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Abstra
t

Essential results from the theory of torus a
tions, initiated by P.

A. Smith, are generalized to a
tions of pro-tori, i.e. 
ompa
t 
onne
ted

abelian groups. We show that the �xed point set in a (rational 
ohomo-

logy) manifold, resp. sphere, is a rational 
ohomology manifold, resp.

sphere, of even 
odimension. Borel's dimension formula for the �xed

spheres of 
odimension one subgroups is proved for a
tions of pro-tori

on (
ohomology) spheres. This yields a sharp upper bound for the

group dimension.
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Introdu
tion

The theory of 
ontinuous torus a
tions on manifolds (and on their natu-

ral generalizations, 
ohomology manifolds) has 
ourished over a long time.

By 
ontrast, a
tions of general 
ompa
t 
onne
ted abelian groups, so-
alled

pro-tori, have re
eived relatively little attention. Moreover, the seminal pa-

pers by Bredon, Raymond, Williams, and Yang [9, 16, 20℄ were intended as


ontributions towards a proof of the Hilbert-Smith 
onje
ture, whi
h states

that a lo
ally 
ompa
t e�e
tive transformation group on a manifold is a Lie

group. (Until today, this 
onje
ture has only been proved for a
tions by

di�eomorphisms [4, 15℄, Lips
hitz homeomorphisms [17℄, or quasi-
onformal

homeomorphisms [14℄.) Therefore, the authors mentioned above 
on
en-

trated on 
ertain surprising di�eren
es between a
tions of tori and of pro-

tori, whereas the present paper builds on their methods in order to develop

far-rea
hing parallels between tori and pro-tori. Its other main sour
es are

the monographs by Allday and Puppe [1℄ (to dispense with assumptions

of �nite orbit type) and Hofmann and Morris [12℄ (for stru
tural details of


ompa
t groups). The �xed point theorems proved here are of interest for
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topologi
al in
iden
e geometry [11, 18℄, where a
tions of Lie and non-Lie

groups used to be treated by rather di�erent methods. In the light of the

present results, a uni�ed approa
h would have been possible in [2℄, leading

to slightly stronger results in a more elegant way.

Examples des
ribed by Bredon in [7, Se
tion I.8℄ show that the restri
tion

to 
ompa
t 
onne
ted abelian groups is ne
essary. For instan
e, let L be a

(possibly empty) �nite simpli
ial 
omplex, and let G be a 
ompa
t 
onne
ted

non-abelian Lie group or a 
y
li
 group whose order is not a prime power.

Then for ea
h suÆ
iently large n 2 N, there is an a
tion of G on R

n

whose

�xed point set is homotopy equivalent to L.

1 Cohomology of the �xed point set

The results about a
tions of pro-tori (i.e. 
ompa
t 
onne
ted abelian groups)

will be proved by redu
tion to a
tions of tori (i.e. powers of the 
ir
le group),

for whi
h they are known. We say that a pro-torus G has dimension n and

write dimG = n if there is a totally dis
onne
ted 
losed subgroup N � G

su
h that G=N

�

=

T

n

, an n-torus. Of 
ourse, to say that the dimension of G

is �nite then means that dimG = n for some n 2 N. This de�nition agrees

with various topologi
al notions of dimension (see Hofmann and Morris [12,

8.22{8.26℄). Now suppose that G a
ts e�e
tively on a Hausdor� spa
e X.

Then there is an indu
ed a
tion of the n-torus G=N on the orbit spa
e

X=N . This a
tion is almost e�e
tive, i.e. its kernel is totally dis
onne
ted.

The orbit proje
tion X ! X=N is a proper open map, and it indu
es a

homeomorphism X

G

� (X=N)

G=N

. (Here X

G

denotes the set of points in

X whi
h are �xed under the a
tion of G.) The orbit spa
e of the a
tion

of G=N on X=N is homeomorphi
 to the orbit spa
e X=G. Thus many

questions about the orbit spa
es and �xed point sets of a
tions of pro-tori

are redu
ed to questions about tori. This approa
h is very su

essful be
ause

the orbit spa
e X=N inherits global and lo
al 
ohomologi
al properties from

the spa
eX. The appropriate 
ohomology theory is sheaf 
ohomology over Q

with 
ompa
t supports (see Bredon [8℄).

Note that in our terminology, a (lo
ally) 
ompa
t spa
e satis�es the

Hausdor� separation property.

1.1 Theorem (Bredon et al. [9, 5.1℄, L�owen [13℄). Let N be a totally

dis
onne
ted 
ompa
t group whi
h a
ts on a lo
ally 
ompa
t spa
e X. Then

the orbit proje
tion X ! X=N indu
es an isomorphism

H

�




(X=N ;Q)

�

=

H

�




(X;Q)

N

: �

If the rational ve
tor spa
e H

j




(X;Q) has �nite dimension then the fol-

lowing proposition yields an open subgroup of N whi
h a
ts trivially on it.
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1.2 Proposition (Continuity of the a
tion on 
ohomology). Let G be

a lo
ally 
ompa
t group a
ting on a lo
ally 
ompa
t spa
e X, and let A be

an abelian group. Then the indu
ed a
tion of G on H

�




(X;A) is 
ontinuous

with respe
t to the dis
rete topology on H

�




(X;A). (In other words, all

stabilizers of this a
tion are open subgroups.)

Proof. The proof, whi
h is inspired by Bredon [8, II.11.9℄, exploits the


ontinuity property of sheaf 
ohomology with 
ompa
t supports. Choose a


ompa
t neighbourhood U of 1 in G. Set

N

:

= fV �X � G�X j V is a 
losed neighbourhood of 1 in Ug:

An in
lusion N

1

,! N

2

between elements of N indu
es a \restri
tion" map

H

�




(N

2

) �! H

�




(N

1

); � 7�! �j

N

1

in 
ohomology. With these maps, the 
ohomology groups H

�




(N ;A), where

N ranges over N , form a dire
ted system. The in
lusions of the set

T

N =

f1g �X =

:

X

1

into the sets N 2 N indu
e an isomorphism

lim

�!

N2N

H

�




(N ;A)

�

=

H

�




(X

1

;A)

by the weak 
ontinuity property [8, II.10.7℄. In parti
ular, if two 
ohomology


lasses �; �

0

2 H

�




(U �X;A) satisfy �j

X

1

= �

0

j

X

1

then there is an element

N 2 N su
h that �j

N

= �

0

j

N

.

Pi
k a 
ohomology 
lass � 2 H

�




(X;A). We have to show that the

stabilizer of � in the indu
ed a
tion of G on H

�




(X;A) is open. Let

X

pr

2

 � U �X

!

�! X

be the produ
t proje
tion and restri
tion of the a
tion map, respe
tively.

De�ne elements of H

�




(U�X;A) by �

:

= pr

2

�

(�) and �

0

:

= !

�

(�). (As U is


ompa
t, both pr

2

and ! are proper maps, see Bourbaki [6, Ch. I x 10 Cor. 5

and Ch. III x 4 Prop. 1℄. This is ne
essary for the de�nition of the maps pr

2

�

and !

�

.) We have �j

X

1

= �

0

j

X

1

be
ause pr

2

j

X

1

= !j

X

1

. Therefore, there is

a 
losed neighbourhood V of 1 in U su
h that, for N

:

= V � X, we have

�j

N

= �

0

j

N

. For g 2 U , de�ne an embedding

i

g

: X �! U �X; x 7�! (g; x) :

Then the a
tion of the group element g on X is given by ! Æ i

g

, when
e its

a
tion on H

�




(X;A) is given by i

g

�

Æ !

�

. Choose g 2 V . Then i

g

fa
tors as

the 
orestri
tion i

g

j

N

: X ! N followed by the in
lusion of N into U �X.

Hen
e

i

g

�

(!

�

(�)) = i

g

�

(�

0

) =

�

i

g

j

N

�

�

(�

0

j

N

)

=

�

i

g

j

N

�

�

(�j

N

) = i

g

�

(�) = (pr

2

Æi

g

)

�

(�) = (id

X

)

�

(�) = �:

Therefore, the identity neighbourhood V � G �xes � in the a
tion of G

on H

�




(X;A). Thus the stabilizer of � is open. �
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A 
areful analysis of the proof shows that the pre
eding proposition holds

more generally, namely for a
tions of lo
ally para
ompa
t groups on lo
ally


ompa
t spa
es. For the te
hni
al details, see [3, 4.2℄.

Before studying a
tions on rational 
ohomology manifolds in detail, we

draw some 
onsequen
es from the global Theorem 1.1. We adopt the 
on-

vention that the \(�1)-sphere" S

�1

is the empty set.

1.3 Theorem (Fixed points in spheres, I). Let G be a 
ompa
t 
on-

ne
ted abelian group of �nite dimension whi
h a
ts on a 
ompa
t spa
e X

su
h that H

�

(X;Q)

�

=

H

�

(S

n

;Q) for some n � 1. Then H

�

(X

G

;Q)

�

=

H

�

(S

n(G)

;Q) for some n(G) su
h that �1 � n(G) � n and n�n(G) is even.

Let S be the set of 
losed 
onne
ted subgroups of G whose 
odimension

is 1. Then the formula

n� n(G) =

X

H2S

�

n(H)� n(G)

�

holds.

Fixed point theorems of this type were �rst proved by P. A. Smith for a
tions

of groups of prime order (see his survey [19℄), and the sum formula goes ba
k

to Borel [5, XIII.2.3℄.

Proof. Let N be a 
ompa
t totally dis
onne
ted subgroup of G su
h that

G=N is a torus group. The orbit spa
e X=N has the 
ohomology of S

n

by Theorem 1.1 sin
e the a
tion of the 
onne
ted group G, and hen
e that

of N , on H

�

(X;Q) is trivial by Proposition 1.2 (
f. Bredon [8, II.11.11℄).

Therefore, the spa
e (X=N)

G=N

, whi
h is homeomorphi
 to X

G

, has the


ohomology of S

n(G)

for some n(G) 2 f�1; : : : ; ng su
h that n � n(G) is

even. This result 
an be found in Bredon's book [7, III.10.10, 
f. III.10.9℄

under the additional hypothesis that the set of stabilizers in G=N is �nite,

and immediately before, Bredon remarks that the result 
an also be proved

without this hypothesis. Indeed, the present hypotheses imply the rela-

tions dim

Q

H

�

(X

G

;Q) � dim

Q

H

�

(X;Q) = 2 (Allday and Puppe [1, 3.1.14

and 3.2.9℄) and �

Q

(X

G

) = �

Q

(X) [1, 3.1.13 and 3.2.9℄, from whi
h the

assertions about the 
ohomology of X

G

follow easily (
f. [7, III.5.1℄).

Choose H 2 S. Then the �xed point set X

H

is invariant under G, so

that H

�

(X

H

;Q)

�

=

H

�

(X

H

=N ;Q) by Theorem 1.1. Moreover, we observe

that X

H

=N = (X=N)

H

= (X=N)

HN=N

, and that every 
odimension 1 sub-

torus of G=N is of the form HN=N for a unique H 2 S (
f. Hofmann and

Morris [12, 7.73℄). Hen
e we 
an dedu
e the se
ond part of the theorem

from Borel's sum formula for a
tions of tori, whi
h is given by [1, 5.3.11℄

in suÆ
ient generality, as a statement about torus a
tions on Poin
ar�e du-

ality spa
es. As this statement des
ribes 
onne
ted 
omponents of �xed

point sets, we apply it to the natural a
tion of G=N on the double suspen-

sion �

2

(X=N) of X=N . This spa
e has the rational 
ohomology of S

n+2

.

4



In parti
ular, it is indeed a Poin
ar�e duality spa
e with respe
t to ratio-

nal 
oeÆ
ients be
ause the isomorphism H

�

(�

2

(X=N);Q)

�

=

H

�

(S

n+2

;Q)

of graded groups preserves the stru
ture of the 
ohomology rings. Moreover,

if H � G is a 
losed 
onne
ted subgroup then (�

2

(X=N))

H

� �

2

((X=N)

H

)

is 
onne
ted and has the 
ohomology of S

n(H)+2

. �

The isomorphisms H

�




(S

2

;Q)

�

=

H

�




(S

2

� P

2

R;Q )

�

=

H

�




(R

2

t P

2

R;Q ) show

that (lo
ally) 
ompa
t rational 
ohomology spheres 
an be quite di�erent

from spheres. This is one reason for 
onsidering rational 
ohomology n-

spheres whi
h are also rational 
ohomology n-manifolds (see Theorem 2.3).

2 Lo
al properties of the �xed point set

In order to state a lo
al analogue of the global Theorem 1.1, we need the no-

tion of a rational 
ohomology n-manifold. This is a lo
ally 
ompa
t spa
e X

whose 
ohomologi
al dimension over Q is �nite, whi
h is 
ohomologi
ally

lo
ally 
onne
ted in every degree, and whose lo
al Borel{Moore homology

groups over Q agree with those of R

n

. For details, the reader is referred to

Bredon [8, Se
tion V.16℄. A 
onne
ted rational 
ohomology n-manifold X

is 
alled orientable if H

n




(X;Q)

�

=

Q (
f. [8, V.16.16℄).

Topologi
al n-manifolds are examples of rational 
ohomology n-mani-

folds. A non-manifold example is the open 
one over an (n � 1)-manifold

whi
h is not a sphere but has the rational 
ohomology of an (n� 1)-sphere,

su
h as a real proje
tive spa
e of odd dimension. Other non-manifold exam-

ples are provided by �xed point sets of elementary abelian or torus groups

a
ting on manifolds, and by Cartesian fa
tors of manifolds. Thus the 
lass of

rational 
ohomology manifolds possesses better inheritan
e properties than

its sub
lass formed by genuine manifolds. This is why 
ohomology mani-

folds, also over general prin
ipal ideal domains, play an important role in

the theory of group a
tions, see Borel et al. [5℄. The 
hara
terization of

manifolds among 
ohomology manifolds is a hard open problem, see Bryant

et al. [10℄.

As announ
ed above, the property of being a rational 
ohomology mani-

fold is inherited by 
ertain orbit spa
es.

2.1 Theorem (Raymond [16℄). Let N be a se
ond 
ountable totally

dis
onne
ted 
ompa
t group whi
h a
ts on a 
onne
ted orientable rational


ohomology n-manifold X. Suppose that the a
tion of N on H

n




(X;Q) is

trivial. Then X=N is an orientable rational 
ohomology n-manifold. �

2.2 Theorem (Fixed points in manifolds). Let G be a 
ompa
t 
on-

ne
ted abelian group a
ting non-trivially on a 
onne
ted rational 
ohomo-

logy n-manifold X. Then the �xed point set X

G

is lo
ally 
onne
ted, and

ea
h 
onne
ted 
omponent F of X

G

is a rational 
ohomology k-manifold for
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some k su
h that n � k is a positive even number. If X is orientable then

so is F .

Proof. Assume �rst that the dimension of G is �nite. (A
tually, this

assumption is ne
essarily satis�ed [3, 4.13℄, but we need not use this result.)

Thus there is a totally dis
onne
ted 
losed subgroupN

1

of G su
h that G=N

1

is a �nite-dimensional torus. Moreover, the topology of G has a 
ountable

basis (Hofmann and Morris [12, 8.24℄).

Choose a point x

0

2 X. We will 
onstru
t a G-invariant 
onne
ted open

neighbourhood U of x

0

in X and an open subgroup N of N

1

su
h that U=N

is a rational 
ohomology n-manifold. If X is orientable then Raymond's

Theorem 2.1 allows us to set U

:

= X and N

:

= N

1

be
ause the a
tion

of the 
onne
ted group G on H

�




(X;Q) is trivial by Proposition 1.2 (
f.

Bredon [8, II.11.11℄). Suppose that X is not orientable. Every 
ohomology

manifold is lo
ally 
onne
ted and lo
ally orientable, whi
h means that we

may 
hoose an orientable open neighbourhood V

1

of x

0

in X. Continuity of

the a
tion yields an identity neighbourhood W in G and a 
onne
ted open

neighbourhood V

2

of x

0

su
h that W:V

2

� V

1

. As the 
ompa
t group N

1

is totally dis
onne
ted, the identity neighbourhood W 
ontains an open

subgroup N

2

of N

1

. We may also assume that N

2

:x

0

� V

2

, so that the open

neighbourhood V

3

:

= N

2

:V

2

of x

0

in V

1

is 
onne
ted. Then H

n




(V

3

;Q)

�

=

Q ,

when
e Proposition 1.2 yields an open subgroup N of N

2

whose a
tion on

H

n




(V

3

;Q) is trivial. Raymond's Theorem 2.1 shows that V

3

=N is a rational


ohomology n-manifold. Set U

:

= G:V

3

. Then U is a 
onne
ted open

neighbourhood of x

0

, and U=N = G:(V

3

=N) is a rational 
ohomology n-

manifold as well.

The rational 
ohomology n-manifold U=N 
arries an a
tion of G=N , and

this group is a torus by [12, 8.17℄. Moreover, the �xed point sets U

G

and

(U=N)

G=N

are homeomorphi
. The Conner{Floyd Fixed Point Theorem (see

Borel et al. [5, V.3.2℄) shows that U

G

is lo
ally 
onne
ted and that every


onne
ted 
omponent is a rational 
ohomology manifold of non-negative

even 
odimension. In the 
ase that X is orientable (and U = X), the

Conner{Floyd Theorem also yields that every 
onne
ted 
omponent of X

G

is orientable.

We infer that the �xed point set X

G

is lo
ally 
onne
ted. Let F be one

of its 
onne
ted 
omponents. Then every point of F has an open neighbour-

hood V in X su
h that F \V is a rational 
ohomology manifold. Sin
e being

a 
ohomology manifold is a lo
al property, we 
on
lude that F is a ratio-

nal 
ohomology manifold. The 
omponent F is not open in the 
onne
ted

spa
e X be
ause it is 
losed and the a
tion is not trivial. By Invarian
e of

Domain (see Bredon [8, V.16.19℄), this implies that the dimension of F is

stri
tly less than n.

It remains to treat the 
ase that the dimension of G is in�nite. By [12,

8.15℄, we �nd a totally dis
onne
ted subgroup N of G su
h that G=N is an

6



(in�nite-dimensional) torus. Every sub-torus of G=N is of the form HN=N

for a pro-torus H � G by [12, 7.73℄. Hen
e G 
ontains plenty of pro-tori.

In parti
ular, the sum of all �nite-dimensional 
losed 
onne
ted subgroups

of G is dense. Let F be a 
onne
ted 
omponent of X

G

. We will 
omplete

the proof by indu
tively 
onstru
ting a �nite-dimensional 
losed 
onne
ted

subgroup of G whose �xed point set in X has F as a 
onne
ted 
omponent.

Choose a �nite-dimensional pro-torus H

1

� G whose a
tion on X is not

trivial. Given a �nite-dimensional pro-torusH

j

� G, let F

j

be the 
onne
ted


omponent of X

H

j

whi
h 
ontains F . If F 6= F

j

then the indu
ed a
tion

of G=H

j

on F

j

is not trivial, when
e we may 
hoose a �nite-dimensional

pro-torus H

j+1

� G whi
h 
ontains H

j

and a
ts non-trivially on F

j

. Thus

we have 
onstru
ted a properly des
ending sequen
e of 
onne
ted rational


ohomology manifolds F

j

, whi
h must terminate be
ause the dimensions

de
rease stri
tly. Therefore, we rea
h a �nite-dimensional pro-torus H

l

� G

su
h that F is a 
omponent of the �xed point set X

H

l

. �

2.3 Theorem (Fixed points in spheres, II). Let G be a non-trivial 
om-

pa
t 
onne
ted abelian group whi
h a
ts e�e
tively on a 
ompa
t rational


ohomology n-manifold X satisfying H

�

(X;Q)

�

=

H

�

(S

n

;Q). Then there is

an integer k � �1 su
h that H

�

(X

G

;Q)

�

=

H

�

(S

k

;Q), and X

G

is empty, a

two-point spa
e, or a 
onne
ted orientable rational 
ohomology k-manifold.

Moreover, the integer n� k is a positive even number.

Let S be the set of 
losed 
onne
ted subgroups of G whose 
odimension

is 1. Then the formula

n� k =

X

H2S

�

dim

Q

X

H

� k

�

holds. In parti
ular, there is a 
losed 
onne
ted subgroup H of G of 
odi-

mension 1 su
h that X

H

stri
tly 
ontains X

G

, and

dimG �

n� k

2

�

�

n+ 1

2

�

:

Obvious linear a
tions of torus groups on spheres show that the upper bound

for the dimension of G is sharp.

Proof. If the dimension of G is in�nite then G has 
losed 
onne
ted sub-

groups of arbitrarily high �nite dimension (Hofmann and Mostert [12, 8.15℄).

This will be ex
luded if we prove the theorem under the hypothesis that G

is �nite-dimensional, whi
h we may therefore assume.

We begin by 
olle
ting some of the 
onsequen
es whi
h the hypotheses

have for X. Note that n = dim

Q

X > 0 be
ause the a
tion of the 
onne
ted

group G on X is not trivial (
f. Bredon [8, II.16.21℄). The 
ohomology

group H

0

(X;Q) in degree 0 is naturally isomorphi
 to the group of 
ontinu-

ous fun
tions from X into Q , where Q 
arries the dis
rete topology (see [8,

7



II.2.2℄). Therefore, the isomorphism H

0

(X;Q)

�

=

Q shows that X is 
on-

ne
ted. Hen
e X is orientable be
ause H

n

(X;Q)

�

=

Q . (Re
all that this

was our de�nition of orientability; 
f. [8, V.16.16℄.)

Now 
onsider the a
tion of G on X. Sin
e we assume the dimension of G

to be �nite, Theorem 1.3 shows that X

G

has the rational 
ohomology of a k-

sphere for some k 2 n� 2N

0

. Suppose that X

G

is not empty. Then k > �1,

and Theorem 2.2 shows that X

G

is the topologi
al sum of its 
onne
ted


omponents. Let F be one of them. Again by Theorem 2.2, the spa
e F

is an orientable rational 
ohomology k

0

-manifold for some k

0

2 n� 2N with

k

0

� 0. In parti
ular, this implies that H

0

(F ;Q)

�

=

H

k

0

(F ;Q)

�

=

Q . We


on
lude that k

0

= k if k > 0, in whi
h 
ase X

G

is 
onne
ted, and also if

k = 0, in whi
h 
ase X

G

is dis
rete and hen
e 
onsists of two points.

Borel's sum formula is given by Theorem 1.3. As k < n, we 
an use

indu
tion to �nd a stri
tly as
ending 
hain

1 = H

0

< H

1

< H

2

< � � � < H

r

= G

of 
losed 
onne
ted subgroups with dimH

j

= j su
h that the 
hain

X = X

H

0

� X

H

1

� X

H

2

� � � � � X

H

r

= X

G

is stri
tly des
ending. In fa
t, in ea
h step the dimensions of the �xed point

sets di�er by at least 2. Hen
e k � n� 2r, and we obtain the upper bound

for r = dimG whi
h was asserted. �
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