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Abstra
t

We 
onsider the quantum drift di�usion model for semi
ondu
tor de-

vi
es and 
olle
t re
ent results on the stationary and transient equa-

tions. The stationary model in
luding generation{re
ombination terms

is studied for bipolar devi
es and the transient equations are 
onsidered

in the unipolar 
ase. We 
over several topi
s, su
h as existen
e and

uniqueness of solutions, asymptoti
 limits and 
onvergen
e of a non-

linear iteration s
heme in the stationary 
ase as well 
onvergen
e of a

positivity preserving semidis
retization of the transient equations and

the linear stability of stationary states.
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1 Introdu
tion

Modern semi
ondu
tor devi
e modelling has to keep pa
e with the in
reasing

speed of miniaturization, whi
h poses many 
hallenging problems 
on
erning

the modelling and the numeri
al point of view. As many devi
es, like HEMT's,

MOSFET's or resonant tunneling stru
tures (RTD's) already rea
hed the de-


anano length s
ale, quantum e�e
ts play a dominant role and must be a

u-

rately resolved by modern simulation tools suitable for an engineering{oriented

devi
e analysis [20℄. The Semi
ondu
tor Industry Asso
iation (SIA) proje
ts

that 2009 the leading edge MOS devi
e will employ a 0:05�m length s
ale and

an oxide thi
kness of 1:5 nm or less. But already today quantum me
hani
al

e�e
ts, like 
on�nement in barrier stru
tures or inversion layers as well as di-

re
t tunneling through the oxide 
ausing gate leakage in MOS stru
tures are

no more negligible [19℄.

Clearly, mi
ros
opi
 models su
h as the S
hr�odinger{Poisson or the Wigner{

Poisson system are 
apable of resolving 
orre
tly the quantum dominated de-

vi
e behaviour [48℄. During the last years many results su
h as the well{

posedness of the whole spa
e problem as well as the semi
lassi
al limit have

been proved [16, 45℄. However, from the numeral point of view these ma
ro-

s
opi
 models meet several problems: Firstly, the high 
omputational 
osts

espe
ially in multidimensions [41, 60℄. Se
ondly one 
omputes a lot of redun-

dant information, sin
e the ma
ros
opi
 quantities, su
h as 
urrent{voltage


hara
teristi
s or parti
le densities are 
omputed via mi
ros
opi
 auxiliary

quantities, e.g. the wave fun
tion [42℄. Further, quantum e�e
ts are only exist-

ing in small parts of the devi
e, su
h as inversion layers, and almost negligible

in the remaining part [3℄. Lastly, their 
orre
t physi
al setting is based on an

unbounded position domain, su
h that the pres
ription of appropriate bound-

ary data poses severe problems [41℄. Nevertheless, mu
h resear
h was spend on

this question: Analyti
al and numeri
al methods for the S
hr�odinger{Poisson

system on bounded position domains [52, 53℄, absorbing boundary 
onditions

for the quantum kineti
 Wigner equation [11℄ and also the 
oupling of mi
ro-

s
opi
 models with di�erent 
lassi
al and kineti
 model was studied [1℄.

In parallel mu
h e�ort has been spend on the derivation of a `
lassi
al' pi
ture

of quantum me
hani
s in terms of ma
ros
opi
 
uid type unknowns. This

idea goes ba
k to the early beginnings of quantum me
hani
s, where ma
ro-

s
opi
 quantum models su
h as Blo
h's equation for the density matrix [49℄ or

Madelung's transform of the S
hr�odinger equation where invented [42℄. These

are however still dire
t reformulations of an underlying mi
ros
opi
 model.

They are employed in many �elds of appli
ation, e.g. semi
ondu
tor devi
e

modelling, super
ondu
tivity or re
ently super
uidity [43℄.

In
uen
ed by the immense su

ess of the ma
ros
opi
 theory of 
harge trans-
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port in semi
ondu
tors in form of the drift di�usion model (DD) of Van Roos-

broe
k [50℄, An
ona et al. [3, 7, 4℄ proposed a quantum 
orre
tion of this well

understood system. They assume that the essential nonlo
ality of quantum

me
hani
s 
an be approximated by the demanding that the equations of state

for the 
harged parti
les depend not only on their respe
tive densities but also

on the density{gradient. This density{gradient theory is impressively 
apable

of des
ribing the 
orre
t devi
e behaviour in the vi
inity of strong inversion

layers in MOS stru
tures when 
ompared to one{ele
tron quantum me
hani


simulations [3℄. An
ona et al. started their 
onsiderations following ideas

from gas dynami
s and applied their model also to other appli
ations su
h

as �eld emission from metals and steady state tunneling in metal{insulator{

metal stru
tures (MIM), where Fowler{Nordheim tunneling plays a prominent

role [5℄. This theory has also signi�
ant 
omputational advantages, su
h that

during the last de
ade many people studied this approa
h analyti
ally and

numeri
ally.

Not surprisingly also many applied mathemati
ians be
ame interested in these

new ma
ros
opi
 quantum models. Starting from the Wigner{Poisson system

[22℄ or the mixed state S
hr�odinger{Poisson system [27℄ they used the strong

tool of asymptoti
 analysis to derive a whole hierar
hy of ma
ros
opi
 quan-

tum models in analogy to the 
lassi
al 
ontinuum models, ranging from the

quantum hydrodynami
 model over quantum energy transport to the quantum

drift di�usion model:

�

�

�

�

Wigner{Poisson/S
hr�odinger{Poisson

+

'

&

$

%

�

�

�

�

Quantum Hydrodynami
s (QHD)

+

�

�

�

�

Quantum Energy Transport (QET)

+

�

�

�

�

Quantum Drift Di�usion (QDD)

They des
ribe the ele
tron 
ow in the semi
ondu
tor 
rystal in terms of 
uid{

type unknowns, su
h as ele
tron density, 
urrent density and energy density,

whose evolution is governed by 
orresponding 
onservation laws. Originally,

the QHD is an in�nite hierar
hy of moment equations, whi
h has to be sup-

plemented with appropriate 
losure 
onditions [28℄. Nowadays the full QHD
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onsists of three balan
e laws, while the QDD is isothermal and thus two

equations are suÆ
ient. The QET was derived only re
ently and is not inves-

tigated so far [37℄. Note that for the QHD and the QDD oftenly the synonyms

density{gradient theory or quantum moment equations are used in the engi-

neering literature.

Gardner [22℄ derives the full QHD from the Wigner equation and shows that

it allows to simulate quantum devi
es, espe
ially RTD's, numeri
ally very

eÆ
iently. Note that the isothermal QHD, i.e. the equations of state for the

ele
tron density and the 
urrent density in
luding inertia is already stated

and numeri
ally investigated in [30, 5℄. Zhou and Ferry [20℄ employed the full

QHD for the simulation of multiple devi
es, su
h as HEMT's, MESFET's and

RTD's. They studied the in
uen
e of quantum e�e
ts on the velo
ity overshoot

and did also report 
urrent os
illations in transient simulations [66, 67, 68℄.

Re
ently, Gardner and Ringhofer [23℄ derived a `smooth' QHD, where the

quantum term involves a smoothed potential whi
h has the 
apability of han-

dling the dis
ontinuities in the 
lassi
al potential energy o

urring in the vi
in-

ity of heterojun
tion barriers in a mathemati
ally rigorous way. Numeri
al

simulations show that negative di�erential resistan
e is present in the simu-

lation of RTD's [24℄. Further analyti
al work on the QHD 
an be found in

[15, 10, 26, 35, 36, 33, 21, 25, 57℄. We note that the 
hoi
e of appropriate

boundary 
onditions and of the heat 
ondu
tivity is deli
ate and in
uen
es

strongly the numeri
al results [35, 55, 59℄.

Performing the zero relaxation time limit in the isothermal QHD the 
onve
-

tive term vanishes and one obtains the QDD [56℄ (see also Se
tion 1.1). These

equations equal up to a quantum 
orre
tion the 
lassi
al DD [50℄. The math-

emati
al analysis and numeri
al understanding of this set of equations is now

in a rather mature state. In this paper we are going to give a review on the

results obtained so far.

The advantage of the QDD is threefold:

1. The perturbation 
hara
ter of the QDD equations promises a redu
tion

of redundan
y in regions where the devi
e behaves `almost' 
lassi
al.

2. There is a natural way to des
ribe boundary 
onditions.

3. Existing simulation 
odes for the 
lassi
al DD 
an be easily adjusted.

The analysis for the thermal equilibrium problem (whi
h is equal to the one

for the QHD) was performed byUnterreiter in [62℄ via a variational approa
h.

Ben Abdallah and Unterreiter [2℄ proved existen
e of solutions of a bipolar

extension of the stationary equations in
orporating generation{re
ombination
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e�e
ts. A generalized Gummel iteration for the eÆ
ient numeri
al treatment

of the QDD is developed in [58℄ and also analyzed.

The study of the transient equations is mu
h more involved due to their fourth

order nature. Existen
e of a non{negative global solution in the 
ase of vanish-

ing temperature and zero ele
tri
 �eld is proved in [38℄. A positivity preserving

numeri
al s
heme is derived in [40℄, whi
h proves to be 
onvergent and also

the optimal order of 
onvergen
e 
an be shown [39℄. The linear stability of

stationary states is investigated in [56℄.

The QDD gained 
onsiderable attention not only mathemati
ally but also from

the engineering point of view. It was employed for the simulation of many

quantum semi
ondu
tor devi
es and proved its numeri
al eÆ
ien
y, espe
ially

in several spa
e dimensions [9, 8, 12, 64℄. Due to its numeri
al robustness

it is already integrated in the 2d/3d PROPHET simulation 
ode from Lu
ent

Te
hnologies. En
ouraging 
omparisons with S
hr�odinger{Poisson simulations


an be found in [6, 64℄.

To get a 
omprehensive impression of the 
apabilities of the QDD we also

have to mention its limitations. As only low order quantum 
orre
tions are


onsidered no quantum interferen
e phenomena are in
luded in the model.

Further, the simulation of modern single{ele
tron devi
es is out of rea
h due

to the break down of the 
ontinuum hypotheses. Also the 
hoi
e of the mobility


oeÆ
ient and the e�e
tive tunneling mass is deli
ate [63, 8, 64℄. Either, they

are derived empiri
ally or used as �tting parameters to get better quantitative

agreement of 
omputational and experimental results.

The paper is organized as follows. In Se
tion 1.1 we derive the QDD via

the zero relaxation time limit in the isothermal QHD. Results on the bipolar

stationary equations are given in Se
tion 2. We dis
uss the thermal equilibrium

problem as well as the biased 
ase and a generalized Gummel iteration. Re
ent

results on the transient model are given in Se
tion 3. There, the existen
e

of global non{negative solutions, the 
onvergen
e of a positivity{preserving

numeri
al s
heme and the linear stability of stationary states are dis
ussed.

Further, we give 
on
lusions in Se
tion 4.

1.1 Passage from QHD to QDD

It is well{known that quantum moment equations 
an be derived in various

ways [22, 27, 23℄. In this se
tion we start from the isothermal QHD and

dedu
e the QDD in the zero relaxation time limit. This asymptoti
 link is just

in analogy to 
onne
tion of the 
lassi
al hydrodynami
 equations to the DD

[29℄.This formal derivation was �rst presented in [56℄.

The transient, isothermal QHD 
onsists of 
onservation laws for the ele
tron
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density and the 
urrent density [22℄. The uns
aled QHD equations stated on

a bounded domain 
 � R

d

, d = 1; 2 or 3 read:

�n

�t

+

1

q

div J = 0; (1.1a)

�J

�t

+

1

q

div

�

J 
 J

n

�

+

q k

B

T

0

m

rn+

q

2

m

nrV �

q ~

2

2m

2

nr

�

�

p

n

p

n

�

= �

J

�

;

(1.1b)

whi
h are self{
onsistently 
oupled with the Poisson equation for the ele
tro-

stati
 potential

���V = q (n� C

dot

) : (1.1
)

The variables are the ele
tron density n = n(x; t), the 
urrent density J =

J(x; t) and the ele
trostati
 potential V = V (x; t). The physi
al 
onstants

are the elementary 
harge q, the Boltzmann 
onstant k

B

, the e�e
tive ele
tron

mass m and the redu
ed Plan
k 
onstant ~. For the values of these 
onstants

we refer to [48℄. Physi
al parameters are the permittivity �, the ambient

temperature T

0

and the relaxation time � , whi
h depend on the material and

on the operating 
onditions of the devi
e. The time{independent doping pro�le

C

dot

= C

dot

(x) represents the distribution of 
harged ba
kground ions.

For the zero relaxation time limit is it 
onvenient to introdu
e in (1.1) the

following di�usion s
aling, where the new dimensionless quantities are marked

by a tilde:

n! C

m

~n; C

dot

! C

m

~

C

dot

; x! L ~x;

t!

mL

2

k

B

T

0

�

~

t; V !

k

B

T

0

q

~

V ; J !

q k

B

T

0

C

m

�

Lm

~

J:

Here, C

m

denotes the maximal absolute value of the doping pro�le C

dot

and L

is a 
hara
teristi
 devi
e length, e.g. the diameter. De�ning the s
aled Plan
k


onstant ", the s
aled Debye length � and the s
aled relaxation time �

0

by

"

2

=

~

2

2mk

B

T

0

L

2

; �

2

=

� k

B

T

0

q

2

C

m

L

2

; �

2

0

=

k

B

T

0

�

2

mL

2

;

we end up with the s
aled QHD equations

�n

�t

+ div J = 0; (1.2a)

�

2

0

�J

�t

+ �

2

0

div

�

J 
 J

n

�

+rn + nrV � "

2

nr

�

�

p

n

p

n

�

= �J; (1.2b)

��

2

�V = n� C

dot

; (1.2
)
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where we omitted the tilde for notational 
onvenien
e.

In appli
ations the following data of a quantum semi
ondu
tor devi
e [6, 64℄

is realisti
:

L = 100 nm; � = 10

�13

s; T

0

= 77K;

where the relaxation time � 
orresponds to the low �eld mobility of GaAs [61℄.

The squared s
aled relaxation time is �

2

0

� 10

�4

, whi
h justi�es the relaxation

limit �

0

! 0 in (1.2). This formally yields the system

�n

�t

+ div J = 0; (1.3a)

�"

2

nr

�

�

p

n

p

n

�

+rn + nrV = �J; (1.3b)

��

2

�V = n� C

dot

: (1.3
)

System (1.3) di�ers from the 
lassi
al drift di�usion equations [48℄ only in the

quantum 
orre
tion `�"

2

nr

�

�

p

n

p

n

�

'.

Inserting (1.3b) into (1.3a) we 
an eliminate the 
urrent density J . From the

identity

2 div

�

nr

�

�

p

n

p

n

��

= ��

2

n+

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

we get the s
aled transient QDD:

�n

�t

= �

"

2

2

�

2

n+

"

2

2

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

+�n+ div(nrV ); (1.4a)

��

2

�V = n� C

dot

: (1.4b)

Hen
e, the transient QDD 
onsists of a nonlinear fourth{order paraboli
 equa-

tion for the ele
tron density n, whi
h is self{
onsistently 
oupled to the Poisson

equation for the potential V .

Espe
ially, for the stationary equations there exist various formulations. These

range from se
ond order [2℄ via third [21℄ to fourth order systems [15℄, whi
h

all have their spe
i�
 advantages and drawba
ks. In the next se
tion we 
on-


entrate on the stationary se
ond order system.

2 The Stationary Equations

In Se
tion 1.1 we derived the unipolar QDD. As all 
lassi
al models involve

two types of 
arriers, namely ele
trons and holes, it is only natural to extend
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the QDD to handle also bipolar quantum devi
es. This extension is proposed

by Ben Abdallah and Unterreiter in [2℄ and reads in its s
aled, stationary form

stated on a bounded domain 
 � R

d

, d = 1; 2 or d = 3:

�"

2

�

p

n

p

n

+ log(n) + V +B

n

= F; (2.1a)

��"

2

�

p

p

p

p

+ log(p)� V +B

p

= G; (2.1b)

div (�

n

nrF ) = R(n; p)

�

exp (F +G)� Æ

2

�

; (2.1
)

div (�

p

prG) = R(n; p)

�

exp (F +G)� Æ

2

�

; (2.1d)

��

2

�V = n� p� C

dot

: (2.1e)

The s
aled physi
al parameters are the Plan
k 
onstant ", the ratio � of

the e�e
tive masses of ele
trons and holes and the mobilities �

n

; �

p

of ele
-

trons and holes, respe
tively, and the Debye length �. All these quanti-

ties are assumed to be positive 
onstants, ex
luding espe
ially �eld depen-

dent mobilities. The doping pro�le C

dot

= C

dot

(x) (where x is the spatial

variable ranging in 
) representing a �xed 
harge distribution and the non-

negative quantum well potentials B

n;p

= B

n;p

(x) are assumed to be �xed.

Equation (2.1) also in
ludes generation-re
ombination pro
esses of the form

R(n; p) (exp(F +G)� Æ

2

), where R : R

2

! R and Æ > 0. In thermal equilib-

rium there is no generation-re
ombination pro
ess. Hen
e, Æ

2

= exp (F

eq

+G

eq

),

where F

eq

; G

eq

are the (
onstant!) equilibrium values of the quantum quasi

Fermi levels, see [62℄. The model in
ludes Sho
kley{Read{Hall and Auger

generation-re
ombination pro
esses but ex
ludes generation through impa
t

ionization [44℄.

In (2.1) the ele
tron density n = n(x) � 0, the hole density p = p(x) � 0,

the quantum quasi Fermi levels F = F (x); G = G(x) and the ele
trostati


potential V = V (x) are unknown. The 
urrent densities of ele
trons and holes

are determined by the 
harge densities, the quantum quasi Fermi levels F;G

and the mobilities:

J

n

= �

n

nrF; J

p

= ��

p

prG: (2.2)

The model equations (2.1) are supplemented with mixed Diri
hlet-Neumann

boundary 
onditions

n = n

D

; p = p

D

; V = V

D

+ V

ext

on �

D

; (2.3a)

F = F

eq

+ V

ext

; G = G

eq

� V

ext

on �

D

; (2.3b)

rn � � = rp � � = rV � � = 0 on �

N

; (2.3
)

rF � � = rG � � = 0 on �

N

; (2.3d)
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where �

D

and �

N

are disjoint parts of the boundary of 
 with �

D

[ �

N

= �


and � is the unit outward normal ve
tor along �

N

. Here, �

D

models the Ohmi



onta
ts of the devi
e, while the insulating parts of the boundary are des
ribed

by �

N

.

This set of boundary 
onditions is motivated by its analogy to the 
lassi
al DD.

Nevertheless, the 
hoi
e of the Diri
hlet data n

D

, p

D

and V

D

is still an open

problem, sin
e up to now no rigorous derivation from mi
ros
opi
 quantum

models is available [55, 40℄.

Some authors assume 
harge neutrality and vanishing quantum e�e
ts at

the boundary and sometimes only homogeneous Neumann data is employed

[38, 40℄. Clearly, the thermal equilibrium densities n

eq

and p

eq

are possible


andidates for n

D

and p

D

and the built{in potential V

eq

for V

D

, respe
tively.

2.1 Thermal Equilibrium

The thermal equilibrium problem is of great interest for itself, as in the vari-

ational approa
h by Unterreiter [62℄ one needs not to pres
ribe any boundary

data for the parti
le densities. Instead one assumes the total 
harge neutrality

of the devi
e and �nds the thermal equilibrium state as the state of minimal

total energy [53, 62℄

E(n; p) = "

2

Z




�

�

r

p

n

�

�

2

dx+ �"

2

Z




jr

p

pj

2

dx+

Z




H(n) dx+

Z




H(p) dx

+

�

2

2

Z




jrV [n� p� C

dot

℄j

2

dx +

Z




B

n

n dx +

Z




B

p

p dx:

in the set

C

def

=

�

(n; p) 2 L

1

(
)� L

1

(
) : n; p � 0;

p

n;

p

p 2 H

1

(
) ;

Z




n dx = N;

Z




p dx = P

�

;

where H(t) = t log(t)� t + 1 is a primitive of h(t) = log t and

N

def

=

Z




C

+

dot

dx; P

def

=

Z




C

�

dot

dx

are the densities of donator and a

eptor atoms. Further, V = V [n� p�C

dot

℄

is the self 
onsistent ele
trostati
 potential de�ned via ��

2

�V = n� p�C

dot

with

R




V (x) dx = 0. We note that

Z




(n� p� C

dot

) dx = 0 for all (n; p) 2 C;
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whi
h yields the desired 
harge neutrality of the devi
e.

The existen
e and uniqueness of a minimizer (n

eq

; p

eq

) 2 C is proved by Un-

terreiter in [62℄ by means of variational 
al
ulus, where he also identi�es the

Euler{Lagrange equations.

Theorem 2.1. Assume

A.1 
 � R

d

; d = 1; 2 or d = 3 is a non-void, 
onvex, bounded domain.

A.2 There exists a 
onstant K = K(
) 2 (0;1) su
h that for all f 2 L

2

(
),

kV [f ℄k

L

1

(
)

� Kkfk

L

2

(
)

;

where �V [f ℄ = f .

A.3 B

n

; B

p

; C

dot

2 L

1

(
) and B

n;p

� 0.

Then E has a unique minimizer (n

eq

; p

eq

) in C and n

eq

; p

eq

and V

eq

:= V [n

eq

�

p

eq

� C

dot

℄ have the following properties:

a) n

eq

; p

eq

; V

eq

2 C

B

(
) \H

1

(
).

b) There exists a 
onstant �

eq

2 (0; 1) su
h that �

eq

� n

eq

; p

eq

� 1=�

eq

.


) There exist 
onstants F

eq

; G

eq

2 R su
h that

�"

2

�

p

n

eq

p

n

eq

+ log(n

eq

) + V

eq

+B

n

= F

eq

��"

2

�

p

p

eq

p

p

eq

+ log(p

eq

)� V

eq

+B

p

= G

eq

Further, he investigates the semi
lassi
al limit " ! 0 and the small Debye

length limit �! 0.

There exist various possibilities for the numeri
al 
al
ulation of the minimizer.

In [58℄ a proje
ted quasi{gradient method is presented and its 
onvergen
e

proved, both on the 
ontinuous level and for the dis
retized problem.

Numeri
al investigations give eviden
e that for the thermal equilibrium state


harge neutrality at the boundary holds [55℄ , at least as long as the devi
es is

not to small. By means of asymptoti
 analysis the author shows in [55℄ that

this 
annot hold for ultra{small devi
es, whereas the assumption of vanishing

quantum e�e
ts at the boundary 
an be justi�ed.
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2.2 QDD with Bias

The full system (2.1) supplemented with boundary 
onditions (2.3) is analyt-

i
ally investigated by Ben Abdallah and Unterreiter in [2℄. They show the

following existen
e result.

Theorem 2.2. Assume

A.1 
 � R

d

; d = 1; 2 or d = 3 is a bounded domain and �
 is C

0;1

and

pie
ewise regular.

A.2 R 2 C

0

(R � R; [0;1)).

A.3 B

n

; B

p

; C

dot

2 L

1

(
) and B

n;p

� 0.

Then the system (2.1) supplemented with boundary data (2.3) possesses a so-

lution n; p; V; F;G 2 H

1

(
) \ L

1

(
). Further, n; p; V; F;G 2 C

0

(
) and

n(x); p(x) > 0 for all x 2 
.

The proof is done by means of variational methods 
ombined with S
hauder's

�xed point theorem. They also ta
kle the 
ase of vanishing 
harge density at

the boundary o

urring at inversion layers. An
ona [3℄ emphasized this issue

as one of the main advantages of the QDD, sin
e here su
h kind of boundary


onditions 
an be in
orporated in 
ontrast to the 
lassi
al DD.

The question of uniqueness of solutions was left open in this paper and �nally

answered in [58℄ (see also Se
tion 2.3). There it is shown that the solution is

unique as long as the devi
e is operated near the thermal equilibrium state,

i.e. for small applied biasing voltages V

ext

. This is in analogy to the result for

the 
lassi
al model [44, 51℄.

In [2℄ also the semi
lassi
al limit is established, i.e. the solutions of the QDD


onverge to solutions of the 
lassi
al DD as " ! 0. We give the pre
ise


onvergen
e result.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold and assume n

D

; p

D

>

0. Then there exist fun
tions n; p; V; F;G 2 C

0

(
) \H

1

(
) satisfying

log(n) + V = F;

log(p)� V = G;

div (�

n

nrF ) = R(n; p)

�

exp (F +G)� Æ

2

�

;

div (�

p

prG) = R(n; p)

�

exp (F +G)� Æ

2

�

;

��

2

�V = n� p� C

dot

:

and (2.3) su
h that a solution n

"

; p

"

; V

"

; F

"

; G

"

2 C

0

(
) \ H

1

(
) of system

(2.1) supplemented with (2.3) ful�ls

p

n

"

!

p

n,

p

p

"

!

p

p, V

"

! V , F

"

!

F , G

"

! G strongly in H

1

(
), weak-� in L

1

(
) as "! 0.

11



In this sense the QDD behaves well for small " despite of its singular pertur-

bation 
hara
ter. Clearly, this will be di�erent if heterojun
tion barriers are

present or in the vi
inity of strong inversion layers (see [6℄).

2.3 A Generalized Gummel{Iteration

In this se
tion we 
onsider a de
oupling algorithm for the numeri
al solution of

(2.1), whi
h proves to work in a stable and eÆ
ient manner. For the 
lassi
al

DD an iteration introdu
ed by Gummel [32℄ is most 
ommonly employed and

proved to be rather well suited for many problems of pra
ti
al relevan
e. There

exist a vast literature in whi
h the Gummel{iteration is thoroughly studied

from a numeri
al and an analyti
al point of view (for an ex
ellent overview

see [44, 34℄ and the referen
es therein).

In [58℄ a �xed point mapping is 
onstru
ted whi
h yields a generalized Gummel{

iteration for the QDD. This algorithm relies on a �xed point iteration de
ou-

pling the 
urrent equations from the rest of the system. In ea
h iteration

step two semi linear ellipti
 systems are solved. The �xed point mapping

T is de�ned via: Let (F

0

; G

0

) be a pair of quantum quasi Fermi levels from

an appropriately 
hosen set. Then, T (F

0

; G

0

) := (F

1

; G

1

), where (F

1

; G

1

) is


omputed from (F

0

; G

0

) as follows:

Algorithm 1. (Generalized Gummel{iteration)

1. Solve the semi linear ellipti
 system

�"

2

�

p

n

p

n

+ log(n) + V +B

n

= F

0

; (2.4a)

��"

2

�

p

p

p

p

+ log(p)� V +B

p

= G

0

; (2.4b)

��

2

�V = n� p� C

dot

; (2.4
)

subje
t to the boundary 
onditions (2.3) for (n

1

; p

1

; V

1

).

2. Solve

div (�

n

n

1

rF ) = R(n

1

; p

1

)

�

exp (F +G)� Æ

2

�

; (2.5a)

div (�

p

p

1

rG) = R(n

1

; p

1

)

�

exp (F +G)� Æ

2

�

; (2.5b)

subje
t to the boundary 
onditions (2.3) for (F

1

; G

1

).

Clearly, every �xed point of T is a solution of the original problem (2.1) with

boundary 
onditions (2.3). The unique solvability of the above boundary value

12



problems and thus the well{posedness of the �xed point mapping is also shown

in [58℄. From the numeri
al point of view it is advantageous not to deal with a


oupled system of �ve semi linear ellipti
 equations, but with two mu
h more

tra
table problems: System (2.4) is similar to the thermal equilibrium problem

[62℄, whi
h has been intensively investigated and system (2.5) �ts into the the-

ory of monotone operators [65℄. Further, if the devi
e is operated near thermal

equilibrium, even 
onvergen
e of the iterating sequen
e (n

k

; p

k

; V

k

; F

k

; G

k

) de-

�ned via Algorithm 1 
an be proved. The pre
ise result reads.

Theorem 2.4. There exists a 
onstant U

Æ

> 0, depending on various devi
e

parameters, su
h that

kV

ext

k

L

1

(
)

< U

Æ

implies:

a) There exists a unique solution (n

Æ

; p

Æ

; V

Æ

; F

Æ

; G

Æ

) of (2.1), (2.3).

b) (n

k

; p

k

; V

k

; F

k

; G

k

) 
onverges to (n

Æ

; p

Æ

; V

Æ

; F

Æ

; G

Æ

) strongly in

(L

s

(
))

2

� (H

1

(
))

3

as k !1.

In fa
t one shows that T is a 
ontra
tion on an appropriately 
hosen set. Then

Theorem 2.4 follows from Bana
h's �xed point theorem.

The proof of the 
ontra
tivity of T heavily relies on the Lips
hitz{
ontinuity of

the �rst step in Algorithm 1, whi
h is a 
onsequen
e of the following Poi
ar�e{

type estimate.

Lemma 2.5. Assume A.1 of Theorem 2.2. Then there exists for all � 2 R

and all � 2 (0; 1) a 
onstant K = K(
; �; �; s) 2 (0;1) su
h that for all

u 2 H

1

(
) \ L

1

(
) with � � u � 1=� and all � 2 H

1

0

(
 [ �

N

) \ L

1

(
):

Z




u

�

�

�

�

�

r

�

�

u

�

�

�

�

�

2

dx � K k�k

2

L

s

(
)

: (2.6)

Lemma 2.5 assures that the quantum operators A(�) = �

p

�=

p

�, � = n or

� = p, are monotoni
 with respe
t to the L

s

(
){norm. Alternatively, one 
an

dedu
e that the se
ond variation of the quantum energy term

E

quant

(�) =

Z




jr

p

�j

2

dx

is positive de�nite with respe
t to the L

s

(
){norm. In this sense the Bohm

potential is mu
h easier to handle numeri
ally than the third order operator in

(1.1), whi
h seems to be responsible for dispersive e�e
ts in the QHD [46, 33℄
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and also yields analyti
al problems [21℄. In [56℄ it is shown that also the fourth

order operator in the transient QDD (1.4) has su
h a monotoni
ity property.

Theorem 2.4 applies in 
ases where F and G are 
lose to their 
orresponding

equilibrium values F

eq

; G

eq

on �

D

. This 
orresponds to the uniqueness result

for the 
lassi
al DD [51℄: For small applied bias voltages the 
urrent-voltage


hara
teristi
s is uniquely de�ned. This is physi
ally reasonable. For higher

applied voltages no uniqueness result is available. But it may be assumed

that uniqueness does not hold in general: The performan
e of many devi
es

(thyristors) relies on the existen
e of multiple solutions [48℄.

Note that in the engineering literature [6, 9, 66, 64℄ also other numeri
al

s
hemes are reported, su
h as a damped Newton{iteration or a hybrid method,

whi
h 
ombines the robustness of the Gummel{iteration with the se
ond or-

der 
onvergen
e of Newton's iteration. There the Gummel iteration is used to


ompute a good starting point for the �rst Newton step. Up to know there is

no numeri
al analysis available for these methods. However, it is assumed that

this en
ounters the same diÆ
ulties as the one for the 
lassi
al model, sin
e

the invertibility of the linearization of (2.1) strongly depends on the size of the

o�{diagonal terms [44, 34℄. Nevertheless, a Newton iteration is the method of


hoi
e for (2.4) due to the monotoni
ity of the quantum operator.

For all numeri
al approa
hes voltage 
ontinuation, i.e. the applied voltage is

in
remented and in ea
h step the previous solution is used as an initial guess

for the next iteration, proved to be ne
essary to stabilize the numeri
s for large

applied biasing voltages.

3 The Transient QDD

While the stationary QDD was investigated thoroughly and its analysis is now

in a rather mature state, only re
ently some results on the transient equations

(1.4) are available [38, 40, 39℄. This is due to the fa
t that the equation for

the ele
tron density is of fourth order, su
h that no maximum prin
iple is

available to ensure the positivity of the density. In [38℄ the main part of (1.4a)

is investigated:

n

t

= �(n(log(n))

xx

)

xx

(3.1a)

for t > 0; subje
t to the initial 
ondition

n(0; x) = n

0

(x) (3.1b)

and the boundary 
onditions

n(0) = n(1) = 1; n

x

(0) = n

x

(1) = 0: (3.1
)
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Note that (3.1a) 
an be equivalently written as

n

t

= �n

xxxx

+

�

n

2

x

n

�

xx

; (3.2)

This is exa
tly (1.4a) in the 
ase of zero temperature and zero ele
tri
 �eld.

Surprisingly, this equation also arises as a s
aling limit in the study of interfa
e


u
tuations in a 
ertain spin system [18℄. The variable n des
ribes the s
aling

limit of probabilities for a random variable. Problem (3.1a){(3.1b) with peri-

odi
 boundary 
onditions was �rst studied by Bleher et al. in [14℄. Assuming

(stri
tly) positive H

1

(
){data, they showed that there exists a unique posi-

tive 
lassi
al solution lo
ally in time. For \small" initial data, the solution

is even global in time. However, the problem whether non{negative solutions

for general (non{negative) initial data exist globally in time remained open.

This was re
ently answered: In [40℄ it is proved that for general initial data a

non{negative solution exists globally in time. Note that the equivalent formu-

lation of (3.1a) is not degenerate su
h that the te
hniques developed for the

so{
alled thin �lm equations [13, 31, 54℄, espe
ially the 
on
ept of nonlinear

entropy dissipation, are not appli
able.

In fa
t, it is shown that for non{negative initial data satisfying a 
ertain inte-

grability 
ondition, there exists a generalized non{negative solution globally in

time. As only weak assumptions are imposed on the data , it 
an be a priorily

not expe
ted that the solutions have L

2

lo


(0;1;H

2

(
)){regularity. But similar

to [13℄ a new solution 
on
ept is introdu
ed, whi
h is given in the following

existen
e result.

Theorem 3.1. Assume that the initial datum n

0

is measurable and satis�es

the 
ondition

Z




n

0

� log(n

0

) dx < +1: (3.3)

Then there exists a solution n of (3.1a){(3.1
) satisfying

n(x; t) � 0 a.e. in (0;1)� 
; (3.4a)

n 2 L

2

lo


(0;1;W

1;1

(
)); n

t

2 L

1

lo


(0;1;H

�2

(
)); (3.4b)

log(n) 2 L

2

lo


(0;1;H

2

(
)) \ L

1

(0;1;L

1

(
)): (3.4
)

Further, n(�; 0) = n

0

in the sense of H

�2

(
) and it holds for any T > 0 and

any smooth test fun
tion � 2 C

1




((0;1)� 
),

Z

T

0

hn

t

; �i

H

�2

;H

2

0

dt = �

Z

T

0

Z




n (log(n))

xx

�

xx

dxdt:
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The proof of Theorem 3.1 is based on two ideas. The �rst one is to perform

an exponential transformation of variables. Setting n = e

2u

; equation (3.1a)

reads in the new variable:

�

e

2u

�

t

= �2

�

e

2u

u

xx

�

xx

: (3.5)

Hen
e, the existen
e of a (generalized) solution u of (3.5) implies the existen
e

of a non{negative solution n of (3.1a). Exponential transformations were

already su

essfully employed in the study of the stationary QHD [33, 15℄.

Clearly, a solution u 2 L

1

((0;1)�
) to (3.5) provides a positive solution n to

(3.1a). However, only the regularity u 2 L

2

lo


(0;1;L

1

(
)) (see (3.4)) 
an be

dedu
ed su
h that only the existen
e of non{negative solutions to (3.1a) 
an be


on
luded. This is in 
ontrast to the stationary problem, where the positivity

property immediately follows from an H

s

(
){bound for the 
orresponding

stationary variable u and the Sobolev embedding H

s

(
) ,! L

1

(
) when s >

d=2; d being the spa
e dimension (see [33℄).

This observation gave the motivation to dis
retize (3.5) in time, whi
h is the

se
ond main idea for the proof, yielding a sequen
e of ellipti
 problems. The

existen
e of solutions u(t

k

; �) in H

2

(
) to the resulting ellipti
 problems 
an be

proved. Hen
e, the approximate solutions u(t

k

; �) are in L

1

(
) and expressions

like e

u(t

k

;x)

are well de�ned.

It is worth noting that equation (3.1a) possesses several Lyapunov fun
tionals

[14℄ whi
h provide a priori estimates in the existen
e proof. It 
an be easily

seen that the entropy

S(t) =

Z




n(t) (log(n(t))� 1) + 1 dx

is (formally) non{in
reasing in time. In the 
ase of periodi
 boundary 
ondi-

tions, also the Fisher information

Z




�

�

(

p

n)

x

�

�

2

dx

is non{in
reasing in time.

3.1 A Positivity{preserving Semidis
retization

The te
hniques developed in [38℄ are also suitable to treat the 
oupled system

(1.4). As for the moment analyti
ally only the non{negativity of solutions 
an

be expe
ted, the question arises, if at least the 
onstru
tion of a positivity

preserving numeri
al s
heme is possible. This is of great pra
ti
al relevan
e as
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the engineering{oriented devi
e analysis is fo
used on numeri
al simulations

for whi
h the positivity of parti
le densities is essential to ensure the stability

of the numeri
al s
hemes.

Following the ideas stated in [38, 40℄ an impli
it semidis
retization of (1.4) is

derived and an existen
e and stability result for the dis
retized system at ea
h

time level is proved.

In
uen
ed by the results for the stationary QDD again the quantum quasi

Fermi level F and the new variable � =

p

n are introdu
ed. Then (1.4) reads:

�

�

2

�

t

= div(�

2

rF ); (3.6a)

�"

2

��

�

+ � log(�

2

) + V = F; (3.6b)

��

2

�V = �

2

� C

dot

: (3.6
)

Here, � denotes the s
aled latti
e temperature. For the numeri
al treatment

of (3.6) a horizontal line method is employed and the transient problem is

repla
ed by a sequen
e of ellipti
 problems for 0 = t

0

< t

1

< : : : < t

N

= T . In

fa
t, system (3.6) is dis
retized using an impli
it Euler s
heme:

Set �

0

=

p

n(0). For k = 1; : : : ; N solve re
ursively the ellipti
 systems

1

�

k

�

�

2

k

� �

2

k�1

�

= div(�

2

k

rF

k

); (3.7a)

�"

2

��

k

�

k

+ � log(�

2

k

) + V

k

= F

k

; (3.7b)

��

2

�V

k

= �

2

k

� C

dot

; (3.7
)

subje
t to the boundary 
onditions

�

k

= �

D

; F

k

= F

D

; V

k

= V

D

on �

D

; (3.7d)

r�

k

� � = rF

k

� � = rV

k

� � = 0 on �

N

; (3.7e)

where

�

D

=

p

C

dot

; F

D

= U; V

D

= �� log (C

dot

) + U: (3.8)

Here, f

k

is an approximation for f(t

k

) and �

k

def

= t

k

� t

k�1

. Then the approx-

imate solution to (3.6) is given by (�

�

; F

�

; V

�

), where �

�

j

(t

k�1

;t

k

℄

� 
onst for

k = 1; : : : ; N and F

�

; V

�

respe
tively.

In [40℄ an existen
e theorem for (3.7) is proved. It is assumed that the bound-

ary �
 and the data are suÆ
iently smooth, su
h that an ellipti
 S
hauder
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estimate holds. Further, the latti
e temperature has to be suÆ
iently large,

whi
h ensures the positivity of the semidis
rete solution. This is ne
essary,

sin
e the boundary data (3.7d), (3.7e) does not allow for the usage of the

te
hniques developed in [38℄. The pre
ise existen
e and positivity result reads:

Proposition 3.2. Let k 2 f1; : : : ; Ng and let �

k�1

2 C

0;


(

�


). Then there

exists a 
onstant �

0

> 0 su
h that for all � > �

0

system (3.7) possesses a

solution (�

k

; F

k

; V

k

), ful�lling

(a) (�

k

; F

k

; V

k

) 2 H

2

(
)� C

2;


(

�


)� C

2;


(

�


) for 0 < 
 <

1

2

,

(b) 9


k

> 0 : �

k

� 


k

> 0 in 
.

Furthermore, the approximate solution is stable in the following sense (see [40,

Corollary 2.5℄).

Lemma 3.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re
ursively de�ned solu-

tion of (3.7) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)�C

2;


(

�


)�C

2;


(

�


)). Then

�

�

2 L

1

(0; T ;H

1

(
)) and �

�

rF

�

2 L

2

(0; T ;L

2

(
)). Further, there exists a

positive 
onstant 
, independent of � , su
h that

k�

�

k

L

1

(H

1

)

+ kV

�

k

L

1

(H

1

)

+ k�

�

rF

�

k

L

2

(L

2

)

� 
: (3.9)

In the one{dimensional 
ase it is possible to prove (see [40, Theorem 3.3℄) the

existen
e of a subsequen
e, again denoted by (�

�

; F

�

; V

�

), su
h that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;


(

�


));

(�

�

)

2

F

�

x

* J weakly in L

2

(0; T ;L

2

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;


(

�


));

as � ! 0, where (�; J; V ) is a weak solution of the 
ontinuous problem (3.6).

Here, the a priori bounds on the approximate solution in Lemma 3.3 are not

suÆ
ient to guarantee 
onvergen
e, sin
e the argument depends strongly on

an L

1

(0; T ;L

1

(
)){bound on �

�

(see [40℄). In one spa
e dimension this is

an immediate 
onsequen
e of the estimate (3.9) and the embedding H

1

(
) ,!

L

1

(
). In fa
t, no analyti
al results on system (3.6) are available in several

spa
e dimensions. Thus, one has to state additional assumptions on the se-

quen
e of approximating solutions. These even yield expli
it error estimates,

whi
h exhibit the optimal order of 
onvergen
e for the impli
itEuler s
heme.

Theorem 3.4. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re
ursively de�ned

solution of (3.7) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
) � C

2;


(

�


) � C

2;


(

�


)).

Assuming

18



A.4 9Æ 2 (0; 1) 8� > 0 : Æ � �

�

� Æ

�1

; k�

�

k

L

1

(0;T ;H

2

(
))

� Æ

�1

,

there exists a subsequen
e, again denoted by (�

�

; F

�

; V

�

), su
h that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;


(

�


));

F

�

! F strongly in C

0

([0; T ℄;H

1

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;


(

�


));

as � ! 0, where (�; F; V ) is a solution of the 
ontinuous problem (3.6).

Furthermore, if the embedding H

2

(
) ,! W

m;p

(
) is 
ontinuous for some

m � 0, p � 1 and

A.5 � 2 H

2

(0; T ;L

2

(
)),

then there exists a 
onstant �

0

= �

0

(
; �; Æ) > 0 su
h that for � 2 [0; �

0

) we

have the following error estimate

k�

�

� �k

L

1

(L

2

)

+ "

2

k�

�

� �k

L

2

(W

m;p

)

+ kF

�

� Fk

L

1

(H

2

)

+ kV

�

� V k

L

1

(H

2

)

� C e

�T

�; (3.10)

for some positive 
onstants � = �(
; �; Æ; �

0

) and C = C(
; �; Æ; �

0

).

The uniform lower bound for �

�

is ne
essary to verify the strong 
onvergen
e

of the quantum quasi Fermi level F

�

! F , whi
h allows for the identi�
ation

of the limiting 
urrent density J = �

2

rF . This was in one spa
e dimension

out of rea
h due to the weaker assumptions and 
onvergen
e properties. Note

that the assumption on the time regularity of �, i.e. �

tt

2 L

2

(
), seems to

be quite strong only at a �rst glan
e. Comparing the result for the 
lassi
al

transient DD given in [17℄, this regularity was already used there to derive

the optimal order of 
onvergen
e in one spa
e dimension. Most remarkably, it

is also suÆ
ient to guarantee for the optimal 
onvergen
e rate of this fourth

order system in several spa
e dimensions.

3.2 Linear Stability of Stationary States

Another interesting question is how does the transient QDD behave 
lose to

a steady state. This is investigated in [56℄, where the author studies small

perturbations of the stationary state and derives 
onditions whi
h ensure their

linear stability.
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One 
an prove that the stationary fourth order system allows for a solution

(n; V ) 2 H

2

(
)�H

1

(
), where the lower bound on n is stri
tly positive and

independent of ". At su
h a state the operator G de�ned by

G(n)

def

= div(nrA(n));

where

A(n)

def

= �"

2

�

p

n

p

n

+ log(n) + V [n� C

dot

℄;

and V [n�C

dot

℄ denotes the solution of ��

2

�V = n�C

dot

; V � V

D

2 H

1

0

(
 [

�

N

), is Fr�e
het{di�erentiable.

Assume that a solution z of the perturbed problem

�z

�t

= G(z) in 
� (0; T ); (3.11a)

z = n

D

; rz � � = 0 on �
� (0; T ); (3.11b)

z(�; 0) = n(�) + Æ g(�) in 
; (3.11
)

where Æ > 0 is a small parameter and g 2 L

2

(
), 
an be written as z(x; t) =

n(x) + Æ�(x; t). Then, � satis�es the linear �rst order approximation

��

�t

= G

0

(n)[�℄ in 
� (0; T );

� = 0; r� � � = 0 on �
 � (0; T );

�(�; 0) = g(�) in 
;

whi
h is nothing than the linearized transient QDD.

Employing Hilbert spa
e methods for linear paraboli
 PDE's and exploiting

the monotoni
ity of the quantum operator the author shows the existen
e of

a unique solution � satisfying some stability estimate [56℄. More pre
isely:

Theorem 3.5. Assume that 
 is suÆ
iently regular. Let f 2 L

2

(0; T ;L

2

(
))

and g 2 L

2

(
). Then there exists a unique solution � 2 L

2

(0; T ;H

2

0

(
)) of

the inhomogeneous problem

��

�t

= G

0

(n)[�℄ + f in 
� (0; T ); (3.12a)

� = 0; r� � � = 0 on �
 � (0; T ); (3.12b)

�(�; 0) = g(�) in 
: (3.12
)

For t 2 (0; T ) the solution � satis�es the stability estimate

k�(t)k

L

2

(
)

� Ae

a t

n

kgk

L

2

(
)

+ kfk

L

2

(L

2

)

o

; (3.13)

with 
onstants a; A > 0, whi
h only depend on 
; "; �; n and J.
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In fa
t, one 
an pre
ise the 
onstant a in Theorem 3.5 and derive 
onditions un-

der whi
h it is negative, su
h that any perturbation g is exponentially damped

and the 
orresponding state is linearly stable.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold. Then there exists a


onstant J

0

= J

0

(
; "; �; n) > 0 su
h that for













J

n













L

1

(
)

� J

0

the unique solution � 2 L

2

(0; T ;H

2

0

(
)) of problem (3.12) satis�es

k�(t)k

L

2

(
)

! 0; as t!1;

i.e. the 
orresponding stationary state n is linearly stable.

An analogous result is given by Markowi
h and Ringhofer in [47℄ for the 
las-

si
al DD. For the transient QDD the smallness of " is a purely te
hni
al as-

sumption and is needed to derive the desired estimates. Nevertheless, we have

an improvement due to the quantum regularization, as it allows to assure the

linear stability of stationary states for a wider range of applied biasing voltages.

4 Con
lusions

We gave an overview of the results available in the mathemati
al literature

on the QDD for semi
ondu
tor devi
es. The analysis is now in a rather ma-

ture state even for the transient model. It 
overs proofs of existen
e and

uniqueness as well as asymptoti
 limits and stability estimates. Also some nu-

meri
al results are at hand 
on
erning 
onvergen
e of a generalized Gummel

iteration and of a positivity preserving semidis
retization for the fourth order

transient system. The vast appli
ability of the QDD for various devi
es is im-

pressively eviden
ed in the engineering literature. Future work will fo
us on

the derivation of stable nonlinear dis
retization s
hemes, 
oupling with other

semi
ondu
tor models and generalizations in the spirit of `smooth' QHD.
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