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Abstract

In connection with partial algebras one has much more relevant polarities
(i.e. Galois connections induced by binary relations) than in the case of total
algebras. On one side there are many different subsets of the set of first order
formulas, which one wants to use as a concept of identity in some special con-
text, and where one is interested in the closure operators induced by restricting
the validity of first order formulas to this special subset. On the other hand the
polarity induced by the reflection of formulas by mappings allows to keep track
on many interesting properties of homomorphisms between partial algebras,
while others can be related to these via factorization systems — which can be
considered as special pairs of corresponding closed classes (in Formal Concept
Analysis one would call such pairs “formal concepts”) of the polarity induced
by the (unique) diagonal-fill-in property on the class of all homomorphisms.
— Moreover, having an interesting set of properties of homomorphisms, the
relation “a homomorphism has a property” can be used to apply the method
of attribute exploration from Formal Concept Analysis in order to elaborate a
basis for all implications among these properties and on the other hand a small
but “complete” set of counterexamples against all non-valid implications.

In this note we want to describe some of such polarities or corresponding
pairs of interest in them, and we shall present them in the context of many-
sorted partial algebras, since this context seems to be less known. Moreover,
we want to give an example of an attribute exploration as mentioned above.

1 Introduction

When we speak in this survey article about a Galots connection, we mean a polarity
(T, +) in the sense of [Bir67], i.e. a Galois connection induced by a binary relation /
between two sets G and M:!

Since they could even be proper classes, we shall assume the existence of set theoretical universes,
and that all will take place in such a universe.



Let I C G x M, and for A C G and for B C M define
Ali={meM|(g,m)elforallge A}, (1)
and
BY:={geG|(g,m)elforallme B}. (2)

Then (T, +) forms a polarity. In Formal Concept Analysis (FCA for short) the
triplet (G, M, I) is called a (formal) context — the fundamental structure of FCA —,
and a pair (4, B) with A C G, B € M and with AT = B and B' = A is called a
(formal) concept, A is called its extent and B its intent, and we shall adopt here this
way of speaking.

There are in Universal Algebra and therefore also in the theory of partial algebras
important but more or less “trivial Galois connections” arising in connection with
closure systems like those of all closed subsets or of all congruence relations, since
every closure system € on some set A can be considered to be induced by the relation
R: C A x €, where, for a € A and H € €, one has:

(a,H) € R¢ if and only if a € H .

However, there are two main sources for applications of Galois connections oc-
curring to us immediately, when we think of — many-sorted — partial algebras of a
given type or signature ¥ = (S,Q, 7,7, 0):?

Model theoretic polarities in connection with identities:

The relation = of validity of a first order formula in a (many-sorted) partial algebra
for some given signature ¥ can be restricted to subsets F C Lx(Y") of special interest
within the first order language Lx(Y') with equality which will here be interpreted
as exzistence equality® — with some countably infinite S-set Y of wariables. In each
case it gives rise to a Galois connection, and in the case of partial algebras there are
many interesting sets F C Lyx(Y), in particular all (existence) equations (X;t = ¢)
(X C Y finite, and ¢, ¢’ any terms using variables only from X), all weak equations
(X;t=t) = (X5t St At =t =t =), strong equations (X;t =) = (X;(t =
t=>t=t)A{l'=t =>t=1t)), all ECE-equations* (X; \[_,t; =t; =t =1'), or all
all quasi-ezistence equations (X; \i_, t; = t. =t = '). But one can also consider all
so-called regular strong equations, which are strong equations, where both ¢ and ¢’ are
definitely using the same variables in their inductive construction. We shall discuss
some of the closure operators connected with such sets.

2For more detailed definitions of some of the basic notions concerning many-sorted partial algebras
see the next section.

3See [B86], [B92] or [B93] or below.

4Short for ezistentially conditioned existence equations.



The classification of properties of homomorphisms:

The classification and investigation of homomorphisms between partial algebras yield
another range of applications of some special polarities:

Defining properties through the reflection of formulas:

A homomorphism from a partial algebra A into a partial algebra B is just an S-
mapping between the carrier sets, which preserves® all existence equations. However,
in general it does not reflect any existence equation — except for ({z};2 = z) for
variables 2 —, even not any of the form (X;t = t) for some proper term ¢ — having the
meaning that the interpretation of the term ¢ exists —, which is always reflected in the
case of total algebras, and this is one source for many properties of homomorphisms,
which are of interest in the case of partial algebras. When we denote by < the
relation of reflection of a formula by a mapping, this means that such a property can
be considered as a formal concept of the formal context of the polarity induced by
the relation <.

Defining “epimorphic properties” as extents of factorization systems:
“Reflection of formulas” allows to describe properties of mappings between partial al-
gebras like homomorphisms, injective homomorphisms, closed homomorphisms, initial
homomorphisms, etc., but it does not yet allow to characterize surjectivity, epimorphy
and a wide range of other “epimorphic” properties. For a characterization of such
properties one can use the polarity induced by the existence of the unique diagonal-
fill-in — denoted in this note by @ —, which is a relation between the class Homsy,
of all homomorphisms between partial algebras of a given signature and itself. Some
special formal concepts of the formal context (Homsy:;, Homy;, @) are called factoriza-
tion systems. And if the intent of such a factorization system (i.e. its right hand
component) corresponds to a property of homomorphisms defined by the reflection
of formulas, its extent (i.e. its “left hand partner”) will usually be a class of homo-
morphisms corresponding to one of the “missing epimorphic properties”.

Investigation of interdependencies of properties of homomorphisms us-

ing “attribute exploration”:
Having many interesting properties of homomorphisms around, some of which are
already combinations of other ones, one is also interested in all possible combina-
tions of them. Here methods from FCA can be very useful. The main tool in FCA
applicable for the investigation of the interdependence of the properties of homo-
morphisms (or of their combinations) is the so-called attribute exploration. We shall
briefly explain in this note the method of attribute exploration, which is based on the
additional polarity induced by the relation of satisfaction of an attribute implication
by a homomorphism, and we shall present an example.

In order to avoid set theoretical difficulties we shall assume — as already men-

5See the next section. Observe that preserving a formula is equivalent to reflecting its negation.



tioned — that all our considerations take place in a set theoretical universe which is
itself a set. This will indeed allow us in particular to consider factorization systems
as formal concepts of the corresponding polarity, as we already indicated above.

We present our observations for many-sorted partial algebras, since this context
seems to be less known.

2 Some basic definitions

2.1 Fundamentals of the theory of partial algebras

A signature® ¥ = (S,Q,7,71,0) consists of

— a non-empty set S, the elements of which are interpreted as sorts,

— a set  of operation symbols,

—an arity function 7 : Q0 — Ny, which assigns to each operation symbol w € ) a
non-negative integer 7(w), the arity of w;

— a mapping n: Q — S* :=[J 7, S™ assigning to each operation symbol w € Q a
sequence 7(w) =: (81, .. 57(w)) (of length 7(w)) of input sorts,

— and a mapping o : {2 — S assigning to each operation symbol w € €2 its output
sort o(w).”

A partial algebra A := (A, (w)uecq) of signature ¥ is then an ordered pair consist-
ing of a so-called S-set A := (Ay)ses as its carrier set, where, for s € S, Ay is called the
carrier or phylum of sort S of A; and, for each w € Q, w? : A7%) D domw” — Ag(w)
— with A7) = A x ... x Ay, for n(w) =: (s1,...57)) — is a partial operation
on A, the fundamental operation of type (n(w), o(w)) of A corresponding to the op-
eration symbol w. The fundamental operation w? is called total, iff dom w? = A"«
and A is called a total algebra, iff each fundamental operation of A is total. If n(w) is
the empty word, then w” is either empty or total, and then it just fixes an element
from Ay, which we call the fundamental constant of A induced by w.

By PAlg,, we denote the class of all partial algebras of signature ¥, and by TAlgs,
we denote its subclass of all total algebras of signature .

In the following let Y = (Y;) be an S-set, where the elements of Y; are called
variables of sort s (for s € S). When we speak of a global S-set, say Y, of variables
we shall always assume that each phylum Y is (at least) countably infinite, and that
the phyla are mutually disjoint and disjoint from 2. For any S-set U = (Us)scs wWe

5We only present here the most fundamental concepts of the theory of partial algebras needed in
this note; for more details cf. [B86], [B93] or in the internet [B0O].

"One often considers the pair ((w), o(w)) as the value of one single function — then mostly also
denoted by 7, and one omits the arity function 7, which is implicit in our n, but we think that the
above notation is more convenient.



denote by PB(U) the set of all S-subsets V' = (V;)seg of U (i.e. where one has V; C Uy
for each s € S). V will be called a finite S-subset of U, if the disjoint union over all
phyla of V' is finite. By s, (U) we designate the set of all finite S-subsets of U. In
the following, X will always denote a finite S-subset of the set Y of variables under
consideration.

Terms — of some sort s — are defined in the usual recursive way. By Ty (X)s
we designate the set of all terms with output sort s € S and with variables in
X € Paun(Y). For t € T,(X)s we denote by var(t) C X the set of variables “really
occurring in ¢ (because of the recursive definition of ¢). Moreover, by Ts (X) we des-
ignate the total term algebra on T (X) := (Tx(X)s)ses, where w™>X) (¢1, ... t,()) =
wty ... e (as a word in (QUJ,cq X,)").

It is well-known, that one has to include for the definition of identities in a first or-
der language for a many-sorted signature in some way a reference to the variables un-
der consideration (one actually needs the set of sorts to which the referenced variables
belong), whenever one does not exclude empty phyla, but such an exclusion would
usually exclude too many structures. For simplicity we use such a reference for all
formulas, i.e. we define our first order language Lx(Y) := | J{ Lx(X) | X € Paun (V) }
as follows:

For X € P, (Y), s € Sand ¢, € Tx(X),, (X;t = t') is an atomic formula, which
we call an existence equation (E-equation for short).® The special case (X;t = t) gets
meaning in the case of partial algebras and is called a term ezistence statement (abbr.
TE-statement). Arbitrary first order formulas are then defined recursively — almost
— as usual:

e cach atomic formula of Ly (Y) is a formula of Lyx(Y);
o if (X;®) is a formula of L (Y), then (X;~®) is a formula of Lx(Y') (negation);

o if (X;®) and (X'; @) are formulas of Ly (Y), then
(X UX'; (P AD)) (conjunction),
(X UX'; (P VD)) (disjunction),
(X UX'5(® = ') (implication), and
(X UX';(® < ') (equivalence) are formulas of Ly (Y);

o if (X;®) is a formula of Ly(Y), and if x € X, for some s € S, then® (X \
{z}; (Vx)®) and (X \ {z}; (Fz)®) are formulas of Lx(Y).

80ne could avoid the extra reference to variables, if (X;t = t') would be replaced by Neex © =

x =t =1 (cf. Definition 4 below) — since one only has to reference some extra variables in order
to get full expressive power of the language.

%Observe that we abbreviate by X \ {z}, for # € X, the S-set Z, for which Z, = X, \ {z} and
Zg = Xy for s € S\ {s}.



o if (X;®) is a formula of Ly (Y), and if X' € Paa(Y), then (X U X';P) is a
formula of Lx(Y).

Formulas of special interest in connection with identities for partial algebras are be-
sides E-equations (as usual we omit some brackets, whenever possible):

(a) ezistentially conditioned existence equations (ECE-equations for short)

(AL tisti=t=1),
(b) quasi-existence equations (QE-equations for short)
(GANL ==t =1,
(c) or (conjunctions of) ECE-equations of some very special kind like
(c1) weak equations, i.e. ECE-equations of the form
(X;tZ2t) = (X5t StAt St =t 2,
(c9) strong equations or KLEENE-equations
(X;tZ2th =(X;tst=>t=t)AE =t =t=t),
(c3) reqular strong equations (X;t = t'), where — because of their inductive
construction — ¢ and ¢ have the same set of variables, and this is equal to X,
i.e. where var(t) = var(t') = X.

(d) In generalization of QE-equations we speak of elementary implications, when
we allow arbitrarily long (even infinite) premises and conclusions in an extended
infinitary language:

(Z; /\ielti = t; = /\jeri ép;) )
where Z may be an arbitrarily large S-set of variables (with mutually disjoint phyla
all disjoint from ).

In the following we shall always consider a fixed signature ¥ and a fixed S-set
Y of variables, countably infinite (in every phylum), and disjoint with €; and all
partial algebras are assumed to be of this signature (if not stated otherwise). For
partial algebras A or B etc., A and B etc. shall always designate their carrier sets,
respectively.

Basis for the semantics are (partial) interpretations:

Let A be a partial algebra, X € Pg,(Y), and v : X — A any S-mapping (i.e. any
S-indexed family (v, : Xy — Ay)ses of mappings), called an X-valuation.! Then the
(partial) interpretation induced by v, denoted by v is the mapping out of T;(X) into
A with smallest domain dom ¢ C Ty;(X) such that

e U,(y) =vs(y) forally € X, and s € S.

e For w € Q with (n(w), o(w)) =: ((51,---,5w)),5), and for ; € Tx(X),, (1 <
i < 7(w)) one has:

19Gince A may have empty phyla, one should not use only “global” valuations, since there might
exist none, while there may be lots of “local” valuations.



If 9,(t;) =: a; is already defined for 1 < i < 7(w), and if w®(a1, ..., a, W) = a
is defined in A, then o (wt; ...t «,)) is defined with value a.

We say that an E-equation (X;t = #') (of sort s) is satisfied in A with respect to the
valuation v — in symbols: A = (X;t = t')[v] —, iff t € dom @, and t' € dom @, and
Us(t) = D,(t")."" We say that (X;t =t') is valid in A — in symbols: A = (X;t = t)
—, iff A | (X;t = ¢)[v] for all valuations v : X — A. As usual, satisfaction and
validity are carried over recursively to arbitrary formulas of Ly (Y).

Let A and B be partial algebras, let (X;®) € Lyx(Y) be any formula, and let
f: A — Bbeany S-mapping. We say that f reflects (X; ®) — in symbols: f<1(X; ®)
—, iff, for all X-valuations v : X — A, B = (X;®)[f o v] implies A E (X; P)[v].
Conversely, we say that f preserves (X;®), iff for all X-valuations v : X — A,
A E (X;®)[v] implies B |= (X; ®)[f o v]; however, this is equivalent to f < (X; —®),
and therefore the relation < is sufficient.

Let A be any partial algebra and B any S-subset of A. Then B is said to be a
closed subset of A, iff, for every w € €, and for every sequence ¢ € dom w® N B"®)
one has w®(a) € By, . If B is a closed subset of A, then (B, (w®|B"“)),cq) will be
called the subalgebra of A with carrier B, and it will be denoted by B. By Cy M we
shall designate the smallest closed subset of A containing M C A — and by C, M the
corresponding subalgebra. — Observe, that in cases, where a subset of the carrier
of some partial algebra is defined by some operator, then underlining the operator
means formation of the relative subalgebra'® on the defined subset (as in the case
C,M).

A subset D of the carrier of A is called an initial segment of A, iff, for every
(ai,...,0r@)) € dom w?, the fact that w*(ay, ..., Ur(w)) € Do(w) implies a; € Dy
for 1 < i < 7(w). By Ja M we shall designate the smallest initial segment of A
containing M € A — and by | M the corresponding relative subalgebra. Observe
that, for v: X — A, dom 0 is always an initial segment of Ty (X).

In the rest of this subsection let (A;);c; be any fixed set-indexed family of partial
algebras of signature X::

The direct product B := [],.; A; has as carrier set the set theoretical cartesian S-
product B := X A; := (X A;)ses of the carriers. And, for w € €, one has
i€l icl
domw® := {((qﬁ)ig,..., (qi(w))ig) € B" | (ai,..., ) € domw? | for each
i €1}. For ((ai)iers-- -, (al,)ier) € domw?, one defines
w((ad)ier s - - - (“i(w))iel) = (wh(af,. .., “i(w)))iel-

Observe that, for t = ¢/, A |= (X;t = t)[v] still has the nontrivial meaning that “t € dom ",
i.e. that t is interpreted w.r.t. ¥ (or, in other words, v interprets t).

12Note that, for an arbitrary subset B of A one defines the relative subalgebra B := B of A with
carrier B to be the partial algebra (B, (w® N (B"@) x B7“))) cq).

7



In the case of many-sorted (partial) algebras the reduced product D := ([],c, Ai)/F
of the family (A;);e; w.r.t. a filter F on the index set I is defined as follows: Let

= >< A; | J € F}. Moreover, for a := (a;)ics,, b := (bi)ics, € Dy (for

Ji, Jo € .7-") 13 define I, := Jy, and I := {i € I,N 1y | a; = b;}. Moreover,
define on Dy an equ1va1ence relation 07 := {(a,b) € D} | I,, € F}. Then the
quotient S-set D := Dy/0# is the carrier of D, the elements of which will be denoted
by a/F (for a € Dy some arbitrarily chosen representative). And, for w € €Q, define

dom wP ={ala=(a/F,. w)/F) € D" and I, (ﬂz(:wl) Iyn{iel|
(af,..., al,) € domwh } € .7:} And define, for (al/f ., Orw)/F) € domw?”,
(A}D(al/f,... /f) ( (al,...,aT(w ))Ze[l/f.

As a further Constructlon we shall need the mized product of a family (4;);e;s, as it

was recently introduced by Grzegorz Binczak:'*
Define Py := [J{ X A4; | J C I}. We shall define I, for a € Py as above. For i € I,
e

set domm; ;== {a € Py | i € I}, where m; : Py O domm; — A; is a “generalized
projection” with m;(a) := a; , whenever a = (a;);e7, and i € I, .

A partial algebra M is called a mized product of the family (A;);e;, iff there is a
subset My C Py and a partial algebraic structure (w'),cq satisfying:

(1) For every w € Q, (ay,...,0,()) € M and a € My () one has:
If WMo (ag,..., ClT(w)) = a, then
(@) Ia Sl NNy,

(b) mi(a) = wh (m(ar),. .., m(a,())) for every i € .

(2) Let 6 be the congruence relation on My generated by the set ({ (a,b) € (Ms)? |
Iy = IsN Iy })ses. Then 6 is a closed congruence relation (i.e. the natural
projection naty : My — M, /6 induced by 8 is a closed homomorphism as defined
in the table at the end of subsection 3.1), and M = M, /6, the usual quotient
algebra.

2.2 Fundamentals of Formal Concept Analysis

Basic structures of Formal Concept Analysis'® (FCA for short) are formal contexts

= (G, M,I), where G and M are arbitrary sets, the elements of which are called
objects and attributes, respectively, and where I C G x M is any binary relation. The
polarity (T, +) defined by (1) and (2) in the introduction plays a central role in FCA.

130Observe that all elements in any such a sequence a have to be of the same sort.
14See [BiO1].
15Cf. [GW99).



The pairs (A, B) with A C G and B C M satisfying AT = B and B* = A are called
formal concepts. If (A, B) is a formal concept, then A is called its extent and B its
intent. By B(K) we designate the set of all formal concepts of the formal context K.
Formal concepts are ordered by set theoretical inclusion of the extents:

(A1, B1) < (A9, By) iff Ay C Ay (iff B; O By).

The ordered set (B(K), <) always forms a complete lattice. One has two mappings
p: M — B(K) — with u(m) == {m}, {m}) (¢ € G) — and v : G — B(K)
— with v(g) := ({g}™, {¢9}7) (m € M) — assigning to the attributes and objects
their “generated formal concepts”. In line diagrams of concept lattices the name of
the attribute m is usually written a little above the circle representing the formal
concept p(m), and the name of the object g is usually written a little below the circle
representing the formal concept v(g) (cf. Figure 2).

Let K := (G, M, I) be a formal context. For P,C' C M we call P — C an attribute
implication. And we say that the attribute implication P — C' holds in K — and
denote this by K rca P — C —, iff, for every object ¢ € G, P C {g}" implies
C C {g}'. For more details on FCA see [GW99].

3 Properties of homomorphisms

3.1 About the polarity induced by the relation <

Since special homomorphic images are needed for the description of classes of partial
algebras defined by some kinds of identities, we first consider the relation < of reflec-
tion of formulas by mappings, since this allows us to define homomorphisms and a
lot of their properties.

Let Mapy, designate the class of all S-mappings between the carriers of partial
algebras of signature X (within our universe), and let us consider the formal context
Ky := (Mapy, Lx(Y), <1). And let (T<, +<) be the polarity corresponding to this
formal context (cf. (1) and (2) of the introduction). Moreover, let Homy designate
the class of all structure preserving mappings, i.e. homomorphisms, f : A — B
between partial algebras. This means that for such an f one has, for all w €
and for all sequences a := (ay,...,a.)) € A" that ¢ € domw? implies f o a :=
(fn(w)(l) (a1)7 sy fn(w)(”r(w)) (aT(w))) € dom WB and f(r(w) (WA(Q)) = WB(f o Q) :

Theorem 1 Let  C Mapy,. Then the following statements are equivalent:*®

Y%Observe that we write {z1,...,2, ),y } as abbreviation for S-sets (Xy)ses with X, = {z |
(z==x; and n(w)(?) =sand 1 < i < 7(w)) or (z =y and o(w) = s) } (for s € ).



(1) $ = Homy.
(i) H={(X;=t=t) | X C Ppn(Y), t,1' € Te(X) }+=.

(i) H={{ @1, Trw), ¥ ;5 WT1 .. Trw) = Y) | 2 € Yoy 1 <i<7T(W)), y€
Ya(w), and w € Q}iq'

(i) 9 ={ {21, o)y ;7 wT1 - Ty = y) | 33 € Vo) (1< i< 7(w)), y €
Yo, all x; are mutually distinct and distinct from y, and w € € b,

This means that the usual homomorphisms between partial algebras are exactly
those mappings between partial algebras which reflect all negations of E-equations
and therefore they are exactly those mappings which preserve all E-equations.

As already mentioned above, a “usual” homomorphism with a proper partial alge-
bra as start object in general does not reflect TE-statements, while homomorphisms
between total algebras trivially reflect all TE-statements. Therefore it should not be
astonishing that a great part of the wealth of interesting properties of homomorphisms
between partial algebras can be described in a model theoretic way. In particular,
many of them like injectivity, closedness, initialness'” and their combinations (like
“full and injective”, what is equivalent to “initial and injective”) can be defined by
the reflection of special E-equations, i.e. the class of all homomorphisms having such
a propety is the extent of a formal concept of the formal context K, where the intent
is generated by one of the sets of negations of E-equations mentioned in Theorem 1,
and in addition by the kinds of E-equations indicated in the following table, in which
we omit the reference to the set of variables, since it is in each case the set of all
variables (of appropriate sort) occurring in any of the terms involved.'®

‘ notation ‘ class of all ‘ kind of additionally reflected formulas ‘

Monos: injective homomorphisms | z 3 y (z,y €Ys, s €5)
Closeds; closed homomorphisms t=t (t €T5(X)s, s €S, X € Bun(Y))
Closedy, closed homomorphisms w(_) ( ) (w € Q, a € Txg(var(a))"™))
Monoy; ciosed | closed injective hom.s T = y, t=t(...)
Monoy gy | full injective hom.s v =y, wla) =y, (r,ycY, se€s,

i € Yoy, Y € Yotw), w € Q)
Initialy initial homomorphisms wla) =y, (a € Y™, y €Y, y,),

y ¢ var(a), w € Q)

1"Tn the sense of Bourbaki in [Bou57]: A mapping f : A — B (A,B € PAlg,.) is initial, iff, for all
homomorphisms g : B — C, f is a homomorphism from A into B iff g o f is a homomorphism from
A into C.

8Observe that Initialy, consists of all those homomorphisms f : A — B for which the preimage of
every element from J, ., w”(domw®) contains at most one element.

10



3.2 “Epimorphic properties” of homomorphisms and factor-
ization systems

Most of the “interesting” properties of homomorphisms not characterizable by reflec-

tion of some set of formulas can be described in connection with extents of formal

concepts called factorization systems (w.r.t. to some polarity) in category theory:'?
Let us recall that a homomorphism f : A — B is an epimorphism, iff Cg f(A) = B

(i.e. iff f(A) generates B). An epimorphism e : A — B is TAlgy.-extendable, iff, for all

homomorphisms f : A — C with C € TAlgy,, there exists a unique homomorphism

g : B — C such that goe = f. A surjective homomorphism f : A — B is full (i.e.

a quotient homomorphism), iff f “induces the structure on B”. Define the formal

context K, := (Homyg, Homy, @), where, for e,mm € Homg, one says that (e, m)

satisfies the wunique diagonal-fill-in property — here denoted by @ — iff, for any

p,q € Homy, m o p = ¢ o e implies the existence of a unique d € Homy, such that

doe=pand mod=q. A factorization system (£, M) is then any formal concept

of K, such that in addition to being a formal concept w.r.t. @ one has:

—lIsoy, CENM,

—E0&CE,

- MoMC M, and

-~ Mo& =Homy.

Theorem 2 Let & C Ly(Z) be any set of elementary implications, where Z is any
global S-set of variables, and let M := ®+<. Then (MY, M) is always a factorization
system.?°

Thus, in particular, when M is a class of homomorphisms defined via the reflection
of some set of QE-equations, then M*@ is its partner in a factorization system and
consists of a class of epimorphisms (which encode the elementary implications under

consideration) — and this is the reason, why we call it here an “epi-factor”.?!

19Tn [AdHS90] they are now called factorization structures.

20Cf. e.g. [B86], Remark 10.2.11 — observe that there and in other books and papers the operators
have a different notation than we have used in this note in order to have a homogeneous notation.
Very often one writes A(€) instead of 12, and A°P(M) instead of M+te .

21Observe that, what one often — and we here, too — calls a “mono-factor”, need not consist only
of monomorphisms. As an example take the class Closedy; of all closed homomorphisms. However,
the factorization systems considered originally usually consisted of a class of epimorphisms as extent
and a class of monomorphisms as intent. — Observe, too, that we have in the theory of partial alge-
bras an interesting factorization system ( all final homomorphisms, all bijective homomorphisms ),
where the final homomorphisms between partial algebras — which form the dual concept to ini-
tial homomorphisms in the sense of Bourbaki [Bou57] — are exactly those homomorphisms, which
fully induce the structure on the image algebra, but they need not be surjective and therefore not
epimorphic. Moreover, the bijective homomorphisms are not defined by the reflection of formulas.
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‘ “epi-factor” “mono-factor”

( class of all full and surjective homomorphisms , Monoy ) ,
( class of all TAlgs-extendable epimorphisms , Closedy, ) ,
( Epig= class of all epimorphisms , Monoy ciosea ) ,
) 3.fu )
( class of all surjective homomorphisms Monoy, fun )
( class of all final homomorphisms , cl. of all biject. hom.s )

In addition, observe that the “epi-factor” corresponding to Initialy, consists of all
those surjective homomorphisms f : A — B for which the preimage of every element
from B\ J,cqw”(domw®) contains exactly one element.

4 Polarities derived from the relation

The relation = of validity of a first order formula in a (many-sorted) partial algebra
for some given signature X of the fundamental operations under consideration can be
restricted to subsets F C Lx(Y) of special interest within the first order language
Ls(Y). As mentioned earlier, F is usually chosen to be — for arbitrary X € PBg, (Y),
and terms ¢,t' € Ty(X), and t;,t"; € Tn(X),, (1 € {1,...,n}) —
— the set of all E-equations,
— the set of all ECFE-equations,
— the set of all QFE-equations,
— or the set of all (special conjunctions of) ECE-equations of some special kind like
— the set of all weak equations,
— the set of all strong equations or KLEENE-equations ,
— the set of all regular strong equations,
— or various other similar concepts of special equalities.

With each such set of special formulas one has the problem to describe the closed
sets/classes of the induced Galois connection on the syntactical and on the semantical
side, respectively, i.e. to find so-called Birkhoff-type theorems and Birkhoff-Tarski-
type theorems. For E-, ECE- and QE-equations this has been no great problem, and
the results can be found e.g. in [B86] or [B93]. However, in the cases of weak and
strong equations the problems have been much harder, and only recently G. Binczak
has solved the “semantic problem” for weak equations in a satisfactory way (see
[Bi01]) by inventing a new operator P, (which he calls the formation of mized products
as defined in this note at the end of subsection 2.1).

In [Hoe73|, H.Hoft has characterized closed sets of weak equations as what he calls
weakly invariant relations. We do not give the details here. Moreover, the problems
for strong equations are still unsolved, while Bozena and Bogdan Staruch have solved
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in [StSt94] the problems for regular strong equations.?? Again we refer here to the
literature. On the other hand William Craig has observed in [Cr89] (for the homoge-
neous case) that the extension of the language by a “logical” binary operation symbol,
which is always interpreted as a total binary first projection, KLEENE-equations in this
extended language and ECE-equations (in the original or extended language) have
the same expressive power (when the empty algebra is excluded) — and a similar
observation can be made in the case of heterogeneous partial algebras (see [B95]).

Theorem 3 For many-sorted partial algebras one has the following semantical oper-
ators for the description of the closure Mod Form(R) of classes R of partial algebras
w.r.t. some sets Form of special QE-equations (with the involved operators defined

below):?3
‘ Form ‘ corresponding semantic operator ‘
E-equations HoSP = HyyS: Py
ECE-equations HS Py
QFE-equations ISP,
weak equations IP.,

Here the operators are defined as follows, for any class & C PAlgy:

e H,(R) := {B € PAlgy, | there exists a surjective homomorphism A — B for
some A € R};

e H.(R) = {B € PAlgy. | there exists a closed and surjective homomorphism
A — B for some A € R}

e Z(R) := { B € PAlgy, | B is isomorphic to some R-algebra } ;
e S.(R):={DB € PAlgy | B is a (closed) subalgebra of some K-algebra } ;

e P(R) := {B € PAlgy, | there exist a set I and a family (A;);c; of R-algebras
such that B = ] [..; A; is the direct product of this family } ;

e P.(R):={B € PAlgy, | there exist a set I, a filter F on I and a family (A;);cs
of R-algebras such that B = (][, ; A;)/F is a reduced product of this family } ;

e P,(R) := {B € PAlgy, | there exist a set I and a family (4;);c; of KR-algebras
such that B is a mixed product of this family } .

22 Regularity of (X;t = t') means that — according to the recursive construction of terms — ¢ and
t' contain the same variables.

23Tf S is infinite, then the equality H,S,P = H.wS: P, no longer holds, and one then has to take
H.wS:Pr as semantic operator for E-equations, if one wants to keep the language finitary (see [B95]).
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The descriptions of the closed sets of formulas under consideration is a little more
involved and not discussed here in all cases.

We only want to give a description of closed sets of E- ECE- and QE-equations.
Here a set theoretical representation is useful:?*

Definition 4 Let .
vi= (X N\t =t =1 =1)
i=1

be any QE-equation. Then . may be set theoretically represented by an ordered pair
{(,2) [z € X}U{(t:, 1) |1 < i < n}, (1)) € Paa(Te(X)?) x Te(X)*.

If + is an ECE-equation, then the corresponding pair belongs to Pan({(¢,t) | t €
Tx(X)}) x Te(X)?, and if ¢ is an E-equation, then the corresponding pair belongs to
PBin({(z,2) | © € X}) x Tx(X)?. In each case we can represent X as var(s). Since
every t € Ty (X) can be considered as an element of Tx(Y) (because of X C Y and
the recursive definition of terms), we can define

Premp := Pan (({ (v, 9) | ¥ € Ys})ses),

Prempcr := Pan ({ (£, 1) |t € Ts(Y)s})ses), and
PremQE = ipﬁn(TE(Y) X TE(Y))
For P C Tx(Y)? we define

var(P) = | (var(t) Uvar(t')).

(t,t")EP

And we obtain
Eeqy = |J {P}x Tu(var(P))?,

PePremp

ECEeqy, = | J {P} xTu(var(P))?,

PePrempop

QEeqy, = | {P} x Tu(var(P))?,

PePremgp

24For E-equations in the homogeneous case (excluding the empty algebra) the simplest description
of closed sets is by saying that they are closed and fully invariant congruence relations on relative
subalgebras F of Tx(Y), such that I is freely generated by Y. The following generalizes this for the
case, when the empty partial algebra is allowed, too, and to heterogeneous partial algebras (with
empty phyla allowed).
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for the sets of all set theoretical encodings of E-, ECE- or QE-equations with variables
in Y, respectively. Now, for Prem € {Premg, Premgcp, Premgg}, we consider in the
following

Q< U (P} x Tx(var(P))?)

PcPrem

to be any set of set theoretically encoded elementary implications of the corresponding
type. For P € Prem we define

Q(P) == {(t,1) | (P, (£,1)) € Q}.
For any class R of partial algebras define
ImpPrem(‘ﬁ) =
={(P, (¢, 1) | P € Prem,t, 1" € Tx(var(P)), R = (var(P); Ay, pepp =p =t=t)}

and set | F to be the relative subalgebra of T = Ty, (Y) consisting of all subterms of
terms occurring in £ C T4,(Y)?, and let supp E := Uiyer {t:1'}) (ie. the support of
E) be the set of all terms occurring as at least one component of a pair in E, and,
moreover, let supp E designate the relative subalgebra of Ty (Y") with carrier supp E.

With the above notation one has the following description of closed sets of ele-
mentary implications of one of the three kinds of Prem:

Theorem 5 %
Let Prem € {Premg, Premgcp, Premgp}, and let Q C Upeprem({P} X T (var(P))?) be
any set representing elementary implications connected with Prem.

(a) Then the following statements are equivalent:

(7’) Q= ImpPrem(MOd(Q))'
(ii) Q has the following properties (I11) through (14) for any P, P' € Prem:

(I1) supp Q(P) is a var(P)-generated relative subalgebra of Ty (var(P)) —
in particular one has supp Q(P) =] Q(P).

(12) Q(P) is a closed congruence relation on supp Q(P).

25The proof of this theorem for the homogeneous case can be found first — formulated for QE-
equations — in [ABN81] (and in another form in [ANS83]). Later it appeared in [B86] and, without
proof, in [B93]. Yet in all three cases (I1) contained an error, since we there refer to JQ(P) rather
than to supp Q(P), and [Q(P) is trivially generated by var(P), i.e. then (I1) does not contain any
non-trivial condition. We think that in this set theoretical form, and formulated for heterogeneous
partial algebras the theorem is formulated here for the first time.
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(I13) P C Q(P).

(14) For every homomorphism f : | P — supp Q(P’) satisfying (f x f)(P) C
Q(P'), there exists a homomorphic extension fpp : suppQ(P) —
supp Q(F'), which satisfies (fppr X fpp)(Q(P)) C Q(F').

(b) If Q = Impp,,(Mod(Q)), and P € Prem, then

Q(P) = ker f*|f:{P —A A€Mod(Q)and P C ker f~}.

Again factorization systems come into the picture in connection with the Meta
Birkhoff Theorem of Hajnal Andréka, Istvadn Németi and Ildiko Sain (see [AN82]
and [NSa82]) characterizing closed model classes of universal Horn formulas in a very
general category theoretical way. Namely, the class & of “admissible subobjects”
there has to correspond to the “mono-factor” of a factorization system. And the
class of epimorphisms used for the “admissible epimorphisms” has in some way to be
compatible with S*¢ (for more details cf. e.g. [B92] or [B86]).

5 “Attribute exploration” uses further polarities

Attribute exploration is a method from FCA, where the user or expert fixes a very
large context U = (Gy, My, Iy) of interest — with some finite set My of attributes
— as so-called universe, and where a program (like “Conlmp”?%) asks the expert in a
systematic way, whether some attribute implications computed by the program hold
in U. Aim of the procedure is to get a list Z of attribute implications holding in U,
from which all other attribute implications holding in U can be derived. And at the
same time one wants to produce a subcontext K = (G, My, I) of U, which contains
for each attribute implication not holding in U a counterexample. — These data then
allow to compute the concept lattice of U up to isomorphism.
We present an example for a homogeneous mono-unary signature (i.e. S = {s}),

Q ={w}, 7: w1 (nand o are obvious),?” where the set Gy equals Homy,. The list
of attributes is shown in Table 1 together with their abbreviations used at different
occasions in order that e.g. the implications do not become too long.?®

26Ct. [BOOa).

?TThe result holds for all homogenoeus signatures with at least one at least unary operation, but
it might look different, if we have e.g. a signature with only one unary operation mapping elements
of one sort to elements of a different sort, since then one cannot produce examples like Hom6 and

Hom?7 below.
28Moreover, the program “ConImp” accepts only names with at most 9 characters.
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The set My of attributes full name | in implications | in the context
injective injective inj
full&surjective full&surj f&sur
initial&injective init&inj ini&inj
surjective surjectiv sur

closed closed cl
TAlgy-extendable TA-extend TA-ext
closed&injective clos&inj cl&inj
epimorphic epimorph epi
initial initial ini
A°P(initial) LOinitial LOini

Table 1: The attributes of the formal context FactSys

The algorithm may start with an empty list of objects or a list of objects en-
tered in advance, and one can also enter some implications as so-called background
implications in advance.

In connection with the algorithm of attribute exploration the following list of
so-called Duquenne-Guigues-implications is produced:

{ LOinitial } = { surjectiv, epimorph }

{ clos&inj } = {injective, init&inj, closed, initial }

{ TA-extend } = {injective, init&inj, epimorph, initial }

{ closed, epimorph } = { full&surj, surjectiv }

{ surjectiv } = { epimorph }

{ surjectiv, epimorph, initial } = { full&surj, closed }
{init&inj } = { injective, initial }

{full&surj } = {surjectiv, epimorph }

9. { full&surj, surjectiv, closed, epimorph, initial, LOinitial } = My
10. { injective, initial } = {1n1t&1nJ }

11. {injective, closed } = { init&inj, clos&inj, initial }

12. {injective, surjectiv, epimorph } = { LOinitial }

13. {injective, full&surj, surjectiv, epimorph, LOinitial } = My

Moreover, the following “complete” list of counterexamples has been produced
as collected in a formal context “FactSys” shown in Table 2. The object names
correspond to the homomorphisms shown in Figure 1.

In Figure 2 we finally show the line diagram of the resulting concept lattice
(B (FactSys), <).

The relationships to polarities (induced by the relation of satisfaction of an at-
tribute tmplication by the universe and by the formal subcontexts at every intermedi-
ate step) of the methods involved in the algorithm of attribute exploration have been

R A e
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H inj ‘ f&sur ‘ ini&inj ‘ sur ‘ cl ‘ TA-ext ‘ cl&inj ‘ epi ‘ ini ‘ LOini ‘

Homl || x X X X X
Hom?2 X X | X X X
Hom3 || x X X X
Hom4 || x X X X
Homb X X | X X X
Hom6 X X X X
Hom?7 || x X X X
Table 2: The formal context FactSys
) (o
AN
O
O
~— —/
Hom1 Hom?2 Hom3 Hom4
/— O O
\
> O e
Homb Hom6 Hom?7

Figure 1: Sketches of the homomorphisms of the context FactSys
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injective

full&inj /"

Figure 2: The concept lattice (B (FactSys), <)

indicated already in the introduction and in subsection 2.2, and we cannot go here
into more detail.
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