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More than one hundred years ago, F. Engel and E. Study 
onsidered the question of the

surje
tivity of the exponential fun
tion of Lie groups ([2℄,[3℄, 
ompare also the remarks in [9℄).

Interestingly, a general solution of this problem is not found yet though there exist equivalent


riteria for the surje
tivity of spe
ial 
lasses of Lie groups (
ompare [8℄). So it is amazing that

there exists a short proof for a 
onje
ture of M. Moskowitz and R. Sa
ksteder that every real


onne
ted Lie group is equal to (exp g)

2

. We present this proof in the paper in hand.

In the whole arti
le, G denotes a real 
onne
ted Lie group. First, let us assume that G is

semisimple. A subgroup K � G is 
alled 
ompa
tly embedded if Ad(K) is relatively 
ompa
t in

GL(g). It is shown in [7℄ that there exists maximal 
ompa
tly embedded subgroups and that all

maximal 
ompa
tly embedded subgroups are 
losed and 
onne
ted. The last property ensures that

all maximal 
ompa
tly embedded subgroups are 
onjugate to ea
h other. Moreover, it is well-known

that every 
ompa
tly embedded 
onne
ted Lie group has surje
tive exponential fun
tion.

First, let us assume that G is semisimple. The Iwasawa de
omposition says that every semisimple

Lie group 
an be written asKAM whereK is maximal 
ompa
tly embedded, A is abelian 
onne
ted

and 
onsists of Ad-semisimple elements with spe
 ad(a) � R for every a 2 a, M is nilpotent


onne
ted, and AM is solvable. By Dixmier's and Saito's Theorem ([1℄,[6℄), S := AM = exp(a+

n).

Now we re
all the Levi de
omposition: If G is a real 
onne
ted Lie group, then for every maximal

semisimple subgroup (
alled Levi fa
tor) L we have G = LRad(G) and L \ Rad(G) dis
rete. All

Levi fa
tors are 
onjugate to ea
h other.

A Cartan subalgebra h � g of a real �nite dimensional Lie algebra g is a nilpotent subalgebra

whi
h equals its own normalizer n

g

(h). Cartan subgroups are de�ned in various ways whi
h in


ase of 
onne
ted Lie groups are all equivalent (
ompare [5℄). We will use the following de�nition:

H � G is a Cartan subgroup if h is a Cartan subalgebra and for all g 2 H and all x 2 h we have

Ad(g) ad(x)

s

= ad(x)

s

Ad(g) where ad(x)

s

is the semisimple part of the Jordan de
omposition of

ad(x).

Theorem 1.9 (ii) of [10℄ states that for all Cartan subgroups H the interse
tion H \ Rad(G) is


onne
ted. Sin
e H \Rad(G) is nilpotent, we have H \Rad(G) = exp(h\ rad(g)). Theorem 1.11 of

[10℄ says that for ea
h Cartan subgroup H of G there exists a Levi 
omplement L su
h that H \ L

is a Cartan subgroup of L, H = (H \ L)(H \ Rad(G)), and H \ Rad(G) � Z

G

(L). This leads to

the following:

Lemma. If h is a Cartan subalgebra of a real �nite-dimensional Lie algebra g and n the nilradi
al

of g, then rad(g) = (h \ rad(g)) + n. If H is a Cartan subgroup of a real Lie group G and N the

nilradi
al, then Rad(G) = (H \ Rad(G))N .

Proof. We 
hoose l su
h that h = (h \ l)� (h \ rad(g)) (
ompare Theorem 1.8 of [10℄). We observe

that g

0

� l + n. Moreover, g = h + g

0

= (h \ rad(g)) + n+ l, hen
e rad(g) = (h \ rad(g)) + n. The

proof for Lie groups works equivalently.

Thus, with the above notation we gain G = KS(H \ Rad(G))N = K(H \ Rad(G))SN =

exp k exp(h \ rad(g)) exp s exp n. Sin
e [k; h \ rad(g)℄ = f0g, we get exp k exp(h \ rad(g)) = exp(k +

(h \ rad(g))). Moreover, SN is a solvable 
onne
ted Lie group and spe
 ad

g

(s) � R for ea
h s 2 s

by Proposition 3.7 of [11℄. Again by Dixmier's and Saito's Theorem we get SN = exp(s + n). By

Proposition 3.7 of [11℄, every element x 2 s + n satis�es spe
 ad(x) � R. So, we have proved the

following theorem:

Theorem. If G is a real 
onne
ted Lie group, then G = (exp g)

2

. Moreover, for every element

g 2 G there is an exp-regular element x and an element y in g with g = expx exp y.

De�nition. An element x of a real �nite-dimensional Lie algebra is 
alled exp-regular if spe
 adx\

1



2�iZ= f0g. The set of all exp-regular elements of g is denoted by reg exp.

Corollary. If G is a 
onne
ted real Lie group and for every g 2 G there is an exp-regular x 2 g

and a y 2 g with g = expx exp y, then there are exp-regular u;w 2 g with g = expu expw.

Proof. Sin
e reg exp is dense in g (for example by Lemma 2 of [4℄), the image exp(reg exp) is

dense in exp g. Sin
e exp is regular at ea
h x 2 g, the set exp(reg exp) is open in G, hen
e also in

exp g. The openess of exp(reg exp) implies that there is a symmetri
 1-neighborhood U su
h that

expx �U � exp(reg exp). The density implies that exp y �U \ reg exp 6= ;. So there is a u 2 U su
h

that (expx)u

�1

and u exp y are in exp(reg exp). This implies the assertion.
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