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Abstract

In this paper we derive weighted LY-estimates for the Stokes resolvent system in the
half space for weights of Muckenhoupt class, on which a new approach to maximal LP-
regularity of the Stokes operator for the half space and a bounded domain in weighted
Li-spaces in the forthcoming part II is based. We stress that our results hold for
general Muckenhoupt weights. In particular, the weights may tend to zero or become
singular at the boundary of the domain.

AMS classification: *35Q30, 35D05, 46E25

1 Introduction

We study the generalized Stokes resolvent problem

AM—Au+Vp=f in R} (1a)
divu=g in R (1b)
u=0 on OR"} (1c)

in weighted L%-spaces for a large class of weights and A contained in the sector

S = {A€C\{0} : Jarg\| <m—¢}, O<e< g
The motivation of our investigations is as follows: Recently L. Weis [20] gave a character-
isation of maximal LP-regularity by so called R-bounded operator families.
Our idea is to combine this result with the fact that for L%-spaces R-boundedness is
implied by weighted estimates (see e.g. [11], Chapter V, Theorem 6.4). In this context for
1 < g < oo the weight functions w of Muckenhoupt class A, defined by the condition that

Ay(w) = sgp (ﬁ/@wdw) (ﬁ/@afﬁ dac)qi1 < 0,

where the supremum is taken over all cubes Q C R" and |@Q| means the Lebesgue measure
of ), occur.



In this way we will show in the forthcoming part II maximal LP-regularity of the Stokes
operator in weighted L?-spaces in the half space and a bounded domain for arbitrary
weights of Muckenhoupt class A,. To reach this goal we prove in the present part I weighted
estimates for the Stokes resolvent problem in a half space for general Muckenhoupt weights.
More precisely, for 1 < ¢ < oo, w € A4 and an open set {2 C R* let

LL(Q) = {u € Lipe(Q) + Jlu

b= / lulfw dz < oco}.
Q

For the definition of the weighted Sobolev spaces W 1(Q), Wf’q(Q), ... see section 3

below. Weighted L?-estimates for the Stokes resolvent system have already been obtained
for the whole space 1 = R" for general A ,-weights and in exterior domains for a restricted
class of Ag-weights by Farwig and Sohr [9]. The main result of this paper is as follows:

Theorem 1.1 Letn >2,1<qg< o0, we€ Ay, 0<e < 3.

i) Then for every f € LL(RY)", g € Wiq(Rﬁ) N le’q(Rﬁ) and X € X, there is a
unique solution (u,p) € Wf’q(Rﬁ)” X W{}jq(Rﬁ) of the Stokes resolvent problem (1).
This solution satisfies the estimate

Alullge + V2 ullgw + 1Vpllgw < C (11

ow T IVallgw + IMll55-040),  (2)
where C' > 0 depends only on n,q,e and Ay-consistently increasing on w.

i) If for some r € (1,00) and some v € A, additionally f € Ly(R?)" and g €
Wy (RL) N Wy V(R ), then (u,p) € Wi (RL) x Wy (RY.).

The importance of the technical fact that the constant C'in (2) is Ag4-consistently increasing
(see Definition 2.3) will become clear in the forthcoming part II.

Note that LY(R%) = LY(Ry; LY(R"" 1)), but in general the weighted space L (R") is not
of this form for w € A,. Moreover, given w € A, in general w(-,z,) ¢ A, (R*"!) for
xn > 0. Therefore the existing approaches to the Stokes resolvent system (see e.g. [5],
8], [13]) based on estimates in R*~! for every fixed z,, > 0 do not transfer directly to
the weighted case for general A, -weigths. Our idea is to represent the solution operator
as a composition of certain multiplier operators on the boundary 0R} and the Poisson
operators corresponding to the Laplace- and Laplace resolvent equation

Ro(¢') = e 1€Ton (e
Ryp(¢') = e VATIEPan gy, N e s,

where z,, > 0, ¢ is a Schwartz function on R’} and g means the partial Fourier transform
of g with respect to the first (n—1) variables. For the estimation of the multiplier operators
on the boundary we have to prove certain boundedness properties of the Riesz transforms
in the trace spaces of weighted Sobolev spaces. Furthermore, to estimate the pressure
and the second derivatives of u we derive weighted L%-estimates for the stationary Stokes
system.

For the stationary Stokes system and the Stokes resolvent system there exist several results
(e. g [9], [12], [17], [18]) in unbounded domains with weight functions vanishing or
increasing for || — oo but being bounded from above and from below by positive constants



near the boundary of the domain. We emphasize that our results hold for arbitrary
Muckenhoupt weights, i.e., the weight function may become singular or vanish also at the
boundary.

This paper is organized as follows: In section 2 we present a brief summary of the theory
of Muckenhoupt weights used in the sequel.

Section 3 deals with some properties of weighted Sobolev spaces. We apply extension
theorems of [4] and investigate density properties of smooth function and trace spaces of
weighted Sobolev spaces.

In section 4 we study weak solutions of the Laplace and Laplace resolvent equations in
the whole space and the half-space in weighted Sobolev spaces. These problems can be
reduced to problems on the whole space R" by reflection arguments. In particular, we
obtain weighted estimates for the corresponding Poisson operators R and R).

Section b deals with weak and strong solutions of the Stokes equation in the half space
in weighted Sobolev spaces. The weighted estimates for the velocity and pressure fields
follow from the estimates of the Poisson operator R.

Finally, in section 6 we prove Theorem 1.1.

2 Muckenhoupt weights

By a cube () we mean a subset of R" of the form II7_, I;, where I, ... , I, C R are bounded
intervals of the same length. Thus cubes have always sides parallel to the axes.

Definition 2.1 Let 1 < ¢ < 0co. A function 0 < w € L} (R") is called an A4-weight if

loc

Ag(w) = sup (ﬁ/@m:p) (ﬁ/@wﬁd:p)q_l < o0, (3)

where the supremum is taken over all cubes Q C R" and |Q| assigns the Lebesque measure
of Q. Aq(w) is called the A,-constant of w. We use the abbreviation w(A) for [, w(x)dz.

Simple examples of A,-weights are radially symmetric weights w(z) = |z — z9|* for
—n < a < n(g — 1) or more generally distance functions of the form w(z) = dist (z, M)*
for a k-dimensional compact Lipschitzian manifold M and —(n — k) < a < (n —k)(qg — 1).
For further examples we refer to [9].

Definition 2.2 For w € Ay and an open set @ C R" let

_ 1/q
I8 = {u € L@ [ s < o0}, Nl = ( [ lltwac)
Q Q

We write often ||ul|q,, instead of |lul|4w.0 if © is fixed.
The space L (Q) is a reflexive Banach space, because L4(2) is a reflexive Banach space

and the mapping f — f wi is an isometric isomorphism from L{ () to L1(12).
Let ¢ := qﬁ—l. It follows from the Definition of Ag-weights that

1
Vi<g<oo: weA;, < w'::wquleAq/.



Then, denoting the dual space of a Banach space X by X',
(L4(Q) = LE, (%),

where we identify functions with functionals in the usual way, i.e., we set (f,g)q =
Jq [ 9dz and identify f € L{(Q) with the functional g — (f,9)q. If Q is fixed, we write
(+,-) instead of (-, -)q.

In the sequel we will have to consider constants C = C(w) , e. g. in weighted L9-
estimates, that depend on the weight function w € A,;. Usually in the Ag-theory such
constants can be choosen uniformly whenever the A,-constant is bounded from above, i.
e., Ay(w) < ¢ < 0o. This motivates the following definition:

Definition 2.3 A mapping C : A; — Ry is called Ay-consistently increasing iff
Vee Ry sup{C(w) : we Ay, Ay(w) <c} < oo.

A mapping C : Ay — Ry is called Ay-consistently decreasing iff % is Ag-consistently
mcreasing.

Theorem 2.1 (Hérmander-Michlin multiplier theorem with weights)
Let m € C™(R*\{0}) with the property that

AMeR :  |[DYm(&)] < M|, veeR {0}, |a| =0,1,... ,n.

Then for all 1 < q < o0 and w € Ay the multiplier operator ﬂ = m]/"\ defined for
Schwartz functions f € S = S(R™) can be extended uniquely to a bounded linear operator
from LL(R™) to LL(R™). More precisely, there is an Ag-consistently increasing constant

C=C(n,q,w,M) € R such that
1Tf

g0 < Ol fllgw (4)
for all f € LL(R™).

Proof:  The assertion is proven in [11], Chapter IV, Theorem 3.9 - even under more
general conditions on m. Although not explicitely mentioned the A,-consistency of the
constant C' € R in (4) follows from the proof in [11]. O

Definition 2.4 A tempered distribution K € §' is called a regular singular integral kernel,
iff K coincides on R*\{0} with a locally integrable function k(x) such that

i) K € L™
ii) (@) < Als| "
iii) [k(z — y) - k(@)| < Alyllal ™D, ¥]a] > 2ly| > 0.
The operator Tf := K x f, f € S(R"), is a called regular singular integral operator.

Example: Let k € C'(R"\{0}) be homogeneous of degree 0 with vanishing mean over
the unit sphere. Then the operator

Tf(z) = p.v./ K

(yn) flz—y)dy
|yl

is a regular singular integral operator (see [11], Remark on p. 204).



Theorem 2.2 Let 1 < g <00, w € Ay and let T be a regular singular integral operator.
Then T is bounded on LL(R™). More precisely, there is an A,-consistently increasing
constant C' € R such that for oll f € S

1T fllge < Cllfllge- (5)

Proof: See [11], chapter IV, Theorem 3.1. The important property, that the constant
C in (5) is Ag4-consistently increasing follows from the proof given in [11]. O

For a function v on R” let
u* (2!, 1) = u(2!, —xy) Vo = (', 2z,) € R". (6)
Lemma 2.1 Let 1 < g < 00 and w € A,. Then also the weight defined by

oz Tp) 1= w(zy,... ,zn) : xp >0
1y-+-dn) - w({I)l,...,wn_l’—xn) : xn<0

is in Ag with Ag(w) < 29 Ag(w). It holds w = (@w)*.

Proof: Note that for all cubes @ with Q) C @ or Q C R*

() (i 49 200

Let @ be a (without loss of generality closed) cube such that the whole cube @ is neither
contained in R nor in R" . Then by translation of @) in x),-direction we obtain two cubes

QT CRY and Q- C R with Q@ C QT UQ_, |Q| = Q-] = |Q+|. It follows that

1 1 o\t
_— vd - v a—1(
Q@wa)@méw Q
1 1 _1 N\
- od - 0 a-1(
: (rQ\/g+UQ‘“ x) (\Qr/g+UQ“’ x)

<(2 d)(2 ‘%d)q_1<2q14()
— w axr — w 9~ X w).
QT Jo+ QF[ Jo+ -0

The second assertion is obvious. O

Lemma 2.2 Let 1 < g < 00 and w € A,.

i) The space of Schwartz functions S(R™) is continuously embedded into LL(R™) and
LE(R™) is continuously embedded into the space S'(R™) of tempered distributions.

i) There is an s > 1 such that LL() is embedded into L*(Q) for every bounded mea-
surable set 0 C R™.

Proof: i) For f € S we have

o < ([ et do) 17+ )
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The first term on the right hand side is finite (see [19], Chapter IX, Prop. 4.5) and
f=llf(1+|z])"|| is a seminorm on S.

The second assertion follows by duality - see also [9] Lemma 4.1 i).

ii) The assertion is a consequence of the open ended property of Muckenhoupt weights: For
w € A, there is an p < ¢ such that w € A, (see e.g. [11], Chapter IV, Theorem 2.6). It

follows v := w 7T € Ay C L} (R"). With s = Z the Holder inequality

loc

1£1ls < 0(@)7 |If

q?w

completes the proof. O

3 Weighted Sobolev spaces

For 1 < ¢ < oo, w € A; and a domain 2 C R" let
WhHI(Q) = {u € LL(Q) : D € LE(R), || < K},
WEa(Q) = {u e W21 Q) : D% € LL(Q),|a| = K}

The space W 9(Q) equipped with the norm

1
ey = lullkages = (32 1Dl 0)°
la| <k

is a reflexive Banach space. On W(Q) the seminorm

1
k
[uliggay = IV¥ulown = (D 1D%ul,q)"
lal=k

is defined. Let P’ | be the set of polynomials of degree < k —1 on R* and P ,(2) :=

PI?—I‘Q' Then the factor space

WEA(Q) = WEI(Q) /PP ()
is equipped with the norm
ITlllipka gy = V5l g

where u € W(Q) and [u] € WE1(Q) is the respective equivalence class. In [4] Theorem
4.9 it is proved that Wf’q(Q) is a Banach space and that V/\Z]i’q(Q) can be identified with
a closed subspace of LL(R")N, N = [{|a] = k}|, via the mapping [u] — (D)o
Thus Wﬁ’q(ﬁ) is also reflexive. Note that V* : Wf’q(Q) — LL(Q)N is well defined by
VE[u] := V*u, where u € WE(Q) is arbitrary.

By ij’q(ﬁ) and W, ™(Q) we denote the dual space of Wf};q,(Q) and W(f,’q/(Q), respec-
tively.



3.1 Extension theorems

Definition 3.1 Let ¢ > 0 and § € (0,00]. An open connected set @ C R* is an (g,9)-
damain if for all x,y € Q, |x —y| < 0 there exists a rectifiable curve v C  connecting =, y
such that

|z = z[ly — 2|

1
l < —|lz — and d(z) > ¢
0 <zl -y (0) 2 T

for all z € y, where [(7y) is the length of v and d(z) = infycqe |a — z|.

In contrast to [4] we restrict ourselves to domains, i.e. open, connected subsets on R".
Therefore in the previous definition some technical conditions of [4] could be dropped.

Theorem 3.1 (Chua) Let 1 < ¢; < oo and w; € Ay, fori=1,... ,N.

i) Let Q@ C R" be an unbounded (¢,00)- domain and ki, ... ,ky € Ny. Then there exists
a linear extension operator E : (Y Whiti(Q) — Ny, Whet (R such that

IV Bl n < Ci||[VFu

g3 wi,§2
foralli=1,... ,N und u € ();_, Wo""(9).

ii) Let Q C R™ be a bounded (¢,00)- domain, U an open bounded set such that Q@ C U and

ki,... ,kn € Ny . Then there exists a linear extension operator E : (Y ﬁ/\ff’ql(ﬁ) —

ﬂi\; W\ffqz(U) such that
V¥ Bulg, 7 < Ci VR0l g0

Furthermore, for all 1 < q < oo, w € Ay and k € N there exist linear bounded
extension operators

E:Wh(Q) - Wh(RYY and E: WH(Q) - WEI(RY),

Proof: See [4] Theorem 1.2, Theorem 1.4 and Theorem 1.5. O

It is well known that every bounded Lipschitz domain is an (g, 00)-domain (see [14]).
Furthermore the half space R’} is easily seen to be an (e, 00)-domain.

3.2 Density of smooth functions

Lemma 3.1 (Mollifier) Let 1 < g < oo,w € A; and 0 < ¢ € C(R") radial and
radially decresing with [ ¢ =1 and @.(z) = e "p(£), € > 0. Then for all f € LL(R") it
holds @e x f — f  in LL(R™) for e — 0.

Proof: See [4], Lemma 4.1. O

For Banach spaces X and Y with norms || - ||x resp. || - ||y the space X NY is equipped
with the norm ||z||xny = ||z]lx + ||2]ly-

Lemma 3.2 Let 1 < ¢; < oo, w; € Ay, fori = 1,2 and Q@ C R" be an (g, 00)-domain.
Then C§°(RY) is dense in WD (Q) N WE”(Q).



Proof: Let Q = R". It is straight forward to verify that for ¢ € C{°(R") with ¢ = 1
on B1(0) and ¥ (z) := (%), k € N, the sequence (¢yu) converges to u in wha(r) n
Wk (R"). Combination of this fact with Lemma 3.1 yields the assertion for = R”.

If @ C R" is an unbounded (g, 00)-domain, the Extension Theorem 3.1 i) completes the
proof.

If Q C R" is a bounded (g, 00)-domain choose a bounded open neighborhood U of © and
a cut-off function ¢ € C§°(U) with 9 = 1 on Q. Then it follows from Theorem 3.1 ii) that
there is an extension operator E from W& (Q) N WE2(Q) to WE™ (U) nWE2(U) such
that

By gy < Cllullyra gy i=1,2.
Thus we have reduced the problem to the case 2 = R” discussed above. O
3.3 Traces
We identify OR"} with R*~! and define the spaces
L, (R ={u:R? - C : |uldz < oo, Vr > 0}

R?NBy(0)
W (RY) = {u € L), (RT) : Vue L, (RT)"}.

loc

For every > 0 and u € VVZIO’CI(@) the trace of u‘Rszr(o) e WHY(R? N B,(0)) on

R*! N B,(0) is well defined. Hence there is a linear trace operator v : T/Vlloc1 R?) —
Lige(R").

Let 1 < g < oo, we€ Agand k> 1. For u € Ww’q(IRi”) we have V¥Fu € L, (}R") C Lloc(@)
and it follows from the Poincaré inequality that u € W/* 1(R" ). In particular, Wk (Rt) C

loc

wh 1(R” ) and Wf’q(Ri) cwh 1(R” ) admitting the following definition:

loc loc

Definition 3.2 With the trace operator -y : Wli’cl(@) — L} (R*71) let for j > 1

THIRY L) = ,},(W&‘J(Rﬁ)),
TIA(RYYY o= (WIA(RY))

and denote the kernels of the trace operator 7 in Wg’q(Rﬁ) and in Wi’q(ﬂ%ﬁ) by
WHARL) = {u € WHI(RY) : y(u) = 0},
WL(RY) := {u € WJI(RL) : y(u) = 0}.

For ¢ € THURY 1) and o € TSR 1) we define

||¢HT£"7 = inf{““||j,q,w,ﬂ%<1 T u€ ngq(m), v(u) = ¢}
[l gy = 0|V ullg o n : € WIURE), y(u) =9},



Example: Weights of the form w,(z) = dist (z, 0R} )* are in Ay for —1 < o < ¢—1. For

these weights it is well known ([15] or [1] p. 184 ff) that T7(R*~!) = Wl (R*=1),

It follows from the definition above that the trace operators

v WIURE) — TZUR™Y)  and y: Wgﬂ(m) — fﬂ’q(ﬂ%”_l)
are linear and bounded, where for simplicity we denote the restrictions of the trace operator
v to WHY(R%) and WJ(R) again by ~.
Lemma 3.3 Let1 < g < oo, w€ Ay and u € W&f(Rﬁ) Then the extension 4 of u to R™
by 0 is in Wé’q(R”). The assertion remains true when replacing W&f(Rﬁ) by W&)’:}](Rﬁ)
and Wy (R") by Wol(R™).
Proof: Let u € W&’j(ﬂ%ﬁ‘r). First we show that @ has weak derivatives 0,4 € L}, (R") for

1 =1,..., n. We denote the extension of d;u by 0 to R” by v; and claim that v; = 0;u

on R™: For the proof choose ¢ € C§°(R") with support in Bg(0), say, and a cut-off
function nr € C§°(Bar(0)) with ng = 1 on Br(0). Since u € WrU(R™) C WEH(RY)
and y(u) = 0, it follows unp € Wol’l(BzR(O) N R} ). Therefore there exists a sequence
(u) € C§°(B2r(0) NRY) with uy, — ung in WhH1(Bag(0) NRL). In particular, uy — w in
W (Bg(0) NR%). Thus

/ ﬂ8i¢: u@iqb:lim Uk 8qu
n Br(0)NRY k- JBRr(0)R?
_ i ows=-[  dup=-[ us
kJBr(0)NR™ Br(0)NR™ n
proving 0;i = v; € L}OC(R”). Since ||0;@||gwrr = ||vi
@ € WX4(R"). The proof for u € W&,’:}](Rﬁ) is analogous. 0

qvvan = Hazu Q7W7Ri < 007 we get

Lemma 3.4 Fori=1,... ,n—1
Oidlria < Idlrza and 110igllya < @l

Proof: By definition for every ¢ € ﬁ%’q(Rnfl) and every ¢ > 1 there is a u € Wf’q(ﬂ%ﬁ),
such that y(u) = ¢ and |u|W3q < c|@lpzqa. We claim that y(9u) = 9y(u) = 9;¢ for
i=1,...,n—1: For the proof let R > 0 and choose ¢yr € C§°(R") such that ¢yr(z) =1
for || < R. Note that u € VVZ?)’C1 (R%) and therefore ¢pu € W2(R%). Then it is well

known that y(0j¢ru) = Oiy(vru) for ¢ = 1,...,n — 1. Since R > 0 was arbitrary,
v(0ju) = 9yy(u) = 0;¢ and therefore

|0ipl1.0 < [Oiulpra < lulea < cldlgza.

Since ¢ > 1 was arbitrary the first part is proved. The proof of the second part is
analoguous. |

Theorem 3.2 Foru € Wj’q(Rﬁ), vE Wi,’ql (RY) andi=1,...,n
(u, 0v) = —(0iu,v) + din, 1 y(u)y(v).
R

Proof: Approximate u and v by functions from C§°(R%) and obtain uv € WH(R?)
yielding 9;(uv) = ud;v + vd;u and y(uv) = y(u)y(v). So the claim is reduced to the well
known result that fRi Oiw = bin, fgn_r Y(w) for w € WHHRY) (see e. g. [2]). 0

9



4 The Laplace equation

4.1 The Laplace equation in R”
Consider the weak Laplace operator

Agw s WHI(RY) — W, H9(R™)
(Agwu)(p) := =(Vu, Vo)

for all u € WE?(R") and all ¢ € W57 (R").
Theorem 4.1 Let 1 < g < o0 and w € Ay.

(I) Then Ag,, is an isomorphism satisfying the estimate
IVullgw < CllAguull-re  Vu € WLYRY),
where C' depends only on n,q and Ag-consistently increasing on w.

(II) For 1 < ¢; < oo and w; € Ay, 1 = 1,2, the restriction of Ag, ., to W}jﬂl(R”) N
WEL(R™) is an isomorphism from Wy (RM)NWEE (R to WP (RN, (R™).

(II) If u € LE (R") + LE, (RY) is harmonic, then u = 0.

Proof: See [9] Theorem 4.2 and Lemma 4.1. The Ag-consistency of the constant in
(I) follows from the A,-consistency of the constant in the weighted multiplier theorem
(Theorem 2.1). O

Corollary 4.1 Let 1 < g < oo, w € A; and let @ C R" be an (g, 00)-domain.
(i) C’go(ﬁ) 18 dense in ﬁ/\j’q(Q) and in ﬁ/\gﬂl(g)'

(ii) If addztwnally Q is unbounded and 1 < g; < 00, w; € Ay, i = 1,2, then C§(Q) is
dense in Ww’ql(Q) nw} L2 (Q)).

Proof: For simplicity we identify a function g with its equivalence class [¢] in qu(ﬁ) and
Wg’q(Q), repsectively. By the Extension Theorem 3.1 it is sufficient to prove the corollory
for Q = R".

(i) The assertion for WA9(R") is a special case of (ii). Let u € W2?(Q). By Lemma 4.1
iii) in [9] there is a sequence (pg) C C§°(R™) such that Ay — Au in L, (R”) The
Multlpher Theorem 2.1 implies that (VZgy) is a Cauchy sequence in LLRYHYN ) N = n?,
Since Ww’q(]R") is a Banach space there is an v € Ww’q(]R") such that V2, — V20 in
LER)N. Thus Au = Av in R". Hence V2(u — v) is harmonic in LL(R?)Y. Lemma 4.1
i) in [9] yields V2u = V2v, whence VZp, — V2u in LL(R)Y

(i) Let £ = Fy + Fy € W™ (R") + W, (R") = (Wi (R") 0 W2 (R"))' such that
F(p) = 0 for all ¢ € C§°(R"). Then by Theorem 4.1 for F; € V/\Z;gl’q; (R™) there are

ui € WEB(RY), i = 1,2, with



for all ¢ € W{,ljlql (R™) N Wi;qz (R™). Choosing ¢ € C§°(R") Weyl’s Lemma yields A(u; +
uz) = 0 on R". Then also AV(u; +u2) =0 on R” and we can apply Theorem 4.1 (III) to
conclude V(u1 + u9) = 0. Hence F' = 0. The Theorem of Hahn-Banach yields the desired
assertion. O
Smooth functions with compact support are dense in the trace spaces:

Corollary 4.2 C°(R*!) is dense in To9(R1), T2URY™) and in THIR™L), k> 1.

Proof: The assertion follows from the density of C§°(RT ) in W&’Q(Rﬁ ), in Wﬁ’q(m) and

in WEY(R") (see Lemma 3.2, Corollary 4.1) and the fact that Y(C§e(RE)) € C§e(R1).
O

For 0 <e < 5 let ¥. :={A € C\ {0} : |argA\| <7 —¢}. Then for A € X. we consider the
operator

(A = A)g : WEP(RY) = W, W P(RY) = (W (R™))
< (>‘ - A)q,wua "2 >i= A(u7 (P) + (Vu, V(P)

Theorem 4.2 Let 1 <g<oo,w€ Ay, 0<e<§ and A € X..
(I) (A — A) g ts an isomorphism. It holds the estimate

min{|A[, v/ [A[} [[ullgew +min{/[A, 1} [Vullgew < ClIOA = A)guully e ga),

where C' depends only on q,n,e > 0 and Ay-consistently increasing on w.

(II) If u € S' satisfies (A — A)u =0, then u = 0.

(III) For 1 < g; < 00 and w; € Ay, i = 1,2, the restriction of (A — A)g, w, to Wo ™ (R™) N
Wo(R™) is an isomorphism from Wo T (R™) N W5 2(R™) to W, BT (R™) N W5, (R™).

Proof: For f € S we define by Fourier transformation @(¢) := (A + |¢[2)~1f(¢). Then
uw € S and (A — A)u =0 on R". The weighted Multiplier Theorem 2.1 yields the estimate

A Nullge + V20

aw S OIS

p,w»

where C' depends only on ¢,n,e > 0 and A,-consistently increasing on w. To estimate Vu
we use the weighted Ehrling Lemma ([9], S.264 Theorem 3.5)

VINIVullgw < C(Allullgw + 1V ullgw),

where C' depends only on ¢,n,e and Ag-consistently on w. Since S is dense in L (R")
this proves that for every f € LL(R™) there is an v € W2Y(R") such that (A — A)u = f
satisfying the respective estimate.

To prove the assertion (I) of the Theorem note that for f € W, »¢(R") there are fo, f1, ..., f €

LL(R") such that f(¢) = (fo, §)+2 i, (fi, i¢) on Wy (R™) and 37 || fillger < C If lyy- e
Next we find u; € W29 (R") such that (A — A)u; = f5, 5 =0, 1,... ,n. It follows that

n

F(@) = (A= Ao, d) + D (A= Ayuy, 8id) Ve WLT (RY).

=1
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Then u := ug — > 1, diu; € WoU(RY) satisfies f(¢) = A(u, ¢) + (Vu, V) for all ¢ €
C°(R") and by Lemma 3.2 even for all ¢ € W{i,’q, (R™). Moreover

1 1 < 1
<C|— — ; <C
el < € (37l ollas + m;nﬂnq,w)_ max { 73 \/W}Ilfllwlq

Analogously we get the estimate for Vu.
In particular, (A — A)y, is surjective for arbitrary ¢ € (1,00) and w € A,. The injectivity
follows from a well known duality argument: Since ¢ € (1,00) and w’ € Ay, the operator
(A = A)g o is surjective. Furthermore (A — A)g, = [(A — A)g wr]*. The closed range
theorem (see e. g. [21]) yields the injectivity of (A — A)g.
(IT) follows by application of the the Fourier transformation in S'.
To prove (III) we note that by (I) for every f € Wy, ""(R") N W, % (R") there are
solutions u; € Wj;‘” (R™), ¢ = 1,2, of the equation

Au, ) + (Vu, Vo) = f(p) Vo e
Hence v := u; —up € S’ by Lemma 2.2 i) and satisfies (A — A)v = 0 in the sense of
tempered distributions. By (II) it follows v = 0 which means u; = us. O

Corollary 4.3 For 1 < q < 00, w € Aq and every unbounded (e,00)- domain it holds
WU Q) = W2(Q) N LL(Q).

Proof: Let 2 = R" and v € Vv\f’q(w) N LL(R™). We have shown in the proof of the
previous Theorem that for f := (1 — A)v € LL(R™) there is a u € W2Y(R") such that
1-Au=f=(1-A)w,i e (1-A)(u—v)=0. Since u —v € LL(R*) C S’ by Lemma
2.2 1), it follows v = u € W3(IR"). Thus the assertion is proved for = R". Theorem 3.1
i) completes the proof. O

4.2 The weak solution of the Laplace equation in R’
Lemma 4.1 Let 1 < g < 00 and w € A,. Then it holds:
(i) For all ¢ € TR and all g € Wo L (R = (Wol’j,,(Rﬂ_))’ there exists a u €
W U(R™) such that

(Vu, Vo) = glp) V€ Wyl () (7a)

Y(u) = ¢ (7b)

and there is an Ag-consistently increasing constant C' = C(n,q,w) € R such that

1Vellgw < € (1glze + lgllgetages )
(i1) Let A€ X, with |\ = 1. Then for all ¢ € To(R") and all g € Woj’q(Rﬁ) =
(W0 w, (R” ) there exists a u € W{i’q(}Rﬁ) such that

Mu, ) + (Vu, Vo) = f(p) Vo € Wyl (RY)
V(u) = ¢

There is an Aq-consistently increasing constant C = C(n,q,w,e) > 0 such that

A +min{Al, VIA} [Vullgew < CUldllgpe +lgllysrogn )-

12



Proof: (i) First, assume y(u) = 0. By Lemma 2.1 we can assume w = w*. Note that for
every @ € Wi,’q (R™) the function w‘Rn - qﬁ*‘Rn € Wolqu, (R ). Hence g € Wo_i’q(Rﬁ) can
+ + ; ;
be extended to f € W, "(R") by f([4]) := 9(@|gn — ©*|gn) for all € Wtbq (R"). Since
b b

w = w* we have
Hf“W;lvq(Rn) <2 HgH/W\/(;iq(Ri)

By Theorem 4.1 there is a v € W{i’q(ﬂ%”) such that —A,,[v] = f such that ||Vv||g. <
C HfHW—l,q(Rn) where C = C(n,q,w) € R is Aj-consistently increasing.

Because of f([¢]) = —f([¢ ]) also —v* € Ww’q(R”) satisfies —Ag ,(—[v*]) = f. The
umqueness of the solution in Ww’q(]R") yields the existence of some constant ¢ such that
v = —v* + ¢. Since y(v) = y(v*) we conclude y(v) = ¢/2. Thus for u := U‘Rn c/2 €
W\j’q(Rﬁ) it holds y(u) = 0 as well as (7a), since by Lemma 3.3 every ¢ € W0 ( ") can
be extended by 0 to ¢ € Ww,’q (R™) such that

(Vu, Vo)rr = (Vo, V@)rn = f(9) = g(p),
IVullgwrr <IVllgwre < Cllfll55raga) < 2C||9HW Lagn)-

This proves the assertion with vy(u) = 0.
In the general case y(u) = ¢ one can choose U € Wé’q(R’}r) such that v(U) = ¢ and
IVU||gw < 2]¢|71q. Therefore this problem can be reduced to the case with vanishing

trace discussed above with the functional f(-) := g — (VU,V:) € I/V0 1, (R,
(ii) Analogous. O

Lemma 4.2 Let 1 < ¢; < 00 and w; € Ay, fori=1,2.

(i) If u € Viféiql (RY) + VL@;‘D (R%) is harmonic on R} with y(u) = 0, thﬂu =0.

(i1) If u € W{iiql(Rﬁ) + Wi;qz(Rﬁ) and (A — A)u =0 for some A € C\R_, then u = 0.
Proof: (i) By Lemma 2.1 i) we can assume w; = w/, i = 1,2. For ¢ € Cg°(R") we set
= (p— <,0"‘)‘R1 € C*(R}). Then ¢[srr = 0 and the support of ¢ is contained in the

closure of the half ball B} := R N B(0) for some R > 0.
The odd extension U of u to R™ satisfies

U, Ap)gn = (u, A)rn = =(Vu, Vi) g+
Observe that U‘B+ € Whs(B},) for some s > 1 by Lemma 2.2 ii) and that 1 € WOI’S,(BE).
R
Hence there is a sequence (p;) C C§°(B};) such that ¢, — ¢ in WH5(B}). Thus

—(Vu, W’)Bg =— lilgn(Vu,Vgok) =0.

Since ¢ € C§°(R™) was arbitrary, it follows that U and therefore VU are harmonic in R”.
By Weyl’s Lemma VU € C*(R") C L}, (R") and therefore VU € L (R")" + LT (R")"
by assumption. Theorem 4.1 (III) yields VU = 0, whence wu is constant. Since y(u) = 0 it
follows u = 0.

(ii) Analogous. O
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Theorem 4.3 (1) Let 1 < g < oo and w € Ay. Then for every ¢ € fﬁ’q(R”_l) and
every f € Woji’q(Rﬁ) there is a unique solution u € Wi’q(Rﬁ) of

(Vu, Vo) = flp) Vo e Ci°(RY) (8a)
Y(u) = ¢ (8b)

and an Ag-consistently increasing constant C' sucht that

IVu

aw < C(l7e + 1 10@n))-
In particular there is a linear bounded extension operator
R: TYI(R™Y) — WRY)

with yR = I, which assigns to every ¢ € ﬁ%’q(R”_l) the unique solution of (8) for
f=0in Wy (RY).

(II) Let 1 < ¢; < o0 and w; € Ay, for i = 1,2. Then for every ¢ € fjiql(R”_l) N
Tj;pq (R*1) and f € Wojiql (R)N Wojiéqz (R}) the unique solution u € wan (R7)
of (8) is also in W22 (R ).

Proof: (I) follows from Lemma 4.1 (i) and Lemma 4.2 (i).

(II) Assume w.Lo.g. w; = w}, i = 1,2. First, let f = 0. For ¢ € T=% (R") N L% (R"1)
there are solutions u; € Wj;‘” (R}), ¢ =1,2. Then v :=uy —ug € W{iiql (R%) + W{i;qz (R%).
By Weyl’s Lemma v is harmonic in R} and y(v) = 0. Lemma 4.2 yields v = 0 so u; = uy.
In the case 0 # f € WO_J"“ (Rt)N WO_J;]Z (R ) extend f by F(v) := f(v‘R1 - U*‘Ri) for

1

UNS Wiiqi (R*) N Wiiqé (R™) to a functional F € W, (R*) N W, (R™). By Theorem
1 2

4.1 ii) there is a solution W € W™ (R") N Wi (R™) of

(VW,Vv) = F(v) Vv € C3°(R™).
With v — W instead of u the problem is reduced to the case f = 0 discussed above. a

Corollary 4.4 Let 1 < ¢; < oo, w; € Ay, for i = 1,2. Then C(R*™) is dense in
¢ e Tjiql (Rnfl) N Té});]z (Rnfl).

Proof: By part (II) of the preceding Theorem
R:TLO (RN N5 (R ) — WhLa (R ) N WL (RY).
Therefore
v W RY) N3 (RE) — oo (R N T (R (9)

is surjective and bounded. Corollary 4.1 completes the proof. O
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Theorem 4.4 (I) Let 1 < q < oo, w € Ay,0 < e < § and X € X, with |[A\| = 1.

Then for every ¢ € Té’q(R”_l) and every f € Woj’q(R’_f_) there is a unique solution
u € W' (RL) of

Au, ) + (Vu, Vo) = flp) Vo € Cg°(RY) (10a)
y(u) = ¢. (10b)

There is an Ag-consistent increasing constant C = C(n,q,e,w) such that
ol gz < O Ugllgza + 1 lybagen)
In particular there is a linear bounded extension operator
Ry: TH(RY) — Whi(Ee)

with YRy = I, which assigns to every ¢ € Ty Y (R*~1) the unique solution of (10) for
f=0in WyRL).

(I1I) Let 1 < ¢; < oo and w; € Ay, for i = 1,2 Then for every ¢ € Tjiql(R”_l) N
T2 (R1) and f € Wo_jiiql (RT) N Woj(i;h (R%}) the unique solution u € e (R%)
of (10) is also in Wé;qz(R’i).

Proof: Analogous to the proof of Theorem 4.3. O

Corollary 4.5 Let 1 < g < oo and w € A,. There is an Ag-consistent constant C > 0
such that for all e >0 and all u € Wg’q(R’_ﬁ) with y(u) =0

1
HVUHq,w <O e ||UHq,w te HVzUHq,w )-

Proof: By Theorem 4.4

IVullgw < Gl = A)ully-10 < Ol = Aullgew < C([lullgw + IV2ullge ).

This is the claim for e = 1. Note that the A -constant is scaling invariant and the constant
C' > 0 in the estimate above is A,-consistent. Therefore the claim can be obtained for
arbitrary € > 0 by a scaling argument. O

Corollary 4.6 Let 1 < g < oo and w € Ay. Then C§°(RY) is dense in both
(Wor (R, IV - Hlgw) and (WoS(RE), -

S

17(]70.)) "

Proof: Let F € Woj,’q’ (R ) such that F'(¢) = 0 for all ¢ € C§°(R"). Then by Lemma
4.1 there is a u € W2 d (R™) solving (Vu, V$) = F() for all ¢ € W I(RE). Tt follows

W

(Vu, V) = F(p) = 0 for all ¢ € C°(R}). Lemma 4.2 yields Vu = 0 and F(¢) =

Uu, = or a € ’ , Le. = (. Hahn-Banach’s theorem implies the

(Vu,V¢) = 0 for all ¢ Wol,j(IRiqL_) i.e. F = 0. Hahn-B h’s th implies th
density of C§°(R?) in Wy d(R").

The proof of the second assertion is analogous. O
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Corollary 4.7 Letr, g € (1,00), w € Ay, v € A,. Then C(R" 1) is dense in T2INT"

Proof: Let ¢ € T29NT5". Then Theorem 4.4 (II) and Lemma 3.4 imply 8;R1¢ =
R10;¢ € Wi’q(RQL_) OWUM(RQL_) fori=1,... ,n—1. Since also 02R1¢ = Ri¢p— >, 0?R1¢ €
LL(R?) N Ly (R%) we get Ri¢p € W{g’q(Rﬁ) N WUQ’T(Rﬁ). Thus the proof can be completed
as the proof of Corollary 4.4. O
Next we identify the Poisson operators R and R). Let

t
Px):=c¢c,—
= e

for x € R*! and ¢ >AO. Here ¢, is chosen such that after Fourier transformation F with
respect to z we get P (&) = e K. We will show that for ¢ € S(R*1)

Rp(e.t) = e 15(¢) and  Ryd(&,t) = e VI Ge),
Theorem 4.5 Let 1 < ¢ < oo and w € A,. (I) For ¢ € S(R*™1) holds
IV % )l < C |10 (11)
IV2(P; % ¢)]lg < C |72 (12)
where C' depends only on n,q and Agy-consistently increasing on w.

The Poisson operator R of Theorem 4.3 is the unique extension of the operator (T'¢)(z,t) =
(P, * ¢)(x), ¢ €S, to a bounded linear operator on T with the property YR = 1.

(1) Let x€ 3., 0<e <L, N =1,¢ €S8 and u(z,z,) :=F e V MR for o € RP-L
and t > 0. Then there is an Ag-consistently increasing constant C = C(n,q,e,w) > 0 such
that

Hu”Wj’q(Ri) <C H‘M‘n}%
July2age) < C gl 2

The Poisson operator Ryof Theorem 4.4 is the unique extension of the operator (T\¢)(z,t) :=
.7-"716_\/)“"‘5‘2%//5\, ¢ € S, to a bounded linear operator on Tj,q(an) with the property
YRy =1.

Proof: (I) By Corollary 4.2 we have S(R*™1) C ﬁ%’q(R”_l) N T\l’q(R”_l) for every
1 < g < oco. It is well known, see e. g. [16] S.132 Theorem 4.4. and [3] Appendix 3,
that u(z,t) := (P, * ¢)(z) € Wl’q(Rﬁ) is harmonic on R’} with y(u) = ¢. From Theorem
4.3 (II) it follows u € Wé’q(Rﬁ) and by the uniqueness assertion of part (I) of the same
Theorem u = R¢ satisfying the estimate

V(P * )llg = [Vullgw < Cl@l714-
Hence fori=1,... ,n—1
10V (P # §)llg0 = IV (Pr % 0i¢) g < C1idls1a < Cllz2a-

Because of A(P, x ¢) = 0 we also get that |07 (P * ¢)|pw < C \qﬁ]ﬁ,q. Thus (12) is also
proved.
Since by Corollary 4.2 S(R"1) is dense in 77(R"~!) the last assertion of the Theorem
is clear.
(IT) Analogous to (I), if we observe that Flem VAP g ¢ WH(RY), 1 < g < oo, for
¢ €S (see e. g. [8] for a detailed proof). O
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5 The Stokes problem

5.1 Weak solution of the Stokes equation in R”

The considerations in [6] transfer to the weighted case:
Let 1 < ¢ < ooand w € Ay. For f € W5 IR and g € LL(R™) we look for a weak
solution (u,p) € Wy I(R™")™ x LL(R™) of the Stokes equation
(Vu, Vo) = (p,dive) = fp) Ve e C°(R)" (13a)
divu = g. (13b)

Therefore we show the following variational inequality:

Lemma 5.1 Let 1 < g; < 0o and w; € Ay, fori =1,2. Let (u,p) € Wi (R?)™ x LI (R™)
with
— di
sp |V Ve) — (p, dive)]
0#£pECE (R )™ HV<PHq.’2,w'2

1 div gy < 0.

Then (u,p) € W2 (RM)" x LE (R") and

kuqz,mupuqmsc( sup 1V Ve) — (pdiv)]

+ ldivullgew, |, (14)
0£p€CS (Rm)™ ||V(p||q’2,w’2 e

where C' > 0 depends only on n,qy and Ay, -consistently increasing on ws.

Proof: Note that AC{°(R") is dense in L, (R") (see [9] Lemma 4.1) and that HVQQqugWIZ <
C|AY |4, for ¢ € C5°(R™), where C' > 0 depends only on n, g2 and Ag,-consistently in-
creasing on wy (a consequence of the Multiplier Theorem 2.1). Thus the proof is completely

analogous to the proof in the case without weights (see [6], Lemma 3.1). O

First, apply Lemma 5.1 to the case ¢ := ¢; = ¢ and w := w1 = wa. Consider the linear
bounded operator
Sqw : WY I(RY)" x LE(R") — W, ()" x LL(R")
Sq,w(uap) = ((Vu,V:) — (p,div-), = divu).

1. —|V ||
Because of Woljiq (R*) = Cg° (R”)H I’ 2nd the variational inequality (14) we can con-

clude that S, is injective and has closed range. By the closed range theorem (see e.g.
[21]) the dual aperator

(Sgw) s VLB URY)™ x LE(R™)] — WL 4(R™)™ x Lg(R™)]'

is surjective. One easily verifies (Sy) = Sy . Because 1 < ¢ < 0o and w € A, are
arbitrary in this consideration, it follows that S, is an isomorphism.
So we have shown the following Theorem:

Theorem 5.1 Forall (f,g) € V/\Z,jl’q(R")” X LE(R™) exists a unique weak solution (u,p) €
WEHEYR™M™ x LL(R™) of the Stokes system (13). Furthermore

gw < C(Hf”y?;;w + llg

where C' € R depends only on q,n and Ay-consistently increasing on w.

IVu

gw T Ip qvw)7
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A further application in Lemma 5.1 yields the following regularity assertion:
Corollary 5.1 Let 1 < ¢; < oo, w; € Ay, fori=1,2, f € V/\Z;ll’ql (R™)™ N V/\Z;zl’qz (R™)™
and g € LY (R") x LL, (R"). Then the unique weak solution (u,p) € Wo (R")™ x L (R™)
of the Stokes equation (13a), (13b) belongs also to W5T (R™)" x L2 (R™).
5.2 The Stokes equation in R}
Let ¢ € C§°(R*~1)". Consider the Stokes equations

—AW4+VS=0, divW=0 inR}, Wl ,=¢

In [10] S.192 ff. one can find the following explicit solution, which continuously attains
the boundary values:

W) =32 [ Kl /) ) (15)
S(z) = —div(Py, * ¢) (16)

Kz’j(xl B y,7xn) = Onxn(xZ — yl)(xj _£)7 Yn =0
(2" —y']> +23) 2
Tn

P, (') =cp

n
2

(I'* + 27)
where ¢,, C}, depend only on n. Theorem 4.5 immediately yields the weighted estimates
for the pressure:

HSHq,w = || div(Py, * QS)Hq,w <|IV(Py, * (ls)qu <C |¢|ﬂ»47
198 g < IV2(Pay % B)lgeo < C[l720

where C is Ag-consistently increasing.
To obtain the weighted estimates for the velocity field W we use a well known regularity
assertion (see e. g. [10], Lemma 3.1 S. 196):

Lemma 5.2 For every 1 < g < oo and every |a| > 0 it holds
DOVW € LYR™)”  and D°S € LY(RY).

Therefore W € WI’Q(RQL_)” and it solves the Laplace equation

AW =VS inRY, y(W) =¢

in the distributional sense for data VS € W\O_l’q(Rﬁ )”ﬂwoji’q(Rﬁ )" und ¢ € C§(R1)" C

T R=1)" A THY(R*1)", Thus Theorem 4.3 (II) yields W € Wz “(R"). Theorem 4.3
and the weighted estimates for S imply

I9W s < € (@l + [VSllgpmt) < Cllgia,

where C depends only on n,q and A4-consistently increasing on w.
Since C§°(R*~1) is dense in Tj’q(Rﬁ) by Corollary 4.4, we have shown:
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Lemma 5.3 Let 1 < g < o0 and w € Ag. For ¢ € Tj’q(}Rﬁ)" there is a weak solution
(W, S) € W\j’q(Rﬁ)" x LL(RY) of the Stokes equation
(VW, V) — (S,divp) =0 Ve e Cg°(R})"
diviW =0
TW) = ¢

Furthermore there is an Ag-consistently increasing constant C > 0 such that

IVW g + 1S llgo < C 1l

Theorem 5.2 (1) Let 1 < g < oo und w € Ay. Then for every f € W0 L (R, g €

LL(RY) and ¢ € Tw’q(RT_f_) there is a unique weak solution (W,S) € W IRy )™ x
LL(RY) of the Stokes system

(VW, V) — (S,divy) = f(p) Yy € CRY)" (17a)
divivV =g (17b)
Y(W) = ¢. (17c)

Furthermore there is an Ag-consistently increasing constant C > 0 such that

IVWllgew + 1Sllgw < C(Hf“w(;iq + llgllgew + 1¢l71.0)-

(II) Let 1 < g; < o0 and w; € Ay, fori =1,2, f € WOw’ql(R”) ﬂWOw’qz(R") g €
LY (RY) N L, (R’_Q and ¢ € Tw{ql (R4 n Tw;qz(R" Y. Then the unique weak
solution (u,p) € Wl (R)™ x L (R%) of the Stokes system (17) belongs also to
WA (R x Lt (R,

Proof: (I) Extend f € W0 L "Y(R%)™ by Hahn-Banach’s theorem under preservation of
the norm to f € Wy ’q(Rff_)”. Then define f by f(y) := f((p‘Ri) for all ¢ € Wi]ql(R”)”.
Thus f € W, " 9(R")" with

Hf”ﬁ;laQ(Rn) < Hf”ﬁ;laqagi) = Hf”WO_,i,q(Ri)

Furthermore extend g by 0 to ¢ € LL(R"). By Theorem 5.1 there is a weak solution

(W, S) € WHURM™ x LEL(R) of the Stokes equations (13) on R" with right-hand side

(f,3). Moreover, by Lemma 5.3 there is a solution (v,s) € w) ’q(IRi” )™ x LL(RY) of (17)

coresponding to f =0, g = 0 and y(v) = ¢—y(W). Then u := v—l—W‘ . and p = s—i—S‘Rn
RY +

satisfy (17).

To prove uniqueness we consider the linear bounded operator

Saaw+ Woid (RE)™ x LE(RY) — Woy(RL)™ x L (RY)
Sae(,p) = (Y, V) = (p,div-), = diva).

The preceding considerations (with ¢ = 0) imply that S, is surjective. One easily verifies
(Sqw) = Sy - Therefore Sy v is injective. Since 1 < ¢ < oo and w € A, were arbitrary
it follows that Sy, is an isomorphism. O
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(IT) Similar to (I), the problem can be reduced to the case f =0 und g = 0.

By Corollary 4.4 there is a sequence (¢x) C C§°(R*1)" such that ¢ — ¢ in fiiql (RN
T2 (R 1), The explicit solution (Wy, Sg) (see (15)) coresponding to ¢y is contained both
in WET (R )7 x LI, (R ) and in W2 (R™ )" x L% (R™ ). The estimates in Lemma 5.3 imply
the existence of (uy,p;) € Wh% (R?)™ x L (RY) and (ug,p2) € Wi (RY)™ x L&, (RY)
such that

2

VWi — Vu; in LE (R} )™ and  Sp — p; in L (RY)
for i = 1,2. Since the convergence in L (R) implies convergence in D'(R" ) and since
the limit in D'(R7) is unique it follows Vu; = Vuy and p; = py. Therefore (u,p1) €
Wik (R1)™ x L, (RY) is also in Wk (R1)™ x LE, (R ) and a weak solution of the Stokes
equation for f =0, g = 0 and boundary values ¢. O
Now we investigate strong solutions of the Stokes equation in R’} .

Lemma 5.4 Let 1 < ¢; < oo, w; € Ay, for i = 1,2, f € LE (RL)" N LE,(RL)™, g €
W (RE) N WhB(RE), ¢ € To™ (R N T52(RVY) and let (u,p) € Wa™ (RL)™ x
waon (R%) be a solution of the Stokes problem

—-Au+Vp=f (18a)
divu=g¢ (18b)
V(u) = ¢. (18¢)

Then (u,p) € W™ (RL)" x Wy (RL).
Proof: Fori=1,...,n—1 the partial derivatives 9;¢ € T (R*=1)NTL22 (R, 8, f €
Woui (RE)" 0 Wo i)™ (RE)", 8ig € L (RY) N LE,(RY) and (9yu, dip) € Wi (RY)" x
LT (R1) satisfy
(VOiu, V) + (Oip, divp) = 0if (¢) Ve € Cg°(RL)"
div &u = &
v(Oju) = 0;¢.

Theorem 5.2 (IT) yields d;u € Wj;p (R%) and 9p € L, (RY) for i = 1,...n— 1. Therefore

n—1 n—1

Ontin =g — Y Oy € WEP(RY), Ojuj = fj— Y Ofu; —0p € LE(RY)  (19)
=1 =1

for j=1,...,n — 1. Thus dyu € W{i;qz (R%). Altogether we have shown u € Wf;p (R )™

Using the Stokes equation we obtain Vp € L&, (R )". O

Theorem 5.3 For every f € LL(RL)™, g € W{i’q(Rﬁ) and ¢ € T2(R 1) there is a
solution (u,p) € Wf’q(Rﬁ)" X Wi’q(Rﬁ) of the Stokes problem (18). For all these solutions
it holds the estimate

IV2ullgw + 1Vpllgw < CUIflgw + IVallgw + |l 724), (20)

where C' depends only on n,q and Agy-consistently increasing on w.

If (u,p) € Wj’q(m)” X Wi’q(R’_ﬁ) is a solution of the of the Stokes problem for (f,g,¢) =
(0,0,0), then there is a vector a = (a1,... ,ap—1,0) € C* and a constant ¢ € C such that
u(z', zp) = axy, and p(a’, x,) = c.
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Proof:  First, assume f € LL(R%)" N LYRY), g € Wj’q(Rﬁ) N leq(}RT}r) and ¢ €
ﬁ%’q(R”_l) N fQ’q(R"_l). Then by Lemma 5.2 there is a solution (u,p) € W\Q’q(Rﬁ) X
W\l’q(Rﬁ) of the Stokes problem (18). By Lemma 5.4 this solution is also in Wﬁ’q(m)" X
W (R ).

Thus (0;u, d;p) € W\i’q(}R’}r)” x LL(RY) is for ¢ = 1,... ,n — 1 a weak solution for data
0;f,0ig, 0;¢ and Theorem 5.2 yields the estimate

IVOiullgw + 10ipllgw < CUIOSf -1 + 10igllg. + [0id]71.0)
< Clfllgw +1IVgllgw + [6l724)-

The identity (19) implies the weighted estimate for d,u and thus also for Vp. Altogether
we have shown the estimate (20) for this special solution (u,p). The standard density
argument yields the existence result and the weighted estimate also for general (f, g, ¢) €
LL(RY)™ x Wé’q(Rﬁ) x T29(R™ )" (see Corollary 4.1 and Corollary 4.2).

Now let (u,p) € Wf’q(Rﬁ)” X W{i’q(ﬂ%ﬁ) be an arbitrary solution of the Stokes problem
for (f,9,¢) = (0,0,0). Then (d;u,d;p) € W (R )" x LE(R™), i =1,... ,n—1, is a weak
solution of the Stokes problem with right hand sides equal to 0. Theorem 5.2 implies that
Oiu=0and 9;p=0fori=1,...,n— 1. Moreover (19) together with v(u) = 0 imply
u(z', z,) = (a1,... ,an-1,0) x, with ay,... ,a,-1 € C. Thus Vp = Au = 0, which yields
that p is constant. Therefore the estimate (20) holds for an arbitrary solution of the Stokes
problem (18a) -(18¢) in Wad(R?)™ x W44(R™). 0

6 The Stokes resolvent problem

Proof of Theorem 1.1: i) The proof of weighted estimates for general A,-weights for
the Stokes resolvent system (1) in the whole space R” can be found in [9], p. 270, Theorem
4.5. Note that the constant C in the estimate in that Theorem depends Ag-consistently
increasing on w € A, since the estimate follows from the weighted version of Michlin’s
Multiplier Theorem (see Theorem 2.1). In the sequel we discuss the case R}

6.1 Scaling argument

We show by a scaling argument that it is sufficient to prove Theorem 1.1 for A € X, with
Al=1

l?i|rst, note that the A,-constant is scaling invariant, i.e. the weights w(z) and w(azx), o >
0, have the same A,-constant.

Write A € . in the form X = ¢, 7 > 0. Let (u,p) € W I(R2)" xﬁ/\j’q(Rﬁ) be a solution
of the Stokes resolvent system (1) in R’ . Let u(z) := ru(%) and p(z) = \/Fp(%) for
x € R} . Then y(a) = 0 and for z € R}

i) - Aife) + Vile) = f(Z2), divi) = \/;g%

We will show the resolvent estimate of Theorem 1.1 for all A € ¥, with |A\| = 1, where the
constant C' = C(n,q,¢,w) in this estimate depends Ag-consistently increaing on w € Ag.
Then, in particular, C' = C(n,q,e,w) can be choosen in such a way that it depends only

). (21)
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on n,q,c and the Aj-constant of w. Since w and the scaled weight w(%) have the same

Ag-constant it follows that

sup_ 1
veCe @) (f [Vey)|d w71 (L)dy)

= Cllfllgw +11Vdllgw +7llgllizz1.a ],

where C' = C(n,q,e,w(ﬁ)) = (C(n,q,e,w) is Ag-consistently increasing and therefore

independent of r. The estimates for V2« and Vp can be obtained from the estimates for
|A| =1 of V24 and Vp analogously.

6.2 Derivation of the solution formulas

To derive an explicit solution formula we proceed as in [8].

Assume |A\| =1 and w = w*, where w*(2', x,,) := w(a’, —z,) for (z',z,) € R" (see Lemma
2.1). Write f in the form (f', f,) with f" = (f1,...,fn-1) and extend f' even to f!
and f, odd to fn, to R". Then F := (f., fno) € LL(R™)™. Moreover, we denote by
G e Wyl (RN ng’q(R") the even extension of g to R". Then Theorem 4.5 in [8] yields
the existence of a solution (U, P) € W2I(R")" x W{i’q(ﬂ%") to the resolvent problem with
right hand sides F' and G.

An easy symmetry consideration implies that v(U,) = 0. Set ¢' := y(U’) € T24(R*— 1)1,
The estimate in Theorem 1.1 for Q@ = R” with |A\| = 1 and the assumption w = w* yield

1120 < 107120 (22)
< C (I, VG lgeo + 1 Gllyorea ) (23)
< 2C ((/, V9) lgww + llgllgi-.0), (24)

where C depends only on n,q, e and A4-consistently increasing on w.
Substracting (U, P) the resolvent problem is reduced to the problem

A —Au+Vp=0 (25a)
divu =0 (25b)
y(u') =¢' (25¢)
Y(un) = 0. (25d)

It remains to show that for ¢/ € T29(R*1)"~L there is a unique solution (u,p) €
Wf’q(Rﬁ)” X Wé’q(Rﬁ) of problem (25a)-(25d) satisfying the estimate
1(a, Vu, V21, V) [lg 0 < C 16l 2. (26)

with an Ag-consistently increasing constant C.
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By "= F' we denote the Fourier transformation with respect to the first n — 1 variables.
Then (see [8]) the solution of problem (25) is given by

., e As2x, e—5%n ~

T(ea) = i€ T e 1)

el e—\/mxn — e %m 5,5, el 5,5, —VAF+82Tp, 11 ¢!

() = T L G (- S e, (29)
1 g

ﬁ(fluxn) = _8_2(>\ + 57— 82)‘%“71(5 » Tn) (29)

where ¢'¢’ € R* 171 denotes the dyadic product of ¢ with itself and s = |¢'].

6.3 Weighted estimates

In the sequel let ¢' € Cg°(R*1)"~! and A € X, with |A\| = 1. Note that the constants C
in the proof depend A -consistently increasing on w.

The estimate of u,,:
Recall the Poisson operators of the Laplace and Laplace resolvent equation discussed in
section 4:

RF(E wa) = @ (€) and RyF(E,w0) = VAT Gi(e), (30)

Boundedness properties of these operators are proven in Theorem 4.5 We split the solution
formula (27) of @,, noting that A\(VA + s2 — s) "1 = VA + 52 + s, into four summands

e—\//\—‘,-s2 Tn _ o=STn .
¢
VA+sZ—s

Qjﬁ(fl,xn) = Zf’ ’

n—1 .
- Z%[V/\%—s?e”)‘“%" — VA 828 g gemVATS an —se gl (31)
j=1
For 7 =1,... ,n— 1 we have

.7:,71’5'5‘7' vV A+ s2e” Ats?an (]/5; = —8j8nRA¢j

F'ligjsem 5 g = —0;0,Rp;.
Thus Theorem 4.5 implies the Li-estimates:
1000 Bx¢jllg + 11000 Rjllg < Clljlly2.0 (32)

For the estimate of the two remaining terms in (31) consider the multiplier operators
Ti@(E) =s#(¢) and DF (€)= VA+s2§(&).
Lemma 6.1 There exists an Agy-consistently increasing constant C' € R such that
i) 111l pra < C e[l 2

ii) 11T lysa < C 16 g2
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Proof: 1i): Define an extension of 71¢' to R by

W(E' 1) 1= s €Tl (¢)).

Then y(w) = T1¢' and w = —9, R¢'. It follows from Theorem 4.5

Hqu,w = H@anﬁl gw S C|¢I|f$a%
IVwllgew = [[0n VR g0 < C|¢,|ﬁ§»4-

Since y(w) = T1 ¢’ it follows
ITi g < Il < C gz
ii): Extend T5¢' to R} by
BE o) = VAt sPe g,
Then y(w) = Ty¢' and w = -9, Ry\¢'. By Theorem 4.5 it follows
[l pe = 10 Rad Iy ps < C 1]l

Since y(w) = Th¢' the proof is complete. O

The remaining two terms in (31) can be written in the following form

Pl /AT ey — 0,R Ty, (33)
fl_lifj se Ats? x”(]/ﬁ;', = 8]-RAT1¢]-. (34)

Then Theorem 4.5 and the last Lemma imply

10;R Toillgw < C Todyilza < Cllsllyza (35)
10, RaTidllg < C ITadill i < C il (36)

Thus the desired L{-estimate for u,, is proven, i. e.

lunllgw < C YNl 72a, (37)

where C' > 0 depends only on n, q,c and A -consistently increasing on w.

The estimate of u':
Recall the formula (28) for u/. An easy computation using the identity A(vV'A + s2—35)~1 =

VA + 52 + s yields

W€ x,) =

} 1t _ !¢l
[515,67 A2z, I %mefx/)\Jrsan _ %\/)\—F—SQeﬁm" (38)
_5,5, e—sa:n + )\e—v/\"rszxn ] q/s\/

1
A
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The estimate for the first, the fourth and fifth summand in (38) is easy, because for
1,7 =1,... ,n—1 we have
Flg e VAo — — 0,0, R
FGge g = ~0id; R,
f’ile_ )\+52m"(}?j = R)\(]Sj.

Thus by Theorem 4.5 the L, (R )-norm of these three terms can be estimated by ||¢'|| 2.0
To estimate the second and the third term in (38) we study the Riesz transformation

56=5
s
fori=1,...,n—1and ¢ € S(R* ). It is well known that S; can be written in the form
. Ly —Yi N
Sid(z') = lim cn/ = (y)dy'.
e—0 |z’ —y'|>¢ |z —y'|"

Here and in the sequel ¢, # 0 always denotes a constant depending only on n which may
be differnet from line to line. The following Lemma concerning boundedness of the Riesz
transformation in the trace spaces is decisive:

Lemma 6.2 For ¢ € S(R* ') andi,j =1,... ,n —1 it holds
i) |Silz1a < Cldlpra

i6) 19;Sidllga < Cllllgza,

where C' > 0 depends only on n,q and Ag-consistently increasing on w.

Proof: Counsider the operators

Pt an) = [ oy (39)

o' —y'|? + z7)

fori=1,...,n—1and ¢ € S(R* 1).
Let v := R¢. Then by Theorem 4.5 v € Wj’q(Rﬁ) with v(v) = ¢ and

IVollge < Cldlzsa.

Note that v € C®°(R7%) and that v is bounded on R - more precisely:

L

.t = || P * <s‘
oG )low = 12+ flloo < cnsup| | g

I 12 _n
<o [ (B ) T e scw sy

Then for every ', € R* ! and z,, > 0

T Vi ! > Ly — Yi !
3 - g = u(y', t)|dt.
(|=" —y'|? ~|—x%)5¢(y) /0 t[(yxz “ Y+ (on 4+ 1)2)3 (y )]
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Inserting this into (39) we obtain for é,5 =1,... ,n —1

Ly — Y / !
0 —v(y,t)|d(y,t
Rt t[<|x'—y'|2+<xn+t>2>f Wl

n(x; — yi) (o + 1) /
% i (ot G oy DY
(i — i)
o v Flan 413
— yi)(n + 1)

o a'v(ylat) d(ylat)
|x—y|2 +(zn +1)2)" T

/
/ Ym0+ ) By, 1) d(y )
/

—8jPi(]5(:L", $n) = aj

at,u(yla t) d(yI7 t)

+ 0;

o +>t)>% iy, 1) d(y' 1)

’:L‘ -y ‘2 (xn + t
T / Bii (2 — o son + 1) Groly/ 1) d(y/ ),
Rn

where 571) and éﬁ denote the extensions of 0jv and dyv by 0 to R", respectively, and

1 NT;T;
kij () := O Ty~ Tanr

By substitution one obtains with y = (v, ¢) and =z = (¢/, z,,)

n(z; — Yy )(Tn — ) 7—
pate = [ MW,

+/R kij(z — y) Opo(y, —t) dy,

Since both kernels are regular singular integral kernels in the sense of Definition 2.4,
Theorem 2.2 implies that there is some constant C' > 0 depending only on n,q and A,-
consistently increasing on w such that

—~%
qw,Rr T |Onv

——~—%
19; P¢quw < (I pioiz)
C (1350 g 2 + 10 g )

C ([lojv g Y+ HanUHq,w,Ri)
<C |¢|f$,q
for j=1,... ,n— 1, where we used w = w*.

It remains to estimate 0, F;¢. For («/,z,) € R} we have

8 P ! — a $l - yl - ! d !
n z¢(!L‘ ,!L‘n) n 1 (‘x, _y,’2+x%)§¢(y) Y
= 0, n o(y")dy'

Rt (|of — y'|? + 22) 2
=cy 0; R¢ (*T,7xn)'
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By Theorem 4.5 it follows that

Hanpi¢||q,w < Cn’|8iR¢Hq,w < C’ﬁb‘f&q-

Altogether we have shown fori=1,... ,n—1
IVPillge < Clolz1a. (40)

Now we will investigate the relation between P; and S;. We claim that

Y(P;p) = ¢p Sih. (41)
. . . . 1
Let n > 3. Using integration by parts we get with the constant C, = =5
1 ! ! Cn / /
Pig(x) = Cy = 0ip(y) dy' — e didly) dy (42)
Rr=1 (|z! — y'|2 + 22) 2 ro-1 |2 — 9|

for z;; — 0 by Lebesgue’s Theorem. Actually P;¢ is even continuous on @ Therefore

1
m 3i¢(y’)dy’ = cp, Si9.

Poé) =
V(FPig) = Cn w1 |7 —y

In the case n = 2 we use that % = O1In(|z1 — y1|* + 22). Then the proof is

analogous.
Combining (41) with (40) we obtain the assertion of part i) of the Lemma.

ii) Because of 0;5;¢ = S;0;¢ for 4,5 =1,... ,n — 1 and (41)
V(P;0i¢) = ¢y 0;Si¢. (43)
We estimate P;d;¢ in W,y?(R™). By (40) and Lemma 3.4

1250 ¢lq0 = |05 Pigp
|| Ok P;0; 9|

q,w <C HQSHTO}Q )
g < Cl10jpll e < Cllgllea

for k=1,... ,n — 1. To estimate the n-th derivative note that for z € R}

1
anf)zaqu(l‘) = cpOy 0; n_2 aj‘:b(yI) dy,
v (=4 )

= 0;0(y') dy' = Cy 9, R(0 :
rot (o' —y'| +22)3 ip(y') dy (0;¢)(x)

T

=0

Therefore Theorem 4.5 and Lemma 3.4 yield
100 P;0;¢llg.0 = Cn 10:R(9j$) g < 105|710 < ClIpll -

Thus || P;0;|ly1a < C|l@ll 2.4 and (43) yields the estimate ||9;S;B|| 1.0 < Ol @[l 2.4, which
completes the proof of Lemma 6.2. O
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Now it is possible to estimate also the second and third summand in (38) by writing them
in the following form:

PN e VA % $j = i OuRx(01S;;)

Fle, e—swn%\/x + 52 ¢ = —i RS Todh;
for 5,k =1,... ,n— 1. By Theorem 4.5, Lemma 6.1 and Lemma 6.2

100 RA(OkSj$)llgw < C 10k Sibjllpra < Clld |l
10k RS Tay g < C 1S Todslz10 < CTadllpe < C ¢l g0,

where C depends only on n,q, e and Ag-consistently increasing on w.

Thus the L (R )-norm of the five summands in (38) is estimated by [|¢/||,2¢ with a
constant C' > 0 depending only on n,q, e and Ag-consistently increasing on w

el < C!|¢'||T3,q-
Together with the estimate (37) of u,, we have

lullge < ClI¢ |l 20 (44)

Estimation of the second derivatives and of the pressure:

Up to now we proved that the solution u = (u',u,) of (25a)-(25d) explicitly given by the
expressions (27), (28) is in L (R )", where we assumed ¢/ € S(R*1)"~! and |A| = 1.

In [8] p. 617-621 it is shown that even (u,p) € W4(R%)" x WH4(R" ). Since (u,p) also
satisfies the Stokes equation

—Au+Vp=—-Xu, divu=0, v(u)=(¢,0) (45)

with right hand sides —Au € L(R? )" N LY(R?)™ and (¢',0) € S(R*1)" c T*4(R*1)" N
T29(R*1)". Lemma 5.4 yields (u,p) € Wﬁ’q(m)” X Wé’q(R’}r). Therefore by Theorem
(5.3) and (44) we obtain

IV2ullgew + IVpllgw < C (lullgw + 1¢'|72.4) < Cll¢'ll 20
Hence (u,p) € Wf’q(Rﬁ)” X W{i’q(ﬂ%ﬁ) (see Lemma 4.3) and
lullgw + HVzUHq,w +IVpllgw <€ ||¢’HT3¢1- (46)

The density of C°(R* 1) in T2 (Corollary 4.2) yields the existence of a solution (u, p) €
Wf’q(Rﬁ)” X Wj’q(Rﬁ) for arbitrary ¢' € T27(R"~1)"~1 such that the estimate (46) holds.
Now the existence assertion of Theorem 1.1 is proved.

Uniqueness: .
Let (u,p) € Wf’q(Rﬁ)” X Wt,qu(Rﬁ) be a solution of the Stokes resolvent system (1) for

right hand sides f = 0 and g = 0, and let f € Lg, (R} )™ be arbitrary. As we have already
shown, there is a solution (i, p) € Wi}ql (RL)™ x W\iiq’ (R} ) of

A=A)i+Vp=Ff, divi=0, (@) =0.
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For a sequence (¢y) C C§°(RY) with Vg, — V5 in Lg, (R )™, it follows by Theorem 3.2
on integration by parts that

since y(u) = 0. Analogously (@, Vp) = 0. Using this fact and Theorem 3.2 on integration
by parts we obtain

(fou) = (A = A)a + Vp,u) = (@, (A — A)u+ Vp) = 0.

Since f € LSJI, (R% )™ was arbitrary it follows u = 0 and thus Vp = 0. This proves part i)
of the Theorem.

The regualrity assertion ii) is proven in [9] for the case 2 = R™.
So let © = R’ The assertion ii) for Q@ = R” implies that for the boundary values ¢' in
(25¢) it holds

(,25, € Tg,q(Rn—l)n—l N TUQ’T(Rn_l)n_I.

In the proof of i) we first assumed ¢' € C$°(R"1)"~! and obtained an explicit solution
(u,p) of (25a)-(25d) depending only on ¢' but not on the pair (¢, w).

Since by Corollary 4.7 we can approximate an arbitrary ¢’ € T3 (Rv=1)n=1nT2" (Rr—1)n—1
in T29(R? 1L 072" (R 1)1 by functions from C$(R™ 1) it follows that the so-
lution (u,p), which we obtained by a density argument, is contained in (Wﬁ’q(m)” N
W (R ™) x (W YR ) N Wy " (R)).

Thus Theorem 1.1 is completely proved. a
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