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Abstra
t

In 
onne
tion with partial algebras one has mu
h more relevant polarities

(i.e. Galois 
onne
tions indu
ed by binary relations) than in the 
ase of total

algebras. On one side there are many di�erent subsets of the set of �rst order

formulas, whi
h one wants to use as a 
on
ept of identity in some spe
ial 
on-

text, and where one is interested in the 
losure operators indu
ed by restri
ting

the validity of �rst order formulas to this spe
ial subset. On the other hand the

polarity indu
ed by the re
e
tion of formulas by mappings allows to keep tra
k

on many interesting properties of homomorphisms between partial algebras,

while others 
an be related to these via fa
torization systems | whi
h 
an be


onsidered as spe
ial pairs of 
orresponding 
losed 
lasses (in Formal Con
ept

Analysis one would 
all su
h pairs \formal 
on
epts") of the polarity indu
ed

by the (unique) diagonal-�ll-in property on the 
lass of all homomorphisms.

| Moreover, having an interesting set of properties of homomorphisms, the

relation \a homomorphism has a property" 
an be used to apply the method

of attribute exploration from Formal Con
ept Analysis in order to elaborate a

basis for all impli
ations among these properties and on the other hand a small

but \
omplete" set of 
ounterexamples against all non-valid impli
ations.

In this note we want to des
ribe some of su
h polarities or 
orresponding

pairs of interest in them, and we shall present them in the 
ontext of many-

sorted partial algebras, sin
e this 
ontext seems to be less known. Moreover,

we want to give an example of an attribute exploration as mentioned above.

1 Introdu
tion

When we speak in this survey arti
le about a Galois 
onne
tion, we mean a polarity

(

"

;

#

) in the sense of [Bir67℄, i.e. a Galois 
onne
tion indu
ed by a binary relation I

between two sets G and M :

1

1

Sin
e they 
ould even be proper 
lasses, we shall assume the existen
e of set theoreti
al universes,

and that all will take pla
e in su
h a universe.
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Let I � G�M , and for A � G and for B �M de�ne

A

"

:= fm 2M j (g;m) 2 I for all g 2 A g ; (1)

and

B

#

:= f g 2 G j (g;m) 2 I for all m 2 B g : (2)

Then (

"

;

#

) forms a polarity. In Formal Con
ept Analysis (FCA for short) the

triplet (G;M; I) is 
alled a (formal) 
ontext | the fundamental stru
ture of FCA |,

and a pair (A;B) with A � G, B � M and with A

"

= B and B

#

= A is 
alled a

(formal) 
on
ept, A is 
alled its extent and B its intent, and we shall adopt here this

way of speaking.

There are in Universal Algebra and therefore also in the theory of partial algebras

important but more or less \trivial Galois 
onne
tions" arising in 
onne
tion with


losure systems like those of all 
losed subsets or of all 
ongruen
e relations, sin
e

every 
losure system C on some set A 
an be 
onsidered to be indu
ed by the relation

R

2

� A� C, where, for a 2 A and H 2 C, one has:

(a;H) 2 R

2

if and only if a 2 H :

However, there are two main sour
es for appli
ations of Galois 
onne
tions o
-


urring to us immediately, when we think of | many-sorted | partial algebras of a

given type or signature � = (S;
; �; �; �):

2

Model theoreti
 polarities in 
onne
tion with identities:

The relation j= of validity of a �rst order formula in a (many-sorted) partial algebra

for some given signature � 
an be restri
ted to subsets F � L

�

(Y ) of spe
ial interest

within the �rst order language L

�

(Y ) with equality whi
h will here be interpreted

as existen
e equality

3

| with some 
ountably in�nite S-set Y of variables. In ea
h


ase it gives rise to a Galois 
onne
tion, and in the 
ase of partial algebras there are

many interesting sets F � L

�

(Y ), in parti
ular all (existen
e) equations (X; t

e

= t

0

)

(X � Y �nite, and t; t

0

any terms using variables only from X), all weak equations

(X; t

w

= t

0

) :� (X; t

e

= t ^ t

0

e

= t

0

) t

e

= t

0

), strong equations (X; t

s

= t

0

) :� (X; (t

e

=

t) t

e

= t

0

) ^ (t

0

e

= t

0

) t

e

= t

0

)), all ECE-equations

4

(X;

V

n

i=1

t

i

e

= t

i

) t

e

= t

0

), or all

all quasi-existen
e equations (X;

V

n

i=1

t

i

e

= t

0

i

) t

e

= t

0

). But one 
an also 
onsider all

so-
alled regular strong equations, whi
h are strong equations, where both t and t

0

are

de�nitely using the same variables in their indu
tive 
onstru
tion. We shall dis
uss

some of the 
losure operators 
onne
ted with su
h sets.

2

For more detailed de�nitions of some of the basi
 notions 
on
erning many-sorted partial algebras

see the next se
tion.

3

See [B86℄, [B92℄ or [B93℄ or below.

4

Short for existentially 
onditioned existen
e equations.
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The 
lassi�
ation of properties of homomorphisms:

The 
lassi�
ation and investigation of homomorphisms between partial algebras yield

another range of appli
ations of some spe
ial polarities:

De�ning properties through the re
e
tion of formulas:

A homomorphism from a partial algebra A into a partial algebra B is just an S-

mapping between the 
arrier sets, whi
h preserves

5

all existen
e equations. However,

in general it does not re
e
t any existen
e equation | ex
ept for (fxg; x

e

= x) for

variables x |, even not any of the form (X; t

e

= t) for some proper term t | having the

meaning that the interpretation of the term t exists |, whi
h is always re
e
ted in the


ase of total algebras, and this is one sour
e for many properties of homomorphisms,

whi
h are of interest in the 
ase of partial algebras. When we denote by � the

relation of re
e
tion of a formula by a mapping, this means that su
h a property 
an

be 
onsidered as a formal 
on
ept of the formal 
ontext of the polarity indu
ed by

the relation �.

De�ning \epimorphi
 properties" as extents of fa
torization systems:

\Re
e
tion of formulas" allows to des
ribe properties of mappings between partial al-

gebras like homomorphisms, inje
tive homomorphisms, 
losed homomorphisms, initial

homomorphisms, et
., but it does not yet allow to 
hara
terize surje
tivity, epimorphy

and a wide range of other \epimorphi
" properties. For a 
hara
terization of su
h

properties one 
an use the polarity indu
ed by the existen
e of the unique diagonal-

�ll-in | denoted in this note by � |, whi
h is a relation between the 
lass Hom

�

of all homomorphisms between partial algebras of a given signature and itself. Some

spe
ial formal 
on
epts of the formal 
ontext (Hom

�

; Hom

�

; �) are 
alled fa
toriza-

tion systems. And if the intent of su
h a fa
torization system (i.e. its right hand


omponent) 
orresponds to a property of homomorphisms de�ned by the re
e
tion

of formulas, its extent (i.e. its \left hand partner") will usually be a 
lass of homo-

morphisms 
orresponding to one of the \missing epimorphi
 properties".

Investigation of interdependen
ies of properties of homomorphisms us-

ing \attribute exploration":

Having many interesting properties of homomorphisms around, some of whi
h are

already 
ombinations of other ones, one is also interested in all possible 
ombina-

tions of them. Here methods from FCA 
an be very useful. The main tool in FCA

appli
able for the investigation of the interdependen
e of the properties of homo-

morphisms (or of their 
ombinations) is the so-
alled attribute exploration. We shall

brie
y explain in this note the method of attribute exploration, whi
h is based on the

additional polarity indu
ed by the relation of satisfa
tion of an attribute impli
ation

by a homomorphism, and we shall present an example.

In order to avoid set theoreti
al diÆ
ulties we shall assume | as already men-

5

See the next se
tion. Observe that preserving a formula is equivalent to re
e
ting its negation.
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tioned | that all our 
onsiderations take pla
e in a set theoreti
al universe whi
h is

itself a set. This will indeed allow us in parti
ular to 
onsider fa
torization systems

as formal 
on
epts of the 
orresponding polarity, as we already indi
ated above.

We present our observations for many-sorted partial algebras, sin
e this 
ontext

seems to be less known.

2 Some basi
 de�nitions

2.1 Fundamentals of the theory of partial algebras

A signature

6

� = (S;
; �; �; �) 
onsists of

{ a non-empty set S, the elements of whi
h are interpreted as sorts,

{ a set 
 of operation symbols,

{ an arity fun
tion � : 
 ! N

0

, whi
h assigns to ea
h operation symbol ! 2 
 a

non-negative integer �(!), the arity of !;

{ a mapping � : 
 ! S

�

:=

S

1

n=0

S

n

assigning to ea
h operation symbol ! 2 
 a

sequen
e �(!) =: (s

1

; : : : s

�(!)

) (of length �(!)) of input sorts,

{ and a mapping � : 
 ! S assigning to ea
h operation symbol ! 2 
 its output

sort �(!).

7

A partial algebra A := (A; (!

A

)

!2


) of signature � is then an ordered pair 
onsist-

ing of a so-
alled S-set A := (A

s

)

s2S

as its 
arrier set, where, for s 2 S, A

s

is 
alled the


arrier or phylum of sort S of A ; and, for ea
h ! 2 
, !

A

: A

�(!)

� dom!

A

! A

�(!)

| with A

�(!)

:= A

s

1

� : : :� A

s

�(!)

for �(!) =: (s

1

; : : : s

�(!)

) | is a partial operation

on A, the fundamental operation of type (�(!); �(!)) of A 
orresponding to the op-

eration symbol !. The fundamental operation !

A

is 
alled total, iff dom!

A

= A

�(!)

,

and A is 
alled a total algebra, iff ea
h fundamental operation of A is total. If �(!) is

the empty word, then !

A

is either empty or total, and then it just �xes an element

from A

�(!)

, whi
h we 
all the fundamental 
onstant of A indu
ed by !.

By PAlg

�

we denote the 
lass of all partial algebras of signature �, and by TAlg

�

we denote its sub
lass of all total algebras of signature �.

In the following let Y = (Y

s

) be an S-set, where the elements of Y

s

are 
alled

variables of sort s (for s 2 S). When we speak of a global S-set, say Y , of variables

we shall always assume that ea
h phylum Y

s

is (at least) 
ountably in�nite, and that

the phyla are mutually disjoint and disjoint from 
. For any S-set U = (U

s

)

s2S

we

6

We only present here the most fundamental 
on
epts of the theory of partial algebras needed in

this note; for more details 
f. [B86℄, [B93℄ or in the internet [B00℄.

7

One often 
onsiders the pair (�(!); �(!)) as the value of one single fun
tion | then mostly also

denoted by � , and one omits the arity fun
tion � , whi
h is impli
it in our �, but we think that the

above notation is more 
onvenient.
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denote by P(U) the set of all S-subsets V = (V

s

)

s2S

of U (i.e. where one has V

s

� U

s

for ea
h s 2 S). V will be 
alled a �nite S-subset of U , if the disjoint union over all

phyla of V is �nite. By P

�n

(U) we designate the set of all �nite S-subsets of U . In

the following, X will always denote a �nite S-subset of the set Y of variables under


onsideration.

Terms | of some sort s | are de�ned in the usual re
ursive way. By T

�

(X)

s

we designate the set of all terms with output sort s 2 S and with variables in

X 2 P

�n

(Y ). For t 2 T

�

(X)

s

we denote by var(t) � X the set of variables \really

o

urring in t" (be
ause of the re
ursive de�nition of t). Moreover, by T

�

(X) we des-

ignate the total term algebra on T

�

(X) := (T

�

(X)

s

)

s2S

, where !

T

�

(X)

(t

1

; : : : ; t

�(!)

) :=

!t

1

: : : t

�(!)

(as a word in (
 [

S

s2S

X

s

)

�

).

It is well-known, that one has to in
lude for the de�nition of identities in a �rst or-

der language for a many-sorted signature in some way a referen
e to the variables un-

der 
onsideration (one a
tually needs the set of sorts to whi
h the referen
ed variables

belong), whenever one does not ex
lude empty phyla, but su
h an ex
lusion would

usually ex
lude too many stru
tures. For simpli
ity we use su
h a referen
e for all

formulas, i.e. we de�ne our �rst order language L

�

(Y ) :=

S

fL

�

(X) j X 2 P

�n

(Y ) g

as follows:

For X 2 P

�n

(Y ), s 2 S and t; t

0

2 T

�

(X)

s

, (X; t

e

= t

0

) is an atomi
 formula, whi
h

we 
all an existen
e equation (E-equation for short).

8

The spe
ial 
ase (X; t

e

= t) gets

meaning in the 
ase of partial algebras and is 
alled a term existen
e statement (abbr.

TE-statement). Arbitrary �rst order formulas are then de�ned re
ursively | almost

| as usual:

� ea
h atomi
 formula of L

�

(Y ) is a formula of L

�

(Y );

� if (X; �) is a formula of L

�

(Y ), then (X;:�) is a formula of L

�

(Y ) (negation);

� if (X; �) and (X

0

; �

0

) are formulas of L

�

(Y ), then

(X [X

0

; (� ^ �

0

)) (
onjun
tion),

(X [X

0

; (� _ �

0

)) (disjun
tion),

(X [X

0

; (� ) �

0

)) (impli
ation), and

(X [X

0

; (� , �

0

)) (equivalen
e) are formulas of L

�

(Y );

� if (X; �) is a formula of L

�

(Y ), and if x 2 X

s

for some s 2 S, then

9

(X n

fxg; (8x)�) and (X n fxg; (9x)�) are formulas of L

�

(Y ).

8

One 
ould avoid the extra referen
e to variables, if (X ; t

e

= t

0

) would be repla
ed by

V

x2X

x

e

=

x ) t

e

= t

0

(
f. De�nition 4 below) | sin
e one only has to referen
e some extra variables in order

to get full expressive power of the language.

9

Observe that we abbreviate by X n fxg, for x 2 X

s

, the S-set Z, for whi
h Z

s

= X

s

n fxg and

Z

s

0

= X

s

0

for s

0

2 S n fsg.

5



� if (X; �) is a formula of L

�

(Y ), and if X

0

2 P

�n

(Y ), then (X [ X

0

; �) is a

formula of L

�

(Y ).

Formulas of spe
ial interest in 
onne
tion with identities for partial algebras are be-

sides E-equations (as usual we omit some bra
kets, whenever possible):

(a) existentially 
onditioned existen
e equations (ECE-equations for short)

(X;

V

n

i=1

t

i

e

= t

i

) t

e

= t

0

) ;

(b) quasi-existen
e equations (QE-equations for short)

(X;

V

n

i=1

t

i

e

= t

0

i

) t

e

= t

0

) ;

(
) or (
onjun
tions of) ECE-equations of some very spe
ial kind like

(


1

) weak equations, i.e. ECE-equations of the form

(X; t

w

= t

0

) :� (X; t

e

= t ^ t

0

e

= t

0

) t

e

= t

0

) ;

(


2

) strong equations or Kleene-equations

(X; t

s

= t

0

) :� (X; (t

e

= t) t

e

= t

0

) ^ (t

0

e

= t

0

) t

e

= t

0

)) ;

(


3

) regular strong equations (X; t

s

= t

0

), where | be
ause of their indu
tive


onstru
tion | t and t

0

have the same set of variables, and this is equal to X,

i.e. where var(t) = var(t

0

) = X.

(d) In generalization of QE-equations we speak of elementary impli
ations, when

we allow arbitrarily long (even in�nite) premises and 
on
lusions in an extended

in�nitary language:

(Z;

V

i2I

t

i

e

= t

0

i

)

V

j2J

p

i

e

= p

0

i

) ;

where Z may be an arbitrarily large S-set of variables (with mutually disjoint phyla

all disjoint from 
).

In the following we shall always 
onsider a �xed signature � and a �xed S-set

Y of variables, 
ountably in�nite (in every phylum), and disjoint with 
; and all

partial algebras are assumed to be of this signature (if not stated otherwise). For

partial algebras A or B et
., A and B et
. shall always designate their 
arrier sets,

respe
tively.

Basis for the semanti
s are (partial) interpretations:

Let A be a partial algebra, X 2 P

�n

(Y ), and v : X ! A any S-mapping (i.e. any

S-indexed family (v

s

: X

s

! A

s

)

s2S

of mappings), 
alled an X-valuation.

10

Then the

(partial) interpretation indu
ed by v, denoted by ~v is the mapping out of T

�

(X) into

A with smallest domain dom ~v � T

�

(X) su
h that

� ~v

s

(y) = v

s

(y) for all y 2 X

s

and s 2 S.

� For ! 2 
 with (�(!); �(!)) =: ((s

1

; : : : ; s

�(!)

); s), and for t

i

2 T

�

(X)

s

i

(1 �

i � �(!)) one has:

10

Sin
e A may have empty phyla, one should not use only \global" valuations, sin
e there might

exist none, while there may be lots of \lo
al" valuations.
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If ~v

s

i

(t

i

) =: a

i

is already de�ned for 1 � i � �(!), and if !

A

(a

1

; : : : ; a

�(!)

) =: a

is de�ned in A , then ~v

s

(!t

1

: : : t

�(!)

) is de�ned with value a.

We say that an E-equation (X; t

e

= t

0

) (of sort s) is satis�ed in A with respe
t to the

valuation v | in symbols: A j= (X; t

e

= t

0

)[v℄ |, iff t 2 dom ~v

s

and t

0

2 dom ~v

s

and

~v

s

(t) = ~v

s

(t

0

).

11

We say that (X; t

e

= t

0

) is valid in A | in symbols: A j= (X; t

e

= t

0

)

|, iff A j= (X; t

e

= t

0

)[v℄ for all valuations v : X ! A. As usual, satisfa
tion and

validity are 
arried over re
ursively to arbitrary formulas of L

�

(Y ).

Let A and B be partial algebras, let (X; �) 2 L

�

(Y ) be any formula, and let

f : A! B be any S-mapping. We say that f re
e
ts (X; �) | in symbols: f�(X; �)

|, iff, for all X-valuations v : X ! A, B j= (X; �)[f Æ v℄ implies A j= (X; �)[v℄.

Conversely, we say that f preserves (X; �), iff for all X-valuations v : X ! A,

A j= (X; �)[v℄ implies B j= (X; �)[f Æ v℄; however, this is equivalent to f � (X;:�),

and therefore the relation � is suÆ
ient.

Let A be any partial algebra and B any S-subset of A. Then B is said to be a


losed subset of A , iff, for every ! 2 
, and for every sequen
e a 2 dom!

A

\ B

�(!)

one has !

A

(a) 2 B

�(!)

. If B is a 
losed subset of A , then (B; (!

A

jB

�(!)

)

!2


) will be


alled the subalgebra of A with 
arrier B, and it will be denoted by B . By C

A

M we

shall designate the smallest 
losed subset of A 
ontaining M � A | and by C

A

M the


orresponding subalgebra. | Observe, that in 
ases, where a subset of the 
arrier

of some partial algebra is de�ned by some operator, then underlining the operator

means formation of the relative subalgebra

12

on the de�ned subset (as in the 
ase

C

A

M).

A subset D of the 
arrier of A is 
alled an initial segment of A , iff, for every

(a

1

; : : : ; a

�(!)

) 2 dom!

A

, the fa
t that !

A

(a

1

; : : : ; a

�(!)

) 2 D

�(!)

implies a

i

2 D

�(!)(i)

for 1 � i � �(!). By #

A

M we shall designate the smallest initial segment of A


ontaining M � A | and by #

A

M the 
orresponding relative subalgebra. Observe

that, for v : X ! A , dom ~v is always an initial segment of T

�

(X).

In the rest of this subse
tion let (A

i

)

i2I

be any �xed set-indexed family of partial

algebras of signature �:

The dire
t produ
t B :=

Q

i2I

A

i

has as 
arrier set the set theoreti
al 
artesian S-

produ
t B := �

i2I

A

i

:= (�

i2I

A

is

)

s2S

of the 
arriers. And, for ! 2 
, one has

dom!

B

:= f ((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) 2 B

�(!)

j (a

i

1

; : : : ; a

i

�(!)

) 2 dom!

A

i

, for ea
h

i 2 I g . For ((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) 2 dom!

B

, one de�nes

!

B

((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) := (!

A

i

(a

i

1

; : : : ; a

i

�(!)

))

i2I

.

11

Observe that, for t = t

0

, A j= (X ; t

e

= t)[v℄ still has the nontrivial meaning that \t 2 dom ~v

s

",

i.e. that t is interpreted w.r.t. ~v (or, in other words, v interprets t).

12

Note that, for an arbitrary subset B of A one de�nes the relative subalgebra B := B of A with


arrier B to be the partial algebra (B; (!

A

\ (B

�(!)

�B

�(!)

))

!2


).
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In the 
ase of many-sorted (partial) algebras the redu
ed produ
t D := (

Q

i2I

A

i

)=F

of the family (A

i

)

i2I

w.r.t. a �lter F on the index set I is de�ned as follows: Let

D

0

:=

S

f�

i2J

A

i

j J 2 F g . Moreover, for a := (a

i

)

i2J

1

; b := (b

i

)

i2J

2

2 D

0

(for

J

1

; J

2

2 F),

13

de�ne I

a

:= J

1

, and I

a;b

:= f i 2 I

a

\ I

b

j a

i

= b

i

g . Moreover,

de�ne on D

0

an equivalen
e relation �

F

:= f (a; b) 2 D

2

0

j I

a;b

2 F g . Then the

quotient S-set D := D

0

=�

F

is the 
arrier of D , the elements of whi
h will be denoted

by a=F (for a 2 D

0

some arbitrarily 
hosen representative). And, for ! 2 
, de�ne

dom!

D

:= f a j a = (a

1

=F ; : : : ; a

�(!)

=F) 2 D

�(!)

and I

a

:= (

T

�(!)

k=1

I

a

k

) \ fi 2 I j

(a

i

1

; : : : ; a

i

�(!)

) 2 dom!

A

i

g 2 F g . And de�ne, for (a

1

=F ; : : : ; a

�(!)

=F) 2 dom!

D

,

!

D

(a

1

=F ; : : : ; a

�(!)

=F) := (!

A

i

(a

i

1

; : : : ; a

i

�(!)

))

i2I

a

=F .

As a further 
onstru
tion we shall need the mixed produ
t of a family (A

i

)

i2I

, as it

was re
ently introdu
ed by Grzegorz Bin
zak:

14

De�ne P

0

:=

S

f�

i2J

A

i

j J � I g . We shall de�ne I

a

for a 2 P

0

as above. For i 2 I,

set dom�

i

:= f a 2 P

0

j i 2 I

a

g , where �

i

: P

0

� dom�

i

! A

i

is a \generalized

proje
tion" with �

i

(a) := a

i

, whenever a = (a

j

)

j2I

a

and i 2 I

a

.

A partial algebra M is 
alled a mixed produ
t of the family (A

i

)

i2I

, iff there is a

subset M

0

� P

0

and a partial algebrai
 stru
ture (!

M

0

)

!2


satisfying:

(1) For every ! 2 
, (a

1

; : : : ; a

�(!)

) 2 M

�(!)

0

, and a 2M

0;�(!)

one has:

If !

M

0

(a

1

; : : : ; a

�(!)

) = a , then

(a) I

a

� I

a

1

\ : : : \ I

a

�(!)

,

(b) �

i

(a) = !

A

i

(�

i

(a

1

); : : : ; �

i

(a

�(!)

)) for every i 2 I

a

.

(2) Let � be the 
ongruen
e relation on M

0

generated by the set (f (a; b) 2 (M

0s

)

2

j

I

a;b

= I

a

\ I

b

g)

s2S

. Then � is a 
losed 
ongruen
e relation (i.e. the natural

proje
tion nat

�

: M

0

! M

0

=� indu
ed by � is a 
losed homomorphism as de�ned

in the table at the end of subse
tion 3.1), and M = M

0

=� , the usual quotient

algebra.

2.2 Fundamentals of Formal Con
ept Analysis

Basi
 stru
tures of Formal Con
ept Analysis

15

(FCA for short) are formal 
ontexts

K := (G;M; I), where G and M are arbitrary sets, the elements of whi
h are 
alled

obje
ts and attributes, respe
tively, and where I � G�M is any binary relation. The

polarity (

"

;

#

) de�ned by (1) and (2) in the introdu
tion plays a 
entral role in FCA.

13

Observe that all elements in any su
h a sequen
e a have to be of the same sort.

14

See [Bi01℄.

15

Cf. [GW99℄.
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The pairs (A;B) with A � G and B � M satisfying A

"

= B and B

#

= A are 
alled

formal 
on
epts. If (A;B) is a formal 
on
ept, then A is 
alled its extent and B its

intent. By B(K ) we designate the set of all formal 
on
epts of the formal 
ontext K .

Formal 
on
epts are ordered by set theoreti
al in
lusion of the extents:

(A

1

; B

1

) � (A

2

; B

2

) iff A

1

� A

2

( iff B

1

� B

2

) :

The ordered set (B(K );�) always forms a 
omplete latti
e. One has two mappings

� : M ! B(K ) | with �(m) := (fmg

#

; fmg

#"

) (g 2 G) | and 
 : G ! B(K )

| with 
(g) := (fgg

"#

; fgg

"

) (m 2 M) | assigning to the attributes and obje
ts

their \generated formal 
on
epts". In line diagrams of 
on
ept latti
es the name of

the attribute m is usually written a little above the 
ir
le representing the formal


on
ept �(m), and the name of the obje
t g is usually written a little below the 
ir
le

representing the formal 
on
ept 
(g) (
f. Figure 2).

Let K := (G;M; I) be a formal 
ontext. For P;C �M we 
all P ! C an attribute

impli
ation. And we say that the attribute impli
ation P ! C holds in K | and

denote this by K j=

FCA

P ! C |, iff, for every obje
t g 2 G, P � fgg

"

implies

C � fgg

"

. For more details on FCA see [GW99℄.

3 Properties of homomorphisms

3.1 About the polarity indu
ed by the relation �

Sin
e spe
ial homomorphi
 images are needed for the des
ription of 
lasses of partial

algebras de�ned by some kinds of identities, we �rst 
onsider the relation � of re
e
-

tion of formulas by mappings, sin
e this allows us to de�ne homomorphisms and a

lot of their properties.

Let Map

�

designate the 
lass of all S-mappings between the 
arriers of partial

algebras of signature � (within our universe), and let us 
onsider the formal 
ontext

K

�

:= (Map

�

; L

�

(Y ); �). And let (

"

�

;

#

�

) be the polarity 
orresponding to this

formal 
ontext (
f. (1) and (2) of the introdu
tion). Moreover, let Hom

�

designate

the 
lass of all stru
ture preserving mappings, i.e. homomorphisms, f : A ! B

between partial algebras. This means that for su
h an f one has, for all ! 2 


and for all sequen
es a := (a

1

; : : : ; a

�(!)

) 2 A

�(!)

, that a 2 dom!

A

implies f Æ a :=

(f

�(!)(1)

(a

1

); : : : ; f

�(!)(�(!))

(a

�(!)

)) 2 dom!

B

and f

�(!)

(!

A

(a)) = !

B

(f Æ a) :

Theorem 1 Let H � Map

�

. Then the following statements are equivalent:

16

16

Observe that we write fx

1

; : : : ; x

�(!)

; y g as abbreviation for S-sets (X

s

)

s2S

with X

s

= f z j

(z = x

i

and �(!)(i) = s and 1 � i � �(!)) or (z = y and �(!) = s) g (for s 2 S).

9



(i) H = Hom

�

.

(ii) H = f (X;:t

e

= t

0

) j X � P

�n

(Y ); t; t

0

2 T

�

(X) g

#

�

.

(iii) H = f (f x

1

; : : : ; x

�(!)

; y g;:!x

1

: : : x

�(!)

e

= y) j x

i

2 Y

�(!)(i)

(1 � i � �(!)) ; y 2

Y

�(!)

, and ! 2 
 g

#

�

.

(iv) H = f (f x

1

; : : : ; x

�(!)

; y g;:!x

1

: : : x

�(!)

e

= y) j x

i

2 Y

�(!)(i)

(1 � i � �(!)) ; y 2

Y

�(!)

, all x

i

are mutually distin
t and distin
t from y, and ! 2 
 g

#

�

.

This means that the usual homomorphisms between partial algebras are exa
tly

those mappings between partial algebras whi
h re
e
t all negations of E-equations

and therefore they are exa
tly those mappings whi
h preserve all E-equations.

As already mentioned above, a \usual" homomorphism with a proper partial alge-

bra as start obje
t in general does not re
e
t TE-statements, while homomorphisms

between total algebras trivially re
e
t all TE-statements. Therefore it should not be

astonishing that a great part of the wealth of interesting properties of homomorphisms

between partial algebras 
an be des
ribed in a model theoreti
 way. In parti
ular,

many of them like inje
tivity, 
losedness, initialness

17

and their 
ombinations (like

\full and inje
tive", what is equivalent to \initial and inje
tive") 
an be de�ned by

the re
e
tion of spe
ial E-equations, i.e. the 
lass of all homomorphisms having su
h

a propety is the extent of a formal 
on
ept of the formal 
ontext K

�

, where the intent

is generated by one of the sets of negations of E-equations mentioned in Theorem 1,

and in addition by the kinds of E-equations indi
ated in the following table, in whi
h

we omit the referen
e to the set of variables, sin
e it is in ea
h 
ase the set of all

variables (of appropriate sort) o

urring in any of the terms involved.

18

notation 
lass of all kind of additionally re
e
ted formulas

Mono

�

inje
tive homomorphisms x

e

= y (x; y 2 Y

s

, s 2 S)

Closed

�


losed homomorphisms t

e

= t (t 2 T

�

(X)

s

, s 2 S, X 2 P

�n

(Y ))

Closed

�


losed homomorphisms !(a)

e

= !(a) (! 2 
, a 2 T

�

(var(a))

�(!)

)

Mono

�;
losed


losed inje
tive hom.s x

e

= y, t

e

= t (. . . )

Mono

�;full

full inje
tive hom.s x

e

= y, !(a)

e

= y, (x; y 2 Y

s

, s 2 S,

x

i

2 Y

�(!)(i)

; y 2 Y

�(!)

; ! 2 
)

Initial

�

initial homomorphisms !(a)

e

= y, (a 2 Y

�(!)

; y 2 Y

�(!)

;

y =2 var(a); ! 2 
)

17

In the sense of Bourbaki in [Bou57℄: A mapping f : A! B (A ; B 2 PAlg

�

) is initial, iff, for all

homomorphisms g : B ! C , f is a homomorphism from A into B iff g Æ f is a homomorphism from

A into C .

18

Observe that Initial

�


onsists of all those homomorphisms f : A ! B for whi
h the preimage of

every element from

S

!2


!

B

(dom!

B

) 
ontains at most one element.
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3.2 \Epimorphi
 properties" of homomorphisms and fa
tor-

ization systems

Most of the \interesting" properties of homomorphisms not 
hara
terizable by re
e
-

tion of some set of formulas 
an be des
ribed in 
onne
tion with extents of formal


on
epts 
alled fa
torization systems (w.r.t. to some polarity) in 
ategory theory:

19

Let us re
all that a homomorphism f : A ! B is an epimorphism, iff C

B

f(A) = B

(i.e. iff f(A) generates B ). An epimorphism e : A ! B is TAlg

�

-extendable, iff, for all

homomorphisms f : A ! C with C 2 TAlg

�

, there exists a unique homomorphism

g : B ! C su
h that g Æ e = f . A surje
tive homomorphism f : A ! B is full (i.e.

a quotient homomorphism), iff f \indu
es the stru
ture on B ". De�ne the formal


ontext K

�

:= (Hom

�

; Hom

�

; �), where, for e;m 2 Hom

�

, one says that (e;m)

satis�es the unique diagonal-�ll-in property | here denoted by � | iff, for any

p; q 2 Hom

�

, m Æ p = q Æ e implies the existen
e of a unique d 2 Hom

�

su
h that

d Æ e = p and m Æ d = q . A fa
torization system (E ; M) is then any formal 
on
ept

of K

�

su
h that in addition to being a formal 
on
ept w.r.t. � one has:

{ Iso

�

� E \M,

{ E Æ E � E ,

{ MÆM �M, and

{ MÆ E = Hom

�

.

Theorem 2 Let � � L

�

(Z) be any set of elementary impli
ations, where Z is any

global S-set of variables, and letM := �

#

�

. Then (M

#

�

; M) is always a fa
torization

system.

20

Thus, in parti
ular, when M is a 
lass of homomorphisms de�ned via the re
e
tion

of some set of QE-equations, then M

#

�

is its partner in a fa
torization system and


onsists of a 
lass of epimorphisms (whi
h en
ode the elementary impli
ations under


onsideration) | and this is the reason, why we 
all it here an \epi-fa
tor".

21

19

In [AdHS90℄ they are now 
alled fa
torization stru
tures.

20

Cf. e.g. [B86℄, Remark 10.2.11 | observe that there and in other books and papers the operators

have a di�erent notation than we have used in this note in order to have a homogeneous notation.

Very often one writes �(E) instead of E

"

�

, and �

op

(M) instead of M

#

�

.

21

Observe that, what one often | and we here, too | 
alls a \mono-fa
tor", need not 
onsist only

of monomorphisms. As an example take the 
lass Closed

�

of all 
losed homomorphisms. However,

the fa
torization systems 
onsidered originally usually 
onsisted of a 
lass of epimorphisms as extent

and a 
lass of monomorphisms as intent. | Observe, too, that we have in the theory of partial alge-

bras an interesting fa
torization system ( all �nal homomorphisms, all bije
tive homomorphisms ),

where the �nal homomorphisms between partial algebras | whi
h form the dual 
on
ept to ini-

tial homomorphisms in the sense of Bourbaki [Bou57℄ | are exa
tly those homomorphisms, whi
h

fully indu
e the stru
ture on the image algebra, but they need not be surje
tive and therefore not

epimorphi
. Moreover, the bije
tive homomorphisms are not de�ned by the re
e
tion of formulas.

11



\epi-fa
tor" \mono-fa
tor"

( 
lass of all full and surje
tive homomorphisms , Mono

�

) ,

( 
lass of all TAlg

�

-extendable epimorphisms , Closed

�

) ,

( Epi

�

= 
lass of all epimorphisms , Mono

�;
losed

) ,

( 
lass of all surje
tive homomorphisms , Mono

�;full

) ,

( 
lass of all �nal homomorphisms , 
l. of all bije
t. hom.s ) .

In addition, observe that the \epi-fa
tor" 
orresponding to Initial

�


onsists of all

those surje
tive homomorphisms f : A ! B for whi
h the preimage of every element

from B n

S

!2


!

B

(dom!

B

) 
ontains exa
tly one element.

4 Polarities derived from the relation j=

The relation j= of validity of a �rst order formula in a (many-sorted) partial algebra

for some given signature � of the fundamental operations under 
onsideration 
an be

restri
ted to subsets F � L

�

(Y ) of spe
ial interest within the �rst order language

L

�

(Y ). As mentioned earlier, F is usually 
hosen to be | for arbitrary X 2 P

�n

(Y ),

and terms t; t

0

2 T

�

(X)

s

and t

i

; t

0

i

2 T

�

(X)

s

i

(i 2 f1; : : : ; ng) |

{ the set of all E-equations,

{ the set of all ECE-equations,

{ the set of all QE-equations,

{ or the set of all (spe
ial 
onjun
tions of) ECE-equations of some spe
ial kind like

{ the set of all weak equations,

{ the set of all strong equations or Kleene-equations ,

{ the set of all regular strong equations,

{ or various other similar 
on
epts of spe
ial equalities.

With ea
h su
h set of spe
ial formulas one has the problem to des
ribe the 
losed

sets/
lasses of the indu
ed Galois 
onne
tion on the synta
ti
al and on the semanti
al

side, respe
tively, i.e. to �nd so-
alled Birkho�-type theorems and Birkho�-Tarski-

type theorems. For E-, ECE- and QE-equations this has been no great problem, and

the results 
an be found e.g. in [B86℄ or [B93℄. However, in the 
ases of weak and

strong equations the problems have been mu
h harder, and only re
ently G. Bin
zak

has solved the \semanti
 problem" for weak equations in a satisfa
tory way (see

[Bi01℄) by inventing a new operator P

m

(whi
h he 
alls the formation of mixed produ
ts

as de�ned in this note at the end of subse
tion 2.1).

In [Hoe73℄, H.H�oft has 
hara
terized 
losed sets of weak equations as what he 
alls

weakly invariant relations. We do not give the details here. Moreover, the problems

for strong equations are still unsolved, while Bo_zena and Bogdan Staru
h have solved

12



in [StSt94℄ the problems for regular strong equations.

22

Again we refer here to the

literature. On the other hand William Craig has observed in [Cr89℄ (for the homoge-

neous 
ase) that the extension of the language by a \logi
al" binary operation symbol,

whi
h is always interpreted as a total binary �rst proje
tion, Kleene-equations in this

extended language and ECE-equations (in the original or extended language) have

the same expressive power (when the empty algebra is ex
luded) | and a similar

observation 
an be made in the 
ase of heterogeneous partial algebras (see [B95℄).

Theorem 3 For many-sorted partial algebras one has the following semanti
al oper-

ators for the des
ription of the 
losure ModForm(K) of 
lasses K of partial algebras

w.r.t. some sets Form of spe
ial QE-equations (with the involved operators de�ned

below):

23

Form 
orresponding semanti
 operator

E-equations H

w

S




P = H

w

S




P

r

ECE-equations H




S




P

r

QE-equations IS




P

r

weak equations IP

m

Here the operators are de�ned as follows, for any 
lass K � PAlg

�

:

� H

w

(K) := f B 2 PAlg

�

j there exists a surje
tive homomorphism A ! B for

some A 2 K g ;

� H




(K) := f B 2 PAlg

�

j there exists a 
losed and surje
tive homomorphism

A ! B for some A 2 K g ;

� I(K) := f B 2 PAlg

�

j B is isomorphi
 to some K-algebra g ;

� S




(K) := f B 2 PAlg

�

j B is a (
losed) subalgebra of some K-algebra g ;

� P(K) := f B 2 PAlg

�

j there exist a set I and a family (A

i

)

i2I

of K-algebras

su
h that B =

Q

i2I

A

i

is the dire
t produ
t of this family g ;

� P

r

(K) := f B 2 PAlg

�

j there exist a set I, a �lter F on I and a family (A

i

)

i2I

of K-algebras su
h that B = (

Q

i2I

A

i

)=F is a redu
ed produ
t of this family g ;

� P

m

(K) := f B 2 PAlg

�

j there exist a set I and a family (A

i

)

i2I

of K-algebras

su
h that B is a mixed produ
t of this family g .

22

Regularity of (X ; t

s

= t

0

) means that | a

ording to the re
ursive 
onstru
tion of terms | t and

t

0


ontain the same variables.

23

If S is in�nite, then the equality H

w

S




P = H

w

S




P

r

no longer holds, and one then has to take

H

w

S




P

r

as semanti
 operator for E-equations, if one wants to keep the language �nitary (see [B95℄).
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The des
riptions of the 
losed sets of formulas under 
onsideration is a little more

involved and not dis
ussed here in all 
ases.

We only want to give a des
ription of 
losed sets of E- ECE- and QE-equations.

Here a set theoreti
al representation is useful:

24

De�nition 4 Let

� := (X;

n

^

i=1

t

i

e

= t

0

i

) t

e

= t

0

)

be any QE-equation. Then � may be set theoreti
ally represented by an ordered pair

(f(x; x) j x 2 Xg [ f(t

i

; t

0

i

) j 1 � i � ng; (t; t

0

)) 2 P

�n

(T

�

(X)

2

)� T

�

(X)

2

:

If � is an ECE-equation, then the 
orresponding pair belongs to P

�n

(f(t; t) j t 2

T

�

(X)g)� T

�

(X)

2

, and if � is an E-equation, then the 
orresponding pair belongs to

P

�n

(f(x; x) j x 2 Xg) � T

�

(X)

2

. In ea
h 
ase we 
an represent X as var(�). Sin
e

every t 2 T

�

(X) 
an be 
onsidered as an element of T

�

(Y ) (be
ause of X � Y and

the re
ursive de�nition of terms), we 
an de�ne

Prem

E

:= P

�n

((f(y; y) j y 2 Y

s

g)

s2S

);

Prem

ECE

:= P

�n

((f(t; t) j t 2 T

�

(Y )

s

g)

s2S

); and

Prem

QE

:= P

�n

(T

�

(Y )� T

�

(Y )):

For P � T

�

(Y )

2

we de�ne

var(P ) :=

[

(t;t

0

)2P

(var(t) [ var(t

0

)) :

And we obtain

Eeq

Y

=

[

P2Prem

E

fPg � T

�

(var(P ))

2

;

ECEeq

Y

=

[

P2Prem

ECE

fPg � T

�

(var(P ))

2

;

QEeq

Y

=

[

P2Prem

QE

fPg � T

�

(var(P ))

2

;

24

For E-equations in the homogeneous 
ase (ex
luding the empty algebra) the simplest des
ription

of 
losed sets is by saying that they are 
losed and fully invariant 
ongruen
e relations on relative

subalgebras F of T

�

(Y ), su
h that F is freely generated by Y . The following generalizes this for the


ase, when the empty partial algebra is allowed, too, and to heterogeneous partial algebras (with

empty phyla allowed).
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for the sets of all set theoreti
al en
odings of E-, ECE- or QE-equations with variables

in Y , respe
tively. Now, for Prem 2 fPrem

E

;Prem

ECE

;Prem

QE

g, we 
onsider in the

following

Q �

[

P2Prem

(fPg � T

�

(var(P ))

2

)

to be any set of set theoreti
ally en
oded elementary impli
ations of the 
orresponding

type. For P 2 Prem we de�ne

Q(P ) := f(t; t

0

) j (P; (t; t

0

)) 2 Qg:

For any 
lass K of partial algebras de�ne

Imp

Prem

(K) :=

:= f(P; (t; t

0

)) j P 2 Prem; t; t

0

2 T

�

(var(P ));K j= (var(P );

V

(p;p

0

)2P

p

e

= p

0

) t

e

= t

0

)g

and set #E to be the relative subalgebra of T = T

�

(Y ) 
onsisting of all subterms of

terms o

urring in E � T

�

(Y )

2

, and let suppE :=

S

(t;t

0

)2E

ft; t

0

g) (i.e. the support of

E) be the set of all terms o

urring as at least one 
omponent of a pair in E, and,

moreover, let suppE designate the relative subalgebra of T

�

(Y ) with 
arrier suppE.

With the above notation one has the following des
ription of 
losed sets of ele-

mentary impli
ations of one of the three kinds of Prem:

Theorem 5

25

Let Prem 2 fPrem

E

;Prem

ECE

;Prem

QE

g, and let Q �

S

P2Prem

(fPg�T

�

(var(P ))

2

) be

any set representing elementary impli
ations 
onne
ted with Prem.

(a) Then the following statements are equivalent:

(i) Q = Imp

Prem

(Mod(Q)).

(ii) Q has the following properties (I1) through (I4) for any P; P

0

2 Prem:

(I1) suppQ(P ) is a var(P )-generated relative subalgebra of T

�

(var(P )) |

in parti
ular one has suppQ(P ) =# Q(P ).

(I2) Q(P ) is a 
losed 
ongruen
e relation on suppQ(P ).

25

The proof of this theorem for the homogeneous 
ase 
an be found �rst | formulated for QE-

equations| in [ABN81℄ (and in another form in [AN83℄). Later it appeared in [B86℄ and, without

proof, in [B93℄. Yet in all three 
ases (I1) 
ontained an error, sin
e we there refer to #Q(P ) rather

than to suppQ(P ), and #Q(P ) is trivially generated by var(P ), i.e. then (I1) does not 
ontain any

non-trivial 
ondition. We think that in this set theoreti
al form, and formulated for heterogeneous

partial algebras the theorem is formulated here for the �rst time.

15



(I3) P � Q(P ).

(I4) For every homomorphism f : #P ! suppQ(P

0

) satisfying (f�f)(P ) �

Q(P

0

), there exists a homomorphi
 extension f

PP

0

: suppQ(P ) !

suppQ(P

0

), whi
h satis�es (f

PP

0

� f

PP

0

)(Q(P )) � Q(P

0

).

(b) If Q = Imp

Prem

(Mod(Q)), and P 2 Prem, then

Q(P ) =

\

fker f

�

j f : #P ! A ; A 2 Mod(Q) and P � ker f

�

g:

Again fa
torization systems 
ome into the pi
ture in 
onne
tion with the Meta

Birkho� Theorem of Hajnal Andr�eka, Istva�an N�emeti and Ildiko Sain (see [AN82℄

and [NSa82℄) 
hara
terizing 
losed model 
lasses of universal Horn formulas in a very

general 
ategory theoreti
al way. Namely, the 
lass S of \admissible subobje
ts"

there has to 
orrespond to the \mono-fa
tor" of a fa
torization system. And the


lass of epimorphisms used for the \admissible epimorphisms" has in some way to be


ompatible with S

#

�

(for more details 
f. e.g. [B92℄ or [B86℄).

5 \Attribute exploration" uses further polarities

Attribute exploration is a method from FCA, where the user or expert �xes a very

large 
ontext U = (G

U

; M

U

; I

U

) of interest | with some �nite set M

U

of attributes

| as so-
alled universe, and where a program (like \ConImp"

26

) asks the expert in a

systemati
 way, whether some attribute impli
ations 
omputed by the program hold

in U. Aim of the pro
edure is to get a list I of attribute impli
ations holding in U,

from whi
h all other attribute impli
ations holding in U 
an be derived. And at the

same time one wants to produ
e a sub
ontext K = (G;M

U

; I) of U, whi
h 
ontains

for ea
h attribute impli
ation not holding in U a 
ounterexample. | These data then

allow to 
ompute the 
on
ept latti
e of U up to isomorphism.

We present an example for a homogeneous mono-unary signature (i.e. S = fsg ),


 = f!g, � : ! 7! 1 (� and � are obvious),

27

where the set G

U

equals Hom

�

. The list

of attributes is shown in Table 1 together with their abbreviations used at di�erent

o

asions in order that e.g. the impli
ations do not be
ome too long.

28

26

Cf. [B00a℄.

27

The result holds for all homogenoeus signatures with at least one at least unary operation, but

it might look di�erent, if we have e.g. a signature with only one unary operation mapping elements

of one sort to elements of a di�erent sort, sin
e then one 
annot produ
e examples like Hom6 and

Hom7 below.

28

Moreover, the program \ConImp" a

epts only names with at most 9 
hara
ters.
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The set M

U

of attributes full name in impli
ations in the 
ontext

inje
tive inje
tive inj

full&surje
tive full&surj f&sur

initial&inje
tive init&inj ini&inj

surje
tive surje
tiv sur


losed 
losed 
l

TAlg

�

-extendable TA-extend TA-ext


losed&inje
tive 
los&inj 
l&inj

epimorphi
 epimorph epi

initial initial ini

�

op

(initial) LOinitial LOini

Table 1: The attributes of the formal 
ontext Fa
tSys

The algorithm may start with an empty list of obje
ts or a list of obje
ts en-

tered in advan
e, and one 
an also enter some impli
ations as so-
alled ba
kground

impli
ations in advan
e.

In 
onne
tion with the algorithm of attribute exploration the following list of

so-
alled Duquenne-Guigues-impli
ations is produ
ed:

1. fLOinitial g ) f surje
tiv, epimorph g

2. f 
los&inj g ) f inje
tive, init&inj, 
losed, initial g

3. fTA-extend g ) f inje
tive, init&inj, epimorph, initial g

4. f 
losed, epimorph g ) f full&surj, surje
tiv g

5. f surje
tiv g ) f epimorph g

6. f surje
tiv, epimorph, initial g ) f full&surj, 
losed g

7. f init&inj g ) f inje
tive, initial g

8. f full&surj g ) f surje
tiv, epimorph g

9. f full&surj, surje
tiv, 
losed, epimorph, initial, LOinitial g )M

U

10. f inje
tive, initial g ) f init&inj g

11. f inje
tive, 
losed g ) f init&inj, 
los&inj, initial g

12. f inje
tive, surje
tiv, epimorph g ) fLOinitial g

13. f inje
tive, full&surj, surje
tiv, epimorph, LOinitial g )M

U

Moreover, the following \
omplete" list of 
ounterexamples has been produ
ed

as 
olle
ted in a formal 
ontext \Fa
tSys" shown in Table 2. The obje
t names


orrespond to the homomorphisms shown in Figure 1.

In Figure 2 we �nally show the line diagram of the resulting 
on
ept latti
e

(B(Fa
tSys);�).

The relationships to polarities (indu
ed by the relation of satisfa
tion of an at-

tribute impli
ation by the universe and by the formal sub
ontexts at every intermedi-

ate step) of the methods involved in the algorithm of attribute exploration have been

17



inj f&sur ini&inj sur 
l TA-ext 
l&inj epi ini LOini

Hom1 � � � � �

Hom2 � � � � �

Hom3 � � � � �

Hom4 � � � �

Hom5 � � � � �

Hom6 � � � �

Hom7 � � � �

Table 2: The formal 
ontext Fa
tSys

g g

g

�

�

�

�

�

�

�

�

-

6

Hom1

g

g

g

g

g

6

-

-

6

�

�

�

�

�

�

�

�

�

�I

H

H

H

Hj

Hom2

g g

g

�

�

�

�

�

�

�

�

-

Hom3

g g

gg

�

�

�

�

�

�

�

�

-

6

-

Hom4

g

g

g

g

g

6

-

-

6

�

�

�

�*

�

�

�

�

�

�

�

�

Hom5

-

�

Æ
�



�

g

g

�

�

�

�

-

�

Æ
�



�

g

g

g

�

�

�

�

X

X

X

X

X

Xz

-

-

Hom6

-

�

Æ
�



�

g g

g

�

�

�

�

-

�

�

�

�

Hom7

Figure 1: Sket
hes of the homomorphisms of the 
ontext Fa
tSys
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inje
tive

full&surj

full&inj

surje
tiv


losed

TA-extend


los&inj

epimorph

initial

LOinitial
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Hom2
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Hom4

Hom5

Hom6

Hom7
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Figure 2: The 
on
ept latti
e (B(Fa
tSys);�)

indi
ated already in the introdu
tion and in subse
tion 2.2, and we 
annot go here

into more detail.
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