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Abstrat

Essential results from the theory of torus ations, initiated by P.

A. Smith, are generalized to ations of pro-tori, i.e. ompat onneted

abelian groups. We show that the �xed point set in a (rational ohomo-

logy) manifold, resp. sphere, is a rational ohomology manifold, resp.

sphere, of even odimension. Borel's dimension formula for the �xed

spheres of odimension one subgroups is proved for ations of pro-tori

on (ohomology) spheres. This yields a sharp upper bound for the

group dimension.
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Introdution

The theory of ontinuous torus ations on manifolds (and on their natu-

ral generalizations, ohomology manifolds) has ourished over a long time.

By ontrast, ations of general ompat onneted abelian groups, so-alled

pro-tori, have reeived relatively little attention. Moreover, the seminal pa-

pers by Bredon, Raymond, Williams, and Yang [9, 16, 20℄ were intended as

ontributions towards a proof of the Hilbert-Smith onjeture, whih states

that a loally ompat e�etive transformation group on a manifold is a Lie

group. (Until today, this onjeture has only been proved for ations by

di�eomorphisms [4, 15℄, Lipshitz homeomorphisms [17℄, or quasi-onformal

homeomorphisms [14℄.) Therefore, the authors mentioned above onen-

trated on ertain surprising di�erenes between ations of tori and of pro-

tori, whereas the present paper builds on their methods in order to develop

far-reahing parallels between tori and pro-tori. Its other main soures are

the monographs by Allday and Puppe [1℄ (to dispense with assumptions

of �nite orbit type) and Hofmann and Morris [12℄ (for strutural details of

ompat groups). The �xed point theorems proved here are of interest for
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topologial inidene geometry [11, 18℄, where ations of Lie and non-Lie

groups used to be treated by rather di�erent methods. In the light of the

present results, a uni�ed approah would have been possible in [2℄, leading

to slightly stronger results in a more elegant way.

Examples desribed by Bredon in [7, Setion I.8℄ show that the restrition

to ompat onneted abelian groups is neessary. For instane, let L be a

(possibly empty) �nite simpliial omplex, and let G be a ompat onneted

non-abelian Lie group or a yli group whose order is not a prime power.

Then for eah suÆiently large n 2 N, there is an ation of G on R

n

whose

�xed point set is homotopy equivalent to L.

1 Cohomology of the �xed point set

The results about ations of pro-tori (i.e. ompat onneted abelian groups)

will be proved by redution to ations of tori (i.e. powers of the irle group),

for whih they are known. We say that a pro-torus G has dimension n and

write dimG = n if there is a totally disonneted losed subgroup N � G

suh that G=N

�

=

T

n

, an n-torus. Of ourse, to say that the dimension of G

is �nite then means that dimG = n for some n 2 N. This de�nition agrees

with various topologial notions of dimension (see Hofmann and Morris [12,

8.22{8.26℄). Now suppose that G ats e�etively on a Hausdor� spae X.

Then there is an indued ation of the n-torus G=N on the orbit spae

X=N . This ation is almost e�etive, i.e. its kernel is totally disonneted.

The orbit projetion X ! X=N is a proper open map, and it indues a

homeomorphism X

G

� (X=N)

G=N

. (Here X

G

denotes the set of points in

X whih are �xed under the ation of G.) The orbit spae of the ation

of G=N on X=N is homeomorphi to the orbit spae X=G. Thus many

questions about the orbit spaes and �xed point sets of ations of pro-tori

are redued to questions about tori. This approah is very suessful beause

the orbit spae X=N inherits global and loal ohomologial properties from

the spaeX. The appropriate ohomology theory is sheaf ohomology over Q

with ompat supports (see Bredon [8℄).

Note that in our terminology, a (loally) ompat spae satis�es the

Hausdor� separation property.

1.1 Theorem (Bredon et al. [9, 5.1℄, L�owen [13℄). Let N be a totally

disonneted ompat group whih ats on a loally ompat spae X. Then

the orbit projetion X ! X=N indues an isomorphism

H

�



(X=N ;Q)

�

=

H

�



(X;Q)

N

: �

If the rational vetor spae H

j



(X;Q) has �nite dimension then the fol-

lowing proposition yields an open subgroup of N whih ats trivially on it.
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1.2 Proposition (Continuity of the ation on ohomology). Let G be

a loally ompat group ating on a loally ompat spae X, and let A be

an abelian group. Then the indued ation of G on H

�



(X;A) is ontinuous

with respet to the disrete topology on H

�



(X;A). (In other words, all

stabilizers of this ation are open subgroups.)

Proof. The proof, whih is inspired by Bredon [8, II.11.9℄, exploits the

ontinuity property of sheaf ohomology with ompat supports. Choose a

ompat neighbourhood U of 1 in G. Set

N

:

= fV �X � G�X j V is a losed neighbourhood of 1 in Ug:

An inlusion N

1

,! N

2

between elements of N indues a \restrition" map

H

�



(N

2

) �! H

�



(N

1

); � 7�! �j

N

1

in ohomology. With these maps, the ohomology groups H

�



(N ;A), where

N ranges over N , form a direted system. The inlusions of the set

T

N =

f1g �X =

:

X

1

into the sets N 2 N indue an isomorphism

lim

�!

N2N

H

�



(N ;A)

�

=

H

�



(X

1

;A)

by the weak ontinuity property [8, II.10.7℄. In partiular, if two ohomology

lasses �; �

0

2 H

�



(U �X;A) satisfy �j

X

1

= �

0

j

X

1

then there is an element

N 2 N suh that �j

N

= �

0

j

N

.

Pik a ohomology lass � 2 H

�



(X;A). We have to show that the

stabilizer of � in the indued ation of G on H

�



(X;A) is open. Let

X

pr

2

 � U �X

!

�! X

be the produt projetion and restrition of the ation map, respetively.

De�ne elements of H

�



(U�X;A) by �

:

= pr

2

�

(�) and �

0

:

= !

�

(�). (As U is

ompat, both pr

2

and ! are proper maps, see Bourbaki [6, Ch. I x 10 Cor. 5

and Ch. III x 4 Prop. 1℄. This is neessary for the de�nition of the maps pr

2

�

and !

�

.) We have �j

X

1

= �

0

j

X

1

beause pr

2

j

X

1

= !j

X

1

. Therefore, there is

a losed neighbourhood V of 1 in U suh that, for N

:

= V � X, we have

�j

N

= �

0

j

N

. For g 2 U , de�ne an embedding

i

g

: X �! U �X; x 7�! (g; x) :

Then the ation of the group element g on X is given by ! Æ i

g

, whene its

ation on H

�



(X;A) is given by i

g

�

Æ !

�

. Choose g 2 V . Then i

g

fators as

the orestrition i

g

j

N

: X ! N followed by the inlusion of N into U �X.

Hene

i

g

�

(!

�

(�)) = i

g

�

(�

0

) =

�

i

g

j

N

�

�

(�

0

j

N

)

=

�

i

g

j

N

�

�

(�j

N

) = i

g

�

(�) = (pr

2

Æi

g

)

�

(�) = (id

X

)

�

(�) = �:

Therefore, the identity neighbourhood V � G �xes � in the ation of G

on H

�



(X;A). Thus the stabilizer of � is open. �
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A areful analysis of the proof shows that the preeding proposition holds

more generally, namely for ations of loally paraompat groups on loally

ompat spaes. For the tehnial details, see [3, 4.2℄.

Before studying ations on rational ohomology manifolds in detail, we

draw some onsequenes from the global Theorem 1.1. We adopt the on-

vention that the \(�1)-sphere" S

�1

is the empty set.

1.3 Theorem (Fixed points in spheres, I). Let G be a ompat on-

neted abelian group of �nite dimension whih ats on a ompat spae X

suh that H

�

(X;Q)

�

=

H

�

(S

n

;Q) for some n � 1. Then H

�

(X

G

;Q)

�

=

H

�

(S

n(G)

;Q) for some n(G) suh that �1 � n(G) � n and n�n(G) is even.

Let S be the set of losed onneted subgroups of G whose odimension

is 1. Then the formula

n� n(G) =

X

H2S

�

n(H)� n(G)

�

holds.

Fixed point theorems of this type were �rst proved by P. A. Smith for ations

of groups of prime order (see his survey [19℄), and the sum formula goes bak

to Borel [5, XIII.2.3℄.

Proof. Let N be a ompat totally disonneted subgroup of G suh that

G=N is a torus group. The orbit spae X=N has the ohomology of S

n

by Theorem 1.1 sine the ation of the onneted group G, and hene that

of N , on H

�

(X;Q) is trivial by Proposition 1.2 (f. Bredon [8, II.11.11℄).

Therefore, the spae (X=N)

G=N

, whih is homeomorphi to X

G

, has the

ohomology of S

n(G)

for some n(G) 2 f�1; : : : ; ng suh that n � n(G) is

even. This result an be found in Bredon's book [7, III.10.10, f. III.10.9℄

under the additional hypothesis that the set of stabilizers in G=N is �nite,

and immediately before, Bredon remarks that the result an also be proved

without this hypothesis. Indeed, the present hypotheses imply the rela-

tions dim

Q

H

�

(X

G

;Q) � dim

Q

H

�

(X;Q) = 2 (Allday and Puppe [1, 3.1.14

and 3.2.9℄) and �

Q

(X

G

) = �

Q

(X) [1, 3.1.13 and 3.2.9℄, from whih the

assertions about the ohomology of X

G

follow easily (f. [7, III.5.1℄).

Choose H 2 S. Then the �xed point set X

H

is invariant under G, so

that H

�

(X

H

;Q)

�

=

H

�

(X

H

=N ;Q) by Theorem 1.1. Moreover, we observe

that X

H

=N = (X=N)

H

= (X=N)

HN=N

, and that every odimension 1 sub-

torus of G=N is of the form HN=N for a unique H 2 S (f. Hofmann and

Morris [12, 7.73℄). Hene we an dedue the seond part of the theorem

from Borel's sum formula for ations of tori, whih is given by [1, 5.3.11℄

in suÆient generality, as a statement about torus ations on Poinar�e du-

ality spaes. As this statement desribes onneted omponents of �xed

point sets, we apply it to the natural ation of G=N on the double suspen-

sion �

2

(X=N) of X=N . This spae has the rational ohomology of S

n+2

.
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In partiular, it is indeed a Poinar�e duality spae with respet to ratio-

nal oeÆients beause the isomorphism H

�

(�

2

(X=N);Q)

�

=

H

�

(S

n+2

;Q)

of graded groups preserves the struture of the ohomology rings. Moreover,

if H � G is a losed onneted subgroup then (�

2

(X=N))

H

� �

2

((X=N)

H

)

is onneted and has the ohomology of S

n(H)+2

. �

The isomorphisms H

�



(S

2

;Q)

�

=

H

�



(S

2

� P

2

R;Q )

�

=

H

�



(R

2

t P

2

R;Q ) show

that (loally) ompat rational ohomology spheres an be quite di�erent

from spheres. This is one reason for onsidering rational ohomology n-

spheres whih are also rational ohomology n-manifolds (see Theorem 2.3).

2 Loal properties of the �xed point set

In order to state a loal analogue of the global Theorem 1.1, we need the no-

tion of a rational ohomology n-manifold. This is a loally ompat spae X

whose ohomologial dimension over Q is �nite, whih is ohomologially

loally onneted in every degree, and whose loal Borel{Moore homology

groups over Q agree with those of R

n

. For details, the reader is referred to

Bredon [8, Setion V.16℄. A onneted rational ohomology n-manifold X

is alled orientable if H

n



(X;Q)

�

=

Q (f. [8, V.16.16℄).

Topologial n-manifolds are examples of rational ohomology n-mani-

folds. A non-manifold example is the open one over an (n � 1)-manifold

whih is not a sphere but has the rational ohomology of an (n� 1)-sphere,

suh as a real projetive spae of odd dimension. Other non-manifold exam-

ples are provided by �xed point sets of elementary abelian or torus groups

ating on manifolds, and by Cartesian fators of manifolds. Thus the lass of

rational ohomology manifolds possesses better inheritane properties than

its sublass formed by genuine manifolds. This is why ohomology mani-

folds, also over general prinipal ideal domains, play an important role in

the theory of group ations, see Borel et al. [5℄. The haraterization of

manifolds among ohomology manifolds is a hard open problem, see Bryant

et al. [10℄.

As announed above, the property of being a rational ohomology mani-

fold is inherited by ertain orbit spaes.

2.1 Theorem (Raymond [16℄). Let N be a seond ountable totally

disonneted ompat group whih ats on a onneted orientable rational

ohomology n-manifold X. Suppose that the ation of N on H

n



(X;Q) is

trivial. Then X=N is an orientable rational ohomology n-manifold. �

2.2 Theorem (Fixed points in manifolds). Let G be a ompat on-

neted abelian group ating non-trivially on a onneted rational ohomo-

logy n-manifold X. Then the �xed point set X

G

is loally onneted, and

eah onneted omponent F of X

G

is a rational ohomology k-manifold for
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some k suh that n � k is a positive even number. If X is orientable then

so is F .

Proof. Assume �rst that the dimension of G is �nite. (Atually, this

assumption is neessarily satis�ed [3, 4.13℄, but we need not use this result.)

Thus there is a totally disonneted losed subgroupN

1

of G suh that G=N

1

is a �nite-dimensional torus. Moreover, the topology of G has a ountable

basis (Hofmann and Morris [12, 8.24℄).

Choose a point x

0

2 X. We will onstrut a G-invariant onneted open

neighbourhood U of x

0

in X and an open subgroup N of N

1

suh that U=N

is a rational ohomology n-manifold. If X is orientable then Raymond's

Theorem 2.1 allows us to set U

:

= X and N

:

= N

1

beause the ation

of the onneted group G on H

�



(X;Q) is trivial by Proposition 1.2 (f.

Bredon [8, II.11.11℄). Suppose that X is not orientable. Every ohomology

manifold is loally onneted and loally orientable, whih means that we

may hoose an orientable open neighbourhood V

1

of x

0

in X. Continuity of

the ation yields an identity neighbourhood W in G and a onneted open

neighbourhood V

2

of x

0

suh that W:V

2

� V

1

. As the ompat group N

1

is totally disonneted, the identity neighbourhood W ontains an open

subgroup N

2

of N

1

. We may also assume that N

2

:x

0

� V

2

, so that the open

neighbourhood V

3

:

= N

2

:V

2

of x

0

in V

1

is onneted. Then H

n



(V

3

;Q)

�

=

Q ,

whene Proposition 1.2 yields an open subgroup N of N

2

whose ation on

H

n



(V

3

;Q) is trivial. Raymond's Theorem 2.1 shows that V

3

=N is a rational

ohomology n-manifold. Set U

:

= G:V

3

. Then U is a onneted open

neighbourhood of x

0

, and U=N = G:(V

3

=N) is a rational ohomology n-

manifold as well.

The rational ohomology n-manifold U=N arries an ation of G=N , and

this group is a torus by [12, 8.17℄. Moreover, the �xed point sets U

G

and

(U=N)

G=N

are homeomorphi. The Conner{Floyd Fixed Point Theorem (see

Borel et al. [5, V.3.2℄) shows that U

G

is loally onneted and that every

onneted omponent is a rational ohomology manifold of non-negative

even odimension. In the ase that X is orientable (and U = X), the

Conner{Floyd Theorem also yields that every onneted omponent of X

G

is orientable.

We infer that the �xed point set X

G

is loally onneted. Let F be one

of its onneted omponents. Then every point of F has an open neighbour-

hood V in X suh that F \V is a rational ohomology manifold. Sine being

a ohomology manifold is a loal property, we onlude that F is a ratio-

nal ohomology manifold. The omponent F is not open in the onneted

spae X beause it is losed and the ation is not trivial. By Invariane of

Domain (see Bredon [8, V.16.19℄), this implies that the dimension of F is

stritly less than n.

It remains to treat the ase that the dimension of G is in�nite. By [12,

8.15℄, we �nd a totally disonneted subgroup N of G suh that G=N is an
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(in�nite-dimensional) torus. Every sub-torus of G=N is of the form HN=N

for a pro-torus H � G by [12, 7.73℄. Hene G ontains plenty of pro-tori.

In partiular, the sum of all �nite-dimensional losed onneted subgroups

of G is dense. Let F be a onneted omponent of X

G

. We will omplete

the proof by indutively onstruting a �nite-dimensional losed onneted

subgroup of G whose �xed point set in X has F as a onneted omponent.

Choose a �nite-dimensional pro-torus H

1

� G whose ation on X is not

trivial. Given a �nite-dimensional pro-torusH

j

� G, let F

j

be the onneted

omponent of X

H

j

whih ontains F . If F 6= F

j

then the indued ation

of G=H

j

on F

j

is not trivial, whene we may hoose a �nite-dimensional

pro-torus H

j+1

� G whih ontains H

j

and ats non-trivially on F

j

. Thus

we have onstruted a properly desending sequene of onneted rational

ohomology manifolds F

j

, whih must terminate beause the dimensions

derease stritly. Therefore, we reah a �nite-dimensional pro-torus H

l

� G

suh that F is a omponent of the �xed point set X

H

l

. �

2.3 Theorem (Fixed points in spheres, II). Let G be a non-trivial om-

pat onneted abelian group whih ats e�etively on a ompat rational

ohomology n-manifold X satisfying H

�

(X;Q)

�

=

H

�

(S

n

;Q). Then there is

an integer k � �1 suh that H

�

(X

G

;Q)

�

=

H

�

(S

k

;Q), and X

G

is empty, a

two-point spae, or a onneted orientable rational ohomology k-manifold.

Moreover, the integer n� k is a positive even number.

Let S be the set of losed onneted subgroups of G whose odimension

is 1. Then the formula

n� k =

X

H2S

�

dim

Q

X

H

� k

�

holds. In partiular, there is a losed onneted subgroup H of G of odi-

mension 1 suh that X

H

stritly ontains X

G

, and

dimG �

n� k

2

�

�

n+ 1

2

�

:

Obvious linear ations of torus groups on spheres show that the upper bound

for the dimension of G is sharp.

Proof. If the dimension of G is in�nite then G has losed onneted sub-

groups of arbitrarily high �nite dimension (Hofmann and Mostert [12, 8.15℄).

This will be exluded if we prove the theorem under the hypothesis that G

is �nite-dimensional, whih we may therefore assume.

We begin by olleting some of the onsequenes whih the hypotheses

have for X. Note that n = dim

Q

X > 0 beause the ation of the onneted

group G on X is not trivial (f. Bredon [8, II.16.21℄). The ohomology

group H

0

(X;Q) in degree 0 is naturally isomorphi to the group of ontinu-

ous funtions from X into Q , where Q arries the disrete topology (see [8,
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II.2.2℄). Therefore, the isomorphism H

0

(X;Q)

�

=

Q shows that X is on-

neted. Hene X is orientable beause H

n

(X;Q)

�

=

Q . (Reall that this

was our de�nition of orientability; f. [8, V.16.16℄.)

Now onsider the ation of G on X. Sine we assume the dimension of G

to be �nite, Theorem 1.3 shows that X

G

has the rational ohomology of a k-

sphere for some k 2 n� 2N

0

. Suppose that X

G

is not empty. Then k > �1,

and Theorem 2.2 shows that X

G

is the topologial sum of its onneted

omponents. Let F be one of them. Again by Theorem 2.2, the spae F

is an orientable rational ohomology k

0

-manifold for some k

0

2 n� 2N with

k

0

� 0. In partiular, this implies that H

0

(F ;Q)

�

=

H

k

0

(F ;Q)

�

=

Q . We

onlude that k

0

= k if k > 0, in whih ase X

G

is onneted, and also if

k = 0, in whih ase X

G

is disrete and hene onsists of two points.

Borel's sum formula is given by Theorem 1.3. As k < n, we an use

indution to �nd a stritly asending hain

1 = H

0

< H

1

< H

2

< � � � < H

r

= G

of losed onneted subgroups with dimH

j

= j suh that the hain

X = X

H

0

� X

H

1

� X

H

2

� � � � � X

H

r

= X

G

is stritly desending. In fat, in eah step the dimensions of the �xed point

sets di�er by at least 2. Hene k � n� 2r, and we obtain the upper bound

for r = dimG whih was asserted. �
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