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Abstrat

We onsider the quantum drift di�usion model for semiondutor de-

vies and ollet reent results on the stationary and transient equa-

tions. The stationary model inluding generation{reombination terms

is studied for bipolar devies and the transient equations are onsidered

in the unipolar ase. We over several topis, suh as existene and

uniqueness of solutions, asymptoti limits and onvergene of a non-

linear iteration sheme in the stationary ase as well onvergene of a

positivity preserving semidisretization of the transient equations and

the linear stability of stationary states.
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1 Introdution

Modern semiondutor devie modelling has to keep pae with the inreasing

speed of miniaturization, whih poses many hallenging problems onerning

the modelling and the numerial point of view. As many devies, like HEMT's,

MOSFET's or resonant tunneling strutures (RTD's) already reahed the de-

anano length sale, quantum e�ets play a dominant role and must be au-

rately resolved by modern simulation tools suitable for an engineering{oriented

devie analysis [20℄. The Semiondutor Industry Assoiation (SIA) projets

that 2009 the leading edge MOS devie will employ a 0:05�m length sale and

an oxide thikness of 1:5 nm or less. But already today quantum mehanial

e�ets, like on�nement in barrier strutures or inversion layers as well as di-

ret tunneling through the oxide ausing gate leakage in MOS strutures are

no more negligible [19℄.

Clearly, mirosopi models suh as the Shr�odinger{Poisson or the Wigner{

Poisson system are apable of resolving orretly the quantum dominated de-

vie behaviour [48℄. During the last years many results suh as the well{

posedness of the whole spae problem as well as the semilassial limit have

been proved [16, 45℄. However, from the numeral point of view these maro-

sopi models meet several problems: Firstly, the high omputational osts

espeially in multidimensions [41, 60℄. Seondly one omputes a lot of redun-

dant information, sine the marosopi quantities, suh as urrent{voltage

harateristis or partile densities are omputed via mirosopi auxiliary

quantities, e.g. the wave funtion [42℄. Further, quantum e�ets are only exist-

ing in small parts of the devie, suh as inversion layers, and almost negligible

in the remaining part [3℄. Lastly, their orret physial setting is based on an

unbounded position domain, suh that the presription of appropriate bound-

ary data poses severe problems [41℄. Nevertheless, muh researh was spend on

this question: Analytial and numerial methods for the Shr�odinger{Poisson

system on bounded position domains [52, 53℄, absorbing boundary onditions

for the quantum kineti Wigner equation [11℄ and also the oupling of miro-

sopi models with di�erent lassial and kineti model was studied [1℄.

In parallel muh e�ort has been spend on the derivation of a `lassial' piture

of quantum mehanis in terms of marosopi uid type unknowns. This

idea goes bak to the early beginnings of quantum mehanis, where maro-

sopi quantum models suh as Bloh's equation for the density matrix [49℄ or

Madelung's transform of the Shr�odinger equation where invented [42℄. These

are however still diret reformulations of an underlying mirosopi model.

They are employed in many �elds of appliation, e.g. semiondutor devie

modelling, superondutivity or reently superuidity [43℄.

Inuened by the immense suess of the marosopi theory of harge trans-
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port in semiondutors in form of the drift di�usion model (DD) of Van Roos-

broek [50℄, Anona et al. [3, 7, 4℄ proposed a quantum orretion of this well

understood system. They assume that the essential nonloality of quantum

mehanis an be approximated by the demanding that the equations of state

for the harged partiles depend not only on their respetive densities but also

on the density{gradient. This density{gradient theory is impressively apable

of desribing the orret devie behaviour in the viinity of strong inversion

layers in MOS strutures when ompared to one{eletron quantum mehani

simulations [3℄. Anona et al. started their onsiderations following ideas

from gas dynamis and applied their model also to other appliations suh

as �eld emission from metals and steady state tunneling in metal{insulator{

metal strutures (MIM), where Fowler{Nordheim tunneling plays a prominent

role [5℄. This theory has also signi�ant omputational advantages, suh that

during the last deade many people studied this approah analytially and

numerially.

Not surprisingly also many applied mathematiians beame interested in these

new marosopi quantum models. Starting from the Wigner{Poisson system

[22℄ or the mixed state Shr�odinger{Poisson system [27℄ they used the strong

tool of asymptoti analysis to derive a whole hierarhy of marosopi quan-

tum models in analogy to the lassial ontinuum models, ranging from the

quantum hydrodynami model over quantum energy transport to the quantum

drift di�usion model:
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Quantum Energy Transport (QET)
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Quantum Drift Di�usion (QDD)

They desribe the eletron ow in the semiondutor rystal in terms of uid{

type unknowns, suh as eletron density, urrent density and energy density,

whose evolution is governed by orresponding onservation laws. Originally,

the QHD is an in�nite hierarhy of moment equations, whih has to be sup-

plemented with appropriate losure onditions [28℄. Nowadays the full QHD
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onsists of three balane laws, while the QDD is isothermal and thus two

equations are suÆient. The QET was derived only reently and is not inves-

tigated so far [37℄. Note that for the QHD and the QDD oftenly the synonyms

density{gradient theory or quantum moment equations are used in the engi-

neering literature.

Gardner [22℄ derives the full QHD from the Wigner equation and shows that

it allows to simulate quantum devies, espeially RTD's, numerially very

eÆiently. Note that the isothermal QHD, i.e. the equations of state for the

eletron density and the urrent density inluding inertia is already stated

and numerially investigated in [30, 5℄. Zhou and Ferry [20℄ employed the full

QHD for the simulation of multiple devies, suh as HEMT's, MESFET's and

RTD's. They studied the inuene of quantum e�ets on the veloity overshoot

and did also report urrent osillations in transient simulations [66, 67, 68℄.

Reently, Gardner and Ringhofer [23℄ derived a `smooth' QHD, where the

quantum term involves a smoothed potential whih has the apability of han-

dling the disontinuities in the lassial potential energy ourring in the viin-

ity of heterojuntion barriers in a mathematially rigorous way. Numerial

simulations show that negative di�erential resistane is present in the simu-

lation of RTD's [24℄. Further analytial work on the QHD an be found in

[15, 10, 26, 35, 36, 33, 21, 25, 57℄. We note that the hoie of appropriate

boundary onditions and of the heat ondutivity is deliate and inuenes

strongly the numerial results [35, 55, 59℄.

Performing the zero relaxation time limit in the isothermal QHD the onve-

tive term vanishes and one obtains the QDD [56℄ (see also Setion 1.1). These

equations equal up to a quantum orretion the lassial DD [50℄. The math-

ematial analysis and numerial understanding of this set of equations is now

in a rather mature state. In this paper we are going to give a review on the

results obtained so far.

The advantage of the QDD is threefold:

1. The perturbation harater of the QDD equations promises a redution

of redundany in regions where the devie behaves `almost' lassial.

2. There is a natural way to desribe boundary onditions.

3. Existing simulation odes for the lassial DD an be easily adjusted.

The analysis for the thermal equilibrium problem (whih is equal to the one

for the QHD) was performed byUnterreiter in [62℄ via a variational approah.

Ben Abdallah and Unterreiter [2℄ proved existene of solutions of a bipolar

extension of the stationary equations inorporating generation{reombination
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e�ets. A generalized Gummel iteration for the eÆient numerial treatment

of the QDD is developed in [58℄ and also analyzed.

The study of the transient equations is muh more involved due to their fourth

order nature. Existene of a non{negative global solution in the ase of vanish-

ing temperature and zero eletri �eld is proved in [38℄. A positivity preserving

numerial sheme is derived in [40℄, whih proves to be onvergent and also

the optimal order of onvergene an be shown [39℄. The linear stability of

stationary states is investigated in [56℄.

The QDD gained onsiderable attention not only mathematially but also from

the engineering point of view. It was employed for the simulation of many

quantum semiondutor devies and proved its numerial eÆieny, espeially

in several spae dimensions [9, 8, 12, 64℄. Due to its numerial robustness

it is already integrated in the 2d/3d PROPHET simulation ode from Luent

Tehnologies. Enouraging omparisons with Shr�odinger{Poisson simulations

an be found in [6, 64℄.

To get a omprehensive impression of the apabilities of the QDD we also

have to mention its limitations. As only low order quantum orretions are

onsidered no quantum interferene phenomena are inluded in the model.

Further, the simulation of modern single{eletron devies is out of reah due

to the break down of the ontinuum hypotheses. Also the hoie of the mobility

oeÆient and the e�etive tunneling mass is deliate [63, 8, 64℄. Either, they

are derived empirially or used as �tting parameters to get better quantitative

agreement of omputational and experimental results.

The paper is organized as follows. In Setion 1.1 we derive the QDD via

the zero relaxation time limit in the isothermal QHD. Results on the bipolar

stationary equations are given in Setion 2. We disuss the thermal equilibrium

problem as well as the biased ase and a generalized Gummel iteration. Reent

results on the transient model are given in Setion 3. There, the existene

of global non{negative solutions, the onvergene of a positivity{preserving

numerial sheme and the linear stability of stationary states are disussed.

Further, we give onlusions in Setion 4.

1.1 Passage from QHD to QDD

It is well{known that quantum moment equations an be derived in various

ways [22, 27, 23℄. In this setion we start from the isothermal QHD and

dedue the QDD in the zero relaxation time limit. This asymptoti link is just

in analogy to onnetion of the lassial hydrodynami equations to the DD

[29℄.This formal derivation was �rst presented in [56℄.

The transient, isothermal QHD onsists of onservation laws for the eletron
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density and the urrent density [22℄. The unsaled QHD equations stated on

a bounded domain 
 � R

d

, d = 1; 2 or 3 read:

�n

�t

+

1

q

div J = 0; (1.1a)

�J

�t

+

1

q

div

�

J 
 J

n

�

+

q k

B

T

0

m

rn+

q

2

m

nrV �

q ~

2

2m

2

nr

�

�

p

n

p

n

�

= �

J

�

;

(1.1b)

whih are self{onsistently oupled with the Poisson equation for the eletro-

stati potential

���V = q (n� C

dot

) : (1.1)

The variables are the eletron density n = n(x; t), the urrent density J =

J(x; t) and the eletrostati potential V = V (x; t). The physial onstants

are the elementary harge q, the Boltzmann onstant k

B

, the e�etive eletron

mass m and the redued Plank onstant ~. For the values of these onstants

we refer to [48℄. Physial parameters are the permittivity �, the ambient

temperature T

0

and the relaxation time � , whih depend on the material and

on the operating onditions of the devie. The time{independent doping pro�le

C

dot

= C

dot

(x) represents the distribution of harged bakground ions.

For the zero relaxation time limit is it onvenient to introdue in (1.1) the

following di�usion saling, where the new dimensionless quantities are marked

by a tilde:

n! C

m

~n; C

dot

! C

m

~

C

dot

; x! L ~x;

t!

mL

2

k

B

T

0

�

~

t; V !

k

B

T

0

q

~

V ; J !

q k

B

T

0

C

m

�

Lm

~

J:

Here, C

m

denotes the maximal absolute value of the doping pro�le C

dot

and L

is a harateristi devie length, e.g. the diameter. De�ning the saled Plank

onstant ", the saled Debye length � and the saled relaxation time �

0

by

"

2

=

~

2

2mk

B

T

0

L

2

; �

2

=

� k

B

T

0

q

2

C

m

L

2

; �

2

0

=

k

B

T

0

�

2

mL

2

;

we end up with the saled QHD equations

�n

�t

+ div J = 0; (1.2a)

�

2

0

�J

�t

+ �

2

0

div

�

J 
 J

n

�

+rn + nrV � "

2

nr

�

�

p

n

p

n

�

= �J; (1.2b)

��

2

�V = n� C

dot

; (1.2)

6



where we omitted the tilde for notational onveniene.

In appliations the following data of a quantum semiondutor devie [6, 64℄

is realisti:

L = 100 nm; � = 10

�13

s; T

0

= 77K;

where the relaxation time � orresponds to the low �eld mobility of GaAs [61℄.

The squared saled relaxation time is �

2

0

� 10

�4

, whih justi�es the relaxation

limit �

0

! 0 in (1.2). This formally yields the system

�n

�t

+ div J = 0; (1.3a)

�"

2

nr

�

�

p

n

p

n

�

+rn + nrV = �J; (1.3b)

��

2

�V = n� C

dot

: (1.3)

System (1.3) di�ers from the lassial drift di�usion equations [48℄ only in the

quantum orretion `�"

2

nr

�

�

p

n

p

n

�

'.

Inserting (1.3b) into (1.3a) we an eliminate the urrent density J . From the

identity

2 div

�

nr

�

�

p

n

p

n

��

= ��

2

n+

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

we get the saled transient QDD:

�n

�t

= �

"

2

2

�

2

n+

"

2

2

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

+�n+ div(nrV ); (1.4a)

��

2

�V = n� C

dot

: (1.4b)

Hene, the transient QDD onsists of a nonlinear fourth{order paraboli equa-

tion for the eletron density n, whih is self{onsistently oupled to the Poisson

equation for the potential V .

Espeially, for the stationary equations there exist various formulations. These

range from seond order [2℄ via third [21℄ to fourth order systems [15℄, whih

all have their spei� advantages and drawbaks. In the next setion we on-

entrate on the stationary seond order system.

2 The Stationary Equations

In Setion 1.1 we derived the unipolar QDD. As all lassial models involve

two types of arriers, namely eletrons and holes, it is only natural to extend
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the QDD to handle also bipolar quantum devies. This extension is proposed

by Ben Abdallah and Unterreiter in [2℄ and reads in its saled, stationary form

stated on a bounded domain 
 � R

d

, d = 1; 2 or d = 3:

�"

2

�

p

n

p

n

+ log(n) + V +B

n

= F; (2.1a)

��"

2

�

p

p

p

p

+ log(p)� V +B

p

= G; (2.1b)

div (�

n

nrF ) = R(n; p)

�

exp (F +G)� Æ

2

�

; (2.1)

div (�

p

prG) = R(n; p)

�

exp (F +G)� Æ

2

�

; (2.1d)

��

2

�V = n� p� C

dot

: (2.1e)

The saled physial parameters are the Plank onstant ", the ratio � of

the e�etive masses of eletrons and holes and the mobilities �

n

; �

p

of ele-

trons and holes, respetively, and the Debye length �. All these quanti-

ties are assumed to be positive onstants, exluding espeially �eld depen-

dent mobilities. The doping pro�le C

dot

= C

dot

(x) (where x is the spatial

variable ranging in 
) representing a �xed harge distribution and the non-

negative quantum well potentials B

n;p

= B

n;p

(x) are assumed to be �xed.

Equation (2.1) also inludes generation-reombination proesses of the form

R(n; p) (exp(F +G)� Æ

2

), where R : R

2

! R and Æ > 0. In thermal equilib-

rium there is no generation-reombination proess. Hene, Æ

2

= exp (F

eq

+G

eq

),

where F

eq

; G

eq

are the (onstant!) equilibrium values of the quantum quasi

Fermi levels, see [62℄. The model inludes Shokley{Read{Hall and Auger

generation-reombination proesses but exludes generation through impat

ionization [44℄.

In (2.1) the eletron density n = n(x) � 0, the hole density p = p(x) � 0,

the quantum quasi Fermi levels F = F (x); G = G(x) and the eletrostati

potential V = V (x) are unknown. The urrent densities of eletrons and holes

are determined by the harge densities, the quantum quasi Fermi levels F;G

and the mobilities:

J

n

= �

n

nrF; J

p

= ��

p

prG: (2.2)

The model equations (2.1) are supplemented with mixed Dirihlet-Neumann

boundary onditions

n = n

D

; p = p

D

; V = V

D

+ V

ext

on �

D

; (2.3a)

F = F

eq

+ V

ext

; G = G

eq

� V

ext

on �

D

; (2.3b)

rn � � = rp � � = rV � � = 0 on �

N

; (2.3)

rF � � = rG � � = 0 on �

N

; (2.3d)
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where �

D

and �

N

are disjoint parts of the boundary of 
 with �

D

[ �

N

= �


and � is the unit outward normal vetor along �

N

. Here, �

D

models the Ohmi

ontats of the devie, while the insulating parts of the boundary are desribed

by �

N

.

This set of boundary onditions is motivated by its analogy to the lassial DD.

Nevertheless, the hoie of the Dirihlet data n

D

, p

D

and V

D

is still an open

problem, sine up to now no rigorous derivation from mirosopi quantum

models is available [55, 40℄.

Some authors assume harge neutrality and vanishing quantum e�ets at

the boundary and sometimes only homogeneous Neumann data is employed

[38, 40℄. Clearly, the thermal equilibrium densities n

eq

and p

eq

are possible

andidates for n

D

and p

D

and the built{in potential V

eq

for V

D

, respetively.

2.1 Thermal Equilibrium

The thermal equilibrium problem is of great interest for itself, as in the vari-

ational approah by Unterreiter [62℄ one needs not to presribe any boundary

data for the partile densities. Instead one assumes the total harge neutrality

of the devie and �nds the thermal equilibrium state as the state of minimal

total energy [53, 62℄

E(n; p) = "

2

Z




�

�

r

p

n

�

�

2

dx+ �"

2

Z




jr

p

pj

2

dx+

Z




H(n) dx+

Z




H(p) dx

+

�

2

2

Z




jrV [n� p� C

dot

℄j

2

dx +

Z




B

n

n dx +

Z




B

p

p dx:

in the set

C

def

=

�

(n; p) 2 L

1

(
)� L

1

(
) : n; p � 0;

p

n;

p

p 2 H

1

(
) ;

Z




n dx = N;

Z




p dx = P

�

;

where H(t) = t log(t)� t + 1 is a primitive of h(t) = log t and

N

def

=

Z




C

+

dot

dx; P

def

=

Z




C

�

dot

dx

are the densities of donator and aeptor atoms. Further, V = V [n� p�C

dot

℄

is the self onsistent eletrostati potential de�ned via ��

2

�V = n� p�C

dot

with

R




V (x) dx = 0. We note that

Z




(n� p� C

dot

) dx = 0 for all (n; p) 2 C;
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whih yields the desired harge neutrality of the devie.

The existene and uniqueness of a minimizer (n

eq

; p

eq

) 2 C is proved by Un-

terreiter in [62℄ by means of variational alulus, where he also identi�es the

Euler{Lagrange equations.

Theorem 2.1. Assume

A.1 
 � R

d

; d = 1; 2 or d = 3 is a non-void, onvex, bounded domain.

A.2 There exists a onstant K = K(
) 2 (0;1) suh that for all f 2 L

2

(
),

kV [f ℄k

L

1

(
)

� Kkfk

L

2

(
)

;

where �V [f ℄ = f .

A.3 B

n

; B

p

; C

dot

2 L

1

(
) and B

n;p

� 0.

Then E has a unique minimizer (n

eq

; p

eq

) in C and n

eq

; p

eq

and V

eq

:= V [n

eq

�

p

eq

� C

dot

℄ have the following properties:

a) n

eq

; p

eq

; V

eq

2 C

B

(
) \H

1

(
).

b) There exists a onstant �

eq

2 (0; 1) suh that �

eq

� n

eq

; p

eq

� 1=�

eq

.

) There exist onstants F

eq

; G

eq

2 R suh that

�"

2

�

p

n

eq

p

n

eq

+ log(n

eq

) + V

eq

+B

n

= F

eq

��"

2

�

p

p

eq

p

p

eq

+ log(p

eq

)� V

eq

+B

p

= G

eq

Further, he investigates the semilassial limit " ! 0 and the small Debye

length limit �! 0.

There exist various possibilities for the numerial alulation of the minimizer.

In [58℄ a projeted quasi{gradient method is presented and its onvergene

proved, both on the ontinuous level and for the disretized problem.

Numerial investigations give evidene that for the thermal equilibrium state

harge neutrality at the boundary holds [55℄ , at least as long as the devies is

not to small. By means of asymptoti analysis the author shows in [55℄ that

this annot hold for ultra{small devies, whereas the assumption of vanishing

quantum e�ets at the boundary an be justi�ed.
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2.2 QDD with Bias

The full system (2.1) supplemented with boundary onditions (2.3) is analyt-

ially investigated by Ben Abdallah and Unterreiter in [2℄. They show the

following existene result.

Theorem 2.2. Assume

A.1 
 � R

d

; d = 1; 2 or d = 3 is a bounded domain and �
 is C

0;1

and

pieewise regular.

A.2 R 2 C

0

(R � R; [0;1)).

A.3 B

n

; B

p

; C

dot

2 L

1

(
) and B

n;p

� 0.

Then the system (2.1) supplemented with boundary data (2.3) possesses a so-

lution n; p; V; F;G 2 H

1

(
) \ L

1

(
). Further, n; p; V; F;G 2 C

0

(
) and

n(x); p(x) > 0 for all x 2 
.

The proof is done by means of variational methods ombined with Shauder's

�xed point theorem. They also takle the ase of vanishing harge density at

the boundary ourring at inversion layers. Anona [3℄ emphasized this issue

as one of the main advantages of the QDD, sine here suh kind of boundary

onditions an be inorporated in ontrast to the lassial DD.

The question of uniqueness of solutions was left open in this paper and �nally

answered in [58℄ (see also Setion 2.3). There it is shown that the solution is

unique as long as the devie is operated near the thermal equilibrium state,

i.e. for small applied biasing voltages V

ext

. This is in analogy to the result for

the lassial model [44, 51℄.

In [2℄ also the semilassial limit is established, i.e. the solutions of the QDD

onverge to solutions of the lassial DD as " ! 0. We give the preise

onvergene result.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold and assume n

D

; p

D

>

0. Then there exist funtions n; p; V; F;G 2 C

0

(
) \H

1

(
) satisfying

log(n) + V = F;

log(p)� V = G;

div (�

n

nrF ) = R(n; p)

�

exp (F +G)� Æ

2

�

;

div (�

p

prG) = R(n; p)

�

exp (F +G)� Æ

2

�

;

��

2

�V = n� p� C

dot

:

and (2.3) suh that a solution n

"

; p

"

; V

"

; F

"

; G

"

2 C

0

(
) \ H

1

(
) of system

(2.1) supplemented with (2.3) ful�ls

p

n

"

!

p

n,

p

p

"

!

p

p, V

"

! V , F

"

!

F , G

"

! G strongly in H

1

(
), weak-� in L

1

(
) as "! 0.
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In this sense the QDD behaves well for small " despite of its singular pertur-

bation harater. Clearly, this will be di�erent if heterojuntion barriers are

present or in the viinity of strong inversion layers (see [6℄).

2.3 A Generalized Gummel{Iteration

In this setion we onsider a deoupling algorithm for the numerial solution of

(2.1), whih proves to work in a stable and eÆient manner. For the lassial

DD an iteration introdued by Gummel [32℄ is most ommonly employed and

proved to be rather well suited for many problems of pratial relevane. There

exist a vast literature in whih the Gummel{iteration is thoroughly studied

from a numerial and an analytial point of view (for an exellent overview

see [44, 34℄ and the referenes therein).

In [58℄ a �xed point mapping is onstruted whih yields a generalized Gummel{

iteration for the QDD. This algorithm relies on a �xed point iteration deou-

pling the urrent equations from the rest of the system. In eah iteration

step two semi linear ellipti systems are solved. The �xed point mapping

T is de�ned via: Let (F

0

; G

0

) be a pair of quantum quasi Fermi levels from

an appropriately hosen set. Then, T (F

0

; G

0

) := (F

1

; G

1

), where (F

1

; G

1

) is

omputed from (F

0

; G

0

) as follows:

Algorithm 1. (Generalized Gummel{iteration)

1. Solve the semi linear ellipti system

�"

2

�

p

n

p

n

+ log(n) + V +B

n

= F

0

; (2.4a)

��"

2

�

p

p

p

p

+ log(p)� V +B

p

= G

0

; (2.4b)

��

2

�V = n� p� C

dot

; (2.4)

subjet to the boundary onditions (2.3) for (n

1

; p

1

; V

1

).

2. Solve

div (�

n

n

1

rF ) = R(n

1

; p

1

)

�

exp (F +G)� Æ

2

�

; (2.5a)

div (�

p

p

1

rG) = R(n

1

; p

1

)

�

exp (F +G)� Æ

2

�

; (2.5b)

subjet to the boundary onditions (2.3) for (F

1

; G

1

).

Clearly, every �xed point of T is a solution of the original problem (2.1) with

boundary onditions (2.3). The unique solvability of the above boundary value

12



problems and thus the well{posedness of the �xed point mapping is also shown

in [58℄. From the numerial point of view it is advantageous not to deal with a

oupled system of �ve semi linear ellipti equations, but with two muh more

tratable problems: System (2.4) is similar to the thermal equilibrium problem

[62℄, whih has been intensively investigated and system (2.5) �ts into the the-

ory of monotone operators [65℄. Further, if the devie is operated near thermal

equilibrium, even onvergene of the iterating sequene (n

k

; p

k

; V

k

; F

k

; G

k

) de-

�ned via Algorithm 1 an be proved. The preise result reads.

Theorem 2.4. There exists a onstant U

Æ

> 0, depending on various devie

parameters, suh that

kV

ext

k

L

1

(
)

< U

Æ

implies:

a) There exists a unique solution (n

Æ

; p

Æ

; V

Æ

; F

Æ

; G

Æ

) of (2.1), (2.3).

b) (n

k

; p

k

; V

k

; F

k

; G

k

) onverges to (n

Æ

; p

Æ

; V

Æ

; F

Æ

; G

Æ

) strongly in

(L

s

(
))

2

� (H

1

(
))

3

as k !1.

In fat one shows that T is a ontration on an appropriately hosen set. Then

Theorem 2.4 follows from Banah's �xed point theorem.

The proof of the ontrativity of T heavily relies on the Lipshitz{ontinuity of

the �rst step in Algorithm 1, whih is a onsequene of the following Poiar�e{

type estimate.

Lemma 2.5. Assume A.1 of Theorem 2.2. Then there exists for all � 2 R

and all � 2 (0; 1) a onstant K = K(
; �; �; s) 2 (0;1) suh that for all

u 2 H

1

(
) \ L

1

(
) with � � u � 1=� and all � 2 H

1

0

(
 [ �

N

) \ L

1

(
):

Z




u

�

�

�

�

�

r

�

�

u

�

�

�

�

�

2

dx � K k�k

2

L

s

(
)

: (2.6)

Lemma 2.5 assures that the quantum operators A(�) = �

p

�=

p

�, � = n or

� = p, are monotoni with respet to the L

s

(
){norm. Alternatively, one an

dedue that the seond variation of the quantum energy term

E

quant

(�) =

Z




jr

p

�j

2

dx

is positive de�nite with respet to the L

s

(
){norm. In this sense the Bohm

potential is muh easier to handle numerially than the third order operator in

(1.1), whih seems to be responsible for dispersive e�ets in the QHD [46, 33℄

13



and also yields analytial problems [21℄. In [56℄ it is shown that also the fourth

order operator in the transient QDD (1.4) has suh a monotoniity property.

Theorem 2.4 applies in ases where F and G are lose to their orresponding

equilibrium values F

eq

; G

eq

on �

D

. This orresponds to the uniqueness result

for the lassial DD [51℄: For small applied bias voltages the urrent-voltage

harateristis is uniquely de�ned. This is physially reasonable. For higher

applied voltages no uniqueness result is available. But it may be assumed

that uniqueness does not hold in general: The performane of many devies

(thyristors) relies on the existene of multiple solutions [48℄.

Note that in the engineering literature [6, 9, 66, 64℄ also other numerial

shemes are reported, suh as a damped Newton{iteration or a hybrid method,

whih ombines the robustness of the Gummel{iteration with the seond or-

der onvergene of Newton's iteration. There the Gummel iteration is used to

ompute a good starting point for the �rst Newton step. Up to know there is

no numerial analysis available for these methods. However, it is assumed that

this enounters the same diÆulties as the one for the lassial model, sine

the invertibility of the linearization of (2.1) strongly depends on the size of the

o�{diagonal terms [44, 34℄. Nevertheless, a Newton iteration is the method of

hoie for (2.4) due to the monotoniity of the quantum operator.

For all numerial approahes voltage ontinuation, i.e. the applied voltage is

inremented and in eah step the previous solution is used as an initial guess

for the next iteration, proved to be neessary to stabilize the numeris for large

applied biasing voltages.

3 The Transient QDD

While the stationary QDD was investigated thoroughly and its analysis is now

in a rather mature state, only reently some results on the transient equations

(1.4) are available [38, 40, 39℄. This is due to the fat that the equation for

the eletron density is of fourth order, suh that no maximum priniple is

available to ensure the positivity of the density. In [38℄ the main part of (1.4a)

is investigated:

n

t

= �(n(log(n))

xx

)

xx

(3.1a)

for t > 0; subjet to the initial ondition

n(0; x) = n

0

(x) (3.1b)

and the boundary onditions

n(0) = n(1) = 1; n

x

(0) = n

x

(1) = 0: (3.1)

14



Note that (3.1a) an be equivalently written as

n

t

= �n

xxxx

+

�

n

2

x

n

�

xx

; (3.2)

This is exatly (1.4a) in the ase of zero temperature and zero eletri �eld.

Surprisingly, this equation also arises as a saling limit in the study of interfae

utuations in a ertain spin system [18℄. The variable n desribes the saling

limit of probabilities for a random variable. Problem (3.1a){(3.1b) with peri-

odi boundary onditions was �rst studied by Bleher et al. in [14℄. Assuming

(stritly) positive H

1

(
){data, they showed that there exists a unique posi-

tive lassial solution loally in time. For \small" initial data, the solution

is even global in time. However, the problem whether non{negative solutions

for general (non{negative) initial data exist globally in time remained open.

This was reently answered: In [40℄ it is proved that for general initial data a

non{negative solution exists globally in time. Note that the equivalent formu-

lation of (3.1a) is not degenerate suh that the tehniques developed for the

so{alled thin �lm equations [13, 31, 54℄, espeially the onept of nonlinear

entropy dissipation, are not appliable.

In fat, it is shown that for non{negative initial data satisfying a ertain inte-

grability ondition, there exists a generalized non{negative solution globally in

time. As only weak assumptions are imposed on the data , it an be a priorily

not expeted that the solutions have L

2

lo

(0;1;H

2

(
)){regularity. But similar

to [13℄ a new solution onept is introdued, whih is given in the following

existene result.

Theorem 3.1. Assume that the initial datum n

0

is measurable and satis�es

the ondition

Z




n

0

� log(n

0

) dx < +1: (3.3)

Then there exists a solution n of (3.1a){(3.1) satisfying

n(x; t) � 0 a.e. in (0;1)� 
; (3.4a)

n 2 L

2

lo

(0;1;W

1;1

(
)); n

t

2 L

1

lo

(0;1;H

�2

(
)); (3.4b)

log(n) 2 L

2

lo

(0;1;H

2

(
)) \ L

1

(0;1;L

1

(
)): (3.4)

Further, n(�; 0) = n

0

in the sense of H

�2

(
) and it holds for any T > 0 and

any smooth test funtion � 2 C

1



((0;1)� 
),

Z

T

0

hn

t

; �i

H

�2

;H

2

0

dt = �

Z

T

0

Z




n (log(n))

xx

�

xx

dxdt:
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The proof of Theorem 3.1 is based on two ideas. The �rst one is to perform

an exponential transformation of variables. Setting n = e

2u

; equation (3.1a)

reads in the new variable:

�

e

2u

�

t

= �2

�

e

2u

u

xx

�

xx

: (3.5)

Hene, the existene of a (generalized) solution u of (3.5) implies the existene

of a non{negative solution n of (3.1a). Exponential transformations were

already suessfully employed in the study of the stationary QHD [33, 15℄.

Clearly, a solution u 2 L

1

((0;1)�
) to (3.5) provides a positive solution n to

(3.1a). However, only the regularity u 2 L

2

lo

(0;1;L

1

(
)) (see (3.4)) an be

dedued suh that only the existene of non{negative solutions to (3.1a) an be

onluded. This is in ontrast to the stationary problem, where the positivity

property immediately follows from an H

s

(
){bound for the orresponding

stationary variable u and the Sobolev embedding H

s

(
) ,! L

1

(
) when s >

d=2; d being the spae dimension (see [33℄).

This observation gave the motivation to disretize (3.5) in time, whih is the

seond main idea for the proof, yielding a sequene of ellipti problems. The

existene of solutions u(t

k

; �) in H

2

(
) to the resulting ellipti problems an be

proved. Hene, the approximate solutions u(t

k

; �) are in L

1

(
) and expressions

like e

u(t

k

;x)

are well de�ned.

It is worth noting that equation (3.1a) possesses several Lyapunov funtionals

[14℄ whih provide a priori estimates in the existene proof. It an be easily

seen that the entropy

S(t) =

Z




n(t) (log(n(t))� 1) + 1 dx

is (formally) non{inreasing in time. In the ase of periodi boundary ondi-

tions, also the Fisher information

Z




�

�

(

p

n)

x

�

�

2

dx

is non{inreasing in time.

3.1 A Positivity{preserving Semidisretization

The tehniques developed in [38℄ are also suitable to treat the oupled system

(1.4). As for the moment analytially only the non{negativity of solutions an

be expeted, the question arises, if at least the onstrution of a positivity

preserving numerial sheme is possible. This is of great pratial relevane as
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the engineering{oriented devie analysis is foused on numerial simulations

for whih the positivity of partile densities is essential to ensure the stability

of the numerial shemes.

Following the ideas stated in [38, 40℄ an impliit semidisretization of (1.4) is

derived and an existene and stability result for the disretized system at eah

time level is proved.

Inuened by the results for the stationary QDD again the quantum quasi

Fermi level F and the new variable � =

p

n are introdued. Then (1.4) reads:

�

�

2

�

t

= div(�

2

rF ); (3.6a)

�"

2

��

�

+ � log(�

2

) + V = F; (3.6b)

��

2

�V = �

2

� C

dot

: (3.6)

Here, � denotes the saled lattie temperature. For the numerial treatment

of (3.6) a horizontal line method is employed and the transient problem is

replaed by a sequene of ellipti problems for 0 = t

0

< t

1

< : : : < t

N

= T . In

fat, system (3.6) is disretized using an impliit Euler sheme:

Set �

0

=

p

n(0). For k = 1; : : : ; N solve reursively the ellipti systems

1

�

k

�

�

2

k

� �

2

k�1

�

= div(�

2

k

rF

k

); (3.7a)

�"

2

��

k

�

k

+ � log(�

2

k

) + V

k

= F

k

; (3.7b)

��

2

�V

k

= �

2

k

� C

dot

; (3.7)

subjet to the boundary onditions

�

k

= �

D

; F

k

= F

D

; V

k

= V

D

on �

D

; (3.7d)

r�

k

� � = rF

k

� � = rV

k

� � = 0 on �

N

; (3.7e)

where

�

D

=

p

C

dot

; F

D

= U; V

D

= �� log (C

dot

) + U: (3.8)

Here, f

k

is an approximation for f(t

k

) and �

k

def

= t

k

� t

k�1

. Then the approx-

imate solution to (3.6) is given by (�

�

; F

�

; V

�

), where �

�

j

(t

k�1

;t

k

℄

� onst for

k = 1; : : : ; N and F

�

; V

�

respetively.

In [40℄ an existene theorem for (3.7) is proved. It is assumed that the bound-

ary �
 and the data are suÆiently smooth, suh that an ellipti Shauder
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estimate holds. Further, the lattie temperature has to be suÆiently large,

whih ensures the positivity of the semidisrete solution. This is neessary,

sine the boundary data (3.7d), (3.7e) does not allow for the usage of the

tehniques developed in [38℄. The preise existene and positivity result reads:

Proposition 3.2. Let k 2 f1; : : : ; Ng and let �

k�1

2 C

0;

(

�


). Then there

exists a onstant �

0

> 0 suh that for all � > �

0

system (3.7) possesses a

solution (�

k

; F

k

; V

k

), ful�lling

(a) (�

k

; F

k

; V

k

) 2 H

2

(
)� C

2;

(

�


)� C

2;

(

�


) for 0 <  <

1

2

,

(b) 9

k

> 0 : �

k

� 

k

> 0 in 
.

Furthermore, the approximate solution is stable in the following sense (see [40,

Corollary 2.5℄).

Lemma 3.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the reursively de�ned solu-

tion of (3.7) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)�C

2;

(

�


)�C

2;

(

�


)). Then

�

�

2 L

1

(0; T ;H

1

(
)) and �

�

rF

�

2 L

2

(0; T ;L

2

(
)). Further, there exists a

positive onstant , independent of � , suh that

k�

�

k

L

1

(H

1

)

+ kV

�

k

L

1

(H

1

)

+ k�

�

rF

�

k

L

2

(L

2

)

� : (3.9)

In the one{dimensional ase it is possible to prove (see [40, Theorem 3.3℄) the

existene of a subsequene, again denoted by (�

�

; F

�

; V

�

), suh that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;

(

�


));

(�

�

)

2

F

�

x

* J weakly in L

2

(0; T ;L

2

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;

(

�


));

as � ! 0, where (�; J; V ) is a weak solution of the ontinuous problem (3.6).

Here, the a priori bounds on the approximate solution in Lemma 3.3 are not

suÆient to guarantee onvergene, sine the argument depends strongly on

an L

1

(0; T ;L

1

(
)){bound on �

�

(see [40℄). In one spae dimension this is

an immediate onsequene of the estimate (3.9) and the embedding H

1

(
) ,!

L

1

(
). In fat, no analytial results on system (3.6) are available in several

spae dimensions. Thus, one has to state additional assumptions on the se-

quene of approximating solutions. These even yield expliit error estimates,

whih exhibit the optimal order of onvergene for the impliitEuler sheme.

Theorem 3.4. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the reursively de�ned

solution of (3.7) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
) � C

2;

(

�


) � C

2;

(

�


)).

Assuming
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A.4 9Æ 2 (0; 1) 8� > 0 : Æ � �

�

� Æ

�1

; k�

�

k

L

1

(0;T ;H

2

(
))

� Æ

�1

,

there exists a subsequene, again denoted by (�

�

; F

�

; V

�

), suh that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;

(

�


));

F

�

! F strongly in C

0

([0; T ℄;H

1

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;

(

�


));

as � ! 0, where (�; F; V ) is a solution of the ontinuous problem (3.6).

Furthermore, if the embedding H

2

(
) ,! W

m;p

(
) is ontinuous for some

m � 0, p � 1 and

A.5 � 2 H

2

(0; T ;L

2

(
)),

then there exists a onstant �

0

= �

0

(
; �; Æ) > 0 suh that for � 2 [0; �

0

) we

have the following error estimate

k�

�

� �k

L

1

(L

2

)

+ "

2

k�

�

� �k

L

2

(W

m;p

)

+ kF

�

� Fk

L

1

(H

2

)

+ kV

�

� V k

L

1

(H

2

)

� C e

�T

�; (3.10)

for some positive onstants � = �(
; �; Æ; �

0

) and C = C(
; �; Æ; �

0

).

The uniform lower bound for �

�

is neessary to verify the strong onvergene

of the quantum quasi Fermi level F

�

! F , whih allows for the identi�ation

of the limiting urrent density J = �

2

rF . This was in one spae dimension

out of reah due to the weaker assumptions and onvergene properties. Note

that the assumption on the time regularity of �, i.e. �

tt

2 L

2

(
), seems to

be quite strong only at a �rst glane. Comparing the result for the lassial

transient DD given in [17℄, this regularity was already used there to derive

the optimal order of onvergene in one spae dimension. Most remarkably, it

is also suÆient to guarantee for the optimal onvergene rate of this fourth

order system in several spae dimensions.

3.2 Linear Stability of Stationary States

Another interesting question is how does the transient QDD behave lose to

a steady state. This is investigated in [56℄, where the author studies small

perturbations of the stationary state and derives onditions whih ensure their

linear stability.
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One an prove that the stationary fourth order system allows for a solution

(n; V ) 2 H

2

(
)�H

1

(
), where the lower bound on n is stritly positive and

independent of ". At suh a state the operator G de�ned by

G(n)

def

= div(nrA(n));

where

A(n)

def

= �"

2

�

p

n

p

n

+ log(n) + V [n� C

dot

℄;

and V [n�C

dot

℄ denotes the solution of ��

2

�V = n�C

dot

; V � V

D

2 H

1

0

(
 [

�

N

), is Fr�ehet{di�erentiable.

Assume that a solution z of the perturbed problem

�z

�t

= G(z) in 
� (0; T ); (3.11a)

z = n

D

; rz � � = 0 on �
� (0; T ); (3.11b)

z(�; 0) = n(�) + Æ g(�) in 
; (3.11)

where Æ > 0 is a small parameter and g 2 L

2

(
), an be written as z(x; t) =

n(x) + Æ�(x; t). Then, � satis�es the linear �rst order approximation

��

�t

= G

0

(n)[�℄ in 
� (0; T );

� = 0; r� � � = 0 on �
 � (0; T );

�(�; 0) = g(�) in 
;

whih is nothing than the linearized transient QDD.

Employing Hilbert spae methods for linear paraboli PDE's and exploiting

the monotoniity of the quantum operator the author shows the existene of

a unique solution � satisfying some stability estimate [56℄. More preisely:

Theorem 3.5. Assume that 
 is suÆiently regular. Let f 2 L

2

(0; T ;L

2

(
))

and g 2 L

2

(
). Then there exists a unique solution � 2 L

2

(0; T ;H

2

0

(
)) of

the inhomogeneous problem

��

�t

= G

0

(n)[�℄ + f in 
� (0; T ); (3.12a)

� = 0; r� � � = 0 on �
 � (0; T ); (3.12b)

�(�; 0) = g(�) in 
: (3.12)

For t 2 (0; T ) the solution � satis�es the stability estimate

k�(t)k

L

2

(
)

� Ae

a t

n

kgk

L

2

(
)

+ kfk

L

2

(L

2

)

o

; (3.13)

with onstants a; A > 0, whih only depend on 
; "; �; n and J.
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In fat, one an preise the onstant a in Theorem 3.5 and derive onditions un-

der whih it is negative, suh that any perturbation g is exponentially damped

and the orresponding state is linearly stable.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold. Then there exists a

onstant J

0

= J

0

(
; "; �; n) > 0 suh that for









J

n









L

1

(
)

� J

0

the unique solution � 2 L

2

(0; T ;H

2

0

(
)) of problem (3.12) satis�es

k�(t)k

L

2

(
)

! 0; as t!1;

i.e. the orresponding stationary state n is linearly stable.

An analogous result is given by Markowih and Ringhofer in [47℄ for the las-

sial DD. For the transient QDD the smallness of " is a purely tehnial as-

sumption and is needed to derive the desired estimates. Nevertheless, we have

an improvement due to the quantum regularization, as it allows to assure the

linear stability of stationary states for a wider range of applied biasing voltages.

4 Conlusions

We gave an overview of the results available in the mathematial literature

on the QDD for semiondutor devies. The analysis is now in a rather ma-

ture state even for the transient model. It overs proofs of existene and

uniqueness as well as asymptoti limits and stability estimates. Also some nu-

merial results are at hand onerning onvergene of a generalized Gummel

iteration and of a positivity preserving semidisretization for the fourth order

transient system. The vast appliability of the QDD for various devies is im-

pressively evidened in the engineering literature. Future work will fous on

the derivation of stable nonlinear disretization shemes, oupling with other

semiondutor models and generalizations in the spirit of `smooth' QHD.
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