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Abstra
t

In this paper we derive weighted L

q

-estimates for the Stokes resolvent system in the

half spa
e for weights of Mu
kenhoupt 
lass, on whi
h a new approa
h to maximal L

p

-

regularity of the Stokes operator for the half spa
e and a bounded domain in weighted

L

q

-spa
es in the forth
oming part II is based. We stress that our results hold for

general Mu
kenhoupt weights. In parti
ular, the weights may tend to zero or be
ome

singular at the boundary of the domain.

AMS 
lassi�
ation: *35Q30, 35D05, 46E25

1 Introdu
tion

We study the generalized Stokes resolvent problem

�u��u+rp = f in R

n

+

(1a)

divu = g in R

n

+

(1b)

u = 0 on �R

n

+

(1
)

in weighted L

q

-spa
es for a large 
lass of weights and � 
ontained in the se
tor

�

"

:= f� 2 C n f0g : jarg �j < � � "g; 0 < " <

�

2

:

The motivation of our investigations is as follows: Re
ently L. Weis [20℄ gave a 
hara
ter-

isation of maximal L

p

-regularity by so 
alled R-bounded operator families.

Our idea is to 
ombine this result with the fa
t that for L

q

-spa
es R-boundedness is

implied by weighted estimates (see e.g. [11℄, Chapter V, Theorem 6.4). In this 
ontext for

1 < q <1 the weight fun
tions ! of Mu
kenhoupt 
lass A

q

de�ned by the 
ondition that

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1;

where the supremum is taken over all 
ubes Q � R

n

and jQj means the Lebesgue measure

of Q, o

ur.
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In this way we will show in the forth
oming part II maximal L

p

-regularity of the Stokes

operator in weighted L

q

-spa
es in the half spa
e and a bounded domain for arbitrary

weights of Mu
kenhoupt 
lass A

q

. To rea
h this goal we prove in the present part I weighted

estimates for the Stokes resolvent problem in a half spa
e for general Mu
kenhoupt weights.

More pre
isely, for 1 < q <1; ! 2 A

q

and an open set 
 � R

n

let

L

q

!

(
) = fu 2 L

1

lo


(
) : kuk

q

q;!

=

Z




juj

q

! dx <1g:

For the de�nition of the weighted Sobolev spa
es W

k;q

!

(
);




W

k;q

!

(
); : : : see se
tion 3

below. Weighted L

q

-estimates for the Stokes resolvent system have already been obtained

for the whole spa
e 
 = R

n

for general A

q

-weights and in exterior domains for a restri
ted


lass of A

q

-weights by Farwig and Sohr [9℄. The main result of this paper is as follows:

Theorem 1.1 Let n � 2; 1 < q <1; ! 2 A

q

; 0 < " <

�

2

.

i) Then for every f 2 L

q

!

(R

n

+

)

n

; g 2 W

1;q

!

(R

n

+

) \




W

�1; q

!

(R

n

+

) and � 2 �

"

there is a

unique solution (u; p) 2W

2;q

!

(R

n

+

)

n

�




W

1; q

!

(R

n

+

) of the Stokes resolvent problem (1).

This solution satis�es the estimate

j�jkuk

q;!

+ kr

2

uk

q;!

+ krpk

q;!

� C ( kfk

q;!

+ krgk

q;!

+ k�gk




W

�1; q

!

); (2)

where C > 0 depends only on n; q; " and A

q

-
onsistently in
reasing on !.

ii) If for some r 2 (1;1) and some v 2 A

r

additionally f 2 L

r

v

(R

n

+

)

n

and g 2

W

1;r

v

(R

n

+

) \




W

�1;r

v

(R

n

+

); then (u; p) 2W

2;r

v

(R

n

+

)�




W

1;r

v

(R

n

+

):

The importan
e of the te
hni
al fa
t that the 
onstant C in (2) isA

q

-
onsistently in
reasing

(see De�nition 2.3) will be
ome 
lear in the forth
oming part II.

Note that L

q

(R

n

+

) = L

q

(R

+

;L

q

(R

n�1

)); but in general the weighted spa
e L

q

!

(R

n

+

) is not

of this form for ! 2 A

q

. Moreover, given ! 2 A

q

in general !(�; x

n

) =2 A

q

(R

n�1

) for

x

n

> 0: Therefore the existing approa
hes to the Stokes resolvent system (see e.g. [5℄,

[8℄, [13℄) based on estimates in R

n�1

for every �xed x

n

> 0 do not transfer dire
tly to

the weighted 
ase for general A

q

-weigths. Our idea is to represent the solution operator

as a 
omposition of 
ertain multiplier operators on the boundary �R

n

+

and the Poisson

operators 
orresponding to the Lapla
e- and Lapla
e resolvent equation




R�(�

0

) = e

�j�

0

jx

n

b

�(�

0

)

d

R

�

�(�

0

) = e

�

p

�+j�

0

j

2

x

n

b

�(�

0

); � 2 �

"

;

where x

n

> 0; � is a S
hwartz fun
tion on �R

n

+

and bg means the partial Fourier transform

of g with respe
t to the �rst (n�1) variables. For the estimation of the multiplier operators

on the boundary we have to prove 
ertain boundedness properties of the Riesz transforms

in the tra
e spa
es of weighted Sobolev spa
es. Furthermore, to estimate the pressure

and the se
ond derivatives of u we derive weighted L

q

-estimates for the stationary Stokes

system.

For the stationary Stokes system and the Stokes resolvent system there exist several results

(e. g. [9℄, [12℄, [17℄, [18℄) in unbounded domains with weight fun
tions vanishing or

in
reasing for jxj ! 1 but being bounded from above and from below by positive 
onstants

2



near the boundary of the domain. We emphasize that our results hold for arbitrary

Mu
kenhoupt weights, i.e., the weight fun
tion may be
ome singular or vanish also at the

boundary.

This paper is organized as follows: In se
tion 2 we present a brief summary of the theory

of Mu
kenhoupt weights used in the sequel.

Se
tion 3 deals with some properties of weighted Sobolev spa
es. We apply extension

theorems of [4℄ and investigate density properties of smooth fun
tion and tra
e spa
es of

weighted Sobolev spa
es.

In se
tion 4 we study weak solutions of the Lapla
e and Lapla
e resolvent equations in

the whole spa
e and the half-spa
e in weighted Sobolev spa
es. These problems 
an be

redu
ed to problems on the whole spa
e R

n

by re
e
tion arguments. In parti
ular, we

obtain weighted estimates for the 
orresponding Poisson operators R and R

�

.

Se
tion 5 deals with weak and strong solutions of the Stokes equation in the half spa
e

in weighted Sobolev spa
es. The weighted estimates for the velo
ity and pressure �elds

follow from the estimates of the Poisson operator R.

Finally, in se
tion 6 we prove Theorem 1.1.

2 Mu
kenhoupt weights

By a 
ube Q we mean a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are bounded

intervals of the same length. Thus 
ubes have always sides parallel to the axes.

De�nition 2.1 Let 1 < q <1. A fun
tion 0 � ! 2 L

1

lo


(R

n

) is 
alled an A

q

-weight if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (3)

where the supremum is taken over all 
ubes Q � R

n

and jQj assigns the Lebesgue measure

of Q. A

q

(!) is 
alled the A

q

-
onstant of !. We use the abbreviation !(A) for

R

A

!(x) dx.

Simple examples of A

q

-weights are radially symmetri
 weights !(x) = jx � x

0

j

�

for

�n < � < n(q � 1) or more generally distan
e fun
tions of the form !(x) = dist (x;M)

�

for a k-dimensional 
ompa
t Lips
hitzian manifoldM and �(n� k) < � < (n� k)(q� 1):

For further examples we refer to [9℄.

De�nition 2.2 For ! 2 A

q

and an open set 
 � R

n

let

L

q

!

(
) =

�

u 2 L

1

lo


(
) :

Z




juj

q

! dx <1

	

; kuk

q;!;


=

�

Z




juj

q

! dx

�

1=q

:

We write often kuk

q;!

instead of kuk

q;!;


if 
 is �xed.

The spa
e L

q

!

(
) is a re
exive Bana
h spa
e, be
ause L

q

(
) is a re
exive Bana
h spa
e

and the mapping f 7! f !

1

q

is an isometri
 isomorphism from L

q

!

(
) to L

q

(
).

Let q

0

:=

q

q�1

. It follows from the De�nition of A

q

-weights that

8 1 < q <1 : ! 2 A

q

() !

0

:= !

�

1

q�1

2 A

q

0

:

3



Then, denoting the dual spa
e of a Bana
h spa
e X by X

0

,

(L

q

!

(
))

0

= L

q

0

!

0

(
);

where we identify fun
tions with fun
tionals in the usual way, i.e., we set (f; g)




:=

R




f g dx and identify f 2 L

q

!

(
) with the fun
tional g 7! (f; g)




. If 
 is �xed, we write

(�; �) instead of (�; �)




:

In the sequel we will have to 
onsider 
onstants C = C(!) , e. g. in weighted L

q

-

estimates, that depend on the weight fun
tion ! 2 A

q

. Usually in the A

q

-theory su
h


onstants 
an be 
hoosen uniformly whenever the A

q

-
onstant is bounded from above, i.

e., A

q

(!) � 
 <1. This motivates the following de�nition:

De�nition 2.3 A mapping C : A

q

! R

+

is 
alled A

q

-
onsistently in
reasing i�

8
 2 R

+

: sup fC(!) : ! 2 A

q

; A

q

(!) � 
 g <1:

A mapping C : A

q

! R

+

is 
alled A

q

-
onsistently de
reasing i�

1

C

is A

q

-
onsistently

in
reasing.

Theorem 2.1 (H�ormander-Mi
hlin multiplier theorem with weights)

Let m 2 C

n

(R

n

nf0g) with the property that

9M 2 R : jD

�

m(�)j �M j�j

�j�j

; 8 � 2 R

n

n f0g; j�j = 0; 1; : : : ; n:

Then for all 1 < q < 1 and ! 2 A

q

the multiplier operator




Tf = m

b

f de�ned for

S
hwartz fun
tions f 2 S = S(R

n

) 
an be extended uniquely to a bounded linear operator

from L

q

!

(R

n

) to L

q

!

(R

n

). More pre
isely, there is an A

q

-
onsistently in
reasing 
onstant

C = C(n; q; !;M) 2 R su
h that

kTfk

q;!

� C kfk

q;!

(4)

for all f 2 L

q

!

(R

n

).

Proof: The assertion is proven in [11℄, Chapter IV, Theorem 3.9 - even under more

general 
onditions on m. Although not expli
itely mentioned the A

q

-
onsisten
y of the


onstant C 2 R in (4) follows from the proof in [11℄. 2

De�nition 2.4 A tempered distribution K 2 S

0

is 
alled a regular singular integral kernel,

i� K 
oin
ides on R

n

nf0g with a lo
ally integrable fun
tion k(x) su
h that

i)

b

K 2 L

1

ii) jk(x)j � A jxj

�n

iii) jk(x� y)� k(x)j � Ajyjjxj

�(n+1)

; 8 jxj > 2jyj > 0 :

The operator Tf := K � f; f 2 S(R

n

); is a 
alled regular singular integral operator.

Example: Let k 2 C

1

(R

n

nf0g) be homogeneous of degree 0 with vanishing mean over

the unit sphere. Then the operator

Tf(x) = p:v:

Z

k(y)

jyj

n

f(x� y) dy

is a regular singular integral operator (see [11℄, Remark on p. 204).
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Theorem 2.2 Let 1 < q <1; ! 2 A

q

and let T be a regular singular integral operator.

Then T is bounded on L

q

!

(R

n

). More pre
isely, there is an A

q

-
onsistently in
reasing


onstant C 2 R su
h that for all f 2 S

kTfk

q;!

� C kfk

q;!

: (5)

Proof: See [11℄, 
hapter IV, Theorem 3.1. The important property, that the 
onstant

C in (5) is A

q

-
onsistently in
reasing follows from the proof given in [11℄. 2

For a fun
tion u on R

n

let

u

�

(x

0

; x

n

) := u(x

0

;�x

n

) 8x = (x

0

; x

n

) 2 R

n

: (6)

Lemma 2.1 Let 1 < q <1 and ! 2 A

q

: Then also the weight de�ned by

~!(x

1

; : : : ; x

n

) :=

�

!(x

1

; : : : ; x

n

) : x

n

> 0

!(x

1

; : : : ; x

n�1

;�x

n

) : x

n

< 0

is in A

q

with A

q

(~!) � 2

q

A

q

(!). It holds ~! = (~!)

�

.

Proof: Note that for all 
ubes Q with Q � R

n

+

or Q � R

n

�

�

1

jQj

Z

Q

~! dx

��

1

jQj

Z

Q

~!

�

1

q�1

dx

�

q�1

� A

q

(!):

Let Q be a (without loss of generality 
losed) 
ube su
h that the whole 
ube Q is neither


ontained in R

n

+

nor in R

n

�

. Then by translation of Q in x

n

-dire
tion we obtain two 
ubes

Q

+

� R

n

+

and Q

�

� R

n

�

with Q � Q

+

[Q

�

; jQj = jQ

�

j = jQ

+

j. It follows that

�

1

jQj

Z

Q

~! dx

��

1

jQj

Z

Q

~!

�

1

q�1

dx

�

q�1

�

�

1

jQj

Z

Q

+

[Q

�

~! dx

��

1

jQj

Z

Q

+

[Q

�

~!

�

1

q�1

dx

�

q�1

�

�

2

jQ

+

j

Z

Q

+

! dx

��

2

jQ

+

j

Z

Q

+

!

�

1

q�1

dx

�

q�1

� 2

q

A

q

(!):

The se
ond assertion is obvious. 2

Lemma 2.2 Let 1 < q <1 and ! 2 A

q

:

i) The spa
e of S
hwartz fun
tions S(R

n

) is 
ontinuously embedded into L

q

!

(R

n

) and

L

q

!

(R

n

) is 
ontinuously embedded into the spa
e S

0

(R

n

) of tempered distributions.

ii) There is an s > 1 su
h that L

q

!

(
) is embedded into L

s

(
) for every bounded mea-

surable set 
 � R

n

.

Proof: i) For f 2 S we have

kfk

q;!

�

�

Z

R

n

!(x)

(1 + jxj)

nq

dx

�

1

q

kf(1 + jxj)

n

k

1

:
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The �rst term on the right hand side is �nite (see [19℄, Chapter IX, Prop. 4.5) and

f 7! kf(1 + jxj)

n

k

1

is a seminorm on S.

The se
ond assertion follows by duality - see also [9℄ Lemma 4.1 i).

ii) The assertion is a 
onsequen
e of the open ended property of Mu
kenhoupt weights: For

! 2 A

q

there is an p < q su
h that ! 2 A

p

(see e.g. [11℄, Chapter IV, Theorem 2.6). It

follows v := !

�

1

p�1

2 A

p

0

� L

1

lo


(R

n

). With s =

q

p

the H�older inequality

kfk

s

� v(
)

1

p

0

kfk

q;!


ompletes the proof. 2

3 Weighted Sobolev spa
es

For 1 < q <1; ! 2 A

q

and a domain 
 � R

n

let

W

k;q

!

(
) = fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg;




W

k;q

!

(
) = fu 2W

k;1

lo


(
) : D

�

u 2 L

q

!

(
); j�j = kg:

The spa
e W

k;q

!

(
) equipped with the norm

kuk

W

k;q

!

(
)

= kuk

k;q;!

:=

�

X

j�j�k

kD

�

uk

q

q;!;


�

1

q

is a re
exive Bana
h spa
e. On




W

k;q

!

(
) the seminorm

juj




W

k;q

!

(
)

:= kr

k

uk

q;!;


=

�

X

j�j=k

kD

�

uk

q

q;!;


�

1

q

is de�ned. Let P

n

k�1

be the set of polynomials of degree � k � 1 on R

n

and P

n

k�1

(
) :=

P

n

k�1

�

�




: Then the fa
tor spa
e




W

k;q

!

(
) :=




W

k;q

!

(
)=P

n

k�1

(
)

is equipped with the norm

k[u℄k




W

k;q

!

(
)

:= kr

k

uk

q;!

;

where u 2




W

k;q

!

(
) and [u℄ 2




W

k;q

!

(
) is the respe
tive equivalen
e 
lass. In [4℄ Theorem

4.9 it is proved that




W

k;q

!

(
) is a Bana
h spa
e and that




W

k;q

!

(
) 
an be identi�ed with

a 
losed subspa
e of L

q

!

(R

n

)

N

; N = jfj�j = kgj; via the mapping [u℄ 7! (D

�

u)

j�j=k

.

Thus




W

k;q

!

(
) is also re
exive. Note that r

k

:




W

k;q

!

(
) ! L

q

!

(
)

N

is well de�ned by

r

k

[u℄ := r

k

u; where u 2




W

k;q

!

(
) is arbitrary.

By




W

�k;q

!

(
) and W

�k;q

!

(
) we denote the dual spa
e of




W

k;q

0

!

0

(
) and W

k;q

0

!

0

(
); respe
-

tively.
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3.1 Extension theorems

De�nition 3.1 Let " > 0 and Æ 2 (0;1℄. An open 
onne
ted set 
 � R

n

is an ("; Æ)-

damain if for all x; y 2 
; jx�yj < Æ there exists a re
ti�able 
urve 
 � 
 
onne
ting x; y

su
h that

l(
) �

1

"

jx� yj and d(z) � "

jx� zjjy � zj

jx� yj

for all z 2 
, where l(
) is the length of 
 and d(z) = inf

a2





ja� zj.

In 
ontrast to [4℄ we restri
t ourselves to domains, i.e. open, 
onne
ted subsets on R

n

.

Therefore in the previous de�nition some te
hni
al 
onditions of [4℄ 
ould be dropped.

Theorem 3.1 (Chua) Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; : : : ; N .

i) Let 
 � R

n

be an unbounded (";1)- domain and k

1

; : : : ; k

N

2 N

0

. Then there exists

a linear extension operator E :

T

N

i=1




W

k

i

;q

i

!

i

(
)!

T

N

i=1




W

k

i

;q

i

!

i

(R

n

) su
h that

kr

k

i

Euk

q

i

;!

i

;R

n

� C

i

kr

k

i

uk

q

i

;!

i

;


for all i = 1; : : : ; N und u 2

T

N

i=1




W

k

i

;q

i

!

(
).

ii) Let 
 � R

n

be a bounded (";1)- domain, U an open bounded set su
h that 
 � U and

k

1

; : : : ; k

N

2 N

0

. Then there exists a linear extension operator E :

T

N

i=1




W

k

i

;q

i

!

i

(
)!

T

N

i=1




W

k

i

;q

i

!

i

(U) su
h that

kr

k

i

Euk

q

i

;!

i

;U

� C

i

kr

k

i

uk

q

i

;!

i

;


:

Furthermore, for all 1 < q < 1; ! 2 A

q

and k 2 N there exist linear bounded

extension operators

E :W

k;q

!

(
)!W

k;q

!

(R

n

) and

b

E :




W

k;q

!

(
)!




W

k;q

!

(R

n

):

Proof: See [4℄ Theorem 1.2, Theorem 1.4 and Theorem 1.5. 2

It is well known that every bounded Lips
hitz domain is an (";1)-domain (see [14℄).

Furthermore the half spa
e R

n

+

is easily seen to be an (";1)-domain.

3.2 Density of smooth fun
tions

Lemma 3.1 (Molli�er) Let 1 < q < 1; ! 2 A

q

and 0 � ' 2 C

1

0

(R

n

) radial and

radially de
resing with

R

' = 1 and '

"

(x) = "

�n

'(

x

"

); " > 0. Then for all f 2 L

q

!

(R

n

) it

holds '

"

� f ! f in L

q

!

(R

n

) for "! 0.

Proof: See [4℄, Lemma 4.1. 2

For Bana
h spa
es X and Y with norms k � k

X

resp. k � k

Y

the spa
e X \ Y is equipped

with the norm kzk

X\Y

= kzk

X

+ kzk

Y

:

Lemma 3.2 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2 and 
 � R

n

be an (";1)-domain.

Then C

1

0

(
) is dense in W

k;q

1

!

1

(
) \W

k;q

2

!

2

(
).
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Proof: Let 
 = R

n

: It is straight forward to verify that for  2 C

1

0

(R

n

) with  � 1

on B

1

(0) and  

k

(x) :=  (

x

k

); k 2 N; the sequen
e ( 

k

u) 
onverges to u in W

k;q

1

!

1

(R

n

) \

W

k;q

2

!

2

(R

n

). Combination of this fa
t with Lemma 3.1 yields the assertion for 
 = R

n

:

If 
 � R

n

is an unbounded (";1)-domain, the Extension Theorem 3.1 i) 
ompletes the

proof.

If 
 � R

n

is a bounded (";1)-domain 
hoose a bounded open neighborhood U of 
 and

a 
ut-o� fun
tion  2 C

1

0

(U) with  � 1 on 
. Then it follows from Theorem 3.1 ii) that

there is an extension operator E from W

k;q

1

!

1

(
) \W

k;q

2

!

2

(
) to W

k;q

1

!

1

(U) \W

k;q

2

!

2

(U) su
h

that

k Euk

W

k;q

i

!

i

(R

n

)

� C kuk

W

k;q

i

!

i

(
)

; i = 1; 2:

Thus we have redu
ed the problem to the 
ase 
 = R

n

dis
ussed above. 2

3.3 Tra
es

We identify �R

n

+

with R

n�1

and de�ne the spa
es

L

1

lo


(R

n

+

) = fu : R

n

+

! C :

Z

R

n

+

\B

r

(0)

jujdx <1; 8r > 0g

W

1;1

lo


(R

n

+

) =

�

u 2 L

1

lo


(R

n

+

) : ru 2 L

1

lo


(R

n

+

)

n

	

:

For every r > 0 and u 2 W

1;1

lo


(R

n

+

) the tra
e of u

�

�

R

n

+

\B

r

(0)

2 W

1;1

(R

n

+

\ B

r

(0)) on

R

n�1

\ B

r

(0) is well de�ned. Hen
e there is a linear tra
e operator 
 : W

1;1

lo


(R

n

+

) !

L

1

lo


(R

n�1

):

Let 1 < q <1; ! 2 A

q

and k � 1. For u 2




W

k;q

!

(R

n

+

) we have r

k

u 2 L

q

!

(R

n

+

) � L

1

lo


(R

n

+

)

and it follows from the Poin
ar�e inequality that u 2W

k;1

lo


(R

n

+

): In parti
ular,




W

k;p

!

(R

n

+

) �

W

1;1

lo


(R

n

+

) and W

k;q

!

(R

n

+

) �W

1;1

lo


(R

n

+

) admitting the following de�nition:

De�nition 3.2 With the tra
e operator 
 : W

1;1

lo


(R

n

+

)! L

1

lo


(R

n�1

) let for j � 1

T

j;q

!

(R

n�1

) := 
(W

j;q

!

(R

n

+

));

b

T

j;q

!

(R

n�1

) := 
(




W

j;q

!

(R

n

+

))

and denote the kernels of the tra
e operator 
 in W

j;q

!

(R

n

+

) and in




W

j;q

!

(R

n

+

) by

W

j;q

0;!

(R

n

+

) := fu 2W

j;q

!

(R

n

+

) : 
(u) = 0g;




W

j;q

0;!

(R

n

+

) := fu 2




W

j;q

!

(R

n

+

) : 
(u) = 0g:

For � 2 T

j;q

!

(R

n�1

) and  2

b

T

j;q

!

(R

n�1

) we de�ne

k�k

T

j;q

!

= inffkuk

j;q;!;R

n

+

: u 2W

j;q

!

(R

n

+

); 
(u) = �g

j j

b

T

j;q

!

= inffkr

j

uk

q;!;R

n

+

: u 2




W

j;q

!

(R

n

+

); 
(u) =  g:
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Example: Weights of the form !

�

(x) = dist (x; �R

n

+

)

�

are in A

q

for �1 < � < q� 1. For

these weights it is well known ([15℄ or [1℄ p. 184 �) that T

1;q

!

�

(R

n�1

) =W

1�

1+�

q

;q

(R

n�1

):

It follows from the de�nition above that the tra
e operators


 :W

j;q

!

(R

n

+

)! T

j;q

!

(R

n�1

) and 
 :




W

j;q

!

(R

n

+

)!

b

T

j;q

!

(R

n�1

)

are linear and bounded, where for simpli
ity we denote the restri
tions of the tra
e operator


 to W

j;q

!

(R

n

+

) and




W

j;q

!

(R

n

+

) again by 
.

Lemma 3.3 Let 1 < q <1; ! 2 A

q

and u 2




W

1; q

0;!

(R

n

+

). Then the extension ~u of u to R

n

by 0 is in




W

1;q

!

(R

n

): The assertion remains true when repla
ing




W

1; q

0;!

(R

n

+

) by W

1;q

0;!

(R

n

+

)

and




W

1;q

!

(R

n

) by W

1;q

!

(R

n

).

Proof: Let u 2




W

1; q

0;!

(R

n

+

). First we show that ~u has weak derivatives �

i

~u 2 L

1

lo


(R

n

) for

i = 1; : : : ; n. We denote the extension of �

i

u by 0 to R

n

by v

i

and 
laim that v

i

= �

i

~u

on R

n

: For the proof 
hoose � 2 C

1

0

(R

n

) with support in B

R

(0), say, and a 
ut-o�

fun
tion �

R

2 C

1

0

(B

2R

(0)) with �

R

= 1 on B

R

(0). Sin
e u 2




W

1;q

!

(R

n

+

) � W

1;1

lo


(R

n

+

)

and 
(u) = 0, it follows u �

R

2 W

1;1

0

(B

2R

(0) \ R

n

+

). Therefore there exists a sequen
e

(u

k

) 2 C

1

0

(B

2R

(0) \ R

n

+

) with u

k

! u�

R

in W

1;1

(B

2R

(0) \ R

n

+

). In parti
ular, u

k

! u in

W

1;1

(B

R

(0) \ R

n

+

): Thus

Z

R

n

~u�

i

� =

Z

B

R

(0)\R

n

+

u�

i

� = lim

k

Z

B

R

(0)\R

n

+

u

k

�

i

�

= � lim

k

Z

B

R

(0)\R

n

+

�

i

u

k

� = �

Z

B

R

(0)\R

n

+

�

i

u� = �

Z

R

n

v

i

�

proving �

i

~u = v

i

2 L

1

lo


(R

n

). Sin
e k�

i

~uk

q;!;R

n

= kv

i

k

q;!;R

n

= k�

i

uk

q;!;R

n

+

< 1, we get

~u 2




W

1;q

!

(R

n

). The proof for u 2W

1;q

0;!

(R

n

+

) is analogous. 2

Lemma 3.4 For i = 1; : : : ; n� 1

j�

i

�j

b

T

1;q

!

� j�j

b

T

2;q

!

and k�

i

�k

T

1;q

!

� k�k

T

2;q

!

:

Proof: By de�nition for every � 2

b

T

2;q

!

(R

n�1

) and every 
 > 1 there is a u 2




W

2;q

!

(R

n

+

),

su
h that 
(u) = � and juj




W

2;q

!

� 
 j�j

b

T

2;q

!

: We 
laim that 
(�

i

u) = �

i


(u) = �

i

� for

i = 1; : : : ; n� 1: For the proof let R > 0 and 
hoose  

R

2 C

1

0

(R

n

) su
h that  

R

(x) = 1

for jxj � R. Note that u 2 W

2;1

lo


(R

n

+

) and therefore  

R

u 2 W

2;1

(R

n

+

). Then it is well

known that 
(�

i

 

R

u) = �

i


( 

R

u) for i = 1; : : : ; n � 1: Sin
e R > 0 was arbitrary,


(�

i

u) = �

i


(u) = �

i

� and therefore

j�

i

�j

b

T

1;q

!

� j�

i

uj




W

1;q

!

� juj




W

2;q

!

� 
j�j

b

T

2;q

!

:

Sin
e 
 > 1 was arbitrary the �rst part is proved. The proof of the se
ond part is

analoguous. 2

Theorem 3.2 For u 2W

1;q

!

(R

n

+

); v 2W

1;q

0

!

0

(R

n

+

) and i = 1; : : : ; n

(u; �

i

v) = �(�

i

u; v) + Æ

in

Z

R

n�1


(u)
(v):

Proof: Approximate u and v by fun
tions from C

1

0

(R

n

+

) and obtain uv 2 W

1;1

(R

n

+

)

yielding �

i

(uv) = u�

i

v + v�

i

u and 
(uv) = 
(u)
(v): So the 
laim is redu
ed to the well

known result that

R

R

n

+

�

i

w = Æ

in

R

R

n�1


(w) for w 2W

1;1

(R

n

+

) (see e. g. [2℄). 2
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4 The Lapla
e equation

4.1 The Lapla
e equation in R

n

Consider the weak Lapla
e operator

�

q;!

:




W

1;q

!

(R

n

)!




W

�1;q

!

(R

n

)

(�

q;!

u)(') := �(ru;r')

for all u 2




W

1;q

!

(R

n

) and all ' 2




W

1;q

0

!

0

(R

n

).

Theorem 4.1 Let 1 < q <1 and ! 2 A

q

.

(I) Then �

q;!

is an isomorphism satisfying the estimate

kruk

q;!

� C k�

q;!

uk




W

�1;q

!

8u 2




W

1;q

!

(R

n

);

where C depends only on n; q and A

q

-
onsistently in
reasing on !.

(II) For 1 < q

i

< 1 and !

i

2 A

q

i

; i = 1; 2; the restri
tion of �

q

1

;!

1

to




W

1;q

1

!

1

(R

n

) \




W

1;q

2

!

2

(R

n

) is an isomorphism from




W

1;q

1

!

1

(R

n

)\




W

1;q

2

!

2

(R

n

) to




W

�1;q

1

!

1

(R

n

)\




W

�1;q

2

!

2

(R

n

):

(III) If u 2 L

q

1

!

1

(R

n

) + L

q

2

!

2

(R

n

) is harmoni
, then u = 0.

Proof: See [9℄ Theorem 4.2 and Lemma 4.1. The A

q

-
onsisten
y of the 
onstant in

(I) follows from the A

q

-
onsisten
y of the 
onstant in the weighted multiplier theorem

(Theorem 2.1). 2

Corollary 4.1 Let 1 < q <1; ! 2 A

q

and let 
 � R

n

be an (";1)-domain.

(i) C

1

0

(
) is dense in




W

1;q

!

(
) and in




W

2;q

!

(
):

(ii) If additionally 
 is unbounded and 1 < q

i

< 1; !

i

2 A

q

i

; i = 1; 2; then C

1

0

(
) is

dense in




W

1;q

1

!

1

(
) \




W

1;q

2

!

2

(
):

Proof: For simpli
ity we identify a fun
tion g with its equivalen
e 
lass [g℄ in




W

1;q

!

(
) and




W

2;q

!

(
); repse
tively. By the Extension Theorem 3.1 it is suÆ
ient to prove the 
orollory

for 
 = R

n

.

(i) The assertion for




W

1;q

!

(R

n

) is a spe
ial 
ase of (ii). Let u 2




W

2;q

!

(
): By Lemma 4.1

iii) in [9℄ there is a sequen
e ('

k

) � C

1

0

(R

n

) su
h that �'

k

! �u in L

q

!

(R

n

). The

Multiplier Theorem 2.1 implies that (r

2

'

k

) is a Cau
hy sequen
e in L

q

!

(R

n

)

N

; N = n

2

.

Sin
e




W

2;q

!

(R

n

) is a Bana
h spa
e there is an v 2




W

2;q

!

(R

n

) su
h that r

2

'

k

! r

2

v in

L

q

!

(R

n

)

N

. Thus �u = �v in R

n

. Hen
e r

2

(u � v) is harmoni
 in L

q

!

(R

n

)

N

: Lemma 4.1

ii) in [9℄ yields r

2

u = r

2

v, when
e r

2

'

k

!r

2

u in L

q

!

(R

n

)

N

.

(ii) Let F = F

1

+ F

2

2




W

�1;q

0

1

!

0

1

(R

n

) +




W

�1;q

0

2

!

0

2

(R

n

) = (




W

1;q

1

!

1

(R

n

) \




W

1;q

2

!

2

(R

n

))

0

su
h that

F (') = 0 for all ' 2 C

1

0

(R

n

). Then by Theorem 4.1 for F

i

2




W

�1;q

0

i

!

0

i

(R

n

) there are

u

i

2




W

k;q

0

i

!

0

i

(R

n

); i = 1; 2; with

F (') = (�

q

0

1

;!

0

1

)u

1

(') + (�

q

0

2

;!

0

2

)u

2

(')
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for all ' 2




W

1;q

1

!

1

(R

n

) \




W

1;q

2

!

2

(R

n

): Choosing ' 2 C

1

0

(R

n

) Weyl's Lemma yields �(u

1

+

u

2

) = 0 on R

n

. Then also �r(u

1

+ u

2

) = 0 on R

n

and we 
an apply Theorem 4.1 (III) to


on
lude r(u

1

+ u

2

) = 0. Hen
e F = 0: The Theorem of Hahn-Bana
h yields the desired

assertion. 2

Smooth fun
tions with 
ompa
t support are dense in the tra
e spa
es:

Corollary 4.2 C

1

0

(R

n�1

) is dense in

b

T

1;q

!

(R

n�1

);

b

T

2;q

!

(R

n�1

) and in T

k;q

!

(R

n�1

); k � 1.

Proof: The assertion follows from the density of C

1

0

(R

n

+

) in




W

1;q

!

(R

n

+

); in




W

2;q

!

(R

n

+

) and

in W

k;q

!

(R

n

+

) (see Lemma 3.2, Corollary 4.1) and the fa
t that 
(C

1

0

(R

n

+

)) � C

1

0

(R

n�1

).

2

For 0 < " <

�

2

let �

"

:= f� 2 C n f0g : jarg �j < �� "g: Then for � 2 �

"

we 
onsider the

operator

(���)

q;!

:W

1;p

!

(R

n

)!W

�1;p

!

(R

n

) := (W

1;p

0

!

0

(R

n

))

0

< (���)

q;!

u; ' >:= �(u; ') + (ru;r'):

Theorem 4.2 Let 1 < q <1; ! 2 A

q

; 0 < " <

�

2

and � 2 �

"

.

(I) (���)

q;!

is an isomorphism. It holds the estimate

minfj�j;

p

j�jg kuk

q;!

+minf

p

j�j; 1g kruk

q;!

� C k(���)

q;!

uk

W

�1;q

!

(R

n

)

;

where C depends only on q; n; " > 0 and A

q

-
onsistently in
reasing on !.

(II) If u 2 S

0

satis�es (���)u = 0; then u = 0.

(III) For 1 < q

i

<1 and !

i

2 A

q

i

; i = 1; 2; the restri
tion of (���)

q

1

;!

1

to W

1;q

1

!

1

(R

n

)\

W

1;q

2

!

2

(R

n

) is an isomorphism from W

1;q

1

!

1

(R

n

) \W

1;q

2

!

2

(R

n

) to W

�1;q

1

!

1

(R

n

) \W

�1;q

2

!

2

(R

n

):

Proof: For f 2 S we de�ne by Fourier transformation bu(�) := (� + j�j

2

)

�1

b

f(�): Then

u 2 S and (���)u = 0 on R

n

. The weighted Multiplier Theorem 2.1 yields the estimate

j�j kuk

q;!

+ kr

2

uk

q;!

� C kfk

p;!

;

where C depends only on q; n; " > 0 and A

q

-
onsistently in
reasing on !. To estimate ru

we use the weighted Ehrling Lemma ([9℄, S.264 Theorem 3.5)

p

j�jkruk

q;!

� C (j�jkuk

q;!

+ kr

2

uk

q;!

);

where C depends only on q; n; " and A

q

-
onsistently on !. Sin
e S is dense in L

q

!

(R

n

)

this proves that for every f 2 L

q

!

(R

n

) there is an u 2 W

2;q

!

(R

n

) su
h that (� ��)u = f

satisfying the respe
tive estimate.

To prove the assertion (I) of the Theorem note that for f 2W

�1;q

!

(R

n

) there are f

0

; f

1

; :::; f

n

2

L

q

!

(R

n

) su
h that f(�) = (f

0

; �)+

P

n

i=1

(f

i

; �

i

�) onW

1;q

0

!

0

(R

n

) and

P

n

i=0

kf

i

k

q;!

� C kfk

W

�1;q

!

Next we �nd u

i

2W

2;q

!

(R

n

) su
h that (���)u

i

= f

i

; i = 0; 1; : : : ; n: It follows that

f(�) = ((���)u

0

; �) +

n

X

i=1

((���)u

i

; �

i

�) 8� 2W

1;q

0

!

0

(R

n

):
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Then u := u

0

�

P

n

i=1

�

i

u

i

2 W

1;q

!

(R

n

) satis�es f(�) = �(u; �) + (ru;r�) for all � 2

C

1

0

(R

n

) and by Lemma 3.2 even for all � 2W

1;q

0

!

0

(R

n

): Moreover

kuk

q;!

� C

�

1

j�j

kf

0

k

q;!

+

1

p

j�j

n

X

i=1

kf

i

k

q;!

�

� C max

n

1

j�j

;

1

p

j�j

o

kfk

W

�1;q

!

:

Analogously we get the estimate for ru.

In parti
ular, (���)

q;!

is surje
tive for arbitrary q 2 (1;1) and ! 2 A

q

: The inje
tivity

follows from a well known duality argument: Sin
e q

0

2 (1;1) and !

0

2 A

q

0

, the operator

(� � �)

q

0

;!

0

is surje
tive. Furthermore (� � �)

q;!

= [(� � �)

q

0

;!

0

℄

�

. The 
losed range

theorem (see e. g. [21℄) yields the inje
tivity of (���)

q;!

.

(II) follows by appli
ation of the the Fourier transformation in S

0

.

To prove (III) we note that by (I) for every f 2 W

�1;q

1

!

1

(R

n

) \ W

�1;q

2

!

2

(R

n

) there are

solutions u

i

2W

1;q

i

!

i

(R

n

); i = 1; 2; of the equation

�(u; ') + (ru;r') = f(') 8' 2 S:

Hen
e v := u

1

� u

2

2 S

0

by Lemma 2.2 i) and satis�es (� � �)v = 0 in the sense of

tempered distributions. By (II) it follows v = 0 whi
h means u

1

= u

2

. 2

Corollary 4.3 For 1 < q < 1; ! 2 A

q

and every unbounded (";1)- domain it holds

W

2;q

!

(
) =




W

2;q

!

(
) \ L

q

!

(
):

Proof: Let 
 = R

n

and v 2




W

2;q

!

(R

n

) \ L

q

!

(R

n

): We have shown in the proof of the

previous Theorem that for f := (1 � �)v 2 L

q

!

(R

n

) there is a u 2 W

2;q

!

(R

n

) su
h that

(1��)u = f = (1��)v; i. e. (1��)(u� v) = 0. Sin
e u� v 2 L

q

!

(R

n

) � S

0

by Lemma

2.2 i), it follows v = u 2W

2;q

!

(R

n

): Thus the assertion is proved for 
 = R

n

. Theorem 3.1

i) 
ompletes the proof. 2

4.2 The weak solution of the Lapla
e equation in R

n

+

Lemma 4.1 Let 1 < q <1 and ! 2 A

q

. Then it holds:

(i) For all � 2

b

T

1;q

!

(R

n�1

) and all g 2




W

�1; q

0;!

(R

n

+

) := (




W

1; q

0

0;!

0

(R

n

+

))

0

there exists a u 2




W

1; q

!

(R

n

+

) su
h that

(ru;r') = g(') 8' 2




W

1; q

0

0;!

0

(R

n

+

) (7a)


(u) = � (7b)

and there is an A

q

-
onsistently in
reasing 
onstant C = C(n; q; !) 2 R su
h that

kruk

q;!

� C ( j�j

b

T

1;q

!

+ kgk




W

�1; q

0;!

(R

n

+

)

):

(ii) Let � 2 �

"

with j�j = 1. Then for all � 2 T

1;q

!

(R

n�1

) and all g 2 W

�1;q

0;!

(R

n

+

) :=

(W

1;q

0

0;!

0

(R

n

+

))

0

there exists a u 2W

1;q

!

(R

n

+

) su
h that

�(u; ') + (ru;r') = f(') 8' 2W

1;q

0

0;!

0

(R

n

+

)


(u) = �

There is an A

q

-
onsistently in
reasing 
onstant C = C(n; q; !; ") > 0 su
h that

minfj�j;

p

j�jg kuk

q;!

+minfj�j;

p

j�jg kruk

q;!

� C ( k�k

T

1;q

!

+ kgk

W

�1;q

0;!

(R

n

+

)

):
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Proof: (i) First, assume 
(u) = 0: By Lemma 2.1 we 
an assume ! = !

�

. Note that for

every ' 2




W

1;q

0

!

0

(R

n

) the fun
tion '

�

�

R

n

+

� �

�

�

�

R

n

+

2




W

1; q

0

0;!

0

(R

n

+

). Hen
e g 2




W

�1; q

0;!

(R

n

+

) 
an

be extended to f 2




W

�1;q

!

(R

n

) by f([�℄) := g('

�

�

R

n

+

� '

�

�

�

R

n

+

) for all ' 2




W

1;q

0

!

0

(R

n

): Sin
e

! = !

�

we have

kfk




W

�1;q

!

(R

n

)

� 2 kgk




W

�1; q

0;!

(R

n

+

)

:

By Theorem 4.1 there is a v 2




W

1;q

!

(R

n

) su
h that ��

q;!

[v℄ = f su
h that krvk

q;!

�

C kfk




W

�1;q

!

(R

n

)

where C = C(n; q; !) 2 R is A

q

-
onsistently in
reasing.

Be
ause of f(['℄) = �f(['

�

℄) also �v

�

2




W

1;q

!

(R

n

) satis�es ��

q;!

(�[v

�

℄) = f . The

uniqueness of the solution in




W

1;q

!

(R

n

) yields the existen
e of some 
onstant 
 su
h that

v = �v

�

+ 
. Sin
e 
(v) = 
(v

�

) we 
on
lude 
(v) = 
=2. Thus for u := v

�

�

R

n

+

� 
=2 2




W

1;q

!

(R

n

+

) it holds 
(u) = 0 as well as (7a), sin
e by Lemma 3.3 every � 2




W

1; q

0

0;!

0

(R

n

+

) 
an

be extended by 0 to ~' 2




W

1;q

0

!

0

(R

n

) su
h that

(ru;r')

R

n

+

= (rv;r ~')

R

n

= f( ~') = g(');

kruk

q;!;R

n

+

� krvk

q;!;R

n

� Ckfk




W

�1;q

!

(R

n

)

� 2C kgk




W

�1; q

0;!

(R

n

+

)

:

This proves the assertion with 
(u) = 0.

In the general 
ase 
(u) = � one 
an 
hoose U 2




W

1; q

!

(R

n

+

) su
h that 
(U) = � and

krUk

q;!

� 2 j�j

b

T

1;q

!

: Therefore this problem 
an be redu
ed to the 
ase with vanishing

tra
e dis
ussed above with the fun
tional f(�) := g � (rU;r�) 2




W

�1; q

0;!

(R

n

+

):

(ii) Analogous. 2

Lemma 4.2 Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; 2.

(i) If u 2




W

1;q

1

!

1

(R

n

+

) +




W

1;q

2

!

2

(R

n

+

) is harmoni
 on R

n

+

with 
(u) = 0, then u = 0.

(ii) If u 2




W

1;q

1

!

1

(R

n

+

) +




W

1;q

2

!

2

(R

n

+

) and (���)u = 0 for some � 2 C n R

�

, then u = 0.

Proof: (i) By Lemma 2.1 i) we 
an assume !

i

= !

�

i

; i = 1; 2. For ' 2 C

1

0

(R

n

) we set

 = (' � '

�

)

�

�

R

n

+

2 C

1

(R

n

+

). Then  j

�R

n

+

= 0 and the support of  is 
ontained in the


losure of the half ball B

+

R

:= R

n

+

\B

R

(0) for some R > 0.

The odd extension U of u to R

n

satis�es

(U;�')

R

n

= (u;� )

R

n

+

= �(ru;r )

B

+

R

:

Observe that u

�

�

B

+

R

2W

1;s

(B

+

R

) for some s > 1 by Lemma 2.2 ii) and that  2W

1;s

0

0

(B

+

R

):

Hen
e there is a sequen
e ('

k

) � C

1

0

(B

+

R

) su
h that '

k

!  in W

1;s

(B

+

R

). Thus

�(ru;r )

B

+

R

= � lim

k

(ru;r'

k

) = 0:

Sin
e ' 2 C

1

0

(R

n

) was arbitrary, it follows that U and therefore rU are harmoni
 in R

n

.

By Weyl's Lemma rU 2 C

1

(R

n

) � L

1

lo


(R

n

) and therefore rU 2 L

q

1

!

1

(R

n

)

n

+ L

q

2

!

2

(R

n

)

n

by assumption. Theorem 4.1 (III) yields rU = 0; when
e u is 
onstant. Sin
e 
(u) = 0 it

follows u = 0.

(ii) Analogous. 2
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Theorem 4.3 (I) Let 1 < q < 1 and ! 2 A

q

. Then for every � 2

b

T

1;q

!

(R

n�1

) and

every f 2




W

�1; q

0;!

(R

n

+

) there is a unique solution u 2




W

1;q

!

(R

n

+

) of

(ru;r') = f(') 8' 2 C

1

0

(R

n

+

) (8a)


(u) = � (8b)

and an A

q

-
onsistently in
reasing 
onstant C su
ht that

kruk

q;!

� C (j�j

b

T

1;q

!

+ kfk




W

�1; q

0;!

(R

n

+

)

):

In parti
ular there is a linear bounded extension operator

R :

b

T

1;q

!

(R

n�1

) �!




W

1;q

!

(R

n

+

)

with 
R = I, whi
h assigns to every � 2

b

T

1;q

!

(R

n�1

) the unique solution of (8) for

f � 0 in




W

1;q

!

(R

n

+

).

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2: Then for every � 2

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;p

q

!

2

(R

n�1

) and f 2




W

�1;q

1

0;!

1

(R

n

+

) \




W

�1;q

2

0;!

2

(R

n

+

) the unique solution u 2




W

1;q

1

!

1

(R

n

+

)

of (8) is also in




W

1;q

2

!

2

(R

n

+

):

Proof: (I) follows from Lemma 4.1 (i) and Lemma 4.2 (i).

(II) Assume w.l.o.g. !

i

= !

�

i

; i = 1; 2. First, let f = 0. For � 2

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

)

there are solutions u

i

2




W

1;q

i

!

i

(R

n

+

); i = 1; 2: Then v := u

1

� u

2

2




W

1;q

1

!

1

(R

n

+

) +




W

1;q

2

!

2

(R

n

+

):

By Weyl's Lemma v is harmoni
 in R

n

+

and 
(v) = 0: Lemma 4.2 yields v = 0 so u

1

= u

2

:

In the 
ase 0 6= f 2




W

�1;q

1

0;!

1

(R

n

+

) \




W

�1;q

2

0;!

2

(R

n

+

) extend f by F (v) := f(v

�

�

R

n

+

� v

�

�

�

R

n

+

) for

v 2




W

1;q

0

1

!

0

1

(R

n

) \




W

1;q

0

2

!

0

2

(R

n

) to a fun
tional F 2




W

�1;q

1

!

1

(R

n

) \




W

�1;q

2

!

2

(R

n

). By Theorem

4.1 ii) there is a solution W 2




W

1;q

1

!

1

(R

n

) \




W

1;q

2

!

2

(R

n

) of

(rW;rv) = F (v) 8v 2 C

1

0

(R

n

):

With u�W instead of u the problem is redu
ed to the 
ase f = 0 dis
ussed above. 2

Corollary 4.4 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2. Then C

1

0

(R

n�1

) is dense in

� 2

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

):

Proof: By part (II) of the pre
eding Theorem

R :

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

) �!




W

1;q

1

!

1

(R

n

+

) \




W

1;q

2

!

2

(R

n

+

):

Therefore


 :




W

1;q

1

!

1

(R

n

+

) \




W

1;q

2

!

2

(R

n

+

) �!

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

) (9)

is surje
tive and bounded. Corollary 4.1 
ompletes the proof. 2
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Theorem 4.4 (I) Let 1 < q < 1; ! 2 A

q

; 0 < " <

�

2

and � 2 �

"

with j�j = 1.

Then for every � 2 T

1;q

!

(R

n�1

) and every f 2W

�1;q

0;!

(R

n

+

) there is a unique solution

u 2W

1;q

!

(R

n

+

) of

�(u; ') + (ru;r') = f(') 8' 2 C

1

0

(R

n

+

) (10a)


(u) = �: (10b)

There is an A

q

-
onsistent in
reasing 
onstant C = C(n; q; "; !) su
h that

kuk

1;q;!;R

n

+

� C (k�k

T

1;q

!

+ kfk

W

�1;q

0;!

(R

n

+

)

):

In parti
ular there is a linear bounded extension operator

R

�

: T

1;q

!

(R

n�1

) �!W

1;q

!

(R

n

+

)

with 
R

�

= I, whi
h assigns to every � 2 T

1;q

!

(R

n�1

) the unique solution of (10) for

f � 0 in W

1;q

!

(R

n

+

).

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2 Then for every � 2 T

1;q

1

!

1

(R

n�1

) \

T

1;q

2

!

2

(R

n�1

) and f 2 W

�1;q

1

0;!

1

(R

n

+

) \W

�1;q

2

0;!

2

(R

n

+

) the unique solution u 2 W

1;q

1

!

1

(R

n

+

)

of (10) is also in W

1;q

2

!

2

(R

n

+

):

Proof: Analogous to the proof of Theorem 4.3. 2

Corollary 4.5 Let 1 < q < 1 and ! 2 A

q

. There is an A

q

-
onsistent 
onstant C > 0

su
h that for all " > 0 and all u 2W

2;q

!

(R

n

+

) with 
(u) = 0

kruk

q;!

� C (

1

"

kuk

q;!

+ " kr

2

uk

q;!

):

Proof: By Theorem 4.4

kruk

q;!

� C k(1��)uk

W

�1;q

0;!

� C k(1��)uk

q;!

� C ( kuk

q;!

+ kr

2

uk

q;!

):

This is the 
laim for " = 1. Note that the A

q

-
onstant is s
aling invariant and the 
onstant

C > 0 in the estimate above is A

q

-
onsistent. Therefore the 
laim 
an be obtained for

arbitrary " > 0 by a s
aling argument. 2

Corollary 4.6 Let 1 < q <1 and ! 2 A

q

. Then C

1

0

(R

n

+

) is dense in both

(




W

1; q

0;!

(R

n

+

); kr � k

q;!

) and (W

1;q

0;!

(R

n

+

); k � k

1;q;!

).

Proof: Let F 2




W

�1;q

0

0;!

0

(R

n

+

) su
h that F (') = 0 for all ' 2 C

1

0

(R

n

+

): Then by Lemma

4.1 there is a u 2




W

1; q

0

0;!

0

(R

n

+

) solving (ru;r�) = F (�) for all � 2




W

1; q

0;!

(R

n

+

): It follows

(ru;r') = F (') = 0 for all ' 2 C

1

0

(R

n

+

). Lemma 4.2 yields ru = 0 and F (�) =

(ru;r�) = 0 for all � 2




W

1; q

0;!

(R

n

+

); i.e. F = 0. Hahn-Bana
h's theorem implies the

density of C

1

0

(R

n

+

) in




W

1; q

0;!

(R

n

+

):

The proof of the se
ond assertion is analogous. 2
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Corollary 4.7 Let r; q 2 (1;1); ! 2 A

q

; v 2 A

r

. Then C

1

0

(R

n�1

) is dense in T

2;q

!

\T

2;r

v

.

Proof: Let � 2 T

2;q

!

\ T

2;r

!

. Then Theorem 4.4 (II) and Lemma 3.4 imply �

i

R

1

� =

R

1

�

i

� 2W

1;q

!

(R

n

+

)\W

1;r

v

(R

n

+

) for i = 1; : : : ; n�1: Sin
e also �

2

n

R

1

� = R

1

��

P

i

�

2

i

R

1

� 2

L

q

!

(R

n

+

) \ L

r

v

(R

n

+

) we get R

1

� 2W

2;q

!

(R

n

+

) \W

2;r

v

(R

n

+

): Thus the proof 
an be 
ompleted

as the proof of Corollary 4.4. 2

Next we identify the Poisson operators R and R

�

. Let

P

t

(x) := 


n

t

(t

2

+ jxj

2

)

n

2

for x 2 R

n�1

and t > 0. Here 


n

is 
hosen su
h that after Fourier transformation F with

respe
t to x we get

b

P

t

(�) = e

�tj�j

: We will show that for � 2 S(R

n�1

)




R�(�; t) = e

�tj�j

b

�(�) and

d

R

�

�(�; t) = e

�

p

�+j�j

2

t

b

�(�):

Theorem 4.5 Let 1 < q <1 and ! 2 A

q

. (I) For � 2 S(R

n�1

) holds

kr(P

t

� �)k

q;!

� C j�j

b

T

1;q

!

(11)

kr

2

(P

t

� �)k

q;!

� C j�j

b

T

2;q

!

(12)

where C depends only on n; q and A

q

-
onsistently in
reasing on !.

The Poisson operator R of Theorem 4.3 is the unique extension of the operator (T�)(x; t) =

(P

t

� �)(x); � 2 S; to a bounded linear operator on

b

T

1;q

!

with the property 
R = I.

(II) Let � 2 �

"

; 0 < " <

�

2

, j�j = 1; � 2 S and u(x; x

n

) := F

�1

e

�

p

�+j�j

2

t

b

� for x 2 R

n�1

and t > 0: Then there is an A

q

-
onsistently in
reasing 
onstant C = C(n; q; "; !) > 0 su
h

that

kuk

W

1;q

!

(R

n

+

)

� C k�k

T

1;q

!

;

kuk

W

2;q

!

(R

n

+

)

� C k�k

T

2;q

!

:

The Poisson operator R

�

of Theorem 4.4 is the unique extension of the operator (T

�

�)(x; t) :=

F

�1

e

�

p

�+j�j

2

t

b

�; � 2 S; to a bounded linear operator on T

1;q

!

(R

n�1

) with the property


R

�

= I.

Proof: (I) By Corollary 4.2 we have S(R

n�1

) �

b

T

1;q

!

(R

n�1

) \

b

T

1;q

(R

n�1

) for every

1 < q < 1. It is well known, see e. g. [16℄ S.132 Theorem 4.4. and [3℄ Appendix 3,

that u(x; t) := (P

t

� �)(x) 2




W

1;q

(R

n

+

) is harmoni
 on R

n

+

with 
(u) = �: From Theorem

4.3 (II) it follows u 2




W

1;q

!

(R

n

+

) and by the uniqueness assertion of part (I) of the same

Theorem u = R� satisfying the estimate

kr(P

t

� �)k

q;!

= kruk

q;!

� C j�j

b

T

1;q

!

:

Hen
e for i = 1; : : : ; n� 1

k�

i

r(P

t

� �)k

q;!

= kr(P

t

� �

i

�)k

q;!

� C j�

i

�j

b

T

1;q

!

� C j�j

b

T

2;q

!

:

Be
ause of �(P

t

� �) = 0 we also get that k�

2

t

(P

t

� �)k

p;!

� C j�j

b

T

2;q

!

: Thus (12) is also

proved.

Sin
e by Corollary 4.2 S(R

n�1

) is dense in

b

T

1;q

!

(R

n�1

) the last assertion of the Theorem

is 
lear.

(II) Analogous to (I), if we observe that F

�1

e

�

p

�+j�j

2

t

b

� 2 W

1;q

(R

n

+

); 1 < q < 1; for

� 2 S (see e. g. [8℄ for a detailed proof). 2
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5 The Stokes problem

5.1 Weak solution of the Stokes equation in R

n

The 
onsiderations in [6℄ transfer to the weighted 
ase:

Let 1 < q < 1 and ! 2 A

q

. For f 2




W

�1; q

!

(R

n

)

n

and g 2 L

q

!

(R

n

) we look for a weak

solution (u; p) 2




W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes equation

(ru;r') � (p;div') = f(') 8' 2 C

1

0

(R

n

)

n

(13a)

divu = g: (13b)

Therefore we show the following variational inequality:

Lemma 5.1 Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; 2. Let (u; p) 2




W

1; q

1

!

1

(R

n

)

n

�L

q

1

!

1

(R

n

)

with

sup

06='2C

1

0

(R

n

)

n

j(ru;r')� (p;div')j

kr'k

q

0

2

;!

0

2

+ kdiv uk

q

2

;!

2

<1:

Then (u; p) 2




W

1; q

2

!

2

(R

n

)

n

� L

q

2

!

2

(R

n

) and

kruk

q

2

;!

2

+ kpk

q

2

;!

2

� C

 

sup

06='2C

1

0

(R

n

)

n

j(ru;r') � (p;div')j

kr'k

q

0

2

;!

0

2

+ kdivuk

q

2

;!

2

!

; (14)

where C > 0 depends only on n; q

2

and A

q

2

-
onsistently in
reasing on !

2

.

Proof: Note that �C

1

0

(R

n

) is dense in L

q

2

!

2

(R

n

) (see [9℄ Lemma 4.1) and that kr

2

 k

q

0

2

;!

0

2

�

C k� k

q

0

2

;!

0

2

for  2 C

1

0

(R

n

); where C > 0 depends only on n; q

2

and A

q

2

-
onsistently in-


reasing on !

2

(a 
onsequen
e of the Multiplier Theorem 2.1). Thus the proof is 
ompletely

analogous to the proof in the 
ase without weights (see [6℄, Lemma 3.1). 2

First, apply Lemma 5.1 to the 
ase q := q

1

= q

2

and ! := !

1

= !

2

. Consider the linear

bounded operator

S

q;!

:




W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) �!




W

�1; q

!

(R

n

)

n

� L

q

!

(R

n

)

S

q;!

(u; p) := ((ru;r�) � (p;div �);�div u):

Be
ause of




W

1;q

0

!

0

(R

n

) = C

1

0

(R

n

)

kr�k

q

0

;!

0

and the variational inequality (14) we 
an 
on-


lude that S

q;!

is inje
tive and has 
losed range. By the 
losed range theorem (see e.g.

[21℄) the dual aperator

(S

q;!

)

0

: [




W

�1; q

!

(R

n

)

n

� L

q

!

(R

n

)℄

0

! [




W

1; q

!

(R

n

)

n

� L

q

!

(R

n

)℄

0

is surje
tive. One easily veri�es (S

q;!

)

0

= S

q

0

;!

0

. Be
ause 1 < q < 1 and ! 2 A

q

are

arbitrary in this 
onsideration, it follows that S

q;!

is an isomorphism.

So we have shown the following Theorem:

Theorem 5.1 For all (f; g) 2




W

�1; q

!

(R

n

)

n

�L

q

!

(R

n

) exists a unique weak solution (u; p) 2




W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes system (13). Furthermore

kruk

q;!

+ kpk

q;!

� C (kfk




W

�1; q

!

+ kgk

q;!

);

where C 2 R depends only on q; n and A

q

-
onsistently in
reasing on !.
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A further appli
ation in Lemma 5.1 yields the following regularity assertion:

Corollary 5.1 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2; f 2




W

�1;q

1

!

1

(R

n

)

n

\




W

�1;q

2

!

2

(R

n

)

n

and g 2 L

q

1

!

1

(R

n

)�L

q

2

!

2

(R

n

): Then the unique weak solution (u; p) 2




W

1;q

1

!

1

(R

n

)

n

�L

q

1

!

1

(R

n

)

of the Stokes equation (13a), (13b) belongs also to




W

1;q

2

!

2

(R

n

)

n

� L

q

2

!

2

(R

n

).

5.2 The Stokes equation in R

n

+

Let � 2 C

1

0

(R

n�1

)

n

. Consider the Stokes equations

��W +rS = 0; divW = 0 in R

n

+

; W

�

�

R

n�1

= �:

In [10℄ S.192 �. one 
an �nd the following expli
it solution, whi
h 
ontinuously attains

the boundary values:

W

j

(x) :=

n

X

i=1

Z

R

n�1

K

ij

(x

0

� y

0

; x

n

)�

i

(y

0

) dy

0

(15)

S(x) := �div(P

x

n

� �) (16)

for j = 1; : : : ; n with

K

ij

(x

0

� y

0

; x

n

) := C

n

x

n

(x

i

� y

i

)(x

j

� y

j

)

(jx

0

� y

0

j

2

+ x

2

n

)

n+2

2

; y

n

= 0

P

x

n

(x

0

) = 


n

x

n

(jx

0

j

2

+ x

2

n

)

n

2

;

where 


n

; C

n

depend only on n. Theorem 4.5 immediately yields the weighted estimates

for the pressure:

kSk

q;!

= kdiv(P

x

n

� �)k

q;!

� kr(P

x

n

� �)k

q;!

� C j�j

b

T

1;q

!

;

krSk

q;!

� kr

2

(P

x

n

� �)k

q;!

� C j�j

b

T

2;q

!

;

where C is A

q

-
onsistently in
reasing.

To obtain the weighted estimates for the velo
ity �eld W we use a well known regularity

assertion (see e. g. [10℄, Lemma 3.1 S. 196):

Lemma 5.2 For every 1 < q <1 and every j�j � 0 it holds

D

�

rW 2 L

q

(R

n

+

)

n

2

and D

�

S 2 L

q

(R

n

+

):

Therefore W 2




W

1;q

(R

n

+

)

n

and it solves the Lapla
e equation

�W = rS in R

n

+

; 
(W ) = �

in the distributional sense for datarS 2




W

�1;q

0

(R

n

+

)

n

\




W

�1; q

0;!

(R

n

+

)

n

und � 2 C

1

0

(R

n�1

)

n

�

b

T

1;q

(R

n�1

)

n

\

b

T

1;q

!

(R

n�1

)

n

. Thus Theorem 4.3 (II) yields W 2




W

1; q

!

(R

n

+

): Theorem 4.3

and the weighted estimates for S imply

krWk

q;!

� C (j�j

T

1;q

!

+ krSk




W

�1; q

0;!

) � Cj�j

T

1;q

!

;

where C depends only on n; q and A

q

-
onsistently in
reasing on !.

Sin
e C

1

0

(R

n�1

) is dense in

b

T

1;q

!

(R

n

+

) by Corollary 4.4, we have shown:
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Lemma 5.3 Let 1 < q < 1 and ! 2 A

q

. For � 2

b

T

1;q

!

(R

n

+

)

n

there is a weak solution

(W;S) 2




W

1; q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) of the Stokes equation

(rW;r') � (S;div') = 0 8' 2 C

1

0

(R

n

+

)

n

divW = 0


(W ) = �:

Furthermore there is an A

q

-
onsistently in
reasing 
onstant C > 0 su
h that

krWk

q;!

+ kSk

q;!

� C j�j

b

T

1;q

!

:

Theorem 5.2 (I) Let 1 < q < 1 und ! 2 A

q

: Then for every f 2




W

�1; q

0;!

(R

n

+

)

n

; g 2

L

q

!

(R

n

+

) and � 2

b

T

1;q

!

(R

n

+

) there is a unique weak solution (W;S) 2




W

1; q

!

(R

n

+

)

n

�

L

q

!

(R

n

+

) of the Stokes system

(rW;r') � (S;div') = f(') 8' 2 C

1

0

(R

n

+

)

n

(17a)

divW = g (17b)


(W ) = �: (17
)

Furthermore there is an A

q

-
onsistently in
reasing 
onstant C > 0 su
h that

krWk

q;!

+ kSk

q;!

� C (kfk




W

�1; q

0;!

+ kgk

q;!

+ j�j

b

T

1;q

!

):

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2; f 2




W

�1;q

1

0;!

1

(R

n

+

)

n

\




W

�1;q

2

0;!

2

(R

n

+

)

n

; g 2

L

q

1

!

1

(R

n

+

) \ L

q

2

!

2

(R

n

+

) and � 2

b

T

1;q

1

!

1

(R

n�1

)

n

\

b

T

1;q

2

!

2

(R

n�1

)

n

. Then the unique weak

solution (u; p) 2




W

1;q

1

!

1

(R

n

+

)

n

� L

q

1

!

1

(R

n

+

) of the Stokes system (17) belongs also to




W

1;q

2

!

2

(R

n

+

)

n

� L

q

2

!

2

(R

n

+

).

Proof: (I) Extend f 2




W

�1; q

0;!

(R

n

+

)

n

by Hahn-Bana
h's theorem under preservation of

the norm to

�

f 2




W

�1; q

!

(R

n

+

)

n

. Then de�ne

~

f by

~

f(') :=

�

f('

�

�

R

n

+

) for all ' 2




W

1;q

0

!

0

(R

n

)

n

.

Thus

~

f 2




W

�1; q

!

(R

n

)

n

with

k

~

fk




W

�1; q

!

(R

n

)

� k

�

fk




W

�1; q

!

(R

n

+

)

= kfk




W

�1; q

0;!

(R

n

+

)

:

Furthermore extend g by 0 to ~g 2 L

q

!

(R

n

). By Theorem 5.1 there is a weak solution

(W;S) 2




W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes equations (13) on R

n

with right-hand side

(

~

f; ~g). Moreover, by Lemma 5.3 there is a solution (v; s) 2




W

1; q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) of (17)


oresponding to f = 0; g = 0 and 
(v) = ��
(W ). Then u := v+W

�

�

R

n

+

and p := s+S

�

�

R

n

+

satisfy (17).

To prove uniqueness we 
onsider the linear bounded operator

S

q;!

:




W

1; q

0;!

(R

n

+

)

n

� L

q

!

(R

n

+

) �!




W

�1; q

0;!

(R

n

+

)

n

� L

q

!

(R

n

+

)

S

q;!

(u; p) := ((ru;r�)� (p;div �);�div u):

The pre
eding 
onsiderations (with � = 0) imply that S

q;!

is surje
tive. One easily veri�es

(S

q;!

)

0

= S

q

0

;!

0

. Therefore S

q

0

;!

0

is inje
tive. Sin
e 1 < q <1 and ! 2 A

q

were arbitrary

it follows that S

q;!

is an isomorphism. 2
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(II) Similar to (I), the problem 
an be redu
ed to the 
ase f � 0 und g � 0.

By Corollary 4.4 there is a sequen
e (�

k

) � C

1

0

(R

n�1

)

n

; su
h that �

k

! � in

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

): The expli
it solution (W

k

; S

k

) (see (15)) 
oresponding to �

k

is 
ontained both

in




W

1;q

1

!

1

(R

n

+

)

n

�L

q

1

!

1

(R

n

+

) and in




W

1;q

2

!

2

(R

n

+

)

n

�L

q

2

!

2

(R

n

+

): The estimates in Lemma 5.3 imply

the existen
e of (u

1

; p

1

) 2




W

1;q

1

!

1

(R

n

+

)

n

� L

q

1

!

1

(R

n

+

) and (u

2

; p

2

) 2




W

1;q

2

!

2

(R

n

+

)

n

� L

q

2

!

2

(R

n

+

)

su
h that

rW

k

!ru

i

in L

q

i

!

i

(R

n

+

)

n

2

and S

k

! p

i

in L

q

i

!

i

(R

n

+

)

for i = 1; 2. Sin
e the 
onvergen
e in L

q

i

!

i

(R

n

+

) implies 
onvergen
e in D

0

(R

n

+

) and sin
e

the limit in D

0

(R

n

+

) is unique it follows ru

1

= ru

2

and p

1

= p

2

. Therefore (u

1

; p

1

) 2




W

1;q

1

!

1

(R

n

+

)

n

�L

q

1

!

1

(R

n

+

) is also in




W

1;q

2

!

2

(R

n

+

)

n

�L

q

2

!

2

(R

n

+

) and a weak solution of the Stokes

equation for f � 0; g � 0 and boundary values �. 2

Now we investigate strong solutions of the Stokes equation in R

n

+

.

Lemma 5.4 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2; f 2 L

q

1

!

1

(R

n

+

)

n

\ L

q

2

!

2

(R

n

+

)

n

; g 2




W

1;q

1

!

1

(R

n

+

) \




W

1;q

2

!

2

(R

n

+

); � 2

b

T

2;q

1

!

1

(R

n�1

) \

b

T

2;q

2

!

2

(R

n�1

) and let (u; p) 2




W

2;q

1

!

1

(R

n

+

)

n

�




W

1;q

1

!

1

(R

n

+

) be a solution of the Stokes problem

��u+rp = f (18a)

div u = g (18b)


(u) = �: (18
)

Then (u; p) 2




W

2;q

2

!

2

(R

n

+

)

n

�




W

1;q

2

!

2

(R

n

+

):

Proof: For i = 1; : : : ; n�1 the partial derivatives �

i

� 2

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

); �

i

f 2




W

�1;q

1

0;!

1

(R

n

+

)

n

\




W

�1;q

2

0;!

2

(R

n

+

)

n

; �

i

g 2 L

q

1

!

1

(R

n

+

) \ L

q

2

!

2

(R

n

+

) and (�

i

u; �

i

p) 2




W

1;q

1

!

1

(R

n

+

)

n

�

L

q

1

!

1

(R

n

+

) satisfy

(r�

i

u;r') + (�

i

p;div') = �

i

f(') 8' 2 C

1

0

(R

n

+

)

n

div �

i

u = �

i

g


(�

i

u) = �

i

�:

Theorem 5.2 (II) yields �

i

u 2




W

1;q

2

!

2

(R

n

+

) and �

i

p 2 L

q

2

!

2

(R

n

+

) for i = 1; : : : n� 1. Therefore

�

n

u

n

= g �

n�1

X

i=1

�

i

u

i

2




W

1;q

2

!

2

(R

n

+

); �

2

n

u

j

= f

j

�

n�1

X

i=1

�

2

i

u

j

� �

j

p 2 L

q

2

!

2

(R

n

+

) (19)

for j = 1; : : : ; n� 1: Thus �

n

u 2




W

1;q

2

!

2

(R

n

+

). Altogether we have shown u 2




W

2;q

2

!

2

(R

n

+

)

n

.

Using the Stokes equation we obtain rp 2 L

q

2

!

2

(R

n

+

)

n

. 2

Theorem 5.3 For every f 2 L

q

!

(R

n

+

)

n

; g 2




W

1; q

!

(R

n

+

) and � 2

b

T

2;q

!

(R

n�1

) there is a

solution (u; p) 2




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

) of the Stokes problem (18). For all these solutions

it holds the estimate

kr

2

uk

q;!

+ krpk

q;!

� C(kfk

q;!

+ krgk

q;!

+ j�j

b

T

2;q

!

); (20)

where C depends only on n; q and A

q

-
onsistently in
reasing on !.

If (u; p) 2




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

) is a solution of the of the Stokes problem for (f; g; �) �

(0; 0; 0), then there is a ve
tor a = (a

1

; : : : ; a

n�1

; 0) 2 C

n

and a 
onstant 
 2 C su
h that

u(x

0

; x

n

) = ax

n

and p(x

0

; x

n

) � 
.

20



Proof: First, assume f 2 L

q

!

(R

n

+

)

n

\ L

q

(R

n

+

); g 2




W

1; q

!

(R

n

+

) \




W

1;q

(R

n

+

) and � 2

b

T

2;q

!

(R

n�1

) \

b

T

2;q

(R

n�1

). Then by Lemma 5.2 there is a solution (u; p) 2




W

2;q

(R

n

+

) �




W

1;q

(R

n

+

) of the Stokes problem (18). By Lemma 5.4 this solution is also in




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

):

Thus (�

i

u; �

i

p) 2




W

1;q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) is for i = 1; : : : ; n � 1 a weak solution for data

�

i

f; �

i

g; �

i

� and Theorem 5.2 yields the estimate

kr�

i

uk

q;!

+ k�

i

pk

q;!

� C(k�

i

fk




W

�1; q

0;!

+ k�

i

gk

q;!

+ j�

i

�j

b

T

1;q

!

)

� C(kfk

q;!

+ krgk

q;!

+ j�j

b

T

2;q

!

):

The identity (19) implies the weighted estimate for �

n

u and thus also for rp. Altogether

we have shown the estimate (20) for this spe
ial solution (u; p). The standard density

argument yields the existen
e result and the weighted estimate also for general (f; g; �) 2

L

q

!

(R

n

+

)

n

�




W

1; q

!

(R

n

+

)�

b

T

2;q

!

(R

n

+

)

n

(see Corollary 4.1 and Corollary 4.2).

Now let (u; p) 2




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

) be an arbitrary solution of the Stokes problem

for (f; g; �) = (0; 0; 0). Then (�

i

u; �

i

p) 2




W

1; q

!

(R

n

+

)

n

�L

q

!

(R

n

+

); i = 1; : : : ; n�1; is a weak

solution of the Stokes problem with right hand sides equal to 0. Theorem 5.2 implies that

�

i

u � 0 and �

i

p = 0 for i = 1; : : : ; n � 1. Moreover (19) together with 
(u) = 0 imply

u(x

0

; x

n

) = (a

1

; : : : ; a

n�1

; 0)x

n

with a

1

; : : : ; a

n�1

2 C . Thus rp = �u = 0; whi
h yields

that p is 
onstant. Therefore the estimate (20) holds for an arbitrary solution of the Stokes

problem (18a) -(18
) in




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

). 2

6 The Stokes resolvent problem

Proof of Theorem 1.1: i) The proof of weighted estimates for general A

q

-weights for

the Stokes resolvent system (1) in the whole spa
e R

n


an be found in [9℄, p. 270, Theorem

4.5. Note that the 
onstant C in the estimate in that Theorem depends A

q

-
onsistently

in
reasing on ! 2 A

q

; sin
e the estimate follows from the weighted version of Mi
hlin's

Multiplier Theorem (see Theorem 2.1). In the sequel we dis
uss the 
ase R

n

+

:

6.1 S
aling argument

We show by a s
aling argument that it is suÆ
ient to prove Theorem 1.1 for � 2 �

"

with

j�j = 1.

First, note that the A

q

-
onstant is s
aling invariant, i.e. the weights !(x) and !(�x); � >

0; have the same A

q

-
onstant.

Write � 2 �

"

in the form � = re

i�

; r > 0: Let (u; p) 2W

2;q

!

(R

n

+

)

n

�




W

1; q

!

(R

n

+

) be a solution

of the Stokes resolvent system (1) in R

n

+

. Let û(x) := r u(

x

p

r

) and p̂(x) :=

p

r p(

x

p

r

) for

x 2 R

n

+

. Then 
(û) = 0 and for x 2 R

n

+

e

i�

û(x)��û(x) +rp̂(x) = f(

x

p

r

); div û(x) =

p

r g(

x

p

r

): (21)

We will show the resolvent estimate of Theorem 1.1 for all � 2 �

"

with j�j = 1, where the


onstant C = C(n; q; "; !) in this estimate depends A

q

-
onsistently in
reaing on ! 2 A

q

.

Then, in parti
ular, C = C(n; q; "; !) 
an be 
hoosen in su
h a way that it depends only
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on n; q; " and the A

q

-
onstant of !. Sin
e ! and the s
aled weight !(

x

p

r

) have the same

A

q

-
onstant it follows that

rkuk

q;!

= r

�

Z

R

n

+

ju(x)j

q

!(x)dx

�

1

q

=

�

1

p

r

n

Z

R

n

+

jû(y)j

q

!

�

y

p

r

�

dy

�

1

q

� C

h �

Z

R

n

+

�

�

f

�

y

p

r

�

�

�

q

!

�

y

p

r

�

dy

p

r

n

�

1

q

+

�

Z

R

n

+

�

�

r

y

p

r g

�

y

p

r

�

�

�

q

!

�

y

p

r

�

dy

p

r

n

�

1

q

+

�

1

p

r

�

n

q

sup

 2C

1

0

(R

n

+

)

j

R

p

r g(

y

p

r

) (y)dy j

(

R

jr (y)j

q

0

!

�

1

q�1

(

y

p

r

)dy)

1

q

0

i

= C [ kfk

q;!

+ krgk

q;!

+ r kgk




W

�1; q

!

℄;

where C = C(n; q; "; !(

�

p

r

)) = C(n; q; "; !) is A

q

-
onsistently in
reasing and therefore

independent of r. The estimates for r

2

u and rp 
an be obtained from the estimates for

j�j = 1 of r

2

û and rp̂ analogously.

6.2 Derivation of the solution formulas

To derive an expli
it solution formula we pro
eed as in [8℄.

Assume j�j = 1 and ! = !

�

, where !

�

(x

0

; x

n

) := !(x

0

;�x

n

) for (x

0

; x

n

) 2 R

n

(see Lemma

2.1). Write f in the form (f

0

; f

n

) with f

0

= (f

1

; : : : ; f

n�1

) and extend f

0

even to f

0

e

and f

n

odd to f

no

to R

n

. Then F := (f

0

e

; f

no

) 2 L

q

!

(R

n

)

n

. Moreover, we denote by

G 2W

1;q

!

(R

n

)\




W

�1; q

!

(R

n

) the even extension of g to R

n

. Then Theorem 4.5 in [8℄ yields

the existen
e of a solution (U;P ) 2W

2;q

!

(R

n

)

n

�




W

1; q

!

(R

n

) to the resolvent problem with

right hand sides F and G.

An easy symmetry 
onsideration implies that 
(U

n

) = 0. Set �

0

:= 
(U

0

) 2 T

2;q

!

(R

n�1

)

n�1

:

The estimate in Theorem 1.1 for 
 = R

n

with j�j = 1 and the assumption ! = !

�

yield

k�

0

k

T

2;q

!

� kU

0

k

W

2;q

!

(22)

� C ( k(F;rG)k

q;!

+ kGk




W

�1; q

!

) (23)

� 2C ( k(f;rg)k

q;!

+ kgk




W

�1; q

!

); (24)

where C depends only on n; q; " and A

q

-
onsistently in
reasing on !.

Substra
ting (U;P ) the resolvent problem is redu
ed to the problem

�u��u+rp = 0 (25a)

divu = 0 (25b)


(u

0

) = �

0

(25
)


(u

n

) = 0: (25d)

It remains to show that for �

0

2 T

2;q

!

(R

n�1

)

n�1

there is a unique solution (u; p) 2

W

2;q

!

(R

n

+

)

n

�




W

1; q

!

(R

n

+

) of problem (25a)-(25d) satisfying the estimate

k(u;ru;r

2

u;rp)k

q;!

� C k�

0

k

T

2;q

!

(26)

with an A

q

-
onsistently in
reasing 
onstant C.

22



By b= F

0

we denote the Fourier transformation with respe
t to the �rst n� 1 variables.

Then (see [8℄) the solution of problem (25) is given by


u

n

(�

0

; x

n

) = i�

0

�

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

b

�

0

(�

0

) (27)

b

u

0

(�

0

; x

n

) = ��

n

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

�

0

�

0

s

2

b

�

0

(�

0

) + (I �

�

0

�

0

s

2

) e

�

p

�+s

2

x

n

b

�

0

(�

0

); (28)

bp(�

0

; x

n

) = �

1

s

2

(�+ s

2

� �

2

n

)�

n


u

n

(�

0

; x

n

) (29)

where �

0

�

0

2 R

n�1;n�1

denotes the dyadi
 produ
t of �

0

with itself and s = j�

0

j.

6.3 Weighted estimates

In the sequel let �

0

2 C

1

0

(R

n�1

)

n�1

and � 2 �

"

with j�j = 1. Note that the 
onstants C

in the proof depend A

q

-
onsistently in
reasing on !.

The estimate of u

n

:

Re
all the Poisson operators of the Lapla
e and Lapla
e resolvent equation dis
ussed in

se
tion 4:

d

R�

0

(�

0

; x

n

) = e

�sx

n

b

�

0

(�

0

) and

[

R

�

�

0

(�

0

; x

n

) = e

�

p

�+s

2

x

n

b

�

0

(�

0

): (30)

Boundedness properties of these operators are proven in Theorem 4.5 We split the solution

formula (27) of 
u

n

; noting that �(

p

�+ s

2

� s)

�1

=

p

�+ s

2

+ s; into four summands


u

n

(�

0

; x

n

) = i�

0

�

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

b

�

0

=

n�1

X

j=1

i �

j

�

[

p

�+ s

2

e

�

p

�+s

2

x

n

�

p

�+ s

2

e

�sx

n

+ s e

�

p

�+s

2

x

n

� s e

�sx

n

℄

b

�

0

j

: (31)

For j = 1; : : : ; n� 1 we have

F

0

�1

i�

j

p

�+ s

2

e

�

p

�+s

2

x

n

b

�

j

= ��

j

�

n

R

�

�

j

F

0

�1

i�

j

s e

�sx

n

b

�

j

= ��

j

�

n

R�

j

:

Thus Theorem 4.5 implies the L

q

!

-estimates:

k�

j

�

n

R

�

�

j

k

q;!

+ k�

j

�

n

R�

j

k

q;!

� C k�

j

k

T

2;q

!

(32)

For the estimate of the two remaining terms in (31) 
onsider the multiplier operators

d

T

1

�

0

(�

0

) = s

b

�

0

(�

0

) and

d

T

2

�

0

(�

0

) =

p

�+ s

2

b

�

0

(�

0

):

Lemma 6.1 There exists an A

q

-
onsistently in
reasing 
onstant C 2 R su
h that

i) kT

1

�

0

k

T

1;q

!

� C k�

0

k

T

2;q

!

ii) kT

2

�

0

k

T

1;q

!

� C k�

0

k

T

2;q

!

23



Proof: i): De�ne an extension of T

1

�

0

to R

n

+

by

bw(�

0

; x

n

) := s e

�sx

n

b

�

0

(�

0

):

Then 
(w) = T

1

�

0

and w = ��

n

R�

0

: It follows from Theorem 4.5

kwk

q;!

= k�

n

R�

0

k

q;!

� C j�

0

j

b

T

1;q

!

;

krwk

q;!

= k�

n

rR�

0

k

q;!

� C j�

0

j

b

T

2;q

!

:

Sin
e 
(w) = T

1

�

0

it follows

kT

1

�

0

k

T

1;q

!

� kwk

W

1;q

!

� Ck�

0

k

T

2;q

!

:

ii): Extend T

2

�

0

to R

n

+

by

bw(�

0

; x

n

) :=

p

�+ s

2

e

�

p

�+s

2

x

n

b

�

0

(�

0

):

Then 
(w) = T

2

�

0

and w = ��

n

R

�

�

0

: By Theorem 4.5 it follows

kwk

W

1;q

!

= k�

n

R

�

�

0

k

W

1;q

!

� C k�

0

k

T

2;q

!

:

Sin
e 
(w) = T

2

�

0

the proof is 
omplete. 2

The remaining two terms in (31) 
an be written in the following form

F

0

�1

i�

j

p

�+ s

2

e

�sx

n

b

�

j

= �

j

RT

2

�

j

(33)

F

0

�1

i�

j

s e

�

p

�+s

2

x

n

b

�

j

; = �

j

R

�

T

1

�

j

: (34)

Then Theorem 4.5 and the last Lemma imply

k�

j

RT

2

�

j

k

q;!

� C jT

2

�

j

j

b

T

1;q

!

� C k�

j

k

T

2;q

!

(35)

k�

j

R

�

T

1

�

j

k

q;!

� C kT

1

�

j

k

T

1;q

!

� C k�

j

k

T

2;q

!

: (36)

Thus the desired L

q

!

-estimate for u

n

is proven, i. e.

jju

n

jj

q;!

� C jj�

0

k

T

2;q

!

; (37)

where C > 0 depends only on n; q; " and A

q

-
onsistently in
reasing on !.

The estimate of u

0

:

Re
all the formula (28) for u

0

. An easy 
omputation using the identity �(

p

�+ s

2

�s)

�1

=

p

�+ s

2

+ s yields

b

u

0

(�

0

; x

n

) =

1

�

�

�

0

�

0

e

�

p

�+s

2

x

n

+

�

0

�

0

s

p

�+ s

2

e

�

p

�+s

2

x

n

�

�

0

�

0

s

p

�+ s

2

e

�sx

n

(38)

��

0

�

0

e

�sx

n

+ � e

�

p

�+s

2

x

n

�

b

�

0

:
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The estimate for the �rst, the fourth and �fth summand in (38) is easy, be
ause for

i; j = 1; : : : ; n� 1 we have

F

0

�1

�

i

�

j

e

�

p

�+s

2

x

n

b

�

j

= ��

i

�

j

R

�

�

j

F

0

�1

�

i

�

j

e

�sx

n

b

�

j

= ��

i

�

j

R�

j

F

0

�1

e

�

p

�+s

2

x

n

b

�

j

= R

�

�

j

:

Thus by Theorem 4.5 the L

q

!

(R

n

+

)-norm of these three terms 
an be estimated by k�

0

k

T

2;q

!

.

To estimate the se
ond and the third term in (38) we study the Riesz transformation

d

S

i

� =

�

i

s

b

�

for i = 1; : : : ; n� 1 and � 2 S(R

n�1

). It is well known that S

i


an be written in the form

S

i

�(x

0

) = lim

"!0




n

Z

jx

0

�y

0

j>"

x

i

� y

i

jx

0

� y

0

j

n

�(y

0

)dy

0

:

Here and in the sequel 


n

6= 0 always denotes a 
onstant depending only on n whi
h may

be di�ernet from line to line. The following Lemma 
on
erning boundedness of the Riesz

transformation in the tra
e spa
es is de
isive:

Lemma 6.2 For � 2 S(R

n�1

) and i; j = 1; : : : ; n� 1 it holds

i) jS

i

�j

b

T

1;q

!

� C j�j

b

T

1;q

!

ii) k�

j

S

i

�k

T

1;q

!

� C k�k

T

2;q

!

;

where C > 0 depends only on n; q and A

q

-
onsistently in
reasing on !.

Proof: Consider the operators

P

i

�(x

0

; x

n

) :=

Z

R

n�1

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

(39)

for i = 1; : : : ; n� 1 and � 2 S(R

n�1

).

Let v := R�: Then by Theorem 4.5 v 2




W

1; q

!

(R

n

+

) with 
(v) = � and

krvk

q;!

� C j�j

b

T

1;q

!

:

Note that v 2 C

1

(R

n

+

) and that v is bounded on R

n

+

- more pre
isely:

kv(�; t)k

1

= kP

t

� �k

1

� 


n

sup

x

0

�

�

�

Z

R

n�1

t

(t

2

+ jx

0

� y

0

j

2

)

n

2

�(y

0

)dy

0

�

�

�

� C(�)

Z

R

n�1

1

t

n�1

�

jx

0

� y

0

j

2

t

2

+ 1

�

�

n

2

(1 + jy

0

j)

�n

dy

0

� C(�) (1 + t)

�n+1

:

Then for every x

0

; y

0

2 R

n�1

and x

n

> 0

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

) = �

Z

1

0

�

t

h

x

i

� y

i

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

v(y

0

; t)

i

dt:
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Inserting this into (39) we obtain for i; j = 1; : : : ; n� 1

��

j

P

i

�(x

0

; x

n

) = �

j

Z

R

n

+

�

t

h

x

i

� y

i

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

v(y

0

; t)

i

d(y

0

; t)

= ��

j

Z

R

n

+

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

v(y

0

; t) d(y

0

; t)

+ �

j

Z

R

n

+

(x

i

� y

i

)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

�

t

v(y

0

; t) d(y

0

; t)

= �

Z

R

n

+

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

�

j

v(y

0

; t) d(y

0

; t)

+

Z

R

n

+

k

ij

(x

0

� y

0

; x

n

+ t) �

t

v(y

0

; t) d(y

0

; t)

= �

Z

R

n

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

g

�

j

v(y

0

; t) d(y

0

; t)

+

Z

R

n

k

ij

(x

0

� y

0

; x

n

+ t)

f

�

t

v(y

0

; t) d(y

0

; t);

where

g

�

j

v and

f

�

t

v denote the extensions of �

j

v and �

t

v by 0 to R

n

; respe
tively, and

k

ij

(x) := Æ

ij

1

jxj

n

�

nx

i

x

j

jxj

n+2

:

By substitution one obtains with y = (y

0

; t) and x = (x

0

; x

n

)

��

j

P

i

�(x

0

; x

n

) = �

Z

R

n

n(x

i

� y

i

)(x

n

� t)

jx� yj

n+2

g

�

j

v(y

0

;�t) dy

+

Z

R

n

k

ij

(x� y)

g

�

n

v(y

0

;�t) dy;

Sin
e both kernels are regular singular integral kernels in the sense of De�nition 2.4,

Theorem 2.2 implies that there is some 
onstant C > 0 depending only on n; q and A

q

-


onsistently in
reasing on ! su
h that

k�

j

P

i

�k

q;!;R

n

+

� C ( k

g

�

j

v

�

k

q;!;R

n

+ k

g

�

n

v

�

k

q;!;R

n

)

� C ( k

g

�

j

vk

q;!

�

;R

n

+ k

g

�

n

vk

q;!

�

;R

n

)

� C ( k�

j

vk

q;!;R

n

+

+ k�

n

vk

q;!;R

n

+

)

� C j�j

b

T

1;q

!

for j = 1; : : : ; n� 1, where we used ! = !

�

.

It remains to estimate �

n

P

i

�. For (x

0

; x

n

) 2 R

n

+

we have

�

n

P

i

�(x

0

; x

n

) = �

n

Z

R

n�1

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

= �

i

Z

R

n�1

x

n

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

= 


n

�

i

R� (x

0

; x

n

):
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By Theorem 4.5 it follows that

k�

n

P

i

�k

q;!

� 


n

k�

i

R�k

q;!

� Cj�j

b

T

1;q

!

:

Altogether we have shown for i = 1; : : : ; n� 1

krP

i

�k

q;!

� C j�j

b

T

1;q

!

: (40)

Now we will investigate the relation between P

i

and S

i

. We 
laim that


(P

i

�) = 


n

S

i

�: (41)

Let n � 3. Using integration by parts we get with the 
onstant C

n

=

1

n�2

P

i

�(x) = C

n

Z

R

n�1

1

(jx

0

� y

0

j

2

+ x

2

n

)

n�2

2

�

i

�(y

0

) dy

0

!

Z

R

n�1

C

n

jx

0

� y

0

j

n�2

�

i

�(y

0

) dy

0

(42)

for x

n

! 0 by Lebesgue's Theorem. A
tually P

i

� is even 
ontinuous on R

n

+

. Therefore


(P

i

�) = C

n

Z

R

n�1

1

jx

0

� y

0

j

n�2

�

i

�(y

0

)dy

0

= 


n

S

i

�:

In the 
ase n = 2 we use that

2(x

1

�y

1

)

jx

1

�y

1

j

2

+x

2

2

= �

1

ln(jx

1

� y

1

j

2

+ x

2

2

). Then the proof is

analogous.

Combining (41) with (40) we obtain the assertion of part i) of the Lemma.

ii) Be
ause of �

j

S

i

� = S

i

�

j

� for i; j = 1; : : : ; n� 1 and (41)


(P

i

�

j

�) = 


n

�

j

S

i

�: (43)

We estimate P

i

�

j

� in W

1;q

!

(R

n

+

). By (40) and Lemma 3.4

kP

i

�

j

�k

q;!

= k�

j

P

i

�k

q;!

� C k�k

T

1;q

!

;

k�

k

P

i

�

j

�kj

q;!

� C k�

j

�k

T

1;q

!

� C k�k

T

2;q

!

for k = 1; : : : ; n� 1: To estimate the n-th derivative note that for x 2 R

n

+

�

n

P

i

�

j

�(x) = 


n

�

n

Z

R

n�1

�

i

1

(jx

0

� y

0

j+ x

2

n

)

n�2

2

�

j

�(y

0

) dy

0

= �

i

Z

R

n�1

x

n

(jx

0

� y

0

j+ x

2

n

)

n

2

�

j

�(y

0

) dy

0

= C

n

�

i

R(�

j

�)(x):

Therefore Theorem 4.5 and Lemma 3.4 yield

k�

n

P

i

�

j

�k

q;!

= C

n

k�

i

R(�

j

�)k

q;!

� C j�

j

�j

b

T

1;q

!

� C k�k

T

2;q

!

:

Thus kP

i

�

j

�k

W

1;q

!

� Ck�k

T

2;q

!

and (43) yields the estimate k�

j

S

i

�k

T

1;q

!

� Ck�k

T

2;q

!

; whi
h


ompletes the proof of Lemma 6.2. 2
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Now it is possible to estimate also the se
ond and third summand in (38) by writing them

in the following form:

F

0

�1

p

�+ s

2

e

�

p

�+s

2

x

n

�

k

�

j

s

b

�

j

= i �

n

R

�

(�

k

S

j

�

j

)

F

0

�1

�

k

e

�sx

n

�

j

s

p

�+ s

2

b

�

j

= �i �

k

RS

j

T

2

�

j

for j; k = 1; : : : ; n� 1. By Theorem 4.5, Lemma 6.1 and Lemma 6.2

k�

n

R

�

(�

k

S

j

�

j

)k

q;!

� C k�

k

S

j

�

j

k

T

1;q

!

� C k�

0

k

T

2;q

!

k�

k

RS

j

T

2

�

j

k

q;!

� C jS

j

T

2

�

j

j

b

T

1;q

!

� C kT

2

�k

T

1;q

!

� C k�

0

k

T

2;q

!

;

where C depends only on n; q; " and A

q

-
onsistently in
reasing on !.

Thus the L

q

!

(R

n

+

)-norm of the �ve summands in (38) is estimated by k�

0

k

T

2;q

!

with a


onstant C > 0 depending only on n; q; " and A

q

-
onsistently in
reasing on !

ku

0

k

q;!

� C k�

0

k

T

2;q

!

:

Together with the estimate (37) of u

n

we have

kuk

q;!

� C k�

0

k

T

2;q

!

: (44)

Estimation of the se
ond derivatives and of the pressure:

Up to now we proved that the solution u = (u

0

; u

n

) of (25a)-(25d) expli
itly given by the

expressions (27), (28) is in L

q

!

(R

n

+

)

n

, where we assumed �

0

2 S(R

n�1

)

n�1

and j�j = 1.

In [8℄ p. 617-621 it is shown that even (u; p) 2 W

2;q

(R

n

+

)

n

�




W

1;q

(R

n

+

). Sin
e (u; p) also

satis�es the Stokes equation

��u+rp = ��u; divu = 0; 
(u) = (�

0

; 0) (45)

with right hand sides ��u 2 L

q

!

(R

n

+

)

n

\L

q

(R

n

+

)

n

and (�

0

; 0) 2 S(R

n�1

)

n

� T

2;q

(R

n�1

)

n

\

T

2;q

!

(R

n�1

)

n

. Lemma 5.4 yields (u; p) 2




W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

): Therefore by Theorem

(5.3) and (44) we obtain

kr

2

uk

q;!

+ krpk

q;!

� C (kuk

q;!

+ j�

0

j

b

T

2;q

!

) � C k�

0

k

T

2;q

!

:

Hen
e (u; p) 2W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

) (see Lemma 4.3) and

kuk

q;!

+ kr

2

uk

q;!

+ krpk

q;!

� C k�

0

k

T

2;q

!

: (46)

The density of C

1

0

(R

n�1

) in T

2;q

!

(Corollary 4.2) yields the existen
e of a solution (u; p) 2

W

2;q

!

(R

n

+

)

n

�




W

1;q

!

(R

n

+

) for arbitrary �

0

2 T

2;q

!

(R

n�1

)

n�1

su
h that the estimate (46) holds.

Now the existen
e assertion of Theorem 1.1 is proved.

Uniqueness:

Let (u; p) 2 W

2;q

!

(R

n

+

)

n

�




W

1; q

!

(R

n

+

) be a solution of the Stokes resolvent system (1) for

right hand sides f = 0 and g = 0, and let

~

f 2 L

q

0

!

0

(R

n

+

)

n

be arbitrary. As we have already

shown, there is a solution (~u; ~p) 2W

2;q

0

!

0

(R

n

+

)

n

�




W

1;q

0

!

0

(R

n

+

) of

(���)~u+r~p =

~

f; div ~u = 0; 
(~u) = 0:
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For a sequen
e ('

k

) � C

1

0

(R

n

+

) with r'

k

! r~p in L

q

0

!

0

(R

n

+

)

n

, it follows by Theorem 3.2

on integration by parts that

(r~p; u) = lim

k

(r'

k

; u) = � lim

k

('

k

;div u) = 0

sin
e 
(u) = 0: Analogously (~u;rp) = 0. Using this fa
t and Theorem 3.2 on integration

by parts we obtain

(

~

f; u) = ((���)~u+r~p; u) = (~u; (���)u+rp) = 0:

Sin
e

~

f 2 L

q

0

!

0

(R

n

+

)

n

was arbitrary it follows u = 0 and thus rp = 0. This proves part i)

of the Theorem.

The regualrity assertion ii) is proven in [9℄ for the 
ase 
 = R

n

.

So let 
 = R

n

+

: The assertion ii) for 
 = R

n

implies that for the boundary values �

0

in

(25
) it holds

�

0

2 T

2;q

!

(R

n�1

)

n�1

\ T

2;r

v

(R

n�1

)

n�1

:

In the proof of i) we �rst assumed �

0

2 C

1

0

(R

n�1

)

n�1

and obtained an expli
it solution

(u; p) of (25a)-(25d) depending only on �

0

but not on the pair (q; !).

Sin
e by Corollary 4.7 we 
an approximate an arbitrary �

0

2 T

2;q

!

(R

n�1

)

n�1

\T

2;r

v

(R

n�1

)

n�1

in T

2;q

!

(R

n�1

)

n�1

\ T

2;r

v

(R

n�1

)

n�1

by fun
tions from C

1

0

(R

n�1

) it follows that the so-

lution (u; p), whi
h we obtained by a density argument, is 
ontained in (W

2;q

!

(R

n

+

)

n

\

W

2;r

v

(R

n

+

)

n

)� (




W

1; q

!

(R

n

+

) \




W

1;r

v

(R

n

+

)).

Thus Theorem 1.1 is 
ompletely proved. 2
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