Boundedness of Imaginary Powers of the Stokes Operator in an Infinite Layer

Helmut Abels

Abstract

In this article we prove the existence of bounded purely imaginary powers of the Stokes operator A_q , which is defined on the space of solenoidal vector fields $J_q(\Omega)$, $1 < q < \infty$, where $\Omega = \mathbb{R}^{n-1} \times (-1, 1)$ is an infinite layer. It is a consequence of a special representation of the resolvent of the Stokes operator in terms of the Stokes operator on \mathbb{R}^n , a composition of a trace and a Poisson operator – a singular Green operator – and a negligible part.

Key words: Stokes equations, Stokes operator, bounded imaginary powers AMS-Classification: 35 Q 30, 76 D 07

1 Introduction and Main Result

Let $\Omega = \mathbb{R}^{n-1} \times (-1,1)$, $n \geq 2$, and $J_q(\Omega) := \overline{\{f \in C_0^{\infty}(\Omega)^n : \operatorname{div} f = 0\}}^{L_q(\Omega)}$, $1 < q < \infty$, the space of solenoidal vector fields in $L_q(\Omega)^n$ with vanishing normal component on $\partial\Omega$. In this article we consider the Stokes operator $A_q = -P_q\Delta$ on $J_q(\Omega)$ with domain

$$\mathcal{D}(A_q) = \{ f \in W_q^2(\Omega)^n : \gamma f = f|_{\partial\Omega} = 0 \} \cap J_q(\Omega)$$

where $P_q : L_q(\Omega)^n \to J_q(\Omega)$ denotes the well-known Helmholtz projection. Wiegner [9] proved the existence and continuity of P_q for the case that Ω is an infinite layer. Moreover he showed that $-A_q$ generates a bounded analytic semigroup and that 0 is in the resolvent set of A_q . Therefore we can define the fractional operator A_q^z for $-1 < \operatorname{Re} z < 0$ by using the Dunford integral. Our main result is

Theorem 1.1 Let $0 < a < \frac{1}{2}$. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon,a}$ such that

$$||A_a^z|| \le C_{\varepsilon,a} e^{\varepsilon |\operatorname{Im} z|} \tag{1}$$

for all z satisfying $-a < \operatorname{Re} z < 0$, where $\|.\|$ is the operator norm in $\mathcal{L}(J_q(\Omega))$.

With the aid of (1) it is possible to obtain imaginary powers A_q^{iy} for $y \in \mathbb{R}$, cf. [4], which define a strongly continuous semigroup $y \mapsto A_q^{iy}$, $y \in \mathbb{R}$, in $J_q(\Omega)$ satisfying the estimate

$$||A_a^{iy}|| \le C_{\varepsilon} e^{\varepsilon |y|}.$$

This inequality was proved in [2, Theorem 1] for bounded domains, in [5, Theorem A] for exterior domains and in [6, Theorem A.1] for the halfspace. It has several important consequences. For example we can apply [8, Theorem 3.2.] resp. its extension [6, Theorem 2.1] since $J_q(\Omega)$ is a UMD-space and $-A_q$ generates a bounded analytic semigroup. Therefore we get

Theorem 1.2 Let $1 < p, q < \infty$, $0 < T \le \infty$ and $f \in L_p(0, T; J_q(\Omega))$. Then the Cauchy Problem

$$u'(t) + A_q u(t) = f(t), \qquad 0 < t < T$$

 $u(0) = 0$

has a unique solution $u \in W_p^1(0,T; J_q(\Omega)) \cap L^p(0,T; \mathcal{D}(A_q))$. Moreover

$$||u'||_{L_p(0,T;J_q(\Omega))} + ||Au||_{L_p(0,T;J_q(\Omega))} \le C||f||_{L_p(0,T;J_q(\Omega))}$$

Therefore the Stokes operator A_q has maximal regularity. As another application [5, Proposition 6.1] yields:

Theorem 1.3 Let $1 < q < \infty$, $0 < \alpha < 1$. Then the domain of A_q^{α} , $0 < \alpha < 1$, coincides with the complex interpolation space

$$\mathcal{D}(A_q^{\alpha}) = \left[J_q(\Omega), \mathcal{D}(A_q)\right]_{\alpha}$$

Remark 1.4 The operators A_q^{-z} , Re z > 0 define a strongly continuous semigroup – see e.g. [1, Theorem 4.6.2]. Therefore the technical restriction $0 < a < \frac{1}{2}$ can be relaxed to arbitrary a > 0. But in order to get existences of bounded purely imaginary powers the estimate (1) is needed only for small a > 0.

For the proof of Theorem 1.1 we follow the same approach as in [2]. Let $u = (\lambda + A_q)^{-1} f, f \in J_q(\Omega)$. Then u satisfies the Stokes resolvent equations

$$\begin{aligned} (\lambda - \Delta)u + \nabla p &= f & \text{in } \Omega, \\ \text{div } u &= 0 & \text{in } \Omega, \\ \gamma u &= 0 & \text{on } \partial \Omega \end{aligned}$$

where $\nabla p = -(I - P_q)(\lambda - \Delta)u$. Let K_{λ} denote the resolvent of the Stokes operator in \mathbb{R}^n and N denote the solution operator of the Neumann problem for the Laplace equation in the layer Ω :

$$\begin{aligned} \Delta u &= 0 & \text{ in } \Omega, \\ \partial_n u &= \varphi & \text{ on } \partial \Omega. \end{aligned}$$

We set $v = (\lambda + A_q)^{-1} f - P_N K_\lambda f$, $P_N := I - \nabla N \gamma_n$, $\gamma_n = e_n \cdot \gamma g$, $e_n = (0, \ldots, 0, 1)^T$, where f is identified with its extension by 0 to \mathbb{R}^n . Then the

vector field v satisfies the Dirichlet problem with tangential data $g = M_{\lambda}f := -\gamma P_N K_{\lambda} f$, that is

$$(\lambda - \Delta)v + \nabla q = 0 \quad \text{in } \Omega, \tag{2}$$

$$\operatorname{div} v = 0 \quad \text{in } \Omega, \tag{3}$$

$$\gamma v = g \quad \text{on } \partial \Omega \tag{4}$$

where $\gamma_n g = 0$. Therefore, if $V_{\lambda} g$ is a solution of (2)-(4), we get

$$(\lambda + A_q)^{-1}f = P_N K_\lambda f + V_\lambda M_\lambda f \tag{5}$$

since the solution of the resolvent equation is uniquely determined for $\lambda \in \mathbb{C} \setminus (-\infty, 0)$; see [9]. Thus we get a representation of the resolvent of the Stokes operator in the layer Ω in terms of the resolvent of the Stokes operator in \mathbb{R}^n and a composition of a trace and a Poisson operator $V_{\lambda}M_{\lambda}$. The main part of the latter operator is given by a λ -dependent multiplier kernel $g'_{\lambda}(\xi'; x_n, y_n)$, see Section 3, with good properties as $|\lambda| \to \infty$ which enable us to estimate the corresponding part of A^2_q ; see Theorem 6.2.

In Section 2 we recall some basic notations, definitions and well-known results. The Section 3 introduces the basic operators used in this article and gives some basic estimates with the aid of Miklin's multiplier theorem. In Section 4 an explicit solution formula for the Neumann Problem of the Laplace equation is given. This formula is necessary to get the multiplier kernel of $V_{\lambda}M_{\lambda}$. Using special single layer potentials a rough approximation of V_{λ} is constructed in Section 5. This gives the solution operator V_{λ} for large $|\lambda|$ by the usual Neumann series argument. In Section 6 we finally get an explicit representation of $V_{\lambda}M_{\lambda}$ modulo some negligible part, which enables us to prove Theorem 1.1.

The author is grateful to Professor Michael Wiegner for giving him a prepublished copy of [9].

2 Preliminaries and Notation

First we introduce some function spaces. For $1 < q < \infty$ and any domain $\Omega \subseteq \mathbb{R}^n$, $n \ge 1$, we recall the standard notations $L_q(\Omega)$, with norm $\|.\|_{L_q(\Omega)} = \|.\|_q$ and $W_q^m(\Omega), W_{q,0}^m(\Omega), m \in \mathbb{N}$, with norm $\|.\|_{W_q^m(\Omega)} = \|.\|_{q,m}$ for the usual Sobolev spaces. For m-1 < s < m, $m \in \mathbb{N}$, we denote by $W_q^s(\Omega) = (W_q^{m-1}(\Omega), W_q^m(\Omega))_{q,\theta}, \theta = s - m + 1$, the corresponding real interpolation spaces. It is well known that the trace $\gamma : W_q^m(\mathbb{R}^n_+) \to W_q^{m-\frac{1}{q}}(\mathbb{R}^{n-1})$ is a continuous and surjective map – see e.g. [3, Theorem 6.6.1.]. Moreover there is a continuous extension operator $E : W_q^{m-\frac{1}{q}}(\mathbb{R}^{n-1}) \to W_q^m(\mathbb{R}^n_+)$. Therefore the norm of the real interpolation space $W_q^{m-\frac{1}{q}}(\mathbb{R}^{n-1})$ is equivalent to the trace norm

$$\|g\|_{\gamma(W_{q}^{m}(\mathbb{R}^{n}_{+}))} = \inf_{f \in W_{q}^{m}(\mathbb{R}^{n}_{+}): \gamma f = g} \|f\|_{W_{q}^{m}(\mathbb{R}^{n}_{+})}.$$

Recall that $f \in L_{q,loc}(\overline{\Omega}), 1 \leq q \leq \infty$, means that $f \in L_q(\Omega \cap B)$ for all balls B with $\Omega \cap B \neq \emptyset$. Moreover $D^{\alpha}f(x) = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}f(x)$ for $\alpha \in \mathbb{N}_0^n$.

If X, Y are two Banach spaces, we denote by $\hat{\mathcal{L}}(X, Y)$ the space of all bounded linear maps $T: X \to Y$; furthermore $\mathcal{L}(X) := \mathcal{L}(X, X)$. Moreover we introduce $\Sigma_{\delta} = \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \delta\}.$

Recall the Helmholtz decomposition of a vector field $f \in L_q(\Omega)^n$, i.e. the unique decomposition $f = f_0 + \nabla p$ with $f_0 \in J_q(\Omega), p \in W_q^1(\Omega) = \{p \in L_{q,loc}(\overline{\Omega}) : \nabla p \in L_q(\Omega)^n\}$. The existence and continuity of the corresponding Helmholtz projection $P_q : L_q(\Omega)^n \to J_q(\Omega), f \mapsto P_q f = f_0$ is well-known for bounded and some kind of unbounded domains. For the case $\Omega = \mathbb{R}^{n-1} \times (-1, 1)$, it is proved in [9].

Furthermore we define the Stokes operator $A_q = -P_q \Delta$ in $J_q(\Omega)$ with $\mathcal{D}(A_q) = W_q^2(\Omega)^n \cap W_{0,q}^1(\Omega)^n \cap J_q(\Omega)$. We recall the definition of $A_q^z, -1 < \operatorname{Re} z < 0$. Let $0 < \varepsilon < \pi$ and Γ_{ε} denote

We recall the definition of A_q^z , -1 < Re z < 0. Let $0 < \varepsilon < \pi$ and Γ_{ε} denote the path which consists of two rays from $\infty e^{i(\varepsilon - \pi)}$ to 0 and from 0 to $\infty e^{i(\pi - \varepsilon)}$. Then

$$A_q^z = \frac{1}{2\pi i} \int_{\Gamma_{\varepsilon}} (-\lambda)^z (\lambda + A_q)^{-1} d\lambda$$

where $(-\lambda)^z = \exp(-\alpha \log(-\lambda))$ with $\operatorname{Im} \log(-\lambda) \in (-\pi, \pi)$. Since 0 is in the resolvent set of A_q and since $\|(\lambda + A_q)^{-1}\| \leq C_{\delta}(1 + |\lambda|)^{-1}, \lambda \in \Sigma_{\delta}, 0 < \delta < \pi$, the integral converges absolutely.

3 Multiplier Operators and Multiplier Kernels

We recall the Fourier and inverse Fourier transform

$$\hat{f}(\xi) = \mathcal{F}_x[f](\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x)dx, \qquad \mathcal{F}_{\xi}^{-1}[g](x) = \int_{\mathbb{R}^n} e^{ix\cdot\xi} g(\xi) \frac{d\xi}{(2\pi)^n}.$$

By $f(\xi', x_n) = \mathcal{F}_{x'}[f](\xi'; x_n)$ we denote the (partial) Fourier transform with respect to x', where $x = (x', x_n) \in \mathbb{R}^n$, $x' \in \mathbb{R}^{n-1}$.

The next well-known theorem is fundamental for the following L_q -estimates; see e.g. [7, Chapter IV, Theorem 3].

Theorem 3.1 (Miklin Multiplier Theorem) Let $m \in C^n(\mathbb{R}^n \setminus \{0\})$ with the property

$$[m]_{\mathcal{M}} := \sup_{\xi \neq 0, |\alpha| \le n} |\xi|^{|\alpha|} |D^{\alpha} m(\xi)| < \infty.$$

Then $Mf = \mathcal{F}_{\xi}^{-1}[m(\xi)\hat{f}(\xi)]$, $f \in C_0^{\infty}(\mathbb{R}^n)$ extends to a linear, bounded operator on $L_q(\mathbb{R}^n)$, $1 < q < \infty$, with

 $||Mf||_q \le C[m]_{\mathcal{M}} ||f||_q,$

where C depends only on n and q.

Functions m satisfying the assumption of this theorem are simply called *multiplier* and the corresponding operators *multiplier operator*. By $[m]_{\mathcal{M}}$ we denote the *Miklin constant* of m.

Remarks 3.2 1. If
$$m(\xi) = f(|\xi|), f: (0, \infty) \to \mathbb{C}$$
, then $[m]_{\mathcal{M}} < \infty$ if

$$[f]_{\mathcal{M}_0} := \sup_{s>0, k=0, \dots, n} s^k |f^{(k)}(s)| < \infty.$$
(6)

Moreover $[m]_{\mathcal{M}} \leq C[f]_{\mathcal{M}_0}$, where C depends only on the dimension n.

- 2. If $m_1(\xi), m_2(\xi)$ satisfy the condition of the Miklin multiplier theorem, then also $m_1(\xi)m_2(\xi)$; moreover $[m_1m_2]_{\mathcal{M}} \leq C[m_1]_{\mathcal{M}}[m_2]_{\mathcal{M}}$, where C depends only on the dimension.
- If m(ξ') is a (n-1)-dimensional multiplier, we denote its Miklin constant by [m]_{M'} instead of [m]_M.

Throughout this paper we identify a function f defined on Ω with its extension by 0 to \mathbb{R}^n . For $f \in C_0^{\infty}(\Omega)$, $\Omega = \mathbb{R}^{n-1} \times (-1,1)$, a multiplier operator M is applied to this extension of f. In this case we get the following representation using partial Fourier transformation:

$$Mf(x) = \mathcal{F}_{\xi'}^{-1} \left[\int_{-1}^{1} m'(\xi'; x_n, y_n) \tilde{f}(\xi'; y_n) dy_n, \right]$$
(7)

where

$$m'(\xi'; x_n, y_n) = \mathcal{F}_{\xi_n}^{-1}[m(\xi)](x_n - y_n)$$

denotes the *multiplier kernel* of the operator M. More generally we consider operators defined by (7), where $m'(.; x_n, y_n)$ is a (x_n, y_n) -dependent family of (n-1)-dimensional multipliers.

This kind resp. representation of operators will be essential in the whole article. For these operators we will need the following continuity result:

Lemma 3.3 Let $m'(\xi'; x_n, y_n)$ be a multiplier kernel satisfying

$$[m(.; x_n, y_n)]_{\mathcal{M}'} \leq \frac{C_M}{|x_n - a| + |y_n - b|}$$

for some $a, b \in \{1, -1\}$. Then for every $1 < q < \infty$ the operator defined by (7) extends to a linear, bounded operator on $L_q(\Omega)$ with $||Mf||_q \leq C_q C_M ||f||_q$, where C_q is independent of C_M .

Proof: W.l.o.g. let a = 1, b = -1; otherwise substitute $\tilde{x}_n = -x_n$ and/or $\tilde{y}_n = -y_n$. Since $x_n, y_n \in (-1, 1)$, we get $|x_n - 1| + |y_n + 1| = 2 + y_n - x_n$. Therefore we conclude with Theorem 3.1

$$||Mf||_{q} \leq CC_{M} \left\| \int_{-1}^{1} \frac{||f(.,y_{n})||_{L_{q}(\mathbb{R}^{n-1})}}{2+y_{n}-x_{n}} dy_{n} \right\|_{L_{q}(-1,1)}$$

$$\leq CC_{M} ||f||_{q}$$

since the Hilbert transform is bounded in $L_q(\mathbb{R})$.

Moreover we deal with generalized Poisson and trace operators

$$(Pg)(x) = \mathcal{F}_{\xi'}^{-1}[p'(\xi'; x_n)\tilde{g}(\xi')]$$

$$(Tf)(x') = \mathcal{F}_{\xi'}^{-1}\left[\int_{-1}^{1} t'(\xi', y_n)\tilde{f}(\xi'; y_n)dy_n\right]$$

where $g \in C_0^{\infty}(\mathbb{R}^{n-1})$ and p' and t' are multipliers for fixed $x_n, y_n \in (-1, 1)$.

For the L_q -estimates of V_{λ} and M_{λ} we will need the following result for λ -dependent Poisson and trace operators.

Lemma 3.4 Let $p'_{\lambda}(\xi'; x_n)$ and $t'_{\lambda}(\xi'; x_n)$ be two families of multiplier kernels depending on $\lambda \in \Sigma_{\delta}, 0 < \delta < \pi$, both satisfying the estimates

$$[p'_{\lambda}(.;x_n)]_{\mathcal{M}'} \leq C_{\delta} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|x_n-t|)}}{|x_n-t|^a}$$

for $x_n \in (-1, 1), t \in [1, -1], a < \frac{1}{q}$ and

$$[t'_{\lambda}(.;x_n)]_{\mathcal{M}'} \leq C_{\delta} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|x_n-t|)}}{|x_n-t|^b}$$

for $x_n \in (-1, 1), t \in [1, -1], b < \frac{1}{q'}$ for $1 < q < \infty$. Then

$$\begin{aligned} \|P_{\lambda}g\|_{L_{q}(\Omega)} &\leq C_{\delta}|\lambda|^{-\frac{1}{2q}+\frac{a}{2}}\|g\|_{L_{q}(\mathbb{R}^{n-1})} \\ \|T_{\lambda}f\|_{L_{q}(\mathbb{R}^{n-1})} &\leq C|\lambda|^{-\frac{1}{2q'}+\frac{b}{2}}\|f\|_{L_{q}(\Omega)} \end{aligned}$$

for all $f \in L_q(\Omega)$, $g \in L_q(\mathbb{R}^{n-1})$ uniformly w.r.t. $t \in [-1, 1]$.

Proof: Direct application of Miklin's multiplier theorem yields

$$\begin{split} \|P_{\lambda}g\|_{q} &\leq C_{\delta} \left\| \frac{e^{-c|\lambda|^{\frac{1}{2}}(|x_{n}-t|)}}{|x_{n}-t|^{a}} \right\|_{L_{q}(-1,1)} \|g\|_{L_{q}(\mathbb{R}^{n-1})} = C_{\delta}|\lambda|^{-\frac{1}{2q}+\frac{a}{2}} \|g\|_{L_{q}(\mathbb{R}^{n-1})}, \\ \|T_{\lambda}f\|_{q} &\leq C_{\delta} \int_{-1}^{1} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|y_{n}-t|)}}{|y_{n}-t|^{b}} \|f(.,y_{n})\|_{L_{q}(\mathbb{R}^{n-1})} \, dy_{n} \\ &\leq C_{\delta} \left(\int_{-\infty}^{\infty} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|y_{n}-t|)}}{|y_{n}-t|^{bq'}} dy_{n} \right)^{\frac{1}{q'}} \|f\|_{L_{q}(\Omega)} = C_{\delta}|\lambda|^{-\frac{1}{2q'}+\frac{b}{2}} \|f\|_{L_{q}(\Omega)}. \end{split}$$

We will use the resolvent of the Laplace and the Stokes operator in \mathbb{R}^n , E_{λ} resp.

 K_{λ} , which are given by

$$(E_{\lambda}f)(x) = \mathcal{F}_{\xi}^{-1} \left[e_{\lambda}(\xi)\hat{f}(\xi) \right](x), \qquad e_{\lambda}(\xi) = \frac{1}{\lambda + \xi^{2}}$$

$$(Hf)(x) = \mathcal{F}_{\xi}^{-1} \left[h(\xi)\hat{f}(\xi) \right](x), \qquad h(\xi) = I - \frac{\xi\xi^{T}}{|\xi|^{2}}$$

$$(K_{\lambda}f)(x) = (E_{\lambda}Hf)(x) = \mathcal{F}_{\xi}^{-1} \left[k_{\lambda}(\xi)\hat{f}(\xi) \right](x), \qquad k_{\lambda}(\xi) = \frac{1}{\lambda + \xi^{2}} \left(I - \frac{\xi\xi^{T}}{|\xi|^{2}} \right)$$

for $f \in C_0^{\infty}(\mathbb{R}^n)^n$, where H is the Helmholtz projection in \mathbb{R}^n . For the following construction of V_{λ} we need to calculate the multiplier kernels of E_{λ} and K_{λ} :

$$e_{\lambda}'(\xi';x_n) = \mathcal{F}_{\xi_n}^{-1} \left[\frac{1}{\lambda + |\xi|^2} \right] = \frac{e^{-\sqrt{\lambda + |\xi'|^2}|x_n|}}{2\sqrt{\lambda + |\xi'|^2}}, \tag{8}$$
$$\mathcal{F}_{-1}^{-1} \left[\frac{1}{2} \right] = \frac{e^{-|\xi'||x_n|}}{2\sqrt{\lambda + |\xi'|^2}},$$

$$\mathcal{F}_{\xi_{n}}\left[\frac{1}{|\xi|^{2}}\right] = \frac{1}{2|\xi'|},$$

$$\mathcal{F}_{\xi_{n}}^{-1}\left[\frac{1}{|\chi|^{2}}\frac{1}{|\xi|^{2}}\right] = e_{\lambda}'(\xi';x_{n}) * \mathcal{F}_{\xi_{n}}^{-1}\left[\frac{1}{|\xi|^{2}}\right] = \eta_{\lambda}'(\xi';x_{n}) \qquad (9)$$

$$:= \frac{\sqrt{\lambda + |\xi'|^{2}}e^{-|\xi'||x_{n}|} - |\xi'|e^{-\sqrt{\lambda + |\xi'|^{2}}|x_{n}|}}{2\lambda|\xi'|\sqrt{\lambda + |\xi'|^{2}}},$$

$$\begin{aligned} k_{\lambda}'(\xi';x_n) &= \mathcal{F}_{\xi_n}^{-1} \left[\frac{1}{(\lambda+|\xi|^2)|\xi|^2} \left(\frac{|\xi|^2 I - \xi' {\xi'}^T | -\xi_n {\xi'} |$$

where $\partial_n \eta'_{\lambda}(\xi'; x_n) = \frac{e^{-|\xi'||x_n|} - e^{-\sqrt{\lambda + |\xi'|^2}|x_n|}}{2\lambda} \operatorname{sign} x_n$. For later estimates we calculate the corresponding Miklin constants.

Lemma 3.5 Let $t > 0, a \ge 0$ and $0 < \delta < \pi$. Then

$$\begin{bmatrix} |\xi'|^a e^{-|\xi'|t} \end{bmatrix}_{\mathcal{M}'} &\leq \frac{C}{t^a}, \qquad \begin{bmatrix} \frac{|\xi'|}{\sqrt{\lambda+|\xi'|^2}} \end{bmatrix}_{\mathcal{M}'} \leq C_{\delta}, \\ \begin{bmatrix} \frac{\sqrt{\lambda+|\xi'|^2}}{1+|\xi'|} \end{bmatrix}_{\mathcal{M}'} &\leq C_{\delta}(1+|\lambda|)^{\frac{1}{2}}, \qquad \begin{bmatrix} \frac{1}{\sqrt{\lambda+|\xi'|^2}} \end{bmatrix}_{\mathcal{M}'} \leq C_{\delta}|\lambda|^{-\frac{1}{2}}, \\ \begin{bmatrix} |\xi'|^a e^{-\sqrt{\lambda+|\xi'|^2}t} \end{bmatrix}_{\mathcal{M}'} &\leq C_{\delta}\frac{e^{-c|\lambda|^{\frac{1}{2}}t}}{t^a} \end{bmatrix}$$

for all t > 0 and $\lambda \in \Sigma_{\delta}$.

Proof: Since all multipliers are of the form $m(\xi') = f(|\xi'|)$, we only have to consider $[f]_{\mathcal{M}_0}$. First we observe that $\sup_{s>0} s^a e^{-st} = Ct^{-a}$ and that the

derivates are of the form

$$\frac{d^k}{ds^k}(s^a e^{-st}) = s^{a-k} e^{-st} p_k(st),$$

where $p_k(st)$ is a polynomial in st of order k. Therefore

$$\sup_{s>0} s^k \frac{d^k}{ds^k} (s^a e^{-st}) \le \sup_{s>0} \left(s^a e^{-s\frac{t}{2}} \right) \sup_{s>0} \left(p_k(st) e^{-s\frac{t}{2}} \right) \le Ct^{-a},$$

which implies the first inequality.

The second and third inequality are consequences of the estimate

$$c_{\delta}\left(|\lambda|^{\frac{1}{2}} + s\right) \leq |\sqrt{\lambda + s^2}| \leq C_{\delta}\left(|\lambda|^{\frac{1}{2}} + s\right)$$
(11)

for all $\lambda \in \Sigma_{\delta}$, $s \ge 0$ with constants $c_{\delta}, C_{\delta} > 0$.

Furthermore the fourth inequality follows from the form of the derivates

$$\frac{d^k}{ds^k} \left(\frac{1}{\sqrt{\lambda+s^2}}\right) = p_k \left(\frac{s}{\sqrt{\lambda+s^2}}\right) \frac{s^{-k}}{\sqrt{\lambda+s^2}},$$

where p_k is a polynomial. If $\lambda \in \Sigma_{\delta}$, then $\sqrt{\lambda + s^2} \in \Sigma_{\frac{\delta}{2}}$; therefore $\operatorname{Re} \sqrt{\lambda + s^2} \ge c_{\delta} |\sqrt{\lambda + s^2}|$ and

$$\left| e^{-\sqrt{\lambda+s^2}t} \right| = e^{-\operatorname{Re}\sqrt{\lambda+s^2}t} \le e^{-c_{\delta}|\sqrt{\lambda+s^2}|t}.$$

Because of this estimate we get

$$\sup_{s>0} \left| s^a e^{-\sqrt{\lambda+s^2}t} \right| \leq \left(\sup_{s>0} s^a e^{-cst} \right) e^{-c|\lambda|^{\frac{1}{2}t}} \leq C_{\delta} \frac{e^{-c|\lambda|^{\frac{1}{2}t}}}{t^a}$$
(12)

Finally the derivatives of $s^a e^{-\sqrt{\lambda+s^2}}$ are of the form

$$\frac{d^k}{ds^k} \left(s^a e^{-\sqrt{\lambda+s^2}t} \right) = s^{a-k} e^{-\sqrt{\lambda+s^2}t} q_k(s;t),$$

where $q_k(s; t)$ is a polynomial in the variables st and $\frac{s}{\sqrt{\lambda+s^2}}$. Due to (11), $|q_k(s;t)e^{-\sqrt{\lambda+s^2}\frac{1}{2}t}| \leq C_{\delta}$ uniformly in $\lambda \in \Sigma_{\delta}, s, t > 0$. Therefore the last estimate is a consequence of (12).

4 Neumann Problem for the Laplace equation

We consider the Neumann problem for the Laplace equation

$$\begin{aligned} \Delta u &= 0 & \text{in } \Omega, \\ \partial_n u &= \varphi & \text{on } \partial \Omega \end{aligned}$$

for given $\varphi \in C_0^{\infty}(\partial \Omega)$, where $\partial_n = \frac{\partial}{\partial x_n}$. We identify φ with $(\varphi_+, \varphi_-)^T \in C_0^{\infty}(\mathbb{R}^{n-1})^2$.

Using partial Fourier transform this equation is equivalent to

$$\begin{aligned} (\partial_n^2 - |\xi'|^2) \tilde{u}(\xi', x_n) &= 0 & \text{ in } \mathbb{R}^{n-1} \times (-1, 1), \\ \partial_n \tilde{u}(\xi', \pm 1) &= \tilde{\varphi}_{\pm} & \text{ on } \mathbb{R}^{n-1}. \end{aligned}$$

We denote by N the solution operator of the Neumann problem. Then the solution is explicitly given by

$$\begin{split} \widetilde{u}(\xi', x_n) &= \widetilde{N\varphi}(\xi', x_n) \\ &= \frac{\sinh(|\xi'|x_n)}{|\xi'|\cosh|\xi'|} \frac{\widetilde{\varphi}_+ + \widetilde{\varphi}_-}{2} + \frac{\cosh(|\xi'|x_n)}{|\xi'|\sinh|\xi'|} \frac{\widetilde{\varphi}_+ - \widetilde{\varphi}_-}{2}. \end{split}$$

Therefore we get

$$\widetilde{\nabla N\varphi} = \begin{pmatrix} \frac{i\xi'}{|\xi'|} \frac{\sinh(|\xi'|x_n)}{\cosh|\xi'|} \\ \frac{\cosh(|\xi'|x_n)}{\cosh|\xi'|} \end{pmatrix} \frac{\tilde{\varphi}_+ + \tilde{\varphi}_-}{2} + \begin{pmatrix} \frac{i\xi'}{|\xi'|} \frac{\cosh(|\xi'|x_n)}{\sinh|\xi'|} \\ \frac{\sinh(|\xi'|x_n)}{\sinh|\xi'|} \end{pmatrix} \frac{\tilde{\varphi}_+ - \tilde{\varphi}_-}{2}$$
(13)
$$\gamma_{\pm}\widetilde{\nabla N\varphi} = \begin{pmatrix} \pm \frac{i\xi'}{|\xi'|} \frac{\sinh|\xi'|}{\cosh|\xi'|} \\ 1 \end{pmatrix} \frac{\tilde{\varphi}_+ + \tilde{\varphi}_-}{2} + \begin{pmatrix} \frac{i\xi'}{|\xi'|} \frac{\cosh|\xi'|}{\sinh|\xi'|} \\ \frac{\xi'_+ - \tilde{\varphi}_-}{2} \end{pmatrix}$$
(14)
$$=: \pi(\xi')\tilde{\varphi}.$$

Concerning the multiplier kernel of ∇N we need

Lemma 4.1 The following estimates hold uniformly with respect to $x_n \in [-1, 1]$:

$$\frac{\left[\frac{\sinh(|\xi'|x_n)}{\sinh|\xi'|}\frac{|\xi'|}{|\xi'|+1}\right]_{\mathcal{M}'}}{\left[\frac{\sinh(|\xi'|x_n)}{\cosh|\xi'|}\right]_{\mathcal{M}'}} \leq C, \qquad \left[\frac{\cosh(|\xi'|x_n)}{\sinh|\xi'|}\frac{|\xi'|}{|\xi'|+1}\right]_{\mathcal{M}'} \leq C, \\ \left[\frac{\sinh(|\xi'|x_n)}{\cosh|\xi'|}\right]_{\mathcal{M}'} \leq C, \qquad \left[\frac{\cosh(|\xi'|x_n)}{\cosh|\xi'|}\right]_{\mathcal{M}'} \leq C.$$

Proof: Since for example

$$\frac{\cosh(|\xi'|x_n)}{\sinh|\xi'|} = \frac{e^{|\xi'|x_n} + e^{-|\xi'|x_n}}{e^{|\xi'|} - e^{-|\xi'|}} = e^{-|\xi'|(1-x_n)} \frac{1}{1 - e^{-2|\xi'|}} + e^{-|\xi'|(1+x_n)} \frac{1}{1 - e^{-2|\xi'|}}$$

and $[e^{-|\xi'|(1\pm x_n)}]_{\mathcal{M}'} \leq C$, see Lemma 3.5, it is sufficient to show

$$\left[\frac{1}{1-e^{-2|\xi'|}}\frac{|\xi'|}{|\xi'|+1}\right]_{\mathcal{M}'} < \infty, \qquad \left[\frac{1}{1+e^{-2|\xi'|}}\right]_{\mathcal{M}'} < \infty.$$

The second statement follows from the fact that all derivates of $\frac{1}{1+e^{-s}}$ are continuous and decrease exponentially as $s \to \infty$.

For the first statement we consider f(s) = g(s)h(s), where $g(s) = \frac{1}{1-e^{-s}}$, $h(s) = \frac{s}{s+1}$. It holds that:

- 1. $h^{(k)}(s) = (-1)^{k+1} k! \frac{1}{(s+1)^{k+1}}, k \ge 1.$
- 2. $g^{(k)}(s) = \frac{e^{-ks}}{(1-e^{-s})^{k+1}} + r(s)$, where r(s) has a pole of order k at s = 0 and $r(s) \to 0$ exponentially as $s \to \infty$.

Because of these properties and the Leibniz formula $s^k f^{(k)}(s)$ is bounded as $s \to 0$ or $s \to \infty$.

Therefore we get the following continuity result for $P_N H$.

Corollary 4.2 Let $\Pi f = \nabla N \gamma_n H f$ for $f \in C_0^{\infty}(\overline{\Omega})^n$. Then the operators Π and $P_N H = H - \Pi$ can be continuously extended to a map from $W_q^s(\Omega)^n$ into itself for every $1 < q < \infty$, $s \ge 0$.

Proof: The operator Π is given by

$$\mathcal{F}_{x'} \left[\Pi f \right] = \int_{-1}^{1} \pi_1(\xi'; x_n) e_n \cdot h'(\xi'; 1 - y_n) \tilde{f}(\xi'; y_n) dy_n + \\ \int_{-1}^{1} \pi_2(\xi'; x_n) e_n \cdot h'(\xi'; -1 - y_n) \tilde{f}(\xi'; y_n) dy_n,$$

where $\widetilde{\nabla N\varphi} = \pi_1(\xi'; x_n)\varphi_+ + \pi_2(\xi'; x_n)\varphi_-$ is given by (13) and $h'(\xi'; x_n) = \mathcal{F}_{\xi_n}^{-1}[h(\xi)]$ is the multiplier kernel of H. Moreover

$$e_n \cdot h'(\xi';t) = \left(i{\xi'}^T \frac{e^{-|\xi'||t|}}{2} \operatorname{sign} t, |\xi'| \frac{e^{-|\xi'||t|}}{2}\right)$$

Because of the observations in the proof of Lemma 4.1, the multiplier kernel of Π is a sum of terms of the form

$$m(\xi')(|\xi'|+1)e^{-|\xi'|(|x_n-a|+|y_n-b|)}$$

with $a, b \in \{1, -1\}$ and $[m]_{\mathcal{M}'} < \infty$. Hence Lemma 3.5 yields

$$[\pi_i(\xi'; x_n)e_n \cdot h'(\xi'; y_n + 1)]_{\mathcal{M}'} \le \frac{C_{\delta}}{|x_n - a| + |y_n - b|}, \quad i = 1, 2.$$

Thus an application of Lemma 3.3 proves the assertion for the case s = 0. The tangential derivates ∂_j , $j = 1, \ldots, n-1$, commute with Π . Since $\partial_n^2 \Pi f = -\Delta' \Pi f = -\Pi \Delta' f$, $\Delta' = \partial_1^2 + \ldots + \partial_{n-1}^2$, the case s = 2m, $m \in \mathbb{N}$, is derived from the case s = 0. The general case can be obtained by interpolation.

5 Construction of V_{λ}

In the following we denote by $W_{q,\tau}^s(D)$, $D = \partial \Omega$ or $D = \mathbb{R}^{n-1}$, the space of all tangential vector fields $f \in W_q^s(D)^n$, $e_n \cdot f = 0$. The space $C_{0,\tau}^{\infty}(D)$ is similarly defined.

Theorem 5.1 Let $1 < q < \infty$. Then there exists an L > 0 and operators $V_{\lambda} \in \mathcal{L}(W_{q,\tau}^{2-\frac{1}{q}}(\partial\Omega), W_{q}^{2}(\Omega)^{n}), \lambda \in \Sigma_{\delta}, |\lambda| \geq L$, such that:

1. $V_{\lambda}g$ is a solution of the Dirichlet Problem with tangential data (2)-(4).

2.
$$\|V_{\lambda}g\|_{L_q(\Omega)} \leq C|\lambda|^{-\frac{1}{2q}}\|g\|_{L_q(\partial\Omega)}$$
 for all $g \in W_{q,\tau}^{2-\frac{1}{q}}(\partial\Omega)$

Proof: We construct V_{λ} with the aid of the (generalized) Poisson operators introduced in Section 3. As before we identify $g \in C_{0,\tau}^{\infty}(\partial\Omega)$ with $(g_+,g_-)^T \in C_{0,\tau}^{\infty}(\mathbb{R}^{n-1})^2$. We set

$$\begin{split} \tilde{E}_{\lambda}g &= \mathcal{F}_{\xi'}^{-1} \left[e_{\lambda}'(\xi'; 1-x_n) y_{\lambda}(\xi') \tilde{g}_{+}(\xi') \right] + \mathcal{F}_{\xi'}^{-1} \left[e_{\lambda}'(\xi'; -1-x_n) y_{\lambda}(\xi') \tilde{g}_{-}(\xi') \right], \\ \tilde{K}_{\lambda}g &= H\tilde{E}_{\lambda}, \quad W_{\lambda} = P_N \tilde{K}_{\lambda} \end{split}$$

where y_{λ} is a λ -dependent multiplier on \mathbb{R}^{n-1} , which will be specified later.

For given $g \in C_{0,\tau}^{\infty}(\partial\Omega)$ the function $W_{\lambda}g$ solves the equations (2)-(4) with boundary data $S_{\lambda}g := \gamma W_{\lambda}g$. If S_{λ}^{-1} exists in a suitable sense, then

$$V_{\lambda}g = W_{\lambda}S_{\lambda}^{-1}g \tag{15}$$

yields a solution of (2)-(4) with boundary data g.

We have to calculate the trace $S_{\lambda}g = \gamma \tilde{K}_{\lambda} - \gamma \nabla N \gamma_n \tilde{K}_{\lambda}$. Because of (10) we get

$$\mathcal{F}_{x'} \left[\gamma \tilde{K}_{\lambda} g \right] = \begin{pmatrix} k'_{\lambda}(\xi'; 0) y_{\lambda}(\xi') \tilde{g}_{+} + k'_{\lambda}(\xi'; 2) y_{\lambda}(\xi') \tilde{g}_{-} \\ k'_{\lambda}(\xi'; -2) y_{\lambda}(\xi') \tilde{g}_{+} + k_{\lambda}(\xi'; 0) y_{\lambda}(\xi') \tilde{g}_{-} \end{pmatrix},$$

$$k'_{\lambda}(\xi'; 0) = \left(\frac{I \mid 0}{0 \mid 0} \right) \frac{1}{2\sqrt{\lambda + |\xi'|^{2}}} - \left(\frac{\xi' \xi'^{T} \frac{\sqrt{\lambda + |\xi'|^{2}} - |\xi'|}{2\lambda |\xi'| \sqrt{\lambda + |\xi'|^{2}}} \right) \frac{1}{|\xi'|^{2} \frac{\sqrt{\lambda + |\xi'|^{2} - |\xi'|}}{2\lambda |\xi'| \sqrt{\lambda + |\xi'|^{2}}} \right)$$

Note that $\left(I - a \frac{x x^T}{|x|^2}\right)^{-1} = \left(I - \frac{a}{a-1} \frac{x x^T}{|x|^2}\right)$; we now define

$$\begin{split} y_{\lambda}'(\xi') &:= \left(\frac{1}{2\sqrt{\lambda + |\xi'|^2}} \left(I - \frac{\sqrt{\lambda + |\xi'|^2} - |\xi'|}{\lambda} |\xi'| \frac{\xi' \xi'^T}{|\xi'|^2} \right) \right)^{-1} \\ &= 2\sqrt{\lambda + |\xi'|^2} \left(I + \frac{|\xi'|}{\sqrt{\lambda + |\xi'|^2}} \frac{\xi' \xi'^T}{|\xi'|^2} \right), \\ y_{\lambda}(\xi') &:= \left(\frac{y_{\lambda}'(\xi') \mid 0}{0 \mid 0} \right). \end{split}$$

This yields

$$k'_{\lambda}(\xi';0)y_{\lambda}(\xi') = \left(egin{array}{cc} I & 0 \\ 0 & 0 \end{array}
ight).$$

Therefore we get

$$\begin{aligned} \mathcal{F}_{x'} \left[\gamma \tilde{K}_{\lambda} g \right] &= \begin{pmatrix} \tilde{g}_{+} + k'_{\lambda}(\xi'; 2)y_{\lambda}(\xi')\tilde{g}_{-} \\ k'_{\lambda}(\xi'; -2)y_{\lambda}(\xi')\tilde{g}_{+} + \tilde{g}_{-} \end{pmatrix} \\ \mathcal{F}_{x'} \left[\gamma \nabla N e_{n} \cdot \gamma \tilde{K}_{\lambda} g \right] &= \begin{pmatrix} \pi(\xi')e_{n} \cdot \tilde{g}_{+} & +\pi(\xi')e_{n} \cdot k'_{\lambda}(\xi'; 2)y_{\lambda}(\xi')\tilde{g}_{-} \\ \pi(\xi')e_{n} \cdot k'_{\lambda}(\xi'; -2)y_{\lambda}(\xi')\tilde{g}_{+} & +\pi(\xi')e_{n} \cdot \tilde{g}_{-} \end{pmatrix} \\ &= \begin{pmatrix} \pi(\xi')e_{n} \cdot k'_{\lambda}(\xi'; 2)y_{\lambda}(\xi')\tilde{g}_{-} \\ \pi(\xi')e_{n} \cdot k'_{\lambda}(\xi'; -2)y_{\lambda}(\xi')\tilde{g}_{+} \end{pmatrix}, \end{aligned}$$

since $e_n \cdot \tilde{g}_{\pm} = 0$.

The following estimates hold:

Lemma 5.2 Let $1 < q < \infty$, $s \ge 0$. Then for all $g \in W^s_{q,\tau}(\mathbb{R}^{n-1})$

$$\|\mathcal{F}_{\xi'}^{-1}[\pi(\xi')e_n \cdot k'_{\lambda}(\xi'; \pm 2)y_{\lambda}(\xi')\tilde{g}(\xi')]\|_{q,s} \leq \frac{C_{\delta}}{|\lambda|^{\frac{1}{2}}} \|g\|_{q,s},$$
(16)

$$\|\mathcal{F}_{\xi'}^{-1}[k_{\lambda}'(\xi';\pm 2)y_{\lambda}(\xi')\tilde{g}(\xi')]\|_{q,s} \leq \frac{C_{\delta}}{|\lambda|^{\frac{1}{2}}}\|g\|_{q,s}$$
(17)

with $\lambda \in \Sigma_{\delta}, \ 0 < \delta < \pi$.

Proof: It is sufficient to proof the estimate for s = 0: For $s = m \in \mathbb{N}$ the operator $\langle \nabla' \rangle^m g = \mathcal{F}_{\xi'}^{-1}[\langle \xi' \rangle^m \tilde{g}], \langle \xi' \rangle = (1 + |\xi'|^2)^{\frac{1}{2}}$, gives an isomorphism from $W_q^m(\mathbb{R}^{n-1})$ to $L_q(\mathbb{R}^{n-1})$ and $\langle \xi' \rangle^m$ commutes with the multipliers. For general $s \geq 0$ the estimate follows from interpolation. Hence we only have to estimate the Miklin constants. Due to (10)

$$2\lambda\sqrt{\lambda+|\xi'|^2}k'_{\lambda}(\xi';\pm 2) = \lambda e^{-2\sqrt{\lambda+|\xi'|^2}} \left(\frac{I \mid 0}{0 \mid 0}\right) - \left(\frac{\frac{\xi'\xi'^{T}}{|\xi'|^2} \left(|\xi'|s_{\lambda}e^{-2|\xi'|} - |\xi'|^2e^{-2s_{\lambda}}\right) \mid \mp i\frac{\xi'}{|\xi'|}|\xi'|s_{\lambda}\left(e^{-2|\xi'|} - e^{-2s_{\lambda}}\right)}{\mp i\frac{\xi'^{T}}{|\xi'|}|\xi'|s_{\lambda}\left(e^{-2|\xi'|} - e^{-2s_{\lambda}}\right) \mid -|\xi'|s_{\lambda}e^{-2|\xi'|} + |\xi'|^2e^{-2s_{\lambda}}}\right)$$

where $s_{\lambda} = \sqrt{\lambda + |\xi'|^2}$. Because of Lemma 3.5 it holds that

$$\left[\frac{y_{\lambda}(\xi')}{\sqrt{\lambda+|\xi'|^2}}\right]_{\mathcal{M}'} \le C_{\delta} \tag{18}$$

and

$$\begin{split} \left[|\xi'| \sqrt{\lambda + |\xi'|^2} e^{-2|\xi'|} \right]_{\mathcal{M}'} &\leq C \left[\frac{\sqrt{\lambda + |\xi'|^2}}{|\xi'| + 1} \right]_{\mathcal{M}'} \left[(|\xi'|^2 + |\xi'|) e^{-2|\xi'|} \right]_{\mathcal{M}'} \\ &\leq C_{\delta} |\lambda|^{\frac{1}{2}}, \\ \left[|\xi'| \sqrt{\lambda + |\xi'|^2} e^{-2\sqrt{\lambda + |\xi'|^2}} \right]_{\mathcal{M}'} &\leq C \left[\frac{\sqrt{\lambda + |\xi'|^2}}{|\xi'| + 1} \right]_{\mathcal{M}'} \left[(|\xi'|^2 + |\xi'|) e^{-2\sqrt{\lambda + |\xi'|^2}} \right]_{\mathcal{M}'}, \\ &\leq C_{\delta} |\lambda|^{\frac{1}{2}} e^{-c|\lambda|^{\frac{1}{2}}}. \end{split}$$

Hence $[k'_{\lambda}(\xi'; \pm 2)y_{\lambda}(\xi')]_{\mathcal{M}'} \leq C_{\delta}|\lambda|^{-\frac{1}{2}}$ proving (17) Note that $\left[\pi(\xi')\frac{|\xi'|}{|\xi'|+1}\right]_{\mathcal{M}'} < 0$ ∞ because of Lemma 4.1 and that

$$2\lambda e_n \cdot k'_{\lambda}(\xi'; \pm 2) = \left(\mp i\xi' \left(e^{-2|\xi'|} - e^{-2\sqrt{\lambda + |\xi'|^2}} \right), |\xi'| e^{-2|\xi'|} - \frac{|\xi'|^2}{\sqrt{\lambda + |\xi'|^2}} e^{-2\sqrt{\lambda + |\xi'|^2}} \right).$$

Therefore we get in the same way:

$$[\pi(\xi')e_n \cdot k'_{\lambda}(\xi';\pm 2)y_{\lambda}(\xi')]_{\mathcal{M}'} \le C_{\delta}|\lambda|^{-\frac{1}{2}}.$$

Because of this lemma

$$S_{\lambda} = I + T'_{\lambda}$$

where $T'_{\lambda} = O(|\lambda|^{-\frac{1}{2}})$ in $\mathcal{L}(W^s_{q,\tau}(\partial\Omega))$, $1 < q < \infty$, $s \ge 0$, $\lambda \in \Sigma_{\delta}$, as $|\lambda| \to \infty$. Therefore S^{-1}_{λ} exists for all $|\lambda| \ge L$, $\lambda \in \Sigma_{\delta}$, with some L > 0 and

$$S_{\lambda}^{-1} = I + T_{\lambda}$$

with $T_{\lambda} = O(|\lambda|^{-\frac{1}{2}})$ in $\mathcal{L}(W^m_{q,\tau}(\partial\Omega)), m \in \mathbb{N}_0$, as $|\lambda| \to \infty$.

In order to get a solution operator for any $g \in W_{q,\tau}^{2-\frac{1}{q}}(\partial\Omega)$ we have to estimate the norm of $W_{\lambda}g = P_N H\tilde{E}_{\lambda}$. Corollary 4.2 tells us that $P_N H$ is continuous on every $W_q^s(\Omega)$, $1 < q < \infty$, $s \ge 0$. Moreover $\frac{y_{\lambda}(\xi')}{\sqrt{\lambda + |\xi'|^2}}$ defines a uniformly bounded multiplier operator on every $W_q^s(\mathbb{R}^{n-1})$. Since

$$\tilde{E}_{\lambda}g = \mathcal{F}_{\xi'}^{-1} \left[\frac{y_{\lambda}(\xi')}{\sqrt{\lambda + |\xi'|^2}} \frac{e^{-\sqrt{\lambda + |\xi'|^2}|x_n - 1|}}{2} \tilde{g}_+ \right] \\ + \mathcal{F}_{\xi'}^{-1} \left[\frac{y_{\lambda}(\xi')}{\sqrt{\lambda + |\xi'|^2}} \frac{e^{-\sqrt{\lambda + |\xi'|^2}|x_n + 1|}}{2} \tilde{g}_- \right]$$

we only have to consider $\mathcal{F}_{\xi'}^{-1}[e^{-\sqrt{\lambda+|\xi'|^2}|x_n\pm 1|}\tilde{g}_{\pm}].$

Lemma 5.3 Let $1 < q < \infty$, $0 < \delta < \pi$, $\varepsilon > 0$ and $P_{\lambda}g = \mathcal{F}_{\xi'}^{-1}[e^{-\sqrt{\lambda + |\xi'|^2}x_n}\tilde{g}(\xi')]$. Then

$$\|P_{\lambda}g\|_{W^2_q(\mathbb{R}^n_+)} \leq C_{\delta,\varepsilon}|\lambda| \|g\|_{W^{2-\frac{1}{q}}_q(\mathbb{R}^{n-1})}$$

for all $g \in W_q^{2-\frac{1}{q}}(\mathbb{R}^{n-1}), \lambda \in \Sigma_{\delta}, |\lambda| \ge \varepsilon$.

Proof: Obviously $u = P_{\lambda}g$ solves the equations

$$\begin{aligned} &(\lambda - \Delta)u &= 0 & \text{ in } \mathbb{R}^n_+, \\ &\gamma u &= g & \text{ on } \mathbb{R}^{n-1} \end{aligned}$$

If $G \in W_q^2(\mathbb{R}^n_+)$ is an extension of $g \in W_q^{2-\frac{1}{q}}(\mathbb{R}^{n-1})$ with $\|G\|_{q,2} \leq 2\|g\|_{q,2-\frac{1}{q}}$, then $v = P_{\lambda}g - G$ solves the equations

$$\begin{aligned} &(\lambda - \Delta)v &= -(\lambda - \Delta)G & \text{ in } \mathbb{R}^n_+, \\ &\gamma v &= 0 & \text{ on } \mathbb{R}^{n-1} \end{aligned}$$

The solution operator of the latter equations can be obtained by an odd extension from \mathbb{R}^n_+ to \mathbb{R}^n and the resolvent E_{λ} of the Laplacian in \mathbb{R}^n . Then the statement of this lemma is a direct consequence of the well-known resolvent estimate

$$\|E_{\lambda}f\|_{W^{2}_{q}(\mathbb{R}^{n})} \leq C_{\delta,\varepsilon} \|f\|_{L_{q}(\mathbb{R}^{n})}$$

Hence we get the boundedness of \tilde{E}_{λ} and W_{λ} from $W_{q,\tau}^{2-\frac{1}{q}}(\partial\Omega)$ to $W_{q}^{2}(\Omega)^{n}$. Since $S_{\lambda}^{-1} \in \mathcal{L}(W_{q,\tau}^{s}(\partial\Omega)), s \geq 0$, is uniformly bounded for every $\lambda \in \Sigma_{\delta}, |\lambda| \geq L, V_{\lambda}$ is bounded in the same way as W_{λ} resp. \tilde{E}_{λ} . Finally Lemma 3.4 applied to $e^{-\sqrt{\lambda+|\xi'|^{2}|x_{n}\pm 1|}}$ yields

$$\|\tilde{E}_{\lambda}f\|_{L_q(\Omega)} \le C_{\delta}|\lambda|^{-\frac{1}{2q}}\|f\|_{L_q(\partial\Omega)}.$$
(19)

Thus the same estimate is true for V_{λ} . Now the proof of Theorem 5.1 is complete.

6 **Representation of** $V_{\lambda}M_{\lambda}$ and **Proof of Theorem** 1.1

For the proof of Theorem 1.1 we only have to put the formulas for the operators together and estimate suitably. Since S_{λ}^{-1} exists for $|\lambda| \geq L$ we get the representations

$$V_{\lambda} = P_N \tilde{K}_{\lambda} S_{\lambda}^{-1} = P_N \tilde{K}_{\lambda} + P_N \tilde{K}_{\lambda} T_{\lambda},$$

$$V_{\lambda} M_{\lambda} = P_N \tilde{K}_{\lambda} M_{\lambda} + P_N \tilde{K}_{\lambda} T_{\lambda} M_{\lambda}.$$
(20)

4

For the second part we get

$$\begin{aligned} \|P_{N}\tilde{K}_{\lambda}T_{\lambda}\gamma P_{N}K_{\lambda}f\|_{q} &\leq C_{\delta}|\lambda|^{-\frac{1}{2q}}\|T_{\lambda}\gamma P_{N}K_{\lambda}f\|_{q,\partial\Omega} \leq C_{\delta}|\lambda|^{-\frac{1}{2q}-\frac{1}{2}}\|E_{\lambda}f\|_{q} \\ &\leq C_{\delta}|\lambda|^{-\frac{1}{2q}-\frac{1}{2}-\frac{1}{2q'}-\frac{1}{2}}\|f\|_{q} = C_{\delta}|\lambda|^{-\frac{3}{2}}\|f\|_{q} \end{aligned}$$
(21)

because of the boundedness of $P_N H$, (19), the estimate for T_{λ} and the fact that Lemma 3.4 and Lemma 3.5 yield

$$||E_{\lambda}f||_{q} \leq C|\lambda|^{-\frac{1}{2q'}-\frac{1}{2}}||f||_{q}.$$

Therefore this part can be neglected.

The essential step in the proof of the boundedness of the imaginary powers is to show a special representation of the first term.

$$P_{N}\tilde{K}_{\lambda}M_{\lambda} = P_{N}H\underbrace{\tilde{E}_{\lambda}\gamma P_{N}K_{\lambda}}_{=:G_{\lambda}},$$

$$G_{\lambda} = \tilde{E}_{\lambda}\gamma E_{\lambda}H - \tilde{E}_{\lambda}\gamma \nabla N\gamma_{n}K_{\lambda} = G_{\lambda}^{1}H - G_{\lambda}^{2}.$$
(22)

For $f \in C_0^{\infty}(\Omega)^n$ we have the following representations

$$\mathcal{F}_{x'} \left[G_{\lambda}^{1} f \right] = \int_{-1}^{1} \underbrace{e'_{\lambda}(\xi'; x_{n} - 1) y_{\lambda}(\xi') e'_{\lambda}(\xi'; y_{n} - 1)}_{=:g_{\lambda}^{1}(\xi'; x_{n} - 1, y_{n} - 1)} \tilde{f}(\xi'; y_{n}) dy_{n}$$

$$+ \int_{-1}^{1} e'_{\lambda}(\xi'; x_{n} + 1) y_{\lambda}(\xi') e'_{\lambda}(\xi'; y_{n} + 1) \tilde{f}(\xi'; y_{n}) dy_{n}$$

 and

$$\begin{aligned} \mathcal{F}_{x'}\left[G_{\lambda}^{2}f\right] &= \\ & \int_{-1}^{1} \underbrace{e_{\lambda}'(\xi';x_{n}-1)y_{\lambda}(\xi')\left(\pi(\xi')\frac{|\xi'|}{|\xi'|+1}\right)e_{\lambda}'(\xi';y_{n}-1)}_{&=:g_{\lambda}^{2}(\xi';x_{n}-1,y_{n}-1)} \underbrace{\frac{|\xi'|+1}{|\xi'|}e_{n}\cdot\widetilde{Hf}(\xi';y_{n})dy_{n}}_{&=:g_{\lambda}^{2}(\xi';x_{n}-1,y_{n}-1)} \\ & + \int_{-1}^{1} e_{\lambda}'(\xi';x_{n}+1)y_{\lambda}(\xi')\left(\pi(\xi')\frac{|\xi'|}{|\xi'|+1}\right)e_{\lambda}'(\xi';y_{n}+1)\frac{|\xi'|+1}{|\xi'|}e_{n}\cdot\widetilde{Hf}(\xi';y_{n})dy_{n} \end{aligned}$$

The multiplier kernels g_{λ}^{i} , i = 1, 2, satisfy the following estimate, which is the key to estimate of $V_{\lambda}M_{\lambda}$.

Lemma 6.1 Let $\lambda \in \Sigma_{\delta}, 0 < \delta < \pi$, i = 1, 2. Then

$$\left[g_{\lambda}^{i}(\xi';s,t)\right]_{\mathcal{M}'} \leq C_{\delta} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|t|+|s|)}}{|\lambda|^{\frac{1}{2}}}$$
(23)

holds for all $t, s \in \mathbb{R}$.

Proof: This lemma is a direct consequence of Lemma 3.5, Lemma 4.1 and (18).

Therefore we can apply the following Theorem 6.2. Let $\Gamma_{\varepsilon,L} = \Gamma_{\varepsilon} \setminus B_L(0)$, where Γ_{ε} is the curve in the definition of A_q^z . We denote by $\Gamma_{\varepsilon,L}^{\pm}$ the upper resp. lower part of $\Gamma_{\varepsilon,L}$. Moreover let $z \in \mathbb{C}$ with $\operatorname{Re} z < 0$.

Theorem 6.2 Let $g'_{\lambda}: \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R} \to \mathbb{C}$, $\lambda \in \Sigma_{\delta}$, such that

$$[g'_{\lambda}(\xi'; x_n, y_n)]_{\mathcal{M}'} \leq C_{\delta} \frac{e^{-c|\lambda|^{\frac{1}{2}}(|x_n-t|+|y_n-s|)}}{|\lambda|^{\frac{1}{2}}}$$

is satisfied for $t,s \in \{-1,1\}$. Consider the operators

$$\begin{split} G_{\lambda}f &= \mathcal{F}_{\xi'}^{-1} \left[\int_{-1}^{1} g_{\lambda}'(\xi'; x_n, y_n) \tilde{f}(\xi'; y_n) dy_n \right], \\ G_{\pm,L}^z &= \int_{\Gamma_{\varepsilon,L}^{\pm}} (-\lambda)^z G_{\lambda} d\lambda. \end{split}$$

Then

$$\|G_{\pm,L}^z f\|_p \leq C e^{\varepsilon |\operatorname{Im} z|} \|f\|_p.$$
(24)

Proof: Consider the multiplier kernel of $G^{z}_{\pm,L}$, i.e.,

$$\sigma'(G^{z}_{\pm,L})(\xi',x_n,y_n) = \int_{\Gamma^{\pm}_{\varepsilon,L}} (-\lambda)^{z} g'_{\lambda}(\xi';x_n,y_n) d\lambda.$$

Thus we get

$$\begin{split} \left[\sigma'(G_{\pm,L}^{z})(\xi';x_{n},y_{n}) \right]_{\mathcal{M}'} &\leq \int_{\Gamma_{\varepsilon,L}^{\pm}} |(-\lambda)^{z}| [g_{\lambda}'(\xi';x_{n},y_{n})]_{\mathcal{M}'} |d\lambda| \\ &\leq C_{\delta} \int_{\Gamma_{\varepsilon,L}^{\pm}} |(-\lambda)^{z}| \frac{e^{-c|\lambda|^{\frac{1}{2}}(|x_{n}-t|+|y_{n}-s|)}}{|\lambda|^{\frac{1}{2}}} |d\lambda| \\ &\leq C_{\delta} \int_{L}^{\infty} |e^{\pm i\varepsilon z} p^{z}| \frac{e^{-cp^{\frac{1}{2}}(|x_{n}-t|+|y_{n}-s|)}}{p^{\frac{1}{2}}} dp \\ &\leq C_{\delta} e^{\varepsilon |\operatorname{Im} z|} \int_{L}^{\infty} p^{-\frac{1}{2}} e^{-cp^{\frac{1}{2}}(|x_{n}-t|+|y_{n}-s|)} dp \\ &\leq C_{\delta} \frac{e^{\varepsilon |\operatorname{Im} z|}}{|x_{n}-t|+|y_{n}-s|}. \end{split}$$

Then an application of Lemma 3.3 finishes the proof. \blacksquare To get the estimate G_{λ} defined by (22) we only need to estimate the remaining part of G_{λ}^2 .

Lemma 6.3 For $f \in L_p(\Omega)^n$, 1 , it holds that

$$\left\|\mathcal{F}_{\xi'}^{-1}\left[\frac{1}{|\xi'|}\mathcal{F}_{x'}[e_n\cdot Hf]\right]\right\|_p \le C\|f\|_p$$

Proof: We know

$$\mathcal{F}_{x'}[e_n \cdot Hf] = \int_{-1}^{1} e_n \cdot h'(\xi; x_n - y_n) \tilde{f}(\xi'; y_n) dy_n \\ e_n \cdot h'(\xi'; t) = \left(i\xi'^T \frac{e^{-|\xi'||t|}}{2} \operatorname{sign} t, |\xi'| \frac{e^{-|\xi'||t|}}{2} \right).$$

Since $[e^{-|\xi'||t|}]_{\mathcal{M}'} \leq C$, $\left[\frac{\xi_j}{|\xi'|}\right]_{\mathcal{M}'} \leq C$ for all $t \in (-1,1)$ we get

$$\left\| \mathcal{F}_{\xi'}^{-1} \left[\frac{1}{|\xi'|} \mathcal{F}_{x'}[e_n \cdot Hf] \right] \right\|_p \le C \left\| \int_{-1}^1 \|f(.,y_n)\|_{L^p(\mathbb{R}^{n-1})} dy_n \right\|_{L^p(-1,1)} \\ \le C \|f\|_p$$

due the Miklin multiplier theorem.

Since H is continuous on L_q , $1 < q < \infty$, this lemma implies

$$\left|\mathcal{F}_{\xi'}^{-1}\left[\frac{|\xi'|+1}{|\xi'|}e_n\cdot \widetilde{Hf}\right]\right\|_q \le C\|f\|_q.$$

Proof of Theorem 1.1: The spectrum of $-A_q$ is contained in $(-\infty, 0)$; see [9]. Therefore $(z + A)^{-1}$ is bounded on $\Gamma \cap B_L(0), L > 0$. Hence we only need to consider the integral over $\Gamma_{\varepsilon,L}$ for L > 0 given as in Theorem 5.1. Then for $\lambda \in \Gamma_{\varepsilon,L}$ we know $(z + A)^{-1} = P_N K_\lambda - V_\lambda M_\lambda$. Set

$$L(z) = \frac{1}{2\pi i} \int_{\Gamma_{\varepsilon}} (-\lambda)^{z} E_{\lambda} d\lambda.$$

To estimate this part we use the same approach as in [2, Proof of Proposition 1] but we have to modify the argumentation since the domain is unbounded.

Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\phi(x) = 1$ for $x \in B_1(0)$ and $\operatorname{supp} \phi \subseteq B_2(0)$. For simplicity we choose ϕ of the form $\phi(\xi) = \varphi(\xi')\psi(\xi_n)$. Now we split $L(z) = L_1(z) + L_2(z)$ with $L_i(z) = \mathcal{F}^{-1}l_i(\xi; z)\mathcal{F}$, $l_1(\xi; z) = (1 - \phi)|\xi|^{2z}$ and $l_2(\xi; z) = \phi|\xi|^{2z}$. Then for all $\varepsilon > 0$

$$[l_1(\xi; z)]_{\mathcal{M}} \leq C_{\varepsilon} e^{\varepsilon |\operatorname{Im} z|} \quad \text{for } -\frac{1}{2} \leq \operatorname{Re} z \leq 0.$$

Therefore

$$||L_1(z)|| \leq C_{\varepsilon} e^{\varepsilon |\operatorname{Im} z|}$$

To estimate the second part we estimate its multiplier kernel $l'_2(\xi'; x_n; z) = \mathcal{F}_{\xi_n}^{-1}[l_2(\xi; z)]$. We easily get

$$|l'_{2}(\xi'; x_{n}; z)| \leq |\varphi(\xi')| \left| \int_{-1}^{1} |\xi|^{2z} \varphi_{2}(\xi_{n}) d\xi_{n} \right| \leq C_{a}$$

for all $-\frac{1}{2} < a \le \text{Re} \, z \le 0, \xi' \in \mathbb{R}^{n-1}, -1 < x_n < 1$. Similar one estimates the higher derivatives:

$$|\xi'|^{|\alpha|} |D^{\alpha}_{\xi'} l_2'(\xi'; x_n; z)| \le C_{a,\varepsilon} e^{\varepsilon |\operatorname{Im} z|}.$$

Therefore

$$[l'_2(.; x_n; z)]_{\mathcal{M}'} \le C_{a,\varepsilon} e^{\varepsilon |\operatorname{Im} z|}.$$

Hence Lemma 3.3 yields

$$||L_2(z)|| \le C_{\varepsilon,a} e^{\varepsilon |\operatorname{Im} z|}$$

and the same estimate for L(z). If we now consider

$$\tilde{L}(z) = \frac{1}{2\pi i} \int_{\Gamma_{\varepsilon,L}} (-\lambda)^z E_\lambda d\lambda$$

instead of L(z) the latter estimate still holds since Lemma 3.3, Lemma 3.5 and (8) imply

$$||E_{\lambda}f||_{L_q(\Omega)} \le C_{\delta}|\lambda|^{-\frac{1}{2}}||f||_{L_q(\Omega)}.$$

Because of the previous theorem and lemmata, the boundedness of $P_N H$ on $L_q(\Omega)$ and (21) we know that

$$V_{\lambda}M_{\lambda} = G_{\lambda} + R_{\lambda}, \qquad (25)$$

where the corresponding operator $G_{\pm,L}^Z$ satisfies (24) and $R_{\lambda} = O(|\lambda|^{-\frac{3}{2}})$ in $\mathcal{L}(L_q(\Omega))$.

Hence we only need to estimate the remainder term R_{λ} :

$$\left\|\frac{1}{2\pi i}\int_{\Gamma_{\varepsilon,L}}(-\lambda)^{z}R_{\lambda}d\lambda\right\| \leq Ce^{\varepsilon|\operatorname{Im} z|}\int_{\Gamma_{\varepsilon,L}}|\lambda|^{-\frac{3}{2}}|d\lambda|\leq Ce^{\varepsilon|\operatorname{Im} z|}.$$

Thus the theorem is proved.

References

...

- [1] H. Amann. Linear and Quasilinear Parabolic Problems. Birkhäuser, 1995.
- Y. Giga. Domains of Fractional Powers of the Stokes Operator in L_r Spaces. Arch. Rational Mech. Anal. 89, 251-265, 1985.
- [3] J. Bergh, J. Löfström. Interpolation Spaces. Springer, Berlin Heidelberg -New York, 1976.
- [4] R. Seeley. Norms and Domains of the Complex Powers A^z_B. Amer. J. Math. 93, 299-309, 1971.
- [5] Y. Giga, H. Sohr. On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 103-130, 1989.
- [6] Y. Giga, H. Sohr. Abstract L^p Estimates for the Cauchy Problem with Applications to the Navier-Stokes Equations in Exterior Domains. J. Funct. Anal. 102, 72-94, 1991.

- [7] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Hall Press, Princeton, New Jersey, 1970.
- [8] G. Dore, A. Venni. On the Closedness of the Sum of Two Closed Operators. Math. Z. 196, 189-201, 1987.
- [9] M. Wiegner. Resolvent Estimates for the Stokes Operator on an Infinite Layer. To appear.

Address:

Helmut Abels Fachbereich Mathematik Technische Universität Darmstadt Schloßgartenstraße 7 64289 Darmstadt, Germany e-mail: abels@mathematik.tu-darmstadt.de