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Abstra
t

Essential results about a
tions of 
ompa
t Lie groups on manifolds

are generalized to proper a
tions of arbitrary groups on 
onne
ted 
o-

homology manifolds. Sli
es are repla
ed by 
ertain �bre bundle stru
-

tures on orbit neighbourhoods. The group dimension is shown to be

e�e
tively �nite. The orbits of maximal dimension form a dense open


onne
ted subset. If some orbit has 
odimension at most 2 then the

group is e�e
tively a Lie group.
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Introdu
tion

In the ri
h theory of 
ontinuous group a
tions on manifolds [2, 7, 12, 18, 26,

36℄, work has traditionally been fo
used on 
ompa
t Lie groups. However,

Palais [38℄ already drew attention to the larger 
lass of proper a
tions, and

the stru
ture theory of general lo
ally 
ompa
t groups [24℄ is suÆ
iently well

developed to allow the generalization of many important results. This is the

subje
t of the present paper. Already when a
tions of 
ompa
t Lie groups

are studied, it is natural to generalize manifolds to 
ohomology manifolds,

whi
h form a 
lass of spa
es with better inheritan
e properties. While the

most adequate 
ohomology 
oeÆ
ients for a
tions of 
ompa
t Lie groups

are the integers, the natural setting for the present results is more general.

Without any additional e�ort, they also hold for 
ohomology manifolds over

�elds of 
hara
teristi
 0.

An important preparatory result asserts that sheaf 
ohomologi
al and


overing dimension 
oin
ide for 
oset spa
es of lo
ally 
ompa
t groups (1.1).

Turning towards non-transitive proper a
tions, we show that every point has

a neighbourhood in whi
h the identity 
omponents of stabilizers, up to 
on-

jugation, get smaller (2.8). For proper a
tions on 
ompletely regular spa
es,
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Palais's Sli
e Theorem [38℄ is shown to have the following analogue (3.8):

ea
h n-dimensional orbit has an invariant neighbourhood whi
h admits an

equivariant �bre bundle proje
tion onto a homogeneous n-manifold. A sim-

ilar statement holds for in�nite-dimensional orbits. The main result (4.11)

studies proper e�e
tive a
tions on a 
onne
ted 
ohomology manifold over a

�eld of 
hara
teristi
 0. Among other things, we show that the set of points

on highest-dimensional orbits is open, 
onne
ted, and dense sin
e its 
om-

plement has 
odimension at least 2. The group dimension is �nite (in fa
t,

a sharp upper bound in terms of the maximal orbit dimension is given). In

the spe
ial 
ase of a
tions of 
ompa
t Lie groups on 
ohomology manifolds

over Z, these results are essentially due to Yang [49℄. Corollary 4.13 asserts

that the group is a Lie group if some orbit has 
odimension at most 2. This

was �rst proved by Bredon [9℄ for a
tions of 
ompa
t groups on manifolds.

Raymond [40℄ later generalized it to 
ohomology manifolds over the integers

under additional hypotheses whi
h, in the light of the present treatment,

seem unnaturally restri
tive.

This paper exploits re
ent re�nements of the general theory [24℄ in or-

der to 
ontinue work by Yang [50℄, Bredon, Raymond, and Williams [15℄,

and Raymond [40℄. However, these authors emphasize 
ertain surprising

di�eren
es between a
tions of Lie and of non-Lie groups on 
ohomology

manifolds over the integers. Their results, together with later work by Bre-

don [14, Se
tion V.18℄, probably 
onstitute the main step so far towards the

proof of the Hilbert-Smith Conje
ture, whi
h states that a lo
ally 
ompa
t

group whi
h a
ts 
ontinuously and e�e
tively on a 
onne
ted manifold must

be a Lie group. As mentioned above, this is true if the group is 
ompa
t

and some orbit has 
odimension at most 2 (Bredon [9℄), even for 
ohomo-

logy manifolds (Raymond [40℄ and 4.13) and proper a
tions of non-
ompa
t

groups (4.13). Without su
h a hypothesis, the 
onje
ture has only be proved

for a
tions by di�eomorphisms on di�erentiable manifolds (Montgomery [32℄

and Bo
hner and Montgomery [6℄, 
f. Upmeier [47, Se
tion 11℄ for manifolds

of in�nite dimension) and, re
ently, for a
tions on Riemannian manifolds by

Lips
hitz homeomorphisms (Repov�s and

�

S�
epin [42℄) or by quasi-
onformal

homeomorphisms (Martin [31℄).

The results of this paper may be applied to topologi
al in
iden
e geo-

metries in the sense of [17, Chapters 23 and 24℄ and [43℄. In this theory,

the 
ustomary hypotheses imply that the point set of an in
iden
e geometry

(su
h as a 
ompa
t proje
tive plane) is a 
ohomology manifold with respe
t

to any 
oeÆ
ient domain [28, 30℄. Therefore, Theorem 4.11 and its Corol-

lary 4.14 provide a uniform proof for the fa
t that the automorphism group

of su
h a geometry, whi
h 
arries a natural lo
ally 
ompa
t topology, has

�nite dimension. Previous proofs (e.g. [45, 46℄) had to use separate lines of

atta
k for ea
h type of in
iden
e axioms. Moreover, a
tions of 
ompa
t Lie

and non-Lie groups on su
h geometries used to be treated by rather di�erent

methods [3, 4℄. A uni�ed approa
h will be possible in the light of the present
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results.

The se
ond se
tion of this paper develops parts of my PhD thesis [3℄.

This was written at the University of Stuttgart, Germany, under the super-

vision of Professor Markus Stroppel, whose advi
e and support I gratefully

a
knowledge.

1 Dimension of 
oset spa
es

In this short se
tion, we prove that 
overing and 
ohomologi
al dimension


oin
ide for 
oset spa
es of lo
ally 
ompa
t groups, and we show when �nite

dimensionality of su
h a 
oset spa
e implies �nite dimensionality of the

group. Note that in our terminology, the de�nition of (lo
al) 
ompa
tness

in
ludes the Hausdor� separation axiom.

Finite dimensional spa
es are the main interest of this paper. Therefore,

we need to provide a notion of the dimension of a topologi
al spa
e. Promi-

nent dimension fun
tions are 
overing dimension (dim) and small and large

indu
tive dimension (ind and Ind; see, e.g., Engelking [21℄). These fun
tions

take their values in Z

��1

[ f1g. (Hofmann and Morris [23℄ have re
ently

de�ned a 
ardinal-valued dimension fun
tion and studied its behaviour on


oset spa
es of lo
ally 
ompa
t groups.) The three dimension fun
tions dim,

ind, and Ind do not agree in general, but they 
oin
ide for 
oset spa
es of

lo
ally 
ompa
t groups with respe
t to 
losed subgroups, as was proved by

Pasynkov [39℄ (
f. Skljarenko [44, Theorem 9℄). One 
an also use 
ohomo-

logy over some ring R to de�ne the 
ohomologi
al dimension (dim

R

) of a

topologi
al spa
e. As we will see below, this 
oin
ides with the 
lassi
al

dimension fun
tions on 
oset spa
es of lo
ally 
ompa
t groups.

We will often use the following sum formula for the dimension of 
oset

spa
es of lo
ally 
ompa
t groups, whi
h is due to Skljarenko [44, Theo-

rem 10℄. Let G be a lo
ally 
ompa
t group, and let H and K be 
losed

subgroups of G su
h that K � H. Then

dimG=K = dimG=H + dimH=K: (1)

One of the most important fa
ts about lo
ally 
ompa
t groups is that

they 
an be approximated by Lie groups. To be pre
ise, let G be a lo
ally


ompa
t group su
h that the quotient G=G

1

of G by its identity 
ompo-

nent G

1

is 
ompa
t. Then G has arbitrarily small 
ompa
t normal sub-

groups N su
h that G=N is a Lie group. If, moreover, the dimension of G is

�nite then every suÆ
iently small 
losed subgroup of G is zero-dimensional.

This was proved by Yamabe [48℄ and by Glu�skov [22, Theorem 9℄, see also

Montgomery and Zippin [36, Chapter IV℄ and Kaplansky [27, II.10, Theo-

rem 18℄. Sin
e being a Lie group is an extension property, if N

1

and N

2

are


ompa
t normal subgroups of G su
h that G=N

1

and G=N

2

are Lie groups

then so is G=(N

1

\N

2

) (
f. [22, 1.5℄).
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For the following proposition, re
all the notion of the dimension dim

R

X

of a topologi
al spa
eX with respe
t to sheaf 
ohomology over a base ring R.

For lo
ally 
ompa
t spa
es X, this dimension is 
hara
terized by the fa
t

that for any integer n � �1, the inequality dim

R

X � n holds if and only if

H

n+1




(U ;R) vanishes for all open subsets U � X, where H

�




(U ;R) denotes

the 
ohomology of the 
onstant sheaf with stalks R on U with respe
t to


ompa
t supports. For further information, the reader is referred to Bre-

don [14℄, Se
tion II.16.

1.1 Proposition (Cohomologi
al and 
overing dimension). Let H

be a 
losed subgroup of a lo
ally 
ompa
t group G, and let R be any ring.

Then dim

R

G=H = dimG=H.

Proof. Sin
e G=H is para
ompa
t (see, e.g., Bourbaki [8, Ch. III x 4

Prop. 13℄), we have the inequality dim

R

G=H � dimG=H (Bredon [14,

II.16.34℄). On the other hand, if dimG=H � n then G=H 
ontains a

homeomorphi
 image of [0; 1℄

n

by Theorem 9 of Skljarenko [44℄, so that

dim

R

G=H � n by [14, II.16.8 and II.16.28℄. This yields the opposite in-

equality dim

R

G=H � dimG=H. �

1.2 Theorem (Transitive a
tions on �nite-dimensional spa
es). Let

G be a lo
ally 
ompa
t group, and let H be a 
losed subgroup of G. Suppose

that the 
oset spa
e G=H has �nite dimension n and that the a
tion of G

on G=H is e�e
tive. Let G

1

� G denote the 
onne
ted 
omponent of the

identity element, whi
h is a 
losed normal subgroup of G.

If G=G

1

H is 
ompa
t then the dimension of G is �nite.

If G=H is 
onne
ted and H is 
ompa
t then dimG �

�

n+1

2

�

.

1.3 Remark. (a) To see that the subgroup G

1

H need not be 
losed in G,

take G

:

= R � Z

p

, where Z

p

is the group of p-adi
 integers, and set H

:

=

h(1; 1)i. Then H is dis
rete, and G

1

H = R � Z is a proper dense subgroup

ofG. In this example, the quotientG=H is the p-adi
 solenoid. However, ifG

is lo
ally 
onne
ted then G

1

and G

1

H are open (hen
e 
losed) subgroups.

(b) Note that G=G

1

H is homeomorphi
 to the spa
e of 
onne
ted 
om-

ponents of G=H. To see this, de�ne an equivalen
e relation on G=H by

setting gH � g

0

H if gH and g

0

H belong to the same 
onne
ted 
omponent,

and equip the quotient spa
e X of G=H by � with the quotient topology.

Then

' : G=G

1

H �! X

gG

1

H 7�! [gH℄

�

is a homeomorphism. Indeed, the subset gG

1

H=H of G=H is 
onne
ted

be
ause it is the 
losure of the G

1

-orbit of gH. This shows that ' is well-

de�ned. It is easy to see that it is a 
ontinuous surje
tion. Under the
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natural proje
tion of G=H onto G=G

1

H, the pre-image of an open-
losed

subset is open and 
losed. Therefore, su
h a pre-image is saturated under

the equivalen
e relation �. Sin
e the totally dis
onne
ted lo
ally 
ompa
t

spa
e G=G

1

H has a basis whi
h 
onsists of open-
losed subsets, we 
on
lude

that ' is open and inje
tive.

(
) LetK be a transitive permutation group on a set S, and equip bothK

and S with the respe
tive dis
rete topology. Then there is an e�e
tive 
oset

spa
e of the semi-dire
t produ
t G

:

= T

S

oK whi
h is homeomorphi
 to

S

1

� S and hen
e a one-dimensional manifold, while the dimension of G

may be arbitrarily high and even in�nite. For the 
ase that the 
oset spa
e

is 
onne
ted, the natural transitive a
tion of the group SO

n+1

R on the n-

sphere S

n

shows that the upper bound for dimG is sharp.

Proof of Theorem 1.2. Sin
e the totally dis
onne
ted lo
ally 
ompa
t

group G=G

1

has small open subgroups, we may 
hoose an open subgroup G

0

of G su
h that G

0

=G

1

is 
ompa
t and hen
e 
an be approximated by Lie

groups. We study the a
tion of G

0

on G=H. The natural map from G

0

onto

the orbit G

0

:gH is open, so that the a
tion of G

0

on G

0

:gH is equivalent

to the a
tion on a 
oset spa
e. Skljarenko [44, Theorem 5℄ has shown that

G

0

is e�e
tively �nite-dimensional on G

0

:gH. As the orbits of G

0

in G=H

are all open, they are all 
losed. In parti
ular, every 
onne
ted 
omponent

of G=H is 
ontained in a G

0

-orbit. By Remark 1.3, the spa
e of 
onne
ted


omponents of G=H is 
ompa
t, whi
h entails that the number of G

0

-orbits

in G=H is �nite. Therefore, the �niteness of dimG = dimG

0

is a 
onse-

quen
e of the following fa
t: if N

1

and N

2

are 
losed normal subgroups of

G

0

whose 
odimension is �nite then the 
odimension of N

1

\ N

2

is �nite.

Indeed,

dim

G

0

N

1

\N

2

= dim

G

0

N

1

+ dim

N

1

N

1

\N

2

� dim

G

0

N

1

+ dim

G

0

N

2

by Skljarenko's sum formula (1) and be
ause N

1

=(N

1

\N

2

) admits a 
ontin-

uous inje
tion into G

0

=N

2

(use 
ohomologi
al dimension and see Bredon [14,

IV.8.4℄).

Now suppose that G=H is 
onne
ted and that H is 
ompa
t. Then

the a
tion of G

0

on G=H is transitive, and it is equivalent to the a
tion

of G

0

on a 
oset spa
e be
ause G

0

is open in G. Therefore, we may assume

that G

0

= G. Let N be a zero-dimensional 
ompa
t normal subgroup of G

su
h that the quotient G=N is a Lie group. The 
oset spa
e HN=H is

zero-dimensional be
ause it is a homogeneous spa
e of N . By Skljarenko's

sum formula (1), this shows that dimG=HN = dimG=H. It also implies

that (HN)

1

= H

1

, when
e the transitive a
tion of the Lie group G=N on

G=HN is almost e�e
tive (i.e. its kernel is totally dis
onne
ted). Therefore,

we may even assume that G is a Lie group. The a
tion of the 
ompa
t

Lie group H on the 
onne
ted manifold G=H is not transitive. Hen
e all

5



orbits of H in G=H have dimension at most n � 1 by domain invarian
e

(see, for instan
e, Bredon [13, IV.19.9℄). A result due to Montgomery and

Zippin [36, 6.3.1, Theorem 2℄ yields that dimH = dimH

1

�

�

n

2

�

, when
e

dimG = dimG=H + dimH �

�

n+1

2

�

. �

2 Neighbouring orbits of proper a
tions

From now on, our attention is fo
used on proper a
tions, whi
h general-

ize a
tions of 
ompa
t groups. In the remaining se
tions, we treat a
tions

on general Hausdor� spa
es, on 
ompletely regular spa
es, and, �nally, on

(
ohomology) manifolds.

In proper a
tions, whose de�nition will soon be re
alled, stabilizers de-

pend semi-
ontinuously on points (2.2), and a similar statement holds for

the kernels of the restri
ted a
tions on single orbits (2.4). Stronger results

hold for proper a
tions of lo
ally 
ompa
t groups. Using a small generaliza-

tion of a 
lassi
al theorem of Palais about proper a
tions of Lie groups (2.7),

the main result of this se
tion (2.8) studies proper a
tions of general lo
ally


ompa
t groups and des
ribes the behaviour of stabilizers and kernels in a

neighbourhood of a �nite-dimensional orbit. Two 
orollaries 
on
lude the

se
tion.

Let us turn to the de�nitions. As it appears to be textbook tradition

to 
onsider proper a
tions on non-Hausdor� spa
es as well, we 
all a topo-

logi
al spa
e quasi-
ompa
t if every open 
overing has a �nite sub
over, so

that a (lo
ally) 
ompa
t spa
e is a (lo
ally) quasi-
ompa
t Hausdor� spa
e.

A 
ontinuous map f : X ! Y is 
alled proper if it is 
losed and all points

of Y have quasi-
ompa
t pre-images. This implies that the pre-image of

every quasi-
ompa
t subset of Y is quasi-
ompa
t; if Y is lo
ally 
ompa
t

then the reverse impli
ation holds as well. For example, if a quasi-
ompa
t

groupN a
ts 
ontinuously on a topologi
al spa
e X then the orbit proje
tion

X ! X=N is a proper open map.

A 
ontinuous a
tion of a topologi
al group G on a topologi
al spa
e X is


alled proper if the map (g; x) 7! (x; g:x) : G�X ! X�X is proper. Proper

maps and a
tions are des
ribed by Bourbaki [8, Ch. I x 10, Ch. III x 4℄, see

also tom Die
k [18, I.3℄. We re
all the most important elementary properties

of a proper a
tion of G on X. The orbit spa
e X=G is always a Hausdor�

spa
e, and if G satis�es the Hausdor� property then so does X. All sta-

bilizers are quasi-
ompa
t, and for ea
h x 2 X, the map g 7! g:x : G ! X

is proper, so that the natural map of G=G

x

onto G:x is a homeomorphism

onto a 
losed subspa
e of X. A subgroup H � G is quasi-
ompa
t if and

only if the a
tion of G on the 
oset spa
e G=H is proper. A 
ontinuous

a
tion of a lo
ally 
ompa
t group G on a Hausdor� spa
e X is proper if

and only if for all x; y 2 X, there are neighbourhoods V

x

of x and V

y

of y

su
h that fg 2 G j g:V

x

\ V

y

6= ;g is relatively 
ompa
t in G. In parti
ular,

6



every 
ontinuous a
tion of a 
ompa
t group on a Hausdor� spa
e is proper.

A 
ontinuous a
tion of a Hausdor� group G on a lo
ally 
ompa
t spa
e X

is proper if and only if for ea
h 
ompa
t subset K � X, the 
losed subset

fg 2 G j g:K \K 6= ;g of G is 
ompa
t. Note that a Hausdor� group whi
h

a
ts properly on a non-empty (lo
ally) 
ompa
t spa
e is (lo
ally) 
ompa
t.

In the investigation of neighbouring orbits, the following 
hara
terization

of proper a
tions is most useful: a 
ontinuous a
tion is proper if and only

if its stabilizers are quasi-
ompa
t, and the set of group elements whi
h

map one point to another depends semi-
ontinuously on that pair of points.

Writing U(S) for the neighbourhood �lter of a subset S of a topologi
al

spa
e, we formulate this 
hara
terization pre
isely:

2.1 Proposition. Let G a
t 
ontinuously on a topologi
al spa
e X. Then

the a
tion is proper if and only if all stabilizers are quasi-
ompa
t and

8x; y 2 X; U 2 U

�

fg 2 G j g:x = yg

�

9V

x

2 U(x); V

y

2 U(y) :

fg 2 G j g:V

x

\ V

y

6= ;g � U: (2)

Proof. The map � : G �X ! X �X; (g; x) 7! (x; g:x) has quasi-
ompa
t

�bres if and only if all stabilizers are quasi-
ompa
t. Suppose that this


ondition is satis�ed. As we will show, 
ondition (2) is then equivalent to

8x; y 2 X; U 2 U

�

�

�1

(x; y)

�

9V 2 U

�

(x; y)

�

: �

�1

(V ) � U; (3)

and this holds if and only if � is a 
losed map.

Indeed, assume (2), 
hoose x; y 2 X, and let U be a neighbourhood of

�

�1

(x; y) = fg 2 G j g:x = yg � fxg:

As this �bre is quasi-
ompa
t, there are neighbourhoods U

0

of fg 2 G j g:x =

yg and V

0

x

of x su
h that U

0

� V

0

x

� U . A

ording to (2), there are neigh-

bourhoods V

x

of x and V

y

of y su
h that fg 2 G j g:V

x

\ V

y

6= ;g � U

0

.

Then �

�1

((V

x

\ V

0

x

) � V

y

) � U

0

� V

0

x

� U , whi
h shows that (3) holds.

Conversely, if x; y 2 X and U is a neighbourhood of fg 2 G j g:x = yg

then (3) implies that there are neighbourhoods V

x

of x and V

y

su
h that

�

�1

(V

x

� V

y

) � U �X, whi
h entails (2).

Now assume (3), let A be a 
losed subset of G�X, and 
hoose (x; y) 2

(X�X)n�(A). Then there is a neighbourhood V of (x; y) su
h that �

�1

(V ) �

(G � X) n A. Hen
e V \ �(A) = ;, and � is a 
losed map. Conversely,

assume that � is 
losed, pi
k x; y 2 X, and let U be an open neighbourhood

of �

�1

(x; y). Then V

:

= (X�X)n�((G�X)nU) is an open neighbourhood

of (x; y) with �

�1

(V ) � U , when
e (3) holds. �

Setting x = y in (2), we obtain semi-
ontinuous dependen
e of stabilizers

on points:

7



2.2 Corollary (Close points have 
lose stabilizers). Let G a
t properly

on a spa
e X, 
hoose a point x 2 X, and let U be a neighbourhood of the

stabilizer G

x

of x. Then x has a neighbourhood V su
h that U 
ontains the

stabilizers of all points in V :

9V 2 U(x) 8 y 2 V : G

y

� U: �

From now on, we will always assume the Hausdor� separation property.

In this setting, there is an analogous result for kernels of the a
tions on

neighbouring orbits. In order to dedu
e this from Corollary 2.2, we need a

lemma about uniform spa
es. For the sake of simpli
ity, it will be formulated

as a statement about topologi
al groups.

2.3 Lemma. Let G be a Hausdor� group, let K be a set of 
ompa
t

subsets of G, and let U be a neighbourhood of

T

K in G. Then there is a

neighbourhood V of the identity in G and a �nite subset fK

1

; : : : ;K

n

g � K

su
h that

n

\

i=1

K

i

V � U:

Proof. We may assume that U is open in G. By 
ompa
tness, there

is a �nite subset fK

1

; : : : ;K

n

g � K su
h that

T

n

i=1

K

i

� U . Let C

:

=

K

1

� � � � �K

n

� G

n

, and set

D

:

= f(x; x; : : : ; x) 2 G

n

j x 2 G n Ug:

Then C is 
ompa
t, the subset D is 
losed, and C \D = ;, when
e there is

a neighbourhood V of 1 in G su
h that the neighbourhoodK

1

V �� � ��K

n

V

of C does not meet D. This implies that

T

n

i=1

K

i

V is 
ontained in U . �

2.4 Lemma (Close orbits have 
lose kernels). Let G be a Hausdor�

group a
ting properly on a spa
e X, 
hoose a point x 2 X, and let U be a

neighbourhood of the kernel G

[G:x℄

of the a
tion on the orbit G:x. Then x

has a neighbourhood V su
h that U 
ontains all kernels whi
h 
orrespond

to orbits of points in V :

9V 2 U(x) 8 y 2 V : G

[G:y℄

� U:

Proof. Applying Lemma 2.3 to K

:

= fgG

x

g

�1

j g 2 Gg, we �nd a neigh-

bourhood W of 1 2 G and a �nite subset F � G su
h that

\

g2F

gG

x

g

�1

W � U:

Set W

0

:

=

T

g2F

g

�1

Wg. Corollary 2.2 yields a neighbourhood V of x 2 X

su
h that G

y

� G

x

W

0

holds for ea
h y 2 V . This entails

8



G

[G:y℄

�

\

g2F

gG

y

g

�1

�

\

g2F

gG

x

W

0

g

�1

�

\

g2F

gG

x

g

�1

W � U: �

We re
ord another 
onsequen
e of Lemma 2.3.

2.5 Corollary (Comparison of group topologies). Let G be a Haus-

dor� group a
ting properly and e�e
tively on a topologi
al spa
e X. Then

the given topology on G 
oin
ides with the topologies on G indu
ed from

the 
ompa
t-open topology and from the produ
t topology on X

X

.

Proof. The 
ompa
t-open topology is �ner than the produ
t topology. The

given topology is �ner than the 
ompa
t-open topology on G be
ause 
onti-

nuity of the a
tion implies that the natural inje
tive map from G into X

X

is


ontinuous with respe
t to the given topology on G and the 
ompa
t-open

topology on X

X

(Dugundji [19, XII.3.1℄). It remains to see that the prod-

u
t topology on G is �ner than the given topology. To a
hieve this, 
hoose

g

0

2 G, and let U be a neighbourhood of g

0

in G with respe
t to the given

topology. For ea
h x 2 X, set K

x

:

= fg 2 G j g:x = g

0

:xg. The interse
tion

of these 
ompa
t sets is fg

0

g be
ause the a
tion is e�e
tive. By Lemma 2.3,

we 
an 
hoose an identity neighbourhood V in G and a �nite subset F � X

su
h that

T

x2F

K

x

V � U . For ea
h x 2 F , Proposition 2.1 yields an open

neighbourhood W

x

of g

0

:x in X su
h that g:x 2 W

x

implies g 2 K

x

V . The

set fg 2 G j 8x 2 F : g:x 2 W

x

g 
ontains g

0

and is 
ontained in U , and it

is open with respe
t to the produ
t topology. �

2.6 Remark. (a) As we followed the tradition and admitted non-Hausdor�

groups in the �rst results about proper a
tions, it may be interesting to note

that already the pre
eding three results break down without the Hausdor�

hypothesis. Indeed, topologize the symmetri
 group G

:

= S

3

in su
h a way

thatG and its three-element subgroup are the open identity neighbourhoods,

let H � G be a subgroup of order 2, and let X be the quotient spa
e of

G=H � [0; 1℄ obtained by identifying, for ea
h t 2 ℄0; 1℄, the set G=H � ftg

to a point. Then the natural a
tion of G on X is proper by Proposition 2.1,

but it does not satisfy the 
on
lusion of Lemma 2.4, and the 
ompa
t-open

topology on G is indis
rete.

(b) For the sake of 
ompleteness and 
omparison with results given in

the monograph by Montgomery and Zippin [36℄, we note that analogues of

Corollary 2.2 and Lemma 2.4 hold for the identity 
omponents of stabilizers

and kernels. This is due to the following topologi
al fa
t: if H is a lo
ally


ompa
t (hen
e 
losed) subgroup of a Hausdor� group G and U is a neigh-

bourhood of the identity 
omponent H

1

in G then there is a neighbourhood

V of H su
h that for every subgroup K of G whi
h is 
ontained in V , the

identity 
omponent K

1

lies within U .

Indeed, we may suppose that U is open in G. Sin
e the totally dis
on-

ne
ted lo
ally 
ompa
t group H=H

1

has small open subgroups, there is an

9



open (and 
losed) subgroup L of H whi
h lies within U . Under the natural

map of G onto the 
oset spa
e G=L, the image of L is a point and the im-

age of H n L is a 
losed set. As the topology of G=L is regular, these two

images have disjoint neighbourhoods. Thus we obtain disjoint open neigh-

bourhoods V

1

of L and V

2

of H n L in G. Set V

:

= (U \ V

1

) [ V

2

. Then V

is an open neighbourhood of H whi
h has the desired property.

Stronger results hold for proper a
tions of lo
ally 
ompa
t groups if we

suppose that the group is a Lie group (Proposition 2.7) or if we restri
t our

attention to identity 
omponents (Theorem 2.8).

2.7 Proposition (Stabilizers in proper a
tions of Lie groups). Let G

be a Lie group a
ting properly on a spa
e X, 
hoose a point x 2 X, and

let U be a neighbourhood of the identity element in G. Then there is a

neighbourhood V of x su
h that all stabilizers of points in V are 
onjugate

to subgroups of the stabilizer G

x

by elements of U :

9V 2 U(x) 8 y 2 V 9 g 2 U : gG

y

g

�1

� G

x

:

Proof. Choose a point x 2 X. As the stabilizer G

x

is 
ompa
t, a result by

Montgomery and Zippin [35℄ shows that G

x

has a neighbourhood W su
h

that every subgroup of G 
ontained in W is 
onjugate to a subgroup of G

x

by an element of U . (Palais [38, 4.2℄ later re-proved this as a 
orollary to

his Sli
e Theorem.) By Corollary 2.2, there is a neighbourhood V of x su
h

that all stabilizers of points in V are 
ontained in W . �

Under the additional 
ondition that X is 
ompletely regular, the pre
ed-

ing result is due to Palais [38, 2.3, Corollary 2℄. If we had not re
orded the

present easy generalization, we would have to assume 
omplete regularity

for the remainder of this se
tion, whi
h would be suÆ
ient for the purposes

of this paper.

2.8 Theorem (Stabilizers in proper a
tions of lo
ally 
ompa
t

groups). Let G be a lo
ally 
ompa
t group a
ting properly on a spa
e X,

and suppose that the orbit G:x of x 2 X has �nite dimension. Let U be

a neighbourhood of the identity element in G. Then there is a neighbour-

hood V of x su
h that all identity 
omponents of stabilizers of points in V

are 
onjugate to subgroups of the stabilizer G

x

by elements of U :

9V 2 U(x) 8 y 2 V 9 g 2 U : g(G

y

)

1

g

�1

� G

x

:

In parti
ular, the relations dimG:y � dimG:x and (G

[G:y℄

)

1

� G

[G:x℄

hold

for ea
h point y 2 V , where G

[G:x℄

denotes the kernel of the a
tion of G

on G:x. Moreover, if dimG:y = dimG:x then g(G

y

)

1

g

�1

= (G

x

)

1

and

(G

[G:y℄

)

1

= (G

[G:x℄

)

1

.
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Proof. As (G

y

)

1

= ((G

1

)

y

)

1

, the main assertion 
an be proved within

the identity 
omponent. Write K

:

= (G

1

)

[G

1

:x℄

for the kernel of the a
-

tion of G

1

on the orbit G

1

:x. Skljarenko's sum formula (1) entails that

dimG

1

:x = dimG:x. Hen
e Theorem 1.2 implies that the group G

1

=K has

�nite dimension. Therefore, the 
ompa
t subgroupK is 
ontained in a 
om-

pa
t normal subgroup N of G

1

su
h that the quotient G

1

=N is a Lie group

and N=K is zero-dimensional. In other words, the identity 
omponent N

1

is 
ontained in K and hen
e in (G

1

)

x

. This means that the orbit N:x is

zero-dimensional.

The natural a
tion of G

1

on the orbit spa
e X=N fa
tors through an

a
tion of the Lie group G

1

=N . Both a
tions are proper, and we will apply

Proposition 2.7 to the latter. For y 2 X, the stabilizer of N:y 2 X=N in

G

1

=N is (G

1

)

N:y

=N (and (G

1

)

N:y

= (G

1

)

y

N). Moreover, two subgroups

of G

1

=N are 
onjugate if and only if their pre-images in G

1

are 
onjugate.

Therefore, Proposition 2.7 yields a neighbourhood V of x su
h that for all

y 2 V , there is a g 2 U \ G

1

su
h that g(G

1

)

N:y

g

�1

� (G

1

)

N:x

. As N:x is

zero-dimensional, the identity 
omponent ((G

1

)

N:x

)

1

�xes x. Hen
e

g(G

y

)

1

g

�1

= g((G

1

)

y

)

1

g

�1

� g((G

1

)

N:y

)

1

g

�1

� ((G

1

)

N:x

)

1

� G

x

:

Skljarenko's sum formula (1) yields

dimG:y = dim

G

gG

y

g

�1

= dim

G

g(G

y

)

1

g

�1

� dim

G

G

x

= dimG:x:

Moreover, we �nd that

�

G

[G:y℄

�

1

=

 

\

h2G

hG

y

h

�1

!

1

=

 

\

h2G

h(G

y

)

1

h

�1

!

1

=

 

\

h2G

hg(G

y

)

1

g

�1

h

�1

!

1

�

 

\

h2G

h(G

x

)

1

h

�1

!

1

=

 

\

h2G

hG

x

h

�1

!

1

=

�

G

[G:x℄

�

1

:

If dimG:y = dimG:x then g(G

y

)

1

g

�1

= (G

x

)

1

by Skljarenko's sum for-

mula (1), when
e also (G

[G:y℄

)

1

= (G

[G:x℄

)

1

. �

In a
tions of 
ompa
t non-Lie groups, the full stabilizer 
an \jump up",

and even its identity 
omponent 
an do the same when the orbit dimension

is in�nite. Montgomery and Zippin [34, p. 786℄ des
ribe an example whi
h

proves the �rst half of this assertion, and an example for the se
ond half 
an

be 
onstru
ted along the same lines (see [3, 2.1.16℄ for details).

We �nish this se
tion with some immediate 
onsequen
es of Theorem 2.8.
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2.9 Corollary (Orbits of maximal dimension). Let G be a lo
ally


ompa
t group a
ting properly on a spa
e X. Suppose that

k

:

= maxfdimG:x j x 2 Xg <1;

and let Y � X be the set of points on k-dimensional orbits. Then Y is

an open subset of X. Moreover, every point x 2 Y has an open neigh-

bourhood V su
h that the identity 
omponents of all kernels of a
tions on

orbits whi
h meet V 
oin
ide, and the identity 
omponents of all stabilizers

of points in V are 
onjugate.

If G=G

1

is 
ompa
t then the e�e
tive quotient Gj

G:V

of G with respe
t

to the a
tion on the open set G:V is �nite-dimensional. If G is 
onne
ted

then dimGj

G:V

�

�

k+1

2

�

.

Proof. Suppose that x 2 Y , set U

:

= G, and 
hoose an open neighbour-

hood V of x as in Theorem 2.8. Then V � Y . Moreover, for all y 2 V , we

have

�

G

[G:y℄

�

1

=

�

G

[G:x℄

�

1

and 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

:

The last 
laim follows from Theorem 1.2 on transitive a
tions. �

2.10 Corollary (Uniform orbit dimension). Let G be a lo
ally 
ompa
t

group a
ting properly and e�e
tively on a 
onne
ted spa
e X, and suppose

that all orbits have the same �nite dimension k. Then the identity 
ompo-

nents of all stabilizers are 
onjugate, and the a
tion of G on every single

orbit is almost e�e
tive. If G=G

1

is 
ompa
t then the dimension of G is

�nite, and if G is 
onne
ted then its dimension is at most

�

k+1

2

�

.

For a
tions of 
ompa
t groups, the last part of this result was �rst given by

Montgomery and Zippin [34, Theorem 11℄ (
f. [36, 6.2.5℄), but there seems

to be an essential gap in their proof.

Proof. Choose a point x 2 X, and set

Y

:

= fy 2 X j 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

g:

Then Y is an open subset of X by Corollary 2.9. If z is a point on the

topologi
al boundary of Y then z 2 Y by the same Corollary. Thus Y is


losed as well, and Y = X by 
onne
tedness. Hen
e

8 y 2 X 9 g 2 G : g(G

y

)

1

g

�1

= (G

x

)

1

:

As above, we �nd that the identity 
omponent of the kernel of the a
tion

on G:x satis�es

�

G

[G:x℄

�

1

=

 

\

g2G

g(G

x

)

1

g

�1

!

1

:
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As this is the same for every orbit and G a
ts e�e
tively, we 
on
lude that

(G

[G:x℄

)

1

= 1, so that the a
tion of G on G:x is almost e�e
tive. Skljarenko's

sum formula (1) yields

dimG = dim

G

G

[G:x℄

;

whi
h is �nite if G=G

1

is 
ompa
t, as is shown by Theorem 1.2 on transitive

a
tions. If G is 
onne
ted then the same Theorem yields the inequality

dimG �

�

k+1

2

�

. �

3 Sli
es

A fundamental result for proper a
tions of Lie groups on 
ompletely reg-

ular spa
es, due to Palais [38℄, asserts that every orbit is an equivariant

neighbourhood retra
t. In the main result of this se
tion (3.8), we drop

the Lie hypothesis from this situation. Then every orbit has an invariant

neighbourhood whi
h admits an equivariant �bre bundle proje
tion onto a

homogeneous manifold; if the orbit dimension is �nite then that manifold

may be 
hosen of the same dimension, and its dimension 
an be arbitrarily

high if the orbit dimension is in�nite. We also observe (3.2) that su
h an

orbit neighbourhood is equivariantly homeomorphi
 to a twisted produ
t.

Let G be a Hausdor� group, and let H � G be a 
losed subgroup whi
h

a
ts on a Hausdor� spa
e A. Then H a
ts freely on G � A by h:(g; a)

:

=

(gh

�1

; h:a). The twisted produ
t G�

H

A is de�ned as the orbit spa
e of this

a
tion, and we write [g; a℄ for theH-orbit of (g; a) 2 G�A. The groupG a
ts

on G�

H

A by g:[g

0

; a℄

:

= [gg

0

; a℄, and we have the G-equivariant proje
tion

[g; a℄ 7�! gH : G�

H

A �! G=H:

Our interest in twisted produ
ts lies in the fa
t that for a lo
ally 
ompa
t

group G, every G-equivariant map onto a 
oset spa
e of G is of this form

(Proposition 3.2). Thus twisted produ
ts provide a 
on
rete des
ription of

su
h equivariant maps. For their elementary properties, see Bredon [12, I.6℄

or tom Die
k [18, I.4℄. We add the following observations.

3.1 Lemma. Let G be a Hausdor� group, and let H be a 
losed subgroup

whi
h a
ts on a Hausdor� spa
e A. Then the following assertions hold:

(a) The free a
tion ofH onG�A given by h:(g; a)

:

= (gh

�1

; h:a) is proper.

In parti
ular, the twisted produ
t G�

H

A is a Hausdor� spa
e.

(b) Let C be a 
ompa
t subset of G. Then the restri
tion of the orbit

proje
tion pr: G � A ! G �

H

A to C � A is a proper map. In

parti
ular, the map a 7! [1; a℄ : A! G�

H

A is a 
losed embedding.
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Proof. (a) This follows easily from the 
hara
terization of proper a
tions

in Proposition 2.1. Indeed, if h:(g

1

; a

1

) = (g

2

; a

2

) and U is a neighbourhood

of h in H then h = g

2

�1

g

1

, and we may 
hoose neighbourhoods V

1

of g

1

and V

2

of g

2

su
h that V

2

�1

V

1

\ H � U . Then every element h

0

2 H

for whi
h h

0

:(V

1

� A) meets V

2

� A is 
ontained in U . If the H-orbits of

(g

1

; a

1

) and of (g

2

; a

2

) do not meet then there are two 
ases. If g

1

H 6= g

2

H,

there are neighbourhoods V

1

of g

1

and V

2

of g

2

su
h that V

1

H and V

2

H

are disjoint, and then h:(V

1

�A) and V

2

� A are disjoint for every element

h 2 H. If g

1

H = g

2

H then g

2

�1

g

1

2 H and (g

2

�1

g

1

):a

1

6= a

2

. We may


hoose neighbourhoods V

1

of g

1

, V

2

of g

2

, W

1

of a

1

, and W

2

of a

2

su
h that

(V

2

�1

V

1

\H):W

1

is disjoint from W

2

. Then h:(V

1

�W

1

) and V

2

�W

2

are

disjoint for every element h 2 H.

(b) The �bre through (g; a) 2 C �A of the restri
tion pr j

C�A

is the set

f(gh; h

�1

:a) j h 2 H \ g

�1

Cg, whi
h is 
ompa
t. The saturation of a 
losed

subset F � C�A under the a
tion of H on G�A is the image of the 
losed

set H � F under the 
on
atenation

H � C �A

�

=

! H � C �A ,! G� C �A

�

=

! G� C �A � G�A

(h; 
; a) 7! (h; 
; h:a) (g; 
; a) 7! (
g

�1

; 
; a)

where the se
ond map is the in
lusion, the fourth map is the produ
t pro-

je
tion, and the �rst and third maps are the indi
ated homeomorphisms.

This 
on
atenation is proper be
ause it is a 
omposition of proper maps.

Hen
e pr j

C�A

is a 
losed map. �

3.2 Proposition. Let G be a lo
ally 
ompa
t group a
ting on a Hausdor�

spa
e X, let H � G be a 
losed subgroup, and suppose that there is a


ontinuous G-equivariant map ' : X ! G=H. Set A

:

= '

�1

(H). Then the

following statements hold:

(a) The map  : G �

H

A ! X; [g; a℄ 7! g:a is a G-equivariant homeo-

morphism.

(b) Assume that the natural proje
tion pr: G! G=H admits 
ontinuous

lo
al 
ross se
tions. (By a result of Mostert's [37, Theorem 8℄, this 
on-

dition is satis�ed if the dimension of G=H is �nite; 
f. Skljarenko [44,

Theorem 13℄.) Then the map ' is the proje
tion in a lo
ally trivial

�bre bundle with �bre A.

Proof. (a) De�ne a 
ontinuous map

~

 : G � A ! X; (g; a) 7! g:a. This

map is surje
tive be
ause '(x) = gH implies g

�1

:x 2 A. For g; g

0

2 G and

a; a

0

2 A, we have

~

 (g; a) =

~

 (g

0

; a

0

) if and only if a = g

�1

g

0

:a

0

, whi
h holds

if and only if g

�1

g

0

2 H and (g; a) = g

�1

g

0

:(g

0

; a

0

), i.e. [g; a℄ = [g

0

; a

0

℄. Hen
e

~

 fa
tors through  , and  is a G-equivariant 
ontinuous bije
tion.

Choose a point [g; a℄ 2 G �

H

A. Let U be a 
ompa
t neighbourhood

of g in G, and let V be the image of U �A under the natural proje
tion of
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G� A onto G �

H

A. Then  (V ) is the 
losed neighbourhood

~

 (U � A) =

'

�1

(UH=H) of  ([g; a℄). The restri
tion of

~

 to U �A is a proper map (see

Bourbaki [8, Ch. III x 4 Prop. 1℄). Therefore, the map from V onto  (V )

indu
ed by  is 
losed and hen
e a homeomorphism. We 
on
lude that  is

a homeomorphism.

(b) Existen
e of lo
al 
ross se
tions for pr : G! G=H means that there

is an open subset U � G=H and a 
ontinuous map � : U ! G su
h that

pr Æ� = id

U

. (For examples of 
ompa
t pairs (G;H) without lo
al 
ross

se
tions, see Mostert [37, p. 59℄ or Skljarenko [44, p. 72℄.) Assertion (b)

follows easily. Indeed, if g 2 G then one 
he
ks that

�

g

: gU �A �! '

�1

(gU)

(u; a) 7�! g�(g

�1

u):a

is a 
ontinuous map with 
ontinuous inverse

�

0

g

: '

�1

(gU) �! gU �A

x 7�!

�

'(x); �

�

g

�1

'(x)

�

�1

g

�1

:x

�

;

and ' Æ �

g

: gU � A ! gU � G=H is the proje
tion onto the �rst fa
tor.

Hen
e �

g

is a topologi
al bundle 
hart over gU . �

3.3 De�nition. Let G be a lo
ally 
ompa
t group a
ting on a Hausdor�

spa
e X, and let H be a 
losed subgroup of G. Following Palais [38, 2.1.1℄,

we 
all a non-empty subset S � X an H-sli
e in X for the a
tion of G if

any one of the following 
onditions, whi
h are equivalent by Proposition 3.2,

is satis�ed:

(i) There is a G-invariant open subset U � X whi
h admits a G-equivari-

ant map ' : U ! G=H su
h that S = '

�1

(H). (Note that U = G:S,

and also ' is determined uniquely by S be
ause '(g:s) = gH.)

(ii) There is an H-spa
e A and a G-equivariant open embedding

 : G�

H

A! X

su
h that  ([1; A℄) = S.

(iii) The subset S is invariant under H, the subset G:S � X is open, and

� : G�

H

S �! G:S

[g; s℄ 7�! g:s

is a homeomorphism.
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Note that if G! G=H has lo
al 
ross se
tions (e.g. if the dimension of G=H

is �nite) then ' : G:S ! G=H is a lo
ally trivial �bre bundle with �bre S.

Another fa
t whi
h will be used is that an open H-invariant subset of an

H-sli
e is an H-sli
e.

Let G be a lo
ally 
ompa
t group a
ting properly on a 
ompletely regular

spa
e X su
h that the orbit spa
e X=G is para
ompa
t. Assume that G=G

1

is 
ompa
t, and let K be a maximal 
ompa
t subgroup of G. Abels [1℄ has


onstru
ted a global K-sli
e S in X for the a
tion of G, i.e. a G-equivariant

homeomorphism from G�

K

S onto X. As G=K is homeomorphi
 to some

eu
lidean spa
e, this implies that X is a trivial �bre bundle over G=K, i.e.

homeomorphi
 to G=K � S. The purposes of the present paper, on the

other hand, require the 
onstru
tion of (non-global) H-sli
es for whi
h H

is as small as possible. It turns out that we do not need any assumptions

on X=G and G=G

1

.

3.4 Lemma. Let G be a lo
ally 
ompa
t group su
h that G=G

1

is 
ompa
t,

let H � G be a 
losed subgroup, and let N be the set of 
ompa
t normal

subgroups of G su
h that the fa
tor group is a Lie group. If N

1

2 N is su
h

that dimG=HN

1

< dimG=H then there is N

2

2 N su
h that N

2

� N

1

and

dimG=HN

2

> dimG=HN

1

.

In parti
ular, if the dimension of G=H is �nite then there is N 2 N

su
h that dimG=HN = dimG=H. If the dimension of G=H is in�nite then

N 2 N 
an be 
hosen su
h that dimG=HN is arbitrarily high.

Proof. By Skljarenko's sum formula (1), the dimension ofN

1

H=H is stri
tly

positive. Therefore, the stabilizer N

1

\H of H under the a
tion of N

1

on

this spa
e does not 
ontain the identity 
omponent N

1

1

, so that there is a

neighbourhood U of H in G=H whi
h does not 
ontain N

1

1

H=H. Choose

N 2 N su
h that NH=H � U . Then N

2

:

= N \ N

1

is an element of N

(Glu�skov [22, 1.5℄). The identity 
omponent N

1

1

is not 
ontained in N

2

H,

so that it a
ts non-trivially on N

1

H=N

2

H. Hen
e the dimension of this

spa
e is stri
tly positive, and the assertion follows from Skljarenko's sum

formula (1). �

3.5 Lemma. If H is a 
ompa
t subgroup of a totally dis
onne
ted lo
ally


ompa
t group G then every neighbourhood ofH 
ontains an open subgroup

of G whi
h in turn 
ontains H.

Proof. As H is 
ompa
t, it suÆ
es to 
onsider neighbourhoods of the

form UH, where U is an identity neighbourhood in G. Sin
e G=H is totally

dis
onne
ted, we may assume that UH is 
ompa
t and open in G. Then

there is an identity neighbourhood V in G su
h that V � U and UHV �

UH, when
e UHVH � UH. By indu
tion, we �nd that (V H)

n

� UH for

ea
h n 2 N. Therefore, the subgroup of G whi
h is generated by V H \

(V H)

�1

is 
ontained in UH, and it is open and 
ontains H. �
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3.6 Lemma. Let G be a lo
ally 
ompa
t group a
ting properly on a

spa
e X. Choose x 2 X, let G

0

� G be an open subgroup with G

x

� G

0

,

and let H � G

0

be a 
losed subgroup. Suppose that S is an H-sli
e in X

for G

0

with x 2 S. Then there is an H-sli
e S

0

in X for G su
h that

x 2 S

0

� S.

Proof. Proposition 2.1 allows us to 
hoose an open neighbourhood V of x

in X su
h that fg 2 G j g:V \ V 6= ;g � G

0

. Then S

0

:

= S \ V is open in S

and thus an H-sli
e for G

0

. To show that it also is an H-sli
e for G, observe

that G:S

0

= G:(G

0

:S

0

) is open in X, so that it remains to prove that

' : G:S

0

�! G=H

g:s 7�! gH

is a well-de�ned 
ontinuous map. The basi
 reason for this is that G:S

0

is a disjoint union of G-translates of G

0

:S

0

. To be pre
ise, suppose that

g:s = g

0

:s

0

, where g; g

0

2 G and s; s

0

2 S

0

. Then s = g

�1

g

0

:s

0

2 V \ g

�1

g

0

V ,

whi
h implies that g

�1

g

0

2 G

0

. Hen
e g

�1

g

0

2 H be
ause S

0

is an H-sli
e

for G

0

. For the same reason, the restri
tion 'j

G

0

:S

0

is 
ontinuous, whi
h

entails 
ontinuity of ' at g:s (with g 2 G and s 2 S

0

). Indeed, if x

0

is an

element of the open neighbourhood gG

0

:S

0

of g:s then g

�1

:x

0

2 G

0

:S

0

and

'(x

0

) = g'(g

�1

:x

0

) depends 
ontinuously on x

0

. �

3.7 Proposition. Let G be a lo
ally 
ompa
t group a
ting properly on a


ompletely regular spa
e X. If x 2 X and N is a 
ompa
t normal subgroup

of G su
h that G=N is a Lie group then x is 
ontained in a G

x

N -sli
e for

the a
tion of G on X.

Proof. For N = 1, i.e. for proper a
tions of Lie groups, this is the main

result of Palais's seminal paper [38, 2.3.3℄. (Note that his de�nition of a

proper a
tion implies the 
ustomary de�nition we use, whi
h in turn implies

his de�nition of a \Cartan G-spa
e".) The present situation is easily redu
ed

to Palais's Theorem. Let pr: X ! X=N denote the natural proje
tion. As

this is a proper map, the a
tion of G=N on X=N is proper. Moreover,

Palais [38, 1.2.8℄ proved that X=N is 
ompletely regular. (The a
tion of N

on X is proper in Palais's stronger sense be
ause N is 
ompa
t.) Therefore,

there is a G=N -invariant open neighbourhood U of pr(x) in X=N whi
h

admits a G-equivariant map

' : U �! G=G

x

N �

G=N

G

x

N=N

su
h that '(pr(x)) = G

x

N . Set U

0

:

= pr

�1

(U). Then U

0

is a G-invariant

open neighbourhood of x in X, and ' Æ pr j

U

0

is a G-equivariant map of U

0

onto G=G

x

N whi
h sends x to G

x

N . �
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3.8 Theorem (Existen
e of sli
es). Let G be a lo
ally 
ompa
t group

a
ting properly on a 
ompletely regular spa
e X, and 
hoose x 2 X. Then

there is a 
onvergent �lter basis N whi
h 
onsists of 
ompa
t subgroups

of G normalized by G

x

su
h that for every N 2 N , the 
oset spa
e G=G

x

N

is a manifold and x is 
ontained in a G

x

N -sli
e for the a
tion of G on X.

In parti
ular, some neighbourhood of the orbit G:x is a lo
ally trivial �bre

bundle over the manifold G=G

x

N .

The dimension of G:x is in�nite if and only if N 2 N may be 
hosen su
h

that the dimension of G=G

x

N is arbitrarily high. If the dimension of G:x is

�nite then N 2 N may be 
hosen in su
h a way that dimG=G

x

N = dimG:x.

Note that this implies the spe
ialization of Theorem 2.8 to a
tions on 
om-

pletely regular spa
es.

Proof. Let U � G be a 
ompa
t neighbourhood of G

x

. When we apply

Lemma 3.5 to G=G

1

, we �nd an open subgroupG

0

� G su
h that G

x

� G

0

�

UG

1

. As UG

1

=G

1

is 
ompa
t, so is G

0

=G

1

. Let N be the set of 
ompa
t

normal subgroups of G

0

su
h that G

0

=N is a Lie group. Then every identity

neighbourhood of G 
ontains a member of N , and N is 
losed under �nite

interse
tions (Glu�skov [22, 1.5℄), so that N is a �lter basis whi
h 
onverges

to 1 in G. Choose N 2 N . By Proposition 3.7, there is a G

x

N -sli
e S

in X for G

0

with x 2 S. Lemma 3.6 shows that S 
ontains a G

x

N -sli
e

for the a
tion of G on X whi
h 
ontains x. The 
oset spa
e G=G

x

N is a

manifold sin
e it 
ontains G

0

=G

x

N as an open subspa
e and is para
ompa
t

(see, e.g., Bourbaki [8, Ch. III x 4 Prop. 13℄). As dimG:x = dimG

0

=G

x

�

dimG

0

=G

x

N = dimG=G

x

N , the last assertions follow immediately from

Lemma 3.4. �

4 Orbits in 
ohomology manifolds

The main result of this se
tion (4.11) des
ribes the orbits of highest dimen-

sion under a proper e�e
tive a
tion on a 
ohomology manifold and gives an

upper bound for the group dimension in terms of the orbit dimensions. If

some orbit has 
odimension at most 2 then the group is a Lie group (4.13).

This is prepared by the proof of 
ontinuity of indu
ed a
tions in 
ohomo-

logy (4.2) and by a result on 
hange of rings for 
ohomology manifolds (4.6).

We will use sheaf 
ohomology with 
ompa
t supports and 
onstant 
o-

eÆ
ients, whi
h agrees with both Alexander{Spanier and

�

Ce
h 
ohomology

on lo
ally 
ompa
t spa
es, see Bredon [14, III.2.1 and III.4.12℄.

Let G be a 
onne
ted group a
ting e�e
tively on a Hausdor� spa
e X,

and let N be a totally dis
onne
ted 
ompa
t normal subgroup of G. Then

there is an indu
ed almost e�e
tive a
tion of the quotient group G=N on the

orbit spa
e X=N . The orbit proje
tion X ! X=N is a proper open map,
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and it indu
es a homeomorphism

Fix(G;X) � Fix

�

G

N

;

X

N

�

:

(Here Fix(G;X) denotes the set of points in X whi
h are �xed under the

a
tion of G.) The orbit spa
e of the a
tion of G=N on X=N is homeomorphi


to the orbit spa
e X=G. If the a
tion of G on X is proper then the same

holds for the a
tion of G=N on X=N .

If G is a lo
ally 
ompa
t group of �nite dimension su
h that G=G

1

is


ompa
t then the totally dis
onne
ted 
ompa
t normal subgroup N may

be 
hosen in su
h a way that G=N is a Lie group. Thus many questions

about the orbit spa
es and �xed point sets of a
tions of �nite-dimensional

lo
ally 
ompa
t groups are redu
ed to questions about Lie groups. This

approa
h is very su

essful be
ause the orbit spa
e X=N inherits global and

lo
al 
ohomologi
al properties from the spa
e X.

4.1 Theorem (Bredon et al. [15, 5.1℄, L�owen [29℄). Let N be a to-

tally dis
onne
ted 
ompa
t group whi
h a
ts on a lo
ally 
ompa
t Hausdor�

spa
e X, and let F be a �eld of 
hara
teristi
 0. Then the orbit proje
tion

X ! X=N indu
es an isomorphism

H

�




(X=N ;F )

�

=

Fix(N ;H

�




(X;F )): �

If the dimension of the ve
tor spa
e H

�




(X;F ) is �nite, the following

theorem yields an open subgroup of N whose a
tion on 
ohomology is trivial.

4.2 Theorem (Continuity of the a
tion on 
ohomology). Let G be a

lo
ally para
ompa
t Hausdor� group a
ting on a lo
ally 
ompa
t spa
e X,

and let A be an abelian group. Then the indu
ed a
tion of G on H

�




(X;A)

is 
ontinuous with respe
t to the dis
rete topology on H

�




(X;A). (In other

words, all stabilizers of this a
tion are open subgroups.)

Proof. Choose a para
ompa
t neighbourhood U of 1 in G. The proof will

use the 
ohomology of U � X with 
onstant 
oeÆ
ients in A and with a

spe
ial support family �. This family is de�ned as follows. Let

X

pr

2

 � U �X

!

�! X

be the produ
t proje
tion and the restri
tion of the a
tion map, respe
-

tively. The support family � is the 
olle
tion of all 
losed subsets of sets

of the form pr

�1

2

(K) [ !

�1

(K) where K ranges over the 
ompa
t subsets

of X. Every 
losed subset of a member of � belongs to �, and so does

every �nite union of members of �. Thus � is indeed a family of supports

in the sense of Bredon [14, I.6.1℄. For a 
ompa
t subset K of X, the set

pr

�1

2

(K) = U�K is para
ompa
t (see Engelking [20, 5.1.36℄ or Bourbaki [8,
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Ch. I x 9 Prop. 17℄). The set !

�1

(K) is the image of U �K under the self-

homeomorphism (g; x) 7! (g; g

�1

:x) of U � X, when
e it is also para
om-

pa
t. Finally, the union of the two para
ompa
t sets pr

�1

2

(K) and !

�1

(K)

is para
ompa
t (Engelking [20, 5.1.34℄, 
f. Dugundji [19, VIII.2.6℄). This

implies that every member of � is para
ompa
t. As X is lo
ally 
ompa
t,

every member of � has a neighbourhood whi
h belongs to �. Thus � is a

para
ompa
tifying family of supports [14, I.6.1℄.

We will use a 
ertain 
ontinuity property of the 
ohomology of subspa
es

of U�X with supports in �. LetN be the 
olle
tion of sets of the form V �X

where V is a 
losed neighbourhood of 1 in U , and set X

1

:

= f1g�X =

T

N .

For N

1

; N

2

2 N with N

1

� N

2

, we have the restri
tion map

r

�

N

2

;N

1

: H

�

�\N

1

(N

1

;A) �! H

�

�\N

2

(N

2

;A); � 7�! �j

N

2

;

whi
h is just the map in 
ohomology indu
ed by the in
lusion of N

2

into N

1

.

(Here � \ N

j

is the support family fF \ N

j

j F 2 �g on N

j

.) The fam-

ily N is dire
ted downwards by in
lusion. Hen
e the groups H

�

�\N

(N ;A),

where N ranges over N , and the restri
tion maps form a dire
ted system.

In parti
ular, the restri
tion maps r

�

X

1

;N

indu
e a limit map

�

:

= lim

�!

N2N

r

�

X

1

;N

: lim

�!

N2N

H

�

�\N

(N ;A) �! H

�

�\X

1

(X

1

;A):

(Note that � \ X

1

is just the family of 
ompa
t supports on X

1

.) The

restri
tion of the produ
t proje
tion pr

1

: U � X ! U to an arbitrary ele-

ment F 2 � is a proper map. In parti
ular, the image pr

1

(F ) is 
losed in U .

Moreover, the topology of U is regular. Hen
e if F 2 � is disjoint from X

1

then there is an element N 2 N su
h that F \ N = ;. Sin
e X

1

and all

members of N are 
losed subsets of U � X and � is a para
ompa
tifying

family of supports on U � X, Bredon [14, II.10.6℄ proves that the dire
t

limit map � is an isomorphism. In parti
ular, if two 
ohomology 
lasses

�; �

0

2 H

�

�

(U �X;A) satisfy �j

X

1

= �

0

j

X

1

then there is an element N 2 N

su
h that �j

N

= �

0

j

N

.

Pi
k a 
ohomology 
lass � 2 H

�




(X;A). We have to show that the

stabilizer of � in the indu
ed a
tion of G on H

�




(X;A) is open. De�ne

elements of H

�

�

(U�X;A) by �

:

= pr

2

�

(�) and �

0

:

= !

�

(�). (The maps pr

2

�

and !

�

are both de�ned sin
e pr

�1

2

(K); !

�1

(K) 2 � for 
ompa
t K � X.)

We have �j

X

1

= �

0

j

X

1

be
ause pr

2

j

X

1

= !j

X

1

. Therefore, there is a 
losed

neighbourhood V of 1 in U su
h that, for N

:

= V �X, we have �j

N

= �

0

j

N

.

For g 2 U , de�ne an embedding

i

g

: X �! U �X; x 7�! (g; x) :

Then the a
tion of the group element g on X is given by ! Æ i

g

, when
e its

a
tion on H

�




(X;A) is given by i

g

�

Æ !

�

. Choose g 2 V . Then i

g

fa
tors as
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the 
orestri
tion i

g

j

N

: X ! N followed by the in
lusion of N into U �X.

Hen
e

i

g

�

(!

�

(�)) = i

g

�

(�

0

) =

�

i

g

j

N

�

�

(�

0

j

N

)

=

�

i

g

j

N

�

�

(�j

N

) = i

g

�

(�) = (pr

2

Æi

g

)

�

(�) = (id

X

)

�

(�) = �:

Therefore, the identity neighbourhood V � G �xes � in the a
tion of G

on H

�




(X;A). Thus the stabilizer of � is open. �

4.3 Corollary. Let G be a lo
ally para
ompa
t 
onne
ted Hausdor� group

a
ting on a lo
ally 
ompa
t spa
e X, and let A be an abelian group. Then

the a
tion of G on H

�




(X;A) is trivial. �

For 
ompa
t 
onne
ted groups G, this 
orollary is due to Bredon, Raymond,

and Williams [15, 2.2℄. Bredon [14, II.11.11℄ gives a di�erent proof of this

spe
ial 
ase, to whi
h the present proof of Theorem 4.2 owes mu
h inspira-

tion.

In order to state a lo
al analogue of the global Theorem 4.1, we need the

notion of a 
ohomology n-manifold over a prin
ipal ideal domain R. This

is a lo
ally 
ompa
t spa
e X with dim

R

X < 1 whi
h is 
ohomologi
ally

lo
ally 
onne
ted in every degree and satis�es

H

i

(X;R)

x

�

=

(

R if i = n,

0 if i 6= n

for all x 2 X. Here H

i

(X;R)

x

is the i-th lo
al homology group of X at x

with respe
t to Borel{Moore homology, whose de�nition 
an be found in

Bredon's monograph [14, Se
tion V.3℄. The 
ohomologi
al lo
al 
onne
tiv-

ity 
ondition means that for ea
h degree i 2 N

0

and for ea
h point x 2 X,

every neighbourhood U of x 
ontains a neighbourhood V of x su
h that

the in
lusion of V into U indu
es the zero map

~

H

i




(U ;R) !

~

H

i




(V ;R) in

redu
ed 
ohomology. (In degree 0, this is equivalent to ordinary lo
al 
on-

ne
tivity.) A 
onne
ted 
ohomology n-manifoldX over R is 
alled orientable

if H

n




(X;R)

�

=

R (
f. [14, V.16.16℄).

Equivalent de�nitions of a 
ohomology manifold are given by [14, V.16.8℄.

In parti
ular, if R is a �eld or the ring of integers then the lo
al homo-

logy groups may be repla
ed with the groups H

i




(X;X n fxg;R), see [14,

II.12.1 and V.16.9℄. Note that a 
ohomology n-manifold X over R satis�es

dim

R

X = n by [14, V.16.8℄.

Topologi
al n-manifolds are examples of 
ohomology n-manifolds. A

non-manifold example is the open 
one over an (n � 1)-manifold whi
h is

not a sphere but has the R-
ohomology of an (n � 1)-sphere. Other non-

manifold examples are provided by �xed point sets of elementary abelian or

torus groups a
ting on manifolds, and by Cartesian fa
tors of manifolds.
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The main referen
e for 
ohomology manifolds is [14℄, in parti
ular Se
-

tion V.16. An overview is given in Se
tion 1.2 of [3℄. The 
hara
terization of

manifolds among 
ohomology manifolds is a hard open problem, see Bryant

et al. [16℄.

As announ
ed above, the property of being a 
ohomology manifold over

a �eld of 
hara
teristi
 0 is inherited by 
ertain orbit spa
es.

4.4 Theorem (Raymond [40℄). Let N be a se
ond 
ountable totally dis-


onne
ted 
ompa
t group whi
h a
ts on a 
onne
ted orientable 
ohomology

n-manifold X over some �eld F of 
hara
teristi
 0. Suppose that the a
-

tion of N on H

n




(X;F ) is trivial. Then X=N is an orientable 
ohomology

n-manifold over F . �

4.5 Remark. In our appli
ations, we will use Theorem 4.2 in order to


hoose the group N in su
h a way that its a
tion on H

n




(X;F ) will be

trivial. The group will be se
ond 
ountable be
ause it will be 
ontained in

a lo
ally 
ompa
t 
onne
ted group of �nite dimension (see Skljarenko [44,

Theorem 18℄).

We do not want to restri
t our investigation to the 
ase of orientable 
o-

homology manifolds. If a 
ohomology manifold is not orientable, Bredon [10℄

has 
onstru
ted an orientable 
overing (whi
h may have in�nitely many

leaves), and under 
ertain 
onditions, 
ontinuous a
tions on a non-orientable


ohomology manifold are uniquely 
overed by orientation-preserving a
tions

of the same group on the orientable 
overing ([10, 6.1℄, 
f. Bredon [12, I.9.4℄).

Unfortunately, these 
onditions are not satis�ed in our situation, and a suit-

able more general development [11, Se
tion III℄ was later found to be \ir-

retrievably in
orre
t" (Bredon [14, V.9.6℄). Our solution to the problem

of non-orientability is to apply Raymond's Theorem 4.4 to orientable open

subsets. Thus we 
an only derive \lo
al" properties of an a
tion from the


orresponding properties of the a
tion of a Lie group.

A di�erent solution is available in the 
ase of a
tions on 
ompa
t 
o-

homology manifolds. For this fa
t and further 
omments, see Remark 4.15

at the end of this paper.

4.6 Proposition (Change of rings). Let X be a 
ohomology n-manifold

over some prin
ipal ideal domain R, and let S be a prin
ipal ideal domain

whi
h is also a unital R-module. ThenX is a 
ohomology n-manifold over S.

If X is orientable over R then X is orientable over S.

Proof. For any lo
ally 
ompa
t spa
e U , there is a natural exa
t Universal

CoeÆ
ient Sequen
e (Bredon [14, II.15.3℄)

0 �! H

i




(U ;R)


R

S �! H

i




(U ;S) �! Tor

R

1

�

H

i+1




(U ;R); S

�

�! 0

whi
h splits. Applying this to open subsets U � X, we infer that dim

S

X �

dim

R

X < 1. To see that X is 
ohomologi
ally lo
ally 
onne
ted over S,
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hoose a degree i 2 N

0

, a point x 2 X, and a neighbourhood U of x. Then

there are neighbourhoods V and W of x with W � V � U su
h that the

maps H

i+1




(V ,! U ;R) and H

i




(W ,! V ;R) are zero. We may assume that

V is open inX, so that it 
an take the pla
e of U in the above exa
t sequen
e.

Then it follows from an elementary fa
t about short exa
t sequen
es [14,

II.17.3℄ that the map H

i




(W ,! U ;S) is zero. Finally, the lo
al homology

groups of X over S are determined by the exa
t sequen
e [14, V.3, (13)℄

0 �! H

i

(X;R)

x




R

S �! H

i

(X;S)

x

�! Tor

R

1

�

H

i�1

(X;R)

x

; S

�

�! 0:

(Note that H

i

(X;S)

x

does not depend on whether S is 
onsidered as a

module over R or over S be
ause X is 
ohomologi
ally lo
ally 
onne
ted

over R, see [14, V.12.10 and V.15.1℄.)

If X is orientable over R then the above Universal CoeÆ
ient Sequen
e

in 
ohomology shows that X is orientable over S. �

4.7 Corollary. Every (orientable) 
ohomology n-manifold over Z is an

(orientable) 
ohomology n-manifold over any prin
ipal ideal domain. Every

(orientable) 
ohomology n-manifold over a prin
ipal ideal domain R is an

(orientable) 
ohomology n-manifold over the �eld of fra
tions of R. �

The �rst assertion of this 
orollary is due to Borel et al. [7, I.4.5℄. Conversely,

let X be a lo
ally 
ompa
t spa
e whi
h is 
ohomologi
ally lo
ally 
onne
ted

over Z, and assume that X is a (orientable) 
ohomology n-manifold over Q

and over every prime �eld. Then X is a (orientable) 
ohomology n-manifold

over Z. Together with the se
ond assertion of the pre
eding 
orollary, this

is a part of the main result of a paper of Raymond's [41℄.

4.8 Theorem (Conner{Floyd). Let R be a �eld or the ring of integers,

and let the torus group T

r

a
t on a 
onne
ted 
ohomology n-manifold X

over R. Then Fix(T

r

;X) is lo
ally 
onne
ted. Ea
h 
onne
ted 
omponent

of Fix(T

r

;X) is a 
ohomology k-manifold over R for some k su
h that n�k

is a non-negative even number, and if k = n (i.e. if the �xed point set has

interior points) then the a
tion is trivial. If X is orientable over R then so

is ea
h 
onne
ted 
omponent of Fix(T

r

;X).

This theorem also holds for a
tions of 
ompa
t 
onne
ted abelian groups on


ohomology manifolds over �elds of 
hara
teristi
 0. Details of the proof,

whi
h follows the spirit of the present paper, and similar �xed point theorems

for a
tions on 
ohomology spheres 
an be found in [5℄.

Proof. Ex
ept for the assertion about triviality of the a
tion, this is The-

orem V.3.2 of Borel et al. [7℄. If F is a 
onne
ted 
omponent of Fix(T

r

;X)

then F has interior points if and only if dim

R

F = n (Bredon [14, V.16.18℄).

By Invarian
e of Domain [14, V.16.19℄, this holds if and only if F is open

inX, and this is equivalent to triviality of the a
tion be
ause F is also 
losed

and X is 
onne
ted. �
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We prepare our main result by a theorem whi
h generalizes some of

the main ideas of Bredon's paper [9℄ from a
tions of 
ompa
t groups on

manifolds to proper a
tions on 
ohomology manifolds. Bredon's use of lo
al

Lie groups is, at the same time, repla
ed with our Sli
e Theorem 3.8.

As a 
omment on the hypotheses of the following theorem, we remark

that for lo
ally 
ompa
t 
onne
ted spa
es, metrizability is equivalent to the

se
ond axiom of 
ountability, i.e. the existen
e of a 
ountable basis. Indeed,

if a lo
ally 
ompa
t spa
e is se
ond 
ountable then Urysohn's Metrization

Theorem applies (see Dugundji [19, IX.9.2℄). Conversely, a metrizable spa
e

is para
ompa
t. A lo
ally 
ompa
t 
onne
ted spa
e is para
ompa
t if and

only if it is �-
ompa
t (see Bredon [13, I.12.11℄). A �-
ompa
t metri
 spa
e

is se
ond 
ountable be
ause for ea
h n 2 N, it 
an be 
overed by 
ountably

many open balls of radius

1

n

.

4.9 Theorem (Orbits of 
odimension at most 2). Let G be a lo-


ally 
ompa
t group a
ting properly and e�e
tively on a se
ond 
ountable


onne
ted 
ohomology n-manifold X over some prin
ipal ideal domain R.

Suppose that dimG:x � n � 2 holds for every orbit G:x in X. Then X is

an n-manifold, and G is a Lie group.

Proof. Let x be a point of X. A

ording to Theorem 3.8, we may 
hoose

a 
ompa
t subgroup N � G su
h that G

x

normalizes N , the 
oset spa
e

G=G

x

N is a manifold of dimension dimG:x, and there is a G

x

N -sli
e S

in X for G whi
h 
ontains x. Then the natural map of G:S onto G=G

x

N is

the proje
tion in a lo
ally trivial �bre bundle with �bre S. The open subset

G:S of X is a 
ohomology n-manifold over R, and it is lo
ally homeomorphi


to G=G

x

N � S. A dire
t fa
tor of a 
ohomology manifold is a 
ohomology

manifold (see Bredon [14, V.16.11℄), when
e S is a 
ohomology manifold of

dimension n�dimG:x � 2 over R. Sin
e S is se
ond 
ountable, we 
on
lude

that S is a topologi
al manifold ([14, V.16.32℄, 
f. [14, V.16.8℄), when
e the

same holds for G:S. As x was an arbitrary point of X, the spa
e X is a

manifold as well.

Let S

0

be the 
onne
ted 
omponent of x in S. An element g 2 N sta-

bilizes S

0

as a set if and only if g:x 2 S

0

. As S

0

is open in S, the set-wise

stabilizer N

S

0

is an open subgroup of N . The e�e
tive quotient N

S

0

=N

[S

0

℄

embeds topologi
ally into the set of self-homeomorphisms of S

0

with the


ompa
t-open topology (see Dugundji [19, XII.1.3 and 3.1℄), and this spa
e

is se
ond 
ountable be
ause so is S

0

(see [19, XII.5.2℄). Hen
e N

S

0

=N

[S

0

℄

is a se
ond 
ountable 
ompa
t group whi
h a
ts e�e
tively on a 
onne
ted

manifold of dimension at most 2. This situation has been studied by Mont-

gomery and Zippin [36℄. If dim

R

S = 1 then N

S

0

=N

[S

0

℄

is a Lie group by

Theorem 3 of Se
tion 6.1 [36, p. 233℄. If dim

R

S = 2 then every 
ompa
t

zero-dimensional subgroup of N

S

0

=N

[S

0

℄

is �nite by the third theorem in

Se
tion 6.4 [36, p. 249℄. As the dimension of N

S

0

=N

[S

0

℄

is �nite (Mont-

gomery [33℄), this entails that N

S

0

=N

[S

0

℄

is a Lie group, 
f. Salzmann et
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al. [43, 96.31℄. In parti
ular, the orbit N

S

0

:x is a manifold, and so is N:x

be
ause it 
ontains N

S

0

:x as an open subset. By Proposition 3.2, the orbit

G:x is a lo
ally trivial �bre bundle over G=G

x

N with �bre N:x. We 
on-


lude that G:x is a manifold. In parti
ular, all orbits of G in X are lo
ally


onne
ted, and also G-wise lo
ally 
onne
ted in the sense of Bredon [9℄.

By [9, Theorem 2℄, this implies that G is a Lie group. �

4.10 Remark. Let G be a lo
ally 
ompa
t group a
ting properly on a

metrizable 
ohomology manifold X over some prin
ipal ideal domain R, and

let Y � X be the set of points whose orbits have 
odimension at most 2.

Then Y is an open subset of X by Theorem 2.8. The pre
eding theorem

shows that Y is a manifold (or empty), and if Y

0

is a 
onne
ted 
omponent

of Y then the set-wise stabilizer G

Y

0

is open in G and the e�e
tive quotient

G

Y

0

=G

[Y

0

℄

is a Lie group.

In this situation, however, the spa
e X need not be lo
ally eu
lidean

around points of the 
omplementXnY . Indeed, let I

�

=

A

5

be an i
osahedral

subgroup of SO

3

R. Then SO

3

R=I is a 
ohomology 3-sphere whi
h is not

simply 
onne
ted. Its suspension (i.e. double 
one) is a 
ompa
t 
ohomology

4-manifold over Z whi
h is not a manifold, and it 
arries an e�e
tive a
tion

of the group SO

3

R � Z=2.

4.11 Theorem (Orbits of maximal dimension in 
ohomology mani-

folds). Let G be a lo
ally 
ompa
t group a
ting properly and e�e
tively

on a 
onne
ted 
ohomology n-manifold X over R. Assume either that R

is a �eld of 
hara
teristi
 0 or that G is a Lie group and R is a �eld or

the ring of integers. Let k be the highest o

urring orbit dimension, and

let Y � X be the set of points whose orbits have dimension k. Then the

following statements hold:

(a) The subset Y is open, 
onne
ted, and dense in X, and its 
omplement

satis�es dim

R

(X n Y ) � n� 2.

(b) For ea
h y 2 Y , the a
tion of G on the orbit G:y is almost e�e
tive.

(
) dimG �

�

k+1

2

�

.

(d) For ea
h y 2 Y , every orbit inX meets Fix

�

(G

y

)

1

;X

�

. In other words,

8x 2 X; y 2 Y 9 g 2 G : (G

y

)

1

� G

g:x

:

The theorem breaks down if X is not 
onne
ted. This is shown by suitable

e�e
tive a
tions of (possibly in�nite-dimensional) torus groups on disjoint

unions of 
ir
les.

If G is a 
ompa
t Lie group and R = Z then the theorem follows from

work by Yang [49℄ (
f. Borel et al. [7, Chapter IX℄). In its present form,

it rests on the following result, whose proof partly follows a remark by

Raymond [40, p. 6℄.
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4.12 Lemma. Under the hypotheses of Theorem 4.11, if G is 
onne
ted

and �nite-dimensional then the boundary of Y satis�es dim

R

�Y � n� 2.

Proof. In the �rst part of the proof, assume that G is a Lie group. Corol-

lary 2.9 shows that Y is an open subset of X. In parti
ular, it is disjoint

from its boundary �Y . For natural numbers u and v, set

B

u;v

:

= fx 2 �Y j dimG:x = n� u; jG

x

=(G

x

)

1

j = vg:

Our �rst aim is to show that dim

R

B

u;v

� n � 2. Choose x 2 B

u;v

.

Palais's Sli
e Theorem [38, 2.3.3℄ yields a G

x

-sli
e S in X whi
h 
ontains x.

By Proposition 3.2, the spa
e G:S is a lo
ally trivial �bre bundle over G:x

with �bre S, and B

u;v

\ G:S is a lo
ally trivial �bre bundle over G:x with

�bre B

u;v

\ S. In parti
ular, we note that S is a 
ohomology manifold

of dimension u over R (see Bredon [14, V.16.11℄). Hen
e the 
onne
ted


omponent of x in S is open in S, and it is invariant under G

x

, so that

we may suppose that S is 
onne
ted. If x

0

2 B

u;v

\ S then G

x

0

� G

x

be
ause x

0

2 S, when
e G

x

0

= G

x

be
ause x

0

2 B

u;v

. As G:S meets Y , we

may 
hoose an element y 2 S \ Y . Then G

y

is a subgroup of G

x

whose

dimension is stri
tly smaller. Therefore, there is a torus subgroup T � G

x

whi
h is not 
ontained in G

y

. Hen
e the a
tion of T on S is not trivial.

Sin
e B

u;v

\ S � Fix(T ;S), the Conner{Floyd Theorem 4.8 yields that

dim

R

B

u;v

\ S � u � 2, when
e dim

R

B

u;v

\ G:S � n � 2 by lo
ality of

dimension and the produ
t inequality [14, II.16.8 and II.16.26℄. We 
on
lude

from [14, II.16.8℄ that dim

R

B

u;v

� n� 2.

We will now prove that there is a pair (u; v) su
h that dim

R

�Y =

dim

R

B

u;v

. Using the lexi
ographi
 ordering on N � N, set

B

�(u;v)

:

=

[

(s;t)�(u;v)

B

s;t

and B

<(u;v)

:

=

[

(s;t)<(u;v)

B

s;t

:

Proposition 2.7 entails that ea
h B

�(u;v)

and ea
h B

<(u;v)

is an open subset

of �Y . Sin
e the dimension of �Y is �nite [14, II.16.8℄, there is a 
om-

pa
t subset K � �Y with dim

R

K = dim

R

�Y (see [14, II.16.7℄). The sets

B

�(u;v)

form an as
ending 
hain and 
over �Y , when
e one of them 
on-

tains K and therefore has the same dimension as �Y . Hen
e we may 
hoose

a lexi
ographi
ally minimal pair (u; v) su
h that dim

R

B

�(u;v)

= dim

R

�Y .

If B

<(u;v)

is empty then B

�(u;v)

= B

u;v

has the same dimension as �Y , and

we are done. Otherwise, we may 
hoose a 
ompa
t subset K

0

� B

<(u;v)

su
h

that dim

R

K

0

= dim

R

B

<(u;v)

, and we �nd a pair (s; t) < (u; v) su
h that

K

0

� B

�(s;t)

and hen
e

dim

R

B

<(u;v)

= dim

R

B

�(s;t)

< dim

R

B

�(u;v)

;

where the last inequality holds by the 
hoi
e of (u; v). Now B

�(u;v)

is the

disjoint union of B

<(u;v)

and B

u;v

, when
e [14, p. 170, no. 11℄ yields that

dim

R

�Y = dim

R

B

�(u;v)

= maxfdim

R

B

<(u;v)

;dim

R

B

u;v

g = dim

R

B

u;v

:
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We 
on
lude that dim

R

�Y � n�2. Thus the lemma has been proved under

the assumption that G is a Lie group.

Now assume that G is not a Lie group. Let x

0

2 �Y be an arbitrary

point. We will 
onstru
t a G-invariant 
onne
ted open neighbourhood U

of x

0

in X and a totally dis
onne
ted 
ompa
t normal subgroup N of G

su
h that G=N is a Lie group and the orbit spa
e U=N is a 
ohomology

n-manifold over R. Then for any point x of U , Skljarenko's sum formula for

the dimension of 
oset spa
es of lo
ally 
ompa
t groups [44, Theorem 10℄

entails that the dimension of the orbit of N:x 2 U=N under the a
tion

of G=N on U=N is equal to the dimension of G:x. Hen
e (U \ Y )=N is

just the subset of U=N formed by the orbits of dimension k. The boundary

of this subset is (U \ �Y )=N . We apply the �rst part of the proof to the

a
tion of the Lie group G=N on the 
ohomology n-manifold U=N . This

yields that dim

R

(U \ �Y )=N � n � 2. The orbit proje
tion from U \ �Y

onto (U \ �Y )=N is a 
ontinuous map between lo
ally 
ompa
t spa
es and

has totally dis
onne
ted �bres. By [14, IV.8.4℄, su
h a map 
annot lower

dimension. We 
on
lude that dim

R

(U \ �Y ) � n � 2. The lemma now

follows from lo
ality of dimension [14, II.16.8℄.

It remains to 
onstru
t a G-invariant open neighbourhood U of x

0

in X

and a totally dis
onne
ted 
ompa
t normal subgroup N of G with the re-

quired properties. The 
ohomology manifold X is lo
ally orientable [14,

V.9.1 and V.16.8℄, whi
h means that we may 
hoose an orientable open

neighbourhood V

1

of x

0

in X. Sin
e the a
tion is 
ontinuous, we �nd an

identity neighbourhood W in G and a 
onne
ted open neighbourhood V

2

of x

0

in X su
h that W:V

2

� V

1

. As G 
an be approximated by Lie groups,

the identity neighbourhoodW 
ontains a totally dis
onne
ted 
ompa
t nor-

mal subgroup N

1

of G su
h that G=N

1

is a Lie group and N

1

:x

0

� V

2

.

The latter property implies that the open subset V

3

:

= N

1

:V

2

of X is 
on-

ne
ted. Therefore, the R-module H

n




(V

3

;R) is isomorphi
 to R, and Theo-

rem 4.2 shows that every suÆ
iently small subgroup of N

1

a
ts trivially on

H

n




(V

3

;R). Hen
e N

1


ontains a 
ompa
t normal subgroupN of G su
h that

G=N is a Lie group and the a
tion of N on H

n




(V

3

;R) is trivial. Sin
e N is

se
ond 
ountable (Skljarenko [44, Theorem 18℄) and R is now assumed to be

a �eld of 
hara
teristi
 0, Raymond's Theorem 4.4 shows that V

3

=N is a 
o-

homology n-manifold over R. Set U

:

= G:V

3

. Then U is a 
onne
ted open

neighbourhood of x

0

, and U=N = G:(V

3

=N) is a 
ohomology n-manifold

over R. Thus U and N have been 
onstru
ted as announ
ed. �

Proof of Theorem 4.11. Skljarenko's sum formula [44, Theorem 10℄ im-

plies that dimG

1

:x = dimG:x for every x 2 X. Hen
e the theorem follows

for the a
tion of G if it 
an be proved for the a
tion of the identity 
ompo-

nent G

1

. Therefore, we will assume that G is 
onne
ted. In the �rst part of

the proof, we will also assume that the dimension of G is �nite, so that we


an apply Lemma 4.12.

27



Corollary 2.9 yields that Y is open in X. Therefore, the 
omplement

of �Y in X is the disjoint union of the open sets Y and X n Y . Sin
e

dim

R

�Y � n � 2, the 
omplement X n �Y is 
onne
ted (Bredon [14,

V.16.20℄). Hen
e X n Y is empty. Thus Y is dense in X and 
onne
ted,

and the dimension of X n Y = �Y over R is at most n� 2. This proves (a).

The a
tion of G on the dense subset Y of X is e�e
tive. Therefore,

assertions (b) and (
) follow from Corollary 2.10, whi
h also shows that the

identity 
omponents of stabilizers of points in Y form a single 
onjuga
y


lass. Let x 2 X be an arbitrary point. Using again that Y is a dense

subset of X, we infer from Theorem 2.8 that G

x

has a subgroup whi
h is


onjugate to (G

y

)

1

for some y 2 Y . In other words, there is an element

g 2 G su
h that (G

y

)

1

� gG

x

g

�1

= G

g:x

. Moreover, we have seen that this


an be a
hieved for an arbitrary point y of Y , whi
h proves (d).

To 
omplete the proof of Theorem 4.11, assume that G is a 
onne
ted

group of in�nite dimension. We have already seen that any 
losed �nite-

dimensional subgroup of G has dimension at most

�

k+1

2

�

. The Mal'
ev{

Iwasawa Theorem (see Hofmann and Terp [25℄) yields a maximal 
ompa
t

subgroup K of G whi
h is 
onne
ted and has in�nite dimension. The stru
-

ture theory of 
ompa
t groups shows that there is a totally dis
onne
ted

normal subgroup N of K su
h that K=N is isomorphi
 to the produ
t over

a (ne
essarily in�nite) family of 
ompa
t 
onne
ted Lie groups (see Hof-

mann and Morris [24, 8.15 and 9.24℄). We 
on
lude that K 
ontains 
losed

subgroups of arbitrarily high dimension, whi
h is a 
ontradi
tion. �

4.13 Corollary. Let G be a lo
ally 
ompa
t group a
ting properly and

e�e
tively on a se
ond 
ountable 
onne
ted 
ohomology manifold X over a

�eld of 
hara
teristi
 0. If some orbit has 
odimension at most 2 then G is

a Lie group.

Note that a one-dimensional solenoid 
an a
t e�e
tively on the 
artesian

produ
t S

1

� N.

For a 
ompa
t group a
ting on a se
ond 
ountable 
onne
ted 
ohomology

manifold over Z whose 
overing dimension is �nite, the 
orollary is due to

Raymond [40℄.

Proof. Theorem 4.11 yields that the a
tion of G on the 
onne
ted sub-

set Y � X formed by the orbits of minimal 
odimension is e�e
tive. There-

fore, the 
orollary follows from Theorem 4.9. �

4.14 Corollary. Every lo
ally 
ompa
t group whi
h 
an a
t e�e
tively on

a 
onne
ted 
ohomology manifold over a �eld of 
hara
teristi
 0 has �nite

dimension.

For a
tions on genuine manifolds, this is due to Montgomery [33℄.
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Proof. By Theorem 4.11, every 
ompa
t subgroup has �nite dimension,

when
e the 
orollary follows from the Mal'
ev{Iwasawa Theorem (see Hof-

mann and Terp [25℄, 
f. Abels [1℄), applied to the identity 
omponent. �

4.15 Remark. Let G be a lo
ally 
ompa
t 
onne
ted group whi
h a
ts

e�e
tively on a 
ohomology n-manifold X over a �eld F of 
hara
teristi
 0.

Then the dimension of G is �nite. If X is orientable then for any totally dis-


onne
ted 
ompa
t subgroup N of G, the orbit spa
e X=N is a 
ohomology

n-manifold over F . (As above, this follows from Corollary 4.3, Raymond's

Theorem 4.4, and Skljarenko [44, Theorem 18℄.) The subgroup N may be


hosen normal and su
h that the quotient G=N is a Lie group. Thus the

a
tion of G on X is 
losely related to the a
tion of the Lie group G=N on

the 
ohomology n-manifold X=N .

If X is not assumed to be orientable, we have the following partial sub-

stitute for this te
hnique. Let K be a 
ompa
t subset of X. (For example,

�nite dimensionality of G yields a �nite subset K of X su
h that the a
tion

of G on G:K is almost e�e
tive.) Then there are open 
onne
ted orientable

subsets U

1

; : : : ; U

m

ofX and totally dis
onne
ted 
ompa
t normal subgroups

N

1

; : : : ; N

m

of G su
h that the sets U

j


over K, the quotient groups G=N

j

are Lie groups, ea
h set U

j

is invariant under the group N

j

, and the a
tion

of N

j

on H

n




(U

j

;F ) is trivial. (This 
an be dedu
ed from Theorem 4.2 as in

the proof of Lemma 4.12.) Set U

:

= U

1

[ � � � [U

m

and N

:

= N

1

\ � � � \N

m

.

Then U is an open subset of X whi
h 
ontains K, and if K is 
onne
ted

then so is U . Glu�skov [22, 1.5℄ has proved that the quotient G=N is a Lie

group. By Raymond's Theorem 4.4, ea
h orbit spa
e U

j

=N is a 
ohomology

n-manifold over F . We 
on
lude that the open subspa
e G:U=N of X=N ,

whi
h 
ontains G:K=N and is 
onne
ted if K is 
onne
ted, is a 
ohomology

n-manifold over F , and it 
arries an a
tion of the Lie group G=N .

In parti
ular, if the 
ohomology manifoldX is 
ompa
t then the group G

has a totally dis
onne
ted 
ompa
t normal subgroup N su
h that G=N is

a Lie group and X=N is a 
ohomology n-manifold over F (even if X is not

orientable).
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