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Abstract

This article is devoted to the following quasistatic problem of viscoelasticity:
—div{L(z)(E(Vgr) —uw)} = b(z, 1), T|seo0 = rr(z, t). (0.1a)
Opu + U(=L(z)(E(Vyr) —u) + Alz)u) 30, ulp=0 = uo(x). (0.1b)

1
E(w) = §(w + wh).
In (0.1) r describes the displacement, u describes the the plastic strain, L describes
the elastic modulus, and A describes the plastic modulus. It turns out that (0.1)
can be rewritten in the following way:

Oyu + A(D(u) + ¢(t)) 20, u(0) = wup. (0.2)

In (0.2) A denotes a maximal monotone operator on some real Hilbert space . In
section 2 we consider the abstract problem (0.2). We prove existence, uniqueness
and stability of solutions with respect to the data (®,¢p, f,ug). In section 3 we
apply our abstract results to the viscoelastic problem (0.1). First we prove existence
and uniqueness of solutions to the n—dimensional problem. Next we consider the 1-
dimensional case where 2 = (0, 1). Therefore, we divide the interval (0, 1) into a grid
of gridlength % Our basic assumption is that in each grid point the corresponding
elastic modulus L,, admits one of the values [ and [ with probability p and 1 — p
respectively where | < [. Applying the stability result of section 2 we show that
the expectation values Ex[u,] of the corresponding solutions w,, converge to some
limit function u as n — o0, and that u is the solution to a homogenized problem
corresponding to some constant elastic modulus L. We close our discussion with
some remarks on the homogenization of the n—dimensional problem.
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1 Introduction

This article is devoted to the quasistatic problem of viscoelasticity. We assume that at
a given reference point x € € and at a given time ¢ € [0, 7] the balance of force and the
evolution of the plastic strain read as follows:

— div, {L(I) (E(er(x, 1) — u(:c,t))} = b(z, 1), r(x,1)

= t). 1.1
o=t ()

yul, t) + U( ~ L(z) (E(Vwr(x, £)) — u(z, t)) + A@)ulz, t)) 50,

u(z,0) = up(x). (1.1b)

B(Vor(z,1)) = %{er(:c,t) + (er(x,t))T}. (1.1¢)

In (1.1) r describes the displacement, u describes the the plastic strain, L describes the
elastic modulus, A describes the plastic modulus, and U describes the (negative of the)
plastic strain rate. We assume that the moduli L and A are linear symmetric positive
definite mapings defined on the set RYT" of symmetric n by n matrices, and that U is a
maximal monotone subset of R x RE containing (0,0). Our strategy is to solve the
linear elliptic boundary value problem (1.1a) for r first and to insert the respective solution
operator into the initial value problem (1.1b) for u. We make the following definition:

H = L*(Q,RLM. (1.2)

ym



Now the initial value problem (1.1b) reads:

dyult) + A(cp(u(t)) + w(t)) 50, u(0) = ug. (1.3)

By construction A is a maximal monotone subset of # x # containing (0, 0), ® is a linear
continuous symmetric positive definite maping defined on H and ¢ is a given function
depending on the data b and rp.

In section 2 we consider the following abstract initial value problem given in some Hilbert
space H:

Bult) + A(@(u(t)) + gp(t)) S (1), u(0) = up. (1.4)

In (1.4) A is a maximal monotone subset of H x H containing (0,0), and ® is a linear
continuous symmetric positive definite maping defined on H. We can choose different
approaches in order to prove existence and uniqueness of solutions u to problem (1.4).
On the one hand we can rewrite (1.4) as a monotone initial value problem and make use of
the well known theory of monotone sets, cf. [1] (Alber). Therefore, we make the following
definitions:

o(t) == <I><u(t)> Fot),  g(t) = @(f(t)) +Op(t), Bla):= @(A(x)). (1.5)

Now problem (1.4) reads:

aw(t) + B(v(t)) 3 9(0), 0(0) = B(ug) + (0). (1.6)

By construction B is a maximal monotone subset of H x H with respect to the equivalent
scalar product on H defined by @ . In this case the solution v to problem (1.6) is obtained
by replacing B with its Yoshida approximation B, and passing to the limit A — 0+. On
the other hand, in the article at hand we choose a different approach, cf. [5] (Chelminski).
Following the lines of [11] (Pazy) we directly prove existence and uniqueness of solutions
u to problem (1.4). In this case the solution u to problem (1.4) is obtained by replacing
A with its Yoshida approximation Ay and passing to the limit A — 0+. This program is
carried out in subsections 2.1 and 2.2. In subsection 2.3 we prove stability of solutions u to
(1.4) with respect to the data (®, ¢, f,ug). We note that in view of our application to the
homogenization of the quasistatic viscoelastic problem (1.3) the stability of solutions with
respect to @ is of particular interest. Moreover, we note that in (1.6) both, the monotone
set B as well as the respective scalar product on H, explicitly depend on ®, whereas in
(1.4) both, the monotone set A as well as the scalar product on #, are independent of .
Consequently, in view of the stability of solutions the initial value problem (1.4) is easier
to handle than the initial value problem (1.6). Finally, we note that our definition of a
solution requires Lipschitz continuity with respect to t. Consequently, by Rademacher’s
theorem a solution is differentiable in the classical sense almost everywhere, see [11] (Pazy)
and compare with [4] (Brezis).



In section 3 we consider the quasistatic viscoelastic problem (1.1). In subsection 3.1 we
first give a precise formulation of the problem and the underlying assumptions. Next
we rewrite (1.1) in the form (1.3). Applying the results of section 2 we obtain existence
and uniqueness of solutions u to the n—dimensional problem (1.1). In subsection 3.2 we
consider the 1-dimensional case 2 = (0,1) of problem (1.1):

. 090{[/(:0) (3;,;7“(:6, £) — u(z, t))} — b(z, 1),

r(0,t) = po(t), r(1,t) = pi(t). (1.7a)

Oyu(x,t) + U( — L(x) ((’%T(L t) — u(z, t)) + Az)u(x, t)) >0,

u(z,0) = ug(x). (1.7b)

First we show existence and uniqueness of solutions u to problem (1.7) analogous to the
previous subsection. Next we turn to the question of statistic homogenization of problem
(1.7). Therefore we divide the interval (0,1) into a grid of gridlength L. Our basic
assumption is that in each grid point the corresponding elastic modulus L, admits one
of the values [ and [ with probability p and 1 — p respectively where [ < I. Applying
the stability result of subsection 2.3 we show that the expectation values Ex[u,] of the
corresponding solutions u,, converge to some limit function v as n — oo, and that w is
the solution to a homogenized problem corresponding to some constant elastic modulus L.
We note that this is essentially a consequence of the law of large numbers. We close our
discussion in subsection 3.3 with some remarks on homogenization of the n—dimensional
problem (1.1). Our basic assumption is that the elastic modulus is now given by some
rapidly oscillating function

L5(x) = L(§> (1.8)
where L is [0, 1]"periodic. Unlike in the 1-dimensional case a formal argument shows
that we cannot expect that the corresponding solutions u°® converge to some limit function
u as € — 04, and that w is the solution to a homogenized problem corresponding to some
constant elastic modulus L°. More precisely, we expect this to be true if and only if L
satisfies a structural condition of the following form:

(L(y)l)ijkl = %(ayi¢jkl(y) + ayj ¢ikl(y)> = %(8yk¢lij (y) + 8yl¢kij(y)>- (1-9)

An example shows that at least for Lame’s law of linear elasticity the structural condition
(1.9) is satisfied. However, homogenization for the general case remains an open problem
and is subject to recent research, cf. [2] (Alber).



2 Abstract Theory

Let ‘H be a Hilbert space over R, and let 17" > 0. We consider the following initial value
problem:

Bult) + A(@(u(t)) + gp(t)) S (). (2.1a)

u(0) = uo. (2.1b)
Throughout this section we make the following assumptions:
1. Let A C H x H be a monotone set with domain D(A) C H.
2. Let ® : H — H be linear, continuous, symmetric and positive definit.
3. Let ¢ € C*([0,T],H), and let f € C([0,T],H).
4. Let ®(ug) + ¢(0) € D(A).

We say that w is a solution to the initial boundary value problem (2.1) if the following
statements hold:

L. ueC([0,T],H).
2, <I><u(t)> +ot) eDA)VO<t<T.
3. u(t) satisfies the PDE (2.1a) in the classical sense V 0 < ¢t < T" almost everywhere.

4. u(0) satisfies the initial condition (2.1b).

REMARK (Rademacher’s theorem)
Let uw € C%([0,T],H). Then the following statements hold:

(a) u is differentiable in the classical sense V 0 <t < T almost everywhere.

(b) Let 0 < a <b<T. Then the following statement holds:

w(b) — u(a) = / dyult) dt. (2.2)

In order to simplify the initial value problem (2.1) we make the following definitions:

() = u(t) + &~ <g0(t)>. (2.3a)

|

(t) i= f(t) + D! (&(p(t)). — T e (o0, T], H). (2.3b)



To = g + &L (w(o)). — () € D(A). (2.3¢)
Now the initial value problem (2.1) reads:

dya(t) + A(cp(u(t))) S F(t). (2.4a)
7(0) = . (2.4)

REMARK
The following statements are equivalent:

1. w is a solution to the initial value problem (2.1).

2. @ is a solution to the initial value problem (2.4).

We define an equivalent scalar product (- |-), on # by:

yl)g = (y|(x)). (2.5)

We define the corresponding equivalent norm ||-||, on H by:

[2llg = /(x| 2)q- (2.6)

By construction @ is invertible. By the bounded inverse theorem ®~! is linear and con-
tinuous. By construction ®~! is symmetric and positive definit. This yields:

2] = (@ (@) | 2)y < 274 (@)l l2lle < VI 2] lllly - (2.7)

Consequently, the following estimates hold:

el < VIS Izl el < VR[] (2.8)

2.1 Uniqueness of Solutions

THEOREM 2.1 (Uniqueness of solutions) B
Let u; be solutions to the initial value problem (2.4) corresponding to the data (f;, Wy)-
Then the following estimate holds ¥V 0 <t < T':

() = mOll < 2/ TR o — Tonll + T Ty = Follongorig ) (29)

In particular, the initial value problem (2.4) has at most one solution u.

6



PROOF
By construction 3 v; : [0, 7] — H with the following properties:

(@(m(t)),vi(t)> €A VO<t<T (2.10a)

Ou; (t) +vi(t) = f,(t) V 0 <t < T almost everywhere. (2.10Db)

By assumption A is monotone. With the help of (2.10) we obtain V 0 < ¢t < 7" almost
everywhere:

O [aa(t) = w() g = 20t () — Bw(t) | T (1) — Wa(t))g

=2 (Ju(1) = o) | T (1) = w(0))y — 2 (vi() = va(t) | @(m (1)) - ®(wa(t)) )

< 2|[f1(t) = Fo )| [[aa(t) — ()l

< T[Fu0) = Ry + o5 I (1) ~ o) (2.11)

With the help of (2.4b), (2.11) and Rademacher’s theorem we obtain vV 0 < ¢ < T
t
7. (t) = @ (®)llg = ll71(0) — w2(0)I5 +/0 Oy [ (s) —ua(s)ll ds
— _ 2 T —- — 2 1 t _ _ 2
< |0 = Uaolle + T ) 1720) = @) dt + = i [a1(s) = wa(s)lly ds. (2.12)
With the help of (2.12) and Gronwall’s lemma we obtain:

) =m0l < exo () (10 = 7l + 7 | R0 -0 @)

With the help of (2.8) and (2.13) we obtain (2.9).
|

THEOREM 2.2
Let @ be a solution to the PDE (2.4a), let 0 < a < b < T, and let w be differentiable in
the classical sense at a and b. Then the following estimate holds:

o) < 2v/TETTET( Joa@ll + 7 19:F ooy ) (2.14)
PROOF
Let A > 0. We make the following definitions:
uy(t) :=u(t+a+ h), Us(t) :=u(t + a). (2.15a)
ﬂlO = ﬂ((l + h), ﬂgo = ﬂ(a) (215b)



f1(t) == f(t+a+h), fo(t) == F(t+a). (2.15¢)
By construction the u; are solutions to the following initial value problems:

B,7(t) + A<CI> (m(t))) 5 F.(), 7,(0) = Tyo. (2.16)
With the help of theorem 2.1 we obtain:

[a(b+h) —u®)|| = [[ux(b — a) = w(b -

< 2Tl (10— Tooll + 772~ Foleogoir—asgan

=2/l T o+ h) ~ Tl + T|FC+8) ~ Tleoguronyan ) (217)

This yields (2.14).
|

2.2 Existence of Solutions

We make the following additional assumption:
l.a Let A be maximal monotone.
LEMMA 2.3
Let X be a Hilbert space over R, let x; € X, and let \; > 0 with the following properties:
(@, — x5 | Nwi — A\jzj) , < 0. (2.18)
Then the following statements hold:
(a) Let \; be monotone increasing as i —» oo. Then the following statements hold:
(i) ||zil| 5 is monotone decreasing as i — oo.
(ii) x; 2% o strongly in X.
(b) Let A\; be monotone decreasing as i — 0o. Then the following statements hold:

(i) ||zil| 5 is monotone increasing as i — 0.

(ii) If lim [jz;]|, < oo then x; 2% & strongly in X.
71— 00

PROOF
By assumption we have:

(N4 Ag) [ = @)% + (N — Aj)( [En— H%‘Hi)

8



2 (A llall = O+ A5) i | 2+ Ay il )
2 <Iz — Ij | /\ZZEZ — /\jIj)X
0

<0. (2.19)
This yields:
=) (llzally = 1% ) <o. (2.20a)
2 )\Z - )\ 2 2
o = a3l < |52 ol = Dl (2.200)

With the help of (2.20a) we obtain (a) (i) and (b) (i). Now let the sequence {||z;|| , }32, be
monotone and bounded. Then {||z;|| ,}52, converges. With the help of (2.20b) we obtain

(a) (ii) and (b) (ii).

O

THEOREM 2.4 (Existence of solutions)
The initial value problem (2.4) has at least one solution w. In particular, the following
estimate holds ¥ 0 <t < T almost everywhere:

[0 (t)
< 2/l e (||4° (@) )| + [Fleoqorsn + TN0F ooz ) (22D
In (2.21) A%(z) denotes the minimal selection of A(x).

PROOF
Sei A > 0. We define the the Yoshida approximation A, of A by:

Ay ={(@+M,y)| (z,y) € A}. (2.22)

From the general theory of monotone sets we know that A, : H — H is single valued and
Lipschitz continuous with Lipschitz constant % We consider the following approximated
initial value problem:

@a;u)+/h(@(ago))::fu% 7 (0) = ug. (2.23)

Since A, is globally Lipschitz continuous the initial value problem (2.23) has a unique
classical solution:

iy € CH[0,T],H). (2.24)
From the general theory of monotone sets we know the following estimate:

[Ax@)] < [|A%)|  Vaoen (2.25)



With the help of theorem 2.2, (2.23) and (2.25) we obtain V0 <t < T*

Jo @)
< 2 /[ 12 (103 O)] + T 1. o110 )

< 2y/]|@]] ||<I>—1||(HAA(‘1>(%)) H +{l O +T Haj”CO([OILH))

< 2y/MRle ([ 4° (@@) | + [Flleogours + T 106F oo )

= L. (2.26a)

|4 (e(@mm)) || < lammi + 7)) < 2L (2.260)

i—00

Let \; —— 0+. We show that {uy,}3°, is a Cauchy sequence in C°([0, 7], H). We define
the the resolvent J, of A by:

Iy ={(x+ My, z) | (z,y) € A}. (2.27)

From the general theory of monotone sets we know that J, : H — H is single valued.
With the help of (2.23) we obtain V 0 <t <T"

[T () — Ty, (2)

- _2/0 (Ar (@) — Ay, (@) | @) — B(@,)) ds
<AA1, (<I>(%i)) — A, (cp(mj)) ‘ {<I>(M> —Jy (<I>(M)) }

—{cp(m,) — (cp(mj)) }> ds

—2 [ (s (0m)) = s (20m2)) | (060) = (03)) ) s

(2.28)

From the general theory of monotone sets we know the following fact:

(J,\(x),A,\(x)> €A VzeH (2.29)
By assumption A is monotone. This yields V 0 <t < T"

<AM (cp(mi)) — Ay, (@(mj)) ‘ Ty, (cp(mi)) — (@(mj)» > 0. (2.30)
With the help of (2.8), (2.26b), (2.28) and (2.30) we obtain V 0 <t < T*

[0 ) — 5, 0 < [l [ ()~ 7, 0

10



< 2o /Ot <AM (cp(mi)) — Ay, (cp(mj))‘ {@(mi) N (<I>(%))}
—{@(mj) — v (@(mj)) }> ds

t
— 2ot / Ay (0@y,)) — Ay (@@, ‘
ot [ (A (@) - Ay (2(m)
)\z’A/\i (q)(ﬂ)\l)) — )\jA,\]. (@(ﬁ,\]))> ds
t 2
<2+ A [|o ! / HAi (T, H+HA. (1), H d
et o] [ (fan (@) + |4y (e@))]| ) as
< 32(N + ) ||| TL2. (2.31)
Consequently {wy,}5°, is a Cauchy sequence in C°([0, 7], H). This yields:
Uy, 25w in €°([0,T), H). (2.32)
This yields V 0 <t < T"
Uy () =5 a(t)  strongly in H. (2.33)

In particular, @ satisfies the initial condition (2.4b). By (2.26a) the u,, are Lipschitz con-
tinuous with Lipschitz constant L. Consequently w is Lipschitz continuous with Lipschitz
constant L. With the help of Rademacher’s theorem we obtain (2.21).

1—00

Let 0 <t < T be fixed, and let A; ~°% 0+. We show that @(u(t)) € D(A). With the
help of (2.26b) we obtain:

(o)~ (8(520)) =

With the help of (2.33) and (2.34) we obtain:

Ay, (<I> (% (t))) H <oNL %0, (2.34)

I, (@ (ﬁ& (t))) ooy @(u(t)) strongly in . (2.35)
By (2.26b) the sequence {A,\i (<I> (HM (t))) }Zl is bounded in H. This yields:

Ay, (‘D(% (t))) IR u(t)  weakly in H. (2.36)

From the general theory of monotone sets we know that (2.29), (2.35) and (2.36) together
imply:

(cp(u(t)) , U(t)) € A (2.37)
Consequently @(E(t)) € D(A).

11



We show that @ satisfies the PDE (2.4a) in the classical sense V 0 < ¢ < T almost every-
1—00

where. Let \; —— 04 be monotone decreasing. We define:
X = L*([0,T],H). (2.38)
With the help of (2.23) and (2.30) we obtain:
<AA1, (cp(mi)) — Ay, (cp(mj)) ‘ Ny, (cp(mi)) — NAy, (cp(uAj)) >X
T
:/0 <AM (cp(mi)) — Ay, (@(mj)) ‘)\ZAM (@(UM)) — MAy, (cb(mj))> dt

<0. (2.39)

With the help of (2.26b) we obtain:

L= [ (em)

With the help of (2.39), (2.40) and lemma 2.3 (b) we obtain:

HAM (@(M)) " ds < 4TI, (2.40)

Ay, (@(UM)) %% strongly in X. (2.41)
This yields V 0 < ¢ < T almost everywhere:
_ Jj—oo .
Ay, (QD (u&j (t))) —=(t) strongly in . (2.42)
With the help of (2.36), (2.37) and (2.42) we obtain ¥V 0 < ¢ < T" almost everywhere:
T(t) = v(t) € A(@(u(t))). (2.43)

Now let 0 <t <t+ h <T. With the help of (2.23), (2.33) and (2.41) we obtain:
t+h

@(t+ h) —a(t) = lim (%i (t+h) — Ty, (t)) —lim [ 0,5 (s)ds

i—00 1—00 t ¢

= lim ( /t o F(s)ds — /t o Ay, (H;V,(s)> ds)

12



- /t o F(s)ds — /t Hh@(s) ds. (2.44)

With the help of (2.26b) and (2.42) we obtain V 0 < ¢ < T almost everywhere:

el = s s, (32, 0)] <22 o

]—)OO

With the help of (2.44) and (2.45) we obtain V 0 < ¢ < T almost everywhere:

+h
2( (t+h)—1ul(t / f(s)ds — —/ v(s)ds o0t ft) —v(t). (2.46)
This yields V 0 <t < T almost everywhere:
ou(t) +o(t) = f(2). (2.47)

Consequently @ satisfies the PDE (2.4a) in the classical sense V 0 < ¢t < T" almost every-
where.
|

2.3 Stability of Solutions with Respect to the Data

We make the following additional assumption:

L.b Let A be maximal monotone, and let (0,0) € A.

LEMMA 2.5
Let uw be the solution to the initial value problem (2.4). Then the following estimates hold:

ooy < 2V TRITTETN( ol + T | Fll ooy ) (2.43)

1058 100 (0,177,320

ITT( [ 4° (@) || + [ Flleogoayzn + T 10 lenomng ) (248D)

PROOF

By assumption (0,0) € A. Consequently @ = 0 is the solution to the initial value problem
(2.4) corresponding to the data (f, ) = (0,0). With the help of theorem 2.1 we obtain
(2.48a). Now, (2.48b) is an immediate consequence of theorem 2.4.

]

13



THEOREM 2.6 (Stability of solutions with respect to the data)
Let u; be the solutions to the initial value problem (2.4) corresponding to the data
(®y, £, Wio). Then the following estimate holds:

171 = Wall ooy,

1 T —
<Cq|P—@ 54—/ t dt}) + — 2.49
{len =)t + ([ 7.0 - 70 )* + I — moll ) (2.49)
O = C(T @il |95 1 7:les oy 4°(@y(m0)) ). (2.49)
PROOF
We define:

Ky = 29/ 112al1 [0 (Iioll + T 17l ooy )- (2.50a)
Lox= 2/l ||| |

4 (@i(%)) H 1 illeoomy ) + T 106 illeogory )

(2.50D)

By construction 3 v; : [0, 7] — H with the following properties:
(@i (Ui(t)>,vi(t)> €A VO<t<T. (2.51a)
Ou; (t) +vi(t) = f,(t) V 0 <t <7 almost everywhere. (2.51Db)

By assumption A is monotone. With the help of (2.51) and lemma 2.5 we obtain V
0 <t < T almost everywhere:

o [ (t) — w3, —2<8t(u1 Tt )\@1( ) — t)>>
:2<am1(t)—atﬂ2 ‘@1(% ) (ﬂ t)>>
—2<am1() Oyt (1) ‘@1<u2 ) 2ﬂ2t)>
(70 70| (m00) - (50
—2<v1(t)—vz \@1(1“ ) @g(uz(t >
—2<6m1() 0/ (t) ‘@1( 1)) - q>2(u2())>
2( @11 (0] + 12 @) ) [F1(6) = Fatt)]
+21@1 = @ @ (0)]| (0 @] + |0 (0)] )

14



<2( N1 Ky + [[a]] K5 ) [ F(8) = Folt)]| + 20101 = @ KoLy + Lo). (2.52)
With the help of (2.8), (2.52) and Rademacher’s theorem we obtain V 0 < ¢ < T*
la(t) = w () < o7 () — w3,
= 0 o~ s, + 5| [0 06) (o, s
< @[] [| @7 120 — o ”
w2 ot (ol i+ o ) [ 70~ o0 at
+ 21 || @y — @ || 71| Ka2(Ly + Lo). (2.53)

Symmetrizing with respect to the indices 1 and 2 yields:

— 2
a1 — U2||c0([o,T},H)

< s (eali+ sl ) (121 + 5 ) o — o

+ (sl + o) ) ([lo ] + H@;H)<K1+K2>/O I7.0) = Fa(0)]] at
+T(|@) — Dy ( @7 + |57 ) (Ky + Ko) (L1 + Ly). (2.54)

This yields (2.49).
|

COROLLARY 2.7 (Stability of solutions with respect to the data)
Let u; be the solutions to the initial value problem (2.1) corresponding to the data
(D4, i, fi, uin). Then the following estimate holds:

Jur — U2HC0([O,T}77{)

T 1
<c{ s =@l + llos = ealleogoryon + (| 10601(6) — dea(o] )
0

(180 = 200 a0) + oo = ol } (2.552)

C=0(T o, |

] ||90i||c2([o,T},H) ||fi||c1([o,T},H) ,waoll,

|4° (@itu0) + ) | ). (2.55b)

PROOF
We recall the following well known facts:

@0 () = @5 @) | < || (@0 - @, ) (@)

+ H@;l(xl — xz)H
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<@gt = &5 el + 85l — )] (2:56)

o — @3 = || @7 (@ — @125 < @ — s 07| |05
1
< @0 = @))% ([0 + fl@al] )" [0 ]| @] (2:56b)

Now (2.55) is an immediate consequence of (2.3) and (2.49).
d

3 Application to Viscoelasticity

3.1 Existence and Uniqueness of Solutions

Let 2 C R" be a bounded domain with a smooth boundary I', and let 7" > 0. €2 describes
a material body, and [0,7] describes the time interval of observation. We consider the
following functions:

re Q% [0,7] — R : (2,t) — r(,1). (3.1a)
w: QO x [0,T] — RO : (2, 1) — u(z,t). (3.1b)

In (3.1) RY" denotes the set of symmetric n by n matrices. r describes the displacement,

and u describes the plastic strain. We consider the following quasistatic problem of
viscoelasticity:

—divx{S(E(Vwr(x,t)),u(x,t),x)}:b(x,t), r(@,t)|  =ro(zt).  (3.2a)

zel

Byula, t) + U(E(E(er(:c, 1), u(z, 1), x)) 50, u(,0) = uo(x). (3.2b)
(3.2a) describes the balance of force, and (3.2b) describes the evolution of the plastic
strain. We make the following assumptions:

1. Let b € C*([0,T], H}(Q,R")).
2. Let rp € C2([0, 7], H2 (09, R™)).
3. Let ug € L2(Q, ™).

ym

4. Let U C R¥" x R bhe a maximal monotone set, and let (0,0) € U.

ym ym

5. Let L € L=(, (R @ R )gym ), let 0 < L <1, and let the following estimate hold

ym
in the sense of symmetric tensors V x € () almost everywhere:

I < Lz) <l (3.3)
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6. Let A € L®(Q, (R @ R )gym), let 0 <A <A and let the following estimate

ym

hold in the sense of symmetric tensors V x € () almost everywhere:

A< A(z) <A

1
E: R — R E(w) = §(w—|—wT).

ym
VR x R" xQ — R:

ym ym

1 1
V(w, z,z) = 5 (w—z| L(z)(w— 2))ruxn + 3 nxr

S . TONXN X XN X ﬁ nXxmn .

ym ym ym
oV
= — = L — .
S(w, z,x) 5 (w, z,7) (x)(w — 2)

3 - n><n>< nxnxﬁ nXn .

ym ym ym
Y(w, z,x) := aa—v(w,z,x) = —S(w,z,z) + Ax)z.
2

We proceed in several steps:

1. We make the following definitions:

H — L2(Q, nxn)'

ym

(z | A()z)gnxn -

(3.4)

In the above assumptions (X ® X')gym denotes the set of symmetric tensors on a Hilbert
space X. b describes the body force, rp describes the displacement at the boundary, wug
describes the plastic strain at the initial time, U describes the (negative of the) plastic
strain rate, L describes the elastic modulus, and A describes the plastic modulus. We
make the following definitions:

(3.ba)

(3.5b)

(3.5¢)

(3.5d)

E describes the strain, V' describes the free energy, S describes the elastic stress, and X
describes the plastic stress.

Our goal is to rewrite the quasistatic viscoelastic problem (3.2) as an initial value problem
for u and to apply the abstract theory developed in section 2.

(3.6a)

A= {(w, 2) €H xH|2(z) € Ulw(z)) V¥ 2 € Q almost everywhere} . (3.6b)

From the general theory of monotone sets we know that A C H x H is maximal

monotone. By construction (0,0) € A.
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2. We consider the following boundary value problem:

—divx{S(E(erl(x,t)),O,x)}:b(x,t), r(zt)|  =relt).  (3.7)

zel’

From the general theory of linear elliptic boundary value problems (Lax—Milgram’s
lemma, Korn’s inequality) we know that (3.7) has a unique weak solution:

ri € C*([0,T], H' (2, R™)). (3.8)
We make the following definition:

o(,1) = —S(E(erl(x,t)), O,x) — e C(0,T,H). (3.9

3. Let w € H. We consider the following boundary value problem:

— div, {S(E(erg(x)), w(z), I)} —0, r(z)] =0 (3.10)

zel’

From the general theory of linear elliptic boundary value problems (Lax—Milgram’s
lemma, Korn’s inequality) we know that (3.10) has a unique weak solution:

rolw] € Hy (€2, R™). (3.11)
We make the following definition:

Slw](x) := s(E(vm[w](:ﬁ)),w(:ﬂ),I). (3.12)

By construction r, and S are linear continuous mapings:

~

ro: H — Hy(,R"), S:H— H. (3.13)

4. We define an equivalent scalar product (- |-), on # by:

Cludy = [ @) L@ d (3.14)
We make the following definition:
Ho = {E(Vep) | p € Hy(Q,R")} C H. (3.15)

From general functional analysis (Poincare’s inequality, Korn’s inequality) we know
that Hy is a closed subspace of H. We make the following definition:

PL:H — Hy orthorgonal projection w.r.t. (-|-),. (3.16)
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5. Now the weak formulation of the boundary value problem (3.10) reads:

/Q <E(pr(x)) \ S(E(erz(x)),w(x),x>>ngxmn —0

V p€ Hy(Q,R"Y). (3.17)

(2| E(Vyrg) —w), =0 YV z€Hy. (3.18)
This yields:

E(V raw]) = Prlw]. (3.19a)

S[w](x) = L(x) (PL - 1) [w](z) = —L(z) Pt [w](z). (3.19b)

Consequently S is symmetric and negative semidefinit w.r.t. the original scalar
product on H. We make the following definition:

dw](x) == —S[w](z) + Alz)w(z). (3.20)

By construction ® is a linear continuous symmetric positive definit maping:

®:H— H. (3.21)

Now the quasistatic viscoelastic problem (3.2) reads as follows:

r(x,t) = ri(z,t) + rofu(t)](x). (3.22a)

dyu(t) + A<<I> <u(t)> + w(t)) 50, u(0) = ug. (3.22h)
By construction the following statements hold:
1. r € C¥([0,T], HY(Q, R")).
2. 1o H — H}(Q,R") is linear and continuous.

3. A C H x H is maximal monotone with (0,0) € A

W

. ®:H — H is linear, continuous, symmetric and positive definit.

5. ¢ e ([0, 1), H).
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With the help of (3.22), theorem 2.1 and theorem 2.4 we immediately obtain the following
theorem.

THEOREM 3.1 (Existence and uniqueness of solutions)
Let the following additional assumption hold:

D (up) + ¢(0) € D(A). (3.23)
Then the quasistatic viscoelastic problem (3.2) has a unique solution:

re ™ ([0,T), H(Q,R™Y)), u € CM([0,T),H). (3.24)

3.2 Statistic Homogenization of the 1-Dimensional Problem

We consider the 1-dimensional case {2 = (0,1) of the quasistatic viscoelastic problem
(3.2):

- 8${L(x) (81;7“(37, £) — u(a, t))} = b(z,1). (3.25a)
r(0,%) = po(t), r(1,t) = pi(t). (3.25Db)
Oyul, t) + U( ~ L(z) (8337“(% £) — u(z, t)) + A@)ulz, t)) 5 0. (3.25¢)
u(x,0) = uo(x). (3.25d)

We make the following assumptions:
1. Let b € C2([0,T],C°(]0,1])).
2. Let p1, p1 € C%([0,T)).
3. Let uy € CY([0, 1])).

4. Let v: (—1,1) — R? be a continuous curve with the following properties:

7(0) = (0,0), lim |y(s)[|g = oo. (3.26)

s—=£1

Let U := graph(v) C RxR be a monotone set. From the general theory of monotone
sets we know that U is also maximal monotone.

5. Let L € C°([0,1]), let 0 < [ <, and let the following estimate hold V¥ = € [0, 1]:

1< L(z) <. (3.27)
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6. Let A € C°([0,1]), let 0 < A < A, and let the following estimate hold ¥ = € [0, 1]:

A< Alz) <A (3.28)

According to the previous subsection we make the following definitions:

H = L*((0,1)). (3.29a)

A= {(w z) EHXH ‘ ) € U(w(x)) V z € (0,1) almost everywhere} . (3.29b)

ri(x,t) == po(t) — /037 L(l ) /0371 b(xg,t) dae da;

() ) (] myn)”

X (pl(t) — po(t) +/O e = /0 b(z2,1) das dx1> (3.29¢)
r2[2] ()
::/0 z(zq) day — </0 ﬁdm)(/o ﬁdm)l(/o z(xl)dx1>. (3.29d)
B[2](z) := (/01 ﬁdxl)_l(/olz(xl)dxl) + A()2(z). (3.29¢)
o(x,t) = /037 b(xq,t)dary — (/01 ﬁdm)l

X (pl(t) — po(t) + /01 L(lxl) /0“ b(x2,t) dxy dxl). (3.29f)

We make the following additional assumption:

7. Let a > 0, and let the following estimate hold:

/

In (3.30) U° denotes the minimal selection of U.

U° (@[uo](x) + ¢(x, 0)) : dr < o?. (3.30)
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Now according to the previous subsection the 1-dimensional quasistatic viscoelastic prob-
lem (3.25) reads as follows:

r(x,t) = ri(z,t) + rofu(t)](x). (3.31a)

dyult) + A(cb(u(t)) + w(t)) 50, u(0) = ug. (3.31b)
According to the previous subsection and (3.30) the following statements hold:
1. r € C3([0,T], H((0,1))).
2. 19 H — H}((0,1)) is linear and continuous.

3. A C H x H is maximal monotone with (0,0) € A

W~

. ®:H — H is linear, continuous, symmetric and positive definit.

ot

€ C2([0,T],H).

&

®(up) + ¢(0) € D(A). In particular, the following estimate holds:
HAO <<I>(u0) + @(0)) H < a (3.32)

With the help of (3.31), theorem 2.1 and theorem 2.4 we immediately obtain the following
theorem.

THEOREM 3.2 (Existence and uniqueness of solutions)
The 1-dimensional quasistatic viscoelastic problem (3.25) has a unique solution:

re ([0, 7], H'((0,1))), u € ([0, T], H). (3.33)
We turn to the question of statistic homogenization of the 1-dimensional quasistatic
viscoelastic problem (3.25).

Qur goal 1s to formulate a probabilistic model for a 2—component material, and to derive
the homogenized limit problem.

We proceed in several steps:

1. Let (22, F, W) be a propability space, let 0 < p < 1, let & be random variables, and
let the following statements hold:

W(&=1) =p, W(&=0)=1-p. (3.34a)

Ex[i¢;] = Ex[&]Ex[¢] =p*  Vi# ] (3.34b)
In (3.34b) Ex denotes the expectation value w.r.t. W.
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2. Let ¢ € Cg°(R) with the following properties:

0<y(r) <1, Y(x) = 1p(—x), > blr—i)=1 (3.352)

supp(v) = [—1,1]. (3.35b)
We make the following definition:

Uni(®) == Y(nx — i) (3.36)
By construction {¢,;}" , is a partition of unity on [0, 1].

3. Let w € 2. We make the following definitions:

L p 1-p

] + — (3.37a)
LN (8 126

Lfl(@) iow’”w ) (337

THEOREM 3.3 (Statistic homogenization)

Let (rp|w], up[w]) and (r,u) be the solutions to the 1-dimensional quasistatic viscoelastic
problem (3.25) w.r.t. the data (ri,|w], ron[w], ®nlw], on[w]) and (r1, 79, @, @) respectively
where (ri,|w], ron[w], ®nlw], pnlw]) and (r1,re, @, @) are defined by (3.29) w.r.t. L,[w] and
L. Then the following statemens hold:

EX[”T" B T||c°<[oyT],H5<<o,1>>)} =0 (3.38a)
EX[ ||U/n - U’HCO([O,T],'H) ] n—>—oo> 0. (338b)

PROOF
Let w € . With the help of (3.27), (3.28), (3.29) and (3.32) we obtain the following
estimates:

Iran ol ey o < 2(1+7)- (3.392)

Hq)n[w]”qyﬂ) < T+, Hq)n[w <A (3.39b)

ey < A
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I
lentllerqorsn < (147) IPllesgony g +Tllor = pollexgaimy - (3.390)

|4 (@ ll(mn) + 2l 0)) || < o (3.300)

In (3.39) L(X,)) denotes the set of linear continuous mapings X — ). With the help of

(3.31), (3.39) and theorem 2.7 we find a constant C' > 0 such that the following estimates
hold V w €

[|7n[w] — T||CO([0,T},H3((0,1)))
< |lrinlw] = 7"1||c0([o,T],H3((0,1))) + [[ranw](un[w]) — 7”2(U)||c0([o,T],H3((0,1)))

< |lrinlw] = 7"1||c0([0,T],H3((0,1))) + [[ranfw](un[w] — U)HcO([o,T},Hg((o,l)))
+ lIranlw](w) = ra(@llcogo 2y, m800.1) -

[
< lrinleo) = leoqo o + 2(1+ 7) lnl] = tllogo iz

+ |Iron[w](u) — T2(u)HCO([O,TLH(}((OJ))) . (3.40a)

[[unw] = ulleoo 12 < {||<I> (W] = @\ 23030 T llonlw] = @lleoqory,a

%
+ ([ 10ceatel0 gt ar) '} (3.40)
0
Let g € C°([0,1]), and let 0 < z < 1. With the help of (3.27) and (3.37) we obtain:
(L )g(a") day
el 1 19llcogo,y (1 1
< _ = 2oy (2 2
N /0 1) L>g(x1) dzy) + n (£ l)
Sk lglleagop (1 1
= Z (fZ(W) — - — = / wnl $1 dxl + CO([OJ]) (7 _ :)
k=1 i=k—1 n Lo
= { [mil(f'( ) = D) i Jrignguco([o’”)}(1 - 1) (3.41a)
= - i\W P)Gni n é Z . 4la
41
= [ duilolgler) da. (3.41b)
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With the help of the Cauchy—Schwartz inequality and (3.34) we obtain the following law
of large numbers:

[nz]—1 [nz]—1 91
EX[ > (& = p)gui ] < EX[( > (& —p)gm) }
1=1 1=1
[nz]—1 9oy L
= (> Ex|((& - pgui) ])
i=1
p(1 —p)
<2 ||9||c0([o,1]) : (3.42)
With the help of (3.41) and (3.42) we obtain:
¢ 1 1
E - — d
[ (g~ aten oo
pl—p) 3y (1 _1
< llglleogo,y) {2 — T E} (Z - 7) (3.43)
With the help of (3.27), (3.29) and (3.43) we obtain:

[ 1
Ex i [r1n — T1||C0([O,T],Hé((0,1)))} =0 [\/—ﬁ] (3.44a)

_ ~o[2 44b
Bx| () = r2 () oo ngom | = O =] (3.44D)
B[ 9~ Bl | = O] (3.44c)

i L(HH) NG
Ex| ~ o[ 3.44d

x| llen = ellesgoan | = 0 =] (3.440)

With the help of (3.40), (3.44) and the Cauchy-Schwartz inequality we obtain (3.38).
]

3.3 A Remark on Homogenization of the n—-Dimensional Prob-
lem

We reconsider the n-dimensional quasistatic viscoelastic problem (3.2). For simplicity we
restrict ourselves to the linear case U = I:

—divx{L(x)<E(V$r(x,t))—u(x,t))}:b(x,t), r(@,t)|  =re(z,t).  (3.45a)

zel’
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Bu(x,t) — L(z) (E(er(x, 1)) — ulz, t)) + A@)ulz, t) = 0,

u(z,0) = ug(x). (3.45b)

Now we turn to the question of homogenization of the quasistatic viscoelastic problem
(3.45). Therefore, let £ > 0. We make the following additional assumption:
S.a Let L:R" — (R @ R )y be [0, 1]"—periodic .

ym

We make the following definition:

L%(z) = L(g) (3.46)

L describes a periodic distribution of two different components in a material.

We consider the quasistatic viscoelastic problem (3.45) corresponding to L. Our goal is
to derive the homogenized limit problem as e — 0 and to formulate structural conditions
for the elastic modulus L.

According to subsection 3.1 we can solve the linear elliptic boundary value problem (3.45a)
separately and insert the solution operator into the linear initial value problem (3.45b).
Now the quasistatic viscoelastic problem corresponding to L° reads:

ré(x,t) = ri(x, t) + r5[u(t)](z). (3.47a)

Oyuf (1, 1) — Lg(x){E<er§[u€(t)](:c)) e t)} A (2,1) =0,

u®(x,0) = up(z). (3.47b)

According to the general theory of homogenization of linear elliptic boundary value prob-
lems we assume that the solution operators in (3.47a) admit the following asymptotic
expansions:

ri(x,t) = (2, t) + eri(x, y,t)‘ Lt O[£3]. (3.48a)

€

+ O[£%]. (3.48b)

y==%

rilwl(z) = ry[w](z) +er3[w](z, y)

We note that from the general theory of homogenization we know that r{ and r5 admit
the asymptotic expansions (3.48) w.r.t. the L*norm, and that r{ and r3 are the solution
operators to respective linear elliptic boundary value problems corresponding to some
constant elastic modulus L° € ( tym @ R )sym- Our additional assumption is that this

ym
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is also true for the H'-norm. Moreover, we assume that the solution u° to the linear
initial boundary value problem (3.47b) admits the following asymptotic expansion:

u(z,t) = u’(z,t) + Ole]. (3.49)
We insert (3.48) and (3.49) into (3.47). This yields:

r(z,t) = r¥(x,t) + ro[u’(t)](z). (3.50a)

0w (z,1) = { L) (B (Varl(e, 1) + Verdu(1))(2))
T+ Az)u®(z, 1)

+ B(Vyrl o) + Tl @) - o)}
L ) (3.50b)

u’(z,0) = up(x). (3.50¢)

We see that (3.50) becomes a consistent homogenized limit problem for (3.47) if and only
if 3 some maping o : H x [0, 7] — H with the following properties:

1. The following statement holds V w € H V y € R* almost everywhere:

L){B(Varl(@.t) + Varblw]@) + B(V,ri (@, y.8) + Vyrdful(e,9)) - w(a)|
= olw, t](x). (3.51)

2. The following maping is continuous linear and onto V 0 < ¢ < T
H—H:wr— o(w,?). (3.52)
Now let some o with the above properties be given. We make the following definition:

plw, t](z, y)
- <VI7“?(J:, 1) + Vorl[wl(z) — w(x))y 4z, y, ) + ri[w](z, y). (3.53)

With the help of (3.51) we obtain:
L(y) olw, (x) = B(Vyplw, ) (,9)). (3.54)

By construction L(y)~! has the following symmetry:

L(y) ' e (Ry @ RET )sym- (3.55)
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With the help of (3.52), (3.54) and (3.55) we find that 3 some maping ¢ : R* — R* @ RV
such that the following structural condition holds:

(L(y)_l)im = %(ayi Diki(y) + Oy ¢ikl(y)> = %(aykd)lij (y) + ayl¢kij(y)>- (3.56)

In view of our formal analysis the structural condition (3.56) is a necessary assumption
on order to pass to the limit ¢ — 0 in the quasistatic viscoelastic problem (3.47). The
corresponding homogenized limit problem is given by (3.50).

The following example shall show that the set of physically admissible elastic moduli L
satisfying the structural condition (3.56) is not empty.

EXAMPLE
Let A, > 0. We consider Lame’s law of linear elasticity:

A straightforeward calculation yields:
L™ = algn +201Izn @ Ign. (3.58a)

_ 1
B = it (3.58b)

In particular, we have:

o
= <5ik(5jl + 5jk5il) + 23004 (3.59)

(Lil)ijkl =3

We make the following definition:
Q :
¢jkl(y) = 5 <yk(5ﬂ + yl(Sjk> + 263/](5“. (360)

A straightforward calculation yields (3.56).
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