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Abstract

Essential results from the theory of torus actions, initiated by P.
A. Smith, are generalized to actions of pro-tori, i.e. compact connected
abelian groups. We show that the fixed point set in a (rational cohomo-
logy) manifold, resp. sphere, is a rational cohomology manifold, resp.
sphere, of even codimension. Borel’s dimension formula for the fixed
spheres of codimension one subgroups is proved for actions of pro-tori
on (cohomology) spheres. This yields a sharp upper bound for the
group dimension.! 2

Introduction

The theory of continuous torus actions on manifolds (and on their natu-
ral generalizations, cohomology manifolds) has flourished over a long time.
By contrast, actions of general compact connected abelian groups, so-called
pro-tori, have received relatively little attention. Moreover, the seminal pa-
pers by Bredon, Raymond, Williams, and Yang [9, 16, 20] were intended as
contributions towards a proof of the Hilbert-Smith conjecture, which states
that a locally compact effective transformation group on a manifold is a Lie
group. (Until today, this conjecture has only been proved for actions by
diffeomorphisms [4, 15], Lipschitz homeomorphisms [17], or quasi-conformal
homeomorphisms [14].) Therefore, the authors mentioned above concen-
trated on certain surprising differences between actions of tori and of pro-
tori, whereas the present paper builds on their methods in order to develop
far-reaching parallels between tori and pro-tori. Its other main sources are
the monographs by Allday and Puppe [1] (to dispense with assumptions
of finite orbit type) and Hofmann and Morris [12] (for structural details of
compact groups). The fixed point theorems proved here are of interest for
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topological incidence geometry [11, 18], where actions of Lie and non-Lie
groups used to be treated by rather different methods. In the light of the
present results, a unified approach would have been possible in [2], leading
to slightly stronger results in a more elegant way.

Examples described by Bredon in [7, Section 1.8] show that the restriction
to compact connected abelian groups is necessary. For instance, let L be a
(possibly empty) finite simplicial complex, and let G be a compact connected
non-abelian Lie group or a cyclic group whose order is not a prime power.
Then for each sufficiently large n € N, there is an action of G on R* whose
fixed point set is homotopy equivalent to L.

1 Cohomology of the fixed point set

The results about actions of pro-tori (i.e. compact connected abelian groups)
will be proved by reduction to actions of tori (i.e. powers of the circle group),
for which they are known. We say that a pro-torus G has dimension n and
write dim G = n if there is a totally disconnected closed subgroup N < G
such that G/N = T", an n-torus. Of course, to say that the dimension of G
is finite then means that dim G = n for some n € N. This definition agrees
with various topological notions of dimension (see Hofmann and Morris [12,
8.22-8.26]). Now suppose that G acts effectively on a Hausdorff space X.
Then there is an induced action of the n-torus G/N on the orbit space
X/N. This action is almost effective, i.e. its kernel is totally disconnected.
The orbit projection X — X/N is a proper open map, and it induces a
homeomorphism X¢ ~ (X/N)&/N. (Here X© denotes the set of points in
X which are fixed under the action of G.) The orbit space of the action
of G/N on X/N is homeomorphic to the orbit space X/G. Thus many
questions about the orbit spaces and fixed point sets of actions of pro-tori
are reduced to questions about tori. This approach is very successful because
the orbit space X /N inherits global and local cohomological properties from
the space X. The appropriate cohomology theory is sheaf cohomology over Q
with compact supports (see Bredon [8]).

Note that in our terminology, a (locally) compact space satisfies the
Hausdorff separation property.

1.1 Theorem (Bredon et al. [9, 5.1], Lowen [13]). Let N be a totally
disconnected compact group which acts on a locally compact space X. Then
the orbit projection X — X/N induces an isomorphism

H(X/N;Q) = H (X;QV. O

If the rational vector space Hg(X ;Q) has finite dimension then the fol-
lowing proposition yields an open subgroup of N which acts trivially on it.



1.2 Proposition (Continuity of the action on cohomology). Let G be
a locally compact group acting on a locally compact space X, and let A be
an abelian group. Then the induced action of G on H}(X; A) is continuous
with respect to the discrete topology on H}(X;A). (In other words, all
stabilizers of this action are open subgroups.)

Proof. The proof, which is inspired by Bredon [8, 11.11.9], exploits the
continuity property of sheaf cohomology with compact supports. Choose a
compact neighbourhood U of 1 in G. Set

N :={V x X CG x X |V is a closed neighbourhood of 1 in U}.
An inclusion N; < Ny between elements of A induces a “restriction” map
H}(Ny) — HZ(N1), ar—aly,

in cohomology. With these maps, the cohomology groups H}(N; A), where
N ranges over N, form a directed system. The inclusions of the set (N =
{1} x X =: X, into the sets N € N induce an isomorphism
i (N3 4) 2 H (X35.4)

by the weak continuity property [8, I1.10.7]. In particular, if two cohomology
classes a, o/ € H} (U x X; A) satisfy a|x, = o|x, then there is an element
N € N such that a|y = o|y.

Pick a cohomology class § € H}(X;A). We have to show that the
stabilizer of 5 in the induced action of G on H}(X;A) is open. Let

XEUxx 45X

be the product projection and restriction of the action map, respectively.
Define elements of H} (U x X; A) by a := pry*(8) and o : = w*(8). (As U is
compact, both pry and w are proper maps, see Bourbaki [6, Ch. I § 10 Cor. 5
and Ch. IIT § 4 Prop. 1]. This is necessary for the definition of the maps pry*
and w*.) We have «a|x, = ¢|x, because pry |x, = w|x,. Therefore, there is
a closed neighbourhood V of 1 in U such that, for N :=V x X, we have
a|y = d|y. For g € U, define an embedding

ig: X —mUxX, z+—(g,2).
Then the action of the group element g on X is given by w o 44, whence its
action on H}(X; A) is given by 4," o w*. Choose g € V. Then i, factors as

the corestriction 44| : X — N followed by the inclusion of N into U x X.
Hence

iy* (" (B) = ig" () = (igV)" ()
= (i) (aln) = ig* (@) = (pra0ig)*(8) = (idx)*(B) = B.

Therefore, the identity neighbourhood V' C G fixes § in the action of G
on H}(X;A). Thus the stabilizer of 5 is open. O



A careful analysis of the proof shows that the preceding proposition holds
more generally, namely for actions of locally paracompact groups on locally
compact spaces. For the technical details, see [3, 4.2].

Before studying actions on rational cohomology manifolds in detail, we
draw some consequences from the global Theorem 1.1. We adopt the con-
vention that the “(—1)-sphere” S~!is the empty set.

1.3 Theorem (Fixed points in spheres, I). Let G be a compact con-
nected abelian group of finite dimension which acts on a compact space X
such that H*(X;Q) = H*(S™Q) for some n > 1. Then H*(X%;Q) =
H*(S™%); Q) for some n(G) such that —1 < n(G) < n and n—n(G) is even.

Let S be the set of closed connected subgroups of G whose codimension
is 1. Then the formula

n—n(G) =Y (n(H)-n(Q))

holds.

Fixed point theorems of this type were first proved by P. A. Smith for actions
of groups of prime order (see his survey [19]), and the sum formula goes back
to Borel [5, XIIL.2.3].

Proof. Let N be a compact totally disconnected subgroup of G such that
G/N is a torus group. The orbit space X/N has the cohomology of S"
by Theorem 1.1 since the action of the connected group G, and hence that
of N, on H*(X;Q) is trivial by Proposition 1.2 (cf. Bredon [8, I1.11.11]).
Therefore, the space (X/N)&/N which is homeomorphic to X¢, has the
cohomology of S for some n(G) € {~1,...,n} such that n — n(G) is
even. This result can be found in Bredon’s book [7, 111.10.10, cf. I111.10.9]
under the additional hypothesis that the set of stabilizers in G/N is finite,
and immediately before, Bredon remarks that the result can also be proved
without this hypothesis. Indeed, the present hypotheses imply the rela-
tions dimg H*(X%; Q) < dimg H*(X;Q) = 2 (Allday and Puppe [1, 3.1.14
and 3.2.9]) and xo(X%) = xo(X) [1, 3.1.13 and 3.2.9], from which the
assertions about the cohomology of X% follow easily (cf. [7, IIL5.1]).
Choose H € S. Then the fixed point set X is invariant under G, so
that H*(X%;Q) = H*(X"/N;Q) by Theorem 1.1. Moreover, we observe
that X” /N = (X/N)" = (X/N)#N/N  and that every codimension 1 sub-
torus of G/N is of the form HN/N for a unique H € S (cf. Hofmann and
Morris [12, 7.73]). Hence we can deduce the second part of the theorem
from Borel’s sum formula for actions of tori, which is given by [1, 5.3.11]
in sufficient generality, as a statement about torus actions on Poincaré du-
ality spaces. As this statement describes connected components of fixed
point sets, we apply it to the natural action of G/N on the double suspen-
sion ¥2(X/N) of X/N. This space has the rational cohomology of S"2,



In particular, it is indeed a Poincaré duality space with respect to ratio-
nal coefficients because the isomorphism H*(X2(X/N);Q) = H*(S"? Q)
of graded groups preserves the structure of the cohomology rings. Moreover,
if H < G is a closed connected subgroup then (X2(X/N))# ~ %2((X/N)H)
is connected and has the cohomology of S"(H)+2, U

The isomorphisms H*(S% Q) = H}(S? x PR; Q) = H}(R? U P,R; Q) show
that (locally) compact rational cohomology spheres can be quite different
from spheres. This is one reason for considering rational cohomology n-
spheres which are also rational cohomology n-manifolds (see Theorem 2.3).

2 Local properties of the fixed point set

In order to state a local analogue of the global Theorem 1.1, we need the no-
tion of a rational cohomology n-manifold. This is a locally compact space X
whose cohomological dimension over Q is finite, which is cohomologically
locally connected in every degree, and whose local Borel-Moore homology
groups over (Q agree with those of R". For details, the reader is referred to
Bredon [8, Section V.16]. A connected rational cohomology n-manifold X
is called orientable if H?(X;Q) = Q (cf. [8, V.16.16]).

Topological n-manifolds are examples of rational cohomology n-mani-
folds. A non-manifold example is the open cone over an (n — 1)-manifold
which is not a sphere but has the rational cohomology of an (n — 1)-sphere,
such as a real projective space of odd dimension. Other non-manifold exam-
ples are provided by fixed point sets of elementary abelian or torus groups
acting on manifolds, and by Cartesian factors of manifolds. Thus the class of
rational cohomology manifolds possesses better inheritance properties than
its subclass formed by genuine manifolds. This is why cohomology mani-
folds, also over general principal ideal domains, play an important role in
the theory of group actions, see Borel et al. [5]. The characterization of
manifolds among cohomology manifolds is a hard open problem, see Bryant
et al. [10].

As announced above, the property of being a rational cohomology mani-
fold is inherited by certain orbit spaces.

2.1 Theorem (Raymond [16]). Let N be a second countable totally
disconnected compact group which acts on a connected orientable rational
cohomology n-manifold X. Suppose that the action of N on H!(X;Q) is
trivial. Then X /N is an orientable rational cohomology n-manifold. g

2.2 Theorem (Fixed points in manifolds). Let G be a compact con-
nected abelian group acting non-trivially on a connected rational cohomo-
logy n-manifold X. Then the fixed point set X© is locally connected, and
each connected component F of X is a rational cohomology k-manifold for



some k such that n — k is a positive even number. If X is orientable then
so is F'.

Proof. Assume first that the dimension of G is finite. (Actually, this
assumption is necessarily satisfied [3, 4.13], but we need not use this result.)
Thus there is a totally disconnected closed subgroup N; of G such that G/N;
is a finite-dimensional torus. Moreover, the topology of G has a countable
basis (Hofmann and Morris [12, 8.24]).

Choose a point ¢ € X. We will construct a G-invariant connected open
neighbourhood U of zy in X and an open subgroup N of N; such that U/N
is a rational cohomology n-manifold. If X is orientable then Raymond’s
Theorem 2.1 allows us to set U := X and N := N;j because the action
of the connected group G on H}(X;Q) is trivial by Proposition 1.2 (cf.
Bredon [8, II.11.11]). Suppose that X is not orientable. Every cohomology
manifold is locally connected and locally orientable, which means that we
may choose an orientable open neighbourhood V; of g in X. Continuity of
the action yields an identity neighbourhood W in G and a connected open
neighbourhood V5 of zy such that W.V, C Vi. As the compact group Ny
is totally disconnected, the identity neighbourhood W contains an open
subgroup Ny of N;. We may also assume that No.xg C Vs, so that the open
neighbourhood V3 := N.V5 of z in V; is connected. Then H'(V3;Q) = Q,
whence Proposition 1.2 yields an open subgroup N of Ns whose action on
H}(V3;Q) is trivial. Raymond’s Theorem 2.1 shows that V3/N is a rational
cohomology n-manifold. Set U := G.V3. Then U is a connected open
neighbourhood of zy, and U/N = G.(V3/N) is a rational cohomology n-
manifold as well.

The rational cohomology n-manifold U/N carries an action of G/N, and
this group is a torus by [12, 8.17]. Moreover, the fixed point sets U and
(U/N)&/N are homeomorphic. The Conner-Floyd Fixed Point Theorem (see
Borel et al. [5, V.3.2]) shows that U is locally connected and that every
connected component is a rational cohomology manifold of non-negative
even codimension. In the case that X is orientable (and U = X), the
Conner-Floyd Theorem also yields that every connected component of X
is orientable.

We infer that the fixed point set X is locally connected. Let F be one
of its connected components. Then every point of F' has an open neighbour-
hood V in X such that FNV is a rational cohomology manifold. Since being
a cohomology manifold is a local property, we conclude that F' is a ratio-
nal cohomology manifold. The component F' is not open in the connected
space X because it is closed and the action is not trivial. By Invariance of
Domain (see Bredon [8, V.16.19]), this implies that the dimension of F is
strictly less than n.

It remains to treat the case that the dimension of G is infinite. By [12,
8.15], we find a totally disconnected subgroup N of G such that G/N is an



(infinite-dimensional) torus. Every sub-torus of G/N is of the form HN/N
for a pro-torus H < G by [12, 7.73]. Hence G contains plenty of pro-tori.
In particular, the sum of all finite-dimensional closed connected subgroups
of G is dense. Let F be a connected component of X%, We will complete
the proof by inductively constructing a finite-dimensional closed connected
subgroup of G whose fixed point set in X has F' as a connected component.
Choose a finite-dimensional pro-torus H; < G whose action on X is not
trivial. Given a finite-dimensional pro-torus H; < G, let F; be the connected
component of X which contains F. If F # F; then the induced action
of G/H; on Fj is not trivial, whence we may choose a finite-dimensional
pro-torus H;;1 < G which contains H; and acts non-trivially on F;. Thus
we have constructed a properly descending sequence of connected rational
cohomology manifolds Fj;, which must terminate because the dimensions
decrease strictly. Therefore, we reach a finite-dimensional pro-torus H; < G
such that F' is a component of the fixed point set X ¢, O

2.3 Theorem (Fixed points in spheres, IT). Let G be a non-trivial com-
pact connected abelian group which acts effectively on a compact rational
cohomology n-manifold X satisfying H*(X;Q) = H*(S™; Q). Then there is
an integer k > —1 such that H*(X%;Q) = H*(S*;Q), and X is empty, a
two-point space, or a connected orientable rational cohomology k-manifold.
Moreover, the integer n — k is a positive even number.

Let S be the set of closed connected subgroups of G whose codimension
is 1. Then the formula

n—k=">Y (dimgX" k)
HeS

holds. In particular, there is a closed connected subgroup H of G of codi-
mension 1 such that X strictly contains X%, and

n+1
5 .

&mng;kS{

Obvious linear actions of torus groups on spheres show that the upper bound
for the dimension of G is sharp.

Proof. If the dimension of G is infinite then G has closed connected sub-
groups of arbitrarily high finite dimension (Hofmann and Mostert [12, 8.15]).
This will be excluded if we prove the theorem under the hypothesis that G
is finite-dimensional, which we may therefore assume.

We begin by collecting some of the consequences which the hypotheses
have for X. Note that n = dimgp X > 0 because the action of the connected
group G on X is not trivial (cf. Bredon [8, 11.16.21]). The cohomology
group H(X; Q) in degree 0 is naturally isomorphic to the group of continu-
ous functions from X into Q, where Q carries the discrete topology (see [8,



I1.2.2]). Therefore, the isomorphism H%(X;Q) = Q shows that X is con-
nected. Hence X is orientable because H"(X;Q) = Q. (Recall that this
was our definition of orientability; cf. [8, V.16.16].)

Now consider the action of G on X. Since we assume the dimension of G
to be finite, Theorem 1.3 shows that X has the rational cohomology of a k-
sphere for some k € n — 2Ny. Suppose that X¢ is not empty. Then k& > —1,
and Theorem 2.2 shows that X is the topological sum of its connected
components. Let F' be one of them. Again by Theorem 2.2, the space F
is an orientable rational cohomology k’-manifold for some k' € n — 2N with
k' > 0. In particular, this implies that H(F;Q) =~ H*(F;Q) ~ Q. We
conclude that k' = k if k& > 0, in which case X¢ is connected, and also if
k =0, in which case X is discrete and hence consists of two points.

Borel’s sum formula is given by Theorem 1.3. As k < n, we can use
induction to find a strictly ascending chain

l1=Hy<Hi<Hy<---<H,=G
of closed connected subgroups with dim H; = j such that the chain
X = xto 5 xth 5 xt: 5 ... 5 xtr = X¢

is strictly descending. In fact, in each step the dimensions of the fixed point
sets differ by at least 2. Hence k < n — 2r, and we obtain the upper bound
for r = dim G which was asserted. 0
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