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Abstrat

In this paper we derive weighted L

q

-estimates for the Stokes resolvent system in the

half spae for weights of Mukenhoupt lass, on whih a new approah to maximal L

p

-

regularity of the Stokes operator for the half spae and a bounded domain in weighted

L

q

-spaes in the forthoming part II is based. We stress that our results hold for

general Mukenhoupt weights. In partiular, the weights may tend to zero or beome

singular at the boundary of the domain.

AMS lassi�ation: *35Q30, 35D05, 46E25

1 Introdution

We study the generalized Stokes resolvent problem

�u��u+rp = f in R

n

+

(1a)

divu = g in R

n

+

(1b)

u = 0 on �R

n

+

(1)

in weighted L

q

-spaes for a large lass of weights and � ontained in the setor

�

"

:= f� 2 C n f0g : jarg �j < � � "g; 0 < " <

�

2

:

The motivation of our investigations is as follows: Reently L. Weis [20℄ gave a harater-

isation of maximal L

p

-regularity by so alled R-bounded operator families.

Our idea is to ombine this result with the fat that for L

q

-spaes R-boundedness is

implied by weighted estimates (see e.g. [11℄, Chapter V, Theorem 6.4). In this ontext for

1 < q <1 the weight funtions ! of Mukenhoupt lass A

q

de�ned by the ondition that

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1;

where the supremum is taken over all ubes Q � R

n

and jQj means the Lebesgue measure

of Q, our.
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In this way we will show in the forthoming part II maximal L

p

-regularity of the Stokes

operator in weighted L

q

-spaes in the half spae and a bounded domain for arbitrary

weights of Mukenhoupt lass A

q

. To reah this goal we prove in the present part I weighted

estimates for the Stokes resolvent problem in a half spae for general Mukenhoupt weights.

More preisely, for 1 < q <1; ! 2 A

q

and an open set 
 � R

n

let

L

q

!

(
) = fu 2 L

1

lo

(
) : kuk

q

q;!

=

Z




juj

q

! dx <1g:

For the de�nition of the weighted Sobolev spaes W

k;q

!

(
);



W

k;q

!

(
); : : : see setion 3

below. Weighted L

q

-estimates for the Stokes resolvent system have already been obtained

for the whole spae 
 = R

n

for general A

q

-weights and in exterior domains for a restrited

lass of A

q

-weights by Farwig and Sohr [9℄. The main result of this paper is as follows:

Theorem 1.1 Let n � 2; 1 < q <1; ! 2 A

q

; 0 < " <

�

2

.

i) Then for every f 2 L

q

!

(R

n

+

)

n

; g 2 W

1;q

!

(R

n

+

) \



W

�1; q

!

(R

n

+

) and � 2 �

"

there is a

unique solution (u; p) 2W

2;q

!

(R

n

+

)

n

�



W

1; q

!

(R

n

+

) of the Stokes resolvent problem (1).

This solution satis�es the estimate

j�jkuk

q;!

+ kr

2

uk

q;!

+ krpk

q;!

� C ( kfk

q;!

+ krgk

q;!

+ k�gk



W

�1; q

!

); (2)

where C > 0 depends only on n; q; " and A

q

-onsistently inreasing on !.

ii) If for some r 2 (1;1) and some v 2 A

r

additionally f 2 L

r

v

(R

n

+

)

n

and g 2

W

1;r

v

(R

n

+

) \



W

�1;r

v

(R

n

+

); then (u; p) 2W

2;r

v

(R

n

+

)�



W

1;r

v

(R

n

+

):

The importane of the tehnial fat that the onstant C in (2) isA

q

-onsistently inreasing

(see De�nition 2.3) will beome lear in the forthoming part II.

Note that L

q

(R

n

+

) = L

q

(R

+

;L

q

(R

n�1

)); but in general the weighted spae L

q

!

(R

n

+

) is not

of this form for ! 2 A

q

. Moreover, given ! 2 A

q

in general !(�; x

n

) =2 A

q

(R

n�1

) for

x

n

> 0: Therefore the existing approahes to the Stokes resolvent system (see e.g. [5℄,

[8℄, [13℄) based on estimates in R

n�1

for every �xed x

n

> 0 do not transfer diretly to

the weighted ase for general A

q

-weigths. Our idea is to represent the solution operator

as a omposition of ertain multiplier operators on the boundary �R

n

+

and the Poisson

operators orresponding to the Laplae- and Laplae resolvent equation



R�(�

0

) = e

�j�

0

jx

n

b

�(�

0

)

d

R

�

�(�

0

) = e

�

p

�+j�

0

j

2

x

n

b

�(�

0

); � 2 �

"

;

where x

n

> 0; � is a Shwartz funtion on �R

n

+

and bg means the partial Fourier transform

of g with respet to the �rst (n�1) variables. For the estimation of the multiplier operators

on the boundary we have to prove ertain boundedness properties of the Riesz transforms

in the trae spaes of weighted Sobolev spaes. Furthermore, to estimate the pressure

and the seond derivatives of u we derive weighted L

q

-estimates for the stationary Stokes

system.

For the stationary Stokes system and the Stokes resolvent system there exist several results

(e. g. [9℄, [12℄, [17℄, [18℄) in unbounded domains with weight funtions vanishing or

inreasing for jxj ! 1 but being bounded from above and from below by positive onstants

2



near the boundary of the domain. We emphasize that our results hold for arbitrary

Mukenhoupt weights, i.e., the weight funtion may beome singular or vanish also at the

boundary.

This paper is organized as follows: In setion 2 we present a brief summary of the theory

of Mukenhoupt weights used in the sequel.

Setion 3 deals with some properties of weighted Sobolev spaes. We apply extension

theorems of [4℄ and investigate density properties of smooth funtion and trae spaes of

weighted Sobolev spaes.

In setion 4 we study weak solutions of the Laplae and Laplae resolvent equations in

the whole spae and the half-spae in weighted Sobolev spaes. These problems an be

redued to problems on the whole spae R

n

by reetion arguments. In partiular, we

obtain weighted estimates for the orresponding Poisson operators R and R

�

.

Setion 5 deals with weak and strong solutions of the Stokes equation in the half spae

in weighted Sobolev spaes. The weighted estimates for the veloity and pressure �elds

follow from the estimates of the Poisson operator R.

Finally, in setion 6 we prove Theorem 1.1.

2 Mukenhoupt weights

By a ube Q we mean a subset of R

n

of the form �

n

j=1

I

j

; where I

1

; : : : ; I

n

� R are bounded

intervals of the same length. Thus ubes have always sides parallel to the axes.

De�nition 2.1 Let 1 < q <1. A funtion 0 � ! 2 L

1

lo

(R

n

) is alled an A

q

-weight if

A

q

(!) := sup

Q

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

q�1

dx

�

q�1

<1; (3)

where the supremum is taken over all ubes Q � R

n

and jQj assigns the Lebesgue measure

of Q. A

q

(!) is alled the A

q

-onstant of !. We use the abbreviation !(A) for

R

A

!(x) dx.

Simple examples of A

q

-weights are radially symmetri weights !(x) = jx � x

0

j

�

for

�n < � < n(q � 1) or more generally distane funtions of the form !(x) = dist (x;M)

�

for a k-dimensional ompat Lipshitzian manifoldM and �(n� k) < � < (n� k)(q� 1):

For further examples we refer to [9℄.

De�nition 2.2 For ! 2 A

q

and an open set 
 � R

n

let

L

q

!

(
) =

�

u 2 L

1

lo

(
) :

Z




juj

q

! dx <1

	

; kuk

q;!;


=

�

Z




juj

q

! dx

�

1=q

:

We write often kuk

q;!

instead of kuk

q;!;


if 
 is �xed.

The spae L

q

!

(
) is a reexive Banah spae, beause L

q

(
) is a reexive Banah spae

and the mapping f 7! f !

1

q

is an isometri isomorphism from L

q

!

(
) to L

q

(
).

Let q

0

:=

q

q�1

. It follows from the De�nition of A

q

-weights that

8 1 < q <1 : ! 2 A

q

() !

0

:= !

�

1

q�1

2 A

q

0

:
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Then, denoting the dual spae of a Banah spae X by X

0

,

(L

q

!

(
))

0

= L

q

0

!

0

(
);

where we identify funtions with funtionals in the usual way, i.e., we set (f; g)




:=

R




f g dx and identify f 2 L

q

!

(
) with the funtional g 7! (f; g)




. If 
 is �xed, we write

(�; �) instead of (�; �)




:

In the sequel we will have to onsider onstants C = C(!) , e. g. in weighted L

q

-

estimates, that depend on the weight funtion ! 2 A

q

. Usually in the A

q

-theory suh

onstants an be hoosen uniformly whenever the A

q

-onstant is bounded from above, i.

e., A

q

(!) �  <1. This motivates the following de�nition:

De�nition 2.3 A mapping C : A

q

! R

+

is alled A

q

-onsistently inreasing i�

8 2 R

+

: sup fC(!) : ! 2 A

q

; A

q

(!) �  g <1:

A mapping C : A

q

! R

+

is alled A

q

-onsistently dereasing i�

1

C

is A

q

-onsistently

inreasing.

Theorem 2.1 (H�ormander-Mihlin multiplier theorem with weights)

Let m 2 C

n

(R

n

nf0g) with the property that

9M 2 R : jD

�

m(�)j �M j�j

�j�j

; 8 � 2 R

n

n f0g; j�j = 0; 1; : : : ; n:

Then for all 1 < q < 1 and ! 2 A

q

the multiplier operator



Tf = m

b

f de�ned for

Shwartz funtions f 2 S = S(R

n

) an be extended uniquely to a bounded linear operator

from L

q

!

(R

n

) to L

q

!

(R

n

). More preisely, there is an A

q

-onsistently inreasing onstant

C = C(n; q; !;M) 2 R suh that

kTfk

q;!

� C kfk

q;!

(4)

for all f 2 L

q

!

(R

n

).

Proof: The assertion is proven in [11℄, Chapter IV, Theorem 3.9 - even under more

general onditions on m. Although not expliitely mentioned the A

q

-onsisteny of the

onstant C 2 R in (4) follows from the proof in [11℄. 2

De�nition 2.4 A tempered distribution K 2 S

0

is alled a regular singular integral kernel,

i� K oinides on R

n

nf0g with a loally integrable funtion k(x) suh that

i)

b

K 2 L

1

ii) jk(x)j � A jxj

�n

iii) jk(x� y)� k(x)j � Ajyjjxj

�(n+1)

; 8 jxj > 2jyj > 0 :

The operator Tf := K � f; f 2 S(R

n

); is a alled regular singular integral operator.

Example: Let k 2 C

1

(R

n

nf0g) be homogeneous of degree 0 with vanishing mean over

the unit sphere. Then the operator

Tf(x) = p:v:

Z

k(y)

jyj

n

f(x� y) dy

is a regular singular integral operator (see [11℄, Remark on p. 204).

4



Theorem 2.2 Let 1 < q <1; ! 2 A

q

and let T be a regular singular integral operator.

Then T is bounded on L

q

!

(R

n

). More preisely, there is an A

q

-onsistently inreasing

onstant C 2 R suh that for all f 2 S

kTfk

q;!

� C kfk

q;!

: (5)

Proof: See [11℄, hapter IV, Theorem 3.1. The important property, that the onstant

C in (5) is A

q

-onsistently inreasing follows from the proof given in [11℄. 2

For a funtion u on R

n

let

u

�

(x

0

; x

n

) := u(x

0

;�x

n

) 8x = (x

0

; x

n

) 2 R

n

: (6)

Lemma 2.1 Let 1 < q <1 and ! 2 A

q

: Then also the weight de�ned by

~!(x

1

; : : : ; x

n

) :=

�

!(x

1

; : : : ; x

n

) : x

n

> 0

!(x

1

; : : : ; x

n�1

;�x

n

) : x

n

< 0

is in A

q

with A

q

(~!) � 2

q

A

q

(!). It holds ~! = (~!)

�

.

Proof: Note that for all ubes Q with Q � R

n

+

or Q � R

n

�

�

1

jQj

Z

Q

~! dx

��

1

jQj

Z

Q

~!

�

1

q�1

dx

�

q�1

� A

q

(!):

Let Q be a (without loss of generality losed) ube suh that the whole ube Q is neither

ontained in R

n

+

nor in R

n

�

. Then by translation of Q in x

n

-diretion we obtain two ubes

Q

+

� R

n

+

and Q

�

� R

n

�

with Q � Q

+

[Q

�

; jQj = jQ

�

j = jQ

+

j. It follows that

�

1

jQj

Z

Q

~! dx

��

1

jQj

Z

Q

~!

�

1

q�1

dx

�

q�1

�

�

1

jQj

Z

Q

+

[Q

�

~! dx

��

1

jQj

Z

Q

+

[Q

�

~!

�

1

q�1

dx

�

q�1

�

�

2

jQ

+

j

Z

Q

+

! dx

��

2

jQ

+

j

Z

Q

+

!

�

1

q�1

dx

�

q�1

� 2

q

A

q

(!):

The seond assertion is obvious. 2

Lemma 2.2 Let 1 < q <1 and ! 2 A

q

:

i) The spae of Shwartz funtions S(R

n

) is ontinuously embedded into L

q

!

(R

n

) and

L

q

!

(R

n

) is ontinuously embedded into the spae S

0

(R

n

) of tempered distributions.

ii) There is an s > 1 suh that L

q

!

(
) is embedded into L

s

(
) for every bounded mea-

surable set 
 � R

n

.

Proof: i) For f 2 S we have

kfk

q;!

�

�

Z

R

n

!(x)

(1 + jxj)

nq

dx

�

1

q

kf(1 + jxj)

n

k

1

:

5



The �rst term on the right hand side is �nite (see [19℄, Chapter IX, Prop. 4.5) and

f 7! kf(1 + jxj)

n

k

1

is a seminorm on S.

The seond assertion follows by duality - see also [9℄ Lemma 4.1 i).

ii) The assertion is a onsequene of the open ended property of Mukenhoupt weights: For

! 2 A

q

there is an p < q suh that ! 2 A

p

(see e.g. [11℄, Chapter IV, Theorem 2.6). It

follows v := !

�

1

p�1

2 A

p

0

� L

1

lo

(R

n

). With s =

q

p

the H�older inequality

kfk

s

� v(
)

1

p

0

kfk

q;!

ompletes the proof. 2

3 Weighted Sobolev spaes

For 1 < q <1; ! 2 A

q

and a domain 
 � R

n

let

W

k;q

!

(
) = fu 2 L

q

!

(
) : D

�

u 2 L

q

!

(
); j�j � kg;



W

k;q

!

(
) = fu 2W

k;1

lo

(
) : D

�

u 2 L

q

!

(
); j�j = kg:

The spae W

k;q

!

(
) equipped with the norm

kuk

W

k;q

!

(
)

= kuk

k;q;!

:=

�

X

j�j�k

kD

�

uk

q

q;!;


�

1

q

is a reexive Banah spae. On



W

k;q

!

(
) the seminorm

juj



W

k;q

!

(
)

:= kr

k

uk

q;!;


=

�

X

j�j=k

kD

�

uk

q

q;!;


�

1

q

is de�ned. Let P

n

k�1

be the set of polynomials of degree � k � 1 on R

n

and P

n

k�1

(
) :=

P

n

k�1

�

�




: Then the fator spae



W

k;q

!

(
) :=



W

k;q

!

(
)=P

n

k�1

(
)

is equipped with the norm

k[u℄k



W

k;q

!

(
)

:= kr

k

uk

q;!

;

where u 2



W

k;q

!

(
) and [u℄ 2



W

k;q

!

(
) is the respetive equivalene lass. In [4℄ Theorem

4.9 it is proved that



W

k;q

!

(
) is a Banah spae and that



W

k;q

!

(
) an be identi�ed with

a losed subspae of L

q

!

(R

n

)

N

; N = jfj�j = kgj; via the mapping [u℄ 7! (D

�

u)

j�j=k

.

Thus



W

k;q

!

(
) is also reexive. Note that r

k

:



W

k;q

!

(
) ! L

q

!

(
)

N

is well de�ned by

r

k

[u℄ := r

k

u; where u 2



W

k;q

!

(
) is arbitrary.

By



W

�k;q

!

(
) and W

�k;q

!

(
) we denote the dual spae of



W

k;q

0

!

0

(
) and W

k;q

0

!

0

(
); respe-

tively.
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3.1 Extension theorems

De�nition 3.1 Let " > 0 and Æ 2 (0;1℄. An open onneted set 
 � R

n

is an ("; Æ)-

damain if for all x; y 2 
; jx�yj < Æ there exists a reti�able urve  � 
 onneting x; y

suh that

l() �

1

"

jx� yj and d(z) � "

jx� zjjy � zj

jx� yj

for all z 2 , where l() is the length of  and d(z) = inf

a2




ja� zj.

In ontrast to [4℄ we restrit ourselves to domains, i.e. open, onneted subsets on R

n

.

Therefore in the previous de�nition some tehnial onditions of [4℄ ould be dropped.

Theorem 3.1 (Chua) Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; : : : ; N .

i) Let 
 � R

n

be an unbounded (";1)- domain and k

1

; : : : ; k

N

2 N

0

. Then there exists

a linear extension operator E :

T

N

i=1



W

k

i

;q

i

!

i

(
)!

T

N

i=1



W

k

i

;q

i

!

i

(R

n

) suh that

kr

k

i

Euk

q

i

;!

i

;R

n

� C

i

kr

k

i

uk

q

i

;!

i

;


for all i = 1; : : : ; N und u 2

T

N

i=1



W

k

i

;q

i

!

(
).

ii) Let 
 � R

n

be a bounded (";1)- domain, U an open bounded set suh that 
 � U and

k

1

; : : : ; k

N

2 N

0

. Then there exists a linear extension operator E :

T

N

i=1



W

k

i

;q

i

!

i

(
)!

T

N

i=1



W

k

i

;q

i

!

i

(U) suh that

kr

k

i

Euk

q

i

;!

i

;U

� C

i

kr

k

i

uk

q

i

;!

i

;


:

Furthermore, for all 1 < q < 1; ! 2 A

q

and k 2 N there exist linear bounded

extension operators

E :W

k;q

!

(
)!W

k;q

!

(R

n

) and

b

E :



W

k;q

!

(
)!



W

k;q

!

(R

n

):

Proof: See [4℄ Theorem 1.2, Theorem 1.4 and Theorem 1.5. 2

It is well known that every bounded Lipshitz domain is an (";1)-domain (see [14℄).

Furthermore the half spae R

n

+

is easily seen to be an (";1)-domain.

3.2 Density of smooth funtions

Lemma 3.1 (Molli�er) Let 1 < q < 1; ! 2 A

q

and 0 � ' 2 C

1

0

(R

n

) radial and

radially deresing with

R

' = 1 and '

"

(x) = "

�n

'(

x

"

); " > 0. Then for all f 2 L

q

!

(R

n

) it

holds '

"

� f ! f in L

q

!

(R

n

) for "! 0.

Proof: See [4℄, Lemma 4.1. 2

For Banah spaes X and Y with norms k � k

X

resp. k � k

Y

the spae X \ Y is equipped

with the norm kzk

X\Y

= kzk

X

+ kzk

Y

:

Lemma 3.2 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2 and 
 � R

n

be an (";1)-domain.

Then C

1

0

(
) is dense in W

k;q

1

!

1

(
) \W

k;q

2

!

2

(
).
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Proof: Let 
 = R

n

: It is straight forward to verify that for  2 C

1

0

(R

n

) with  � 1

on B

1

(0) and  

k

(x) :=  (

x

k

); k 2 N; the sequene ( 

k

u) onverges to u in W

k;q

1

!

1

(R

n

) \

W

k;q

2

!

2

(R

n

). Combination of this fat with Lemma 3.1 yields the assertion for 
 = R

n

:

If 
 � R

n

is an unbounded (";1)-domain, the Extension Theorem 3.1 i) ompletes the

proof.

If 
 � R

n

is a bounded (";1)-domain hoose a bounded open neighborhood U of 
 and

a ut-o� funtion  2 C

1

0

(U) with  � 1 on 
. Then it follows from Theorem 3.1 ii) that

there is an extension operator E from W

k;q

1

!

1

(
) \W

k;q

2

!

2

(
) to W

k;q

1

!

1

(U) \W

k;q

2

!

2

(U) suh

that

k Euk

W

k;q

i

!

i

(R

n

)

� C kuk

W

k;q

i

!

i

(
)

; i = 1; 2:

Thus we have redued the problem to the ase 
 = R

n

disussed above. 2

3.3 Traes

We identify �R

n

+

with R

n�1

and de�ne the spaes

L

1

lo

(R

n

+

) = fu : R

n

+

! C :

Z

R

n

+

\B

r

(0)

jujdx <1; 8r > 0g

W

1;1

lo

(R

n

+

) =

�

u 2 L

1

lo

(R

n

+

) : ru 2 L

1

lo

(R

n

+

)

n

	

:

For every r > 0 and u 2 W

1;1

lo

(R

n

+

) the trae of u

�

�

R

n

+

\B

r

(0)

2 W

1;1

(R

n

+

\ B

r

(0)) on

R

n�1

\ B

r

(0) is well de�ned. Hene there is a linear trae operator  : W

1;1

lo

(R

n

+

) !

L

1

lo

(R

n�1

):

Let 1 < q <1; ! 2 A

q

and k � 1. For u 2



W

k;q

!

(R

n

+

) we have r

k

u 2 L

q

!

(R

n

+

) � L

1

lo

(R

n

+

)

and it follows from the Poinar�e inequality that u 2W

k;1

lo

(R

n

+

): In partiular,



W

k;p

!

(R

n

+

) �

W

1;1

lo

(R

n

+

) and W

k;q

!

(R

n

+

) �W

1;1

lo

(R

n

+

) admitting the following de�nition:

De�nition 3.2 With the trae operator  : W

1;1

lo

(R

n

+

)! L

1

lo

(R

n�1

) let for j � 1

T

j;q

!

(R

n�1

) := (W

j;q

!

(R

n

+

));

b

T

j;q

!

(R

n�1

) := (



W

j;q

!

(R

n

+

))

and denote the kernels of the trae operator  in W

j;q

!

(R

n

+

) and in



W

j;q

!

(R

n

+

) by

W

j;q

0;!

(R

n

+

) := fu 2W

j;q

!

(R

n

+

) : (u) = 0g;



W

j;q

0;!

(R

n

+

) := fu 2



W

j;q

!

(R

n

+

) : (u) = 0g:

For � 2 T

j;q

!

(R

n�1

) and  2

b

T

j;q

!

(R

n�1

) we de�ne

k�k

T

j;q

!

= inffkuk

j;q;!;R

n

+

: u 2W

j;q

!

(R

n

+

); (u) = �g

j j

b

T

j;q

!

= inffkr

j

uk

q;!;R

n

+

: u 2



W

j;q

!

(R

n

+

); (u) =  g:
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Example: Weights of the form !

�

(x) = dist (x; �R

n

+

)

�

are in A

q

for �1 < � < q� 1. For

these weights it is well known ([15℄ or [1℄ p. 184 �) that T

1;q

!

�

(R

n�1

) =W

1�

1+�

q

;q

(R

n�1

):

It follows from the de�nition above that the trae operators

 :W

j;q

!

(R

n

+

)! T

j;q

!

(R

n�1

) and  :



W

j;q

!

(R

n

+

)!

b

T

j;q

!

(R

n�1

)

are linear and bounded, where for simpliity we denote the restritions of the trae operator

 to W

j;q

!

(R

n

+

) and



W

j;q

!

(R

n

+

) again by .

Lemma 3.3 Let 1 < q <1; ! 2 A

q

and u 2



W

1; q

0;!

(R

n

+

). Then the extension ~u of u to R

n

by 0 is in



W

1;q

!

(R

n

): The assertion remains true when replaing



W

1; q

0;!

(R

n

+

) by W

1;q

0;!

(R

n

+

)

and



W

1;q

!

(R

n

) by W

1;q

!

(R

n

).

Proof: Let u 2



W

1; q

0;!

(R

n

+

). First we show that ~u has weak derivatives �

i

~u 2 L

1

lo

(R

n

) for

i = 1; : : : ; n. We denote the extension of �

i

u by 0 to R

n

by v

i

and laim that v

i

= �

i

~u

on R

n

: For the proof hoose � 2 C

1

0

(R

n

) with support in B

R

(0), say, and a ut-o�

funtion �

R

2 C

1

0

(B

2R

(0)) with �

R

= 1 on B

R

(0). Sine u 2



W

1;q

!

(R

n

+

) � W

1;1

lo

(R

n

+

)

and (u) = 0, it follows u �

R

2 W

1;1

0

(B

2R

(0) \ R

n

+

). Therefore there exists a sequene

(u

k

) 2 C

1

0

(B

2R

(0) \ R

n

+

) with u

k

! u�

R

in W

1;1

(B

2R

(0) \ R

n

+

). In partiular, u

k

! u in

W

1;1

(B

R

(0) \ R

n

+

): Thus

Z

R

n

~u�

i

� =

Z

B

R

(0)\R

n

+

u�

i

� = lim

k

Z

B

R

(0)\R

n

+

u

k

�

i

�

= � lim

k

Z

B

R

(0)\R

n

+

�

i

u

k

� = �

Z

B

R

(0)\R

n

+

�

i

u� = �

Z

R

n

v

i

�

proving �

i

~u = v

i

2 L

1

lo

(R

n

). Sine k�

i

~uk

q;!;R

n

= kv

i

k

q;!;R

n

= k�

i

uk

q;!;R

n

+

< 1, we get

~u 2



W

1;q

!

(R

n

). The proof for u 2W

1;q

0;!

(R

n

+

) is analogous. 2

Lemma 3.4 For i = 1; : : : ; n� 1

j�

i

�j

b

T

1;q

!

� j�j

b

T

2;q

!

and k�

i

�k

T

1;q

!

� k�k

T

2;q

!

:

Proof: By de�nition for every � 2

b

T

2;q

!

(R

n�1

) and every  > 1 there is a u 2



W

2;q

!

(R

n

+

),

suh that (u) = � and juj



W

2;q

!

�  j�j

b

T

2;q

!

: We laim that (�

i

u) = �

i

(u) = �

i

� for

i = 1; : : : ; n� 1: For the proof let R > 0 and hoose  

R

2 C

1

0

(R

n

) suh that  

R

(x) = 1

for jxj � R. Note that u 2 W

2;1

lo

(R

n

+

) and therefore  

R

u 2 W

2;1

(R

n

+

). Then it is well

known that (�

i

 

R

u) = �

i

( 

R

u) for i = 1; : : : ; n � 1: Sine R > 0 was arbitrary,

(�

i

u) = �

i

(u) = �

i

� and therefore

j�

i

�j

b

T

1;q

!

� j�

i

uj



W

1;q

!

� juj



W

2;q

!

� j�j

b

T

2;q

!

:

Sine  > 1 was arbitrary the �rst part is proved. The proof of the seond part is

analoguous. 2

Theorem 3.2 For u 2W

1;q

!

(R

n

+

); v 2W

1;q

0

!

0

(R

n

+

) and i = 1; : : : ; n

(u; �

i

v) = �(�

i

u; v) + Æ

in

Z

R

n�1

(u)(v):

Proof: Approximate u and v by funtions from C

1

0

(R

n

+

) and obtain uv 2 W

1;1

(R

n

+

)

yielding �

i

(uv) = u�

i

v + v�

i

u and (uv) = (u)(v): So the laim is redued to the well

known result that

R

R

n

+

�

i

w = Æ

in

R

R

n�1

(w) for w 2W

1;1

(R

n

+

) (see e. g. [2℄). 2
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4 The Laplae equation

4.1 The Laplae equation in R

n

Consider the weak Laplae operator

�

q;!

:



W

1;q

!

(R

n

)!



W

�1;q

!

(R

n

)

(�

q;!

u)(') := �(ru;r')

for all u 2



W

1;q

!

(R

n

) and all ' 2



W

1;q

0

!

0

(R

n

).

Theorem 4.1 Let 1 < q <1 and ! 2 A

q

.

(I) Then �

q;!

is an isomorphism satisfying the estimate

kruk

q;!

� C k�

q;!

uk



W

�1;q

!

8u 2



W

1;q

!

(R

n

);

where C depends only on n; q and A

q

-onsistently inreasing on !.

(II) For 1 < q

i

< 1 and !

i

2 A

q

i

; i = 1; 2; the restrition of �

q

1

;!

1

to



W

1;q

1

!

1

(R

n

) \



W

1;q

2

!

2

(R

n

) is an isomorphism from



W

1;q

1

!

1

(R

n

)\



W

1;q

2

!

2

(R

n

) to



W

�1;q

1

!

1

(R

n

)\



W

�1;q

2

!

2

(R

n

):

(III) If u 2 L

q

1

!

1

(R

n

) + L

q

2

!

2

(R

n

) is harmoni, then u = 0.

Proof: See [9℄ Theorem 4.2 and Lemma 4.1. The A

q

-onsisteny of the onstant in

(I) follows from the A

q

-onsisteny of the onstant in the weighted multiplier theorem

(Theorem 2.1). 2

Corollary 4.1 Let 1 < q <1; ! 2 A

q

and let 
 � R

n

be an (";1)-domain.

(i) C

1

0

(
) is dense in



W

1;q

!

(
) and in



W

2;q

!

(
):

(ii) If additionally 
 is unbounded and 1 < q

i

< 1; !

i

2 A

q

i

; i = 1; 2; then C

1

0

(
) is

dense in



W

1;q

1

!

1

(
) \



W

1;q

2

!

2

(
):

Proof: For simpliity we identify a funtion g with its equivalene lass [g℄ in



W

1;q

!

(
) and



W

2;q

!

(
); repsetively. By the Extension Theorem 3.1 it is suÆient to prove the orollory

for 
 = R

n

.

(i) The assertion for



W

1;q

!

(R

n

) is a speial ase of (ii). Let u 2



W

2;q

!

(
): By Lemma 4.1

iii) in [9℄ there is a sequene ('

k

) � C

1

0

(R

n

) suh that �'

k

! �u in L

q

!

(R

n

). The

Multiplier Theorem 2.1 implies that (r

2

'

k

) is a Cauhy sequene in L

q

!

(R

n

)

N

; N = n

2

.

Sine



W

2;q

!

(R

n

) is a Banah spae there is an v 2



W

2;q

!

(R

n

) suh that r

2

'

k

! r

2

v in

L

q

!

(R

n

)

N

. Thus �u = �v in R

n

. Hene r

2

(u � v) is harmoni in L

q

!

(R

n

)

N

: Lemma 4.1

ii) in [9℄ yields r

2

u = r

2

v, whene r

2

'

k

!r

2

u in L

q

!

(R

n

)

N

.

(ii) Let F = F

1

+ F

2

2



W

�1;q

0

1

!

0

1

(R

n

) +



W

�1;q

0

2

!

0

2

(R

n

) = (



W

1;q

1

!

1

(R

n

) \



W

1;q

2

!

2

(R

n

))

0

suh that

F (') = 0 for all ' 2 C

1

0

(R

n

). Then by Theorem 4.1 for F

i

2



W

�1;q

0

i

!

0

i

(R

n

) there are

u

i

2



W

k;q

0

i

!

0

i

(R

n

); i = 1; 2; with

F (') = (�

q

0

1

;!

0

1

)u

1

(') + (�

q

0

2

;!

0

2

)u

2

(')

10



for all ' 2



W

1;q

1

!

1

(R

n

) \



W

1;q

2

!

2

(R

n

): Choosing ' 2 C

1

0

(R

n

) Weyl's Lemma yields �(u

1

+

u

2

) = 0 on R

n

. Then also �r(u

1

+ u

2

) = 0 on R

n

and we an apply Theorem 4.1 (III) to

onlude r(u

1

+ u

2

) = 0. Hene F = 0: The Theorem of Hahn-Banah yields the desired

assertion. 2

Smooth funtions with ompat support are dense in the trae spaes:

Corollary 4.2 C

1

0

(R

n�1

) is dense in

b

T

1;q

!

(R

n�1

);

b

T

2;q

!

(R

n�1

) and in T

k;q

!

(R

n�1

); k � 1.

Proof: The assertion follows from the density of C

1

0

(R

n

+

) in



W

1;q

!

(R

n

+

); in



W

2;q

!

(R

n

+

) and

in W

k;q

!

(R

n

+

) (see Lemma 3.2, Corollary 4.1) and the fat that (C

1

0

(R

n

+

)) � C

1

0

(R

n�1

).

2

For 0 < " <

�

2

let �

"

:= f� 2 C n f0g : jarg �j < �� "g: Then for � 2 �

"

we onsider the

operator

(���)

q;!

:W

1;p

!

(R

n

)!W

�1;p

!

(R

n

) := (W

1;p

0

!

0

(R

n

))

0

< (���)

q;!

u; ' >:= �(u; ') + (ru;r'):

Theorem 4.2 Let 1 < q <1; ! 2 A

q

; 0 < " <

�

2

and � 2 �

"

.

(I) (���)

q;!

is an isomorphism. It holds the estimate

minfj�j;

p

j�jg kuk

q;!

+minf

p

j�j; 1g kruk

q;!

� C k(���)

q;!

uk

W

�1;q

!

(R

n

)

;

where C depends only on q; n; " > 0 and A

q

-onsistently inreasing on !.

(II) If u 2 S

0

satis�es (���)u = 0; then u = 0.

(III) For 1 < q

i

<1 and !

i

2 A

q

i

; i = 1; 2; the restrition of (���)

q

1

;!

1

to W

1;q

1

!

1

(R

n

)\

W

1;q

2

!

2

(R

n

) is an isomorphism from W

1;q

1

!

1

(R

n

) \W

1;q

2

!

2

(R

n

) to W

�1;q

1

!

1

(R

n

) \W

�1;q

2

!

2

(R

n

):

Proof: For f 2 S we de�ne by Fourier transformation bu(�) := (� + j�j

2

)

�1

b

f(�): Then

u 2 S and (���)u = 0 on R

n

. The weighted Multiplier Theorem 2.1 yields the estimate

j�j kuk

q;!

+ kr

2

uk

q;!

� C kfk

p;!

;

where C depends only on q; n; " > 0 and A

q

-onsistently inreasing on !. To estimate ru

we use the weighted Ehrling Lemma ([9℄, S.264 Theorem 3.5)

p

j�jkruk

q;!

� C (j�jkuk

q;!

+ kr

2

uk

q;!

);

where C depends only on q; n; " and A

q

-onsistently on !. Sine S is dense in L

q

!

(R

n

)

this proves that for every f 2 L

q

!

(R

n

) there is an u 2 W

2;q

!

(R

n

) suh that (� ��)u = f

satisfying the respetive estimate.

To prove the assertion (I) of the Theorem note that for f 2W

�1;q

!

(R

n

) there are f

0

; f

1

; :::; f

n

2

L

q

!

(R

n

) suh that f(�) = (f

0

; �)+

P

n

i=1

(f

i

; �

i

�) onW

1;q

0

!

0

(R

n

) and

P

n

i=0

kf

i

k

q;!

� C kfk

W

�1;q

!

Next we �nd u

i

2W

2;q

!

(R

n

) suh that (���)u

i

= f

i

; i = 0; 1; : : : ; n: It follows that

f(�) = ((���)u

0

; �) +

n

X

i=1

((���)u

i

; �

i

�) 8� 2W

1;q

0

!

0

(R

n

):
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Then u := u

0

�

P

n

i=1

�

i

u

i

2 W

1;q

!

(R

n

) satis�es f(�) = �(u; �) + (ru;r�) for all � 2

C

1

0

(R

n

) and by Lemma 3.2 even for all � 2W

1;q

0

!

0

(R

n

): Moreover

kuk

q;!

� C

�

1

j�j

kf

0

k

q;!

+

1

p

j�j

n

X

i=1

kf

i

k

q;!

�

� C max

n

1

j�j

;

1

p

j�j

o

kfk

W

�1;q

!

:

Analogously we get the estimate for ru.

In partiular, (���)

q;!

is surjetive for arbitrary q 2 (1;1) and ! 2 A

q

: The injetivity

follows from a well known duality argument: Sine q

0

2 (1;1) and !

0

2 A

q

0

, the operator

(� � �)

q

0

;!

0

is surjetive. Furthermore (� � �)

q;!

= [(� � �)

q

0

;!

0

℄

�

. The losed range

theorem (see e. g. [21℄) yields the injetivity of (���)

q;!

.

(II) follows by appliation of the the Fourier transformation in S

0

.

To prove (III) we note that by (I) for every f 2 W

�1;q

1

!

1

(R

n

) \ W

�1;q

2

!

2

(R

n

) there are

solutions u

i

2W

1;q

i

!

i

(R

n

); i = 1; 2; of the equation

�(u; ') + (ru;r') = f(') 8' 2 S:

Hene v := u

1

� u

2

2 S

0

by Lemma 2.2 i) and satis�es (� � �)v = 0 in the sense of

tempered distributions. By (II) it follows v = 0 whih means u

1

= u

2

. 2

Corollary 4.3 For 1 < q < 1; ! 2 A

q

and every unbounded (";1)- domain it holds

W

2;q

!

(
) =



W

2;q

!

(
) \ L

q

!

(
):

Proof: Let 
 = R

n

and v 2



W

2;q

!

(R

n

) \ L

q

!

(R

n

): We have shown in the proof of the

previous Theorem that for f := (1 � �)v 2 L

q

!

(R

n

) there is a u 2 W

2;q

!

(R

n

) suh that

(1��)u = f = (1��)v; i. e. (1��)(u� v) = 0. Sine u� v 2 L

q

!

(R

n

) � S

0

by Lemma

2.2 i), it follows v = u 2W

2;q

!

(R

n

): Thus the assertion is proved for 
 = R

n

. Theorem 3.1

i) ompletes the proof. 2

4.2 The weak solution of the Laplae equation in R

n

+

Lemma 4.1 Let 1 < q <1 and ! 2 A

q

. Then it holds:

(i) For all � 2

b

T

1;q

!

(R

n�1

) and all g 2



W

�1; q

0;!

(R

n

+

) := (



W

1; q

0

0;!

0

(R

n

+

))

0

there exists a u 2



W

1; q

!

(R

n

+

) suh that

(ru;r') = g(') 8' 2



W

1; q

0

0;!

0

(R

n

+

) (7a)

(u) = � (7b)

and there is an A

q

-onsistently inreasing onstant C = C(n; q; !) 2 R suh that

kruk

q;!

� C ( j�j

b

T

1;q

!

+ kgk



W

�1; q

0;!

(R

n

+

)

):

(ii) Let � 2 �

"

with j�j = 1. Then for all � 2 T

1;q

!

(R

n�1

) and all g 2 W

�1;q

0;!

(R

n

+

) :=

(W

1;q

0

0;!

0

(R

n

+

))

0

there exists a u 2W

1;q

!

(R

n

+

) suh that

�(u; ') + (ru;r') = f(') 8' 2W

1;q

0

0;!

0

(R

n

+

)

(u) = �

There is an A

q

-onsistently inreasing onstant C = C(n; q; !; ") > 0 suh that

minfj�j;

p

j�jg kuk

q;!

+minfj�j;

p

j�jg kruk

q;!

� C ( k�k

T

1;q

!

+ kgk

W

�1;q

0;!

(R

n

+

)

):

12



Proof: (i) First, assume (u) = 0: By Lemma 2.1 we an assume ! = !

�

. Note that for

every ' 2



W

1;q

0

!

0

(R

n

) the funtion '

�

�

R

n

+

� �

�

�

�

R

n

+

2



W

1; q

0

0;!

0

(R

n

+

). Hene g 2



W

�1; q

0;!

(R

n

+

) an

be extended to f 2



W

�1;q

!

(R

n

) by f([�℄) := g('

�

�

R

n

+

� '

�

�

�

R

n

+

) for all ' 2



W

1;q

0

!

0

(R

n

): Sine

! = !

�

we have

kfk



W

�1;q

!

(R

n

)

� 2 kgk



W

�1; q

0;!

(R

n

+

)

:

By Theorem 4.1 there is a v 2



W

1;q

!

(R

n

) suh that ��

q;!

[v℄ = f suh that krvk

q;!

�

C kfk



W

�1;q

!

(R

n

)

where C = C(n; q; !) 2 R is A

q

-onsistently inreasing.

Beause of f(['℄) = �f(['

�

℄) also �v

�

2



W

1;q

!

(R

n

) satis�es ��

q;!

(�[v

�

℄) = f . The

uniqueness of the solution in



W

1;q

!

(R

n

) yields the existene of some onstant  suh that

v = �v

�

+ . Sine (v) = (v

�

) we onlude (v) = =2. Thus for u := v

�

�

R

n

+

� =2 2



W

1;q

!

(R

n

+

) it holds (u) = 0 as well as (7a), sine by Lemma 3.3 every � 2



W

1; q

0

0;!

0

(R

n

+

) an

be extended by 0 to ~' 2



W

1;q

0

!

0

(R

n

) suh that

(ru;r')

R

n

+

= (rv;r ~')

R

n

= f( ~') = g(');

kruk

q;!;R

n

+

� krvk

q;!;R

n

� Ckfk



W

�1;q

!

(R

n

)

� 2C kgk



W

�1; q

0;!

(R

n

+

)

:

This proves the assertion with (u) = 0.

In the general ase (u) = � one an hoose U 2



W

1; q

!

(R

n

+

) suh that (U) = � and

krUk

q;!

� 2 j�j

b

T

1;q

!

: Therefore this problem an be redued to the ase with vanishing

trae disussed above with the funtional f(�) := g � (rU;r�) 2



W

�1; q

0;!

(R

n

+

):

(ii) Analogous. 2

Lemma 4.2 Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; 2.

(i) If u 2



W

1;q

1

!

1

(R

n

+

) +



W

1;q

2

!

2

(R

n

+

) is harmoni on R

n

+

with (u) = 0, then u = 0.

(ii) If u 2



W

1;q

1

!

1

(R

n

+

) +



W

1;q

2

!

2

(R

n

+

) and (���)u = 0 for some � 2 C n R

�

, then u = 0.

Proof: (i) By Lemma 2.1 i) we an assume !

i

= !

�

i

; i = 1; 2. For ' 2 C

1

0

(R

n

) we set

 = (' � '

�

)

�

�

R

n

+

2 C

1

(R

n

+

). Then  j

�R

n

+

= 0 and the support of  is ontained in the

losure of the half ball B

+

R

:= R

n

+

\B

R

(0) for some R > 0.

The odd extension U of u to R

n

satis�es

(U;�')

R

n

= (u;� )

R

n

+

= �(ru;r )

B

+

R

:

Observe that u

�

�

B

+

R

2W

1;s

(B

+

R

) for some s > 1 by Lemma 2.2 ii) and that  2W

1;s

0

0

(B

+

R

):

Hene there is a sequene ('

k

) � C

1

0

(B

+

R

) suh that '

k

!  in W

1;s

(B

+

R

). Thus

�(ru;r )

B

+

R

= � lim

k

(ru;r'

k

) = 0:

Sine ' 2 C

1

0

(R

n

) was arbitrary, it follows that U and therefore rU are harmoni in R

n

.

By Weyl's Lemma rU 2 C

1

(R

n

) � L

1

lo

(R

n

) and therefore rU 2 L

q

1

!

1

(R

n

)

n

+ L

q

2

!

2

(R

n

)

n

by assumption. Theorem 4.1 (III) yields rU = 0; whene u is onstant. Sine (u) = 0 it

follows u = 0.

(ii) Analogous. 2
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Theorem 4.3 (I) Let 1 < q < 1 and ! 2 A

q

. Then for every � 2

b

T

1;q

!

(R

n�1

) and

every f 2



W

�1; q

0;!

(R

n

+

) there is a unique solution u 2



W

1;q

!

(R

n

+

) of

(ru;r') = f(') 8' 2 C

1

0

(R

n

+

) (8a)

(u) = � (8b)

and an A

q

-onsistently inreasing onstant C suht that

kruk

q;!

� C (j�j

b

T

1;q

!

+ kfk



W

�1; q

0;!

(R

n

+

)

):

In partiular there is a linear bounded extension operator

R :

b

T

1;q

!

(R

n�1

) �!



W

1;q

!

(R

n

+

)

with R = I, whih assigns to every � 2

b

T

1;q

!

(R

n�1

) the unique solution of (8) for

f � 0 in



W

1;q

!

(R

n

+

).

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2: Then for every � 2

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;p

q

!

2

(R

n�1

) and f 2



W

�1;q

1

0;!

1

(R

n

+

) \



W

�1;q

2

0;!

2

(R

n

+

) the unique solution u 2



W

1;q

1

!

1

(R

n

+

)

of (8) is also in



W

1;q

2

!

2

(R

n

+

):

Proof: (I) follows from Lemma 4.1 (i) and Lemma 4.2 (i).

(II) Assume w.l.o.g. !

i

= !

�

i

; i = 1; 2. First, let f = 0. For � 2

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

)

there are solutions u

i

2



W

1;q

i

!

i

(R

n

+

); i = 1; 2: Then v := u

1

� u

2

2



W

1;q

1

!

1

(R

n

+

) +



W

1;q

2

!

2

(R

n

+

):

By Weyl's Lemma v is harmoni in R

n

+

and (v) = 0: Lemma 4.2 yields v = 0 so u

1

= u

2

:

In the ase 0 6= f 2



W

�1;q

1

0;!

1

(R

n

+

) \



W

�1;q

2

0;!

2

(R

n

+

) extend f by F (v) := f(v

�

�

R

n

+

� v

�

�

�

R

n

+

) for

v 2



W

1;q

0

1

!

0

1

(R

n

) \



W

1;q

0

2

!

0

2

(R

n

) to a funtional F 2



W

�1;q

1

!

1

(R

n

) \



W

�1;q

2

!

2

(R

n

). By Theorem

4.1 ii) there is a solution W 2



W

1;q

1

!

1

(R

n

) \



W

1;q

2

!

2

(R

n

) of

(rW;rv) = F (v) 8v 2 C

1

0

(R

n

):

With u�W instead of u the problem is redued to the ase f = 0 disussed above. 2

Corollary 4.4 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2. Then C

1

0

(R

n�1

) is dense in

� 2

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

):

Proof: By part (II) of the preeding Theorem

R :

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

) �!



W

1;q

1

!

1

(R

n

+

) \



W

1;q

2

!

2

(R

n

+

):

Therefore

 :



W

1;q

1

!

1

(R

n

+

) \



W

1;q

2

!

2

(R

n

+

) �!

b

T

1;q

1

!

1

(R

n�1

) \

b

T

1;q

2

!

2

(R

n�1

) (9)

is surjetive and bounded. Corollary 4.1 ompletes the proof. 2
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Theorem 4.4 (I) Let 1 < q < 1; ! 2 A

q

; 0 < " <

�

2

and � 2 �

"

with j�j = 1.

Then for every � 2 T

1;q

!

(R

n�1

) and every f 2W

�1;q

0;!

(R

n

+

) there is a unique solution

u 2W

1;q

!

(R

n

+

) of

�(u; ') + (ru;r') = f(') 8' 2 C

1

0

(R

n

+

) (10a)

(u) = �: (10b)

There is an A

q

-onsistent inreasing onstant C = C(n; q; "; !) suh that

kuk

1;q;!;R

n

+

� C (k�k

T

1;q

!

+ kfk

W

�1;q

0;!

(R

n

+

)

):

In partiular there is a linear bounded extension operator

R

�

: T

1;q

!

(R

n�1

) �!W

1;q

!

(R

n

+

)

with R

�

= I, whih assigns to every � 2 T

1;q

!

(R

n�1

) the unique solution of (10) for

f � 0 in W

1;q

!

(R

n

+

).

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2 Then for every � 2 T

1;q

1

!

1

(R

n�1

) \

T

1;q

2

!

2

(R

n�1

) and f 2 W

�1;q

1

0;!

1

(R

n

+

) \W

�1;q

2

0;!

2

(R

n

+

) the unique solution u 2 W

1;q

1

!

1

(R

n

+

)

of (10) is also in W

1;q

2

!

2

(R

n

+

):

Proof: Analogous to the proof of Theorem 4.3. 2

Corollary 4.5 Let 1 < q < 1 and ! 2 A

q

. There is an A

q

-onsistent onstant C > 0

suh that for all " > 0 and all u 2W

2;q

!

(R

n

+

) with (u) = 0

kruk

q;!

� C (

1

"

kuk

q;!

+ " kr

2

uk

q;!

):

Proof: By Theorem 4.4

kruk

q;!

� C k(1��)uk

W

�1;q

0;!

� C k(1��)uk

q;!

� C ( kuk

q;!

+ kr

2

uk

q;!

):

This is the laim for " = 1. Note that the A

q

-onstant is saling invariant and the onstant

C > 0 in the estimate above is A

q

-onsistent. Therefore the laim an be obtained for

arbitrary " > 0 by a saling argument. 2

Corollary 4.6 Let 1 < q <1 and ! 2 A

q

. Then C

1

0

(R

n

+

) is dense in both

(



W

1; q

0;!

(R

n

+

); kr � k

q;!

) and (W

1;q

0;!

(R

n

+

); k � k

1;q;!

).

Proof: Let F 2



W

�1;q

0

0;!

0

(R

n

+

) suh that F (') = 0 for all ' 2 C

1

0

(R

n

+

): Then by Lemma

4.1 there is a u 2



W

1; q

0

0;!

0

(R

n

+

) solving (ru;r�) = F (�) for all � 2



W

1; q

0;!

(R

n

+

): It follows

(ru;r') = F (') = 0 for all ' 2 C

1

0

(R

n

+

). Lemma 4.2 yields ru = 0 and F (�) =

(ru;r�) = 0 for all � 2



W

1; q

0;!

(R

n

+

); i.e. F = 0. Hahn-Banah's theorem implies the

density of C

1

0

(R

n

+

) in



W

1; q

0;!

(R

n

+

):

The proof of the seond assertion is analogous. 2
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Corollary 4.7 Let r; q 2 (1;1); ! 2 A

q

; v 2 A

r

. Then C

1

0

(R

n�1

) is dense in T

2;q

!

\T

2;r

v

.

Proof: Let � 2 T

2;q

!

\ T

2;r

!

. Then Theorem 4.4 (II) and Lemma 3.4 imply �

i

R

1

� =

R

1

�

i

� 2W

1;q

!

(R

n

+

)\W

1;r

v

(R

n

+

) for i = 1; : : : ; n�1: Sine also �

2

n

R

1

� = R

1

��

P

i

�

2

i

R

1

� 2

L

q

!

(R

n

+

) \ L

r

v

(R

n

+

) we get R

1

� 2W

2;q

!

(R

n

+

) \W

2;r

v

(R

n

+

): Thus the proof an be ompleted

as the proof of Corollary 4.4. 2

Next we identify the Poisson operators R and R

�

. Let

P

t

(x) := 

n

t

(t

2

+ jxj

2

)

n

2

for x 2 R

n�1

and t > 0. Here 

n

is hosen suh that after Fourier transformation F with

respet to x we get

b

P

t

(�) = e

�tj�j

: We will show that for � 2 S(R

n�1

)



R�(�; t) = e

�tj�j

b

�(�) and

d

R

�

�(�; t) = e

�

p

�+j�j

2

t

b

�(�):

Theorem 4.5 Let 1 < q <1 and ! 2 A

q

. (I) For � 2 S(R

n�1

) holds

kr(P

t

� �)k

q;!

� C j�j

b

T

1;q

!

(11)

kr

2

(P

t

� �)k

q;!

� C j�j

b

T

2;q

!

(12)

where C depends only on n; q and A

q

-onsistently inreasing on !.

The Poisson operator R of Theorem 4.3 is the unique extension of the operator (T�)(x; t) =

(P

t

� �)(x); � 2 S; to a bounded linear operator on

b

T

1;q

!

with the property R = I.

(II) Let � 2 �

"

; 0 < " <

�

2

, j�j = 1; � 2 S and u(x; x

n

) := F

�1

e

�

p

�+j�j

2

t

b

� for x 2 R

n�1

and t > 0: Then there is an A

q

-onsistently inreasing onstant C = C(n; q; "; !) > 0 suh

that

kuk

W

1;q

!

(R

n

+

)

� C k�k

T

1;q

!

;

kuk

W

2;q

!

(R

n

+

)

� C k�k

T

2;q

!

:

The Poisson operator R

�

of Theorem 4.4 is the unique extension of the operator (T

�

�)(x; t) :=

F

�1

e

�

p

�+j�j

2

t

b

�; � 2 S; to a bounded linear operator on T

1;q

!

(R

n�1

) with the property

R

�

= I.

Proof: (I) By Corollary 4.2 we have S(R

n�1

) �

b

T

1;q

!

(R

n�1

) \

b

T

1;q

(R

n�1

) for every

1 < q < 1. It is well known, see e. g. [16℄ S.132 Theorem 4.4. and [3℄ Appendix 3,

that u(x; t) := (P

t

� �)(x) 2



W

1;q

(R

n

+

) is harmoni on R

n

+

with (u) = �: From Theorem

4.3 (II) it follows u 2



W

1;q

!

(R

n

+

) and by the uniqueness assertion of part (I) of the same

Theorem u = R� satisfying the estimate

kr(P

t

� �)k

q;!

= kruk

q;!

� C j�j

b

T

1;q

!

:

Hene for i = 1; : : : ; n� 1

k�

i

r(P

t

� �)k

q;!

= kr(P

t

� �

i

�)k

q;!

� C j�

i

�j

b

T

1;q

!

� C j�j

b

T

2;q

!

:

Beause of �(P

t

� �) = 0 we also get that k�

2

t

(P

t

� �)k

p;!

� C j�j

b

T

2;q

!

: Thus (12) is also

proved.

Sine by Corollary 4.2 S(R

n�1

) is dense in

b

T

1;q

!

(R

n�1

) the last assertion of the Theorem

is lear.

(II) Analogous to (I), if we observe that F

�1

e

�

p

�+j�j

2

t

b

� 2 W

1;q

(R

n

+

); 1 < q < 1; for

� 2 S (see e. g. [8℄ for a detailed proof). 2
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5 The Stokes problem

5.1 Weak solution of the Stokes equation in R

n

The onsiderations in [6℄ transfer to the weighted ase:

Let 1 < q < 1 and ! 2 A

q

. For f 2



W

�1; q

!

(R

n

)

n

and g 2 L

q

!

(R

n

) we look for a weak

solution (u; p) 2



W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes equation

(ru;r') � (p;div') = f(') 8' 2 C

1

0

(R

n

)

n

(13a)

divu = g: (13b)

Therefore we show the following variational inequality:

Lemma 5.1 Let 1 < q

i

<1 and !

i

2 A

q

i

for i = 1; 2. Let (u; p) 2



W

1; q

1

!

1

(R

n

)

n

�L

q

1

!

1

(R

n

)

with

sup

06='2C

1

0

(R

n

)

n

j(ru;r')� (p;div')j

kr'k

q

0

2

;!

0

2

+ kdiv uk

q

2

;!

2

<1:

Then (u; p) 2



W

1; q

2

!

2

(R

n

)

n

� L

q

2

!

2

(R

n

) and

kruk

q

2

;!

2

+ kpk

q

2

;!

2

� C

 

sup

06='2C

1

0

(R

n

)

n

j(ru;r') � (p;div')j

kr'k

q

0

2

;!

0

2

+ kdivuk

q

2

;!

2

!

; (14)

where C > 0 depends only on n; q

2

and A

q

2

-onsistently inreasing on !

2

.

Proof: Note that �C

1

0

(R

n

) is dense in L

q

2

!

2

(R

n

) (see [9℄ Lemma 4.1) and that kr

2

 k

q

0

2

;!

0

2

�

C k� k

q

0

2

;!

0

2

for  2 C

1

0

(R

n

); where C > 0 depends only on n; q

2

and A

q

2

-onsistently in-

reasing on !

2

(a onsequene of the Multiplier Theorem 2.1). Thus the proof is ompletely

analogous to the proof in the ase without weights (see [6℄, Lemma 3.1). 2

First, apply Lemma 5.1 to the ase q := q

1

= q

2

and ! := !

1

= !

2

. Consider the linear

bounded operator

S

q;!

:



W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) �!



W

�1; q

!

(R

n

)

n

� L

q

!

(R

n

)

S

q;!

(u; p) := ((ru;r�) � (p;div �);�div u):

Beause of



W

1;q

0

!

0

(R

n

) = C

1

0

(R

n

)

kr�k

q

0

;!

0

and the variational inequality (14) we an on-

lude that S

q;!

is injetive and has losed range. By the losed range theorem (see e.g.

[21℄) the dual aperator

(S

q;!

)

0

: [



W

�1; q

!

(R

n

)

n

� L

q

!

(R

n

)℄

0

! [



W

1; q

!

(R

n

)

n

� L

q

!

(R

n

)℄

0

is surjetive. One easily veri�es (S

q;!

)

0

= S

q

0

;!

0

. Beause 1 < q < 1 and ! 2 A

q

are

arbitrary in this onsideration, it follows that S

q;!

is an isomorphism.

So we have shown the following Theorem:

Theorem 5.1 For all (f; g) 2



W

�1; q

!

(R

n

)

n

�L

q

!

(R

n

) exists a unique weak solution (u; p) 2



W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes system (13). Furthermore

kruk

q;!

+ kpk

q;!

� C (kfk



W

�1; q

!

+ kgk

q;!

);

where C 2 R depends only on q; n and A

q

-onsistently inreasing on !.
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A further appliation in Lemma 5.1 yields the following regularity assertion:

Corollary 5.1 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2; f 2



W

�1;q

1

!

1

(R

n

)

n

\



W

�1;q

2

!

2

(R

n

)

n

and g 2 L

q

1

!

1

(R

n

)�L

q

2

!

2

(R

n

): Then the unique weak solution (u; p) 2



W

1;q

1

!

1

(R

n

)

n

�L

q

1

!

1

(R

n

)

of the Stokes equation (13a), (13b) belongs also to



W

1;q

2

!

2

(R

n

)

n

� L

q

2

!

2

(R

n

).

5.2 The Stokes equation in R

n

+

Let � 2 C

1

0

(R

n�1

)

n

. Consider the Stokes equations

��W +rS = 0; divW = 0 in R

n

+

; W

�

�

R

n�1

= �:

In [10℄ S.192 �. one an �nd the following expliit solution, whih ontinuously attains

the boundary values:

W

j

(x) :=

n

X

i=1

Z

R

n�1

K

ij

(x

0

� y

0

; x

n

)�

i

(y

0

) dy

0

(15)

S(x) := �div(P

x

n

� �) (16)

for j = 1; : : : ; n with

K

ij

(x

0

� y

0

; x

n

) := C

n

x

n

(x

i

� y

i

)(x

j

� y

j

)

(jx

0

� y

0

j

2

+ x

2

n

)

n+2

2

; y

n

= 0

P

x

n

(x

0

) = 

n

x

n

(jx

0

j

2

+ x

2

n

)

n

2

;

where 

n

; C

n

depend only on n. Theorem 4.5 immediately yields the weighted estimates

for the pressure:

kSk

q;!

= kdiv(P

x

n

� �)k

q;!

� kr(P

x

n

� �)k

q;!

� C j�j

b

T

1;q

!

;

krSk

q;!

� kr

2

(P

x

n

� �)k

q;!

� C j�j

b

T

2;q

!

;

where C is A

q

-onsistently inreasing.

To obtain the weighted estimates for the veloity �eld W we use a well known regularity

assertion (see e. g. [10℄, Lemma 3.1 S. 196):

Lemma 5.2 For every 1 < q <1 and every j�j � 0 it holds

D

�

rW 2 L

q

(R

n

+

)

n

2

and D

�

S 2 L

q

(R

n

+

):

Therefore W 2



W

1;q

(R

n

+

)

n

and it solves the Laplae equation

�W = rS in R

n

+

; (W ) = �

in the distributional sense for datarS 2



W

�1;q

0

(R

n

+

)

n

\



W

�1; q

0;!

(R

n

+

)

n

und � 2 C

1

0

(R

n�1

)

n

�

b

T

1;q

(R

n�1

)

n

\

b

T

1;q

!

(R

n�1

)

n

. Thus Theorem 4.3 (II) yields W 2



W

1; q

!

(R

n

+

): Theorem 4.3

and the weighted estimates for S imply

krWk

q;!

� C (j�j

T

1;q

!

+ krSk



W

�1; q

0;!

) � Cj�j

T

1;q

!

;

where C depends only on n; q and A

q

-onsistently inreasing on !.

Sine C

1

0

(R

n�1

) is dense in

b

T

1;q

!

(R

n

+

) by Corollary 4.4, we have shown:
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Lemma 5.3 Let 1 < q < 1 and ! 2 A

q

. For � 2

b

T

1;q

!

(R

n

+

)

n

there is a weak solution

(W;S) 2



W

1; q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) of the Stokes equation

(rW;r') � (S;div') = 0 8' 2 C

1

0

(R

n

+

)

n

divW = 0

(W ) = �:

Furthermore there is an A

q

-onsistently inreasing onstant C > 0 suh that

krWk

q;!

+ kSk

q;!

� C j�j

b

T

1;q

!

:

Theorem 5.2 (I) Let 1 < q < 1 und ! 2 A

q

: Then for every f 2



W

�1; q

0;!

(R

n

+

)

n

; g 2

L

q

!

(R

n

+

) and � 2

b

T

1;q

!

(R

n

+

) there is a unique weak solution (W;S) 2



W

1; q

!

(R

n

+

)

n

�

L

q

!

(R

n

+

) of the Stokes system

(rW;r') � (S;div') = f(') 8' 2 C

1

0

(R

n

+

)

n

(17a)

divW = g (17b)

(W ) = �: (17)

Furthermore there is an A

q

-onsistently inreasing onstant C > 0 suh that

krWk

q;!

+ kSk

q;!

� C (kfk



W

�1; q

0;!

+ kgk

q;!

+ j�j

b

T

1;q

!

):

(II) Let 1 < q

i

< 1 and !

i

2 A

q

i

for i = 1; 2; f 2



W

�1;q

1

0;!

1

(R

n

+

)

n

\



W

�1;q

2

0;!

2

(R

n

+

)

n

; g 2

L

q

1

!

1

(R

n

+

) \ L

q

2

!

2

(R

n

+

) and � 2

b

T

1;q

1

!

1

(R

n�1

)

n

\

b

T

1;q

2

!

2

(R

n�1

)

n

. Then the unique weak

solution (u; p) 2



W

1;q

1

!

1

(R

n

+

)

n

� L

q

1

!

1

(R

n

+

) of the Stokes system (17) belongs also to



W

1;q

2

!

2

(R

n

+

)

n

� L

q

2

!

2

(R

n

+

).

Proof: (I) Extend f 2



W

�1; q

0;!

(R

n

+

)

n

by Hahn-Banah's theorem under preservation of

the norm to

�

f 2



W

�1; q

!

(R

n

+

)

n

. Then de�ne

~

f by

~

f(') :=

�

f('

�

�

R

n

+

) for all ' 2



W

1;q

0

!

0

(R

n

)

n

.

Thus

~

f 2



W

�1; q

!

(R

n

)

n

with

k

~

fk



W

�1; q

!

(R

n

)

� k

�

fk



W

�1; q

!

(R

n

+

)

= kfk



W

�1; q

0;!

(R

n

+

)

:

Furthermore extend g by 0 to ~g 2 L

q

!

(R

n

). By Theorem 5.1 there is a weak solution

(W;S) 2



W

1; q

!

(R

n

)

n

� L

q

!

(R

n

) of the Stokes equations (13) on R

n

with right-hand side

(

~

f; ~g). Moreover, by Lemma 5.3 there is a solution (v; s) 2



W

1; q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) of (17)

oresponding to f = 0; g = 0 and (v) = ��(W ). Then u := v+W

�

�

R

n

+

and p := s+S

�

�

R

n

+

satisfy (17).

To prove uniqueness we onsider the linear bounded operator

S

q;!

:



W

1; q

0;!

(R

n

+

)

n

� L

q

!

(R

n

+

) �!



W

�1; q

0;!

(R

n

+

)

n

� L

q

!

(R

n

+

)

S

q;!

(u; p) := ((ru;r�)� (p;div �);�div u):

The preeding onsiderations (with � = 0) imply that S

q;!

is surjetive. One easily veri�es

(S

q;!

)

0

= S

q

0

;!

0

. Therefore S

q

0

;!

0

is injetive. Sine 1 < q <1 and ! 2 A

q

were arbitrary

it follows that S

q;!

is an isomorphism. 2
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(II) Similar to (I), the problem an be redued to the ase f � 0 und g � 0.

By Corollary 4.4 there is a sequene (�

k

) � C

1

0

(R

n�1

)

n

; suh that �

k

! � in

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

): The expliit solution (W

k

; S

k

) (see (15)) oresponding to �

k

is ontained both

in



W

1;q

1

!

1

(R

n

+

)

n

�L

q

1

!

1

(R

n

+

) and in



W

1;q

2

!

2

(R

n

+

)

n

�L

q

2

!

2

(R

n

+

): The estimates in Lemma 5.3 imply

the existene of (u

1

; p

1

) 2



W

1;q

1

!

1

(R

n

+

)

n

� L

q

1

!

1

(R

n

+

) and (u

2

; p

2

) 2



W

1;q

2

!

2

(R

n

+

)

n

� L

q

2

!

2

(R

n

+

)

suh that

rW

k

!ru

i

in L

q

i

!

i

(R

n

+

)

n

2

and S

k

! p

i

in L

q

i

!

i

(R

n

+

)

for i = 1; 2. Sine the onvergene in L

q

i

!

i

(R

n

+

) implies onvergene in D

0

(R

n

+

) and sine

the limit in D

0

(R

n

+

) is unique it follows ru

1

= ru

2

and p

1

= p

2

. Therefore (u

1

; p

1

) 2



W

1;q

1

!

1

(R

n

+

)

n

�L

q

1

!

1

(R

n

+

) is also in



W

1;q

2

!

2

(R

n

+

)

n

�L

q

2

!

2

(R

n

+

) and a weak solution of the Stokes

equation for f � 0; g � 0 and boundary values �. 2

Now we investigate strong solutions of the Stokes equation in R

n

+

.

Lemma 5.4 Let 1 < q

i

< 1; !

i

2 A

q

i

for i = 1; 2; f 2 L

q

1

!

1

(R

n

+

)

n

\ L

q

2

!

2

(R

n

+

)

n

; g 2



W

1;q

1

!

1

(R

n

+

) \



W

1;q

2

!

2

(R

n

+

); � 2

b

T

2;q

1

!

1

(R

n�1

) \

b

T

2;q

2

!

2

(R

n�1

) and let (u; p) 2



W

2;q

1

!

1

(R

n

+

)

n

�



W

1;q

1

!

1

(R

n

+

) be a solution of the Stokes problem

��u+rp = f (18a)

div u = g (18b)

(u) = �: (18)

Then (u; p) 2



W

2;q

2

!

2

(R

n

+

)

n

�



W

1;q

2

!

2

(R

n

+

):

Proof: For i = 1; : : : ; n�1 the partial derivatives �

i

� 2

b

T

1;q

1

!

1

(R

n�1

)\

b

T

1;q

2

!

2

(R

n�1

); �

i

f 2



W

�1;q

1

0;!

1

(R

n

+

)

n

\



W

�1;q

2

0;!

2

(R

n

+

)

n

; �

i

g 2 L

q

1

!

1

(R

n

+

) \ L

q

2

!

2

(R

n

+

) and (�

i

u; �

i

p) 2



W

1;q

1

!

1

(R

n

+

)

n

�

L

q

1

!

1

(R

n

+

) satisfy

(r�

i

u;r') + (�

i

p;div') = �

i

f(') 8' 2 C

1

0

(R

n

+

)

n

div �

i

u = �

i

g

(�

i

u) = �

i

�:

Theorem 5.2 (II) yields �

i

u 2



W

1;q

2

!

2

(R

n

+

) and �

i

p 2 L

q

2

!

2

(R

n

+

) for i = 1; : : : n� 1. Therefore

�

n

u

n

= g �

n�1

X

i=1

�

i

u

i

2



W

1;q

2

!

2

(R

n

+

); �

2

n

u

j

= f

j

�

n�1

X

i=1

�

2

i

u

j

� �

j

p 2 L

q

2

!

2

(R

n

+

) (19)

for j = 1; : : : ; n� 1: Thus �

n

u 2



W

1;q

2

!

2

(R

n

+

). Altogether we have shown u 2



W

2;q

2

!

2

(R

n

+

)

n

.

Using the Stokes equation we obtain rp 2 L

q

2

!

2

(R

n

+

)

n

. 2

Theorem 5.3 For every f 2 L

q

!

(R

n

+

)

n

; g 2



W

1; q

!

(R

n

+

) and � 2

b

T

2;q

!

(R

n�1

) there is a

solution (u; p) 2



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

) of the Stokes problem (18). For all these solutions

it holds the estimate

kr

2

uk

q;!

+ krpk

q;!

� C(kfk

q;!

+ krgk

q;!

+ j�j

b

T

2;q

!

); (20)

where C depends only on n; q and A

q

-onsistently inreasing on !.

If (u; p) 2



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

) is a solution of the of the Stokes problem for (f; g; �) �

(0; 0; 0), then there is a vetor a = (a

1

; : : : ; a

n�1

; 0) 2 C

n

and a onstant  2 C suh that

u(x

0

; x

n

) = ax

n

and p(x

0

; x

n

) � .

20



Proof: First, assume f 2 L

q

!

(R

n

+

)

n

\ L

q

(R

n

+

); g 2



W

1; q

!

(R

n

+

) \



W

1;q

(R

n

+

) and � 2

b

T

2;q

!

(R

n�1

) \

b

T

2;q

(R

n�1

). Then by Lemma 5.2 there is a solution (u; p) 2



W

2;q

(R

n

+

) �



W

1;q

(R

n

+

) of the Stokes problem (18). By Lemma 5.4 this solution is also in



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

):

Thus (�

i

u; �

i

p) 2



W

1;q

!

(R

n

+

)

n

� L

q

!

(R

n

+

) is for i = 1; : : : ; n � 1 a weak solution for data

�

i

f; �

i

g; �

i

� and Theorem 5.2 yields the estimate

kr�

i

uk

q;!

+ k�

i

pk

q;!

� C(k�

i

fk



W

�1; q

0;!

+ k�

i

gk

q;!

+ j�

i

�j

b

T

1;q

!

)

� C(kfk

q;!

+ krgk

q;!

+ j�j

b

T

2;q

!

):

The identity (19) implies the weighted estimate for �

n

u and thus also for rp. Altogether

we have shown the estimate (20) for this speial solution (u; p). The standard density

argument yields the existene result and the weighted estimate also for general (f; g; �) 2

L

q

!

(R

n

+

)

n

�



W

1; q

!

(R

n

+

)�

b

T

2;q

!

(R

n

+

)

n

(see Corollary 4.1 and Corollary 4.2).

Now let (u; p) 2



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

) be an arbitrary solution of the Stokes problem

for (f; g; �) = (0; 0; 0). Then (�

i

u; �

i

p) 2



W

1; q

!

(R

n

+

)

n

�L

q

!

(R

n

+

); i = 1; : : : ; n�1; is a weak

solution of the Stokes problem with right hand sides equal to 0. Theorem 5.2 implies that

�

i

u � 0 and �

i

p = 0 for i = 1; : : : ; n � 1. Moreover (19) together with (u) = 0 imply

u(x

0

; x

n

) = (a

1

; : : : ; a

n�1

; 0)x

n

with a

1

; : : : ; a

n�1

2 C . Thus rp = �u = 0; whih yields

that p is onstant. Therefore the estimate (20) holds for an arbitrary solution of the Stokes

problem (18a) -(18) in



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

). 2

6 The Stokes resolvent problem

Proof of Theorem 1.1: i) The proof of weighted estimates for general A

q

-weights for

the Stokes resolvent system (1) in the whole spae R

n

an be found in [9℄, p. 270, Theorem

4.5. Note that the onstant C in the estimate in that Theorem depends A

q

-onsistently

inreasing on ! 2 A

q

; sine the estimate follows from the weighted version of Mihlin's

Multiplier Theorem (see Theorem 2.1). In the sequel we disuss the ase R

n

+

:

6.1 Saling argument

We show by a saling argument that it is suÆient to prove Theorem 1.1 for � 2 �

"

with

j�j = 1.

First, note that the A

q

-onstant is saling invariant, i.e. the weights !(x) and !(�x); � >

0; have the same A

q

-onstant.

Write � 2 �

"

in the form � = re

i�

; r > 0: Let (u; p) 2W

2;q

!

(R

n

+

)

n

�



W

1; q

!

(R

n

+

) be a solution

of the Stokes resolvent system (1) in R

n

+

. Let û(x) := r u(

x

p

r

) and p̂(x) :=

p

r p(

x

p

r

) for

x 2 R

n

+

. Then (û) = 0 and for x 2 R

n

+

e

i�

û(x)��û(x) +rp̂(x) = f(

x

p

r

); div û(x) =

p

r g(

x

p

r

): (21)

We will show the resolvent estimate of Theorem 1.1 for all � 2 �

"

with j�j = 1, where the

onstant C = C(n; q; "; !) in this estimate depends A

q

-onsistently inreaing on ! 2 A

q

.

Then, in partiular, C = C(n; q; "; !) an be hoosen in suh a way that it depends only
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on n; q; " and the A

q

-onstant of !. Sine ! and the saled weight !(

x

p

r

) have the same

A

q

-onstant it follows that

rkuk

q;!

= r

�

Z

R

n

+

ju(x)j

q

!(x)dx

�

1

q

=

�

1

p

r

n

Z

R

n

+

jû(y)j

q

!

�

y

p

r

�

dy

�

1

q

� C

h �

Z

R

n

+

�

�

f

�

y

p

r

�

�

�

q

!

�

y

p

r

�

dy

p

r

n

�

1

q

+

�

Z

R

n

+

�

�

r

y

p

r g

�

y

p

r

�

�

�

q

!

�

y

p

r

�

dy

p

r

n

�

1

q

+

�

1

p

r

�

n

q

sup

 2C

1

0

(R

n

+

)

j

R

p

r g(

y

p

r

) (y)dy j

(

R

jr (y)j

q

0

!

�

1

q�1

(

y

p

r

)dy)

1

q

0

i

= C [ kfk

q;!

+ krgk

q;!

+ r kgk



W

�1; q

!

℄;

where C = C(n; q; "; !(

�

p

r

)) = C(n; q; "; !) is A

q

-onsistently inreasing and therefore

independent of r. The estimates for r

2

u and rp an be obtained from the estimates for

j�j = 1 of r

2

û and rp̂ analogously.

6.2 Derivation of the solution formulas

To derive an expliit solution formula we proeed as in [8℄.

Assume j�j = 1 and ! = !

�

, where !

�

(x

0

; x

n

) := !(x

0

;�x

n

) for (x

0

; x

n

) 2 R

n

(see Lemma

2.1). Write f in the form (f

0

; f

n

) with f

0

= (f

1

; : : : ; f

n�1

) and extend f

0

even to f

0

e

and f

n

odd to f

no

to R

n

. Then F := (f

0

e

; f

no

) 2 L

q

!

(R

n

)

n

. Moreover, we denote by

G 2W

1;q

!

(R

n

)\



W

�1; q

!

(R

n

) the even extension of g to R

n

. Then Theorem 4.5 in [8℄ yields

the existene of a solution (U;P ) 2W

2;q

!

(R

n

)

n

�



W

1; q

!

(R

n

) to the resolvent problem with

right hand sides F and G.

An easy symmetry onsideration implies that (U

n

) = 0. Set �

0

:= (U

0

) 2 T

2;q

!

(R

n�1

)

n�1

:

The estimate in Theorem 1.1 for 
 = R

n

with j�j = 1 and the assumption ! = !

�

yield

k�

0

k

T

2;q

!

� kU

0

k

W

2;q

!

(22)

� C ( k(F;rG)k

q;!

+ kGk



W

�1; q

!

) (23)

� 2C ( k(f;rg)k

q;!

+ kgk



W

�1; q

!

); (24)

where C depends only on n; q; " and A

q

-onsistently inreasing on !.

Substrating (U;P ) the resolvent problem is redued to the problem

�u��u+rp = 0 (25a)

divu = 0 (25b)

(u

0

) = �

0

(25)

(u

n

) = 0: (25d)

It remains to show that for �

0

2 T

2;q

!

(R

n�1

)

n�1

there is a unique solution (u; p) 2

W

2;q

!

(R

n

+

)

n

�



W

1; q

!

(R

n

+

) of problem (25a)-(25d) satisfying the estimate

k(u;ru;r

2

u;rp)k

q;!

� C k�

0

k

T

2;q

!

(26)

with an A

q

-onsistently inreasing onstant C.
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By b= F

0

we denote the Fourier transformation with respet to the �rst n� 1 variables.

Then (see [8℄) the solution of problem (25) is given by

u

n

(�

0

; x

n

) = i�

0

�

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

b

�

0

(�

0

) (27)

b

u

0

(�

0

; x

n

) = ��

n

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

�

0

�

0

s

2

b

�

0

(�

0

) + (I �

�

0

�

0

s

2

) e

�

p

�+s

2

x

n

b

�

0

(�

0

); (28)

bp(�

0

; x

n

) = �

1

s

2

(�+ s

2

� �

2

n

)�

n

u

n

(�

0

; x

n

) (29)

where �

0

�

0

2 R

n�1;n�1

denotes the dyadi produt of �

0

with itself and s = j�

0

j.

6.3 Weighted estimates

In the sequel let �

0

2 C

1

0

(R

n�1

)

n�1

and � 2 �

"

with j�j = 1. Note that the onstants C

in the proof depend A

q

-onsistently inreasing on !.

The estimate of u

n

:

Reall the Poisson operators of the Laplae and Laplae resolvent equation disussed in

setion 4:

d

R�

0

(�

0

; x

n

) = e

�sx

n

b

�

0

(�

0

) and

[

R

�

�

0

(�

0

; x

n

) = e

�

p

�+s

2

x

n

b

�

0

(�

0

): (30)

Boundedness properties of these operators are proven in Theorem 4.5 We split the solution

formula (27) of u

n

; noting that �(

p

�+ s

2

� s)

�1

=

p

�+ s

2

+ s; into four summands

u

n

(�

0

; x

n

) = i�

0

�

e

�

p

�+s

2

x

n

� e

�sx

n

p

�+ s

2

� s

b

�

0

=

n�1

X

j=1

i �

j

�

[

p

�+ s

2

e

�

p

�+s

2

x

n

�

p

�+ s

2

e

�sx

n

+ s e

�

p

�+s

2

x

n

� s e

�sx

n

℄

b

�

0

j

: (31)

For j = 1; : : : ; n� 1 we have

F

0

�1

i�

j

p

�+ s

2

e

�

p

�+s

2

x

n

b

�

j

= ��

j

�

n

R

�

�

j

F

0

�1

i�

j

s e

�sx

n

b

�

j

= ��

j

�

n

R�

j

:

Thus Theorem 4.5 implies the L

q

!

-estimates:

k�

j

�

n

R

�

�

j

k

q;!

+ k�

j

�

n

R�

j

k

q;!

� C k�

j

k

T

2;q

!

(32)

For the estimate of the two remaining terms in (31) onsider the multiplier operators

d

T

1

�

0

(�

0

) = s

b

�

0

(�

0

) and

d

T

2

�

0

(�

0

) =

p

�+ s

2

b

�

0

(�

0

):

Lemma 6.1 There exists an A

q

-onsistently inreasing onstant C 2 R suh that

i) kT

1

�

0

k

T

1;q

!

� C k�

0

k

T

2;q

!

ii) kT

2

�

0

k

T

1;q

!

� C k�

0

k

T

2;q

!
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Proof: i): De�ne an extension of T

1

�

0

to R

n

+

by

bw(�

0

; x

n

) := s e

�sx

n

b

�

0

(�

0

):

Then (w) = T

1

�

0

and w = ��

n

R�

0

: It follows from Theorem 4.5

kwk

q;!

= k�

n

R�

0

k

q;!

� C j�

0

j

b

T

1;q

!

;

krwk

q;!

= k�

n

rR�

0

k

q;!

� C j�

0

j

b

T

2;q

!

:

Sine (w) = T

1

�

0

it follows

kT

1

�

0

k

T

1;q

!

� kwk

W

1;q

!

� Ck�

0

k

T

2;q

!

:

ii): Extend T

2

�

0

to R

n

+

by

bw(�

0

; x

n

) :=

p

�+ s

2

e

�

p

�+s

2

x

n

b

�

0

(�

0

):

Then (w) = T

2

�

0

and w = ��

n

R

�

�

0

: By Theorem 4.5 it follows

kwk

W

1;q

!

= k�

n

R

�

�

0

k

W

1;q

!

� C k�

0

k

T

2;q

!

:

Sine (w) = T

2

�

0

the proof is omplete. 2

The remaining two terms in (31) an be written in the following form

F

0

�1

i�

j

p

�+ s

2

e

�sx

n

b

�

j

= �

j

RT

2

�

j

(33)

F

0

�1

i�

j

s e

�

p

�+s

2

x

n

b

�

j

; = �

j

R

�

T

1

�

j

: (34)

Then Theorem 4.5 and the last Lemma imply

k�

j

RT

2

�

j

k

q;!

� C jT

2

�

j

j

b

T

1;q

!

� C k�

j

k

T

2;q

!

(35)

k�

j

R

�

T

1

�

j

k

q;!

� C kT

1

�

j

k

T

1;q

!

� C k�

j

k

T

2;q

!

: (36)

Thus the desired L

q

!

-estimate for u

n

is proven, i. e.

jju

n

jj

q;!

� C jj�

0

k

T

2;q

!

; (37)

where C > 0 depends only on n; q; " and A

q

-onsistently inreasing on !.

The estimate of u

0

:

Reall the formula (28) for u

0

. An easy omputation using the identity �(

p

�+ s

2

�s)

�1

=

p

�+ s

2

+ s yields

b

u

0

(�

0

; x

n

) =

1

�

�

�

0

�

0

e

�

p

�+s

2

x

n

+

�

0

�

0

s

p

�+ s

2

e

�

p

�+s

2

x

n

�

�

0

�

0

s

p

�+ s

2

e

�sx

n

(38)

��

0

�

0

e

�sx

n

+ � e

�

p

�+s

2

x

n

�

b

�

0

:
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The estimate for the �rst, the fourth and �fth summand in (38) is easy, beause for

i; j = 1; : : : ; n� 1 we have

F

0

�1

�

i

�

j

e

�

p

�+s

2

x

n

b

�

j

= ��

i

�

j

R

�

�

j

F

0

�1

�

i

�

j

e

�sx

n

b

�

j

= ��

i

�

j

R�

j

F

0

�1

e

�

p

�+s

2

x

n

b

�

j

= R

�

�

j

:

Thus by Theorem 4.5 the L

q

!

(R

n

+

)-norm of these three terms an be estimated by k�

0

k

T

2;q

!

.

To estimate the seond and the third term in (38) we study the Riesz transformation

d

S

i

� =

�

i

s

b

�

for i = 1; : : : ; n� 1 and � 2 S(R

n�1

). It is well known that S

i

an be written in the form

S

i

�(x

0

) = lim

"!0



n

Z

jx

0

�y

0

j>"

x

i

� y

i

jx

0

� y

0

j

n

�(y

0

)dy

0

:

Here and in the sequel 

n

6= 0 always denotes a onstant depending only on n whih may

be di�ernet from line to line. The following Lemma onerning boundedness of the Riesz

transformation in the trae spaes is deisive:

Lemma 6.2 For � 2 S(R

n�1

) and i; j = 1; : : : ; n� 1 it holds

i) jS

i

�j

b

T

1;q

!

� C j�j

b

T

1;q

!

ii) k�

j

S

i

�k

T

1;q

!

� C k�k

T

2;q

!

;

where C > 0 depends only on n; q and A

q

-onsistently inreasing on !.

Proof: Consider the operators

P

i

�(x

0

; x

n

) :=

Z

R

n�1

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

(39)

for i = 1; : : : ; n� 1 and � 2 S(R

n�1

).

Let v := R�: Then by Theorem 4.5 v 2



W

1; q

!

(R

n

+

) with (v) = � and

krvk

q;!

� C j�j

b

T

1;q

!

:

Note that v 2 C

1

(R

n

+

) and that v is bounded on R

n

+

- more preisely:

kv(�; t)k

1

= kP

t

� �k

1

� 

n

sup

x

0

�

�

�

Z

R

n�1

t

(t

2

+ jx

0

� y

0

j

2

)

n

2

�(y

0

)dy

0

�

�

�

� C(�)

Z

R

n�1

1

t

n�1

�

jx

0

� y

0

j

2

t

2

+ 1

�

�

n

2

(1 + jy

0

j)

�n

dy

0

� C(�) (1 + t)

�n+1

:

Then for every x

0

; y

0

2 R

n�1

and x

n

> 0

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

) = �

Z

1

0

�

t

h

x

i

� y

i

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

v(y

0

; t)

i

dt:
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Inserting this into (39) we obtain for i; j = 1; : : : ; n� 1

��

j

P

i

�(x

0

; x

n

) = �

j

Z

R

n

+

�

t

h

x

i

� y

i

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

v(y

0

; t)

i

d(y

0

; t)

= ��

j

Z

R

n

+

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

v(y

0

; t) d(y

0

; t)

+ �

j

Z

R

n

+

(x

i

� y

i

)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n

2

�

t

v(y

0

; t) d(y

0

; t)

= �

Z

R

n

+

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

�

j

v(y

0

; t) d(y

0

; t)

+

Z

R

n

+

k

ij

(x

0

� y

0

; x

n

+ t) �

t

v(y

0

; t) d(y

0

; t)

= �

Z

R

n

n(x

i

� y

i

)(x

n

+ t)

(jx

0

� y

0

j

2

+ (x

n

+ t)

2

)

n+2

2

g

�

j

v(y

0

; t) d(y

0

; t)

+

Z

R

n

k

ij

(x

0

� y

0

; x

n

+ t)

f

�

t

v(y

0

; t) d(y

0

; t);

where

g

�

j

v and

f

�

t

v denote the extensions of �

j

v and �

t

v by 0 to R

n

; respetively, and

k

ij

(x) := Æ

ij

1

jxj

n

�

nx

i

x

j

jxj

n+2

:

By substitution one obtains with y = (y

0

; t) and x = (x

0

; x

n

)

��

j

P

i

�(x

0

; x

n

) = �

Z

R

n

n(x

i

� y

i

)(x

n

� t)

jx� yj

n+2

g

�

j

v(y

0

;�t) dy

+

Z

R

n

k

ij

(x� y)

g

�

n

v(y

0

;�t) dy;

Sine both kernels are regular singular integral kernels in the sense of De�nition 2.4,

Theorem 2.2 implies that there is some onstant C > 0 depending only on n; q and A

q

-

onsistently inreasing on ! suh that

k�

j

P

i

�k

q;!;R

n

+

� C ( k

g

�

j

v

�

k

q;!;R

n

+ k

g

�

n

v

�

k

q;!;R

n

)

� C ( k

g

�

j

vk

q;!

�

;R

n

+ k

g

�

n

vk

q;!

�

;R

n

)

� C ( k�

j

vk

q;!;R

n

+

+ k�

n

vk

q;!;R

n

+

)

� C j�j

b

T

1;q

!

for j = 1; : : : ; n� 1, where we used ! = !

�

.

It remains to estimate �

n

P

i

�. For (x

0

; x

n

) 2 R

n

+

we have

�

n

P

i

�(x

0

; x

n

) = �

n

Z

R

n�1

x

i

� y

i

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

= �

i

Z

R

n�1

x

n

(jx

0

� y

0

j

2

+ x

2

n

)

n

2

�(y

0

)dy

0

= 

n

�

i

R� (x

0

; x

n

):
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By Theorem 4.5 it follows that

k�

n

P

i

�k

q;!

� 

n

k�

i

R�k

q;!

� Cj�j

b

T

1;q

!

:

Altogether we have shown for i = 1; : : : ; n� 1

krP

i

�k

q;!

� C j�j

b

T

1;q

!

: (40)

Now we will investigate the relation between P

i

and S

i

. We laim that

(P

i

�) = 

n

S

i

�: (41)

Let n � 3. Using integration by parts we get with the onstant C

n

=

1

n�2

P

i

�(x) = C

n

Z

R

n�1

1

(jx

0

� y

0

j

2

+ x

2

n

)

n�2

2

�

i

�(y

0

) dy

0

!

Z

R

n�1

C

n

jx

0

� y

0

j

n�2

�

i

�(y

0

) dy

0

(42)

for x

n

! 0 by Lebesgue's Theorem. Atually P

i

� is even ontinuous on R

n

+

. Therefore

(P

i

�) = C

n

Z

R

n�1

1

jx

0

� y

0

j

n�2

�

i

�(y

0

)dy

0

= 

n

S

i

�:

In the ase n = 2 we use that

2(x

1

�y

1

)

jx

1

�y

1

j

2

+x

2

2

= �

1

ln(jx

1

� y

1

j

2

+ x

2

2

). Then the proof is

analogous.

Combining (41) with (40) we obtain the assertion of part i) of the Lemma.

ii) Beause of �

j

S

i

� = S

i

�

j

� for i; j = 1; : : : ; n� 1 and (41)

(P

i

�

j

�) = 

n

�

j

S

i

�: (43)

We estimate P

i

�

j

� in W

1;q

!

(R

n

+

). By (40) and Lemma 3.4

kP

i

�

j

�k

q;!

= k�

j

P

i

�k

q;!

� C k�k

T

1;q

!

;

k�

k

P

i

�

j

�kj

q;!

� C k�

j

�k

T

1;q

!

� C k�k

T

2;q

!

for k = 1; : : : ; n� 1: To estimate the n-th derivative note that for x 2 R

n

+

�

n

P

i

�

j

�(x) = 

n

�

n

Z

R

n�1

�

i

1

(jx

0

� y

0

j+ x

2

n

)

n�2

2

�

j

�(y

0

) dy

0

= �

i

Z

R

n�1

x

n

(jx

0

� y

0

j+ x

2

n

)

n

2

�

j

�(y

0

) dy

0

= C

n

�

i

R(�

j

�)(x):

Therefore Theorem 4.5 and Lemma 3.4 yield

k�

n

P

i

�

j

�k

q;!

= C

n

k�

i

R(�

j

�)k

q;!

� C j�

j

�j

b

T

1;q

!

� C k�k

T

2;q

!

:

Thus kP

i

�

j

�k

W

1;q

!

� Ck�k

T

2;q

!

and (43) yields the estimate k�

j

S

i

�k

T

1;q

!

� Ck�k

T

2;q

!

; whih

ompletes the proof of Lemma 6.2. 2
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Now it is possible to estimate also the seond and third summand in (38) by writing them

in the following form:

F

0

�1

p

�+ s

2

e

�

p

�+s

2

x

n

�

k

�

j

s

b

�

j

= i �

n

R

�

(�

k

S

j

�

j

)

F

0

�1

�

k

e

�sx

n

�

j

s

p

�+ s

2

b

�

j

= �i �

k

RS

j

T

2

�

j

for j; k = 1; : : : ; n� 1. By Theorem 4.5, Lemma 6.1 and Lemma 6.2

k�

n

R

�

(�

k

S

j

�

j

)k

q;!

� C k�

k

S

j

�

j

k

T

1;q

!

� C k�

0

k

T

2;q

!

k�

k

RS

j

T

2

�

j

k

q;!

� C jS

j

T

2

�

j

j

b

T

1;q

!

� C kT

2

�k

T

1;q

!

� C k�

0

k

T

2;q

!

;

where C depends only on n; q; " and A

q

-onsistently inreasing on !.

Thus the L

q

!

(R

n

+

)-norm of the �ve summands in (38) is estimated by k�

0

k

T

2;q

!

with a

onstant C > 0 depending only on n; q; " and A

q

-onsistently inreasing on !

ku

0

k

q;!

� C k�

0

k

T

2;q

!

:

Together with the estimate (37) of u

n

we have

kuk

q;!

� C k�

0

k

T

2;q

!

: (44)

Estimation of the seond derivatives and of the pressure:

Up to now we proved that the solution u = (u

0

; u

n

) of (25a)-(25d) expliitly given by the

expressions (27), (28) is in L

q

!

(R

n

+

)

n

, where we assumed �

0

2 S(R

n�1

)

n�1

and j�j = 1.

In [8℄ p. 617-621 it is shown that even (u; p) 2 W

2;q

(R

n

+

)

n

�



W

1;q

(R

n

+

). Sine (u; p) also

satis�es the Stokes equation

��u+rp = ��u; divu = 0; (u) = (�

0

; 0) (45)

with right hand sides ��u 2 L

q

!

(R

n

+

)

n

\L

q

(R

n

+

)

n

and (�

0

; 0) 2 S(R

n�1

)

n

� T

2;q

(R

n�1

)

n

\

T

2;q

!

(R

n�1

)

n

. Lemma 5.4 yields (u; p) 2



W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

): Therefore by Theorem

(5.3) and (44) we obtain

kr

2

uk

q;!

+ krpk

q;!

� C (kuk

q;!

+ j�

0

j

b

T

2;q

!

) � C k�

0

k

T

2;q

!

:

Hene (u; p) 2W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

) (see Lemma 4.3) and

kuk

q;!

+ kr

2

uk

q;!

+ krpk

q;!

� C k�

0

k

T

2;q

!

: (46)

The density of C

1

0

(R

n�1

) in T

2;q

!

(Corollary 4.2) yields the existene of a solution (u; p) 2

W

2;q

!

(R

n

+

)

n

�



W

1;q

!

(R

n

+

) for arbitrary �

0

2 T

2;q

!

(R

n�1

)

n�1

suh that the estimate (46) holds.

Now the existene assertion of Theorem 1.1 is proved.

Uniqueness:

Let (u; p) 2 W

2;q

!

(R

n

+

)

n

�



W

1; q

!

(R

n

+

) be a solution of the Stokes resolvent system (1) for

right hand sides f = 0 and g = 0, and let

~

f 2 L

q

0

!

0

(R

n

+

)

n

be arbitrary. As we have already

shown, there is a solution (~u; ~p) 2W

2;q

0

!

0

(R

n

+

)

n

�



W

1;q

0

!

0

(R

n

+

) of

(���)~u+r~p =

~

f; div ~u = 0; (~u) = 0:
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For a sequene ('

k

) � C

1

0

(R

n

+

) with r'

k

! r~p in L

q

0

!

0

(R

n

+

)

n

, it follows by Theorem 3.2

on integration by parts that

(r~p; u) = lim

k

(r'

k

; u) = � lim

k

('

k

;div u) = 0

sine (u) = 0: Analogously (~u;rp) = 0. Using this fat and Theorem 3.2 on integration

by parts we obtain

(

~

f; u) = ((���)~u+r~p; u) = (~u; (���)u+rp) = 0:

Sine

~

f 2 L

q

0

!

0

(R

n

+

)

n

was arbitrary it follows u = 0 and thus rp = 0. This proves part i)

of the Theorem.

The regualrity assertion ii) is proven in [9℄ for the ase 
 = R

n

.

So let 
 = R

n

+

: The assertion ii) for 
 = R

n

implies that for the boundary values �

0

in

(25) it holds

�

0

2 T

2;q

!

(R

n�1

)

n�1

\ T

2;r

v

(R

n�1

)

n�1

:

In the proof of i) we �rst assumed �

0

2 C

1

0

(R

n�1

)

n�1

and obtained an expliit solution

(u; p) of (25a)-(25d) depending only on �

0

but not on the pair (q; !).

Sine by Corollary 4.7 we an approximate an arbitrary �

0

2 T

2;q

!

(R

n�1

)

n�1

\T

2;r

v

(R

n�1

)

n�1

in T

2;q

!

(R

n�1

)

n�1

\ T

2;r

v

(R

n�1

)

n�1

by funtions from C

1

0

(R

n�1

) it follows that the so-

lution (u; p), whih we obtained by a density argument, is ontained in (W

2;q

!

(R

n

+

)

n

\

W

2;r

v

(R

n

+

)

n

)� (



W

1; q

!

(R

n

+

) \



W

1;r

v

(R

n

+

)).

Thus Theorem 1.1 is ompletely proved. 2
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