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Abstract

In this article we prove the existence of bounded purely imaginary pow-
ers of the Stokes operator Ay, which is defined on the space of solenoidal
vector fields J,(R), 1 < ¢ < oo, where Q = R*™! x (—1,1) is an infinite
layer. It is a consequence of a special representation of the resolvent of
the Stokes operator in terms of the Stokes operator on R", a composition
of a trace and a Poisson operator — a singular Green operator — and a
negligible part.
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1 Introduction and Main Result

Let @ = R*! x (=1,1), n > 2, and J,(Q) == {J € Coo()7 - div f = 0},
1 < g < 00, the space of solenoidal vector fields in L,(2)™ with vanishing normal
component on J{. In this article we consider the Stokes operator A, = —FP;A
on Jg () with domain

D(Ay) = {f € WJ ()" :7vf = floa = 0} N J, ()

where Py : Ly(2)™ — J,(Q) denotes the well-known Helmholtz projection.
Wiegner [9] proved the existence and continuity of P, for the case that § is
an infinite layer. Moreover he showed that —A, generates a bounded analytic
semigroup and that 0 is in the resolvent set of A,. Therefore we can define the
fractional operator A7 for —1 < Rez < 0 by using the Dunford integral. Our
main result is

Theorem 1.1 Let 0 < a < % Then for every € > 0 there is a constant C; , such
that

450 < Cepge! 1)
for all z satisfying —a < Rez < 0, where ||.|| is the operator norm in £(J,(2)).

With the aid of (1) it is possible to obtain imaginary powers Afly for y € R,
cf. [4], which define a strongly continuous semigroup y — A%, y € R, in J,(Q)
satisfying the estimate

14| < Cetll,

This inequality was proved in [2, Theorem 1] for bounded domains, in [5, The-
orem A] for exterior domains and in [6, Theorem A.1] for the halfspace. It



has several important consequences. For example we can apply [8, Theorem
3.2.] resp. its extension [6, Theorem 2.1] since J,(2) is a UMD-space and —A,
generates a bounded analytic semigroup. Therefore we get

Theorem 1.2 Let 1 < p,g <00, 0<T <ooand f € L,(0,T;J,(Q)). Then the
Cauchy Problem

u'(t) + Agu(t) = f(1), 0<t<T
u(0) = 0

has a unique solution u € W, (0,T'; J,(€2)) N LP(0,T;D(A,)). Moreover

u'll L, 0,130,2) + 1AullL 0,70, < CllfllL,0,10,0))-

Therefore the Stokes operator A, has mazimal regularity.
As another application [5, Proposition 6.1] yields:

Theorem 1.3 Let 1 < ¢ < 00, 0 < a < 1. Then the domain of A‘;,O < a<l,
coincides with the complex interpolation space

D(Aq) = [J4(), D(4,)]

a

Remark 1.4 The operators A, %, Rez > 0 define a strongly continuous semi-
group —see e.g. [1, Theorem 4.6.2]. Therefore the technical restriction 0 < a < %
can be relaxed to arbitrary a > 0. But in order to get existences of bounded
purely imaginary powers the estimate (1) is needed ounly for small a > 0.

For the proof of Theorem 1.1 we follow the same approach as in [2]. Let u =
(A+ A7 f, f € J,(Q). Then u satisfies the Stokes resolvent equations

A=Au+Vp = f in €,
divu = 0 in €,
yu = 0 on Of)

where Vp = —(I — P;)(A — A)u. Let K, denote the resolvent of the Stokes
operator in R" and N denote the solution operator of the Neumann problem
for the Laplace equation in the layer :

Au = 0 in €,
Ohu = ¢ on 0f.

We set v = (A + Ay) 7 f — PNKxf, Pn := I — VN, Y0 = €n - 79, €n =
(0,...,0,1)T, where f is identified with its extension by 0 to R®. Then the



vector field v satisfies the Dirichlet problem with tangential data g = M) f :=
—vPn Ky f, that is
A=Aw+Vg = 0 in Q,
dive = 0 in Q,
v = g on 0}

—~ o~ o~
= W N
= T =

where v,9 = 0. Therefore, if V) g is a solution of (2)-(4), we get
A+ 47 f = PnExf+VaMyf (5)

since the solution of the resolvent equation is uniquely determined for A €
C\ (—00,0); see [9]. Thus we get a representation of the resolvent of the Stokes
operator in the layer ) in terms of the resolvent of the Stokes operator in R”
and a composition of a trace and a Poisson operator VyM,. The main part of
the latter operator is given by a A-dependent multiplier kernel g} (¢'; zp, yn), see
Section 3, with good properties as |[A\| = oo which enable us to estimate the
corresponding part of A7; see Theorem 6.2.

In Section 2 we recall some basic notations, definitions and well-known re-
sults. The Section 3 introduces the basic operators used in this article and gives
some basic estimates with the aid of Miklin’s multiplier theorem. In Section 4
an explicit solution formula for the Neumann Problem of the Laplace equation
is given. This formula is necessary to get the multiplier kernel of Vi M,. Using
special single layer potentials a rough approximation of V) is constructed in Sec-
tion 5. This gives the solution operator V) for large |A| by the usual Neumann
series argument. In Section 6 we finally get an explicit representation of Vy My
modulo some negligible part, which enables us to prove Theorem 1.1.

The author is grateful to Professor Michael Wiegner for giving him a pre-
published copy of [9].

2 Preliminaries and Notation

First we introduce some function spaces. For 1 < ¢ < oo and any domain
Q C R*, n > 1, we recall the standard notations L,(f2), with norm .||z ) =
IIllg and Wg™(Q), Wi, (€2), m € N, with norm |l[lwy @) = [|-[lgm for the
usual Sobolev spaces. For m —1 < s < m, m € N, we denote by W/(Q2) =
(W;””(Q),W:l(ﬂ))qﬁ, 6 = s —m + 1, the corresponding real interpolation

_1

spaces. It is well known that the trace v : W*(R}) — W, 1R ') is a

continuous and surjective map — see e.g. [3, Theorem 6.6.1.]. Moreover there
1

is a continuous extension operator E : qu (R — W (R} ). Therefore
_1

the norm of the real interpolation space W, * (R"~!) is equivalent to the trace

norm

m(R”™ = inf m(R™Y.
gl wym @ny) feW;n(Rf;):wf:ng”Wq (R™)



Recall that f € Lg10.(2), 1 < g < 00, means that f € Ly(Q2 N B) for all balls B
with QN B # 0. Moreover D f(z) = 031 ...05" f(x) for a € Ny.

If X,Y are two Banach spaces, we denote by £(X,Y) the space of all bounded
linear maps T : X — Y; furthermore £(X) := £L(X, X). Moreover we introduce
Y5 ={z€ C\{0}:]argz| < d}.

Recall the Helmholtz decomposition of a vector field f € L,(2)", i.e. the
unique decomposition f = fy + Vp with fo € J,(Q),p € qu(ﬂ) ={p €
Ly10c(Q) : Vp € Ly, (Q)"}. The existence and continuity of the correspond-
ing Helmholtz projection P, : L, (Q)™ — J,(Q), f — P, f = fo is well-known for
bounded and some kind of unbounded domains. For the case 2 = R~ x(-1,1),
it is proved in [9)].

Furthermore we define the Stokes operator 4, = —P,A in J () with
D(A,) = WZ(Q)" NWg ()™ N J,(Q).

We recall the definition of A7, —1 <Rez < 0. Let 0 <& < m and Iz denote
the path which consists of two rays from oce’==™) to 0 and from 0 to coe™—=),
Then

1

— = _\\# A —1
307 ), (VA

A

y
where (—A)* = exp(—alog(—A)) with Imlog(—A) € (—x, 7). Since 0 is in the
resolvent set of A, and since [|[(A+ 4,) 7| < Cs(L+|A) "L AeZs5,0<d <,
the integral converges absolutely.

3 Multiplier Operators and Multiplier Kernels

We recall the Fourier and inverse Fourier transform

fOo=RIN© = [ emwin  Fllgw = [ e

(2m)™

By f(¢',x,) = Fulfl(€;2,) we denote the (partial) Fourier transform with
respect to z', where x = (2/,z,) € R, 2’ € R* L.

The next well-known theorem is fundamental for the following L,-estimates;
see e.g. [7, Chapter IV, Theorem 3].

Theorem 3.1 (Miklin Multiplier Theorem) Let m € C™(R" \ {0}) with the
property

mlm == sup €D m(§)] < oo
£40,|o|<n

Then M f = fgl[m(f)f(ﬁ)], f € C§°(R™) extends to a linear, bounded operator
on Ly(R"), 1 < ¢ < o0, with

1M fllg < Clm]amll fllg,

where C depends only on n and gq.



Functions m satisfying the assumption of this theorem are simply called
multiplier and the corresponding operators multiplier operator. By [m]a we
denote the Miklin constant of m.

Remarks 3.2 1. If m(&) = f(|¢]), f:(0,00) = C, then [m]p < oo if

[fImo = sup sk|f(k)(s)| < 00. (6)
§>0,k=0,... ,n

Moreover [m]m < C[f]m,, where C' depends only on the dimension n.
2. If my (&), mo(€) satisty the condition of the Miklin multiplier theorem, then

also my (§)mz(€); moreover [myma|pm < Clma]mma]am, where C depends
only on the dimension.

3. If m(¢') is a (n — 1)-dimensional multiplier, we denote its Miklin constant
by [m]m instead of [m]ag.

Throughout this paper we identify a function f defined on 2 with its exten-
sion by 0 to R”. For f € C§°(Q2), @ = R" ! x (—1,1), a multiplier operator M
is applied to this extension of f. In this case we get the following representation
using partial Fourier transformation:

1 ~
Mf(z) = F' Ul m' (&5 20, Yn) F (€5 Yn)dyn, (7)
where

m'(€'s 2, yn) = Fe ()] (wn — yn)

denotes the multiplier kernel of the operator M. More generally we consider
operators defined by (7), where m/(.;xn,yn) is a (., yn)-dependent family of
(n — 1)-dimensional multipliers.

This kind resp. representation of operators will be essential in the whole
article. For these operators we will need the following continuity result:

Lemma 3.3 Let m/(£';x,,yn) be a multiplier kernel satisfying

Cwm
|$n - a| + |yn - b|

(M5 Tn, yn)lme <

for some a,b € {1,—1}. Then for every 1 < q < oo the operator defined by
(7) extends to a linear, bounded operator on Lqy(Q) with ||M f|l; < CqCuml|fllq,
where C is independent of Cyr.

Proof: W.lo.g. let a = 1, b = —1; otherwise substitute &, = —x, and/or
Un = —Yn. Since x,,y, € (=1,1), we get |z, — 1| + |yn + 1| = 2+ yp — zp.
Therefore we conclude with Theorem 3.1

VG vl ey
cc 1 dyn
M H/l 24+ Yn — Tn Y

1M £llq

IN

Lg(—-1,1)

IN

CCM|fllq



since the Hilbert transform is bounded in L4(R). |

Moreover we deal with generalized Poisson and trace operators
(Po)(z) = Fo'lp'(€52n)3(E")]
(ThH') = Fo' [/_11 (¢ yn) F(€ yn)dyn
where g € C§°(R™1) and p’ and ' are multipliers for fixed z,,,y, € (—1,1).

For the Lg,-estimates of V) and M) we will need the following result for
A-dependent Poisson and trace operators.

Lemma 3.4 Let p)\ (¢';2,) and t\(&';52,) be two families of multiplier kernels
depending on X\ € X5,0 < § < 7, both satisfying the estimates

1
e—eIAIE (2 —t])

[p’)\(7$n)]/\/1’ < Cs

|zn — t|®
forx, € (-1,1),te[l,-1],a< % and

1
e —cIAIE (2 1))

! o Ln ’ <
[t)\(71} )]M = Cs |J,‘n—t|b

forzn, € (=1,1),t€[l,-1],b< ql—, for 1 < q<oo. Then

_l4a
IPAgllL, ) < CsIAT2 2 |gllL, wm-1)
_1.b
IT5fll @ty < CIANT2 2|l @)
or all f € L,(Q), g € L,(R*Y) uniformly w.r.t. t € [-1,1].
i q\38), 9 q Yy )

Proof: Direct application of Miklin’s multiplier theorem yields

el (|2 —t]) s
I1Pagll, < Cs BT gl L @mn—1) = CsIAl" 22 |gl| L, rn—1),
" Lo(—1,1)
1 =A% (Jyn—t])
I3 fll, < 05/ ———— Gyl e dyn
-1 |yn tl
1
o g=e A3 (ya—th |7 s
< G / 7 Qn | Nl @) = Csl A2 2 fllL )
—0o0 |y’ﬂ_t|

]
We will use the resolvent of the Laplace and the Stokes operator in R™, E resp.



K, which are given by

EDE) = 7 [OF0) @ e©-1a
_ —1 r _ ggT
N = F[MOFO] @, mO=1-35
R T
Eanle) = B =7 [5@F0] @ kO =3 (1)

for f € C§°(R™)™, where H is the Helmholtz projection in R™. For the following
construction of V) we need to calculate the multiplier kernels of E) and Ky:

o L1 ] e VATERR
S = 7 5] = T ®
—1€' ||
<fh] -
oo LlEP 21¢|
k] = e ] e
‘7:£n {)\+|§|2 HE NCEED) ‘7: I NCHED) 9)

/X + [€2e € len] — ¢! e VAHIE Pl2al
2ME VA +[ET ’

1 €21 — e | =8
A+EPIEP \ 66T NEE

1T 1 ion 71»!”! I?’”n
(=15 er(§52n) — ( if&’Tnan(j;(.s ;)mm I \5’\62%75’(;1"), : )(10)

Ka(Esan) = F!

—1€' len | _ o= VAT enl . .
where 0,n) (¢';xn) = & 5 signx,. For later estimates we cal-

culate the corresponding Miklin constants.

Lemma 3.5 Lett > 0,a >0 and 0 <6 <w. Then

|:|€I|a67|5’|ti| < 97 |€’| 4>
v S [ATIER],
A+ ¢ L 1 -1
Y < 1+ A])2 —_— < Cs|A "2,
L+l ], T Coll+ IAD%, AHIEP] LT e
1
—c|A|Z¢
e VATER) oo
M T te
for allt >0 and X € Zs.
Proof: Since all multipliers are of the form m(¢') = f(|¢']|), we only have

to consider [f]a,. First we observe that sup,.,s*e™* = Ct~* and that the



derivates are of the form

dk
a5

a,—st

e ) — Safkefst

Pk (St>7

where pg(st) is a polynomial in st of order k. Therefore
k dk a,—st a,—si —st —a
sups”——(s"e”*) < sup (s e 2) sup <pk(st)e 2) <Ct %,
s>0 ds s>0 s>0

which implies the first inequality.
The second and third inequality are consequences of the estimate

c(s(|/\|%~l—s) < |\//\—|—32|§C§(|/\|%+s) (11)

for all A € X5, s > 0 with constants cs, Cs > 0.
Furthermore the fourth inequality follows from the form of the derivates

i (=) = () s
dsF \nrs2) P\ i) Ars
where py, is a polynomial.
If A € X5, then VA + 52 € Eg; therefore Re v/ A + 52 > cs|V/A + 52| and

‘67\/ +s2t — efRe\/)wkszt < efcg|\/A+52|t

Because of this estimate we get

NEE:
eic‘ |

Y/ 2
Sae At+s2t

sup
s>0

1
< (Sup Saecst> efc|M2t < o
>0

Finally the derivatives of s*e~VA*5” are of the form

dk
@(8%7\/,\%%) _ Safkefx/)\+s2tqk(s;t),

where gi(s;t) is a polynomial in the variables st and \/)\‘:_7 Due to (11),

|qk(s;t)e’“‘+s2%t| < Cs uniformly in A € X5, s,t > 0. Therefore the last
estimate is a consequence of (12).
]

4 Neumann Problem for the Laplace equation

We consider the Neumann problem for the Laplace equation

Ay = 0 in Q,
Onu %) on 0N



for given ¢ € C§°(0N), where 0, = %. We identify ¢ with (o5, )1 €

Cgo(]R”_l )2.
Using partial Fourier transform this equation is equivalent to
gp q q
@n = €'P)alg,xn) = 0 in R*~' x (=1,1),
Onu(¢,+£1) = ¢+  on R

We denote by N the solution operator of the Neumann problem. Then the
solution is explicitly given by

ﬁ(f',xn) = W(F,wn)
 sinh(en) i 4§ cosh(€lea) pr — g
|| cosh [¢'] 2 || sinh [§"] 2

Therefore we get

—— i€ sinh(|€|zn) ~ ~ ¢’ cosh([€'|zn) - ~
VNp = ( o2 o] ) ey ( LS ) PP (13)
Ty 2 m‘ Ty 2
cosh [¢'] sinh |£']
o + i¢' sinh |¢'| Gy + G i¢’ cosh l¢'] G — ¢
VN — 1€'] cosh [€'] = = 4 |€'] sinh |€'] r- r— 14
BES 1% ( 1 5 o1 5 ( )
= w({)e.

Concerning the multiplier kernel of VN we need

Lemma 4.1 The following estimates hold uniformly with respect to x,, € [—1,1]:

sinh([€'lr.) €/ o Jesh(eln) 1]
sinh €] [§+1] 00 T sinh [§'] €]+ 1] 00 —
sinh(|¢'|zp) < C cosh(|¢'|zy,) <C
cosh '] |, = 7 cosh '] | =
Proof: Since for example
cosh(g'zn) _ el€lEn e ey 1 e L
sinh |¢/| elé'l — e=1¢'1 1 — e—2l¢] 1— e—2¢1

and [e~€'10%20)] < O, see Lemma 3.5, it is sufficient to show

L e
T—e g+ 1),

1
< 090, [7,:| < 0.
1+e 21¢'| M
The second statement follows from the fact that all derivates of 1—5-% are con-
tinuous and decrease exponentially as s — oco.
For the first statement we consider f(s) = g(s)h(s), where g(s) = ==, h(s) =
537~ It holds that:



1. h®)(s) = (=D* ke, k> L

e—ks

2. gk (s) = Aoyt T r(s), where r(s) has a pole of order k at s = 0 and
r(s) — 0 exponentially as s — co.

Because of these properties and the Leibniz formula s* f(*)(s) is bounded as
s —>0ors— oo. [
Therefore we get the following continuity result for Py H.

Corollary 4.2 Let IIf = VN, Hf for f € C(Q)". Then the operators 11
and PyH = H — 11 can be continuously extended to a map from W7 (Q)" into
itself for every 1 < ¢ < o0, s > 0.

Proof: The operator Il is given by

1
Folf] = / T (& zn)en (€51 —yp) F(E yn)dyn +

-1

1
/ mao(Esan)en - B (€ =1 — yn) F (€5 yn)dyn,

-1

where ﬁ\f_; = m (s xn) ot + m(E;mn)p— is given by (13) and A/ (¢';x,) =
Fe. L[h(&)] is the multiplier kernel of H. Moreover

—lg"lt] —le"lt]
en - (Eht) = (iﬁ'Te 5 Signt,|§'|e 5 )

Because of the observations in the proof of Lemma 4.1, the multiplier kernel of
IT is a sum of terms of the form

m(fl>(|€l| + 1)6_‘61‘(‘zn—a|+‘yn_b|)
with a,b € {1,—-1} and [m]rr < 0o. Hence Lemma 3.5 yields

< Cs
M= |:Un—a|+|yn—b|’

[mi (&5 2n)en - B (€5 yn + 1)) i=1,2.

Thus an application of Lemma, 3.3 proves the assertion for the case s = 0. The

tangential derivates 9;, j = 1,...,n — 1, commute with II. Since 82I1f =
—A'Tf = —OA'"f, A" = 02 + ...+ 9%_,, the case s = 2m, m € N, is derived
from the case s = 0. The general case can be obtained by interpolation. |

5 Construction of V)
In the following we denote by W, (D), D = 90Q or D = R™ !, the space of all

tangential vector fields f € W;(D)", e,, - f = 0. The space C§° (D) is similarly
defined.

10



Theorem 5.1 Let 1 < ¢ < oo. Then there exists an L > 0 and operators
91
Vs € L(W,r 7 (89), W2(Q)™), A € S5, |A| > L, such that:

1. Vig is a solution of the Dirichlet Problem with tangential data (2)-(4).

_a 2-1
2. [Vagllz ) < CIA24]lgllL, a0 for all g € Wy . (09).

Proof: We construct V) with the aid of the (generalized) Poisson operators
introduced in Section 3. As before we identify g € C§ (012) with (91,9-)7 €
C§o (R"1)2. We set

Eng = Fi' (€51 = 2n)ya(€)ge (€] + Fa 't A€ =1 — za)ya(€)g- (€],
Kyg = HE\,, W, =PyK,

where yy is a A-dependent multiplier on R"~!, which will be specified later.
For given g € C§% (09) the function Wyg solves the equations (2)-(4) with

boundary data Syg := YWyg. If S;l exists in a suitable sense, then
Vag = WSy (15)

yields a solution of (2)-(4) with boundary data g. }
We have to calculate the trace Sxg = vK\ — vV N7, K. Because of (10) we
get

.= R\ (€5 0)ya(€) g+ + BN (€5 2)ya(€) G- )
mind] = (e e, aleomien. )
flflT vV )\‘Hg’lz_‘gl‘ 0
X (51.0) = ( [ | 0 ) ! — 2A|€ [/ A+ |2
A 010 ) 2/ X+ e 0 ‘ P YOHE e
X[V
Note that (I - a%sz ) o (1 - 7575 ); we now define
yl (€I> — 1 I _ V )\ + |€I|2 B |€’| |€I|€’€IT B
A . 9 /7A+|€I|2 A |€I|2
= o AT R[4+ ¢ ge” 7
VAFIER (€

n) = (BE10)

This yields

o~
oo
N——

K (€5 0)ya(€) = (

11



Therefore we get

Fr [Vf( Ag]

I
7N
N}
+
+
o
S
~—~
Iy
\.[\')
-
<
N
\_;
N}
|
N——

For {WNe"'VKAg] N ( en - KA(E5=2)yx ()G +7(€)en - G-

)
)
Nen - E\(E52)ya(€)g- )
Jen - KA(E; —2)ya (&) g+

since e, - g+ = 0.

The following estimates hold:
Lemma 5.2 Let 1 < q < o0, s >0. Then for all g € WF_(R*™")
Cs
|A|

17 kA £2)ya(€)3(EN] Nlgs < EIIQIIW (17)

17 [ (€ )en - KA(E5 £2)ya(E)F(EN g < T llgllas, (16)

with A € X5, 0 < d < 7.

Proof: It is sufficient to proof the estimate for s = 0: For s = m € N the
operator (V')"g = .7-'571[<£'>m§], (€)= (1+1€2)2, gives an 1som0rphlsm from
W (R"1) to Ly(R"!) and (¢')™ commutes with the multipliers. For general
s > 0 the estimate follows from interpolation. Hence we only have to estimate
the Miklin constants. Due to (10)

AVAFTERH €122) - /T (L1
( ¢’ \2 (|€ |8>\e—2\£ I — 1¢')%e _2s,\) ‘ :Fl‘g ‘|§'|s>\ (€—2|g’| _ e—ZSA) )

Fitarlfon (72 e ) | —fgllsae 2 4 Jgr e 2

where sy = /A +|¢'|2. Because of Lemma 3.5 it holds that

YA€)
NI o, <Cs (18)
and
' n2,—2|¢'| [ /\+|€I|2- 12 m,—2/¢'|
[EIVAFTgRe™E] < c_—vw,|+1 | [P +1enee]
< G2,
leVATIERVIRE] o R e e VR,
L J M
< CslafFecE,

12

en - g+ (g’) k(€5 2)ya ()~

)



Hence [k} (€'; £2)yx(€)] s < Cs|A|~ 2. proving (17) Note that {w(&') |£|,5‘11] w <
oo because of Lemma 4.1 and that
2hen - kL (€ £2) =
2
Fig' (672“" —e ?V H|§,|2> € e 2T — I 2yarET
VATTEP
Therefore we get in the same way:
[m(€)en - R (€5 £2)yr(E)]an < ColAI 2.
|

Because of this lemma
Sy = I+7Ty
where T} = O(|A|"2) in L(W;,(9)), 1 < g < 00, s >0, A € 55, as [A| — oo.
Therefore S;l exists for all |\| > L, A € 3y, with some L > 0 and
S;l =I+1T)

with Ty = O(]A|72) in £ (W% (99)), m € No, as [A| = co.

g1
In order to get a solution operator for any g € Wy, * (092) we have to estimate
the norm of Wyg = PvHE). Corollary 4.2 tells us that Py H is continuous on

every W7 (2), 1 < ¢ < oo, s > 0. Moreover % defines a uniformly

bounded multiplier operator on every W;(R"’l). Since

Exg = Fit ya(§') ef\/mlwn—l\g
VAR 2 +
NS e—x/Wmmg

&l )\+|€/|2 2 —1,

we only have to consider .7-'{,1[6_ VATIEFlentLlg ],
Lemma 5.3 Letl < g<o00,0<d<m,e>0andPrg= .7-'5_,1[67\/ /\Hw%"!}(f')]'
Then

1Psglhwzagy < Cocl gl ooy

()
forall g € W, *(R*=1), A € S5, |A| > e.

Proof: Obviously u = Pyg solves the equations

A=Au = 0 in R,
Yu = g on R,

13



o1
If G € W2(RY) is an extension of g € W, * (R"™) with [|Glly> < 2llgll -1,
then v = Pyg — G solves the equations
A=A = —(A-A)C in R},
yv = 0 on R" 1.
The solution operator of the latter equations can be obtained by an odd ex-
tension from R} to R® and the resolvent E) of the Laplacian in R*. Then

the statement of this lemma is a direct consequence of the well-known resolvent
estimate

||E>\f||qu(Rn) < C&,e ||f||Lq(Rn) .

[
Hence we get the boundedness of Ey and Wy from W;:% (9Q) to W2(Q)". Since
Syt e LW, (09)),s > 0, is uniformly bounded for every A € X5, [A| > L, V)
is bounded in the same way as W) resp. E).
Finally Lemma 3.4 applied to e~ VA& PlznEll yields

I1Exfllz,) < CsIA 2 || fllL,59)- (19)

Thus the same estimate is true for V). Now the proof of Theorem 5.1 is
complete. |

6 Representation of V)M, and Proof of Theorem
1.1

For the proof of Theorem 1.1 we only have to put the formulas for the oper-
ators together and estimate suitably. Since Sy ' exists for [\| > L we get the
representations

Vi = PNK)\S;1 = PNK)\ +PNK)\T)\,
VaMyx = PxK\ M, + PyK\T\M,. (20)

For the second part we get

~ _ 1 _ 1 1
IPnENTAYPNEAfll; < Cs|A| 2 [[TxyPn K fllg,00 < Cs|A| 202 ||Exfll4
1 11 _ 1 _ 3
< Cs|AT2a 22 2| flly = Cs| A 2| £l (21)

because of the boundedness of Py H, (19), the estimate for T and the fact that
Lemma 3.4 and Lemma 3.5 yield

1 1
I1EAfllg < CIAL 22| £l

14



Therefore this part can be neglected.
The essential step in the proof of the boundedness of the imaginary powers
is to show a special representation of the first term.

PyK\M, = PyHE\yPyK),
N———
::G)\
Gr = E\yE\H — ExyVN~v, K\ =GiH — G3. (22)

For f € C§°(2)™ we have the following representations

1
Fo [G3f] = / &5 = Dya(€)eA (€5 yn — 1) F(E'590)dyn

v

-1 ~

=19} (€s@n—1,yn—1)

1
+/ A5 zn + Dya(€)eN (€5 yn + ) F(E 5 y0) dyn,

-1

and
fz’ [G?\f] =
1 ! ' 1 o
/_f&(&';% —Dya(§) (W(&') |£,||€J|r 1) N 1)1 |§||S;|r en - Hf(E 5 yn)dyn
::yi(é’;w:—l,yn—l)
! I (el ! ! |€’| I (el |€’| +1 TT r( ¢l
# [ €m0 (7€ ) S+ DI e ERE v

The multiplier kernels g§, i = 1,2, satisfy the following estimate, which is the
key to estimate of Vi M.

Lemma 6.1 Let A € X5,0<d <m,i=1,2. Then

1
e—cIAZ(Jtl+]s])

: 23
e =

[g;(fl,s,t):lM, S 0(5

holds for all t,s € R.

Proof: This lemma is a direct consequence of Lemma 3.5, Lemma 4.1 and (18).

|
Therefore we can apply the following Theorem 6.2. Let I'; = I'.\ B£(0), where
[ is the curve in the definition of A7. We denote by I‘: ;, the upper resp. lower
part of I'. 1. Moreover let z € C with Re z < 0.

Theorem 6.2 Let g} : R"! x Rx R — C, XA € I, such that

1
eI (Jen —t|+|yn—s|)

A2

95 (&5 zn, yn)le < Cs

15



is satisfied for ¢,s € {—1,1}. Consider the operators

Grf

1 ~
‘7_—571 |:/—1 g&(fl5mn:yn)f(fl5yn)dyn )

i, = / (=A)*GrdA.
Fj:

e, L

Then

IGL ol < Ce A £ (24)

Proof: Consider the multiplier kernel of G;L, ie.,

PCEE ) = [ N RE )i

Thus we get
CACIICEERS) P AR [CO PR Pt
< 0:/ (SRt
rE, |Al2
< ¢ /°°| i””p”le_cp%(w"?w"_sl)dp

< O €s|hn,,\/ 56—0102 |$n—t‘+|yn_s‘)dp

eflImz|

< Cs

|wn_t|+|yn_3|.

Then an application of Lemma 3.3 finishes the proof. [
To get the estimate G defined by (22) we only need to estimate the remaining
part of G3.

Lemma 6.3 For f € L,()", 1 < p < o0, it holds that

H [m' Hf]] < ClIfll,

p

Proof: We know

1 ~
fw’[ean] = /en'h’(&mn_yn)f(g;yn)dynv
=[] —lg"l1t]
en W(Et) = (z’g’” ; : signt, €| ; t).
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Since [e €11, < C, {é{‘]/\/i' < Cforallte(—1,1) we get

_ 1 !
|7t [grvten-1s)| < ][ MCmlungen o
D -1 LP(—1,1)
< Clifllp
due the Miklin multiplier theorem. [

Since H is continuous on L4, 1 < ¢ < oo, this lemma implies

[ +1 ot

et [Seren A
Proof of Theorem 1.1: The spectrum of —A, is contained in (—o0,0); see
[9]. Therefore (z + A)~! is bounded on I' N By (0),L > 0. Hence we only need

to consider the integral over I'; 5, for L > 0 given as in Theorem 5.1. Then for
AE F57L we know (Z + A)_l = PvK), — V\M,. Set

< ClIfllg-

q

1
Lz) = 5- : (—\)*ExdA.

To estimate this part we use th same approach as in [2, Proof of Proposition 1]
but we have to modify the argumentation since the domain is unbounded.

Let ¢ € C§°(R™) such that ¢(z) =1 for € B1(0) and supp ¢ C By(0). For
simplicity we choose ¢ of the form ¢(§) = o(£')¥(&,). Now we split L(z) =
Li(2) + La2(2) with L;(2) = F~H(&2)F, 1(&2) = (1 — ¢)|€)** and 12(&;2) =
#|€|**. Then for all € > 0

1
(&2)h < Ceefl™= for — 5 SRez<0.
Therefore
IL1(2)]] < Ceeflimel

To estimate the second part we estimate its multiplier kernel I5(¢';2,;2) =
7-"511 [[2(&; 2)]. We easily get

< C,

1 .
(s < o) \ [ e estenas,

forall -3 <a <Rez<0,¢ € R"',—1 <z, < 1. Similar one estimates the
higher derivatives:

€11 D& (&5 2 2)| < Cuee”t™ =
Therefore

[lIQ(; Tny Z)]M/ S Ca7665|1111;"
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Hence Lemma 3.3 yields
||L2(Z)|| < C&aeg‘ tm 2|
and the same estimate for L(z). If we now consider

~ 1 P
L(Z) = %/1;87L(—)\) E)\d)\,

instead of L(z) the latter estimate still holds since Lemma 3.3, Lemma 3.5 and
(8) imply

IEXfllL, @) < C&|/\|_%||f||Lq(Q)-

Because of the previous theorem and lemmata, the boundedness of PyH on
L,(2) and (21) we know that

WM, = G)\—FR,\, (25)

where the corresponding operator GZ | satisfies (24) and Ry = O(IA=%) in
L(Lq(9))-
Hence we only need to estimate the remainder term Ry:

1
1 / (=A)*RadA
FE,L

21

< C€E|Imz\/ |/\|_%|d/\| Scesumz\'
L

Thus the theorem is proved. |
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