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Abstrat

In onnetion with partial algebras one has muh more relevant polarities

(i.e. Galois onnetions indued by binary relations) than in the ase of total

algebras. On one side there are many di�erent subsets of the set of �rst order

formulas, whih one wants to use as a onept of identity in some speial on-

text, and where one is interested in the losure operators indued by restriting

the validity of �rst order formulas to this speial subset. On the other hand the

polarity indued by the reetion of formulas by mappings allows to keep trak

on many interesting properties of homomorphisms between partial algebras,

while others an be related to these via fatorization systems | whih an be

onsidered as speial pairs of orresponding losed lasses (in Formal Conept

Analysis one would all suh pairs \formal onepts") of the polarity indued

by the (unique) diagonal-�ll-in property on the lass of all homomorphisms.

| Moreover, having an interesting set of properties of homomorphisms, the

relation \a homomorphism has a property" an be used to apply the method

of attribute exploration from Formal Conept Analysis in order to elaborate a

basis for all impliations among these properties and on the other hand a small

but \omplete" set of ounterexamples against all non-valid impliations.

In this note we want to desribe some of suh polarities or orresponding

pairs of interest in them, and we shall present them in the ontext of many-

sorted partial algebras, sine this ontext seems to be less known. Moreover,

we want to give an example of an attribute exploration as mentioned above.

1 Introdution

When we speak in this survey artile about a Galois onnetion, we mean a polarity

(

"

;

#

) in the sense of [Bir67℄, i.e. a Galois onnetion indued by a binary relation I

between two sets G and M :

1

1

Sine they ould even be proper lasses, we shall assume the existene of set theoretial universes,

and that all will take plae in suh a universe.
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Let I � G�M , and for A � G and for B �M de�ne

A

"

:= fm 2M j (g;m) 2 I for all g 2 A g ; (1)

and

B

#

:= f g 2 G j (g;m) 2 I for all m 2 B g : (2)

Then (

"

;

#

) forms a polarity. In Formal Conept Analysis (FCA for short) the

triplet (G;M; I) is alled a (formal) ontext | the fundamental struture of FCA |,

and a pair (A;B) with A � G, B � M and with A

"

= B and B

#

= A is alled a

(formal) onept, A is alled its extent and B its intent, and we shall adopt here this

way of speaking.

There are in Universal Algebra and therefore also in the theory of partial algebras

important but more or less \trivial Galois onnetions" arising in onnetion with

losure systems like those of all losed subsets or of all ongruene relations, sine

every losure system C on some set A an be onsidered to be indued by the relation

R

2

� A� C, where, for a 2 A and H 2 C, one has:

(a;H) 2 R

2

if and only if a 2 H :

However, there are two main soures for appliations of Galois onnetions o-

urring to us immediately, when we think of | many-sorted | partial algebras of a

given type or signature � = (S;
; �; �; �):

2

Model theoreti polarities in onnetion with identities:

The relation j= of validity of a �rst order formula in a (many-sorted) partial algebra

for some given signature � an be restrited to subsets F � L

�

(Y ) of speial interest

within the �rst order language L

�

(Y ) with equality whih will here be interpreted

as existene equality

3

| with some ountably in�nite S-set Y of variables. In eah

ase it gives rise to a Galois onnetion, and in the ase of partial algebras there are

many interesting sets F � L

�

(Y ), in partiular all (existene) equations (X; t

e

= t

0

)

(X � Y �nite, and t; t

0

any terms using variables only from X), all weak equations

(X; t

w

= t

0

) :� (X; t

e

= t ^ t

0

e

= t

0

) t

e

= t

0

), strong equations (X; t

s

= t

0

) :� (X; (t

e

=

t) t

e

= t

0

) ^ (t

0

e

= t

0

) t

e

= t

0

)), all ECE-equations

4

(X;

V

n

i=1

t

i

e

= t

i

) t

e

= t

0

), or all

all quasi-existene equations (X;

V

n

i=1

t

i

e

= t

0

i

) t

e

= t

0

). But one an also onsider all

so-alled regular strong equations, whih are strong equations, where both t and t

0

are

de�nitely using the same variables in their indutive onstrution. We shall disuss

some of the losure operators onneted with suh sets.

2

For more detailed de�nitions of some of the basi notions onerning many-sorted partial algebras

see the next setion.

3

See [B86℄, [B92℄ or [B93℄ or below.

4

Short for existentially onditioned existene equations.
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The lassi�ation of properties of homomorphisms:

The lassi�ation and investigation of homomorphisms between partial algebras yield

another range of appliations of some speial polarities:

De�ning properties through the reetion of formulas:

A homomorphism from a partial algebra A into a partial algebra B is just an S-

mapping between the arrier sets, whih preserves

5

all existene equations. However,

in general it does not reet any existene equation | exept for (fxg; x

e

= x) for

variables x |, even not any of the form (X; t

e

= t) for some proper term t | having the

meaning that the interpretation of the term t exists |, whih is always reeted in the

ase of total algebras, and this is one soure for many properties of homomorphisms,

whih are of interest in the ase of partial algebras. When we denote by � the

relation of reetion of a formula by a mapping, this means that suh a property an

be onsidered as a formal onept of the formal ontext of the polarity indued by

the relation �.

De�ning \epimorphi properties" as extents of fatorization systems:

\Reetion of formulas" allows to desribe properties of mappings between partial al-

gebras like homomorphisms, injetive homomorphisms, losed homomorphisms, initial

homomorphisms, et., but it does not yet allow to haraterize surjetivity, epimorphy

and a wide range of other \epimorphi" properties. For a haraterization of suh

properties one an use the polarity indued by the existene of the unique diagonal-

�ll-in | denoted in this note by � |, whih is a relation between the lass Hom

�

of all homomorphisms between partial algebras of a given signature and itself. Some

speial formal onepts of the formal ontext (Hom

�

; Hom

�

; �) are alled fatoriza-

tion systems. And if the intent of suh a fatorization system (i.e. its right hand

omponent) orresponds to a property of homomorphisms de�ned by the reetion

of formulas, its extent (i.e. its \left hand partner") will usually be a lass of homo-

morphisms orresponding to one of the \missing epimorphi properties".

Investigation of interdependenies of properties of homomorphisms us-

ing \attribute exploration":

Having many interesting properties of homomorphisms around, some of whih are

already ombinations of other ones, one is also interested in all possible ombina-

tions of them. Here methods from FCA an be very useful. The main tool in FCA

appliable for the investigation of the interdependene of the properties of homo-

morphisms (or of their ombinations) is the so-alled attribute exploration. We shall

briey explain in this note the method of attribute exploration, whih is based on the

additional polarity indued by the relation of satisfation of an attribute impliation

by a homomorphism, and we shall present an example.

In order to avoid set theoretial diÆulties we shall assume | as already men-

5

See the next setion. Observe that preserving a formula is equivalent to reeting its negation.
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tioned | that all our onsiderations take plae in a set theoretial universe whih is

itself a set. This will indeed allow us in partiular to onsider fatorization systems

as formal onepts of the orresponding polarity, as we already indiated above.

We present our observations for many-sorted partial algebras, sine this ontext

seems to be less known.

2 Some basi de�nitions

2.1 Fundamentals of the theory of partial algebras

A signature

6

� = (S;
; �; �; �) onsists of

{ a non-empty set S, the elements of whih are interpreted as sorts,

{ a set 
 of operation symbols,

{ an arity funtion � : 
 ! N

0

, whih assigns to eah operation symbol ! 2 
 a

non-negative integer �(!), the arity of !;

{ a mapping � : 
 ! S

�

:=

S

1

n=0

S

n

assigning to eah operation symbol ! 2 
 a

sequene �(!) =: (s

1

; : : : s

�(!)

) (of length �(!)) of input sorts,

{ and a mapping � : 
 ! S assigning to eah operation symbol ! 2 
 its output

sort �(!).

7

A partial algebra A := (A; (!

A

)

!2


) of signature � is then an ordered pair onsist-

ing of a so-alled S-set A := (A

s

)

s2S

as its arrier set, where, for s 2 S, A

s

is alled the

arrier or phylum of sort S of A ; and, for eah ! 2 
, !

A

: A

�(!)

� dom!

A

! A

�(!)

| with A

�(!)

:= A

s

1

� : : :� A

s

�(!)

for �(!) =: (s

1

; : : : s

�(!)

) | is a partial operation

on A, the fundamental operation of type (�(!); �(!)) of A orresponding to the op-

eration symbol !. The fundamental operation !

A

is alled total, iff dom!

A

= A

�(!)

,

and A is alled a total algebra, iff eah fundamental operation of A is total. If �(!) is

the empty word, then !

A

is either empty or total, and then it just �xes an element

from A

�(!)

, whih we all the fundamental onstant of A indued by !.

By PAlg

�

we denote the lass of all partial algebras of signature �, and by TAlg

�

we denote its sublass of all total algebras of signature �.

In the following let Y = (Y

s

) be an S-set, where the elements of Y

s

are alled

variables of sort s (for s 2 S). When we speak of a global S-set, say Y , of variables

we shall always assume that eah phylum Y

s

is (at least) ountably in�nite, and that

the phyla are mutually disjoint and disjoint from 
. For any S-set U = (U

s

)

s2S

we

6

We only present here the most fundamental onepts of the theory of partial algebras needed in

this note; for more details f. [B86℄, [B93℄ or in the internet [B00℄.

7

One often onsiders the pair (�(!); �(!)) as the value of one single funtion | then mostly also

denoted by � , and one omits the arity funtion � , whih is impliit in our �, but we think that the

above notation is more onvenient.

4



denote by P(U) the set of all S-subsets V = (V

s

)

s2S

of U (i.e. where one has V

s

� U

s

for eah s 2 S). V will be alled a �nite S-subset of U , if the disjoint union over all

phyla of V is �nite. By P

�n

(U) we designate the set of all �nite S-subsets of U . In

the following, X will always denote a �nite S-subset of the set Y of variables under

onsideration.

Terms | of some sort s | are de�ned in the usual reursive way. By T

�

(X)

s

we designate the set of all terms with output sort s 2 S and with variables in

X 2 P

�n

(Y ). For t 2 T

�

(X)

s

we denote by var(t) � X the set of variables \really

ourring in t" (beause of the reursive de�nition of t). Moreover, by T

�

(X) we des-

ignate the total term algebra on T

�

(X) := (T

�

(X)

s

)

s2S

, where !

T

�

(X)

(t

1

; : : : ; t

�(!)

) :=

!t

1

: : : t

�(!)

(as a word in (
 [

S

s2S

X

s

)

�

).

It is well-known, that one has to inlude for the de�nition of identities in a �rst or-

der language for a many-sorted signature in some way a referene to the variables un-

der onsideration (one atually needs the set of sorts to whih the referened variables

belong), whenever one does not exlude empty phyla, but suh an exlusion would

usually exlude too many strutures. For simpliity we use suh a referene for all

formulas, i.e. we de�ne our �rst order language L

�

(Y ) :=

S

fL

�

(X) j X 2 P

�n

(Y ) g

as follows:

For X 2 P

�n

(Y ), s 2 S and t; t

0

2 T

�

(X)

s

, (X; t

e

= t

0

) is an atomi formula, whih

we all an existene equation (E-equation for short).

8

The speial ase (X; t

e

= t) gets

meaning in the ase of partial algebras and is alled a term existene statement (abbr.

TE-statement). Arbitrary �rst order formulas are then de�ned reursively | almost

| as usual:

� eah atomi formula of L

�

(Y ) is a formula of L

�

(Y );

� if (X; �) is a formula of L

�

(Y ), then (X;:�) is a formula of L

�

(Y ) (negation);

� if (X; �) and (X

0

; �

0

) are formulas of L

�

(Y ), then

(X [X

0

; (� ^ �

0

)) (onjuntion),

(X [X

0

; (� _ �

0

)) (disjuntion),

(X [X

0

; (� ) �

0

)) (impliation), and

(X [X

0

; (� , �

0

)) (equivalene) are formulas of L

�

(Y );

� if (X; �) is a formula of L

�

(Y ), and if x 2 X

s

for some s 2 S, then

9

(X n

fxg; (8x)�) and (X n fxg; (9x)�) are formulas of L

�

(Y ).

8

One ould avoid the extra referene to variables, if (X ; t

e

= t

0

) would be replaed by

V

x2X

x

e

=

x ) t

e

= t

0

(f. De�nition 4 below) | sine one only has to referene some extra variables in order

to get full expressive power of the language.

9

Observe that we abbreviate by X n fxg, for x 2 X

s

, the S-set Z, for whih Z

s

= X

s

n fxg and

Z

s

0

= X

s

0

for s

0

2 S n fsg.
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� if (X; �) is a formula of L

�

(Y ), and if X

0

2 P

�n

(Y ), then (X [ X

0

; �) is a

formula of L

�

(Y ).

Formulas of speial interest in onnetion with identities for partial algebras are be-

sides E-equations (as usual we omit some brakets, whenever possible):

(a) existentially onditioned existene equations (ECE-equations for short)

(X;

V

n

i=1

t

i

e

= t

i

) t

e

= t

0

) ;

(b) quasi-existene equations (QE-equations for short)

(X;

V

n

i=1

t

i

e

= t

0

i

) t

e

= t

0

) ;

() or (onjuntions of) ECE-equations of some very speial kind like

(

1

) weak equations, i.e. ECE-equations of the form

(X; t

w

= t

0

) :� (X; t

e

= t ^ t

0

e

= t

0

) t

e

= t

0

) ;

(

2

) strong equations or Kleene-equations

(X; t

s

= t

0

) :� (X; (t

e

= t) t

e

= t

0

) ^ (t

0

e

= t

0

) t

e

= t

0

)) ;

(

3

) regular strong equations (X; t

s

= t

0

), where | beause of their indutive

onstrution | t and t

0

have the same set of variables, and this is equal to X,

i.e. where var(t) = var(t

0

) = X.

(d) In generalization of QE-equations we speak of elementary impliations, when

we allow arbitrarily long (even in�nite) premises and onlusions in an extended

in�nitary language:

(Z;

V

i2I

t

i

e

= t

0

i

)

V

j2J

p

i

e

= p

0

i

) ;

where Z may be an arbitrarily large S-set of variables (with mutually disjoint phyla

all disjoint from 
).

In the following we shall always onsider a �xed signature � and a �xed S-set

Y of variables, ountably in�nite (in every phylum), and disjoint with 
; and all

partial algebras are assumed to be of this signature (if not stated otherwise). For

partial algebras A or B et., A and B et. shall always designate their arrier sets,

respetively.

Basis for the semantis are (partial) interpretations:

Let A be a partial algebra, X 2 P

�n

(Y ), and v : X ! A any S-mapping (i.e. any

S-indexed family (v

s

: X

s

! A

s

)

s2S

of mappings), alled an X-valuation.

10

Then the

(partial) interpretation indued by v, denoted by ~v is the mapping out of T

�

(X) into

A with smallest domain dom ~v � T

�

(X) suh that

� ~v

s

(y) = v

s

(y) for all y 2 X

s

and s 2 S.

� For ! 2 
 with (�(!); �(!)) =: ((s

1

; : : : ; s

�(!)

); s), and for t

i

2 T

�

(X)

s

i

(1 �

i � �(!)) one has:

10

Sine A may have empty phyla, one should not use only \global" valuations, sine there might

exist none, while there may be lots of \loal" valuations.
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If ~v

s

i

(t

i

) =: a

i

is already de�ned for 1 � i � �(!), and if !

A

(a

1

; : : : ; a

�(!)

) =: a

is de�ned in A , then ~v

s

(!t

1

: : : t

�(!)

) is de�ned with value a.

We say that an E-equation (X; t

e

= t

0

) (of sort s) is satis�ed in A with respet to the

valuation v | in symbols: A j= (X; t

e

= t

0

)[v℄ |, iff t 2 dom ~v

s

and t

0

2 dom ~v

s

and

~v

s

(t) = ~v

s

(t

0

).

11

We say that (X; t

e

= t

0

) is valid in A | in symbols: A j= (X; t

e

= t

0

)

|, iff A j= (X; t

e

= t

0

)[v℄ for all valuations v : X ! A. As usual, satisfation and

validity are arried over reursively to arbitrary formulas of L

�

(Y ).

Let A and B be partial algebras, let (X; �) 2 L

�

(Y ) be any formula, and let

f : A! B be any S-mapping. We say that f reets (X; �) | in symbols: f�(X; �)

|, iff, for all X-valuations v : X ! A, B j= (X; �)[f Æ v℄ implies A j= (X; �)[v℄.

Conversely, we say that f preserves (X; �), iff for all X-valuations v : X ! A,

A j= (X; �)[v℄ implies B j= (X; �)[f Æ v℄; however, this is equivalent to f � (X;:�),

and therefore the relation � is suÆient.

Let A be any partial algebra and B any S-subset of A. Then B is said to be a

losed subset of A , iff, for every ! 2 
, and for every sequene a 2 dom!

A

\ B

�(!)

one has !

A

(a) 2 B

�(!)

. If B is a losed subset of A , then (B; (!

A

jB

�(!)

)

!2


) will be

alled the subalgebra of A with arrier B, and it will be denoted by B . By C

A

M we

shall designate the smallest losed subset of A ontaining M � A | and by C

A

M the

orresponding subalgebra. | Observe, that in ases, where a subset of the arrier

of some partial algebra is de�ned by some operator, then underlining the operator

means formation of the relative subalgebra

12

on the de�ned subset (as in the ase

C

A

M).

A subset D of the arrier of A is alled an initial segment of A , iff, for every

(a

1

; : : : ; a

�(!)

) 2 dom!

A

, the fat that !

A

(a

1

; : : : ; a

�(!)

) 2 D

�(!)

implies a

i

2 D

�(!)(i)

for 1 � i � �(!). By #

A

M we shall designate the smallest initial segment of A

ontaining M � A | and by #

A

M the orresponding relative subalgebra. Observe

that, for v : X ! A , dom ~v is always an initial segment of T

�

(X).

In the rest of this subsetion let (A

i

)

i2I

be any �xed set-indexed family of partial

algebras of signature �:

The diret produt B :=

Q

i2I

A

i

has as arrier set the set theoretial artesian S-

produt B := �

i2I

A

i

:= (�

i2I

A

is

)

s2S

of the arriers. And, for ! 2 
, one has

dom!

B

:= f ((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) 2 B

�(!)

j (a

i

1

; : : : ; a

i

�(!)

) 2 dom!

A

i

, for eah

i 2 I g . For ((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) 2 dom!

B

, one de�nes

!

B

((a

i

1

)

i2I

; : : : ; (a

i

�(!)

)

i2I

) := (!

A

i

(a

i

1

; : : : ; a

i

�(!)

))

i2I

.

11

Observe that, for t = t

0

, A j= (X ; t

e

= t)[v℄ still has the nontrivial meaning that \t 2 dom ~v

s

",

i.e. that t is interpreted w.r.t. ~v (or, in other words, v interprets t).

12

Note that, for an arbitrary subset B of A one de�nes the relative subalgebra B := B of A with

arrier B to be the partial algebra (B; (!

A

\ (B

�(!)

�B

�(!)

))

!2


).
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In the ase of many-sorted (partial) algebras the redued produt D := (

Q

i2I

A

i

)=F

of the family (A

i

)

i2I

w.r.t. a �lter F on the index set I is de�ned as follows: Let

D

0

:=

S

f�

i2J

A

i

j J 2 F g . Moreover, for a := (a

i

)

i2J

1

; b := (b

i

)

i2J

2

2 D

0

(for

J

1

; J

2

2 F),

13

de�ne I

a

:= J

1

, and I

a;b

:= f i 2 I

a

\ I

b

j a

i

= b

i

g . Moreover,

de�ne on D

0

an equivalene relation �

F

:= f (a; b) 2 D

2

0

j I

a;b

2 F g . Then the

quotient S-set D := D

0

=�

F

is the arrier of D , the elements of whih will be denoted

by a=F (for a 2 D

0

some arbitrarily hosen representative). And, for ! 2 
, de�ne

dom!

D

:= f a j a = (a

1

=F ; : : : ; a

�(!)

=F) 2 D

�(!)

and I

a

:= (

T

�(!)

k=1

I

a

k

) \ fi 2 I j

(a

i

1

; : : : ; a

i

�(!)

) 2 dom!

A

i

g 2 F g . And de�ne, for (a

1

=F ; : : : ; a

�(!)

=F) 2 dom!

D

,

!

D

(a

1

=F ; : : : ; a

�(!)

=F) := (!

A

i

(a

i

1

; : : : ; a

i

�(!)

))

i2I

a

=F .

As a further onstrution we shall need the mixed produt of a family (A

i

)

i2I

, as it

was reently introdued by Grzegorz Binzak:

14

De�ne P

0

:=

S

f�

i2J

A

i

j J � I g . We shall de�ne I

a

for a 2 P

0

as above. For i 2 I,

set dom�

i

:= f a 2 P

0

j i 2 I

a

g , where �

i

: P

0

� dom�

i

! A

i

is a \generalized

projetion" with �

i

(a) := a

i

, whenever a = (a

j

)

j2I

a

and i 2 I

a

.

A partial algebra M is alled a mixed produt of the family (A

i

)

i2I

, iff there is a

subset M

0

� P

0

and a partial algebrai struture (!

M

0

)

!2


satisfying:

(1) For every ! 2 
, (a

1

; : : : ; a

�(!)

) 2 M

�(!)

0

, and a 2M

0;�(!)

one has:

If !

M

0

(a

1

; : : : ; a

�(!)

) = a , then

(a) I

a

� I

a

1

\ : : : \ I

a

�(!)

,

(b) �

i

(a) = !

A

i

(�

i

(a

1

); : : : ; �

i

(a

�(!)

)) for every i 2 I

a

.

(2) Let � be the ongruene relation on M

0

generated by the set (f (a; b) 2 (M

0s

)

2

j

I

a;b

= I

a

\ I

b

g)

s2S

. Then � is a losed ongruene relation (i.e. the natural

projetion nat

�

: M

0

! M

0

=� indued by � is a losed homomorphism as de�ned

in the table at the end of subsetion 3.1), and M = M

0

=� , the usual quotient

algebra.

2.2 Fundamentals of Formal Conept Analysis

Basi strutures of Formal Conept Analysis

15

(FCA for short) are formal ontexts

K := (G;M; I), where G and M are arbitrary sets, the elements of whih are alled

objets and attributes, respetively, and where I � G�M is any binary relation. The

polarity (

"

;

#

) de�ned by (1) and (2) in the introdution plays a entral role in FCA.

13

Observe that all elements in any suh a sequene a have to be of the same sort.

14

See [Bi01℄.

15

Cf. [GW99℄.
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The pairs (A;B) with A � G and B � M satisfying A

"

= B and B

#

= A are alled

formal onepts. If (A;B) is a formal onept, then A is alled its extent and B its

intent. By B(K ) we designate the set of all formal onepts of the formal ontext K .

Formal onepts are ordered by set theoretial inlusion of the extents:

(A

1

; B

1

) � (A

2

; B

2

) iff A

1

� A

2

( iff B

1

� B

2

) :

The ordered set (B(K );�) always forms a omplete lattie. One has two mappings

� : M ! B(K ) | with �(m) := (fmg

#

; fmg

#"

) (g 2 G) | and  : G ! B(K )

| with (g) := (fgg

"#

; fgg

"

) (m 2 M) | assigning to the attributes and objets

their \generated formal onepts". In line diagrams of onept latties the name of

the attribute m is usually written a little above the irle representing the formal

onept �(m), and the name of the objet g is usually written a little below the irle

representing the formal onept (g) (f. Figure 2).

Let K := (G;M; I) be a formal ontext. For P;C �M we all P ! C an attribute

impliation. And we say that the attribute impliation P ! C holds in K | and

denote this by K j=

FCA

P ! C |, iff, for every objet g 2 G, P � fgg

"

implies

C � fgg

"

. For more details on FCA see [GW99℄.

3 Properties of homomorphisms

3.1 About the polarity indued by the relation �

Sine speial homomorphi images are needed for the desription of lasses of partial

algebras de�ned by some kinds of identities, we �rst onsider the relation � of ree-

tion of formulas by mappings, sine this allows us to de�ne homomorphisms and a

lot of their properties.

Let Map

�

designate the lass of all S-mappings between the arriers of partial

algebras of signature � (within our universe), and let us onsider the formal ontext

K

�

:= (Map

�

; L

�

(Y ); �). And let (

"

�

;

#

�

) be the polarity orresponding to this

formal ontext (f. (1) and (2) of the introdution). Moreover, let Hom

�

designate

the lass of all struture preserving mappings, i.e. homomorphisms, f : A ! B

between partial algebras. This means that for suh an f one has, for all ! 2 


and for all sequenes a := (a

1

; : : : ; a

�(!)

) 2 A

�(!)

, that a 2 dom!

A

implies f Æ a :=

(f

�(!)(1)

(a

1

); : : : ; f

�(!)(�(!))

(a

�(!)

)) 2 dom!

B

and f

�(!)

(!

A

(a)) = !

B

(f Æ a) :

Theorem 1 Let H � Map

�

. Then the following statements are equivalent:

16

16

Observe that we write fx

1

; : : : ; x

�(!)

; y g as abbreviation for S-sets (X

s

)

s2S

with X

s

= f z j

(z = x

i

and �(!)(i) = s and 1 � i � �(!)) or (z = y and �(!) = s) g (for s 2 S).

9



(i) H = Hom

�

.

(ii) H = f (X;:t

e

= t

0

) j X � P

�n

(Y ); t; t

0

2 T

�

(X) g

#

�

.

(iii) H = f (f x

1

; : : : ; x

�(!)

; y g;:!x

1

: : : x

�(!)

e

= y) j x

i

2 Y

�(!)(i)

(1 � i � �(!)) ; y 2

Y

�(!)

, and ! 2 
 g

#

�

.

(iv) H = f (f x

1

; : : : ; x

�(!)

; y g;:!x

1

: : : x

�(!)

e

= y) j x

i

2 Y

�(!)(i)

(1 � i � �(!)) ; y 2

Y

�(!)

, all x

i

are mutually distint and distint from y, and ! 2 
 g

#

�

.

This means that the usual homomorphisms between partial algebras are exatly

those mappings between partial algebras whih reet all negations of E-equations

and therefore they are exatly those mappings whih preserve all E-equations.

As already mentioned above, a \usual" homomorphism with a proper partial alge-

bra as start objet in general does not reet TE-statements, while homomorphisms

between total algebras trivially reet all TE-statements. Therefore it should not be

astonishing that a great part of the wealth of interesting properties of homomorphisms

between partial algebras an be desribed in a model theoreti way. In partiular,

many of them like injetivity, losedness, initialness

17

and their ombinations (like

\full and injetive", what is equivalent to \initial and injetive") an be de�ned by

the reetion of speial E-equations, i.e. the lass of all homomorphisms having suh

a propety is the extent of a formal onept of the formal ontext K

�

, where the intent

is generated by one of the sets of negations of E-equations mentioned in Theorem 1,

and in addition by the kinds of E-equations indiated in the following table, in whih

we omit the referene to the set of variables, sine it is in eah ase the set of all

variables (of appropriate sort) ourring in any of the terms involved.

18

notation lass of all kind of additionally reeted formulas

Mono

�

injetive homomorphisms x

e

= y (x; y 2 Y

s

, s 2 S)

Closed

�

losed homomorphisms t

e

= t (t 2 T

�

(X)

s

, s 2 S, X 2 P

�n

(Y ))

Closed

�

losed homomorphisms !(a)

e

= !(a) (! 2 
, a 2 T

�

(var(a))

�(!)

)

Mono

�;losed

losed injetive hom.s x

e

= y, t

e

= t (. . . )

Mono

�;full

full injetive hom.s x

e

= y, !(a)

e

= y, (x; y 2 Y

s

, s 2 S,

x

i

2 Y

�(!)(i)

; y 2 Y

�(!)

; ! 2 
)

Initial

�

initial homomorphisms !(a)

e

= y, (a 2 Y

�(!)

; y 2 Y

�(!)

;

y =2 var(a); ! 2 
)

17

In the sense of Bourbaki in [Bou57℄: A mapping f : A! B (A ; B 2 PAlg

�

) is initial, iff, for all

homomorphisms g : B ! C , f is a homomorphism from A into B iff g Æ f is a homomorphism from

A into C .

18

Observe that Initial

�

onsists of all those homomorphisms f : A ! B for whih the preimage of

every element from

S

!2


!

B

(dom!

B

) ontains at most one element.

10



3.2 \Epimorphi properties" of homomorphisms and fator-

ization systems

Most of the \interesting" properties of homomorphisms not haraterizable by ree-

tion of some set of formulas an be desribed in onnetion with extents of formal

onepts alled fatorization systems (w.r.t. to some polarity) in ategory theory:

19

Let us reall that a homomorphism f : A ! B is an epimorphism, iff C

B

f(A) = B

(i.e. iff f(A) generates B ). An epimorphism e : A ! B is TAlg

�

-extendable, iff, for all

homomorphisms f : A ! C with C 2 TAlg

�

, there exists a unique homomorphism

g : B ! C suh that g Æ e = f . A surjetive homomorphism f : A ! B is full (i.e.

a quotient homomorphism), iff f \indues the struture on B ". De�ne the formal

ontext K

�

:= (Hom

�

; Hom

�

; �), where, for e;m 2 Hom

�

, one says that (e;m)

satis�es the unique diagonal-�ll-in property | here denoted by � | iff, for any

p; q 2 Hom

�

, m Æ p = q Æ e implies the existene of a unique d 2 Hom

�

suh that

d Æ e = p and m Æ d = q . A fatorization system (E ; M) is then any formal onept

of K

�

suh that in addition to being a formal onept w.r.t. � one has:

{ Iso

�

� E \M,

{ E Æ E � E ,

{ MÆM �M, and

{ MÆ E = Hom

�

.

Theorem 2 Let � � L

�

(Z) be any set of elementary impliations, where Z is any

global S-set of variables, and letM := �

#

�

. Then (M

#

�

; M) is always a fatorization

system.

20

Thus, in partiular, when M is a lass of homomorphisms de�ned via the reetion

of some set of QE-equations, then M

#

�

is its partner in a fatorization system and

onsists of a lass of epimorphisms (whih enode the elementary impliations under

onsideration) | and this is the reason, why we all it here an \epi-fator".

21

19

In [AdHS90℄ they are now alled fatorization strutures.

20

Cf. e.g. [B86℄, Remark 10.2.11 | observe that there and in other books and papers the operators

have a di�erent notation than we have used in this note in order to have a homogeneous notation.

Very often one writes �(E) instead of E

"

�

, and �

op

(M) instead of M

#

�

.

21

Observe that, what one often | and we here, too | alls a \mono-fator", need not onsist only

of monomorphisms. As an example take the lass Closed

�

of all losed homomorphisms. However,

the fatorization systems onsidered originally usually onsisted of a lass of epimorphisms as extent

and a lass of monomorphisms as intent. | Observe, too, that we have in the theory of partial alge-

bras an interesting fatorization system ( all �nal homomorphisms, all bijetive homomorphisms ),

where the �nal homomorphisms between partial algebras | whih form the dual onept to ini-

tial homomorphisms in the sense of Bourbaki [Bou57℄ | are exatly those homomorphisms, whih

fully indue the struture on the image algebra, but they need not be surjetive and therefore not

epimorphi. Moreover, the bijetive homomorphisms are not de�ned by the reetion of formulas.

11



\epi-fator" \mono-fator"

( lass of all full and surjetive homomorphisms , Mono

�

) ,

( lass of all TAlg

�

-extendable epimorphisms , Closed

�

) ,

( Epi

�

= lass of all epimorphisms , Mono

�;losed

) ,

( lass of all surjetive homomorphisms , Mono

�;full

) ,

( lass of all �nal homomorphisms , l. of all bijet. hom.s ) .

In addition, observe that the \epi-fator" orresponding to Initial

�

onsists of all

those surjetive homomorphisms f : A ! B for whih the preimage of every element

from B n

S

!2


!

B

(dom!

B

) ontains exatly one element.

4 Polarities derived from the relation j=

The relation j= of validity of a �rst order formula in a (many-sorted) partial algebra

for some given signature � of the fundamental operations under onsideration an be

restrited to subsets F � L

�

(Y ) of speial interest within the �rst order language

L

�

(Y ). As mentioned earlier, F is usually hosen to be | for arbitrary X 2 P

�n

(Y ),

and terms t; t

0

2 T

�

(X)

s

and t

i

; t

0

i

2 T

�

(X)

s

i

(i 2 f1; : : : ; ng) |

{ the set of all E-equations,

{ the set of all ECE-equations,

{ the set of all QE-equations,

{ or the set of all (speial onjuntions of) ECE-equations of some speial kind like

{ the set of all weak equations,

{ the set of all strong equations or Kleene-equations ,

{ the set of all regular strong equations,

{ or various other similar onepts of speial equalities.

With eah suh set of speial formulas one has the problem to desribe the losed

sets/lasses of the indued Galois onnetion on the syntatial and on the semantial

side, respetively, i.e. to �nd so-alled Birkho�-type theorems and Birkho�-Tarski-

type theorems. For E-, ECE- and QE-equations this has been no great problem, and

the results an be found e.g. in [B86℄ or [B93℄. However, in the ases of weak and

strong equations the problems have been muh harder, and only reently G. Binzak

has solved the \semanti problem" for weak equations in a satisfatory way (see

[Bi01℄) by inventing a new operator P

m

(whih he alls the formation of mixed produts

as de�ned in this note at the end of subsetion 2.1).

In [Hoe73℄, H.H�oft has haraterized losed sets of weak equations as what he alls

weakly invariant relations. We do not give the details here. Moreover, the problems

for strong equations are still unsolved, while Bo_zena and Bogdan Staruh have solved

12



in [StSt94℄ the problems for regular strong equations.

22

Again we refer here to the

literature. On the other hand William Craig has observed in [Cr89℄ (for the homoge-

neous ase) that the extension of the language by a \logial" binary operation symbol,

whih is always interpreted as a total binary �rst projetion, Kleene-equations in this

extended language and ECE-equations (in the original or extended language) have

the same expressive power (when the empty algebra is exluded) | and a similar

observation an be made in the ase of heterogeneous partial algebras (see [B95℄).

Theorem 3 For many-sorted partial algebras one has the following semantial oper-

ators for the desription of the losure ModForm(K) of lasses K of partial algebras

w.r.t. some sets Form of speial QE-equations (with the involved operators de�ned

below):

23

Form orresponding semanti operator

E-equations H

w

S



P = H

w

S



P

r

ECE-equations H



S



P

r

QE-equations IS



P

r

weak equations IP

m

Here the operators are de�ned as follows, for any lass K � PAlg

�

:

� H

w

(K) := f B 2 PAlg

�

j there exists a surjetive homomorphism A ! B for

some A 2 K g ;

� H



(K) := f B 2 PAlg

�

j there exists a losed and surjetive homomorphism

A ! B for some A 2 K g ;

� I(K) := f B 2 PAlg

�

j B is isomorphi to some K-algebra g ;

� S



(K) := f B 2 PAlg

�

j B is a (losed) subalgebra of some K-algebra g ;

� P(K) := f B 2 PAlg

�

j there exist a set I and a family (A

i

)

i2I

of K-algebras

suh that B =

Q

i2I

A

i

is the diret produt of this family g ;

� P

r

(K) := f B 2 PAlg

�

j there exist a set I, a �lter F on I and a family (A

i

)

i2I

of K-algebras suh that B = (

Q

i2I

A

i

)=F is a redued produt of this family g ;

� P

m

(K) := f B 2 PAlg

�

j there exist a set I and a family (A

i

)

i2I

of K-algebras

suh that B is a mixed produt of this family g .

22

Regularity of (X ; t

s

= t

0

) means that | aording to the reursive onstrution of terms | t and

t

0

ontain the same variables.

23

If S is in�nite, then the equality H

w

S



P = H

w

S



P

r

no longer holds, and one then has to take

H

w

S



P

r

as semanti operator for E-equations, if one wants to keep the language �nitary (see [B95℄).
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The desriptions of the losed sets of formulas under onsideration is a little more

involved and not disussed here in all ases.

We only want to give a desription of losed sets of E- ECE- and QE-equations.

Here a set theoretial representation is useful:

24

De�nition 4 Let

� := (X;

n

^

i=1

t

i

e

= t

0

i

) t

e

= t

0

)

be any QE-equation. Then � may be set theoretially represented by an ordered pair

(f(x; x) j x 2 Xg [ f(t

i

; t

0

i

) j 1 � i � ng; (t; t

0

)) 2 P

�n

(T

�

(X)

2

)� T

�

(X)

2

:

If � is an ECE-equation, then the orresponding pair belongs to P

�n

(f(t; t) j t 2

T

�

(X)g)� T

�

(X)

2

, and if � is an E-equation, then the orresponding pair belongs to

P

�n

(f(x; x) j x 2 Xg) � T

�

(X)

2

. In eah ase we an represent X as var(�). Sine

every t 2 T

�

(X) an be onsidered as an element of T

�

(Y ) (beause of X � Y and

the reursive de�nition of terms), we an de�ne

Prem

E

:= P

�n

((f(y; y) j y 2 Y

s

g)

s2S

);

Prem

ECE

:= P

�n

((f(t; t) j t 2 T

�

(Y )

s

g)

s2S

); and

Prem

QE

:= P

�n

(T

�

(Y )� T

�

(Y )):

For P � T

�

(Y )

2

we de�ne

var(P ) :=

[

(t;t

0

)2P

(var(t) [ var(t

0

)) :

And we obtain

Eeq

Y

=

[

P2Prem

E

fPg � T

�

(var(P ))

2

;

ECEeq

Y

=

[

P2Prem

ECE

fPg � T

�

(var(P ))

2

;

QEeq

Y

=

[

P2Prem

QE

fPg � T

�

(var(P ))

2

;

24

For E-equations in the homogeneous ase (exluding the empty algebra) the simplest desription

of losed sets is by saying that they are losed and fully invariant ongruene relations on relative

subalgebras F of T

�

(Y ), suh that F is freely generated by Y . The following generalizes this for the

ase, when the empty partial algebra is allowed, too, and to heterogeneous partial algebras (with

empty phyla allowed).

14



for the sets of all set theoretial enodings of E-, ECE- or QE-equations with variables

in Y , respetively. Now, for Prem 2 fPrem

E

;Prem

ECE

;Prem

QE

g, we onsider in the

following

Q �

[

P2Prem

(fPg � T

�

(var(P ))

2

)

to be any set of set theoretially enoded elementary impliations of the orresponding

type. For P 2 Prem we de�ne

Q(P ) := f(t; t

0

) j (P; (t; t

0

)) 2 Qg:

For any lass K of partial algebras de�ne

Imp

Prem

(K) :=

:= f(P; (t; t

0

)) j P 2 Prem; t; t

0

2 T

�

(var(P ));K j= (var(P );

V

(p;p

0

)2P

p

e

= p

0

) t

e

= t

0

)g

and set #E to be the relative subalgebra of T = T

�

(Y ) onsisting of all subterms of

terms ourring in E � T

�

(Y )

2

, and let suppE :=

S

(t;t

0

)2E

ft; t

0

g) (i.e. the support of

E) be the set of all terms ourring as at least one omponent of a pair in E, and,

moreover, let suppE designate the relative subalgebra of T

�

(Y ) with arrier suppE.

With the above notation one has the following desription of losed sets of ele-

mentary impliations of one of the three kinds of Prem:

Theorem 5

25

Let Prem 2 fPrem

E

;Prem

ECE

;Prem

QE

g, and let Q �

S

P2Prem

(fPg�T

�

(var(P ))

2

) be

any set representing elementary impliations onneted with Prem.

(a) Then the following statements are equivalent:

(i) Q = Imp

Prem

(Mod(Q)).

(ii) Q has the following properties (I1) through (I4) for any P; P

0

2 Prem:

(I1) suppQ(P ) is a var(P )-generated relative subalgebra of T

�

(var(P )) |

in partiular one has suppQ(P ) =# Q(P ).

(I2) Q(P ) is a losed ongruene relation on suppQ(P ).

25

The proof of this theorem for the homogeneous ase an be found �rst | formulated for QE-

equations| in [ABN81℄ (and in another form in [AN83℄). Later it appeared in [B86℄ and, without

proof, in [B93℄. Yet in all three ases (I1) ontained an error, sine we there refer to #Q(P ) rather

than to suppQ(P ), and #Q(P ) is trivially generated by var(P ), i.e. then (I1) does not ontain any

non-trivial ondition. We think that in this set theoretial form, and formulated for heterogeneous

partial algebras the theorem is formulated here for the �rst time.
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(I3) P � Q(P ).

(I4) For every homomorphism f : #P ! suppQ(P

0

) satisfying (f�f)(P ) �

Q(P

0

), there exists a homomorphi extension f

PP

0

: suppQ(P ) !

suppQ(P

0

), whih satis�es (f

PP

0

� f

PP

0

)(Q(P )) � Q(P

0

).

(b) If Q = Imp

Prem

(Mod(Q)), and P 2 Prem, then

Q(P ) =

\

fker f

�

j f : #P ! A ; A 2 Mod(Q) and P � ker f

�

g:

Again fatorization systems ome into the piture in onnetion with the Meta

Birkho� Theorem of Hajnal Andr�eka, Istva�an N�emeti and Ildiko Sain (see [AN82℄

and [NSa82℄) haraterizing losed model lasses of universal Horn formulas in a very

general ategory theoretial way. Namely, the lass S of \admissible subobjets"

there has to orrespond to the \mono-fator" of a fatorization system. And the

lass of epimorphisms used for the \admissible epimorphisms" has in some way to be

ompatible with S

#

�

(for more details f. e.g. [B92℄ or [B86℄).

5 \Attribute exploration" uses further polarities

Attribute exploration is a method from FCA, where the user or expert �xes a very

large ontext U = (G

U

; M

U

; I

U

) of interest | with some �nite set M

U

of attributes

| as so-alled universe, and where a program (like \ConImp"

26

) asks the expert in a

systemati way, whether some attribute impliations omputed by the program hold

in U. Aim of the proedure is to get a list I of attribute impliations holding in U,

from whih all other attribute impliations holding in U an be derived. And at the

same time one wants to produe a subontext K = (G;M

U

; I) of U, whih ontains

for eah attribute impliation not holding in U a ounterexample. | These data then

allow to ompute the onept lattie of U up to isomorphism.

We present an example for a homogeneous mono-unary signature (i.e. S = fsg ),


 = f!g, � : ! 7! 1 (� and � are obvious),

27

where the set G

U

equals Hom

�

. The list

of attributes is shown in Table 1 together with their abbreviations used at di�erent

oasions in order that e.g. the impliations do not beome too long.

28

26

Cf. [B00a℄.

27

The result holds for all homogenoeus signatures with at least one at least unary operation, but

it might look di�erent, if we have e.g. a signature with only one unary operation mapping elements

of one sort to elements of a di�erent sort, sine then one annot produe examples like Hom6 and

Hom7 below.

28

Moreover, the program \ConImp" aepts only names with at most 9 haraters.
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The set M

U

of attributes full name in impliations in the ontext

injetive injetive inj

full&surjetive full&surj f&sur

initial&injetive init&inj ini&inj

surjetive surjetiv sur

losed losed l

TAlg

�

-extendable TA-extend TA-ext

losed&injetive los&inj l&inj

epimorphi epimorph epi

initial initial ini

�

op

(initial) LOinitial LOini

Table 1: The attributes of the formal ontext FatSys

The algorithm may start with an empty list of objets or a list of objets en-

tered in advane, and one an also enter some impliations as so-alled bakground

impliations in advane.

In onnetion with the algorithm of attribute exploration the following list of

so-alled Duquenne-Guigues-impliations is produed:

1. fLOinitial g ) f surjetiv, epimorph g

2. f los&inj g ) f injetive, init&inj, losed, initial g

3. fTA-extend g ) f injetive, init&inj, epimorph, initial g

4. f losed, epimorph g ) f full&surj, surjetiv g

5. f surjetiv g ) f epimorph g

6. f surjetiv, epimorph, initial g ) f full&surj, losed g

7. f init&inj g ) f injetive, initial g

8. f full&surj g ) f surjetiv, epimorph g

9. f full&surj, surjetiv, losed, epimorph, initial, LOinitial g )M

U

10. f injetive, initial g ) f init&inj g

11. f injetive, losed g ) f init&inj, los&inj, initial g

12. f injetive, surjetiv, epimorph g ) fLOinitial g

13. f injetive, full&surj, surjetiv, epimorph, LOinitial g )M

U

Moreover, the following \omplete" list of ounterexamples has been produed

as olleted in a formal ontext \FatSys" shown in Table 2. The objet names

orrespond to the homomorphisms shown in Figure 1.

In Figure 2 we �nally show the line diagram of the resulting onept lattie

(B(FatSys);�).

The relationships to polarities (indued by the relation of satisfation of an at-

tribute impliation by the universe and by the formal subontexts at every intermedi-

ate step) of the methods involved in the algorithm of attribute exploration have been

17



inj f&sur ini&inj sur l TA-ext l&inj epi ini LOini

Hom1 � � � � �

Hom2 � � � � �

Hom3 � � � � �

Hom4 � � � �

Hom5 � � � � �

Hom6 � � � �

Hom7 � � � �

Table 2: The formal ontext FatSys

g g
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�
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�

�

�

�

�

�

-

6
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�

�
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�
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�
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Figure 1: Skethes of the homomorphisms of the ontext FatSys
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Figure 2: The onept lattie (B(FatSys);�)

indiated already in the introdution and in subsetion 2.2, and we annot go here

into more detail.
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