

2

and I

3

, we onlude

(4.14). �
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5 L

q

-L

r

estimates of the Stokes semigroup

In this setion we will prove Theorem 2.1. As explained in setion 1, the

�rst step is to derive (1.6) for non-solenoidal data with bounded support.

Lemma 5.1 Let n � 3; 1 < q < 1; d � R

0

and R � R

0

. For any small

" > 0 there is a onstant C = C(
; n; q; d;R; ") > 0 suh that

ke

�tA

Pfk

1;q;


R

� Ct

�1=2

(1 + t)

�n=2+1=2+"

kfk

q

; (5.1)

for t > 0 and f 2 L

q

[d℄

(
).

For the proof, the following lemma due to Shibata is ruial sine we

know the regularity of the Stokes resolvent given by Lemmas 4.2 and 4.4.

Lemma 5.2 Let X be a Banah spae with norm k � k and g 2 L

1

(R;X).

If there are onstants � 2 (0; 1) and M > 0 suh that

Z

1

�1

kg(s)kds + sup

h6=0

1

jhj

�

Z

1

�1

kg(s+ h)� g(s)kds �M;

then the Fourier inverse image

G(t) =

1

2�

Z

1

�1

e

ist

g(s)ds

of g enjoys

kG(t)k � CM(1 + jtj)

��

;

with some C > 0 independent of t 2 R.

Remark 5.1. The assumption of Lemma 5.2 is equivalent to

g 2

�

L

1

(R;X); W

1;1

(R;X)

�

�;1

;

where (�; �)

�;1

denotes the real interpolation (the spae to whih g belongs

is known as a Besov spae).

Proof of Lemma 5.2. Although this lemma was already proved by Shibata

[51℄, we give our di�erent proof whih seems to be simpler. Sine kG(t)k �

M=2�, it suÆes to onsider the ase jtj > 1. It is easily seen that if

ht 6= 2j� (j = 0;�1;�2; � � � ), then

G(t) =

e

iht

2�(1 � e

iht

)

Z

1

�1

e

ist

(g(s+ h)� g(s))ds;
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from whih the assumption leads us to

kG(t)k �

M jhj

�

2�j1 � e

iht

j

:

Taking h = 1=t immediately implies the desired estimate. �

Proof of Lemma 5.1. Sine

ke

�tA

Pfk

1;q

� Cke

�tA

Pfk

1=2

D(A

q

)

ke

�tA

Pfk

1=2

q

� Ct

�1=2

kfk

q

; (5.2)

for 0 < t < 1 and f 2 L

q

(
), we will onentrate ourselves on the proof of

(5.1) for t � 1, namely (1.6). Given R � R

0

, we set  = 1 �  

+;R

�  

�;R

,

where the ut-o� funtions  

�;R

are given by (2.1). One an justify the

following representation formula of the semigroup for f 2 L

q

[d℄

(
):

 e

�tA

Pf =

i

m

2�t

m

Z

1

�1

e

ist

 �

(m)

(s)fds; (5.3)

where �

(m)

(s) = �

m

s

(is + A)

�1

P and m is the same as in Lemma 3.3. In

fat, starting from the standard Dunford integral representation, we perform

m-times integrations by parts and then move the path of integration to the

imaginary axis but avoid the origin � = 0, so that

 e

�tA

Pf =

i

m

2�t

m

�

Z

�Æ

�1

+

Z

1

Æ

�

e

ist

 �

(m)

(s)fds

+

(�1)

m

2�it

m

Z

�

Æ

e

�t

 �

m

�

(�+A)

�1

Pfd�;

for any Æ > 0, where �

Æ

= fÆe

i�

;��=2 � � � �=2g (this formula is valid for

f 2 L

q

(
) without  ). Owing to (4.10), the last integral vanishes in L

q

(
)

as Æ ! 0 for f 2 L

q

[d℄

(
); thus, we arrive at (5.3). Now, it follows from

(4.10) and (2.3) that

Z

1

�1

k �

(m)

(s)fk

1;q

ds � C

Z

jsj�1

kfk

q

jsj

�

ds+ C

Z

jsj>1

kfk

q

jsj

m+1=2

ds � Ckfk

q

:

Further, (4.14) and the estimate above respetively imply that

sup

0<jhj<h

0

1

jhj

1��

Z

1

�1

k �

(m)

(s+ h)f �  �

(m)

(s)fk

1;q

ds � Ckfk

q

;

and that

sup

jhj�h

0

1

jhj

1��

Z

1

�1

k �

(m)

(s+ h)f �  �

(m)

(s)fk

1;q

ds
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�

2

h

1��

0

Z

1

�1

k �

(m)

(s)fk

1;q

ds � Ckfk

q

:

Hene, we an apply Lemma 5.2 with X = W

1;q

(
) and g(s) =  �

(m)

(s)f

to the formula (5.3); as a onsequene, we obtain

ke

�tA

Pfk

1;q;


R

� k e

�tA

Pfk

1;q

� Ct

�m

(1 + t)

�1+�

kfk

q

;

for t > 0, whih implies (5.1) for t � 1 and f 2 L

q

[d℄

(
). This ompletes the

proof. �

Remark 5.2. It is possible to show the deay rate t

�n=2+"

of the semigroup in

W

2;q

(


R

) as well. This follows immediately from the proof given above with

X =W

2;q

(
) for n � 5. When n = 3 or 4 (thusm = 1), as in Kobayashi and

Shibata [37℄, we have to introdue a ut-o� funtion � 2 C

1

0

(R; [0; 1℄) with

�(s) = 1 near s = 0; then one an employ Lemma 5.2 with X = W

2;q

(
)

and g(s) = �(s) �

(m)

(s)f to obtain the desired result sine a rapid deay of

the remaining integral far from s = 0 is derived via integration by parts. We

did not follow this proedure beause Lemma 5.1 is suÆient for the proof

of Theorem 2.1.

The next step is to dedue the sharp loal energy deay estimate (1.5)

from Lemma 5.1.

Lemma 5.3 Let n � 3; 1 < q < 1 and R � R

0

. Then there is a onstant

C = C(
; n; q; R) > 0 suh that

ke

�tA

fk

1;q;


R

� Ct

�n=2q

kfk

q

; (5.4)

for t � 2 and f 2 L

q

�

(
); and

ke

�tA

fk

1;q;


R

+ k�

t

e

�tA

fk

q;


R

� C(1 + t)

�n=2q

kfk

D(A

q

)

; (5.5)

for t � 0 and f 2 D(A

q

).

Proof. We employ a loalization proedure whih is similar to [35℄ and [37℄.

Given f 2 L

q

�

(
), we set g = e

�A

f 2 D(A

q

) and intend to derive the deay

estimate of u(t) = e

�tA

g = e

�(t+1)A

f in W

1;q

(


R

) for t � 1. We denote by

p the pressure assoiated to u. We make use of the ut-o� funtions given

by (2.1) and the Bogovski

�

i operator introdued in setion 2. Set

g

�

=  

�;R

0

+1

g � S

�;R

0

+1

[g � r 

�;R

0

+1

℄;

and

v

�

(t) = E

�

(t)g

�

:
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Note that

R

D

�;R

0

+1

g � r 

�;R

0

+1

dx = 0 and that g

�

2 D(A

q;H

�

) with

kg

�

k

D(A

q;H

�

)

� Ckg

�

k

2;q;H

�

� Ckgk

2;q

� Ckgk

D(A

q

)

� Ckfk; (5.6)

by (2.2). We take the pressures �

�

in H

�

assoiated to v

�

in suh a way

that

Z

D

�;R

0

�

�

(x; t)dx = 0; (5.7)

for eah t. In the ourse of the proof of this lemma, for simpliity, we

abbreviate  

�;R

0

to  

�

and S

�;R

0

to S

�

. We now de�ne fu

�

; p

�

g by

u

�

(t) =  

�

v

�

(t)� S

�

[v

�

(t) � r 

�

℄; p

�

(t) =  

�

�

�

(t):

Then it follows from Lemma 3.2 together with (2.2) and (5.6) that

ku

�

(t)k

1;q;


R

� Ckv

�

(t)k

1;q;H

�;L

� C(1 + t)

�n=2q

kfk

q

; (5.8)

for t � 0, where L = maxfR;R

0

+ 1g. Thus, in order to estimate u(t), let

us onsider

v(t) = u(t)� u

+

(t)� u

�

(t); �(t) = p(t)� p

+

(t)� p

�

(t);

whih should obey

�

t

v ��v +r� = K; r � v = 0;

in 
 subjet to vj

�


= 0; �(v) = �(u) = 0 and

vj

t=0

= v

0

= g � g

+

� g

�

2 L

q

[R

0

+2℄

(
) \D(A

q

);

where

K = 2r 

+

� rv

+

+ 2r 

�

� rv

�

+ (� 

+

)v

+

+ (� 

�

)v

�

��S

+

[v

+

� r 

+

℄��S

�

[v

�

� r 

�

℄

+S

+

[�

t

v

+

� r 

+

℄ + S

�

[�

t

v

�

� r 

�

℄� (r 

+

)�

+

� (r 

�

)�

�

;

we here note that r � K 6= 0 as well as Kj

�


6= 0 and we an obtain the

regularity of K only up to L

q

(in ontrast to the exterior problem disussed

in [35℄ and [37℄). By (5.7) and in view of the Stokes system in H

�

we have

k(r 

�

)�

�

(t)k

q

� Ckr�

�

(t)k

�1;q;D

�;R

0

� Ckrv

�

(t)k

q;H

�;R

0

+1

+ Ck�

t

v

�

(t)k

q;H

�;R

0

+1

;
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whih together with (2.2) implies K(t) 2 L

q

[R

0

+1℄

(
) and

kK(t)k

q

� Ckv

+

(t)k

1;q;H

+;R

0

+1

+ Ckv

�

(t)k

1;q;H

�;R

0

+1

+Ck�

t

v

+

(t)k

q;H

+;R

0

+1

+Ck�

t

v

�

(t)k

q;H

�;R

0

+1

:

Therefore, Lemma 3.2 and (5.6) yield

kK(t)k

q

� C(1 + t)

�n=2q

kfk

q

; (5.9)

for t � 0. In order to estimate

v(t) = e

�tA

v

0

+

Z

t

0

e

�(t��)A

PK(�)d�;

we employ Lemma 5.1. By (5.1) with a suitable " > 0 and (5.6) we �nd

ke

�tA

v

0

k

1;q;


R

� Ct

�n=2+"

kv

0

k

q

� Ct

�n=2q

kfk

q

;

for t � 1. We next ombine (5.1) with (5.9) to get

Z

t

0

ke

�(t��)A

PK(�)k

1;q;


R

d�

� Ckfk

q

Z

t

0

(t� �)

�1=2

(1 + t� �)

�n=2+1=2+"

(1 + �)

�n=2q

d�

= Ckfk

q

(I

1

+ I

2

);

where I

1

=

R

t=2

0

and I

2

=

R

t

t=2

. An elementary alulation gives

I

1

�

8

<

:

Ct

�1=2

(1 + t=2)

�n=2�n=2q+3=2+"

if q > n=2

Ct

�1=2

(1 + t=2)

�n=2+1=2+"

log(1 + t=2) if q = n=2

Ct

�1=2

(1 + t=2)

�n=2+1=2+"

if q < n=2

9

=

;

� Ct

�n=2q

;

for t � 1 and

I

2

� (1 + t=2)

�n=2q

Z

1

0

�

�1=2

(1 + �)

�n=2+1=2+"

d� � C(1 + t=2)

�n=2q

;

for t > 0. We ollet the estimates above to obtain

kv(t)k

1;q;


R

� Ct

�n=2q

kfk

q

; (5.10)

for t � 1. From (5.8) and (5.10) we dedue

ku(t)k

1;q;


R

= kv(t) + u

+

(t) + u

�

(t)k

1;q;


R

� Ct

�n=2q

kfk

q

;
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for t � 1 and f 2 L

q

�

(
), whih proves (5.4). Let f 2 D(A

q

). Then we

easily observe

ke

�tA

fk

1;q;


R

+ k�

t

e

�tA

fk

q;


R

� Cke

�tA

fk

D(A

q

)

� Ckfk

D(A

q

)

;

for t � 0 and also we an estimate �

t

e

�tA

f for large t; in fat, by virtue of

(5.4) just proved we get

k�

t

e

�tA

fk

q;


R

= ke

�tA

Afk

q;


R

� Ct

�n=2q

kAfk

q

;

for t � 2. This implies (5.5). �

We are interested in the L

q

estimate of re

�tA

for large t, in partiular,

the L

n

estimate is quite important for us.

Lemma 5.4 Let n � 3 and 1 < q < 1. Then there is a onstant C =

C(
; n; q) > 0 suh that

kre

�tA

fk

q

� Ct

�minf1=2;n=2qg

kfk

q

; (5.11)

for t � 2 and f 2 L

q

�

(
).

Proof. We �x R � R

0

+ 1. Sine we have already known the deay rate

t

�n=2q

of kre

�tA

fk

q;


R

by Lemma 5.3, it suÆes to derive the estimate

outside 


R

, that is,

kre

�tA

fk

q;


�

n


R

� Ct

�minf1=2;n=2qg

kfk

q

; (5.12)

for t � 2 and f 2 L

q

�

(
). In an analogous way to [35℄, [37℄ and [1℄, we make

use of the deay properties of the semigroup E

�

(t) for the half spae. Given

f 2 L

q

�

(
), we set g = e

�A

f 2 D(A

q

) and then u(t) = e

�tA

g = e

�(t+1)A

f .

We hoose two pressures p

�

in 
 assoiated to u in suh a way that

Z

D

�;R�1

p

�

(x; t)dx = 0; (5.13)

for eah t (p

+

and p

�

will be used independently). With use of the ut-o�

funtions given by (2.1) and the Bogovski

�

i operator introdued in setion 2,

we de�ne fv

�

; �

�

g by

v

�

(t) =  

�

u(t)� S

�

[u(t) � r 

�

℄; �

�

(t) =  

�

p

�

(t):

Here and in what follows, we use the abbreviations  

�

for  

�;R�1

and S

�

for S

�;R�1

. Sine v

�

= u for x 2 


�

n 


R

= H

�

n B

R

, we will show
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krv

�

(t)k

q;H

�

� Ct

�minf1=2;n=2qg

kgk

D(A

q

)

; (5.14)

for t � 1, whih ombined with kgk

D(A

q

)

� Ckfk

q

implies (5.12) for t � 2.

It is easily observed that fv

�

; �

�

g satis�es

�

t

v

�

��v

�

+r�

�

= Z

�

; r � v

�

= 0;

in H

�

subjet to v

�

j

�H

�

= 0 and

v

�

j

t=0

= a

�

=  

�

g � S

�

[g � r 

�

℄;

where

Z

�

= �2r 

�

� ru� (� 

�

)u+�S

�

[u � r 

�

℄

�S

�

[�

t

u � r 

�

℄ + (r 

�

)p

�

:

Our task is now to estimate the gradient of

v

�

(t) = E

�

(t)a

�

+

Z

t

0

E

�

(t� �)P

H

�

Z

�

(�)d�: (5.15)

By virtue of (5.13) we have

k(r 

�

)p

�

(t)k

q;H

�

� Ckrp

�

(t)k

�1;q;D

�;R�1

� Ckru(t)k

q;


R

+Ck�

t

u(t)k

q;


R

;

from whih together with (2.2) it follows that

kZ

�

(t)k

q;H

�

� Cku(t)k

1;q;


R

+ Ck�

t

u(t)k

q;


R

:

Hene, (5.5) implies

kP

H

�

Z

�

(t)k

r;H

�

� CkZ

�

(t)k

q;H

�

� C(1 + t)

�n=2q

kgk

D(A

q

)

; (5.16)

for t � 0 and r 2 (1; q℄ sine Z

�

(t) 2 L

q

[R℄

(H

�

) � L

r

[R℄

(H

�

) for suh r. In

view of (5.15), we dedue from (1.4) for 
 = H

�

together with (5.16)

krv

�

(t)k

q;H

�

� Ct

�1=2

ka

�

k

q;H

�

+Ckgk

D(A

q

)

Z

t

0

(t� �)

�1=2

(1 + t� �)

�(n=r�n=q)=2

(1 + �)

�n=2q

d�

� Ct

�1=2

kgk

q

+ Ckgk

D(A

q

)

(I

1

+ I

2

);
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for r 2 (1; q℄, where I

1

=

R

t=2

0

and I

2

=

R

t

t=2

. We take r so that 1 < r <

minfn=2; qg. Then we see that

I

1

�

8

<

:

Ct

�1=2

(1 + t=2)

�n=2r+1

if q > n=2

Ct

�1=2

(1 + t=2)

�n=2r+1

log(1 + t=2) if q = n=2

Ct

�1=2

(1 + t=2)

�(n=r�n=q)=2

if q < n=2

9

=

;

� Ct

�1=2

;

for t > 0 and that

I

2

�

�

C(1 + t=2)

�n=2q

if q > n;

C(1 + t=2)

�1=2

if q � n;

for t > 0. Colleting the estimates above onludes (5.14). This ompletes

the proof. �

The following lemma is onerned with the L

1

estimate of the semigroup

(the restrition q > n will be removed later).

Lemma 5.5 Let 3 � n < q < 1. There is a onstant C = C(
; n; q) > 0

suh that

ke

�tA

fk

1

� Ct

�n=2q

kfk

q

; (5.17)

for t > 0 and f 2 L

q

�

(
).

Proof. For �xed R � R

0

+ 1, estimate (5.4) together with the Sobolev

embedding property implies

ke

�tA

fk

1;


R

� Ct

�n=2q

kfk

q

;

for t � 2 and f 2 L

q

�

(
) on aount of n < q < 1. Along the lines of the

proof of Lemma 5.4, one an show

ke

�tA

fk

1;


�

n


R

� Ct

�n=2q

kfk

q

; (5.18)

for t � 2. In fat, given f 2 L

q

�

(
), we take the same g; fu; p

�

g and fv

�

; �

�

g,

and apply the L

q

-L

1

estimate (1.3) for 
 = H

�

to (5.15). Then, taking

(5.16) into aount, we get

kv

�

(t)k

1;H

�

� Ct

�n=2q

ka

�

k

q;H

�

+Ckgk

D(A

q

)

Z

t

0

(t� �)

�n=2q

(1 + t� �)

�(n=r�n=q)=2

(1 + �)

�n=2q

d� ;

for r 2 (1; q℄; we now hoose r 2 (1; n=2) to �nd
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kv

�

(t)k

1;H

�

� Ct

�n=2q

kgk

D(A

q

)

;

for t � 1, whih proves (5.18) for t � 2. We thus obtain (5.17) for t � 2.

For 0 < t < 2, we reall (5.2) to see

ke

�tA

fk

1

� Cke

�tA

fk

n=q

1;q

ke

�tA

fk

1�n=q

q

� Ct

�n=2q

kfk

q

:

The proof is omplete. �

We are now in a position to prove Theorem 2.1. Abels [1℄ showed (1.3)

for 1 < q � r < 1; when we use this result, the �rst step of the following

proof will beome shorter. However, in order to make the present paper self-

ontained, we do not rely on any result of [1℄. We emphasize that our proof

is based on (5.11) and (5.17), in other words, the other estimates follow from

them.

Proof of Theorem 2.1. The proof is divided into four steps.

Step 1. First of all, we observe (1.4) for q = r 2 (1; n℄. Indeed, it follows

from (5.2) for 0 < t < 2 and (5.11) for t � 2 that

kre

�tA

fk

q

� Ct

�1=2

kfk

q

; (5.19)

for t > 0 and f 2 L

q

�

(
) provided 1 < q � n. In this step we aomplish

the proof of (1.3) for 1 < q � r � 1 (q 6=1) and (1.4) for 1 < q � r � n.

We begin with the removal of the restrition q > n in Lemma 5.5. In view

of (5.19) and the Sobolev embedding property we have

ke

�tA

fk

r

� Ct

�1=2

kfk

q

; (5.20)

for t > 0 and f 2 L

q

�

(
) when 1 < q < n and 1=r = 1=q � 1=n. Let

n=(k + 1) < q < n=k with k = 1; 2; � � � ; n � 1. We put fq

j

g

k

j=0

in suh

a way that 1=q

j+1

= 1=q

j

� 1=n (j = 0; 1; � � � ; k � 1) with q

0

= q. Sine

n < q

k

<1, we make use of (5.17) with q = q

k

and (5.20) to obtain

ke

�tA

fk

1

� Ct

�n=2q

k

ke

�(t=2)A

fk

q

k

� Ct

�n=2q

k

�k=2

kfk

q

;

for t > 0, whih proves (5.17) exept for q = n; n=2; � � � ; n=(n� 1). But the

exeptional ases an be also dedued via interpolation. Thus the L

q

-L

1

estimate (5.17) has been established for all q 2 (1;1). This together with

the L

q

boundedness (namely, (1.3) for q = r) immediately gives (1.3) for

1 < q � r � 1, from whih ombined with (5.19) we further obtain (1.4)

for 1 < q � r � n.

Step 2. In this step we prove (1.4) for 1 < q < n < r < 1, making

use of (1.8) due to [20℄. Given r 2 (n;1), we take s 2 (n=2; n) so that
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1=s = 1=r + 1=n. When 1 < q � s, an embedding relation given by Lemma

3.1 of [20℄ together with (1.8) implies

kre

�tA

fk

r

� Ckr

2

e

�tA

fk

s

� CkAe

�tA

fk

s

� Ct

�1

ke

�(t=2)A

fk

s

;

for t > 0, from whih together with (1.3) we obtain (1.4). If s < q < n,

whih implies r < q

�

with 1=q

�

= 1=q � 1=n, then by the same reasoning as

above

kre

�tA

fk

r

� kre

�tA

fk

1��

q

�

kre

�tA

fk

�

q

� CkAe

�tA

fk

1��

q

kre

�tA

fk

�

q

;

for t > 0, where 1=r = (1� �)=q

�

+ �=q = 1=q� (1� �)=n. Therefore, (5.19)

yields (1.4).

Step 3. Let f 2 L

1

(
)\L

s

�

(
) for some s 2 (1;1). This step is devoted to

the ase q = 1, namely L

1

-L

r

estimate. Let 1 < r <1. We apply a simple

duality argument; in fat, the L

q

-L

1

estimate implies

j(e

�tA

f; g)j = j(f; e

�tA

g)j � kfk

1

ke

�tA

gk

1

� Ct

�(n�n=r)=2

kfk

1

kgk

r=(r�1)

;

for g 2 L

r=(r�1)

�

(
), whih gives (1.3) for q = 1 < r < 1. Combining this

with (5.17) and (1.4), respetively, we obtain (1.3) for q = 1 < r = 1 and

(1.4) for q = 1 < r <1.

Step 4. One the L

q

-L

r

estimates (1.3) and (1.4) are established, (2.4) and

(2.5) an be proved by means of a standard approximation proedure. We

show only the behavior as t!1 (whih is the main onern in the present

paper). Let 1 < q <1 and f 2 L

q

�

(
). For any " > 0 we take f

"

2 C

1

0;�

(
)

suh that kf

"

� fk

q

< ". It then follows from (1.3) that

ke

�tA

fk

q

� C"+ Ct

�(n�n=q)=2

kf

"

k

1

;

for t > 0, whih immediately yields

lim

t!1

ke

�tA

fk

q

= 0; (5.21)

sine " > 0 is arbitrary (one an give another proof by use of ker(A

q

) = f0g).

Let K be a preompat set in L

q

�

(
). For any � > 0 there is a �nite set

ff

j

g

m

j=1

� K so that fB

�

(f

j

)g

m

j=1

is a overing of K, where B

�

(f

j

) denotes

the open ball entered at f

j

with radius �. Then we have

sup

f2K

ke

�tA

fk

q

� C� + max

1�j�m

ke

�tA

f

j

k

q

:

Hene, from (5.21) we dedue

lim

t!1

sup

f2K

ke

�tA

fk

q

= 0: (5.22)

All the other deay properties as t ! 1 follow from (5.22) ombined with

(1.3) and (1.4). We have ompleted the proof. �
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6 The Navier-Stokes ow

In this setion we apply the developed L

q

-L

r

estimates of the semigroup to

the Navier-Stokes initial value problem. In the proof of Theorems 2.2 and

2.3, we will not ite (1.3) and/or (1.4) if the appliation is evident. We �rst

prove Theorem 2.2.

Proof of Theorem 2.2. One an onstrut a unique global solution u(t) of

the integral equation

u(t) = e

�tA

a�

Z

t

0

e

�(t��)A

P (u � ru)(�)d�; t > 0; (6.1)

by means of a standard ontration mapping priniple, in exatly the same

way as in Kato [36℄, provided that kak

n

� Æ

0

, where Æ

0

= Æ

0

(
; n) > 0 is a

onstant. The solution u(t) satis�es

ku(t)k

r

� Ct

�1=2+n=2r

kak

n

for n � r � 1; (6.2)

kru(t)k

n

� Ct

�1=2

kak

n

; (6.3)

for t > 0 together with the singular behavior

ku(t)k

r

= o

�

t

�1=2+n=2r

�

for n < r � 1; kru(t)k

n

= o

�

t

�1=2

�

; (6.4)

as t ! 0. Furthermore, due to the H�older estimate (6.9) below whih is

implied by (6.2) and (6.3), the solution u(t) beomes atually a strong one

of (1.1) with (2.6) (see [24℄, [29℄ and [57℄). We now prove

lim

t!1

ku(t)k

n

= 0; (6.5)

for still smaller a 2 L

n

�

(
). To this end, we derive a ertain deay property

of u(t), whih is weaker than (2.11) but suÆient for the proof of (6.5),

assuming additionally a 2 L

1

(
) \ L

n

�

(
) with small kak

n

. Given  2

(0; 1=2), we take q 2 (n=2; n) so that  = n=2q � 1=2; then,

ku(t)k

n

� Ct

�

kak

q

+ C

Z

t

0

(t� �)

�1=2

ku(�)k

n

kru(�)k

n

d�;

whih together with (6.3) implies

t



ku(t)k

n

� Ckak

q

+ Ckak

n

sup

0<��t

�



ku(�)k

n

;
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for t > 0. Hene, for any  2 (0; 1=2) there are onstants Æ

�

= Æ

�

(
; n; ) 2

(0; Æ

0

℄ and C = C(
; n; ) > 0 suh that if kak

n

� Æ

�

, then ku(t)k

n

�

Ct

�

kak

q

for t > 0, whih together with (6.2) yields

ku(t)k

n

� C(1 + t)

�

(kak

1

+ kak

n

); (6.6)

for t � 0 (this deay rate is not sharp and will be improved in Theorem

2.3). From now on we �x  2 (0; 1=2) and set Æ = Æ

�

(
; n; )=2. Given

a 2 L

n

�

(
) with kak

n

� Æ and any " 2 (0; Æ℄, we take a

"

2 C

1

0;�

(
) so that

ka

"

� ak

n

< ". Sine ka

"

k

n

� Æ

�

, the orresponding global solution ful�lls

(6.6). We ombine this fat with the ontinuous dependene: L

n

�

(
) 3

u(0) 7! u 2 BC([0;1);L

n

�

(
)), where BC denotes the lass of bounded

ontinuous funtions. As a onsequene, the global solution u(t) with u(0) =

a satis�es ku(t)k

n

� C" + C(1 + t)

�

, whih proves (6.5) (although the

method above was mentioned in [36℄ and is well known, we gave the proof

for ompleteness; see also Theorem 3 of Wiegner [59℄ for another proof).

Combining (6.5) with (6.2) for r = 1 immediately leads us to (2.8) for

n � r < 1. We next prove (2.8) for r = 1 and (2.9). As is standard, we

rewrite the integral equation (6.1) in the form

u(t) = e

�(t=2)A

u(t=2)�

Z

t

t=2

e

�(t��)A

P (u � ru)(�)d�; t > 0: (6.7)

Then we obtain

ku(t)k

1

+ kru(t)k

n

� Ct

�1=2

ku(t=2)k

n

+ C

Z

t

t=2

(t� �)

�3=4

ku(�)k

2n

kru(t)k

n

d� ;

from whih together with (6.3) we at one dedue

t

1=2

(ku(t)k

1

+ kru(t)k

n

) � Cku(t=2)k

n

+ Ckak

n

sup

t=2���t

�

1=4

ku(�)k

2n

;

for t > 0. Obviously, (6.5) and (2.8) for r = 2n onlude both (2.8) for

r =1 and (2.9). These immediately yield

kP (u � ru)(t)k

n

� Cku(t)k

1

kru(t)k

n

= o(t

�1

); (6.8)

as t ! 1, whih will be used to show (2.10) below. Fix � 2 (0; 1=2)

arbitrarily. Sine

ku(t)� u(�)k

1

+ kru(t)�ru(�)k

n

� C(t� �)

�

�

�1=2��

kak

n

; (6.9)
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for 0 < � < t, one an dedue from (6.7) the representation

Au(t) = Ae

�(t=2)A

u(t=2) + fe

�(t=2)A

� 1gP (u � ru)(t) +Az(t); (6.10)

in L

n

�

(
), where

z(t) =

Z

t

t=2

e

�(t��)A

Pf(u � ru)(t)� (u � ru)(�)gd�:

In fat, (6.9) implies

kAz(t)k

n

� C

Z

t

t=2

(t� �)

�1+�

�

�1=2��

(kru(t)k

n

+ ku(�)k

1

)d�

� Ct

�1=2

kru(t)k

n

+Ct

�1

sup

t=2���t

�

1=2

ku(�)k

1

;

for t > 0. As a diret onsequene of (2.8) for r =1 and (2.9), we see that

kAz(t)k

n

= o(t

�1

), as t ! 1. In view of (6.10), we ollet (6.5), (6.8) and

the above deay property of Az(t) to obtain kAu(t)k

n

= o(t

�1

) as t ! 1,

whih together with (6.8) again shows (2.10). The proof is omplete. �

Remark 6.1. Consider briey the 3-dimensional stability problem mentioned

in Remark 2.5. The problem is redued to the global existene and asymp-

toti behavior of the solution to

u(t) = e

�tA

a�

Z

t

0

e

�(t��)A

P (u � ru+ w � ru+ u � rw)(�)d�; t > 0;

where w is a stationary solution of lass rw 2 L

r

(
); 1 < r � 2, and

a 2 L

3

�

(
) is a given initial disturbane. Set

E(t) = sup

0<��t

�

1=2

(ku(�)k

1

+ kru(�)k

3

) + sup

0<��t

�

1=4

ku(�)k

6

;

and �x r 2 (1; 3=2) arbitrarily. Then the integral equation yields the a priori

estimate

E(t) � Ckak

3

+ CE(t)

2

+ C(krwk

r

+ krwk

2

)E(t);

for t > 0, whih gives an aÆrmative answer to the stability problem provided

that both krwk

r

+ krwk

2

and kak

3

are small enough. In fat, by following

the argument of Chen [11℄, the above inequality for E(t) is dedued from

ke

�tA

P (w � ru+ u � rw)k

1

+ kre

�tA

P (w � ru+ u � rw)k

3

� C(krwk

r

+ krwk

2

)(kuk

1

+ kruk

3

) t

�3=4

(1 + t)

�3=2r+3=4

;

and

ke

�tA

P (w � ru+ u � rw)k

6

� C(krwk

r

+ krwk

2

)(kuk

1

+ kruk

3

) t

�1=2

(1 + t)

�3=2r+3=4

:
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We next assume that a 2 L

1

(
)\L

n

�

(
) with kak

n

� Æ. Let u(t) be the

global solution onstruted in Theorem 2.2. Our partiular onern is more

rapid deay properties of u(t). Starting from (6.2) and (6.3), we observe that

u(t) 2W

1;r

(
) for 1 < r < n and t > 0 (without going bak to approximate

solutions). In fat, there is a onstant M = M(
; n; r; kak

1

; kak

n

; T ) > 0

suh that

kr

j

u(t)k

r

� Ct

�j=2

kak

r

+ C

Z

t

0

(t� �)

�1+n=2r�j=2

ku(�)k

n

kru(�)k

n

d�

�Mt

�j=2

;

for n=2 � r < n; j = 0; 1 and 0 < t � T , where T > 0 is arbitrarily �xed;

and then,

kr

j

u(t)k

r

� Ct

�j=2

kak

r

+ C

Z

t

0

(t� �)

�j=2

ku(�)k

2r

kru(�)k

2r

d�

�Mt

�j=2

;

for n=4 � r < n=2; j = 0; 1 and 0 < t � T . We repeat the proess above to

get u(t) 2W

1;r

(
) for 1 < r < n with

sup

0<t�T

(ku(t)k

r

+ t

1=2

kru(t)k

r

) �M: (6.11)

Remark 6.2. Following the argument of Kato [36℄, we see that the above

onstant M does not depend on T > 0 if kak

n

is still smaller. However, we

do not rely on his proedure beause the smallness of initial data depends

on r > 1. Note that the onstant � in Theorem 2.3 is independent of r > 1.

As the �rst step of our proof of Theorem 2.3, we show the following

lemma whih gives a little slower deay rate than desired (later on, " > 0

will be removed so that estimates will beome sharp).

Lemma 6.1 Let n � 3 and a 2 L

1

(
) \ L

n

�

(
). For any small " > 0 there

are onstants �

�

= �

�

(
; n; ") 2 (0; Æ℄ and C = C(
; n; kak

1

; kak

n

; ") > 0

suh that if kak

n

� �

�

, then the solution u(t) obtained in Theorem 2.2

satis�es

ku(t)k

n=(n�1)

� C(1 + t)

�1=2+"

; (6.12)

ku(t)k

2n

� Ct

�1=4

(1 + t)

�n=2+1=2+"

; (6.13)

kru(t)k

n

� Ct

�1=2

(1 + t)

�n=2+1=2+"

; (6.14)

for t > 0.
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Proof. We make use of (1.3) for r =1 to obtain

j(e

�(t��)A

P (u � ru)(�); ')j = j((u � ru)(�); e

�(t��)A

')j

� C(t� �)

�(n�n=q)=2

ku(�)k

n=(n�1)

kru(�)k

n

k'k

q=(q�1)

;

for all ' 2 C

1

0;�

(
), whih gives

kr

j

e

�(t��)A

P (u � ru)(�)k

q

� C(t� �)

�(n�n=q)=2�j=2

ku(�)k

n=(n�1)

kru(�)k

n

;

(6.15)

for 1 < q < 1; j = 0; 1 and 0 < � < t (the ase j = 1 follows from

(1.4) and the ase j = 0). Given " > 0, we take p 2 (1; n=(n � 1)) so that

1=p = 1� 2"=n. From (6.15) with q = n=(n� 1) it follows that

ku(t)k

n=(n�1)

� Ct

�1=2+"

kak

p

+ C

Z

t

0

(t� �)

�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�:

In an analogous way to the dedution of (6.6), one an take a onstant �

0

=

�

0

(
; n; ") 2 (0; Æ℄ suh that if kak

n

� �

0

, then ku(t)k

n=(n�1)

� Ct

�1=2+"

kak

p

for t > 0, whih together with (6.11) gives (6.12). To show (6.13) and (6.14),

we will derive

kru(t)k

r

� Ct

�(n�n=r)=2�1=2+"

for r = n; 2n=3; (6.16)

for t > 0. We divide the integral of (6.1) into two parts

Z

t

0

e

�(t��)A

P (u � ru)(�)d� =

Z

t=2

0

+

Z

t

t=2

= v(t) + w(t); (6.17)

then we obtain

kru(t)k

r

� Ct

�(n�n=r)=2�1=2+"

kak

p

+ I

1

+ I

2

;

for t > 0 (p is the same as above) with

I

1

= krv(t)k

r

� C

Z

t=2

0

(t� �)

�(n�n=r)=2�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�;

I

2

= krw(t)k

r

� C

Z

t

t=2

(t� �)

�1=2

ku(�)k

1

kru(�)k

r

d�;

where (6.15) has been used in I

1

. Using (6.12) together with (6.2) and (6.3),

we see that

I

1

� Ct

�(n�n=r)=2�1=2+"

kak

n

; I

2

� Ckak

n

sup

t=2���t

kru(t)k

r

;
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for t > 0. Therefore, setting

E

r

(t) = sup

0<��t

�

(n�n=r)=2+1=2�"

kru(�)k

r

for r = n; 2n=3;

we get E

r

(t) � Ckak

p

+ Ckak

n

+ C

0

kak

n

E

r

(t) for t > 0, where C

0

> 0 is

independent of a. As a onsequene, there is a onstant �

�

= �

�

(
; n; ") 2

(0; �

0

℄ suh that if kak

n

� �

�

, then E

n

(t) + E

2n=3

(t) � C for t > 0, whih

proves (6.16). This ombined with the Sobolev embedding, (6.2) for r = 2n

and (6.3) imply (6.13) and (6.14). �

Based on Lemma 6.1, we supply the proof of Theorem 2.3, by whih we

onlude this paper.

Proof of Theorem 2.3. We �x " 2 (0; 1=2) and put � = �(
; n) = �

�

(
; n; ").

Assuming kak

n

� �, we �rst show (2.11). Sine

ke

�tA

ak

r

� Ct

�(n�n=r)=2

kak

1

;

for t > 0, our task is to derive the required estimate of (6.17). By (6.15)

together with (6.12) and (6.14) we have

kv(t)k

r

� C

Z

t=2

0

(t� �)

�(n�n=r)=2

ku(�)k

n=(n�1)

kru(�)k

n

d�

� Ct

�(n�n=r)=2

Z

1

0

�

�1=2

(1 + �)

�n=2+2"

d�

� Ct

�(n�n=r)=2

;

for 1 < r � 1 and t > 0; here, note that the ase r = 1 follows from the

L

q

-L

1

estimate (1.3) together with (6.15). If 1 < r < n=(n � 2), then the

same estimate of the integrand as above works well on w(t) too; as a result,

we have

kw(t)k

r

� Ct

�(n�n=r)=2�n=2+1=2+2"

;

for t > 0. For r =1, we make use of (6.13) and (6.14) to get

kw(t)k

1

� C

Z

t

t=2

(t� �)

�3=4

ku(�)k

2n

kru(�)k

n

d� � Ct

�n+1=2+2"

;

for t > 0. We ollet the estimates above to obtain (2.11) for 1 < r <

n=(n � 2) and r = 1; and the remaining ase n=(n � 2) � r < 1 follows

via interpolation as well.

We next show (2.12). Let 1 < r � n. In view of (6.7), we have

kru(t)k

r

� Ct

�1=2

ku(t=2)k

r

+ krw(t)k

r

;

for t > 0, where w(t) is the same as above. By (2.11) the proof is redued

to the estimate of krw(t)k

r

. If in partiular 1 < r < n=(n � 1), then from
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(2.11), (6.14) and (6.15) we dedue

krw(t)k

r

� C

Z

t

t=2

(t� �)

�(n�n=r)=2�1=2

ku(�)k

n=(n�1)

kru(�)k

n

d�

� Ct

�(n�n=r)=2�n=2+"

;

for t > 0. If r = n, then one appeals again to (2.11) and (6.14) to �nd

krw(t)k

n

� C

Z

t

t=2

(t� �)

�1=2

ku(�)k

1

kru(�)k

n

d� � Ct

�n+1=2+"

;

for t > 0. We thus obtain (2.12) for 1 < r < n=(n� 1) and r = n; and the

ase n=(n � 1) � r < n also follows via interpolation. It remains to show

the ase n < r <1. From (1.4) for 1 < q < n < r <1 we dedue

kru(t)k

r

� Ct

�(n=q�n=r)=2�1=2

ku(t=2)k

q

+ krw(t)k

r

;

for t > 0, and the �rst term possesses the desired deay property on aount

of (2.11). We take p in suh a way that 1=n < 1=p < 1=n + 1=r. Sine we

have already known (2.12) for r = p as well as (2.11), we are led to

krw(t)k

r

� C

Z

t

t=2

(t� �)

�(n=p�n=r)=2�1=2

ku(�)k

1

kru(�)k

p

d�

� Ct

�n+n=2r

;

for t > 0, whih proves (2.12) for n < r <1.

Finally, by use of (6.10), we show (2.13) and thereby (2.14) and (2.15).

From (2.11) and (2.12) it follows that

kAe

�(t=2)A

u(t=2)k

r

� Ct

�1

ku(t=2)k

r

= O

�

t

�(n�n=r)=2�1

�

; (6.18)

as t!1 and that

kP (u � ru)(t)k

r

� Cku(t)k

1

kru(t)k

r

= O

�

t

�n+n=2r�1=2

�

; (6.19)

as t!1. We are thus going to estimate

kAz(t)k

r

� Ckru(t)k

r

Z

t

t=2

(t� �)

�1

ku(t)� u(�)k

1

d�

+C

Z

t

t=2

(t� �)

�1

ku(�)k

1

kru(t)�ru(�)k

r

d� = I

1

+ I

2

:

With the aid of (6.9) and (2.12) we observe
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I

1

= O

�

t

�(n�n=r)=2�1

�

; (6.20)

as t!1. We need also a H�older estimate of ru(t) in L

r

(
), whih implies

the deay property of I

2

as well as u 2 C(0;1;D(A

r

)) \ C

1

(0;1;L

r

�

(
)).

To this end, let us onsider

u(t)� u(�)

= fe

�(t��=2)A

� e

�(�=2)A

gu(�=2) �

Z

t

�

e

�(t�s)A

P (u � ru)(s)ds

�

Z

�

�=2

fe

�(t�s)A

� e

�(��s)A

gP (u � ru)(s)ds

= w

1

(t; �) + w

2

(t; �) + w

3

(t; �);

for 0 < � < t. By a standard alulation with use of (2.11) we have

krw

1

(t; �)k

r

� C(t� �)

�

�

�(n�n=r)=2�1=2��

; (6.21)

where 0 < � < 1. In order to estimate w

2

and w

3

, we take q 2 (1; r℄ so that

0 < 1=q � 1=n < 1=r; then we see from (6.19) in L

q

�

(
) that

krw

2

(t; �)k

r

� C(t� �)

1=2�(n=q�n=r)=2

�

�n+n=2q�1=2

; (6.22)

and that

krw

3

(t; �)k

r

� C

Z

�

�=2

(t� �)

�

(� � s)

�(n=q�n=r)=2�1=2��

kP (u � ru)(s)k

q

ds

� C(t� �)

�

�

�n+n=2r��

;

(6.23)

where 0 < � < 1=2 � (n=q � n=r)=2. Colleting (6.21), (6.22) and (6.23)

together with (2.11) yields

I

2

= O

�

t

�n+n=2r�1=2

�

; (6.24)

as t ! 1. From (6.18), (6.19), (6.20) and (6.24) we obtain (2.13). Due

to (1.8) and in view of the equation (1.1), we dedue (2.14) immediately

from (2.11), (2.12) and (2.13). By Lemma 3.1 of [20℄ there exist p

�

(t) 2 R

suh that kp(t) � p

�

(t)k

r;


�

+ j[p(t)℄j � Ckrp(t)k

q

for 1 < q < n and

1=r = 1=q � 1=n. Hene, (2.14) implies (2.15). The proof is omplete. �
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