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Abstract

Essential results about actions of compact Lie groups on manifolds
are generalized to proper actions of arbitrary groups on connected co-
homology manifolds. Slices are replaced by certain fibre bundle struc-
tures on orbit neighbourhoods. The group dimension is shown to be
effectively finite. The orbits of maximal dimension form a dense open
connected subset. If some orbit has codimension at most 2 then the
group is effectively a Lie group.! 2

Introduction

In the rich theory of continuous group actions on manifolds [2, 7, 12, 18, 26,
36], work has traditionally been focused on compact Lie groups. However,
Palais [38] already drew attention to the larger class of proper actions, and
the structure theory of general locally compact groups [24] is sufficiently well
developed to allow the generalization of many important results. This is the
subject of the present paper. Already when actions of compact Lie groups
are studied, it is natural to generalize manifolds to cohomology manifolds,
which form a class of spaces with better inheritance properties. While the
most adequate cohomology coefficients for actions of compact Lie groups
are the integers, the natural setting for the present results is more general.
Without any additional effort, they also hold for cohomology manifolds over
fields of characteristic 0.

An important preparatory result asserts that sheaf cohomological and
covering dimension coincide for coset spaces of locally compact groups (1.1).
Turning towards non-transitive proper actions, we show that every point has
a neighbourhood in which the identity components of stabilizers, up to con-
jugation, get smaller (2.8). For proper actions on completely regular spaces,
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Palais’s Slice Theorem [38] is shown to have the following analogue (3.8):
each n-dimensional orbit has an invariant neighbourhood which admits an
equivariant fibre bundle projection onto a homogeneous n-manifold. A sim-
ilar statement holds for infinite-dimensional orbits. The main result (4.11)
studies proper effective actions on a connected cohomology manifold over a
field of characteristic 0. Among other things, we show that the set of points
on highest-dimensional orbits is open, connected, and dense since its com-
plement has codimension at least 2. The group dimension is finite (in fact,
a sharp upper bound in terms of the maximal orbit dimension is given). In
the special case of actions of compact Lie groups on cohomology manifolds
over Z, these results are essentially due to Yang [49]. Corollary 4.13 asserts
that the group is a Lie group if some orbit has codimension at most 2. This
was first proved by Bredon [9] for actions of compact groups on manifolds.
Raymond [40] later generalized it to cohomology manifolds over the integers
under additional hypotheses which, in the light of the present treatment,
seem unnaturally restrictive.

This paper exploits recent refinements of the general theory [24] in or-
der to continue work by Yang [50], Bredon, Raymond, and Williams [15],
and Raymond [40]. However, these authors emphasize certain surprising
differences between actions of Lie and of non-Lie groups on cohomology
manifolds over the integers. Their results, together with later work by Bre-
don [14, Section V.18], probably constitute the main step so far towards the
proof of the Hilbert-Smith Conjecture, which states that a locally compact
group which acts continuously and effectively on a connected manifold must
be a Lie group. As mentioned above, this is true if the group is compact
and some orbit has codimension at most 2 (Bredon [9]), even for cohomo-
logy manifolds (Raymond [40] and 4.13) and proper actions of non-compact
groups (4.13). Without such a hypothesis, the conjecture has only be proved
for actions by diffeomorphisms on differentiable manifolds (Montgomery [32]
and Bochner and Montgomery [6], cf. Upmeier [47, Section 11] for manifolds
of infinite dimension) and, recently, for actions on Riemannian manifolds by
Lipschitz homeomorphisms (Repovs and Séepin [42]) or by quasi-conformal
homeomorphisms (Martin [31]).

The results of this paper may be applied to topological incidence geo-
metries in the sense of [17, Chapters 23 and 24] and [43]. In this theory,
the customary hypotheses imply that the point set of an incidence geometry
(such as a compact projective plane) is a cohomology manifold with respect
to any coefficient domain [28, 30]. Therefore, Theorem 4.11 and its Corol-
lary 4.14 provide a uniform proof for the fact that the automorphism group
of such a geometry, which carries a natural locally compact topology, has
finite dimension. Previous proofs (e.g. [45, 46]) had to use separate lines of
attack for each type of incidence axioms. Moreover, actions of compact Lie
and non-Lie groups on such geometries used to be treated by rather different
methods [3, 4]. A unified approach will be possible in the light of the present



results.

The second section of this paper develops parts of my PhD thesis [3].
This was written at the University of Stuttgart, Germany, under the super-
vision of Professor Markus Stroppel, whose advice and support I gratefully
acknowledge.

1 Dimension of coset spaces

In this short section, we prove that covering and cohomological dimension
coincide for coset spaces of locally compact groups, and we show when finite
dimensionality of such a coset space implies finite dimensionality of the
group. Note that in our terminology, the definition of (local) compactness
includes the Hausdorff separation axiom.

Finite dimensional spaces are the main interest of this paper. Therefore,
we need to provide a notion of the dimension of a topological space. Promi-
nent dimension functions are covering dimension (dim) and small and large
inductive dimension (ind and Ind; see, e.g., Engelking [21]). These functions
take their values in Z>_; U {oo}. (Hofmann and Morris [23] have recently
defined a cardinal-valued dimension function and studied its behaviour on
coset spaces of locally compact groups.) The three dimension functions dim,
ind, and Ind do not agree in general, but they coincide for coset spaces of
locally compact groups with respect to closed subgroups, as was proved by
Pasynkov [39] (cf. Skljarenko [44, Theorem 9]). One can also use cohomo-
logy over some ring R to define the cohomological dimension (dimpg) of a
topological space. As we will see below, this coincides with the classical
dimension functions on coset spaces of locally compact groups.

We will often use the following sum formula for the dimension of coset
spaces of locally compact groups, which is due to Skljarenko [44, Theo-
rem 10]. Let G be a locally compact group, and let H and K be closed
subgroups of G such that K C . Then

dimG/K =dimG/H + dim H/K. (1)

One of the most important facts about locally compact groups is that
they can be approximated by Lie groups. To be precise, let G be a locally
compact group such that the quotient G/G' of G by its identity compo-
nent G' is compact. Then G has arbitrarily small compact normal sub-
groups N such that G/N is a Lie group. If, moreover, the dimension of G is
finite then every sufficiently small closed subgroup of G is zero-dimensional.
This was proved by Yamabe [48] and by Gluskov [22, Theorem 9], see also
Montgomery and Zippin [36, Chapter IV] and Kaplansky [27, II.10, Theo-
rem 18]. Since being a Lie group is an extension property, if N; and No are
compact normal subgroups of G such that G/N; and G/N;, are Lie groups
then so is G/(N1 N Na) (cf. [22, 1.5]).



For the following proposition, recall the notion of the dimension dimp X
of a topological space X with respect to sheaf cohomology over a base ring R.
For locally compact spaces X, this dimension is characterized by the fact
that for any integer n > —1, the inequality dimp X < n holds if and only if
H"Y(U; R) vanishes for all open subsets U C X, where H}(U; R) denotes
the cohomology of the constant sheaf with stalks R on U with respect to
compact supports. For further information, the reader is referred to Bre-
don [14], Section II.16.

1.1 Proposition (Cohomological and covering dimension). Let H
be a closed subgroup of a locally compact group G, and let R be any ring.
Then dimp G/H = dimG/H.

Proof. Since G/H is paracompact (see, e.g., Bourbaki [8, Ch. III § 4
Prop. 13]), we have the inequality dimp G/H < dimG/H (Bredon [14,
11.16.34]). On the other hand, if dimG/H > n then G/H contains a
homeomorphic image of [0,1]" by Theorem 9 of Skljarenko [44], so that
dimr G/H > n by [14, 11.16.8 and 11.16.28]. This yields the opposite in-
equality dimp G/H > dimG/H. O

1.2 Theorem (Transitive actions on finite-dimensional spaces). Let
G be a locally compact group, and let H be a closed subgroup of G. Suppose
that the coset space G/H has finite dimension n and that the action of G
on G/H is effective. Let G} C G denote the connected component of the
identity element, which is a closed normal subgroup of G.

If G/G'H is compact then the dimension of G is finite.

If G/H is connected and H is compact then dim G < (”;1)

1.3 Remark. (a) To see that the subgroup G'H need not be closed in G,
take G := R x Z,, where Z, is the group of p-adic integers, and set H :=
((1,1)). Then H is discrete, and G'H = R x Z is a proper dense subgroup
of G. In this example, the quotient G/H is the p-adic solenoid. However, if G
is locally connected then G' and G'H are open (hence closed) subgroups.

(b) Note that G/G'H is homeomorphic to the space of connected com-
ponents of G/H. To see this, define an equivalence relation on G/H by
setting gH ~ ¢'H if gH and ¢'H belong to the same connected component,
and equip the quotient space X of G/H by ~ with the quotient topology.
Then

¢:G/G'H — X
gG'H +—— [gH]~

is a homeomorphism. Indeed, the subset gG'H/H of G/H is connected
because it is the closure of the G'-orbit of gH. This shows that ¢ is well-
defined. It is easy to see that it is a continuous surjection. Under the



natural projection of G/H onto G /Gl—H, the pre-image of an open-closed
subset is open and closed. Therefore, such a pre-image is saturated under
the equivalence relation ~. Since the totally disconnected locally compact
space G/G' H has a basis which consists of open-closed subsets, we conclude
that ¢ is open and injective.

(c) Let K be a transitive permutation group on a set S, and equip both K
and S with the respective discrete topology. Then there is an effective coset
space of the semi-direct product G := T° x K which is homeomorphic to
S1 x S and hence a one-dimensional manifold, while the dimension of GG
may be arbitrarily high and even infinite. For the case that the coset space
is connected, the natural transitive action of the group SO,4;R on the n-
sphere S,, shows that the upper bound for dim G is sharp.

Proof of Theorem 1.2. Since the totally disconnected locally compact
group G//G' has small open subgroups, we may choose an open subgroup Gy
of G such that Go/G' is compact and hence can be approximated by Lie
groups. We study the action of Gy on G/H. The natural map from Gy onto
the orbit Gy.gH is open, so that the action of Gy on Gy.gH is equivalent
to the action on a coset space. Skljarenko [44, Theorem 5] has shown that
Gy is effectively finite-dimensional on Gy.gH. As the orbits of Gy in G/H
are all open, they are all closed. In particular, every connected component
of G/H is contained in a Gy-orbit. By Remark 1.3, the space of connected
components of G/H is compact, which entails that the number of Gy-orbits
in G/H is finite. Therefore, the finiteness of dimG = dim Gy is a conse-
quence of the following fact: if Ny and No are closed normal subgroups of
GGy whose codimension is finite then the codimension of Ny N N is finite.
Indeed,

. Go | . N .Gy, .. Gy
7N1 AN, :dlmﬁl+dlm7N1 AN, < dnrnﬁl—kdlmﬁ2
by Skljarenko’s sum formula (1) and because N1 /(N1 N N2) admits a contin-
uous injection into Gy /Ny (use cohomological dimension and see Bredon [14,
Iv.8.4)).

Now suppose that G/H is connected and that H is compact. Then
the action of Gy on G/H is transitive, and it is equivalent to the action
of Gy on a coset space because Gy is open in G. Therefore, we may assume
that Gp = G. Let N be a zero-dimensional compact normal subgroup of GG
such that the quotient G/N is a Lie group. The coset space HN/H is
zero-dimensional because it is a homogeneous space of N. By Skljarenko’s
sum formula (1), this shows that dimG/HN = dimG/H. It also implies
that (HN)! = H!, whence the transitive action of the Lie group G/N on
G/HN is almost effective (i.e. its kernel is totally disconnected). Therefore,
we may even assume that G is a Lie group. The action of the compact
Lie group H on the connected manifold G/H is not transitive. Hence all



orbits of H in G/H have dimension at most n — 1 by domain invariance
(see, for instance, Bredon [13, IV.19.9]). A result due to Montgomery and
Zippin [36, 6.3.1, Theorem 2] yields that dim H = dim H! < (g), whence

dim G = dimG/H + dim H < ("}'). O

2 Neighbouring orbits of proper actions

From now on, our attention is focused on proper actions, which general-
ize actions of compact groups. In the remaining sections, we treat actions
on general Hausdorff spaces, on completely regular spaces, and, finally, on
(cohomology) manifolds.

In proper actions, whose definition will soon be recalled, stabilizers de-
pend semi-continuously on points (2.2), and a similar statement holds for
the kernels of the restricted actions on single orbits (2.4). Stronger results
hold for proper actions of locally compact groups. Using a small generaliza-
tion of a classical theorem of Palais about proper actions of Lie groups (2.7),
the main result of this section (2.8) studies proper actions of general locally
compact groups and describes the behaviour of stabilizers and kernels in a
neighbourhood of a finite-dimensional orbit. Two corollaries conclude the
section.

Let us turn to the definitions. As it appears to be textbook tradition
to consider proper actions on non-Hausdorff spaces as well, we call a topo-
logical space quasi-compact if every open covering has a finite subcover, so
that a (locally) compact space is a (locally) quasi-compact Hausdorff space.
A continuous map f: X — Y is called proper if it is closed and all points
of Y have quasi-compact pre-images. This implies that the pre-image of
every quasi-compact subset of Y is quasi-compact; if Y is locally compact
then the reverse implication holds as well. For example, if a quasi-compact
group N acts continuously on a topological space X then the orbit projection
X — X/N is a proper open map.

A continuous action of a topological group G on a topological space X is
called proper if the map (g,z) — (z,9.x): GxX — X x X is proper. Proper
maps and actions are described by Bourbaki [8, Ch. I § 10, Ch. III § 4], see
also tom Dieck [18, 1.3]. We recall the most important elementary properties
of a proper action of G on X. The orbit space X/G is always a Hausdorff
space, and if G satisfies the Hausdorff property then so does X. All sta-
bilizers are quasi-compact, and for each z € X, the map ¢ — g.2: G — X
is proper, so that the natural map of G/G; onto G.z is a homeomorphism
onto a closed subspace of X. A subgroup H < G is quasi-compact if and
only if the action of G on the coset space G/H is proper. A continuous
action of a locally compact group G on a Hausdorff space X is proper if
and only if for all z,y € X, there are neighbourhoods V; of x and V,, of y
such that {g € G | g.V; NV, # 0} is relatively compact in G. In particular,



every continuous action of a compact group on a Hausdorff space is proper.
A continuous action of a Hausdorff group G on a locally compact space X
is proper if and only if for each compact subset K C X, the closed subset
{g € G|g.KNK # 0} of G is compact. Note that a Hausdorff group which
acts properly on a non-empty (locally) compact space is (locally) compact.

In the investigation of neighbouring orbits, the following characterization
of proper actions is most useful: a continuous action is proper if and only
if its stabilizers are quasi-compact, and the set of group elements which
map one point to another depends semi-continuously on that pair of points.
Writing U(S) for the neighbourhood filter of a subset S of a topological
space, we formulate this characterization precisely:

2.1 Proposition. Let G act continuously on a topological space X. Then
the action is proper if and only if all stabilizers are quasi-compact and

Ve,ye X,UeU({g e Glga=y}) IV, eU(z),V, €U(y):
[g€G|gVanV, 0} CU. (2)

Proof. The map 6: G x X — X x X, (g,x) — (x,g.z) has quasi-compact
fibres if and only if all stabilizers are quasi-compact. Suppose that this
condition is satisfied. As we will show, condition (2) is then equivalent to

Vo,y € X, U eU(0 Yz,y)) IV €eU((z,y)): 0 (V) CU, (3)

and this holds if and only if 8 is a closed map.
Indeed, assume (2), choose x,y € X, and let U be a neighbourhood of

0 (z,y) = {9 € G| gz =y} x {z}.

As this fibre is quasi-compact, there are neighbourhoods U’ of {g € G | g.zz =
y} and V] of z such that U’ x V] C U. According to (2), there are neigh-
bourhoods V;, of z and Vj, of y such that {g € G | ¢V, NV, # 0} C U".
Then 071((V; NV}) x V,) C U' x V] C U, which shows that (3) holds.
Conversely, if z,y € X and U is a neighbourhood of {g € G | g.z = y}
then (3) implies that there are neighbourhoods V, of z and V, such that
0-1(Vy x V,) CU x X, which entails (2).

Now assume (3), let A be a closed subset of G x X, and choose (z,y) €
(X x X)\@(A). Then there is a neighbourhood V of (z,y) such that (V) C
(G x X)\ A. Hence VNO(A) = 0, and 0 is a closed map. Conversely,
assume that 0 is closed, pick z,y € X, and let U be an open neighbourhood
of 7 1(z,y). Then V := (X x X)\0((G x X)\U) is an open neighbourhood
of (z,y) with 6~1(V) C U, whence (3) holds. O

Setting = y in (2), we obtain semi-continuous dependence of stabilizers
on points:



2.2 Corollary (Close points have close stabilizers). Let G act properly
on a space X, choose a point x € X, and let U be a neighbourhood of the
stabilizer G, of x. Then x has a neighbourhood V such that U contains the
stabilizers of all points in V:

Veld(lz)VyeV:G, CU. O

From now on, we will always assume the Hausdorff separation property.
In this setting, there is an analogous result for kernels of the actions on
neighbouring orbits. In order to deduce this from Corollary 2.2, we need a
lemma about uniform spaces. For the sake of simplicity, it will be formulated
as a statement about topological groups.

2.3 Lemma. Let G be a Hausdorff group, let X be a set of compact
subsets of G, and let U be a neighbourhood of (1K in G. Then there is a
neighbourhood V' of the identity in G and a finite subset {K1,...,K,} CK
such that

(n] K,V CU.
=1

Proof. We may assume that U is open in G. By compactness, there
is a finite subset {Ki,...,K,} C K such that ., K; C U. Let C :=
Ki x---x K, CG", and set

D:={(z,z,...,2) e G" |z € G\ U}.

Then C is compact, the subset D is closed, and C N D = (), whence there is
a neighbourhood V of 1 in G such that the neighbourhood K 1V x--- x K,V
of C does not meet D. This implies that ();_, K;V is contained in U. O

2.4 Lemma (Close orbits have close kernels). Let G be a Hausdorff
group acting properly on a space X, choose a point « € X, and let U be a
neighbourhood of the kernel G| 4 of the action on the orbit G.z. Then z
has a neighbourhood V' such that U contains all kernels which correspond
to orbits of points in V':

AV eld(z)VyeV: Gigqy CU.

Proof. Applying Lemma 2.3 to K := {gG,g9~ ' | g € G}, we find a neigh-
bourhood W of 1 € G and a finite subset F' C (G such that

ﬂ gGog™'W CU.
ger

Set W' := ngF g 'Wg. Corollary 2.2 yields a neighbourhood V of z € X
such that G, C G,W' holds for each y € V. This entails



Giay S [ 9Gyg ' C [ 9GW'g 't C () 9Gug 'W CU. O
geF geF geF

We record another consequence of Lemma 2.3.

2.5 Corollary (Comparison of group topologies). Let G be a Haus-
dorff group acting properly and effectively on a topological space X. Then
the given topology on G coincides with the topologies on G induced from
the compact-open topology and from the product topology on XX .

Proof. The compact-open topology is finer than the product topology. The
given topology is finer than the compact-open topology on GG because conti-
nuity of the action implies that the natural injective map from G into X is
continuous with respect to the given topology on G and the compact-open
topology on XX (Dugundji [19, XI1.3.1]). It remains to see that the prod-
uct topology on G is finer than the given topology. To achieve this, choose
go € G, and let U be a neighbourhood of gy in G with respect to the given
topology. For each z € X, set K := {g € G | g.x = go.z}. The intersection
of these compact sets is {go} because the action is effective. By Lemma 2.3,
we can choose an identity neighbourhood V in G and a finite subset ' C X
such that (. K,V C U. For each z € F, Proposition 2.1 yields an open
neighbourhood W, of gg.z in X such that g.x € W, implies g € K, V. The
set {g € G| Yoz € F: gx € W;} contains gy and is contained in U, and it
is open with respect to the product topology. [l

2.6 Remark. (a) As we followed the tradition and admitted non-Hausdorff
groups in the first results about proper actions, it may be interesting to note
that already the preceding three results break down without the Hausdorff
hypothesis. Indeed, topologize the symmetric group G := S5 in such a way
that G and its three-element subgroup are the open identity neighbourhoods,
let H < G be a subgroup of order 2, and let X be the quotient space of
G/H x [0,1] obtained by identifying, for each ¢ € ]0,1], the set G/H x {t}
to a point. Then the natural action of G on X is proper by Proposition 2.1,
but it does not satisfy the conclusion of Lemma 2.4, and the compact-open
topology on G is indiscrete.

(b) For the sake of completeness and comparison with results given in
the monograph by Montgomery and Zippin [36], we note that analogues of
Corollary 2.2 and Lemma 2.4 hold for the identity components of stabilizers
and kernels. This is due to the following topological fact: if H is a locally
compact (hence closed) subgroup of a Hausdorff group G and U is a neigh-
bourhood of the identity component H' in G then there is a neighbourhood
V' of H such that for every subgroup K of G which is contained in V, the
identity component K lies within U.

Indeed, we may suppose that U is open in G. Since the totally discon-
nected locally compact group H/H' has small open subgroups, there is an



open (and closed) subgroup L of H which lies within U. Under the natural
map of G onto the coset space G/L, the image of L is a point and the im-
age of H \ L is a closed set. As the topology of G/L is regular, these two
images have disjoint neighbourhoods. Thus we obtain disjoint open neigh-
bourhoods Vj of L and Vo of H\ Lin G. Set V := (UNVy)UV,. Then V
is an open neighbourhood of H which has the desired property.

Stronger results hold for proper actions of locally compact groups if we
suppose that the group is a Lie group (Proposition 2.7) or if we restrict our
attention to identity components (Theorem 2.8).

2.7 Proposition (Stabilizers in proper actions of Lie groups). Let G
be a Lie group acting properly on a space X, choose a point x € X, and
let U be a neighbourhood of the identity element in G. Then there is a
neighbourhood V' of x such that all stabilizers of points in V' are conjugate
to subgroups of the stabilizer G, by elements of U:

IV eU(r)VyeV IgeU: gGyg™' CG,.

Proof. Choose a point z € X. As the stabilizer G, is compact, a result by
Montgomery and Zippin [35] shows that G has a neighbourhood W such
that every subgroup of G' contained in W is conjugate to a subgroup of G
by an element of U. (Palais [38, 4.2] later re-proved this as a corollary to
his Slice Theorem.) By Corollary 2.2, there is a neighbourhood V' of z such
that all stabilizers of points in V' are contained in W. U

Under the additional condition that X is completely regular, the preced-
ing result is due to Palais [38, 2.3, Corollary 2]. If we had not recorded the
present easy generalization, we would have to assume complete regularity
for the remainder of this section, which would be sufficient for the purposes
of this paper.

2.8 Theorem (Stabilizers in proper actions of locally compact
groups). Let G be a locally compact group acting properly on a space X,
and suppose that the orbit G.x of © € X has finite dimension. Let U be
a neighbourhood of the identity element in GG. Then there is a neighbour-
hood V of x such that all identity components of stabilizers of points in V
are conjugate to subgroups of the stabilizer G, by elements of U:

IV elU(r)VyeV IgeU: g(Gy)'g * CG,.

In particular, the relations dim G.y > dim G.x and (G[G.y})l C GGy hold
for each point y € V, where G|, denotes the kernel of the action of G
on G.xz. Moreover, if dimG.y = dimG.z then g(Gy)lgt = (Gy)' and

(Gray)' = (Grea))*

10



Proof. As (Gy)! = ((G')y)!, the main assertion can be proved within
the identity component. Write K := (Gl)[Gl_ﬂ for the kernel of the ac-
tion of G' on the orbit G'.z. Skljarenko’s sum formula (1) entails that
dim G'.z = dim G.z. Hence Theorem 1.2 implies that the group G'/K has
finite dimension. Therefore, the compact subgroup K is contained in a com-
pact normal subgroup N of G' such that the quotient G' /N is a Lie group
and N/K is zero-dimensional. In other words, the identity component N*
is contained in K and hence in (G'),. This means that the orbit N.z is
zero-dimensional.

The natural action of G' on the orbit space X/N factors through an
action of the Lie group G'/N. Both actions are proper, and we will apply
Proposition 2.7 to the latter. For y € X, the stabilizer of N.y € X/N in
G'/N is (G)ny/N (and (G')ny = (G')yN). Moreover, two subgroups
of G!/N are conjugate if and only if their pre-images in G! are conjugate.
Therefore, Proposition 2.7 yields a neighbourhood V' of « such that for all
y € V, there is a ¢ € U N G' such that g(Gl)N,yg*1 C (GY)Ny. As Nz is
zero-dimensional, the identity component ((G')y,)! fixes z. Hence

9(Gy) ' g™ =9((G")y) ' 97" C9((GYny) g™ C (G )na)' C Ge.

Skljarenko’s sum formula (1) yields

dim G.y = dim = dim L_l > dimGE =dimG.z.

9Gyg™* 9(Gy)'yg .

Moreover, we find that

(Glay) = (ﬂ hGyh1>1 _ (ﬂ h(Gy)1h1>1

heG heG
1
= (ﬂ hg(Gy)lg‘lh_1>
heG
1 1
C (ﬂ h(Gx)lh‘l) - (ﬂ hGM_l) = (Gloa)'-
heG heG

If dimG.y = dimG.z then g(Gy)lg ! = (G;)! by Skljarenko’s sum for-
mula (1), whence also (G[G.y})l = (G[G.x])l. O

In actions of compact non-Lie groups, the full stabilizer can “jump up”,
and even its identity component can do the same when the orbit dimension
is infinite. Montgomery and Zippin [34, p. 786] describe an example which
proves the first half of this assertion, and an example for the second half can
be constructed along the same lines (see [3, 2.1.16] for details).

We finish this section with some immediate consequences of Theorem 2.8.

11



2.9 Corollary (Orbits of maximal dimension). Let G be a locally
compact group acting properly on a space X. Suppose that

k:=max{dimG.z |z € X} < o0,

and let Y C X be the set of points on k-dimensional orbits. Then Y is
an open subset of X. Moreover, every point x € Y has an open neigh-
bourhood V such that the identity components of all kernels of actions on
orbits which meet V coincide, and the identity components of all stabilizers
of points in V' are conjugate.

If G/G" is compact then the effective quotient G|g.y of G with respect
to the action on the open set G.V is finite-dimensional. If G is connected
then dim G|q.v < (F11).

Proof. Suppose that z € Y, set U := G, and choose an open neighbour-
hood V of z as in Theorem 2.8. Then V C Y. Moreover, for all y € V, we
have

1 1 _
(Giay) = (Giga) and g€ G:g(Gy)g™' =(G)"
The last claim follows from Theorem 1.2 on transitive actions. O

2.10 Corollary (Uniform orbit dimension). Let G be a locally compact
group acting properly and effectively on a connected space X, and suppose
that all orbits have the same finite dimension k. Then the identity compo-
nents of all stabilizers are conjugate, and the action of G on every single
orbit is almost effective. If G/G' is compact then the dimension of G is
finite, and if G is connected then its dimension is at most (kgl)

For actions of compact groups, the last part of this result was first given by
Montgomery and Zippin [34, Theorem 11] (cf. [36, 6.2.5]), but there seems
to be an essential gap in their proof.

Proof. Choose a point z € X, and set
Yi={yeX | 3g€G:g(Gy)'g~" = (G)'}.

Then Y is an open subset of X by Corollary 2.9. If z is a point on the
topological boundary of Y then z € Y by the same Corollary. Thus Y is
closed as well, and Y = X by connectedness. Hence

Vye X g€ G: g(Gy)g ! =(G).

As above, we find that the identity component of the kernel of the action
on G.x satisfies

(G[G.x})l = ( ﬂ Q(Gx)191> :

gelG
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As this is the same for every orbit and G acts effectively, we conclude that
(G[Gw})1 = 1, so that the action of G on G.z is almost effective. Skljarenko’s
sum formula (1) yields

G
dim G = dim ,
[G.x]
which is finite if G/G! is compact, as is shown by Theorem 1.2 on transitive

actions. If G is connected then the same Theorem yields the inequality
dimG < ("1h). O

3 Slices

A fundamental result for proper actions of Lie groups on completely reg-
ular spaces, due to Palais [38], asserts that every orbit is an equivariant
neighbourhood retract. In the main result of this section (3.8), we drop
the Lie hypothesis from this situation. Then every orbit has an invariant
neighbourhood which admits an equivariant fibre bundle projection onto a
homogeneous manifold; if the orbit dimension is finite then that manifold
may be chosen of the same dimension, and its dimension can be arbitrarily
high if the orbit dimension is infinite. We also observe (3.2) that such an
orbit neighbourhood is equivariantly homeomorphic to a twisted product.
Let G be a Hausdorff group, and let H < G be a closed subgroup which
acts on a Hausdorff space A. Then H acts freely on G x A by h.(g,a) :=
(gh~ 1, h.a). The twisted product G x i A is defined as the orbit space of this
action, and we write [g, a] for the H-orbit of (g,a) € Gx A. The group G acts
on G xy A by g.[¢',a]l :=[g¢',a], and we have the G-equivariant projection

9,0l — gH: G xg A — G/H.

Our interest in twisted products lies in the fact that for a locally compact
group G, every G-equivariant map onto a coset space of G is of this form
(Proposition 3.2). Thus twisted products provide a concrete description of
such equivariant maps. For their elementary properties, see Bredon [12, 1.6]
or tom Dieck [18, 1.4]. We add the following observations.

3.1 Lemma. Let G be a Hausdorff group, and let H be a closed subgroup
which acts on a Hausdorff space A. Then the following assertions hold:

(a) The free action of H on G x A given by h.(g,a) := (gh™!, h.a) is proper.
In particular, the twisted product G x g A is a Hausdorff space.

(b) Let C be a compact subset of G. Then the restriction of the orbit
projection pr: G X A — G xg A to C x A is a proper map. In
particular, the map a — [1,a]: A — G xg A is a closed embedding.
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Proof. (a) This follows easily from the characterization of proper actions
in Proposition 2.1. Indeed, if h.(g1,a1) = (g92,a2) and U is a neighbourhood
of h in H then h = g 'g;, and we may choose neighbourhoods V; of ¢
and V5 of gy such that Vo 'Vi N H C U. Then every element h' € H
for which h'.(V; x A) meets V5 x A is contained in U. If the H-orbits of
(g91,a1) and of (go, az) do not meet then there are two cases. If g1 H # goH,
there are neighbourhoods Vi of ¢g; and V, of ¢g» such that Vi H and VoH
are disjoint, and then h.(V} x A) and V5 x A are disjoint for every element
h € H. If ggH = g2H then go"'g; € H and (g27'g1).a1 # as. We may
choose neighbourhoods Vi of g1, Vo of go, W1 of a1, and W5 of as such that
(Vo= 'vi N H). W is disjoint from Wy. Then h.(Vy x W1) and Vo x Wsy are
disjoint for every element h € H.

(b) The fibre through (g,a) € C x A of the restriction pr|cx 4 is the set
{(gh,h t.a) | h € HNg 'C}, which is compact. The saturation of a closed
subset F' C C' x A under the action of H on G x A is the image of the closed
set H x F under the concatenation

HxCxA S HxCxA < GxOxA S GxCOxA — GxA

h,c,a) — (h,c h.a c.a) — (cg~t ¢ a
(77) (77 ) (977) (g )

where the second map is the inclusion, the fourth map is the product pro-
jection, and the first and third maps are the indicated homeomorphisms.
This concatenation is proper because it is a composition of proper maps.
Hence pr|cxa is a closed map. [l

3.2 Proposition. Let G be a locally compact group acting on a Hausdorff
space X, let H < G be a closed subgroup, and suppose that there is a
continuous G-equivariant map ¢: X — G/H. Set A := ¢~'(H). Then the
following statements hold:

(a) The map 9: G xg A — X, [g,a] — g.a is a G-equivariant homeo-
morphism.

(b) Assume that the natural projection pr: G — G/H admits continuous
local cross sections. (By a result of Mostert’s [37, Theorem 8], this con-
dition is satisfied if the dimension of G/H is finite; cf. Skljarenko [44,
Theorem 13].) Then the map ¢ is the projection in a locally trivial
fibre bundle with fibre A.

Proof. (a) Define a continuous map ¢: G x A — X, (g,a) — g.a. This
map is surjective because ¢(z) = gH implies g~'.z € A. For g,¢’ € G and
a,a’ € A, we have 1(g,a) = (g, a') if and only if a = g~ '¢'.a/, which holds
if and only if g '¢' € H and (g,a) = g '¢'.(¢',d’), i.e. [g,a] = [¢',a]. Hence
7]1 factors through +, and ¢ is a G-equivariant continuous bijection.

Choose a point [g,a] € G xg A. Let U be a compact neighbourhood
of g in G, and let V' be the image of U x A under the natural projection of
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G x A onto G x g A. Then (V) is the closed neighbourhood (U x A) =
¢ Y(UH/H) of 1([g,a]). The restriction of ¢ to U x A is a proper map (see
Bourbaki [8, Ch. III § 4 Prop. 1]). Therefore, the map from V onto ¢(V)
induced by % is closed and hence a homeomorphism. We conclude that ¢ is
a homeomorphism.

(b) Existence of local cross sections for pr: G — G/H means that there
is an open subset U C G/H and a continuous map o: U — G such that
proo = idy. (For examples of compact pairs (G, H) without local cross
sections, see Mostert [37, p. 59] or Skljarenko [44, p. 72].) Assertion (b)
follows easily. Indeed, if ¢ € G then one checks that

Xg: gU x A — <p’1(gU)
(u,a) — go(g 'u).a

is a continuous map with continuous inverse
Xg: @ '(gU) — gUxA
_ -1 _
z — (w(w), a(g () g l-x),

and @ o x4: gU x A — gU C G/H is the projection onto the first factor.
Hence x, is a topological bundle chart over gU. O

3.3 Definition. Let G be a locally compact group acting on a Hausdorff
space X, and let H be a closed subgroup of G. Following Palais [38, 2.1.1],
we call a non-empty subset S C X an H-slice in X for the action of G if
any one of the following conditions, which are equivalent by Proposition 3.2,
is satisfied:

(i) There is a G-invariant open subset U C X which admits a G-equivari-
ant map ¢: U — G/H such that S = ¢ }(H). (Note that U = G.S,
and also ¢ is determined uniquely by S because ¢(g.s) = gH.)

(ii) There is an H-space A and a G-equivariant open embedding
P:GxgA—X
such that ¢ ([1, A]) = S.
(iii) The subset S is invariant under H, the subset G.S C X is open, and

x:GxgS — G.S
lg,s] — g.s

is a homeomorphism.
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Note that if G — G/H has local cross sections (e.g. if the dimension of G/H
is finite) then ¢: G.S — G/H is a locally trivial fibre bundle with fibre S.
Another fact which will be used is that an open H-invariant subset of an
H-slice is an H-slice.

Let G be a locally compact group acting properly on a completely regular
space X such that the orbit space X/G is paracompact. Assume that G/G*
is compact, and let K be a maximal compact subgroup of G. Abels [1] has
constructed a global K-slice S in X for the action of G, i.e. a G-equivariant
homeomorphism from G X S onto X. As G/K is homeomorphic to some
euclidean space, this implies that X is a trivial fibre bundle over G/K, i.e.
homeomorphic to G/K x S. The purposes of the present paper, on the
other hand, require the construction of (non-global) H-slices for which H
is as small as possible. It turns out that we do not need any assumptions
on X/G and G/G*.

3.4 Lemma. Let G be a locally compact group such that G/G' is compact,
let H < G be a closed subgroup, and let N be the set of compact normal
subgroups of G such that the factor group is a Lie group. If Ny € N is such
that dimG/HN, < dim G/H then there is Ny € N such that N, C N; and
dimG/HNy > dim G/HN;.

In particular, if the dimension of G/H is finite then there is N € N
such that dimG/HN = dim G/H. If the dimension of G/H is infinite then
N € N can be chosen such that dimG/HN is arbitrarily high.

Proof. By Skljarenko’s sum formula (1), the dimension of Ny H/H is strictly
positive. Therefore, the stabilizer Ny N H of H under the action of N7 on
this space does not contain the identity component N;!, so that there is a
neighbourhood U of H in G/H which does not contain N;'H/H. Choose
N € N such that NH/H C U. Then Ny := N N Ny is an element of A/
(Gluskov [22, 1.5]). The identity component Ni' is not contained in Ny H,
so that it acts non-trivially on Ny1H/Ny;H. Hence the dimension of this
space is strictly positive, and the assertion follows from Skljarenko’s sum
formula (1). O

3.5 Lemma. If H is a compact subgroup of a totally disconnected locally
compact group G then every neighbourhood of H contains an open subgroup
of G which in turn contains H.

Proof. As H is compact, it suffices to consider neighbourhoods of the
form UH, where U is an identity neighbourhood in G. Since G/H is totally
disconnected, we may assume that UH is compact and open in G. Then
there is an identity neighbourhood V in G such that V C U and UHV C
UH, whence UHV H C UH. By induction, we find that (VH)" C UH for
each n € N. Therefore, the subgroup of G which is generated by VH N
(VH)~! is contained in UH, and it is open and contains H. O
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3.6 Lemma. Let G be a locally compact group acting properly on a
space X. Choose x € X, let Gy < G be an open subgroup with G, C Gy,
and let H < G be a closed subgroup. Suppose that S is an H-slice in X
for Gy with x € S. Then there is an H-slice S’ in X for G such that
ze S CS8.

Proof. Proposition 2.1 allows us to choose an open neighbourhood V of z
in X such that {g € G| g.V NV #0} CGy. Then S’ := SNV isopenin S
and thus an H-slice for Gy. To show that it also is an H-slice for G, observe
that G.S" = G.(Gy.S') is open in X, so that it remains to prove that

0:GS" — G/H
g.s +— gH

is a well-defined continuous map. The basic reason for this is that G.S’
is a disjoint union of G-translates of Gy.S’. To be precise, suppose that
g.s =¢'.s', where g,¢' € G and 5,5’ € §'. Then s =g '¢'.s' € Vg4V,
which implies that ¢~ '¢' € Gy. Hence ¢~'¢’ € H because S’ is an H-slice
for Gy. For the same reason, the restriction ¢|g,. s is continuous, which
entails continuity of ¢ at g.s (with ¢ € G and s € §'). Indeed, if 2’ is an
element of the open neighbourhood gGy.S" of g.s then g 1.2’ € Gy.S' and
o(z') = gp(g~'.2") depends continuously on z'. O

3.7 Proposition. Let G be a locally compact group acting properly on a
completely regular space X. If v € X and N is a compact normal subgroup
of G such that G/N is a Lie group then x is contained in a G5 N-slice for
the action of G on X.

Proof. For N =1, i.e. for proper actions of Lie groups, this is the main
result of Palais’s seminal paper [38, 2.3.3]. (Note that his definition of a
proper action implies the customary definition we use, which in turn implies
his definition of a “Cartan G-space”.) The present situation is easily reduced
to Palais’s Theorem. Let pr: X — X/N denote the natural projection. As
this is a proper map, the action of G/N on X/N is proper. Moreover,
Palais [38, 1.2.8] proved that X/N is completely regular. (The action of N
on X is proper in Palais’s stronger sense because N is compact.) Therefore,
there is a G/N-invariant open neighbourhood U of pr(z) in X/N which
admits a G-equivariant map

G/N

0: U — G/GxN = G.N/N

such that p(pr(z)) = GxN. Set U’ := pr=}(U). Then U’ is a G-invariant
open neighbourhood of z in X, and ¢ o pr |y is a G-equivariant map of U’
onto G/G;N which sends z to G;N. O
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3.8 Theorem (Existence of slices). Let G be a locally compact group
acting properly on a completely regular space X, and choose © € X. Then
there is a convergent filter basis N' which consists of compact subgroups
of G normalized by G, such that for every N € N, the coset space G/G,N
is a manifold and x is contained in a G N-slice for the action of G on X.
In particular, some neighbourhood of the orbit G.x is a locally trivial fibre
bundle over the manifold G/G;N.

The dimension of G.z is infinite if and only if N € N” may be chosen such
that the dimension of G/GzN is arbitrarily high. If the dimension of G.z is
finite then N € N may be chosen in such a way that dim G/G,N = dim G.z.

Note that this implies the specialization of Theorem 2.8 to actions on com-
pletely regular spaces.

Proof. Let U C G be a compact neighbourhood of G,. When we apply
Lemima 3.5 to G/Gl, we find an open subgroup Gy < G such that G, C Gy C
UG. As UG'/G" is compact, so is Gy/G. Let N be the set of compact
normal subgroups of Gy such that Gy/N is a Lie group. Then every identity
neighbourhood of G contains a member of A/, and A is closed under finite
intersections (Gluskov [22, 1.5]), so that N is a filter basis which converges
to 1 in G. Choose N € N. By Proposition 3.7, there is a G,N-slice S
in X for Gy with z € S. Lemma 3.6 shows that S contains a G,N-slice
for the action of G on X which contains z. The coset space G/GyN is a
manifold since it contains Go/G,N as an open subspace and is paracompact
(see, e.g., Bourbaki [8, Ch. III § 4 Prop. 13]). As dimG.z = dimGy/G, >
dim Gy/GxN = dimG/G,;N, the last assertions follow immediately from
Lemma 3.4. U

4 Orbits in cohomology manifolds

The main result of this section (4.11) describes the orbits of highest dimen-
sion under a proper effective action on a cohomology manifold and gives an
upper bound for the group dimension in terms of the orbit dimensions. If
some orbit has codimension at most 2 then the group is a Lie group (4.13).
This is prepared by the proof of continuity of induced actions in cohomo-
logy (4.2) and by a result on change of rings for cohomology manifolds (4.6).

We will use sheaf cohomology with compact supports and constant co-
efficients, which agrees with both Alexander—Spanier and Cech cohomology
on locally compact spaces, see Bredon [14, I11.2.1 and I11.4.12].

Let G be a connected group acting effectively on a Hausdorff space X,
and let N be a totally disconnected compact normal subgroup of G. Then
there is an induced almost effective action of the quotient group G/N on the
orbit space X/N. The orbit projection X — X/N is a proper open map,
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and it induces a homeomorphism

. . (G X
Fix(G; X) = Fix (N’ N> .
(Here Fix(G; X) denotes the set of points in X which are fixed under the
action of G.) The orbit space of the action of G/N on X/N is homeomorphic
to the orbit space X/G. If the action of G on X is proper then the same
holds for the action of G/N on X/N.

If G is a locally compact group of finite dimension such that G/G* is
compact then the totally disconnected compact normal subgroup N may
be chosen in such a way that G/N is a Lie group. Thus many questions
about the orbit spaces and fixed point sets of actions of finite-dimensional
locally compact groups are reduced to questions about Lie groups. This
approach is very successful because the orbit space X/N inherits global and
local cohomological properties from the space X.

4.1 Theorem (Bredon et al. [15, 5.1], Lowen [29]). Let N be a to-
tally disconnected compact group which acts on a locally compact Hausdorff
space X, and let F' be a field of characteristic 0. Then the orbit projection
X — X/N induces an isomorphism

H(X/N;F) =2 Fix(N; H: (X; F)). O

If the dimension of the vector space H}(X;F) is finite, the following
theorem yields an open subgroup of N whose action on cohomology is trivial.

4.2 Theorem (Continuity of the action on cohomology). Let G be a
locally paracompact Hausdorff group acting on a locally compact space X,
and let A be an abelian group. Then the induced action of G on H}(X; A)
is continuous with respect to the discrete topology on H}(X;A). (In other
words, all stabilizers of this action are open subgroups.)

Proof. Choose a paracompact neighbourhood U of 1 in G. The proof will
use the cohomology of U x X with constant coefficients in A and with a
special support family ®. This family is defined as follows. Let

X Uuxx X

be the product projection and the restriction of the action map, respec-
tively. The support family ® is the collection of all closed subsets of sets
of the form pr,'(K) Uw™!(K) where K ranges over the compact subsets
of X. Every closed subset of a member of ® belongs to ®, and so does
every finite union of members of ®. Thus ¢ is indeed a family of supports
in the sense of Bredon [14, 1.6.1]. For a compact subset K of X, the set
pr, '(K) = U x K is paracompact (see Engelking [20, 5.1.36] or Bourbaki 8,

19



Ch. 1§ 9 Prop. 17]). The set w }(K) is the image of U x K under the self-
homeomorphism (g, z) — (9,97 .2) of U x X, whence it is also paracom-
pact. Finally, the union of the two paracompact sets pry ' (K) and w ™ (K)
is paracompact (Engelking [20, 5.1.34], cf. Dugundji [19, VIIL.2.6]). This
implies that every member of ® is paracompact. As X is locally compact,
every member of ® has a neighbourhood which belongs to ®. Thus @ is a
paracompactifying family of supports [14, 1.6.1].

We will use a certain continuity property of the cohomology of subspaces
of U x X with supports in ®. Let A/ be the collection of sets of the form V' x X
where V is a closed neighbourhood of 1 in U, and set X := {1} x X = N.
For N1, Ny € N with N; D N», we have the restriction map

T7V27N1: H$HN1(N17A) _>H$QN2(N2;A)7 Oé’—>Oé‘N2,

which is just the map in cohomology induced by the inclusion of Ny into V;.
(Here ® N Nj is the support family {F N N; | F € ®} on N;.) The fam-
ily NV is directed downwards by inclusion. Hence the groups Hg (N A),
where N ranges over N, and the restriction maps form a directed system.
In particular, the restriction maps r}l, y induce a limit map

0:= lim ry, y: lim Hyqn(N;A) — Hynx, (X1 4).
NeN NeN

(Note that ® N X7 is just the family of compact supports on X;.) The
restriction of the product projection pry: U x X — U to an arbitrary ele-
ment F' € ® is a proper map. In particular, the image pr;(F') is closed in U.
Moreover, the topology of U is regular. Hence if F' € ® is disjoint from X
then there is an element N € A such that F "N = 0. Since X; and all
members of N are closed subsets of U x X and ® is a paracompactifying
family of supports on U x X, Bredon [14, 11.10.6] proves that the direct
limit map @ is an isomorphism. In particular, if two cohomology classes
a,a € Hi(U x X; A) satisfy a|x, = o|x, then there is an element N € N/
such that a|y = o/|n.

Pick a cohomology class § € H}(X;A). We have to show that the
stabilizer of 8 in the induced action of G on H(X;A) is open. Define
elements of H} (U x X; A) by o : = pry*(f) and o := w*(f). (The maps pry*
and w* are both defined since pry ' (K),w (K) € ® for compact K C X.)
We have «o|x, = o/|x, because pry|x, = w|x,. Therefore, there is a closed
neighbourhood V of 1 in U such that, for N :=V x X, we have a|y = o/|x.
For g € U, define an embedding

ig: X —m UxX, z+—(g,2).

Then the action of the group element g on X is given by w o 4,4, whence its
action on H}(X; A) is given by 4,* o w*. Choose g € V. Then i, factors as
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the corestriction 44| : X — N followed by the inclusion of N into U x X.
Hence

ig* (W (B)) = ig" (&) = (ig]™)" (/| )
= (igV)" (aln) = ig" (@) = (pryoig)*(B) = (idx)*(8) = B.

Therefore, the identity neighbourhood V' C G fixes § in the action of G
on H}(X;A). Thus the stabilizer of 5 is open. O

4.3 Corollary. Let G be a locally paracompact connected Hausdorff group
acting on a locally compact space X, and let A be an abelian group. Then
the action of G on H}(X; A) is trivial. O

For compact connected groups G, this corollary is due to Bredon, Raymond,
and Williams [15, 2.2]. Bredon [14, I1.11.11] gives a different proof of this
special case, to which the present proof of Theorem 4.2 owes much inspira-
tion.

In order to state a local analogue of the global Theorem 4.1, we need the
notion of a cohomology n-manifold over a principal ideal domain R. This
is a locally compact space X with dimp X < oo which is cohomologically
locally connected in every degree and satisfies

(X ), = {R L

0 ifi#n
for all z € X. Here H;(X; R), is the i-th local homology group of X at z
with respect to Borel-Moore homology, whose definition can be found in
Bredon’s monograph [14, Section V.3]. The cohomological local connectiv-
ity condition means that for each degree ¢ € Ny and for each point z € X,
every neighbourhood U of z contains a neighbourhood V of x such that
the inclusion of V into U induces the zero map Hi(U; R) — H'(V;R) in
reduced cohomology. (In degree 0, this is equivalent to ordinary local con-
nectivity.) A connected cohomology n-manifold X over R is called orientable
if HY(X;R) = R (cf. [14, V.16.16]).

Equivalent definitions of a cohomology manifold are given by [14, V.16.8].
In particular, if R is a field or the ring of integers then the local homo-
logy groups may be replaced with the groups HY(X, X \ {z}; R), see [14,
I1.12.1 and V.16.9]. Note that a cohomology n-manifold X over R satisfies
dimpr X = n by [14, V.16.8].

Topological n-manifolds are examples of cohomology n-manifolds. A
non-manifold example is the open cone over an (n — 1)-manifold which is
not a sphere but has the R-cohomology of an (n — 1)-sphere. Other non-
manifold examples are provided by fixed point sets of elementary abelian or
torus groups acting on manifolds, and by Cartesian factors of manifolds.
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The main reference for cohomology manifolds is [14], in particular Sec-
tion V.16. An overview is given in Section 1.2 of [3]. The characterization of
manifolds among cohomology manifolds is a hard open problem, see Bryant
et al. [16].

As announced above, the property of being a cohomology manifold over
a field of characteristic 0 is inherited by certain orbit spaces.

4.4 Theorem (Raymond [40]). Let N be a second countable totally dis-
connected compact group which acts on a connected orientable cohomology
n-manifold X over some field F' of characteristic 0. Suppose that the ac-
tion of N on H}(X; F) is trivial. Then X/N is an orientable cohomology
n-manifold over F. 0

4.5 Remark. In our applications, we will use Theorem 4.2 in order to
choose the group N in such a way that its action on H}(X;F) will be
trivial. The group will be second countable because it will be contained in
a locally compact connected group of finite dimension (see Skljarenko [44,
Theorem 18]).

We do not want to restrict our investigation to the case of orientable co-
homology manifolds. If a cohomology manifold is not orientable, Bredon [10]
has constructed an orientable covering (which may have infinitely many
leaves), and under certain conditions, continuous actions on a non-orientable
cohomology manifold are uniquely covered by orientation-preserving actions
of the same group on the orientable covering ([10, 6.1], cf. Bredon [12, 1.9.4]).
Unfortunately, these conditions are not satisfied in our situation, and a suit-
able more general development [11, Section III] was later found to be “ir-
retrievably incorrect” (Bredon [14, V.9.6]). Our solution to the problem
of non-orientability is to apply Raymond’s Theorem 4.4 to orientable open
subsets. Thus we can only derive “local” properties of an action from the
corresponding properties of the action of a Lie group.

A different solution is available in the case of actions on compact co-
homology manifolds. For this fact and further comments, see Remark 4.15
at the end of this paper.

4.6 Proposition (Change of rings). Let X be a cohomology n-manifold
over some principal ideal domain R, and let S be a principal ideal domain
which is also a unital R-module. Then X is a cohomology n-manifold over S.
If X is orientable over R then X is orientable over S.

Proof. For any locally compact space U, there is a natural exact Universal
Coefficient Sequence (Bredon [14, 11.15.3])

0 — HYU;R)®r S — H.L(U;S) — Tor{'(H*Y(U; R), S) — 0

which splits. Applying this to open subsets U C X, we infer that dimg X <
dimp X < oco. To see that X is cohomologically locally connected over S,
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choose a degree ¢ € Ny, a point € X, and a neighbourhood U of z. Then
there are neighbourhoods V' and W of « with W C V C U such that the
maps HITY(V — U; R) and HY(W < V; R) are zero. We may assume that
V isopen in X, so that it can take the place of U in the above exact sequence.
Then it follows from an elementary fact about short exact sequences [14,
[1.17.3] that the map HL{(W < U;S) is zero. Finally, the local homology
groups of X over S are determined by the exact sequence [14, V.3, (13)]

0 — Hi(X;R), ®r S — Hi(X;89)s — Torf(Hi—1(X; R),, S) — 0.

(Note that H;(X;S), does not depend on whether S is considered as a
module over R or over S because X is cohomologically locally connected
over R, see [14, V.12.10 and V.15.1].)

If X is orientable over R then the above Universal Coefficient Sequence
in cohomology shows that X is orientable over S. U

4.7 Corollary. Every (orientable) cohomology n-manifold over 7 is an
(orientable) cohomology n-manifold over any principal ideal domain. Every
(orientable) cohomology n-manifold over a principal ideal domain R is an
(orientable) cohomology n-manifold over the field of fractions of R. O

The first assertion of this corollary is due to Borel et al. [7, 1.4.5]. Conversely,
let X be a locally compact space which is cohomologically locally connected
over Z, and assume that X is a (orientable) cohomology n-manifold over Q
and over every prime field. Then X is a (orientable) cohomology n-manifold
over Z. Together with the second assertion of the preceding corollary, this
is a part of the main result of a paper of Raymond’s [41].

4.8 Theorem (Conner—Floyd). Let R be a field or the ring of integers,
and let the torus group T" act on a connected cohomology n-manifold X
over R. Then Fix(T"; X) is locally connected. Each connected component
of Fix(T"; X') is a cohomology k-manifold over R for some k such that n —k
is a non-negative even number, and if k = n (i.e. if the fixed point set has
interior points) then the action is trivial. If X is orientable over R then so
is each connected component of Fix(T"; X).

This theorem also holds for actions of compact connected abelian groups on
cohomology manifolds over fields of characteristic 0. Details of the proof,
which follows the spirit of the present paper, and similar fixed point theorems
for actions on cohomology spheres can be found in [5].

Proof. Except for the assertion about triviality of the action, this is The-
orem V.3.2 of Borel et al. [7]. If F' is a connected component of Fix(T"; X)
then F' has interior points if and only if dimg F' = n (Bredon [14, V.16.18]).
By Invariance of Domain [14, V.16.19], this holds if and only if F' is open
in X, and this is equivalent to triviality of the action because F' is also closed
and X is connected. 0
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We prepare our main result by a theorem which generalizes some of
the main ideas of Bredon’s paper [9] from actions of compact groups on
manifolds to proper actions on cohomology manifolds. Bredon’s use of local
Lie groups is, at the same time, replaced with our Slice Theorem 3.8.

As a comment on the hypotheses of the following theorem, we remark
that for locally compact connected spaces, metrizability is equivalent to the
second axiom of countability, i.e. the existence of a countable basis. Indeed,
if a locally compact space is second countable then Urysohn’s Metrization
Theorem applies (see Dugundji [19, 1X.9.2]). Conversely, a metrizable space
is paracompact. A locally compact connected space is paracompact if and
only if it is o-compact (see Bredon [13, [.12.11]). A o-compact metric space
is second countable because for each n € N, it can be covered by countably
many open balls of radius %

4.9 Theorem (Orbits of codimension at most 2). Let G be a lo-
cally compact group acting properly and effectively on a second countable
connected cohomology n-manifold X over some principal ideal domain R.
Suppose that dim G.¢ > n — 2 holds for every orbit G.z in X. Then X is
an n-manifold, and G is a Lie group.

Proof. Let x be a point of X. According to Theorem 3.8, we may choose
a compact subgroup N < G such that G, normalizes N, the coset space
G/GyN is a manifold of dimension dimG.z, and there is a GyN-slice S
in X for G which contains z. Then the natural map of G.S onto G/G,N is
the projection in a locally trivial fibre bundle with fibre §. The open subset
G.S of X is a cohomology n-manifold over R, and it is locally homeomorphic
to G/GyN x S. A direct factor of a cohomology manifold is a cohomology
manifold (see Bredon [14, V.16.11]), whence S is a cohomology manifold of
dimension n —dim G.z < 2 over R. Since S is second countable, we conclude
that S is a topological manifold ([14, V.16.32], cf. [14, V.16.8]), whence the
same holds for G.S. As z was an arbitrary point of X, the space X is a
manifold as well.

Let Sy be the connected component of z in S. An element g € N sta-
bilizes Sy as a set if and only if g.x € Sy. As Sy is open in S, the set-wise
stabilizer Ng, is an open subgroup of N. The effective quotient Ng, /N[SO}
embeds topologically into the set of self-homeomorphisms of Sy with the
compact-open topology (see Dugundji [19, XII.1.3 and 3.1]), and this space
is second countable because so is S (see [19, XIL.5.2]). Hence Ng,/N[g
is a second countable compact group which acts effectively on a connected
manifold of dimension at most 2. This situation has been studied by Mont-
gomery and Zippin [36]. If dimgS = 1 then Ng,/Nig,) is a Lie group by
Theorem 3 of Section 6.1 [36, p. 233]. If dimg .S = 2 then every compact
zero-dimensional subgroup of Ns,/N[g, is finite by the third theorem in
Section 6.4 [36, p. 249]. As the dimension of Ng,/Nig, is finite (Mont-
gomery [33]), this entails that Ng,/Ng, is a Lie group, cf. Salzmann et
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al. [43, 96.31]. In particular, the orbit Ng,.z is a manifold, and so is N.z
because it contains Ng,.z as an open subset. By Proposition 3.2, the orbit
G.z is a locally trivial fibre bundle over G/G,N with fibre N.xz. We con-
clude that G.z is a manifold. In particular, all orbits of G in X are locally
connected, and also G-wise locally connected in the sense of Bredon [9].
By [9, Theorem 2], this implies that G is a Lie group. O

4.10 Remark. Let G be a locally compact group acting properly on a
metrizable cohomology manifold X over some principal ideal domain R, and
let Y C X be the set of points whose orbits have codimension at most 2.
Then Y is an open subset of X by Theorem 2.8. The preceding theorem
shows that Y is a manifold (or empty), and if Yj is a connected component
of Y then the set-wise stabilizer Gy, is open in G and the effective quotient
Gy, /Gly,) is a Lie group.

In this situation, however, the space X need not be locally euclidean
around points of the complement X \Y. Indeed, let I = A5 be an icosahedral
subgroup of SO3R. Then SO3R/I is a cohomology 3-sphere which is not
simply connected. Its suspension (i.e. double cone) is a compact cohomology
4-manifold over Z which is not a manifold, and it carries an effective action
of the group SO3R x Z /2.

4.11 Theorem (Orbits of maximal dimension in cohomology mani-
folds). Let G be a locally compact group acting properly and effectively
on a connected cohomology n-manifold X over R. Assume either that R
is a field of characteristic 0 or that G is a Lie group and R is a field or
the ring of integers. Let k be the highest occurring orbit dimension, and
let Y C X be the set of points whose orbits have dimension k. Then the
following statements hold:

(a) The subset Y is open, connected, and dense in X, and its complement
satisfies dimg (X \Y) <n — 2.

(b) For each y € Y, the action of G on the orbit G.y is almost effective.
. k+1
(¢) dimG < ("37).
(d) Foreachy €Y, every orbit in X meets Fix((Gy)l; X) In other words,
Ve X,yeY g€ G: (Gy)' C Gy,

The theorem breaks down if X is not connected. This is shown by suitable
effective actions of (possibly infinite-dimensional) torus groups on disjoint
unions of circles.

If G is a compact Lie group and R = Z then the theorem follows from
work by Yang [49] (cf. Borel et al. [7, Chapter IX]). In its present form,
it rests on the following result, whose proof partly follows a remark by
Raymond [40, p. 6].
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4.12 Lemma. Under the hypotheses of Theorem 4.11, if G is connected
and finite-dimensional then the boundary of Y satisfies dimp dY < n — 2.

Proof. In the first part of the proof, assume that G is a Lie group. Corol-
lary 2.9 shows that Y is an open subset of X. In particular, it is disjoint
from its boundary dY. For natural numbers v and v, set

Our first aim is to show that dimg B,, < n — 2. Choose z € B, ,.
Palais’s Slice Theorem [38, 2.3.3] yields a G-slice S in X which contains .
By Proposition 3.2, the space G.S is a locally trivial fibre bundle over G.z
with fibre S, and B, , N G.S is a locally trivial fibre bundle over G.z with
fibre By, N'S. In particular, we note that S is a cohomology manifold
of dimension u over R (see Bredon [14, V.16.11]). Hence the connected
component of z in S is open in S, and it is invariant under G, so that
we may suppose that S is connected. If 2/ € B,, NS then Gy C G,
because =’ € S, whence G, = G because &' € By ,. As G.S meets Y, we
may choose an element y € SNY. Then G, is a subgroup of G, whose
dimension is strictly smaller. Therefore, there is a torus subgroup T' < G,
which is not contained in G,. Hence the action of T" on S is not trivial.
Since By, NS C Fix(T;S), the Conner-Floyd Theorem 4.8 yields that
dimg B, , NS < u — 2, whence dimg By, N G.S < n — 2 by locality of
dimension and the product inequality [14, I1.16.8 and 11.16.26]. We conclude
from [14, 11.16.8] that dimg By, <n — 2.

We will now prove that there is a pair (u,v) such that dimpdY =
dimpg By . Using the lexicographic ordering on N x N, set

BS(UW) = U Bs,t and B<(u,v) = U Bs,t-
(5,)<(u,v) (s,t)<(u,v)

Proposition 2.7 entails that each B<(, ) and each B, ) 1s an open subset
of dY. Since the dimension of JY is finite [14, 11.16.8], there is a com-
pact subset K C 0Y with dimg K = dimpg 9Y (see [14, 11.16.7]). The sets
B<(y,p) form an ascending chain and cover 9Y, whence one of them con-
tains K and therefore has the same dimension as Y. Hence we may choose
a lexicographically minimal pair (u,v) such that dimg B<(y,,) = dimg 9Y.
If B<(y,v) is empty then B<(,,) = By, has the same dimension as dY’, and
we are done. Otherwise, we may choose a compact subset K’ C B (uv) such
that dimg K' = dimg B.(y,,), and we find a pair (s,) < (u,v) such that
K' C B, and hence

dimp B<(u,v) = dimp Bg(s,t) < dimgpg Bg(u,v)a

where the last inequality holds by the choice of (u,v). Now By, is the
disjoint union of B_(, ) and By, whence [14, p. 170, no. 11] yields that

dimR oY = dimR Bg(u,v) = max{dimR B<(u,v)7 dimR Buvv} = dimR Bu,v.
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We conclude that dimg 0Y < n—2. Thus the lemma has been proved under
the assumption that G is a Lie group.

Now assume that G is not a Lie group. Let zg € dY be an arbitrary
point. We will construct a G-invariant connected open neighbourhood U
of zp in X and a totally disconnected compact normal subgroup N of GG
such that G/N is a Lie group and the orbit space U/N is a cohomology
n-manifold over R. Then for any point x of U, Skljarenko’s sum formula for
the dimension of coset spaces of locally compact groups [44, Theorem 10]
entails that the dimension of the orbit of N.x € U/N under the action
of G/N on U/N is equal to the dimension of G.z. Hence (U NY)/N is
just the subset of U/N formed by the orbits of dimension k. The boundary
of this subset is (U N 9Y)/N. We apply the first part of the proof to the
action of the Lie group G/N on the cohomology n-manifold U/N. This
yields that dimpg (U N9JY)/N < n — 2. The orbit projection from U N 9Y
onto (U NAJY)/N is a continuous map between locally compact spaces and
has totally disconnected fibres. By [14, IV.8.4], such a map cannot lower
dimension. We conclude that dimg (U N 9Y) < n — 2. The lemma now
follows from locality of dimension [14, 11.16.8].

It remains to construct a G-invariant open neighbourhood U of xp in X
and a totally disconnected compact normal subgroup N of G with the re-
quired properties. The cohomology manifold X is locally orientable [14,
V.9.1 and V.16.8], which means that we may choose an orientable open
neighbourhood V; of zg in X. Since the action is continuous, we find an
identity neighbourhood W in G' and a connected open neighbourhood V5
of zy in X such that W.Ve C V;. As G can be approximated by Lie groups,
the identity neighbourhood W contains a totally disconnected compact nor-
mal subgroup N; of G such that G/N; is a Lie group and Nj.zp C V.
The latter property implies that the open subset V3 := N;.V5 of X is con-
nected. Therefore, the R-module H(V3; R) is isomorphic to R, and Theo-
rem 4.2 shows that every sufficiently small subgroup of Ny acts trivially on
H!(V3; R). Hence N; contains a compact normal subgroup N of G such that
G/N is a Lie group and the action of N on H'(V3; R) is trivial. Since N is
second countable (Skljarenko [44, Theorem 18]) and R is now assumed to be
a field of characteristic 0, Raymond’s Theorem 4.4 shows that V3/N is a co-
homology n-manifold over R. Set U := G.V3. Then U is a connected open
neighbourhood of zy, and U/N = G.(V3/N) is a cohomology n-manifold
over R. Thus U and N have been constructed as announced. U

Proof of Theorem 4.11. Skljarenko’s sum formula [44, Theorem 10] im-
plies that dim G'.z = dim G.z for every z € X. Hence the theorem follows
for the action of G if it can be proved for the action of the identity compo-
nent G'. Therefore, we will assume that G is connected. In the first part of
the proof, we will also assume that the dimension of G is finite, so that we
can apply Lemma 4.12.
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Corollary 2.9 yields that Y is open in X. Therefore, the complement
of Y in X is the disjoint union of the open sets Y and X \'Y. Since
dimpdY < n — 2, the complement X \ Y is connected (Bredon [14,
V.16.20]). Hence X \ 'Y is empty. Thus Y is dense in X and connected,
and the dimension of X \ Y = 9Y over R is at most n — 2. This proves (a).

The action of G on the dense subset Y of X is effective. Therefore,
assertions (b) and (¢) follow from Corollary 2.10, which also shows that the
identity components of stabilizers of points in Y form a single conjugacy
class. Let £ € X be an arbitrary point. Using again that Y is a dense
subset of X, we infer from Theorem 2.8 that G, has a subgroup which is
conjugate to (Gy)' for some y € Y. In other words, there is an element
g € G such that (Gy)! C gGyg ! = G,.,. Moreover, we have seen that this
can be achieved for an arbitrary point y of Y, which proves (d).

To complete the proof of Theorem 4.11, assume that G is a connected
group of infinite dimension. We have already seen that any closed finite-
dimensional subgroup of G has dimension at most (]HQ'I) The Mal’cev—
Iwasawa Theorem (see Hofmann and Terp [25]) yields a maximal compact
subgroup K of G which is connected and has infinite dimension. The struc-
ture theory of compact groups shows that there is a totally disconnected
normal subgroup N of K such that K/N is isomorphic to the product over
a (necessarily infinite) family of compact connected Lie groups (see Hof-
mann and Morris [24, 8.15 and 9.24]). We conclude that K contains closed
subgroups of arbitrarily high dimension, which is a contradiction. O

4.13 Corollary. Let G be a locally compact group acting properly and
effectively on a second countable connected cohomology manifold X over a
field of characteristic 0. If some orbit has codimension at most 2 then G is
a Lie group.

Note that a one-dimensional solenoid can act effectively on the cartesian
product S' x N.

For a compact group acting on a second countable connected cohomology
manifold over Z whose covering dimension is finite, the corollary is due to
Raymond [40].

Proof. Theorem 4.11 yields that the action of G on the connected sub-
set Y C X formed by the orbits of minimal codimension is effective. There-
fore, the corollary follows from Theorem 4.9. U
4.14 Corollary. Every locally compact group which can act effectively on
a connected cohomology manifold over a field of characteristic 0 has finite

dimension.

For actions on genuine manifolds, this is due to Montgomery [33].
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Proof. By Theorem 4.11, every compact subgroup has finite dimension,
whence the corollary follows from the Mal’cev—Iwasawa Theorem (see Hof-
mann and Terp [25], cf. Abels [1]), applied to the identity component. [

4.15 Remark. Let G be a locally compact connected group which acts
effectively on a cohomology n-manifold X over a field F' of characteristic 0.
Then the dimension of G is finite. If X is orientable then for any totally dis-
connected compact subgroup N of G, the orbit space X/N is a cohomology
n-manifold over F. (As above, this follows from Corollary 4.3, Raymond’s
Theorem 4.4, and Skljarenko [44, Theorem 18].) The subgroup N may be
chosen normal and such that the quotient G/N is a Lie group. Thus the
action of G on X is closely related to the action of the Lie group G/N on
the cohomology n-manifold X/N.

If X is not assumed to be orientable, we have the following partial sub-
stitute for this technique. Let K be a compact subset of X. (For example,
finite dimensionality of G yields a finite subset K of X such that the action
of G on G.K is almost effective.) Then there are open connected orientable
subsets Uy, . .., Uy, of X and totally disconnected compact normal subgroups
Ni,...,Np, of G such that the sets U; cover K, the quotient groups G/N;
are Lie groups, each set U; is invariant under the group IV;, and the action
of Nj on H(U;; F) is trivial. (This can be deduced from Theorem 4.2 as in
the proof of Lemma 4.12.) Set U :=U;U---UUp and N := NyN---N Ny,
Then U is an open subset of X which contains K, and if K is connected
then so is U. Gluskov [22, 1.5] has proved that the quotient G/N is a Lie
group. By Raymond’s Theorem 4.4, each orbit space U;/N is a cohomology
n-manifold over F. We conclude that the open subspace G.U/N of X/N,
which contains G.K/N and is connected if K is connected, is a cohomology
n-manifold over F, and it carries an action of the Lie group G/N.

In particular, if the cohomology manifold X is compact then the group G
has a totally disconnected compact normal subgroup N such that G/N is
a Lie group and X/N is a cohomology n-manifold over F' (even if X is not
orientable).

References

[1] Herbert Abels, Parallelizability of proper actions, global K-slices and
mazimal compact subgroups, Math. Ann. 212 (1974/75), 1-19.

[2] Christopher Allday and Volker Puppe, Cohomological methods in trans-
formation groups, Cambridge Studies in Advanced Mathematics 32,
Cambridge University Press, 1993.

[3] Harald Biller, Actions of compact groups on spheres and on generalized
quadrangles, Dissertation, Stuttgart, 1999,
http://elib.uni-stuttgart.de/opus/volltexte/1999/566.

29



[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

, Actions of compact groups on compact (4, m)-quadrangles,
Geom. Dedicata 83 (2000), 273-312.

, Fized points of pro-tori in cohomology spheres, Preprint 2183,
Fachbereich Mathematik, Technische Universitat Darmstadt, 2001.

Salomon Bochner and Deane Montgomery, Locally compact groups of
differentiable transformations, Ann. of Math., II. Ser. 47 (1946), 639
653.

Armand Borel et al., Seminar on transformation groups, Ann. of Math.
Stud. 46, Princeton University Press, Princeton 1960.

Nicolas Bourbaki, Eléments de mathématique. Topologie générale.
Chapitres 1 o 4, Hermann, Paris 1971 (French).

Glen E. Bredon, Some theorems on transformation groups, Ann. of
Math., II. Ser. 67 (1958), 104-118.

, Orientation in generalized manifolds and applications to the
theory of transformation groups, Michigan Math. J. 7 (1960), 35-64.

, Cohomology fibre spaces, the Smith—Gysin sequence, and orien-
tation in generalized manifolds, Michigan Math. J. 10 (1963), 321-333.

, Introduction to compact transformation groups, Academic
Press, New York 1972.

, Topology and geometry, Graduate Texts in Mathematics 139,
Springer, New York 1993.

, Sheaf theory, 2nd ed., Graduate Texts in Mathematics 170,
Springer, New York 1997.

Glen E. Bredon, Frank Raymond, and R. F. Williams, p-adic groups of
transformations, Trans. Am. Math. Soc. 99 (1961), 488-498.

John L. Bryant, Steven C. Ferry, Washington Mio, and Shmuel Wein-
berger, Topology of homology manifolds, Ann. of Math., II. Ser. 143
(1996), 435-467.

Francis Buekenhout (ed.), Handbook of incidence geometry: Buildings
and foundations, North-Holland, Amsterdam 1995.

Tammo tom Dieck, Transformation groups, Studies in Mathematics 8,
de Gruyter, Berlin 1987.

James Dugundji, Topology, Allyn and Bacon, Boston 1966.

30



[20]

[21]

[22]

23]

[24]

[25]

Ryszard Engelking, General topology, second ed., Sigma Series in Pure
Mathematics 6, Heldermann Verlag, Berlin 1989.

Ryszard Engelking, Dimension theory, North-Holland Mathematical Li-
brary 19, North-Holland, New York 1978.

Viktor M. Gluskov, The structure of locally compact groups and
Hilbert’s fifth problem, Amer. Math. Soc. Transl., II. Ser. 15 (1960),
55-93, transl. of Usp. Mat. Nauk. 12 (1957), no. 2, 3-41.

Karl H. Hofmann and Sidney A. Morris, Transitive actions of compact
groups and topological dimension, J. Algebra 234 (2000), 454-479.

, The structure of compact groups, Studies in Mathematics 25,
de Gruyter, Berlin 1998.

Karl H. Hofmann and Christian Terp, Compact subgroups of Lie groups
and locally compact groups, Proc. Am. Math. Soc. 120 (1994), no. 2,
623-634.

Wu-Yi Hsiang, Cohomology theory of topological transformation groups,
Ergebnisse der Mathematik und ihrer Grenzgebiete 85, Springer, Berlin
1975.

Irving Kaplansky, Lie algebras and locally compact groups, Chicago Lec-
tures in Mathematics, The University of Chicago Press, 1971.

Linus Kramer, Compact polygons, Dissertation, Tubingen, 1994.

Rainer Lowen, Locally compact connected groups acting on euclidean
space with Lie isotropy groups are Lie, Geom. Dedicata 5 (1976), 171—
174.

, Topology and dimension of stable planes: On a conjecture of
H. Freudenthal, J. Reine Angew. Math. 343 (1983), 108-122.

Gaven J. Martin, The Hilbert-Smith conjecture for quasiconformal ac-
tions, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 66-70 (elec-
tronic).

Deane Montgomery, Topological groups of differentiable transforma-
tions, Ann. of Math., II. Ser. 46 (1945), 382-387.

, Finite dimensionality of certain transformation groups, lllinois
J. Math. 1 (1957), 28-35.

Deane Montgomery and Leo Zippin, Topological transformation
groups I, Ann. of. Math., II. Ser. 41 (1940), 778-791.

31



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

, A theorem of Lie groups, Bull. Amer. Math. Soc. 48 (1942),
448-452.

, Topological transformation groups, Interscience, New York
1955.
Paul S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23

(1956), 57-71.

Richard S. Palais, On the existence of slices for actions of non-compact
Lie groups, Ann. of Math., II. Ser. 73 (1961), 295-323.

Boris A. Pasynkov, On the coincidence of various definitions of dimen-
stonality for factor spaces of locally bicompact groups, Uspekhi Mat.
Nauk 17 (1962), no. 5, 129-135 (Russian).

Frank Raymond, The orbit spaces of totally disconnected groups of
transformations on manifolds, Proc. Amer. Math. Soc. 12 (1961), 1-7.

, Some remarks on the coefficients used in the theory of homology
manifolds, Pac. J. Math. 15 (1965), 1365-1376.

Dusan Repovs and Evgenij V. Séepin, A proof of the Hilbert-Smith
conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997), no. 2,
361-364.

Helmut Salzmann, Dieter Betten, Theo Grundhofer, Hermann Hahl,
Rainer Lowen, and Markus Stroppel, Compact projective planes, de
Gruyter, Berlin 1995.

E. G. Skljarenko, On the topological structure of locally bicompact
groups and their quotient spaces, Amer. Math. Soc. Transl., II. Ser.
39 (1964), 57-82, transl. of Mat. Sbornik (N.S.) 60 (1963), 63-88.

Bernhild Stroppel and Markus Stroppel, The automorphism group of a
compact generalized quadrangle has finite dimension, Arch. Math. 66
(1996), 77-79.

, The automorphism group of a compact generalized polygon has
finite dimension, Monatsh. Math. 127 (1999), 343-347.

Harald Upmeier, Symmetric Banach manifolds and Jordan C*-algebras,
Mathematics Studies 104, North-Holland Publishing Co., Amsterdam
1985.

Hidehiko Yamabe, A generalization of a theorem of Gleason, Ann. of
Math., II. Ser. 58 (1953), 351-365.

32



[49] Chung-Tao Yang, Transformation groups on a homological manifold,
Trans. Amer. Math. Soc. 87 (1958), 261-283.

, p-adic transformation groups, Michigan Math. J. 7 (1960),
201-218.

[50]

33



