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Abstrat

An optimal ontrol problem for glass ooling proesses is onsidered.

We model glass ooling using the SP

1

approximations to the radiative

heat transfer equations. The ontrol variable is the temperature at the

boundary of the domain. This results in a boundary ontrol problem for

a paraboli/ellipti system whih is treated by a onstrained optimization

approah. We onsider several ost funtionals of traking type, de�ne the

orresponding Lagrange funtionals and derive the �rst-order optimality

system. We investigate several numerial methods based on the adjoint

variables and present results of numerial simulations illustrating the fea-

sibility and performane of the di�erent approahes.
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1 Introdution

In glass manufaturing, a hot melt of glass is ooled down to room temperature.

During ooling, large temperature di�erenes i.e. large gradients have to be

avoided sine they lead to thermal stress in the material. This may ause raks

or, in the ase of high quality glass, a�et the quality of the resulting produt or
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devie. Hene, the proess has to be managed in suh a way that temperature

gradients are suÆiently small [1℄. The main goal of the optimal ontrol problem

that we investigate in this paper is to minimize these gradients. Besides, further

riteria may be of interest in pratie. In order to redue energy onsumption

the surrounding temperature should be small and it should be redued as fast

as possible to room temperature [11℄. It may be noted that, in partiular, fast

ooling and small gradients are oniting goals where automated ontrol an

support or even improve proedures based on experiene and heuristis. These

subordinate riteria an be inluded in our model as well.

In order to model glass ooling we onsider for notational simpliity a frequeny

independent, grey model without sattering. Stated on a bounded spatial domain


 � R

d

, d = 1; 2 or 3, the saled ondutive radiative heat transfer equations

read [9℄

"

2

�T

�t

= "

2

r � krT �

Z

S

2

�(B � I) d! (1.1a)

8! 2 S

2

: "! � rI = �(B � I): (1.1b)

Ingoing radiation is presribed by transparent boundary onditions

I(x; t; !) = I

b

(x; t; !); n � ! < 0; (1.1)

and temperature is assumed to obey Robin-type boundary onditions

h

"k

T + n � rT =

h

"k

T

b

; (1.1d)

At initial time t = 0, the temperature is T (x; 0) = T

0

(x). In these equations,

I(x; t; !) denotes the spei� radiation intensity at point x 2 
 traveling in

diretion ! 2 S

2

at time t � 0. The outside radiation I

b

is assumed to be

known for the ingoing diretions (i.e. n � ! < 0) on the boundary. We denote

the outward normal on �
 by n. Furthermore, T (x; t) denotes the material

temperature and T

b

is the exterior temperature on the boundary. The equations

ontain the parameters opaity �(�), heat ondutivity k and onvetive heat

transfer oeÆient h, whih are assumed to be onstant. Moreover, B denotes

Plank's funtion

B(�; T ) =

2h

P

�
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for blak body radiation in glass, whih involves Plank's onstant h

P

, Boltz-

mann's onstant k

B

and the speed of light in vauum .

This form of the model is muh too omplex for optimization purposes due to

the dependene on the diretion ! 2 S

2

. A simple solve for the state system

i.e. a oupled system of a heat equation and a radiative transfer equation would
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already need a large amount of omputing time. Instead, we use the di�usion{

type SP

N

approximations [5, 9℄ to the radiative heat transfer equations. These

approximations have reently been investigated by one of the authors. They

perform well in the di�usive, optially thik regime [7℄ where " is small. But

also for " � 1 they perform better than the widely{used, standard Rosseland

approximation [6℄. We therefore hose the simplest approximation of this lass

for simulating the temperature evolution during the annealing of a glass slab.

The SP

1

approximation to the radiative heat transfer equations is the system

�T

�t

= k�T +

1

3�

��; (1.2a)

�"

2

1

3�

�� + �� = �(4�aT

4

); (1.2b)

with Robin{type boundary onditions at the boundary

h

"k

T + n � rT =

h

"k

u; (1.2)

3�

2"

�+ n � r� =

3�

2"

(4�au

4

); (1.2d)

and an initial ondition T (0; x) = T

0

(x) for the temperature. Here, � is the

radiative ux and the presribed temperature at the boundary is from now on

denoted by u, in aordane with the ontrol theory literature. In fat, the evo-

lution of the temperature T an only be ontrolled via u. There are several

physial parameters and onstants, namely the heat ondutivity k, the onve-

tive heat transfer oeÆient h, the opaity � and Stefan{Boltzmann's onstant

a. The above system is a heat equation for T with a soure term depending on

the radiation. Glass at temperature T emits frequeny-dependent radiation that

is proportional to blak body radiation. Integrating wrto. frequeny we obtain

the total thermal radiation B(T ) = aT

4

aording to Stefan's law. It appears on

the right side of the ux equation (1.2b) and in the boundary ondition (1.2d) in

terms of T and u, respetively.

We intend to minimize ost funtionals of traking type having the form

J = J(T; �; u) =

1

p

Z

1

0

krTk

p

L

p

(
)

dt+

1

p

Z

1

0

kT � T

d

k

p

L

p

(
)

dt

+

Æ

2

Z

1

0

ku� u

d

k

2

L

2

(�
)

dt;

where (T; �) solves (1.2) and the time is also saled to the unit interval (0; 1).

Here, T

d

= T

d

(t; x) is a spei�ed temperature pro�le and u

d

= u

d

(t; x) is a given

ontrol of the ambient temperature whih shall be optimized. The ontrol variable

u appears in the ost funtional as a term penalizing large deviations from u

d

.
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Typially, suh a pro�le is given by engineers. It follows a ertain path in time

whih is essential in order to ahieve the desired material properties of the glass.

Sine these are not yet taken into aount in our model, we enfore them via this

traking type penalization. Furthermore, the positive onstant Æ allows to adjust

the weight of the penalty term.

We onsider the optimal ontrol problem as a onstrained optimization problem

[3, 2, 4℄ and derive the orresponding �rst{order optimality system via the La-

grange funtional. For the omputation of the optimal ontrol u we present two

algorithms relying on the adjoint variables. These tehniques were suessfully

used in many ontrol problems in uid ow, see e.g. [2, 4℄ and the referenes

therein. The advantage of this approah is threefold:

� Compared to �nite di�erenes for the omputation of diretional derivatives

of the redued ost funtional the numerial e�ort is kept onstant also for

an inreasing number of disrete design variables.

� It an be easily adopted to di�erent ost funtionals.

� Numerial methods an be formulated on the ontinuous level and the sub-

sequent disretization remains free.

Nevertheless, the optimal boundary ontrol problem in this paper poses new

hallenging diÆulties, mathematially and numerially. First, there is a fourth{

order algebrai nonlinearity in T . Seondly, the SP

1

system is inde�nite and,

thirdly, the ontrol enters the equations in a genuinely nonlinear way as u and

u

4

.

Hene, the �rst method we propose is a stable variable step{length desent algo-

rithm, where the gradient is omputed via the adjoint variables, while the seond

diretly solves the �rst{order optimality system via a nonlinear iteration sheme.

In partiular, for the desent algorithm we intensively investigate the hoie of an

appropriate step{length. This step is ruial for the performane of the algorithm

and nonstandard owing to the nonlinearity in the ontrol.

The paper is organized as follows. In Setion 2, we de�ne the ost funtionals and

in Setion 3 the �rst{order optimality system is derived. The gradient-desent

algorithm is disussed in Setion 4 and a nonlinear iteration sheme is outlined

in Setion 5. Finally, various numerial experiments showing the performane of

our approah are presented in Setion 6 and onluding remarks an be found in

Setion 7.

2 De�nition of the Funtionals

We want to ontrol the temperature pro�le suh that the loal temperature gra-

dients are minimized. As we an only inuene the outside temperature u we
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use this parameter as ontrol variable. We onsider various ost funtionals of

traking{type whih have the general form

J = J(T; u) =

Z

1

0

Z




F (T;rT ) dxdt+

Æ

2

Z

1

0

ku� u

d

k

2

L

2

(�
)

dt; (2.1)

where F : R

2

! R

+

0

is a nonnegative, di�erentiable funtion, e.g.

F

1

(T;rT ) = jT � T

d

j

p

; (2.2a)

F

2

(T;rT ) = jrT j

p

; (2.2b)

or

F

3

(T;rT ) = F

1

+ F

2

: (2.2)

Here, T

d

is a given desired temperature pro�le and u is the ontrol parameter, i.e.

the outside temperature. Further, u

d

desribes a given initial outer temperature

pro�le at the boundary, whih represents the status quo, sine the outside tem-

perature has to follow a ertain path to ensure ertain quality onstraints of the

glass. The onstant Æ is a positive parameter whih allows to adjust the weight

of the ost and the observation. We hoose p 2 (1;1) aording to engineering

spei�ations. Clearly, in order to inorporate more sophistiated stress mod-

els di�erent funtions F ould be onstruted, whih might depend in a highly

nonlinear manner on T and rT .

Naturally, onsidering the funtion F

2

will minimize the gradients in the temper-

ature pro�le T , but also F

1

an yield this e�et as T

d

an be hosen onstant in

spae. The larger p the smaller will be the di�erene T � T

d

, uniformly in spae,

too. Finally, F

3

ombines these two e�ets. Note, that we want to follow the

Lagrange formalism suh that the hoie p = 1 is not possible. Moreover, it is

not lear from an analytial point of view wether boundedness of rT in (0; 1)�


an be expet for omplex domains 
.

We onsider the optimal boundary ontrol problem as a onstrained optimiza-

tion problem, where the ost funtional (2.1) is minimized with respet to the

onstraint given by system (1.2), i.e.

minimize J(T; u) wrto. u; (2.3)

subjet to system (1.2):

There exist various ways for the omputation of a minimizer of (2.3). In this pa-

per, we address the problem via the adjoint approah. To this purpose we derive

in the next setion the �rst{order optimality system in a systemati manner.
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3 The First{order Optimality System

To derive the �rst{order optimality system we embed the minimization problem

(2.3) in a preise analytial setting.

Given a Hilbert spae H, let L

2

(H) = L

2

(0; 1; H) onsist of all measurable fun-

tions v : (0; 1) ! H suh that

R

1

0

kv(t)k

2

L

2

(
)

dt is bounded. For notational

onveniene we de�ne

Q

def

= (0; 1)� 
;

�

def

= (0; 1)� �


X

def

= [L

2

(0; 1;H

1

(
))℄

2

U

def

= L

2

(0; 1;L

2

(�
));

where X is the spae of states x

def

= (T; �) and U the spae of ontrols and set

� =

h

" k

;  =

3�

2"

:

Then, the weak formulation of (1.2) reads: Find (T; �) 2 [L

2

(H

1

)℄

2

with T

t

2

L

2

(H

�1

) and T (0; x) = T

0

(x) in L

2

(
) suh that

he

1

(T; �; u); �

T

i

def

=

Z

1

0

hT

t

; �

T

i dt+

Z

Q

krT r�

T

dxdt+

Z

Q

1

3�

r�r�

T

dxdt

+

Z

�

k �(T � u)�

T

dsdt+

Z

�

1

3�

(�� 4�au

4

)�

T

dsdt = 0

and

he

2

(T; �; u); �

�

i

def

=

Z

Q

"

2

3�

r�r�

�

dxdt+

Z

Q

(��� 4��a T

4

)�

�

dxdt

+

Z

�

"

2

3�

(�� 4�au

4

)�

�

dsdt = 0

for all (�

T

; �

�

) 2 [L

2

(H

1

)℄

2

.

De�ning the operator e

def

= (e

1

; e

2

) we an write this shortly as:

Find (T; �) 2 [L

2

(H

1

)℄

2

with T

t

2 L

2

(H

�1

) and T (0; x) = T

0

(x) in L

2

(
) suh

that

he(T; �); (�

T

; �

�

)i = 0

for all (�

T

; �

�

) 2 [L

2

(H

1

)℄

2

, where h�; �i denotes the anonial dual pairing.
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Sine we only onsider ontrols u 2 L

2

(�) we will restrit u to the set of admissible

ontrols

U

ad

def

= fu 2 U : u � u � ug ;

where 0 < u < u. On the one hand, this is physially reasonable sine the outside

temperature is ontrolled via a furnae whih an be operated only in a limited

temperature range. On the other hand, this restrition ensures the existene of

an optimal ontrol u 2 U (see [10℄).

Remark 3.1. Alternatively, we an seek the ontrol in a Hilbert spae with more

regularity whih would require to add some tehnial terms to the ost funtional

suh that ompatness arguments hold for the minimizing sequene [10℄.

Now the preise statement of the onstrained optimization problem reads

minimize J(x; u) over (x; u) 2 X � U

ad

(3.1)

subjet to e(x; u) = 0:

Let X

�

be the dual spae of X. The Lagrangian L : X �U �X

�

! R assoiated

to (3.1) is de�ned by

L(x; u; �)

def

= J(x; u) + he(x; u); �i ;

or, more expliitly,

L(x; u; �) = J(x; u) +

Z

1

0

< �

t

T; �

T

>

H

�1

;H

1

dt+

Z

Q

krTr�

T

dx dt

+

Z

�

k� (T � u)�

T

ds dt+

Z

Q

1

3�

r�r�

T

dx dt

+

Z

�

1

3�

(�� 4�au

4

)�

T

ds dt+

Z

Q

"

2

3�

r�r�

�

dx dt

+

Z

Q

�(�� 4�a T

4

)�

�

dx dt+

Z

�

"

2

3�

(�� 4�au

4

)�

'

ds dt:

where �

def

= (�

T

; �

T

) 2 X

�

denotes the Lagrange{multiplier or the adjoint variable.

Then the �rst{order optimality system orresponding to (2.3) formally reads

r

(x;u;�)

L(x; u; �) = 0: (3.2)

Remark 3.2. Corresponding to (3.1) the equation r

u

L = 0 has to be replaed

by the inequality r

u

L � � 0 for all � 2 X

�

.
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In the following, we want to rewrite this equation in a more onise form. Taking

variations of L with respet to the adjoint variable � 2 X

�

yields again the state

system

given u 2 U : e(x; u) = 0; in X:

Seondly, taking variations of L with respet to the state variable x 2 X we

derive the adjoint system

given (x; u) 2 U �X : e

�

x

(x; u)� = �J

x

(x; u); in X

�

or, equivalently,

8~x 2 X : he

x

(x; u)~x; �i = �hJ

x

(x; u); ~xi :

Here, e

�

x

(x; u)� denotes the adjoint of the linearization of e at (x; u) in the dire-

tion �. We have the spei� equations

Z

1

0

< �

t

~

T ; �

T

>

H

�1

;H

1

dt+

Z

Q

kr

~

T r�

T

dxdt

+

Z

�

k �

~

T �

T

dsdt�

Z

Q

16��a T

3

~

T�

�

dxdt = �

Z

Q

DF (T;rT ) � (

~

T ;r

~

T ) dxdt;

and

Z

Q

1

3�

r~�r�

T

dxdt+

Z

Q

"

2

3�

r~�r�

�

dxdt+

Z

Q

�~��

�

dxdt

+

Z

�

"

2

3�

 ~� �

�

dsdt+

Z

�

1

3�

 ~� �

T

dsdt = 0:

They hold for all (

~

T ; ~�) 2 [L

2

(H

1

)℄

2

and, hene, they are nothing else but the

weak formulation of

��

t

�

T

= k��

T

+ 16�a� T

3

�

�

� �

1

F (T;rT ) +r � �

2

F (T;rT ); (3.3a)

�

"

2

3�

��

�

+ � � =

1

3�

��

T

; (3.3b)

with boundary onditions

n � r�

T

+ � �

T

= n � �

2

F (T;rT ); (3.3)

n � r�

T

+  �

T

+ "

2

(n � r�

�

+  �

�

) = 0; (3.3d)

and terminal ondition

�

T

(1) = 0: (3.3e)
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Remark 3.3. In the ase of the funtion F

1

, we have �

2

F

1

= 0, suh that the

above equations simplify signi�antly.

Finally, variations of L with respet to u in a diretion ~u yield

he

u

(x; u)~u; �i = hJ

u

(x; u); ~ui ;

or

Z

�

�(k� ~u�

4

3�

u

3

~u)�

T

�

4"

2

3�

u

3

~u �

�

dsdt = �Æ

Z

�

(u� u

d

)~u dsdt:

Sine this is true for all ~u 2 L

2

(0; 1;L

2

(�
)) we end up with a third order algebrai

equation for u

�k� �

T

�

4

3�

(�

T

+ "

2

�

�

)u

3

= �Æ (u� u

d

); on �: (3.4)

4 The Gradient Algorithm

In this setion, we present a robust desent algorithm, where the desent diretion

is omputed via the adjoint variables. We formulate this method in terms of the

ontinuous variables suh that it is independent of a spei� disretization whih

an be hosen subsequently.

Owing to the fat that the system (1.2) is uniquely solvable [10℄, we may refor-

mulate the minimization problem (3.1) introduing the redued ost funtional

minimize

^

J(u)

def

= J(x(u); u) over u 2 U

ad

(4.1)

where x(u) 2 X satis�es e(x(u); u) = 0:

Then, a gradient algorithm for the omputation of a minimizer of

^

J is given by

Algorithm 1.

1. Set k = 0 and hoose initial ontrol u

0

2 U .

2. Given u

k

, ompute the gradient d

k

def

= r

^

J(u

k

).

3. Given � > 0, set u

k+1

= u

k

� � d

k

.

4. Set k ! k + 1 and goto 2.

9



For the omputation of the gradient r

^

J(u) we employ the adjoint variables, sine

from variational alulus we have the identity

r

^

J(u) = J

u

(x(u); u) + J

x

(x(u); u)x

u

(u) = J

u

(x(u); u) + e

�

u

�:

Hene, for one evaluation of the gradient at u 2 U we have to solve �rst the

nonlinear state system (1.2) for x(u) 2 X forward in time and seondly the

linear adjoint system (3.3) for � bakward in time. Eventually, we evaluate

r

^

J(u) = �k� �

T

+ Æ (u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)u

3

(4.2)

Cruial for the onvergene of Algorithm 1 is the hoie of the step size � in the

third step. Clearly, the best hoie would be the result of a line searh

�

�

= argmin

�>0

^

J(u� � d)

whih, unfortunately, is numerially muh too expensive although it is a one-

dimensional minimization problem. This is due to the fat that eah evaluation

of the ost funtional

^

J requires the solution of the nonlinear state system.

To avoid this omputational drawbak we propose two methods to derive an

appropriate approximation for �

�

. The �rst, purely heuristi approah is

�

1

def

= min

�

1; kdk

�1

1

�

; (4.3)

and it atually means that we make small steps as long as the gradient is large,

while we swith to the step{length 1 when the gradient is small, i.e. near the

optimal solution. Note, that espeially during the �rst steps we have to expet

very large gradients due to the ubi power of u in (4.2).

The seond approximation is based on the linearization of x(u� � d) at u, whih

yields

x(u� � d) � x(u)� x

u

(u)(� d):

Then, we an solve

�

2

= argmin

�>0

J

�

x(u)� x

u

(u)(� d) ; u� � d

�

exatly. In fat, this results in an algebrai equation for �.

Remark 4.1. In ase of the ost funtional J

1

with p = 2 we get explitely

�

2

=

kdk

2

�

" kdk

2

�

+ kvk

2

Q

; (4.4)
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where v = (v

T

; v

�

)

def

= x

u

(u)d solves the linear bakward system

��

t

v

T

= k�v

T

+ 16��a T

3

v

�

� (T � T

d

) (4.5a)

�

"

2

3�

�v

�

+ � v

�

= �

1

3�

�v

T

(4.5b)

with boundary onditions

n � rv

T

+ � v

T

= � d; (4.5)

n � rv

T

+  v

T

+ "

2

(n � rv

�

+  v

�

) = (16�au

3

)d (4.5d)

and terminal ondition

v

T

(1) = 0: (4.5e)

In fat, independent of the hoie of F the omputation of �

2

requires the solution

of an additional linear paraboli problem.

Clearly, one ould also onsider higher order terms in the Taylor expansion. Nev-

ertheless, this would amount in solving additional linear problems, suh that it

is numerially heaper to perform a few more gradient steps.

5 A Nonlinear Iteration Sheme

Another possibility to ompute a minimizer of (3.1) is to solve the �rst{order

optimality system (3.2) diretly. To ahieve this we propose a nonlinear �xed

point iteration whih deouples the equations in an appropriate way. Starting

from an initial guess for u we solve the nonlinear state system for a new state

x = x(u) and then the adjoint system at x and u for � = �(x; u). Using the

state and the adjoint variable we solve the algebrai equation (3.4) for u

new

. The

detailed proedure reads

Algorithm 2.

1. Set k = 0 and hoose u

0

2 U .

2. Given u

k

, solve

�

t

T = k�T +

1

3�

�';

�"

2

1

3�

�'+ �' = �(4�aT

4

) in Q;

h

"k

T + n � rT =

h

"k

u

k

;

3�

2"

'+ n � r' =

3�

2"

(4�a u

4

k

) on �;

T (0; x) = T

0

(x) in 
;

for (T; �) 2 X.
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3. Given (T; �) orresponding to u

k

, solve

��

t

�

T

� k��

T

� 16��a T

3

� �

�

= ��

1

F (T;rT ) +r � �

2

F (T;rT );

�

"

2

3�

��

�

+ � � = �

1

3�

��

T

in Q;

n � r�

T

+ � �

T

= �n � �

2

F (T;rT );

n � r�

T

+  �

T

+ "

2

(n � r�

�

+  �

�

) = 0 ; on �;

�

T

(1) = 0 ; in 
;

for � = (�

T

; �

�

) 2 X

�

.

4. Given (�

T

; �

�

), solve

�k� �

T

+ Æ (u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)u

3

= 0 on �;

for u

k+1

.

5. Set k ! k + 1 and goto 2.

Remark 5.1. If the ontrol u appeared in the system only linearly this iteration

ould be easily interpreted as a gradient algorithm with �xed step length 1=Æ.

Hene, in eah iteration step we only have to solve the nonlinear state equations,

the linear adjoint system and an algebrai equation for the update of u. The

advantage of this method lies in the fat that it an be easily implemented in an

existing �nite di�erene or �nite element ode and that it inorporates more of

the nonlinearity of the problem that arises >from the generi nonlinearity wrto.

the ontrol variable u.

Remark 5.2. Another possibility is to use the solution �u of step 4 to ompute

a desent diretion d for the lassial desent algorithm via d = u� �u. This an

also be interpreted as a damping in Algorithm 2.

6 Numerial Results

This setion is devoted to the presentation of numerial experiments assessing

the performane of the various algorithms and to show results whih demonstrate

the apability of our approah to minimize loal temperature gradients in glass

ooling proesses.

For the numerial simulations we �rst have to disretize the ontinuous algo-

rithms.

12



6.1 Disretization

Standard �nite di�erenes were used for the spae disretization of the Laplaian

both for the state and the adjoint system. For simpliity we used a uniform grid

with �x = 0:02. The time derivative was treated in an impliit way using the

forward Euler method with 50 uniform time steps. In the ase of our generi

example based on the funtional J

1

with p = 2, we have the following disretized

form of the SP

1

state system (1.2)

T

n+1

i

� T

n

i

�t

= k

T

n+1

i+1

� 2T

n+1

i

+ T

n+1

i�1

�x

2

+

1

3�

�

n+1

i+1

� 2�

n+1

i

+ �

n+1

i�1

�x

2

; (6.1a)

�"

2

1

3�

�

n+1

i+1

� 2�

n+1

i

+ �

n+1

i�1

�x

2

+ ��

n+1

i

= � 4�a

�

T

n

i

�

4

; (6.1b)

and the orresponding disretization of the adjoint equations (3.3) reads

�

�

n+1

T;i

� �

n

T;i

�t

= k

�

n+1

T;i+1

� 2�

n+1

T;i

+ �

n+1

T;i�1

�x

2

+ 16�a�

�

T

n+1

i

�

3

�

n+1

�;i

� (T

n+1

i

� T

n+1

d;i

);

(6.2a)

�

"

2

3�

�

n+1

�;i+1

� 2�

n+1

�;i

+ �

n+1

�;i�1

�x

2

+ � �

n+1

�;i

=

1

3�

�

n+1

T;i+1

� 2�

n+1

T;i

+ �

n+1

T;i�1

�x

2

: (6.2b)

Furthermore, note that the third order algebrai equation (3.4) for the ontrol u,

whih ours in the �rst order optimality system in the form

p

3

u

3

+ p

1

u+ p

0

= 0;

in general has multiple real roots. Cardano's formula was used to determine their

numerial values and in the ase of non-uniqueness the ambiguity was resolved

by hoosing the root that lay in the aeptable range of ambient temperatures

between 300K and 1000K. Numerial experiments indiated that this heuristis

was appropriate in our ontext and ould make the solution unique.

The physial parameters appearing in the equations above had the following

values in our numerial experiments. Heat ondutivity k and opaity � were

" � k a

1:0 1:0 1:0 1:806 � 10

�8

assumed to be onstant wrto. spae and time.

6.2 Comparison of the Funtionals

In order to assess whih funtional is the best model for the optimization riteria

desribed in Setion 1 we evaluated the results of the gradient-desent algorithm.
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Besides the redution of the funtional, we fous in partiular on the value of the

sup{norm of the temperature gradients, whih is the ruial quantity in applia-

tions.

F

1

= 0:5 jT � T

d

j

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 249:3 � 22:33 8:173 153:7

5:00 236:4 1:251 21:56 8:196 151:7

1:00 200:7 5:054 19:39 8:337 145:6

0:50 174:5 8:236 17:75 8:556 140:2

0:10 110:2 18:77 13:61 10:09 126:8

0:05 88:97 24:17 12:20 11:31 143:8

F

2

= 0:5 jrT j

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 33:40 � 22:33 8:173 153:7

5:00 33:16 0:172 22:32 8:134 153:7

1:00 32:21 0:833 22:28 7:983 154:0

0:50 31:17 1:594 22:26 7:815 154:3

0:10 25:43 6:108 22:32 6:865 157:0

0:05 21:66 9:593 22:66 6:222 160:3

F

3

= F

1

+ F

2

Æ J ku� u

d

k

2

kT � T

d

k

2

krTk

2

krTk

1

� 282:7 � 22:33 8:173 153:7

5:00 269:8 1:276 21:56 8:158 151:8

1:00 234:9 5:075 19:43 8:164 145:9

0:50 210:6 8:118 17:90 8:238 141:0

0:10 159:6 16:71 14:58 8:874 126:5

0:05 147:1 19:84 13:73 9:277 121:1

Table 1: Redution of the value of the funtionals J

1

; J

2

; J

3

>From Table 1 it an be seen that J

1

and the di�erene T � T

d

are signi�antly

diminished when Æ is dereased. At the beginning this is true for the L

1

{norm of

rT but it tends to inrease again when Æ < 0:1. We explain this by the fat that

the ontrol temperature u had values below room temperature in whih is not

sensible from an engineering point view. As a result, gradients at the boundary

beome very large due to the large di�erene between the temperature in the

exterior and the interior. Although funtional J

2

e�etively redues the L

2

-norm

of the gradient we observe that, in ontrast, the orresponding maximum norm

inreases. And, lastly, the third funtional, whih inorporates both terms, is seen
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Figure 1: Optimal boundary ontrol u for funtional J

3

. The weight of the ontrol

was Æ = 0:05.

to result in dereasing norms of the di�erene while the 2-norms of the gradient

inrease when Æ beomes smaller. The overall value of the funtional, however, is

ontinuously dereased as expeted. It should be highlighted that although the

2-norm of the gradient beomes larger the maximum norm shows the opposite

behaviour. We, therefore, believe that J

3

is the best hoie among the three

funtionals under onsideration here. The experiments below were done using

this funtional. The omputed ooling pro�le an be found in Figure 1 and the

orresponding distribution of jrT j is given in Figure 4, where one also �nds the

unontrolled state for referene. Note that at a �rst glane the region with large

gradients seems broader, but it has to be observed that the ontrolled pro�le has

already reahed a smaller end temperature (see Figure 3).

6.3 E�et of Higher Order L

p

{Norms

As already mentioned in Setion 2, the maximum norm of the gradient would be

the most appropriate norm for measuring loal temperature gradients. But this

is mathematially muh more diÆult sine the standard Lagrange formalism is

no more appliable. Norms of order p > 2, however, ould be a ompromise

as they might better emulate the maximum norm while avoiding these tehnial

problems. Therefore, it is interesting to asertain whether they an give better

results.
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F =

1

4

jT � T

d

j

4

+

1

4

jrT j

4

Æ [�10

3

℄ J [�10

6

℄ ku� u

d

k

2

kT � T

d

k

4

krTk

4

krTk

1

� 2:422 � 55:09 26:32 153:7

100 2:307 0:815 54:18 26:26 152:0

10 1:756 5:406 49:44 26:08 143:1

1 0:879 17:70 39:59 25:62 121:6

0:1 0:565 27:08 35:40 27:18 108:5

F =

1

8

jT � T

d

j

8

+

1

8

jrT j

8

Æ [�10

12

℄ J [�10

12

℄ ku� u

d

k

2

kT � T

d

k

8

krTk

8

krTk

1

� 812:3 � 94:56 56:74 153:7

10 605:9 2:661 90:41 56:16 148:3

1 288:6 9:336 81:11 55:30 135:7

0:1 92:6 19:63 69:32 51:92 120:0

0:01 40:4 26:45 63:08 50:81 111:4

0:001 34:9 27:40 62:35 51:22 110:7

F =

1

16

jT � T

d

j

16

+

1

16

jrT j

16

Æ [�10

30

℄ J [�10

30

℄ ku� u

d

k

2

kT � T

d

k

16

krTk

16

krTk

1

� 366:7 � 129:0 89:44 153:7

10 269:5 1:450 126:2 88:45 150:8

1 127:1 4:896 119:9 86:56 144:2

0:1 45:5 9:419 112:4 83:77 136:5

0:01 20:0 12:86 107:2 81:32 132:1

0:001 15:6 13:83 105:7 80:67 130:8

Table 2: Redution of J

3

for higher order L

p

-norms with p = 4, 8 and 16.

Table 2 reveals in the ases p = 4 and p = 8 that the sup{norm of the temperature

gradient ould be redued even more than in the ase p = 2 (see Table 1). The

redution obtained here is approximately 30% of the value without optimization

ompared with 20% in the ase p = 2. Figure 2 shows the proposed pro�le of u

for p = 8 after optimization with Æ = 10

9

and the distribution of jrT j is given in

Figure 5. Inreasing the order of p did not seem to result in further improvements

beause for p = 16 the gain was lower than in the previous ases. When it is

neessary to use higher order norms it seems to be a good hoie to use p = 4 or

8 for the L

p

-norms in the funtional.
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Figure 2: Optimal boundary ontrol u for funtional J

3

with p = 8. Weight of

the ontrol: Æ = 10

9

.

6.4 Performane of Di�erent Algorithms

We onsider the gradient{desent Algorithm 1 from Setion 4 with the two step

size hoies (4.3) and (4.4)

�

1

= min

�

1; kdk

�1

1

�

; �

2

=

kdk

2

�

" kdk

2

�

+ kvk

2

Q

;

where d = r

^

J and v is the solution of (4.5). Furthermore, the nonlinear iteration

of Algorithm 2 is taken into aount. And �nally, we investigate the behaviour of

a hybrid method whih uses the diretion d = u� �u as desent diretion instead

of the gradient, where �u is the ontrol oming from the third order equation

�k� �

T

+ Æ (�u� u

d

)�

4

3�

(�

T

+ "

2

�

�

)�u

3

= 0 on �

in step 4 of Algorithm 2 of the adjoint method. In our numerial experiments

we used the funtional J

1

with the step pro�le u

d

as before. The iteration was

terminated when the update for u was < 0:01 uniformly for all disrete times.

As an be seen in Table 3, the heuristi approah performs very well while the

linear method using the step size �

2

needs signi�antly more iterations. This is

due to the fat that the proposed step sizes were in general rather small whih

indiates that this approah underestimates the true step size. Nevertheless,
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Figure 3: End temperatures at t = � without optimization and with optimization

using J

3

for p = 2(Æ = 0:05), p = 4(Æ = 100) and p = 8(Æ = 10

9

), respetively

Æ heuristi linear nonlinear hybrid

1:00 8 37 7 34

0:75 4 44 9 50

0:50 7 55 17 63

0:25 13 68 � 90

0:10 26 73 � 134

Table 3: Number of iterations needed by di�erent algorithms.

underestimation at least does not a�et the overall global onvergene of the

algorithm. The nonlinear iteration sheme gives similar performane, when the

number of iterations is onerned, as the heuristi approah but it fails to work

when Æ beomes smaller. This an be understood by the fat that the ontra-

tivity of the �xed point mapping de�ned by Algorithm 2 is violated for small

Æ. To overome this problem we �nally onsidered a hybrid method, whih is a

damped version of Algorithm 2 where the damping parameter is omputed via

(4.4). This method onverges slowly and does not seem to be ompetitive. Nu-

merial experiments indiate that in some ases the salar produt (u � �u;r

^

J)

an osillate between negative and positive values suh that u � �u is in general

not guaranteed to be a desent diretion.
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7 Conlusions

We studied an optimal boundary ontrol problem for glass ooling proesses with

the aim to minimize thermal stresses whih strongly orrelate with loal temper-

ature gradients. Allowing for general ost funtionals we embedded this problem

into the setting of general onstrained optimization problems and derived the �rst

order optimality system. For the numerial solution we proposed two algorithms

based on adjoint variables, i.e. a gradient{desent method and a nonlinear it-

eration sheme. The performane of the algorithms was tested for the optimal

ooling of a glass slab and, in partiular, di�erent step size rules were onsidered.

In fat, the gradient algorithm with a heuristi step size rule proved to be very

robust, performed most suessfully and yielded a signi�ant redution of the

loal temperature gradients of approximately 30%. We emphasize that the adjoint

approah an be easily adopted for higher dimensional problems and also allows

for the diret omputation of the sensitivities of this problem.

Future work will fous on better approximations of the radiative heat transfer

equation, e.g. frequeny dependene [8℄ or the SP

3

system [9℄, and more sophis-

tiated seond order optimization algorithms, whih may better resolve the high

nonlinearity in this problem. This will be essential to keep omputing times low

in the three dimensional ase.
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Figure 4: Spatial and temporal distribution of krTk

1

without optimization and

with optimization using J

3

for p = 2(Æ = 0:05)
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Figure 5: Spatial and temporal distribution of krTk
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with optimization using
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