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Abstract

An optimal control problem for glass cooling processes is considered.
We model glass cooling using the SP; approximations to the radiative
heat transfer equations. The control variable is the temperature at the
boundary of the domain. This results in a boundary control problem for
a parabolic/elliptic system which is treated by a constrained optimization
approach. We consider several cost functionals of tracking type, define the
corresponding Lagrange functionals and derive the first-order optimality
system. We investigate several numerical methods based on the adjoint
variables and present results of numerical simulations illustrating the fea-
sibility and performance of the different approaches.
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1 Introduction

In glass manufacturing, a hot melt of glass is cooled down to room temperature.
During cooling, large temperature differences i.e. large gradients have to be
avoided since they lead to thermal stress in the material. This may cause cracks
or, in the case of high quality glass, affect the quality of the resulting product or
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device. Hence, the process has to be managed in such a way that temperature
gradients are sufficiently small [1]. The main goal of the optimal control problem
that we investigate in this paper is to minimize these gradients. Besides, further
criteria may be of interest in practice. In order to reduce energy consumption
the surrounding temperature should be small and it should be reduced as fast
as possible to room temperature [11]. It may be noted that, in particular, fast
cooling and small gradients are conflicting goals where automated control can
support or even improve procedures based on experience and heuristics. These
subordinate criteria can be included in our model as well.

In order to model glass cooling we consider for notational simplicity a frequency
independent, grey model without scattering. Stated on a bounded spatial domain
Q C R?Y d = 1,2 or 3, the scaled conductive radiative heat transfer equations
read [9]

T

828— =’V - kVT —/ o(B—-1) dw (1.1a)
ot g2
Vw e S?: ew -VI=0(B-1). (1.1b)

Ingoing radiation is prescribed by transparent boundary conditions
I(z,t,w) = Iy(z,t,w), n-w<DO0, (1.1c)

and temperature is assumed to obey Robin-type boundary conditions

%T%—n-VT: %Tb, (1.1d)
At initial time ¢ = 0, the temperature is T(x,0) = Ty(z). In these equations,
I(x,t,w) denotes the specific radiation intensity at point = € ) traveling in
direction w € 52 at time t > 0. The outside radiation I, is assumed to be
known for the ingoing directions (i.e. n-w < 0) on the boundary. We denote
the outward normal on 0Q by n. Furthermore, T'(z,t) denotes the material
temperature and 7} is the exterior temperature on the boundary. The equations
contain the parameters opacity k(v), heat conductivity k and convective heat
transfer coefficient h, which are assumed to be constant. Moreover, B denotes
Planck’s function

2hp1/3< hpy )1

B(v,T) = eksT — 1
c
for black body radiation in glass, which involves Planck’s constant hp, Boltz-
mann’s constant kg and the speed of light in vacuum c.

This form of the model is much too complex for optimization purposes due to
the dependence on the direction w € S2. A simple solve for the state system
i.e. a coupled system of a heat equation and a radiative transfer equation would



already need a large amount of computing time. Instead, we use the diffusion—
type SPy approximations [5, 9] to the radiative heat transfer equations. These
approximations have recently been investigated by one of the authors. They
perform well in the diffusive, optically thick regime [7] where ¢ is small. But
also for ¢ & 1 they perform better than the widely-used, standard Rosseland
approximation [6]. We therefore chose the simplest approximation of this class
for simulating the temperature evolution during the annealing of a glass slab.
The SP;, approximation to the radiative heat transfer equations is the system

oT 1
— = kAT + —A 1.2
1
—623—Ap +op = o(4ral™), (1.2b)
o

with Robin—type boundary conditions at the boundary

h h
—T T=— 1.2
St \Y% 7 (1.2¢c)
30 30 4
2—6p—|—n~Vp— o (4mau®), (1.2d)

and an initial condition T'(0,z) = Ty(z) for the temperature. Here, p is the
radiative flux and the prescribed temperature at the boundary is from now on
denoted by u, in accordance with the control theory literature. In fact, the evo-
lution of the temperature 7' can only be controlled via u. There are several
physical parameters and constants, namely the heat conductivity k, the convec-
tive heat transfer coefficient h, the opacity ¢ and Stefan—Boltzmann’s constant
a. The above system is a heat equation for T" with a source term depending on
the radiation. Glass at temperature 7' emits frequency-dependent radiation that
is proportional to black body radiation. Integrating wrto. frequency we obtain
the total thermal radiation B(T') = aT* according to Stefan’s law. It appears on
the right side of the flux equation (1.2b) and in the boundary condition (1.2d) in
terms of T" and u, respectively.

We intend to minimize cost functionals of tracking type having the form

J = J(T, pu) /nvm a1 L /HT T,

2
+§AHu—whmmdt

where (T, p) solves (1.2) and the time is also scaled to the unit interval (0,1).
Here, T; = Ty(t, z) is a specified temperature profile and ug = uq4(t, ) is a given
control of the ambient temperature which shall be optimized. The control variable
u appears in the cost functional as a term penalizing large deviations from wug.



Typically, such a profile is given by engineers. It follows a certain path in time
which is essential in order to achieve the desired material properties of the glass.
Since these are not yet taken into account in our model, we enforce them via this
tracking type penalization. Furthermore, the positive constant ¢ allows to adjust
the weight of the penalty term.

We consider the optimal control problem as a constrained optimization problem
[3, 2, 4] and derive the corresponding first-order optimality system via the La-
grange functional. For the computation of the optimal control u we present two
algorithms relying on the adjoint variables. These techniques were successfully
used in many control problems in fluid flow, see e.g. [2, 4] and the references
therein. The advantage of this approach is threefold:

e Compared to finite differences for the computation of directional derivatives
of the reduced cost functional the numerical effort is kept constant also for
an increasing number of discrete design variables.

e [t can be easily adopted to different cost functionals.

e Numerical methods can be formulated on the continuous level and the sub-
sequent discretization remains free.

Nevertheless, the optimal boundary control problem in this paper poses new
challenging difficulties, mathematically and numerically. First, there is a fourth—
order algebraic nonlinearity in 7'. Secondly, the SP; system is indefinite and,
thirdly, the control enters the equations in a genuinely nonlinear way as w and

ut.

Hence, the first method we propose is a stable variable step—length descent algo-
rithm, where the gradient is computed via the adjoint variables, while the second
directly solves the first—order optimality system via a nonlinear iteration scheme.
In particular, for the descent algorithm we intensively investigate the choice of an
appropriate step-length. This step is crucial for the performance of the algorithm
and nonstandard owing to the nonlinearity in the control.

The paper is organized as follows. In Section 2, we define the cost functionals and
in Section 3 the first—order optimality system is derived. The gradient-descent
algorithm is discussed in Section 4 and a nonlinear iteration scheme is outlined
in Section 5. Finally, various numerical experiments showing the performance of
our approach are presented in Section 6 and concluding remarks can be found in
Section 7.

2 Definition of the Functionals

We want to control the temperature profile such that the local temperature gra-
dients are minimized. As we can only influence the outside temperature u we
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use this parameter as control variable. We consider various cost functionals of
tracking—type which have the general form

1 5 1
J = J(T,u) :/ /F(T, V1) d:cdt+§/ lo = wallogpey dt (21)
0 Q 0

where F': R?> — R is a nonnegative, differentiable function, e.g.

F(T,VT) = |T — Ty, (2.2a)

Fy(T,VT) = |VT|", (2.2b)
or

F3(T, VT) = F1 + FQ. (22C)

Here, Ty is a given desired temperature profile and w is the control parameter, i.e.
the outside temperature. Further, uy describes a given initial outer temperature
profile at the boundary, which represents the status quo, since the outside tem-
perature has to follow a certain path to ensure certain quality constraints of the
glass. The constant ¢ is a positive parameter which allows to adjust the weight
of the cost and the observation. We choose p € (1, 00) according to engineering
specifications. Clearly, in order to incorporate more sophisticated stress mod-
els different functions F' could be constructed, which might depend in a highly
nonlinear manner on 7" and VT

Naturally, considering the function F, will minimize the gradients in the temper-
ature profile T, but also F; can yield this effect as T; can be chosen constant in
space. The larger p the smaller will be the difference T — Ty, uniformly in space,
too. Finally, F3 combines these two effects. Note, that we want to follow the
Lagrange formalism such that the choice p = oo is not possible. Moreover, it is
not clear from an analytical point of view wether boundedness of V7" in (0, 1) x
can be expect for complex domains €2.

We consider the optimal boundary control problem as a constrained optimiza-
tion problem, where the cost functional (2.1) is minimized with respect to the
constraint given by system (1.2), i.e.

minimize J (T, u) wrto. u, (2.3)

subject to system (1.2).

There exist various ways for the computation of a minimizer of (2.3). In this pa-
per, we address the problem via the adjoint approach. To this purpose we derive
in the next section the first—order optimality system in a systematic manner.



3 The First—order Optimality System

To derive the first—order optimality system we embed the minimization problem
(2.3) in a precise analytical setting.

Given a Hilbert space H, let L?(H) = L*(0,1, H) consist of all measurable func-

tions v : (0,1) — H such that fol Hv(t)HiZ(Q) dt is bounded. For notational
convenience we define

where X is the space of states x o

_30

(T, p) and U the space of controls and set
h
ek’ 2

o = Y

Then, the weak formulation of (1.2) reads: Find (T, p) € [L*(HY)]? with T} €
L*(H™') and T(0,z) = Ty(z) in L*(£2) such that

def

1
1
(er(T, p, ), &) :/ (T, &) dt+/kVTV£T dwdt+/ Ve drds
0 Q Q g

1
+ / ka(T —u)ér dsdt + / —v(p — dmau*)&r dsdt =0
E E 30

and

2
(ea(T, py 0), &) L /Q = Vo VE, drdi + /Q (0p - droaTYE, dudt

2

+ /2 ;—Uv(p — drau*)¢, dsdt =0

for all (&r,€,) € [L*(HY)]?.

Defining the operator ¢ & (e1,e2) we can write this shortly as:

Find (T, p) € [L*(HY)]* with T, € L*(H ') and T(0,z) = Ty(z) in L*(Q) such
that

(e(T,p), (&r,&p)) =0

for all (&r,€,) € [L*(H')]?, where (-,-) denotes the canonical dual pairing.
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Since we only consider controls u € L*(X) we will restrict u to the set of admissible
controls

Uaddéf{ueU: u<u<u},

where 0 < u < u. On the one hand, this is physically reasonable since the outside
temperature is controlled via a furnace which can be operated only in a limited
temperature range. On the other hand, this restriction ensures the existence of
an optimal control u € U (see [10]).

Remark 3.1. Alternatively, we can seek the control in a Hilbert space with more
regularity which would require to add some technical terms to the cost functional
such that compactness arguments hold for the minimizing sequence [10].

Now the precise statement of the constrained optimization problem reads
minimize J(xz,u) over (z,u) € X x Uy (3.1)

subject to  e(x,u) = 0.

Let X* be the dual space of X. The Lagrangian £ : X x U x X* — R associated
to (3.1) is defined by

Lz, u,€) E J(w,u) + ez, u),€),

or, more explicitly,
1
L(z,u,&) = J(x,u) —|—/ <OT,&r > dt—i—/ kNTYVEr do dt
0 Q

1
+/ka(T—u)§T dsdt+/ —VpVér dadt
» Q 30'

1 2
+/ —v(p — dmau)ér ds dt + / S—vagp dx dt
) 30 Q 30

2

+ / o(p—AraT*)E, dx dt + / 6—v(p — drau*)¢, ds dt.
Q E 30
where £ oo (&r,&r) € X* denotes the Lagrange-multiplier or the adjoint variable.
Then the first-order optimality system corresponding to (2.3) formally reads
V(eue) L(x,u,§) = 0. (3.2)

Remark 3.2. Corresponding to (3.1) the equation V,L = 0 has to be replaced
by the inequality V,L & > 0 for all £ € X*.



In the following, we want to rewrite this equation in a more concise form. Taking
variations of £ with respect to the adjoint variable £ € X* yields again the state
system

givenu € U: e(zr,u) =0, in X.

Secondly, taking variations of £ with respect to the state variable x € X we
derive the adjoint system

given (z,u) € U x X : ei(x,u) = —Jp(x,u), in X~
or, equivalently,
Vie X (eix,u)z,&) = — (Jy(z,u), ).

Here, e} (z,u)¢ denotes the adjoint of the linearization of e at (x, u) in the direc-
tion £&. We have the specific equations

1
/ < OT,&r > m dt~|—/ kENVTNEr dedt
0 Q
+ / kaT & dsdt — / 16700 T3 T¢, dudt = — / DF(T,VT)-(T,VT) dxdt,
by Q Q
and
1. e _ . .
—VpVérdedt+ | —VpV¢,dvdt + [ op§, dxdt
Q 30 Q 30 Q
g2 1
+/ —vp&, dsdt—i—/—vpr dsdt = 0.
) 30 » 30

They hold for all (T, 5) € [L*(H")]?> and, hence, they are nothing else but the
weak formulation of

—06r = k A&y + 16ma0 T* €, — O, F(T,VT) + V - 0,F (T, VT), (3.3a)
2

€ 1

with boundary conditions

n-Vér+alr=n-0,F(T,VT), (3.3¢)
n-Vér+v&r+e%(n-VE, +9E,) =0, (3.3d)

and terminal condition
&r(1) =0. (3.3¢)



Remark 3.3. In the case of the function £}, we have d,F7 = 0, such that the
above equations simplify significantly.

Finally, variations of £ with respect to u in a direction @ yield

<eu(x,u)11, €> = <JU(*T7U):&>7

or
/ —(kat — iu3 w)ér — 4—52u311§ dsdt = —5/(u — Uug)u dsdt
5 30 T 30 L N 5 d .

Since this is true for all @ € L?(0, 1; L*(992)) we end up with a third order algebraic
equation for u

—kalr — %(& +e*&)u* = =6 (u—ug), on 3. (3.4)

4 The Gradient Algorithm

In this section, we present a robust descent algorithm, where the descent direction
is computed via the adjoint variables. We formulate this method in terms of the
continuous variables such that it is independent of a specific discretization which
can be chosen subsequently.

Owing to the fact that the system (1.2) is uniquely solvable [10], we may refor-
mulate the minimization problem (3.1) introducing the reduced cost functional

minimize J(u) o J(z(u),u) over u € Uy (4.1)

where x(u) € X satisfies e(x(u),u) = 0.
Then, a gradient algorithm for the computation of a minimizer of J is given by
Algorithm 1.

1. Set k =0 and choose initial control uy € U.

2. Given uy, compute the gradient d, o Vj(uk)
3. Given 8 >0, set ugy = up — B dg.

4. Set k — k+1 and goto 2.



For the computation of the gradient V.J(u) we employ the adjoint variables, since
from variational calculus we have the identity

~

VJ(u) = Jy(x(u), u) + Jp(x(u), u)x,(u) = J,(x(u),u) + €&

Hence, for one evaluation of the gradient at u € U we have to solve first the
nonlinear state system (1.2) for z(u) € X forward in time and secondly the
linear adjoint system (3.3) for & backward in time. Eventually, we evaluate

4
G (4.2

VJ(u) = —kaép+ 0 (u— ug)

Crucial for the convergence of Algorithm 1 is the choice of the step size § in the
third step. Clearly, the best choice would be the result of a line search

B* = argming., J(u— Bd)

which, unfortunately, is numerically much too expensive although it is a one-
dimensional minimization problem. This is due to the fact that each evaluation
of the cost functional J requires the solution of the nonlinear state system.

To avoid this computational drawback we propose two methods to derive an
appropriate approximation for 8*. The first, purely heuristic approach is

B % min (1, ||d]|2)), (4.3)

and it actually means that we make small steps as long as the gradient is large,
while we switch to the step—length 1 when the gradient is small, i.e. near the
optimal solution. Note, that especially during the first steps we have to expect
very large gradients due to the cubic power of u in (4.2).

The second approximation is based on the linearization of x(u — 3 d) at u, which
yields

z(u—fd) = z(u) — x,(u)(Fd).
Then, we can solve
By = argming., J( z(u) — xy(u)(Bd) , u—pd )

exactly. In fact, this results in an algebraic equation for [.

Remark 4.1. In case of the cost functional J; with p = 2 we get explictely

d 2
P

=, (4.4)
elldls. + llvllg
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where v = (vy,v,) o xy(u)d solves the linear backward system

—Oywr =k Avy + 16moa T? v, — (T — Ty) (4.5a)
—g—; Av, +ov, = —3% Avy (4.5b)
with boundary conditions
n-Vur +avp = ad, (4.5¢)
n-Vur +yuvr +&%(n- Vo, +yv,) = v(16mau’®)d (4.5d)
and terminal condition
vr(l) = 0. (4.5¢)

In fact, independent of the choice of F' the computation of 35 requires the solution
of an additional linear parabolic problem.

Clearly, one could also consider higher order terms in the Taylor expansion. Nev-
ertheless, this would amount in solving additional linear problems, such that it
is numerically cheaper to perform a few more gradient steps.

5 A Nonlinear Iteration Scheme

Another possibility to compute a minimizer of (3.1) is to solve the first-order
optimality system (3.2) directly. To achieve this we propose a nonlinear fixed
point iteration which decouples the equations in an appropriate way. Starting
from an initial guess for u we solve the nonlinear state system for a new state
x = z(u) and then the adjoint system at x and w for £ = &(x,u). Using the
state and the adjoint variable we solve the algebraic equation (3.4) for uyey. The
detailed procedure reads

Algorithm 2.
1. Set k =0 and choose ug € U.

2. Given uy, solve

1
30

1
—623—A<p +op =o(4naT*) in Q,
o

h h
=T VT = —
ok +n \V4 -k U

30 30
2—g<,0—|—n-Vg0: %(47rau§) on X,
T(0,2) =To(z) in Q,
for (T,p) € X.
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3. Given (T, p) corresponding to uy, solve

—0ly — k A&y — 16m0aT? — ¢, = =0, F(T,VT)+V - 9, F(T,VT),

82

1 .
—3—A5p+0P:—3—0A§T in Q,

o
n-Vér+alr=-n-0,F(T,VT),
n-V§T+7§T+€2(n-V§p+7§p):0 , on X,
&(1)=0 , inQ,

for & = (&r,€,) € X*.
4. Given (&1,&,), solve

4
Er+e*&)u* =0 on ¥,

—ka§T+(5(u—ud)—£

Jor ug1.

5. Set k — k+1 and goto 2.

Remark 5.1. If the control v appeared in the system only linearly this iteration
could be easily interpreted as a gradient algorithm with fixed step length 1/0.

Hence, in each iteration step we only have to solve the nonlinear state equations,
the linear adjoint system and an algebraic equation for the update of u. The
advantage of this method lies in the fact that it can be easily implemented in an
existing finite difference or finite element code and that it incorporates more of
the nonlinearity of the problem that arises ;from the generic nonlinearity wrto.
the control variable w.

Remark 5.2. Another possibility is to use the solution @ of step 4 to compute
a descent direction d for the classical descent algorithm via d = v — @. This can
also be interpreted as a damping in Algorithm 2.

6 Numerical Results

This section is devoted to the presentation of numerical experiments assessing
the performance of the various algorithms and to show results which demonstrate
the capability of our approach to minimize local temperature gradients in glass
cooling processes.

For the numerical simulations we first have to discretize the continuous algo-
rithms.

12



6.1 Discretization

Standard finite differences were used for the space discretization of the Laplacian
both for the state and the adjoint system. For simplicity we used a uniform grid
with Az = 0.02. The time derivative was treated in an implicit way using the
forward Euler method with 50 uniform time steps. In the case of our generic
example based on the functional J; with p = 2, we have the following discretized
form of the SP, state system (1.2)

fTinJrl _Tn Tn+1 - zjvinJrl + ijn_Jil N ianrl - zanrl + pznjll

U i+1 i+l ¢ 6.1
At Ag? 30 Ag? ’ (6.1a)
1o =200 + o) n n)4
_823_0 : Ax? +opi " = o 4ma(T}) (6.1b)
and the corresponding discretization of the adjoint equations (3.3) reads
n+1 n n+1 n+1 n+1
Ti — fT,i 5T,i+1 - 25T,i + 5T,z>1 3
A " A + 167ac (T71) 7 — (17 = T3,
(6.2a)
EGM T HGE | VO 2 HEEo
30 Ag? P 3o Ag? ' '

Furthermore, note that the third order algebraic equation (3.4) for the control «,
which occurs in the first order optimality system in the form

p3u® + pru+ py = 0,

in general has multiple real roots. Cardano’s formula was used to determine their
numerical values and in the case of non-uniqueness the ambiguity was resolved
by choosing the root that lay in the acceptable range of ambient temperatures
between 300 K and 1000 K. Numerical experiments indicated that this heuristics
was appropriate in our context and could make the solution unique.

The physical parameters appearing in the equations above had the following
values in our numerical experiments. Heat conductivity £ and opacity o were

€ o k a
1.0 1.0 1.0 1.806-10"8

assumed to be constant wrto. space and time.

6.2 Comparison of the Functionals

In order to assess which functional is the best model for the optimization criteria
described in Section 1 we evaluated the results of the gradient-descent algorithm.
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Besides the reduction of the functional, we focus in particular on the value of the
sup—norm of the temperature gradients, which is the crucial quantity in applica-
tions.

| 1 =057 — Ty |

5 [ 7 Tlu—udly [ 17 —Tala] V7T, | V71
— 249.3 — 22.33 8.173 153.7
5.00 236.4 1.251 21.56 8.196 151.7
1.00 200.7 5.054 19.39 8.337 145.6
0.50 174.5 8.236 17.75 8.556 140.2
0.10 110.2 18.77 13.61 10.09 126.8
0.05 88.97 24.17 12.20 11.31 143.8
| F=05|VT] |
5 [ 7 Tlu—ualy [ 17 —Zal| V7T, | V71
— 33.40 — 22.33 8.173 153.7
5.00 33.16 0.172 22.32 8.134 153.7
1.00 32.21 0.833 22.28 7.983 154.0
0.50 31.17 1.594 22.26 7.815 154.3
0.10 25.43 6.108 22.32 6.865 157.0
0.05 21.66 9.593 22.66 6.222 160.3
‘ Fs=F+F ‘
0 J [ —wally | 1T = Tall,| [[VTll, | [[VT]l,
— 282.7 — 22.33 8.173 153.7
5.00 269.8 1.276 21.56 8.158 151.8
1.00 234.9 5.075 19.43 8.164 145.9
0.50 210.6 8.118 17.90 8.238 141.0
0.10 159.6 16.71 14.58 8.874 126.5
0.05 147.1 19.84 13.73 9.277 121.1

Table 1: Reduction of the value of the functionals .J;, J5, J3

o From Table 1 it can be seen that .J; and the difference T' — T, are significantly
diminished when ¢ is decreased. At the beginning this is true for the L>*-norm of
VT but it tends to increase again when § < 0.1. We explain this by the fact that
the control temperature u had values below room temperature in which is not
sensible from an engineering point view. As a result, gradients at the boundary
become very large due to the large difference between the temperature in the
exterior and the interior. Although functional J, effectively reduces the L?-norm
of the gradient we observe that, in contrast, the corresponding maximum norm
increases. And, lastly, the third functional, which incorporates both terms, is seen

14
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Figure 1: Optimal boundary control u for functional J;. The weight of the control
was o = 0.05.

to result in decreasing norms of the difference while the 2-norms of the gradient
increase when 0 becomes smaller. The overall value of the functional, however, is
continuously decreased as expected. It should be highlighted that although the
2-norm of the gradient becomes larger the maximum norm shows the opposite
behaviour. We, therefore, believe that J3 is the best choice among the three
functionals under consideration here. The experiments below were done using
this functional. The computed cooling profile can be found in Figure 1 and the
corresponding distribution of [VT'| is given in Figure 4, where one also finds the
uncontrolled state for reference. Note that at a first glance the region with large
gradients seems broader, but it has to be observed that the controlled profile has
already reached a smaller end temperature (see Figure 3).

6.3 Effect of Higher Order L’-Norms

As already mentioned in Section 2, the maximum norm of the gradient would be
the most appropriate norm for measuring local temperature gradients. But this
is mathematically much more difficult since the standard Lagrange formalism is
no more applicable. Norms of order p > 2, however, could be a compromise
as they might better emulate the maximum norm while avoiding these technical
problems. Therefore, it is interesting to ascertain whether they can give better
results.
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| F= [T —T.7 + V] |

0 [10°] || J[10°) | [Ju—wally | |7 =Tall, | [IVTlly | VT,
- 2.422 - 55.09 26.32 153.7
100 2.307 0.815 54.18 26.26 152.0
10 1.756 5.406 49.44 26.08 143.1
1 0.879 17.70 39.59 25.62 121.6
0.1 0.565 27.08 35.40 27.18 108.5

| F=lr-1,f+1|vrF |

5 [102] | J (107 [ llu—wall, [T — Tally | NI, | V71,
— 812.3 — 94.56 56.74 153.7
10 605.9 2.661 90.41 56.16 148.3
1 288.6 9.336 81.11 55.30 135.7
0.1 92.6 19.63 69.32 51.92 120.0

0.01 40.4 26.45 63.08 50.81 111.4
0.001 34.9 27.40 62.35 51.22 110.7

| F=LlT-1y°+ L |Vl

5 T10™] | J [10°) | u—uall, | IT —Tulg] V71, | IVTI

16 ‘

— 366.7 — 129.0 89.44 153.7
10 269.5 1.450 126.2 88.45 150.8
1 127.1 4.896 119.9 86.56 144.2
0.1 45.5 9.419 112.4 83.77 136.5
0.01 20.0 12.86 107.2 81.32 132.1
0.001 15.6 13.83 105.7 80.67 130.8

Table 2: Reduction of J3 for higher order LP-norms with p = 4, 8 and 16.

Table 2 reveals in the cases p = 4 and p = 8 that the sup—norm of the temperature
gradient could be reduced even more than in the case p = 2 (see Table 1). The
reduction obtained here is approximately 30% of the value without optimization
compared with 20% in the case p = 2. Figure 2 shows the proposed profile of u
for p = 8 after optimization with § = 10° and the distribution of VT is given in
Figure 5. Increasing the order of p did not seem to result in further improvements
because for p = 16 the gain was lower than in the previous cases. When it is
necessary to use higher order norms it seems to be a good choice to use p = 4 or
8 for the LP-norms in the functional.
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Figure 2: Optimal boundary control u for functional J; with p = 8. Weight of
the control: 6 = 10°.

6.4 Performance of Different Algorithms

We consider the gradient—descent Algorithm 1 from Section 4 with the two step
size choices (4.3) and (4.4)

by = min (LIS, e — s
1B+ ol

where d = V.J and v is the solution of (4.5). Furthermore, the nonlinear iteration
of Algorithm 2 is taken into account. And finally, we investigate the behaviour of
a hybrid method which uses the direction d = u — u as descent direction instead
of the gradient, where u is the control coming from the third order equation

4
(r+e*)u> =0 onX

_ka£T+5(a_Ud)_3_0'

in step 4 of Algorithm 2 of the adjoint method. In our numerical experiments
we used the functional J; with the step profile uy as before. The iteration was
terminated when the update for u was < 0.01 uniformly for all discrete times.

As can be seen in Table 3, the heuristic approach performs very well while the
linear method using the step size 5 needs significantly more iterations. This is
due to the fact that the proposed step sizes were in general rather small which
indicates that this approach underestimates the true step size. Nevertheless,
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Figure 3: End temperatures at ¢t = 7 without optimization and with optimization
using J3 for p = 2(6 = 0.05), p = 4(6 = 100) and p = 8(6 = 10?), respectively

‘ 4] H heuristic ‘ linear ‘ nonlinear ‘ hybrid ‘
1.00 8 37 7 34
0.75 4 44 9 50
0.50 7 55 17 63
0.25 13 68 - 90
0.10 26 73 - 134

Table 3: Number of iterations needed by different algorithms.

underestimation at least does not affect the overall global convergence of the
algorithm. The nonlinear iteration scheme gives similar performance, when the
number of iterations is concerned, as the heuristic approach but it fails to work
when ¢ becomes smaller. This can be understood by the fact that the contrac-
tivity of the fixed point mapping defined by Algorithm 2 is violated for small
0. To overcome this problem we finally considered a hybrid method, which is a
damped version of Algorithm 2 where the damping parameter is computed via
(4.4). This method converges slowly and does not seem to be competitive. Nu-
merical experiments indicate that in some cases the scalar product (u — 4, v.J )
can oscillate between negative and positive values such that © — % is in general
not guaranteed to be a descent direction.
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7 Conclusions

We studied an optimal boundary control problem for glass cooling processes with
the aim to minimize thermal stresses which strongly correlate with local temper-
ature gradients. Allowing for general cost functionals we embedded this problem
into the setting of general constrained optimization problems and derived the first
order optimality system. For the numerical solution we proposed two algorithms
based on adjoint variables, i.e. a gradient—descent method and a nonlinear it-
eration scheme. The performance of the algorithms was tested for the optimal
cooling of a glass slab and, in particular, different step size rules were considered.

In fact, the gradient algorithm with a heuristic step size rule proved to be very
robust, performed most successfully and yielded a significant reduction of the
local temperature gradients of approximately 30%. We emphasize that the adjoint
approach can be easily adopted for higher dimensional problems and also allows
for the direct computation of the sensitivities of this problem.

Future work will focus on better approximations of the radiative heat transfer
equation, e.g. frequency dependence [8] or the SP; system [9], and more sophis-
ticated second order optimization algorithms, which may better resolve the high
nonlinearity in this problem. This will be essential to keep computing times low
in the three dimensional case.
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Figure 4: Spatial and temporal distribution of || V7|, without optimization and
with optimization using J3 for p = 2(6 = 0.05)
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Gradients of T (after optimization)
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Figure 5: Spatial and temporal distribution of || V7|, with optimization using
Js for p = 4(6 = 100) and p = 8(6 = 10?)
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