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Abstrat

In this artile we prove the existene of bounded purely imaginary pow-

ers of the Stokes operator A

q

, whih is de�ned on the spae of solenoidal

vetor �elds J

q

(
), 1 < q < 1, where 
 = R

n�1

� (�1; 1) is an in�nite

layer. It is a onsequene of a speial representation of the resolvent of

the Stokes operator in terms of the Stokes operator on R

n

, a omposition

of a trae and a Poisson operator { a singular Green operator { and a

negligible part.
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1 Introdution and Main Result

Let 
 = R

n�1

� (�1; 1), n � 2; and J

q

(
) := ff 2 C

1

0

(
)

n

: div f = 0g

L

q

(
)

,

1 < q <1; the spae of solenoidal vetor �elds in L

q

(
)

n

with vanishing normal

omponent on �
. In this artile we onsider the Stokes operator A

q

= �P

q

�

on J

q

(
) with domain

D(A

q

) = ff 2W

2

q

(
)

n

: f = f j

�


= 0g \ J

q

(
)

where P

q

: L

q

(
)

n

! J

q

(
) denotes the well-known Helmholtz projetion.

Wiegner [9℄ proved the existene and ontinuity of P

q

for the ase that 
 is

an in�nite layer. Moreover he showed that �A

q

generates a bounded analyti

semigroup and that 0 is in the resolvent set of A

q

. Therefore we an de�ne the

frational operator A

z

q

for �1 < Re z < 0 by using the Dunford integral. Our

main result is

Theorem 1.1 Let 0 < a <

1

2

. Then for every " > 0 there is a onstant C

";a

suh

that

kA

z

q

k � C

";a

e

"j Im zj

(1)

for all z satisfying �a < Re z < 0, where k:k is the operator norm in L(J

q

(
)).

With the aid of (1) it is possible to obtain imaginary powers A

iy

q

for y 2 R,

f. [4℄, whih de�ne a strongly ontinuous semigroup y 7! A

iy

q

, y 2 R, in J

q

(
)

satisfying the estimate

kA

iy

q

k � C

"

e

"jyj

:

This inequality was proved in [2, Theorem 1℄ for bounded domains, in [5, The-

orem A℄ for exterior domains and in [6, Theorem A.1℄ for the halfspae. It
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has several important onsequenes. For example we an apply [8, Theorem

3.2.℄ resp. its extension [6, Theorem 2.1℄ sine J

q

(
) is a UMD-spae and �A

q

generates a bounded analyti semigroup. Therefore we get

Theorem 1.2 Let 1 < p; q <1, 0 < T � 1 and f 2 L

p

(0; T ; J

q

(
)). Then the

Cauhy Problem

u

0

(t) +A

q

u(t) = f(t); 0 < t < T

u(0) = 0

has a unique solution u 2 W

1

p

(0; T ; J

q

(
)) \ L

p

(0; T ;D(A

q

)). Moreover

ku

0

k

L

p

(0;T ;J

q

(
))

+ kAuk

L

p

(0;T ;J

q

(
))

� Ckfk

L

p

(0;T ;J

q

(
))

:

Therefore the Stokes operator A

q

has maximal regularity.

As another appliation [5, Proposition 6.1℄ yields:

Theorem 1.3 Let 1 < q < 1, 0 < � < 1. Then the domain of A

�

q

; 0 < � < 1,

oinides with the omplex interpolation spae

D(A

�

q

) = [J

q

(
);D(A

q

)℄

�

:

Remark 1.4 The operators A

�z

q

, Re z > 0 de�ne a strongly ontinuous semi-

group { see e.g. [1, Theorem 4.6.2℄. Therefore the tehnial restrition 0 < a <

1

2

an be relaxed to arbitrary a > 0. But in order to get existenes of bounded

purely imaginary powers the estimate (1) is needed only for small a > 0.

For the proof of Theorem 1.1 we follow the same approah as in [2℄. Let u =

(�+A

q

)

�1

f , f 2 J

q

(
). Then u satis�es the Stokes resolvent equations

(���)u+rp = f in 
;

div u = 0 in 
;

u = 0 on �


where rp = �(I � P

q

)(� � �)u. Let K

�

denote the resolvent of the Stokes

operator in R

n

and N denote the solution operator of the Neumann problem

for the Laplae equation in the layer 
:

�u = 0 in 
;

�

n

u = ' on �
:

We set v = (� + A

q

)

�1

f � P

N

K

�

f , P

N

:= I � rN

n

, 

n

= e

n

� g, e

n

=

(0; : : : ; 0; 1)

T

, where f is identi�ed with its extension by 0 to R

n

. Then the
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vetor �eld v satis�es the Dirihlet problem with tangential data g = M

�

f :=

�P

N

K

�

f , that is

(� ��)v +rq = 0 in 
; (2)

div v = 0 in 
; (3)

v = g on �
 (4)

where 

n

g = 0. Therefore, if V

�

g is a solution of (2)-(4), we get

(�+A

q

)

�1

f = P

N

K

�

f + V

�

M

�

f (5)

sine the solution of the resolvent equation is uniquely determined for � 2

C n (�1; 0); see [9℄. Thus we get a representation of the resolvent of the Stokes

operator in the layer 
 in terms of the resolvent of the Stokes operator in R

n

and a omposition of a trae and a Poisson operator V

�

M

�

. The main part of

the latter operator is given by a �-dependent multiplier kernel g

0

�

(�

0

;x

n

; y

n

), see

Setion 3, with good properties as j�j ! 1 whih enable us to estimate the

orresponding part of A

z

q

; see Theorem 6.2.

In Setion 2 we reall some basi notations, de�nitions and well-known re-

sults. The Setion 3 introdues the basi operators used in this artile and gives

some basi estimates with the aid of Miklin's multiplier theorem. In Setion 4

an expliit solution formula for the Neumann Problem of the Laplae equation

is given. This formula is neessary to get the multiplier kernel of V

�

M

�

. Using

speial single layer potentials a rough approximation of V

�

is onstruted in Se-

tion 5. This gives the solution operator V

�

for large j�j by the usual Neumann

series argument. In Setion 6 we �nally get an expliit representation of V

�

M

�

modulo some negligible part, whih enables us to prove Theorem 1.1.

The author is grateful to Professor Mihael Wiegner for giving him a pre-

published opy of [9℄.

2 Preliminaries and Notation

First we introdue some funtion spaes. For 1 < q < 1 and any domain


 � R

n

, n � 1, we reall the standard notations L

q

(
), with norm k:k

L

q

(
)

=

k:k

q

and W

m

q

(
);W

m

q;0

(
), m 2 N, with norm k:k

W

m

q

(
)

= k:k

q;m

for the

usual Sobolev spaes. For m � 1 < s < m, m 2 N, we denote by W

s

q

(
) =

�

W

m�1

q

(
);W

m

q

(
)

�

q;�

, � = s � m + 1, the orresponding real interpolation

spaes. It is well known that the trae  : W

m

q

(R

n

+

) ! W

m�

1

q

q

(R

n�1

) is a

ontinuous and surjetive map { see e.g. [3, Theorem 6.6.1.℄. Moreover there

is a ontinuous extension operator E : W

m�

1

q

q

(R

n�1

) ! W

m

q

(R

n

+

). Therefore

the norm of the real interpolation spaeW

m�

1

q

q

(R

n�1

) is equivalent to the trae

norm

kgk

(W

m

q

(R

n

+

))

= inf

f2W

m

q

(R

n

+

):f=g

kfk

W

m

q

(R

n

+

)

:
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Reall that f 2 L

q;lo

(
), 1 � q � 1; means that f 2 L

q

(
\B) for all balls B

with 
 \ B 6= ;. Moreover D

�

f(x) = �

�

1

x

1

: : : �

�

n

x

n

f(x) for � 2 N

n

0

.

IfX;Y are two Banah spaes, we denote by L(X;Y ) the spae of all bounded

linear maps T : X ! Y ; furthermore L(X) := L(X;X). Moreover we introdue

�

Æ

= fz 2 C n f0g : j arg zj < Æg.

Reall the Helmholtz deomposition of a vetor �eld f 2 L

q

(
)

n

, i.e. the

unique deomposition f = f

0

+ rp with f

0

2 J

q

(
); p 2

_

W

1

q

(
) = fp 2

L

q;lo

(
) : rp 2 L

q

(
)

n

g. The existene and ontinuity of the orrespond-

ing Helmholtz projetion P

q

: L

q

(
)

n

! J

q

(
); f 7! P

q

f = f

0

is well-known for

bounded and some kind of unbounded domains. For the ase 
 = R

n�1

�(�1; 1),

it is proved in [9℄.

Furthermore we de�ne the Stokes operator A

q

= �P

q

� in J

q

(
) with

D(A

q

) =W

2

q

(
)

n

\W

1

0;q

(
)

n

\ J

q

(
).

We reall the de�nition of A

z

q

;�1 < Re z < 0. Let 0 < " < � and �

"

denote

the path whih onsists of two rays from1e

i("��)

to 0 and from 0 to 1e

i(��")

.

Then

A

z

q

=

1

2�i

Z

�

"

(��)

z

(�+A

q

)

�1

d�

where (��)

z

= exp(�� log(��)) with Im log(��) 2 (��; �). Sine 0 is in the

resolvent set of A

q

and sine k(�+A

q

)

�1

k � C

Æ

(1 + j�j)

�1

, � 2 �

Æ

; 0 < Æ < �;

the integral onverges absolutely.

3 Multiplier Operators and Multiplier Kernels

We reall the Fourier and inverse Fourier transform

^

f(�) = F

x

[f ℄(�) =

Z

R

n

e

�ix��

f(x)dx; F

�1

�

[g℄(x) =

Z

R

n

e

ix��

g(�)

d�

(2�)

n

:

By

~

f(�

0

; x

n

) = F

x

0

[f ℄(�

0

;x

n

) we denote the (partial) Fourier transform with

respet to x

0

, where x = (x

0

; x

n

) 2 R

n

, x

0

2 R

n�1

.

The next well-known theorem is fundamental for the following L

q

-estimates;

see e.g. [7, Chapter IV, Theorem 3℄.

Theorem 3.1 (Miklin Multiplier Theorem) Let m 2 C

n

(R

n

nf0g) with the

property

[m℄

M

:= sup

� 6=0;j�j�n

j�j

j�j

jD

�

m(�)j <1:

Then Mf = F

�1

�

[m(�)

^

f(�)℄, f 2 C

1

0

(R

n

) extends to a linear, bounded operator

on L

q

(R

n

), 1 < q <1; with

kMfk

q

� C[m℄

M

kfk

q

;

where C depends only on n and q.
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Funtions m satisfying the assumption of this theorem are simply alled

multiplier and the orresponding operators multiplier operator. By [m℄

M

we

denote the Miklin onstant of m.

Remarks 3.2 1. If m(�) = f(j�j), f : (0;1)! C , then [m℄

M

<1 if

[f ℄

M

0

:= sup

s>0;k=0;::: ;n

s

k

jf

(k)

(s)j <1: (6)

Moreover [m℄

M

� C[f ℄

M

0

, where C depends only on the dimension n.

2. Ifm

1

(�);m

2

(�) satisfy the ondition of the Miklin multiplier theorem, then

also m

1

(�)m

2

(�); moreover [m

1

m

2

℄

M

� C[m

1

℄

M

[m

2

℄

M

, where C depends

only on the dimension.

3. If m(�

0

) is a (n� 1)-dimensional multiplier, we denote its Miklin onstant

by [m℄

M

0

instead of [m℄

M

.

Throughout this paper we identify a funtion f de�ned on 
 with its exten-

sion by 0 to R

n

. For f 2 C

1

0

(
), 
 = R

n�1

� (�1; 1), a multiplier operator M

is applied to this extension of f . In this ase we get the following representation

using partial Fourier transformation:

Mf(x) = F

�1

�

0

�

Z

1

�1

m

0

(�

0

;x

n

; y

n

)

~

f(�

0

; y

n

)dy

n

;

�

(7)

where

m

0

(�

0

;x

n

; y

n

) = F

�1

�

n

[m(�)℄(x

n

� y

n

)

denotes the multiplier kernel of the operator M . More generally we onsider

operators de�ned by (7), where m

0

(:;x

n

; y

n

) is a (x

n

; y

n

)-dependent family of

(n� 1)-dimensional multipliers.

This kind resp. representation of operators will be essential in the whole

artile. For these operators we will need the following ontinuity result:

Lemma 3.3 Let m

0

(�

0

;x

n

; y

n

) be a multiplier kernel satisfying

[m(:;x

n

; y

n

)℄

M

0

�

C

M

jx

n

� aj+ jy

n

� bj

for some a; b 2 f1;�1g. Then for every 1 < q < 1 the operator de�ned by

(7) extends to a linear, bounded operator on L

q

(
) with kMfk

q

� C

q

C

M

kfk

q

,

where C

q

is independent of C

M

.

Proof: W.l.o.g. let a = 1, b = �1; otherwise substitute ~x

n

= �x

n

and/or

~y

n

= �y

n

. Sine x

n

; y

n

2 (�1; 1), we get jx

n

� 1j + jy

n

+ 1j = 2 + y

n

� x

n

.

Therefore we onlude with Theorem 3.1

kMfk

q

� CC

M









Z

1

�1

kf(:; y

n

)k

L

q

(R

n�1

)

2 + y

n

� x

n

dy

n









L

q

(�1;1)

� CC

M

kfk

q
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sine the Hilbert transform is bounded in L

q

(R).

Moreover we deal with generalized Poisson and trae operators

(Pg)(x) = F

�1

�

0

[p

0

(�

0

;x

n

)~g(�

0

)℄

(Tf)(x

0

) = F

�1

�

0

�

Z

1

�1

t

0

(�

0

; y

n

)

~

f(�

0

; y

n

)dy

n

�

where g 2 C

1

0

(R

n�1

) and p

0

and t

0

are multipliers for �xed x

n

; y

n

2 (�1; 1).

For the L

q

-estimates of V

�

and M

�

we will need the following result for

�-dependent Poisson and trae operators.

Lemma 3.4 Let p

0

�

(�

0

;x

n

) and t

0

�

(�

0

;x

n

) be two families of multiplier kernels

depending on � 2 �

Æ

; 0 < Æ < �, both satisfying the estimates

[p

0

�

(:;x

n

)℄

M

0

� C

Æ

e

�j�j

1

2

(jx

n

�tj)

jx

n

� tj

a

for x

n

2 (�1; 1), t 2 [1;�1℄, a <

1

q

and

[t

0

�

(:;x

n

)℄

M

0

� C

Æ

e

�j�j

1

2

(jx

n

�tj)

jx

n

� tj

b

for x

n

2 (�1; 1), t 2 [1;�1℄, b <

1

q

0

for 1 < q <1. Then

kP

�

gk

L

q

(
)

� C

Æ

j�j

�

1

2q

+

a

2

kgk

L

q

(R

n�1

)

kT

�

fk

L

q

(R

n�1

)

� Cj�j

�

1

2q

0

+

b

2

kfk

L

q

(
)

for all f 2 L

q

(
), g 2 L

q

(R

n�1

) uniformly w.r.t. t 2 [�1; 1℄.

Proof: Diret appliation of Miklin's multiplier theorem yields

kP

�

gk

q

� C

Æ











e

�j�j

1

2

(jx

n

�tj)

jx

n

� tj

a











L

q

(�1;1)

kgk

L

q

(R

n�1

)

= C

Æ

j�j

�

1

2q

+

a

2

kgk

L

q

(R

n�1

)

;

kT

�

fk

q

� C

Æ

Z

1

�1

e

�j�j

1

2

(jy

n

�tj)

jy

n

� tj

b

kf(:; y

n

)k

L

q

(R

n�1

)

dy

n

� C

Æ

 

Z

1

�1

e

�j�j

1

2

(jy

n

�tj)

jy

n

� tj

bq

0

dy

n

!

1

q

0

kfk

L

q

(
)

= C

Æ

j�j

�

1

2q

0

+

b

2

kfk

L

q

(
)

:

We will use the resolvent of the Laplae and the Stokes operator in R

n

, E

�

resp.
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K

�

, whih are given by

(E

�

f)(x) = F

�1

�

h

e

�

(�)

^

f(�)

i

(x); e

�

(�) =

1

�+ �

2

(Hf)(x) = F

�1

�

h

h(�)

^

f(�)

i

(x); h(�) = I �

��

T

j�j

2

(K

�

f)(x) = (E

�

Hf)(x) = F

�1

�

h

k

�

(�)

^

f(�)

i

(x); k

�

(�) =

1

�+ �

2

�

I �

��

T

j�j

2

�

for f 2 C

1

0

(R

n

)

n

, where H is the Helmholtz projetion in R

n

. For the following

onstrution of V

�

we need to alulate the multiplier kernels of E

�

and K

�

:

e

0

�

(�

0

;x

n

) = F

�1

�

n

�

1

�+ j�j

2

�

=

e

�

p

�+j�

0

j

2

jx

n

j

2

p

�+ j�

0

j

2

; (8)

F

�1

�

n

�

1

j�j

2

�

=

e

�j�

0

jjx

n

j

2j�

0

j

;

F

�1

�

n

�

1

�+ j�j

2

1

j�j

2

�

= e

0

�

(�

0

;x

n

) � F

�1

�

n

�

1

j�j

2

�

= �

0

�

(�

0

;x

n

) (9)

:=

p

�+ j�

0

j

2

e

�j�

0

jjx

n

j

� j�

0

je

�

p

�+j�

0

j

2

jx

n

j

2�j�

0

j

p

�+ j�

0

j

2

;

k

0

�

(�

0

;x

n

) = F

�1

�

n

"

1

(�+ j�j

2

)j�j

2

 

j�j

2

I � �

0

�

0

T

��

n

�

0

��

n

�

0

T

j�

0

j

2

!#

=

�

I 0

0 0

�

e

0

�

(�

0

;x

n

)�

�

�

0

�

0

T

�

0

�

(�

0

; x

n

) �i�

0

�

n

�

0

�

(�

0

; x

n

)

�i�

0

T

�

n

�

0

�

(�

0

; x

n

) j�

0

j

2

�

0

�

(�

0

; x

n

);

�

(10)

where �

n

�

0

�

(�

0

;x

n

) =

e

�j�

0

jjx

n

j

�e

�

p

�+j�

0

j

2

jx

n

j

2�

signx

n

. For later estimates we al-

ulate the orresponding Miklin onstants.

Lemma 3.5 Let t > 0; a � 0 and 0 < Æ < �. Then

h

j�

0

j

a

e

�j�

0

jt

i

M

0

�

C

t

a

;

"

j�

0

j

p

�+ j�

0

j

2

#

M

0

� C

Æ

;

"

p

�+ j�

0

j

2

1 + j�

0

j

#

M

0

� C

Æ

(1 + j�j)

1

2

;

"

1

p

�+ j�

0

j

2

#

M

0

� C

Æ

j�j

�

1

2

;

h

j�

0

j

a

e

�

p

�+j�

0

j

2

t

i

M

0

� C

Æ

e

�j�j

1

2

t

t

a

for all t > 0 and � 2 �

Æ

.

Proof: Sine all multipliers are of the form m(�

0

) = f(j�

0

j), we only have

to onsider [f ℄

M

0

. First we observe that sup

s>0

s

a

e

�st

= Ct

�a

and that the

7



derivates are of the form

d

k

ds

k

(s

a

e

�st

) = s

a�k

e

�st

p

k

(st);

where p

k

(st) is a polynomial in st of order k. Therefore

sup

s>0

s

k

d

k

ds

k

(s

a

e

�st

) � sup

s>0

�

s

a

e

�s

t

2

�

sup

s>0

�

p

k

(st)e

�s

t

2

�

� Ct

�a

;

whih implies the �rst inequality.

The seond and third inequality are onsequenes of the estimate



Æ

�

j�j

1

2

+ s

�

� j

p

�+ s

2

j � C

Æ

�

j�j

1

2

+ s

�

(11)

for all � 2 �

Æ

, s � 0 with onstants 

Æ

; C

Æ

> 0.

Furthermore the fourth inequality follows from the form of the derivates

d

k

ds

k

�

1

p

�+ s

2

�

= p

k

�

s

p

�+ s

2

�

s

�k

p

�+ s

2

;

where p

k

is a polynomial.

If � 2 �

Æ

, then

p

�+ s

2

2 � Æ

2

; therefore Re

p

�+ s

2

� 

Æ

j

p

�+ s

2

j and

�

�

�

e

�

p

�+s

2

t

�

�

�

= e

�Re

p

�+s

2

t

� e

�

Æ

j

p

�+s

2

jt

:

Beause of this estimate we get

sup

s>0

�

�

�

s

a

e

�

p

�+s

2

t

�

�

�

�

�

sup

s>0

s

a

e

�st

�

e

�j�j

1

2

t

� C

Æ

e

�j�j

1

2

t

t

a

(12)

Finally the derivatives of s

a

e

�

p

�+s

2

are of the form

d

k

ds

k

�

s

a

e

�

p

�+s

2

t

�

= s

a�k

e

�

p

�+s

2

t

q

k

(s; t);

where q

k

(s; t) is a polynomial in the variables st and

s

p

�+s

2

. Due to (11),

jq

k

(s; t)e

�

p

�+s

2

1

2

t

j � C

Æ

uniformly in � 2 �

Æ

, s; t > 0. Therefore the last

estimate is a onsequene of (12).

4 Neumann Problem for the Laplae equation

We onsider the Neumann problem for the Laplae equation

�u = 0 in 
;

�

n

u = ' on �


8



for given ' 2 C

1

0

(�
), where �

n

=

�

�x

n

. We identify ' with ('

+

; '

�

)

T

2

C

1

0

(R

n�1

)

2

.

Using partial Fourier transform this equation is equivalent to

(�

2

n

� j�

0

j

2

)~u(�

0

; x

n

) = 0 in R

n�1

� (�1; 1);

�

n

~u(�

0

;�1) = ~'

�

on R

n�1

:

We denote by N the solution operator of the Neumann problem. Then the

solution is expliitly given by

~u(�

0

; x

n

) =

g

N'(�

0

; x

n

)

=

sinh(j�

0

jx

n

)

j�

0

j osh j�

0

j

~'

+

+ ~'

�

2

+

osh(j�

0

jx

n

)

j�

0

j sinh j�

0

j

~'

+

� ~'

�

2

:

Therefore we get

^

rN' =

 

i�

0

j�

0

j

sinh(j�

0

jx

n

)

osh j�

0

j

osh(j�

0

jx

n

)

osh j�

0

j

!

~'

+

+ ~'

�

2

+

 

i�

0

j�

0

j

osh(j�

0

jx

n

)

sinh j�

0

j

sinh(j�

0

jx

n

)

sinh j�

0

j

!

~'

+

� ~'

�

2

(13)



�

^

rN' =

 

�

i�

0

j�

0

j

sinh j�

0

j

osh j�

0

j

1

!

~'

+

+ ~'

�

2

+

 

i�

0

j�

0

j

osh j�

0

j

sinh j�

0

j

�1

!

~'

+

� ~'

�

2

(14)

=: �(�

0

) ~':

Conerning the multiplier kernel of rN we need

Lemma 4.1 The following estimates hold uniformly with respet to x

n

2 [�1; 1℄:

�

sinh(j�

0

jx

n

)

sinh j�

0

j

j�

0

j

j�

0

j+ 1

�

M

0

� C;

�

osh(j�

0

jx

n

)

sinh j�

0

j

j�

0

j

j�

0

j+ 1

�

M

0

� C;

�

sinh(j�

0

jx

n

)

osh j�

0

j

�

M

0

� C;

�

osh(j�

0

jx

n

)

osh j�

0

j

�

M

0

� C:

Proof: Sine for example

osh(j�

0

jx

n

)

sinh j�

0

j

=

e

j�

0

jx

n

+ e

�j�

0

jx

n

e

j�

0

j

� e

�j�

0

j

= e

�j�

0

j(1�x

n

)

1

1� e

�2j�

0

j

+ e

�j�

0

j(1+x

n

)

1

1� e

�2j�

0

j

and [e

�j�

0

j(1�x

n

)

℄

M

0

� C, see Lemma 3.5, it is suÆient to show

�

1

1� e

�2j�

0

j

j�

0

j

j�

0

j+ 1

�

M

0

< 1;

�

1

1 + e

�2j�

0

j

�

M

0

<1:

The seond statement follows from the fat that all derivates of

1

1+e

�s

are on-

tinuous and derease exponentially as s!1.

For the �rst statement we onsider f(s) = g(s)h(s), where g(s) =

1

1�e

�s

; h(s) =

s

s+1

. It holds that:

9



1. h

(k)

(s) = (�1)

k+1

k!

1

(s+1)

k+1

, k � 1.

2. g

(k)

(s) =

e

�ks

(1�e

�s

)

k+1

+ r(s), where r(s) has a pole of order k at s = 0 and

r(s) ! 0 exponentially as s!1.

Beause of these properties and the Leibniz formula s

k

f

(k)

(s) is bounded as

s! 0 or s!1.

Therefore we get the following ontinuity result for P

N

H .

Corollary 4.2 Let �f = rN

n

Hf for f 2 C

1

0

(
)

n

. Then the operators �

and P

N

H = H � � an be ontinuously extended to a map from W

s

q

(
)

n

into

itself for every 1 < q <1, s � 0.

Proof: The operator � is given by

F

x

0

[�f ℄ =

Z

1

�1

�

1

(�

0

;x

n

)e

n

� h

0

(�

0

; 1� y

n

)

~

f(�

0

; y

n

)dy

n

+

Z

1

�1

�

2

(�

0

;x

n

)e

n

� h

0

(�

0

;�1� y

n

)

~

f(�

0

; y

n

)dy

n

;

where

^

rN' = �

1

(�

0

;x

n

)'

+

+ �

2

(�

0

;x

n

)'

�

is given by (13) and h

0

(�

0

;x

n

) =

F

�1

�

n

[h(�)℄ is the multiplier kernel of H . Moreover

e

n

� h

0

(�

0

; t) =

 

i�

0

T

e

�j�

0

jjtj

2

sign t; j�

0

j

e

�j�

0

jjtj

2

!

:

Beause of the observations in the proof of Lemma 4.1, the multiplier kernel of

� is a sum of terms of the form

m(�

0

)(j�

0

j+ 1)e

�j�

0

j(jx

n

�aj+jy

n

�bj)

with a; b 2 f1;�1g and [m℄

M

0

<1. Hene Lemma 3.5 yields

[�

i

(�

0

;x

n

)e

n

� h

0

(�

0

; y

n

+ 1)℄

M

0

�

C

Æ

jx

n

� aj+ jy

n

� bj

; i = 1; 2:

Thus an appliation of Lemma 3.3 proves the assertion for the ase s = 0. The

tangential derivates �

j

, j = 1; : : : ; n � 1; ommute with �. Sine �

2

n

�f =

��

0

�f = ���

0

f , �

0

= �

2

1

+ : : : + �

2

n�1

, the ase s = 2m, m 2 N, is derived

from the ase s = 0. The general ase an be obtained by interpolation.

5 Constrution of V

�

In the following we denote by W

s

q;�

(D), D = �
 or D = R

n�1

, the spae of all

tangential vetor �elds f 2W

s

q

(D)

n

, e

n

� f = 0. The spae C

1

0;�

(D) is similarly

de�ned.

10



Theorem 5.1 Let 1 < q < 1. Then there exists an L > 0 and operators

V

�

2 L(W

2�

1

q

q;�

(�
);W

2

q

(
)

n

), � 2 �

Æ

; j�j � L, suh that:

1. V

�

g is a solution of the Dirihlet Problem with tangential data (2)-(4).

2. kV

�

gk

L

q

(
)

� Cj�j

�

1

2q

kgk

L

q

(�
)

for all g 2 W

2�

1

q

q;�

(�
).

Proof: We onstrut V

�

with the aid of the (generalized) Poisson operators

introdued in Setion 3. As before we identify g 2 C

1

0;�

(�
) with (g

+

; g

�

)

T

2

C

1

0;�

(R

n�1

)

2

. We set

~

E

�

g = F

�1

�

0

[e

0

�

(�

0

; 1� x

n

)y

�

(�

0

)~g

+

(�

0

)℄ +F

�1

�

0

[e

0

�

(�

0

;�1� x

n

)y

�

(�

0

)~g

�

(�

0

)℄ ;

~

K

�

g = H

~

E

�

; W

�

= P

N

~

K

�

where y

�

is a �-dependent multiplier on R

n�1

, whih will be spei�ed later.

For given g 2 C

1

0;�

(�
) the funtion W

�

g solves the equations (2)-(4) with

boundary data S

�

g := W

�

g. If S

�1

�

exists in a suitable sense, then

V

�

g =W

�

S

�1

�

g (15)

yields a solution of (2)-(4) with boundary data g.

We have to alulate the trae S

�

g = 

~

K

�

� rN

n

~

K

�

. Beause of (10) we

get

F

x

0

h



~

K

�

g

i

=

�

k

0

�

(�

0

; 0)y

�

(�

0

)~g

+

+ k

0

�

(�

0

; 2)y

�

(�

0

)~g

�

k

0

�

(�

0

;�2)y

�

(�

0

)~g

+

+ k

�

(�

0

; 0)y

�

(�

0

)~g

�

�

;

k

0

�

(�

0

; 0) =

�

I 0

0 0

�

1

2

p

�+ j�

0

j

2

�

0

B

�

�

0

�

0

T

p

�+j�

0

j

2

�j�

0

j

2�j�

0

j

p

�+j�

0

j

2

0

0 j�

0

j

2

p

�+j�

0

j

2

�j�

0

j

2�j�

0

j

p

�+j�

0

j

2

1

C

A

:

Note that

�

I � a

xx

T

jxj

2

�

�1

=

�

I �

a

a�1

xx

T

jxj

2

�

; we now de�ne

y

0

�

(�

0

) :=

 

1

2

p

�+ j�

0

j

2

 

I �

p

�+ j�

0

j

2

� j�

0

j

�

j�

0

j

�

0

�

0

T

j�

0

j

2

!!

�1

= 2

p

�+ j�

0

j

2

 

I +

j�

0

j

p

�+ j�

0

j

2

�

0

�

0

T

j�

0

j

2

!

;

y

�

(�

0

) :=

�

y

0

�

(�

0

) 0

0 0

�

:

This yields

k

0

�

(�

0

; 0)y

�

(�

0

) =

�

I 0

0 0

�

:
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Therefore we get

F

x

0

h



~

K

�

g

i

=

�

~g

+

+ k

0

�

(�

0

; 2)y

�

(�

0

)~g

�

k

0

�

(�

0

;�2)y

�

(�

0

)~g

+

+ ~g

�

�

F

x

0

h

rNe

n

� 

~

K

�

g

i

=

�

�(�

0

)e

n

� ~g

+

+�(�

0

)e

n

� k

0

�

(�

0

; 2)y

�

(�

0

)~g

�

�(�

0

)e

n

� k

0

�

(�

0

;�2)y

�

(�

0

)~g

+

+�(�

0

)e

n

� ~g

�

�

=

�

�(�

0

)e

n

� k

0

�

(�

0

; 2)y

�

(�

0

)~g

�

�(�

0

)e

n

� k

0

�

(�

0

;�2)y

�

(�

0

)~g

+

�

;

sine e

n

� ~g

�

= 0.

The following estimates hold:

Lemma 5.2 Let 1 < q <1, s � 0. Then for all g 2 W

s

q;�

(R

n�1

)

kF

�1

�

0

[�(�

0

)e

n

� k

0

�

(�

0

;�2)y

�

(�

0

)~g(�

0

)℄ k

q;s

�

C

Æ

j�j

1

2

kgk

q;s

; (16)

kF

�1

�

0

[k

0

�

(�

0

;�2)y

�

(�

0

)~g(�

0

)℄ k

q;s

�

C

Æ

j�j

1

2

kgk

q;s

(17)

with � 2 �

Æ

, 0 < Æ < �.

Proof: It is suÆient to proof the estimate for s = 0: For s = m 2 N the

operator hr

0

i

m

g = F

�1

�

0

[h�

0

i

m

~g℄, h�

0

i = (1 + j�

0

j

2

)

1

2

, gives an isomorphism from

W

m

q

(R

n�1

) to L

q

(R

n�1

) and h�

0

i

m

ommutes with the multipliers. For general

s � 0 the estimate follows from interpolation. Hene we only have to estimate

the Miklin onstants. Due to (10)

2�

p

�+ j�

0

j

2

k

0

�

(�

0

;�2) = �e

�2

p

�+j�

0

j

2

�

I 0

0 0

�

�

0

�

�

0

�

0

T

j�

0

j

2

�

j�

0

js

�

e

�2j�

0

j

� j�

0

j

2

e

�2s

�

�

�i

�

0

j�

0

j

j�

0

js

�

�

e

�2j�

0

j

� e

�2s

�

�

�i

�

0

T

j�

0

j

j�

0

js

�

�

e

�2j�

0

j

� e

�2s

�

�

�j�

0

js

�

e

�2j�

0

j

+ j�

0

j

2

e

�2s

�

1

A

where s

�

=

p

�+ j�

0

j

2

. Beause of Lemma 3.5 it holds that

"

y

�

(�

0

)

p

�+ j�

0

j

2

#

M

0

� C

Æ

(18)

and

h

j�

0

j

p

�+ j�

0

j

2

e

�2j�

0

j

i

M

0

� C

"

p

�+ j�

0

j

2

j�

0

j+ 1

#

M

0

h

(j�

0

j

2

+ j�

0

j)e

�2j�

0

j

i

M

0

� C

Æ

j�j

1

2

;

h

j�

0

j

p

�+ j�

0

j

2

e

�2

p

�+j�

0

j

2

i

M

0

� C

"

p

�+ j�

0

j

2

j�

0

j+ 1

#

M

0

[(j�

0

j

2

+ j�

0

j)e

�2

p

�+j�

0

j

2

℄

M

0

;

� C

Æ

j�j

1

2

e

�j�j

1

2

:
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Hene [k

0

�

(�

0

;�2)y

�

(�

0

)℄

M

0

� C

Æ

j�j

�

1

2

: proving (17) Note that

h

�(�

0

)

j�

0

j

j�

0

j+1

i

M

0

<

1 beause of Lemma 4.1 and that

2�e

n

� k

0

�

(�

0

;�2) =

 

�i�

0

�

e

�2j�

0

j

� e

�2

p

�+j�

0

j

2

�

; j�

0

je

�2j�

0

j

�

j�

0

j

2

p

�+ j�

0

j

2

e

�2

p

�+j�

0

j

2

!

:

Therefore we get in the same way:

[�(�

0

)e

n

� k

0

�

(�

0

;�2)y

�

(�

0

)℄

M

0

� C

Æ

j�j

�

1

2

:

Beause of this lemma

S

�

= I + T

0

�

where T

0

�

= O(j�j

�

1

2

) in L(W

s

q;�

(�
)), 1 < q < 1, s � 0, � 2 �

Æ

; as j�j ! 1.

Therefore S

�1

�

exists for all j�j � L, � 2 �

Æ

, with some L > 0 and

S

�1

�

= I + T

�

with T

�

= O(j�j

�

1

2

) in L

�

W

m

q;�

(�
)

�

, m 2 N

0

; as j�j ! 1.

In order to get a solution operator for any g 2W

2�

1

q

q;�

(�
) we have to estimate

the norm of W

�

g = P

N

H

~

E

�

. Corollary 4.2 tells us that P

N

H is ontinuous on

every W

s

q

(
), 1 < q < 1, s � 0. Moreover

y

�

(�

0

)

p

�+j�

0

j

2

de�nes a uniformly

bounded multiplier operator on every W

s

q

(R

n�1

). Sine

~

E

�

g = F

�1

�

0

"

y

�

(�

0

)

p

�+ j�

0

j

2

e

�

p

�+j�

0

j

2

jx

n

�1j

2

~g

+

#

+F

�1

�

0

"

y

�

(�

0

)

p

�+ j�

0

j

2

e

�

p

�+j�

0

j

2

jx

n

+1j

2

~g

�

#

;

we only have to onsider F

�1

�

0

[e

�

p

�+j�

0

j

2

jx

n

�1j

~g

�

℄.

Lemma 5.3 Let 1 < q <1, 0 < Æ < �, " > 0 and P

�

g = F

�1

�

0

[e

�

p

�+j�

0

j

2

x

n

~g(�

0

)℄.

Then

kP

�

gk

W

2

q

(R

n

+

)

� C

Æ;"

j�j kgk

W

2�

1

q

q

(R

n�1

)

for all g 2W

2�

1

q

q

(R

n�1

), � 2 �

Æ

, j�j � ".

Proof: Obviously u = P

�

g solves the equations

(� ��)u = 0 in R

n

+

;

u = g on R

n�1

:

13



If G 2 W

2

q

(R

n

+

) is an extension of g 2 W

2�

1

q

q

(R

n�1

) with kGk

q;2

� 2kgk

q;2�

1

q

,

then v = P

�

g �G solves the equations

(���)v = �(���)G in R

n

+

;

v = 0 on R

n�1

:

The solution operator of the latter equations an be obtained by an odd ex-

tension from R

n

+

to R

n

and the resolvent E

�

of the Laplaian in R

n

. Then

the statement of this lemma is a diret onsequene of the well-known resolvent

estimate

kE

�

fk

W

2

q

(R

n

)

� C

Æ;"

kfk

L

q

(R

n

)

:

Hene we get the boundedness of

~

E

�

andW

�

fromW

2�

1

q

q;�

(�
) toW

2

q

(
)

n

. Sine

S

�1

�

2 L(W

s

q;�

(�
)); s � 0; is uniformly bounded for every � 2 �

Æ

; j�j � L, V

�

is bounded in the same way as W

�

resp.

~

E

�

.

Finally Lemma 3.4 applied to e

�

p

�+j�

0

j

2

jx

n

�1j

yields

k

~

E

�

fk

L

q

(
)

� C

Æ

j�j

�

1

2q

kfk

L

q

(�
)

: (19)

Thus the same estimate is true for V

�

. Now the proof of Theorem 5.1 is

omplete.

6 Representation of V

�

M

�

and Proof of Theorem

1.1

For the proof of Theorem 1.1 we only have to put the formulas for the oper-

ators together and estimate suitably. Sine S

�1

�

exists for j�j � L we get the

representations

V

�

= P

N

~

K

�

S

�1

�

= P

N

~

K

�

+ P

N

~

K

�

T

�

;

V

�

M

�

= P

N

~

K

�

M

�

+ P

N

~

K

�

T

�

M

�

: (20)

For the seond part we get

kP

N

~

K

�

T

�

P

N

K

�

fk

q

� C

Æ

j�j

�

1

2q

kT

�

P

N

K

�

fk

q;�


� C

Æ

j�j

�

1

2q

�

1

2

kE

�

fk

q

� C

Æ

j�j

�

1

2q

�

1

2

�

1

2q

0

�

1

2

kfk

q

= C

Æ

j�j

�

3

2

kfk

q

(21)

beause of the boundedness of P

N

H , (19), the estimate for T

�

and the fat that

Lemma 3.4 and Lemma 3.5 yield

kE

�

fk

q

� Cj�j

�

1

2q

0

�

1

2

kfk

q

:

14



Therefore this part an be negleted.

The essential step in the proof of the boundedness of the imaginary powers

is to show a speial representation of the �rst term.

P

N

~

K

�

M

�

= P

N

H

~

E

�

P

N

K

�

| {z }

=:G

�

;

G

�

=

~

E

�

E

�

H �

~

E

�

rN

n

K

�

= G

1

�

H �G

2

�

: (22)

For f 2 C

1

0

(
)

n

we have the following representations

F

x

0

�

G

1

�

f

�

=

Z

1

�1

e

0

�

(�

0

;x

n

� 1)y

�

(�

0

)e

0

�

(�

0

; y

n

� 1)

| {z }

=:g

1

�

(�

0

;x

n

�1;y

n

�1)

~

f(�

0

; y

n

)dy

n

+

Z

1

�1

e

0

�

(�

0

;x

n

+ 1)y

�

(�

0

)e

0

�

(�

0

; y

n

+ 1)

~

f(�

0

; y

n

)dy

n

and

F

x

0

�

G

2

�

f

�

=

Z

1

�1

e

0

�

(�

0

;x

n

� 1)y

�

(�

0

)

�

�(�

0

)

j�

0

j

j�

0

j+ 1

�

e

0

�

(�

0

; y

n

� 1)

| {z }

=:g

2

�

(�

0

;x

n

�1;y

n

�1)

j�

0

j+ 1

j�

0

j

e

n

�

g

Hf(�

0

; y

n

)dy

n

+

Z

1

�1

e

0

�

(�

0

;x

n

+ 1)y

�

(�

0

)

�

�(�

0

)

j�

0

j

j�

0

j+ 1

�

e

0

�

(�

0

; y

n

+ 1)

j�

0

j+ 1

j�

0

j

e

n

�

g

Hf(�

0

; y

n

)dy

n

:

The multiplier kernels g

i

�

, i = 1; 2, satisfy the following estimate, whih is the

key to estimate of V

�

M

�

.

Lemma 6.1 Let � 2 �

Æ

; 0 < Æ < �, i = 1; 2. Then

�

g

i

�

(�

0

; s; t)

�

M

0

� C

Æ

e

�j�j

1

2

(jtj+jsj)

j�j

1

2

(23)

holds for all t; s 2 R.

Proof: This lemma is a diret onsequene of Lemma 3.5, Lemma 4.1 and (18).

Therefore we an apply the following Theorem 6.2. Let �

";L

= �

"

nB

L

(0), where

�

"

is the urve in the de�nition of A

z

q

. We denote by �

�

";L

the upper resp. lower

part of �

";L

. Moreover let z 2 C with Re z < 0.

Theorem 6.2 Let g

0

�

: R

n�1

� R � R ! C , � 2 �

Æ

, suh that

[g

0

�

(�

0

;x

n

; y

n

)℄

M

0

� C

Æ

e

�j�j

1

2

(jx

n

�tj+jy

n

�sj)

j�j

1

2

15



is satis�ed for t; s 2 f�1; 1g. Consider the operators

G

�

f = F

�1

�

0

�

Z

1

�1

g

0

�

(�

0

;x

n

; y

n

)

~

f(�

0

; y

n

)dy

n

�

;

G

z

�;L

=

Z

�

�

";L

(��)

z

G

�

d�:

Then

kG

z

�;L

fk

p

� Ce

"j Im zj

kfk

p

: (24)

Proof: Consider the multiplier kernel of G

z

�;L

, i.e.,

�

0

(G

z

�;L

)(�

0

; x

n

; y

n

) =

Z

�

�

";L

(��)

z

g

0

�

(�

0

;x

n

; y

n

)d�:

Thus we get

�

�

0

(G

z

�;L

)(�

0

;x

n

; y

n

)

�

M

0

�

Z

�

�

";L

j(��)

z

j[g

0

�

(�

0

;x

n

; y

n

)℄

M

0

jd�j

� C

Æ

Z

�

�

";L

j(��)

z

j

e

�j�j

1

2

(jx

n

�tj+jy

n

�sj)

j�j

1

2

jd�j

� C

Æ

Z

1

L

je

�i"z

p

z

j

e

�p

1

2

(jx

n

�tj+jy

n

�sj)

p

1

2

dp

� C

Æ

e

"j Im zj

Z

1

L

p

�

1

2

e

�p

1

2

(jx

n

�tj+jy

n

�sj)

dp

� C

Æ

e

"j Im zj

jx

n

� tj+ jy

n

� sj

:

Then an appliation of Lemma 3.3 �nishes the proof.

To get the estimate G

�

de�ned by (22) we only need to estimate the remaining

part of G

2

�

.

Lemma 6.3 For f 2 L

p

(
)

n

, 1 < p <1, it holds that









F

�1

�

0

�

1

j�

0

j

F

x

0

[e

n

�Hf ℄

�









p

� Ckfk

p

Proof: We know

F

x

0

[e

n

�Hf ℄ =

Z

1

�1

e

n

� h

0

(�;x

n

� y

n

)

~

f(�

0

; y

n

)dy

n

;

e

n

� h

0

(�

0

; t) =

 

i�

0

T

e

�j�

0

jjtj

2

sign t; j�

0

j

e

�j�

0

jjtj

2

!

:
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Sine [e

�j�

0

jjtj

℄

M

0

� C;

h

�

j

j�

0

j

i

M

0

� C for all t 2 (�1; 1) we get









F

�1

�

0

�

1

j�

0

j

F

x

0

[e

n

�Hf ℄

�









p

� C









Z

1

�1

kf(:; y

n

)k

L

p

(R

n�1

)

dy

n









L

p

(�1;1)

� Ckfk

p

due the Miklin multiplier theorem.

Sine H is ontinuous on L

q

, 1 < q <1, this lemma implies









F

�1

�

0

�

j�

0

j+ 1

j�

0

j

e

n

�

g

Hf

�









q

� Ckfk

q

:

Proof of Theorem 1.1: The spetrum of �A

q

is ontained in (�1; 0); see

[9℄. Therefore (z + A)

�1

is bounded on � \ B

L

(0),L > 0. Hene we only need

to onsider the integral over �

";L

for L > 0 given as in Theorem 5.1. Then for

� 2 �

";L

we know (z +A)

�1

= P

N

K

�

� V

�

M

�

. Set

L(z) =

1

2�i

Z

�

"

(��)

z

E

�

d�:

To estimate this part we use th same approah as in [2, Proof of Proposition 1℄

but we have to modify the argumentation sine the domain is unbounded.

Let � 2 C

1

0

(R

n

) suh that �(x) = 1 for x 2 B

1

(0) and supp� � B

2

(0). For

simpliity we hoose � of the form �(�) = '(�

0

) (�

n

). Now we split L(z) =

L

1

(z) + L

2

(z) with L

i

(z) = F

�1

l

i

(�; z)F , l

1

(�; z) = (1 � �)j�j

2z

and l

2

(�; z) =

�j�j

2z

. Then for all " > 0

[l

1

(�; z)℄

M

� C

"

e

"j Im zj

for �

1

2

� Re z � 0:

Therefore

kL

1

(z)k � C

"

e

"j Im zj

To estimate the seond part we estimate its multiplier kernel l

0

2

(�

0

;x

n

; z) =

F

�1

�

n

[l

2

(�; z)℄. We easily get

jl

0

2

(�

0

;x

n

; z)j � j'(�

0

)j

�

�

�

�

Z

1

�1

j�j

2z

'

2

(�

n

)d�

n

�

�

�

�

� C

a

for all �

1

2

< a � Re z � 0; �

0

2 R

n�1

;�1 < x

n

< 1. Similar one estimates the

higher derivatives:

j�

0

j

j�j

jD

�

�

0

l

0

2

(�

0

;x

n

; z)j � C

a;"

e

"j Im zj

:

Therefore

[l

0

2

(:;x

n

; z)℄

M

0

� C

a;"

e

"j Im zj

:
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Hene Lemma 3.3 yields

kL

2

(z)k � C

";a

e

"j Im zj

and the same estimate for L(z). If we now onsider

~

L(z) =

1

2�i

Z

�

";L

(��)

z

E

�

d�;

instead of L(z) the latter estimate still holds sine Lemma 3.3, Lemma 3.5 and

(8) imply

kE

�

fk

L

q

(
)

� C

Æ

j�j

�

1

2

kfk

L

q

(
)

:

Beause of the previous theorem and lemmata, the boundedness of P

N

H on

L

q

(
) and (21) we know that

V

�

M

�

= G

�

+ R

�

; (25)

where the orresponding operator G

Z

�;L

satis�es (24) and R

�

= O(j�j

�

3

2

) in

L(L

q

(
)).

Hene we only need to estimate the remainder term R

�

:











1

2�i

Z

�

";L

(��)

z

R

�

d�











� Ce

"j Im zj

Z

�

";L

j�j

�

3

2

jd�j � Ce

"j Im zj

:

Thus the theorem is proved.
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