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Abstract

In this paper, we discuss numerical and analytical approximations
of radiative heat transfer equations used to model cooling processes of
molten glass. Simplified diffusion type approximations are discussed and
investigated numerically. These approximations are also used to develop
acceleration methods for the iterative solution of the full radiative heat
transfer problem. Moreover, applications of the above diffusion type
approximations to optimal control problems for glass cooling processes
are discussed.



1 Introduction

In glass manufacturing, a hot melt of glass is cooled down to room tempera-
ture. The annealing has to be monitored carefully in order to avoid excessive
temperature differences which may affect the quality of the product or even
lead to cracks in the material. In order to control this process it is, there-
fore, of interest to have a mathematical model that accurately predicts the
temperature evolution. The model involves the direction—dependent thermal
radiation field because significant part of the energy is transported by pho-
tons. Unfortunately, this fact makes the numerical solution of the radiative
transfer equations much more complex, especially in higher dimensions, since,
besides position and time variables, the directional variables also have to be
accounted for, see [8, 4]. Therefore, a variety of different approximations of the
full model that are computationally less time consuming but yet sufficiently
accurate have been developed, see [1, 2, 3] and many others. Here, we discuss
the SPy approximations. These approximations may also be used to acceler-
ate the solution of the full transfer equation. This is achieved using the SPy
approximations as preconditioner for the iterative solution method for the full
equations. Finally, an important issue is the control of the annealing process as
discussed above. We state and investigate the mathematical control problem.

The paper is organized in the following way. Section 2 contains a description
of the radiative heat transfer equations used to model glass cooling processes.
The associated SPy approximations are stated in Section 3. Several numerical
examples are shown comparing the approach to transport and diffusion mod-
els in one and multidimensional geometries. Section 4 describes an application
of the P, model. It is used to accelerate the computation of the full trans-
port problem by constructing a preconditioner for an iterative solver. Section
5 outlines the treatment of an optimal control problem in glass cooling pro-
cesses with the above stated approximate equations as a second example for
an application of the SPy approximations.

2 The radiative heat transfer equations

To model glass cooling processes we consider the following coupled system
of equations for temperature 7' = T'(z,t) and radiative intensity I(x,t,Q,v),
where x € R®, t € [0,00), Q € S? v € [0,00) are space, time, angle, and



frequency, respectively:

CmpmO L =V - (koVT) +/ <o(l —B)> dv

v

Yw>u, QeS*: Q-VIi= o(B-1I).

o(v) denotes the absorption rate i.e. the opacity of the glass. We use the
notation

<f>:/f(Q)dQ, for f:52 —R
5‘2

Planck’s function B in glass is given by

2h 3 v -1
B(T,v) = n, ;/ (eZ_T - 1)
c
_ 27'ky

= Tsons (Stefan-Boltzmann law).
c

o0
/ B(T,v)dv = nkaT*, «a
0
Boundary conditions are

2 [
ko n - VT = ho(Ty — T) + omr(n—L) / B(Ty,v) — B(T,v) dv
na 0
for the temperature and for inward pointing directions Q (i.e. n-Q < 0): we
impose semi—transparent boundary conditions

I(Q) = pI(Y) + (1 — p)I,(Q), with Q' =Q—2(n-Q)n.

a, ko, hy are constants, nr,ng are the refractive indices for air and glass. p
denotes the reflective coefficient and T, I, are outside temperature and outside
radiative intensity, respectively.

Introducing the small parameter € = lx < 1 with reference absorption rate

ores and reference length x,.r, a scaling for optically thick material gives the
following non—dimensional equations

e20,T = 22V - (kyVT) +/ <o(I-B)> dv

v

Yw>u, QeS*: eQ.-VIi= o(B-1)

with boundary conditions

ny 2 1
chy n- VT = ho(Ty ~ 1) + o (%) / B(Ty,v) — B(T,v) dv.
G 0



3 SPy—Approximations

To approximate the equations given in the last section we proceed in the
following way: Inverting

(1+20-v)r=5
o
formally gives the asymptotic expansion for ¢ — 0
2 4 4 44 6
AnB = [1—€—A— A
302 4504 94506
where we introduced ¢ =< I >. Together with

AQ

A?’]go +O(*). (1)

1 o0
0T =V - (koVT) + 5_2/ o(p —4rB) dv

V1
one obtains the SPy—approximations, see [2, 7] for details: SP; is obtained
including terms up to O(¢?) in (1), SP, for approximation up to O(g*) and SP;
for approximation up to O(g%), respectively. The three approximate equations
are stated in the following: The SP;—approximation is

1

8tT:V-(k0VT)+/ V. (30

v

V(p) dv (2)
)

Vv >uv: —e2V- (30

V(p) + o9 = o(47B)
with boundary conditions

ny, 2 i
eky n-VT:hO(Tb—T)+a7r<n—) / B(Ty,v) — B(T,v) dv
G 0

Yv>v: oo+ eag n-Vo=41l.
i, By, i, Vi, 0; are constants depending on p, I;(x),T;(z) depend on I(x) at
the boundary , see [2]. The SP,—approximation is

01 =V - (koVT) +/OOV- (%vg) dv

V1

3
Vo> —£'V- (5—V§> +op =0(47B)
o
together with

2 [
chy n- VT = ho(Ty — T) + om (%) / B(Ty,v) — B(T,v) dv
G 0

Vv > 61£+662n'V£:63B+411



The SP;—approximation is

o 1
0tT =V (k()VT) + / V- gV((lﬂ/Jl + CLQl/JQ) dv

141

1

e T A (;Vz/q) + 01y = o(47B)
1

N AR (;Vibz) + oty = 0(47B)

and

2 V1
ek n- VT = ho(Ty — T) + om(”—L) / B(Ty,v) — B(T,v) dv
0

ng
Vv>uv: i+ +eyyn- V=1
Vv > vy (511/11 + (521/12 + €d3 n - Vg = 1.

Numerical results showing the temperature computed with the different models
are presented in the following figures:

Figures 1 and 2 show the temperature for two different values of ¢, i.e. ¢ =1
and € = 0.01, in a one-dimensional slab. We observe that the SPy equations
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Figure 1: Comparison of the temperatures obtained by different approxima-
tions in the case of small absorption (¢ = 1)

are good approximations to the full transport solution when compared with
the solution of the classical diffusion or Rosseland equation. In particular,
SP; is very accurate. Figure (3) shows a comparison of the approximation
quality for different values of . Figures (4, 5) show the comparison for a 2-D
computation of an infinite cylinder and a 3-D cube:



Approximations to RHT Equations ( €=0.01)
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Figure 2: Comparison of the temperatures obtained by different approxima-
tions in the case of strong absorption (¢ = 0.01)
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Figure 3: Approximation errors with respect to transport solution



Radiative Heat Transfer in a Circle
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Figure 4: Comparison of the approximate models for a rotationally symmetric,
infinite cylinder (¢ = 1). The radial temperature distribution is shown.

3D Approximations to RHT Equations
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Figure 5: Comparison of the approximate models for a 3-D cube (¢ =1). The
temperature along a line passing through the center of the cube is plotted.



4 Application I: Preconditioner for an Itera-
tive Scheme for the RHT Equations

A semi-implicit scheme for the full time—-dependent transport system is devel-
oped using the P, solution — analogous to the procedure used for the DSA
method for neutron transport equations — as a preconditioner for the solution
of the stationary equations which have to be solved in each time step. We refer
to [6] for details. Consider, for simplicity, the frequency—independent transport
equations for constant ¢ in 1-D slap geometry and use the new independent

variable
0B

B=nkal*, B = =4nlal® :
neat orT $C T=T(B)
instead of T'. This yields
0,8 = (B')d (ﬁa B) + LB <1-B>
Vpe [-1,1): eud,l =o(B—1)

where we have in slab geometry

1
<f>:%/_1 f(p) dp, for f:[-1,1] — R

A semilinear time discretization gives

B+t _ )
At

= (B)™0, ( (Blf)om)

guawj(nﬂ) _ O(B(nﬂ) _ ](n+1))

iO(B/)(n) < [(n+1) . B(n+1) >

8IB(TL+1)> + .
e

or formally in matrix notation
All A12 B(n+1) B B(n)
Agy A (1D ] T 0 |7
A simple Block-Gauss-Seidel iteration leads to the solution of

By = B(”), I, = ](n)7

{Au A12] |:Bk+1:| :{ B™ ]
0 Asol| | Lk — Ay By,



to determine B"Y = limy_,. By and I™tY = limy_,. I;,. This is only a
shorthand notation for the system

k
2 n(n) 22 n(n) 0
e* 4+ At(B")\"dro — 2 At(B') 895(7( N 81;)} By (3)

~At(BY"o < Iy >= B™),

[suax + a} Iy 1 = 0By.

The errors
by =B — By, =10 — [,
fulfill
k
2 4 AH(B) M dro — 2AH(B') ax( Gyl ))} b1 (4)

—At(B’)( >a <dpy >=0

[S,uax + 0] iky1 = Obg.
We make an ansatz for the error in terms of Fourier modes:
Y . ~ gz
bk = bkej s 1 = zkej

where j denotes the imaginary unit (2 = —1). Inserting the Fourier modes in
the above equation gives

2+ At(B)Mdro — kg At(jN) }EM — AHBY Mo < iy >=0

[su(j)\) + a} Ihs1 = Oby.
Defining constants

01 At(B ) 471'0 02 = koAt, and X = 52 + Cl + 0262)\2,

the first equation may be shortly written

5 1.
b1 = —— < g1 > .
A7y



Moreover, we can explicitly compute the total radiation

. toq -1 [ 4
< lgp1 >= (obg) 27?/ 7M = 4mby, - —/ 7MA
1 O+ JeEAu 2/, 1_|_f—gli
The definite integral on the right has the value
1 [t d 1 [ d A
5:_/ 7/%)\ :_/ _a 2:£arctan€—,
such that we obtain
R - Cy . R
< pyr >=Amwobg = —wp < B >=w < B > .
X

where functions w and wqy are defined by

4 o arctanX eA
W= —wy, W= ,and X = —.
os+ 0o b o

This may be summarized by the following 2 x 2 system for the evolution for
the amplitude of a mode e/**

Bkﬂ _ | ¥ 0 [;k
<lpg1> wo 0] [<igp>
Crucial for the convergence is the spectral radius py = |w| which fulfills:

po(e,A) <1, but limpy(e,\) =1and lim py(e, ) = 1.
e—0 A—=0

We conclude that the iteration converges. However, the smaller ¢ is the slower
becomes this simple iteration. We suggest to use the SP; solution as a precondi-
tioner. Let Byi1, I;+1 be the solution of equation (3) as before. System (4) for
the errors b1, 1511 is approximated using the associated SP—approximation,
which can be written in the form

g2 — &2At(B) ™o, (%&5)} Ot

2At B/ (n)
B %A%H = At(B')™ 470 (Bgs1 — By),
o

82
—47T09k+1 + [—3—003 + U] Prt1 = 47TU(Bk+1 — Bk)

10



and the corresponding solutions 6y, and ¢, yield corrections for the iterates
of the simple iteration. Given the old iterates By and I we update By, and
I, by adding the correction terms in the following way

By — Biy1 + 0k
<l >—<Ipp1> TP

An analogous analysis as before reveals in this case that the spectral radius is
given by

1—w(e, )

DN o9

p=pleN) = | wie, ) -
where the function D is
2
D= (0 + —/\2>X — o(].
30
The spectral radius p has the properties
ple, ) <p<1, limp(e,A\) =0, limp(e, A)=0.
A—0 e—0

Consequently, the preconditioned iteration converges faster than the previous
iteration. Moreover, it continuous to converge sufficiently fast when ¢ ap-
proaches 0 while the simple iteration becomes increasingly slow, as mentioned
above. Numerical experiments give the following results for the reduction of
the errors of the Fourier modes (Fig. 6) and the convergence rates with respect
to ¢ (Fig. 7): We observe that the convergence rates with preconditioning
remain bounded away from 1 as € tends to 0 in contrast to the case without
preconditioning.

5 Application II: Optimal control of the tem-
perature

The cooling of molten glass is performed slowly by controlling the outer tem-
perature in a furnace. The specific way how the cooling down process is per-
formed, in particular the local temperature gradients appearing during the
process, strongly influences the quality of the glass.

One major objective in engineering applications is the reduction of local tem-
perature gradients in the glass in order to reduce stresses and strains and

11



Improved Error Reduction using Preconditioned Iteration

T T T T
—— preconditioned
- - simple

spectral radius p
o
o

n n
200 250 300 450
fourier mode A

I I
100 150 350 400 500

Figure 6: Comparison of the reduction of the amplitude of Fourier modes ¢/A*
of the error with and without preconditioning for ¢ = 0.1 and € = 0.01
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possible breaking of glass. Moreover, a reduction of the cooling time reduces
the energy necessary for the process.

To control this process along the desired state we consider cost functionals of
tracking—type

1 i 2 £ g 2 5 2
Ti=D(T.g.t) =5 i 17 = Talz2) dt + 5 i l9 = 9ali2(o0) dt + St}

or

1 [ ) F [t ) 5,
o= D(Tg b)) =5 | VTl dt+5 | lg = gdlzon) dt + 517
0 0

Here, t; denotes the final time, T} is a given desired temperature profile and g
is the control parameter, i.e. the outside temperature. Further, g; describes a
given initial outer temperature profile at the boundary. The constants ¢ and
¢ allow to adjust the weight of the cost and the observation. Clearly, J; will
minimize the gradients in the temperature profile 7', but also J; might yield
this effect as T,; can be chosen constant in space.

The goal is to find minima of J under the condition that the temperature
fulfills the radiative heat transfer system that models glass cooling. For the
sake of simplicity, both from an analytical and a numerical point of view, we
replace the RHT system by its SP, approximation. Hence, we minimize J
under the following constraint, which represents the SP, model in a generic
form

ol = AT + Agp (6a)
—Ap+p=T" (6b)
with boundary conditions
T'+ n-VI=yg (6¢)
p+n-Vo=g' (6d)

Note, that all physical constants are set to one to simplify the notation.

In fact, we have to deal with a constrained optimization problem for the bound-
ary control g.

13



To solve this problem numerically we derive the first—order optimality system
via the Lagrange functional

ty
L(T7 ¢7gatf7€T7€£p) = J(Tag7tf) +/ < atT7 fT >H_1,H1 dt

0
ty ty
+ / / VTV dudt + / / (T — g)ér ds dt
0 Q 0 o0
ty ty
+/ /wng dx dt+/ / (o — gYYer ds dt
0 Q 0 N
tr ty tr
+/ /wvg@ dwdt+/ /(@—T‘l)gw d:cdt+/ / (o — gh¢, ds dt.
0 Q 0 Q 0 o0

where & and §, are Lagrange multiplier functions. For details see [5]. We
consider here for simplicity only J; and assume that the final time ¢, is fixed.

Clearly, the variation of L with respect to & = ({1,&,) yields the state system
(6). Employing variations with respect to T" and ¢ we derive the adjoint system
for the Lagrange multipliers &7, &,

—ath = AST — (4T3)§9 -+ (T — Td) (7&)
—A&, + & = A&y (7b)

with homogeneous Robin boundary conditions for ;- and §,. This system is
supplemented with the terminal condition

fT(thI) = fnp(tfvx) = 0. (7C)

Finally, variations with respect to ¢ yield the algebraic equation

&r—e(9— ga) +4(ér +&,)g° =0 on 9Q (8)
fort € (O,tf).

We solve the first—order system (6),(7) and (8) iteratively, which can be inter-
preted as a variant of a gradient—descent algorithm. The optimality system
for J, can be derived in analogy and variations with respect to ¢; are straight
forward yielding another algebraic relation for the final time ¢;.

Numerical results for the cost functional J; with optimization of final time #,
i.e. 0 # 0, are plotted in Fig 8. For reference the given boundary temperature
profile g4 is also plotted there. The desired state T, is constant in space
having the boundary values g4. Note that one gains 20 % of time while the
local temperature gradients are almost unchanged.
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Boundary Control of Temperature Evolution
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Figure 8: Minimization of |1" — Ty|s (with optimization of final time)
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The results for the cost functional .J, with fixed final time (§ = 0) are given
in Fig 9. In table 1 we present the values of the cost and the observation for
several values of €. Clearly, the mean value norm of the gradient is decreasing
by increasing costs. Note, that also the maximum norm of the gradient is
decreasing, which underlines the reasonability of the choice of J;.

L el 3 lg—gd|IVT] VTlx |
- [22.6901 0 6.7365 344.8252
1 [22.0623 0.6044 | 6.6151 343.8816
0.5 | 21.4694 1.1849 |6.4990 343.5875
0.1 | 17.7177 51592 |5.7248 342.0602
0.05 | 14.4975  8.9485 | 4.9991  341.4265

Table 1: Minimization of |VT'|2. Value of the functional and norms of bound-
ary control and gradient of the temperature for varying ¢.

6 Conclusions:

e The SPy equations are simple yet accurate approximations of the full
transport solutions.

e They can be used, for example, in order to accelerate the solution of
the full radiative heat transfer equations or for control of glass cooling
processes.
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