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Abstra
t

This arti
le is devoted to the following quasistati
 problem of vis
oelasti
ity:

� div

x

fL(x)(E(r

x

r)� u)g = b(x; t); rj

x2�


= r

�

(x; t): (0.1a)

�

t

u+

_

U(�L(x)(E(r

x

r)� u) + �(x)u) 3 0; uj

t=0

= u

0

(x): (0.1b)

E(w) :=

1

2

(w + w

T

):

In (0.1) r des
ribes the displa
ement, u des
ribes the the plasti
 strain, L des
ribes

the elasti
 modulus, and � des
ribes the plasti
 modulus. It turns out that (0.1)


an be rewritten in the following way:

�

t

u+A(�(u) + '(t)) 3 0; u(0) = u

0

: (0.2)

In (0.2) A denotes a maximal monotone operator on some real Hilbert spa
e H. In

se
tion 2 we 
onsider the abstra
t problem (0.2). We prove existen
e, uniqueness

and stability of solutions with respe
t to the data (�; '; f; u

0

). In se
tion 3 we

apply our abstra
t results to the vis
oelasti
 problem (0.1). First we prove existen
e

and uniqueness of solutions to the n{dimensional problem. Next we 
onsider the 1{

dimensional 
ase where 
 = (0; 1). Therefore, we divide the interval (0; 1) into a grid

of gridlength

1

n

. Our basi
 assumption is that in ea
h grid point the 
orresponding

elasti
 modulus L

n

admits one of the values l and l with probability p and 1 � p

respe
tively where l < l. Applying the stability result of se
tion 2 we show that

the expe
tation values Ex[u

n

℄ of the 
orresponding solutions u

n


onverge to some

limit fun
tion u as n �! 1, and that u is the solution to a homogenized problem


orresponding to some 
onstant elasti
 modulus L. We 
lose our dis
ussion with

some remarks on the homogenization of the n{dimensional problem.
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1 Introdu
tion

This arti
le is devoted to the quasistati
 problem of vis
oelasti
ity. We assume that at

a given referen
e point x 2 
 and at a given time t 2 [0; T ℄ the balan
e of for
e and the

evolution of the plasti
 strain read as follows:

� div

x

n

L(x)

�

E(r

x

r(x; t))� u(x; t)

�o

= b(x; t); r(x; t)

�

�

�

x2�


= r

�

(x; t): (1.1a)

�

t

u(x; t) +

_

U

�

� L(x)

�

E(r

x

r(x; t))� u(x; t)

�

+ �(x)u(x; t)

�

3 0;

u(x; 0) = u

0

(x): (1.1b)

E(r

x

r(x; t)) :=

1

2

n

r

x

r(x; t) +

�

r

x

r(x; t)

�

T

o

: (1.1
)

In (1.1) r des
ribes the displa
ement, u des
ribes the the plasti
 strain, L des
ribes the

elasti
 modulus, � des
ribes the plasti
 modulus, and

_

U des
ribes the (negative of the)

plasti
 strain rate. We assume that the moduli L and � are linear symmetri
 positive

de�nite mapings de�ned on the set R

n�n

sym

of symmetri
 n by n matri
es, and that

_

U is a

maximal monotone subset of R

n�n

sym

� R

n�n

sym


ontaining (0; 0). Our strategy is to solve the

linear ellipti
 boundary value problem (1.1a) for r �rst and to insert the respe
tive solution

operator into the initial value problem (1.1b) for u. We make the following de�nition:

H := L

2

(
;R

n�n

sym

): (1.2)
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Now the initial value problem (1.1b) reads:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (1.3)

By 
onstru
tion A is a maximal monotone subset of H�H 
ontaining (0; 0), � is a linear


ontinuous symmetri
 positive de�nite maping de�ned on H and ' is a given fun
tion

depending on the data b and r

�

.

In se
tion 2 we 
onsider the following abstra
t initial value problem given in some Hilbert

spa
e H:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 f(t); u(0) = u

0

: (1.4)

In (1.4) A is a maximal monotone subset of H�H 
ontaining (0; 0), and � is a linear


ontinuous symmetri
 positive de�nite maping de�ned on H. We 
an 
hoose di�erent

approa
hes in order to prove existen
e and uniqueness of solutions u to problem (1.4).

On the one hand we 
an rewrite (1.4) as a monotone initial value problem and make use of

the well known theory of monotone sets, 
f. [1℄ (Alber). Therefore, we make the following

de�nitions:

v(t) := �

�

u(t)

�

+ '(t); g(t) := �

�

f(t)

�

+ �

t

'(t); B(x) := �

�

A(x)

�

: (1.5)

Now problem (1.4) reads:

�

t

v(t) +B

�

v(t)

�

3 g(t); v(0) = �(u

0

) + '(0): (1.6)

By 
onstru
tion B is a maximal monotone subset of H�H with respe
t to the equivalent

s
alar produ
t onH de�ned by �

�1

. In this 
ase the solution v to problem (1.6) is obtained

by repla
ing B with its Yoshida approximation B

�

and passing to the limit � �! 0+. On

the other hand, in the arti
le at hand we 
hoose a di�erent approa
h, 
f. [5℄ (Chelminski).

Following the lines of [11℄ (Pazy) we dire
tly prove existen
e and uniqueness of solutions

u to problem (1.4). In this 
ase the solution u to problem (1.4) is obtained by repla
ing

A with its Yoshida approximation A

�

and passing to the limit � �! 0+. This program is


arried out in subse
tions 2.1 and 2.2. In subse
tion 2.3 we prove stability of solutions u to

(1.4) with respe
t to the data (�; '; f; u

0

). We note that in view of our appli
ation to the

homogenization of the quasistati
 vis
oelasti
 problem (1.3) the stability of solutions with

respe
t to � is of parti
ular interest. Moreover, we note that in (1.6) both, the monotone

set B as well as the respe
tive s
alar produ
t on H, expli
itly depend on �, whereas in

(1.4) both, the monotone set A as well as the s
alar produ
t on H, are independent of �.

Consequently, in view of the stability of solutions the initial value problem (1.4) is easier

to handle than the initial value problem (1.6). Finally, we note that our de�nition of a

solution requires Lips
hitz 
ontinuity with respe
t to t. Consequently, by Radema
her's

theorem a solution is di�erentiable in the 
lassi
al sense almost everywhere, see [11℄ (Pazy)

and 
ompare with [4℄ (Brezis).
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In se
tion 3 we 
onsider the quasistati
 vis
oelasti
 problem (1.1). In subse
tion 3.1 we

�rst give a pre
ise formulation of the problem and the underlying assumptions. Next

we rewrite (1.1) in the form (1.3). Applying the results of se
tion 2 we obtain existen
e

and uniqueness of solutions u to the n{dimensional problem (1.1). In subse
tion 3.2 we


onsider the 1{dimensional 
ase 
 = (0; 1) of problem (1.1):

� �

x

n

L(x)

�

�

x

r(x; t)� u(x; t)

�o

= b(x; t);

r(0; t) = �

0

(t); r(1; t) = �

1

(t): (1.7a)

�

t

u(x; t) +

_

U

�

� L(x)

�

�

x

r(x; t)� u(x; t)

�

+ �(x)u(x; t)

�

3 0;

u(x; 0) = u

0

(x): (1.7b)

First we show existen
e and uniqueness of solutions u to problem (1.7) analogous to the

previous subse
tion. Next we turn to the question of statisti
 homogenization of problem

(1.7). Therefore we divide the interval (0; 1) into a grid of gridlength

1

n

. Our basi


assumption is that in ea
h grid point the 
orresponding elasti
 modulus L

n

admits one

of the values l and l with probability p and 1 � p respe
tively where l < l. Applying

the stability result of subse
tion 2.3 we show that the expe
tation values Ex[u

n

℄ of the


orresponding solutions u

n


onverge to some limit fun
tion u as n �! 1, and that u is

the solution to a homogenized problem 
orresponding to some 
onstant elasti
 modulus L.

We note that this is essentially a 
onsequen
e of the law of large numbers. We 
lose our

dis
ussion in subse
tion 3.3 with some remarks on homogenization of the n{dimensional

problem (1.1). Our basi
 assumption is that the elasti
 modulus is now given by some

rapidly os
illating fun
tion

L

"

(x) := L

�

x

"

�

(1.8)

where L is [0; 1℄

n

{periodi
. Unlike in the 1{dimensional 
ase a formal argument shows

that we 
annot expe
t that the 
orresponding solutions u

"


onverge to some limit fun
tion

u as " �! 0+, and that u is the solution to a homogenized problem 
orresponding to some


onstant elasti
 modulus L

0

. More pre
isely, we expe
t this to be true if and only if L

satis�es a stru
tural 
ondition of the following form:

�

L(y)

�1

�

ijkl

=

1

2

�

�

y

i
�

jkl

(y) + �

y

j
�

ikl

(y)

�

=

1

2

�

�

y

k
�

lij

(y) + �

y

l
�

kij

(y)

�

: (1.9)

An example shows that at least for Lame's law of linear elasti
ity the stru
tural 
ondition

(1.9) is satis�ed. However, homogenization for the general 
ase remains an open problem

and is subje
t to re
ent resear
h, 
f. [2℄ (Alber).
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2 Abstra
t Theory

Let H be a Hilbert spa
e over R, and let T > 0. We 
onsider the following initial value

problem:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 f(t): (2.1a)

u(0) = u

0

: (2.1b)

Throughout this se
tion we make the following assumptions:

1. Let A � H�H be a monotone set with domain D(A) � H.

2. Let � : H �! H be linear, 
ontinuous, symmetri
 and positive de�nit.

3. Let ' 2 C

2

([0; T ℄;H), and let f 2 C

1

([0; T ℄;H).

4. Let �(u

0

) + '(0) 2 D(A).

We say that u is a solution to the initial boundary value problem (2.1) if the following

statements hold:

1. u 2 C

0;1

([0; T ℄;H).

2. �

�

u(t)

�

+ '(t) 2 D(A) 8 0 � t � T .

3. u(t) satis�es the PDE (2.1a) in the 
lassi
al sense 8 0 � t � T almost everywhere.

4. u(0) satis�es the initial 
ondition (2.1b).

REMARK (Radema
her's theorem)

Let u 2 C

0;1

([0; T ℄;H). Then the following statements hold:

(a) u is di�erentiable in the 
lassi
al sense 8 0 � t � T almost everywhere.

(b) Let 0 � a � b � T . Then the following statement holds:

u(b)� u(a) =

Z

b

a

�

t

u(t) dt: (2.2)

In order to simplify the initial value problem (2.1) we make the following de�nitions:

u(t) := u(t) + �

�1

�

'(t)

�

: (2.3a)

f(t) := f(t) + �

�1

�

�

t

'(t)

�

: =) f 2 C

1

([0; T ℄;H): (2.3b)
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u

0

:= u

0

+ �

�1

�

'(0)

�

: =) �(u

0

) 2 D(A): (2.3
)

Now the initial value problem (2.1) reads:

�

t

u(t) + A

�

�

�

u(t)

��

3 f(t): (2.4a)

u(0) = u

0

: (2.4b)

REMARK

The following statements are equivalent:

1. u is a solution to the initial value problem (2.1).

2. u is a solution to the initial value problem (2.4).

We de�ne an equivalent s
alar produ
t h� �i

�

on H by:

hy xi

�

:= hy �(x)i : (2.5)

We de�ne the 
orresponding equivalent norm k�k

�

on H by:

kxk

�

:=

q

hx xi

�

: (2.6)

By 
onstru
tion � is invertible. By the bounded inverse theorem �

�1

is linear and 
on-

tinuous. By 
onstru
tion �

�1

is symmetri
 and positive de�nit. This yields:

kxk

2

=




�

�1

(x) x

�

�

�







�

�1

(x)







�

kxk

�

�

p

k�

�1

k kxk kxk

�

: (2.7)

Consequently, the following estimates hold:

kxk �

p

k�

�1

k kxk

�

; kxk

�

�

p

k�k kxk : (2.8)

2.1 Uniqueness of Solutions

THEOREM 2.1 (Uniqueness of solutions)

Let u

i

be solutions to the initial value problem (2.4) 
orresponding to the data (f

i

; u

i0

).

Then the following estimate holds 8 0 � t � T :

ku

1

(t)� u

2

(t)k � 2

p

k�k k�

�1

k

�

ku

10

� u

20

k+ T







f

1

� f

2







C

0

([0;T ℄;H)

�

: (2.9)

In parti
ular, the initial value problem (2.4) has at most one solution u.
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PROOF

By 
onstru
tion 9 v

i

: [0; T ℄ �! H with the following properties:

�

�

�

u

i

(t)

�

; v

i

(t)

�

2 A 8 0 � t � T: (2.10a)

�

t

u

i

(t) + v

i

(t) = f

i

(t) 8 0 � t � T almost everywhere: (2.10b)

By assumption A is monotone. With the help of (2.10) we obtain 8 0 � t � T almost

everywhere:

�

t

ku

1

(t)� u

2

(t)k

2

�

= 2 h�

t

u

1

(t)� �

t

u

2

(t) u

1

(t)� u

2

(t)i

�

= 2




f

1

(t)� f

2

(t) u

1

(t)� u

2

(t)

�

�

� 2

D

v

1

(t)� v

2

(t) �

�

u

1

(t)

�

� �

�

u

2

(t)

�E

� 2







f

1

(t)� f

2

(t)







�

ku

1

(t)� u

2

(t)k

�

� T







f

1

(t)� f

2

(t)







2

�

+

1

T

ku

1

(t)� u

2

(t)k

2

�

: (2.11)

With the help of (2.4b), (2.11) and Radema
her's theorem we obtain 8 0 � t � T :

ku

1

(t)� u

2

(t)k

2

�

= ku

1

(0)� u

2

(0)k

2

�

+

Z

t

0

�

s

ku

1

(s)� u

2

(s)k

2

�

ds

� ku

10

� u

20

k

2

�

+ T

Z

T

0







f

1

(t)� f

2

(t)







2

�

dt+

1

T

Z

t

0

ku

1

(s)� u

2

(s)k

2

�

ds: (2.12)

With the help of (2.12) and Gronwall's lemma we obtain:

ku

1

(t)� u

2

(t)k

2

�

� exp

�

t

T

��

ku

10

� u

20

k

2

�

+ T

Z

T

0







f

1

(t)� f

2

(t)







2

�

dt

�

: (2.13)

With the help of (2.8) and (2.13) we obtain (2.9).

2

THEOREM 2.2

Let u be a solution to the PDE (2.4a), let 0 � a < b < T , and let u be di�erentiable in

the 
lassi
al sense at a and b. Then the following estimate holds:

k�

t

u(b)k � 2

p

k�k k�

�1

k

�

k�

t

u(a)k+ T







�

t

f







C

0

([0;T ℄;H)

�

: (2.14)

PROOF

Let h > 0. We make the following de�nitions:

u

1

(t) := u(t+ a+ h); u

2

(t) := u(t+ a): (2.15a)

u

10

:= u(a+ h); u

20

:= u(a): (2.15b)
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f

1

(t) := f(t+ a + h); f

2

(t) := f(t+ a): (2.15
)

By 
onstru
tion the u

i

are solutions to the following initial value problems:

�

t

u

i

(t) + A

�

�

�

u

i

(t)

��

3 f

i

(t); u

i

(0) = u

i0

: (2.16)

With the help of theorem 2.1 we obtain:

ku(b+ h)� u(b)k = ku

2

(b� a)� u

1

(b� a)k

� 2

p

k�k k�

�1

k

�

ku

10

� u

20

k+ T







f

1

� f

2







C

0

([0;T�a�h℄;H)

�

= 2

p

k�k k�

�1

k

�

ku(a+ h)� u(a)k+ T







f(�+ h)� f







C

0

([a;T�h℄;H)

�

: (2.17)

This yields (2.14).

2

2.2 Existen
e of Solutions

We make the following additional assumption:

1.a Let A be maximal monotone.

LEMMA 2.3

Let X be a Hilbert spa
e over R, let x

i

2 X , and let �

i

> 0 with the following properties:

hx

i

� x

j

�

i

x

i

� �

j

x

j

i

X

� 0: (2.18)

Then the following statements hold:

(a) Let �

i

be monotone in
reasing as i �!1. Then the following statements hold:

(i) kx

i

k

X

is monotone de
reasing as i �!1.

(ii) x

i

i!1

���! x strongly in X .

(b) Let �

i

be monotone de
reasing as i �!1. Then the following statements hold:

(i) kx

i

k

X

is monotone in
reasing as i �!1.

(ii) If lim

i!1

kx

i

k

X

<1 then x

i

i!1

���! x strongly in X .

PROOF

By assumption we have:

(�

i

+ �

j

) kx

i

� x

j

k

2

X

+ (�

i

� �

j

)

�

kx

i

k

2

X

� kx

j

k

2

X

�

8



= 2

�

�

i

kx

i

k

2

X

� (�

i

+ �

j

) hx

i

x

j

i

X

+ �

j

kx

i

k

2

X

�

= 2 hx

i

� x

j

�

i

x

i

� �

j

x

j

i

X

� 0: (2.19)

This yields:

(�

i

� �

j

)

�

kx

i

k

2

X

� kx

j

k

2

X

�

� 0: (2.20a)

kx

i

� x

j

k

2

X

�

�

�

�

�

�

i

� �

j

�

i

+ �

j

�

�

�

�

�

�

kx

i

k

2

X

� kx

j

k

2

X

�

�

: (2.20b)

With the help of (2.20a) we obtain (a) (i) and (b) (i). Now let the sequen
e fkx

i

k

X

g

1

i=1

be

monotone and bounded. Then fkx

i

k

X

g

1

i=1


onverges. With the help of (2.20b) we obtain

(a) (ii) and (b) (ii).

2

THEOREM 2.4 (Existen
e of solutions)

The initial value problem (2.4) has at least one solution u. In parti
ular, the following

estimate holds 8 0 � t � T almost everywhere:

k�

t

u(t)k

� 2

p

k�k k�

�1

k

�










A

0

�

�(u

0

)

�










+







f







C

0

([0;T ℄;H)

+ T







�

t

f







C

0

([0;T ℄;H)

�

: (2.21)

In (2.21) A

0

(x) denotes the minimal sele
tion of A(x).

PROOF

Sei � > 0. We de�ne the the Yoshida approximation A

�

of A by:

A

�

:= f(x + �y; y) (x; y) 2 Ag : (2.22)

From the general theory of monotone sets we know that A

�

: H �! H is single valued and

Lips
hitz 
ontinuous with Lips
hitz 
onstant

1

�

. We 
onsider the following approximated

initial value problem:

�

t

u

�

(t) + A

�

�

�

�

u

�

(t)

��

= f(t); u

�

(0) = u

0

: (2.23)

Sin
e A

�

is globally Lips
hitz 
ontinuous the initial value problem (2.23) has a unique


lassi
al solution:

u

�

2 C

1

([0; T ℄;H): (2.24)

From the general theory of monotone sets we know the following estimate:

kA

�

(x)k �







A

0

(x)







8 x 2 H: (2.25)
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With the help of theorem 2.2, (2.23) and (2.25) we obtain 8 0 � t � T :

k�

t

u

�

(t)k

� 2

p

k�k k�

�1

k

�

k�

t

u

�

(0)k+ T







�

t

f







C

0

([0;T ℄;H)

�

� 2

p

k�k k�

�1

k

�










A

�

�

�(u

0

)

�










+







f(0)







+ T







�

t

f







C

0

([0;T ℄;H)

�

� 2

p

k�k k�

�1

k

�










A

0

�

�(u

0

)

�










+







f







C

0

([0;T ℄;H)

+ T







�

t

f







C

0

([0;T ℄;H)

�

=: L: (2.26a)










A

�

�

�

�

u

�

(t)

��










� k�

t

u

�

(t)k+







f(t)







� 2L: (2.26b)

Let �

i

i!1

���! 0+. We show that fu

�

i

g

1

i=1

is a Cau
hy sequen
e in C

0

([0; T ℄;H). We de�ne

the the resolvent J

�

of A by:

J

�

:= f(x + �y; x) (x; y) 2 Ag : (2.27)

From the general theory of monotone sets we know that J

�

: H �! H is single valued.

With the help of (2.23) we obtain 8 0 � t � T :







u

�

i

(t)� u

�

j

(t)







2

�

= �2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�(u

�

i

)� �(u

�

j

)

E

ds

= �2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

i

�

�(u

�

j

)

�oE

ds

� 2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

J

�

i

�

�(u

�

i

)

�

� J

�

i

�

�(u

�

j

)

�E

ds:

(2.28)

From the general theory of monotone sets we know the following fa
t:

�

J

�

(x); A

�

(x)

�

2 A 8 x 2 H: (2.29)

By assumption A is monotone. This yields 8 0 � t � T :

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

J

�

i

�

�(u

�

i

)

�

� J

�

i

�

�(u

�

j

)

�E

� 0: (2.30)

With the help of (2.8), (2.26b), (2.28) and (2.30) we obtain 8 0 � t � T :







u

�

i

(t)� u

�

j

(t)







2

�







�

�1













u

�

i

(t)� u

�

j

(t)







2

�

10



� �2







�

�1







Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

i

�

�(u

�

j

)

�oE

ds

= �2







�

�1







Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

ds

� 2(�

i

+ �

j

)







�

�1







Z

t

0

�










A

�

i

�

�(u

�

i

)

�










+










A

�

j

�

�(u

�

j

)

�










�

2

ds

� 32(�

i

+ �

j

)







�

�1







TL

2

: (2.31)

Consequently fu

�

i

g

1

i=1

is a Cau
hy sequen
e in C

0

([0; T ℄;H). This yields:

u

�

i

i!1

���! u in C

0

([0; T ℄;H): (2.32)

This yields 8 0 � t � T :

u

�

i

(t)

i!1

���! u(t) strongly in H: (2.33)

In parti
ular, u satis�es the initial 
ondition (2.4b). By (2.26a) the u

�

i

are Lips
hitz 
on-

tinuous with Lips
hitz 
onstant L. Consequently u is Lips
hitz 
ontinuous with Lips
hitz


onstant L. With the help of Radema
her's theorem we obtain (2.21).

Let 0 � t � T be �xed, and let �

i

i!1

���! 0+. We show that �

�

u(t)

�

2 D(A). With the

help of (2.26b) we obtain:










�

�

u

�

i

(t)

�

� J

�

i

�

�

�

u

�

i

(t)

��










= �

i










A

�

i

�

�

�

u

�

i

(t)

��










� 2�

i

L

i!1

���! 0: (2.34)

With the help of (2.33) and (2.34) we obtain:

J

�

i

�

�

�

u

�

i

(t)

��

i!1

���! �

�

u(t)

�

strongly in H: (2.35)

By (2.26b) the sequen
e

n

A

�

i

�

�

�

u

�

i

(t)

��o

1

i=1

is bounded in H. This yields:

A

�

i

j

�

�

�

u

�

i

j

(t)

��

j!1

���! v(t) weakly in H: (2.36)

From the general theory of monotone sets we know that (2.29), (2.35) and (2.36) together

imply:

�

�

�

u(t)

�

; v(t)

�

2 A: (2.37)

Consequently �

�

u(t)

�

2 D(A).
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We show that u satis�es the PDE (2.4a) in the 
lassi
al sense 8 0 � t � T almost every-

where. Let �

i

i!1

���! 0+ be monotone de
reasing. We de�ne:

X := L

2

([0; T ℄;H): (2.38)

With the help of (2.23) and (2.30) we obtain:

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

X

=

Z

T

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

dt

=

Z

T

0

D

fA

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

j

�

�(u

�

i

)

�oE

dt

�

Z

T

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�(u

�

i

)� �(u

�

j

)

E

dt

= �

1

2







u

�

i

(T )� u

�

j

(T )







2

�

� 0: (2.39)

With the help of (2.26b) we obtain:










A

�

i

�

�(u

�

i

)

�










2

X

=

Z

T

0










A

�

i

�

�(u

�

i

)

�










2

ds � 4TL

2

: (2.40)

With the help of (2.39), (2.40) and lemma 2.3 (b) we obtain:

A

�

i

�

�(u

�

i

)

�

i!1

���! v strongly in X : (2.41)

This yields 8 0 � t � T almost everywhere:

A

�

i

j

�

�

�

u

�

i

j

(t)

��

j!1

���! v(t) strongly in H: (2.42)

With the help of (2.36), (2.37) and (2.42) we obtain 8 0 � t � T almost everywhere:

v(t) = v(t) 2 A

�

�

�

u(t)

��

: (2.43)

Now let 0 � t < t+ h � T . With the help of (2.23), (2.33) and (2.41) we obtain:

u(t + h)� u(t) = lim

i!1

�

u

�

i

(t+ h)� u

�

i

(t)

�

= lim

i!1

Z

t+h

t

�

s

u

�

i

(s) ds

= lim

i!1

�

Z

t+h

t

f(s) ds�

Z

t+h

t

A

�

i

�

u

�

i

(s)

�

ds

�

12



=

Z

t+h

t

f(s) ds�

Z

t+h

t

v(s) ds: (2.44)

With the help of (2.26b) and (2.42) we obtain 8 0 � t � T almost everywhere:

kv(t)k = lim

j!1










A

�

i

j

�

�

�

u

�

i

j

(t)

��










� 2L: (2.45)

With the help of (2.44) and (2.45) we obtain 8 0 � t � T almost everywhere:

1

h

�

u(t+ h)� u(t)

�

=

1

h

Z

t+h

t

f(s) ds�

1

h

Z

t+h

t

v(s) ds

h!0+

���! f(t)� v(t): (2.46)

This yields 8 0 � t � T almost everywhere:

�

t

u(t) + v(t) = f(t): (2.47)

Consequently u satis�es the PDE (2.4a) in the 
lassi
al sense 8 0 � t � T almost every-

where.

2

2.3 Stability of Solutions with Respe
t to the Data

We make the following additional assumption:

1.b Let A be maximal monotone, and let (0; 0) 2 A.

LEMMA 2.5

Let u be the solution to the initial value problem (2.4). Then the following estimates hold:

kuk

C

0

([0;T ℄;H)

� 2

p

k�k k�

�1

k

�

ku

0

k+ T







f







C

0

([0;T ℄;H)

�

: (2.48a)

k�

t

uk

L

1

([0;T ℄;H)

� 2

p

k�k k�

�1

k

�










A

0

�

�(u

0

)

�










+







f







C

0

([0;T ℄;H)

+ T







�

t

f







C

0

([0;T ℄;H)

�

: (2.48b)

PROOF

By assumption (0; 0) 2 A. Consequently u = 0 is the solution to the initial value problem

(2.4) 
orresponding to the data (f; u

0

) = (0; 0). With the help of theorem 2.1 we obtain

(2.48a). Now, (2.48b) is an immediate 
onsequen
e of theorem 2.4.

2
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THEOREM 2.6 (Stability of solutions with respe
t to the data)

Let u

i

be the solutions to the initial value problem (2.4) 
orresponding to the data

(�

i

; f

i

; u

i0

). Then the following estimate holds:

ku

1

� u

2

k

C

0

([0;T ℄;H)

� C

n

k�

1

� �

2

k

1

2

+

�

Z

T

0







f

1

(t)� f

2

(t)







dt

�

1

2

+ ku

10

� u

20

k

o

: (2.49a)

C =

^

C

�

T; k�

i

k ;







�

�1

i







;







f

i







C

1

([0;T ℄;H)

; ku

i0

k ;










A

0

�

�

i

(u

i0

)

�










�

: (2.49b)

PROOF

We de�ne:

K

i

:= 2

q

k�

i

k







�

�1

i







�

ku

i0

k+ T







f

i







C

0

([0;T ℄;H)

�

: (2.50a)

L

i

:= 2

q

k�

i

k







�

�1

i







�










A

0

�

�

i

(u

i0

)

�










+







f

i







C

0

([0;T ℄;H)

+ T







�

t

f

i







C

0

([0;T ℄;H)

�

:

(2.50b)

By 
onstru
tion 9 v

i

: [0; T ℄ �! H with the following properties:

�

�

i

�

u

i

(t)

�

; v

i

(t)

�

2 A 8 0 � t � T: (2.51a)

�

t

u

i

(t) + v

i

(t) = f

i

(t) 8 0 � t � T almost everywhere: (2.51b)

By assumption A is monotone. With the help of (2.51) and lemma 2.5 we obtain 8

0 � t � T almost everywhere:

�

t

ku

1

(t)� u

2

(t)k

2

�

1

= 2

D

�

t

�

u

1

(t)� u

2

(t)

�

�

1

�

u

1

(t)� u

2

(t)

�E

= 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

2

(t)

�

� �

2

�

u

2

(t)

�E

= 2

D

f

1

(t)� f

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

v

1

(t)� v

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

2

(t)

�

� �

2

�

u

2

(t)

�E

� 2

�

k�

1

k ku

1

(t)k + k�

2

k ku

2

(t)k

�







f

1

(t)� f

2

(t)







+ 2 k�

1

� �

2

k ku

2

(t)k

�

k�

t

u

1

(t)k+ k�

t

u

2

(t)k

�
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� 2

�

k�

1

kK

1

+ k�

2

kK

2

�







f

1

(t)� f

2

(t)







+ 2 k�

1

� �

2

kK

2

(L

1

+ L

2

): (2.52)

With the help of (2.8), (2.52) and Radema
her's theorem we obtain 8 0 � t � T :

ku

1

(t)� u

2

(t)k

2

�







�

�1

1







ku

1

(t)� u

2

(t)k

2

�

1

=







�

�1

1







ku

10

� u

20

k

2

�

1

+







�

�1

1







Z

t

0

�

s

ku

1

(s)� u

2

(s)k

2

�

1

ds

� k�

1

k







�

�1

1







ku

10

� u

20

k

2

+ 2







�

�1

1







�

k�

1

kK

1

+ k�

2

kK

2

�

Z

T

0







f

1

(t)� f

2

(t)







dt

+ 2T k�

1

� �

2

k







�

�1

1







K

2

(L

1

+ L

2

): (2.53)

Symmetrizing with respe
t to the indi
es 1 and 2 yields:

ku

1

� u

2

k

2

C

0

([0;T ℄;H)

�

1

2

�

k�

1

k+ k�

2

k

��







�

�1

1







+







�

�1

2







�

ku

10

� u

20

k

2

+

�

k�

1

k+ k�

2

k

��







�

�1

1







+







�

�1

2







�

(K

1

+K

2

)

Z

T

0







f

1

(t)� f

2

(t)







dt

+ T k�

1

� �

2

k

�







�

�1

1







+







�

�1

2







�

(K

1

+K

2

)(L

1

+ L

2

): (2.54)

This yields (2.49).

2

COROLLARY 2.7 (Stability of solutions with respe
t to the data)

Let u

i

be the solutions to the initial value problem (2.1) 
orresponding to the data

(�

i

; '

i

; f

i

; u

i0

). Then the following estimate holds:

ku

1

� u

2

k

C

0

([0;T ℄;H)

� C

n

k�

1

� �

2

k

1

2

+ k'

1

� '

2

k

C

0

([0;T ℄;H)

+

�

Z

T

0

k�

t

'

1

(t)� �

t

'

2

(t)k dt

�

1

2

+

�

Z

T

0

kf

1

(t)� f

2

(t)k dt

�

1

2

+ ku

10

� u

20

k

o

: (2.55a)

C =

^

C

�

T; k�

i

k ;







�

�1

i







; k'

i

k

C

2

([0;T ℄;H)

kf

i

k

C

1

([0;T ℄;H)

; ku

i0

k ;










A

0

�

�

i

(u

i0

) + '

i

(0)

�










�

: (2.55b)

PROOF

We re
all the following well known fa
ts:







�

�1

1

(x

1

)� �

�1

2

(x

2

)







�










�

�

�1

1

� �

�1

2

�

(x

1

)










+







�

�1

2

(x

1

� x

2

)







15



�







�

�1

1

� �

�1

2







kx

1

k+







�

�1

2







kx

1

� x

2

k : (2.56a)







�

�1

1

� �

�1

2







=







�

�1

1

(�

2

� �

1

)�

�1

2







� k�

1

� �

2

k







�

�1

1













�

�1

2







� k�

1

� �

2

k

1

2

�

k�

1

k+ k�

2

k

�

1

2







�

�1

1













�

�1

2







: (2.56b)

Now (2.55) is an immediate 
onsequen
e of (2.3) and (2.49).

2

3 Appli
ation to Vis
oelasti
ity

3.1 Existen
e and Uniqueness of Solutions

Let 
 � R

n

be a bounded domain with a smooth boundary �, and let T > 0. 
 des
ribes

a material body, and [0; T ℄ des
ribes the time interval of observation. We 
onsider the

following fun
tions:

r : 
� [0; T ℄ �! R

n

: (x; t) 7�! r(x; t): (3.1a)

u : 
� [0; T ℄ �! R

n�n

sym

: (x; t) 7�! u(x; t): (3.1b)

In (3.1) R

n�n

sym

denotes the set of symmetri
 n by n matri
es. r des
ribes the displa
ement,

and u des
ribes the plasti
 strain. We 
onsider the following quasistati
 problem of

vis
oelasti
ity:

� div

x

n

S

�

E(r

x

r(x; t)); u(x; t); x

�o

= b(x; t); r(x; t)

�

�

�

x2�

= r

�

(x; t): (3.2a)

�

t

u(x; t) +

_

U

�

�

�

E(r

x

r(x; t)); u(x; t); x

��

3 0; u(x; 0) = u

0

(x): (3.2b)

(3.2a) des
ribes the balan
e of for
e, and (3.2b) des
ribes the evolution of the plasti


strain. We make the following assumptions:

1. Let b 2 C

2

([0; T ℄; H

�1

(
;R

n

)).

2. Let r

�

2 C

2

([0; T ℄; H

1

2

(�
;R

n

)).

3. Let u

0

2 L

2

(
;R

n�n

sym

).

4. Let

_

U � R

n�n

sym

� R

n�n

sym

be a maximal monotone set, and let (0; 0) 2

_

U .

5. Let L 2 L

1

(
; (R

n�n

sym


 R

n�n

sym

)

sym

), let 0 < l � l, and let the following estimate hold

in the sense of symmetri
 tensors 8 x 2 
 almost everywhere:

l � L(x) � l: (3.3)
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6. Let � 2 L

1

(
; (R

n�n

sym


 R

n�n

sym

)

sym

), let 0 < � � �, and let the following estimate

hold in the sense of symmetri
 tensors 8 x 2 
 almost everywhere:

� � �(x) � �: (3.4)

In the above assumptions (X 
 X )

sym

denotes the set of symmetri
 tensors on a Hilbert

spa
e X . b des
ribes the body for
e, r

�

des
ribes the displa
ement at the boundary, u

0

des
ribes the plasti
 strain at the initial time,

_

U des
ribes the (negative of the) plasti


strain rate, L des
ribes the elasti
 modulus, and � des
ribes the plasti
 modulus. We

make the following de�nitions:

E : R

n�n

�! R

n�n

sym

: E(w) :=

1

2

(w + w

T

): (3.5a)

V : R

n�n

sym

� R

n�n

sym

� 
 �! R :

V (w; z; x) :=

1

2

hw � z L(x)(w � z)i

R

n�n

sym

+

1

2

hz �(x)zi

R

n�n

sym

: (3.5b)

S : R

n�n

sym

� R

n�n

sym

� 
 �! R

n�n

sym

:

S(w; z; x) :=

�V

�w

(w; z; x) = L(x)(w � z): (3.5
)

� : R

n�n

sym

� R

n�n

sym

� 
 �! R

n�n

sym

:

�(w; z; x) :=

�V

�z

(w; z; x) = �S(w; z; x) + �(x)z: (3.5d)

E des
ribes the strain, V des
ribes the free energy, S des
ribes the elasti
 stress, and �

des
ribes the plasti
 stress.

Our goal is to rewrite the quasistati
 vis
oelasti
 problem (3.2) as an initial value problem

for u and to apply the abstra
t theory developed in se
tion 2.

We pro
eed in several steps:

1. We make the following de�nitions:

H := L

2

(
;R

n�n

sym

): (3.6a)

A :=

n

(w; z) 2 H �H z(x) 2

_

U(w(x)) 8 x 2 
 almost everywhere

o

: (3.6b)

From the general theory of monotone sets we know that A � H�H is maximal

monotone. By 
onstru
tion (0; 0) 2 A.
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2. We 
onsider the following boundary value problem:

� div

x

n

S

�

E(r

x

r

1

(x; t)); 0; x

�o

= b(x; t); r

1

(x; t)

�

�

�

x2�

= r

�

(x; t): (3.7)

From the general theory of linear ellipti
 boundary value problems (Lax{Milgram's

lemma, Korn's inequality) we know that (3.7) has a unique weak solution:

r

1

2 C

2

([0; T ℄; H

1

(
;R

n

)): (3.8)

We make the following de�nition:

'(x; t) := �S

�

E(r

x

r

1

(x; t)); 0; x

�

=) ' 2 C

2

([0; T ℄;H): (3.9)

3. Let w 2 H. We 
onsider the following boundary value problem:

� div

x

n

S

�

E(r

x

r

2

(x)); w(x); x

�o

= 0; r

2

(x)

�

�

�

x2�

= 0: (3.10)

From the general theory of linear ellipti
 boundary value problems (Lax{Milgram's

lemma, Korn's inequality) we know that (3.10) has a unique weak solution:

r

2

[w℄ 2 H

1

0

(
;R

n

): (3.11)

We make the following de�nition:

^

S[w℄(x) := S

�

E(r

x

r

2

[w℄(x)); w(x); x

�

: (3.12)

By 
onstru
tion r

2

and

^

S are linear 
ontinuous mapings:

r

2

: H �! H

1

0

(
;R

n

);

^

S : H �! H: (3.13)

4. We de�ne an equivalent s
alar produ
t h� �i

L

on H by:

hz wi

L

:=

Z




hz(x) L(x)w(x)i

R

n�n

sym

dx: (3.14)

We make the following de�nition:

H

0

:=

�

E(r

x

�) � 2 H

1

0

(
;R

n

)

	

� H: (3.15)

From general fun
tional analysis (Poin
are's inequality, Korn's inequality) we know

that H

0

is a 
losed subspa
e of H. We make the following de�nition:

P

L

: H �! H

0

orthorgonal proje
tion w.r.t. h� �i

L

: (3.16)
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5. Now the weak formulation of the boundary value problem (3.10) reads:

Z




D

E(r

x

�(x)) S

�

E(r

x

r

2

(x)); w(x); x

�E

R

n�n

sym

= 0

8 � 2 H

1

0

(
;R

n

): (3.17)

()

hz E(r

x

r

2

)� wi

L

= 0 8 z 2 H

0

: (3.18)

This yields:

E(r

x

r

2

[w℄) = P

L

[w℄: (3.19a)

^

S[w℄(x) = L(x)

�

P

L

� I

�

[w℄(x) = �L(x)P

?

L

[w℄(x): (3.19b)

Consequently

^

S is symmetri
 and negative semide�nit w.r.t. the original s
alar

produ
t on H. We make the following de�nition:

�[w℄(x) := �

^

S[w℄(x) + �(x)w(x): (3.20)

By 
onstru
tion � is a linear 
ontinuous symmetri
 positive de�nit maping:

� : H �! H: (3.21)

Now the quasistati
 vis
oelasti
 problem (3.2) reads as follows:

r(x; t) = r

1

(x; t) + r

2

[u(t)℄(x): (3.22a)

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (3.22b)

By 
onstru
tion the following statements hold:

1. r

1

2 C

2

([0; T ℄; H

1

(
;R

n

)).

2. r

2

: H �! H

1

0

(
;R

n

) is linear and 
ontinuous.

3. A � H�H is maximal monotone with (0; 0) 2 A

4. � : H �! H is linear, 
ontinuous, symmetri
 and positive de�nit.

5. ' 2 C

2

([0; T ℄;H).
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With the help of (3.22), theorem 2.1 and theorem 2.4 we immediately obtain the following

theorem.

THEOREM 3.1 (Existen
e and uniqueness of solutions)

Let the following additional assumption hold:

�(u

0

) + '(0) 2 D(A): (3.23)

Then the quasistati
 vis
oelasti
 problem (3.2) has a unique solution:

r 2 C

0;1

([0; T ℄; H

1

(
;R

n

)); u 2 C

0;1

([0; T ℄;H): (3.24)

3.2 Statisti
 Homogenization of the 1{Dimensional Problem

We 
onsider the 1{dimensional 
ase 
 = (0; 1) of the quasistati
 vis
oelasti
 problem

(3.2):

� �

x

n

L(x)

�

�

x

r(x; t)� u(x; t)

�o

= b(x; t): (3.25a)

r(0; t) = �

0

(t); r(1; t) = �

1

(t): (3.25b)

�

t

u(x; t) +

_

U

�

� L(x)

�

�

x

r(x; t)� u(x; t)

�

+ �(x)u(x; t)

�

3 0: (3.25
)

u(x; 0) = u

0

(x): (3.25d)

We make the following assumptions:

1. Let b 2 C

2

([0; T ℄; C

0

([0; 1℄)).

2. Let �

1

; �

1

2 C

2

([0; T ℄).

3. Let u

0

2 C

0

([0; 1℄)).

4. Let 
 : (�1; 1) �! R

2

be a 
ontinuous 
urve with the following properties:


(0) = (0; 0); lim

s!�1

k
(s)k

R

2

=1: (3.26)

Let

_

U := graph(
) � R�R be a monotone set. From the general theory of monotone

sets we know that

_

U is also maximal monotone.

5. Let L 2 C

0

([0; 1℄), let 0 < l � l, and let the following estimate hold 8 x 2 [0; 1℄:

l � L(x) � l: (3.27)
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6. Let � 2 C

0

([0; 1℄), let 0 < � � �, and let the following estimate hold 8 x 2 [0; 1℄:

� � �(x) � �: (3.28)

A

ording to the previous subse
tion we make the following de�nitions:

H := L

2

((0; 1)): (3.29a)

A :=

n

(w; z) 2 H �H z(x) 2

_

U(w(x)) 8 x 2 (0; 1) almost everywhere

o

: (3.29b)

r

1

(x; t) := �

0

(t)�

Z

x

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

+

�

Z

x

0

1

L(x

1

)

dx

1

��

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

�

�

1

(t)� �

0

(t) +

Z

1

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

�

: (3.29
)

r

2

[z℄(x)

:=

Z

x

0

z(x

1

) dx

1

�

�

Z

x

0

1

L(x

1

)

dx

1

��

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

Z

1

0

z(x

1

) dx

1

�

: (3.29d)

�[z℄(x) :=

�

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

Z

1

0

z(x

1

) dx

1

�

+ �(x)z(x): (3.29e)

'(x; t) :=

Z

x

0

b(x

1

; t) dx

1

�

�

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

�

�

1

(t)� �

0

(t) +

Z

1

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

�

: (3.29f)

We make the following additional assumption:

7. Let � > 0, and let the following estimate hold:

Z

1

0

�

�

�

_

U

0

�

�[u

0

℄(x) + '(x; 0)

�

�

�

�

2

dx � �

2

: (3.30)

In (3.30)

_

U

0

denotes the minimal sele
tion of

_

U .
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Now a

ording to the previous subse
tion the 1{dimensional quasistati
 vis
oelasti
 prob-

lem (3.25) reads as follows:

r(x; t) = r

1

(x; t) + r

2

[u(t)℄(x): (3.31a)

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (3.31b)

A

ording to the previous subse
tion and (3.30) the following statements hold:

1. r

1

2 C

2

([0; T ℄; H

1

((0; 1))).

2. r

2

: H �! H

1

0

((0; 1)) is linear and 
ontinuous.

3. A � H�H is maximal monotone with (0; 0) 2 A

4. � : H �! H is linear, 
ontinuous, symmetri
 and positive de�nit.

5. ' 2 C

2

([0; T ℄;H).

6. �(u

0

) + '(0) 2 D(A). In parti
ular, the following estimate holds:










A

0

�

�(u

0

) + '(0)

�










� �: (3.32)

With the help of (3.31), theorem 2.1 and theorem 2.4 we immediately obtain the following

theorem.

THEOREM 3.2 (Existen
e and uniqueness of solutions)

The 1{dimensional quasistati
 vis
oelasti
 problem (3.25) has a unique solution:

r 2 C

0;1

([0; T ℄; H

1

((0; 1))); u 2 C

0;1

([0; T ℄;H): (3.33)

We turn to the question of statisti
 homogenization of the 1{dimensional quasistati


vis
oelasti
 problem (3.25).

Our goal is to formulate a probabilisti
 model for a 2{
omponent material, and to derive

the homogenized limit problem.

We pro
eed in several steps:

1. Let (
;F ;W ) be a propability spa
e, let 0 < p < 1, let �

i

be random variables, and

let the following statements hold:

W (�

i

= 1) = p; W (�

i

= 0) = 1� p: (3.34a)

Ex[�

i

�

j

℄ = Ex[�

i

℄Ex[�

j

℄ = p

2

8 i 6= j: (3.34b)

In (3.34b) Ex denotes the expe
tation value w.r.t. W .
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2. Let  2 C

1

0

(R) with the following properties:

0 �  (x) � 1;  (x) =  (�x);

X

i2Z

 (x� i) = 1: (3.35a)

supp( ) = [�1; 1℄: (3.35b)

We make the following de�nition:

 

ni

(x) :=  (nx� i): (3.36)

By 
onstru
tion f 

ni

g

n

i=0

is a partition of unity on [0; 1℄.

3. Let ! 2 
. We make the following de�nitions:

1

L

:=

p

l

+

1� p

l

: (3.37a)

1

L

n

[!℄(x)

:=

n

X

i=0

 

ni

(x)

�

�

i

(!)

l

+

1� �

i

(!)

l

�

: (3.37b)

THEOREM 3.3 (Statisti
 homogenization)

Let (r

n

[!℄; u

n

[!℄) and (r; u) be the solutions to the 1{dimensional quasistati
 vis
oelasti


problem (3.25) w.r.t. the data (r

1n

[!℄; r

2n

[!℄;�

n

[!℄; '

n

[!℄) and (r

1

; r

2

;�; ') respe
tively

where (r

1n

[!℄; r

2n

[!℄;�

n

[!℄; '

n

[!℄) and (r

1

; r

2

;�; ') are de�ned by (3.29) w.r.t. L

n

[!℄ and

L. Then the following statemens hold:

Ex

h

kr

n

� rk

C

0

([0;T ℄;H

1

0

((0;1)))

i

n!1

���! 0: (3.38a)

Ex

h

ku

n

� uk

C

0

([0;T ℄;H)

i

n!1

���! 0: (3.38b)

PROOF

Let ! 2 
. With the help of (3.27), (3.28), (3.29) and (3.32) we obtain the following

estimates:

kr

2n

[!℄k

L(H;H

1

0

((0;1)))

� 2

�

1 +

l

l

�

: (3.39a)

k�

n

[!℄k

L(H;H)

� l + �;







�

n

[!℄

�1







L(H;H)

� �: (3.39b)
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k'

n

[!℄k

C

2

([0;T ℄;H)

�

�

1 +

l

l

�

kbk

C

2

([0;T ℄;H)

+ l k�

1

� �

0

k

C

2

([0;T ℄)

: (3.39
)










A

0

�

�

n

[!℄(u

0

) + '

n

[!℄(0)

�










� �: (3.39d)

In (3.39) L(X ;Y) denotes the set of linear 
ontinuous mapings X �! Y. With the help of

(3.31), (3.39) and theorem 2.7 we �nd a 
onstant C > 0 su
h that the following estimates

hold 8 ! 2 
:

kr

n

[!℄� rk

C

0

([0;T ℄;H

1

0

((0;1)))

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u

n

[!℄)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u

n

[!℄� u)k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

:

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ 2

�

1 +

l

l

�

ku

n

[!℄� uk

C

0

([0;T ℄;H)

+ kr

2n

[!℄(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

: (3.40a)

ku

n

[!℄� uk

C

0

([0;T ℄;H)

� C

n

k�

n

[!℄� �k

1

2

L(H;H)

+ k'

n

[!℄� 'k

C

0

([0;T ℄;H)

+

�

Z

T

0

k�

t

'

n

[!℄(t)� �

t

'(t)k dt

�

1

2

o

: (3.40b)

Let g 2 C

0

([0; 1℄), and let 0 � x � 1. With the help of (3.27) and (3.37) we obtain:

�

�

�

�

Z

x

0

�

1

L

n

[!℄(x

1

)

�

1

L

�

g(x

1

) dx

1

�

�

�

�

�

�

�

�

�

�

Z
1

n

[nx℄

0
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C

0

([0;1℄)
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1

l

�

: (3.41a)

g

ni

:=

Z

i+1

n

i�1

n
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(x)g(x

1

) dx

1

: (3.41b)
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With the help of the Cau
hy{S
hwartz inequality and (3.34) we obtain the following law

of large numbers:

Ex
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i

� p)g
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�
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i

1

2
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�

[nx℄�1
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Ex

h�
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i
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�

2
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1

2

� 2 kgk

C

0
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r

p(1� p)

n

: (3.42)

With the help of (3.41) and (3.42) we obtain:
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n
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i
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C

0

([0;1℄)

n

2

r

p(1� p)

n

+

3

n
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1

l

�

1

l

�

: (3.43)

With the help of (3.27), (3.29) and (3.43) we obtain:

Ex

h
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1n

� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

i

= O

h

1

p

n

i

: (3.44a)

Ex

h

kr

2n

(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

i

= O
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1

p

n

i

: (3.44b)

Ex
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i

= O
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p

n

i

: (3.44
)

Ex

h
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n

� 'k

C

1

([0;T ℄;H)

i

= O

h

1

p

n

i

: (3.44d)

With the help of (3.40), (3.44) and the Cau
hy{S
hwartz inequality we obtain (3.38).

2

3.3 A Remark on Homogenization of the n{Dimensional Prob-

lem

We re
onsider the n{dimensional quasistati
 vis
oelasti
 problem (3.2). For simpli
ity we

restri
t ourselves to the linear 
ase

_

U = I:

� div

x

n

L(x)

�

E(r

x

r(x; t))� u(x; t)

�o

= b(x; t); r(x; t)

�

�

�

x2�

= r

�

(x; t): (3.45a)
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�

t

u(x; t)� L(x)

�

E(r

x

r(x; t))� u(x; t)

�

+ �(x)u(x; t) = 0;

u(x; 0) = u

0

(x): (3.45b)

Now we turn to the question of homogenization of the quasistati
 vis
oelasti
 problem

(3.45). Therefore, let " > 0. We make the following additional assumption:

5.a Let L : R

n

�! (R

n�n

sym


 R

n�n

sym

)

sym

be [0; 1℄

n

{periodi
 .

We make the following de�nition:

L

"

(x) := L

�

x

"

�

: (3.46)

L

"

des
ribes a periodi
 distribution of two di�erent 
omponents in a material.

We 
onsider the quasistati
 vis
oelasti
 problem (3.45) 
orresponding to L

"

. Our goal is

to derive the homogenized limit problem as " �! 0 and to formulate stru
tural 
onditions

for the elasti
 modulus L.

A

ording to subse
tion 3.1 we 
an solve the linear ellipti
 boundary value problem (3.45a)

separately and insert the solution operator into the linear initial value problem (3.45b).

Now the quasistati
 vis
oelasti
 problem 
orresponding to L

"

reads:

r

"

(x; t) = r

"

1

(x; t) + r

"

2

[u

"

(t)℄(x): (3.47a)

�

t

u

"

(x; t)� L

"

(x)

n

E

�

r

x

r

"

2

[u

"

(t)℄(x)

�

� u

"

(x; t)

o

+ �(x)u

"

(x; t) = 0;

u

"

(x; 0) = u

0

(x): (3.47b)

A

ording to the general theory of homogenization of linear ellipti
 boundary value prob-

lems we assume that the solution operators in (3.47a) admit the following asymptoti


expansions:

r

"

1

(x; t) = r

0

1

(x; t) + "r

1

1

(x; y; t)

�

�

�

y=

x

"

+O["

2

℄: (3.48a)

r

"

2

[w℄(x) = r

0

2

[w℄(x) + "r

1

2

[w℄(x; y)

�

�

�

y=

x

"

+O["

2

℄: (3.48b)

We note that from the general theory of homogenization we know that r

"

1

and r

"

2

admit

the asymptoti
 expansions (3.48) w.r.t. the L

2

{norm, and that r

0

1

and r

0

2

are the solution

operators to respe
tive linear ellipti
 boundary value problems 
orresponding to some


onstant elasti
 modulus L

0

2 (R

n�n

sym


 R

n�n

sym

)

sym

. Our additional assumption is that this
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is also true for the H

1

{norm. Moreover, we assume that the solution u

"

to the linear

initial boundary value problem (3.47b) admits the following asymptoti
 expansion:

u

"

(x; t) = u

0

(x; t) +O["℄: (3.49)

We insert (3.48) and (3.49) into (3.47). This yields:

r

0

(x; t) = r

0

1

(x; t) + r

0

2

[u

0

(t)℄(x): (3.50a)

�

t

u

0

(x; t)�

n

L(y)

�

E

�

r

x

r

0

1

(x; t) +r

x

r

0

2

[u

0

(t)℄(x)

�

+ E

�

r

y

r

1

1
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"

+ �(x)u

0

(x; t)

= 0: (3.50b)

u

0

(x; 0) = u

0

(x): (3.50
)

We see that (3.50) be
omes a 
onsistent homogenized limit problem for (3.47) if and only

if 9 some maping � : H� [0; T ℄ �! H with the following properties:

1. The following statement holds 8 w 2 H 8 y 2 R

n

almost everywhere:
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2
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�

� w(x)

o

= �[w; t℄(x): (3.51)

2. The following maping is 
ontinuous linear and onto 8 0 � t � T :

H �! H : w 7�! �(w; t): (3.52)

Now let some � with the above properties be given. We make the following de�nition:

�[w; t℄(x; y)

:=

�

r

x

r

0

1

(x; t) +r

x

r

0

2

[w℄(x)� w(x)

�

y + r

1

1

(x; y; t) + r

1

2

[w℄(x; y): (3.53)

With the help of (3.51) we obtain:

L(y)

�1

�[w; t℄(x) = E

�

r

y

�[w; t℄(x; y)

�

: (3.54)

By 
onstru
tion L(y)

�1

has the following symmetry:

L(y)

�1

2 (R

n�n

sym
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n�n

sym

)

sym

: (3.55)
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With the help of (3.52), (3.54) and (3.55) we �nd that 9 some maping � : R

n

�! R

n


 R

n�n

sym

su
h that the following stru
tural 
ondition holds:

�

L(y)

�1

�

ijkl
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�
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l�

kij

(y)

�

: (3.56)

In view of our formal analysis the stru
tural 
ondition (3.56) is a ne
essary assumption

on order to pass to the limit " �! 0 in the quasistati
 vis
oelasti
 problem (3.47). The


orresponding homogenized limit problem is given by (3.50).

The following example shall show that the set of physi
ally admissible elasti
 moduli L

satisfying the stru
tural 
ondition (3.56) is not empty.

EXAMPLE

Let �; � > 0. We 
onsider Lame's law of linear elasti
ity:

L := �I

R

n�n

sym

+ 2�I

R

n


 I

R

n

: (3.57)

A straightforeward 
al
ulation yields:

L

�1

= �I

R

n�n

sym

+ 2�I
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n


 I

R

n

: (3.58a)
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1

�

; � := �

�

�(�+ 2n�)

: (3.58b)

In parti
ular, we have:
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)
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=
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2

�

Æ
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+ Æ
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Æ
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: (3.59)

We make the following de�nition:

�

jkl

(y) :=

�

2

�

y

k

Æ

jl

+ y

l

Æ

jk

�

+ 2�y

j

Æ

kl

: (3.60)

A straightforward 
al
ulation yields (3.56).
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