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Abstra
t

A band-dominated operators on an l

p

-spa
e of ve
tor-valued fun
tions is

an (in a generalized sense) Fredholm operator if and only if all of its limit

operators are invertible and if their inverses are uniformly bounded (see [6℄).

We show that the limit operators approa
h is also 
ompatible with the lo
al

Fredholmness of band-dominated operators with respe
t to lo
alization over

the maximal ideal spa
e of the algebra of the slowly os
illating s
alar-valued

fun
tions. A 
orollary of this result is that the uniform boundedness 
ondition

is redundant for band-dominated operators with slowly os
illating operator-

valued 
oeÆ
ients.

1 Introdu
tion

LetX be a 
omplex Bana
h spa
e. For p 2 (1; 1) andN a positive integer, 
onsider

the Bana
h spa
es l

p

(Z

N

; X) and l

1

(Z

N

; X) of all fun
tions f whi
h are de�ned

on Z

N

and take values in X su
h that

kfk

p

p

:=

X

x2Z

N

kf(x)k

p

X

<1 and kfk

1

:= sup

x2Z

N

kf(x)k

X

<1;

respe
tively. Further, 


0

(Z

N

; X) refers to the 
losed subspa
e of l

1

(Z

N

; X) 
on-

sisting of all fun
tions f with

lim

x!1

kf(x)k

X

= 0:

In 
ase X = C , we will simply write l

p

(Z

N

) and 


0

(Z

N

), and we let E stand for one

of the spa
es l

p

(Z

N

; X) with p 2 (1; 1).

Every fun
tion a 2 l

1

L(X)

:= l

1

(Z

N

; L(X)) gives rise to a multipli
ation operator

on E on de�ning

(af)(x) = a(x)f(x); x 2 Z

N

:

We denote this operator by aI . Evidently, aI 2 L(E) and kaIk

L(E)

= kak

1

.

Finally, for � 2 Z

N

, let V

�

refer to the shift operator

(V

�

f)(x) = f(x� �); x 2 Z

N

;

whi
h also belongs to L(E) and has norm 1.

�

Both authors are grateful for the support by the CONACYT proje
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De�nition 1.1 A band operator is a �nite sum of the form

P

�

a

�

V

�

where � 2

Z

N

and a

�

2 l

1

(Z

N

; L(X)). A band-dominated operator is the uniform limit of a

sequen
e of band operators.

The band-dominated operators on E form a 
losed subalgebra of L(E) whi
h we

denote by A

E

. (For this and the following fa
ts we refer to the papers [5, 6℄.)

Given m 2 Z

N

, let s

m

stand for the fun
tion on Z

N

whi
h is I 2 L(X) at m

and 0 at all other points. The operator of multipli
ation by s

m

will be denoted by

S

m

. For n � 0, de�ne P

n

:=

P

jmj�n

S

m

and Q

n

:= I � P

n

, and let P refer to the

family (P

n

).

De�nition 1.2 An operator K 2 L(E) is P-
ompa
t if

kKQ

n

k ! 0 and kQ

n

Kk ! 0 as n!1:

By K(E;P) we denote the set of all P-
ompa
t operators on E, and by L(E;P) the

set of all operators A 2 L(E) for whi
h both AK and KA are P-
ompa
t whenever

K is P-
ompa
t.

It turns out that L(E;P) is a 
losed subalgebra of L(E), K(E;P) is a 
losed two-

sided ideal of L(E;P), and K(E;P) � A

E

� L(E;P). Operators A 2 L(E;P) for

whi
h the 
oset A+K(E;P) is invertible in the quotient algebra L(E;P)=K(E;P)

are 
alled P-Fredholm. If X is a �nite-dimensional spa
e, then L(E;P) = L(E),

K(E;P) is the ideal of the 
ompa
t operators on E, and the P-Fredholm operators

are just the Fredholm operators in the 
ommon sense. Let further stand H for the

set of all sequen
es h = (h(m))

1

m=0

� Z

N

whi
h tend to in�nity.

De�nition 1.3 Let A 2 L(E;P) and h 2 H. The operator A

h

2 L(E) is 
alled

limit operator of A with respe
t to h if

lim

n!1

k(V

�h(n)

AV

h(n)

�A

h

)P

m

k = lim

n!1

kP

m

(V

�h(n)

AV

h(n)

�A

h

)k = 0 (1)

for every P

m

2 P. The set �

op

(A) of all limit operators of A is 
alled the operator

spe
trum of A.

We let �nally refer A

ri
h

E

to the set of all operators A 2 A

E

enjoying the following

property: every sequen
e h tending to in�nity possesses a subsequen
e g for whi
h

the limit operator A

g

exists. Then the main result of [6℄ 
an be stated as follows:

Theorem 1.4 An operator A 2 A

ri
h

E

is P-Fredholm if and only if all of its limit

operators are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (2)

It is the main goal of this paper to dis
uss and weaken the uniform invertibility 
on-

dition (2). To rea
h this goal, we examine several lo
al theories of P-Fredholmness.

To des
ribe some typi
al ideas and results we have to introdu
e some more nota-

tions. Let S

N�1

denote the unit sphere f� 2 R

N

: j�j

2

= 1g where j�j

2

stands for

the Euklidean norm of �. Given a `radius' R > 0, a `dire
tion' � 2 S

N�1

, and a

neighborhood U � S

N�1

of �, de�ne

W

R;U

:= fz 2 Z

N

: jzj > R and z=jzj 2 Ug: (3)

We will 
all W

R;U

a neighborhood at in�nity of �. If h is a sequen
e whi
h tends

to in�nity, then we say that h tends into the dire
tion of � 2 S

N�1

if, for every

neighborhood at in�nity W

R;U

of �, there is an m

0

su
h that

h(m) 2 W

R;U

for all m � m

0

:
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De�nition 1.5 Let � 2 S

N�1

and A 2 L(E).

(a) The lo
al operator spe
trum �

�

(A) of A at � is the set of all limit operators A

h

of A with respe
t to sequen
es h tending into the dire
tion of �.

(b) The operator A is lo
ally invertible at � if there are operators B; C 2 L(E) and

a neighborhood at in�nity W of � su
h that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the 
hara
teristi
 fun
tion of W .

The following theorem and its 
orollary (whi
h is also partially based on Theorem

6.5 below) have been shown in [5, 6℄.

Theorem 1.6 Let A 2 A

ri
h

E

and � 2 S

N�1

. Then the operator A is lo
ally invert-

ible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

Corollary 1.7 An operator A 2 A

ri
h

E

is P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for all � 2 S

N�1

:

Observe that this is a true generalization of Theorem 1.4 sin
e it is not required in

the 
orollary that the suprema are uniformly bounded with respe
t to �.

In the present paper we will show that an analogous result holds if the sphere

S

N�1

is repla
ed by the �ber M

1

(SO) at in�nity of the maximal ideal spa
e of

the algebra of the slowly os
illating fun
tions on Z

N

. This �ber is mu
h larger

than S

N�1

, hen
e, the resulting lo
alization is mu
h �ner, and this lo
alization will

provide a further essential improvement of Theorem 1.4. It should be also noted

that the lo
alization over M

1

(SO) is, in some sense, the �nest possible.

It is due to the topologi
al properties of the maximal ideal spa
e of the algebra

of the slowly os
illating fun
tions that we have to repla
e sequen
es tending to

in�nity by general nets tending to in�nity. This requires some additional work

whi
h is done in the Se
tions 2 { 5. In parti
ular, we will derive a version of

Cantor's diagonalization pro
edure for nets in pla
e of sequen
es. The Se
tions

6 and 7 are devoted to the proof of the lo
al Fredholm 
riterion and of one of

its 
onsequen
es, whi
h states that a band-dominated operator with ri
h slowly

os
illating 
oeÆ
ients is P-Fredholm if and only if all of its limit operators are

invertible (Theorem 7.2). Thus, for these operators, the uniform invertibility of

the inverses of the limit operators is not needed to guarantee their P-Fredholmness,

whi
h is a se
ond main result of the present paper. In the 
ourse of the proof we will

also see that the method of limit operators is 
ompatible with another lo
al theory,

the so-
alled lo
al prin
iple by Allan (Theorems 6.5 and 6.7 below). The �nal se
tion


ontains an alternative proof of Theorem 7.2 whi
h borrows some arguments from

the symbol 
al
ulus for pseudodi�erential operators, and whi
h sheds new light upon

the properties of band-dominated operators with slowly os
illating 
oeÆ
ients.

2 Slowly os
illating fun
tions

A fun
tion a 2 l

1

L(X)

is slowly os
illating if

lim

x!1

(a(x + k)� a(x)) = 0 for all k 2 Z

n

: (4)

We denote the 
lass of all slowly os
illating fun
tions in l

1

L(X)

by SO

L(X)

and write

SO instead of SO

L(C)

for brevity. Trivial examples of slowly os
illating fun
tions

3



are provided by the 
ontinuous fun
tions on Z

N

whi
h possess a limit at in�nity,

whereas Z! C : x 7! sin

p

jxj is an example of a slowly os
illating fun
tion whi
h

does not have this property.

It follows essentially from the de�nition of the 
lass SO that a fun
tion a is slowly

os
illating if and only if the operator V

�k

aV

k

� aI is P-
ompa
t for every k 2 Z

N

or, equivalently, if and only if the 
ommutator aV

k

� V

k

aI = V

k

(V

�k

aV

k

� aI) is

P-
ompa
t for every k. Sin
e K(E;P) is a 
losed ideal of L(E;P), we 
on
lude

that SO

L(X)

is a 
losed subalgebra of l

1

L(X)

. If, moreover, the slowly os
illating

fun
tion a is s
alar-valued, then the operator of multipli
ation by a also 
ommutes

with every multipli
ation operator. Summarizing we get:

Proposition 2.1 If f 2 SO and A 2 A

E

, then the operator fA�AfI is P-
ompa
t

on E. If, 
onversely, f 2 l

1

L(X)

is a fun
tion for whi
h fA�AfI is P-
ompa
t for

every A 2 A

E

, then f 2 SO.

Thus, SO (more pre
isely, the image of SO in L(E;P)=K(E;P) under the 
anoni-


al embedding) is the natural 
andidate for lo
alizing the algebra A

E

=K(E;P) by

means of the lo
al prin
iple by Allan. We will pursue this idea in Se
tion 6.

Another spe
ial feature of slowly os
illating fun
tions 
on
erns the limit opera-

tors of their multipli
ation operators.

Proposition 2.2 Let a 2 SO

L(X)

. Then every limit operator of aI is a multipli-


ation operator in C

L(X)

, i.e. an operator of multipli
ation by a 
onstant fun
tion

with values in L(X).

Proof. Let a 2 SO

L(X)

. From (4) we 
on
lude that

lim

k!1

(a(x

0

+ h(k))� a(x

00

+ h(k))) = 0

for all sequen
es h tending to in�nity and for all x

0

; x

00

2 Z

n

. Hen
e, if h is

a sequen
e su
h that the limit operator (aI)

h

exists, then lim

k!1

a(x + h

k

) is

independent of x 2 Z

n

, i.e. (aI)

h

= AI with an operator A 2 L(X).

3 Lo
al invertibility with respe
t to M

1

(SO)

Let M(SO) denote the maximal ideal spa
e of the 
ommutative C

�

-algebra SO,

and write M

1

(SO) for the �ber of M(SO) 
onsisting of all 
hara
ters � 2M(SO)

su
h that �(a) = 0 whenever a 2 


0

. Every m 2 Z

N

de�nes a 
hara
ter of SO by

f 7! f(m). In this sense, Z

N

is embedded into M(SO), and M(SO) is the union

of its disjoint subsets Z

N

and M

1

(SO).

Theorem 3.1 Z

N

is densely and homeomorphi
ally embedded into M(SO) with

respe
t to the Gelfand topology.

This is a spe
ial 
ase of a general result on 
ompa
ti�
ations of topologi
al spa
es,

see [3℄, Chapter I, Theorem 8.2.

We will run into a lot of trouble when trying to realize the simple and natural

idea of lo
alizing the algebra A

E

=K(E;P) over SO. The main reason for this is

the following observation.

Proposition 3.2 Let � 2 M

1

(SO). Then � 2 
los

M(SO)

Z

N

, but there is no

sequen
e in Z

N

whi
h tends to � with respe
t to the Gelfand topology of M(SO).

Proof. We know from Theorem 3.1 that � is in 
los

M(SO)

Z

N

and that, hen
e, there

is a net with values in Z

N

whi
h 
onverges to �. Assume there is a sequen
e h with

4



values in Z

N

and with limit � in the Gelfand topology. Sin
e every subsequen
e of

h also 
onverges to �, we 
an assume without loss that

jh(n+ 1)j � jh(n)j+ 2

n+2

for all n:

Let '

0

: R

N

! [0; 1℄ be a 
ontinuous fun
tion with support in ft 2 R

N

: jtj � 1g

and with '

0

(0) = 1, and set '

n

(t) := '(t=2

n

) for n � 1. Then the fun
tion

'(t) :=

1

X

n�0

'̂

2n

(t� h(2n))

is slowly os
illating, and '(h(2n)) = 1 and '(h(2n+1)) = 0 for all n. The assumed


onvergen
e of h to � implies that both sequen
es ('(h(2n))) and ('(h(2n + 1)))


onverge to '(�). Contradi
tion.

Consequently, if h 2 H, then the 
losure h of the set fh(m) : m 2 Z

N

g of the values

of h in the Gelfand topology 
annot 
onsist of a single point of M

1

(SO) only.

Nevertheless, the sequen
es in H separate the points of M

1

(SO) in the following

sense.

Proposition 3.3 Given �; � 2M

1

(SO), there is a fun
tion h 2 H su
h that � 2 h

and � 62 h.

Proof. Choose disjoint neighborhoods U

�

and U

�

of � and � in M(SO), and let

h 2 H be a sequen
e su
h that

fh(m) : m 2 Z

N

g = U

�

\Z

N

:

(Re
all that the interse
tion U

�

\ Z

N

is not empty by Theorem 3.1 and, hen
e,


ountable. Thus, h 
an be even 
hosen as a bije
tion from Z

N

onto U

�

\Z

N

.) Sin
e

Z

N

is dense in M(SO), it is 
lear that � 2 U

�

\ Z

N

= h, but � 
annot belong to h

sin
e

� 2 U

�

�M(SO) nU

�

=M(SO) n h;

i.e. � is an interior point of the 
omplement of h.

The Proposition 3.3 suggests the following de�nition.

De�nition 3.4 Let � 2 M

1

(SO) and A 2 L(E). The lo
al operator spe
trum of

A at � is the set

�

�

(A) := fA

h

: h 2 H

A

and � 2 hg:

Above we observed that, if h is a sequen
e, there are many �'s in h. We will see now

that, nevertheless, lo
al spe
tra of operators of multipli
ation by slowly os
illating

fun
tions are singletons, thus giving another justi�
ation for the proposed de�nition

of a lo
al operator spe
trum.

Proposition 3.5 Let � 2M

1

(SO).

(a) If A = aI with a 2 SO, then �

�

(A) = fa(�)g (where we use the same notation

for a fun
tion in SO and its Gelfand transform).

(b) If A = aI with a 2 SO

L(X)

, then �

�

(A) 
ontains at most one operator.

Proof. (a) Let h 2 H be a sequen
e su
h that � 2 h and su
h that the limit

operator (aI)

h

exists. By Proposition 2.2, (aI)

h

= �I with the 
omplex number

� := lim a(h(n)). We 
laim that � = a(�).

Let " > 0. Sin
e a is 
ontinuous at �, there is an open neighborhood U of � su
h

that

ja(�)� a(�)j < "=2 for all � 2 U:
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Further, sin
e � 2 h, there is an in�nite subsequen
e g of h the values of whi
h are

in U . Choose m su
h that ja(g(m))� �j < "=2. Then

ja(�)� �j � ja(�)� a(g(m))j+ ja(g(m))� �j < ":

This estimate holds for arbitrary " > 0; hen
e, a(�) = �.

(b) Suppose there are sequen
es h

1

; h

2

2 H su
h that � 2 h

1

\ h

2

and that the

limit operators (aI)

h

1

and (aI)

h

2

exist, but that (aI)

h

1

6= (aI)

h

2

. By Proposition

2.2, (aI)

h

1

and (aI)

h

2

are the operators of multipli
ation by the 
onstant fun
tions

x 7! A

1

and x 7! A

2

with A

1

; A

2

2 L(X). Sin
e A

1

6= A

2

, there is a fun
tional ' 2

L(X)

�

su
h that '(A

1

) 6= '(A

2

). Consider the fun
tion â : Z

N

! C : x 7! '(a(x)).

This fun
tion is in SO:

jâ(x+ k)� â(x)j � k'k ka(x+ k)� a(x)k

L(X)

! 0 as x!1:

From ka(h

i

(m)) �A

i

k ! 0 for i = 1; 2 we 
on
lude that

kâ(h

i

(m))� '(A

i

)k ! 0 for i = 1; 2:

Hen
e, both '(A

1

)I and '(A

2

)I are limit operators of âI at �. This 
ontradi
ts

assertion (a) of this proposition, stating that �

�

(âI) is a singleton.

If h 2 H, then the interse
tion 
los

M(SO)

fh(m) : m 2 Z

N

g\M

1

(SO) is non-empty

by Theorem 3.1. Consequently,

�

op

(A) = [

�2M

1

(SO)

�

�

(A) for every A 2 L(E):

Let � 2 M

1

(SO), and let U be a neighborhood of � in M(SO) with respe
t

to the Gelfand topology. Then we agree upon 
alling the interse
tion U \ Z

N

a

neighborhood at in�nity of �.

De�nition 3.6 Let � 2M

1

(SO) and A 2 L(E). The operator A is lo
ally invert-

ible at � if there are operators B; C 2 L(E) and a neighborhood at in�nity W of �

su
h that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the 
hara
teristi
 fun
tion of W .

The following result, whi
h states the analogue of Theorem 1.6 with respe
t to the

mu
h �ner lo
alization over points in M

1

(SO) instead of points in S

N�1

, is the

main out
ome of this se
tion.

Theorem 3.7 Let A 2 A

ri
h

E

and � 2 M

1

(SO). Then the operator A is lo
ally

invertible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

The proof will be given in Se
tion 6. To prepare this proof we re
all and provide

some fa
ts about nets and about limit operators with respe
t to nets in the following

two se
tions.

4 Preliminaries on nets

Nets and subnets. A set T is dire
ted if there is a binary relation � on T su
h

that

8t 2 T : t � t (re
exivity);

8r; s; t 2 T : r � s; s � t) s � t (transitivity);

8r; s 2 T 9 t 2 T : t � r and t � s (indu
tivity);
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A mapping x from a dire
ted set T into a topologi
al spa
e X is 
alled a net , and

this net 
onverges to a point x

�

2 X if, for every neighborhood U of x

�

, there is

a t

0

2 T su
h that x(t) 2 U for all t � t

0

. The net x : T ! X is sometimes also

denoted by (x

t

)

t2T

where x

t

= x(t). A

ordingly, if x : T ! X 
onverges to x

�

, we

will write

lim

t2T

x

t

= x

�

or x

t

! x

�

with respe
t to T:

A net (y

s

)

s2S

is a subnet of the net (x

t

)

t2T

if there is a mapping F : S ! T su
h

that

8s 2 S : y

s

= x

F (s)

;

8t 2 T 9 s

0

2 S : F (s) � t for all s � s

0

:

A subset S of a dire
ted set T is 
alled 
o�nal if

8t 2 T 9 s 2 S : s � t:

Every 
o�nal subset S of a dire
ted set T is again a dire
ted set with respe
t to

the restri
tion of the order relation � onto S. If S is a 
o�nal subset of T , and if

(x

t

)

t2T

is a net, then the restri
tion of (x

t

)

t2T

onto S is a subnet of (x

t

)

t2T

. We

will be mainly interested in subnets whi
h do not arise in this simple manner.

Nets tending to in�nity. In what follows we will only be 
on
erned with nets

in Z

N

. A net (x

t

)

t2T

with values in Z

N

is said to 
onverge to in�nity if

8k 2 N 9 t

0

2 T : jx

t

j � k for all t � t

0

:

Let N denote the set of all nets in Z

N

whi
h 
onverge to in�nity.

Lemma 4.1 (a) For every net (x

t

)

t2T

2 N , the set fx

t

: t 2 Tg of its values is


ountably in�nite.

(b) If h : N ! Z

N

is inje
tive, then the sequen
e h belongs to N .

Proof. (a) Sin
e Z

N

is 
ountable, (x

t

)

t2T

� Z

N

is an at most 
ountable set, and

sin
e (x

t

)

t2T

tends to in�nity, this set 
annot be �nite.

(b) Suppose the sequen
e h does not 
onverge to in�nity. Then

9 k 2 N 8n

0

2 N 9n � n

0

: jh(n)j � k:

Repeating this argument we get an in�nite sequen
e n

0

< n

1

< n

2

< : : : su
h that

jh(n

r

)j � k for all r. But h is inje
tive. Thus, h(n

r

) 6= h(n

s

) whenever r 6= s. So

we have in�nitely many points in fz 2 Z

N

: jzj � kg whi
h is nonsense.

Lemma 4.2 Let x 2 N be a net, and let h be a bije
tion from N onto the set of the

values of x. Then x is a subnet of the sequen
e h. In parti
ular, every net x 2 N

is a subnet of a sequen
e h 2 H.

Proof. Let x = (x

t

)

t2T

2 N , and let h : N ! fx

t

: t 2 Tg be a bije
tion. Su
h

bije
tions exist by Lemma 4.1.

To show that x is a subnet of h, de�ne F : T ! N by F (t) := h

�1

(x

t

). Then,


learly, x

t

= h

F (t)

for every t 2 T , and it remains to 
he
k whether

8n 2 N 9 t

0

2 T : F (t) � n for all t � t

0

: (5)

Given n 2 N, set k := maxfjh

1

j; : : : ; jh

n

jg. Sin
e (x

t

)

t2T

belongs to N , there is a

t

0

2 T su
h that

jx

t

j � k + 1 for all t � t

0

:

By the de�nition of F , this implies F (t) � n for all t � t

0

whi
h gives (5). Hen
e,

x is a subnet of h, and this sequen
e belongs to H due to Lemma 4.1 (b).
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A version of Cantor's diagonalization pro
edure. The following result 
an

be regarded as a substitute for the well-known diagonalization argument for se-

quen
es due to Cantor.

Theorem 4.3 Let Z be a set, and let (f

n

)

n�1

be a sequen
e of fun
tions f

n

: Z !

R

+

whi
h 
onverges uniformly on Z to a fun
tion f : Z ! R

+

. Assume further

that (x

0

t

0

)

t

0

2T

0

is a net with values in Z and with the property that, for every n � 1,

there is a subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

su
h that

lim

t

n

2T

n

f

n

(x

n

t

n

) = 0: (6)

Then there is a subnet (y

w

)

w2W

of (x

0

t

0

)

t

0

2T

0

with lim

w2W

f(y

w

) = 0.

Proof. We split the proof into several steps and emphasize some partial results

as lemmas. Our starting point is a net (x

0

t

0

)

t

0

2T

0

in Z and, for every n � 1, a

subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

with (6). In parti
ular, we have mappings

F

n

: T

n

! T

n�1

with x

n

t

n

= x

n�1

F

n

(t

n

)

for all t

n

2 T

n

and su
h that

8t

n�1

2 T

n�1

9 t

0

n

2 T

n

: F (t

n

) � t

n�1

for all t

n

� t

0

n

: (7)

Step 1. We show that the dire
ted sets T

0

; T

1

; : : : 
an be repla
ed be one and the

same dire
ted set S.

Indeed, set S := T

0

� T

1

� T

2

� : : : and provide S with the order

(s

0

; s

1

; s

2

; : : :) � (s

0

0

; s

0

1

; s

0

2

; : : :) () s

k

� s

0

k

for all k

whi
h makes S to a dire
ted set. Further, there are 
anoni
al mappings

G

n

: S ! T

n

; (s

0

; s

1

; s

2

; : : :) 7! s

n

:

For every n 2 N, de�ne a net (y

n

s

)

s2S

by y

n

s

:= x

n

G

n

(s)

.

Lemma 4.4 (a) For all n � 0, (y

n

s

)

s2S

is a subnet of (x

n

t

n

)

t

n

2T

n

.

(b) For all n � 1, (y

n

s

)

s2S

is a subnet of (y

n�1

s

)

s2S

.

Proof of Lemma 4.4. (a) By the de�nition of y

n

s

, what we have to 
he
k is

whether

8t

n

2 T

n

9 s

0

2 S : G

n

(s) � t

n

for all s � s

0

:

But this is obvious: Set s

0

:= (t

0

; t

1

; t

2

; : : :) 2 S. Then, for s � s

0

, one indeed has

G

n

(s) � t

n

.

(b) For n � 1, de�ne

H

n

: S ! S; (s

0

; s

1

; s

2

; : : :) 7! (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :)

with the F

n

(s

n

) standing at the n�1 th position. Then, for all s = (s

0

; s

1

; s

2

; : : :) 2

S and all n � 1,

y

n

s

= x

n

G

n

(s)

= x

n

s

n

= x

n�1

F

n

(s

n

)

= x

n�1

G

n�1

(H

n

(s))

= y

n�1

H

n

(s)

; (8)

and it remains to show that

8ŝ 2 S 9s

0

2 S : H

n

(s) � ŝ for all s � s

0

: (9)

Let ŝ = (ŝ

0

; ŝ

1

; ŝ

2

; : : :) 2 S. For k 6= n, set s

0

k

:= ŝ

k

. In 
ase k = n, we �rst 
hoose

s

00

n

2 T

n

su
h that

8s

n

� s

00

n

: F

n

(s

n

) � ŝ

n�1

(10)
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(whi
h is possible due to (7)), and then we 
hoose s

0

n

2 T

n

su
h that both s

0

n

� s

00

n

and s

0

n

� ŝ

n

. De�ne s

0

:= (s

0

0

; s

0

1

; s

0

2

; : : :) 2 S. Then, for all s = (s

0

; s

1

; s

2

; : : :) �

s

0

, we have

s

k

� s

k

0

= ŝ

k

for all 0 � k � n� 2;

s

n

� s

0

n

� s

00

n

; when
e F

n

(s

n

) � ŝ

n�1

due to (10);

s

n

� s

0

n

� ŝ

n

;

s

k

� s

0

k

= ŝ

k

for all k � n+ 1:

Consequently,

H

n

(s

0

; s

1

; s

2

; : : :) = (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :)

� (ŝ

0

; : : : ; ŝ

n�2

; ŝ

n�1

; ŝ

n

; ŝ

n+1

; : : :) = ŝ:

This proves (9) and the lemma.

Step 2. Choi
e of the diagonal net.

Let 
 := S � N. This set be
omes dire
ted by the order relation

(s; n) � (s

0

; n

0

) () s � s

0

and n � n

0

:

Consider the net

y : 
! Z

N

; y

(s;n)

:= y

n

s

: (11)

Of 
ourse (and as in the standard diagonalization pro
edure for sequen
es) one


annot expe
t that (y

(s;n)

)

(s;n)2


is a subnet of (y

n

s

)

s2S

. But (also as for standard

diagonalization) one has the following result where we write 


n

0

:= f(s; n) 2 
 :

n > n

0

g for brevity. Clearly, 


n

0

is a 
o�nal subset of 
 for every n

0

2 N.

Lemma 4.5 For all n

0

2 N, (y

(s;n)

)

(s;n)2


n

0

is a subnet of (y

n

0

s

)

s2S

.

Proof of Lemma 4.5. For all s 2 S and all n > n

0

, we have

y

(s;n)

= y

n

s

= y

n�1

H

n

(s)

= y

n�2

H

n�1

(H

n

(s))

= : : : = y

n

0

(H

n

0

+1

ÆH

n

0

+2

Æ:::ÆH

n

)(s)

(
ompare (8)). This equality suggests to de�ne

K

n

0

: 


n

0

! S; (s; n) 7! (H

n

0

+1

ÆH

n

0

+2

Æ : : : ÆH

n

)(s):

Then, obviously,

y

(s;n)

= y

n

0

K

n

0

(s;n)

for all (s; n) 2 


n

0

;

and what remains to verify is

8ŝ 2 S 9 (~s; ~n) 2 


n

0

: K

n

0

(s; n) � ŝ for all (s; n) � (~s; ~n):

Set ~n := n

0

+ 1 and 
onstru
t ~s := (~s

0

; ~s

1

; : : :) su

essively as follows. Let ŝ =

(ŝ

0

; ŝ

1

; : : :) 2 S. We set ~s

k

:= ŝ

k

for k � n

0

. Further, by (7), given ŝ

n

0

2 T

n

0

,

9 s

n

0

+1

2 T

n

0

+1

: F

n

0

+1

(s) � ŝ

n

0

8s � s

n

0

+1

:

Then 
hoose ~s

n

0

+1

both larger than s

n

0

+1

and ŝ

n

0

+1

.

For ~s

n

0

+1

2 T

n

0

+1

, we 
hoose s

n

0

+2

2 T

n

0

+2

su
h that

8s � s

n

0

+2

: F

n

0

+2

(s) � ~s

n

0

+1

(� ŝ

n

0

+1

)

and, hen
e,

F

n

0

+1

(F

n

0

+2

(s)) � ŝ

n

0

:

9



Then 
hoose ~s

n

0

+2

both larger than s

n

0

+2

and ŝ

n

0

+2

.

We pro
eed in this way, i.e. we 
hoose s

n

0

+3

2 T

n

0

+3

su
h that

8s � s

n

0

+3

: F

n

0

+3

(s) � ~s

n

0

+2

(� ŝ

n

0

+2

)

whi
h implies that

F

n

0

+2

(F

n

0

+3

(s)) � ŝ

n

0

+1

and, hen
e,

F

n

0

+1

(F

n

0

+2

(F

n

0

+3

(s))) � ŝ

n

0

:

Then 
hoose ~s

n

0

+3

larger than s

n

0

+3

and ŝ

n

0

+3

.

Thus we have �xed ~s. Let now s = (s

0

; s

1

; : : :) � ~s. Then, due to our 
onstru
-

tion,

s

k

� ŝ

k

for all k � n

0

� 1;

(F

n

0

+1

Æ F

n

0

+2

Æ : : : Æ F

n

)(s

n

) � ŝ

n

0

;

(F

n

0

+2

Æ F

n

0

+3

Æ : : : Æ F

n

)(s

n

) � ŝ

n

0

+1

;

.

.

.

F

n

(s

n

) � ŝ

n�1

;

s

k

� ~s

k

� ŝ

k

for all k � n:

This shows that

K

n

0

(s; n) = (H

n

0

+1

Æ : : : ÆH

n

)(s) � ŝ

sin
e

H

n

(s) = (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :);

(H

n�1

ÆH

n

)(s) = (s

0

; : : : ; s

n�3

; F

n�1

(F

n

(s

n

)); F

n

(s

n

); s

n

; s

n+1

; : : :);

(H

n�2

ÆH

n�1

ÆH

n

)(s) =

(s

0

; : : : ; s

n�4

; F

n�2

(F

n�1

(F

n

(s

n

))); F

n�1

(F

n

(s

n

)); F

n

(s

n

); s

n

; s

n+1

; : : :);

and so on. This �nishes the proof of Lemma 4.5.

Step 3. Let W := 


0

. Then (y

w

)

w2W

is the net we are looking for.

It is obvious from the above 
onstru
tion that (y

w

)

w2W

is a subnet of (x

0

t

0

)

t

0

2T

0

.

So we are left with verifying that lim

w2W

f(y

w

) = 0.

Given " > 0, 
hoose and �x n � 1 su
h that kf�f

n

k < "=2. Then, by hypothesis,

lim

t

n

2T

n

f

n

(x

n

t

n

) = 0:

Sin
e (y

w

)

w2


n

is a subnet of (x

n

t

n

)

t

n

2T

n

, we also have lim

w2


n

f

n

(y

w

) = 0, when
e

the existen
e of an w

n

2 


n

with

jf

n

(y

w

)j < "=2 for all w � w

n

: (12)

Let now w 2W with w � w

n

. Then, evidently, w 2 


n

, and from (12) we 
on
lude

jf(y

w

)j � jf(y

w

)� f

n

(y

w

)j+ jf

n

(y

w

)j � kf � f

n

k

1

+ jf

n

(y

w

)j < ":

Hen
e, lim

w2W

f(y

w

) = 0 whi
h �nishes the proof of Theorem 4.3.

10



5 Limit operators with respe
t to nets

Now we return to band-dominated operators on one of the sequen
e spa
es E. If

y := (y

w

)

w2W

is a net in N , then we 
all the operator A

y

the limit operator of the

operator A 2 L(E) with respe
t to y if

lim

n!1

k(V

�y

w

AV

y

w

�A

y

)P

m

k = lim

n!1

kP

m

(V

�y

w

AV

y

w

�A

y

)k = 0

for every P

m

2 P . Roughly speaking, the properties of limit operators with respe
t

to sequen
es (as derived in [5, 6℄), remain valid without 
hanges also for limit

operators with respe
t to nets. We will illustrate this fa
t by two results for whi
h

the Cantor diagonalization pro
edure for nets is employed.

Theorem 5.1 Let A = aI 2 L(E) be a ri
h multipli
ation operator. Then every

net (x

t

)

t2T

2 N possesses a subnet y := (y

w

)

w2W

su
h that the limit operator A

y

exists.

Proof. Re
all that A

y

is a limit operator of A with respe
t to the net y if and only

if

lim

w2W

k(V

�y

w

AV

y

w

�A

y

)S

k

k = 0 for every k 2 Z

N

where, as before, S

k

refers to the operator of multipli
ation by the fun
tion whi
h

is I at k 2 Z

N

and 0 at all other points.

Set (x

0

t

0

)

t

0

2T

0

:= (x

t

)

t2T

and 
hoose a bije
tion m : N ! Z

N

. Sin
e A is ri
h

we �nd, for every n � 1, a subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2 T

n�1

as well as an

operator B

n

2 L(ImS

m(n)

) su
h that

k(V

�x

n

t

n

AV

x

n

t

n

�B

n

)S

m(n)

k ! 0: (13)

Let B stand for the operator of multipli
ation by the fun
tion

Z

N

! L(X); k 7! B

m

�1

(k)

:

We 
laim that B is the limit operator of A with respe
t to the net y. For, we reify

Cantor's s
heme (= Theorem 4.3) as follows. Set Z := Z

N

. For n � 1 and z 2 Z

N

,

de�ne

f

n

(z) :=

n

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k;

and let

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k:

Then, obviously, kf

n

� fk

1

! 0. Further, by (13), we have lim

t

n

2T

n

f

n

(x

n

t

n

) = 0.

Now we 
on
lude from Theorem 4.3 that there is a subnet (y

w

)

w2W

of (x

t

)

t2T

su
h

that lim

w2W

f(y

w

) = 0. This immediately implies the P-strong 
onvergen
e of the

net (V

�y

w

AV

y

w

)

w2W

to B, when
e B = A

y

.

Of 
ourse, a similar result holds for ri
h band operators. For another appli
ation

of Theorem 4.3, 
onsider the set of all operators A 2 L(E) having the following

property: every net (x

t

)

t2T

2 N possesses a subnet y := (y

w

)

w2W

su
h that the

limit operator A

y

exists. We denote this 
lass by L

nets

E

for a moment. As we have

just remarked, every ri
h band operator belongs to L

nets

E

.

Theorem 5.2 L

nets

E

is norm-
losed.
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Proof. Let (A

n

)

n�1

� L

nets

E

be a sequen
e with norm limit A 2 L(E), and

let (x

0

t

0

)

t

0

2T

0

2 N . By hypothesis, for every n � 1, there exists a subnet x

n

:=

(x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

su
h that the limit operator A

n;x

n

of A

n

with respe
t

to x

n

exists. If n � m, then (x

n

t

n

)

t

n

2T

n

is a subnet of (x

m

t

m

)

t

m

2T

m

, thus, the limit

operator A

m;x

n

also exists, and it 
oin
ides with A

m;x

m

. Sin
e kA

h

k � kAk for

every limit operator A

h

of A, we obtain

kA

n;x

n

�A

m;x

m

k = kA

n;x

n

�A

m;x

n

k = k(A

n

�A

m

)

x

n

k � kA

n

�A

m

k

for all n � m. Hen
e, the sequen
e (A

n;x

n

) 
onverges in the norm, and we let B

denote its norm limit.

Now de�ne for all n � 1 and z 2 Z

N

(with the notations S

k

and m as in the

proof of Theorem 5.1)

f

n

(z) :=

1

X

k=1

2

�k

k(V

�z

A

n

V

z

�A

n;x

n

)S

m(k)

k

and

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k:

Then again kf

n

� fk ! 0 and lim

t

n

2T

n

f

n

(x

n

t

n

) = 0, when
e via Theorem 4.3 the

existen
e of a subnet y = (y

w

)

w2W

of (x

0

t

0

)

t

0

2T

0

su
h that lim

w2W

f(y

w

) = 0. Thus,

B = A

y

.

As a 
onsequen
e we get A

ri
h

E

� L

nets

E

. Now one might ask whether one gets

something new when 
onsidering limit operators with respe
t to nets instead of

sequen
es. The next theorem says that the answer is no in some sense: every limit

operator, whi
h is de�ned with respe
t to a net, 
an also be rea
hed by a sequen
e!

(Nevertheless, limit operators with respe
t to nets are useful as we will point out

in the next se
tions when we will apply them to study the lo
al invertibility of

band-dominated operators at points in M

1

(SO).)

Theorem 5.3 Let A 2 L(E), and let y = (y

w

)

w2W

2 N be a net for whi
h the

limit operator A

y

of A exists. Then there is a sequen
e z = (z

n

)

n2N

2 H for whi
h

the limit operator A

z

of A exists, and A

z

= A

y

. Moreover, z 
an be 
hosen su
h

that there is a 
o�nal subset

~

W of W for whi
h (y

w

)

w2

~

W

is a subnet of z.

Proof. Let y = (y

w

)

w2W

be a net for whi
h the limit operator A

y

of A exists, and

de�ne a fun
tion f : Z

N

! R

+

by

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�A

y

)S

m(k)

k

with the notations being as in the proof of Theorem 5.1. Then lim

w2W

f(y

w

) = 0.

For every n 2 N, 
hoose w

n

2 W su
h that

0 � f(y

w

) < 1=n for all w � w

n

: (14)

Further set W

N

:= fw

n

: n 2 Ng, W

1

:= fw 2 W : w � w

n

for every ng, and

~

W :=W

N

[W

1

.

The set

~

W is 
o�nal in W . Indeed, let w 2 W . Then, either, there is a w

n

with

w

n

� w, or w � w

n

for every n. In the �rst 
ase, 
hoose w

�

:= w

n

, in the se
ond

w

�

:= w. Thus, in any 
ase, w

�

2

~

W and w

�

� w.

Consequently, (y

w

)

w2

~

W

is a subnet of (y

w

)

w2W

, when
e lim

w2

~

W

f(y

w

) = 0, and

this subnet takes the values f(y

w

n

) 2 [0; 1=n) and 0 only. The latter happens if

w 2W

1

, in whi
h 
ase 0 � f(y

w

) < 1=n for all n, hen
e f(y

w

) = 0.

12



Now 
onstru
t a bije
tion z from N onto the set fy

w

: w 2

~

Wg of the values of

(y

w

)

w2

~

W

as follows. If the set fy

w

: w 2 W

1

nW

N

g is in�nite (hen
e, 
ountable),

let z

2k

:= y

w

k

for k � 1, and let zj

2N+1

be any bije
tion from 2N + 1 onto fy

w

:

w 2 W

1

nW

N

g. If fy

w

: w 2 W

1

nW

N

g is �nite and 
onsists of n elements, we

set z

k

:= y

k�n

for k > n, and we let zj

f1;2;:::;ng

be any bije
tion from f1; 2; : : : ; ng

onto fy

w

: w 2W

1

nW

N

g. In any 
ase, we get a sequen
e z whi
h has (y

w

)

w2

~

W

as

its subnet by Lemma 4.2.

It is further evident from the de�nition of z that lim

n!1

f(z

n

) = 0. Hen
e, A

y

is also the limit operator of A with respe
t to the sequen
e z.

6 Lo
al invertibility at points in M

1

(SO)

Now we will provide the proof of Theorem 3.7 and dis
uss some of its 
onsequen
es.

The proof will follow the line of the proof of Theorem 1.6, and we will pay our

attention mainly to the di�eren
es whi
h are involved by the topology of M(SO)

and, hen
e, by the need of using nets instead of sequen
es.

A basi
 step is the spe
i�
ation of Proposition 14 from [5℄ resp. Proposition

2.17 from [6℄ to the present 
ontext. For, we need some more notations. Let

' : R ! [0; 1℄ be a 
ontinuous fun
tion with

'(x)

8

<

:

= 1 for jxj � 1=3

> 0 for jxj < 2=3

= 0 for jxj � 2=3:

(15)

We further suppose that the family f'

2

�

g

�2Z

with '

�

(x) := '(x � �) forms a

partition of unity on R in the sense that

X

�2Z

'

�

(x)

2

= 1 for all x 2 R:

This 
hoi
e of ' 
an always be for
ed as follows: If f : R ! [0; 1℄ is a 
ontinuous

fun
tion satisfying (15) in pla
e of ', then the fun
tion

'(x) :=

f(x)

2

P

�2Z

f(x� �)

2

; x 2 R:

has the desired properties. This de�nition makes sense sin
e the series

P

f(x��)

2

is stri
tly positive and has only �nitely many non-vanishing terms for ea
h �xed x.

Given x = (x

1

; : : : ; x

N

) 2 R

N

, � 2 Z

N

, and R > 0, de�ne '

(N)

(x) :=

'(x

1

) : : : '(x

N

), '

(N)

�

(x) := '

(N)

(x � �) and '

(N)

�;R

(x) := '

�

(x=R). Further, let

 : R ! [0; 1℄ be a 
ontinuous fun
tion whi
h also satis�es (15) in pla
e of ', but

with the 
onstants 1=3 and 2=3 being repla
ed by 3=4 and 4=5, respe
tively. For this

fun
tion, we de�ne  

(N)

�;R

analogously. Clearly, '

(N)

�;R

 

(N)

�;R

= '

(N)

�;R

for all � and R.

The family f'

�;R

g is a partition of unity on R

N

for every �xed R (but observe that

the family f 

�

g is not required to form a partition of unity. With these notations,

the announ
ed analogue of Proposition 14 from [5℄ reads as follows.

Proposition 6.1 Let A 2 A

E

, � 2 M

1

(SO). Suppose there is a 
onstant M > 0

su
h that, for all positive integers R, there is a neighborhood at in�nity U of � su
h

that, for all � 2 U , there are operators B

�;R

and C

�;R

with kB

�;R

k

L(E)

� M ,

kC

�;R

k

L(E)

�M and

B

�;R

A

^

 

�;R

I =

^

 

�;R

AC

�;R

=

^

 

�;R

I:

13



Then the operator A is lo
ally invertible at �, i.e. there are operators B; C 2 A

E

and a neighborhood at in�nity W of � su
h that

BA�̂

W

I = �̂

W

AC = �̂

W

I: (16)

Proof. We follow exa
tly the proof of Proposition 14 from [5℄ where we repla
e the


ondition j�j � �(R) by � 2 U . What results is the existen
e of a positive integer

R su
h that

(I + T

R

)

�1

B

R

A = I � (I + T

R

)

�1

X

�2Z

N

nU

'̂

�;R

I:

The assertion follows on
e we have shown that there is a neighborhood at in�nity

W of � su
h that

P

�2Z

N

nU

'̂

�;R

�

W

= 0. This will be done in Proposition 6.4

below.

To �ll the gap in the pre
eding proof requires more pre
ise knowledge on subsets

of M(SO). The following de�nition as well as Theorem 6.3 and its proof are taken

from [4℄.

De�nition 6.2 (a) A subset V � Z

N

is 
alled growing if, for every bounded set

D � Z

N

, there is an x 2 Z

N

su
h that x+D � V .

(b) An unbounded subset V

0

of a growing set V is 
alled a 
enter if, for every bounded

set D � Z

N

, there is a bounded set M su
h that (V

0

nM) +D � V .

Theorem 6.3 Let W be an unbounded subset of Z

N

and � 2W \M

1

(SO) (where

the bar refers to the 
losure with respe
t to the Gelfand topology on M(SO)), and

let U � M(SO) be a neighborhood of �. Then V := U \ Z

N

is a growing set, and

there is a neighborhood U

0

� U of � su
h that V

0

:= U

0

\Z

N

is 
ontained in W and

a 
enter of V .

Proof. By Uryson's lemma, there is a 
ontinuous fun
tion f : M(SO) ! [0; 1℄

whi
h is 0 at � and 1 onM(SO)nU . Sin
e f is 
ontinuous onM(SO), the restri
tion

of f onto Z

N

is a slowly os
illating fun
tion. Set

U

0

0

:= fx 2M(SO) : f(x) < 1=2g and U

0

:= U

0

0

\W;

and de�ne V := U \Z

N

and V

0

:= U

0

\Z

N

. Then V

0

�W \V . Moreover, sin
e U

0

0

is a neighborhood of �, the set V

0

is unbounded. We 
laim that, for every bounded

set M , there is a bounded set D su
h that (V

0

nD) +M � V . The 
laim implies

that V is growing and that V

0

is a 
enter of V .

Assume the 
laim is wrong. Then there exists a bounded set M su
h that

(V

0

nD) +M 6� V , hen
e, V

1

:= (V

0

+M) n V is an unbounded set. So it makes

sense to 
onsider the limes superior of jf(x)j when x 2 V

1

tends to in�nity. Sin
e

V

1

� V

0

+M and f is slowly os
illating, we get

lim sup

x2V

1

;x!1

jf(x)j � lim sup

y2V

0

;y!1

max

m2M

jf(y +m)j

� lim sup

y2V

0

;y!1

max

m2M

jf(y +m)� f(y)j+ lim sup

y2V

0

;y!1

jf(y)j � 0 + 1=2 = 1=2:

This is impossible sin
e V

1

is in the 
omplement of U and, hen
e, f is 1 on V

1

.

Proposition 6.4 Let R a positive integer, � 2 M

1

(SO) and U � M(SO) a

neighborhood of �. Then there exists a neighborhood at in�nity

~

U of � su
h that

P

�2Z

N

nU

'̂

�;R

�

~

U

= 0.
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Proof. We apply Theorem 6.3 (with the W in that theorem being Z

N

) to obtain:

V := U \ Z

N

is a growing set, and there is a neighborhood U

0

� U of � su
h that

V

0

:= U

0

\ Z

N

is a 
enter of V .

The support of every fun
tion '̂

�;R

is 
ontained in a smallest ball with 
enter

�R and with a radius r whi
h depends on R but not on �. From V , we remove all

points z for whi
h the ball with 
enter z and radius r is not 
ompletely 
ontained

in V . What we get is a set

~

V , and we set

~

U := V

0

\

~

V .

We 
laim that

~

V is a growing set and that

~

U is one of its 
enters. Let D � Z

N

be bounded, and let B be the ball with 
enter 0 and radius r. Then D + B is a

bounded set, and sin
e V

0

is a 
enter of V , there is a bounded set M su
h that

(V

0

nM) + (D +B) � V:

Then, of 
ourse, (V

0

nM) +D �

~

V , when
e

(

~

U nM) +D �

~

V : (17)

Analogously, there is a bounded set N su
h that (V

0

nN)+B � V . Thus, all points

in V

0

nN belong to

~

V and, 
onsequently, also to

~

U . This shows that

~

U and V

0

di�er

by a bounded set only:

V

0

nN �

~

U � V

0

: (18)

A �rst 
onsequen
e of (18) is that

~

U is an unbounded set. Together with (17)

this implies that

~

V is a growing set, and that

~

U is a 
enter of

~

V . As another


onsequen
e of (18) we observe that, sin
e V

0

is a neighborhood at in�nity of �,

also

~

U is a neighborhood at in�nity of �. This �nishes the proof sin
e the support

of every fun
tion '̂

�;R

with � 2 Z

N

nU is 
ontained in the 
omplement of

~

V , hen
e

in the 
omplement of

~

U .

Proof of Theorem 3.7. We will only prove that the uniform invertibility of the

operators in �

�

(A) implies the lo
al invertibility of A at �. Let A 2 A

ri
h

E

be an

operator with

M

A

:= sup fkA

�1

h

k : A

h

2 �

�

(A)g <1;

but suppose A is not lo
ally invertible at �. Then, by Proposition 6.1, there is a

net (y

t

)

t2T

with values in Z

N

whi
h 
onverges to � in the topology of M(SO) and

whi
h has the property that

BA

^

 

y

t

;R

I 6=

^

 

y

t

;R

I (19)

for all t 2 T and all B with kBk � M

A

. Sin
e A belongs to A

ri
h

E

� L

nets

E

, the

net (y

t

)

t2T

possesses a subnet x = (x

s

)

s2S

su
h that the limit operator A

x

exists.

Clearly, the net (x

s

)

s2S

still 
onverges to �, and

BA

^

 

x

s

;R

I 6=

^

 

x

s

;R

I (20)

for all s 2 S and all B with kBk �M

A

. From Theorem 5.3 we 
on
lude: there is a


o�nal subset

~

S of S and a sequen
e (z

n

)

n2N

su
h that the limit operator A

z

exists

and 
oin
ides with A

x

, and su
h that (x

s

)

s2

~

S

is a subnet of (z

n

). Sin
e (x

s

)

s2

~

S


onverges to �, and sin
e the nets (x

s

)

s2

~

S

and (z

n

) take the same values, it is 
lear

that

� 2 
los fz

n

: n 2 Ng; when
e A

y

= A

z

2 �

�

(A):

By hypothesis, A

y

is invertible, and kA

�1

y

k � M

A

. This yields a 
ontradi
tion in

the very same way as in the proof of Theorem 1.4 by using Proposition 15 from [5℄.

Our next goal is to point out the 
onne
tions between lo
al invertibility at � and
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lo
alization by means of the lo
al prin
iple. For the reader's 
onvenien
e, we state

this prin
iple here. Let B be a unital Bana
h algebra. By a 
entral subalgebra C

of B we mean a 
losed subalgebra of the 
enter of B whi
h 
ontains the identity

element. Thus, every element of C 
ommutes with every element from B, and C is

a 
ommutative Bana
h algebra with maximal ideal spa
e M(B). To ea
h maximal

ideal x of C, we asso
iate the smallest 
losed two-sided ideal I

x

of B whi
h 
ontains

x, and we let �

x

refer to the 
anoni
al homomorphism from B onto the quotient

algebra B=I

x

. Noti
e that, in 
ontrast to the 
ommutative setting, the quotient

algebras B=I

x


an di�er from ea
h other in dependen
e on x 2 M(C). Moreover,

it may happen that I

x

= B for some points x. In this 
ase we de�ne that �

x

(a) is

invertible in B=I

x

and that k�

x

(a)k = 0 for ea
h a 2 B.

Theorem 6.5 (Allan) Let C be a 
entral subalgebra of the unital Bana
h algebra

B whi
h 
ontains the identity element. Then an element a 2 B is invertible if and

only if the 
osets �

x

(a) are invertible in B=I

x

for every x 2M(C).

We have seen in Proposition 2.1 that the algebra C of all 
osets aI +K(E;P) with

a 2 SO lies in the 
enter of the quotient algebra A

E

=K(E;P). From the isomorphy

C

�

=

(SO � I +K(E;P))=K(E;P)

�

=

SO � I=(SO � I \K(E;P))

�

=

SO=


0

we 
on
lude that the maximal ideal spa
e of the algebra C is homeomorphi
 to the

�ber M

1

(SO). Given � 2 M

1

(SO), we denote the lo
al algebra of A

E

=K(E;P)

whi
h is asso
iated with � byA

E;�

, and we write �

�

for the 
anoni
al homomorphism

from A

E

onto A

E;�

. Applying Theorem 6.5 to the 
urrent situation yields:

Theorem 6.6 An operator A 2 A

E

is P-Fredholm if and only if the 
osets �

�

(A)

are invertible for all � 2M

1

(SO).

The following theorem relates the invertibility of the 
oset �

�

(A) with the lo
al

invertibility of A at � and 
an be proved in the very same way as Proposition 23 in

[5℄.

Theorem 6.7 Let A 2 A

E

and � 2 M

1

(SO). The 
oset �

�

(A) is invertible in

A

E;�

if and only if A is lo
ally invertible at �.

Together with Allan's lo
al prin
iple and with Theorem 3.7, this results implies a

further and essential re�nement of Theorem 1.4 and Corollary 1.7.

Corollary 6.8 An operator A 2 A

ri
h

E

is P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for every � 2M

1

(SO):

7 Fredholmness of band-dominated operators with

slowly os
illating 
oeÆ
ients

We will now spe
ify Corollary 6.8 to band-dominated operators with slowly os
illat-

ing 
oeÆ
ients. Let SO

ri
h

L(X)

refer to the 
lass of all slowly os
illating fun
tions with

values in L(X) for whi
h the asso
iated multipli
ation operator is ri
h. Further

we let A

E

(SO

L(X)

) (resp. A

E

(SO

ri
h

L(X)

)) stand for the smallest 
losed subalgebra

of A

E

whi
h 
ontains all band operators

P

j�j�k

a

�

V

�

with a

�

2 SO

L(X)

(resp.

a

�

2 SO

ri
h

L(X)

). For the limit operators of operators with slowly os
illating 
oeÆ-


ients we have the following.
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Proposition 7.1 (a) If A 2 A

E

(SO

L(X)

), then every limit operator of A belongs

to A

E

(C

L(X)

).

(b) For A 2 A

E

(SO

ri
h

L(X)

), every lo
al operator spe
trum �

�

(A) with � 2 M

1

(SO)

is a singleton.

Proof. (a) Limit operators of shift operators are shift operators and, hen
e, in

A

E

(C

L(X)

). By Proposition 2.2, the same is true for operators of multipli
ation by

slowly os
illating fun
tions.

(b) If a 2 SO

ri
h

L(X)

, then �

�

(aI) is not empty sin
e A

ri
h

E

� L

nets

E

(see Se
tion 5),

and this spe
trum is a singleton by Proposition 3.5 (b). With Proposition 1 from

[5℄ we 
on
lude �rst that every lo
al spe
trum of a band operator with 
oeÆ
ients

in SO

ri
h

L(X)

is a singleton, too, and get then the assertion also in the general 
ase.

Now we 
an formulate and prove the P-Fredholm 
riterion for operators with ri
h

slowly os
illating 
oeÆ
ients. It turns out that the uniform boundedness 
ondition

is redundant.

Theorem 7.2 Operators in A

E

(SO

ri
h

L(X)

) are P-Fredholm if and only if all of their

limit operators are invertible.

Proof. Sin
e �

�

(A) is a singleton, the assertion follows immediately from Corollary

6.8.

8 An alternative proof of Theorem 7.2

This se
tion is devoted to an alternative proof of the pre
eding theorem whi
h works

under more restri
tive assumptions only, but whi
h also has its own merits, and

whi
h sheds new light upon the properties of band-dominated operators with slowly

os
illating 
oeÆ
ients. We let H be a Hilbert spa
e and E := l

2

(Z

N

; H). Further,

we again write SO

L(H)

and SO

ri
h

L(H)

for the algebra of all slowly os
illating fun
tions

Z

N

! L(H) and for the algebra of all slowly os
illating fun
tions Z

N

! L(H)

for whi
h the asso
iated multipli
ation operator is ri
h, respe
tively, and we let

A

E

(SO

L(H)

) and A

E

(SO

ri
h

L(H)

) stand for the 
losures in L(E) of the algebra of the

band operators with 
oeÆ
ients in SO

L(H)

and in SO

ri
h

L(H)

.

Generating fun
tions. The alternative proof is based on the notion of the gen-

erating fun
tion of a band-dominated operator. This notion is borrowed from the

pseudodi�erential operator 
al
ulus (where the generating fun
tuion is usually re-

ferred to as the symbol of the operator) and adapted for our purposes.

We start with de�ning the generating fun
tion of a band operator. For

A =

X

j�j�M

a

�

V

�

with a

�

2 SO

L(H)

; (21)

let the generating fun
tion of A be

gen

A

: Z

N

� T

N

! L(H); (x; t) 7!

X

j�j�M

a

�

(x)t

�

(22)

where t

�

:= t

�

1

1

: : : t

�

n

n

. There is a one-to-one 
orresponden
e between band opera-

tors and their generating fun
tions.

We denote by C

b

(Z

N

� T

N

; L(H)) the set of all 
ontinuous fun
tions on Z

N

�

T

N

with values in L(H). Provided with pointwisely de�ned operations and the

17



supremum norm, this set be
omes a C

�

-algebra, and the set 


0

(Z

N

�T

N

; L(H)) of

all fun
tions a 2 C

b

(Z

N

� T

N

; L(H)) with

lim

x!1

sup

t2T

N

ka(x; t)k

L(H)

= 0

is a 
losed ideal of C

b

(Z

N

� T

N

; L(H)). The quotient algebra C

b

=


0

will be abbre-

viated to

b

C

b

, and the 
oset whi
h 
ontains a 2 C

b

(Z

N

� T

N

; L(H)) to ba. Noti
e

that

kbak

0

:= lim sup

x!1

sup

t2T

N

ka(x; t)k

L(H)

is just the 
anoni
al quotient norm of the 
oset ba in the quotient algebra

b

C

b

.

Evidently, if A is a band operator of the form (21), then its generating fun
tion

belongs to C

b

(Z

N

� T

N

; L(H)).

Proposition 8.1 Let A be as in (21). Then k[gen

A

k

0

� kAk.

Proof. Choose a sequen
e (x

n

) � Z

N

tending to in�nity, a sequen
e (t

n

) 2 T

N

,

and a sequen
e (v

n

) of unit ve
tors in H , su
h that

k[gen

A

k

0

= lim

n!1

kgen

A

(x

n

; t

n

)v

n

k

H

:

Sin
e T

N

is 
ompa
t, we 
an moreover assume that (t

n

) is a 
onvergent sequen
e

with limit t

0

2 T

N

. The assertion follows on
e we have shown that, given " > 0,

there is an n

0

su
h that

kgen

A

(x

n

; t

n

)v

n

k

H

� kAk+ " (23)

for all n � n

0

.

Given ve
tors v 2 H and u = (u

k

)

k2Z

N 2 l

2

, let v 
 u denote the sequen
e

(u

k

v)

k2Z

N in E = l

2

(Z

N

; H). Let further A

n;n

, A

n

and B

n

stand for the band

operators with generating fun
tions

(x; t) 7! gen

A

(x

n

; t

n

); (x; t) 7! gen

A

(x+ x

n

; t); (x; t) 7! gen

A

(x

n

; t);

respe
tively. Then we have, for every unit ve
tor u 2 l

2

,

kgen

A

(x

n

; t

n

)v

n

k

H

= kA

n;n

(v

n


 u)k

E

� k(A

n;n

�B

n

)(v

n


 u)k

E

(24)

+ k(B

n

�A

n

)(v

n


 u)k

E

+ kA

n

(v

n


 u)k

E

:

Sin
e A

n

= V

�x

n

AV

x

n

, we get

kA

n

(v

n


 u)k

E

= kV

�x

n

AV

x

n

(v

n


 u)k

E

� kAk

for the last term in (24). The middle term on the right hand side of (24) is not

greater than kB

n

�A

n

k, whi
h goes to zero as n!1 sin
e the 
oeÆ
ients of A are

slowly os
illating. Thus, this middle be
omes less than "=2 uniformly with respe
t

to u and v

n

if only n is large enough.

To estimate the �rst term, 
hoose Æ > 0 su
h that

sup

x2Z

N

kgen

A

(x; t) � gen

A

(x; t

0

)k � "=4 for all jt� t

0

j < Æ;

and 
hoose the unit ve
tor u = (u

k

)

k2Z

N in l

2

su
h that the u

k

are the Fourier


oeÆ
ients of a 
ontinuous fun
tion û on T

N

with support in ft 2 T

N

: jt�t

0

j < Æg.

18



Sin
e A

n;n

�B

n

is the operator of 
onvolution by the fun
tion gen

A

n;n

� gen

B

n

, we

get

k(A

n;n

�B

n

)(v

n


 u)k

2

l

2

(Z

N

;H)

= k(gen

A

n;n

� gen

B

n

)(ûv

n

)k

2

L

2

(T

N

;H)

=

Z

T

N

k(gen

A

(x

n

; t

n

)� gen

B

(x

n

; t))û(t)v

n

k

2

H

dt

� sup

jt�t

0

j<Æ

kgen

A

(x

n

; t

n

)� gen

A

(x

n

; t)k

2

L(H)

kv

n


 uk

2

:

Due to the 
hoi
e of Æ, this term be
omes less than "=2 if n be
omes large.

This proposition allows us to asso
iate with every operator A in A

E

(SO

L(H)

) a

uniquely determined 
oset in

b

C

b

whi
h we denote by �(A).

In what follows, we will make use of the notion of the main diagonal of a band-

dominated operator. If A is the band operator

P

j�j�k

a

�

V

�

, then its main diagonal

is, by de�nition, the fun
tion D(A) := a

0

. Sin
e

kD(A)k

1

= sup

k

ka

0

(k)k = sup

k

kS

k

AS

k

k � kAk

(where the S

k

are as in the introdu
tion), we 
an extend the mapping D by 
onti-

nuity onto the set of all band-dominated operators. For a band-dominated operator

A, we 
all D(A) its main diagonal and D(AV

��

) its �th diagonal.

Proposition 8.2 � is a

�

-homomorphism from A

E

(SO

ri
h

L(H)

) into

b

C

b

with kernel

K(E;P).

Proof. It is elementary to 
he
k that � a
ts as a

�

-homomorphism on the algebra of

all band operators with slowly os
illating 
oeÆ
ients. Sin
e this algebra is dense in

A

E

(SO

L(H)

), and sin
e � is 
ontinuous on this algebra by the pre
eding proposition,

this proves the �rst assertion. It is further evident that the ideal K(E;P) lies in

the kernel of �. Let, �nally, A be an operator in A

E

(SO

L(H)

) with �(A) = 0. We

have to show that A lies in K(E;P).

Let (A

n

) be a sequen
e of band operators in A

E

(SO

ri
h

L(H)

) whi
h 
onverges to A.

Then, trivially, k�(A

n

)k ! 0. For � = (�

1

; : : : ; �

N

) 2 Z

N

, 
onsider the fun
tions

a

(n)

�

: Z

N

! L(H) whi
h take at x 2 Z

N

the value

1

(2�)

N

Z

2�

0

: : :

Z

2�

0

gen

A

n

(x; (e

is

1

; : : : ; e

is

N

)) e

�i�

1

s

1

: : : e

�i�

N

s

N

ds

1

: : : ds

N

: (25)

If the band operator A

n

is of the form

P

b

(n)

�

V

�

, then its �th diagonal b

(n)

�

just


oin
ides with the fun
tion a

(n)

�

given by (25). From (25) we immediately 
on
lude

that

ka

(n)

�

(x)k

L(H)

� sup

t2T

N

kgen

A

n

(x; t)k

1

when
e, in parti
ular,

lim sup

x!1

ka

(n)

�

(x)k � lim sup

x!1

sup

t2T

N

kgen

A

n

(x; t)k

1

= k�(A

n

)k ! 0

as n!1. Thus, if a

�

denotes the �th diagonal of A, then

lim sup

x!1

ka

�

(x)k � sup

x2Z

N

ka

�

(x) � a

(n)

�

(x)k+ lim sup

x!1

ka

(n)

�

(x)k

� kA�A

n

k+ k�(A

n

)k: (26)
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This shows that every diagonal of A lies in 


0

(Z

N

; L(H)), whi
h on its hand implies

that all limit operators of A are 0: Indeed, let h be a sequen
e for whi
h the limit

operator A

h

exists. Then the operators S

i

V

�h(n)

AV

h(n)

S

j


onverge in the norm to

S

i

A

h

S

j

for every pair of indi
es i; j 2 Z

N

. Sin
e

lim

n!1

kS

i

V

�h(n)

AV

h(n)

S

j

k = lim

n!1

ka

i�j

(i+ h(n))k = 0

due to (26), this shows that S

i

A

h

S

j

= 0 for all i and j, when
e A

h

= 0. But a ri
h

band-dominated operator having 0 as its only limit operator lies in K(E;P) due to

Theorems 2.24 and 2.24 in [6℄.

Now we 
an present an alternative proof of Theorem 7.2.

Theorem 8.3 The following assertions are equivalent for A 2 A

E

(SO

ri
h

L(H)

):

(a) A is P-Fredholm.

(b) �(A) is invertible in

b

C

b

.

(
) All limit operators of A are invertible.

Proof. The equivalen
e of (a) and (b) is quite obvious: If the 
oset A+K(E;P) is

invertible in L(E;P)=K(E;P), then it is also invertible in A

E

(SO

ri
h

L(H)

)=K(E;P)

(inverse 
losedness of C

�

-algebras). Hen
e, there are operators B 2 A

E

(SO

ri
h

L(H)

)

and K

1

; K

2

2 K(E;P) su
h that AB = I + K

1

and BA = I + K

2

. Applying

the homomorphism � to these equalities yields invertibility of �(A). If, 
onversely,

�(A) is invertible in

b

C

b

, then it is also invertible in the image of A

E

(SO

ri
h

L(H)

) under

the mapping � (again by the inverse 
losedness of C

�

-algebras). Thus, one 
an �nd

a B 2 A

E

(SO

ri
h

L(H)

) with �(A)�(B) = �(B)�(A) = 1, showing that AB � I and

BA� I belong to ker� = K(E;P).

Sin
e (a) obviously implies (
) (see also the �rst lines of the proof of Theorem 1

in [5℄), we are left with the impli
ation (
) ) (b). Assume that all limit operators

of A 2 A

E

(SO

ri
h

L(H)

) are invertible, but that �(A) is not invertible in

b

C

b

. If A is not

a band operator, then we let gen

A

be any fun
tion in the 
oset �(A).

We de�ne the lower norm of an operator C 2 L(H) by �(C) := inf

x6=0

kCxk=kxk.

It is well known that C is invertible if both �(C) and �(C

�

) are positive and that,


onversely, invertibility of C implies �(C) = �(C

�

) = 1=kA

�1

k. Thus, if both

lim

R!1

inf

jxj�R; t2T

N

�(gen

A

(x; t)) > 0 (27)

and

lim

R!1

inf

jxj�R; t2T

N

�(gen

A

(x; t)

�

) > 0; (28)

then the fun
tion gen

A

is invertible in C

b

modulo fun
tions in 


0

. Sin
e �(A) is

non-invertible by assumption, one of the 
onditions (27) and (28) must be violated,

say the �rst one for de�niteness. Then there exist a sequen
e x = (x

m

)

m�1

� Z

N

whi
h tends to in�nity, a sequen
e (t

m

)

m�1

� T

N

whi
h we 
an also suppose to be


onvergent to a point t

0

2 T

N

, as well as a sequen
e (v

m

)

m�1

of unit ve
tors in H

su
h that

kgen

A

(x

m

; t

m

)v

m

k ! 0 as m!1:

We will further suppose without loss that the limit operator A

x

of A with respe
t

to the sequen
e x exists.

Let " < 1=(4 kA

�1

x

k), and let A

0

be a band operator with 
oeÆ
ients in SO

ri
h

L(H)

su
h that kA�A

0

k < ". Then k�(A)� �(A

0

)k

0

< ", whi
h implies that

lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

k
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� lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

� gen

A

(x

m

; t

m

)v

m

k+ lim

m!1

kgen

A

(x

m

; t

m

)v

m

k

� lim sup

m!1

sup

t2T

N

kgen

A

0

(x

m

; t)� gen

A

(x

m

; t)k

= k�(A)� �(A

0

)k

0

< ":

Hen
e, kgen

A

0

(x

m

; t

m

)v

m

k < " for all suÆ
iently large m. We further suppose

without loss that the limit operator of A

0

with respe
t to the sequen
e x exists

(otherwise Let " < 1=(4 kA

�1

x

k), and let A

0

be a band operator with 
oeÆ
ients in

SO

ri
h

L(H)

su
h that kA�A

0

k < ". Then k�(A)� �(A

0

)k

0

< ", whi
h implies that

lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

k

� lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

� gen

A

(x

m

; t

m

)v

m

k+ lim

m!1

kgen

A

(x

m

; t

m

)v

m

k

� lim sup

m!1

sup

t2T

N

kgen

A

0

(x

m

; t)� gen

A

(x

m

; t)k

= k�(A)� �(A

0

)k

0

< ":

Hen
e, kgen

A

0

(x

m

; t

m

)v

m

k < " for all suÆ
iently large m. We further suppose

without loss that the limit operator of A

0

with respe
t to the sequen
e x exists

(otherwise we pass to a suitable subsequen
e of x). As in the proof of Proposition

8.1, we 
an �nd a unit ve
tor u 2 l

2

su
h that

kV

�x

m

A

0

V

x

m

(v

m


 u)k < 2" for all suÆ
iently large m

and, a

ording to the de�nition of limit operators, we further have

k(V

�x

m

A

0

V

x

m

�A

0

x

)(v 
 u)k ! 0

uniformly with respe
t to the unit ve
tors v. Hen
e, kA

0

x

(v

m


 u)k < 3" for all

suÆ
iently large m. Sin
e kv

m


 uk = 1, we 
on
lude that

either A

0

x

is not invertible or k(A

0

x

)

�1

k > 1=(3"): (29)

On the other hand,

kA

x

�A

0

x

k � kA�A

0

k < " < 1=(4 kA

�1

x

k):

Thus, by a Neumann series argument, A

0

x

is invertible, and

k(A

0

x

)

�1

k �

k(A

x

)

�1

k

1� k(A

x

)

�1

k kA

x

�A

0

x

k

�

k(A

x

)

�1

k

1� " k(A

x

)

�1

k

:

Together with (29), this yields

1

3"

<

k(A

x

)

�1

k

1� " k(A

x

)

�1

k

or, equivalently, " > 1=(4 k(A

x

)

�1

k. The obtained estimate 
ontradi
ts the 
hoi
e

of ".

In a similar way, the following re�nement of the lo
al Fredholm 
riterion (Theorem

1.6 and its 
orollary) 
an be derived.

Theorem 8.4 The following assertions are equivalent for A 2 A

E

(SO

ri
h

L(H)

):

(a) A is lo
ally invertible at � 2 S

N�1

.

(b) The lo
al 
oset �

�

(A) is invertible.

(
) All operators in lo
al operator spe
trum �

�

(A) of A are invertible.
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