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Abstract

We consider the quantum drift diffusion model for semiconductor de-
vices and collect recent results on the stationary and transient equa-
tions. The stationary model including generation—recombination terms
is studied for bipolar devices and the transient equations are considered
in the unipolar case. We cover several topics, such as existence and
uniqueness of solutions, asymptotic limits and convergence of a non-
linear iteration scheme in the stationary case as well convergence of a
positivity preserving semidiscretization of the transient equations and
the linear stability of stationary states.
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1 Introduction

Modern semiconductor device modelling has to keep pace with the increasing
speed of miniaturization, which poses many challenging problems concerning
the modelling and the numerical point of view. As many devices, like HEMT’s,
MOSFET’s or resonant tunneling structures (RTD’s) already reached the de-
canano length scale, quantum effects play a dominant role and must be accu-
rately resolved by modern simulation tools suitable for an engineering—oriented
device analysis [20]. The Semiconductor Industry Association (SIA) projects
that 2009 the leading edge MOS device will employ a 0.05um length scale and
an oxide thickness of 1.5 nm or less. But already today quantum mechanical
effects, like confinement in barrier structures or inversion layers as well as di-
rect tunneling through the oxide causing gate leakage in MOS structures are
no more negligible [19].

Clearly, microscopic models such as the Schrodinger—Poisson or the Wigner—
Poisson system are capable of resolving correctly the quantum dominated de-
vice behaviour [48]. During the last years many results such as the well-
posedness of the whole space problem as well as the semiclassical limit have
been proved [16, 45]. However, from the numeral point of view these macro-
scopic models meet several problems: Firstly, the high computational costs
especially in multidimensions [41, 60]. Secondly one computes a lot of redun-
dant information, since the macroscopic quantities, such as current—voltage
characteristics or particle densities are computed via microscopic auxiliary
quantities, e.g. the wave function [42]. Further, quantum effects are only exist-
ing in small parts of the device, such as inversion layers, and almost negligible
in the remaining part [3]. Lastly, their correct physical setting is based on an
unbounded position domain, such that the prescription of appropriate bound-
ary data poses severe problems [41]. Nevertheless, much research was spend on
this question: Analytical and numerical methods for the Schrodinger—Poisson
system on bounded position domains [52, 53], absorbing boundary conditions
for the quantum kinetic Wigner equation [11] and also the coupling of micro-
scopic models with different classical and kinetic model was studied [1].

In parallel much effort has been spend on the derivation of a ‘classical’ picture
of quantum mechanics in terms of macroscopic fluid type unknowns. This
idea goes back to the early beginnings of quantum mechanics, where macro-
scopic quantum models such as Bloch’s equation for the density matrix [49] or
Madelung’s transform of the Schrédinger equation where invented [42]. These
are however still direct reformulations of an underlying microscopic model.
They are employed in many fields of application, e.g. semiconductor device
modelling, superconductivity or recently superfluidity [43].

Influenced by the immense success of the macroscopic theory of charge trans-



port in semiconductors in form of the drift diffusion model (DD) of Van Roos-
broeck [50], Ancona et al. [3, 7, 4] proposed a quantum correction of this well
understood system. They assume that the essential nonlocality of quantum
mechanics can be approximated by the demanding that the equations of state
for the charged particles depend not only on their respective densities but also
on the density—gradient. This density—gradient theory is impressively capable
of describing the correct device behaviour in the vicinity of strong inversion
layers in MOS structures when compared to one—electron quantum mechanic
simulations [3]. Ancona et al. started their considerations following ideas
from gas dynamics and applied their model also to other applications such
as field emission from metals and steady state tunneling in metal-insulator—
metal structures (MIM), where Fowler—Nordheim tunneling plays a prominent
role [5]. This theory has also significant computational advantages, such that
during the last decade many people studied this approach analytically and
numerically.

Not surprisingly also many applied mathematicians became interested in these
new macroscopic quantum models. Starting from the Wigner—Poisson system
[22] or the mixed state Schrodinger—Poisson system [27] they used the strong
tool of asymptotic analysis to derive a whole hierarchy of macroscopic quan-
tum models in analogy to the classical continuum models, ranging from the
quantum hydrodynamic model over quantum energy transport to the quantum
drift diffusion model:
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They describe the electron flow in the semiconductor crystal in terms of fluid—
type unknowns, such as electron density, current density and energy density,
whose evolution is governed by corresponding conservation laws. Originally,
the QHD is an infinite hierarchy of moment equations, which has to be sup-
plemented with appropriate closure conditions [28]. Nowadays the full QHD
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consists of three balance laws, while the QDD is isothermal and thus two
equations are sufficient. The QET was derived only recently and is not inves-
tigated so far [37]. Note that for the QHD and the QDD oftenly the synonyms
density—gradient theory or quantum moment equations are used in the engi-
neering literature.

Gardner [22] derives the full QHD from the Wigner equation and shows that
it allows to simulate quantum devices, especially RTD’s, numerically very
efficiently. Note that the isothermal QHD, i.e. the equations of state for the
electron density and the current density including inertia is already stated
and numerically investigated in [30, 5]. Zhou and Ferry [20] employed the full
QHD for the simulation of multiple devices, such as HEMT’s, MESFET’s and
RTD’s. They studied the influence of quantum effects on the velocity overshoot
and did also report current oscillations in transient simulations [66, 67, 68].

Recently, Gardner and Ringhofer [23] derived a ‘smooth’ QHD, where the
quantum term involves a smoothed potential which has the capability of han-
dling the discontinuities in the classical potential energy occurring in the vicin-
ity of heterojunction barriers in a mathematically rigorous way. Numerical
simulations show that negative differential resistance is present in the simu-
lation of RTD’s [24]. Further analytical work on the QHD can be found in
[15, 10, 26, 35, 36, 33, 21, 25, 57]. We note that the choice of appropriate
boundary conditions and of the heat conductivity is delicate and influences
strongly the numerical results [35, 55, 59].

Performing the zero relaxation time limit in the isothermal QHD the convec-
tive term vanishes and one obtains the QDD [56] (see also Section 1.1). These
equations equal up to a quantum correction the classical DD [50]. The math-
ematical analysis and numerical understanding of this set of equations is now
in a rather mature state. In this paper we are going to give a review on the
results obtained so far.

The advantage of the QDD is threefold:

1. The perturbation character of the QDD equations promises a reduction
of redundancy in regions where the device behaves ‘almost’ classical.

2. There is a natural way to describe boundary conditions.

3. Existing simulation codes for the classical DD can be easily adjusted.

The analysis for the thermal equilibrium problem (which is equal to the one
for the QHD) was performed by Unterreiter in [62] via a variational approach.
Ben Abdallah and Unterreiter [2] proved existence of solutions of a bipolar
extension of the stationary equations incorporating generation-recombination



effects. A generalized Gummel iteration for the efficient numerical treatment
of the QDD is developed in [58] and also analyzed.

The study of the transient equations is much more involved due to their fourth
order nature. Existence of a non—negative global solution in the case of vanish-
ing temperature and zero electric field is proved in [38]. A positivity preserving
numerical scheme is derived in [40], which proves to be convergent and also
the optimal order of convergence can be shown [39]. The linear stability of
stationary states is investigated in [56].

The QDD gained considerable attention not only mathematically but also from
the engineering point of view. It was employed for the simulation of many
quantum semiconductor devices and proved its numerical efficiency, especially
in several space dimensions [9, 8, 12, 64]. Due to its numerical robustness
it is already integrated in the 2d/3d PROPHET simulation code from Lucent
Technologies. Encouraging comparisons with Schrédinger—Poisson simulations
can be found in [6, 64].

To get a comprehensive impression of the capabilities of the QDD we also
have to mention its limitations. As only low order quantum corrections are
considered no quantum interference phenomena are included in the model.
Further, the simulation of modern single—electron devices is out of reach due
to the break down of the continuum hypotheses. Also the choice of the mobility
coefficient and the effective tunneling mass is delicate [63, 8, 64]. Either, they
are derived empirically or used as fitting parameters to get better quantitative
agreement of computational and experimental results.

The paper is organized as follows. In Section 1.1 we derive the QDD via
the zero relaxation time limit in the isothermal QHD. Results on the bipolar
stationary equations are given in Section 2. We discuss the thermal equilibrium
problem as well as the biased case and a generalized Gummel iteration. Recent
results on the transient model are given in Section 3. There, the existence
of global non—negative solutions, the convergence of a positivity—preserving
numerical scheme and the linear stability of stationary states are discussed.
Further, we give conclusions in Section 4.

1.1 Passage from QHD to QDD

It is well-known that quantum moment equations can be derived in various
ways [22, 27, 23]. In this section we start from the isothermal QHD and
deduce the QDD in the zero relaxation time limit. This asymptotic link is just
in analogy to connection of the classical hydrodynamic equations to the DD
[29].This formal derivation was first presented in [56].

The transient, isothermal QHD consists of conservation laws for the electron



density and the current density [22]. The unscaled QHD equations stated on
a bounded domain Q C R?%, d = 1,2 or 3 read:

1
% + gdivJ =0, (1.1a)
o] 1. [(J®J qkrTo q? qh? Ayn\ J
0t+qdw( - >+ - Vn~|—mnVV ZanV Jn )T
(1.1b)

which are self—consistently coupled with the Poisson equation for the electro-
static potential

—e AV =q(n— Cyot) - (1.1c)

The variables are the electron density n = n(xz,t), the current density J =
J(z,t) and the electrostatic potential V' = V(x,t). The physical constants
are the elementary charge ¢, the Boltzmann constant kg, the effective electron
mass m and the reduced Planck constant h. For the values of these constants
we refer to [48]. Physical parameters are the permittivity €, the ambient
temperature Ty and the relaxation time 7, which depend on the material and
on the operating conditions of the device. The time—independent doping profile
Caot = Caot(x) represents the distribution of charged background ions.

For the zero relaxation time limit is it convenient to introduce in (1.1) the
following diffusion scaling, where the new dimensionless quantities are marked
by a tilde:

n— Cp,n, Cliot = Co Cor z — L7,
2 kp Ty~ kg Ty Con 7 =
t— g v BBy J— LEBLobmT 5
kg ToT Lm

Here, €}, denotes the maximal absolute value of the doping profile Cy,; and L
is a characteristic device length, e.g. the diameter. Defining the scaled Planck
constant ¢, the scaled Debye length A and the scaled relaxation time 7y by

2 hQ 9 €kBT0 Q_kBToTQ

S T Ymkp Ty 12 T @O, L2 0T Tz

we end up with the scaled QHD equations

%7; +div.J =0, (1.2a)
d.J J®J A
7'0254—7'02 div( (i) >+Vn+nVV—62nV( \/\/ﬁﬁ>=—<ﬁ (1.2b)

N2 AV =n— Cyy, (1.2¢)



where we omitted the tilde for notational convenience.

In applications the following data of a quantum semiconductor device [6, 64]
is realistic:

L =100nm, 7=10"s, T,=77K,

where the relaxation time 7 corresponds to the low field mobility of GaAs [61].
The squared scaled relaxation time is 73 ~ 10™*, which justifies the relaxation
limit 79 — 0 in (1.2). This formally yields the system

on ,
o +divJ =0, (1.3a)
Ay/n
2
— = — 1.
5nV(\/ﬁ>+Vn+nVV J, (1.3b)
~ N AV =n — Cyor. (1.3¢)

System (1.3) differs from the classical drift diffusion equations [48] only in the

quantum correction ‘—e?n 'V (%) "

Inserting (1.3b) into (1.3a) we can eliminate the current density J. From the

identity
Ay a Oy, 0.1
2 di = _A2 5. | ==t
le(ﬂV(\/ﬁ)) n+28xﬁ%( " )

1,j=1

we get the scaled transient QDD:

ot 2 2 £ n
2,j=1

2 2 d 0..no,.
2 N 00, (M) +An+div(nVV),  (1.4a)

— M AV =n — Cyy. (1.4b)

Hence, the transient QDD consists of a nonlinear fourth—order parabolic equa-
tion for the electron density n, which is self—consistently coupled to the Poisson
equation for the potential V.

Especially, for the stationary equations there exist various formulations. These
range from second order [2] via third [21] to fourth order systems [15], which
all have their specific advantages and drawbacks. In the next section we con-
centrate on the stationary second order system.

2 The Stationary Equations

In Section 1.1 we derived the unipolar QDD. As all classical models involve
two types of carriers, namely electrons and holes, it is only natural to extend
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the QDD to handle also bipolar quantum devices. This extension is proposed
by Ben Abdallah and Unterreiter in [2] and reads in its scaled, stationary form
stated on a bounded domain Q C R?, d =1,2 or d = 3:

Avn

—52W +log(n) +V + B, = F, (2.1a)
—552% +log(p) =V + B, = G, (2.1b)

div (4, n VF) = R(n,p) (exp (F + G) — 6°), (2.1¢)
div (1, pVG) = R(n,p) (exp (F + G) — 6%), (2.1d)
—NAV =n—p— Cyor. (2.1e)

The scaled physical parameters are the Planck constant e, the ratio & of
the effective masses of electrons and holes and the mobilities py, 1, of elec-
trons and holes, respectively, and the Debye length A. All these quanti-
ties are assumed to be positive constants, excluding especially field depen-
dent mobilities. The doping profile Cypy = Cyoi(x) (where z is the spatial
variable ranging in ) representing a fixed charge distribution and the non-
negative quantum well potentials B, , = B, ,(x) are assumed to be fixed.
Equation (2.1) also includes generation-recombination processes of the form
R(n,p) (exp(F + G) — 6%), where R : R* — R and § > 0. In thermal equilib-
rium there is no generation-recombination process. Hence, 62 = exp (Fiq + Gey),
where F,, G, are the (constant!) equilibrium values of the quantum quasi
Fermi levels, see [62]. The model includes Shockley-Read-Hall and Auger
generation-recombination processes but excludes generation through impact
ionization [44].

In (2.1) the electron density n = n(x) > 0, the hole density p = p(z) > 0,
the quantum quasi Fermi levels F' = F(z),G = G(z) and the electrostatic
potential V' = V/(z) are unknown. The current densities of electrons and holes
are determined by the charge densities, the quantum quasi Fermi levels F, G
and the mobilities:

Jp = VF, J,=—p,pVG. (2.2)

The model equations (2.1) are supplemented with mixed Dirichlet-Neumann
boundary conditions

n=mnp, p=pp, V =Vp+Veyonlp, (2.3a)
F = Feq + ‘/ext: G = Geq — Vegs on FD7 (23b)
Vn-v=Vp-v=VV-v=0o0nTy, (2.3¢)

)

VF-v=VG-v=0only, (2.3d



where [, and I'y are disjoint parts of the boundary of 2 with I'p, ULy = 02
and v is the unit outward normal vector along I'y. Here, ' models the Ohmic

contacts of the device, while the insulating parts of the boundary are described
by FN-

This set of boundary conditions is motivated by its analogy to the classical DD.
Nevertheless, the choice of the Dirichlet data np, pp and Vp is still an open
problem, since up to now no rigorous derivation from microscopic quantum
models is available [55, 40].

Some authors assume charge neutrality and vanishing quantum effects at
the boundary and sometimes only homogeneous Neumann data is employed
(38, 40]. Clearly, the thermal equilibrium densities n., and p., are possible
candidates for np and pp and the built-in potential V,, for Vp, respectively.

2.1 Thermal Equilibrium

The thermal equilibrium problem is of great interest for itself, as in the vari-
ational approach by Unterreiter [62] one needs not to prescribe any boundary
data for the particle densities. Instead one assumes the total charge neutrality
of the device and finds the thermal equilibrium state as the state of minimal
total energy [53, 62]

E(n,p)ZSQ/Q‘V\/ﬁ‘z d:c+£52/ﬂ|v\/z_)|2 d:c—l—/QH(n) d:c—i—/QH(p) dz

)\2
—I——/\VV[n—p—C’dmg]]2 dx—l—/Bnndx+/Bppdx.
2 Ja Q Q

in the set

CYl(np) e LN X L) : np>0, Vn,peH(Q),

/ndx:N, /pd:(;:P},
Q Q

where H(t) = tlog(t) —t + 1 is a primitive of h(t) = logt and

NE [ Cf de, PE / Cor 0

Q Q
are the densities of donator and acceptor atoms. Further, V' =V [n —p— Cyy]
is the self consistent electrostatic potential defined via —MN?AV =n —p — Cyp

with [, V(z) dz = 0. We note that

/(n—p—Cdot) de =0 for all (n,p) €C,
Q



which yields the desired charge neutrality of the device.

The existence and uniqueness of a minimizer (ne,, peg) € C is proved by Un-
terreiter in [62] by means of variational calculus, where he also identifies the
Euler-Lagrange equations.

Theorem 2.1. Assume

Al QCRd=1,2 ord=3is a non-void, convex, bounded domain.

A.2 There exists a constant K = K(Q2) € (0,00) such that for all f € L*(Q),
VI < K| fllzze)

where AV|[f] = f.
A.3 B, By,Cyo € L*(Q) and B, , > 0.

Then £ has a unique minimizer (Neg, Peq) 1 C and Neg, Deq and Veg := Vne, —
Peq — Caot] have the following properties:

@) Negy Degs Veqg € Cu(Q) N HY(Q).

b) There ezists a constant O, € (0,1) such that Oeq < Neg, Peg < 1/0cq.

¢) There exist constants Feq, Geq € R such that

A, Ay/Tieg

\/n_eq +1og(neg) + Veg + By, = Fyy

RN
VPeq

Further, he investigates the semiclassical limit ¢ — 0 and the small Debye
length limit A — 0.

+ 10g(peq) Veq + Bp = Geq

There exist various possibilities for the numerical calculation of the minimizer.
In [58] a projected quasi-gradient method is presented and its convergence
proved, both on the continuous level and for the discretized problem.

Numerical investigations give evidence that for the thermal equilibrium state
charge neutrality at the boundary holds [55] , at least as long as the devices is
not to small. By means of asymptotic analysis the author shows in [55] that
this cannot hold for ultra—small devices, whereas the assumption of vanishing
quantum effects at the boundary can be justified.
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2.2 QDD with Bias

The full system (2.1) supplemented with boundary conditions (2.3) is analyt-
ically investigated by Ben Abdallah and Unterreiter in [2]. They show the
following existence result.

Theorem 2.2. Assume

A1 QCRYd=1,2 ord =3 1is a bounded domain and 092 is C*' and
piecewise reqular.

A2 ReC'(R x R;[0,00)).
A.3 By, By, Can € L™(Q) and B, > 0.

Then the system (2.1) supplemented with boundary data (2.3) possesses a so-
Iution n,p,V,F,G € H'(Q) N L*(Q). Further, n,p,V,F,G € C°(Q) and
n(z),p(x) > 0 for all z € Q.

The proof is done by means of variational methods combined with Schauder’s
fixed point theorem. They also tackle the case of vanishing charge density at
the boundary occurring at inversion layers. Ancona [3] emphasized this issue
as one of the main advantages of the QDD, since here such kind of boundary
conditions can be incorporated in contrast to the classical DD.

The question of uniqueness of solutions was left open in this paper and finally
answered in [58] (see also Section 2.3). There it is shown that the solution is
unique as long as the device is operated near the thermal equilibrium state,
i.e. for small applied biasing voltages V,,;. This is in analogy to the result for
the classical model [44, 51].

In [2] also the semiclassical limit is established, i.e. the solutions of the QDD
converge to solutions of the classical DD as ¢ — 0. We give the precise
convergence result.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold and assume np,pp >
0. Then there exist functions n,p,V, F,G € C°(Q) N H(Q) satisfying
log(n) +V =F,
(p) =V =@,
div (1, n VF) = R(n,p) (exp (F + G) — 6°),
div (4, pVG) = R(n,p) (exp (F + G) — 6%),
—NAV =n—p— Cyor.
and (2.3) such that a solution n®,p°, Ve F¢ G* € C°(Q) N HY(Q) of system
1

2.1) supplemented with (2.3) fulfils \/n® — \/n, \JI¥ — /p, VE =V, F* —
F, G° — G strongly in HY(Q), weak-+ in L>(Q) as ¢ — 0.

log

— =

11



In this sense the QDD behaves well for small € despite of its singular pertur-
bation character. Clearly, this will be different if heterojunction barriers are
present or in the vicinity of strong inversion layers (see [6]).

2.3 A Generalized Gummel-Iteration

In this section we consider a decoupling algorithm for the numerical solution of
(2.1), which proves to work in a stable and efficient manner. For the classical
DD an iteration introduced by Gummel [32] is most commonly employed and
proved to be rather well suited for many problems of practical relevance. There
exist a vast literature in which the Gummel-iteration is thoroughly studied
from a numerical and an analytical point of view (for an excellent overview
see [44, 34] and the references therein).

In [58] a fixed point mapping is constructed which yields a generalized Gummel—-
iteration for the QDD. This algorithm relies on a fixed point iteration decou-
pling the current equations from the rest of the system. In each iteration
step two semi linear elliptic systems are solved. The fixed point mapping
T is defined via: Let (Fy, Go) be a pair of quantum quasi Fermi levels from
an appropriately chosen set. Then, T'(Fy, Gy) = (F1,G,), where (Fy,Gy) is
computed from (Fy, Gy) as follows:

Algorithm 1. (Generalized Gummel-iteration)

1. Solve the semi linear elliptic system

,AVn

—€ NG +log(n) +V + B, = Fy, (2.4a)
Ayp

—582_\/\/1_)_ + log(p) -V + Bp - G07 (24b)

—NAV =n—p— Cuo, (2.4¢)

subject to the boundary conditions (2.3) for (ny, p1, V1).

2. Solve

div ( n1 VF) = R(n1,p1) (exp (F +G) — 6%), (2.5a)
div (11, p1 VG) = R(n1, p1) (exp (F + G) — 67, (2.5b)

subject to the boundary conditions (2.3) for (Fi,Gy).

Clearly, every fixed point of T" is a solution of the original problem (2.1) with
boundary conditions (2.3). The unique solvability of the above boundary value
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problems and thus the well-posedness of the fixed point mapping is also shown
in [58]. From the numerical point of view it is advantageous not to deal with a
coupled system of five semi linear elliptic equations, but with two much more
tractable problems: System (2.4) is similar to the thermal equilibrium problem
[62], which has been intensively investigated and system (2.5) fits into the the-
ory of monotone operators [65]. Further, if the device is operated near thermal
equilibrium, even convergence of the iterating sequence (n*, p* V¥ F* GF) de-
fined via Algorithm 1 can be proved. The precise result reads.

Theorem 2.4. There exists a constant U, > 0, depending on various device
parameters, such that

||Vext||Loo(Q) <Us
implies:

a) There exists a unique solution (n.,po, Vo, Fo, Go) of (2.1), (2.3).

b) (nk, p* VE FE GF) converges to (ne, po, Ve, Fu, Go) strongly in
(L5(2))% x (H'(2))? as k — <.

In fact one shows that 1" is a contraction on an appropriately chosen set. Then
Theorem 2.4 follows from Banach’s fixed point theorem.

The proof of the contractivity of T" heavily relies on the Lipschitz—continuity of
the first step in Algorithm 1, which is a consequence of the following Poicaré—
type estimate.

Lemma 2.5. Assume A.1 of Theorem 2.2. Then there exists for all 5 € R
and all @ € (0,1) a constant K = K(Q,5,0,s) € (0,00) such that for all
uwe HY(Q)NL>®(Q) with <u<1/6 and all ¢ € HY(QUT y) N L>®(Q):

[+ ()

Lemma 2.5 assures that the quantum operators A(p) = A\/p/\/p, p = n or
p = p, are monotonic with respect to the L*(2)-norm. Alternatively, one can
deduce that the second variation of the quantum energy term

2
dz > K ||¢|

L) - (2.6)

gquant(p) :L‘Vﬁ‘z dzx

is positive definite with respect to the L*(£2)-norm. In this sense the Bohm
potential is much easier to handle numerically than the third order operator in
(1.1), which seems to be responsible for dispersive effects in the QHD [46, 33]
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and also yields analytical problems [21]. In [56] it is shown that also the fourth
order operator in the transient QDD (1.4) has such a monotonicity property.

Theorem 2.4 applies in cases where F' and G are close to their corresponding
equilibrium values Fi,, G, on I'p. This corresponds to the uniqueness result
for the classical DD [51]: For small applied bias voltages the current-voltage
characteristics is uniquely defined. This is physically reasonable. For higher
applied voltages no uniqueness result is available. But it may be assumed
that uniqueness does not hold in general: The performance of many devices
(thyristors) relies on the existence of multiple solutions [48].

Note that in the engineering literature [6, 9, 66, 64] also other numerical
schemes are reported, such as a damped Newton-iteration or a hybrid method,
which combines the robustness of the Gummel-iteration with the second or-
der convergence of Newton’s iteration. There the Gummel iteration is used to
compute a good starting point for the first Newton step. Up to know there is
no numerical analysis available for these methods. However, it is assumed that
this encounters the same difficulties as the one for the classical model, since
the invertibility of the linearization of (2.1) strongly depends on the size of the
off-diagonal terms [44, 34]. Nevertheless, a Newton iteration is the method of
choice for (2.4) due to the monotonicity of the quantum operator.

For all numerical approaches voltage continuation, i.e. the applied voltage is
incremented and in each step the previous solution is used as an initial guess
for the next iteration, proved to be necessary to stabilize the numerics for large
applied biasing voltages.

3 The Transient QDD

While the stationary QDD was investigated thoroughly and its analysis is now
in a rather mature state, only recently some results on the transient equations
(1.4) are available [38, 40, 39]. This is due to the fact that the equation for
the electron density is of fourth order, such that no maximum principle is
available to ensure the positivity of the density. In [38] the main part of (1.4a)
is investigated:

ny = —(n(log(n))ea)za (3.1a)
for t > 0, subject to the initial condition
n(0,z) = ny(z) (3.1b)

and the boundary conditions

n(0) =n(l) =1, n.(0) =n.(1)=0. (3.1c)



Note that (3.1a) can be equivalently written as

n

2

n

This is exactly (1.4a) in the case of zero temperature and zero electric field.
Surprisingly, this equation also arises as a scaling limit in the study of interface
fluctuations in a certain spin system [18]. The variable n describes the scaling
limit of probabilities for a random variable. Problem (3.1a)—(3.1b) with peri-
odic boundary conditions was first studied by Bleher et al. in [14]. Assuming
(strictly) positive H'(Q)-data, they showed that there exists a unique posi-
tive classical solution locally in time. For “small” initial data, the solution
is even global in time. However, the problem whether non—negative solutions
for general (non—negative) initial data exist globally in time remained open.
This was recently answered: In [40] it is proved that for general initial data a
non—negative solution exists globally in time. Note that the equivalent formu-
lation of (3.1a) is not degenerate such that the techniques developed for the
so—called thin film equations [13, 31, 54], especially the concept of nonlinear
entropy dissipation, are not applicable.

In fact, it is shown that for non—negative initial data satisfying a certain inte-
grability condition, there exists a generalized non—negative solution globally in
time. As only weak assumptions are imposed on the data , it can be a priorily
not expected that the solutions have L? (0, co; H?(£2))-regularity. But similar

to [13] a new solution concept is introduced, which is given in the following
existence result.

Theorem 3.1. Assume that the initial datum ngy is measurable and satisfies
the condition

/ no — log(ng) dz < +o0. (3.3)
0

Then there ezists a solution n of (3.1a)—(3.1c) satisfying

n(z,t) >0 a.e. in (0,00) X €, (3.4a)
1 € Line (0,00, WHHQ)), g € Lip(0, 00, H*()), (3.4b)
log(n) € L2 (0, 00; H*(2)) N L*°(0, 00; L*(9)). (3.4c)

Further, n(-,0) = ny in the sense of H=2(Q) and it holds for any T > 0 and
any smooth test function ¢ € C°((0,00) x §2),

T T
/0 <”t>¢>H—2,Hg dt = —/0 /Qn(log(n))m G dxdt.
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The proof of Theorem 3.1 is based on two ideas. The first one is to perform
an exponential transformation of variables. Setting n = e*“, equation (3.1a)
reads in the new variable:

(eQu)t = -2 (62“ um)m (3.5)

Hence, the existence of a (generalized) solution u of (3.5) implies the existence
of a non-negative solution n of (3.la). Exponential transformations were
already successfully employed in the study of the stationary QHD [33, 15].

Clearly, a solution u € L>((0,00) x2) to (3.5) provides a positive solution n to
(3.1a). However, only the regularity u € L7 (0, 00; L>(Q)) (see (3.4)) can be
deduced such that only the existence of non-negative solutions to (3.1a) can be
concluded. This is in contrast to the stationary problem, where the positivity
property immediately follows from an H*(2)-bound for the corresponding
stationary variable u and the Sobolev embedding H?*(€2) < L>(2) when s >

d/2, d being the space dimension (see [33]).

This observation gave the motivation to discretize (3.5) in time, which is the
second main idea for the proof, yielding a sequence of elliptic problems. The
existence of solutions u(ty, ) in H%(Q) to the resulting elliptic problems can be
proved. Hence, the approximate solutions u(tx, -) are in L*(2) and expressions
like e®(*+%) are well defined.

It is worth noting that equation (3.1a) possesses several Lyapunov functionals
[14] which provide a priori estimates in the existence proof. It can be easily
seen that the entropy

S(t) = /Qn(t) (log(n(t)) — 1) + 1 dx

is (formally) non-increasing in time. In the case of periodic boundary condi-
tions, also the Fisher information

[ as

is non-increasing in time.

3.1 A Positivity—preserving Semidiscretization

The techniques developed in [38] are also suitable to treat the coupled system
(1.4). As for the moment analytically only the non—negativity of solutions can
be expected, the question arises, if at least the construction of a positivity
preserving numerical scheme is possible. This is of great practical relevance as
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the engineering—oriented device analysis is focused on numerical simulations
for which the positivity of particle densities is essential to ensure the stability
of the numerical schemes.

Following the ideas stated in [38, 40] an implicit semidiscretization of (1.4) is
derived and an existence and stability result for the discretized system at each
time level is proved.

Influenced by the results for the stationary QDD again the quantum quasi
Fermi level F' and the new variable p = y/n are introduced. Then (1.4) reads:

(pz)t = div(p? VF), (3.6a)
—52% +0log(p?) +V = F, (3.6b)
—NAV = p? — Cyor. (3.6¢)

Here, 6 denotes the scaled lattice temperature. For the numerical treatment
of (3.6) a horizontal line method is employed and the transient problem is
replaced by a sequence of elliptic problems for 0 =t; <t; <... <ty =171. In
fact, system (3.6) is discretized using an implicit EULER scheme:

Set py = \/n(0). For k=1,..., N solve recursively the elliptic systems

1 .
Pk = pia) = div(p} VEY), (3.7a)
A
—52% +0log(p?) + Vi = F}, (3.7b)
k
—)\2AV]€ = pi — Cdot; (37C)

subject to the boundary conditions

Pk = PD, Fk = FD, Vk = VD on PD, (37d)
Vo -v=VE,-v=VV,-v=0 only, (3.7¢)

where
PD =V Cdot7 FD = U, VD = —0 lOg (Cdot) + U. (38)

Here, fy is an approximation for f(¢) and 7y def tr — tp—1. Then the approx-
imate solution to (3.6) is given by (p”, F'7, V"), where p"|y, ) = const for
k=1,...,N and F7,V7 respectively.

In [40] an existence theorem for (3.7) is proved. It is assumed that the bound-
ary 0f) and the data are sufficiently smooth, such that an elliptic Schauder
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estimate holds. Further, the lattice temperature has to be sufficiently large,
which ensures the positivity of the semidiscrete solution. This is necessary,
since the boundary data (3.7d), (3.7¢) does not allow for the usage of the
techniques developed in [38]. The precise existence and positivity result reads:

Proposition 3.2. Let k € {1,... ,N} and let pr_, € C*(Q). Then there
exists a constant 0y > 0 such that for all § > 6y system (3.7) possesses a
solution (pg, Fi, Vi), fulfilling

(a) (pr, Fi, Vi) € H*(Q) x C*1(Q) x C*1(Q) for 0 < v < 3,

(b) e, >0: ppr>ce >0 in .

Furthermore, the approximate solution is stable in the following sense (see [40,
Corollary 2.5]).

Lemma 3.3. Fork=1,...,N let (pg, Fi, Vi) be the recursively defined solu-
tion of (3.7) and (p, F7,V7) € PCx(0,T; H*(Q) x C*7(Q) x C?7(Q)). Then
pm € L>(0,T; H'(Q)) and p" VF™ € L*(0,T; L*(Q)). Further, there exists a
positive constant c, independent of T, such that

107N oo gy + 1V M ooy + 1107 VE | 22y < e (3.9)

In the one-dimensional case it is possible to prove (see [40, Theorem 3.3]) the
existence of a subsequence, again denoted by (p™, F7,V7), such that

p" —p weakly in L*(0,7T; H*()),

p” — p strongly in C°([0, T]; C*7(Q)),
(p")’F7 — J  weakly in L*(0,T; L*(9)),

VT =V  strongly in C°([0,T]; C*7(2)),

as 7 — 0, where (p, J, V') is a weak solution of the continuous problem (3.6).

Here, the a priori bounds on the approximate solution in Lemma 3.3 are not
sufficient to guarantee convergence, since the argument depends strongly on
an L>(0,T; L>*(Q2))-bound on p” (see [40]). In one space dimension this is
an immediate consequence of the estimate (3.9) and the embedding H'(Q) <
L>(€2). In fact, no analytical results on system (3.6) are available in several
space dimensions. Thus, one has to state additional assumptions on the se-
quence of approximating solutions. These even yield explicit error estimates,
which exhibit the optimal order of convergence for the implicit EULER scheme.

Theorem 3.4. For k = 1,... N let (px, Fy, Vi) be the recursively defined
solution of (3.7) and (p™,F™, V™) € PCy(0,T; H*(Q) x C*7(Q2) x C*7(Q)).

Assuming
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A4 36€(0,1) V7>0: 6<p" <5 0l psommziay <0

there exists a subsequence, again denoted by (p™, F7, V), such that

p" —p weakly in L*(0,T; H*(Q)),

p" — p  strongly in C°([0,T); C*(Q2)),
F™ — F  strongly in C°([0,T); H(Q)),

VT =V strongly in C°([0,T]; C*7(Q)),

as T — 0, where (p, F, V') is a solution of the continuous problem (3.6).

Furthermore, if the embedding H*(Q) — W™P(Q) is continuous for some
m>0,p>1 and

A5 pe H2(0,T; L)),

then there exists a constant 19 = 19(Q2, A\,0) > 0 such that for 7 € [0,7y) we
have the following error estimate

o7 — PHLoo(LZ) +e?lp" — p||L2(Wm7P) +[[F7 = FHLoo(HZ) + V7T - V||L00(H2)
<CeTr, (3.10)

for some positive constants o = a2, A, 8, 79) and C = C(Q, A, 8, 79).

The uniform lower bound for p” is necessary to verify the strong convergence
of the quantum quasi Fermi level 7 — F', which allows for the identification
of the limiting current density J = p? VF. This was in one space dimension
out of reach due to the weaker assumptions and convergence properties. Note
that the assumption on the time regularity of p, i.e. py € L?(Q2), seems to
be quite strong only at a first glance. Comparing the result for the classical
transient DD given in [17], this regularity was already used there to derive
the optimal order of convergence in one space dimension. Most remarkably, it
is also sufficient to guarantee for the optimal convergence rate of this fourth
order system in several space dimensions.

3.2 Linear Stability of Stationary States

Another interesting question is how does the transient QDD behave close to
a steady state. This is investigated in [56], where the author studies small
perturbations of the stationary state and derives conditions which ensure their
linear stability.
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One can prove that the stationary fourth order system allows for a solution
(n,V) € H*Q) x HY(2), where the lower bound on n is strictly positive and
independent of £. At such a state the operator GG defined by

G(n) ¥ div(n VA(n)),

where

o A
A(n) o g2 vn

vn
and V[n — Cyy] denotes the solution of —\2AV =n— Cyy, V = Vp € HH(QU
I'y), is Fréchet—differentiable.

+log(n) + Vn — Cyul,

Assume that a solution z of the perturbed problem
0z

5% = G(z) inQx(0,7), (3.11a)
z=np, Vz-v=0 ondQx(0,7T), (3.11b)
2(,0)=n(-)+dg() inQ, (3.11c)

where § > 0 is a small parameter and g € L*({2), can be written as z(z,t) =
n(z) + 0 ©(x,t). Then, © satisfies the linear first order approximation

%—?:G’(n)[@] in Q x (0,7),
©=0, VO-v=0 ondQx(0,7),

O(,0)=g() inQ,
which is nothing than the linearized transient QDD.

Employing Hilbert space methods for linear parabolic PDE’s and exploiting
the monotonicity of the quantum operator the author shows the existence of
a unique solution O satisfying some stability estimate [56]. More precisely:

Theorem 3.5. Assume that Q is sufficiently reqular. Let f € L*(0,T; L*(2))
and g € L*(Q). Then there exists a unique solution © € L*(0,T; HX(QY)) of
the inhomogeneous problem

00
o= G'n)Bl+f inQx(0,T), (3.12a)
©=0, VO-r=0 onoQx(0,7), (3.12b)
O(,0)=g(-) in Q. (3.12¢)
Fort € (0,T) the solution © satisfies the stability estimate
10 a0y < A {llglaey + Il 2e } (3.13)

with constants a, A > 0, which only depend on Q,e,\,n and J.
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In fact, one can precise the constant a in Theorem 3.5 and derive conditions un-
der which it is negative, such that any perturbation ¢ is exponentially damped
and the corresponding state is linearly stable.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold. Then there exists a
constant Jy = Jo(,e, A\, n) > 0 such that for

J

n

<Jy

Lo ()
the unique solution © € L*(0,T; H2(Q)) of problem (3.12) satisfies
19| L2) = 0, ast — oo,

i.e. the corresponding stationary state n is linearly stable.

An analogous result is given by Markowich and Ringhofer in [47] for the clas-
sical DD. For the transient QDD the smallness of ¢ is a purely technical as-
sumption and is needed to derive the desired estimates. Nevertheless, we have
an improvement due to the quantum regularization, as it allows to assure the
linear stability of stationary states for a wider range of applied biasing voltages.

4 Conclusions

We gave an overview of the results available in the mathematical literature
on the QDD for semiconductor devices. The analysis is now in a rather ma-
ture state even for the transient model. It covers proofs of existence and
uniqueness as well as asymptotic limits and stability estimates. Also some nu-
merical results are at hand concerning convergence of a generalized Gummel
iteration and of a positivity preserving semidiscretization for the fourth order
transient system. The vast applicability of the QDD for various devices is im-
pressively evidenced in the engineering literature. Future work will focus on
the derivation of stable nonlinear discretization schemes, coupling with other
semiconductor models and generalizations in the spirit of ‘smooth” QHD.
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