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Abstrat

Essential results about ations of ompat Lie groups on manifolds

are generalized to proper ations of arbitrary groups on onneted o-

homology manifolds. Slies are replaed by ertain �bre bundle stru-

tures on orbit neighbourhoods. The group dimension is shown to be

e�etively �nite. The orbits of maximal dimension form a dense open

onneted subset. If some orbit has odimension at most 2 then the

group is e�etively a Lie group.
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Introdution

In the rih theory of ontinuous group ations on manifolds [2, 7, 12, 18, 26,

36℄, work has traditionally been foused on ompat Lie groups. However,

Palais [38℄ already drew attention to the larger lass of proper ations, and

the struture theory of general loally ompat groups [24℄ is suÆiently well

developed to allow the generalization of many important results. This is the

subjet of the present paper. Already when ations of ompat Lie groups

are studied, it is natural to generalize manifolds to ohomology manifolds,

whih form a lass of spaes with better inheritane properties. While the

most adequate ohomology oeÆients for ations of ompat Lie groups

are the integers, the natural setting for the present results is more general.

Without any additional e�ort, they also hold for ohomology manifolds over

�elds of harateristi 0.

An important preparatory result asserts that sheaf ohomologial and

overing dimension oinide for oset spaes of loally ompat groups (1.1).

Turning towards non-transitive proper ations, we show that every point has

a neighbourhood in whih the identity omponents of stabilizers, up to on-

jugation, get smaller (2.8). For proper ations on ompletely regular spaes,
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Palais's Slie Theorem [38℄ is shown to have the following analogue (3.8):

eah n-dimensional orbit has an invariant neighbourhood whih admits an

equivariant �bre bundle projetion onto a homogeneous n-manifold. A sim-

ilar statement holds for in�nite-dimensional orbits. The main result (4.11)

studies proper e�etive ations on a onneted ohomology manifold over a

�eld of harateristi 0. Among other things, we show that the set of points

on highest-dimensional orbits is open, onneted, and dense sine its om-

plement has odimension at least 2. The group dimension is �nite (in fat,

a sharp upper bound in terms of the maximal orbit dimension is given). In

the speial ase of ations of ompat Lie groups on ohomology manifolds

over Z, these results are essentially due to Yang [49℄. Corollary 4.13 asserts

that the group is a Lie group if some orbit has odimension at most 2. This

was �rst proved by Bredon [9℄ for ations of ompat groups on manifolds.

Raymond [40℄ later generalized it to ohomology manifolds over the integers

under additional hypotheses whih, in the light of the present treatment,

seem unnaturally restritive.

This paper exploits reent re�nements of the general theory [24℄ in or-

der to ontinue work by Yang [50℄, Bredon, Raymond, and Williams [15℄,

and Raymond [40℄. However, these authors emphasize ertain surprising

di�erenes between ations of Lie and of non-Lie groups on ohomology

manifolds over the integers. Their results, together with later work by Bre-

don [14, Setion V.18℄, probably onstitute the main step so far towards the

proof of the Hilbert-Smith Conjeture, whih states that a loally ompat

group whih ats ontinuously and e�etively on a onneted manifold must

be a Lie group. As mentioned above, this is true if the group is ompat

and some orbit has odimension at most 2 (Bredon [9℄), even for ohomo-

logy manifolds (Raymond [40℄ and 4.13) and proper ations of non-ompat

groups (4.13). Without suh a hypothesis, the onjeture has only be proved

for ations by di�eomorphisms on di�erentiable manifolds (Montgomery [32℄

and Bohner and Montgomery [6℄, f. Upmeier [47, Setion 11℄ for manifolds

of in�nite dimension) and, reently, for ations on Riemannian manifolds by

Lipshitz homeomorphisms (Repov�s and

�

S�epin [42℄) or by quasi-onformal

homeomorphisms (Martin [31℄).

The results of this paper may be applied to topologial inidene geo-

metries in the sense of [17, Chapters 23 and 24℄ and [43℄. In this theory,

the ustomary hypotheses imply that the point set of an inidene geometry

(suh as a ompat projetive plane) is a ohomology manifold with respet

to any oeÆient domain [28, 30℄. Therefore, Theorem 4.11 and its Corol-

lary 4.14 provide a uniform proof for the fat that the automorphism group

of suh a geometry, whih arries a natural loally ompat topology, has

�nite dimension. Previous proofs (e.g. [45, 46℄) had to use separate lines of

attak for eah type of inidene axioms. Moreover, ations of ompat Lie

and non-Lie groups on suh geometries used to be treated by rather di�erent

methods [3, 4℄. A uni�ed approah will be possible in the light of the present
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results.

The seond setion of this paper develops parts of my PhD thesis [3℄.

This was written at the University of Stuttgart, Germany, under the super-

vision of Professor Markus Stroppel, whose advie and support I gratefully

aknowledge.

1 Dimension of oset spaes

In this short setion, we prove that overing and ohomologial dimension

oinide for oset spaes of loally ompat groups, and we show when �nite

dimensionality of suh a oset spae implies �nite dimensionality of the

group. Note that in our terminology, the de�nition of (loal) ompatness

inludes the Hausdor� separation axiom.

Finite dimensional spaes are the main interest of this paper. Therefore,

we need to provide a notion of the dimension of a topologial spae. Promi-

nent dimension funtions are overing dimension (dim) and small and large

indutive dimension (ind and Ind; see, e.g., Engelking [21℄). These funtions

take their values in Z

��1

[ f1g. (Hofmann and Morris [23℄ have reently

de�ned a ardinal-valued dimension funtion and studied its behaviour on

oset spaes of loally ompat groups.) The three dimension funtions dim,

ind, and Ind do not agree in general, but they oinide for oset spaes of

loally ompat groups with respet to losed subgroups, as was proved by

Pasynkov [39℄ (f. Skljarenko [44, Theorem 9℄). One an also use ohomo-

logy over some ring R to de�ne the ohomologial dimension (dim

R

) of a

topologial spae. As we will see below, this oinides with the lassial

dimension funtions on oset spaes of loally ompat groups.

We will often use the following sum formula for the dimension of oset

spaes of loally ompat groups, whih is due to Skljarenko [44, Theo-

rem 10℄. Let G be a loally ompat group, and let H and K be losed

subgroups of G suh that K � H. Then

dimG=K = dimG=H + dimH=K: (1)

One of the most important fats about loally ompat groups is that

they an be approximated by Lie groups. To be preise, let G be a loally

ompat group suh that the quotient G=G

1

of G by its identity ompo-

nent G

1

is ompat. Then G has arbitrarily small ompat normal sub-

groups N suh that G=N is a Lie group. If, moreover, the dimension of G is

�nite then every suÆiently small losed subgroup of G is zero-dimensional.

This was proved by Yamabe [48℄ and by Glu�skov [22, Theorem 9℄, see also

Montgomery and Zippin [36, Chapter IV℄ and Kaplansky [27, II.10, Theo-

rem 18℄. Sine being a Lie group is an extension property, if N

1

and N

2

are

ompat normal subgroups of G suh that G=N

1

and G=N

2

are Lie groups

then so is G=(N

1

\N

2

) (f. [22, 1.5℄).
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For the following proposition, reall the notion of the dimension dim

R

X

of a topologial spaeX with respet to sheaf ohomology over a base ring R.

For loally ompat spaes X, this dimension is haraterized by the fat

that for any integer n � �1, the inequality dim

R

X � n holds if and only if

H

n+1



(U ;R) vanishes for all open subsets U � X, where H

�



(U ;R) denotes

the ohomology of the onstant sheaf with stalks R on U with respet to

ompat supports. For further information, the reader is referred to Bre-

don [14℄, Setion II.16.

1.1 Proposition (Cohomologial and overing dimension). Let H

be a losed subgroup of a loally ompat group G, and let R be any ring.

Then dim

R

G=H = dimG=H.

Proof. Sine G=H is paraompat (see, e.g., Bourbaki [8, Ch. III x 4

Prop. 13℄), we have the inequality dim

R

G=H � dimG=H (Bredon [14,

II.16.34℄). On the other hand, if dimG=H � n then G=H ontains a

homeomorphi image of [0; 1℄

n

by Theorem 9 of Skljarenko [44℄, so that

dim

R

G=H � n by [14, II.16.8 and II.16.28℄. This yields the opposite in-

equality dim

R

G=H � dimG=H. �

1.2 Theorem (Transitive ations on �nite-dimensional spaes). Let

G be a loally ompat group, and let H be a losed subgroup of G. Suppose

that the oset spae G=H has �nite dimension n and that the ation of G

on G=H is e�etive. Let G

1

� G denote the onneted omponent of the

identity element, whih is a losed normal subgroup of G.

If G=G

1

H is ompat then the dimension of G is �nite.

If G=H is onneted and H is ompat then dimG �

�

n+1

2

�

.

1.3 Remark. (a) To see that the subgroup G

1

H need not be losed in G,

take G

:

= R � Z

p

, where Z

p

is the group of p-adi integers, and set H

:

=

h(1; 1)i. Then H is disrete, and G

1

H = R � Z is a proper dense subgroup

ofG. In this example, the quotientG=H is the p-adi solenoid. However, ifG

is loally onneted then G

1

and G

1

H are open (hene losed) subgroups.

(b) Note that G=G

1

H is homeomorphi to the spae of onneted om-

ponents of G=H. To see this, de�ne an equivalene relation on G=H by

setting gH � g

0

H if gH and g

0

H belong to the same onneted omponent,

and equip the quotient spae X of G=H by � with the quotient topology.

Then

' : G=G

1

H �! X

gG

1

H 7�! [gH℄

�

is a homeomorphism. Indeed, the subset gG

1

H=H of G=H is onneted

beause it is the losure of the G

1

-orbit of gH. This shows that ' is well-

de�ned. It is easy to see that it is a ontinuous surjetion. Under the
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natural projetion of G=H onto G=G

1

H, the pre-image of an open-losed

subset is open and losed. Therefore, suh a pre-image is saturated under

the equivalene relation �. Sine the totally disonneted loally ompat

spae G=G

1

H has a basis whih onsists of open-losed subsets, we onlude

that ' is open and injetive.

() LetK be a transitive permutation group on a set S, and equip bothK

and S with the respetive disrete topology. Then there is an e�etive oset

spae of the semi-diret produt G

:

= T

S

oK whih is homeomorphi to

S

1

� S and hene a one-dimensional manifold, while the dimension of G

may be arbitrarily high and even in�nite. For the ase that the oset spae

is onneted, the natural transitive ation of the group SO

n+1

R on the n-

sphere S

n

shows that the upper bound for dimG is sharp.

Proof of Theorem 1.2. Sine the totally disonneted loally ompat

group G=G

1

has small open subgroups, we may hoose an open subgroup G

0

of G suh that G

0

=G

1

is ompat and hene an be approximated by Lie

groups. We study the ation of G

0

on G=H. The natural map from G

0

onto

the orbit G

0

:gH is open, so that the ation of G

0

on G

0

:gH is equivalent

to the ation on a oset spae. Skljarenko [44, Theorem 5℄ has shown that

G

0

is e�etively �nite-dimensional on G

0

:gH. As the orbits of G

0

in G=H

are all open, they are all losed. In partiular, every onneted omponent

of G=H is ontained in a G

0

-orbit. By Remark 1.3, the spae of onneted

omponents of G=H is ompat, whih entails that the number of G

0

-orbits

in G=H is �nite. Therefore, the �niteness of dimG = dimG

0

is a onse-

quene of the following fat: if N

1

and N

2

are losed normal subgroups of

G

0

whose odimension is �nite then the odimension of N

1

\ N

2

is �nite.

Indeed,

dim

G

0

N

1

\N

2

= dim

G

0

N

1

+ dim

N

1

N

1

\N

2

� dim

G

0

N

1

+ dim

G

0

N

2

by Skljarenko's sum formula (1) and beause N

1

=(N

1

\N

2

) admits a ontin-

uous injetion into G

0

=N

2

(use ohomologial dimension and see Bredon [14,

IV.8.4℄).

Now suppose that G=H is onneted and that H is ompat. Then

the ation of G

0

on G=H is transitive, and it is equivalent to the ation

of G

0

on a oset spae beause G

0

is open in G. Therefore, we may assume

that G

0

= G. Let N be a zero-dimensional ompat normal subgroup of G

suh that the quotient G=N is a Lie group. The oset spae HN=H is

zero-dimensional beause it is a homogeneous spae of N . By Skljarenko's

sum formula (1), this shows that dimG=HN = dimG=H. It also implies

that (HN)

1

= H

1

, whene the transitive ation of the Lie group G=N on

G=HN is almost e�etive (i.e. its kernel is totally disonneted). Therefore,

we may even assume that G is a Lie group. The ation of the ompat

Lie group H on the onneted manifold G=H is not transitive. Hene all
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orbits of H in G=H have dimension at most n � 1 by domain invariane

(see, for instane, Bredon [13, IV.19.9℄). A result due to Montgomery and

Zippin [36, 6.3.1, Theorem 2℄ yields that dimH = dimH

1

�

�

n

2

�

, whene

dimG = dimG=H + dimH �

�

n+1

2

�

. �

2 Neighbouring orbits of proper ations

From now on, our attention is foused on proper ations, whih general-

ize ations of ompat groups. In the remaining setions, we treat ations

on general Hausdor� spaes, on ompletely regular spaes, and, �nally, on

(ohomology) manifolds.

In proper ations, whose de�nition will soon be realled, stabilizers de-

pend semi-ontinuously on points (2.2), and a similar statement holds for

the kernels of the restrited ations on single orbits (2.4). Stronger results

hold for proper ations of loally ompat groups. Using a small generaliza-

tion of a lassial theorem of Palais about proper ations of Lie groups (2.7),

the main result of this setion (2.8) studies proper ations of general loally

ompat groups and desribes the behaviour of stabilizers and kernels in a

neighbourhood of a �nite-dimensional orbit. Two orollaries onlude the

setion.

Let us turn to the de�nitions. As it appears to be textbook tradition

to onsider proper ations on non-Hausdor� spaes as well, we all a topo-

logial spae quasi-ompat if every open overing has a �nite subover, so

that a (loally) ompat spae is a (loally) quasi-ompat Hausdor� spae.

A ontinuous map f : X ! Y is alled proper if it is losed and all points

of Y have quasi-ompat pre-images. This implies that the pre-image of

every quasi-ompat subset of Y is quasi-ompat; if Y is loally ompat

then the reverse impliation holds as well. For example, if a quasi-ompat

groupN ats ontinuously on a topologial spae X then the orbit projetion

X ! X=N is a proper open map.

A ontinuous ation of a topologial group G on a topologial spae X is

alled proper if the map (g; x) 7! (x; g:x) : G�X ! X�X is proper. Proper

maps and ations are desribed by Bourbaki [8, Ch. I x 10, Ch. III x 4℄, see

also tom Diek [18, I.3℄. We reall the most important elementary properties

of a proper ation of G on X. The orbit spae X=G is always a Hausdor�

spae, and if G satis�es the Hausdor� property then so does X. All sta-

bilizers are quasi-ompat, and for eah x 2 X, the map g 7! g:x : G ! X

is proper, so that the natural map of G=G

x

onto G:x is a homeomorphism

onto a losed subspae of X. A subgroup H � G is quasi-ompat if and

only if the ation of G on the oset spae G=H is proper. A ontinuous

ation of a loally ompat group G on a Hausdor� spae X is proper if

and only if for all x; y 2 X, there are neighbourhoods V

x

of x and V

y

of y

suh that fg 2 G j g:V

x

\ V

y

6= ;g is relatively ompat in G. In partiular,
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every ontinuous ation of a ompat group on a Hausdor� spae is proper.

A ontinuous ation of a Hausdor� group G on a loally ompat spae X

is proper if and only if for eah ompat subset K � X, the losed subset

fg 2 G j g:K \K 6= ;g of G is ompat. Note that a Hausdor� group whih

ats properly on a non-empty (loally) ompat spae is (loally) ompat.

In the investigation of neighbouring orbits, the following haraterization

of proper ations is most useful: a ontinuous ation is proper if and only

if its stabilizers are quasi-ompat, and the set of group elements whih

map one point to another depends semi-ontinuously on that pair of points.

Writing U(S) for the neighbourhood �lter of a subset S of a topologial

spae, we formulate this haraterization preisely:

2.1 Proposition. Let G at ontinuously on a topologial spae X. Then

the ation is proper if and only if all stabilizers are quasi-ompat and

8x; y 2 X; U 2 U

�

fg 2 G j g:x = yg

�

9V

x

2 U(x); V

y

2 U(y) :

fg 2 G j g:V

x

\ V

y

6= ;g � U: (2)

Proof. The map � : G �X ! X �X; (g; x) 7! (x; g:x) has quasi-ompat

�bres if and only if all stabilizers are quasi-ompat. Suppose that this

ondition is satis�ed. As we will show, ondition (2) is then equivalent to

8x; y 2 X; U 2 U

�

�

�1

(x; y)

�

9V 2 U

�

(x; y)

�

: �

�1

(V ) � U; (3)

and this holds if and only if � is a losed map.

Indeed, assume (2), hoose x; y 2 X, and let U be a neighbourhood of

�

�1

(x; y) = fg 2 G j g:x = yg � fxg:

As this �bre is quasi-ompat, there are neighbourhoods U

0

of fg 2 G j g:x =

yg and V

0

x

of x suh that U

0

� V

0

x

� U . Aording to (2), there are neigh-

bourhoods V

x

of x and V

y

of y suh that fg 2 G j g:V

x

\ V

y

6= ;g � U

0

.

Then �

�1

((V

x

\ V

0

x

) � V

y

) � U

0

� V

0

x

� U , whih shows that (3) holds.

Conversely, if x; y 2 X and U is a neighbourhood of fg 2 G j g:x = yg

then (3) implies that there are neighbourhoods V

x

of x and V

y

suh that

�

�1

(V

x

� V

y

) � U �X, whih entails (2).

Now assume (3), let A be a losed subset of G�X, and hoose (x; y) 2

(X�X)n�(A). Then there is a neighbourhood V of (x; y) suh that �

�1

(V ) �

(G � X) n A. Hene V \ �(A) = ;, and � is a losed map. Conversely,

assume that � is losed, pik x; y 2 X, and let U be an open neighbourhood

of �

�1

(x; y). Then V

:

= (X�X)n�((G�X)nU) is an open neighbourhood

of (x; y) with �

�1

(V ) � U , whene (3) holds. �

Setting x = y in (2), we obtain semi-ontinuous dependene of stabilizers

on points:
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2.2 Corollary (Close points have lose stabilizers). Let G at properly

on a spae X, hoose a point x 2 X, and let U be a neighbourhood of the

stabilizer G

x

of x. Then x has a neighbourhood V suh that U ontains the

stabilizers of all points in V :

9V 2 U(x) 8 y 2 V : G

y

� U: �

From now on, we will always assume the Hausdor� separation property.

In this setting, there is an analogous result for kernels of the ations on

neighbouring orbits. In order to dedue this from Corollary 2.2, we need a

lemma about uniform spaes. For the sake of simpliity, it will be formulated

as a statement about topologial groups.

2.3 Lemma. Let G be a Hausdor� group, let K be a set of ompat

subsets of G, and let U be a neighbourhood of

T

K in G. Then there is a

neighbourhood V of the identity in G and a �nite subset fK

1

; : : : ;K

n

g � K

suh that

n

\

i=1

K

i

V � U:

Proof. We may assume that U is open in G. By ompatness, there

is a �nite subset fK

1

; : : : ;K

n

g � K suh that

T

n

i=1

K

i

� U . Let C

:

=

K

1

� � � � �K

n

� G

n

, and set

D

:

= f(x; x; : : : ; x) 2 G

n

j x 2 G n Ug:

Then C is ompat, the subset D is losed, and C \D = ;, whene there is

a neighbourhood V of 1 in G suh that the neighbourhoodK

1

V �� � ��K

n

V

of C does not meet D. This implies that

T

n

i=1

K

i

V is ontained in U . �

2.4 Lemma (Close orbits have lose kernels). Let G be a Hausdor�

group ating properly on a spae X, hoose a point x 2 X, and let U be a

neighbourhood of the kernel G

[G:x℄

of the ation on the orbit G:x. Then x

has a neighbourhood V suh that U ontains all kernels whih orrespond

to orbits of points in V :

9V 2 U(x) 8 y 2 V : G

[G:y℄

� U:

Proof. Applying Lemma 2.3 to K

:

= fgG

x

g

�1

j g 2 Gg, we �nd a neigh-

bourhood W of 1 2 G and a �nite subset F � G suh that

\

g2F

gG

x

g

�1

W � U:

Set W

0

:

=

T

g2F

g

�1

Wg. Corollary 2.2 yields a neighbourhood V of x 2 X

suh that G

y

� G

x

W

0

holds for eah y 2 V . This entails
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G

[G:y℄

�

\

g2F

gG

y

g

�1

�

\

g2F

gG

x

W

0

g

�1

�

\

g2F

gG

x

g

�1

W � U: �

We reord another onsequene of Lemma 2.3.

2.5 Corollary (Comparison of group topologies). Let G be a Haus-

dor� group ating properly and e�etively on a topologial spae X. Then

the given topology on G oinides with the topologies on G indued from

the ompat-open topology and from the produt topology on X

X

.

Proof. The ompat-open topology is �ner than the produt topology. The

given topology is �ner than the ompat-open topology on G beause onti-

nuity of the ation implies that the natural injetive map from G into X

X

is

ontinuous with respet to the given topology on G and the ompat-open

topology on X

X

(Dugundji [19, XII.3.1℄). It remains to see that the prod-

ut topology on G is �ner than the given topology. To ahieve this, hoose

g

0

2 G, and let U be a neighbourhood of g

0

in G with respet to the given

topology. For eah x 2 X, set K

x

:

= fg 2 G j g:x = g

0

:xg. The intersetion

of these ompat sets is fg

0

g beause the ation is e�etive. By Lemma 2.3,

we an hoose an identity neighbourhood V in G and a �nite subset F � X

suh that

T

x2F

K

x

V � U . For eah x 2 F , Proposition 2.1 yields an open

neighbourhood W

x

of g

0

:x in X suh that g:x 2 W

x

implies g 2 K

x

V . The

set fg 2 G j 8x 2 F : g:x 2 W

x

g ontains g

0

and is ontained in U , and it

is open with respet to the produt topology. �

2.6 Remark. (a) As we followed the tradition and admitted non-Hausdor�

groups in the �rst results about proper ations, it may be interesting to note

that already the preeding three results break down without the Hausdor�

hypothesis. Indeed, topologize the symmetri group G

:

= S

3

in suh a way

thatG and its three-element subgroup are the open identity neighbourhoods,

let H � G be a subgroup of order 2, and let X be the quotient spae of

G=H � [0; 1℄ obtained by identifying, for eah t 2 ℄0; 1℄, the set G=H � ftg

to a point. Then the natural ation of G on X is proper by Proposition 2.1,

but it does not satisfy the onlusion of Lemma 2.4, and the ompat-open

topology on G is indisrete.

(b) For the sake of ompleteness and omparison with results given in

the monograph by Montgomery and Zippin [36℄, we note that analogues of

Corollary 2.2 and Lemma 2.4 hold for the identity omponents of stabilizers

and kernels. This is due to the following topologial fat: if H is a loally

ompat (hene losed) subgroup of a Hausdor� group G and U is a neigh-

bourhood of the identity omponent H

1

in G then there is a neighbourhood

V of H suh that for every subgroup K of G whih is ontained in V , the

identity omponent K

1

lies within U .

Indeed, we may suppose that U is open in G. Sine the totally dison-

neted loally ompat group H=H

1

has small open subgroups, there is an

9



open (and losed) subgroup L of H whih lies within U . Under the natural

map of G onto the oset spae G=L, the image of L is a point and the im-

age of H n L is a losed set. As the topology of G=L is regular, these two

images have disjoint neighbourhoods. Thus we obtain disjoint open neigh-

bourhoods V

1

of L and V

2

of H n L in G. Set V

:

= (U \ V

1

) [ V

2

. Then V

is an open neighbourhood of H whih has the desired property.

Stronger results hold for proper ations of loally ompat groups if we

suppose that the group is a Lie group (Proposition 2.7) or if we restrit our

attention to identity omponents (Theorem 2.8).

2.7 Proposition (Stabilizers in proper ations of Lie groups). Let G

be a Lie group ating properly on a spae X, hoose a point x 2 X, and

let U be a neighbourhood of the identity element in G. Then there is a

neighbourhood V of x suh that all stabilizers of points in V are onjugate

to subgroups of the stabilizer G

x

by elements of U :

9V 2 U(x) 8 y 2 V 9 g 2 U : gG

y

g

�1

� G

x

:

Proof. Choose a point x 2 X. As the stabilizer G

x

is ompat, a result by

Montgomery and Zippin [35℄ shows that G

x

has a neighbourhood W suh

that every subgroup of G ontained in W is onjugate to a subgroup of G

x

by an element of U . (Palais [38, 4.2℄ later re-proved this as a orollary to

his Slie Theorem.) By Corollary 2.2, there is a neighbourhood V of x suh

that all stabilizers of points in V are ontained in W . �

Under the additional ondition that X is ompletely regular, the preed-

ing result is due to Palais [38, 2.3, Corollary 2℄. If we had not reorded the

present easy generalization, we would have to assume omplete regularity

for the remainder of this setion, whih would be suÆient for the purposes

of this paper.

2.8 Theorem (Stabilizers in proper ations of loally ompat

groups). Let G be a loally ompat group ating properly on a spae X,

and suppose that the orbit G:x of x 2 X has �nite dimension. Let U be

a neighbourhood of the identity element in G. Then there is a neighbour-

hood V of x suh that all identity omponents of stabilizers of points in V

are onjugate to subgroups of the stabilizer G

x

by elements of U :

9V 2 U(x) 8 y 2 V 9 g 2 U : g(G

y

)

1

g

�1

� G

x

:

In partiular, the relations dimG:y � dimG:x and (G

[G:y℄

)

1

� G

[G:x℄

hold

for eah point y 2 V , where G

[G:x℄

denotes the kernel of the ation of G

on G:x. Moreover, if dimG:y = dimG:x then g(G

y

)

1

g

�1

= (G

x

)

1

and

(G

[G:y℄

)

1

= (G

[G:x℄

)

1

.

10



Proof. As (G

y

)

1

= ((G

1

)

y

)

1

, the main assertion an be proved within

the identity omponent. Write K

:

= (G

1

)

[G

1

:x℄

for the kernel of the a-

tion of G

1

on the orbit G

1

:x. Skljarenko's sum formula (1) entails that

dimG

1

:x = dimG:x. Hene Theorem 1.2 implies that the group G

1

=K has

�nite dimension. Therefore, the ompat subgroupK is ontained in a om-

pat normal subgroup N of G

1

suh that the quotient G

1

=N is a Lie group

and N=K is zero-dimensional. In other words, the identity omponent N

1

is ontained in K and hene in (G

1

)

x

. This means that the orbit N:x is

zero-dimensional.

The natural ation of G

1

on the orbit spae X=N fators through an

ation of the Lie group G

1

=N . Both ations are proper, and we will apply

Proposition 2.7 to the latter. For y 2 X, the stabilizer of N:y 2 X=N in

G

1

=N is (G

1

)

N:y

=N (and (G

1

)

N:y

= (G

1

)

y

N). Moreover, two subgroups

of G

1

=N are onjugate if and only if their pre-images in G

1

are onjugate.

Therefore, Proposition 2.7 yields a neighbourhood V of x suh that for all

y 2 V , there is a g 2 U \ G

1

suh that g(G

1

)

N:y

g

�1

� (G

1

)

N:x

. As N:x is

zero-dimensional, the identity omponent ((G

1

)

N:x

)

1

�xes x. Hene

g(G

y

)

1

g

�1

= g((G

1

)

y

)

1

g

�1

� g((G

1

)

N:y

)

1

g

�1

� ((G

1

)

N:x

)

1

� G

x

:

Skljarenko's sum formula (1) yields

dimG:y = dim

G

gG

y

g

�1

= dim

G

g(G

y

)

1

g

�1

� dim

G

G

x

= dimG:x:

Moreover, we �nd that

�

G

[G:y℄

�

1

=

 

\

h2G

hG

y

h

�1

!

1

=

 

\

h2G

h(G

y

)

1

h

�1

!

1

=

 

\

h2G

hg(G

y

)

1

g

�1

h

�1

!

1

�

 

\

h2G

h(G

x

)

1

h

�1

!

1

=

 

\

h2G

hG

x

h

�1

!

1

=

�

G

[G:x℄

�

1

:

If dimG:y = dimG:x then g(G

y

)

1

g

�1

= (G

x

)

1

by Skljarenko's sum for-

mula (1), whene also (G

[G:y℄

)

1

= (G

[G:x℄

)

1

. �

In ations of ompat non-Lie groups, the full stabilizer an \jump up",

and even its identity omponent an do the same when the orbit dimension

is in�nite. Montgomery and Zippin [34, p. 786℄ desribe an example whih

proves the �rst half of this assertion, and an example for the seond half an

be onstruted along the same lines (see [3, 2.1.16℄ for details).

We �nish this setion with some immediate onsequenes of Theorem 2.8.
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2.9 Corollary (Orbits of maximal dimension). Let G be a loally

ompat group ating properly on a spae X. Suppose that

k

:

= maxfdimG:x j x 2 Xg <1;

and let Y � X be the set of points on k-dimensional orbits. Then Y is

an open subset of X. Moreover, every point x 2 Y has an open neigh-

bourhood V suh that the identity omponents of all kernels of ations on

orbits whih meet V oinide, and the identity omponents of all stabilizers

of points in V are onjugate.

If G=G

1

is ompat then the e�etive quotient Gj

G:V

of G with respet

to the ation on the open set G:V is �nite-dimensional. If G is onneted

then dimGj

G:V

�

�

k+1

2

�

.

Proof. Suppose that x 2 Y , set U

:

= G, and hoose an open neighbour-

hood V of x as in Theorem 2.8. Then V � Y . Moreover, for all y 2 V , we

have

�

G

[G:y℄

�

1

=

�

G

[G:x℄

�

1

and 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

:

The last laim follows from Theorem 1.2 on transitive ations. �

2.10 Corollary (Uniform orbit dimension). Let G be a loally ompat

group ating properly and e�etively on a onneted spae X, and suppose

that all orbits have the same �nite dimension k. Then the identity ompo-

nents of all stabilizers are onjugate, and the ation of G on every single

orbit is almost e�etive. If G=G

1

is ompat then the dimension of G is

�nite, and if G is onneted then its dimension is at most

�

k+1

2

�

.

For ations of ompat groups, the last part of this result was �rst given by

Montgomery and Zippin [34, Theorem 11℄ (f. [36, 6.2.5℄), but there seems

to be an essential gap in their proof.

Proof. Choose a point x 2 X, and set

Y

:

= fy 2 X j 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

g:

Then Y is an open subset of X by Corollary 2.9. If z is a point on the

topologial boundary of Y then z 2 Y by the same Corollary. Thus Y is

losed as well, and Y = X by onnetedness. Hene

8 y 2 X 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

:

As above, we �nd that the identity omponent of the kernel of the ation

on G:x satis�es

�

G

[G:x℄

�

1

=

 

\

g2G

g(G

x

)

1

g

�1

!

1

:
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As this is the same for every orbit and G ats e�etively, we onlude that

(G

[G:x℄

)

1

= 1, so that the ation of G on G:x is almost e�etive. Skljarenko's

sum formula (1) yields

dimG = dim

G

G

[G:x℄

;

whih is �nite if G=G

1

is ompat, as is shown by Theorem 1.2 on transitive

ations. If G is onneted then the same Theorem yields the inequality

dimG �

�

k+1

2

�

. �

3 Slies

A fundamental result for proper ations of Lie groups on ompletely reg-

ular spaes, due to Palais [38℄, asserts that every orbit is an equivariant

neighbourhood retrat. In the main result of this setion (3.8), we drop

the Lie hypothesis from this situation. Then every orbit has an invariant

neighbourhood whih admits an equivariant �bre bundle projetion onto a

homogeneous manifold; if the orbit dimension is �nite then that manifold

may be hosen of the same dimension, and its dimension an be arbitrarily

high if the orbit dimension is in�nite. We also observe (3.2) that suh an

orbit neighbourhood is equivariantly homeomorphi to a twisted produt.

Let G be a Hausdor� group, and let H � G be a losed subgroup whih

ats on a Hausdor� spae A. Then H ats freely on G � A by h:(g; a)

:

=

(gh

�1

; h:a). The twisted produt G�

H

A is de�ned as the orbit spae of this

ation, and we write [g; a℄ for theH-orbit of (g; a) 2 G�A. The groupG ats

on G�

H

A by g:[g

0

; a℄

:

= [gg

0

; a℄, and we have the G-equivariant projetion

[g; a℄ 7�! gH : G�

H

A �! G=H:

Our interest in twisted produts lies in the fat that for a loally ompat

group G, every G-equivariant map onto a oset spae of G is of this form

(Proposition 3.2). Thus twisted produts provide a onrete desription of

suh equivariant maps. For their elementary properties, see Bredon [12, I.6℄

or tom Diek [18, I.4℄. We add the following observations.

3.1 Lemma. Let G be a Hausdor� group, and let H be a losed subgroup

whih ats on a Hausdor� spae A. Then the following assertions hold:

(a) The free ation ofH onG�A given by h:(g; a)

:

= (gh

�1

; h:a) is proper.

In partiular, the twisted produt G�

H

A is a Hausdor� spae.

(b) Let C be a ompat subset of G. Then the restrition of the orbit

projetion pr: G � A ! G �

H

A to C � A is a proper map. In

partiular, the map a 7! [1; a℄ : A! G�

H

A is a losed embedding.
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Proof. (a) This follows easily from the haraterization of proper ations

in Proposition 2.1. Indeed, if h:(g

1

; a

1

) = (g

2

; a

2

) and U is a neighbourhood

of h in H then h = g

2

�1

g

1

, and we may hoose neighbourhoods V

1

of g

1

and V

2

of g

2

suh that V

2

�1

V

1

\ H � U . Then every element h

0

2 H

for whih h

0

:(V

1

� A) meets V

2

� A is ontained in U . If the H-orbits of

(g

1

; a

1

) and of (g

2

; a

2

) do not meet then there are two ases. If g

1

H 6= g

2

H,

there are neighbourhoods V

1

of g

1

and V

2

of g

2

suh that V

1

H and V

2

H

are disjoint, and then h:(V

1

�A) and V

2

� A are disjoint for every element

h 2 H. If g

1

H = g

2

H then g

2

�1

g

1

2 H and (g

2

�1

g

1

):a

1

6= a

2

. We may

hoose neighbourhoods V

1

of g

1

, V

2

of g

2

, W

1

of a

1

, and W

2

of a

2

suh that

(V

2

�1

V

1

\H):W

1

is disjoint from W

2

. Then h:(V

1

�W

1

) and V

2

�W

2

are

disjoint for every element h 2 H.

(b) The �bre through (g; a) 2 C �A of the restrition pr j

C�A

is the set

f(gh; h

�1

:a) j h 2 H \ g

�1

Cg, whih is ompat. The saturation of a losed

subset F � C�A under the ation of H on G�A is the image of the losed

set H � F under the onatenation

H � C �A

�

=

! H � C �A ,! G� C �A

�

=

! G� C �A � G�A

(h; ; a) 7! (h; ; h:a) (g; ; a) 7! (g

�1

; ; a)

where the seond map is the inlusion, the fourth map is the produt pro-

jetion, and the �rst and third maps are the indiated homeomorphisms.

This onatenation is proper beause it is a omposition of proper maps.

Hene pr j

C�A

is a losed map. �

3.2 Proposition. Let G be a loally ompat group ating on a Hausdor�

spae X, let H � G be a losed subgroup, and suppose that there is a

ontinuous G-equivariant map ' : X ! G=H. Set A

:

= '

�1

(H). Then the

following statements hold:

(a) The map  : G �

H

A ! X; [g; a℄ 7! g:a is a G-equivariant homeo-

morphism.

(b) Assume that the natural projetion pr: G! G=H admits ontinuous

loal ross setions. (By a result of Mostert's [37, Theorem 8℄, this on-

dition is satis�ed if the dimension of G=H is �nite; f. Skljarenko [44,

Theorem 13℄.) Then the map ' is the projetion in a loally trivial

�bre bundle with �bre A.

Proof. (a) De�ne a ontinuous map

~

 : G � A ! X; (g; a) 7! g:a. This

map is surjetive beause '(x) = gH implies g

�1

:x 2 A. For g; g

0

2 G and

a; a

0

2 A, we have

~

 (g; a) =

~

 (g

0

; a

0

) if and only if a = g

�1

g

0

:a

0

, whih holds

if and only if g

�1

g

0

2 H and (g; a) = g

�1

g

0

:(g

0

; a

0

), i.e. [g; a℄ = [g

0

; a

0

℄. Hene

~

 fators through  , and  is a G-equivariant ontinuous bijetion.

Choose a point [g; a℄ 2 G �

H

A. Let U be a ompat neighbourhood

of g in G, and let V be the image of U �A under the natural projetion of
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G� A onto G �

H

A. Then  (V ) is the losed neighbourhood

~

 (U � A) =

'

�1

(UH=H) of  ([g; a℄). The restrition of

~

 to U �A is a proper map (see

Bourbaki [8, Ch. III x 4 Prop. 1℄). Therefore, the map from V onto  (V )

indued by  is losed and hene a homeomorphism. We onlude that  is

a homeomorphism.

(b) Existene of loal ross setions for pr : G! G=H means that there

is an open subset U � G=H and a ontinuous map � : U ! G suh that

pr Æ� = id

U

. (For examples of ompat pairs (G;H) without loal ross

setions, see Mostert [37, p. 59℄ or Skljarenko [44, p. 72℄.) Assertion (b)

follows easily. Indeed, if g 2 G then one heks that

�

g

: gU �A �! '

�1

(gU)

(u; a) 7�! g�(g

�1

u):a

is a ontinuous map with ontinuous inverse

�

0

g

: '

�1

(gU) �! gU �A

x 7�!

�

'(x); �

�

g

�1

'(x)

�

�1

g

�1

:x

�

;

and ' Æ �

g

: gU � A ! gU � G=H is the projetion onto the �rst fator.

Hene �

g

is a topologial bundle hart over gU . �

3.3 De�nition. Let G be a loally ompat group ating on a Hausdor�

spae X, and let H be a losed subgroup of G. Following Palais [38, 2.1.1℄,

we all a non-empty subset S � X an H-slie in X for the ation of G if

any one of the following onditions, whih are equivalent by Proposition 3.2,

is satis�ed:

(i) There is a G-invariant open subset U � X whih admits a G-equivari-

ant map ' : U ! G=H suh that S = '

�1

(H). (Note that U = G:S,

and also ' is determined uniquely by S beause '(g:s) = gH.)

(ii) There is an H-spae A and a G-equivariant open embedding

 : G�

H

A! X

suh that  ([1; A℄) = S.

(iii) The subset S is invariant under H, the subset G:S � X is open, and

� : G�

H

S �! G:S

[g; s℄ 7�! g:s

is a homeomorphism.
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Note that if G! G=H has loal ross setions (e.g. if the dimension of G=H

is �nite) then ' : G:S ! G=H is a loally trivial �bre bundle with �bre S.

Another fat whih will be used is that an open H-invariant subset of an

H-slie is an H-slie.

Let G be a loally ompat group ating properly on a ompletely regular

spae X suh that the orbit spae X=G is paraompat. Assume that G=G

1

is ompat, and let K be a maximal ompat subgroup of G. Abels [1℄ has

onstruted a global K-slie S in X for the ation of G, i.e. a G-equivariant

homeomorphism from G�

K

S onto X. As G=K is homeomorphi to some

eulidean spae, this implies that X is a trivial �bre bundle over G=K, i.e.

homeomorphi to G=K � S. The purposes of the present paper, on the

other hand, require the onstrution of (non-global) H-slies for whih H

is as small as possible. It turns out that we do not need any assumptions

on X=G and G=G

1

.

3.4 Lemma. Let G be a loally ompat group suh that G=G

1

is ompat,

let H � G be a losed subgroup, and let N be the set of ompat normal

subgroups of G suh that the fator group is a Lie group. If N

1

2 N is suh

that dimG=HN

1

< dimG=H then there is N

2

2 N suh that N

2

� N

1

and

dimG=HN

2

> dimG=HN

1

.

In partiular, if the dimension of G=H is �nite then there is N 2 N

suh that dimG=HN = dimG=H. If the dimension of G=H is in�nite then

N 2 N an be hosen suh that dimG=HN is arbitrarily high.

Proof. By Skljarenko's sum formula (1), the dimension ofN

1

H=H is stritly

positive. Therefore, the stabilizer N

1

\H of H under the ation of N

1

on

this spae does not ontain the identity omponent N

1

1

, so that there is a

neighbourhood U of H in G=H whih does not ontain N

1

1

H=H. Choose

N 2 N suh that NH=H � U . Then N

2

:

= N \ N

1

is an element of N

(Glu�skov [22, 1.5℄). The identity omponent N

1

1

is not ontained in N

2

H,

so that it ats non-trivially on N

1

H=N

2

H. Hene the dimension of this

spae is stritly positive, and the assertion follows from Skljarenko's sum

formula (1). �

3.5 Lemma. If H is a ompat subgroup of a totally disonneted loally

ompat group G then every neighbourhood ofH ontains an open subgroup

of G whih in turn ontains H.

Proof. As H is ompat, it suÆes to onsider neighbourhoods of the

form UH, where U is an identity neighbourhood in G. Sine G=H is totally

disonneted, we may assume that UH is ompat and open in G. Then

there is an identity neighbourhood V in G suh that V � U and UHV �

UH, whene UHVH � UH. By indution, we �nd that (V H)

n

� UH for

eah n 2 N. Therefore, the subgroup of G whih is generated by V H \

(V H)

�1

is ontained in UH, and it is open and ontains H. �
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3.6 Lemma. Let G be a loally ompat group ating properly on a

spae X. Choose x 2 X, let G

0

� G be an open subgroup with G

x

� G

0

,

and let H � G

0

be a losed subgroup. Suppose that S is an H-slie in X

for G

0

with x 2 S. Then there is an H-slie S

0

in X for G suh that

x 2 S

0

� S.

Proof. Proposition 2.1 allows us to hoose an open neighbourhood V of x

in X suh that fg 2 G j g:V \ V 6= ;g � G

0

. Then S

0

:

= S \ V is open in S

and thus an H-slie for G

0

. To show that it also is an H-slie for G, observe

that G:S

0

= G:(G

0

:S

0

) is open in X, so that it remains to prove that

' : G:S

0

�! G=H

g:s 7�! gH

is a well-de�ned ontinuous map. The basi reason for this is that G:S

0

is a disjoint union of G-translates of G

0

:S

0

. To be preise, suppose that

g:s = g

0

:s

0

, where g; g

0

2 G and s; s

0

2 S

0

. Then s = g

�1

g

0

:s

0

2 V \ g

�1

g

0

V ,

whih implies that g

�1

g

0

2 G

0

. Hene g

�1

g

0

2 H beause S

0

is an H-slie

for G

0

. For the same reason, the restrition 'j

G

0

:S

0

is ontinuous, whih

entails ontinuity of ' at g:s (with g 2 G and s 2 S

0

). Indeed, if x

0

is an

element of the open neighbourhood gG

0

:S

0

of g:s then g

�1

:x

0

2 G

0

:S

0

and

'(x

0

) = g'(g

�1

:x

0

) depends ontinuously on x

0

. �

3.7 Proposition. Let G be a loally ompat group ating properly on a

ompletely regular spae X. If x 2 X and N is a ompat normal subgroup

of G suh that G=N is a Lie group then x is ontained in a G

x

N -slie for

the ation of G on X.

Proof. For N = 1, i.e. for proper ations of Lie groups, this is the main

result of Palais's seminal paper [38, 2.3.3℄. (Note that his de�nition of a

proper ation implies the ustomary de�nition we use, whih in turn implies

his de�nition of a \Cartan G-spae".) The present situation is easily redued

to Palais's Theorem. Let pr: X ! X=N denote the natural projetion. As

this is a proper map, the ation of G=N on X=N is proper. Moreover,

Palais [38, 1.2.8℄ proved that X=N is ompletely regular. (The ation of N

on X is proper in Palais's stronger sense beause N is ompat.) Therefore,

there is a G=N -invariant open neighbourhood U of pr(x) in X=N whih

admits a G-equivariant map

' : U �! G=G

x

N �

G=N

G

x

N=N

suh that '(pr(x)) = G

x

N . Set U

0

:

= pr

�1

(U). Then U

0

is a G-invariant

open neighbourhood of x in X, and ' Æ pr j

U

0

is a G-equivariant map of U

0

onto G=G

x

N whih sends x to G

x

N . �
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3.8 Theorem (Existene of slies). Let G be a loally ompat group

ating properly on a ompletely regular spae X, and hoose x 2 X. Then

there is a onvergent �lter basis N whih onsists of ompat subgroups

of G normalized by G

x

suh that for every N 2 N , the oset spae G=G

x

N

is a manifold and x is ontained in a G

x

N -slie for the ation of G on X.

In partiular, some neighbourhood of the orbit G:x is a loally trivial �bre

bundle over the manifold G=G

x

N .

The dimension of G:x is in�nite if and only if N 2 N may be hosen suh

that the dimension of G=G

x

N is arbitrarily high. If the dimension of G:x is

�nite then N 2 N may be hosen in suh a way that dimG=G

x

N = dimG:x.

Note that this implies the speialization of Theorem 2.8 to ations on om-

pletely regular spaes.

Proof. Let U � G be a ompat neighbourhood of G

x

. When we apply

Lemma 3.5 to G=G

1

, we �nd an open subgroupG

0

� G suh that G

x

� G

0

�

UG

1

. As UG

1

=G

1

is ompat, so is G

0

=G

1

. Let N be the set of ompat

normal subgroups of G

0

suh that G

0

=N is a Lie group. Then every identity

neighbourhood of G ontains a member of N , and N is losed under �nite

intersetions (Glu�skov [22, 1.5℄), so that N is a �lter basis whih onverges

to 1 in G. Choose N 2 N . By Proposition 3.7, there is a G

x

N -slie S

in X for G

0

with x 2 S. Lemma 3.6 shows that S ontains a G

x

N -slie

for the ation of G on X whih ontains x. The oset spae G=G

x

N is a

manifold sine it ontains G

0

=G

x

N as an open subspae and is paraompat

(see, e.g., Bourbaki [8, Ch. III x 4 Prop. 13℄). As dimG:x = dimG

0

=G

x

�

dimG

0

=G

x

N = dimG=G

x

N , the last assertions follow immediately from

Lemma 3.4. �

4 Orbits in ohomology manifolds

The main result of this setion (4.11) desribes the orbits of highest dimen-

sion under a proper e�etive ation on a ohomology manifold and gives an

upper bound for the group dimension in terms of the orbit dimensions. If

some orbit has odimension at most 2 then the group is a Lie group (4.13).

This is prepared by the proof of ontinuity of indued ations in ohomo-

logy (4.2) and by a result on hange of rings for ohomology manifolds (4.6).

We will use sheaf ohomology with ompat supports and onstant o-

eÆients, whih agrees with both Alexander{Spanier and

�

Ceh ohomology

on loally ompat spaes, see Bredon [14, III.2.1 and III.4.12℄.

Let G be a onneted group ating e�etively on a Hausdor� spae X,

and let N be a totally disonneted ompat normal subgroup of G. Then

there is an indued almost e�etive ation of the quotient group G=N on the

orbit spae X=N . The orbit projetion X ! X=N is a proper open map,
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and it indues a homeomorphism

Fix(G;X) � Fix

�

G

N

;

X

N

�

:

(Here Fix(G;X) denotes the set of points in X whih are �xed under the

ation of G.) The orbit spae of the ation of G=N on X=N is homeomorphi

to the orbit spae X=G. If the ation of G on X is proper then the same

holds for the ation of G=N on X=N .

If G is a loally ompat group of �nite dimension suh that G=G

1

is

ompat then the totally disonneted ompat normal subgroup N may

be hosen in suh a way that G=N is a Lie group. Thus many questions

about the orbit spaes and �xed point sets of ations of �nite-dimensional

loally ompat groups are redued to questions about Lie groups. This

approah is very suessful beause the orbit spae X=N inherits global and

loal ohomologial properties from the spae X.

4.1 Theorem (Bredon et al. [15, 5.1℄, L�owen [29℄). Let N be a to-

tally disonneted ompat group whih ats on a loally ompat Hausdor�

spae X, and let F be a �eld of harateristi 0. Then the orbit projetion

X ! X=N indues an isomorphism

H

�



(X=N ;F )

�

=

Fix(N ;H

�



(X;F )): �

If the dimension of the vetor spae H

�



(X;F ) is �nite, the following

theorem yields an open subgroup of N whose ation on ohomology is trivial.

4.2 Theorem (Continuity of the ation on ohomology). Let G be a

loally paraompat Hausdor� group ating on a loally ompat spae X,

and let A be an abelian group. Then the indued ation of G on H

�



(X;A)

is ontinuous with respet to the disrete topology on H

�



(X;A). (In other

words, all stabilizers of this ation are open subgroups.)

Proof. Choose a paraompat neighbourhood U of 1 in G. The proof will

use the ohomology of U � X with onstant oeÆients in A and with a

speial support family �. This family is de�ned as follows. Let

X

pr

2

 � U �X

!

�! X

be the produt projetion and the restrition of the ation map, respe-

tively. The support family � is the olletion of all losed subsets of sets

of the form pr

�1

2

(K) [ !

�1

(K) where K ranges over the ompat subsets

of X. Every losed subset of a member of � belongs to �, and so does

every �nite union of members of �. Thus � is indeed a family of supports

in the sense of Bredon [14, I.6.1℄. For a ompat subset K of X, the set

pr

�1

2

(K) = U�K is paraompat (see Engelking [20, 5.1.36℄ or Bourbaki [8,
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Ch. I x 9 Prop. 17℄). The set !

�1

(K) is the image of U �K under the self-

homeomorphism (g; x) 7! (g; g

�1

:x) of U � X, whene it is also paraom-

pat. Finally, the union of the two paraompat sets pr

�1

2

(K) and !

�1

(K)

is paraompat (Engelking [20, 5.1.34℄, f. Dugundji [19, VIII.2.6℄). This

implies that every member of � is paraompat. As X is loally ompat,

every member of � has a neighbourhood whih belongs to �. Thus � is a

paraompatifying family of supports [14, I.6.1℄.

We will use a ertain ontinuity property of the ohomology of subspaes

of U�X with supports in �. LetN be the olletion of sets of the form V �X

where V is a losed neighbourhood of 1 in U , and set X

1

:

= f1g�X =

T

N .

For N

1

; N

2

2 N with N

1

� N

2

, we have the restrition map

r

�

N

2

;N

1

: H

�

�\N

1

(N

1

;A) �! H

�

�\N

2

(N

2

;A); � 7�! �j

N

2

;

whih is just the map in ohomology indued by the inlusion of N

2

into N

1

.

(Here � \ N

j

is the support family fF \ N

j

j F 2 �g on N

j

.) The fam-

ily N is direted downwards by inlusion. Hene the groups H

�

�\N

(N ;A),

where N ranges over N , and the restrition maps form a direted system.

In partiular, the restrition maps r

�

X

1

;N

indue a limit map

�

:

= lim

�!

N2N

r

�

X

1

;N

: lim

�!

N2N

H

�

�\N

(N ;A) �! H

�

�\X

1

(X

1

;A):

(Note that � \ X

1

is just the family of ompat supports on X

1

.) The

restrition of the produt projetion pr

1

: U � X ! U to an arbitrary ele-

ment F 2 � is a proper map. In partiular, the image pr

1

(F ) is losed in U .

Moreover, the topology of U is regular. Hene if F 2 � is disjoint from X

1

then there is an element N 2 N suh that F \ N = ;. Sine X

1

and all

members of N are losed subsets of U � X and � is a paraompatifying

family of supports on U � X, Bredon [14, II.10.6℄ proves that the diret

limit map � is an isomorphism. In partiular, if two ohomology lasses

�; �

0

2 H

�

�

(U �X;A) satisfy �j

X

1

= �

0

j

X

1

then there is an element N 2 N

suh that �j

N

= �

0

j

N

.

Pik a ohomology lass � 2 H

�



(X;A). We have to show that the

stabilizer of � in the indued ation of G on H

�



(X;A) is open. De�ne

elements of H

�

�

(U�X;A) by �

:

= pr

2

�

(�) and �

0

:

= !

�

(�). (The maps pr

2

�

and !

�

are both de�ned sine pr

�1

2

(K); !

�1

(K) 2 � for ompat K � X.)

We have �j

X

1

= �

0

j

X

1

beause pr

2

j

X

1

= !j

X

1

. Therefore, there is a losed

neighbourhood V of 1 in U suh that, for N

:

= V �X, we have �j

N

= �

0

j

N

.

For g 2 U , de�ne an embedding

i

g

: X �! U �X; x 7�! (g; x) :

Then the ation of the group element g on X is given by ! Æ i

g

, whene its

ation on H

�



(X;A) is given by i

g

�

Æ !

�

. Choose g 2 V . Then i

g

fators as
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the orestrition i

g

j

N

: X ! N followed by the inlusion of N into U �X.

Hene

i

g

�

(!

�

(�)) = i

g

�

(�

0

) =

�

i

g

j

N

�

�

(�

0

j

N

)

=

�

i

g

j

N

�

�

(�j

N

) = i

g

�

(�) = (pr

2

Æi

g

)

�

(�) = (id

X

)

�

(�) = �:

Therefore, the identity neighbourhood V � G �xes � in the ation of G

on H

�



(X;A). Thus the stabilizer of � is open. �

4.3 Corollary. Let G be a loally paraompat onneted Hausdor� group

ating on a loally ompat spae X, and let A be an abelian group. Then

the ation of G on H

�



(X;A) is trivial. �

For ompat onneted groups G, this orollary is due to Bredon, Raymond,

and Williams [15, 2.2℄. Bredon [14, II.11.11℄ gives a di�erent proof of this

speial ase, to whih the present proof of Theorem 4.2 owes muh inspira-

tion.

In order to state a loal analogue of the global Theorem 4.1, we need the

notion of a ohomology n-manifold over a prinipal ideal domain R. This

is a loally ompat spae X with dim

R

X < 1 whih is ohomologially

loally onneted in every degree and satis�es

H

i

(X;R)

x

�

=

(

R if i = n,

0 if i 6= n

for all x 2 X. Here H

i

(X;R)

x

is the i-th loal homology group of X at x

with respet to Borel{Moore homology, whose de�nition an be found in

Bredon's monograph [14, Setion V.3℄. The ohomologial loal onnetiv-

ity ondition means that for eah degree i 2 N

0

and for eah point x 2 X,

every neighbourhood U of x ontains a neighbourhood V of x suh that

the inlusion of V into U indues the zero map

~

H

i



(U ;R) !

~

H

i



(V ;R) in

redued ohomology. (In degree 0, this is equivalent to ordinary loal on-

netivity.) A onneted ohomology n-manifoldX over R is alled orientable

if H

n



(X;R)

�

=

R (f. [14, V.16.16℄).

Equivalent de�nitions of a ohomology manifold are given by [14, V.16.8℄.

In partiular, if R is a �eld or the ring of integers then the loal homo-

logy groups may be replaed with the groups H

i



(X;X n fxg;R), see [14,

II.12.1 and V.16.9℄. Note that a ohomology n-manifold X over R satis�es

dim

R

X = n by [14, V.16.8℄.

Topologial n-manifolds are examples of ohomology n-manifolds. A

non-manifold example is the open one over an (n � 1)-manifold whih is

not a sphere but has the R-ohomology of an (n � 1)-sphere. Other non-

manifold examples are provided by �xed point sets of elementary abelian or

torus groups ating on manifolds, and by Cartesian fators of manifolds.
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The main referene for ohomology manifolds is [14℄, in partiular Se-

tion V.16. An overview is given in Setion 1.2 of [3℄. The haraterization of

manifolds among ohomology manifolds is a hard open problem, see Bryant

et al. [16℄.

As announed above, the property of being a ohomology manifold over

a �eld of harateristi 0 is inherited by ertain orbit spaes.

4.4 Theorem (Raymond [40℄). Let N be a seond ountable totally dis-

onneted ompat group whih ats on a onneted orientable ohomology

n-manifold X over some �eld F of harateristi 0. Suppose that the a-

tion of N on H

n



(X;F ) is trivial. Then X=N is an orientable ohomology

n-manifold over F . �

4.5 Remark. In our appliations, we will use Theorem 4.2 in order to

hoose the group N in suh a way that its ation on H

n



(X;F ) will be

trivial. The group will be seond ountable beause it will be ontained in

a loally ompat onneted group of �nite dimension (see Skljarenko [44,

Theorem 18℄).

We do not want to restrit our investigation to the ase of orientable o-

homology manifolds. If a ohomology manifold is not orientable, Bredon [10℄

has onstruted an orientable overing (whih may have in�nitely many

leaves), and under ertain onditions, ontinuous ations on a non-orientable

ohomology manifold are uniquely overed by orientation-preserving ations

of the same group on the orientable overing ([10, 6.1℄, f. Bredon [12, I.9.4℄).

Unfortunately, these onditions are not satis�ed in our situation, and a suit-

able more general development [11, Setion III℄ was later found to be \ir-

retrievably inorret" (Bredon [14, V.9.6℄). Our solution to the problem

of non-orientability is to apply Raymond's Theorem 4.4 to orientable open

subsets. Thus we an only derive \loal" properties of an ation from the

orresponding properties of the ation of a Lie group.

A di�erent solution is available in the ase of ations on ompat o-

homology manifolds. For this fat and further omments, see Remark 4.15

at the end of this paper.

4.6 Proposition (Change of rings). Let X be a ohomology n-manifold

over some prinipal ideal domain R, and let S be a prinipal ideal domain

whih is also a unital R-module. ThenX is a ohomology n-manifold over S.

If X is orientable over R then X is orientable over S.

Proof. For any loally ompat spae U , there is a natural exat Universal

CoeÆient Sequene (Bredon [14, II.15.3℄)

0 �! H

i



(U ;R)


R

S �! H

i



(U ;S) �! Tor

R

1

�

H

i+1



(U ;R); S

�

�! 0

whih splits. Applying this to open subsets U � X, we infer that dim

S

X �

dim

R

X < 1. To see that X is ohomologially loally onneted over S,

22



hoose a degree i 2 N

0

, a point x 2 X, and a neighbourhood U of x. Then

there are neighbourhoods V and W of x with W � V � U suh that the

maps H

i+1



(V ,! U ;R) and H

i



(W ,! V ;R) are zero. We may assume that

V is open inX, so that it an take the plae of U in the above exat sequene.

Then it follows from an elementary fat about short exat sequenes [14,

II.17.3℄ that the map H

i



(W ,! U ;S) is zero. Finally, the loal homology

groups of X over S are determined by the exat sequene [14, V.3, (13)℄

0 �! H

i

(X;R)

x




R

S �! H

i

(X;S)

x

�! Tor

R

1

�

H

i�1

(X;R)

x

; S

�

�! 0:

(Note that H

i

(X;S)

x

does not depend on whether S is onsidered as a

module over R or over S beause X is ohomologially loally onneted

over R, see [14, V.12.10 and V.15.1℄.)

If X is orientable over R then the above Universal CoeÆient Sequene

in ohomology shows that X is orientable over S. �

4.7 Corollary. Every (orientable) ohomology n-manifold over Z is an

(orientable) ohomology n-manifold over any prinipal ideal domain. Every

(orientable) ohomology n-manifold over a prinipal ideal domain R is an

(orientable) ohomology n-manifold over the �eld of frations of R. �

The �rst assertion of this orollary is due to Borel et al. [7, I.4.5℄. Conversely,

let X be a loally ompat spae whih is ohomologially loally onneted

over Z, and assume that X is a (orientable) ohomology n-manifold over Q

and over every prime �eld. Then X is a (orientable) ohomology n-manifold

over Z. Together with the seond assertion of the preeding orollary, this

is a part of the main result of a paper of Raymond's [41℄.

4.8 Theorem (Conner{Floyd). Let R be a �eld or the ring of integers,

and let the torus group T

r

at on a onneted ohomology n-manifold X

over R. Then Fix(T

r

;X) is loally onneted. Eah onneted omponent

of Fix(T

r

;X) is a ohomology k-manifold over R for some k suh that n�k

is a non-negative even number, and if k = n (i.e. if the �xed point set has

interior points) then the ation is trivial. If X is orientable over R then so

is eah onneted omponent of Fix(T

r

;X).

This theorem also holds for ations of ompat onneted abelian groups on

ohomology manifolds over �elds of harateristi 0. Details of the proof,

whih follows the spirit of the present paper, and similar �xed point theorems

for ations on ohomology spheres an be found in [5℄.

Proof. Exept for the assertion about triviality of the ation, this is The-

orem V.3.2 of Borel et al. [7℄. If F is a onneted omponent of Fix(T

r

;X)

then F has interior points if and only if dim

R

F = n (Bredon [14, V.16.18℄).

By Invariane of Domain [14, V.16.19℄, this holds if and only if F is open

inX, and this is equivalent to triviality of the ation beause F is also losed

and X is onneted. �
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We prepare our main result by a theorem whih generalizes some of

the main ideas of Bredon's paper [9℄ from ations of ompat groups on

manifolds to proper ations on ohomology manifolds. Bredon's use of loal

Lie groups is, at the same time, replaed with our Slie Theorem 3.8.

As a omment on the hypotheses of the following theorem, we remark

that for loally ompat onneted spaes, metrizability is equivalent to the

seond axiom of ountability, i.e. the existene of a ountable basis. Indeed,

if a loally ompat spae is seond ountable then Urysohn's Metrization

Theorem applies (see Dugundji [19, IX.9.2℄). Conversely, a metrizable spae

is paraompat. A loally ompat onneted spae is paraompat if and

only if it is �-ompat (see Bredon [13, I.12.11℄). A �-ompat metri spae

is seond ountable beause for eah n 2 N, it an be overed by ountably

many open balls of radius

1

n

.

4.9 Theorem (Orbits of odimension at most 2). Let G be a lo-

ally ompat group ating properly and e�etively on a seond ountable

onneted ohomology n-manifold X over some prinipal ideal domain R.

Suppose that dimG:x � n � 2 holds for every orbit G:x in X. Then X is

an n-manifold, and G is a Lie group.

Proof. Let x be a point of X. Aording to Theorem 3.8, we may hoose

a ompat subgroup N � G suh that G

x

normalizes N , the oset spae

G=G

x

N is a manifold of dimension dimG:x, and there is a G

x

N -slie S

in X for G whih ontains x. Then the natural map of G:S onto G=G

x

N is

the projetion in a loally trivial �bre bundle with �bre S. The open subset

G:S of X is a ohomology n-manifold over R, and it is loally homeomorphi

to G=G

x

N � S. A diret fator of a ohomology manifold is a ohomology

manifold (see Bredon [14, V.16.11℄), whene S is a ohomology manifold of

dimension n�dimG:x � 2 over R. Sine S is seond ountable, we onlude

that S is a topologial manifold ([14, V.16.32℄, f. [14, V.16.8℄), whene the

same holds for G:S. As x was an arbitrary point of X, the spae X is a

manifold as well.

Let S

0

be the onneted omponent of x in S. An element g 2 N sta-

bilizes S

0

as a set if and only if g:x 2 S

0

. As S

0

is open in S, the set-wise

stabilizer N

S

0

is an open subgroup of N . The e�etive quotient N

S

0

=N

[S

0

℄

embeds topologially into the set of self-homeomorphisms of S

0

with the

ompat-open topology (see Dugundji [19, XII.1.3 and 3.1℄), and this spae

is seond ountable beause so is S

0

(see [19, XII.5.2℄). Hene N

S

0

=N

[S

0

℄

is a seond ountable ompat group whih ats e�etively on a onneted

manifold of dimension at most 2. This situation has been studied by Mont-

gomery and Zippin [36℄. If dim

R

S = 1 then N

S

0

=N

[S

0

℄

is a Lie group by

Theorem 3 of Setion 6.1 [36, p. 233℄. If dim

R

S = 2 then every ompat

zero-dimensional subgroup of N

S

0

=N

[S

0

℄

is �nite by the third theorem in

Setion 6.4 [36, p. 249℄. As the dimension of N

S

0

=N

[S

0

℄

is �nite (Mont-

gomery [33℄), this entails that N

S

0

=N

[S

0

℄

is a Lie group, f. Salzmann et
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al. [43, 96.31℄. In partiular, the orbit N

S

0

:x is a manifold, and so is N:x

beause it ontains N

S

0

:x as an open subset. By Proposition 3.2, the orbit

G:x is a loally trivial �bre bundle over G=G

x

N with �bre N:x. We on-

lude that G:x is a manifold. In partiular, all orbits of G in X are loally

onneted, and also G-wise loally onneted in the sense of Bredon [9℄.

By [9, Theorem 2℄, this implies that G is a Lie group. �

4.10 Remark. Let G be a loally ompat group ating properly on a

metrizable ohomology manifold X over some prinipal ideal domain R, and

let Y � X be the set of points whose orbits have odimension at most 2.

Then Y is an open subset of X by Theorem 2.8. The preeding theorem

shows that Y is a manifold (or empty), and if Y

0

is a onneted omponent

of Y then the set-wise stabilizer G

Y

0

is open in G and the e�etive quotient

G

Y

0

=G

[Y

0

℄

is a Lie group.

In this situation, however, the spae X need not be loally eulidean

around points of the omplementXnY . Indeed, let I

�

=

A

5

be an iosahedral

subgroup of SO

3

R. Then SO

3

R=I is a ohomology 3-sphere whih is not

simply onneted. Its suspension (i.e. double one) is a ompat ohomology

4-manifold over Z whih is not a manifold, and it arries an e�etive ation

of the group SO

3

R � Z=2.

4.11 Theorem (Orbits of maximal dimension in ohomology mani-

folds). Let G be a loally ompat group ating properly and e�etively

on a onneted ohomology n-manifold X over R. Assume either that R

is a �eld of harateristi 0 or that G is a Lie group and R is a �eld or

the ring of integers. Let k be the highest ourring orbit dimension, and

let Y � X be the set of points whose orbits have dimension k. Then the

following statements hold:

(a) The subset Y is open, onneted, and dense in X, and its omplement

satis�es dim

R

(X n Y ) � n� 2.

(b) For eah y 2 Y , the ation of G on the orbit G:y is almost e�etive.

() dimG �

�

k+1

2

�

.

(d) For eah y 2 Y , every orbit inX meets Fix

�

(G

y

)

1

;X

�

. In other words,

8x 2 X; y 2 Y 9 g 2 G : (G

y

)

1

� G

g:x

:

The theorem breaks down if X is not onneted. This is shown by suitable

e�etive ations of (possibly in�nite-dimensional) torus groups on disjoint

unions of irles.

If G is a ompat Lie group and R = Z then the theorem follows from

work by Yang [49℄ (f. Borel et al. [7, Chapter IX℄). In its present form,

it rests on the following result, whose proof partly follows a remark by

Raymond [40, p. 6℄.

25



4.12 Lemma. Under the hypotheses of Theorem 4.11, if G is onneted

and �nite-dimensional then the boundary of Y satis�es dim

R

�Y � n� 2.

Proof. In the �rst part of the proof, assume that G is a Lie group. Corol-

lary 2.9 shows that Y is an open subset of X. In partiular, it is disjoint

from its boundary �Y . For natural numbers u and v, set

B

u;v

:

= fx 2 �Y j dimG:x = n� u; jG

x

=(G

x

)

1

j = vg:

Our �rst aim is to show that dim

R

B

u;v

� n � 2. Choose x 2 B

u;v

.

Palais's Slie Theorem [38, 2.3.3℄ yields a G

x

-slie S in X whih ontains x.

By Proposition 3.2, the spae G:S is a loally trivial �bre bundle over G:x

with �bre S, and B

u;v

\ G:S is a loally trivial �bre bundle over G:x with

�bre B

u;v

\ S. In partiular, we note that S is a ohomology manifold

of dimension u over R (see Bredon [14, V.16.11℄). Hene the onneted

omponent of x in S is open in S, and it is invariant under G

x

, so that

we may suppose that S is onneted. If x

0

2 B

u;v

\ S then G

x

0

� G

x

beause x

0

2 S, whene G

x

0

= G

x

beause x

0

2 B

u;v

. As G:S meets Y , we

may hoose an element y 2 S \ Y . Then G

y

is a subgroup of G

x

whose

dimension is stritly smaller. Therefore, there is a torus subgroup T � G

x

whih is not ontained in G

y

. Hene the ation of T on S is not trivial.

Sine B

u;v

\ S � Fix(T ;S), the Conner{Floyd Theorem 4.8 yields that

dim

R

B

u;v

\ S � u � 2, whene dim

R

B

u;v

\ G:S � n � 2 by loality of

dimension and the produt inequality [14, II.16.8 and II.16.26℄. We onlude

from [14, II.16.8℄ that dim

R

B

u;v

� n� 2.

We will now prove that there is a pair (u; v) suh that dim

R

�Y =

dim

R

B

u;v

. Using the lexiographi ordering on N � N, set

B

�(u;v)

:

=

[

(s;t)�(u;v)

B

s;t

and B

<(u;v)

:

=

[

(s;t)<(u;v)

B

s;t

:

Proposition 2.7 entails that eah B

�(u;v)

and eah B

<(u;v)

is an open subset

of �Y . Sine the dimension of �Y is �nite [14, II.16.8℄, there is a om-

pat subset K � �Y with dim

R

K = dim

R

�Y (see [14, II.16.7℄). The sets

B

�(u;v)

form an asending hain and over �Y , whene one of them on-

tains K and therefore has the same dimension as �Y . Hene we may hoose

a lexiographially minimal pair (u; v) suh that dim

R

B

�(u;v)

= dim

R

�Y .

If B

<(u;v)

is empty then B

�(u;v)

= B

u;v

has the same dimension as �Y , and

we are done. Otherwise, we may hoose a ompat subset K

0

� B

<(u;v)

suh

that dim

R

K

0

= dim

R

B

<(u;v)

, and we �nd a pair (s; t) < (u; v) suh that

K

0

� B

�(s;t)

and hene

dim

R

B

<(u;v)

= dim

R

B

�(s;t)

< dim

R

B

�(u;v)

;

where the last inequality holds by the hoie of (u; v). Now B

�(u;v)

is the

disjoint union of B

<(u;v)

and B

u;v

, whene [14, p. 170, no. 11℄ yields that

dim

R

�Y = dim

R

B

�(u;v)

= maxfdim

R

B

<(u;v)

;dim

R

B

u;v

g = dim

R

B

u;v

:
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We onlude that dim

R

�Y � n�2. Thus the lemma has been proved under

the assumption that G is a Lie group.

Now assume that G is not a Lie group. Let x

0

2 �Y be an arbitrary

point. We will onstrut a G-invariant onneted open neighbourhood U

of x

0

in X and a totally disonneted ompat normal subgroup N of G

suh that G=N is a Lie group and the orbit spae U=N is a ohomology

n-manifold over R. Then for any point x of U , Skljarenko's sum formula for

the dimension of oset spaes of loally ompat groups [44, Theorem 10℄

entails that the dimension of the orbit of N:x 2 U=N under the ation

of G=N on U=N is equal to the dimension of G:x. Hene (U \ Y )=N is

just the subset of U=N formed by the orbits of dimension k. The boundary

of this subset is (U \ �Y )=N . We apply the �rst part of the proof to the

ation of the Lie group G=N on the ohomology n-manifold U=N . This

yields that dim

R

(U \ �Y )=N � n � 2. The orbit projetion from U \ �Y

onto (U \ �Y )=N is a ontinuous map between loally ompat spaes and

has totally disonneted �bres. By [14, IV.8.4℄, suh a map annot lower

dimension. We onlude that dim

R

(U \ �Y ) � n � 2. The lemma now

follows from loality of dimension [14, II.16.8℄.

It remains to onstrut a G-invariant open neighbourhood U of x

0

in X

and a totally disonneted ompat normal subgroup N of G with the re-

quired properties. The ohomology manifold X is loally orientable [14,

V.9.1 and V.16.8℄, whih means that we may hoose an orientable open

neighbourhood V

1

of x

0

in X. Sine the ation is ontinuous, we �nd an

identity neighbourhood W in G and a onneted open neighbourhood V

2

of x

0

in X suh that W:V

2

� V

1

. As G an be approximated by Lie groups,

the identity neighbourhoodW ontains a totally disonneted ompat nor-

mal subgroup N

1

of G suh that G=N

1

is a Lie group and N

1

:x

0

� V

2

.

The latter property implies that the open subset V

3

:

= N

1

:V

2

of X is on-

neted. Therefore, the R-module H

n



(V

3

;R) is isomorphi to R, and Theo-

rem 4.2 shows that every suÆiently small subgroup of N

1

ats trivially on

H

n



(V

3

;R). Hene N

1

ontains a ompat normal subgroupN of G suh that

G=N is a Lie group and the ation of N on H

n



(V

3

;R) is trivial. Sine N is

seond ountable (Skljarenko [44, Theorem 18℄) and R is now assumed to be

a �eld of harateristi 0, Raymond's Theorem 4.4 shows that V

3

=N is a o-

homology n-manifold over R. Set U

:

= G:V

3

. Then U is a onneted open

neighbourhood of x

0

, and U=N = G:(V

3

=N) is a ohomology n-manifold

over R. Thus U and N have been onstruted as announed. �

Proof of Theorem 4.11. Skljarenko's sum formula [44, Theorem 10℄ im-

plies that dimG

1

:x = dimG:x for every x 2 X. Hene the theorem follows

for the ation of G if it an be proved for the ation of the identity ompo-

nent G

1

. Therefore, we will assume that G is onneted. In the �rst part of

the proof, we will also assume that the dimension of G is �nite, so that we

an apply Lemma 4.12.
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Corollary 2.9 yields that Y is open in X. Therefore, the omplement

of �Y in X is the disjoint union of the open sets Y and X n Y . Sine

dim

R

�Y � n � 2, the omplement X n �Y is onneted (Bredon [14,

V.16.20℄). Hene X n Y is empty. Thus Y is dense in X and onneted,

and the dimension of X n Y = �Y over R is at most n� 2. This proves (a).

The ation of G on the dense subset Y of X is e�etive. Therefore,

assertions (b) and () follow from Corollary 2.10, whih also shows that the

identity omponents of stabilizers of points in Y form a single onjugay

lass. Let x 2 X be an arbitrary point. Using again that Y is a dense

subset of X, we infer from Theorem 2.8 that G

x

has a subgroup whih is

onjugate to (G

y

)

1

for some y 2 Y . In other words, there is an element

g 2 G suh that (G

y

)

1

� gG

x

g

�1

= G

g:x

. Moreover, we have seen that this

an be ahieved for an arbitrary point y of Y , whih proves (d).

To omplete the proof of Theorem 4.11, assume that G is a onneted

group of in�nite dimension. We have already seen that any losed �nite-

dimensional subgroup of G has dimension at most

�

k+1

2

�

. The Mal'ev{

Iwasawa Theorem (see Hofmann and Terp [25℄) yields a maximal ompat

subgroup K of G whih is onneted and has in�nite dimension. The stru-

ture theory of ompat groups shows that there is a totally disonneted

normal subgroup N of K suh that K=N is isomorphi to the produt over

a (neessarily in�nite) family of ompat onneted Lie groups (see Hof-

mann and Morris [24, 8.15 and 9.24℄). We onlude that K ontains losed

subgroups of arbitrarily high dimension, whih is a ontradition. �

4.13 Corollary. Let G be a loally ompat group ating properly and

e�etively on a seond ountable onneted ohomology manifold X over a

�eld of harateristi 0. If some orbit has odimension at most 2 then G is

a Lie group.

Note that a one-dimensional solenoid an at e�etively on the artesian

produt S

1

� N.

For a ompat group ating on a seond ountable onneted ohomology

manifold over Z whose overing dimension is �nite, the orollary is due to

Raymond [40℄.

Proof. Theorem 4.11 yields that the ation of G on the onneted sub-

set Y � X formed by the orbits of minimal odimension is e�etive. There-

fore, the orollary follows from Theorem 4.9. �

4.14 Corollary. Every loally ompat group whih an at e�etively on

a onneted ohomology manifold over a �eld of harateristi 0 has �nite

dimension.

For ations on genuine manifolds, this is due to Montgomery [33℄.
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Proof. By Theorem 4.11, every ompat subgroup has �nite dimension,

whene the orollary follows from the Mal'ev{Iwasawa Theorem (see Hof-

mann and Terp [25℄, f. Abels [1℄), applied to the identity omponent. �

4.15 Remark. Let G be a loally ompat onneted group whih ats

e�etively on a ohomology n-manifold X over a �eld F of harateristi 0.

Then the dimension of G is �nite. If X is orientable then for any totally dis-

onneted ompat subgroup N of G, the orbit spae X=N is a ohomology

n-manifold over F . (As above, this follows from Corollary 4.3, Raymond's

Theorem 4.4, and Skljarenko [44, Theorem 18℄.) The subgroup N may be

hosen normal and suh that the quotient G=N is a Lie group. Thus the

ation of G on X is losely related to the ation of the Lie group G=N on

the ohomology n-manifold X=N .

If X is not assumed to be orientable, we have the following partial sub-

stitute for this tehnique. Let K be a ompat subset of X. (For example,

�nite dimensionality of G yields a �nite subset K of X suh that the ation

of G on G:K is almost e�etive.) Then there are open onneted orientable

subsets U

1

; : : : ; U

m

ofX and totally disonneted ompat normal subgroups

N

1

; : : : ; N

m

of G suh that the sets U

j

over K, the quotient groups G=N

j

are Lie groups, eah set U

j

is invariant under the group N

j

, and the ation

of N

j

on H

n



(U

j

;F ) is trivial. (This an be dedued from Theorem 4.2 as in

the proof of Lemma 4.12.) Set U

:

= U

1

[ � � � [U

m

and N

:

= N

1

\ � � � \N

m

.

Then U is an open subset of X whih ontains K, and if K is onneted

then so is U . Glu�skov [22, 1.5℄ has proved that the quotient G=N is a Lie

group. By Raymond's Theorem 4.4, eah orbit spae U

j

=N is a ohomology

n-manifold over F . We onlude that the open subspae G:U=N of X=N ,

whih ontains G:K=N and is onneted if K is onneted, is a ohomology

n-manifold over F , and it arries an ation of the Lie group G=N .

In partiular, if the ohomology manifoldX is ompat then the group G

has a totally disonneted ompat normal subgroup N suh that G=N is

a Lie group and X=N is a ohomology n-manifold over F (even if X is not

orientable).
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