
Greechie diagrams of orthomodular partial algebras

Richard Holzer

Introduction

Greechie diagrams are a well known graphical representation of orthomodular partial

algebras, orthomodular posets and orthomodular lattices. In [K83] and [D84] some

characterisations of Greechie diagrams of orthomodular posets and of orthomodular

lattices are given under some assumptions, for example, that the family of blocks

is pasted, or that the intersection of each pair of blocks contains less or equal than

four elements. Now I am going to present a generalisation of these characterisations

for orthomodular partial algebras (or equivalently orthomodular posets see [BM94]).

Here we consider arbitrary hypergraphs with �nite lines. A Greechie diagram can

be seen as a special hypergraph: Di�erent points of the hypergraph have di�erent

interpretations in the corresponding partial algebra A := (A;�;

0

; 0) of type (2,1,0)

and each line in the hypergraph has a maximal Boolean subalgebra as interpretation,

in which the points are the atoms. A diagram is complete if each maximal Boolean

subalgebra is induced by a line of the hypergraph. The characterisation theorems in

chapter 2 provide conditions to check, whether a hypergraph is a complete diagram

of an orthomodular partial algebra. This poperty can be checked without having to

compute the interpretation. We just have to consider the lines in the hypergraph.

1 Blocks of orthomodular partial algebras

De�nition 1 An orthomodular partial algebra (brie
y: OMA) is a partial algebra

A := (A;�;

0

; 0) of type (2; 1; 0) such that the following axioms hold in A (the term

existence statement t

e

= t is written as D (t)):

(A0) D (0)

(A1) x

00

e

= x

(A2) x� x

0

e

= 0

0

(A3) x� 0

e

= x

(A4) D (x � y)) x� y

e

= y � x
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(A5) D ((x � y)� z)) (x� y)� z

e

= x� (y � z)

(A6) D (x � y) ^ D (y

0

� z)) D (x � z)

(A7) D (x � y

0

) ^ D (x

0

� y)) x

e

= y

(A8) D (x � y) ^ D (y � z) ^ D (x � z)) D (x � (y � z))

(A9) D (x � y

0

)) x� (x� y

0

)

0

e

= y

Note that axioms (A3) and (A6) are consequences of the other axioms (see [Pu94]).

When we use di�erent partial algebras A;B; : : : then sometimes we write the algebra

as index of the operations (�

A

;�

B

; : : : ) to make clear which operation is meant. In

an OMA A we de�ne 1 := 0

0

. There exists a canonical bijection between the class

of all OMAs and the class of all orthomodular posets (see [BM94]): For every OMA

A the structure (A;�;

0

; 0) with x � y i� x� y

0

exists is an orthomodular poset and

for every orthomodular poset (B;�;

0

; 0) the structure (B;�;

0

; 0) with x � y = z i�

x � y

0

and z = sup(x; y) is an OMA. These transformations are invers to each other.

We have x � y i� there is an element z 2 A with x� z = y. Note that if x� y exists

for x; y 2 A then inf(x; y) = 0 (see [BM94]). The induced order �

B

of a subalgebra B

(which is always an OMA because the axioms are open formulas) is the restriction of

the order �

A

. An OMA A is called Boolean i� the corresponding orhomodular poset

(A;�;

0

; 0) is a Boolean lattice. For an OMA A let atoms(A) be the set of all atoms

of the induced orthomodular poset (A;�;

0

; 0).

For a set M let P(M) := (P(M);�;

0

;�) be the Boolean OMA with the powerset

ofM as carrier set, E

0

=M nE and E�F = G i� G is the disjoint union of E and F

for E;F;G � M . Let P

co�n

�n

(M) := (P

co�n

�n

(M);�;

0

;�) be the Boolean subalgebra of

P(M) with P

co�n

�n

(M) = fE � M jE is �nite or M n E is �nite g. If M is �nite then

we have P

co�n

�n

(M) = P(M).

For a partial algebra A = (A;�;

0

; 0) the cardinality jAj of A is de�ned as the

cardinality of the carrierset A: jAj := jAj. A maximal Boolean subalgebra of a

partial algebra A = (A;�;

0

; 0) is called block. The subalgebra which is generated by

a subset E � A is denoted by < E >.

For a family (A

i

)

i2I

of OMAs the coproduct C =

`

i2I

A

i

in the category of partial

algebras is a \0-1-gluing", that means all zero elements of the OMAs are identi�ed

in

i

(0

A

i

) = 0

C

= in

j

(0

A

j

) for i; j 2 I;

where in

i

: A

i

! C is the canonical injection into the coproduct, and all units of

these OMAs are identi�ed

in

i

(1

A

i

) = 1

C

= in

j

(1

A

j

) for i; j 2 I:

All other elements remain unequal: in

i

(a) 6= in

j

(b) for all i; j 2 I; a 2 A

i

and b 2 A

j

with (i; a) 6= (j; b) and 0

A

i

6= a 6= 1

A

i

.

Now we show some properties of OMAs.
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Lemma 2 Let A be a Boolean OMA, a 2 atoms(A) and b 2 A. Then a � b or a � b

0

holds. If b is also an atom with a 6= b then a� b exists.

Proof. If a 6� b then, because of the distributivity of a Boolean lattice,

a = inf(a; sup(b; b

0

)) = sup(inf(a; b); inf(a; b

0

)) = sup(0; inf(a; b

0

)) = inf(a; b

0

);

so a � b

0

. If b is an atom with a 6= b then a 6� b and a � b

0

, so a� b exists.

The following theorem is a generalisation of a remark in [BM94]:

Theorem 3 Let A be an OMA and E � A. Then the following conditions are

equivalent:

1. a� b exists for all a; b 2 E with a 6= b.

2. There exists an isomorphism � : P := P

co�n

�n

(G)!< E > with

�(F ) =�F and �(G n F ) = (�F )

0

for �nite subsets F � G, where G := (E [ f(�E)

0

g) n f0g if E is �nite and

G := E n f0g if E is in�nite.

3. E generates a Boolean subalgebra of A with E � atoms(< E >) [ f0g.

Proof.

1! 2 :

Because of the axioms (A4), (A5) and (A8) the sum �F exists and is wellde�ned

for all �nite subsets F � E. Therefore the set G in condition 2 is wellde�ned. Let

� : P !< E > be given with �(F ) :=�F and �(G n F ) = (�F )

0

for �nite subsets

F � G. The function � is wellde�ned because if F and G n F are �nite then

�F ��(G n F ) =�G =�E � (�E)

0

= 1

and therefore�F = (�(G n F ))

0

because of the uniqueness of the complement (see

[BM94]). Obviosly �(F ) 2< E > holds for all F 2 P . The mapping � is compatible

with

0

and 0.

Compability with �:

Let F

1

; F

2

2 P be such that F

1

�

P

F

2

exists. Then F

1

\ F

2

= � and F

1

or F

2

must

be �nite. If both are �nite then we have �(F

1

�

P

F

2

) =�(F

1

[F

2

) = �(F

1

)��(F

2

).
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Now assume that F

1

is �nite and F

2

is in�nite. Then �F

1

� (�(G n F

2

))

0

exists

because F

1

� G n F

2

holds, so

(�(F

1

) � �(F

2

))� (�(F

1

�

P

F

2

))

0

=

�F

1

� (�(G n F

2

))

0

��(G n (F

1

�

P

F

2

)) =

(�(G n F

2

))

0

��(G n F

2

) = 1

so we get �(F

1

)��(F

2

) = �(F

1

�

P

F

2

) because of the uniqueness of the complement.

Analogously for in�nite F

1

and �nite F

2

. Therefore � is a homomorphism.

Closedness of �:

Let F

1

; F

2

2 P such that �(F

1

)� �(F

2

) exists. Then we have inf(�(F

1

); �(F

2

)) = 0.

Assume that there exists an element a 2 F

1

\ F

2

. If F

1

is �nite then we get

a ��F

1

= �(F

1

)

and if F

1

is in�nite then we get

a � (�(G n F

1

))

0

= �(F

1

)

because of the existence of a��(G n F

1

). Analogously we get a � �(F

2

) which is a

contradiction to inf(�(F

1

); �(F

2

)) = 0 6= a. Therefore F

1

\F

2

= � holds and F

1

�

P

F

2

exists.

Injectivity of �:

Let F

1

; F

2

2 P with �(F

1

) = �(F

2

).

Case 1: F

1

and F

2

are �nite.

Let a 2 F

1

. Then �F

1

� a does not exist and therefore �F

2

� a does not exist

because of�F

2

= �(F

2

) = �(F

1

) =�F

1

. Therefore a 2 F

2

. So we get F

1

� F

2

and

analogously F

2

� F

1

, so we have F

1

= F

2

.

Case 2: F

2

is in�nite.

If F

1

is �nite then we get

�F

1

= �(F

1

) = �(F

2

) = (�(G n F

2

))

0

;

so�F

1

��(GnF

2

) = 1. But the set F

1

[(GnF

2

) is �nite, so there exists an element

a 2 G with a 62 F

1

[ (G n F

2

), and with axiom (A8) the sum

�(F

1

[ (G n F

2

) [ fag) = 1 � a

exists, which is a contradiction to 0 62 G. So F

1

must be in�nite, and because of

�(G n F

1

) = �(F

1

)

0

= �(F

2

)

0

= �(G n F

2

) we get G n F

1

= G n F

2

like in case 1.

Case 3: F

1

is in�nite.
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Analogously Case 2.

Therefore � is injective.

Surjectivity of �:

�(P ) is a subalgebra of A because � is a closed homomorphism.

We have E n f0g � �(P ) and therefore < E >� �(P ), so � is surjective and an

isomorphism.

2! 3 :

fgg is an atom of the Boolean algebra P

co�n

�n

(G) for g 2 G, so �(fgg) = g is an atom

of the Boolean algebra < E >. Therefore E � atoms(< E >) [ f0g holds.

3! 1 : Lemma 2 and axioms (A3) and (A4).

Note that if E = atoms(B) holds for a Boolean subalgebra B � A which is

generated by atoms(B) then we get G = E in this theorem, so B

�

=

P

co�n

�n

(E). This

theorem is usefull to �nd Boolean subalgebras and blocks in an OMA. It also provides

a characterisation of Boolean OMAs that are generated by the atoms:

Corollary 4 Every Boolean OMA A which is generated by atoms(A) is (up to iso-

morphy) of the form P

co�n

�n

(E) for a set E.

Proof.

Use E := atoms(A) in Theorem 3.

In the following theorem we use Theorem 3 to show that the atoms of an OMA

in which each block is generated by the atoms are exactly the atoms of the blocks

occuring in the OMA.

Theorem 5 Let A be an OMA, such that each block B � A is generated by atoms(B).

Then

[

fatoms(B)jB block of Ag = atoms(A)

holds.

Proof.

\�":

Let B be a block of A and x � z 2 atoms(B). Now it will be shown that x 2 f0; zg

holds. y := (x� z

0

)

0

exists and x� y = z holds because of axiom (A9).

Let E := (atoms(B) n fzg) [ fx; yg. For e 2 atoms(B) n fzg the sums x � e and

y � e exist because of the axioms (A5) and (A4) and the existence (see Lemma 2) of

z� e = (x�y)� e. So for all a; b 2 E with a 6= b the sum a� b exists, and because of

Theorem 3 E generates a Boolean subalgebra C. We have atoms(B) n fzg � C and
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z = x � y 2 C, so B � C because B is generated by atoms(B). Therefore B = C

holds because B is a maximal Boolean subalgebra. So we have x; y 2 B and therefore

x 2 f0; zg, and z is an atom of A.

\�":

Now assume a 2 atoms(A). Then f0; 1; a; a

0

g is a Boolean subalgebra which contains

a. With the lemma of Zorn there exists a maximal Boolean subalgebra B � A which

contains a. Of course a 2 atoms(B) holds because a is an atom of A. So we get

a 2

S

fatoms(B)jB block of Ag.

A consequence of this theorem is, that every OMA A in which each block is

generated by its atoms, is generated by atoms(A), because each element a 2 A is in

a block B � A and therefore a is generated by atoms(B) � atoms(A).

2 Greechie diagrams

Greechie diagrams are used as a graphical representation of OMAs.

De�nition 6 A hypergraph

1

D = (P;R) consists of a set P and a system R � P(P )

of sets with

S

R = P and � 62 R. The elements of P are called points, the elements of

R are called lines. The hypergraph is called nontrivial if P 6= �. Two points a; b 2 P

are called connected by the line r 2 R if a; b 2 r holds. Let C :=

`

r2R

P

co�n

�n

(r)

be the coproduct of the Boolean OMAs in the category of partial algebras. For

r 2 R let in

r

: P

co�n

�n

(r) ! C be the canonical injection into the coproduct. De�ne

�

D

:= f(in

r

(fag); in

s

(fag))jr; s 2 R and a 2 r \ sg. Let <�

D

> be the smallest

congruence relation on C, which contains �

D

. The interpretation of D is de�ned by

JDK := C= <�

D

>.

For a 2 P the interpretation of the point a is de�ned by JaK := in

r

(fag)= <�

D

>

where r is a line which contains a. Because of P =

S

R there always exists such a

line r, and because of the de�nition of �

D

the interpretation JaK of a is wellde�ned.

For r 2 R the interpretation of the line r is de�ned by

JrK := in

r

(P

co�n

�n

(r))= <�

D

>:= fin

r

(E)= <�

D

> jE 2 P

co�n

�n

(r)g:

A hypergraph D is called abstract Greechie diagram if the following three conditions

hold:

(C1) a 6= b implies JaK 6= JbK for a; b 2 P .

(C2) nat

<�

D

>

� in

r

: P

co�n

�n

(r)! JrK is an isomorphism

2

for all r 2 R.

(C3) JrK is a block of JDK for all r 2 R.

1

see [Bg76]

2

note that this condition is equivalent to the property that nat

<�

D

>

� in

r

: P

co�n

�n

(r) ! JDK is

injective and closed
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A hypergraph D is called complete, if for every block B � JDK there exists a line

r 2 R such that JrK = B.

A hypergraph (diagram) D is called OMA-hypergraph (OMA-diagram resp.), if JDK

is an OMA.

In the graphical representation of a hypergraph each line r 2 R connects the points

a 2 r. To distinguish between one and two lines (for exampleR = ffa; b; c; d; egg con-

tains one line, that connects the elements a; b; c; d and e, but R = ffa; b; cg; fc; d; egg

contains two lines, that connect the same elements) in the graphical representation,

we consider a line r 2 R as a line without a corner, that means a di�erentiable curve.

If two lines contain the same point a 2 P , then these lines have to have di�erent

tangents at this point.

There is another possibility to de�ne the inrepretation of a hypergraph D: Instead

of the congruence relation <�

D

> we can use the congruence relation < � > with

� := f(in

r

(E); in

s

(E))jr; s 2 R and E 2 P

co�n

�n

(r) \ P

co�n

�n

(s)g. If we now de�ne

JDK := C= < � > then we get a di�erent interpretation of the diagram (see example

2 in chapter 3). If every line of a diagram is �nite, then both de�nitions coincide, we

just get a di�erence if there are in�nite lines. All theorems, lemmas and corollaries

which are proved in this paper also hold for this new de�nition, except Theorem 22. In

this theorem we would get some problems to prove the isomorphy JDK

�

=

JComp(D)K.

We do not know a counterexample for this isomorphy (with < � > instead of <�

D

>),

but because of the properties of example 2 (see chapter 3) we think Theorem 22 is

wrong for this new de�nition of JDK.

In the following in a diagram D = (P;R) an element a 2 P is identi�ed with the

corresponding element JaK 2 JDK. Because of condition (C1) and the de�nition of

�

D

we have a = b i� JaK = JbK for a; b 2 P , so P can be seen as a subset of JDK:

P = fJaKja 2 Pg = fin

r

(fag)= <�

D

> ja 2 r 2 Rg � JDK.

If the elements of R are disjoint then <�

D

>= id

C

and JDK

�

=

C hold. The

trivial hypergraph D = (�;�) is the only hypergraph with jJDKj = 0. Obviously this

hypergraph is a complete diagram. There does not exist a diagram D with jJDKj = 1,

because for each hypergraph D = (P;R) with jJDKj = 1 we get R 6= �, and with the

condition � 62 R we get the existence of r 2 R with jrj � 1, so we have jP

co�n

�n

(r)j � 2

but jJrKj � jJDKj = 1, so condition (C2) does not hold.

There exists up to isomorphy exactly one diagram D with jJDKj = 2. This is

proved in the following lemma.

Lemma 7 Let D = (P;R) be a diagram. Then the following conditions are equiva-

lent:

1. jJDKj = 2.

2. There exists a line r 2 R with jrj = 1.

3. R = ffagg for an element a 2 P .
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4. jP j = 1.

Proof.

1! 2:

Because of R 6= � there is a line r 2 R. Because of the de�nition of hypergraphs we

have r 6= �, and because of condition (C2) and jJDKj = 2 we get jrj = 1.

2! 3:

Let r 2 R with jrj = 1. Because of condition (C3) the set f0; 1g = JrK is a maximal

Boolean subalgebra, but for s 2 R this subalgebra is contained in JsK, so we get

JsK = f0; 1g. With condition (C2) we get jsj = 1 and with condition (C1) we get

r = s.

3! 4:

P =

S

R = fag.

4! 1:

We have � 62 R, and because of P =

S

R we have R = fPg and JDK = f0; 1g.

So a line in a diagram with jP j > 1 is not a singelton: jrj > 1 for all r 2 R.

To check whether the interpretation of a hypergraph is an OMA we do not need to

test all axioms, because some axioms are satis�ed in interpretations of all hypergraphs.

Theorem 8 Let D = (P;R) be a hypergraph with P 6= �. Then in JDK the axioms

(A0), (A1), (A2), (A3), (A4) and (A9) hold. If D is a diagram then axiom (A7)

holds too.

Proof.

Proof of (A0):

Because of R 6= � there exists a line r 2 R, so we get the existence of the constant 0

in P

co�n

�n

(r) and therefore in JDK, so axiom (A0) holds.

Proof of (A1):

Let x 2 JDK. Then there exist r 2 R and E 2 P

co�n

�n

(r) with x = in

r

(E)= <�

D

>.

Because of the homomorphism nat

<�

D

>

� in

r

we have x = in

r

(E

00

)= <�

D

>= x

00

, so

axiom (A1) holds.

Proof of (A2):

Let x 2 JDK; r 2 R and E 2 P

co�n

�n

(r) with x = in

r

(E)= <�

D

>. Then we have

x� x

0

= in

r

(E)= <�

D

> �in

r

(E

0

)= <�

D

>= in

r

(E � E

0

)= <�

D

>= in

r

(r)= <�

D

>= 0

0

so axiom (A2) holds.

Proof of (A3):

Let x 2 JDK; r 2 R and E 2 P

co�n

�n

(r) with x = in

r

(E)= <�

D

>. Then we have

x� 0 = in

r

(E)= <�

D

> �in

r

(�)= <�

D

>= in

r

(E ��)= <�

D

>= x
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so axiom (A3) holds.

Proof of (A4):

Let x; y 2 JDK such that x � y exists. Then, by the de�nition of a coproduct, there

exist r 2 R and E;F 2 P

co�n

�n

(r) with

x = in

r

(E)= <�

D

>; y = in

r

(F )= <�

D

>

such that E � F exists. Therefore we have

x� y = in

r

(E � F )= <�

D

>= in

r

(F � E)= <�

D

>= y � x

so axiom (A4) holds.

Proof of (A9):

Let x; y 2 JDK such that x � y

0

exists. Then, as above, there exist r 2 R and

E;F 2 P

co�n

�n

(r) with

x = in

r

(E)= <�

D

>; y

0

= in

r

(F )= <�

D

>

such that E � F exists. Therefore we have

x� (x� y

0

)

0

= in

r

(E � (E � F )

0

)= <�

D

>= in

r

(F

0

)= <�

D

>= y

because P

co�n

�n

(r) is an OMA, so axiom (A9) holds.

Proof of (A7):

Now assume that D is a diagram. Let x; y 2 JDK such that x � y

0

and x

0

� y

exists. Then there exist r 2 R and E;F 2 P

co�n

�n

(r) with x = in

r

(E)= <�

D

>

and y

0

= in

r

(F )= <�

D

> such that E � F exists. Then we have E \ F = � and

x

0

= in

r

(r n E)= <�

D

> and y = in

r

(r n F )= <�

D

>. Because of condition (C2) and

the existence x

0

� y of we get (r n E) \ (r n F ) = � and E = r n F , so

x = in

r

(E)= <�

D

>= in

r

(r n F )= <�

D

>= y

and axiom (A7) holds.

Lemma 9 Let D = (P;R) be a diagram and r; s 2 R such that r \ s is �nite and

r 6= s holds. Then jr n sj > 1 holds.

Proof. The set JrK cannot be a subset of JsK, because then (C3) would imply

JrK = JsK, and (C2) together with (C1) would then imply r = s. So we have jrnsj > 0.

Now assume jr n sj = 1. Let a be the only element of r n s. Then we get

fJbKja 6= b 2 rg � JsK

JaK = (in

r

(r \ s)= <�

D

>)

0

= (in

s

(r \ s)= <�

D

>)

0

2 JsK

JrK � JsK

This is a contradiction to what was mentioned above.

9



So in a diagram with �nite lines a line cannot contain all but one element of

another line, in particular no line is contained in another line.

The following lemma gives an easier condition than (C2) to check whether a

hypergraph is a diagram:

Lemma 10 Let D = (P;R) be a hypergraph that satis�es (C1) and (C3). Then D

is a diagram i� for each a 2 r 2 R the element JaK is an atom of the block JrK.

Proof.

!: Trivial

 :

Let r 2 R. Then JrK is a Boolean OMA because of condition (C3). The element

in

r

(fag)= <�

D

> is an atom of this OMA for a 2 r, and all these elements are di�erent

because of condition (C1). And therefore, for E := fin

r

(fag)= <�

D

> ja 2 rg, we

have 0 62 E. Note that if r is �nite then (�E)

0

= 1

0

= 0 holds. With Theorem 3 the

function

� := nat

<�

D

>

� in

r

: P

co�n

�n

(r) ! JrK

is an isomorphism, so (C2) holds and D is a diagram.

So in the graphical representation of a diagram D = (P;R) the interpretation

JrK of each line r 2 R is a block, in which the points are the atoms and all points

have di�erent interpretations. These conditions are su�cient and necessary for the

property that a hypergraph is a diagram. Another method to prove this property is

given in Theorem 12. First we need a lemma:

Lemma 11 Let D = (P;R) be a hypergraph such that (in

r

(fag); in

s

(E)) 2<�

D

>

implies E = fag for all a 2 r 2 R and s 2 R and E 2 P

co�n

�n

(s). Let B a

Boolean subalgebra of JDK and in

r

(fag)= <�

D

>2 B for some a 2 r 2 R. Then

in

r

(fag)= <�

D

>2 atoms(B) holds.

Proof. Let y 2 B with y � in

r

(fag)= <�

D

>. Then there exists an ele-

ment z 2 B with y � z = in

r

(fag)= <�

D

>. There exist s 2 R and E;F 2

P

co�n

�n

(s) with y = in

s

(E)= <�

D

>, z = in

s

(F )= <�

D

> and E \ F = �. We get

(in

r

(fag); in

s

(E[F )) 2<�

D

> and E[F = fag. Therefore y 2 f0; in

r

(fag)= <�

D

>g

holds and in

r

(fag)= <�

D

> is an atom of B.

10



Theorem 12 Let D = (P;R) be a hypergraph such that each line of D is �nite and

(in

r

(fag); in

s

(E)) 2<�

D

> implies E = fag

for a 2 r 2 R and E � s 2 R. Then the following conditions are equivalent:

1. D is a diagram.

2. Condition (C2) holds.

3. Condition (C3) holds.

Proof.

1! 2: Trivial

2! 3:

Let r 2 R. Because of (C2) the set JrK is a Boolean subalgebra of JDK. Let B be

another Boolean subalgebra of JDK with JrK � B and let x 2 B. The line r is �nite,

so there exists a �nite Boolean subalgebra C � B which contains JrK and x (take

for example the sublattice of B which is generated by JrK [ fx; x

0

g with respect to

the lattice operations). For all a 2 r the element in

r

(fag)= <�

D

> is an atom of C

because of Lemma 11. We have �fin

r

(fag)= <�

D

> ja 2 rg = in

r

(r)= <�

D

>= 1,

so atoms(C) = fin

r

(fag)= <�

D

> ja 2 rg and x 2 C = JrK which proves B = JrK, so

(C3) holds.

3! 1:

(C1) is satis�ed because

in

r

(fag)= <�

D

>= in

s

(fbg)= <�

D

> implies a = b

for a 2 r 2 R and b 2 s 2 R.

Let r 2 R. Then JrK is a Boolean subalgebra of JDK because of (C3) and the function

� := nat

<�

D

>

� in

r

: P

co�n

�n

(r)! JrK

is an OMA-homomorphism between Boolean algebras and therefore a Boolean lattice

homomorphism (see [BM98]). Of course � is surjective. Because of

(in

r

(fag); in

r

(�)) 62<�

D

>

for a 2 r the equivalence class 0=kern(�) in P

co�n

�n

(r) cannot contain an atom of

P

co�n

�n

(r), so � is injective. A bijective lattice homomorphism between Boolean OMAs

is an OMA-isomorphism, so (C2) holds and D is a diagram.

11



This theorem states that for every hypergraph D = (P;R) with �nite lines in

which no point a 2 P is equivalent to a di�erent set E 2 P

co�n

�n

(s) of points, we

only have to check condition (C2) (which is easier than (C3)) to decide whether D

is a diagram. Later it will be shown that for every OMA-diagram in which each

block is generated by its atoms (in

r

(fag); in

s

(E)) 2<�

D

> implies E = fag for all

a 2 r 2 R and s 2 R with E 2 P

co�n

�n

(s) (see Theorem 17).

Lemma 13 Let (D

i

)

i2I

= (P

i

; R

i

)

i2I

be a directed family of hypergraphs, that means

for each i; j 2 I there exists a k 2 I with R

i

[R

j

� R

k

.

Let D := (P;R) := (

S

i2I

P

i

;

S

i2I

R

i

). Then the following properties hold:

(1) <�

D

>=

S

i2I

<�

D

i

>

(2) For all r; s 2 R and E 2 P

co�n

�n

(r) and F 2 P

co�n

�n

(s) the equality

in

r

(E)= <�

D

>= in

s

(F )= <�

D

>

holds i� there exists an i 2 I such that

in

r

(E)= <�

D

i

>= in

s

(F )= <�

D

i

>

holds.

(3) For all r; s; t 2 R and E 2 P

co�n

�n

(r); F 2 P

co�n

�n

(s); G 2 P

co�n

�n

(t) the equality

in

r

(E)= <�

D

> �in

s

(F )= <�

D

>= in

t

(G)= <�

D

>

holds i� there exists an i 2 I such that

in

r

(E)= <�

D

i

> �in

s

(F )= <�

D

i

>= in

t

(G)= <�

D

i

>

holds.

Proof.

Proof of (1):

For R

i

� R

j

we have

�

D

i

��

D

j

��

D

and

a

r2R

i

P

co�n

�n

(r) �

a

r2R

j

P

co�n

�n

(r) �

a

r2R

P

co�n

�n

(r):

12



Therefore we get <�

D

i

>�<�

D

j

>�<�

D

>. The union of a directed family of con-

gruence relations is a congruence relation and we have

�

D

=

[

i2I

�

D

i

�

[

i2I

<�

D

i

>;

so we get

<�

D

>=

[

i2I

<�

D

i

> :

Proof of (2):

(2) follows from (1).

Proof of (3):

 :

Let i 2 I and r; s; t 2 R

i

and E 2 P

co�n

�n

(r); F 2 P

co�n

�n

(s); G 2 P

co�n

�n

(t) such that

in

r

(E)= <�

D

i

> �in

s

(F )= <�

D

i

>= in

t

(G)= <�

D

i

>

holds. Then there exist u 2 R

i

and E

2

; F

2

; G

2

2 P

co�n

�n

(u) with

E

2

\ F

2

= �;

E

2

[ F

2

= G

2

;

(in

r

(E); in

u

(E

2

)) 2<�

D

i

> �<�

D

>;

(in

s

(F ); in

u

(F

2

)) 2<�

D

i

> �<�

D

>;

(in

t

(G); in

u

(G

2

)) 2<�

D

i

> �<�

D

> :

Therefore in

r

(E)= <�

D

> �in

s

(F )= <�

D

>= in

t

(G)= <�

D

> holds.

!:

Let r; s; t 2 R

i

and E 2 P

co�n

�n

(r); F 2 P

co�n

�n

(s); G 2 P

co�n

�n

(t) such that

in

r

(E)= <�

D

> �in

s

(F )= <�

D

>= in

t

(G)= <�

D

>

13



holds. Then there exist u 2 R and E

2

; F

2

; G

2

2 P

co�n

�n

(u) with

E

2

\ F

2

= �;

E

2

[ F

2

= G

2

;

(in

r

(E); in

u

(E

2

)) 2<�

D

> =

[

i2I

<�

D

i

>;

(in

s

(F ); in

u

(F

2

)) 2<�

D

> =

[

i2I

<�

D

i

>;

(in

t

(G); in

u

(G

2

)) 2<�

D

> =

[

i2I

<�

D

i

> :

The family is directed, so there is an element i 2 I with

in

r

(E)= <�

D

i

> = in

u

(E

2

)= <�

D

i

>;

in

s

(F )= <�

D

i

> = in

u

(F

2

)= <�

D

i

>;

in

t

(G)= <�

D

i

> = in

u

(G

2

)= <�

D

i

>; and therefore

in

r

(E)= <�

D

i

> �in

s

(F )= <�

D

i

> = in

t

(G)= <�

D

i

> :

These properties are helpful to analyse in�nite hypergraphs: The �nite subdia-

grams form a directed family of diagrams, so we can use the properties of Lemma 13

to get informations about the structure of the whole diagram while only considering

�nite subdiagrams. These properties are used in the following theorem to show that

a union of a directed family of diagrams with �nite lines is again a diagram.

Theorem 14 Let (D

i

)

i2I

= (P

i

; R

i

)

i2I

be a directed family of diagrams in which each

line is �nite. Then D := (P;R) := (

S

i2I

P

i

;

S

i2I

R

i

) is a diagram.

Proof.

Proof of (C1):

Condition (C1) follows from (2) of Lemma 13 because (C1) holds for D

i

.

Proof of (C2):

For r 2 R the injectivity of nat

<�

D

>

� in

r

follows from (2) of Lemma 13. The closed-

ness follows from (3) of Lemma 13.

Proof of (C3):

Let r 2 R. Because of (C2) the set JrK is a Boolean subalgebra of JDK. Let B be

14



another Boolean subalgebra of JDK with JrK � B and let x 2 B. The line r is �nite,

so there exists a �nite Boolean subalgebra C � B which contains JrK and x. The

family is directed, so because of Lemma 13 and the �niteness of C there exists a k 2 I

such that the set A := fin

r

(E)= <�

D

k

> jin

r

(E)= <�

D

>2 Cg is a subalgebra which

is isomorphic to C. The Boolean algebra A contains in

r

(P

co�n

�n

(r))= <�

D

k

> and we

get A = in

r

(P

co�n

�n

(r))= <�

D

k

> because D

k

is a diagram, therefore x 2 JrK. So we

get B = JrK and (C3) holds in D.

The Union of a directed family of OMA-hypergraph is an OMA-hypergraph:

Theorem 15 Let (D

i

)

i2I

= (P

i

; R

i

)

i2I

be a directed family of OMA-hypergraphs.

Then D := (P;R) := (

S

i2I

P

i

;

S

i2I

R

i

) is an OMA-hypergraph.

Proof. The axioms (A0)-(A4) and (A9) hold in JDK because of Theorem 8.

Proof of (A8):

Let x = in

r

(E)= <�

D

>2 JDK; y = in

s

(F )= <�

D

>2 JDK; z = in

t

(G)= <�

D

>2 JDK

such that x�y; y� z and x� z exist. The family is directed, so with Lemma 13 there

exists an i 2 I such that

in

r

(E)= <�

D

i

> �in

s

(F )= <�

D

i

>;

in

s

(F )= <�

D

i

> �in

t

(G)= <�

D

i

>;

in

r

(E)= <�

D

i

> �in

t

(G)= <�

D

i

>

exist, so in

r

(E)= <�

D

i

> �(in

s

(F )= <�

D

i

> �in

r

(E)= <�

D

i

>) exists because D

i

is

an OMA. With Lemma 13 we get the existence of in

r

(E)= <�

D

> �(in

s

(F )= <�

D

>

�in

r

(E)= <�

D

>).

Proof of (A5) and (A7):

Analogously (A8).

(A6) follows from the other axioms, so D is an OMA-hypergraph.

The following theorem shows, that in an OMA-diagram, in which each block is

generated by its atoms the interpretation of the set of points P is the set of the atoms,

which occur in a block of JDK.

Theorem 16 Let D = (P;R) be an OMA-diagram such that each block of JDK is

generated by its atoms. Then P =

S

fatoms(B)jB block of JDKg = atoms(JDK)

holds.

Proof.
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S

fatoms(B)jB block of JDKg = atoms(JDK) holds because of Theorem 5.

Because of the conditions (C2) and (C3) each equivalence class in

r

(fag)= <�

D

> for

a 2 r 2 R is an atom of the block JrK, so we have

P �

[

fatoms(B)jB block of JDKg:

For x = in

r

(E)= <�

D

>2 atoms(JDK) we get jEj = 1 because 0 = in

r

(�)= <�

D

>62

atoms(JDK) holds and jEj > 1 would imply that x = y � z for some y; z 2 JDK

with y 6= 0 6= z which is a contradiction to x 2 atoms(JDK). Therefore x 2 P , so

atoms(JDK) � P holds.

For every complete diagram D = (P;R) we also get the equality

P =

[

fatoms(B)jB block of JDKg

because each blockB is induced by a line r, so the atoms of B are exactly the elements

of r. If the diagram is not an OMA-diagram then we do not always have an order

on JDK, so it does not make sense to ask whether P = atoms(JDK) holds. If D is a

complete OMA-diagram then each block B � JDK is generated by its atoms because

B is induced by a line r 2 R, so we get P = atoms(JDK) with Theorem 16.

Theorem 17 Let D = (P;R) be an OMA-diagram such that each block of JDK

is generated by its atoms. Let a 2 r 2 R and s 2 R and E 2 P

co�n

�n

(s) with

(in

r

(fag); in

s

(E)) 2<�

D

>. Then E = fag holds.

Proof. in

s

(E)= <�

D

>= in

r

(fag)= <�

D

>2 P = atoms(JDK) holds, so jEj = 1 like

in the proof of 16, and with condition (C1) we get E = fag.

This theorem shows that a point of a OMA-diagram in which each block is gen-

erated by its atoms cannot be equivalent to another set of points. Together with the

following lemma this theorem can be used to prove that every two points a; b 2 P for

which the sum a� b exists are connected by a line.

Lemma 18 Let D = (P;R) be a hypergraph such that (in

r

(fag); in

s

(E)) 2<�

D

>

implies E = fag for all a 2 r 2 R and s 2 R and E 2 P

co�n

�n

(s). Let a; b 2 P with

a 6= b. Then JaK� JbK exists i� there exists a line t 2 R with a; b 2 t.

Proof.

!:

Let r; s 2 R with a 2 r and b 2 s. Because of the existence of the sum

in

r

(fag)= <�

D

> �in

s

(fbg)= <�

D

>
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there exist t 2 R and E;F 2 P

co�n

�n

(t) with E \ F = � such that

(in

r

(fag); in

t

(E)) 2<�

D

> and (in

s

(fbg); in

t

(F )) 2<�

D

>

hold, so we have E = fag and F = fbg.

 :

The function nat

<�

D

>

� in

t

is a homomorphism.

This leads to the following theorem.

Theorem 19 Let D = (P;R) be an OMA-diagram such that each block of JDK is

generated by its atoms. For E � P the following conditions are equivalent:

1. E generates a Boolean subalgebra B � JDK with E � atoms(B).

2. For all a; b 2 E with a 6= b the sum JaK� JbK exists in JDK.

3. For all a; b 2 E there exists a line r 2 R with a; b 2 r.

Proof.

1 ! 2: Lemma 2

2 ! 1: With Theorem 3 E generates a Boolean subalgebra B with E � atoms(B) [

f0g and with condition (C2) we get E � atoms(B).

2 $ 3: Theorem 17 and Lemma 18.

In a hypergraph D = (P;R) a maximal subset E � P in which each pair of points

is connected by a line is called clique.

Theorem 20 If D is an OMA-diagram, such that each block of JDK is generated by

its atoms then the blocks of JDK are exactly the subalgebras, that are induced by a

clique. E = atoms < E > holds for every clique.

Proof.

!:

For a block B � JDK take E := atoms(B) � P , then each pair of points in E is

connected by a line. Let E � F � P such that each pair of points in F is connected

by a line, then with Theorem 19 F generates a Boolean subalgebra C � JDK with

B � C. The Boolean subalgebra B is maximal, so B = C and

F � atoms(C) = atoms(B) = E

17



hold, which proves that E is a clique.

 :

Let E be a clique. With Theorem 19 E generates a Boolean subalgebra B with

E � atoms(B). The algebra B is contained in a block C. With Theorem 16 the

set F := atoms(C) is contained in P and with Theorem 19 each pair of points

of F is connected by a line. For e 2 E we have e 2 atoms(B) � C and with

Theorem 16 e is an atom of JDK and therefore e 2 atoms(C) = F . So we have

E � F and therefore E = F because E is maximal. So B = C is a block and

E = F = atoms(C) = atoms < E > holds.

For a diagram D = (P;R) the completion of D is de�ned by Comp(D) :=

(P;R

c

) where R

c

:= fE � P jfJeKje 2 Eg is the set of all atoms of a block of JDKg =

fatoms(B)jB block of JDK with atoms(B) � Pg.

Corollary 21 If D is an OMA-diagram, such that each block of JDK is generated by

its atoms then R

c

= fE � P jE is a cliqueg holds.

Proof. The atoms of each block are contained in P because of Theorem 16 and the

cliques are exactly the atoms of blocks because of Theorem 20.

To analyse a Greechie diagram with respect to some properties (for example

whether it is an OMA-diagram) it is sometimes better if the diagram is complete.

There exists a canonical isomorphism between a diagram in which each block is gen-

erated by its atoms and the completion of the diagram, which is shown in the next

theorem.

Theorem 22 Let D = (P;R) be a diagram such that each block of JDK is generated

by its atoms. Then (P;R

c

) := Comp(D) is a diagram with R � R

c

and JDK

�

=

JComp(D)K, where the isomorphism is de�ned by

� : JDK! JComp(D)K; in

r

(E)= <�

D

>7! in

r

(E)= <�

Comp(D)

> :

If atoms(B) � P holds for each block B � JDK then Comp(D) is complete.

Proof. We have � 62 R

c

because each block of D is generated by its atoms. D

is a diagram, so the set fJaKja 2 rg for r 2 R is the set of all atoms of the block

JrK, and we have R � R

c

. First we prove the isomorphy JDK

�

=

J(

S

(R [ T ); R [ T )K

for every �nite set T � R

c

. De�ne fr

1

; r

2

; : : : ; r

n

g := T n R with r

i

6= r

j

for i 6= j,

R

j

:= R [ fr

1

; r

2

; : : : ; r

j

g and D

j

:= (P;R

j

) for 0 � j � n. The conditions (C1),
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(C2), (C3) for D

j

and the isomorphy JDK

�

=

JD

j

K are proved by induction:

Let 0 < j � n such that D

j�1

is a diagram and

�

j�1

: JDK! JD

j�1

K; in

r

(E)= <�

D

>7! in

r

(E)= <�

D

j�1

>

is an isomorphism.

For a 2 P let s

a

2 R with a 2 s

a

. For r 2 R

c

the set fin

s

a

(fag)= <�

D

> ja 2 rg is

the set of all atoms of a block in JDK, and because of the isomorphism �

j�1

the set

fin

s

a

(fag)= <�

D

j�1

> ja 2 rg is the set of all atoms of a block in JD

j�1

K. For r 2 R

c

de�ne

�

r

: P

co�n

�n

(r) ! JD

j�1

K with

�

r

(E) :=�fin

s

e

(feg)= <�

D

j�1

> je 2 Eg and

�

r

(r n E) := (�fin

s

e

(feg)= <�

D

j�1

> je 2 Eg)

0

for �nite sets E � r. This function is wellde�ned and an embedding because of

Theorem 3 (with A :=< fin

s

a

(fag)= <�

D

j�1

> ja 2 rg > as Boolean OMA), so

E 6= F i� �

r

(E) 6= �

r

(F ) holds for E;F 2 P

co�n

�n

(r).

De�ne

 : JD

j�1

K! JD

j

K; in

r

(E)= <�

D

j�1

>7! in

r

(E)= <�

D

j

>

and �

j

:=  � �

j�1

. These functions are wellde�ned and compatible with the opera-

tions because of R

j�1

� R

j

and �

D

j�1

��

D

j

, so they are homomorphisms.

Surjectivity of  :

Let x 2 JD

j

K. Then there exist r 2 R

j

� R

c

and E 2 P

co�n

�n

(r) with

in

r

(E)= <�

D

j

>= x:

 is a homomorphism, so if E is �nite then

 (�

r

(E)) =

 (�fin

s

e

(feg)= <�

D

j�1

> je 2 Eg) =

�f (in

s

e

(feg)= <�

D

j�1

>)je 2 Eg =

�fin

s

e

(feg)= <�

D

j

> je 2 Eg =

�fin

r

(feg)= <�

D

j

> je 2 Eg =

in

r

(E)= <�

D

j

> = x
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holds and if E is in�nite then r n E is �nite so we get

 (�

r

(E)) =

 (�

r

((r n E)

0

)) =

(in

r

(r n E)= <�

D

j

>)

0

= x

Therefore  is surjective.

In the following each equivalence class �

r

j

(E) for E 2 P

co�n

�n

(r

j

) is used as a subset of

`

r2R

j

P

co�n

�n

(r). De�ne � := �

1

[ �

2

[ �

3

[ �

4

, where

�

1

:=<�

D

j�1

>,

�

2

:=

S

ffin

r

j

(E)g � �

r

j

(E)jE 2 P

co�n

�n

(r

j

)g,

�

3

:=

S

f�

r

j

(E)� fin

r

j

(E)gjE 2 P

co�n

�n

(r

j

)g,

�

4

:= f(in

r

j

(E); in

r

j

(E))jE � r

j

g.

Now we prove, that � is a congruence relation on

`

r2R

j

P

co�n

�n

(u):

Re
exivity of �:

� is re
exive because every pair (in

r

(E); in

r

(E)) for r 2 R

j

; E 2 P

co�n

�n

(r) is an element

of �

1

or �

4

.

Symmetry of �:

� is symmetrical because �

1

, �

2

[ �

3

and �

4

are symmetrical.

Transitivity of �:

Let

(in

r

(E); in

s

(F )) 2 � and (in

s

(F ); in

t

(G)) 2 �

with r; s; t 2 R

j

; and E 2 P

co�n

�n

(r); F 2 P

co�n

�n

(s); G 2 P

co�n

�n

(t). If (in

r

(E); in

s

(F )) 2

�

4

or (in

s

(F ); in

t

(G)) 2 �

4

holds then we have (in

r

(E); in

t

(G)) 2 � so we just have

to consider the relations �

1

; �

2

and �

3

.

Case 1: (in

r

(E); in

s

(F )) 2 �

1

If (in

s

(F ); in

t

(G)) 2 �

1

also holds, then (in

r

(E); in

t

(G)) 2 �

1

� � because �

1

is

transitive.

If (in

s

(F ); in

t

(G)) 2 �

2

then in

s

(F ) 2 (

`

u2R

j�1

P

co�n

�n

(u)) \ in

r

j

(P

co�n

�n

(r

j

)) = f0; 1g

holds. For in

s

(F ) = 0 we get F = � and in

t

(G) 2 �

r

j

(F ) = f0g because condition

(C2) holds for D

j�1

. If in

s

(F ) = 1 then F = s and we have in

t

(G) 2 �

r

j

(F ) = f1g.

So in

s

(F ) = in

t

(G) holds and (in

r

(E); in

t

(G)) 2 �.

If (in

s

(F ); in

t

(G)) 2 �

3

holds, then (in

r

(E); in

t

(G)) 2 �

3

� �.

Case 2: (in

r

(E); in

s

(F )) 2 �

2

If (in

s

(F ); in

t

(G)) 2 �

1

holds then (in

r

(E); in

t

(G)) 2 �

2

� �.

If (in

s

(F ); in

t

(G)) 2 �

2

holds then in

s

(F ) = in

t

(G) 2 f0; 1g and therefore we get

(in

r

(E); in

t

(G)) 2 �.

If (in

s

(F ); in

t

(G)) 2 �

3

holds then (in

r

(E); in

t

(G)) 2 �

4

� � because �

r

j

is injective.

Case 3: (in

r

(E); in

s

(F )) 2 �

3
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If (in

s

(F ); in

t

(G)) 2 �

1

[�

3

holds then in

s

(F ) = in

t

(G) 2 f0; 1g and therefore we get

(in

r

(E); in

t

(G)) 2 �.

If (in

s

(F ); in

t

(G)) 2 �

2

holds then (in

r

(E); in

t

(G)) 2 �

1

� �.

Therefore � is transitive.

Compatibility with

0

:

�

1

and �

4

are compatible with

0

.

Let (in

r

(E); in

s

(F )) 2 �

2

. Then r = r

j

and in

s

(F ) 2 �

r

j

(E) hold and therefore

in

s

(F )

0

2 �

r

j

(r n E) because �

r

j

is an homomorphism. So we have

(in

r

(E)

0

; in

s

(F )

0

) = (in

r

(r n E); in

s

(F )

0

) 2 �

2

� �

and analogously for �

3

, so � is compatible with the operation

0

.

Compatibility with �:

Let (in

r

(E); in

s

(F )) 2 � and (in

t

(G); in

u

(H)) 2 � such that in

r

(E) � in

t

(G) and

in

s

(F )� in

u

(H) exist.

Case 1: (in

r

(E); in

s

(F )) 2 �

1

If (in

t

(G); in

u

(H)) 2 �

1

holds then (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �

1

� �.

If (in

t

(G); in

u

(H)) 2 �

2

then in

r

(E) = 0 or in

t

(G) = 0 because in

r

(E) � in

t

(G)

exists. Therefore we get

(in

r

(E); in

s

(F )) = (0; 0) or (in

t

(G); in

u

(H)) = (0; 0):

So (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �.

Analogiously for (in

t

(G); in

u

(H)) 2 �

3

[ �

4

.

Case 2: (in

r

(E); in

s

(F )) 2 �

2

If (in

t

(G); in

u

(H)) 2 �

1

[ �

3

[ �

4

we have

(in

r

(E); in

s

(F )) = (0; 0) or (in

t

(G); in

u

(H)) = (0; 0)

so (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �.

If (in

t

(G); in

u

(H)) 2 �

2

then r = r

j

= t; E \ G = � and in

s

(F ) 2 �

r

j

(E) and

in

u

(H) 2 �

r

j

(G) and therefore in

s

(F ) � in

u

(H) 2 �

r

j

(E � G) because �

r

j

is an

homomorphism. So we have (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �

2

� �.

Case 3: (in

r

(E); in

s

(F )) 2 �

3

Analogously case 2.

Case 4: (in

r

(E); in

s

(F )) 2 �

4

If (in

t

(G); in

u

(H)) 2 �

1

[ �

2

[ �

3

we have

(in

r

(E); in

s

(F )) = (0; 0) or (in

t

(G); in

u

(H)) = (0; 0);

so (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �.

If (in

t

(G); in

u

(H)) 2 �

4

then (in

r

(E)� in

t

(G); in

s

(F )� in

u

(H)) 2 �

4

� � hold.

So � is a congruence relation on

`

r2R

j

P

co�n

�n

(r).
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Let (in

r

(fag); in

s

(fag)) 2�

D

j

.

If r 6= r

j

6= s holds, then (in

r

(fag); in

s

(fag)) 2 �

1

� �.

If r = r

j

6= s holds, then (in

r

(fag); in

s

(fag)) 2 �

2

� �.

If r 6= r

j

= s holds, then (in

r

(fag); in

s

(fag)) 2 �

3

� �.

If r = r

j

= s holds, then (in

r

(fag); in

s

(fag)) 2 �

4

� �.

So we have �

D

j

� � and therefore <�

D

j

>� �.

Injectivity of  :

Let in

r

(E)= <�

D

j�1

>; in

s

(F )= <�

D

j�1

>2 JD

j�1

K with

 (in

r

(E)= <�

D

j�1

>) =  (in

s

(F )= <�

D

j�1

>):

Then (in

r

(E); in

s

(F )) 2<�

D

j

>� � and r 6= r

j

6= s hold, so we get

(in

r

(E); in

s

(F )) 2 �

1

=<�

D

j�1

>

and in

r

(E)= <�

D

j�1

>= in

s

(F )= <�

D

j�1

> which proves the injectivity.

Closedness of  :

Let in

r

(E)= <�

D

j�1

>; in

s

(F )= <�

D

j�1

>2 JD

j�1

K such that

 (in

r

(E)= <�

D

j

>)�  (in

s

(F )= <�

D

j

>)

exists. Then there exist t 2 R

j

, G;H 2 P

co�n

�n

(t) with

G \H = �; (in

r

(E); in

t

(G)) 2<�

D

j

> and (in

s

(F ); in

t

(H)) 2<�

D

j

> :

The sum �

t

(G) � �

t

(H) exists because �

t

is an homomorphism,

 (�

t

(G)) = in

t

(G)= <�

D

j

>= in

r

(E)= <�

D

j

>=  (in

r

(E)= <�

D j�1

>) and

 (�

t

(H)) = in

t

(H)= <�

D

j

>= in

s

(F )= <�

D

j

>=  (in

s

(F )= <�

D

j�1

>)

hold, and because of the injectivity of  we get �

t

(G) = in

r

(E)= <�

D

j�1

) and �

t

(H) =

in

r

(E)= <�

D

j�1

> and therefore  is closed. This proves, that  and �

j

=  � �

j�1

are isomorphism.

D

j

is a diagram:

Let a 2 r 2 R

j

; b 2 s 2 R

j

with a 6= b. Then

in

r

(fag)= <�

D

j

>= �

j

(in

r

(fag= <�

D

>) 6= �

j

(in

r

(fbg)= <�

D

>) = in

s

(fbg)= <�

D

j

>

holds, so (C1) is satis�ed for the hypergraph D

j

. Let r 2 R

j

. Then r = atoms(B)

for a block B � JDK. B is generated by atoms(B) and �

j

(B) is a block of JD

j

K, so

with Theorem 3 we get in

r

(P

co�n

�n

(r))= <�

D

j

>= �

j

(B) which proves condition (C3).

For a 2 r 2 R

j

the element in

r

(fag)= <�

D

> is an atom of in

r

(P

co�n

�n

(r))= <�

D

>, so
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in

r

(fag)= <�

D

j

> is an atom of in

r

(P

co�n

�n

(r))= <�

D

j

> because of the isomorphism

�

j

. With Lemma 10 D

j

is a diagram.

So D

T

:= (P;R [ T ) is a diagram and the map

�

T

: JDK! JD

T

K; in

r

(E)= <�

D

>7! in

r

(E)= <�

D

T

>

is an isomorphism for all �nite subsets T � R

c

.

Now we prove that � : JDK ! JComp(D)K is an isomorphism. � is compatible with

�;

0

and 0 because of R

j

� R

c

and �

D

��

Comp(D)

.

Surjectivity of �:

Let x 2 JComp(D)K. Then there exist r 2 R

c

; E 2 P

co�n

�n

(r) with

in

r

(E)= <�

Comp(D)

>= x:

For T := frg there exists an element y = in

s

(F )= <�

D

>2 JDK with

�

T

(y) = in

r

(E)= <�

D

T

>

because �

T

is surjective. Therefore

in

s

(F )= <�

D

T

>= �

T

(y) = in

r

(E)= <�

D

T

> and

�(y) = in

s

(F )= <�

Comp(D)

>= in

r

(E)= <�

Comp(D)

>= x

hold, which proves the surjectivity.

Injectivity of �:

Let in

r

(E)= <�

D

>; in

s

(F )= <�

D

>2 JDK with

�(in

r

(E)= <�

D

>) = �(in

s

(F )= <�

D

>):

Then (in

r

(E); in

s

(F )) 2<�

Comp(D)

> and because of Lemma 13 there is a �nite set

T � R

c

with (in

r

(E); in

s

(F )) 2<�

D

T

> and because of the injectivity of �

T

we get

in

r

(E)= <�

D

>= in

s

(F )= <�

D

> which proves the injectivity of �.

Closedness of �:

This proof is analogously to the proof of the injecivity.

Therefore � is an isomorphism.

Comp(D) is a diagram:

This prove is the same as the prove for D

j

(see above).

Completeness of Comp(D):

Now assume that atoms(B) � P holds for each block B � JDK. Let B be a

block of JComp(D)K. Then C := �

�1

(B) is a block of JDK and C is generated

by r := atoms(C) 2 R

c

, so in

r

(P

co�n

�n

(r))= <�

Comp(D)

>= B and therefore Comp(D)

is complete.
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For a diagram D in which each block is generated by its atoms this theorem

states, that we can compute the completion without changing the interpretation. The

completion is again a diagram and the interpretation of the completion is isomorphic

to the interpretation of D. If atoms(B) � P holds for each block B � JDK then every

block of Comp(D) is induced by a line r 2 R

c

.

Let D be a diagram such that each block of JDK is generated by its atoms. Then

Comp(D) is an OMA-diagram i� D is an OMA-diagram. If these diagrams are OMA-

diagrams then Comp(D) is a complete diagram with JDK

�

=

JComp(D)K and the lines

of Comp(D) are exactly the cliques of D (see Theorems 16 and 22 and Corollary 21).

De�nition 23 Let A be a nontrivial OMA (jAj > 1) such that each block of A is

generated by its atoms. De�ne Diag(A) := (P;R) with P = atoms(A) and R =

fatoms(B)jB block of Ag.

Note that for Diag(A) = (P;R) we get P =

S

R because of Theorem 5. We

have � 62 R because the Boolean subalgebra f0; 1g is contained in a block which is

generated by its atoms. Therefore Diag(A) is a hypergraph.

Lemma 24 Let D = (P;R) be a hypergraph in which each line is �nite. Let E � r 2

R and F � s 2 R. Let t 2 R such that t is the disjoint union of E and s n F . Then

(in

r

(E); in

s

(F )) 2<�

D

> holds.

Proof. Because t is �nite we get E 2 P

co�n

�n

(t) and s n F 2 P

co�n

�n

(t) and therefore

in

s

(F ) = (in

s

(s n F ))

0

<�

D

> (in

t

(s n F ))

0

= in

t

(E) <�

D

> in

r

(E)

In the following theorem we use this lemma to prove that every nontrivial OMA,

in which each block is �nite, is induced by a complete OMA-diagram.

Theorem 25 Let A be an nontrivial OMA in which each block is �nite.

Then D := (P;R) := Diag(A) is a complete OMA-diagram with A

�

=

JDK.

Proof. Every line r 2 R is �nite because of the �niteness of the blocks. Let

 :

a

r2R

P

co�n

�n

(r)! A;

in

r

(E) 7!�E
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for E � r 2 R. Then  is a wellde�ned homomorphism because of Theorem 3. For

r 2 R the restriction

�

r

:=  j

in

r

(P

co�n

�n

(r))

: in

r

(P

co�n

�n

(r))!< r >

is an isomorphism because of Theorem 3.

For (in

r

(fag); in

s

(fag)) 2�

D

we have  (in

r

(fag)) = a =  (in

s

(fag)) so we get

�

D

� kern( )

and therefore <�

D

>� kern( ). Let � : JDK ! A be the induced homomorphism

with �(in

r

(E)= <�

D

>) =  (in

r

(E)) for E � r 2 R.

Now we prove that e � �(in

r

(E)= <�

D

>) holds in A for all e 2 E � r 2 R. For

e 2 E we have in

r

(feg) � in

r

(E) in the Boolean OMA in

r

(P

co�n

�n

(r)), and because of

the isomorphism �

r

we get

e = �

r

(in

r

(feg)) � �

r

(in

r

(E)) = �(in

r

(E)= <�

D

>):

Surjectivity of �:

Let a 2 A. Then a is in a block B � A, so a is generated by atoms(B) =: r and with

Theorem 3 we get a 2 �(JrK). Therefore � is surjective.

Injectivity of �:

Let in

r

(E)= <�

D

>; in

s

(F )= <�

D

>2 JDK with

�(in

r

(E)= <�

D

>) = �(in

s

(F )= <�

D

>):

Let e 2 E and g 2 s n F . Then g � �(in

s

(s n F )= <�

D

>) = �(in

s

(F )= <�

D

>)

0

holds, so we get the existence of

�(in

s

(F )= <�

D

>)� g = �(in

r

(E)= <�

D

>)� g

= �(in

r

(E n feg)= <�

D

> �in

r

(feg)= <�

D

>)� g

= (�(in

r

(E n feg)= <�

D

>)� e)� g

and with axiom (A5) we get the existence of e�g. With Theorem 3 the set E[(snF )

generates a Boolean algebra which is contained in a block B. Let t := atoms(B) 2 R.

Each element a 2 E [ (s n F ) � P is an atom of a block, so with theorem 5 we have

a 2 atoms(A) and therefore E [ (s n F ) � atoms(B) = t. The union E [ (s n F ) is

disjoint because of the existence of e� g for all e 2 E and g 2 s n F .
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We have

�(E [ (s n F )) =�E ��(s n F ) =

�(in

t

(E)= <�

D

>)��(s n F ) =

�(in

r

(E)= <�

D

>)��(s n F ) =

�(in

s

(F )= <�

D

>)�(s n F ) =

�s = 1

Therefore E

_

[(s n F ) = atoms(B) = t. With Lemma 24 we get in

r

(E)= <�

D

>=

in

s

(F )= <�

D

>, which proves the injectivity.

Closedness of �:

Let E � r 2 R and F � s 2 R, such that

�(in

r

(E)= <�

D

>)� �(in

s

(F )= <�

D

>)

exists. With Theorem 3 the set H := f�(in

r

(E)= <�

D

>); �(in

s

(F )= <�

D

>)g gen-

erates a Boolean subalgebra of A which is contained in a block B � A.

Let t := atoms(B) 2 R. The function �

t

is surjective, so there exist E

2

; F

2

� t

with �

t

(in

t

(E

2

)) = �(in

r

(E)= <�

D

>) and �

t

(in

t

(F

2

)) = �(in

s

(F )= <�

D

>). The

function �

t

is closed, so we get the existence of in

t

(E

2

)� in

t

(F

2

) and because of the

homomorphism nat

<�

D

>

we get the existence in

t

(E

2

)= <�

D

> �in

t

(F

2

)= <�

D

>. We

have

�(in

t

(E

2

)= <�

D

>) = �

t

(in

t

(E

2

)) = �(in

r

(E)= <�

D

>) and

�(in

t

(F

2

)= <�

D

>) = �

t

(in

t

(F

2

)) = �(in

s

(F )= <�

D

>);

and because of the injectivity of � we get in

t

(E

2

)= <�

D

>= in

r

(E)= <�

D

> and

in

t

(F

2

)= <�

D

>= in

s

(F )= <�

D

>, so � is closed.

Therefore � is an isomorphism.

D is a diagram:

For a 2 r 2 R and b 2 s 2 R with a 6= b we get

�(in

r

(fag)= <�

D

>) = a 6= b = �(in

s

(fbg)= <�

D

>);

so in

r

(fag)= <�

D

>6= in

s

(fbg)= <�

D

> which proves (C1). For r 2 R the function

nat

<�

D

>

� in

r

= �

�1

� �

r

� in

r

is closed and injective, so (C2) holds.

Let r 2 R and B � A be the block generated by r = atoms(B).

Then �

�1

(B) = JrK is a block of JDK, which proves (C3).

Completeness of D:

Each block B � JDK is induced by the line atoms(�(B)) =: r 2 R.
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Corollary 26 The mappings Diag and J�K are bijective functions (up to isomorphy)

between the class of all nontrivial OMAs with �nite blocks and all complete OMA-

diagrams with �nite lines. For every nontrivial OMA A with �nite blocks JDiag(A)K

�

=

A holds. For every complete OMA-diagrams D with �nite lines Diag(JDK)

�

=

D holds.

Proof. JDiag(A)K

�

=

A was proved in Theorem 25 and

Diag(JDK) = (atoms(JDK); fatoms(B)jB block of JDKg)

�

=

(P;R) = D

holds because of Theorem 16 and completeness of D.

So every nontrivial OMA A in which each block is �nite is induced by a complete

OMA-diagram

Diag(A) = (atoms(A); fatoms(B)jB block of Ag)

with �nite lines. For every complete OMA-diagram D with �nite lines each block of

JDK is �nite because the block is induced by a line. For complete diagrams D

1

and

D

2

with �nite lines with JD

1

K

�

=

JD

2

K we have

D

1

�

=

Diag(JD

1

K)

�

=

Diag(JD

2

K)

�

=

D

2

and for two OMAs A

1

and A

2

in which each block is �nite with Diag(A

1

)

�

=

Diag(A

2

)

we have

A

1

�

=

JDiag(A

1

)K

�

=

JDiag(A

2

)K

�

=

A

2

:

So these operators are bijections between the isomorphy classes of all complete OMA-

diagrams with �nite lines and the isomorphy classes of all nontrivial OMAs in which

each block is �nite.

The following theorem shows, that the congruence relation <�

D

> can easily be

computed, if the diagram satis�es some conditions. Later it will be shown that these

conditions allways hold for complete OMA-diagrams with �nite lines.

Theorem 27 Let D = (P;R) be a diagram in which each line is �nite such that the

following two conditions hold:

1. For every r; s; t 2 R there exists a line u 2 R with

(r \ s) [ (s \ t) [ (r \ t) � u and
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2. for every r; s; t 2 R with s � r [ t there exists a line u 2 R with (r n s) [ (t n

s) [ (r \ t) � u.

Let � := f(in

r

(E); in

s

(F ))j there exist t; u 2 R with t = E

_

[(snF ) and u = F

_

[(rnE)g.

Then � =<�

D

> holds.

Proof.

Because of Lemma 24 � is a subset of <�

D

>. Now we prove, that � is a congruence

relation on

`

r2R

P

co�n

�n

(r):

Re
exivity of �:

For r 2 R and E 2 P

co�n

�n

(r) take t := r =: u, so (in

r

(E); in

r

(E)) 2 � holds.

Symmetry of �:

For (in

r

(E); in

s

(F )) 2 � we have the existence of t; u 2 R with t = E

_

[(s n F ) and

u = F

_

[(r n E), so (in

s

(F ); in

r

(E)) 2 � holds.

Transitivity of �:

Let (in

r

(E); in

s

(F )) 2 � and (in

s

(F ); in

t

(G)) 2 �. Then we get the existence of

v; q 2 R with v = F

_

[(r n E) and q = G

_

[(s n F ). So we have s � q [ v and because

of condition 2 we get a line w 2 R with (q n s) [ (v n s) [ (q \ v) � w. Now we show

r n E � w and G � w. Let a 2 r n E. If a 62 s then a 2 v n s � w and if a 2 s then

a 2 s n F because of (r n E) \ F = �, so we have a 2 (s n F ) \ (r n E) � q \ v � w.

Therefore r n E � w holds. Let a 2 G. If a 62 s then a 2 q n s � w and if a 2 s

then a 2 F because of G \ (s n F ) = �, so we have a 2 G \ F � q \ v � w.

Therefore G � w holds. Because of � �<�

D

> we have (in

r

(E); in

t

(G)) 2<�

D

>

because <�

D

> is transitive, so we get

in

w

(G)= <�

D

> = in

t

(G)= <�

D

>

= in

r

(E)= <�

D

>

= (in

r

(r n E)= <�

D

>)

0

= (in

w

(r n E)= <�

D

>)

0

= in

w

(w n (r n E))= <�

D

>

and because of condition (C2) we have G = wn(rnE), so w = G

_

[(rnE). Analogously

we get a line u = E

_

[(t nG) 2 R, and therefore (in

r

(E); in

t

(G)) 2 �. This proves the

transitivity.

Compatibility with

0

:

Let (in

r

(E); in

s

(F )) 2 �. Then there exist t; u 2 R with

t = E

_

[(s n F ) and u = F

_

[(r n E):
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So (in

r

(E)

0

; in

s

(F )

0

) = (in

r

(rnE); in

s

(snF )) 2 � and this proves that � is compatible

with

0

.

Compatibility with �:

Let (in

r

1

(E

1

); in

s

1

(F

1

)) 2 � and (in

r

2

(E

2

); in

s

2

(F

2

)) 2 � such that in

r

1

(E

1

)� in

r

2

(E

2

)

and in

s

1

(F

1

)�in

s

2

(F

2

) exist. Then we have r

1

= r

2

(or E

1

= � or E

2

= �, but in that

case we can rede�ne r

1

or r

2

to get the same situation because in

r

1

(�) = 0 = in

r

2

(�)

holds) and s

1

= s

2

. Because of the existence of the sums we have

E

1

\ E

2

= � = F

1

\ F

2

:

From the de�nition of � we get the existence of elements t; u 2 R with

t = E

1

_

[(s

1

n F

1

) and u = E

2

_

[(s

2

n F

2

) = E

2

_

[(s

1

n F

2

):

With condition 1 we get a line v 2 R with

E

1

[ E

2

[ (s

1

n (F

1

[ F

2

)) � (r

1

\ t) [ (r

1

\ u) [ (t \ u) � v:

Because of (in

r

1

(E

1

); in

s

1

(F

1

)) 2 � �<�

D

> and (in

r

2

(E

2

); in

s

2

(F

2

)) 2 � �<�

D

> we

have

in

v

(s

1

n (F

1

� F

2

))= <�

D

> = in

s

1

(s

1

n (F

1

� F

2

))= <�

D

>

= (in

s

1

(F

1

� F

2

)= <�

D

>)

0

= (in

r

1

(E

1

� E

2

)= <�

D

>)

0

= (in

v

(E

1

� E

2

)= <�

D

>)

0

= in

v

(v n (E

1

� E

2

))= <�

D

>

and because of condition (C2) we get

s

1

n (F

1

� F

2

) = v n (E

1

� E

2

)

and therefore v = (E

1

� E

2

)

_

[(s

1

n (F

1

� F

2

)). Analogously we get a line

w = (F

1

� F

2

)

_

[(r

1

n (E

1

� E

2

)) 2 R

so (in

r

1

(E

1

)� in

r

2

(E

2

); in

s

1

(F

1

)� in

s

2

(F

2

)) 2 �.

Therefore � is a congruence relation.

For (in

r

(fag); in

s

(fag)) 2�

D

we have (in

r

(fag); in

s

(fag)) 2 � with t := s and u := r.

So we have �

D

� � and <�

D

>� �. Therefore <�

D

>= � holds.
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In this theorem condition 1 says, that for every triangle of D there exists a line

which contains the corners of the triangle, where the corner of two lines is de�ned as

their intersection. Condition 2 says, that for every line which is covered by two other

lines there exists a line containing the rest of the other lines and their intersection.

These conditions are su�cient for the property, that the condition of Lemma 24

characterises the whole congruence relation <�

D

>.

The following lemma gives a su�cient condition for the property that a nontrivial

diagram is an OMA-diagram.

Lemma 28 Let D = (P;R) be a nontrivial diagram such that the following three

conditions hold:

1. For every r; s; t 2 R there exists a line u 2 R with

(r \ s) [ (s \ t) [ (r \ t) � u and

2. for every r; s 2 R and E 2 P

co�n

�n

(r) and F 2 P

co�n

�n

(s) with

(in

r

(E); in

s

(F )) 2<�

D

> there exists t 2 R with E [ (s n F ) � t,

3. for every r; s 2 R and E 2 P

co�n

�n

(r) with E � s 6= r the set E is �nite.

Then D is an OMA-diagram.

Proof.

The axioms (A0)-(A4), (A7) and (A9) hold because of Theorem 8.

Proof of (A5):

Let x; y; z 2 JDK such that (x � y) � z exists. Then there exist G;H � r 2 R and

E;F � s 2 R with x = in

r

(G)= <�

D

>; y = in

r

(H)= <�

D

>; z = in

s

(E)= <�

D

>

and x � y = in

s

(F )= <�

D

> such that G � H and F � E exist. Then we have

(in

r

(G � H); in

s

(F )) 2<�

D

> and with condition 2 we get a line t 2 R with (G �

H) [ (s n F ) � t, so E;G;H � t because of the existence of F � E. With condition

3 we get x = in

t

(G)= <�

D

>; y = in

t

(H)= <�

D

>; z = in

t

(E)= <�

D

>. Because of

condition (C2) and the existence of

(x� y)� z = (in

t

(G)= <�

D

> �in

t

(H)= <�

D

>)� in

t

(E)= <�

D

>

we get the existence of (G�H)�E in P

co�n

�n

(t) and therefore G� (H �E) exists and

(G�H)� E = G� (H � E)

holds because P

co�n

�n

(t) is an OMA. So

(x� y)� z = (in

t

(G)= <�

D

> �in

t

(H)= <�

D

>)� in

t

(E)= <�

D

>

= in

t

(G�H � E)= <�

D

>= x� (y � z)
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which proves (A5).

Proof of (A8):

Let x; y; z 2 JDK such that x� y; y � z and x� z exist.

Then there exist E

x

; E

y

� r 2 R and F

y

; F

z

� s 2 R and G

x

; G

z

� t 2 R with

in

r

(E

x

)= <�

D

> = x = in

t

(G

x

)= <�

D

>;

in

r

(E

y

)= <�

D

> = y = in

s

(F

y

)= <�

D

>;

in

s

(F

z

)= <�

D

> = z = in

t

(G

z

)= <�

D

>

such that E

x

�E

y

; F

y

�F

z

and G

x

�G

z

exist. Because of (in

r

(E

x

); in

t

(G

x

)) 2<�

D

>

condition 2 implies the existence of u 2 R with E

x

[ (t n G

x

) � u. Because of

the existence of G

x

� G

z

we have E

x

; G

z

� u. Analogously we get v;w 2 R with

F

y

; G

z

� v and E

x

; F

y

� w. Condition 1 implies the existence of a line q 2 R with

E

x

[ F

y

[ G

z

� (u \ w) [ (v \ w) [ (u \ v) � q. With condition 3 we get x =

in

q

(E

x

)= <�

D

>; y = in

q

(F

y

)= <�

D

>; z = in

q

(G

z

)= <�

D

>. Because of condition

(C2) E

x

� F

y

and F

y

� G

z

and E

x

� G

z

exist in P

co�n

�n

(q), so E

x

� (F

y

� G

z

) exists

because P

co�n

�n

(q) satis�es axiom (A8). So we have the existence of

in

q

(E

x

)= <�

D

> �(in

q

(F

y

)= <�

D

> �in

q

(G

z

)= <�

D

>) = x� (y � z)

which proves (A8).

Axiom (A6) follows from the other axioms, so JDK is an OMA.

In the following characterisation Theorem 29 we use Theorem 27 and Lemma 28

to get some conditions which are equivalent to the property, that a complete diagram

with �nite lines is an OMA-diagram.

Theorem 29 Let D = (P;R) be a nontrivial complete diagram in which each line is

�nite. The following conditions are equivalent:

1. D is an OMA-diagram.

2. (a) For every r; s; t 2 R there exists a line u 2 R with

(r \ s) [ (s \ t) [ (r \ t) � u and

(b) for every r; s; t 2 R with s � r [ t there exists a line u 2 R with (r n s) [

(t n s) [ (r \ t) � u.

3. (a) For every r; s; t 2 R there exists a line u 2 R with

(r \ s) [ (s \ t) [ (r \ t) � u and

(b) for every r; s 2 R and E 2 P

co�n

�n

(r) and F 2 P

co�n

�n

(s) with

(in

r

(E); in

s

(F )) 2<�

D

> there exists t 2 R with E [ (s n F ) � t .
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Proof.

1 ! 2:

Because of the completeness each block of JDK is generated by its atoms.

Let r; s; t 2 R and E := (r \ s) [ (s \ t) [ (r \ t). For all a; b 2 E there exists

v 2 fr; s; tg � R with a; b 2 v. So because of Theorem 19 E generates a Boolean

subalgebra, which is contained in a block. D is complete, so there exists a line u 2 R

with E � JuK and therefore E � u because of Theorem 17 which proves condition 2a.

Now let r; s; t 2 R with s � r [ t. For a 2 r n s and b 2 t n s we have a 2 r n (s n t)

and b 62 s \ t so �(s \ t)� b exists, s n t � r holds and

�(s \ t)� b = (�(s n t))

0

� b

=�(r n (s n t))� b

= (�(r n (fag [ (s n t)))� a)� b

With axiom (A5) we get the existence of a� b. De�ne E := (r n s) [ (t n s) [ (r \ t).

Then for all a; b 2 E with a 6= b the sum a � b exists, and therefore E generates a

Boolean subalgebra which is contained in a block. D is complete, so there exists a

line u 2 R with E � u which proves condition 2b.

2 ! 3:

See Theorem 27.

3 ! 1:

See Lemma 28.

The implication 1! 2 of Theorem 29 may not hold if D is contains in�nite lines.

This will be proved in the next chapter. The characterisation of the congruence

relation in Theorem 27 also holds for complete OMA-diagrams with �nite lines:

Corollary 30 Let D = (P;R) be a complete OMA-diagram in which each line is

�nite, r; s 2 R and E 2 P

co�n

�n

(r) and F 2 P

co�n

�n

(s). Then

(in

r

(E); in

s

(F )) 2<�

D

> i� E

_

[(s n F ) 2 R and F

_

[(r n E) 2 R

holds.

Proof. See Theorems 27 and 29.

In Theorem 33 we will give a characterisation of complete OMA-diagrams with a

weaker precondition than in Theorem 29. First we need the following lemma:
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Lemma 31 Let D = (P;R) be a hypergraph in which each clique is a line. Then

condition (2a) of Theorem 29 is satis�ed.

Proof. Let r; s; t 2 R. In E := (r \ s) [ (s \ t) [ (r \ t) � u each pair of points is

connected by a line (for example a 2 r \ s is connected to b 2 s \ t by the line s), so

E is contained in a clique, and there exists a line u 2 R with E � u.

Note that the property that each clique is a line is equivalent to the property that

each clique is contained in a line because a line can not be a proper superset of a

clique because of the maximality.

For nontrivial �nite hypergraphs the two conditions of this lemma are equivalent:

Lemma 32 Let D = (P;R) be a nontrivial �nite hypergraph. Each clique is a line

i� condition (2a) of Theorem 29 is satis�ed.

Proof. Assume that condition (2a) holds and that there exists a clique which is not a

line. Because of the �niteness of P there exists a minimal subset E � P , in which each

pair of points is connected by a line, but E is not contained in a line. We have jEj > 1

because of P 6= �, so there exist a; b 2 E with a 6= b. Because of the minimality of E

the set Enfag is contained in a line r 2 R and Enfbg is contained in a line s 2 R. The

set fa; bg is also contained in a line t 2 R because a is connected to b. With condition

(2a) we get a line u 2 R with E = (Enfa; bg)[fbg[fag � (r\s)[(r\t)[(s\t) � u,

which is a contradiction.

For in�nite hypergraphs this lemma may not hold. In chapter 3 we show that

there exists an OMA-diagram with �nite lines, such condition (2a) of Theorem 29 is

satis�ed, but there exists a clique which is not contained in a line (see example 4).

Theorem 33 Let D = (P;R) be a diagram in which each line is �nite such that

every block of JDK is generated by its atoms. The following conditions are equivalent:

1. D is a complete OMA-diagram.

2. (a) Every clique is a line, and

(b) for every r; s; t 2 R with s � r [ t there exists a line u 2 R with (r n s) [

(t n s) [ (r \ t) � u.

3. (a) Every clique is a line, and

(b) for every r; s 2 R and E 2 P

co�n

�n

(r) and F 2 P

co�n

�n

(s) with

(in

r

(E); in

s

(F )) 2<�

D

> there exists t 2 R with E [ (s n F ) � t .
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Proof.

1! 2:

See Theorem 20 and Theorem 29.

2! 3:

See Lemma 31 and Theorem 27.

3! 1:

We have R 6= � because otherwise the empty set would be a clique which is not a

line. Lemma 31 and Lemma 28 imply that D is an OMA-diagram. Let B be a block

of JDK. With Theorem 20 B is induced by a clique E � P , so E is a line E = r 2 R.

The Boolean subalgebra B is maximal, so we get B = JrK and D is complete.

This theorem characterises complete OMA-diagrams under the assumption that

each block of JDK for a diagram D with �nite lines is generated by its atoms: D is a

complete OMA-diagram i� every clique is a line and for every line which is covered

by two other lines there exists a line containing the rest of the other lines and their

intersection. In the following characterisation theorem the assumption that D is a

diagram is not needed, so the theorem holds for every hypergraph with �nite lines,

such that each block is generated by its atoms.

Theorem 34 Let D = (P;R) be a hypergraph in which each line is �nite such that

each block of JDK is generated by its atoms. D is a complete OMA-diagram i� the

following conditions are satis�ed:

1. jr n sj > 1 holds for all r; s 2 R with r 6= s,

2. the relation � := f(in

r

(E); in

s

(F ))j there exist t; u 2 R with t = E

_

[(s n F )

and u = F

_

[(r n E)g is transitive and compatible with � (in the coproduct

`

r2R

P

co�n

�n

(r)),

3. every clique is a line,

4. for every r; s; t 2 R with s � r [ t there exists a line u 2 R with

(r n s) [ (t n s) [ (r \ t) � u.

Proof.

!:

If D is a complete OMA-diagram then the conditions 1-4 follow from Lemma 9, The-

orem 33 and Theorem 27.

 :

Let the four conditions be satis�ed. Then � =<�

D

> holds (see proof of Theorem

27). Now we use Theorem 12 to show that D is a diagram.

Let (in

r

(fag); in

s

(E)) 2<�

D

>= �. Then there exists a line u 2 R with u =
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fag

_

[(s n E), so with condition 1 we get u = s. Therefore E = fag holds.

Now we proof (C2):

Let (in

r

(E); in

r

(F )) 2<�

D

>= �. Then there exists a line u 2 R with u = E

_

[(rnF ).

With condition 1 we get u = r and E = F , so nat

<�

D

>

� in

r

is injective. Let

E;F � r 2 R such that in

r

(E)= <�

D

> �in

r

(F )= <�

D

> exists. Then there exist

G;H � s 2 R with (in

r

(E); in

s

(G)) 2<�

D

>= �, (in

r

(F ); in

s

(H)) 2<�

D

>= � and

G \H = �. Then there exist t; u 2 R with t = E

_

[(s nG) and u = F

_

[(s nH). With

condition 3 and Lemma31 we get the existence of v 2 R with (s\t)[(t\u)[(s\u) � v.

We have s = G [H [ (s n (G [H)) � (u\ s)[ (t\ s)[ (t\ s) � v, so with condition

1 we get s = v. We have E \ F � t \ u � v = s. The union E

_

[(s n G) is disjoint,

so we get (E \ F ) \ (s nG) = � and analogously (E \ F ) \ (s n H) = �. Therefore

E \ F = (E \ F ) \ s = (E \ F ) \ ((s n G) [ (s nH)) = � holds and nat

<�

D

>

� in

r

is closed. So D is a diagram because of Theorem 12. D is a complete OMA-diagram

because of Theorem 33.

If D is a hypergraph with �nite lines and each block of JDK is generated by

its atoms, the four conditions of this theorem are usefull to check wether a D is a

complete OMA-diagram. If D is �nite then all lines of D are �nite and each block is

generated by its atoms, so for �nite diagrams it can be easily checked, whether D is

a complete OMA-diagram: We need not to compute the interpretation JDK, we just

have to check the conditions of Theorem 34.

3 Examples

The �rst example is a counterexample for Theorem 29 with in�nite lines.

Example 1:

Let R = fr; s; tg with

r = A

1

[A

2

; s = A

2

[A

3

; t = A

3

[A

4

and

A

1

:= N � f1g; A

2

:= N � f2g; A

3

:= N � f3g; A

4

:= N � f4g:

Let P =

S

R and D = (P;R). Now we show that D is a complete OMA-diagram,

but condition 2b of Theorem 29 is not satis�ed. Let

�

1

:= f(in

r

(E); in

s

(E)jE � A

2

; E �nite g;

�

2

:= f(in

r

(r n E); in

s

(s n E)jE � A

2

; E �nite g;

�

3

:= f(in

s

(E); in

t

(E)jE � A

3

; E �nite g;

�

4

:= f(in

s

(s n E); in

t

(t n E)jE � A

3

; E �nite g and

� := �

1

[ �

2

[ �

3

[ �

4
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It is not di�cult to see that the congruence relation generated by � is the re
exive

and symmetrical closure:

< � >= ref(sym(�))

We have �

D

� ref(sym(�)) and therefore <�

D

>� ref(sym(�)).

The relation ref(sym(�)) is generated by �

D

, so we get

<�

D

>= ref(sym(�)) =< � > :

D is a diagram:

(C1) holds because of <�

D

>= ref(sym(�)).

Let u 2 R. The mapping nat

<�

D

>

� in

u

is injective because of <�

D

>= ref(sym(�)).

Now let in

u

(E)= <�

D

>; in

u

(F )= <�

D

>2 JDK such that

in

u

(E)= <�

D

> �in

u

(F )= <�

D

>

exists. Then there exist w 2 R and G;H 2 P

co�n

�n

(w) with G \H = � and

(in

u

(E); in

w

(G)) 2<�

D

> = ref(sym(�)) and

(in

u

(F ); in

w

(H)) 2<�

D

> = ref(sym(�)):

Then G or H must be �nite (because of G \H = �), so we assume now that G is

�nite. Therefore E = G holds. If F = H holds then we get E \ F = � otherwise we

get E = G � w nH = u n F , so E \ F = �. Therefore E � F exists in P

co�n

�n

(u) and

the mapping nat

<�

D

>

� in

u

is closed which proves (C2).

Let u 2 R and in

v

(E)= <�

D

>2 JDK such that the set JuK [ fin

v

(E)= <�

D

>g is

contained in a Boolean subalgebra B � JDK. Now we show that in

v

(E)= <�

D

>2 JuK

holds. For a 2 u we have in

u

(fag)= <�

D

>2 atoms(B) because of Lemma 11. We

only have to consider the case u 6= v because if u = v then in

v

(E)= <�

D

>2 JuK

holds.

Case 1: u = s

Then we can assume that v = r holds because v = t works analogously.

For a := (3; 3) 2 s n r we have

in

s

(fag)= <�

D

>� in

v

(F )= <�

D

> or in

s

(fag)= <�

D

>� in

v

(v n F )= <�

D

>

because of Lemma 2. If

in

s

(fag)= <�

D

>� in

v

(v n F )= <�

D

>
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holds then

in

s

(fag)= <�

D

> �in

v

(F )= <�

D

>

exists and because of <�

D

>= ref(sym(�)) we have JtK \ JrK = f0; 1g, so we get a

set G 2 P

co�n

�n

(s) with (in

v

(F ); in

s

(G)) 2<�

D

> and therefore

in

v

(F )= <�

D

>2 JsK:

If in

s

(fag)= <�

D

>� in

v

(F )= <�

D

> holds then we get analogously

in

v

(v n F )= <�

D

>2 JsK:

Case 2: u = r

Analogiosly case 1 with a := (1; 1).

Therefore we have B = JuK and (C3) holds, so D is a diagram.

Completeness of D:

Assume that there exists a block B � JDK with JuK 6= B for all u 2 R. If B � JsK

holds then we get B = JsK because B is a maximal Boolean subalgebra. Therefore

B cannot be a subset of JsK and there exists an element x 2 B with x 62 JsK. In

the following we assume that x 2 JrK holds because the proof with x 2 JtK works

analogously. The block B cannot be a subset of JrK, so there exists an element y 2 B

with y 62 JrK. With [BM98] we get the existence of a; b; c 2 B with a�b = x; b�c = y

such that a � c exists. Because of x 62 JsK and JtK \ JrK = f0; 1g, we we get the

existence of E;F 2 P

co�n

�n

(r) with E \ F = � and

in

r

(E)= <�

D

>= a and in

r

(F )= <�

D

>= b:

There exists an u 2 R and G;H 2 P

co�n

�n

(u) with G \H = � and

in

u

(G)= <�

D

>= b and in

u

(H)= <�

D

>= c:

We have b� c = y 62 JrK, so u 6= r holds. Because of

in

r

(F )= <�

D

>= b = in

u

(G)= <�

D

> and

JtK \ JrK = f0; 1g;

we get u = s or b = 0.

Case 1: b = 0 or (in

r

(F ); in

s

(G)) 2 �

1

Then F and G are �nite subsets of A

2

with F = G. Because of the existence of a�c at

least one of the sets E and H must be a �nite subset of A

2

. If E is a �nite subset of A

2

then x = in

r

(E [F )= <�

D

>= in

s

(E [F )= <�

D

> holds, which is a contradiction to
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x 62 JsK. IfH is a �nite subset ofA

2

then y = in

s

(G[H)= <�

D

>= in

r

(G[H)= <�

D

>

holds, which is a contradiction to y 62 JrK.

Case 2: u = s and (in

r

(F ); in

s

(G)) 62 �

1

Then (in

r

(F ); in

s

(G)) 2 �

2

, so there is a �nite subset J � A

2

with F = r n J

and G = s n J , therefore E is a �nite subset of A

2

because of E \ F = �. So

x = in

r

(E [ F )= <�

D

>= in

s

(E [ G)= <�

D

> holds which is a contradiction to

x 62 JsK.

Therefore D is complete. D is an OMA-diagram because of Lemma 28. Condition

2b of Theorem 29 is not satis�ed.

The next example shows that there exist OMAs, which are not induced by dia-

grams, so Theorem 25 does not hold for OMAs with in�nite blocks. We also show

that there exist two di�erent OMAs (with in�nite blocks) for that the operator Diag

of de�nition 23 produces isomorphic diagrams.

Example 2:

Let D = (P;R) with P =

S

R and R = fr; sg with

r = N [ f�1;�2g;

s = N [ f�3;�4g:

Now we show that D is an OMA-diagram. Let

� := f(in

r

(E); in

s

(E))jE � N; E �nite g [

f(in

r

(f�1;�2g [ (N n E)); in

s

(f�3;�4g [ (N n E)))jE � N; E �nite g

Then we have < � >= ref(sym(�)) =<�

D

> like in example 1.

D is a diagram:

(C1) holds because of <�

D

>= ref(sym(�)). We show (C2) only for the line r,

because for s the proof works analogously. The mapping nat

<�

D

>

� in

r

is injective

because of <�

D

>= ref(sym(�)). Now let in

r

(E)= <�

D

>; in

r

(F )= <�

D

>2 JDK

such that in

r

(E)= <�

D

> �in

r

(F )= <�

D

> exists. Then there exist w 2 R and

G;H 2 P

co�n

�n

(w) with G \H = � and (in

r

(E); in

w

(G)) 2<�

D

>= ref(sym(�)) and

(in

r

(F ); in

w

(H)) 2<�

D

>= ref(sym(�)). Then we get E \ F = �, so E � F exists

in P

co�n

�n

(r) and the mapping nat

<�

D

>

� in

r

is closed which proves (C2). The prove of

(C3) is the same like in example 1 (with a := �3 in case 1 and a := �1 in case 2).

Therefore D is a diagram.

JDK is an OMA:

The axioms (A0)-(A4), (A7) and (A9) hold because of Theorem 8.

Proof of (A5):

Let x; y; z 2 JDK such that (x � y) � z exists. Then there exist u; v 2 R and
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G;H 2 P

co�n

�n

(u) and E;F 2 P

co�n

�n

(v) with

x = in

u

(G)= <�

D

>;

y = in

u

(H)= <�

D

>;

z = in

v

(E)= <�

D

>;

x� y = in

v

(F )= <�

D

>

such that G\H = � = F �E hold. We can assume u 6= v because axiom (A5) holds

in the Boolean OMAs JrK and JsK. Then we have (in

u

(G � H); in

v

(F )) 2<�

D

>=

ref(sym(�)) so we only have to consider the following two cases:

Case 1: G [H = F � N and F is �nite.

Then x; y; z 2 JvK and (x� y)� z = x� (y � z) holds.

Case 2: u n (G [H) = v n F � N and v n F is �nite.

Then E � v n F is �nite and x; y; z 2 JuK and (x� y)� z = x� (y � z) holds.

Proof of (A8):

Let x; y; z 2 JDK such that x� y; y � z and x� z exist.

Then there exist E

x

; E

y

� u 2 R and F

y

; F

z

� v 2 R and G

x

; G

z

� w 2 R with

in

u

(E

x

)= <�

D

> = x = in

w

(G

x

)= <�

D

>;

in

u

(E

y

)= <�

D

> = y = in

v

(F

y

)= <�

D

>;

in

v

(F

z

)= <�

D

> = z = in

w

(G

z

)= <�

D

>

such that E

x

� E

y

; F

y

� F

z

and G

x

� G

z

exist. We have jRj = 2, so we can assume

u = v (the cases u = w and v = w work analogously). Then we get x; y; z 2 JuK and

x� (y � z) exists because JuK is an OMA.

Axiom (A6) follows from the other axioms, so JDK is an OMA.

Let C :=

`

r2R

P

co�n

�n

(r) and

� :=f(in

r

(E); in

s

(E))jE 2 P

co�n

�n

(N)g [

f(in

r

(f�1;�2g [ E); in

s

(f�3;�4g [ E))jE 2 P

co�n

�n

(N)g

Then the congruence relation < � > generated by � is the re
exive symmetrical

closure of �:

< � >= ref(sym(�)):

Let A := C= < � >. To show that A is an OMA, just use an analogue proof like

above with < � > instead of <�

D

>.
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Note that in

r

(P

co�n

�n

(r))= < � > and in

s

(P

co�n

�n

(s))= < � > are blocks of A. This can

be shown like the proof of (C2) and (C3) for D with < � > instead of <�

D

>.

Proof of Diag(A)

�

=

D

�

=

Diag(JDK):

Let 
 2 f�

D

; �g. Now assume that there exists a block B � C= < 
 > with

in

r

(P

co�n

�n

(r))= < 
 >6= B 6= in

s

(P

co�n

�n

(s))= < 
 >. If B � in

s

(P

co�n

�n

(s))= < 
 > holds

then we get B = in

s

(P

co�n

�n

(s))= < 
 > because B is a maximal Boolean subalgebra.

So B cannot be a subset of in

s

(P

co�n

�n

(s))= < 
 > and there exists an element x 2 B

with x 62 in

s

(P

co�n

�n

(s))= < 
 > and analogously we get the existence of an element

y 2 B with y 62 in

r

(P

co�n

�n

(r))= < 
 >. With [BM98] we get the existence of a; b; c 2 B

with a�b = x; b�c = y such that a�c exists. Because of x 62 in

s

(P

co�n

�n

(s))= < 
 > and

y 62 in

r

(P

co�n

�n

(r))= < 
 > we get the existence of E;F 2 P

co�n

�n

(r) and G;H 2 P

co�n

�n

(s)

with

in

r

(E)= < 
 > = a;

in

r

(F )= < 
 > = b = in

s

(G)= < 
 > and

in

s

(H)= < 
 > = c

such that E \ F = � = G \H holds. Then we have (in

r

(F ); in

s

(G)) 2< 
 >.

Case 1: 
 = �

Because of

in

r

(E [ F )= < � >= a� b = x 62 in

s

(P

co�n

�n

(s))= < � >

we get j(E [ F ) \ f�1;�2gj = 1. Let feg := (E [ F ) \ f�1;�2g. Because of

(in

r

(F ); in

s

(G)) 2< � > we have e 62 F , so e 2 E and jE \ f�1;�2gj = 1. Anal-

ogously we get jH \ f�3;�4gj = 1, which is a contradiction to the existence of

a� c = in

r

(E)= < � > �in

s

(H)= < � >.

Case 2: 
 =�

D

If there is a �nite subset J � N with F = f�1;�2g[NnJ and G = f�3;�4g[NnJ

then E is a �nite subset of N because of E \ F = �, so

x = in

r

(E [ F )= <�

D

>= in

s

(E [G)= <�

D

>

holds which is a contradiction to x 62 JsK. Therefore F and G are �nite subsets of N

with F = G. Because of the existence of a� c at least one of the sets E and H must

be a �nite subset of N. If E is a �nite subset of N then x = in

r

(E [ F )= <�

D

>=

in

s

(E [ F )= <�

D

> holds, which is a contradiction to x 62 JsK. If H is a �nite subset

of N then

y = in

s

(G [H)= <�

D

>= in

r

(G [H)= <�

D

>

holds, which is a contradiction to y 62 JrK.

So in

r

(P

co�n

�n

(r))= < 
 > and in

s

(P

co�n

�n

(s))= < 
 > are the only blocks of C= < 
 >.
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We get R = fatoms(B)jB block of C= < 
 >g and P = atoms(C= < 
 >) with

Theorem 5. Therefore Diag(A)

�

=

D

�

=

Diag(JDK) holds and D is complete.

Now we show that A is not the interpretation of a diagram. Assume that there exists

a diagram D

2

with JD

2

K

�

=

A. Each block of JD

2

K is generated by its atoms, because

this property holds in A. Because of the Theorems 16 and 22 the diagram Comp(D

2

)

is complete and JComp(D

2

)K

�

=

JD

2

K

�

=

A holds. So we get

Comp(D

2

)

�

=

(atoms(JComp(D

2

)K); fatoms(B)jB block of JComp(D

2

)Kg)

�

=

Diag(A)

�

=

D:

Therefore we get JDK

�

=

JComp(D

2

)K

�

=

A.

The OMA A contains two blocks: in

r

(P

co�n

�n

(r))= < � > and in

s

(P

co�n

�n

(s))= <

� >. The corresponding blocks in JDK are JrK = in

r

(P

co�n

�n

(r))= <�

D

> and JsK =

in

r

(P

co�n

�n

(s))= <�

D

>. In the block in

r

(P

co�n

�n

(r))= < � > there exist two elements

x := in

r

(f�1g)= < � > and y := in

r

(f�2g)= < � > with

x; y 62 in

s

(P

co�n

�n

(s))= < � > and

x� y = in

r

(f�1;�2g)= < � >= in

s

(f�3;�4g)= < � >2 in

s

(P

co�n

�n

(s))= < � > :

But in the two blocks of JDK such elements with these properties do not exist, so

JDK 6

�

=

A, which is a contradiction. Therefore A is not induced by a diagram and

JDiag(A)K 6

�

=

A holds.

The following example shows that there exists a diagram D in which each block

is generated by its atoms such that the atoms of a block B � JDK are not contained

in P . So Theorem 16 does not hold for diagrams which are not OMA-diagrams. This

example also shows that there may exist blocks in the interpretation of a diagram

which are not generated by its atoms.

Example 3:

Let M be a set with jM j > 3 and N := P(M) n f�;Mg. Let D = (P;R) with

P = fa

T

i

j1 � i � 4; T 2 Ng [

[ fb

T;U

i

j1 � i � 6; T; U 2 N;T \ U = �; T [ U 6=Mg [

[ fb

T;U

i

j1 � i � 4; T; U 2 N;T \ U = �; T [ U =Mg

41



with a

T

i

= (i; T ) and b

T;U

i

= (i; T; U) and

R = fr

T

jT 2 Ng [

[ fs

T;U

jT;U 2 N;T \ U = �g [

[ fu

T;U

jT;U 2 N;T \ U = �g [

[ fv

T;U

jT;U 2 N;T \ U = �g [

[ fw

T;U

jT;U 2 N;T \ U = �; T [ U 6=Mg

with

r

T

= fa

T

1

; a

T

2

; a

T

3

; a

T

4

g;

u

T;U

= fa

T

3

; a

T

4

; b

T;U

1

; b

T;U

2

g;

v

T;U

= fa

U

3

; a

U

4

; b

T;U

3

; b

T;U

4

g;

w

T;U

= fb

T;U

5

; b

T;U

6

; a

T[U

1

; a

T[U

2

g

s

T;U

= fb

T;U

1

; b

T;U

2

; b

T;U

3

; b

T;U

4

; b

T;U

5

; b

T;U

6

g; if T [ U 6=M and

s

T;U

= fb

T;U

1

; b

T;U

2

; b

T;U

3

; b

T;U

4

g; if T [ U =M:
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For T 2 N let

x

T

:=fin

r

T (fa

T

1

; a

T

2

g); in

r

MnT

(fa

MnT

3

; a

MnT

4

g)g [

fin

u

MnT;U

(fa

MnT

3

; a

MnT

4

g)jU 2 N; (M n T ) \ U = �g [

fin

u

T;U (fb

T;U

1

; b

T;U

2

g)jU 2 N;T \ U = �g [

fin

v

U;MnT

(fa

MnT

3

; a

MnT

4

g)jU 2 N; (M n T ) \ U = �g [

fin

v

U;T (fb

U;T

3

; b

U;T

4

g)jU 2 N;T \ U = �g [

fin

s

T;U (fb

T;U

1

; b

T;U

2

g)jU 2 N;T \ U = �g [

fin

s

U;T (fb

U;T

3

; b

U;T

4

g)jU 2 N;T \ U = �g [

fin

s

U;V (fb

U;V

5

; b

U;V

6

g)jU; V 2 N;U \ V = �; U [ V =M n Tg [

fin

s

U;V (fb

U;V

1

; b

U;V

2

; b

U;V

3

; b

U;V

4

g)jU; V 2 N;U \ V = �; U [ V = Tg [

fin

s

U;MnT
(fb

U;MnT

1

; b

U;MnT

2

; b

U;MnT

5

; b

U;MnT

6

g)jU 2 N;U \ (M n T ) = �; U [ (M n T ) 6=Mg [

fin

s

MnT;U
(fb

MnT;U

3

; b

MnT;U

4

; b

MnT;U

5

; b

MnT;U

6

g)jU 2 N;U \ (M n T ) = �; U [ (M n T ) 6=Mg [

fin

w

U;V (fb

U;V

5

; b

U;V

6

g)jU; V 2 N;U \ V = �; U [ V =M n Tg [

fin

w

U;V (fa

T

1

; a

T

2

g)jU; V 2 N;U \ V = �; U [ V = Tg
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De�ne

�

1

:=f(in

r

T[U (fag); in

w

T;U (fag))j

T;U 2 N;T \ U = �; T [ U 6=M;a 2 fa

T[U

1

; a

T[U

2

gg

�

2

:=f(in

w

T;U
(fag); in

w

V;W
(fag))j

T;U 2 N;T \ U = � = V \W;T [ U = V [W 6=M;a 2 fa

T[U

1

; a

T[U

2

gg

�

3

:=f(in

r

T (fag); in

u

T;U (fag))j

T;U 2 N;T \ U = �; a 2 fa

T

3

; a

T

4

gg

�

4

:=f(in

r

T (fag); (in

v

U;T (fag))j

T;U 2 N;T \ U = �; a 2 fa

T

3

; a

T

4

gg

�

5

:=f(in

u

T;U (fag); in

u

T;V (fag))j

T;U; V 2 N;T \ U = � = T \ V; a 2 fa

T

3

; a

T

4

gg

�

6

:=f(in

u

T;U (fag); in

v

V;T (fag))j

T;U; V 2 N;T \ U = � = T \ V; a 2 fa

T

3

; a

T

4

gg

�

7

:=f(in

v

U;T (fag); (in

v

V;T (fag))j

T;U; V 2 N;T \ U = � = T \ V; a 2 fa

T

3

; a

T

4

gg

�

8

:=f(in

u

T;U (fbg); (in

s

T;U (fbg))j

T;U 2 N;T \ U = �; b 2 fb

T;U

1

; b

T;U

2

gg

�

9

:=f(in

v

T;U
(fbg); (in

s

T;U
(fbg))j

T;U 2 N;T \ U = �; b 2 fb

T;U

3

; b

T;U

4

gg

�

10

:=f(in

w

T;U (fbg); (in

s

T;U (fbg))j

T;U 2 N;T \ U = �; T [ U 6=M; b 2 fb

T;U

5

; b

T;U

6

gg

�

j+10

:=�

0

j

:= f(y

0

; z

0

)j(y; z) 2 �

j

g for 1 � j � 10

�

21

:=

[

fx

T

� x

T

jT 2 Ng

Let � :=

S

1�i�21

�

i

. Now we show that ref(sym(�)) is a congruence relation.

ref(sym(�)) is re
exive, symmetrical and compatible with

0

.
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Transitivity of ref(sym(�)):

For i; j � 21 let

�

�1

i

:= f(x; y)j(y; x) 2 �

i

g and

�

i

� �

j

:= f(x; z)j there exists an y with (x; y) 2 �

i

and (y; z) 2 �

j

g:

We just have to consider those relations �

i

; �

j

which have a common component.

We only consider pairs (x; y) 2 �

i

[ �

�1

i

and (y; z) 2 �

j

[ �

�1

j

with i � j because if

i > j holds then we have (z; y) 2 �

j

[ �

�1

j

and (y; x) 2 �

i

[ �

�1

i

with j � i. We have

�

�1

1

� �

1

� �

2

� ref(sym(�))

�

1

� �

2

� �

1

� ref(sym(�))

�

2

� �

2

� �

2

� ref(sym(�))

�

�1

3

� �

3

� �

5

� ref(sym(�))

�

�1

3

� �

4

� �

6

� ref(sym(�))

�

3

� �

5

� �

3

� ref(sym(�))

�

3

� �

6

� �

4

� ref(sym(�))

�

�1

4

� �

4

� �

7

� ref(sym(�))

�

4

� �

�1

6

� �

3

� ref(sym(�))

�

4

� �

7

� �

4

� ref(sym(�))

�

5

� �

5

� �

5

� ref(sym(�))

�

5

� �

6

� �

6

� ref(sym(�))

�

6

� �

�1

6

� �

5

� ref(sym(�))

�

�1

6

� �

6

� �

7

� ref(sym(�))

�

6

� �

7

� �

6

� ref(sym(�))

�

7

� �

7

� �

7

� ref(sym(�))
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For (x; y) 2 �

i

[ �

�1

i

and (y; z) 2 �

j

[ �

�1

j

with 11 � i � j � 20 we have

(x

0

; y

0

) 2 �

i�10

[ �

�1

i�10

and (y

0

; z

0

) 2 �

j�10

[ �

�1

j�10

so (x

0

; z

0

) 2 ref(sym(�)) and (x; z) 2 ref(sym(�))

0

= ref(sym(�)).

We have �

21

� �

21

= �

21

, therefore � is transitive.

Compatibility with �:

Let (x

1

; y

1

) 2 ref(sym(�

i

)) and (x

2

; y

2

) 2 ref(sym(�

j

)) with 1 � i � j � 21 such

that x

1

� x

2

and y

1

� y

2

exist. We can assume 0 62 fx

1

; x

2

; y

1

; y

2

g because if for

example x

1

= 0 then we get y

1

= 0 and (x

1

� x

2

; y

1

� y

2

) = (x

2

; y

2

) 2 ref(sym(�)).

If x

1

= y

1

holds then we get x

2

= y

2

because of the existence of the sums, so

(x

1

� x

2

; y

1

� y

2

) 2 ref(sym(�)).

If i; j � 10 then i = j and (x

1

� x

2

; y

1

� y

2

) 2 �

21

� ref(sym(�)).

If i � 10 < j � 20 then j = i+ 10 and (x

1

� x

2

; y

1

� y

2

) = (1; 1) 2 ref(sym(�)).

If i = 1 and j = 21 then there exist T;U 2 N and a 2 fa

T[U

1

; a

T[U

2

g with

x

1

= in

r

T[U (fag); y

1

= in

w

T;U (fag) and

x

2

= in

r

T[U (fa

T[U

3

; a

T[U

4

g); y

2

= in

w

T;U (fb

T;U

5

; b

T;U

6

g);

so (x

1

� x

2

; y

1

� y

2

) 2 �

11

� ref(sym(�)).

Analogously for i 2 f2; 3; 4; 5; 6; 7g; j = 21.

If i = 8 and j = 21 then there exist T;U 2 N and b 2 fb

T;U

1

; b

T;U

2

g with

x

1

= in

u

T;U (fbg); y

1

= in

s

T;U (fbg) and

x

2

= in

u

T;U (fa

T

3

; a

T

4

g); y

2

= in

s

T;U (s

T;U

n fb

T;U

1

; b

T;U

2

g);

so (x

1

� x

2

; y

1

� y

2

) 2 �

18

� ref(sym(�)).

Analogously for i 2 f9; 10g; j = 21.

If 11 � i � 20 then the sums x

1

� x

2

and y

1

� y

2

do not exist because of j � i.

If i = 21 = j then (x

1

� x

2

; y

1

� y

2

) 2 �

21

[ f(1; 1)g � ref(sym(�)).

Therefore ref(sym(�)) is a congruence relation. We have �

D

� ref(sym(�)) and

therefore <�

D

>� ref(sym(�)).

Proof of ref(sym(�)) �<�

D

>:

For i � 20 we have �

i

�<�

D

>. Now we show �

21

�<�

D

>.

We have �

1

�<�

D

> and with the operation � we get

(in

r

T (fa

T

1

; a

T

2

g); in

w

U;V (fa

T

1

; a

T

2

g)) 2<�

D

>

for all T;U; V 2 N with U

_

[V = T and with the operation

0

we get

(in

r

MnT

(fa

MnT

3

; a

MnT

4

g); in

w

U;V (fb

U;V

5

; b

U;V

6

g)) 2<�

D

>
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for all T;U; V 2 N with U

_

[V =M n T .

We have �

3

�<�

D

> and with the operation � we get

(in

r

MnT

(fa

MnT

3

; a

MnT

4

g); in

u

MnT;U

(fa

MnT

3

; a

MnT

4

g)) 2<�

D

>

and with the operation

0

we get

(in

r

T (fa

T

1

; a

T

2

); in

u

T;U (fb

T;U

1

; b

T;U

2

g)) 2<�

D

> :

We have �

4

�<�

D

> and with the operation � we get

(in

r

MnT

(fa

MnT

3

; a

MnT

4

g); in

v

U;MnT

(fa

MnT

3

; a

MnT

4

g)) 2<�

D

>

and with the operation

0

we get

(in

r

T (fa

T

1

; a

T

2

g); in

v

U;T (fb

U;T

3

; b

U;T

4

g)) 2<�

D

> :

We have �

8

�<�

D

> and with the operation � we get

(in

u

T;U (fb

T;U

1

; b

T;U

2

g); in

s

T;U (fb

T;U

1

; b

T;U

2

g)) 2<�

D

>

and with the operation

0

we get

(in

u

MnT;U
(fa

MnT

3

; a

MnT

4

g); in

s

MnT;U
(fb

MnT;U

3

; b

MnT;U

4

; b

MnT;U

5

; b

MnT;U

6

g)) 2<�

D

> :

We have �

9

�<�

D

> and with the operation � we get

(in

v

U;T (fb

U;T

3

; b

U;T

4

g); in

s

U;T (fb

U;T

3

; b

U;T

4

g)) 2<�

D

>

and with the operation

0

we get

(in

v

U;MnT
(fa

MnT

3

; a

MnT

4

g); in

s

U;MnT
(fb

U;MnT

1

; b

U;MnT

2

; b

U;MnT

5

; b

U;MnT

6

g)) 2<�

D

> :

We have �

10

�<�

D

> and with the operation � we get

(in

w

U;V (fb

U;V

5

; b

U;V

6

g); in

s

U;V (fb

U;V

5

; b

U;V

6

g)) 2<�

D

>

and with the operation

0

we get

(in

w

U;V (fa

U[V

1

; a

U[V

2

g); in

s

U;V (fb

U;V

1

; b

U;V

2

; b

U;V

3

; b

U;V

4

g)) 2<�

D

> :

We have �

8

�<�

D

> and with the operation � we get

(in

u

T;MnT

(fb

T;MnT

1

; b

T;MnT

2

g); in

s

T;MnT

(fb

T;MnT

1

; b

T;MnT

2

g)) 2<�

D

>
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and with the operation

0

we get

(in

u

T;MnT

(fa

T

3

; a

T

4

g); in

s

T;MnT

(fb

T;MnT

3

; b

T;MnT

4

g) 2<�

D

>;

and with the transitivity of <�

D

> we get

(in

r

T
(fa

T

3

; a

T

4

g); in

v

T;MnT
(fb

T;MnT

3

; b

T;MnT

4

g)) 2<�

D

>;

and again with the operation

0

and transitivity we get

(in

r

T (fa

T

1

; a

T

2

g); in

r

MnT
(fa

MnT

3

; a

MnT

4

g)) 2<�

D

> :

With the transitivity of <�

D

> we get x

T

� x

T

�<�

D

> for all T 2 N . Therefore

< � >= ref(sym(�)) =<�

D

> holds.

D is a diagram:

For a 2 p 2 R and E � q 2 R with (in

p

(fag); in

q

(E)) 2<�

D

>= ref(sym(�)) we get

E = fag, so with Theorem 12 we only have to proof (C2). Let p 2 R. The mapping

nat

<�

D

>

� in

p

is injective because of <�

D

>= ref(sym(�)).

Now let in

p

(E)= <�

D

>; in

p

(F )= <�

D

>2 JDK such that

in

p

(E)= <�

D

> �in

p

(F )= <�

D

>

exists. Then there exist q 2 R and G;H 2 P

co�n

�n

(q) with G \H = � and

(in

p

(E); in

q

(G)) 2<�

D

> = ref(sym(�)) and

(in

p

(F ); in

q

(H)) 2<�

D

> = ref(sym(�)):

If E = � or F = � holds then we get E\F = � and E�F exists, so in the following

we can assume that E 6= � 6= F holds. We get G 6= � 6= H. If p = q holds then we

get E = G and F = H because of the de�nition of �, so E \ F = �. In the following

we can assume p 6= q. Let i; j � 21 with

(in

p

(E); in

q

(G)) 2�

i

[ �

�1

i

and

(in

p

(F ); in

q

(H)) 2�

j

[ �

�1

j

:

We can assume that i � j holds, because otherwise we exchange E and F . If j � 10

holds then we get i � 10 and E \ F = G \H = �. If 11 � j � 20 holds then we get

jq nHj = 1 and G = q nH, therefore

(in

p

(p n E); in

q

(H)) = (in

p

(E)

0

; in

q

(G)

0

) 2 ref(sym(�));
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so (in

p

(p n E); in

p

(F )) 2 ref(sym(�)) and p n E = F which implies E \ F = �.

Analogously for 11 � i � 20.

Now let j = 21. If i � 10 holds, then we get E = G and jEj = 1. Let E = feg.

Assume that E \ F 6= � holds. Note that for T;U 2 N we have T = U i� x

T

= x

U

.

Because of e 2 p \ q and e 2 F and (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

we just have to

consider the following four cases:

Case 1: F � p \ q

Then we get (in

q

(F ); in

q

(H)) 2 ref(sym(�)) and F = H, therefore

E \ F = G \H = �

which is a contradiction.

Case 2: There exist U; V 2 N with p = s

U;V

and F = fb

U;V

1

; b

U;V

2

; b

U;V

3

; b

U;V

4

g

Then we have i 2 f8; 9g because of G = E � F . If i = 8 holds then we get q = u

U;V

and H = fa

U

3

; a

U

4

g, which is a contradiction to (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

. If i = 9

holds then we get q = v

U;V

and H = fa

V

3

; a

V

4

g, again a contradiction.

Case 3: There exist U; V 2 N with p = s

U;V

and F = fb

U;V

1

; b

U;V

2

; b

U;V

5

; b

U;V

6

g

Then we have i 2 f8; 10g. If i = 8 holds then we get q = u

U;V

and H = fa

U

3

; a

U

4

g,

which is a contradiction to (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

. If i = 10 holds then we

get q = w

U;V

and H = fa

U[V

1

; a

U[V

2

g, again a contradiction to (in

p

(F ); in

q

(H)) 2

�

21

[ �

�1

21

.

Case 4: There exist U; V 2 N with p = s

U;V

and F = fb

U;V

3

; b

U;V

4

; b

U;V

5

; b

U;V

6

g

Then we have i 2 f9; 10g. If i = 9 holds then we get q = v

U;V

and H = fa

V

3

; a

V

4

g,

again a contradiction to (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

.

If i = 10 holds then we get q = w

U;V

and H = fa

U[V

1

; a

U[V

2

g, again a contradiction

to (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

.

Now let i = 21 = j. If G = q nH then we get E \F = � like in the case 11 � j � 20,

so we assume G 6= q n H. Therefore there exist T;U 2 N with T [ U 6= M and

q = s

T;U

and jGj = 2 = jHj. Assume that E \ F 6= � holds. We have E 6= F

because otherwise we get (in

q

(G); in

q

(H)) 2 ref(sym(�)) because of the transitivity.

Therefore there exist V;W 2 N with V [ W 6= M;p = s

V;W

; jEj = 4 = jF j and

jE \ F j = 2. Then we just have to consider three cases:

Case 1: G = fb

T;U

1

; b

T;U

2

g

Then in

q

(G) 2 x

T

holds and we get in

p

(E) 2 x

T

because of (in

p

(E); in

q

(G)) 2 �

21

.

We have H = fb

T;U

3

; b

T;U

4

g or H = fb

T;U

5

; b

T;U

6

g, so we get in

q

(H) 2 x

U

or in

q

(H) 2

x

Mn(T[U)

.

Case 1.1: E = fb

V;W

1

; b

V;W

2

; b

V;W

3

; b

V;W

4

g then we get V

_

[W = T because of the

de�nition of x

T

. We have F = fb

V;W

1

; b

V;W

2

; b

V;W

5

; b

V;W

6

g or F = fb

V;W

3

; b

V;W

4

; b

V;W

5

; b

V;W

6

g,

so we get in

p

(F ) 2 x

MnW

or in

p

(F ) 2 x

MnV

. We have T \(M nW ) 6= � 6= T \(M nV )

but T \U = � = T \ (M n (T [U)), so U 6=M nW 6=M n (T [U) and U 6=M nV 6=

M n (T [ U), so in

p

(F ) 62 x

U

and in

p

(F ) 62 x

Mn(T[U)

which is a contradiction to

(in

p

(F ); in

q

(H)) 2 �

21

.

Case 1.2: E = fb

V;W

1

; b

V;W

2

; b

V;W

5

; b

V;W

6

g
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Then we getM nW = T , so in

p

(F ) 2 x

MnV

or in

p

(F ) 2 x

V[W

. We have U �M nT =

W but M n V 6�W because of V [W 6=M . We have U �M n T =W �M n V but

U 6�M n(T [U), therefore U 6=M nV 6=M n(T [U) holds. We have V �M nW = T ,

so V 6� U and V 6�M n (T [ U), therefore U 6= V [W 6=M n (T [ U) holds. This is

a contradiction to (in

p

(F ); in

q

(H)) 2 �

21

.

Case 1.3: E = fb

V;W

3

; b

V;W

4

; b

V;W

5

; b

V;W

6

g

Then we getM nV = T , so in

p

(F ) 2 x

MnW

or in

p

(F ) 2 x

V[W

which is a contradiction

to (in

p

(F ); in

q

(H)) 2 �

21

[ �

�1

21

like in Case 1.2 (just exchange V and W).

Case 2: G = fb

T;U

3

; b

T;U

4

g

Then in

q

(G) 2 x

U

holds and we get in

q

(H) 2 x

T

or in

q

(H) 2 x

Mn(T[U)

, so we get

the contradiction like in case 1 (just exchange T and U).

Case 3: G = fb

T;U

5

; b

T;U

6

g

Then H = fb

T;U

1

; b

T;U

2

g or H = fb

T;U

3

; b

T;U

4

g holds, so we can exchange E with F and

G with H to get the same situation like in case 1 or case 2.

In all cases we get a contradiction, so E \ F = � holds and E � F exists in P

co�n

�n

(p)

and the mapping nat

<�

D

>

� in

p

is closed which proves (C2). So D is a diagram

because of Theorem 12.

For T 2 N the set x

T

is an equivalence class: x

T

= in

r

T (fa

T

1

; a

T

2

g)= <�

D

>2 JDK

De�ne x

�

:= 0; x

M

:= 1 and B := fx

T

jT �Mg � JDK.

Proof of B

�

=

P(M):

We have x

T

6= x

U

i� T 6= U for T;U �M . Therefore the mapping

� : P(M)! B;T 7! x

T

is bijective. For T;U 2 N with U =M n T we have

�(T )

0

= (x

T

)

0

= (in

s

T;U (fb

T;U

1

; b

T;U

2

g)= <�

D

>)

0

= in

s

T;U (fb

T;U

3

; b

T;U

4

g)= <�

D

>= x

U

= �(T

0

);

so � is compatible with

0

.

For T = � the sum x

T

�x

U

exists and equals to x

U

for all U �M . Now let T;U 2 N

such that T � U exists in P(M). Then we get x

T

= in

s

T;U (fb

T;U

1

; b

T;U

2

g)= <�

D

> and

x

U

= in

s

T;U
(fb

T;U

3

; b

T;U

4

g)= <�

D

>, so x

T

� x

U

exists. If T [ U =M then we get

�(T � U) = x

M

= 1 =

in

s

T;U (fb

T;U

1

; b

T;U

2

; b

T;U

3

; b

T;U

4

g)= <�

D

>= x

T

� x

U

= �(T )� �(U)

and if T [ U 6=M then we get

�(T � U) = x

T[U

= in

s

T;U (fb

T;U

1

; b

T;U

2

; b

T;U

3

; b

T;U

4

g)= <�

D

>= x

T

� x

U

= �(T )� �(U);
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so � is compatible with �.

Now let T;U 2 N such that x

T

� x

U

exists. Then there exist E;F � q 2 R with

E \ F = � and x

T

= in

q

(E)= <�

D

> and x

U

= in

q

(F )= <�

D

> :

Because of the de�nition of x

T

we have to consider the following cases:

Case 1: There exists a set V 2 N with

q 2 fr

T

; r

MnT

; u

MnT;V

; u

T;V

; v

V;MnT

; v

V;T

; w

V;Mn(T[V)

; w

V;TnV

; s

V;TnV

; s

V;MnT

; s

MnT;V

g

Then we get T =M n U because of E \ F = �, so T � U exists in P(M).

Case 2: There exists a set V 2 N with T \ V = � and q = s

T;V

Then we have

E = fb

T;V

1

; b

T;V

2

g and F 2 ffb

T;V

3

; b

T;V

4

g; fb

T;V

5

; b

T;V

6

g; fb

T;V

3

; b

T;V

4

; b

T;V

5

; b

T;V

6

gg:

If F = fb

T;V

3

; b

T;V

4

g then we get U = V and T � U exists.

If F = fb

T;V

5

; b

T;V

6

g then we get U =M n (T [ V ) and T � U exists.

If F = fb

T;V

3

; b

T;V

4

; b

T;V

5

; b

T;V

6

g then we get U =M n T and T � U exists.

Case 3: There exists a set V 2 N with T \ V = � and q = s

V;T

Then we have

E = fb

V;T

3

; b

V;T

4

g and F 2 ffb

V;T

1

; b

V;T

2

g; fb

V;T

5

; b

V;T

6

g; fb

V;T

1

; b

V;T

2

; b

V;T

5

; b

V;T

6

gg:

If F = fb

V;T

1

; b

V;T

2

g then we get U = V and T � U exists.

If F = fb

V;T

5

; b

V;T

6

g then we get U =M n (T [ V ) and T � U exists.

If F = fb

V;T

1

; b

V;T

2

; b

V;T

5

; b

V;T

6

g then we get U =M n T and T � U exists.

Case 4: There exists a set V 2 N with T \ V = � and q = s

V;Mn(T[V )

Then we have

E = fb

V;Mn(T[V)

5

; b

V;Mn(T[V)

6

g and

F 2 ffb

V;Mn(T[V)

1

; b

V;Mn(T[V)

2

g; fb

V;Mn(T[V )

3

; b

V;Mn(T[V )

4

g;

fb

V;Mn(T[V)

1

; b

V;Mn(T[V)

2

; b

V;Mn(T[V)

3

; b

V;Mn(T[V)

4

gg:

If F = fb

V;Mn(T[V )

1

; b

V;Mn(T[V )

2

g then we get U = V and T � U exists.

If F = fb

V;Mn(T[V )

3

; b

V;Mn(T[V )

4

g then we get U =M n (T [ V ) and T � U exists.

If F = fb

V;Mn(T[V )

1

; b

V;Mn(T[V )

2

; b

V;Mn(T[V)

3

; b

V;Mn(T[V)

4

g then we get U = M n T and

T � U exists.

Therefore � is closed. We have �(0) = 0, therefore � is an isomorphism.

Now we show that B is a block of JDK. Let C � JDK a Boolean subalgebra which

contains B. Assume that there exists an element y = in

q

(E)= <�

D

>2 C nB. Here
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we choose E with minimal cardinality. Then y

0

= in

q

(q n E)= <�

D

>2 C n B also

holds. Let T

0

; U

0

2 N with

q 2 fr

T

0

; s

T

0

;U

0

; u

T

0

;U

0

; v

T

0

;U

0

; w

T

0

;U

0

g:

Because of jM j > 3 there exists a set Z �M with

Z 62 f�;M; T

0

; U

0

;M n T

0

;M n U

0

; T

0

[ U

0

;M n (T

0

[ U

0

)g:

We have the existence (see [BM98]) of a; b; c 2 C with a� b = x

Z

; b� c = y such that

a� c exists. There exist F;G � p 2 R with

b = in

p

(F )= <�

D

>; c = in

p

(G)= <�

D

> and in

p

(F

_

[G)= <�

D

>= in

q

(E)= <�

D

> :

Because of y 62 B we have

E 6= �;

E 6= fa

T

1

; a

T

2

g;

E 6= fa

T

3

; a

T

4

g;

E 6= fb

T;U

1

; b

T;U

2

g;

E 6= fb

T;U

3

; b

T;U

4

g;

E 6= fb

T;U

5

; b

T;U

6

g;

E 6= fb

T;U

1

; b

T;U

2

; b

T;U

3

; b

T;U

4

g;

E 6= fb

T;U

1

; b

T;U

2

; b

T;U

5

; b

T;U

6

g;

E 6= fb

T;U

3

; b

T;U

4

; b

T;U

5

; b

T;U

6

g;

E 6= fb

T;MnT

1

; b

T;MnT

2

g;

E 6= fb

T;MnT

3

; b

T;MnT

4

g

for all T;U 2 N with T\U = �; T[U 6=M . Therefore we have (in

p

(F

_

[G); in

q

(E)) 62

�

21

. Because of the minimality of jEj we have jq n Ej > 1, so (in

p

(F

_

[G); in

q

(E)) 62

�

j

[ �

�1

j

for j � 10 and we get F

_

[G = E � q. At least one of the elements b and c

is not contained in B because we have b� c = y 62 B. Because of the minimality of

jEj we get E 2 fF;Gg and therefore b = 0 or c = 0.

Case 1: b = 0

We get the existence of a � c = x

Z

� in

q

(E)= <�

D

> and therefore there exists
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H; I � l 2 R with x

Z

= in

l

(H)= <�

D

>; in

q

(E)= <�

D

>= in

l

(I)= <�

D

> and

H \ I = �. We have l 6= q because of

Z 62 f�;M; T

0

; U

0

;M n T

0

;M n U

0

; T

0

[ U

0

;M n (T

0

[ U

0

)g:

We have jHj � 2 because of the de�nition of x

Z

, therefore jl n Ij > 1 holds. We have

(in

l

(I); in

q

(E)) 62 �

21

. Therefore there exists 1 � i � 10 with

(in

l

(I); in

q

(E)) 2 �

i

[ �

�1

i

:

If (in

l

(I); in

q

(E)) 2 �

1

then we get q = w

T

0

;U

0

and

in

l

(H) = in

r

T

0

[U

0

(a

T

0

[U

0

3

; a

T

0

[U

0

4

) 2 x

Mn(T

0

[U

0

)

6= x

Z

which is a contradiction to in

l

(H)= <�

D

>= x

Z

.

If (in

l

(I); in

q

(E)) 2 �

�1

1

then we get q = r

T

0

and

in

l

(H) = in

w

U[V (b

U;V

5

; b

U;V

6

) 2 x

MnT

0

6= x

Z

which is again a contradiction.

Analogously we get a contradiction if (in

l

(H); in

q

(E)) 2 �

j

[ �

�1

j

holds with 2 � j �

10.

Case 2: c = 0

Then we get a� in

q

(E)= <�

D

>= a� b = x

Z

, so in

q

(E)= <�

D

>� x

Z

and

in

q

(E)= <�

D

> �(x

Z

)

0

= in

q

(E)= <�

D

> �x

MnZ

exists. We have

M n Z 62 f�;M; T

0

; U

0

;M n T

0

;M n U

0

; T

0

[ U

0

;M n (T

0

[ U

0

)g;

so we get the contradiction like in case 1 (withM nZ instead of Z). Therefore B is a

block. The atoms of B are not contained in P . If M is �nite then each block of JDK

is �nite and therefore each block is generated by its atoms. So theorem 16 does not

hold for diagrams which are not OMA-diagrams. If M is in�nite then the block B is

not generated by atoms(B).

The following example shows that there exists an OMA-diagram with �nite lines,

such that condition (2a) of Theorem 29 is satis�ed, but there exists a clique which is

not contained in a line.

Example 4:

Let D = (P;R) with R = fr

n

jn � 3g with r

n

= fa

0

; a

1

; a

2

; : : : ; a

n

; b

n

; c

n

g for n � 3
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and a

n

= (0; n) for n 2 N and b

n

= (1; n) and c

n

= (2; n) for n � 3 and P =

S

R.

Let � = �

1

[ �

2

with

�

1

= f(in

r

(E); in

s

(E))jE � r \ s and r; s 2 Rg and

�

2

= f(in

r

(r n E); in

s

(s n E))jE � r \ s and r; s 2 Rg:

Then � is re
exive and symmetrical. We have �

0

1

= �

2

and �

0

2

= �

1

, so � is compatible

with

0

. It is not di�cult to see that � is transitive and compatible with �, so � is a

congruence relation. � is generated by �

D

, so we get <�

D

>= �.

D is a diagram:

For a 2 r 2 R and E � s 2 R with (in

r

(fag); in

s

(E)) 2<�

D

>= � we get E = fag, so

with Theorem 12 we only have to proof (C2). Let r 2 R. The mapping nat

<�

D

>

� in

r

is injective because of <�

D

>= �.

Now let in

r

(E)= <�

D

>; in

r

(F )= <�

D

>2 JDK such that

in

r

(E)= <�

D

> �in

r

(F )= <�

D

>

exists. Then there exist s 2 R and G;H 2 P

co�n

�n

(s) with G \H = � and

in

r

(E)= <�

D

>= in

s

(G)= <�

D

> and in

r

(F )= <�

D

>= in

s

(H)= <�

D

> :

Because of <�

D

>= � we get E \ F = �, so nat

<�

D

>

� in

r

is closed. Therefore D

is a diagram. D is an OMA-diagram because of Theorem 27 and Lemma 28. The

set A = fa

n

jn 2 Ng is a clique which is not contained in a line. Condition (2a) of

theorem 29 is satis�ed. The diagram D is not complete because with Theorem 3 the

set A = fJa

n

Kjn 2 Ng generates an in�nite Boolean subalgebra, but D contains only

�nite lines, so every block would be �nite, if D is complete.

4 Conclusion

With the theorems of chapter 2 we get an algorithm how to check whether the inter-

pretation of a �nite hypergraph is a complete OMA-diagram:

Input: �nite hypergraph D = (P;R)

Output: \yes" if D is a complete OMA-diagram, \no" otherwise

Algorithm: If there exist r; s 2 R with r 6= s and jr n sj � 1 then the algorithm

ends with output \no". If the relation � := f(in

r

(E); in

s

(F ))j there exist t; u 2 R

with t = E

_

[(s n F ) and u = F

_

[(r n E)g is not transitive or not compatible with �

then output \no". If there exists a triangle but no line containing the corners of the

triangle then output \no". If there exists a line s 2 R which is covered by two other

lines but there does not exist a line containing the rest of the two other lines and

their intersection, then output \no". Otherwise output \yes".

This algorithm has been implemented by the author in the program \omacheck".

The correctness of this algorithm follows from Theorem 34 and from Lemma 32.
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