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Abstra
t

An optimal 
ontrol problem for glass 
ooling pro
esses is 
onsidered.

We model glass 
ooling using the SP

1

approximations to the radiative

heat transfer equations. The 
ontrol variable is the temperature at the

boundary of the domain. This results in a boundary 
ontrol problem for

a paraboli
/ellipti
 system whi
h is treated by a 
onstrained optimization

approa
h. We 
onsider several 
ost fun
tionals of tra
king type, de�ne the


orresponding Lagrange fun
tionals and derive the �rst-order optimality

system. We investigate several numeri
al methods based on the adjoint

variables and present results of numeri
al simulations illustrating the fea-

sibility and performan
e of the di�erent approa
hes.
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1 Introdu
tion

In glass manufa
turing, a hot melt of glass is 
ooled down to room temperature.

During 
ooling, large temperature di�eren
es i.e. large gradients have to be

avoided sin
e they lead to thermal stress in the material. This may 
ause 
ra
ks

or, in the 
ase of high quality glass, a�e
t the quality of the resulting produ
t or
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devi
e. Hen
e, the pro
ess has to be managed in su
h a way that temperature

gradients are suÆ
iently small [1℄. The main goal of the optimal 
ontrol problem

that we investigate in this paper is to minimize these gradients. Besides, further


riteria may be of interest in pra
ti
e. In order to redu
e energy 
onsumption

the surrounding temperature should be small and it should be redu
ed as fast

as possible to room temperature [11℄. It may be noted that, in parti
ular, fast


ooling and small gradients are 
on
i
ting goals where automated 
ontrol 
an

support or even improve pro
edures based on experien
e and heuristi
s. These

subordinate 
riteria 
an be in
luded in our model as well.

In order to model glass 
ooling we 
onsider for notational simpli
ity a frequen
y

independent, grey model without s
attering. Stated on a bounded spatial domain


 � R

d

, d = 1; 2 or 3, the s
aled 
ondu
tive radiative heat transfer equations

read [9℄

"

2

�T

�t

= "

2

r � krT �

Z

S

2

�(B � I) d! (1.1a)

8! 2 S

2

: "! � rI = �(B � I): (1.1b)

Ingoing radiation is pres
ribed by transparent boundary 
onditions

I(x; t; !) = I

b

(x; t; !); n � ! < 0; (1.1
)

and temperature is assumed to obey Robin-type boundary 
onditions

h

"k

T + n � rT =

h

"k

T

b

; (1.1d)

At initial time t = 0, the temperature is T (x; 0) = T

0

(x). In these equations,

I(x; t; !) denotes the spe
i�
 radiation intensity at point x 2 
 traveling in

dire
tion ! 2 S

2

at time t � 0. The outside radiation I

b

is assumed to be

known for the ingoing dire
tions (i.e. n � ! < 0) on the boundary. We denote

the outward normal on �
 by n. Furthermore, T (x; t) denotes the material

temperature and T

b

is the exterior temperature on the boundary. The equations


ontain the parameters opa
ity �(�), heat 
ondu
tivity k and 
onve
tive heat

transfer 
oeÆ
ient h, whi
h are assumed to be 
onstant. Moreover, B denotes

Plan
k's fun
tion

B(�; T ) =

2h

P

�
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2

�

e

h

P

�

k

B

T

� 1

�

�1

for bla
k body radiation in glass, whi
h involves Plan
k's 
onstant h

P

, Boltz-

mann's 
onstant k

B

and the speed of light in va
uum 
.

This form of the model is mu
h too 
omplex for optimization purposes due to

the dependen
e on the dire
tion ! 2 S

2

. A simple solve for the state system

i.e. a 
oupled system of a heat equation and a radiative transfer equation would
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already need a large amount of 
omputing time. Instead, we use the di�usion{

type SP

N

approximations [5, 9℄ to the radiative heat transfer equations. These

approximations have re
ently been investigated by one of the authors. They

perform well in the di�usive, opti
ally thi
k regime [7℄ where " is small. But

also for " � 1 they perform better than the widely{used, standard Rosseland

approximation [6℄. We therefore 
hose the simplest approximation of this 
lass

for simulating the temperature evolution during the annealing of a glass slab.

The SP

1

approximation to the radiative heat transfer equations is the system

�T

�t

= k�T +

1

3�

��; (1.2a)

�"

2

1

3�

�� + �� = �(4�aT

4

); (1.2b)

with Robin{type boundary 
onditions at the boundary

h

"k

T + n � rT =

h

"k

u; (1.2
)

3�

2"

�+ n � r� =

3�

2"

(4�au

4

); (1.2d)

and an initial 
ondition T (0; x) = T

0

(x) for the temperature. Here, � is the

radiative 
ux and the pres
ribed temperature at the boundary is from now on

denoted by u, in a

ordan
e with the 
ontrol theory literature. In fa
t, the evo-

lution of the temperature T 
an only be 
ontrolled via u. There are several

physi
al parameters and 
onstants, namely the heat 
ondu
tivity k, the 
onve
-

tive heat transfer 
oeÆ
ient h, the opa
ity � and Stefan{Boltzmann's 
onstant

a. The above system is a heat equation for T with a sour
e term depending on

the radiation. Glass at temperature T emits frequen
y-dependent radiation that

is proportional to bla
k body radiation. Integrating wrto. frequen
y we obtain

the total thermal radiation B(T ) = aT

4

a

ording to Stefan's law. It appears on

the right side of the 
ux equation (1.2b) and in the boundary 
ondition (1.2d) in

terms of T and u, respe
tively.

We intend to minimize 
ost fun
tionals of tra
king type having the form

J = J(T; �; u) =

1

p

Z

1

0

krTk

p

L

p

(
)

dt+

1

p

Z

1

0

kT � T

d

k

p

L

p

(
)

dt

+

Æ

2

Z

1

0

ku� u

d

k

2

L

2

(�
)

dt;

where (T; �) solves (1.2) and the time is also s
aled to the unit interval (0; 1).

Here, T

d

= T

d

(t; x) is a spe
i�ed temperature pro�le and u

d

= u

d

(t; x) is a given


ontrol of the ambient temperature whi
h shall be optimized. The 
ontrol variable

u appears in the 
ost fun
tional as a term penalizing large deviations from u

d

.
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Typi
ally, su
h a pro�le is given by engineers. It follows a 
ertain path in time

whi
h is essential in order to a
hieve the desired material properties of the glass.

Sin
e these are not yet taken into a

ount in our model, we enfor
e them via this

tra
king type penalization. Furthermore, the positive 
onstant Æ allows to adjust

the weight of the penalty term.

We 
onsider the optimal 
ontrol problem as a 
onstrained optimization problem

[3, 2, 4℄ and derive the 
orresponding �rst{order optimality system via the La-

grange fun
tional. For the 
omputation of the optimal 
ontrol u we present two

algorithms relying on the adjoint variables. These te
hniques were su

essfully

used in many 
ontrol problems in 
uid 
ow, see e.g. [2, 4℄ and the referen
es

therein. The advantage of this approa
h is threefold:

� Compared to �nite di�eren
es for the 
omputation of dire
tional derivatives

of the redu
ed 
ost fun
tional the numeri
al e�ort is kept 
onstant also for

an in
reasing number of dis
rete design variables.

� It 
an be easily adopted to di�erent 
ost fun
tionals.

� Numeri
al methods 
an be formulated on the 
ontinuous level and the sub-

sequent dis
retization remains free.

Nevertheless, the optimal boundary 
ontrol problem in this paper poses new


hallenging diÆ
ulties, mathemati
ally and numeri
ally. First, there is a fourth{

order algebrai
 nonlinearity in T . Se
ondly, the SP

1

system is inde�nite and,

thirdly, the 
ontrol enters the equations in a genuinely nonlinear way as u and

u

4

.

Hen
e, the �rst method we propose is a stable variable step{length des
ent algo-

rithm, where the gradient is 
omputed via the adjoint variables, while the se
ond

dire
tly solves the �rst{order optimality system via a nonlinear iteration s
heme.

In parti
ular, for the des
ent algorithm we intensively investigate the 
hoi
e of an

appropriate step{length. This step is 
ru
ial for the performan
e of the algorithm

and nonstandard owing to the nonlinearity in the 
ontrol.

The paper is organized as follows. In Se
tion 2, we de�ne the 
ost fun
tionals and

in Se
tion 3 the �rst{order optimality system is derived. The gradient-des
ent

algorithm is dis
ussed in Se
tion 4 and a nonlinear iteration s
heme is outlined

in Se
tion 5. Finally, various numeri
al experiments showing the performan
e of

our approa
h are presented in Se
tion 6 and 
on
luding remarks 
an be found in

Se
tion 7.

2 De�nition of the Fun
tionals

We want to 
ontrol the temperature pro�le su
h that the lo
al temperature gra-

dients are minimized. As we 
an only in
uen
e the outside temperature u we
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use this parameter as 
ontrol variable. We 
onsider various 
ost fun
tionals of

tra
king{type whi
h have the general form

J = J(T; u) =

Z

1

0

Z




F (T;rT ) dxdt+

Æ

2

Z

1

0

ku� u

d

k

2

L

2

(�
)

dt; (2.1)

where F : R

2

! R

+

0

is a nonnegative, di�erentiable fun
tion, e.g.

F

1

(T;rT ) = jT � T

d

j

p

; (2.2a)

F

2

(T;rT ) = jrT j

p

; (2.2b)

or

F

3

(T;rT ) = F

1

+ F

2

: (2.2
)

Here, T

d

is a given desired temperature pro�le and u is the 
ontrol parameter, i.e.

the outside temperature. Further, u

d

des
ribes a given initial outer temperature

pro�le at the boundary, whi
h represents the status quo, sin
e the outside tem-

perature has to follow a 
ertain path to ensure 
ertain quality 
onstraints of the

glass. The 
onstant Æ is a positive parameter whi
h allows to adjust the weight

of the 
ost and the observation. We 
hoose p 2 (1;1) a

ording to engineering

spe
i�
ations. Clearly, in order to in
orporate more sophisti
ated stress mod-

els di�erent fun
tions F 
ould be 
onstru
ted, whi
h might depend in a highly

nonlinear manner on T and rT .

Naturally, 
onsidering the fun
tion F

2

will minimize the gradients in the temper-

ature pro�le T , but also F

1


an yield this e�e
t as T

d


an be 
hosen 
onstant in

spa
e. The larger p the smaller will be the di�eren
e T � T

d

, uniformly in spa
e,

too. Finally, F

3


ombines these two e�e
ts. Note, that we want to follow the

Lagrange formalism su
h that the 
hoi
e p = 1 is not possible. Moreover, it is

not 
lear from an analyti
al point of view wether boundedness of rT in (0; 1)�



an be expe
t for 
omplex domains 
.

We 
onsider the optimal boundary 
ontrol problem as a 
onstrained optimiza-

tion problem, where the 
ost fun
tional (2.1) is minimized with respe
t to the


onstraint given by system (1.2), i.e.

minimize J(T; u) wrto. u; (2.3)

subje
t to system (1.2):

There exist various ways for the 
omputation of a minimizer of (2.3). In this pa-

per, we address the problem via the adjoint approa
h. To this purpose we derive

in the next se
tion the �rst{order optimality system in a systemati
 manner.
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3 The First{order Optimality System

To derive the �rst{order optimality system we embed the minimization problem

(2.3) in a pre
ise analyti
al setting.

Given a Hilbert spa
e H, let L

2

(H) = L

2

(0; 1; H) 
onsist of all measurable fun
-

tions v : (0; 1) ! H su
h that

R

1

0

kv(t)k

2

L

2

(
)

dt is bounded. For notational


onvenien
e we de�ne

Q

def

= (0; 1)� 
;

�

def

= (0; 1)� �


X

def

= [L

2

(0; 1;H

1

(
))℄

2

U

def

= L

2

(0; 1;L

2

(�
));

where X is the spa
e of states x

def

= (T; �) and U the spa
e of 
ontrols and set

� =

h

" k

; 
 =

3�

2"

:

Then, the weak formulation of (1.2) reads: Find (T; �) 2 [L

2

(H

1

)℄

2

with T

t

2

L

2

(H

�1

) and T (0; x) = T

0

(x) in L

2

(
) su
h that

he

1

(T; �; u); �

T

i

def

=

Z

1

0

hT

t

; �

T

i dt+

Z

Q

krT r�

T

dxdt+

Z

Q

1

3�

r�r�

T

dxdt

+

Z

�

k �(T � u)�

T

dsdt+

Z

�

1

3�


(�� 4�au

4

)�

T

dsdt = 0

and

he

2

(T; �; u); �

�

i

def

=

Z

Q

"

2

3�

r�r�

�

dxdt+

Z

Q

(��� 4��a T

4

)�

�

dxdt

+

Z

�

"

2

3�


(�� 4�au

4

)�

�

dsdt = 0

for all (�

T

; �

�

) 2 [L

2

(H

1

)℄

2

.

De�ning the operator e

def

= (e

1

; e

2

) we 
an write this shortly as:

Find (T; �) 2 [L

2

(H

1

)℄

2

with T

t

2 L

2

(H

�1

) and T (0; x) = T

0

(x) in L

2

(
) su
h

that

he(T; �); (�

T

; �

�

)i = 0

for all (�

T

; �

�

) 2 [L

2

(H

1

)℄

2

, where h�; �i denotes the 
anoni
al dual pairing.
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Sin
e we only 
onsider 
ontrols u 2 L

2

(�) we will restri
t u to the set of admissible


ontrols

U

ad

def

= fu 2 U : u � u � ug ;

where 0 < u < u. On the one hand, this is physi
ally reasonable sin
e the outside

temperature is 
ontrolled via a furna
e whi
h 
an be operated only in a limited

temperature range. On the other hand, this restri
tion ensures the existen
e of

an optimal 
ontrol u 2 U (see [10℄).

Remark 3.1. Alternatively, we 
an seek the 
ontrol in a Hilbert spa
e with more

regularity whi
h would require to add some te
hni
al terms to the 
ost fun
tional

su
h that 
ompa
tness arguments hold for the minimizing sequen
e [10℄.

Now the pre
ise statement of the 
onstrained optimization problem reads

minimize J(x; u) over (x; u) 2 X � U

ad

(3.1)

subje
t to e(x; u) = 0:

Let X

�

be the dual spa
e of X. The Lagrangian L : X �U �X

�

! R asso
iated

to (3.1) is de�ned by

L(x; u; �)

def

= J(x; u) + he(x; u); �i ;

or, more expli
itly,

L(x; u; �) = J(x; u) +

Z

1

0

< �

t

T; �

T

>

H

�1

;H

1

dt+

Z

Q

krTr�

T

dx dt

+

Z

�

k� (T � u)�

T

ds dt+

Z

Q

1

3�

r�r�

T

dx dt

+

Z

�

1

3�


(�� 4�au

4

)�

T

ds dt+

Z

Q

"

2

3�

r�r�

�

dx dt

+

Z

Q

�(�� 4�a T

4

)�

�

dx dt+

Z

�

"

2

3�


(�� 4�au

4

)�

'

ds dt:

where �

def

= (�

T

; �

T

) 2 X

�

denotes the Lagrange{multiplier or the adjoint variable.

Then the �rst{order optimality system 
orresponding to (2.3) formally reads

r

(x;u;�)

L(x; u; �) = 0: (3.2)

Remark 3.2. Corresponding to (3.1) the equation r

u

L = 0 has to be repla
ed

by the inequality r

u

L � � 0 for all � 2 X

�

.
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In the following, we want to rewrite this equation in a more 
on
ise form. Taking

variations of L with respe
t to the adjoint variable � 2 X

�

yields again the state

system

given u 2 U : e(x; u) = 0; in X:

Se
ondly, taking variations of L with respe
t to the state variable x 2 X we

derive the adjoint system

given (x; u) 2 U �X : e

�

x

(x; u)� = �J

x

(x; u); in X

�

or, equivalently,

8~x 2 X : he

x

(x; u)~x; �i = �hJ

x

(x; u); ~xi :

Here, e

�

x

(x; u)� denotes the adjoint of the linearization of e at (x; u) in the dire
-

tion �. We have the spe
i�
 equations

Z

1

0

< �

t

~

T ; �

T

>

H

�1

;H

1

dt+

Z

Q

kr

~

T r�

T

dxdt

+

Z

�

k �

~

T �

T

dsdt�

Z

Q

16��a T

3

~

T�

�

dxdt = �

Z

Q

DF (T;rT ) � (

~

T ;r

~

T ) dxdt;

and

Z

Q

1

3�

r~�r�

T

dxdt+

Z

Q

"

2

3�

r~�r�

�

dxdt+

Z

Q

�~��

�

dxdt

+

Z

�

"

2

3�


 ~� �

�

dsdt+

Z

�

1

3�


 ~� �

T

dsdt = 0:

They hold for all (

~

T ; ~�) 2 [L

2

(H

1

)℄

2

and, hen
e, they are nothing else but the

weak formulation of

��

t

�

T

= k��

T

+ 16�a� T

3

�

�

� �

1

F (T;rT ) +r � �

2

F (T;rT ); (3.3a)

�

"

2

3�

��

�

+ � � =

1

3�

��

T

; (3.3b)

with boundary 
onditions

n � r�

T

+ � �

T

= n � �

2

F (T;rT ); (3.3
)

n � r�

T

+ 
 �

T

+ "

2

(n � r�

�

+ 
 �

�

) = 0; (3.3d)

and terminal 
ondition

�

T

(1) = 0: (3.3e)
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Remark 3.3. In the 
ase of the fun
tion F

1

, we have �

2

F

1

= 0, su
h that the

above equations simplify signi�
antly.

Finally, variations of L with respe
t to u in a dire
tion ~u yield

he

u

(x; u)~u; �i = hJ

u

(x; u); ~ui ;

or

Z

�

�(k� ~u�

4

3�

u

3

~u)�

T

�

4"

2

3�

u

3

~u �

�

dsdt = �Æ

Z

�

(u� u

d

)~u dsdt:

Sin
e this is true for all ~u 2 L

2

(0; 1;L

2

(�
)) we end up with a third order algebrai


equation for u

�k� �

T

�

4

3�

(�

T

+ "

2

�

�

)u

3

= �Æ (u� u

d

); on �: (3.4)

4 The Gradient Algorithm

In this se
tion, we present a robust des
ent algorithm, where the des
ent dire
tion

is 
omputed via the adjoint variables. We formulate this method in terms of the


ontinuous variables su
h that it is independent of a spe
i�
 dis
retization whi
h


an be 
hosen subsequently.

Owing to the fa
t that the system (1.2) is uniquely solvable [10℄, we may refor-

mulate the minimization problem (3.1) introdu
ing the redu
ed 
ost fun
tional

minimize

^

J(u)

def

= J(x(u); u) over u 2 U

ad

(4.1)

where x(u) 2 X satis�es e(x(u); u) = 0:

Then, a gradient algorithm for the 
omputation of a minimizer of

^

J is given by

Algorithm 1.

1. Set k = 0 and 
hoose initial 
ontrol u

0

2 U .

2. Given u

k

, 
ompute the gradient d

k

def

= r

^

J(u

k

).

3. Given � > 0, set u

k+1

= u

k

� � d

k

.

4. Set k ! k + 1 and goto 2.
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For the 
omputation of the gradient r

^

J(u) we employ the adjoint variables, sin
e

from variational 
al
ulus we have the identity

r

^

J(u) = J

u

(x(u); u) + J

x

(x(u); u)x

u

(u) = J

u

(x(u); u) + e

�

u

�:

Hen
e, for one evaluation of the gradient at u 2 U we have to solve �rst the

nonlinear state system (1.2) for x(u) 2 X forward in time and se
ondly the

linear adjoint system (3.3) for � ba
kward in time. Eventually, we evaluate

r

^

J(u) = �k� �

T

+ Æ (u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)u

3

(4.2)

Cru
ial for the 
onvergen
e of Algorithm 1 is the 
hoi
e of the step size � in the

third step. Clearly, the best 
hoi
e would be the result of a line sear
h

�

�

= argmin

�>0

^

J(u� � d)

whi
h, unfortunately, is numeri
ally mu
h too expensive although it is a one-

dimensional minimization problem. This is due to the fa
t that ea
h evaluation

of the 
ost fun
tional

^

J requires the solution of the nonlinear state system.

To avoid this 
omputational drawba
k we propose two methods to derive an

appropriate approximation for �

�

. The �rst, purely heuristi
 approa
h is

�

1

def

= min

�

1; kdk

�1

1

�

; (4.3)

and it a
tually means that we make small steps as long as the gradient is large,

while we swit
h to the step{length 1 when the gradient is small, i.e. near the

optimal solution. Note, that espe
ially during the �rst steps we have to expe
t

very large gradients due to the 
ubi
 power of u in (4.2).

The se
ond approximation is based on the linearization of x(u� � d) at u, whi
h

yields

x(u� � d) � x(u)� x

u

(u)(� d):

Then, we 
an solve

�

2

= argmin

�>0

J

�

x(u)� x

u

(u)(� d) ; u� � d

�

exa
tly. In fa
t, this results in an algebrai
 equation for �.

Remark 4.1. In 
ase of the 
ost fun
tional J

1

with p = 2 we get expli
tely

�

2

=

kdk

2

�

" kdk

2

�

+ kvk

2

Q

; (4.4)
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where v = (v

T

; v

�

)

def

= x

u

(u)d solves the linear ba
kward system

��

t

v

T

= k�v

T

+ 16��a T

3

v

�

� (T � T

d

) (4.5a)

�

"

2

3�

�v

�

+ � v

�

= �

1

3�

�v

T

(4.5b)

with boundary 
onditions

n � rv

T

+ � v

T

= � d; (4.5
)

n � rv

T

+ 
 v

T

+ "

2

(n � rv

�

+ 
 v

�

) = 
(16�au

3

)d (4.5d)

and terminal 
ondition

v

T

(1) = 0: (4.5e)

In fa
t, independent of the 
hoi
e of F the 
omputation of �

2

requires the solution

of an additional linear paraboli
 problem.

Clearly, one 
ould also 
onsider higher order terms in the Taylor expansion. Nev-

ertheless, this would amount in solving additional linear problems, su
h that it

is numeri
ally 
heaper to perform a few more gradient steps.

5 A Nonlinear Iteration S
heme

Another possibility to 
ompute a minimizer of (3.1) is to solve the �rst{order

optimality system (3.2) dire
tly. To a
hieve this we propose a nonlinear �xed

point iteration whi
h de
ouples the equations in an appropriate way. Starting

from an initial guess for u we solve the nonlinear state system for a new state

x = x(u) and then the adjoint system at x and u for � = �(x; u). Using the

state and the adjoint variable we solve the algebrai
 equation (3.4) for u

new

. The

detailed pro
edure reads

Algorithm 2.

1. Set k = 0 and 
hoose u

0

2 U .

2. Given u

k

, solve

�

t

T = k�T +

1

3�

�';

�"

2

1

3�

�'+ �' = �(4�aT

4

) in Q;

h

"k

T + n � rT =

h

"k

u

k

;

3�

2"

'+ n � r' =

3�

2"

(4�a u

4

k

) on �;

T (0; x) = T

0

(x) in 
;

for (T; �) 2 X.

11



3. Given (T; �) 
orresponding to u

k

, solve

��

t

�

T

� k��

T

� 16��a T

3

� �

�

= ��

1

F (T;rT ) +r � �

2

F (T;rT );

�

"

2

3�

��

�

+ � � = �

1

3�

��

T

in Q;

n � r�

T

+ � �

T

= �n � �

2

F (T;rT );

n � r�

T

+ 
 �

T

+ "

2

(n � r�

�

+ 
 �

�

) = 0 ; on �;

�

T

(1) = 0 ; in 
;

for � = (�

T

; �

�

) 2 X

�

.

4. Given (�

T

; �

�

), solve

�k� �

T

+ Æ (u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)u

3

= 0 on �;

for u

k+1

.

5. Set k ! k + 1 and goto 2.

Remark 5.1. If the 
ontrol u appeared in the system only linearly this iteration


ould be easily interpreted as a gradient algorithm with �xed step length 1=Æ.

Hen
e, in ea
h iteration step we only have to solve the nonlinear state equations,

the linear adjoint system and an algebrai
 equation for the update of u. The

advantage of this method lies in the fa
t that it 
an be easily implemented in an

existing �nite di�eren
e or �nite element 
ode and that it in
orporates more of

the nonlinearity of the problem that arises >from the generi
 nonlinearity wrto.

the 
ontrol variable u.

Remark 5.2. Another possibility is to use the solution �u of step 4 to 
ompute

a des
ent dire
tion d for the 
lassi
al des
ent algorithm via d = u� �u. This 
an

also be interpreted as a damping in Algorithm 2.

6 Numeri
al Results

This se
tion is devoted to the presentation of numeri
al experiments assessing

the performan
e of the various algorithms and to show results whi
h demonstrate

the 
apability of our approa
h to minimize lo
al temperature gradients in glass


ooling pro
esses.

For the numeri
al simulations we �rst have to dis
retize the 
ontinuous algo-

rithms.

12



6.1 Dis
retization

Standard �nite di�eren
es were used for the spa
e dis
retization of the Lapla
ian

both for the state and the adjoint system. For simpli
ity we used a uniform grid

with �x = 0:02. The time derivative was treated in an impli
it way using the

forward Euler method with 50 uniform time steps. In the 
ase of our generi


example based on the fun
tional J

1

with p = 2, we have the following dis
retized

form of the SP

1

state system (1.2)

T

n+1

i

� T

n

i

�t

= k

T

n+1

i+1

� 2T

n+1

i

+ T

n+1

i�1

�x

2

+

1

3�

�

n+1

i+1

� 2�

n+1

i

+ �

n+1

i�1

�x

2

; (6.1a)

�"

2

1

3�

�

n+1

i+1

� 2�

n+1

i

+ �

n+1

i�1

�x

2

+ ��

n+1

i

= � 4�a

�

T

n

i

�

4

; (6.1b)

and the 
orresponding dis
retization of the adjoint equations (3.3) reads

�

�

n+1

T;i

� �

n

T;i

�t

= k

�

n+1

T;i+1

� 2�

n+1

T;i

+ �

n+1

T;i�1

�x

2

+ 16�a�

�

T

n+1

i

�

3

�

n+1

�;i

� (T

n+1

i

� T

n+1

d;i

);

(6.2a)

�

"

2

3�

�

n+1

�;i+1

� 2�

n+1

�;i

+ �

n+1

�;i�1

�x

2

+ � �

n+1

�;i

=

1

3�

�

n+1

T;i+1

� 2�

n+1

T;i

+ �

n+1

T;i�1

�x

2

: (6.2b)

Furthermore, note that the third order algebrai
 equation (3.4) for the 
ontrol u,

whi
h o

urs in the �rst order optimality system in the form

p

3

u

3

+ p

1

u+ p

0

= 0;

in general has multiple real roots. Cardano's formula was used to determine their

numeri
al values and in the 
ase of non-uniqueness the ambiguity was resolved

by 
hoosing the root that lay in the a

eptable range of ambient temperatures

between 300K and 1000K. Numeri
al experiments indi
ated that this heuristi
s

was appropriate in our 
ontext and 
ould make the solution unique.

The physi
al parameters appearing in the equations above had the following

values in our numeri
al experiments. Heat 
ondu
tivity k and opa
ity � were

" � k a

1:0 1:0 1:0 1:806 � 10

�8

assumed to be 
onstant wrto. spa
e and time.

6.2 Comparison of the Fun
tionals

In order to assess whi
h fun
tional is the best model for the optimization 
riteria

des
ribed in Se
tion 1 we evaluated the results of the gradient-des
ent algorithm.
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Besides the redu
tion of the fun
tional, we fo
us in parti
ular on the value of the

sup{norm of the temperature gradients, whi
h is the 
ru
ial quantity in appli
a-

tions.

F

1

= 0:5 jT � T

d

j

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 249:3 � 22:33 8:173 153:7

5:00 236:4 1:251 21:56 8:196 151:7

1:00 200:7 5:054 19:39 8:337 145:6

0:50 174:5 8:236 17:75 8:556 140:2

0:10 110:2 18:77 13:61 10:09 126:8

0:05 88:97 24:17 12:20 11:31 143:8

F

2

= 0:5 jrT j

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 33:40 � 22:33 8:173 153:7

5:00 33:16 0:172 22:32 8:134 153:7

1:00 32:21 0:833 22:28 7:983 154:0

0:50 31:17 1:594 22:26 7:815 154:3

0:10 25:43 6:108 22:32 6:865 157:0

0:05 21:66 9:593 22:66 6:222 160:3

F

3

= F

1

+ F

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 282:7 � 22:33 8:173 153:7

5:00 269:8 1:276 21:56 8:158 151:8

1:00 234:9 5:075 19:43 8:164 145:9

0:50 210:6 8:118 17:90 8:238 141:0

0:10 159:6 16:71 14:58 8:874 126:5

0:05 147:1 19:84 13:73 9:277 121:1

Table 1: Redu
tion of the value of the fun
tionals J

1

; J

2

; J

3

>From Table 1 it 
an be seen that J

1

and the di�eren
e T � T

d

are signi�
antly

diminished when Æ is de
reased. At the beginning this is true for the L

1

{norm of

rT but it tends to in
rease again when Æ < 0:1. We explain this by the fa
t that

the 
ontrol temperature u had values below room temperature in whi
h is not

sensible from an engineering point view. As a result, gradients at the boundary

be
ome very large due to the large di�eren
e between the temperature in the

exterior and the interior. Although fun
tional J

2

e�e
tively redu
es the L

2

-norm

of the gradient we observe that, in 
ontrast, the 
orresponding maximum norm

in
reases. And, lastly, the third fun
tional, whi
h in
orporates both terms, is seen

14
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Figure 1: Optimal boundary 
ontrol u for fun
tional J

3

. The weight of the 
ontrol

was Æ = 0:05.

to result in de
reasing norms of the di�eren
e while the 2-norms of the gradient

in
rease when Æ be
omes smaller. The overall value of the fun
tional, however, is


ontinuously de
reased as expe
ted. It should be highlighted that although the

2-norm of the gradient be
omes larger the maximum norm shows the opposite

behaviour. We, therefore, believe that J

3

is the best 
hoi
e among the three

fun
tionals under 
onsideration here. The experiments below were done using

this fun
tional. The 
omputed 
ooling pro�le 
an be found in Figure 1 and the


orresponding distribution of jrT j is given in Figure 4, where one also �nds the

un
ontrolled state for referen
e. Note that at a �rst glan
e the region with large

gradients seems broader, but it has to be observed that the 
ontrolled pro�le has

already rea
hed a smaller end temperature (see Figure 3).

6.3 E�e
t of Higher Order L

p

{Norms

As already mentioned in Se
tion 2, the maximum norm of the gradient would be

the most appropriate norm for measuring lo
al temperature gradients. But this

is mathemati
ally mu
h more diÆ
ult sin
e the standard Lagrange formalism is

no more appli
able. Norms of order p > 2, however, 
ould be a 
ompromise

as they might better emulate the maximum norm while avoiding these te
hni
al

problems. Therefore, it is interesting to as
ertain whether they 
an give better

results.
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F =

1

4

jT � T

d

j

4

+

1

4

jrT j

4

Æ [�10

3

℄ J [�10

6

℄ ku� u

d

k

2

kT � T

d

k

4

krTk

4

krTk

1

� 2:422 � 55:09 26:32 153:7

100 2:307 0:815 54:18 26:26 152:0

10 1:756 5:406 49:44 26:08 143:1

1 0:879 17:70 39:59 25:62 121:6

0:1 0:565 27:08 35:40 27:18 108:5

F =

1

8

jT � T

d

j

8

+

1

8

jrT j

8

Æ [�10

12

℄ J [�10

12

℄ ku� u

d

k

2

kT � T

d

k

8

krTk

8

krTk

1

� 812:3 � 94:56 56:74 153:7

10 605:9 2:661 90:41 56:16 148:3

1 288:6 9:336 81:11 55:30 135:7

0:1 92:6 19:63 69:32 51:92 120:0

0:01 40:4 26:45 63:08 50:81 111:4

0:001 34:9 27:40 62:35 51:22 110:7

F =

1

16

jT � T

d

j

16

+

1

16

jrT j

16

Æ [�10

30

℄ J [�10

30

℄ ku� u

d

k

2

kT � T

d

k

16

krTk

16

krTk

1

� 366:7 � 129:0 89:44 153:7

10 269:5 1:450 126:2 88:45 150:8

1 127:1 4:896 119:9 86:56 144:2

0:1 45:5 9:419 112:4 83:77 136:5

0:01 20:0 12:86 107:2 81:32 132:1

0:001 15:6 13:83 105:7 80:67 130:8

Table 2: Redu
tion of J

3

for higher order L

p

-norms with p = 4, 8 and 16.

Table 2 reveals in the 
ases p = 4 and p = 8 that the sup{norm of the temperature

gradient 
ould be redu
ed even more than in the 
ase p = 2 (see Table 1). The

redu
tion obtained here is approximately 30% of the value without optimization


ompared with 20% in the 
ase p = 2. Figure 2 shows the proposed pro�le of u

for p = 8 after optimization with Æ = 10

9

and the distribution of jrT j is given in

Figure 5. In
reasing the order of p did not seem to result in further improvements

be
ause for p = 16 the gain was lower than in the previous 
ases. When it is

ne
essary to use higher order norms it seems to be a good 
hoi
e to use p = 4 or

8 for the L

p

-norms in the fun
tional.
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Figure 2: Optimal boundary 
ontrol u for fun
tional J

3

with p = 8. Weight of

the 
ontrol: Æ = 10

9

.

6.4 Performan
e of Di�erent Algorithms

We 
onsider the gradient{des
ent Algorithm 1 from Se
tion 4 with the two step

size 
hoi
es (4.3) and (4.4)

�

1

= min

�

1; kdk

�1

1

�

; �

2

=

kdk

2

�

" kdk

2

�

+ kvk

2

Q

;

where d = r

^

J and v is the solution of (4.5). Furthermore, the nonlinear iteration

of Algorithm 2 is taken into a

ount. And �nally, we investigate the behaviour of

a hybrid method whi
h uses the dire
tion d = u� �u as des
ent dire
tion instead

of the gradient, where �u is the 
ontrol 
oming from the third order equation

�k� �

T

+ Æ (�u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)�u

3

= 0 on �

in step 4 of Algorithm 2 of the adjoint method. In our numeri
al experiments

we used the fun
tional J

1

with the step pro�le u

d

as before. The iteration was

terminated when the update for u was < 0:01 uniformly for all dis
rete times.

As 
an be seen in Table 3, the heuristi
 approa
h performs very well while the

linear method using the step size �

2

needs signi�
antly more iterations. This is

due to the fa
t that the proposed step sizes were in general rather small whi
h

indi
ates that this approa
h underestimates the true step size. Nevertheless,
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Figure 3: End temperatures at t = � without optimization and with optimization

using J

3

for p = 2(Æ = 0:05), p = 4(Æ = 100) and p = 8(Æ = 10

9

), respe
tively

Æ heuristi
 linear nonlinear hybrid

1:00 8 37 7 34

0:75 4 44 9 50

0:50 7 55 17 63

0:25 13 68 � 90

0:10 26 73 � 134

Table 3: Number of iterations needed by di�erent algorithms.

underestimation at least does not a�e
t the overall global 
onvergen
e of the

algorithm. The nonlinear iteration s
heme gives similar performan
e, when the

number of iterations is 
on
erned, as the heuristi
 approa
h but it fails to work

when Æ be
omes smaller. This 
an be understood by the fa
t that the 
ontra
-

tivity of the �xed point mapping de�ned by Algorithm 2 is violated for small

Æ. To over
ome this problem we �nally 
onsidered a hybrid method, whi
h is a

damped version of Algorithm 2 where the damping parameter is 
omputed via

(4.4). This method 
onverges slowly and does not seem to be 
ompetitive. Nu-

meri
al experiments indi
ate that in some 
ases the s
alar produ
t (u � �u;r

^

J)


an os
illate between negative and positive values su
h that u � �u is in general

not guaranteed to be a des
ent dire
tion.
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7 Con
lusions

We studied an optimal boundary 
ontrol problem for glass 
ooling pro
esses with

the aim to minimize thermal stresses whi
h strongly 
orrelate with lo
al temper-

ature gradients. Allowing for general 
ost fun
tionals we embedded this problem

into the setting of general 
onstrained optimization problems and derived the �rst

order optimality system. For the numeri
al solution we proposed two algorithms

based on adjoint variables, i.e. a gradient{des
ent method and a nonlinear it-

eration s
heme. The performan
e of the algorithms was tested for the optimal


ooling of a glass slab and, in parti
ular, di�erent step size rules were 
onsidered.

In fa
t, the gradient algorithm with a heuristi
 step size rule proved to be very

robust, performed most su

essfully and yielded a signi�
ant redu
tion of the

lo
al temperature gradients of approximately 30%. We emphasize that the adjoint

approa
h 
an be easily adopted for higher dimensional problems and also allows

for the dire
t 
omputation of the sensitivities of this problem.

Future work will fo
us on better approximations of the radiative heat transfer

equation, e.g. frequen
y dependen
e [8℄ or the SP

3

system [9℄, and more sophis-

ti
ated se
ond order optimization algorithms, whi
h may better resolve the high

nonlinearity in this problem. This will be essential to keep 
omputing times low

in the three dimensional 
ase.
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Figure 5: Spatial and temporal distribution of krTk

1

with optimization using

J

3

for p = 4(Æ = 100) and p = 8(Æ = 10

9

)
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