Local theory of the Fredholmness of
band-dominated operators with slowly oscillating
coeflicients

Vladimir S. Rabinovich, Steffen Roch *

Dedicated to the sixtieth birthday of Bernd Silbermann.

Abstract

A band-dominated operators on an [P-space of vector-valued functions is
an (in a generalized sense) Fredholm operator if and only if all of its limit
operators are invertible and if their inverses are uniformly bounded (see [6]).
We show that the limit operators approach is also compatible with the local
Fredholmness of band-dominated operators with respect to localization over
the maximal ideal space of the algebra of the slowly oscillating scalar-valued
functions. A corollary of this result is that the uniform boundedness condition
is redundant for band-dominated operators with slowly oscillating operator-
valued coefficients.

1 Introduction

Let X be a complex Banach space. For p € (1, 0co) and N a positive integer, consider
the Banach spaces [P(Z", X) and [*°(Z", X) of all functions f which are defined
on Z% and take values in X such that

1£12:= > If @)% <oo and |[flleo = sup If ()|l x < oo,
oeZN zeZN

respectively. Further, co(Z", X) refers to the closed subspace of [*°(Z", X) con-
sisting of all functions f with

Tim [|f(2)llx = 0.

In case X = C, we will simply write I?(Z%) and ¢o(Z"), and we let E stand for one
of the spaces IP(Z", X) with p € (1, 00).

Every function a € I35 v := [ (ZN, L(X)) gives rise to a multiplication operator
on E on defining

(af)(@) = a(2)f(z), =eL".

We denote this operator by al. Evidently, al € L(E) and |lal||y(g) = [|alloo-
Finally, for a € Z%, let V, refer to the shift operator

(Vaf)(@) = flz —a), zeZ",

which also belongs to L(E) and has norm 1.

*Both authors are grateful for the support by the CONACY'T project 32424-E.



Definition 1.1 A band operator is a finite sum of the form ) aoVe where o €
ZN and aq € 1°°(ZN, L(X)). A band-dominated operator is the uniform limit of a
sequence of band operators.

The band-dominated operators on E form a closed subalgebra of L(E) which we
denote by Ag. (For this and the following facts we refer to the papers [5, 6].)

Given m € Z", let s,, stand for the function on Z" which is I € L(X) at m
and 0 at all other points. The operator of multiplication by s,, will be denoted by
Sm. For n > 0, define P, := Z‘m|<n Sy and @, := I — P,, and let P refer to the
family (P,). -

Definition 1.2 An operator K € L(E) is P-compact if
IKQnl| =0 and ||QnK|| =0 as n— 0.

By K (E,P) we denote the set of all P-compact operators on E, and by L(E,P) the
set of all operators A € L(E) for which both AK and KA are P-compact whenever
K is P-compact.

It turns out that L(E,P) is a closed subalgebra of L(E), K(FE,P) is a closed two-
sided ideal of L(E,P), and K(E,P) C Ap C L(E,P). Operators A € L(E,P) for
which the coset A+ K (FE,P) is invertible in the quotient algebra L(E,P)/K(E,P)
are called P-Fredholm. If X is a finite-dimensional space, then L(E,P) = L(E),
K(E,P) is the ideal of the compact operators on E, and the P-Fredholm operators
are just the Fredholm operators in the common sense. Let further stand H for the
set of all sequences h = (h(m))>_, C Z which tend to infinity.

Definition 1.3 Let A € L(E,P) and h € H. The operator Ay € L(E) is called
limit operator of A with respect to h if
Jim [[(Vop ) AViny = Ar) Pall = T ([P (Vop(n) AVhn) = Ar) | =0 (1)

for every Pp, € P. The set o,p(A) of all limit operators of A is called the operator
spectrum of A.

We let finally refer A" to the set of all operators A € Ag enjoying the following
property: every sequence h tending to infinity possesses a subsequence g for which
the limit operator A, exists. Then the main result of [6] can be stated as follows:

Theorem 1.4 An operator A € AW is P-Fredholm if and only if all of its limit
operators are invertible and if

sup{||(4p) 7| : Ap € oop(A)} < 0. (2)

It is the main goal of this paper to discuss and weaken the uniform invertibility con-
dition (2). To reach this goal, we examine several local theories of P-Fredholmness.
To describe some typical ideas and results we have to introduce some more nota-
tions. Let SN~1 denote the unit sphere {n € RY : |p|]s = 1} where |n|s stands for
the Euklidean norm of . Given a ‘radius’ R > 0, a ‘direction’ n € SV~ and a
neighborhood U C SN~ of 5, define

Wry :={2€Z":|z| > Rand z/|2| € U}. (3)

We will call Wg v a neighborhood at infinity of n. If h is a sequence which tends
to infinity, then we say that h tends into the direction of n € SV~ if, for every
neighborhood at infinity Wg ¢y of i, there is an mg such that

h(m) € Wy for all m > my.



Definition 1.5 Let n € SV~! and A € L(E).

(a) The local operator spectrum o,,(A) of A at n is the set of all limit operators Ay
of A with respect to sequences h tending into the direction of 1.

(b) The operator A is locally invertible at n if there are operators B, C' € L(E) and
a neighborhood at infinity W of n such that

BAxwlI = xwAC = xwl
where xw refers to the characteristic function of W.

The following theorem and its corollary (which is also partially based on Theorem
6.5 below) have been shown in [5, 6].

Theorem 1.6 Let A € A% andn € SN~L. Then the operator A is locally invert-
ible at n if and only if all limit operators in 0,(A) are invertible and if

sup{[|(4n) 7| - An € oy(A)} < 0.

Corollary 1.7 An operator A € A%t s P-Fredholm if and only if all of its limit
operators are invertible, and if

sup{||(4n) 7| : Ap € 0, (A)} <00 for alln € SNTL.

Observe that this is a true generalization of Theorem 1.4 since it is not required in
the corollary that the suprema are uniformly bounded with respect to 7.

In the present paper we will show that an analogous result holds if the sphere
SN-1is replaced by the fiber M°°(SO) at infinity of the maximal ideal space of
the algebra of the slowly oscillating functions on Z%. This fiber is much larger
than S™V~1, hence, the resulting localization is much finer, and this localization will
provide a further essential improvement of Theorem 1.4. It should be also noted
that the localization over M*(S0O) is, in some sense, the finest possible.

It is due to the topological properties of the maximal ideal space of the algebra
of the slowly oscillating functions that we have to replace sequences tending to
infinity by general nets tending to infinity. This requires some additional work
which is done in the Sections 2 — 5. In particular, we will derive a version of
Cantor’s diagonalization procedure for nets in place of sequences. The Sections
6 and 7 are devoted to the proof of the local Fredholm criterion and of one of
its consequences, which states that a band-dominated operator with rich slowly
oscillating coefficients is P-Fredholm if and only if all of its limit operators are
invertible (Theorem 7.2). Thus, for these operators, the uniform invertibility of
the inverses of the limit operators is not needed to guarantee their P-Fredholmness,
which is a second main result of the present paper. In the course of the proof we will
also see that the method of limit operators is compatible with another local theory,
the so-called local principle by Allan (Theorems 6.5 and 6.7 below). The final section
contains an alternative proof of Theorem 7.2 which borrows some arguments from
the symbol calculus for pseudodifferential operators, and which sheds new light upon
the properties of band-dominated operators with slowly oscillating coefficients.

2 Slowly oscillating functions
A function a € lﬁx) is slowly oscillating if

lim (a(x + k) —a(z)) =0 forallk € Z". (4)

Tr—r0o0

We denote the class of all slowly oscillating functions in I35y, by SOr(x) and write
SO instead of SOy () for brevity. Trivial examples of slowfy oscillating functions



are provided by the continuous functions on Z" which possess a limit at infinity,
whereas Z — C : & — sin \/m is an example of a slowly oscillating function which
does not have this property.

It follows essentially from the definition of the class SO that a function a is slowly
oscillating if and only if the operator V_jaVi — al is P-compact for every k € ZV
or, equivalently, if and ounly if the commutator aVy — Vial = Vi(V_raVy — al) is
P-compact for every k. Since K(E,P) is a closed ideal of L(E,P), we conclude
that SOp(x) is a closed subalgebra of I7] X): If, moreover, the slowly oscillating
function a is scalar-valued, then the operator of multiplication by a also commutes
with every multiplication operator. Summarizing we get:

Proposition 2.1 If f € SO and A € Ag, then the operator fA—AfI is P-compact
on E. If, conversely, f € lﬁx) is a function for which fA— AfI is P-compact for
every A € Ag, then f € SO.

Thus, SO (more precisely, the image of SO in L(E,P)/K(E,P) under the canoni-
cal embedding) is the natural candidate for localizing the algebra Ap/K(E,P) by
means of the local principle by Allan. We will pursue this idea in Section 6.

Another special feature of slowly oscillating functions concerns the limit opera-
tors of their multiplication operators.

Proposition 2.2 Let a € SOr(x). Then every limit operator of al is a multipli-
cation operator in Cp(x), i.e. an operator of multiplication by a constant function
with values in L(X).

Proof. Let a € SO (x). From (4) we conclude that

klim (a(z' + h(k)) —a(z" + h(k))) =0

— 00

for all sequences h tending to infinity and for all z', ' € Z". Hence, if h is
a sequence such that the limit operator (al); exists, then limy_, o a(z + hg) is
independent of x € Z™, i.e. (al), = AI with an operator A € L(X). m

3 Local invertibility with respect to M*(SO)

Let M(SO) denote the maximal ideal space of the commutative C*-algebra SO,
and write M (S0O) for the fiber of M (SO) consisting of all characters n € M (SO)
such that 7(a) = 0 whenever a € ¢y. Every m € Z" defines a character of SO by
f = f(m). In this sense, Z¥ is embedded into M (SO), and M(SO) is the union
of its disjoint subsets Z~ and M°(S0).

Theorem 3.1 ZY is densely and homeomorphically embedded into M(SO) with
respect to the Gelfand topology.

This is a special case of a general result on compactifications of topological spaces,
see [3], Chapter I, Theorem 8.2.

We will run into a lot of trouble when trying to realize the simple and natural
idea of localizing the algebra Ag/K(E,P) over SO. The main reason for this is
the following observation.

Proposition 3.2 Let 5 € M*(S0). Then n € CIOSM(SO)ZN, but there is no
sequence in Z which tends to n with respect to the Gelfand topology of M(SO).

Proof. We know from Theorem 3.1 that 7 is in ClosM(SO)ZN and that, hence, there
is a net with values in Z* which converges to n. Assume there is a sequence h with



values in Z" and with limit 7 in the Gelfand topology. Since every subsequence of
h also converges to 1, we can assume without loss that

|h(n +1)| > |h(n)| + 2" for all n.

Let oo : RV — [0, 1] be a continuous function with support in {t € RY : |¢t| < 1}
and with o(0) = 1, and set ¢, (t) := @(¢/2™) for n > 1. Then the function

o(t) == Pon(t — h(2n))

n>0

is slowly oscillating, and p(h(2n)) = 1 and @(h(2n+1)) = 0 for all n. The assumed
convergence of h to n implies that both sequences (¢(h(2n))) and (p(h(2n + 1)))
converge to ¢(n). Contradiction. m

Consequently, if h € H, then the closure h of the set {h(m) : m € Z"} of the values
of h in the Gelfand topology cannot consist of a single point of M*°(SO) only.
Nevertheless, the sequences in H separate the points of M*°(S0O) in the following
sense.

Proposition 3.3 Givenn, 6 € M*(SO), there is a function h € H such thatn € h
and 6 € h.

Proof. Choose disjoint neighborhoods U, and Uy of n and 6 in M(SO), and let
h € H be a sequence such that

{h(m):m € ZN} = U, nZ".

(Recall that the intersection U, N 7N is not empty by Theorem 3.1 and, hence,
countable. Thus, h can be even chosen as a bijection from Z" onto U, NZ"N.) Since
2N is dense in M (SO), it is clear that n € U, N ZN = h, but 6 cannot belong to h
since

6 €Uy C M(SO)\U, = M(SO) \ h,

i.e. # is an interior point of the complement of A. ]
The Proposition 3.3 suggests the following definition.

Definition 3.4 Let 5 € M*°(SO) and A € L(E). The local operator spectrum of
A at n is the set _
on(A) :=={Apr : h € Ha andn € h}.

Above we observed that, if A is a sequence, there are many 7’s in h. We will see now
that, nevertheless, local spectra of operators of multiplication by slowly oscillating
functions are singletons, thus giving another justification for the proposed definition
of a local operator spectrum.

Proposition 3.5 Let n € M>(S0).

(a) If A = al with a € SO, then 0,(A) = {a(n)} (where we use the same notation
for a function in SO and its Gelfand transform).
(b) If A = al with a € SOL(x), then 0,(A) contains at most one operator.

Proof. (a) Let h € H be a sequence such that » € h and such that the limit
operator (al); exists. By Proposition 2.2, (al), = al with the complex number
o = lima(h(n)). We claim that o = a(n).
Let ¢ > 0. Since a is continuous at 7, there is an open neighborhood U of n such
that
la(n) —a(@)| <e/2 forallf € U.



Further, since i € h, there is an infinite subsequence g of h the values of which are
in U. Choose m such that |a(g(m)) — a| < &/2. Then

la(n) = a| < a(n) —a(g(m))] +la(g(m)) —af <e.

This estimate holds for arbitrary € > 0; hence, a(n) = a.

(b) Suppose there are sequences hy, hy € H such that n € h; N hy and that the
limit operators (al)p, and (al)p, exist, but that (al)n, # (al)n,. By Proposition
2.2, (al)p, and (al)p, are the operators of multiplication by the constant functions
x +— A and ¢ — Ao with A;, As € L(X). Since A; # A, there is a functional ¢ €
L(X)* such that p(A4;) # ¢(Ay). Consider the function @ : ZN — C: z = ¢(a(x)).
This function is in SO:

|a(z + k) — a(2)] < lelllla(z + k) —a(@)[|lLx) =0 asz— oo
From ||a(h;(m)) — A;]| = 0 for i = 1, 2 we conclude that
lla(hi(m)) — e(A:)ll = 0 fori=1,2.

Hence, both ¢(A;)I and ¢(A3)I are limit operators of al at . This contradicts
assertion (a) of this proposition, stating that o, (al) is a singleton. ]

If h € 1, then the intersection closysoy{h(m) : m € ZN}NM>(SO) is non-empty
by Theorem 3.1. Consequently,

Oop(A) = Upen(s0yoy(A) for every A € L(E).

Let n € M>(S0O), and let U be a neighborhood of 1 in M (SO) with respect
to the Gelfand topology. Then we agree upon calling the intersection U N ZV a
neighborhood at infinity of n.

Definition 3.6 Letn € M>(SO) and A € L(E). The operator A is locally invert-
ible at n if there are operators B, C € L(E) and a neighborhood at infinity W of 7
such that

BAXwl = xwAC = xwl

where xw refers to the characteristic function of W.

The following result, which states the analogue of Theorem 1.6 with respect to the
much finer localization over points in M°°(SO) instead of points in SV~ is the
main outcome of this section.

Theorem 3.7 Let A € A" and n € M>(SO). Then the operator A is locally
invertible at n if and only if all limit operators in o,(A) are invertible and if

sup{[|(4n) 7| - An € oy(A)} < 0.

The proof will be given in Section 6. To prepare this proof we recall and provide
some facts about nets and about limit operators with respect to nets in the following
two sections.

4 Preliminaries on nets

Nets and subnets. A set T is directed if there is a binary relation > on 7" such
that

VteT: t>t (reflexivity),
Vr,s,teT: r>s,s>t=s>t (transitivity),
Vr,seT3teT: t>randt>s (inductivity),



A mapping x from a directed set 7" into a topological space X is called a net , and
this net converges to a point x* € X if, for every neighborhood U of z*, there is
a tp € T such that (¢) € U for all t > ¢;. The net z : T — X is sometimes also
denoted by (x¢)ier where z; = x(t). Accordingly, if z : T — X converges to z*, we
will write

linTl ry =x* or x; — x" with respect to T
te

A net (ys)ses is a subnet of the net (x¢)ier if there is a mapping F : S — T such

that
Vs e S: Ys = Tp(s),

VieT dsoe S: F(s)>t foralls> so.
A subset S of a directed set T is called cofinal if

VteT dse S: s>t

Every cofinal subset S of a directed set 71" is again a directed set with respect to
the restriction of the order relation > onto S. If S is a cofinal subset of T', and if
(z¢)ier is a net, then the restriction of (z;)ier onto S is a subnet of (x;)ier. We
will be mainly interested in subnets which do not arise in this simple manner.

Nets tending to infinity. In what follows we will only be concerned with nets
in ZN. A net (z;);er with values in Z% is said to converge to infinity if

VeeN3ItoeT: |z >k forallt>t.
Let N denote the set of all nets in Z” which converge to infinity.

Lemma 4.1 (a) For every net (x;)ier € N, the set {x; : t € T} of its values is
countably infinite.

(b) If h : N — Z is injective, then the sequence h belongs to N.

Proof. (a) Since Z¥ is countable, (z:):cr C Z* is an at most countable set, and
since (z4)ter tends to infinity, this set cannot be finite.
(b) Suppose the sequence h does not converge to infinity. Then

JkeNVng e NIn >ng: |h(n)| <k.

Repeating this argument we get an infinite sequence ng < n1 < ny < ... such that
|h(n,)] < k for all ». But h is injective. Thus, h(n,) # h(ns) whenever r # s. So
we have infinitely many points in {z € Z" : |2| < k} which is nonsense. L]

Lemma 4.2 Let x € N be a net, and let h be a bijection from N onto the set of the
values of x. Then x is a subnet of the sequence h. In particular, every net x € N
is a subnet of a sequence h € H.

Proof. Let = (z¢)ter € N, and let h : N — {x, : t € T} be a bijection. Such
bijections exist by Lemma 4.1.

To show that x is a subnet of h, define ' : T — N by F(t) := h~!(x;). Then,
clearly, ; = hp () for every ¢ € T', and it remains to check whether

VneN3tyeT: F(t)>n forallt>t. (5)

Given n € N, set k := max{|hi], ..., |hy|}. Since (z¢)ier belongs to N, there is a
to € T such that
|z¢| > k+1 forallt>t.

By the definition of F, this implies F'(t) > n for all ¢ > t, which gives (5). Hence,
x is a subnet of h, and this sequence belongs to H due to Lemma 4.1 (b). L]



A version of Cantor’s diagonalization procedure. The following result can
be regarded as a substitute for the well-known diagonalization argument for se-
quences due to Cantor.

Theorem 4.3 Let Z be a set, and let (fn)n>1 be a sequence of functions f, : Z —
Rt which converges uniformly on Z to a function f : Z — RT. Assume further
that (:L'?O)toeTo is a net with values in Z and with the property that, for everyn > 1,
there is a subnet (z} )y, cr, of (xp ™" )i._ier,_, such that

lm fo(af,) =0. (©)

tn€Th
Then there is a subnet (yw)wew of (£2))tyer, with limyew f(yw) = 0.

Proof. We split the proof into several steps and emphasize some partial results
as lemmas. Our starting point is a net (.%'?O)togTo in Z and, for every n > 1, a
subnet (27 )¢, er, of ()i, _er,_, with (6). In particular, we have mappings

Fp: Ty — Ty with 2} = x’lf{(ltn) for all t,, € T,, and such that

Vtn—1 € Tpoq 3th €T i Fl(ty) >t,1 forallt, >1t2. (7)

Step 1. We show that the directed sets Ty, T1,... can be replaced be one and the
same directed set S.

Indeed, set S := Ty x T} x T5 x ... and provide S with the order
(S0, 81, 82, -..) > (8g, 81, S5y --.) < sp>s) forallk
which makes S to a directed set. Further, there are canonical mappings

Gn:S—T,, (so,s1,82,...) Sy

n

For every n € N, define a net (y7)ses by y? := LG (s)"

Lemma 4.4 (a) For alln >0, (y3)ses is a subnet of (x )¢, eT, -
(b) For alln > 1, (y%)ses is a subnet of (y" ')ses.

Proof of Lemma 4.4. (a) By the definition of y?, what we have to check is
whether
Vt,€T,3s°€S: Gp(s)>t, foralls>s’.

But this is obvious: Set sY := (to, t1, t2, ...) € S. Then, for s > s°, one indeed has
G(s) > t.
(b) For n > 1, define

H,:S—S, (so, 81, 82, ---) = (80, -+, Sn—2, Fn(sn), Sn, Snt1, ---)

with the F),(s,) standing at the n—1 th position. Then, for all s = (sg, s1, $2, ...) €
S and alln > 1,

n n n -1 —1 —1
Ys =@, (s) = Ts, = wZn<sn> = x’én_l(gn<s)) = Z/Infn(s)a (8)
and it remains to show that
VéieS3seS: Hy(s)>5 foralls> s’ 9)
Let § = (80, 81, 82, ...) € S. For k #n, set s) := §;. In case k = n, we first choose
s90 € T,, such that
Vs > 8% Fo(sp) > 8p1 (10)



(which is possible due to (7)), and then we choose s” € T}, such that both s% > %0

and s¥ > 3,. Define s° := (s§, 9, 59, ...) € S. Then, for all s = (sq, s1, 82, ...) >

s%, we have

sg > sk o= & foral0<k<n-2

s, > 8% > s% whence Fy,(s,) > $,-1 due to (10),

Spn 2 391 > Sy,

sg > sy = 8 forallk>n+1.
Consequently,

Hn(307 S1, 52, « - ) = (807 sy Sn—2, Fn(sn)7 Sny Snt1y - - )
> (éo, "'7§n—27§n—17§n7 §n+17 ):§

This proves (9) and the lemma. ]

Step 2. Choice of the diagonal net.
Let 2 :=.5 x N. This set becomes directed by the order relation
(s,n) > (s",n') <= s>s andn>n'

Consider the net
y: 0=z, Y(s,n) = Yg - (11)

Of course (and as in the standard diagonalization procedure for sequences) one
cannot expect that (yY(s;.n))(s,n)eq 18 a subnet of (yi')ses. But (also as for standard
diagonalization) one has the following result where we write €,,, := {(s, n) € Q :
n > ng} for brevity. Clearly, 2,,, is a cofinal subset of €2 for every ng € N.

Lemma 4.5 For all ng € N, (y(sm))(sm)eﬂno is a subnet of (y°)ses.

Proof of Lemma 4.5. For all s € § and all n > ng, we have

n—2 no

n -1 _ _ _
(5) = YH, 1(Ha.(s) = " = Y(Hugs10Hng120...0H, )(s)

Ysn) = Ys =Ygy
(compare (8)). This equality suggests to define
Kpy: Qpy =S, (s,n) = (Hpgt1 0 Hygq20...0 Hy)(s).

Then, obviously,
Y(sin) = yrll(ono(sﬂl) for all (s, n) € Q,,,

and what remains to verify is
Ve S35, n) €y Kpy(s,n)>5 forall (s, n) > (8, n).

Set 7, := ng + 1 and construct § := (8g, §1, ...) successively as follows. Let § =
(80, 81, ...) € S. We set 3 := §, for k < ng. Further, by (7), given §,, € Ty,,

3§n0+1 € Tn0+1 : Fno-i-l (S) > §n0 Vs > Spo+1-

Then choose 5,41 both larger than 5,41 and 5,,41.
For 5p,41 € Thy+1, we choose Sp 49 € Thy+2 such that

Vs > Bngr2t Fugi2(8) > Sngt1 (2 8ngt1)

and, hence,
an—i—l (Fno-‘rZ(S)) > §n0'



Then choose 3,42 both larger than 5,42 and §,,42.
We proceed in this way, i.e. we choose 5,43 € Ty,+3 such that

Vs 2 Sngts 1 Fngt3(s) > Sngt2 (= Snot2)
which implies that
Fno+2(F’ﬂ0+3 (8)) > ‘§’ﬂ0+1

and, hence,
an—i—l (Fno+2(Fno+3 (S))) 2 §n0'

Then choose 5,43 larger than 5,,43 and 5,,43.

Thus we have fixed 5. Let now s = (sg, s1, ...) > §. Then, due to our construc-
tion,
sy > Sk for all £ < mng — 1,
(Fno+1 OFno+2 o... OFn)(Sn) Z <§n07
(Fro42 0 Fpg43 0. 0 Fp)(sn) > 8not,
Fn(sn) > Sy,
S > S > S for all & > n.

This shows that
Kp,(s,n) =(Hpgy10...0 Hy)(s) > §

since
Hn(s) = (807' vy Sn—2, Fn(sn)7 Sny Sn4l,y - - ')7

(anl o Hn)(3> = (807 cvey Sn—3, anl(Fn(Sn)% Fn(sn)7 Sny Sn+1,-- ')7
(H’n72 ° H’nfl ° H’n)(s) =
(307 sy Sn—4, Fn—Z(Fn—l(Fn(Sn)))a Fn—l(Fn(Sn))a Fn(sn)a Sny Sn+1y-- -)a
and so on. This finishes the proof of Lemma, 4.5. [

Step 3. Let W := Qo. Then (yu)wew is the net we are looking for.

It is obvious from the above construction that (y.)wew is a subnet of (22 )yeT,-
So we are left with verifying that limyew f(yw) = 0.
Given e > 0, choose and fix n > 1 such that || f— f,.|| < £/2. Then, by hypothesis,

hrr% fn(z ) =0.

tn€lhn

Since (Yw)wea, is a subnet of (z} )¢, e1, , we also have limycq, fu(yw) = 0, whence
the existence of an w,, € {,, with

|[fn(yw)| <e/2 for all w > wy,. (12)

Let now w € W with w > w,. Then, evidently, w € Q,,, and from (12) we conclude

|f W)l < 1fWw) = Faw)| + [fn@w)| < |If = fallo + | fr(yw)] <e.

Hence, limy,ew f(yw) = 0 which finishes the proof of Theorem 4.3. n
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5 Limit operators with respect to nets

Now we return to band-dominated operators on one of the sequence spaces E. If
Y = (Yuw)wew is a net in N, then we call the operator A, the limit operator of the
operator A € L(E) with respect to y if

nh_)n;o ||(V—ywAVyw - Ay)PmH = nh_)n;o ||Pm(v—yw Avyw - Ay)” =0

for every P, € P. Roughly speaking, the properties of limit operators with respect
to sequences (as derived in [5, 6]), remain valid without changes also for limit
operators with respect to nets. We will illustrate this fact by two results for which
the Cantor diagonalization procedure for nets is employed.

Theorem 5.1 Let A = ol € L(E) be a rich multiplication operator. Then every
net (z¢)ier € N possesses a subnet y := (yuw)wew such that the limit operator A,
exists.

Proof. Recall that A, is a limit operator of A with respect to the net y if and only
if

lim [|(V_y, AV, — A,)Sk|| =0 for every k € ZV
weW
where, as before, Si refers to the operator of multiplication by the function which
is I at k€ Z"™ and 0 at all other points.

Set (¢ )ipem, := (z¢)ier and choose a bijection m : N — Z%. Since A is rich
we find, for every n > 1, a subnet (z )¢, e, of (2" )e._, € Th1 as well as an
operator B, € L(Im S,,,)) such that

||(V—wfn Avw;”n - Bn)Sm(n)H — 0. (13)
Let B stand for the operator of multiplication by the function
ZN = L(X), k= Byi).

We claim that B is the limit operator of A with respect to the net y. For, we reify
Cantor’s scheme (= Theorem 4.3) as follows. Set Z := Z~. Forn > 1 and z € Z",
define

fu(2) == Z 2% I(V_. AV, — B>Sm(k)||7
k=1
and let -
fz) =D 27 (VoL AVL = B) S, ll-
k=1

Then, obviously, ||fn — flloc — 0. Further, by (13), we have lim¢, e7, fn(z} ) = 0.
Now we conclude from Theorem 4.3 that there is a subnet (y,)wew of (z¢)ter such
that limyew f(yw) = 0. This immediately implies the P-strong convergence of the
net (V_,, AV, )wew to B, whence B = A,. m

Of course, a similar result holds for rich band operators. For another application
of Theorem 4.3, consider the set of all operators A € L(FE) having the following
property: every net (z:)ter € N possesses a subnet y := (yu)wew such that the
limit operator A, exists. We denote this class by £%** for a moment. As we have
just remarked, every rich band operator belongs to L7,

Theorem 5.2 L}'* is norm-closed.
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Proof. Let (Ap)n>1 C L3 be a sequence with norm limit A € L(E), and
let (29 )iper, € N. By hypothesis, for every n > 1, there exists a subnet z" :=
(@} tner, of (@ )i, _,er,_, such that the limit operator A, ;= of A, with respect
to «™ exists. If n > m, then (¢} );, e, is a subnet of (x}" );,. er,., thus, the limit
operator Ay, g~ also exists, and it coincides with Ay, zm. Since ||Ax|] < |4l for
every limit operator A, of A, we obtain

||An7w" - Amme = ||An7w" - Amw"” = ||(An - Am)z"H < ||An - Amn

for all n > m. Hence, the sequence (A, z») converges in the norm, and we let B
denote its norm limit.

Now define for all n > 1 and z € Z" (with the notations Sy and m as in the
proof of Theorem 5.1)

Fa(2) =D 275 (V2 AV = Anon) Sy
k=1

and

fz) =27 R |(VoLAVL = B)S,mull-
k=1
Then again ||f, — fI| = 0 and limy, 7, fu(2f ) = 0, whence via Theorem 4.3 the
existence of a subnet y = (yw)wew of (3, )t,et, such that limyew f(yw) = 0. Thus,
B=A,. n

As a consequence we get At C £7¢%. Now one might ask whether one gets
something new when considering limit operators with respect to nets instead of
sequences. The next theorem says that the answer is no in some sense: every limit
operator, which is defined with respect to a net, can also be reached by a sequence!
(Nevertheless, limit operators with respect to nets are useful as we will point out
in the next sections when we will apply them to study the local invertibility of
band-dominated operators at points in M (S0).)

Theorem 5.3 Let A € L(E), and let y = (yw)wew € N be a net for which the
limit operator A, of A exists. Then there is a sequence z = (2p)neny € H for which
the limit operator A, of A ewists, and A, = A,. Moreover, z can be chosen such
that there is a cofinal subset W of W for which (Yw) wery 15 @ subnet of z.

Proof. Let ¥ = (yuw)wew be a net for which the limit operator A, of A exists, and
define a function f : Z~N — RT by

F2) =Y 27 (Vs AV: = Ay) S
k=1

with the notations being as in the proof of Theorem 5.1. Then limyew f(yw) = 0.
For every n € N, choose w,, € W such that

0< flyw) < 1/n for all w > wy,. (14)

Further set Wy := {wy, : n € N}, Wy :={w € W : w > w, for every n}, and
W =Wy U W

The set W is cofinal in W. Indeed, let w € W. Then, either, there is a w,, with
wy, > w, Or w > wy, for every n. In the first case, choose w* := w,, in the second
w* := w. Thus, in any case, w* € W and w* > w.

Consequently, (yu), ey 18 @ subnet of (Y, )wew, whence lim - f(yw) = 0, and
this subnet takes the values f(y.,) € [0, 1/n) and 0 only. The latter happens if
w € Wy, in which case 0 < f(yy,) < 1/n for all n, hence f(y,,) = 0.

12



Now construct a bijection z from N onto the set {y,, : w € W} of the values of
(Yw) ey as follows. If the set {y, : w € Wo, \ Wy} is infinite (hence, countable),
let zop 1= Yu, for k > 1, and let z|on41 be any bijection from 2N + 1 onto {y,, :
w € Weo \ Wn}. If {yy : w € W \ Wy} is finite and consists of n elements, we
set 2y := Yr_n for k > n, and we let z|1 5,y be any bijection from {1, 2,..., n}
onto {yy : w € W \ Wy}. In any case, we get a sequence z which has (y) ey as
its subnet by Lemma 4.2.

It is further evident from the definition of z that lim, o f(2,) = 0. Hence, A4,
is also the limit operator of A with respect to the sequence z. ]

6 Local invertibility at points in M*(SO)

Now we will provide the proof of Theorem 3.7 and discuss some of its consequences.
The proof will follow the line of the proof of Theorem 1.6, and we will pay our
attention mainly to the differences which are involved by the topology of M (SO)
and, hence, by the need of using nets instead of sequences.

A Dbasic step is the specification of Proposition 14 from [5] resp. Proposition
2.17 from [6] to the present context. For, we need some more notations. Let
v : R — [0, 1] be a continuous function with

=1 for|z|<1/3
o) >0 for|z| <2/3 (15)
=0 for |z| >2/3.

We further suppose that the family {¢2}aez With @u(z) = ¢(z — @) forms a
partition of unity on R in the sense that

Z Ya(x)? =1 forallz € R
acl

This choice of ¢ can always be forced as follows: If f: R — [0, 1] is a continuous
function satisfying (15) in place of o, then the function

_ f(z)? -
o(x) = S fa—ap °© R.

has the desired properties. This definition makes sense since the series > f(z — «)
is strictly positive and has only finitely many non-vanishing terms for each fixed x.

Given z = (z1,...,2y) € RV, a € ZV, and R > 0, define o) (z) :=
o(x1) ... p(zN), (pt(lN) (z) := ¢V (z — a) and (,D&NI%(Z’) = @o(z/R). Further, let

¥ : R — [0, 1] be a continuous function which also satisfies (15) in place of ¢, but
with the constants 1/3 and 2/3 being replaced by 3/4 and 4/5, respectively. For this
function, we define wspz analogously. Clearly, wg]??zwé{v]% = wfll,g for all & and R.

2

The family {¢q g} is a partition of unity on RY for every fixed R (but observe that
the family {14} is not required to form a partition of unity. With these notations,
the announced analogue of Proposition 14 from [5] reads as follows.

Proposition 6.1 Let A € Ag, n € M>(S0O). Suppose there is a constant M > 0
such that, for all positive integers R, there is a neighborhood at infinity U of n such
that, for all o € U, there are operators Bo r and Co r with ||Barllpey < M,
ICo.rllL(Ey £ M and

Ba,R A I&a,RI = I&a,R A Coz,R = 1&0471%[-
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Then the operator A is locally invertible at n, i.e. there are operators B, C € Ag
and a neighborhood at infinity W of n such that

BAYwI = xwAC = ywl. (16)

Proof. We follow exactly the proof of Proposition 14 from [5] where we replace the
condition |a| > p(R) by a € U. What results is the existence of a positive integer
R such that
(I +Tg)"'BrA=1—(+Tg)~ Z Ga.rl.
a€ZN\U

The assertion follows once we have shown that there is a neighborhood at infinity
W of n such that ZaEZN\U Pa,r Xw = 0. This will be done in Proposition 6.4
below. .

To fill the gap in the preceding proof requires more precise knowledge on subsets
of M(SO). The following definition as well as Theorem 6.3 and its proof are taken
from [4].

Definition 6.2 (a) A subset V C Z" is called growing if, for every bounded set
D C ZV, there is an © € ZN such thatt+ D C V.

(b) An unbounded subset Vy of a growing set V' is called a center if, for every bounded
set D C ZY, there is a bounded set M such that (Vo \ M)+ D C V.

Theorem 6.3 Let W be an unbounded subset of ZY andn € WNM>(SO) (where
the bar refers to the closure with respect to the Gelfand topology on M(SO)), and
let U C M(SO) be a neighborhood of . Then V := U NZY is a growing set, and
there is a neighborhood Uy C U of nj such that Vi := Uy NZYN is contained in W and
a center of V.

Proof. By Uryson’s lemma, there is a continuous function f : M(SO) — [0, 1]
which is 0 at n and 1 on M (SO)\U. Since f is continuous on M (SO), the restriction
of f onto Z" is a slowly oscillating function. Set

Uy:={zx € M(SO): f(x) <1/2} and Uy:=UjNW,

and define V :=UNZYN and V; := UyNZYN. Then V) C W NV. Moreover, since U}
is a neighborhood of n, the set V4 is unbounded. We claim that, for every bounded
set M, there is a bounded set D such that (V5 \ D) + M C V. The claim implies
that V' is growing and that 1} is a center of V.

Assume the claim is wrong. Then there exists a bounded set M such that
(Vo\D)+ M € V, hence, V; := (Vo + M)\ V is an unbounded set. So it makes
sense to consider the limes superior of |f(x)| when z € V; tends to infinity. Since
Vi C Vo + M and f is slowly oscillating, we get

limsup |f(z)] < limsup max |f(y +m)|

zEVy,z—00 yEVp,y—o0 ME
< limsup max|f(y—|—m) fw)|+ lmsup |f(y)] <0+1/2=1/2.
y€V07y~><x>m yeVy,y—o0

This is impossible since V; is in the complement of U and, hence, f is 1 on V;. =

Proposition 6.4 Let R a positive integer, n € M>(SO) and U C M(SO) a
neighborhood of 1. Then there exists a neighborhood at infinity U of n such that
ZaEZN\U (150(713 Xo = 0.
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Proof. We apply Theorem 6.3 (with the W in that theorem being Z%) to obtain:
V :=UNZYN is a growing set, and there is a neighborhood Uy C U of 5 such that
Vo := Uy NZYN is a center of V.

The support of every function ¢4 gr is contained in a smallest ball with center
aR and with a radius r which depends on R but not on a. From V', we remove all
points z for which the ball with center z and radius 7 is not completely contained
in V. What we get is a set V, and we set U := Vo N V.

We claim that V is a growing set and that U is one of its centers. Let D C Z~
be bounded, and let B be the ball with center 0 and radius r. Then D + B is a
bounded set, and since Vj is a center of V', there is a bounded set M such that

W\ M)+ (D+B)cV.
Then, of course, (Vo \ M) 4+ D C V, whence
(U\M)+DCV. (17)

Analogously, there is a bounded set N such that (Vo \ N) + B C V. Thus, all points
in Vo \ N belong to V and, consequently, also to U. This shows that U and V, differ
by a bounded set only:

Vo\N CUC V. (18)

A first consequence of (18) is that U is an unbounded set. Together with (17)
this implies that V is a growing set, and that U is a center of V. As another
consequence of (18) we observe that, since Vp is a neighborhood at infinity of 7,
also U is a neighborhood at infinity of n. This finishes the proof since the support
of every function ¢, g with o € Z™V\ U is contained in the complement of V, hence
in the complement of U. [

Proof of Theorem 3.7. We will only prove that the uniform invertibility of the
operators in o, (A) implies the local invertibility of A at 1. Let A € A}" be an
operator with

My = sup{||A; | : A € 0,(A)} < o0,

but suppose A is not locally invertible at n. Then, by Proposition 6.1, there is a
net (y;)ier with values in ZV which converges to 7 in the topology of M (SO) and
which has the property that

BAy, gl # by, 1l (19)

for all t € T and all B with ||B|| < M4. Since A belongs to A%t C £rets the
net (y;)ier possesses a subnet x = (x4)ses such that the limit operator A, exists.
Clearly, the net (z)ses still converges to 1, and

BAz/AmeRI # JjmeI (20)

for all s € S and all B with ||B|| < M 4. From Theorem 5.3 we conclude: there is a
cofinal subset S of S and a sequence (2, )nen such that the limit operator A, exists
and coincides with A;, and such that (z,),.g is a subnet of (z,). Since (2;),c3
converges to 1), and since the nets (z4),.5 and (2,) take the same values, it is clear
that

n €clos{z, :n € N}, whence A, =A, € o,(4).

By hypothesis, A, is invertible, and ||Ay’1|| < M. This yields a contradiction in
the very same way as in the proof of Theorem 1.4 by using Proposition 15 from [5].
n

Our next goal is to point out the connections between local invertibility at n and
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localization by means of the local principle. For the reader’s convenience, we state
this principle here. Let B be a unital Banach algebra. By a central subalgebra C
of B we mean a closed subalgebra of the center of B which contains the identity
element. Thus, every element of C commutes with every element from B, and C is
a commutative Banach algebra with maximal ideal space M (B). To each maximal
ideal = of C, we associate the smallest closed two-sided ideal Z, of B which contains
x, and we let @, refer to the canonical homomorphism from B onto the quotient
algebra B/Z,. Notice that, in contrast to the commutative setting, the quotient
algebras B/Z, can differ from each other in dependence on z € M(C). Moreover,
it may happen that Z, = B for some points z. In this case we define that ®,(a) is
invertible in B/Z, and that ||®,(a)|| = 0 for each a € B.

Theorem 6.5 (Allan) Let C be a central subalgebra of the unital Banach algebra
B which contains the identity element. Then an element a € B is invertible if and
only if the cosets ®,(a) are invertible in B/Z, for every x € M(C).

We have seen in Proposition 2.1 that the algebra C of all cosets al + K(E,P) with
a € SO lies in the center of the quotient algebra Ay /K (E,P). From the isomorphy

C=(SO-1+K(E,P))/K(E,P)=S0 1/(SO-INK(E,P))=S0/c

we conclude that the maximal ideal space of the algebra C is homeomorphic to the
fiber M>°(S0O). Given n € M>(S0), we denote the local algebra of Ap/K(E,P)
which is associated with 1 by Ag ,, and we write 7, for the canonical homomorphism
from Ag onto Ag . Applying Theorem 6.5 to the current situation yields:

Theorem 6.6 An operator A € Ag is P-Fredholm if and only if the cosets m,(A)
are invertible for all n € M>(S0).

The following theorem relates the invertibility of the coset m,;(A) with the local
invertibility of A at 1 and can be proved in the very same way as Proposition 23 in

[5]-
Theorem 6.7 Let A € Ag and n € M*(SO). The coset m,(A) is invertible in
Ag n if and only if A is locally invertible at ).

Together with Allan’s local principle and with Theorem 3.7, this results implies a
further and essential refinement of Theorem 1.4 and Corollary 1.7.

Corollary 6.8 An operator A € AW is P-Fredholm if and only if all of its limit
operators are invertible, and if

sup{[|(An) 7| : A € 0y (A)} < oo for everyn € M*>(S0).

7 Fredholmness of band-dominated operators with
slowly oscillating coefficients

We will now specify Corollary 6.8 to band-dominated operators with slowly oscillat-
ing coefficients. Let SOEi(C)’g) refer to the class of all slowly oscillating functions with

values in L(X) for which the associated multiplication operator is rich. Further
we let Ap(SOp(x)) (resp. AE(SO?(C)'}))) stand for the smallest closed subalgebra
of Ag which contains all band operators Zla\<k aoVo with a, € SOp(x) (resp.

ae € SOTeR ). For the limit operators of operators with slowly oscillating coeffi-
cients we have the following.
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Proposition 7.1 (a) If A € Ag(SOL(x)), then every limit operator of A belongs
to AE(CL(X))-
(b) For A € AE(SOZi(C)?)), every local operator spectrum o, (A) with n € M*>(SO)
s a singleton.

Proof. (a) Limit operators of shift operators are shift operators and, hence, in
Ag(Cr(x)). By Proposition 2.2, the same is true for operators of multiplication by
slowly oscillating functions.

(b) If a € SO7'), then oy (al) is not empty since Ap* C LF® (see Section 5),
and this spectrum is a singleton by Proposition 3.5 (b). With Proposition 1 from
[5] we conclude first that every local spectrum of a band operator with coefficients
in SOEi(C)’g) is a singleton, too, and get then the assertion also in the general case. m

Now we can formulate and prove the P-Fredholm criterion for operators with rich
slowly oscillating coefficients. It turns out that the uniform boundedness condition
is redundant.

Theorem 7.2 Operators in AE(SO?(‘}'})) are P-Fredholm if and only if all of their
limit operators are invertible.

Proof. Since o, (A) is a singleton, the assertion follows immediately from Corollary
6.8. [

8 An alternative proof of Theorem 7.2

This section is devoted to an alternative proof of the preceding theorem which works
under more restrictive assumptions only, but which also has its own merits, and
which sheds new light upon the properties of band-dominated operators with slowly
oscillating coefficients. We let H be a Hilbert space and E := [?(Z", H). Further,
we again write SO L(H) and S Ozi(ﬂ’}) for the algebra of all slowly oscillating functions
ZN — L(H) and for the algebra of all slowly oscillating functions Z~ — L(H)
for which the associated multiplication operator is rich, respectively, and we let
Ag(SOpmy) and AE(SO?(C}’})) stand for the closures in L(E) of the algebra of the

band operators with coefficients in SO,y and in S Ozi(cfl).

Generating functions. The alternative proof is based on the notion of the gen-
erating function of a band-dominated operator. This notion is borrowed from the
pseudodifferential operator calculus (where the generating functuion is usually re-
ferred to as the symbol of the operator) and adapted for our purposes.

We start with defining the generating function of a band operator. For

A= Z aaVe with ay € SOp ), (21)

loo| <M
let the generating function of A be

geny : ZN x TN = L(H), (x,t) Z ao(x)t® (22)
lo| <M

where t* := ¢ ...t%». There is a one-to-one correspondence between band opera-
tors and their generating functions.

We denote by Cy(ZY x TN, L(H)) the set of all continuous functions on Z*~ x
TV with values in L(H). Provided with pointwisely defined operations and the
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supremum norm, this set becomes a C*-algebra, and the set co(Z~ x TV, L(H)) of
all functions a € Cy(ZN x TV, L(H)) with

Jim sup fla(e, Oz ) =0

is a closed ideal of Cy(Z~ x TV, L(H)). The quotient algebra Cj/cy will be abbre-
viated to Cj, and the coset which contains a € C,(ZN x TV, L(H)) to @. Notice
that

[lal]o := lim sup sup ||a(w,t)||L(H)
r—o00 TN

is just the canonical quotient norm of the coset @ in the quotient algebra CA'b.
Evidently, if A is a band operator of the form (21), then its generating function
belongs to Cy(ZN x TN, L(H)).

Proposition 8.1 Let A be as in (21). Then ||gen,l|lo < ||A]|.

Proof. Choose a sequence (z,,) C Z* tending to infinity, a sequence (t,) € TV,
and a sequence (vy,) of unit vectors in H, such that

Igenllo = Hm [lgen (zn, tn)vnl|a-
n—>00

Since TV is compact, we can moreover assume that (¢,) is a convergent sequence
with limit to € T™. The assertion follows once we have shown that, given & > 0,
there is an ng such that

lgena (@n; tn)vnlln < |Al+ ¢ (23)

for all n > ng.

Given vectors v € H and u = (ug)pezy € 12, let v ® u denote the sequence
(ugv)pez~ in E = 12(ZN, H). Let further A4, ,, A, and B, stand for the band
operators with generating functions

(x,t) = geny (T, tn), (x,t) = geny(z+xp,t), (z,t) — geny (@, 1),
respectively. Then we have, for every unit vector u € I2,

llgen s (zn, tn)valln = ||An7n(vn ®u)||le
||(An7n — Bp)(vn @ u)||p (24)
+ I(Bn — 4An)(vn @ u)||le + [|An(vn @ u)|| 5.

IN

Since A, =V_,, AV, , we get
|An(vn @ u)||p = [|V=s, AV, (vn @ u)||p < [|A]

for the last term in (24). The middle term on the right hand side of (24) is not
greater than || B, — A, ||, which goes to zero as n — oo since the coefficients of A are
slowly oscillating. Thus, this middle becomes less than /2 uniformly with respect
to w and vy, if only n is large enough.

To estimate the first term, choose § > 0 such that

sup ||geny(z,t) — geny(z,t0)|| < /4 for all |t — to] < 9,
zeLN

and choose the unit vector u = (ug)pez~ in [? such that the uy are the Fourier
coefficients of a continuous function @ on TV with support in {t € TN : |t —to| < &}.
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Since Ay, — By, is the operator of convolution by the function gen, ~—geng , we
get

1A = Ba)en © 0oz, = IEona, , —sens, ) (iwa)lliacov
= [ Weenaenta) = sen o, t)idt)vn i di

< o lgen g (zn, tn) — gena(@n, )Ly llvn @ ull.
t—to|<

Due to the choice of 4, this term becomes less than /2 if n becomes large. ]

This proposition allows us to associate with every operator A in Ag(SOpm)) a
uniquely determined coset in C, which we denote by I['(A).

In what follows, we will make use of the notion of the main diagonal of a band-
dominated operator. If A is the band operator Z|a\ <k aVy, then its main diagonal
is, by definition, the function D(A) := ag. Since

1D (Alleo = sup [lao (k)] = sup |5k ASe]] < [|A]

(where the Sj are as in the introduction), we can extend the mapping D by conti-
nuity onto the set of all band-dominated operators. For a band-dominated operator
A, we call D(A) its main diagonal and D(AV_,) its ath diagonal.

Proposition 8.2 I is a *-homomorphism from AE(SO?(C}'})) into Cy, with kernel
K(E,P).

Proof. It is elementary to check that " acts as a *~homomorphism on the algebra of
all band operators with slowly oscillating coefficients. Since this algebra is dense in
AE(SOp(m)), and since I' is continuous on this algebra by the preceding proposition,
this proves the first assertion. It is further evident that the ideal K (E,P) lies in
the kernel of I'. Let, finally, A be an operator in Ag(SOpm)) with ['(4) = 0. We
have to show that A lies in K(E,P).

Let (A,,) be a sequence of band operators in Ag (S Ozi(cf’})) which converges to A.
Then, trivially, ||T'(4,)|| = 0. For a = (a1, ...,an) € ZY, consider the functions

al™ . ZN — L(H) which take at z € Z the value

1
@m)N

2m 2m
/ / geny (z,(e,...,e"N))e 115 e 1NN (g dsn. (25)
0 0

If the band operator A,, is of the form Zb&")Va, then its ath diagonal b&n) just

coincides with the function aly given by (25). From (25) we immediately conclude

that
1al (@)l (z) < sup llgeny, (,)]|oo
teTN

whence, in particular,

lim sup ||a{™ (z)|| < limsup sup [|gen, (z,t)]|eo = [|[T(4,)]| = 0
T—00 T—00 teTN

as n — 0o. Thus, if a, denotes the ath diagonal of A, then

limsup laa(@)| < sup [laa(z) — al («)]| + limsup [l ()]

r—00 T€EZN r—00

14 = Ap[[ + [IT(An)]]- (26)

IN
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This shows that every diagonal of A lies in co(Z", L(H)), which on its hand implies
that all limit operators of A are 0: Indeed, let i be a sequence for which the limit
operator Ay exists. Then the operators S;V_jn) AVj(n)S; converge in the norm to
S;iApS; for every pair of indices ¢, j € Z. Since

Jim |[SiVop(n) AVh(n)Sjll = lim fla;—; (@ +h(n))|| = 0

due to (26), this shows that S;A,S; = 0 for all ¢ and j, whence A, = 0. But a rich
band-dominated operator having 0 as its only limit operator lies in K (E,P) due to
Theorems 2.24 and 2.24 in [6]. m

Now we can present an alternative proof of Theorem 7.2.

Theorem 8.3 The following assertions are equivalent for A € AE(SOF&’})):

(a) A is P-Fredholm.
(b) T'(A) is invertible in Cy.
(¢) All limit operators of A are invertible.

Proof. The equivalence of (a) and (b) is quite obvious: If the coset A+ K(E,P) is
invertible in L(E,P)/K(E,P), then it is also invertible in AE(SOF&’}))/K(E,P)
(inverse closedness of C*-algebras). Hence, there are operators B € AE(SOF&’}))
and K;, Ko € K(E,P) such that AB = I + K; and BA = I + K,. Applying
the homomorphism I" to these equalities yields invertibility of ['(A). If, conversely,
I'(A) is invertible in Cy, then it is also invertible in the image of Ag(S Ozi(cf’})) under
the mapping ' (again by the inverse closedness of C*-algebras). Thus, one can find
a B € Ap(SO7H,)) with T(A)(B) = I'(B)I(4) = 1, showing that AB — I and
BA — I belong to kerI' = K(E, P).

Since (a) obviously implies (¢) (see also the first lines of the proof of Theorem 1
in [5]), we are left with the implication (¢) = (b). Assume that all limit operators
of A€ Agp (SOF&%) are invertible, but that I'(A) is not invertible in Cy. If A is not
a band operator, then we let gen, be any function in the coset I'(4).

We define the lower norm of an operator C € L(H) by v(C) = inf,»¢ ||Cz||/||x]-
It is well known that C' is invertible if both v(C) and v(C*) are positive and that,
conversely, invertibility of C' implies v(C') = v(C*) = 1/||A7}||. Thus, if both

lim inf v(gen,(z,t)) >0 27
Jim inf | vlgena(e.) (27)
and
lim inf  wv(gen,(x,t)*) >0, 28
Jim inf | vlgena(e.t)) (23)
then the function gen, is invertible in C, modulo functions in ¢p. Since I'(A4) is
non-invertible by assumption, one of the conditions (27) and (28) must be violated,
say the first one for definiteness. Then there exist a sequence & = (£ )m>1 C N
which tends to infinity, a sequence (¢,)m>1 C T™ which we can also suppose to be
convergent to a point to € TV, as well as a sequence (v,,)m>1 of unit vectors in H
such that
llgen g (zm, tm)vm|| = 0 asm — oo.

We will further suppose without loss that the limit operator A, of A with respect
to the sequence x exists.
Let € < 1/(4]]A;1]]), and let A" be a band operator with coefficients in SO?&'})

such that ||A — A'|| < &. Then ||[T'(A) — T(4")||o < &, which implies that

lim sup ||gen 4/ (®m, tn ) V||
m—00
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< limsup [[gen 4/ (Tm, tn)vm — geny (Tm, tm)vml| + lm |lgen (zm, tn)vm||
m—o0 m—co

S lim Sup sup ||genA’ (x’mv t) - genA(xmv t)”
m—00 teTN

= I0(4) ~ T(A)o <.

Hence, ||gen (Tm,tm)vm|| < € for all sufficiently large m. We further suppose
without loss that the limit operator of A’ with respect to the sequence z exists
(otherwise Let € < 1/(4]|A;!|]), and let A’ be a band operator with coefficients in
SOZi(CIT}}) such that ||A — A’|| <e. Then ||T(A) — T'(A")||o < &, which implies that

lim sup ||genA’ (.CL’m, tm)”m”
m—r00
< limsup ||gen 4 (T, tm)Vm — gen g (T, b )Um|| + 1m ||gen g (Tom, tm)Uml|
m—00 m—00
S lim Sup sup ||genA’ (x’mv t) - genA(xmv t)”
m—oo teTN

= [IT(4) = T(A)]lo <e.

Hence, ||gen (Tm,tm)vm|| < € for all sufficiently large m. We further suppose
without loss that the limit operator of A’ with respect to the sequence x exists
(otherwise we pass to a suitable subsequence of ). As in the proof of Proposition
8.1, we can find a unit vector v € I? such that

Vg, A'Vy, (vm @u)|| < 2¢  for all sufficiently large m
and, according to the definition of limit operators, we further have
||(V—wmAlem - A;)(U & u)” -0

uniformly with respect to the unit vectors v. Hence, ||A% (v, @ u)|| < 3¢ for all
sufficiently large m. Since ||v,, ® ul| = 1, we conclude that

either A’ is not invertible or ||(4%) 7| > 1/(3¢). (29)
On the other hand,
[4s — Al < JJA - A <e <1/(4[IATHD)-
Thus, by a Neumann series argument, A/ is invertible, and

[1(4e) ] < lt4)7
1= I(Ae) M Ae — Al = T—el(Ae) I

Together with (29), this yields

1(4) 71 <

1 )T
3 S T-e ()]

or, equivalently, ¢ > 1/(4|(4;)"!||. The obtained estimate contradicts the choice
of €. L]

In a similar way, the following refinement of the local Fredholm criterion (Theorem
1.6 and its corollary) can be derived.

Theorem 8.4 The following assertions are equivalent for A € AE(SOEi(i,’})).'

(a) A is locally invertible at n € SV—1.
(b) The local coset m,(A) is invertible.
(c) All operators in local operator spectrum o,(A) of A are invertible.
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