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Abstrat

In this paper, we disuss numerial and analytial approximations

of radiative heat transfer equations used to model ooling proesses of

molten glass. Simpli�ed di�usion type approximations are disussed and

investigated numerially. These approximations are also used to develop

aeleration methods for the iterative solution of the full radiative heat

transfer problem. Moreover, appliations of the above di�usion type

approximations to optimal ontrol problems for glass ooling proesses

are disussed.
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1 Introdution

In glass manufaturing, a hot melt of glass is ooled down to room tempera-

ture. The annealing has to be monitored arefully in order to avoid exessive

temperature di�erenes whih may a�et the quality of the produt or even

lead to raks in the material. In order to ontrol this proess it is, there-

fore, of interest to have a mathematial model that aurately predits the

temperature evolution. The model involves the diretion{dependent thermal

radiation �eld beause signi�ant part of the energy is transported by pho-

tons. Unfortunately, this fat makes the numerial solution of the radiative

transfer equations muh more omplex, espeially in higher dimensions, sine,

besides position and time variables, the diretional variables also have to be

aounted for, see [8, 4℄. Therefore, a variety of di�erent approximations of the

full model that are omputationally less time onsuming but yet suÆiently

aurate have been developed, see [1, 2, 3℄ and many others. Here, we disuss

the SP

N

approximations. These approximations may also be used to aeler-

ate the solution of the full transfer equation. This is ahieved using the SP

N

approximations as preonditioner for the iterative solution method for the full

equations. Finally, an important issue is the ontrol of the annealing proess as

disussed above. We state and investigate the mathematial ontrol problem.

The paper is organized in the following way. Setion 2 ontains a desription

of the radiative heat transfer equations used to model glass ooling proesses.

The assoiated SP

N

approximations are stated in Setion 3. Several numerial

examples are shown omparing the approah to transport and di�usion mod-

els in one and multidimensional geometries. Setion 4 desribes an appliation

of the P

1

model. It is used to aelerate the omputation of the full trans-

port problem by onstruting a preonditioner for an iterative solver. Setion

5 outlines the treatment of an optimal ontrol problem in glass ooling pro-

esses with the above stated approximate equations as a seond example for

an appliation of the SP

N

approximations.

2 The radiative heat transfer equations

To model glass ooling proesses we onsider the following oupled system

of equations for temperature T = T (x; t) and radiative intensity I(x; t;
; �),

where x 2 R

3

, t 2 [0;1), 
 2 S

2

, � 2 [0;1) are spae, time, angle, and
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frequeny, respetively:



m

�

m

�

t

T = r � (k

0

rT ) +

Z

1

�

1

<�(I � B)> d�

8� > �

1

; 
 2 S

2

: 
 � rI = �(B � I):

�(�) denotes the absorption rate i.e. the opaity of the glass. We use the

notation

<f > =

Z

S

2

f(
) d
; for f : S

2

�! R:

Plank's funtion B in glass is given by

B(T; �) = n

2

G

2h�
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(Stefan-Boltzmann law):

Boundary onditions are

k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�

for the temperature and for inward pointing diretions 
 (i.e. n � 
 < 0): we

impose semi{transparent boundary onditions

I(
) = �I(


0

) + (1� �)I

b

(
); with 


0

= 
� 2(n � 
)n:

�; k

0

; h

0

are onstants, n

L

; n

G

are the refrative indies for air and glass. �

denotes the reetive oeÆient and T

b

, I

b

are outside temperature and outside

radiative intensity, respetively.

Introduing the small parameter " =

1

�

ref

x

ref

� 1 with referene absorption rate

�

ref

and referene length x

ref

, a saling for optially thik material gives the

following non{dimensional equations

"

2

�

t

T = "

2

r � (k

0

rT ) +

Z

1

�

1

< �(I � B) > d�

8� > �

1

; 
 2 S

2

: "
 � rI = �(B � I)

with boundary onditions

"k

0

n � rT = h

0

(T

b

� T ) + ��

�

n

L

n

G

�

2

Z

�

1

0

B(T

b

; �)� B(T; �) d�:
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3 SP

N

{Approximations

To approximate the equations given in the last setion we proeed in the

following way: Inverting

�

1 +

"

�


 � r

�

I = B

formally gives the asymptoti expansion for "! 0

4�B =

h

1�

"

2

3�

2

��

4"

4

45�

4

�

2

�

44"

6

945�

6

�

3

i

'+O("

8

): (1)

where we introdued ' =< I >. Together with

�

t

T = r � (k

0

rT ) +

1

"

2

Z

1

�

1

�('� 4�B) d�

one obtains the SP

N

{approximations, see [2, 7℄ for details: SP

1

is obtained

inluding terms up to O("

2

) in (1), SP

2

for approximation up to O("

4

) and SP

3

for approximation up to O("

6

), respetively. The three approximate equations

are stated in the following: The SP

1

{approximation is

�

t
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with boundary onditions
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1

:

�

i

; �

i

; �

i

; 

i

; Æ

i

are onstants depending on �, I

i

(x);�

i

(x) depend on I

b

(x) at

the boundary , see [2℄. The SP

2

{approximation is

�

t
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The SP

3

{approximation is

�
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n � r 

2

= �
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:

Numerial results showing the temperature omputed with the di�erent models

are presented in the following �gures:

Figures 1 and 2 show the temperature for two di�erent values of ", i.e. " = 1

and " = 0:01, in a one-dimensional slab. We observe that the SP

N

equations
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Figure 1: Comparison of the temperatures obtained by di�erent approxima-

tions in the ase of small absorption (" = 1)

are good approximations to the full transport solution when ompared with

the solution of the lassial di�usion or Rosseland equation. In partiular,

SP

3

is very aurate. Figure (3) shows a omparison of the approximation

quality for di�erent values of ". Figures (4, 5) show the omparison for a 2-D

omputation of an in�nite ylinder and a 3-D ube:
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Figure 2: Comparison of the temperatures obtained by di�erent approxima-

tions in the ase of strong absorption (" = 0:01)
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Figure 4: Comparison of the approximate models for a rotationally symmetri,

in�nite ylinder (" = 1). The radial temperature distribution is shown.
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4 Appliation I: Preonditioner for an Itera-

tive Sheme for the RHT Equations

A semi{impliit sheme for the full time{dependent transport system is devel-

oped using the P

1

solution | analogous to the proedure used for the DSA

method for neutron transport equations | as a preonditioner for the solution

of the stationary equations whih have to be solved in eah time step. We refer

to [6℄ for details. Consider, for simpliity, the frequeny{independent transport

equations for onstant � in 1-D slap geometry and use the new independent

variable

B = n

2

G

aT

4

; B

0

=

�B

�T

= 4n

2

G

aT

3

�

�

�

T=T (B)

:

instead of T . This yields

�

t

B = (B

0

)�

x

�

k

0

(B

0

)

�

x

B

�

+

1

"

2

(B

0

)� < I � B >

8� 2 [�1; 1℄ : "��

x

I = �(B � I)

where we have in slab geometry

<f > =

1

2

Z

1

�1

f(�) d�; for f : [�1; 1℄ �! R:

A semilinear time disretization gives

B

(n+1)

� B

(n)

�t

= (B

0

)

(n)

�

x

�

k

0

(B

0

)

(n)

�

x

B

(n+1)

�

+

1

"

2

�(B

0

)

(n)

< I

(n+1)

�B

(n+1)

>

"��

x

I

(n+1)

= �

�

B

(n+1)

� I

(n+1)

�

or formally in matrix notation

�

A

11

A

12

A

21

A

22

� �

B

(n+1)

I

(n+1)

�

=

�

B

(n)

0

�

:

A simple Blok{Gauss-Seidel iteration leads to the solution of

B

0

= B

(n)

; I

0

= I

(n)

;

�

A

11

A

12

0 A

22

� �

B

k+1

I

k+1

�

=

�

B

(n)

�A

21

B

k

�
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to determine B

(n+1)

= lim

k!1

B

k

and I

(n+1)

= lim

k!1

I

k

. This is only a

shorthand notation for the system

h
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4�� � "
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�
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B
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��t(B
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)
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� < I

k+1
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(n)

;

h

"��
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i

I

k+1

= �B
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:

The errors

b
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; i
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� I

k
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�
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�
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)
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�
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��t(B

0

)

(n)

� < i

k+1

>= 0

h

"��

x

+ �

i

i

k+1

= �b

k

:

We make an ansatz for the error in terms of Fourier modes:

b

k

=

^

b

k

e

j�x

; i

k

= {̂

k

e

j�x

:

where j denotes the imaginary unit (j

2

= �1). Inserting the Fourier modes in

the above equation gives

h

"

2

+�t(B

0

)

(n)

4�� � "

2

k

0

�t(j�)

2

i

^

b

k+1

��t(B

0

)

(n)

� < {̂

k+1

>= 0

h

"�(j�) + �

i

{̂

k+1

= �

^

b

k

:

De�ning onstants

C

1

= �t(B

0

)

(n)

4��; C

2

= k

0

�t; and � = "

2

+ C

1

+ C

2

"

2

�

2

;

the �rst equation may be shortly written

^

b

k+1

=

C

1

4��

< {̂

k+1

> :

9



Moreover, we an expliitly ompute the total radiation

< {̂

k+1

>= (�

^

b

k

) 2�

Z

+1

�1

d�

� + j"��

= 4�

^

b

k

�

1

2

Z

+1

�1

d�

1 + j

"��

�

:

The de�nite integral on the right has the value

S =

1

2

Z

+1

�1

d�

1 + j

"��

�

=

1

2

Z

+1

�1

d�

1 +

�

"��

�

�

2

=

�

"�

artan

"�

�

;

suh that we obtain

< {̂

k+1

>= 4�!

0

^

b

k+1

=

C

1

�

!

0

< {̂

k

>= ! < {̂

k

> :

where funtions ! and !

0

are de�ned by

! =

C

1

�

!

0

; !

0

=

�

�

s

+ �

artan�

�

; and � =

"�

�

:

This may be summarized by the following 2 � 2 system for the evolution for

the amplitude of a mode e

j�x

�

^

b

k+1

<{̂

k+1

>

�

=

�

! 0

!

0

0

� �

^

b

k

<{̂

k

>

�

Cruial for the onvergene is the spetral radius �

0

� j!j whih ful�lls:

�

0

("; �) < 1; but lim

"!0

�

0

("; �) = 1 and lim

�!0

�

0

("; �) = 1:

We onlude that the iteration onverges. However, the smaller " is the slower

beomes this simple iteration. We suggest to use the SP

1

solution as a preondi-

tioner. Let B

k+1

; I

k+1

be the solution of equation (3) as before. System (4) for

the errors b

k+1

, i

k+1

is approximated using the assoiated SP

1

{approximation,

whih an be written in the form

h

"

2

� "

2

�t(B

0

)

(n)

�

x

�

k

0

(B

0

)

(n)

�
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�i

�

k+1

�

"

2

�t(B

0

)

(n)

3�

�'

k+1

= �t(B

0

)

(n)

4��(B

k+1

�B

k

);

�4���

k+1

+

h

�

"

2

3�

�

2

x

+ �

i

'

k+1

= 4��(B

k+1

� B

k

):
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and the orresponding solutions �

k+1

and  

k+1

yield orretions for the iterates

of the simple iteration. Given the old iterates B

k

and I

k

we update B

k+1

and

I

k+1

by adding the orretion terms in the following way

B

k

�! B

k+1

+ �

k+1

<I

k

>�!<I

k+1

> + 

k+1

An analogous analysis as before reveals in this ase that the spetral radius is

given by

� � �("; �) =

�

�

�

!("; �)�

1� !("; �)

D("; �)

�C

1

�

�

�

where the funtion D is

D =

�

� +

"

2

3�

�

2

�

�� �C

1

:

The spetral radius � has the properties

�("; �) � �� < 1; lim

�!0

�("; �) = 0; lim

"!0

�("; �) = 0:

Consequently, the preonditioned iteration onverges faster than the previous

iteration. Moreover, it ontinuous to onverge suÆiently fast when " ap-

proahes 0 while the simple iteration beomes inreasingly slow, as mentioned

above. Numerial experiments give the following results for the redution of

the errors of the Fourier modes (Fig. 6) and the onvergene rates with respet

to " (Fig. 7): We observe that the onvergene rates with preonditioning

remain bounded away from 1 as " tends to 0 in ontrast to the ase without

preonditioning.

5 Appliation II: Optimal ontrol of the tem-

perature

The ooling of molten glass is performed slowly by ontrolling the outer tem-

perature in a furnae. The spei� way how the ooling down proess is per-

formed, in partiular the loal temperature gradients appearing during the

proess, strongly inuenes the quality of the glass.

One major objetive in engineering appliations is the redution of loal tem-

perature gradients in the glass in order to redue stresses and strains and
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possible breaking of glass. Moreover, a redution of the ooling time redues

the energy neessary for the proess.

To ontrol this proess along the desired state we onsider ost funtionals of

traking{type

J

1

= J

1

(T; g; t

f

) =

1

2

Z

t

f

0

jjT � T

d

jj

2

L

2

(
)

dt+

�"

2

Z

t

f

0

jjg � g

d

jj

2

L

2

(�
)

dt+

�

Æ

2

t

2

f

or

J

2

= J

2

(T; g; t

f

) =

1

2

Z

t

f

0

jjrT jj

2

L

2

(
)

dt+

�"

2

Z

t

f

0

jjg � g

d

jj

2

L

2

(�
)

dt+

�

Æ

2

t

2

f

:

Here, t

f

denotes the �nal time, T

d

is a given desired temperature pro�le and g

is the ontrol parameter, i.e. the outside temperature. Further, g

d

desribes a

given initial outer temperature pro�le at the boundary. The onstants

�

Æ and

�" allow to adjust the weight of the ost and the observation. Clearly, J

2

will

minimize the gradients in the temperature pro�le T , but also J

1

might yield

this e�et as T

d

an be hosen onstant in spae.

The goal is to �nd minima of J under the ondition that the temperature

ful�lls the radiative heat transfer system that models glass ooling. For the

sake of simpliity, both from an analytial and a numerial point of view, we

replae the RHT system by its SP

1

approximation. Hene, we minimize J

under the following onstraint, whih represents the SP

1

model in a generi

form

�

t

T = �T +�' (6a)

��' + ' = T

4

(6b)

with boundary onditions

T + n � rT = g (6)

'+ n � r' = g

4

(6d)

Note, that all physial onstants are set to one to simplify the notation.

In fat, we have to deal with a onstrained optimization problem for the bound-

ary ontrol g.
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To solve this problem numerially we derive the �rst{order optimality system

via the Lagrange funtional

L(T; '; g; t

f

; �

T

; �

'

) = J(T; g; t

f

) +

Z

t

f

0

< �

t

T; �

T

>

H

�1

;H

1

dt

+

Z

t

f

0

Z




rTr�

T

dx dt+

Z

t

f

0

Z

�


(T � g)�

T

ds dt

+

Z

t

f

0

Z




r'r�

T

dx dt+

Z

t

f

0

Z

�


('� g

4

)�

T

ds dt

+

Z

t

f

0

Z




r'r�

'

dx dt+

Z

t

f

0

Z




('� T

4

)�

'

dx dt+

Z

t

f

0

Z

�


('� g

4

)�

'

ds dt:

where �

T

and �

�

are Lagrange multiplier funtions. For details see [5℄. We

onsider here for simpliity only J

1

and assume that the �nal time t

f

is �xed.

Clearly, the variation of L with respet to � = (�

T

; �

'

) yields the state system

(6). Employing variations with respet to T and ' we derive the adjoint system

for the Lagrange multipliers �

T

, �

'

:

��

t

�

T

= ��

T

� (4T

3

)�

'

+ (T � T

d

) (7a)

���

'

+ �

'

= ��

T

(7b)

with homogeneous Robin boundary onditions for �

T

and �

'

. This system is

supplemented with the terminal ondition

�

T

(t

f

; x) = �

'

(t

f

; x) = 0: (7)

Finally, variations with respet to g yield the algebrai equation

�

T

� �"(g � g

d

) + 4(�

T

+ �

'

)g

3

= 0 on �
 (8)

for t 2 (0; t

f

).

We solve the �rst{order system (6),(7) and (8) iteratively, whih an be inter-

preted as a variant of a gradient{desent algorithm. The optimality system

for J

2

an be derived in analogy and variations with respet to t

f

are straight

forward yielding another algebrai relation for the �nal time t

f

.

Numerial results for the ost funtional J

1

with optimization of �nal time t

f

,

i.e.

�

Æ 6= 0, are plotted in Fig 8. For referene the given boundary temperature

pro�le g

d

is also plotted there. The desired state T

d

is onstant in spae

having the boundary values g

d

. Note that one gains 20 % of time while the

loal temperature gradients are almost unhanged.
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Figure 8: Minimization of jjT � T
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(without optimization of �nal time)
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The results for the ost funtional J

2

with �xed �nal time (

�

Æ = 0) are given

in Fig 9. In table 1 we present the values of the ost and the observation for

several values of �". Clearly, the mean value norm of the gradient is dereasing

by inreasing osts. Note, that also the maximum norm of the gradient is

dereasing, whih underlines the reasonability of the hoie of J

2

.

" J jjg � g

d

jj

2

jjrT jj

2

jjrT jj

1

- 22:6901 0 6:7365 344:8252

1 22:0623 0:6044 6:6151 343:8816

0:5 21:4694 1:1849 6:4990 343:5875

0:1 17:7177 5:1592 5:7248 342:0602

0:05 14:4975 8:9485 4:9991 341:4265

Table 1: Minimization of jjrT jj

2

. Value of the funtional and norms of bound-

ary ontrol and gradient of the temperature for varying ".

6 Conlusions:

� The SP

N

equations are simple yet aurate approximations of the full

transport solutions.

� They an be used, for example, in order to aelerate the solution of

the full radiative heat transfer equations or for ontrol of glass ooling

proesses.
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