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Abstra
t

In this paper, we dis
uss numeri
al and analyti
al approximations

of radiative heat transfer equations used to model 
ooling pro
esses of

molten glass. Simpli�ed di�usion type approximations are dis
ussed and

investigated numeri
ally. These approximations are also used to develop

a

eleration methods for the iterative solution of the full radiative heat

transfer problem. Moreover, appli
ations of the above di�usion type

approximations to optimal 
ontrol problems for glass 
ooling pro
esses

are dis
ussed.
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1 Introdu
tion

In glass manufa
turing, a hot melt of glass is 
ooled down to room tempera-

ture. The annealing has to be monitored 
arefully in order to avoid ex
essive

temperature di�eren
es whi
h may a�e
t the quality of the produ
t or even

lead to 
ra
ks in the material. In order to 
ontrol this pro
ess it is, there-

fore, of interest to have a mathemati
al model that a

urately predi
ts the

temperature evolution. The model involves the dire
tion{dependent thermal

radiation �eld be
ause signi�
ant part of the energy is transported by pho-

tons. Unfortunately, this fa
t makes the numeri
al solution of the radiative

transfer equations mu
h more 
omplex, espe
ially in higher dimensions, sin
e,

besides position and time variables, the dire
tional variables also have to be

a

ounted for, see [8, 4℄. Therefore, a variety of di�erent approximations of the

full model that are 
omputationally less time 
onsuming but yet suÆ
iently

a

urate have been developed, see [1, 2, 3℄ and many others. Here, we dis
uss

the SP

N

approximations. These approximations may also be used to a

eler-

ate the solution of the full transfer equation. This is a
hieved using the SP

N

approximations as pre
onditioner for the iterative solution method for the full

equations. Finally, an important issue is the 
ontrol of the annealing pro
ess as

dis
ussed above. We state and investigate the mathemati
al 
ontrol problem.

The paper is organized in the following way. Se
tion 2 
ontains a des
ription

of the radiative heat transfer equations used to model glass 
ooling pro
esses.

The asso
iated SP

N

approximations are stated in Se
tion 3. Several numeri
al

examples are shown 
omparing the approa
h to transport and di�usion mod-

els in one and multidimensional geometries. Se
tion 4 des
ribes an appli
ation

of the P

1

model. It is used to a

elerate the 
omputation of the full trans-

port problem by 
onstru
ting a pre
onditioner for an iterative solver. Se
tion

5 outlines the treatment of an optimal 
ontrol problem in glass 
ooling pro-


esses with the above stated approximate equations as a se
ond example for

an appli
ation of the SP

N

approximations.

2 The radiative heat transfer equations

To model glass 
ooling pro
esses we 
onsider the following 
oupled system

of equations for temperature T = T (x; t) and radiative intensity I(x; t;
; �),

where x 2 R

3

, t 2 [0;1), 
 2 S

2

, � 2 [0;1) are spa
e, time, angle, and
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frequen
y, respe
tively:
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T = r � (k

0

rT ) +

Z

1

�

1

<�(I � B)> d�

8� > �

1

; 
 2 S

2

: 
 � rI = �(B � I):

�(�) denotes the absorption rate i.e. the opa
ity of the glass. We use the

notation

<f > =

Z

S

2

f(
) d
; for f : S

2

�! R:

Plan
k's fun
tion B in glass is given by

B(T; �) = n

2

G

2h�
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(Stefan-Boltzmann law):

Boundary 
onditions are

k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�

for the temperature and for inward pointing dire
tions 
 (i.e. n � 
 < 0): we

impose semi{transparent boundary 
onditions

I(
) = �I(


0

) + (1� �)I

b

(
); with 


0

= 
� 2(n � 
)n:

�; k

0

; h

0

are 
onstants, n

L

; n

G

are the refra
tive indi
es for air and glass. �

denotes the re
e
tive 
oeÆ
ient and T

b

, I

b

are outside temperature and outside

radiative intensity, respe
tively.

Introdu
ing the small parameter " =

1

�

ref

x

ref

� 1 with referen
e absorption rate

�

ref

and referen
e length x

ref

, a s
aling for opti
ally thi
k material gives the

following non{dimensional equations

"

2

�

t

T = "

2

r � (k

0

rT ) +

Z

1

�

1

< �(I � B) > d�

8� > �

1

; 
 2 S

2

: "
 � rI = �(B � I)

with boundary 
onditions

"k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�:
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3 SP

N

{Approximations

To approximate the equations given in the last se
tion we pro
eed in the

following way: Inverting

�

1 +

"

�


 � r

�

I = B

formally gives the asymptoti
 expansion for "! 0

4�B =

h

1�

"

2

3�

2

��

4"

4

45�

4

�

2

�

44"

6

945�

6

�

3

i

'+O("

8

): (1)

where we introdu
ed ' =< I >. Together with

�

t

T = r � (k

0

rT ) +

1

"

2

Z

1

�

1

�('� 4�B) d�

one obtains the SP

N

{approximations, see [2, 7℄ for details: SP

1

is obtained

in
luding terms up to O("

2

) in (1), SP

2

for approximation up to O("

4

) and SP

3

for approximation up to O("

6

), respe
tively. The three approximate equations

are stated in the following: The SP

1

{approximation is

�

t

T = r � (k

0

rT ) +

Z

1

�

1

r �

�

1

3�

r'

�

d� (2)

8� > �

1

: �"

2

r �

�

1

3�

r'

�

+ �' = �(4�B)

with boundary 
onditions

"k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�

8� > �

1

: �

1

'+ ��

2

n � r' = 4I

1

:

�

i

; �

i

; �

i

; 


i

; Æ

i

are 
onstants depending on �, I

i

(x);�

i

(x) depend on I

b

(x) at

the boundary , see [2℄. The SP

2

{approximation is

�

t

T = r � (k

0

rT ) +

Z

1

�

1

r �

�

1

3�

r�

�

d�

8� > �

1

: �"

2

r �

�

3

5�

r�

�

+ �' = �(4�B)

together with

"k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�

8� > �

1

: �

1

� + ��

2

n � r� = �

3

B + 4I

1
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The SP

3

{approximation is

�

t

T = r � (k

0

rT ) +

Z

1

�

1

r �
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�
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�

r 
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�
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1
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8� > �

1

: �"

2

�

2

2

r �

�

1

�

r 

2

�

+ � 

2

= �(4�B)

and

"k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�

8� > �

1
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1

 

1

+ 


2

 

2

+ �


3

n � r 

1

= �

1

8� > �

1

: Æ

1

 

1

+ Æ

2

 

2

+ �Æ

3

n � r 

2

= �

2

:

Numeri
al results showing the temperature 
omputed with the di�erent models

are presented in the following �gures:

Figures 1 and 2 show the temperature for two di�erent values of ", i.e. " = 1

and " = 0:01, in a one-dimensional slab. We observe that the SP

N

equations
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Figure 1: Comparison of the temperatures obtained by di�erent approxima-

tions in the 
ase of small absorption (" = 1)

are good approximations to the full transport solution when 
ompared with

the solution of the 
lassi
al di�usion or Rosseland equation. In parti
ular,

SP

3

is very a

urate. Figure (3) shows a 
omparison of the approximation

quality for di�erent values of ". Figures (4, 5) show the 
omparison for a 2-D


omputation of an in�nite 
ylinder and a 3-D 
ube:
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Figure 2: Comparison of the temperatures obtained by di�erent approxima-

tions in the 
ase of strong absorption (" = 0:01)
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Figure 4: Comparison of the approximate models for a rotationally symmetri
,

in�nite 
ylinder (" = 1). The radial temperature distribution is shown.
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4 Appli
ation I: Pre
onditioner for an Itera-

tive S
heme for the RHT Equations

A semi{impli
it s
heme for the full time{dependent transport system is devel-

oped using the P

1

solution | analogous to the pro
edure used for the DSA

method for neutron transport equations | as a pre
onditioner for the solution

of the stationary equations whi
h have to be solved in ea
h time step. We refer

to [6℄ for details. Consider, for simpli
ity, the frequen
y{independent transport

equations for 
onstant � in 1-D slap geometry and use the new independent

variable

B = n

2

G

aT

4

; B

0

=

�B

�T

= 4n

2

G

aT

3

�

�

�

T=T (B)

:

instead of T . This yields

�

t

B = (B

0

)�

x

�

k

0

(B

0

)

�

x

B

�

+

1

"

2

(B

0

)� < I � B >

8� 2 [�1; 1℄ : "��

x

I = �(B � I)

where we have in slab geometry

<f > =

1

2

Z

1

�1

f(�) d�; for f : [�1; 1℄ �! R:

A semilinear time dis
retization gives

B

(n+1)

� B

(n)

�t

= (B

0

)

(n)

�

x

�

k

0

(B

0

)

(n)

�

x

B

(n+1)

�

+

1

"

2

�(B

0

)

(n)

< I

(n+1)

�B

(n+1)

>

"��

x

I

(n+1)

= �

�

B

(n+1)

� I

(n+1)

�

or formally in matrix notation

�

A

11

A

12

A

21

A

22

� �

B

(n+1)

I

(n+1)

�

=

�

B

(n)

0

�

:

A simple Blo
k{Gauss-Seidel iteration leads to the solution of

B

0

= B

(n)

; I

0

= I

(n)

;

�

A

11

A

12

0 A

22

� �

B

k+1

I

k+1

�

=

�

B

(n)

�A

21

B

k

�
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to determine B

(n+1)

= lim

k!1

B

k

and I

(n+1)

= lim

k!1

I

k

. This is only a

shorthand notation for the system

h

"

2

+�t(B

0

)

(n)

4�� � "

2

�t(B

0

)

(n)

�

x

�

k

0

(B

0

)

(n)

�

x

�i

B

k+1

(3)

��t(B

0

)

(n)

� < I

k+1

>= B

(n)

;

h

"��

x

+ �

i

I

k+1

= �B

k

:

The errors

b

k

= B

(n+1)

� B

k

; i

k

= I

(n+1)

� I

k

ful�ll

h

"

2

+�t(B

0

)

(n)

4�� � "

2

�t(B

0

)

(n)

�

x

�

k

(B

0

)

(n)

�

x

(�)

�i

b

k+1

(4)

��t(B

0

)

(n)

� < i

k+1

>= 0

h

"��

x

+ �

i

i

k+1

= �b

k

:

We make an ansatz for the error in terms of Fourier modes:

b

k

=

^

b

k

e

j�x

; i

k

= {̂

k

e

j�x

:

where j denotes the imaginary unit (j

2

= �1). Inserting the Fourier modes in

the above equation gives

h

"

2

+�t(B

0

)

(n)

4�� � "

2

k

0

�t(j�)

2

i

^

b

k+1

��t(B

0

)

(n)

� < {̂

k+1

>= 0

h

"�(j�) + �

i

{̂

k+1

= �

^

b

k

:

De�ning 
onstants

C

1

= �t(B

0

)

(n)

4��; C

2

= k

0

�t; and � = "

2

+ C

1

+ C

2

"

2

�

2

;

the �rst equation may be shortly written

^

b

k+1

=

C

1

4��

< {̂

k+1

> :
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Moreover, we 
an expli
itly 
ompute the total radiation

< {̂

k+1

>= (�

^

b

k

) 2�

Z

+1

�1

d�

� + j"��

= 4�

^

b

k

�

1

2

Z

+1

�1

d�

1 + j

"��

�

:

The de�nite integral on the right has the value

S =

1

2

Z

+1

�1

d�

1 + j

"��

�

=

1

2

Z

+1

�1

d�

1 +

�

"��

�

�

2

=

�

"�

ar
tan

"�

�

;

su
h that we obtain

< {̂

k+1

>= 4�!

0

^

b

k+1

=

C

1

�

!

0

< {̂

k

>= ! < {̂

k

> :

where fun
tions ! and !

0

are de�ned by

! =

C

1

�

!

0

; !

0

=

�

�

s

+ �

ar
tan�

�

; and � =

"�

�

:

This may be summarized by the following 2 � 2 system for the evolution for

the amplitude of a mode e

j�x

�

^

b

k+1

<{̂

k+1

>

�

=

�

! 0

!

0

0

� �

^

b

k

<{̂

k

>

�

Cru
ial for the 
onvergen
e is the spe
tral radius �

0

� j!j whi
h ful�lls:

�

0

("; �) < 1; but lim

"!0

�

0

("; �) = 1 and lim

�!0

�

0

("; �) = 1:

We 
on
lude that the iteration 
onverges. However, the smaller " is the slower

be
omes this simple iteration. We suggest to use the SP

1

solution as a pre
ondi-

tioner. Let B

k+1

; I

k+1

be the solution of equation (3) as before. System (4) for

the errors b

k+1

, i

k+1

is approximated using the asso
iated SP

1

{approximation,

whi
h 
an be written in the form

h

"

2

� "

2

�t(B

0

)

(n)

�

x

�

k

0

(B

0

)

(n)

�

x

�i

�

k+1

�

"

2

�t(B

0

)

(n)

3�

�'

k+1

= �t(B

0

)

(n)

4��(B

k+1

�B

k

);

�4���

k+1

+

h

�

"

2

3�

�

2

x

+ �

i

'

k+1

= 4��(B

k+1

� B

k

):
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and the 
orresponding solutions �

k+1

and  

k+1

yield 
orre
tions for the iterates

of the simple iteration. Given the old iterates B

k

and I

k

we update B

k+1

and

I

k+1

by adding the 
orre
tion terms in the following way

B

k

�! B

k+1

+ �

k+1

<I

k

>�!<I

k+1

> + 

k+1

An analogous analysis as before reveals in this 
ase that the spe
tral radius is

given by

� � �("; �) =

�

�

�

!("; �)�

1� !("; �)

D("; �)

�C

1

�

�

�

where the fun
tion D is

D =

�

� +

"

2

3�

�

2

�

�� �C

1

:

The spe
tral radius � has the properties

�("; �) � �� < 1; lim

�!0

�("; �) = 0; lim

"!0

�("; �) = 0:

Consequently, the pre
onditioned iteration 
onverges faster than the previous

iteration. Moreover, it 
ontinuous to 
onverge suÆ
iently fast when " ap-

proa
hes 0 while the simple iteration be
omes in
reasingly slow, as mentioned

above. Numeri
al experiments give the following results for the redu
tion of

the errors of the Fourier modes (Fig. 6) and the 
onvergen
e rates with respe
t

to " (Fig. 7): We observe that the 
onvergen
e rates with pre
onditioning

remain bounded away from 1 as " tends to 0 in 
ontrast to the 
ase without

pre
onditioning.

5 Appli
ation II: Optimal 
ontrol of the tem-

perature

The 
ooling of molten glass is performed slowly by 
ontrolling the outer tem-

perature in a furna
e. The spe
i�
 way how the 
ooling down pro
ess is per-

formed, in parti
ular the lo
al temperature gradients appearing during the

pro
ess, strongly in
uen
es the quality of the glass.

One major obje
tive in engineering appli
ations is the redu
tion of lo
al tem-

perature gradients in the glass in order to redu
e stresses and strains and
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possible breaking of glass. Moreover, a redu
tion of the 
ooling time redu
es

the energy ne
essary for the pro
ess.

To 
ontrol this pro
ess along the desired state we 
onsider 
ost fun
tionals of

tra
king{type

J

1

= J

1

(T; g; t

f

) =

1

2

Z

t

f

0

jjT � T

d

jj

2

L

2

(
)

dt+

�"

2

Z

t

f

0

jjg � g

d

jj

2

L

2

(�
)

dt+

�

Æ

2

t

2

f

or

J

2

= J

2

(T; g; t

f

) =

1

2

Z

t

f

0

jjrT jj

2

L

2

(
)

dt+

�"

2

Z

t

f

0

jjg � g

d

jj

2

L

2

(�
)

dt+

�

Æ

2

t

2

f

:

Here, t

f

denotes the �nal time, T

d

is a given desired temperature pro�le and g

is the 
ontrol parameter, i.e. the outside temperature. Further, g

d

des
ribes a

given initial outer temperature pro�le at the boundary. The 
onstants

�

Æ and

�" allow to adjust the weight of the 
ost and the observation. Clearly, J

2

will

minimize the gradients in the temperature pro�le T , but also J

1

might yield

this e�e
t as T

d


an be 
hosen 
onstant in spa
e.

The goal is to �nd minima of J under the 
ondition that the temperature

ful�lls the radiative heat transfer system that models glass 
ooling. For the

sake of simpli
ity, both from an analyti
al and a numeri
al point of view, we

repla
e the RHT system by its SP

1

approximation. Hen
e, we minimize J

under the following 
onstraint, whi
h represents the SP

1

model in a generi


form

�

t

T = �T +�' (6a)

��' + ' = T

4

(6b)

with boundary 
onditions

T + n � rT = g (6
)

'+ n � r' = g

4

(6d)

Note, that all physi
al 
onstants are set to one to simplify the notation.

In fa
t, we have to deal with a 
onstrained optimization problem for the bound-

ary 
ontrol g.
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To solve this problem numeri
ally we derive the �rst{order optimality system

via the Lagrange fun
tional

L(T; '; g; t

f

; �

T

; �

'

) = J(T; g; t

f

) +

Z

t

f

0

< �

t

T; �

T

>

H

�1

;H

1

dt

+

Z

t

f

0

Z




rTr�

T

dx dt+

Z

t

f

0

Z

�


(T � g)�

T

ds dt

+

Z

t

f

0

Z




r'r�

T

dx dt+

Z

t

f

0

Z

�


('� g

4

)�

T

ds dt

+

Z

t

f

0

Z




r'r�

'

dx dt+

Z

t

f

0

Z




('� T

4

)�

'

dx dt+

Z

t

f

0

Z

�


('� g

4

)�

'

ds dt:

where �

T

and �

�

are Lagrange multiplier fun
tions. For details see [5℄. We


onsider here for simpli
ity only J

1

and assume that the �nal time t

f

is �xed.

Clearly, the variation of L with respe
t to � = (�

T

; �

'

) yields the state system

(6). Employing variations with respe
t to T and ' we derive the adjoint system

for the Lagrange multipliers �

T

, �

'

:

��

t

�

T

= ��

T

� (4T

3

)�

'

+ (T � T

d

) (7a)

���

'

+ �

'

= ��

T

(7b)

with homogeneous Robin boundary 
onditions for �

T

and �

'

. This system is

supplemented with the terminal 
ondition

�

T

(t

f

; x) = �

'

(t

f

; x) = 0: (7
)

Finally, variations with respe
t to g yield the algebrai
 equation

�

T

� �"(g � g

d

) + 4(�

T

+ �

'

)g

3

= 0 on �
 (8)

for t 2 (0; t

f

).

We solve the �rst{order system (6),(7) and (8) iteratively, whi
h 
an be inter-

preted as a variant of a gradient{des
ent algorithm. The optimality system

for J

2


an be derived in analogy and variations with respe
t to t

f

are straight

forward yielding another algebrai
 relation for the �nal time t

f

.

Numeri
al results for the 
ost fun
tional J

1

with optimization of �nal time t

f

,

i.e.

�

Æ 6= 0, are plotted in Fig 8. For referen
e the given boundary temperature

pro�le g

d

is also plotted there. The desired state T

d

is 
onstant in spa
e

having the boundary values g

d

. Note that one gains 20 % of time while the

lo
al temperature gradients are almost un
hanged.
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The results for the 
ost fun
tional J

2

with �xed �nal time (

�

Æ = 0) are given

in Fig 9. In table 1 we present the values of the 
ost and the observation for

several values of �". Clearly, the mean value norm of the gradient is de
reasing

by in
reasing 
osts. Note, that also the maximum norm of the gradient is

de
reasing, whi
h underlines the reasonability of the 
hoi
e of J

2

.

" J jjg � g

d

jj

2

jjrT jj

2

jjrT jj

1

- 22:6901 0 6:7365 344:8252

1 22:0623 0:6044 6:6151 343:8816

0:5 21:4694 1:1849 6:4990 343:5875

0:1 17:7177 5:1592 5:7248 342:0602

0:05 14:4975 8:9485 4:9991 341:4265

Table 1: Minimization of jjrT jj

2

. Value of the fun
tional and norms of bound-

ary 
ontrol and gradient of the temperature for varying ".

6 Con
lusions:

� The SP

N

equations are simple yet a

urate approximations of the full

transport solutions.

� They 
an be used, for example, in order to a

elerate the solution of

the full radiative heat transfer equations or for 
ontrol of glass 
ooling

pro
esses.
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