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More than one hundred years ago, F. ENGEL and E. STUDY considered the question of the
surjectivity of the exponential function of Lie groups ([2],[3], compare also the remarks in [9]).
Interestingly, a general solution of this problem is not found yet though there exist equivalent
criteria for the surjectivity of special classes of Lie groups (compare [8]). So it is amazing that
there exists a short proof for a conjecture of M. M0osSkOwITZ and R. SACKSTEDER that every real
connected Lie group is equal to (exp g)2. We present this proof in the paper in hand.

In the whole article, G denotes a real connected Lie group. First, let us assume that G is
semisimple. A subgroup K C @ is called compactly embedded if Ad(K) is relatively compact in
GL(g). It is shown in [7] that there exists maximal compactly embedded subgroups and that all
maximal compactly embedded subgroups are closed and connected. The last property ensures that
all maximal compactly embedded subgroups are conjugate to each other. Moreover, it is well-known
that every compactly embedded connected Lie group has surjective exponential function.

First, let us assume that G is semisimple. The Iwasawa decomposition says that every semisimple
Lie group can be written as K AM where K is maximal compactly embedded, A is abelian connected
and consists of Ad-semisimple elements with specad(a) C R for every a € a, M is nilpotent
connected, and AM is solvable. By DIXMIER’s and SAITO’s Theorem ([1],[6]), S := AM = exp(a+
n).

Now we recall the Levi decomposition: If G is a real connected Lie group, then for every maximal
semisimple subgroup (called Levi factor) L we have G = LRad(G) and L N Rad(G) discrete. All
Levi factors are conjugate to each other.

A Cartan subalgebra hh C g of a real finite dimensional Lie algebra g is a nilpotent subalgebra
which equals its own normalizer ng(h). Cartan subgroups are defined in various ways which in
case of connected Lie groups are all equivalent (compare [5]). We will use the following definition:
H C @ is a Cartan subgroup if h is a Cartan subalgebra and for all g € H and all z € h we have
Ad(g) ad(z)s = ad(z)s Ad(g) where ad(x)s is the semisimple part of the Jordan decomposition of
ad(z).

Theorem 1.9 (ii) of [10] states that for all Cartan subgroups H the intersection H N Rad(G) is
connected. Since H NRad(G) is nilpotent, we have H NRad(G) = exp(hNrad(g)). Theorem 1.11 of
[10] says that for each Cartan subgroup H of G there exists a Levi complement L such that H N L
is a Cartan subgroup of L, H = (H N L)(H N Rad(G)), and H N Rad(G) C Zz(L). This leads to
the following;:

Lemma. If  is a Cartan subalgebra of a real finite-dimensional Lie algebra g and n the nilradical
of g, then rad(g) = (h Nrad(g)) + n. If H is a Cartan subgroup of a real Lie group G and N the
nilradical, then Rad(G) = (H N Rad(G))N.

Proof. We choose [ such that h = (hN[) ® (h Nrad(g)) (compare Theorem 1.8 of [10]). We observe
that g’ C I +n. Moreover, g = h+ g’ = (hNrad(g)) + n + [, hence rad(g) = (h Nrad(g)) + n. The
proof for Lie groups works equivalently.

Thus, with the above notation we gain G = KS(H N Rad(G))N = K(H N Rad(G))SN =
exp texp(h Ntad(g)) expsexpn. Since [¢,h Nrad(g)] = {0}, we get exp Eexp(h Nrad(g)) = exp(t +
(hNrad(g))). Moreover, SN is a solvable connected Lie group and specadg(s) C R for each s € s
by Proposition 3.7 of [11]. Again by Dixmier’s and Saito’s Theorem we get SN = exp(s + n). By
Proposition 3.7 of [11], every element x € s + n satisfies specad(z) C R. So, we have proved the
following theorem:

Theorem. If G is a real connected Lie group, then G = (expg)?. Moreover, for every element
g € G there is an exp-regular element  and an element y in g with ¢ = expxexpy.
Definition. An element z of a real finite-dimensional Lie algebra is called exp-regular if specad zN



2miZ = {0}. The set of all exp-regular elements of g is denoted by regexp.

Corollary. If G is a connected real Lie group and for every g € G there is an exp-regular x € g
and a y € g with g = expxexpy, then there are exp-regular u,w € g with g = exp u exp w.

Proof. Since regexp is dense in g (for example by Lemma 2 of [4]), the image exp(regexp) is
dense in exp g. Since exp is regular at each z € g, the set exp(regexp) is open in G, hence also in
expg. The openess of exp(regexp) implies that there is a symmetric 1-neighborhood U such that
expx - U C exp(regexp). The density implies that expy - U Nregexp # (. So there is a u € U such

that (exp x)u

—! and wexpy are in exp(regexp). This implies the assertion.
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