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Abstrat

A band-dominated operators on an l

p

-spae of vetor-valued funtions is

an (in a generalized sense) Fredholm operator if and only if all of its limit

operators are invertible and if their inverses are uniformly bounded (see [6℄).

We show that the limit operators approah is also ompatible with the loal

Fredholmness of band-dominated operators with respet to loalization over

the maximal ideal spae of the algebra of the slowly osillating salar-valued

funtions. A orollary of this result is that the uniform boundedness ondition

is redundant for band-dominated operators with slowly osillating operator-

valued oeÆients.

1 Introdution

LetX be a omplex Banah spae. For p 2 (1; 1) andN a positive integer, onsider

the Banah spaes l

p

(Z

N

; X) and l

1

(Z

N

; X) of all funtions f whih are de�ned

on Z

N

and take values in X suh that

kfk

p

p

:=

X

x2Z

N

kf(x)k

p

X

<1 and kfk

1

:= sup

x2Z

N

kf(x)k

X

<1;

respetively. Further, 

0

(Z

N

; X) refers to the losed subspae of l

1

(Z

N

; X) on-

sisting of all funtions f with

lim

x!1

kf(x)k

X

= 0:

In ase X = C , we will simply write l

p

(Z

N

) and 

0

(Z

N

), and we let E stand for one

of the spaes l

p

(Z

N

; X) with p 2 (1; 1).

Every funtion a 2 l

1

L(X)

:= l

1

(Z

N

; L(X)) gives rise to a multipliation operator

on E on de�ning

(af)(x) = a(x)f(x); x 2 Z

N

:

We denote this operator by aI . Evidently, aI 2 L(E) and kaIk

L(E)

= kak

1

.

Finally, for � 2 Z

N

, let V

�

refer to the shift operator

(V

�

f)(x) = f(x� �); x 2 Z

N

;

whih also belongs to L(E) and has norm 1.

�
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De�nition 1.1 A band operator is a �nite sum of the form

P

�

a

�

V

�

where � 2

Z

N

and a

�

2 l

1

(Z

N

; L(X)). A band-dominated operator is the uniform limit of a

sequene of band operators.

The band-dominated operators on E form a losed subalgebra of L(E) whih we

denote by A

E

. (For this and the following fats we refer to the papers [5, 6℄.)

Given m 2 Z

N

, let s

m

stand for the funtion on Z

N

whih is I 2 L(X) at m

and 0 at all other points. The operator of multipliation by s

m

will be denoted by

S

m

. For n � 0, de�ne P

n

:=

P

jmj�n

S

m

and Q

n

:= I � P

n

, and let P refer to the

family (P

n

).

De�nition 1.2 An operator K 2 L(E) is P-ompat if

kKQ

n

k ! 0 and kQ

n

Kk ! 0 as n!1:

By K(E;P) we denote the set of all P-ompat operators on E, and by L(E;P) the

set of all operators A 2 L(E) for whih both AK and KA are P-ompat whenever

K is P-ompat.

It turns out that L(E;P) is a losed subalgebra of L(E), K(E;P) is a losed two-

sided ideal of L(E;P), and K(E;P) � A

E

� L(E;P). Operators A 2 L(E;P) for

whih the oset A+K(E;P) is invertible in the quotient algebra L(E;P)=K(E;P)

are alled P-Fredholm. If X is a �nite-dimensional spae, then L(E;P) = L(E),

K(E;P) is the ideal of the ompat operators on E, and the P-Fredholm operators

are just the Fredholm operators in the ommon sense. Let further stand H for the

set of all sequenes h = (h(m))

1

m=0

� Z

N

whih tend to in�nity.

De�nition 1.3 Let A 2 L(E;P) and h 2 H. The operator A

h

2 L(E) is alled

limit operator of A with respet to h if

lim

n!1

k(V

�h(n)

AV

h(n)

�A

h

)P

m

k = lim

n!1

kP

m

(V

�h(n)

AV

h(n)

�A

h

)k = 0 (1)

for every P

m

2 P. The set �

op

(A) of all limit operators of A is alled the operator

spetrum of A.

We let �nally refer A

rih

E

to the set of all operators A 2 A

E

enjoying the following

property: every sequene h tending to in�nity possesses a subsequene g for whih

the limit operator A

g

exists. Then the main result of [6℄ an be stated as follows:

Theorem 1.4 An operator A 2 A

rih

E

is P-Fredholm if and only if all of its limit

operators are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1: (2)

It is the main goal of this paper to disuss and weaken the uniform invertibility on-

dition (2). To reah this goal, we examine several loal theories of P-Fredholmness.

To desribe some typial ideas and results we have to introdue some more nota-

tions. Let S

N�1

denote the unit sphere f� 2 R

N

: j�j

2

= 1g where j�j

2

stands for

the Euklidean norm of �. Given a `radius' R > 0, a `diretion' � 2 S

N�1

, and a

neighborhood U � S

N�1

of �, de�ne

W

R;U

:= fz 2 Z

N

: jzj > R and z=jzj 2 Ug: (3)

We will all W

R;U

a neighborhood at in�nity of �. If h is a sequene whih tends

to in�nity, then we say that h tends into the diretion of � 2 S

N�1

if, for every

neighborhood at in�nity W

R;U

of �, there is an m

0

suh that

h(m) 2 W

R;U

for all m � m

0

:
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De�nition 1.5 Let � 2 S

N�1

and A 2 L(E).

(a) The loal operator spetrum �

�

(A) of A at � is the set of all limit operators A

h

of A with respet to sequenes h tending into the diretion of �.

(b) The operator A is loally invertible at � if there are operators B; C 2 L(E) and

a neighborhood at in�nity W of � suh that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the harateristi funtion of W .

The following theorem and its orollary (whih is also partially based on Theorem

6.5 below) have been shown in [5, 6℄.

Theorem 1.6 Let A 2 A

rih

E

and � 2 S

N�1

. Then the operator A is loally invert-

ible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

Corollary 1.7 An operator A 2 A

rih

E

is P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for all � 2 S

N�1

:

Observe that this is a true generalization of Theorem 1.4 sine it is not required in

the orollary that the suprema are uniformly bounded with respet to �.

In the present paper we will show that an analogous result holds if the sphere

S

N�1

is replaed by the �ber M

1

(SO) at in�nity of the maximal ideal spae of

the algebra of the slowly osillating funtions on Z

N

. This �ber is muh larger

than S

N�1

, hene, the resulting loalization is muh �ner, and this loalization will

provide a further essential improvement of Theorem 1.4. It should be also noted

that the loalization over M

1

(SO) is, in some sense, the �nest possible.

It is due to the topologial properties of the maximal ideal spae of the algebra

of the slowly osillating funtions that we have to replae sequenes tending to

in�nity by general nets tending to in�nity. This requires some additional work

whih is done in the Setions 2 { 5. In partiular, we will derive a version of

Cantor's diagonalization proedure for nets in plae of sequenes. The Setions

6 and 7 are devoted to the proof of the loal Fredholm riterion and of one of

its onsequenes, whih states that a band-dominated operator with rih slowly

osillating oeÆients is P-Fredholm if and only if all of its limit operators are

invertible (Theorem 7.2). Thus, for these operators, the uniform invertibility of

the inverses of the limit operators is not needed to guarantee their P-Fredholmness,

whih is a seond main result of the present paper. In the ourse of the proof we will

also see that the method of limit operators is ompatible with another loal theory,

the so-alled loal priniple by Allan (Theorems 6.5 and 6.7 below). The �nal setion

ontains an alternative proof of Theorem 7.2 whih borrows some arguments from

the symbol alulus for pseudodi�erential operators, and whih sheds new light upon

the properties of band-dominated operators with slowly osillating oeÆients.

2 Slowly osillating funtions

A funtion a 2 l

1

L(X)

is slowly osillating if

lim

x!1

(a(x + k)� a(x)) = 0 for all k 2 Z

n

: (4)

We denote the lass of all slowly osillating funtions in l

1

L(X)

by SO

L(X)

and write

SO instead of SO

L(C)

for brevity. Trivial examples of slowly osillating funtions
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are provided by the ontinuous funtions on Z

N

whih possess a limit at in�nity,

whereas Z! C : x 7! sin

p

jxj is an example of a slowly osillating funtion whih

does not have this property.

It follows essentially from the de�nition of the lass SO that a funtion a is slowly

osillating if and only if the operator V

�k

aV

k

� aI is P-ompat for every k 2 Z

N

or, equivalently, if and only if the ommutator aV

k

� V

k

aI = V

k

(V

�k

aV

k

� aI) is

P-ompat for every k. Sine K(E;P) is a losed ideal of L(E;P), we onlude

that SO

L(X)

is a losed subalgebra of l

1

L(X)

. If, moreover, the slowly osillating

funtion a is salar-valued, then the operator of multipliation by a also ommutes

with every multipliation operator. Summarizing we get:

Proposition 2.1 If f 2 SO and A 2 A

E

, then the operator fA�AfI is P-ompat

on E. If, onversely, f 2 l

1

L(X)

is a funtion for whih fA�AfI is P-ompat for

every A 2 A

E

, then f 2 SO.

Thus, SO (more preisely, the image of SO in L(E;P)=K(E;P) under the anoni-

al embedding) is the natural andidate for loalizing the algebra A

E

=K(E;P) by

means of the loal priniple by Allan. We will pursue this idea in Setion 6.

Another speial feature of slowly osillating funtions onerns the limit opera-

tors of their multipliation operators.

Proposition 2.2 Let a 2 SO

L(X)

. Then every limit operator of aI is a multipli-

ation operator in C

L(X)

, i.e. an operator of multipliation by a onstant funtion

with values in L(X).

Proof. Let a 2 SO

L(X)

. From (4) we onlude that

lim

k!1

(a(x

0

+ h(k))� a(x

00

+ h(k))) = 0

for all sequenes h tending to in�nity and for all x

0

; x

00

2 Z

n

. Hene, if h is

a sequene suh that the limit operator (aI)

h

exists, then lim

k!1

a(x + h

k

) is

independent of x 2 Z

n

, i.e. (aI)

h

= AI with an operator A 2 L(X).

3 Loal invertibility with respet to M

1

(SO)

Let M(SO) denote the maximal ideal spae of the ommutative C

�

-algebra SO,

and write M

1

(SO) for the �ber of M(SO) onsisting of all haraters � 2M(SO)

suh that �(a) = 0 whenever a 2 

0

. Every m 2 Z

N

de�nes a harater of SO by

f 7! f(m). In this sense, Z

N

is embedded into M(SO), and M(SO) is the union

of its disjoint subsets Z

N

and M

1

(SO).

Theorem 3.1 Z

N

is densely and homeomorphially embedded into M(SO) with

respet to the Gelfand topology.

This is a speial ase of a general result on ompati�ations of topologial spaes,

see [3℄, Chapter I, Theorem 8.2.

We will run into a lot of trouble when trying to realize the simple and natural

idea of loalizing the algebra A

E

=K(E;P) over SO. The main reason for this is

the following observation.

Proposition 3.2 Let � 2 M

1

(SO). Then � 2 los

M(SO)

Z

N

, but there is no

sequene in Z

N

whih tends to � with respet to the Gelfand topology of M(SO).

Proof. We know from Theorem 3.1 that � is in los

M(SO)

Z

N

and that, hene, there

is a net with values in Z

N

whih onverges to �. Assume there is a sequene h with
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values in Z

N

and with limit � in the Gelfand topology. Sine every subsequene of

h also onverges to �, we an assume without loss that

jh(n+ 1)j � jh(n)j+ 2

n+2

for all n:

Let '

0

: R

N

! [0; 1℄ be a ontinuous funtion with support in ft 2 R

N

: jtj � 1g

and with '

0

(0) = 1, and set '

n

(t) := '(t=2

n

) for n � 1. Then the funtion

'(t) :=

1

X

n�0

'̂

2n

(t� h(2n))

is slowly osillating, and '(h(2n)) = 1 and '(h(2n+1)) = 0 for all n. The assumed

onvergene of h to � implies that both sequenes ('(h(2n))) and ('(h(2n + 1)))

onverge to '(�). Contradition.

Consequently, if h 2 H, then the losure h of the set fh(m) : m 2 Z

N

g of the values

of h in the Gelfand topology annot onsist of a single point of M

1

(SO) only.

Nevertheless, the sequenes in H separate the points of M

1

(SO) in the following

sense.

Proposition 3.3 Given �; � 2M

1

(SO), there is a funtion h 2 H suh that � 2 h

and � 62 h.

Proof. Choose disjoint neighborhoods U

�

and U

�

of � and � in M(SO), and let

h 2 H be a sequene suh that

fh(m) : m 2 Z

N

g = U

�

\Z

N

:

(Reall that the intersetion U

�

\ Z

N

is not empty by Theorem 3.1 and, hene,

ountable. Thus, h an be even hosen as a bijetion from Z

N

onto U

�

\Z

N

.) Sine

Z

N

is dense in M(SO), it is lear that � 2 U

�

\ Z

N

= h, but � annot belong to h

sine

� 2 U

�

�M(SO) nU

�

=M(SO) n h;

i.e. � is an interior point of the omplement of h.

The Proposition 3.3 suggests the following de�nition.

De�nition 3.4 Let � 2 M

1

(SO) and A 2 L(E). The loal operator spetrum of

A at � is the set

�

�

(A) := fA

h

: h 2 H

A

and � 2 hg:

Above we observed that, if h is a sequene, there are many �'s in h. We will see now

that, nevertheless, loal spetra of operators of multipliation by slowly osillating

funtions are singletons, thus giving another justi�ation for the proposed de�nition

of a loal operator spetrum.

Proposition 3.5 Let � 2M

1

(SO).

(a) If A = aI with a 2 SO, then �

�

(A) = fa(�)g (where we use the same notation

for a funtion in SO and its Gelfand transform).

(b) If A = aI with a 2 SO

L(X)

, then �

�

(A) ontains at most one operator.

Proof. (a) Let h 2 H be a sequene suh that � 2 h and suh that the limit

operator (aI)

h

exists. By Proposition 2.2, (aI)

h

= �I with the omplex number

� := lim a(h(n)). We laim that � = a(�).

Let " > 0. Sine a is ontinuous at �, there is an open neighborhood U of � suh

that

ja(�)� a(�)j < "=2 for all � 2 U:

5



Further, sine � 2 h, there is an in�nite subsequene g of h the values of whih are

in U . Choose m suh that ja(g(m))� �j < "=2. Then

ja(�)� �j � ja(�)� a(g(m))j+ ja(g(m))� �j < ":

This estimate holds for arbitrary " > 0; hene, a(�) = �.

(b) Suppose there are sequenes h

1

; h

2

2 H suh that � 2 h

1

\ h

2

and that the

limit operators (aI)

h

1

and (aI)

h

2

exist, but that (aI)

h

1

6= (aI)

h

2

. By Proposition

2.2, (aI)

h

1

and (aI)

h

2

are the operators of multipliation by the onstant funtions

x 7! A

1

and x 7! A

2

with A

1

; A

2

2 L(X). Sine A

1

6= A

2

, there is a funtional ' 2

L(X)

�

suh that '(A

1

) 6= '(A

2

). Consider the funtion â : Z

N

! C : x 7! '(a(x)).

This funtion is in SO:

jâ(x+ k)� â(x)j � k'k ka(x+ k)� a(x)k

L(X)

! 0 as x!1:

From ka(h

i

(m)) �A

i

k ! 0 for i = 1; 2 we onlude that

kâ(h

i

(m))� '(A

i

)k ! 0 for i = 1; 2:

Hene, both '(A

1

)I and '(A

2

)I are limit operators of âI at �. This ontradits

assertion (a) of this proposition, stating that �

�

(âI) is a singleton.

If h 2 H, then the intersetion los

M(SO)

fh(m) : m 2 Z

N

g\M

1

(SO) is non-empty

by Theorem 3.1. Consequently,

�

op

(A) = [

�2M

1

(SO)

�

�

(A) for every A 2 L(E):

Let � 2 M

1

(SO), and let U be a neighborhood of � in M(SO) with respet

to the Gelfand topology. Then we agree upon alling the intersetion U \ Z

N

a

neighborhood at in�nity of �.

De�nition 3.6 Let � 2M

1

(SO) and A 2 L(E). The operator A is loally invert-

ible at � if there are operators B; C 2 L(E) and a neighborhood at in�nity W of �

suh that

BA�̂

W

I = �̂

W

AC = �̂

W

I

where �̂

W

refers to the harateristi funtion of W .

The following result, whih states the analogue of Theorem 1.6 with respet to the

muh �ner loalization over points in M

1

(SO) instead of points in S

N�1

, is the

main outome of this setion.

Theorem 3.7 Let A 2 A

rih

E

and � 2 M

1

(SO). Then the operator A is loally

invertible at � if and only if all limit operators in �

�

(A) are invertible and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1:

The proof will be given in Setion 6. To prepare this proof we reall and provide

some fats about nets and about limit operators with respet to nets in the following

two setions.

4 Preliminaries on nets

Nets and subnets. A set T is direted if there is a binary relation � on T suh

that

8t 2 T : t � t (reexivity);

8r; s; t 2 T : r � s; s � t) s � t (transitivity);

8r; s 2 T 9 t 2 T : t � r and t � s (indutivity);
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A mapping x from a direted set T into a topologial spae X is alled a net , and

this net onverges to a point x

�

2 X if, for every neighborhood U of x

�

, there is

a t

0

2 T suh that x(t) 2 U for all t � t

0

. The net x : T ! X is sometimes also

denoted by (x

t

)

t2T

where x

t

= x(t). Aordingly, if x : T ! X onverges to x

�

, we

will write

lim

t2T

x

t

= x

�

or x

t

! x

�

with respet to T:

A net (y

s

)

s2S

is a subnet of the net (x

t

)

t2T

if there is a mapping F : S ! T suh

that

8s 2 S : y

s

= x

F (s)

;

8t 2 T 9 s

0

2 S : F (s) � t for all s � s

0

:

A subset S of a direted set T is alled o�nal if

8t 2 T 9 s 2 S : s � t:

Every o�nal subset S of a direted set T is again a direted set with respet to

the restrition of the order relation � onto S. If S is a o�nal subset of T , and if

(x

t

)

t2T

is a net, then the restrition of (x

t

)

t2T

onto S is a subnet of (x

t

)

t2T

. We

will be mainly interested in subnets whih do not arise in this simple manner.

Nets tending to in�nity. In what follows we will only be onerned with nets

in Z

N

. A net (x

t

)

t2T

with values in Z

N

is said to onverge to in�nity if

8k 2 N 9 t

0

2 T : jx

t

j � k for all t � t

0

:

Let N denote the set of all nets in Z

N

whih onverge to in�nity.

Lemma 4.1 (a) For every net (x

t

)

t2T

2 N , the set fx

t

: t 2 Tg of its values is

ountably in�nite.

(b) If h : N ! Z

N

is injetive, then the sequene h belongs to N .

Proof. (a) Sine Z

N

is ountable, (x

t

)

t2T

� Z

N

is an at most ountable set, and

sine (x

t

)

t2T

tends to in�nity, this set annot be �nite.

(b) Suppose the sequene h does not onverge to in�nity. Then

9 k 2 N 8n

0

2 N 9n � n

0

: jh(n)j � k:

Repeating this argument we get an in�nite sequene n

0

< n

1

< n

2

< : : : suh that

jh(n

r

)j � k for all r. But h is injetive. Thus, h(n

r

) 6= h(n

s

) whenever r 6= s. So

we have in�nitely many points in fz 2 Z

N

: jzj � kg whih is nonsense.

Lemma 4.2 Let x 2 N be a net, and let h be a bijetion from N onto the set of the

values of x. Then x is a subnet of the sequene h. In partiular, every net x 2 N

is a subnet of a sequene h 2 H.

Proof. Let x = (x

t

)

t2T

2 N , and let h : N ! fx

t

: t 2 Tg be a bijetion. Suh

bijetions exist by Lemma 4.1.

To show that x is a subnet of h, de�ne F : T ! N by F (t) := h

�1

(x

t

). Then,

learly, x

t

= h

F (t)

for every t 2 T , and it remains to hek whether

8n 2 N 9 t

0

2 T : F (t) � n for all t � t

0

: (5)

Given n 2 N, set k := maxfjh

1

j; : : : ; jh

n

jg. Sine (x

t

)

t2T

belongs to N , there is a

t

0

2 T suh that

jx

t

j � k + 1 for all t � t

0

:

By the de�nition of F , this implies F (t) � n for all t � t

0

whih gives (5). Hene,

x is a subnet of h, and this sequene belongs to H due to Lemma 4.1 (b).
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A version of Cantor's diagonalization proedure. The following result an

be regarded as a substitute for the well-known diagonalization argument for se-

quenes due to Cantor.

Theorem 4.3 Let Z be a set, and let (f

n

)

n�1

be a sequene of funtions f

n

: Z !

R

+

whih onverges uniformly on Z to a funtion f : Z ! R

+

. Assume further

that (x

0

t

0

)

t

0

2T

0

is a net with values in Z and with the property that, for every n � 1,

there is a subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

suh that

lim

t

n

2T

n

f

n

(x

n

t

n

) = 0: (6)

Then there is a subnet (y

w

)

w2W

of (x

0

t

0

)

t

0

2T

0

with lim

w2W

f(y

w

) = 0.

Proof. We split the proof into several steps and emphasize some partial results

as lemmas. Our starting point is a net (x

0

t

0

)

t

0

2T

0

in Z and, for every n � 1, a

subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

with (6). In partiular, we have mappings

F

n

: T

n

! T

n�1

with x

n

t

n

= x

n�1

F

n

(t

n

)

for all t

n

2 T

n

and suh that

8t

n�1

2 T

n�1

9 t

0

n

2 T

n

: F (t

n

) � t

n�1

for all t

n

� t

0

n

: (7)

Step 1. We show that the direted sets T

0

; T

1

; : : : an be replaed be one and the

same direted set S.

Indeed, set S := T

0

� T

1

� T

2

� : : : and provide S with the order

(s

0

; s

1

; s

2

; : : :) � (s

0

0

; s

0

1

; s

0

2

; : : :) () s

k

� s

0

k

for all k

whih makes S to a direted set. Further, there are anonial mappings

G

n

: S ! T

n

; (s

0

; s

1

; s

2

; : : :) 7! s

n

:

For every n 2 N, de�ne a net (y

n

s

)

s2S

by y

n

s

:= x

n

G

n

(s)

.

Lemma 4.4 (a) For all n � 0, (y

n

s

)

s2S

is a subnet of (x

n

t

n

)

t

n

2T

n

.

(b) For all n � 1, (y

n

s

)

s2S

is a subnet of (y

n�1

s

)

s2S

.

Proof of Lemma 4.4. (a) By the de�nition of y

n

s

, what we have to hek is

whether

8t

n

2 T

n

9 s

0

2 S : G

n

(s) � t

n

for all s � s

0

:

But this is obvious: Set s

0

:= (t

0

; t

1

; t

2

; : : :) 2 S. Then, for s � s

0

, one indeed has

G

n

(s) � t

n

.

(b) For n � 1, de�ne

H

n

: S ! S; (s

0

; s

1

; s

2

; : : :) 7! (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :)

with the F

n

(s

n

) standing at the n�1 th position. Then, for all s = (s

0

; s

1

; s

2

; : : :) 2

S and all n � 1,

y

n

s

= x

n

G

n

(s)

= x

n

s

n

= x

n�1

F

n

(s

n

)

= x

n�1

G

n�1

(H

n

(s))

= y

n�1

H

n

(s)

; (8)

and it remains to show that

8ŝ 2 S 9s

0

2 S : H

n

(s) � ŝ for all s � s

0

: (9)

Let ŝ = (ŝ

0

; ŝ

1

; ŝ

2

; : : :) 2 S. For k 6= n, set s

0

k

:= ŝ

k

. In ase k = n, we �rst hoose

s

00

n

2 T

n

suh that

8s

n

� s

00

n

: F

n

(s

n

) � ŝ

n�1

(10)
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(whih is possible due to (7)), and then we hoose s

0

n

2 T

n

suh that both s

0

n

� s

00

n

and s

0

n

� ŝ

n

. De�ne s

0

:= (s

0

0

; s

0

1

; s

0

2

; : : :) 2 S. Then, for all s = (s

0

; s

1

; s

2

; : : :) �

s

0

, we have

s

k

� s

k

0

= ŝ

k

for all 0 � k � n� 2;

s

n

� s

0

n

� s

00

n

; whene F

n

(s

n

) � ŝ

n�1

due to (10);

s

n

� s

0

n

� ŝ

n

;

s

k

� s

0

k

= ŝ

k

for all k � n+ 1:

Consequently,

H

n

(s

0

; s

1

; s

2

; : : :) = (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :)

� (ŝ

0

; : : : ; ŝ

n�2

; ŝ

n�1

; ŝ

n

; ŝ

n+1

; : : :) = ŝ:

This proves (9) and the lemma.

Step 2. Choie of the diagonal net.

Let 
 := S � N. This set beomes direted by the order relation

(s; n) � (s

0

; n

0

) () s � s

0

and n � n

0

:

Consider the net

y : 
! Z

N

; y

(s;n)

:= y

n

s

: (11)

Of ourse (and as in the standard diagonalization proedure for sequenes) one

annot expet that (y

(s;n)

)

(s;n)2


is a subnet of (y

n

s

)

s2S

. But (also as for standard

diagonalization) one has the following result where we write 


n

0

:= f(s; n) 2 
 :

n > n

0

g for brevity. Clearly, 


n

0

is a o�nal subset of 
 for every n

0

2 N.

Lemma 4.5 For all n

0

2 N, (y

(s;n)

)

(s;n)2


n

0

is a subnet of (y

n

0

s

)

s2S

.

Proof of Lemma 4.5. For all s 2 S and all n > n

0

, we have

y

(s;n)

= y

n

s

= y

n�1

H

n

(s)

= y

n�2

H

n�1

(H

n

(s))

= : : : = y

n

0

(H

n

0

+1

ÆH

n

0

+2

Æ:::ÆH

n

)(s)

(ompare (8)). This equality suggests to de�ne

K

n

0

: 


n

0

! S; (s; n) 7! (H

n

0

+1

ÆH

n

0

+2

Æ : : : ÆH

n

)(s):

Then, obviously,

y

(s;n)

= y

n

0

K

n

0

(s;n)

for all (s; n) 2 


n

0

;

and what remains to verify is

8ŝ 2 S 9 (~s; ~n) 2 


n

0

: K

n

0

(s; n) � ŝ for all (s; n) � (~s; ~n):

Set ~n := n

0

+ 1 and onstrut ~s := (~s

0

; ~s

1

; : : :) suessively as follows. Let ŝ =

(ŝ

0

; ŝ

1

; : : :) 2 S. We set ~s

k

:= ŝ

k

for k � n

0

. Further, by (7), given ŝ

n

0

2 T

n

0

,

9 s

n

0

+1

2 T

n

0

+1

: F

n

0

+1

(s) � ŝ

n

0

8s � s

n

0

+1

:

Then hoose ~s

n

0

+1

both larger than s

n

0

+1

and ŝ

n

0

+1

.

For ~s

n

0

+1

2 T

n

0

+1

, we hoose s

n

0

+2

2 T

n

0

+2

suh that

8s � s

n

0

+2

: F

n

0

+2

(s) � ~s

n

0

+1

(� ŝ

n

0

+1

)

and, hene,

F

n

0

+1

(F

n

0

+2

(s)) � ŝ

n

0

:

9



Then hoose ~s

n

0

+2

both larger than s

n

0

+2

and ŝ

n

0

+2

.

We proeed in this way, i.e. we hoose s

n

0

+3

2 T

n

0

+3

suh that

8s � s

n

0

+3

: F

n

0

+3

(s) � ~s

n

0

+2

(� ŝ

n

0

+2

)

whih implies that

F

n

0

+2

(F

n

0

+3

(s)) � ŝ

n

0

+1

and, hene,

F

n

0

+1

(F

n

0

+2

(F

n

0

+3

(s))) � ŝ

n

0

:

Then hoose ~s

n

0

+3

larger than s

n

0

+3

and ŝ

n

0

+3

.

Thus we have �xed ~s. Let now s = (s

0

; s

1

; : : :) � ~s. Then, due to our onstru-

tion,

s

k

� ŝ

k

for all k � n

0

� 1;

(F

n

0

+1

Æ F

n

0

+2

Æ : : : Æ F

n

)(s

n

) � ŝ

n

0

;

(F

n

0

+2

Æ F

n

0

+3

Æ : : : Æ F

n

)(s

n

) � ŝ

n

0

+1

;

.

.

.

F

n

(s

n

) � ŝ

n�1

;

s

k

� ~s

k

� ŝ

k

for all k � n:

This shows that

K

n

0

(s; n) = (H

n

0

+1

Æ : : : ÆH

n

)(s) � ŝ

sine

H

n

(s) = (s

0

; : : : ; s

n�2

; F

n

(s

n

); s

n

; s

n+1

; : : :);

(H

n�1

ÆH

n

)(s) = (s

0

; : : : ; s

n�3

; F

n�1

(F

n

(s

n

)); F

n

(s

n

); s

n

; s

n+1

; : : :);

(H

n�2

ÆH

n�1

ÆH

n

)(s) =

(s

0

; : : : ; s

n�4

; F

n�2

(F

n�1

(F

n

(s

n

))); F

n�1

(F

n

(s

n

)); F

n

(s

n

); s

n

; s

n+1

; : : :);

and so on. This �nishes the proof of Lemma 4.5.

Step 3. Let W := 


0

. Then (y

w

)

w2W

is the net we are looking for.

It is obvious from the above onstrution that (y

w

)

w2W

is a subnet of (x

0

t

0

)

t

0

2T

0

.

So we are left with verifying that lim

w2W

f(y

w

) = 0.

Given " > 0, hoose and �x n � 1 suh that kf�f

n

k < "=2. Then, by hypothesis,

lim

t

n

2T

n

f

n

(x

n

t

n

) = 0:

Sine (y

w

)

w2


n

is a subnet of (x

n

t

n

)

t

n

2T

n

, we also have lim

w2


n

f

n

(y

w

) = 0, whene

the existene of an w

n

2 


n

with

jf

n

(y

w

)j < "=2 for all w � w

n

: (12)

Let now w 2W with w � w

n

. Then, evidently, w 2 


n

, and from (12) we onlude

jf(y

w

)j � jf(y

w

)� f

n

(y

w

)j+ jf

n

(y

w

)j � kf � f

n

k

1

+ jf

n

(y

w

)j < ":

Hene, lim

w2W

f(y

w

) = 0 whih �nishes the proof of Theorem 4.3.
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5 Limit operators with respet to nets

Now we return to band-dominated operators on one of the sequene spaes E. If

y := (y

w

)

w2W

is a net in N , then we all the operator A

y

the limit operator of the

operator A 2 L(E) with respet to y if

lim

n!1

k(V

�y

w

AV

y

w

�A

y

)P

m

k = lim

n!1

kP

m

(V

�y

w

AV

y

w

�A

y

)k = 0

for every P

m

2 P . Roughly speaking, the properties of limit operators with respet

to sequenes (as derived in [5, 6℄), remain valid without hanges also for limit

operators with respet to nets. We will illustrate this fat by two results for whih

the Cantor diagonalization proedure for nets is employed.

Theorem 5.1 Let A = aI 2 L(E) be a rih multipliation operator. Then every

net (x

t

)

t2T

2 N possesses a subnet y := (y

w

)

w2W

suh that the limit operator A

y

exists.

Proof. Reall that A

y

is a limit operator of A with respet to the net y if and only

if

lim

w2W

k(V

�y

w

AV

y

w

�A

y

)S

k

k = 0 for every k 2 Z

N

where, as before, S

k

refers to the operator of multipliation by the funtion whih

is I at k 2 Z

N

and 0 at all other points.

Set (x

0

t

0

)

t

0

2T

0

:= (x

t

)

t2T

and hoose a bijetion m : N ! Z

N

. Sine A is rih

we �nd, for every n � 1, a subnet (x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2 T

n�1

as well as an

operator B

n

2 L(ImS

m(n)

) suh that

k(V

�x

n

t

n

AV

x

n

t

n

�B

n

)S

m(n)

k ! 0: (13)

Let B stand for the operator of multipliation by the funtion

Z

N

! L(X); k 7! B

m

�1

(k)

:

We laim that B is the limit operator of A with respet to the net y. For, we reify

Cantor's sheme (= Theorem 4.3) as follows. Set Z := Z

N

. For n � 1 and z 2 Z

N

,

de�ne

f

n

(z) :=

n

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k;

and let

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k:

Then, obviously, kf

n

� fk

1

! 0. Further, by (13), we have lim

t

n

2T

n

f

n

(x

n

t

n

) = 0.

Now we onlude from Theorem 4.3 that there is a subnet (y

w

)

w2W

of (x

t

)

t2T

suh

that lim

w2W

f(y

w

) = 0. This immediately implies the P-strong onvergene of the

net (V

�y

w

AV

y

w

)

w2W

to B, whene B = A

y

.

Of ourse, a similar result holds for rih band operators. For another appliation

of Theorem 4.3, onsider the set of all operators A 2 L(E) having the following

property: every net (x

t

)

t2T

2 N possesses a subnet y := (y

w

)

w2W

suh that the

limit operator A

y

exists. We denote this lass by L

nets

E

for a moment. As we have

just remarked, every rih band operator belongs to L

nets

E

.

Theorem 5.2 L

nets

E

is norm-losed.
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Proof. Let (A

n

)

n�1

� L

nets

E

be a sequene with norm limit A 2 L(E), and

let (x

0

t

0

)

t

0

2T

0

2 N . By hypothesis, for every n � 1, there exists a subnet x

n

:=

(x

n

t

n

)

t

n

2T

n

of (x

n�1

t

n�1

)

t

n�1

2T

n�1

suh that the limit operator A

n;x

n

of A

n

with respet

to x

n

exists. If n � m, then (x

n

t

n

)

t

n

2T

n

is a subnet of (x

m

t

m

)

t

m

2T

m

, thus, the limit

operator A

m;x

n

also exists, and it oinides with A

m;x

m

. Sine kA

h

k � kAk for

every limit operator A

h

of A, we obtain

kA

n;x

n

�A

m;x

m

k = kA

n;x

n

�A

m;x

n

k = k(A

n

�A

m

)

x

n

k � kA

n

�A

m

k

for all n � m. Hene, the sequene (A

n;x

n

) onverges in the norm, and we let B

denote its norm limit.

Now de�ne for all n � 1 and z 2 Z

N

(with the notations S

k

and m as in the

proof of Theorem 5.1)

f

n

(z) :=

1

X

k=1

2

�k

k(V

�z

A

n

V

z

�A

n;x

n

)S

m(k)

k

and

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�B)S

m(k)

k:

Then again kf

n

� fk ! 0 and lim

t

n

2T

n

f

n

(x

n

t

n

) = 0, whene via Theorem 4.3 the

existene of a subnet y = (y

w

)

w2W

of (x

0

t

0

)

t

0

2T

0

suh that lim

w2W

f(y

w

) = 0. Thus,

B = A

y

.

As a onsequene we get A

rih

E

� L

nets

E

. Now one might ask whether one gets

something new when onsidering limit operators with respet to nets instead of

sequenes. The next theorem says that the answer is no in some sense: every limit

operator, whih is de�ned with respet to a net, an also be reahed by a sequene!

(Nevertheless, limit operators with respet to nets are useful as we will point out

in the next setions when we will apply them to study the loal invertibility of

band-dominated operators at points in M

1

(SO).)

Theorem 5.3 Let A 2 L(E), and let y = (y

w

)

w2W

2 N be a net for whih the

limit operator A

y

of A exists. Then there is a sequene z = (z

n

)

n2N

2 H for whih

the limit operator A

z

of A exists, and A

z

= A

y

. Moreover, z an be hosen suh

that there is a o�nal subset

~

W of W for whih (y

w

)

w2

~

W

is a subnet of z.

Proof. Let y = (y

w

)

w2W

be a net for whih the limit operator A

y

of A exists, and

de�ne a funtion f : Z

N

! R

+

by

f(z) :=

1

X

k=1

2

�k

k(V

�z

AV

z

�A

y

)S

m(k)

k

with the notations being as in the proof of Theorem 5.1. Then lim

w2W

f(y

w

) = 0.

For every n 2 N, hoose w

n

2 W suh that

0 � f(y

w

) < 1=n for all w � w

n

: (14)

Further set W

N

:= fw

n

: n 2 Ng, W

1

:= fw 2 W : w � w

n

for every ng, and

~

W :=W

N

[W

1

.

The set

~

W is o�nal in W . Indeed, let w 2 W . Then, either, there is a w

n

with

w

n

� w, or w � w

n

for every n. In the �rst ase, hoose w

�

:= w

n

, in the seond

w

�

:= w. Thus, in any ase, w

�

2

~

W and w

�

� w.

Consequently, (y

w

)

w2

~

W

is a subnet of (y

w

)

w2W

, whene lim

w2

~

W

f(y

w

) = 0, and

this subnet takes the values f(y

w

n

) 2 [0; 1=n) and 0 only. The latter happens if

w 2W

1

, in whih ase 0 � f(y

w

) < 1=n for all n, hene f(y

w

) = 0.

12



Now onstrut a bijetion z from N onto the set fy

w

: w 2

~

Wg of the values of

(y

w

)

w2

~

W

as follows. If the set fy

w

: w 2 W

1

nW

N

g is in�nite (hene, ountable),

let z

2k

:= y

w

k

for k � 1, and let zj

2N+1

be any bijetion from 2N + 1 onto fy

w

:

w 2 W

1

nW

N

g. If fy

w

: w 2 W

1

nW

N

g is �nite and onsists of n elements, we

set z

k

:= y

k�n

for k > n, and we let zj

f1;2;:::;ng

be any bijetion from f1; 2; : : : ; ng

onto fy

w

: w 2W

1

nW

N

g. In any ase, we get a sequene z whih has (y

w

)

w2

~

W

as

its subnet by Lemma 4.2.

It is further evident from the de�nition of z that lim

n!1

f(z

n

) = 0. Hene, A

y

is also the limit operator of A with respet to the sequene z.

6 Loal invertibility at points in M

1

(SO)

Now we will provide the proof of Theorem 3.7 and disuss some of its onsequenes.

The proof will follow the line of the proof of Theorem 1.6, and we will pay our

attention mainly to the di�erenes whih are involved by the topology of M(SO)

and, hene, by the need of using nets instead of sequenes.

A basi step is the spei�ation of Proposition 14 from [5℄ resp. Proposition

2.17 from [6℄ to the present ontext. For, we need some more notations. Let

' : R ! [0; 1℄ be a ontinuous funtion with

'(x)

8

<

:

= 1 for jxj � 1=3

> 0 for jxj < 2=3

= 0 for jxj � 2=3:

(15)

We further suppose that the family f'

2

�

g

�2Z

with '

�

(x) := '(x � �) forms a

partition of unity on R in the sense that

X

�2Z

'

�

(x)

2

= 1 for all x 2 R:

This hoie of ' an always be fored as follows: If f : R ! [0; 1℄ is a ontinuous

funtion satisfying (15) in plae of ', then the funtion

'(x) :=

f(x)

2

P

�2Z

f(x� �)

2

; x 2 R:

has the desired properties. This de�nition makes sense sine the series

P

f(x��)

2

is stritly positive and has only �nitely many non-vanishing terms for eah �xed x.

Given x = (x

1

; : : : ; x

N

) 2 R

N

, � 2 Z

N

, and R > 0, de�ne '

(N)

(x) :=

'(x

1

) : : : '(x

N

), '

(N)

�

(x) := '

(N)

(x � �) and '

(N)

�;R

(x) := '

�

(x=R). Further, let

 : R ! [0; 1℄ be a ontinuous funtion whih also satis�es (15) in plae of ', but

with the onstants 1=3 and 2=3 being replaed by 3=4 and 4=5, respetively. For this

funtion, we de�ne  

(N)

�;R

analogously. Clearly, '

(N)

�;R

 

(N)

�;R

= '

(N)

�;R

for all � and R.

The family f'

�;R

g is a partition of unity on R

N

for every �xed R (but observe that

the family f 

�

g is not required to form a partition of unity. With these notations,

the announed analogue of Proposition 14 from [5℄ reads as follows.

Proposition 6.1 Let A 2 A

E

, � 2 M

1

(SO). Suppose there is a onstant M > 0

suh that, for all positive integers R, there is a neighborhood at in�nity U of � suh

that, for all � 2 U , there are operators B

�;R

and C

�;R

with kB

�;R

k

L(E)

� M ,

kC

�;R

k

L(E)

�M and

B

�;R

A

^

 

�;R

I =

^

 

�;R

AC

�;R

=

^

 

�;R

I:

13



Then the operator A is loally invertible at �, i.e. there are operators B; C 2 A

E

and a neighborhood at in�nity W of � suh that

BA�̂

W

I = �̂

W

AC = �̂

W

I: (16)

Proof. We follow exatly the proof of Proposition 14 from [5℄ where we replae the

ondition j�j � �(R) by � 2 U . What results is the existene of a positive integer

R suh that

(I + T

R

)

�1

B

R

A = I � (I + T

R

)

�1

X

�2Z

N

nU

'̂

�;R

I:

The assertion follows one we have shown that there is a neighborhood at in�nity

W of � suh that

P

�2Z

N

nU

'̂

�;R

�

W

= 0. This will be done in Proposition 6.4

below.

To �ll the gap in the preeding proof requires more preise knowledge on subsets

of M(SO). The following de�nition as well as Theorem 6.3 and its proof are taken

from [4℄.

De�nition 6.2 (a) A subset V � Z

N

is alled growing if, for every bounded set

D � Z

N

, there is an x 2 Z

N

suh that x+D � V .

(b) An unbounded subset V

0

of a growing set V is alled a enter if, for every bounded

set D � Z

N

, there is a bounded set M suh that (V

0

nM) +D � V .

Theorem 6.3 Let W be an unbounded subset of Z

N

and � 2W \M

1

(SO) (where

the bar refers to the losure with respet to the Gelfand topology on M(SO)), and

let U � M(SO) be a neighborhood of �. Then V := U \ Z

N

is a growing set, and

there is a neighborhood U

0

� U of � suh that V

0

:= U

0

\Z

N

is ontained in W and

a enter of V .

Proof. By Uryson's lemma, there is a ontinuous funtion f : M(SO) ! [0; 1℄

whih is 0 at � and 1 onM(SO)nU . Sine f is ontinuous onM(SO), the restrition

of f onto Z

N

is a slowly osillating funtion. Set

U

0

0

:= fx 2M(SO) : f(x) < 1=2g and U

0

:= U

0

0

\W;

and de�ne V := U \Z

N

and V

0

:= U

0

\Z

N

. Then V

0

�W \V . Moreover, sine U

0

0

is a neighborhood of �, the set V

0

is unbounded. We laim that, for every bounded

set M , there is a bounded set D suh that (V

0

nD) +M � V . The laim implies

that V is growing and that V

0

is a enter of V .

Assume the laim is wrong. Then there exists a bounded set M suh that

(V

0

nD) +M 6� V , hene, V

1

:= (V

0

+M) n V is an unbounded set. So it makes

sense to onsider the limes superior of jf(x)j when x 2 V

1

tends to in�nity. Sine

V

1

� V

0

+M and f is slowly osillating, we get

lim sup

x2V

1

;x!1

jf(x)j � lim sup

y2V

0

;y!1

max

m2M

jf(y +m)j

� lim sup

y2V

0

;y!1

max

m2M

jf(y +m)� f(y)j+ lim sup

y2V

0

;y!1

jf(y)j � 0 + 1=2 = 1=2:

This is impossible sine V

1

is in the omplement of U and, hene, f is 1 on V

1

.

Proposition 6.4 Let R a positive integer, � 2 M

1

(SO) and U � M(SO) a

neighborhood of �. Then there exists a neighborhood at in�nity

~

U of � suh that

P

�2Z

N

nU

'̂

�;R

�

~

U

= 0.

14



Proof. We apply Theorem 6.3 (with the W in that theorem being Z

N

) to obtain:

V := U \ Z

N

is a growing set, and there is a neighborhood U

0

� U of � suh that

V

0

:= U

0

\ Z

N

is a enter of V .

The support of every funtion '̂

�;R

is ontained in a smallest ball with enter

�R and with a radius r whih depends on R but not on �. From V , we remove all

points z for whih the ball with enter z and radius r is not ompletely ontained

in V . What we get is a set

~

V , and we set

~

U := V

0

\

~

V .

We laim that

~

V is a growing set and that

~

U is one of its enters. Let D � Z

N

be bounded, and let B be the ball with enter 0 and radius r. Then D + B is a

bounded set, and sine V

0

is a enter of V , there is a bounded set M suh that

(V

0

nM) + (D +B) � V:

Then, of ourse, (V

0

nM) +D �

~

V , whene

(

~

U nM) +D �

~

V : (17)

Analogously, there is a bounded set N suh that (V

0

nN)+B � V . Thus, all points

in V

0

nN belong to

~

V and, onsequently, also to

~

U . This shows that

~

U and V

0

di�er

by a bounded set only:

V

0

nN �

~

U � V

0

: (18)

A �rst onsequene of (18) is that

~

U is an unbounded set. Together with (17)

this implies that

~

V is a growing set, and that

~

U is a enter of

~

V . As another

onsequene of (18) we observe that, sine V

0

is a neighborhood at in�nity of �,

also

~

U is a neighborhood at in�nity of �. This �nishes the proof sine the support

of every funtion '̂

�;R

with � 2 Z

N

nU is ontained in the omplement of

~

V , hene

in the omplement of

~

U .

Proof of Theorem 3.7. We will only prove that the uniform invertibility of the

operators in �

�

(A) implies the loal invertibility of A at �. Let A 2 A

rih

E

be an

operator with

M

A

:= sup fkA

�1

h

k : A

h

2 �

�

(A)g <1;

but suppose A is not loally invertible at �. Then, by Proposition 6.1, there is a

net (y

t

)

t2T

with values in Z

N

whih onverges to � in the topology of M(SO) and

whih has the property that

BA

^

 

y

t

;R

I 6=

^

 

y

t

;R

I (19)

for all t 2 T and all B with kBk � M

A

. Sine A belongs to A

rih

E

� L

nets

E

, the

net (y

t

)

t2T

possesses a subnet x = (x

s

)

s2S

suh that the limit operator A

x

exists.

Clearly, the net (x

s

)

s2S

still onverges to �, and

BA

^

 

x

s

;R

I 6=

^

 

x

s

;R

I (20)

for all s 2 S and all B with kBk �M

A

. From Theorem 5.3 we onlude: there is a

o�nal subset

~

S of S and a sequene (z

n

)

n2N

suh that the limit operator A

z

exists

and oinides with A

x

, and suh that (x

s

)

s2

~

S

is a subnet of (z

n

). Sine (x

s

)

s2

~

S

onverges to �, and sine the nets (x

s

)

s2

~

S

and (z

n

) take the same values, it is lear

that

� 2 los fz

n

: n 2 Ng; whene A

y

= A

z

2 �

�

(A):

By hypothesis, A

y

is invertible, and kA

�1

y

k � M

A

. This yields a ontradition in

the very same way as in the proof of Theorem 1.4 by using Proposition 15 from [5℄.

Our next goal is to point out the onnetions between loal invertibility at � and
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loalization by means of the loal priniple. For the reader's onveniene, we state

this priniple here. Let B be a unital Banah algebra. By a entral subalgebra C

of B we mean a losed subalgebra of the enter of B whih ontains the identity

element. Thus, every element of C ommutes with every element from B, and C is

a ommutative Banah algebra with maximal ideal spae M(B). To eah maximal

ideal x of C, we assoiate the smallest losed two-sided ideal I

x

of B whih ontains

x, and we let �

x

refer to the anonial homomorphism from B onto the quotient

algebra B=I

x

. Notie that, in ontrast to the ommutative setting, the quotient

algebras B=I

x

an di�er from eah other in dependene on x 2 M(C). Moreover,

it may happen that I

x

= B for some points x. In this ase we de�ne that �

x

(a) is

invertible in B=I

x

and that k�

x

(a)k = 0 for eah a 2 B.

Theorem 6.5 (Allan) Let C be a entral subalgebra of the unital Banah algebra

B whih ontains the identity element. Then an element a 2 B is invertible if and

only if the osets �

x

(a) are invertible in B=I

x

for every x 2M(C).

We have seen in Proposition 2.1 that the algebra C of all osets aI +K(E;P) with

a 2 SO lies in the enter of the quotient algebra A

E

=K(E;P). From the isomorphy

C

�

=

(SO � I +K(E;P))=K(E;P)

�

=

SO � I=(SO � I \K(E;P))

�

=

SO=

0

we onlude that the maximal ideal spae of the algebra C is homeomorphi to the

�ber M

1

(SO). Given � 2 M

1

(SO), we denote the loal algebra of A

E

=K(E;P)

whih is assoiated with � byA

E;�

, and we write �

�

for the anonial homomorphism

from A

E

onto A

E;�

. Applying Theorem 6.5 to the urrent situation yields:

Theorem 6.6 An operator A 2 A

E

is P-Fredholm if and only if the osets �

�

(A)

are invertible for all � 2M

1

(SO).

The following theorem relates the invertibility of the oset �

�

(A) with the loal

invertibility of A at � and an be proved in the very same way as Proposition 23 in

[5℄.

Theorem 6.7 Let A 2 A

E

and � 2 M

1

(SO). The oset �

�

(A) is invertible in

A

E;�

if and only if A is loally invertible at �.

Together with Allan's loal priniple and with Theorem 3.7, this results implies a

further and essential re�nement of Theorem 1.4 and Corollary 1.7.

Corollary 6.8 An operator A 2 A

rih

E

is P-Fredholm if and only if all of its limit

operators are invertible, and if

supfk(A

h

)

�1

k : A

h

2 �

�

(A)g <1 for every � 2M

1

(SO):

7 Fredholmness of band-dominated operators with

slowly osillating oeÆients

We will now speify Corollary 6.8 to band-dominated operators with slowly osillat-

ing oeÆients. Let SO

rih

L(X)

refer to the lass of all slowly osillating funtions with

values in L(X) for whih the assoiated multipliation operator is rih. Further

we let A

E

(SO

L(X)

) (resp. A

E

(SO

rih

L(X)

)) stand for the smallest losed subalgebra

of A

E

whih ontains all band operators

P

j�j�k

a

�

V

�

with a

�

2 SO

L(X)

(resp.

a

�

2 SO

rih

L(X)

). For the limit operators of operators with slowly osillating oeÆ-

ients we have the following.
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Proposition 7.1 (a) If A 2 A

E

(SO

L(X)

), then every limit operator of A belongs

to A

E

(C

L(X)

).

(b) For A 2 A

E

(SO

rih

L(X)

), every loal operator spetrum �

�

(A) with � 2 M

1

(SO)

is a singleton.

Proof. (a) Limit operators of shift operators are shift operators and, hene, in

A

E

(C

L(X)

). By Proposition 2.2, the same is true for operators of multipliation by

slowly osillating funtions.

(b) If a 2 SO

rih

L(X)

, then �

�

(aI) is not empty sine A

rih

E

� L

nets

E

(see Setion 5),

and this spetrum is a singleton by Proposition 3.5 (b). With Proposition 1 from

[5℄ we onlude �rst that every loal spetrum of a band operator with oeÆients

in SO

rih

L(X)

is a singleton, too, and get then the assertion also in the general ase.

Now we an formulate and prove the P-Fredholm riterion for operators with rih

slowly osillating oeÆients. It turns out that the uniform boundedness ondition

is redundant.

Theorem 7.2 Operators in A

E

(SO

rih

L(X)

) are P-Fredholm if and only if all of their

limit operators are invertible.

Proof. Sine �

�

(A) is a singleton, the assertion follows immediately from Corollary

6.8.

8 An alternative proof of Theorem 7.2

This setion is devoted to an alternative proof of the preeding theorem whih works

under more restritive assumptions only, but whih also has its own merits, and

whih sheds new light upon the properties of band-dominated operators with slowly

osillating oeÆients. We let H be a Hilbert spae and E := l

2

(Z

N

; H). Further,

we again write SO

L(H)

and SO

rih

L(H)

for the algebra of all slowly osillating funtions

Z

N

! L(H) and for the algebra of all slowly osillating funtions Z

N

! L(H)

for whih the assoiated multipliation operator is rih, respetively, and we let

A

E

(SO

L(H)

) and A

E

(SO

rih

L(H)

) stand for the losures in L(E) of the algebra of the

band operators with oeÆients in SO

L(H)

and in SO

rih

L(H)

.

Generating funtions. The alternative proof is based on the notion of the gen-

erating funtion of a band-dominated operator. This notion is borrowed from the

pseudodi�erential operator alulus (where the generating funtuion is usually re-

ferred to as the symbol of the operator) and adapted for our purposes.

We start with de�ning the generating funtion of a band operator. For

A =

X

j�j�M

a

�

V

�

with a

�

2 SO

L(H)

; (21)

let the generating funtion of A be

gen

A

: Z

N

� T

N

! L(H); (x; t) 7!

X

j�j�M

a

�

(x)t

�

(22)

where t

�

:= t

�

1

1

: : : t

�

n

n

. There is a one-to-one orrespondene between band opera-

tors and their generating funtions.

We denote by C

b

(Z

N

� T

N

; L(H)) the set of all ontinuous funtions on Z

N

�

T

N

with values in L(H). Provided with pointwisely de�ned operations and the
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supremum norm, this set beomes a C

�

-algebra, and the set 

0

(Z

N

�T

N

; L(H)) of

all funtions a 2 C

b

(Z

N

� T

N

; L(H)) with

lim

x!1

sup

t2T

N

ka(x; t)k

L(H)

= 0

is a losed ideal of C

b

(Z

N

� T

N

; L(H)). The quotient algebra C

b

=

0

will be abbre-

viated to

b

C

b

, and the oset whih ontains a 2 C

b

(Z

N

� T

N

; L(H)) to ba. Notie

that

kbak

0

:= lim sup

x!1

sup

t2T

N

ka(x; t)k

L(H)

is just the anonial quotient norm of the oset ba in the quotient algebra

b

C

b

.

Evidently, if A is a band operator of the form (21), then its generating funtion

belongs to C

b

(Z

N

� T

N

; L(H)).

Proposition 8.1 Let A be as in (21). Then k[gen

A

k

0

� kAk.

Proof. Choose a sequene (x

n

) � Z

N

tending to in�nity, a sequene (t

n

) 2 T

N

,

and a sequene (v

n

) of unit vetors in H , suh that

k[gen

A

k

0

= lim

n!1

kgen

A

(x

n

; t

n

)v

n

k

H

:

Sine T

N

is ompat, we an moreover assume that (t

n

) is a onvergent sequene

with limit t

0

2 T

N

. The assertion follows one we have shown that, given " > 0,

there is an n

0

suh that

kgen

A

(x

n

; t

n

)v

n

k

H

� kAk+ " (23)

for all n � n

0

.

Given vetors v 2 H and u = (u

k

)

k2Z

N 2 l

2

, let v 
 u denote the sequene

(u

k

v)

k2Z

N in E = l

2

(Z

N

; H). Let further A

n;n

, A

n

and B

n

stand for the band

operators with generating funtions

(x; t) 7! gen

A

(x

n

; t

n

); (x; t) 7! gen

A

(x+ x

n

; t); (x; t) 7! gen

A

(x

n

; t);

respetively. Then we have, for every unit vetor u 2 l

2

,

kgen

A

(x

n

; t

n

)v

n

k

H

= kA

n;n

(v

n


 u)k

E

� k(A

n;n

�B

n

)(v

n


 u)k

E

(24)

+ k(B

n

�A

n

)(v

n


 u)k

E

+ kA

n

(v

n


 u)k

E

:

Sine A

n

= V

�x

n

AV

x

n

, we get

kA

n

(v

n


 u)k

E

= kV

�x

n

AV

x

n

(v

n


 u)k

E

� kAk

for the last term in (24). The middle term on the right hand side of (24) is not

greater than kB

n

�A

n

k, whih goes to zero as n!1 sine the oeÆients of A are

slowly osillating. Thus, this middle beomes less than "=2 uniformly with respet

to u and v

n

if only n is large enough.

To estimate the �rst term, hoose Æ > 0 suh that

sup

x2Z

N

kgen

A

(x; t) � gen

A

(x; t

0

)k � "=4 for all jt� t

0

j < Æ;

and hoose the unit vetor u = (u

k

)

k2Z

N in l

2

suh that the u

k

are the Fourier

oeÆients of a ontinuous funtion û on T

N

with support in ft 2 T

N

: jt�t

0

j < Æg.

18



Sine A

n;n

�B

n

is the operator of onvolution by the funtion gen

A

n;n

� gen

B

n

, we

get

k(A

n;n

�B

n

)(v

n


 u)k

2

l

2

(Z

N

;H)

= k(gen

A

n;n

� gen

B

n

)(ûv

n

)k

2

L

2

(T

N

;H)

=

Z

T

N

k(gen

A

(x

n

; t

n

)� gen

B

(x

n

; t))û(t)v

n

k

2

H

dt

� sup

jt�t

0

j<Æ

kgen

A

(x

n

; t

n

)� gen

A

(x

n

; t)k

2

L(H)

kv

n


 uk

2

:

Due to the hoie of Æ, this term beomes less than "=2 if n beomes large.

This proposition allows us to assoiate with every operator A in A

E

(SO

L(H)

) a

uniquely determined oset in

b

C

b

whih we denote by �(A).

In what follows, we will make use of the notion of the main diagonal of a band-

dominated operator. If A is the band operator

P

j�j�k

a

�

V

�

, then its main diagonal

is, by de�nition, the funtion D(A) := a

0

. Sine

kD(A)k

1

= sup

k

ka

0

(k)k = sup

k

kS

k

AS

k

k � kAk

(where the S

k

are as in the introdution), we an extend the mapping D by onti-

nuity onto the set of all band-dominated operators. For a band-dominated operator

A, we all D(A) its main diagonal and D(AV

��

) its �th diagonal.

Proposition 8.2 � is a

�

-homomorphism from A

E

(SO

rih

L(H)

) into

b

C

b

with kernel

K(E;P).

Proof. It is elementary to hek that � ats as a

�

-homomorphism on the algebra of

all band operators with slowly osillating oeÆients. Sine this algebra is dense in

A

E

(SO

L(H)

), and sine � is ontinuous on this algebra by the preeding proposition,

this proves the �rst assertion. It is further evident that the ideal K(E;P) lies in

the kernel of �. Let, �nally, A be an operator in A

E

(SO

L(H)

) with �(A) = 0. We

have to show that A lies in K(E;P).

Let (A

n

) be a sequene of band operators in A

E

(SO

rih

L(H)

) whih onverges to A.

Then, trivially, k�(A

n

)k ! 0. For � = (�

1

; : : : ; �

N

) 2 Z

N

, onsider the funtions

a

(n)

�

: Z

N

! L(H) whih take at x 2 Z

N

the value

1

(2�)

N

Z

2�

0

: : :

Z

2�

0

gen

A

n

(x; (e

is

1

; : : : ; e

is

N

)) e

�i�

1

s

1

: : : e

�i�

N

s

N

ds

1

: : : ds

N

: (25)

If the band operator A

n

is of the form

P

b

(n)

�

V

�

, then its �th diagonal b

(n)

�

just

oinides with the funtion a

(n)

�

given by (25). From (25) we immediately onlude

that

ka

(n)

�

(x)k

L(H)

� sup

t2T

N

kgen

A

n

(x; t)k

1

whene, in partiular,

lim sup

x!1

ka

(n)

�

(x)k � lim sup

x!1

sup

t2T

N

kgen

A

n

(x; t)k

1

= k�(A

n

)k ! 0

as n!1. Thus, if a

�

denotes the �th diagonal of A, then

lim sup

x!1

ka

�

(x)k � sup

x2Z

N

ka

�

(x) � a

(n)

�

(x)k+ lim sup

x!1

ka

(n)

�

(x)k

� kA�A

n

k+ k�(A

n

)k: (26)
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This shows that every diagonal of A lies in 

0

(Z

N

; L(H)), whih on its hand implies

that all limit operators of A are 0: Indeed, let h be a sequene for whih the limit

operator A

h

exists. Then the operators S

i

V

�h(n)

AV

h(n)

S

j

onverge in the norm to

S

i

A

h

S

j

for every pair of indies i; j 2 Z

N

. Sine

lim

n!1

kS

i

V

�h(n)

AV

h(n)

S

j

k = lim

n!1

ka

i�j

(i+ h(n))k = 0

due to (26), this shows that S

i

A

h

S

j

= 0 for all i and j, whene A

h

= 0. But a rih

band-dominated operator having 0 as its only limit operator lies in K(E;P) due to

Theorems 2.24 and 2.24 in [6℄.

Now we an present an alternative proof of Theorem 7.2.

Theorem 8.3 The following assertions are equivalent for A 2 A

E

(SO

rih

L(H)

):

(a) A is P-Fredholm.

(b) �(A) is invertible in

b

C

b

.

() All limit operators of A are invertible.

Proof. The equivalene of (a) and (b) is quite obvious: If the oset A+K(E;P) is

invertible in L(E;P)=K(E;P), then it is also invertible in A

E

(SO

rih

L(H)

)=K(E;P)

(inverse losedness of C

�

-algebras). Hene, there are operators B 2 A

E

(SO

rih

L(H)

)

and K

1

; K

2

2 K(E;P) suh that AB = I + K

1

and BA = I + K

2

. Applying

the homomorphism � to these equalities yields invertibility of �(A). If, onversely,

�(A) is invertible in

b

C

b

, then it is also invertible in the image of A

E

(SO

rih

L(H)

) under

the mapping � (again by the inverse losedness of C

�

-algebras). Thus, one an �nd

a B 2 A

E

(SO

rih

L(H)

) with �(A)�(B) = �(B)�(A) = 1, showing that AB � I and

BA� I belong to ker� = K(E;P).

Sine (a) obviously implies () (see also the �rst lines of the proof of Theorem 1

in [5℄), we are left with the impliation () ) (b). Assume that all limit operators

of A 2 A

E

(SO

rih

L(H)

) are invertible, but that �(A) is not invertible in

b

C

b

. If A is not

a band operator, then we let gen

A

be any funtion in the oset �(A).

We de�ne the lower norm of an operator C 2 L(H) by �(C) := inf

x6=0

kCxk=kxk.

It is well known that C is invertible if both �(C) and �(C

�

) are positive and that,

onversely, invertibility of C implies �(C) = �(C

�

) = 1=kA

�1

k. Thus, if both

lim

R!1

inf

jxj�R; t2T

N

�(gen

A

(x; t)) > 0 (27)

and

lim

R!1

inf

jxj�R; t2T

N

�(gen

A

(x; t)

�

) > 0; (28)

then the funtion gen

A

is invertible in C

b

modulo funtions in 

0

. Sine �(A) is

non-invertible by assumption, one of the onditions (27) and (28) must be violated,

say the �rst one for de�niteness. Then there exist a sequene x = (x

m

)

m�1

� Z

N

whih tends to in�nity, a sequene (t

m

)

m�1

� T

N

whih we an also suppose to be

onvergent to a point t

0

2 T

N

, as well as a sequene (v

m

)

m�1

of unit vetors in H

suh that

kgen

A

(x

m

; t

m

)v

m

k ! 0 as m!1:

We will further suppose without loss that the limit operator A

x

of A with respet

to the sequene x exists.

Let " < 1=(4 kA

�1

x

k), and let A

0

be a band operator with oeÆients in SO

rih

L(H)

suh that kA�A

0

k < ". Then k�(A)� �(A

0

)k

0

< ", whih implies that

lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

k
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� lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

� gen

A

(x

m

; t

m

)v

m

k+ lim

m!1

kgen

A

(x

m

; t

m

)v

m

k

� lim sup

m!1

sup

t2T

N

kgen

A

0

(x

m

; t)� gen

A

(x

m

; t)k

= k�(A)� �(A

0

)k

0

< ":

Hene, kgen

A

0

(x

m

; t

m

)v

m

k < " for all suÆiently large m. We further suppose

without loss that the limit operator of A

0

with respet to the sequene x exists

(otherwise Let " < 1=(4 kA

�1

x

k), and let A

0

be a band operator with oeÆients in

SO

rih

L(H)

suh that kA�A

0

k < ". Then k�(A)� �(A

0

)k

0

< ", whih implies that

lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

k

� lim sup

m!1

kgen

A

0

(x

m

; t

m

)v

m

� gen

A

(x

m

; t

m

)v

m

k+ lim

m!1

kgen

A

(x

m

; t

m

)v

m

k

� lim sup

m!1

sup

t2T

N

kgen

A

0

(x

m

; t)� gen

A

(x

m

; t)k

= k�(A)� �(A

0

)k

0

< ":

Hene, kgen

A

0

(x

m

; t

m

)v

m

k < " for all suÆiently large m. We further suppose

without loss that the limit operator of A

0

with respet to the sequene x exists

(otherwise we pass to a suitable subsequene of x). As in the proof of Proposition

8.1, we an �nd a unit vetor u 2 l

2

suh that

kV

�x

m

A

0

V

x

m

(v

m


 u)k < 2" for all suÆiently large m

and, aording to the de�nition of limit operators, we further have

k(V

�x

m

A

0

V

x

m

�A

0

x

)(v 
 u)k ! 0

uniformly with respet to the unit vetors v. Hene, kA

0

x

(v

m


 u)k < 3" for all

suÆiently large m. Sine kv

m


 uk = 1, we onlude that

either A

0

x

is not invertible or k(A

0

x

)

�1

k > 1=(3"): (29)

On the other hand,

kA

x

�A

0

x

k � kA�A

0

k < " < 1=(4 kA

�1

x

k):

Thus, by a Neumann series argument, A

0

x

is invertible, and

k(A

0

x

)

�1

k �

k(A

x

)

�1

k

1� k(A

x

)

�1

k kA

x

�A

0

x

k

�

k(A

x

)

�1

k

1� " k(A

x

)

�1

k

:

Together with (29), this yields

1

3"

<

k(A

x

)

�1

k

1� " k(A

x

)

�1

k

or, equivalently, " > 1=(4 k(A

x

)

�1

k. The obtained estimate ontradits the hoie

of ".

In a similar way, the following re�nement of the loal Fredholm riterion (Theorem

1.6 and its orollary) an be derived.

Theorem 8.4 The following assertions are equivalent for A 2 A

E

(SO

rih

L(H)

):

(a) A is loally invertible at � 2 S

N�1

.

(b) The loal oset �

�

(A) is invertible.

() All operators in loal operator spetrum �

�

(A) of A are invertible.
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