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Abstrat

This artile is devoted to the following quasistati problem of visoelastiity:

� div

x

fL(x)(E(r

x

r)� u)g = b(x; t); rj

x2�


= r

�

(x; t): (0.1a)

�

t

u+

_

U(�L(x)(E(r

x

r)� u) + �(x)u) 3 0; uj

t=0

= u

0

(x): (0.1b)

E(w) :=

1

2

(w + w

T

):

In (0.1) r desribes the displaement, u desribes the the plasti strain, L desribes

the elasti modulus, and � desribes the plasti modulus. It turns out that (0.1)

an be rewritten in the following way:

�

t

u+A(�(u) + '(t)) 3 0; u(0) = u

0

: (0.2)

In (0.2) A denotes a maximal monotone operator on some real Hilbert spae H. In

setion 2 we onsider the abstrat problem (0.2). We prove existene, uniqueness

and stability of solutions with respet to the data (�; '; f; u

0

). In setion 3 we

apply our abstrat results to the visoelasti problem (0.1). First we prove existene

and uniqueness of solutions to the n{dimensional problem. Next we onsider the 1{

dimensional ase where 
 = (0; 1). Therefore, we divide the interval (0; 1) into a grid

of gridlength

1

n

. Our basi assumption is that in eah grid point the orresponding

elasti modulus L

n

admits one of the values l and l with probability p and 1 � p

respetively where l < l. Applying the stability result of setion 2 we show that

the expetation values Ex[u

n

℄ of the orresponding solutions u

n

onverge to some

limit funtion u as n �! 1, and that u is the solution to a homogenized problem

orresponding to some onstant elasti modulus L. We lose our disussion with

some remarks on the homogenization of the n{dimensional problem.
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1 Introdution

This artile is devoted to the quasistati problem of visoelastiity. We assume that at

a given referene point x 2 
 and at a given time t 2 [0; T ℄ the balane of fore and the

evolution of the plasti strain read as follows:

� div

x

n

L(x)

�

E(r

x

r(x; t))� u(x; t)

�o

= b(x; t); r(x; t)

�

�

�

x2�


= r

�

(x; t): (1.1a)

�

t

u(x; t) +

_

U

�

� L(x)

�

E(r

x

r(x; t))� u(x; t)

�

+ �(x)u(x; t)

�

3 0;

u(x; 0) = u

0

(x): (1.1b)

E(r

x

r(x; t)) :=

1

2

n

r

x

r(x; t) +

�

r

x

r(x; t)

�

T

o

: (1.1)

In (1.1) r desribes the displaement, u desribes the the plasti strain, L desribes the

elasti modulus, � desribes the plasti modulus, and

_

U desribes the (negative of the)

plasti strain rate. We assume that the moduli L and � are linear symmetri positive

de�nite mapings de�ned on the set R

n�n

sym

of symmetri n by n matries, and that

_

U is a

maximal monotone subset of R

n�n

sym

� R

n�n

sym

ontaining (0; 0). Our strategy is to solve the

linear ellipti boundary value problem (1.1a) for r �rst and to insert the respetive solution

operator into the initial value problem (1.1b) for u. We make the following de�nition:

H := L

2

(
;R

n�n

sym

): (1.2)
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Now the initial value problem (1.1b) reads:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (1.3)

By onstrution A is a maximal monotone subset of H�H ontaining (0; 0), � is a linear

ontinuous symmetri positive de�nite maping de�ned on H and ' is a given funtion

depending on the data b and r

�

.

In setion 2 we onsider the following abstrat initial value problem given in some Hilbert

spae H:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 f(t); u(0) = u

0

: (1.4)

In (1.4) A is a maximal monotone subset of H�H ontaining (0; 0), and � is a linear

ontinuous symmetri positive de�nite maping de�ned on H. We an hoose di�erent

approahes in order to prove existene and uniqueness of solutions u to problem (1.4).

On the one hand we an rewrite (1.4) as a monotone initial value problem and make use of

the well known theory of monotone sets, f. [1℄ (Alber). Therefore, we make the following

de�nitions:

v(t) := �

�

u(t)

�

+ '(t); g(t) := �

�

f(t)

�

+ �

t

'(t); B(x) := �

�

A(x)

�

: (1.5)

Now problem (1.4) reads:

�

t

v(t) +B

�

v(t)

�

3 g(t); v(0) = �(u

0

) + '(0): (1.6)

By onstrution B is a maximal monotone subset of H�H with respet to the equivalent

salar produt onH de�ned by �

�1

. In this ase the solution v to problem (1.6) is obtained

by replaing B with its Yoshida approximation B

�

and passing to the limit � �! 0+. On

the other hand, in the artile at hand we hoose a di�erent approah, f. [5℄ (Chelminski).

Following the lines of [11℄ (Pazy) we diretly prove existene and uniqueness of solutions

u to problem (1.4). In this ase the solution u to problem (1.4) is obtained by replaing

A with its Yoshida approximation A

�

and passing to the limit � �! 0+. This program is

arried out in subsetions 2.1 and 2.2. In subsetion 2.3 we prove stability of solutions u to

(1.4) with respet to the data (�; '; f; u

0

). We note that in view of our appliation to the

homogenization of the quasistati visoelasti problem (1.3) the stability of solutions with

respet to � is of partiular interest. Moreover, we note that in (1.6) both, the monotone

set B as well as the respetive salar produt on H, expliitly depend on �, whereas in

(1.4) both, the monotone set A as well as the salar produt on H, are independent of �.

Consequently, in view of the stability of solutions the initial value problem (1.4) is easier

to handle than the initial value problem (1.6). Finally, we note that our de�nition of a

solution requires Lipshitz ontinuity with respet to t. Consequently, by Rademaher's

theorem a solution is di�erentiable in the lassial sense almost everywhere, see [11℄ (Pazy)

and ompare with [4℄ (Brezis).
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In setion 3 we onsider the quasistati visoelasti problem (1.1). In subsetion 3.1 we

�rst give a preise formulation of the problem and the underlying assumptions. Next

we rewrite (1.1) in the form (1.3). Applying the results of setion 2 we obtain existene

and uniqueness of solutions u to the n{dimensional problem (1.1). In subsetion 3.2 we

onsider the 1{dimensional ase 
 = (0; 1) of problem (1.1):

� �

x

n

L(x)

�

�

x

r(x; t)� u(x; t)

�o

= b(x; t);

r(0; t) = �

0

(t); r(1; t) = �

1

(t): (1.7a)

�

t

u(x; t) +

_

U

�

� L(x)

�

�

x

r(x; t)� u(x; t)

�

+ �(x)u(x; t)

�

3 0;

u(x; 0) = u

0

(x): (1.7b)

First we show existene and uniqueness of solutions u to problem (1.7) analogous to the

previous subsetion. Next we turn to the question of statisti homogenization of problem

(1.7). Therefore we divide the interval (0; 1) into a grid of gridlength

1

n

. Our basi

assumption is that in eah grid point the orresponding elasti modulus L

n

admits one

of the values l and l with probability p and 1 � p respetively where l < l. Applying

the stability result of subsetion 2.3 we show that the expetation values Ex[u

n

℄ of the

orresponding solutions u

n

onverge to some limit funtion u as n �! 1, and that u is

the solution to a homogenized problem orresponding to some onstant elasti modulus L.

We note that this is essentially a onsequene of the law of large numbers. We lose our

disussion in subsetion 3.3 with some remarks on homogenization of the n{dimensional

problem (1.1). Our basi assumption is that the elasti modulus is now given by some

rapidly osillating funtion

L

"

(x) := L

�

x

"

�

(1.8)

where L is [0; 1℄

n

{periodi. Unlike in the 1{dimensional ase a formal argument shows

that we annot expet that the orresponding solutions u

"

onverge to some limit funtion

u as " �! 0+, and that u is the solution to a homogenized problem orresponding to some

onstant elasti modulus L

0

. More preisely, we expet this to be true if and only if L

satis�es a strutural ondition of the following form:

�

L(y)

�1

�

ijkl

=

1

2

�

�

y

i
�

jkl

(y) + �

y

j
�

ikl

(y)

�

=

1

2

�

�

y

k
�

lij

(y) + �

y

l
�

kij

(y)

�

: (1.9)

An example shows that at least for Lame's law of linear elastiity the strutural ondition

(1.9) is satis�ed. However, homogenization for the general ase remains an open problem

and is subjet to reent researh, f. [2℄ (Alber).
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2 Abstrat Theory

Let H be a Hilbert spae over R, and let T > 0. We onsider the following initial value

problem:

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 f(t): (2.1a)

u(0) = u

0

: (2.1b)

Throughout this setion we make the following assumptions:

1. Let A � H�H be a monotone set with domain D(A) � H.

2. Let � : H �! H be linear, ontinuous, symmetri and positive de�nit.

3. Let ' 2 C

2

([0; T ℄;H), and let f 2 C

1

([0; T ℄;H).

4. Let �(u

0

) + '(0) 2 D(A).

We say that u is a solution to the initial boundary value problem (2.1) if the following

statements hold:

1. u 2 C

0;1

([0; T ℄;H).

2. �

�

u(t)

�

+ '(t) 2 D(A) 8 0 � t � T .

3. u(t) satis�es the PDE (2.1a) in the lassial sense 8 0 � t � T almost everywhere.

4. u(0) satis�es the initial ondition (2.1b).

REMARK (Rademaher's theorem)

Let u 2 C

0;1

([0; T ℄;H). Then the following statements hold:

(a) u is di�erentiable in the lassial sense 8 0 � t � T almost everywhere.

(b) Let 0 � a � b � T . Then the following statement holds:

u(b)� u(a) =

Z

b

a

�

t

u(t) dt: (2.2)

In order to simplify the initial value problem (2.1) we make the following de�nitions:

u(t) := u(t) + �

�1

�

'(t)

�

: (2.3a)

f(t) := f(t) + �

�1

�

�

t

'(t)

�

: =) f 2 C

1

([0; T ℄;H): (2.3b)
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u

0

:= u

0

+ �

�1

�

'(0)

�

: =) �(u

0

) 2 D(A): (2.3)

Now the initial value problem (2.1) reads:

�

t

u(t) + A

�

�

�

u(t)

��

3 f(t): (2.4a)

u(0) = u

0

: (2.4b)

REMARK

The following statements are equivalent:

1. u is a solution to the initial value problem (2.1).

2. u is a solution to the initial value problem (2.4).

We de�ne an equivalent salar produt h� �i

�

on H by:

hy xi

�

:= hy �(x)i : (2.5)

We de�ne the orresponding equivalent norm k�k

�

on H by:

kxk

�

:=

q

hx xi

�

: (2.6)

By onstrution � is invertible. By the bounded inverse theorem �

�1

is linear and on-

tinuous. By onstrution �

�1

is symmetri and positive de�nit. This yields:

kxk

2

=




�

�1

(x) x

�

�

�





�

�1

(x)





�

kxk

�

�

p

k�

�1

k kxk kxk

�

: (2.7)

Consequently, the following estimates hold:

kxk �

p

k�

�1

k kxk

�

; kxk

�

�

p

k�k kxk : (2.8)

2.1 Uniqueness of Solutions

THEOREM 2.1 (Uniqueness of solutions)

Let u

i

be solutions to the initial value problem (2.4) orresponding to the data (f

i

; u

i0

).

Then the following estimate holds 8 0 � t � T :

ku

1

(t)� u

2

(t)k � 2

p

k�k k�

�1

k

�

ku

10

� u

20

k+ T





f

1

� f

2





C

0

([0;T ℄;H)

�

: (2.9)

In partiular, the initial value problem (2.4) has at most one solution u.
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PROOF

By onstrution 9 v

i

: [0; T ℄ �! H with the following properties:

�

�

�

u

i

(t)

�

; v

i

(t)

�

2 A 8 0 � t � T: (2.10a)

�

t

u

i

(t) + v

i

(t) = f

i

(t) 8 0 � t � T almost everywhere: (2.10b)

By assumption A is monotone. With the help of (2.10) we obtain 8 0 � t � T almost

everywhere:

�

t

ku

1

(t)� u

2

(t)k

2

�

= 2 h�

t

u

1

(t)� �

t

u

2

(t) u

1

(t)� u

2

(t)i

�

= 2




f

1

(t)� f

2

(t) u

1

(t)� u

2

(t)

�

�

� 2

D

v

1

(t)� v

2

(t) �

�

u

1

(t)

�

� �

�

u

2

(t)

�E

� 2





f

1

(t)� f

2

(t)





�

ku

1

(t)� u

2

(t)k

�

� T





f

1

(t)� f

2

(t)





2

�

+

1

T

ku

1

(t)� u

2

(t)k

2

�

: (2.11)

With the help of (2.4b), (2.11) and Rademaher's theorem we obtain 8 0 � t � T :

ku

1

(t)� u

2

(t)k

2

�

= ku

1

(0)� u

2

(0)k

2

�

+

Z

t

0

�

s

ku

1

(s)� u

2

(s)k

2

�

ds

� ku

10

� u

20

k

2

�

+ T

Z

T

0





f

1

(t)� f

2

(t)





2

�

dt+

1

T

Z

t

0

ku

1

(s)� u

2

(s)k

2

�

ds: (2.12)

With the help of (2.12) and Gronwall's lemma we obtain:

ku

1

(t)� u

2

(t)k

2

�

� exp

�

t

T

��

ku

10

� u

20

k

2

�

+ T

Z

T

0





f

1

(t)� f

2

(t)





2

�

dt

�

: (2.13)

With the help of (2.8) and (2.13) we obtain (2.9).

2

THEOREM 2.2

Let u be a solution to the PDE (2.4a), let 0 � a < b < T , and let u be di�erentiable in

the lassial sense at a and b. Then the following estimate holds:

k�

t

u(b)k � 2

p

k�k k�

�1

k

�

k�

t

u(a)k+ T





�

t

f





C

0

([0;T ℄;H)

�

: (2.14)

PROOF

Let h > 0. We make the following de�nitions:

u

1

(t) := u(t+ a+ h); u

2

(t) := u(t+ a): (2.15a)

u

10

:= u(a+ h); u

20

:= u(a): (2.15b)
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f

1

(t) := f(t+ a + h); f

2

(t) := f(t+ a): (2.15)

By onstrution the u

i

are solutions to the following initial value problems:

�

t

u

i

(t) + A

�

�

�

u

i

(t)

��

3 f

i

(t); u

i

(0) = u

i0

: (2.16)

With the help of theorem 2.1 we obtain:

ku(b+ h)� u(b)k = ku

2

(b� a)� u

1

(b� a)k

� 2

p

k�k k�

�1

k

�

ku

10

� u

20

k+ T





f

1

� f

2





C

0

([0;T�a�h℄;H)

�

= 2

p

k�k k�

�1

k

�

ku(a+ h)� u(a)k+ T





f(�+ h)� f





C

0

([a;T�h℄;H)

�

: (2.17)

This yields (2.14).

2

2.2 Existene of Solutions

We make the following additional assumption:

1.a Let A be maximal monotone.

LEMMA 2.3

Let X be a Hilbert spae over R, let x

i

2 X , and let �

i

> 0 with the following properties:

hx

i

� x

j

�

i

x

i

� �

j

x

j

i

X

� 0: (2.18)

Then the following statements hold:

(a) Let �

i

be monotone inreasing as i �!1. Then the following statements hold:

(i) kx

i

k

X

is monotone dereasing as i �!1.

(ii) x

i

i!1

���! x strongly in X .

(b) Let �

i

be monotone dereasing as i �!1. Then the following statements hold:

(i) kx

i

k

X

is monotone inreasing as i �!1.

(ii) If lim

i!1

kx

i

k

X

<1 then x

i

i!1

���! x strongly in X .

PROOF

By assumption we have:

(�

i

+ �

j

) kx

i

� x

j

k

2

X

+ (�

i

� �

j

)

�

kx

i

k

2

X

� kx

j

k

2

X

�

8



= 2

�

�

i

kx

i

k

2

X

� (�

i

+ �

j

) hx

i

x

j

i

X

+ �

j

kx

i

k

2

X

�

= 2 hx

i

� x

j

�

i

x

i

� �

j

x

j

i

X

� 0: (2.19)

This yields:

(�

i

� �

j

)

�

kx

i

k

2

X

� kx

j

k

2

X

�

� 0: (2.20a)

kx

i

� x

j

k

2

X

�

�

�

�

�

�

i

� �

j

�

i

+ �

j

�

�

�

�

�

�

kx

i

k

2

X

� kx

j

k

2

X

�

�

: (2.20b)

With the help of (2.20a) we obtain (a) (i) and (b) (i). Now let the sequene fkx

i

k

X

g

1

i=1

be

monotone and bounded. Then fkx

i

k

X

g

1

i=1

onverges. With the help of (2.20b) we obtain

(a) (ii) and (b) (ii).

2

THEOREM 2.4 (Existene of solutions)

The initial value problem (2.4) has at least one solution u. In partiular, the following

estimate holds 8 0 � t � T almost everywhere:

k�

t

u(t)k

� 2

p

k�k k�

�1

k

�







A

0

�

�(u

0

)

�







+





f





C

0

([0;T ℄;H)

+ T





�

t

f





C

0

([0;T ℄;H)

�

: (2.21)

In (2.21) A

0

(x) denotes the minimal seletion of A(x).

PROOF

Sei � > 0. We de�ne the the Yoshida approximation A

�

of A by:

A

�

:= f(x + �y; y) (x; y) 2 Ag : (2.22)

From the general theory of monotone sets we know that A

�

: H �! H is single valued and

Lipshitz ontinuous with Lipshitz onstant

1

�

. We onsider the following approximated

initial value problem:

�

t

u

�

(t) + A

�

�

�

�

u

�

(t)

��

= f(t); u

�

(0) = u

0

: (2.23)

Sine A

�

is globally Lipshitz ontinuous the initial value problem (2.23) has a unique

lassial solution:

u

�

2 C

1

([0; T ℄;H): (2.24)

From the general theory of monotone sets we know the following estimate:

kA

�

(x)k �





A

0

(x)





8 x 2 H: (2.25)
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With the help of theorem 2.2, (2.23) and (2.25) we obtain 8 0 � t � T :

k�

t

u

�

(t)k

� 2

p

k�k k�

�1

k

�

k�

t

u

�

(0)k+ T





�

t

f





C

0

([0;T ℄;H)

�

� 2

p

k�k k�

�1

k

�







A

�

�

�(u

0

)

�







+





f(0)





+ T





�

t

f





C

0

([0;T ℄;H)

�

� 2

p

k�k k�

�1

k

�







A

0

�

�(u

0

)

�







+





f





C

0

([0;T ℄;H)

+ T





�

t

f





C

0

([0;T ℄;H)

�

=: L: (2.26a)







A

�

�

�

�

u

�

(t)

��







� k�

t

u

�

(t)k+





f(t)





� 2L: (2.26b)

Let �

i

i!1

���! 0+. We show that fu

�

i

g

1

i=1

is a Cauhy sequene in C

0

([0; T ℄;H). We de�ne

the the resolvent J

�

of A by:

J

�

:= f(x + �y; x) (x; y) 2 Ag : (2.27)

From the general theory of monotone sets we know that J

�

: H �! H is single valued.

With the help of (2.23) we obtain 8 0 � t � T :





u

�

i

(t)� u

�

j

(t)





2

�

= �2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�(u

�

i

)� �(u

�

j

)

E

ds

= �2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

i

�

�(u

�

j

)

�oE

ds

� 2

Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

J

�

i

�

�(u

�

i

)

�

� J

�

i

�

�(u

�

j

)

�E

ds:

(2.28)

From the general theory of monotone sets we know the following fat:

�

J

�

(x); A

�

(x)

�

2 A 8 x 2 H: (2.29)

By assumption A is monotone. This yields 8 0 � t � T :

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

J

�

i

�

�(u

�

i

)

�

� J

�

i

�

�(u

�

j

)

�E

� 0: (2.30)

With the help of (2.8), (2.26b), (2.28) and (2.30) we obtain 8 0 � t � T :





u

�

i

(t)� u

�

j

(t)





2

�





�

�1









u

�

i

(t)� u

�

j

(t)





2

�

10



� �2





�

�1





Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

i

�

�(u

�

j

)

�oE

ds

= �2





�

�1





Z

t

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

ds

� 2(�

i

+ �

j

)





�

�1





Z

t

0

�







A

�

i

�

�(u

�

i

)

�







+







A

�

j

�

�(u

�

j

)

�







�

2

ds

� 32(�

i

+ �

j

)





�

�1





TL

2

: (2.31)

Consequently fu

�

i

g

1

i=1

is a Cauhy sequene in C

0

([0; T ℄;H). This yields:

u

�

i

i!1

���! u in C

0

([0; T ℄;H): (2.32)

This yields 8 0 � t � T :

u

�

i

(t)

i!1

���! u(t) strongly in H: (2.33)

In partiular, u satis�es the initial ondition (2.4b). By (2.26a) the u

�

i

are Lipshitz on-

tinuous with Lipshitz onstant L. Consequently u is Lipshitz ontinuous with Lipshitz

onstant L. With the help of Rademaher's theorem we obtain (2.21).

Let 0 � t � T be �xed, and let �

i

i!1

���! 0+. We show that �

�

u(t)

�

2 D(A). With the

help of (2.26b) we obtain:







�

�

u

�

i

(t)

�

� J

�

i

�

�

�

u

�

i

(t)

��







= �

i







A

�

i

�

�

�

u

�

i

(t)

��







� 2�

i

L

i!1

���! 0: (2.34)

With the help of (2.33) and (2.34) we obtain:

J

�

i

�

�

�

u

�

i

(t)

��

i!1

���! �

�

u(t)

�

strongly in H: (2.35)

By (2.26b) the sequene

n

A

�

i

�

�

�

u

�

i

(t)

��o

1

i=1

is bounded in H. This yields:

A

�

i

j

�

�

�

u

�

i

j

(t)

��

j!1

���! v(t) weakly in H: (2.36)

From the general theory of monotone sets we know that (2.29), (2.35) and (2.36) together

imply:

�

�

�

u(t)

�

; v(t)

�

2 A: (2.37)

Consequently �

�

u(t)

�

2 D(A).
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We show that u satis�es the PDE (2.4a) in the lassial sense 8 0 � t � T almost every-

where. Let �

i

i!1

���! 0+ be monotone dereasing. We de�ne:

X := L

2

([0; T ℄;H): (2.38)

With the help of (2.23) and (2.30) we obtain:

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

X

=

Z

T

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

i

A

�

i

�

�(u

�

i

)

�

� �

j

A

�

j

�

�(u

�

j

)

�E

dt

=

Z

T

0

D

fA

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�

�

�

n

�(u

�

i

)� J

�

i

�

�(u

�

i

)

�o

�

n

�(u

�

j

)� J

�

j

�

�(u

�

i

)

�oE

dt

�

Z

T

0

D

A

�

i

�

�(u

�

i

)

�

� A

�

j

�

�(u

�

j

)

�

�(u

�

i

)� �(u

�

j

)

E

dt

= �

1

2





u

�

i

(T )� u

�

j

(T )





2

�

� 0: (2.39)

With the help of (2.26b) we obtain:







A

�

i

�

�(u

�

i

)

�







2

X

=

Z

T

0







A

�

i

�

�(u

�

i

)

�







2

ds � 4TL

2

: (2.40)

With the help of (2.39), (2.40) and lemma 2.3 (b) we obtain:

A

�

i

�

�(u

�

i

)

�

i!1

���! v strongly in X : (2.41)

This yields 8 0 � t � T almost everywhere:

A

�

i

j

�

�

�

u

�

i

j

(t)

��

j!1

���! v(t) strongly in H: (2.42)

With the help of (2.36), (2.37) and (2.42) we obtain 8 0 � t � T almost everywhere:

v(t) = v(t) 2 A

�

�

�

u(t)

��

: (2.43)

Now let 0 � t < t+ h � T . With the help of (2.23), (2.33) and (2.41) we obtain:

u(t + h)� u(t) = lim

i!1

�

u

�

i

(t+ h)� u

�

i

(t)

�

= lim

i!1

Z

t+h

t

�

s

u

�

i

(s) ds

= lim

i!1

�

Z

t+h

t

f(s) ds�

Z

t+h

t

A

�

i

�

u

�

i

(s)

�

ds

�
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=

Z

t+h

t

f(s) ds�

Z

t+h

t

v(s) ds: (2.44)

With the help of (2.26b) and (2.42) we obtain 8 0 � t � T almost everywhere:

kv(t)k = lim

j!1







A

�

i

j

�

�

�

u

�

i

j

(t)

��







� 2L: (2.45)

With the help of (2.44) and (2.45) we obtain 8 0 � t � T almost everywhere:

1

h

�

u(t+ h)� u(t)

�

=

1

h

Z

t+h

t

f(s) ds�

1

h

Z

t+h

t

v(s) ds

h!0+

���! f(t)� v(t): (2.46)

This yields 8 0 � t � T almost everywhere:

�

t

u(t) + v(t) = f(t): (2.47)

Consequently u satis�es the PDE (2.4a) in the lassial sense 8 0 � t � T almost every-

where.

2

2.3 Stability of Solutions with Respet to the Data

We make the following additional assumption:

1.b Let A be maximal monotone, and let (0; 0) 2 A.

LEMMA 2.5

Let u be the solution to the initial value problem (2.4). Then the following estimates hold:

kuk

C

0

([0;T ℄;H)

� 2

p

k�k k�

�1

k

�

ku

0

k+ T





f





C

0

([0;T ℄;H)

�

: (2.48a)

k�

t

uk

L

1

([0;T ℄;H)

� 2

p

k�k k�

�1

k

�







A

0

�

�(u

0

)

�







+





f





C

0

([0;T ℄;H)

+ T





�

t

f





C

0

([0;T ℄;H)

�

: (2.48b)

PROOF

By assumption (0; 0) 2 A. Consequently u = 0 is the solution to the initial value problem

(2.4) orresponding to the data (f; u

0

) = (0; 0). With the help of theorem 2.1 we obtain

(2.48a). Now, (2.48b) is an immediate onsequene of theorem 2.4.

2
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THEOREM 2.6 (Stability of solutions with respet to the data)

Let u

i

be the solutions to the initial value problem (2.4) orresponding to the data

(�

i

; f

i

; u

i0

). Then the following estimate holds:

ku

1

� u

2

k

C

0

([0;T ℄;H)

� C

n

k�

1

� �

2

k

1

2

+

�

Z

T

0





f

1

(t)� f

2

(t)





dt

�

1

2

+ ku

10

� u

20

k

o

: (2.49a)

C =

^

C

�

T; k�

i

k ;





�

�1

i





;





f

i





C

1

([0;T ℄;H)

; ku

i0

k ;







A

0

�

�

i

(u

i0

)

�







�

: (2.49b)

PROOF

We de�ne:

K

i

:= 2

q

k�

i

k





�

�1

i





�

ku

i0

k+ T





f

i





C

0

([0;T ℄;H)

�

: (2.50a)

L

i

:= 2

q

k�

i

k





�

�1

i





�







A

0

�

�

i

(u

i0

)

�







+





f

i





C

0

([0;T ℄;H)

+ T





�

t

f

i





C

0

([0;T ℄;H)

�

:

(2.50b)

By onstrution 9 v

i

: [0; T ℄ �! H with the following properties:

�

�

i

�

u

i

(t)

�

; v

i

(t)

�

2 A 8 0 � t � T: (2.51a)

�

t

u

i

(t) + v

i

(t) = f

i

(t) 8 0 � t � T almost everywhere: (2.51b)

By assumption A is monotone. With the help of (2.51) and lemma 2.5 we obtain 8

0 � t � T almost everywhere:

�

t

ku

1

(t)� u

2

(t)k

2

�

1

= 2

D

�

t

�

u

1

(t)� u

2

(t)

�

�

1

�

u

1

(t)� u

2

(t)

�E

= 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

2

(t)

�

� �

2

�

u

2

(t)

�E

= 2

D

f

1

(t)� f

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

v

1

(t)� v

2

(t) �

1

�

u

1

(t)

�

� �

2

�

u

2

(t)

�E

� 2

D

�

t

u

1

(t)� �

t

u

2

(t) �

1

�

u

2

(t)

�

� �

2

�

u

2

(t)

�E

� 2

�

k�

1

k ku

1

(t)k + k�

2

k ku

2

(t)k

�





f

1

(t)� f

2

(t)





+ 2 k�

1

� �

2

k ku

2

(t)k

�

k�

t

u

1

(t)k+ k�

t

u

2

(t)k

�
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� 2

�

k�

1

kK

1

+ k�

2

kK

2

�





f

1

(t)� f

2

(t)





+ 2 k�

1

� �

2

kK

2

(L

1

+ L

2

): (2.52)

With the help of (2.8), (2.52) and Rademaher's theorem we obtain 8 0 � t � T :

ku

1

(t)� u

2

(t)k

2

�





�

�1

1





ku

1

(t)� u

2

(t)k

2

�

1

=





�

�1

1





ku

10

� u

20

k

2

�

1

+





�

�1

1





Z

t

0

�

s

ku

1

(s)� u

2

(s)k

2

�

1

ds

� k�

1

k





�

�1

1





ku

10

� u

20

k

2

+ 2





�

�1

1





�

k�

1

kK

1

+ k�

2

kK

2

�

Z

T

0





f

1

(t)� f

2

(t)





dt

+ 2T k�

1

� �

2

k





�

�1

1





K

2

(L

1

+ L

2

): (2.53)

Symmetrizing with respet to the indies 1 and 2 yields:

ku

1

� u

2

k

2

C

0

([0;T ℄;H)

�

1

2

�

k�

1

k+ k�

2

k

��





�

�1

1





+





�

�1

2





�

ku

10

� u

20

k

2

+

�

k�

1

k+ k�

2

k

��





�

�1

1





+





�

�1

2





�

(K

1

+K

2

)

Z

T

0





f

1

(t)� f

2

(t)





dt

+ T k�

1

� �

2

k

�





�

�1

1





+





�

�1

2





�

(K

1

+K

2

)(L

1

+ L

2

): (2.54)

This yields (2.49).

2

COROLLARY 2.7 (Stability of solutions with respet to the data)

Let u

i

be the solutions to the initial value problem (2.1) orresponding to the data

(�

i

; '

i

; f

i

; u

i0

). Then the following estimate holds:

ku

1

� u

2

k

C

0

([0;T ℄;H)

� C

n

k�

1

� �

2

k

1

2

+ k'

1

� '

2

k

C

0

([0;T ℄;H)

+

�

Z

T

0

k�

t

'

1

(t)� �

t

'

2

(t)k dt

�

1

2

+

�

Z

T

0

kf

1

(t)� f

2

(t)k dt

�

1

2

+ ku

10

� u

20

k

o

: (2.55a)

C =

^

C

�

T; k�

i

k ;





�

�1

i





; k'

i

k

C

2

([0;T ℄;H)

kf

i

k

C

1

([0;T ℄;H)

; ku

i0

k ;







A

0

�

�

i

(u

i0

) + '

i

(0)

�







�

: (2.55b)

PROOF

We reall the following well known fats:





�

�1

1

(x

1

)� �

�1

2

(x

2

)





�







�

�

�1

1

� �

�1

2

�

(x

1

)







+





�

�1

2

(x

1

� x

2

)





15



�





�

�1

1

� �

�1

2





kx

1

k+





�

�1

2





kx

1

� x

2

k : (2.56a)





�

�1

1

� �

�1

2





=





�

�1

1

(�

2

� �

1

)�

�1

2





� k�

1

� �

2

k





�

�1

1









�

�1

2





� k�

1

� �

2

k

1

2

�

k�

1

k+ k�

2

k

�

1

2





�

�1

1









�

�1

2





: (2.56b)

Now (2.55) is an immediate onsequene of (2.3) and (2.49).

2

3 Appliation to Visoelastiity

3.1 Existene and Uniqueness of Solutions

Let 
 � R

n

be a bounded domain with a smooth boundary �, and let T > 0. 
 desribes

a material body, and [0; T ℄ desribes the time interval of observation. We onsider the

following funtions:

r : 
� [0; T ℄ �! R

n

: (x; t) 7�! r(x; t): (3.1a)

u : 
� [0; T ℄ �! R

n�n

sym

: (x; t) 7�! u(x; t): (3.1b)

In (3.1) R

n�n

sym

denotes the set of symmetri n by n matries. r desribes the displaement,

and u desribes the plasti strain. We onsider the following quasistati problem of

visoelastiity:

� div

x

n

S

�

E(r

x

r(x; t)); u(x; t); x

�o

= b(x; t); r(x; t)

�

�

�

x2�

= r

�

(x; t): (3.2a)

�

t

u(x; t) +

_

U

�

�

�

E(r

x

r(x; t)); u(x; t); x

��

3 0; u(x; 0) = u

0

(x): (3.2b)

(3.2a) desribes the balane of fore, and (3.2b) desribes the evolution of the plasti

strain. We make the following assumptions:

1. Let b 2 C

2

([0; T ℄; H

�1

(
;R

n

)).

2. Let r

�

2 C

2

([0; T ℄; H

1

2

(�
;R

n

)).

3. Let u

0

2 L

2

(
;R

n�n

sym

).

4. Let

_

U � R

n�n

sym

� R

n�n

sym

be a maximal monotone set, and let (0; 0) 2

_

U .

5. Let L 2 L

1

(
; (R

n�n

sym


 R

n�n

sym

)

sym

), let 0 < l � l, and let the following estimate hold

in the sense of symmetri tensors 8 x 2 
 almost everywhere:

l � L(x) � l: (3.3)
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6. Let � 2 L

1

(
; (R

n�n

sym


 R

n�n

sym

)

sym

), let 0 < � � �, and let the following estimate

hold in the sense of symmetri tensors 8 x 2 
 almost everywhere:

� � �(x) � �: (3.4)

In the above assumptions (X 
 X )

sym

denotes the set of symmetri tensors on a Hilbert

spae X . b desribes the body fore, r

�

desribes the displaement at the boundary, u

0

desribes the plasti strain at the initial time,

_

U desribes the (negative of the) plasti

strain rate, L desribes the elasti modulus, and � desribes the plasti modulus. We

make the following de�nitions:

E : R

n�n

�! R

n�n

sym

: E(w) :=

1

2

(w + w

T

): (3.5a)

V : R

n�n

sym

� R

n�n

sym

� 
 �! R :

V (w; z; x) :=

1

2

hw � z L(x)(w � z)i

R

n�n

sym

+

1

2

hz �(x)zi

R

n�n

sym

: (3.5b)

S : R

n�n

sym

� R

n�n

sym

� 
 �! R

n�n

sym

:

S(w; z; x) :=

�V

�w

(w; z; x) = L(x)(w � z): (3.5)

� : R

n�n

sym

� R

n�n

sym

� 
 �! R

n�n

sym

:

�(w; z; x) :=

�V

�z

(w; z; x) = �S(w; z; x) + �(x)z: (3.5d)

E desribes the strain, V desribes the free energy, S desribes the elasti stress, and �

desribes the plasti stress.

Our goal is to rewrite the quasistati visoelasti problem (3.2) as an initial value problem

for u and to apply the abstrat theory developed in setion 2.

We proeed in several steps:

1. We make the following de�nitions:

H := L

2

(
;R

n�n

sym

): (3.6a)

A :=

n

(w; z) 2 H �H z(x) 2

_

U(w(x)) 8 x 2 
 almost everywhere

o

: (3.6b)

From the general theory of monotone sets we know that A � H�H is maximal

monotone. By onstrution (0; 0) 2 A.
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2. We onsider the following boundary value problem:

� div

x

n

S

�

E(r

x

r

1

(x; t)); 0; x

�o

= b(x; t); r

1

(x; t)

�

�

�

x2�

= r

�

(x; t): (3.7)

From the general theory of linear ellipti boundary value problems (Lax{Milgram's

lemma, Korn's inequality) we know that (3.7) has a unique weak solution:

r

1

2 C

2

([0; T ℄; H

1

(
;R

n

)): (3.8)

We make the following de�nition:

'(x; t) := �S

�

E(r

x

r

1

(x; t)); 0; x

�

=) ' 2 C

2

([0; T ℄;H): (3.9)

3. Let w 2 H. We onsider the following boundary value problem:

� div

x

n

S

�

E(r

x

r

2

(x)); w(x); x

�o

= 0; r

2

(x)

�

�

�

x2�

= 0: (3.10)

From the general theory of linear ellipti boundary value problems (Lax{Milgram's

lemma, Korn's inequality) we know that (3.10) has a unique weak solution:

r

2

[w℄ 2 H

1

0

(
;R

n

): (3.11)

We make the following de�nition:

^

S[w℄(x) := S

�

E(r

x

r

2

[w℄(x)); w(x); x

�

: (3.12)

By onstrution r

2

and

^

S are linear ontinuous mapings:

r

2

: H �! H

1

0

(
;R

n

);

^

S : H �! H: (3.13)

4. We de�ne an equivalent salar produt h� �i

L

on H by:

hz wi

L

:=

Z




hz(x) L(x)w(x)i

R

n�n

sym

dx: (3.14)

We make the following de�nition:

H

0

:=

�

E(r

x

�) � 2 H

1

0

(
;R

n

)

	

� H: (3.15)

From general funtional analysis (Poinare's inequality, Korn's inequality) we know

that H

0

is a losed subspae of H. We make the following de�nition:

P

L

: H �! H

0

orthorgonal projetion w.r.t. h� �i

L

: (3.16)
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5. Now the weak formulation of the boundary value problem (3.10) reads:

Z




D

E(r

x

�(x)) S

�

E(r

x

r

2

(x)); w(x); x

�E

R

n�n

sym

= 0

8 � 2 H

1

0

(
;R

n

): (3.17)

()

hz E(r

x

r

2

)� wi

L

= 0 8 z 2 H

0

: (3.18)

This yields:

E(r

x

r

2

[w℄) = P

L

[w℄: (3.19a)

^

S[w℄(x) = L(x)

�

P

L

� I

�

[w℄(x) = �L(x)P

?

L

[w℄(x): (3.19b)

Consequently

^

S is symmetri and negative semide�nit w.r.t. the original salar

produt on H. We make the following de�nition:

�[w℄(x) := �

^

S[w℄(x) + �(x)w(x): (3.20)

By onstrution � is a linear ontinuous symmetri positive de�nit maping:

� : H �! H: (3.21)

Now the quasistati visoelasti problem (3.2) reads as follows:

r(x; t) = r

1

(x; t) + r

2

[u(t)℄(x): (3.22a)

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (3.22b)

By onstrution the following statements hold:

1. r

1

2 C

2

([0; T ℄; H

1

(
;R

n

)).

2. r

2

: H �! H

1

0

(
;R

n

) is linear and ontinuous.

3. A � H�H is maximal monotone with (0; 0) 2 A

4. � : H �! H is linear, ontinuous, symmetri and positive de�nit.

5. ' 2 C

2

([0; T ℄;H).
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With the help of (3.22), theorem 2.1 and theorem 2.4 we immediately obtain the following

theorem.

THEOREM 3.1 (Existene and uniqueness of solutions)

Let the following additional assumption hold:

�(u

0

) + '(0) 2 D(A): (3.23)

Then the quasistati visoelasti problem (3.2) has a unique solution:

r 2 C

0;1

([0; T ℄; H

1

(
;R

n

)); u 2 C

0;1

([0; T ℄;H): (3.24)

3.2 Statisti Homogenization of the 1{Dimensional Problem

We onsider the 1{dimensional ase 
 = (0; 1) of the quasistati visoelasti problem

(3.2):

� �

x

n

L(x)

�

�

x

r(x; t)� u(x; t)

�o

= b(x; t): (3.25a)

r(0; t) = �

0

(t); r(1; t) = �

1

(t): (3.25b)

�

t

u(x; t) +

_

U

�

� L(x)

�

�

x

r(x; t)� u(x; t)

�

+ �(x)u(x; t)

�

3 0: (3.25)

u(x; 0) = u

0

(x): (3.25d)

We make the following assumptions:

1. Let b 2 C

2

([0; T ℄; C

0

([0; 1℄)).

2. Let �

1

; �

1

2 C

2

([0; T ℄).

3. Let u

0

2 C

0

([0; 1℄)).

4. Let  : (�1; 1) �! R

2

be a ontinuous urve with the following properties:

(0) = (0; 0); lim

s!�1

k(s)k

R

2

=1: (3.26)

Let

_

U := graph() � R�R be a monotone set. From the general theory of monotone

sets we know that

_

U is also maximal monotone.

5. Let L 2 C

0

([0; 1℄), let 0 < l � l, and let the following estimate hold 8 x 2 [0; 1℄:

l � L(x) � l: (3.27)
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6. Let � 2 C

0

([0; 1℄), let 0 < � � �, and let the following estimate hold 8 x 2 [0; 1℄:

� � �(x) � �: (3.28)

Aording to the previous subsetion we make the following de�nitions:

H := L

2

((0; 1)): (3.29a)

A :=

n

(w; z) 2 H �H z(x) 2

_

U(w(x)) 8 x 2 (0; 1) almost everywhere

o

: (3.29b)

r

1

(x; t) := �

0

(t)�

Z

x

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

+

�

Z

x

0

1

L(x

1

)

dx

1

��

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

�

�

1

(t)� �

0

(t) +

Z

1

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

�

: (3.29)

r

2

[z℄(x)

:=

Z

x

0

z(x

1

) dx

1

�

�

Z

x

0

1

L(x

1

)

dx

1

��

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

Z

1

0

z(x

1

) dx

1

�

: (3.29d)

�[z℄(x) :=

�

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

Z

1

0

z(x

1

) dx

1

�

+ �(x)z(x): (3.29e)

'(x; t) :=

Z

x

0

b(x

1

; t) dx

1

�

�

Z

1

0

1

L(x

1

)

dx

1

�

�1

�

�

�

1

(t)� �

0

(t) +

Z

1

0

1

L(x

1

)

Z

x

1

0

b(x

2

; t) dx

2

dx

1

�

: (3.29f)

We make the following additional assumption:

7. Let � > 0, and let the following estimate hold:

Z

1

0

�

�

�

_

U

0

�

�[u

0

℄(x) + '(x; 0)

�

�

�

�

2

dx � �

2

: (3.30)

In (3.30)

_

U

0

denotes the minimal seletion of

_

U .
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Now aording to the previous subsetion the 1{dimensional quasistati visoelasti prob-

lem (3.25) reads as follows:

r(x; t) = r

1

(x; t) + r

2

[u(t)℄(x): (3.31a)

�

t

u(t) + A

�

�

�

u(t)

�

+ '(t)

�

3 0; u(0) = u

0

: (3.31b)

Aording to the previous subsetion and (3.30) the following statements hold:

1. r

1

2 C

2

([0; T ℄; H

1

((0; 1))).

2. r

2

: H �! H

1

0

((0; 1)) is linear and ontinuous.

3. A � H�H is maximal monotone with (0; 0) 2 A

4. � : H �! H is linear, ontinuous, symmetri and positive de�nit.

5. ' 2 C

2

([0; T ℄;H).

6. �(u

0

) + '(0) 2 D(A). In partiular, the following estimate holds:







A

0

�

�(u

0

) + '(0)

�







� �: (3.32)

With the help of (3.31), theorem 2.1 and theorem 2.4 we immediately obtain the following

theorem.

THEOREM 3.2 (Existene and uniqueness of solutions)

The 1{dimensional quasistati visoelasti problem (3.25) has a unique solution:

r 2 C

0;1

([0; T ℄; H

1

((0; 1))); u 2 C

0;1

([0; T ℄;H): (3.33)

We turn to the question of statisti homogenization of the 1{dimensional quasistati

visoelasti problem (3.25).

Our goal is to formulate a probabilisti model for a 2{omponent material, and to derive

the homogenized limit problem.

We proeed in several steps:

1. Let (
;F ;W ) be a propability spae, let 0 < p < 1, let �

i

be random variables, and

let the following statements hold:

W (�

i

= 1) = p; W (�

i

= 0) = 1� p: (3.34a)

Ex[�

i

�

j

℄ = Ex[�

i

℄Ex[�

j

℄ = p

2

8 i 6= j: (3.34b)

In (3.34b) Ex denotes the expetation value w.r.t. W .
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2. Let  2 C

1

0

(R) with the following properties:

0 �  (x) � 1;  (x) =  (�x);

X

i2Z

 (x� i) = 1: (3.35a)

supp( ) = [�1; 1℄: (3.35b)

We make the following de�nition:

 

ni

(x) :=  (nx� i): (3.36)

By onstrution f 

ni

g

n

i=0

is a partition of unity on [0; 1℄.

3. Let ! 2 
. We make the following de�nitions:

1

L

:=

p

l

+

1� p

l

: (3.37a)

1

L

n

[!℄(x)

:=

n

X

i=0

 

ni

(x)

�

�

i

(!)

l

+

1� �

i

(!)

l

�

: (3.37b)

THEOREM 3.3 (Statisti homogenization)

Let (r

n

[!℄; u

n

[!℄) and (r; u) be the solutions to the 1{dimensional quasistati visoelasti

problem (3.25) w.r.t. the data (r

1n

[!℄; r

2n

[!℄;�

n

[!℄; '

n

[!℄) and (r

1

; r

2

;�; ') respetively

where (r

1n

[!℄; r

2n

[!℄;�

n

[!℄; '

n

[!℄) and (r

1

; r

2

;�; ') are de�ned by (3.29) w.r.t. L

n

[!℄ and

L. Then the following statemens hold:

Ex

h

kr

n

� rk

C

0

([0;T ℄;H

1

0

((0;1)))

i

n!1

���! 0: (3.38a)

Ex

h

ku

n

� uk

C

0

([0;T ℄;H)

i

n!1

���! 0: (3.38b)

PROOF

Let ! 2 
. With the help of (3.27), (3.28), (3.29) and (3.32) we obtain the following

estimates:

kr

2n

[!℄k

L(H;H

1

0

((0;1)))

� 2

�

1 +

l

l

�

: (3.39a)

k�

n

[!℄k

L(H;H)

� l + �;





�

n

[!℄

�1





L(H;H)

� �: (3.39b)
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k'

n

[!℄k

C

2

([0;T ℄;H)

�

�

1 +

l

l

�

kbk

C

2

([0;T ℄;H)

+ l k�

1

� �

0

k

C

2

([0;T ℄)

: (3.39)







A

0

�

�

n

[!℄(u

0

) + '

n

[!℄(0)

�







� �: (3.39d)

In (3.39) L(X ;Y) denotes the set of linear ontinuous mapings X �! Y. With the help of

(3.31), (3.39) and theorem 2.7 we �nd a onstant C > 0 suh that the following estimates

hold 8 ! 2 
:

kr

n

[!℄� rk

C

0

([0;T ℄;H

1

0

((0;1)))

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u

n

[!℄)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u

n

[!℄� u)k

C

0

([0;T ℄;H

1

0

((0;1)))

+ kr

2n

[!℄(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

:

� kr

1n

[!℄� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

+ 2

�

1 +

l

l

�

ku

n

[!℄� uk

C

0

([0;T ℄;H)

+ kr

2n

[!℄(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

: (3.40a)

ku

n

[!℄� uk

C

0

([0;T ℄;H)

� C

n

k�

n

[!℄� �k

1

2

L(H;H)

+ k'

n

[!℄� 'k

C

0

([0;T ℄;H)

+

�

Z

T

0

k�

t

'

n

[!℄(t)� �

t

'(t)k dt

�

1

2

o

: (3.40b)

Let g 2 C

0

([0; 1℄), and let 0 � x � 1. With the help of (3.27) and (3.37) we obtain:

�

�

�

�

Z

x

0

�

1

L

n

[!℄(x

1

)

�

1

L

�

g(x

1

) dx

1

�

�

�

�

�

�

�

�

�

�

Z
1

n

[nx℄

0

�

1

L

n

[!℄(x

1

)

�

1

L

�

g(x

1

) dx

1

�

�

�

�

�

+

kgk

C

0

([0;1℄)

n

�

1

l

�

1

l

�

=

�

�

�

�

�

�

[nx℄

X

k=1

k

X

i=k�1

(�

i

(!)� p)

�

1

l

�

1

l

�

Z
k

n

k�1

n

 

ni

(x)g(x

1

) dx

1

�

�

�

�

�

�

+

kgk

C

0

([0;1℄)

n

�

1

l

�

1

l

�

�

n

�

�

�

�

�

�

[nx℄�1

X

i=1

(�

i

(!)� p)g

ni

�

�

�

�

�

�

+

3 kgk

C

0

([0;1℄)

n

o�

1

l

�

1

l

�

: (3.41a)

g

ni

:=

Z

i+1

n

i�1

n

 

ni

(x)g(x

1

) dx

1

: (3.41b)
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With the help of the Cauhy{Shwartz inequality and (3.34) we obtain the following law

of large numbers:

Ex

h

�

�

�

�

�

�

[nx℄�1

X

i=1

(�

i

� p)g

ni
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� Ex
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[nx℄�1

X

i=1

(�

i

� p)g

ni

�

2

i

1

2

=

�

[nx℄�1

X

i=1

Ex
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(�

i

� p)g
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�

2

i�

1

2

� 2 kgk

C

0

([0;1℄)

r

p(1� p)

n

: (3.42)

With the help of (3.41) and (3.42) we obtain:
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h

�

�

�

�

Z

x

0

�

1

L

n

(x

1

)

�

1

L

�

g(x

1

) dx

1

�

�

�

�

i

� kgk

C

0

([0;1℄)

n

2

r

p(1� p)

n

+

3

n

o�

1

l

�

1

l

�

: (3.43)

With the help of (3.27), (3.29) and (3.43) we obtain:

Ex

h

kr

1n

� r

1

k

C

0

([0;T ℄;H

1

0

((0;1)))

i

= O

h

1

p

n

i

: (3.44a)

Ex

h

kr

2n

(u)� r

2

(u)k

C

0

([0;T ℄;H

1

0

((0;1)))

i

= O

h

1

p

n

i

: (3.44b)

Ex
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i

= O
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p

n

i

: (3.44)

Ex

h
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n

� 'k

C

1

([0;T ℄;H)

i

= O

h

1

p

n

i

: (3.44d)

With the help of (3.40), (3.44) and the Cauhy{Shwartz inequality we obtain (3.38).

2

3.3 A Remark on Homogenization of the n{Dimensional Prob-

lem

We reonsider the n{dimensional quasistati visoelasti problem (3.2). For simpliity we

restrit ourselves to the linear ase

_

U = I:

� div

x

n

L(x)

�

E(r

x

r(x; t))� u(x; t)

�o

= b(x; t); r(x; t)

�

�

�

x2�

= r

�

(x; t): (3.45a)
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�

t

u(x; t)� L(x)

�

E(r

x

r(x; t))� u(x; t)

�

+ �(x)u(x; t) = 0;

u(x; 0) = u

0

(x): (3.45b)

Now we turn to the question of homogenization of the quasistati visoelasti problem

(3.45). Therefore, let " > 0. We make the following additional assumption:

5.a Let L : R

n

�! (R

n�n

sym


 R

n�n

sym

)

sym

be [0; 1℄

n

{periodi .

We make the following de�nition:

L

"

(x) := L

�

x

"

�

: (3.46)

L

"

desribes a periodi distribution of two di�erent omponents in a material.

We onsider the quasistati visoelasti problem (3.45) orresponding to L

"

. Our goal is

to derive the homogenized limit problem as " �! 0 and to formulate strutural onditions

for the elasti modulus L.

Aording to subsetion 3.1 we an solve the linear ellipti boundary value problem (3.45a)

separately and insert the solution operator into the linear initial value problem (3.45b).

Now the quasistati visoelasti problem orresponding to L

"

reads:

r

"

(x; t) = r

"

1

(x; t) + r

"

2

[u

"

(t)℄(x): (3.47a)

�

t

u

"

(x; t)� L

"

(x)

n

E

�

r

x

r

"

2

[u

"

(t)℄(x)

�

� u

"

(x; t)

o

+ �(x)u

"

(x; t) = 0;

u

"

(x; 0) = u

0

(x): (3.47b)

Aording to the general theory of homogenization of linear ellipti boundary value prob-

lems we assume that the solution operators in (3.47a) admit the following asymptoti

expansions:

r

"

1

(x; t) = r

0

1

(x; t) + "r

1

1

(x; y; t)

�

�

�

y=

x

"

+O["

2

℄: (3.48a)

r

"

2

[w℄(x) = r

0

2

[w℄(x) + "r

1

2

[w℄(x; y)

�

�

�

y=

x

"

+O["

2

℄: (3.48b)

We note that from the general theory of homogenization we know that r

"

1

and r

"

2

admit

the asymptoti expansions (3.48) w.r.t. the L

2

{norm, and that r

0

1

and r

0

2

are the solution

operators to respetive linear ellipti boundary value problems orresponding to some

onstant elasti modulus L

0

2 (R

n�n

sym


 R

n�n

sym

)

sym

. Our additional assumption is that this
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is also true for the H

1

{norm. Moreover, we assume that the solution u

"

to the linear

initial boundary value problem (3.47b) admits the following asymptoti expansion:

u

"

(x; t) = u

0

(x; t) +O["℄: (3.49)

We insert (3.48) and (3.49) into (3.47). This yields:

r

0

(x; t) = r

0

1

(x; t) + r

0

2

[u

0

(t)℄(x): (3.50a)
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u

0

(x; t)�

n
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r

x

r

0

1

(x; t) +r

x

r

0

2

[u

0

(t)℄(x)

�

+ E

�

r

y

r

1

1

(x; y; t) +r

y

r

1

2

[u

0

(t)℄(x; y)

�

� u

0

(x; t)

�o

�

�

�

y=

x

"

+ �(x)u

0

(x; t)

= 0: (3.50b)

u

0

(x; 0) = u

0

(x): (3.50)

We see that (3.50) beomes a onsistent homogenized limit problem for (3.47) if and only

if 9 some maping � : H� [0; T ℄ �! H with the following properties:

1. The following statement holds 8 w 2 H 8 y 2 R

n

almost everywhere:

L(y)

n

E

�

r

x

r

0

1

(x; t) +r

x

r

0

2

[w℄(x)

�

+ E

�

r

y

r

1

1

(x; y; t) +r

y

r

1

2

[w℄(x; y)

�

� w(x)

o

= �[w; t℄(x): (3.51)

2. The following maping is ontinuous linear and onto 8 0 � t � T :

H �! H : w 7�! �(w; t): (3.52)

Now let some � with the above properties be given. We make the following de�nition:

�[w; t℄(x; y)

:=

�

r

x

r

0

1

(x; t) +r

x

r

0

2

[w℄(x)� w(x)

�

y + r

1

1

(x; y; t) + r

1

2

[w℄(x; y): (3.53)

With the help of (3.51) we obtain:

L(y)

�1

�[w; t℄(x) = E

�

r

y

�[w; t℄(x; y)

�

: (3.54)

By onstrution L(y)

�1

has the following symmetry:

L(y)

�1

2 (R

n�n

sym
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n�n

sym

)

sym

: (3.55)
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With the help of (3.52), (3.54) and (3.55) we �nd that 9 some maping � : R

n

�! R

n


 R

n�n

sym

suh that the following strutural ondition holds:

�

L(y)

�1

�

ijkl

=

1

2

�

�

y

i
�

jkl

(y) + �

y

j
�

ikl

(y)

�
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1

2

�

�

y

k�

lij

(y) + �

y

l�

kij

(y)

�

: (3.56)

In view of our formal analysis the strutural ondition (3.56) is a neessary assumption

on order to pass to the limit " �! 0 in the quasistati visoelasti problem (3.47). The

orresponding homogenized limit problem is given by (3.50).

The following example shall show that the set of physially admissible elasti moduli L

satisfying the strutural ondition (3.56) is not empty.

EXAMPLE

Let �; � > 0. We onsider Lame's law of linear elastiity:

L := �I

R

n�n

sym

+ 2�I

R

n


 I

R

n

: (3.57)

A straightforeward alulation yields:

L

�1

= �I

R

n�n

sym

+ 2�I

R

n


 I

R

n

: (3.58a)

� :=

1

�

; � := �

�

�(�+ 2n�)

: (3.58b)

In partiular, we have:

(L

�1

)

ijkl

=

�

2

�

Æ

ik

Æ

jl

+ Æ

jk

Æ

il

�

+ 2�Æ

ij

Æ

kl

: (3.59)

We make the following de�nition:

�

jkl

(y) :=

�

2

�

y

k

Æ

jl

+ y

l

Æ

jk

�

+ 2�y

j

Æ

kl

: (3.60)

A straightforward alulation yields (3.56).
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