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Introduction

Greechie diagrams are a well known graphical representation of orthomodular partial
algebras, orthomodular posets and orthomodular lattices. In [K83] and [D84] some
characterisations of Greechie diagrams of orthomodular posets and of orthomodular
lattices are given under some assumptions, for example, that the family of blocks
is pasted, or that the intersection of each pair of blocks contains less or equal than
four elements. Now I am going to present a generalisation of these characterisations
for orthomodular partial algebras (or equivalently orthomodular posets see [BM94]).
Here we consider arbitrary hypergraphs with finite lines. A Greechie diagram can
be seen as a special hypergraph: Different points of the hypergraph have different
interpretations in the corresponding partial algebra A := (A;@,,0) of type (2,1,0)
and each line in the hypergraph has a maximal Boolean subalgebra as interpretation,
in which the points are the atoms. A diagram is complete if each maximal Boolean
subalgebra is induced by a line of the hypergraph. The characterisation theorems in
chapter 2 provide conditions to check, whether a hypergraph is a complete diagram
of an orthomodular partial algebra. This poperty can be checked without having to
compute the interpretation. We just have to consider the lines in the hypergraph.

1 Blocks of orthomodular partial algebras
Definition 1 An orthomodular partial algebra (briefly: OMA) is a partial algebra

A= (A;8,,0) of type (2,1,0) such that the following axioms hold in A (the term

existence statement ¢ = ¢ is written as D(t)):

(A0) D(0)
(A1) 2" =2
(A2) a2’ £ 0
(A3) 20 =2
(Ad)

A4 D(x@y)éx@yéy@x



(A5) D((z Dy) D z) = (2Dy) D2 =D (yD2)

(A6) D(x dy) AD(y' & 2) = D(x & 2)

(AT) D(x Dy )AD(2' By)= 2=y

(A8) D(z D y) AD(y @ 2)AD(z B 2) =Dz (y®2))
(A) Dz dy)=ad(edy) =y

Note that axioms (A3) and (A6) are consequences of the other axioms (see [Pu94]).
When we use different partial algebras A, B, ... then sometimes we write the algebra
as index of the operations (G4, Pp,...) to make clear which operation is meant. In
an OMA A we define 1 := 0’. There exists a canonical bijection between the class
of all OMAs and the class of all orthomodular posets (see [BM94]): For every OMA
A the structure (A, <., 0) with @ <y iff # @y exists is an orthomodular poset and
for every orthomodular poset (B, <,,0) the structure (B, &, ,0) with @ $y = z iff
z <y and z = sup(x,y) is an OMA. These transformations are invers to each other.
We have = < y iff there is an element z € A with « & z = y. Note that if © § y exists
for &,y € A then inf(a,y) = 0 (see [BM94]). The induced order <g of a subalgebra B
(which is always an OMA because the axioms are open formulas) is the restriction of
the order <4. An OMA A is called Boolean iff the corresponding orhomodular poset
(A, </,0) is a Boolean lattice. For an OMA A let atoms(A) be the set of all atoms
of the induced orthomodular poset (A, <), 0).

For a set M let P(M) := (P(M),d,", D) be the Boolean OMA with the powerset
of M as carrier set, ' = M\ E and @ F = G iff G is the disjoint union of £ and I
for B, F,G C M. Let Pein(M) := (Pein(M), @, , D) be the Boolean subalgebra of
P(M) with Pein(M) = {E C M|FE is finite or M \ E is finite }. If M is finite then
we have Pefin( M) = P(M).

For a partial algebra A = (A,®,,0) the cardinality |A| of A is defined as the
cardinality of the carrierset A: |A| := |A|. A maximal Boolean subalgebra of a
partial algebra A = (A, &, ,0) is called block. The subalgebra which is generated by
a subset F£ C A is denoted by < I/ >.

For a family (A:)ier of OMAs the coproduct C' = [],.; Ai in the category of partial
algebras is a “0-1-gluing”, that means all zero elements of the OMAs are identified

ZnZ(OA,) = OQ = inj(OA]) for Z,] - [,

where in; : A, — (' is the canonical injection into the coproduct, and all units of

these OMAs are identified
an(léz) = 1Q = inj(lé]) for Z,] cl.

All other elements remain unequal: in;(a) # in;(b) for all 7,5 € I,a € A; and b € A;
with (¢,a) # (j,b) and 04, # a # 14,.

Now we show some properties of OMAs.
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Lemma 2 Let A be a Boolean OMA, a € atoms(A) andb e A. Thena <bora <V
holds. If b is also an atom with a # b then a & b exists.

Proof. If a £ b then, because of the distributivity of a Boolean lattice,
a = inf(a, sup(b, ")) = sup(inf(a, b), inf(a,d")) = sup(0,inf(a, b)) = inf(a,d’),

soa < V. Ifbisan atom with @ # b then @ £ b and a < ¥V, so a & b exists. ]

The following theorem is a generalisation of a remark in [BM94]:

Theorem 3 Let A be an OMA and E C A. Then the following conditions are

equivalent:
1. a @b exists for all a,b € E with a # b.

2. There exists an isomorphism ¢ : P 1= Tﬁ;ﬁn(G) —< E > with

SI) = DF and §(G\ F) = (DFY

for finite subsets F' C G, where G := (EU{(DEY})\ {0} if £ is finite and
G := E\ {0} if E is infinite.

3. E generates a Boolean subalgebra of A with E C atoms(< E >)U{0}.

Proof.

1 —=2:

Because of the axioms (A4), (A5) and (A8) the sum (DF exists and is welldefined
for all finite subsets F' C E. Therefore the set (¢ in condition 2 is welldefined. Let
¢ : P —< E > be given with ¢(F) := DF and ¢(G\ F) = (PF)' for finite subsets
F C . The function ¢ is welldefined because if F' and '\ F' are finite then

DFrao DG\ F)=DG=DEa (DE) =1

and therefore D F = ((P(G\ F))’ because of the uniqueness of the complement (see
[BM94]). Obviosly ¢(F') €< E > holds for all F' € P. The mapping ¢ is compatible
with * and 0.

Compability with &:

Let Fy, Fy € P be such that Iy §&p I, exists. Then Fy N Fy = O and Fy or I, must
be finite. If both are finite then we have ¢(Fy Bp Fy) = D(FL U Fy) = &(Fy) & o(Fy).



Now assume that [} is finite and Fj is infinite. Then DF, & (B(G \ Fy))" exists
because Iy C G\ F;, holds, so

(O(F) @ d( 1)) @ (o(1y Bp 1)) =
Dr e (DG R) DG\ (Fap k) =
(B(G\ ) @ BG\ Fr) =1

so we get o(F1) B o(Fa) = o(Fy Bp Fy) because of the uniqueness of the complement.
Analogously for infinite F} and finite F,. Therefore ¢ is a homomorphism.
Closedness of ¢:

Let Fi, Fy € P such that ¢(Fy) @ ¢(F3) exists. Then we have inf(¢(Fy), ¢(F2)) = 0.
Assume that there exists an element a € Fy N Fy. If F} is finite then we get

a < @F1 = ¢(F1)

and if F} is infinite then we get

a < (DG\ 1)) = o(F)

because of the existence of a @ (D(G'\ F1). Analogously we get a < ¢(Fy) which is a
contradiction to inf(¢(Fy), ¢(F2)) = 0 # a. Therefore Fy N Fy = ) holds and Fy G p Fy
exists.

Injectivity of ¢:

Let Fy, Fy € P with ¢(Fy) = ¢(Fy).

Case 1: | and F; are finite.

Let « € F;. Then B F, & a does not exist and therefore P F, & a does not exist
because of (DFy = ¢(Fy) = &(Fy) = D Fy. Therefore a € Fy. So we get Fy C Fy and
analogously Fy C [}, so we have I} = Fj.

Case 2: [, is infinite.

If Fy is finite then we get

DI = o(1) = o(F2) = (D(G\ 12)),

so DF GD(G\ Fy) = 1. But the set F} U(G\ Fy) is finite, so there exists an element
a € G with a € F1 U (G \ Fz), and with axiom (A8) the sum

D U(G\F)U{a})=1da

exists, which is a contradiction to 0 € (. So F; must be infinite, and because of
G\ F1) = o(F1) = o(Fy) = o(G\ Fy) we get G\ Fy = G\ F like in case 1.
Case 3: F] is infinite.



Analogously Case 2.

Therefore ¢ is injective.

Surjectivity of ¢:

@(P) is a subalgebra of A because ¢ is a closed homomorphism.

We have F \ {0} C ¢(P) and therefore < E >C &(P), so ¢ is surjective and an
isomorphism.

2—=3:

{g} is an atom of the Boolean algebra P& () for g € G, so #({g}) = g is an atom
of the Boolean algebra < F >. Therefore F C atoms(< E >) U {0} holds.

3 — 1: Lemma 2 and axioms (A3) and (A4). ]

Note that if £ = atoms(B) holds for a Boolean subalgebra B < A which is
generated by atoms(B) then we get (¢ = E in this theorem, so B = Pefin( ). This
theorem is usefull to find Boolean subalgebras and blocks in an OMA. It also provides
a characterisation of Boolean OMAs that are generated by the atoms:

Corollary 4 Fvery Boolean OMA A which is generated by atoms(A) is (up to iso-
morphy) of the form Tﬁ;ﬁn(E) for a set E.

Proof.
Use E := atoms(A) in Theorem 3. n

In the following theorem we use Theorem 3 to show that the atoms of an OMA
in which each block is generated by the atoms are exactly the atoms of the blocks
occuring in the OMA.

Theorem 5 Let A be an OMA, such that each block B < A is generated by atoms(B).
Then

U{atoms(ﬁﬂﬁ block of A} = atoms(A)

holds.

Proof.

Cﬁg”:

Let B be a block of A and x < z € atoms(B). Now it will be shown that « € {0, z}
holds. y := (x & 2') exists and @ & y = z holds because of axiom (A9).

Let E := (atoms(B) \ {z}) U{x,y}. For e € atoms(B) \ {z} the sums = & e and
y @ e exist because of the axioms (A5) and (A4) and the existence (see Lemma 2) of
zhe=(xdy)Pe. Soforall a,b € E with a # b the sum a @& b exists, and because of
Theorem 3 E generates a Boolean subalgebra €. We have atoms(B) \ {z} C C and
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z=ady € C,s0 B C C because B is generated by atoms(B). Therefore B = C
holds because B is a maximal Boolean subalgebra. So we have z,y € B and therefore
x € {0,z}, and z is an atom of A.

“D7:

Now assume a € atoms(A). Then {0, 1,a,a’} is a Boolean subalgebra which contains
a. With the lemma of Zorn there exists a maximal Boolean subalgebra B < A which
contains a. Of course a € atoms(B) holds because @ is an atom of A. So we get

a € | J{atoms(B)|B block of A}. ]

A consequence of this theorem is, that every OMA A in which each block is
generated by its atoms, is generated by atoms(A), because each element ¢ € A is in
a block B < A and therefore a is generated by atoms(B) C atoms(A).

2 Greechie diagrams
Greechie diagrams are used as a graphical representation of OMAs.

Definition 6 A hypergraph' D = (P, R) consists of a set P and a system R C P(P)
of sets with | J R = P and @ ¢ R. The elements of P are called points, the elements of
R are called lines. The hypergraph is called nontrivial if P # (). Two points a,b € P
are called connected by the line r € R if a,b € r holds. Let C := [] cx Peofin(y)
be the coproduct of the Boolean OMAs in the category of partial algebras. For
r € Rlet in, : Pein(r) — C be the canonical injection into the coproduct. Define
~p:= {(in,({a}),ins({a}))|r,s € Rand a € r Ns}. Let <~p> be the smallest
congruence relation on C, which contains ~p. The interpretation of D is defined by
[[D]] = Q/ <~p>.

For a € P the interpretation of the point « is defined by [a] := in,.({a})/ <~p>
where r is a line which contains a. Because of P = |J R there always exists such a
line r, and because of the definition of ~p the interpretation [a] of a is welldefined.
For r € R the interpretation of the line r is defined by

1] i= in (PR (1)) <~p>i= {in,(E)/ <~p> |E € PEi(r)}.

A hypergraph D is called abstract Greechie diagram if the following three conditions
hold:

(C1) @ # b implies [a] # [b] for a,b € P.

(C2) naten s 0in, : Pin(r) — [r] is an isomorphism? for all » € R.

(C3) [r] is a block of [D] for all r € R.

lsee [BgT6]
Znote that this condition is equivalent to the property that nat<~,~ o in, : T%%ﬁn(r) — [D] is
injective and closed



A hypergraph D is called complete, if for every block B < [D] there exists a line
r € R such that [r] = B.

A hypergraph (diagram) D is called OMA-hypergraph (OMA-diagram resp.), if [D]
is an OMA.

In the graphical representation of a hypergraph each line r € R connects the points
a € r. To distinguish between one and two lines (for example R = {{a, b, ¢, d, e} } con-
tains one line, that connects the elements a,b, ¢, d and e, but R = {{a,b, ¢}, {c,d,e}}
contains two lines, that connect the same elements) in the graphical representation,
we consider a line r € R as a line without a corner, that means a differentiable curve.
If two lines contain the same point ¢ € P, then these lines have to have different
tangents at this point.

There is another possibility to define the inrepretation of a hypergraph D: Instead
of the congruence relation <~p> we can use the congruence relation < o > with
o = {(in,(E),ins(E))|r,s € Rand E € PLin(r) N Pefin(s)}. If we now define
[D] :=C/ < o > then we get a different interpretation of the diagram (see example
2 in chapter 3). If every line of a diagram is finite, then both definitions coincide, we
just get a difference if there are infinite lines. All theorems, lemmas and corollaries
which are proved in this paper also hold for this new definition, except Theorem 22. In
this theorem we would get some problems to prove the isomorphy [D] = [Comp(D)].
We do not know a counterexample for this isomorphy (with < ¢ > instead of <~p>),
but because of the properties of example 2 (see chapter 3) we think Theorem 22 is
wrong for this new definition of [D].

In the following in a diagram D = (P, R) an element ¢ € P is identified with the
corresponding element [a] € [D]. Because of condition (C1) and the definition of
~p we have a = b iff [a] = [b] for a,b € P, so P can be seen as a subset of [D]:
P ={[a]|la € P} = {in,({a})/ <~p>la €r € R} C[D].

If the elements of R are disjoint then <~p>= id¢ and [D] = C hold. The
trivial hypergraph D = (0, ) is the only hypergraph with [[D]| = 0. Obviously this
hypergraph is a complete diagram. There does not exist a diagram D with [[D]| =1,
because for each hypergraph D = (P, R) with |[[D]| = 1 we get R # (), and with the
condition @ € R we get the existence of r € R with |r| > 1, so we have |PLin(r)| > 2
but [[]] < |[[P]]| =1, so condition (C2) does not hold.

There exists up to isomorphy exactly one diagram D with |[D]| = 2. This is
proved in the following lemma.

Lemma 7 Let D = (P, R) be a diagram. Then the following conditions are equiva-
lent:

1. |[[D]] = 2.
2. There exists a line r € R with |r| = 1.

3. R={{a}} for an element a € P.



J.|P|=1.

Proof.

1 —2:

Because of R # () there is a line r € R. Because of the definition of hypergraphs we
have r # ), and because of condition (C2) and |[D]| = 2 we get |r| = 1.

2= 3

Let r € R with |r| = 1. Because of condition (C3) the set {0,1} = [r] is a maximal
Boolean subalgebra, but for s € R this subalgebra is contained in [s], so we get
[s] = {0,1}. With condition (C2) we get |s| = 1 and with condition (Cl) we get
r=s.

3 — 4

P=JR={a}.

4 —1:

We have O € R, and because of P =|J R we have R = {P} and [D] = {0,1}. ]

So a line in a diagram with |P| > 1 is not a singelton: |r| > 1 for all r € R.
To check whether the interpretation of a hypergraph is an OMA we do not need to
test all axioms, because some axioms are satisfied in interpretations of all hypergraphs.

Theorem 8 Let D = (P, R) be a hypergraph with P # O. Then in [D] the azioms
(A0), (A1), (A2), (A3), (A4) and (A9) hold. If D is a diagram then axiom (A7)
holds too.

Proof.

Proof of (AO):

Because of R # () there exists a line r € R, so we get the existence of the constant 0
in Peofin(r) and therefore in [D], so axiom (A0) holds.

Proof of (A1):

Let € [D]. Then there exist r € R and £ € Pein(r) with = in,(E)/ <~p>.
Because of the homomorphism nat<. > oin, we have x = in,.(E")/ <~p>= 2", so
axiom (A1) holds.

Proof of (A2):

Let z € [D],r € R and E € PL(r) with = in,(F)/ <~p>. Then we have

@2’ =in(E)/ <~p>&in.(E)] <~p>=in.(E P E)] <~p>=in,(r)] <~p>=0

so axiom (A2) holds.
Proof of (A3):
Let z € [D], r € R and £ € P (r) with = in,(E)/ <~p>. Then we have

r@®0=1in.(F) <~p> Bin. (D)) <~p>=in.(F G D)/ <~p>=zx



so axiom (A3) holds.

Proof of (A4):

Let x,y € [D] such that « @ y exists. Then, by the definition of a coproduct, there
exist r € R and E, F € PLin(r) with

r=1in.(E) <~p>, y=1in.(F)/ <~p>
such that FF @ F exists. Therefore we have
rdy=mn(E®F) <~p>=in.(FBE) <~p>=yduz

so axiom (A4) holds.

Proof of (A9):

Let z,y € [D] such that = @ y’ exists. Then, as above, there exist r € R and
E, F € Pein(ry with

r=1n.(E) <~p>, y =in.(F)/ <~p>
such that FF @ F exists. Therefore we have
rd(xdy) =in(E®(E®F)) <~p>=in,(F')] <~p>=y

because Pt (r) is an OMA, so axiom (A9) holds.

Proof of (AT7):

Now assume that D is a diagram. Let x,y € [D] such that @ @ ¢y’ and 2’ @y
exists. Then there exist r € R and E,F € PLW(r) with 2 = in,(F)/ <~p>
and y' = in.(F)/ <~p> such that F & F exists. Then we have EN F = () and
¥ =in(r\ E)/ <~p>and y =in.(r\ F)/ <~p>. Because of condition (C2) and
the existence @’ @y of we get (r\ E)N(r\ F)=0O and E=r\ F, so

r=in.(F) <~p>=in.(r\F)/ <~p>=y
and axiom (A7) holds. m

Lemma 9 Let D = (P, R) be a diagram and r,s € R such that r N s is finite and
r # s holds. Then |r\ s| > 1 holds.

Proof.  The set [r] cannot be a subset of [s], because then (C3) would imply
[r] = [s], and (C2) together with (C1) would then imply » = s. So we have |r\s| > 0.
Now assume |r \ s| = 1. Let a be the only element of r \ s. Then we get
{[olla # b€ r}y €[]
[a] = (in.(rNs)/ <~p>) = (ins(rNs)/ <~p>)" € [s]

[r] <[]

This is a contradiction to what was mentioned above. m



So in a diagram with finite lines a line cannot contain all but one element of
another line, in particular no line is contained in another line.

The following lemma gives an easier condition than (C2) to check whether a
hypergraph is a diagram:

Lemma 10 Let D = (P, R) be a hypergraph that satisfies (C1) and (C3). Then D
is a diagram iff for each a € r € R the element [a] is an atom of the block [r].

Proof.
—: Trivial
o

Let r € R. Then [r] is a Boolean OMA because of condition (C3). The element
in.({a})/ <~p>is an atom of this OMA for a € r, and all these elements are different
because of condition (C1). And therefore, for £ := {in,({a})/ <~p> |a € r}, we
have 0 ¢ E. Note that if r is finite then ((PE) = 1’ = 0 holds. With Theorem 3 the

function

Qb = nat<~D> o inr : :Piczi(l)qﬁn(r) - [[T]]

is an isomorphism, so (C2) holds and D is a diagram. [

So in the graphical representation of a diagram D = (P, R) the interpretation
[r] of each line r € R is a block, in which the points are the atoms and all points
have different interpretations. These conditions are sufficient and necessary for the
property that a hypergraph is a diagram. Another method to prove this property is
given in Theorem 12. First we need a lemma:

Lemma 11 Let D = (P, R) be a hypergraph such that (in.({a}),ins(F)) €<~p>
implies = {a} for all a € v € R and s € Rand £ € Tﬁ;ﬁn(s) Let B a
Boolean subalgebra of [D] and in.({a})/ <~p>€ B for some a € r € R. Then
in.({a})/ <~p>€ atoms(B) holds.

Proof. Let y € B with y < in,({a})/ <~p>. Then there exists an ele-
ment z € B with y & 2 = in,({a})/ <~p>. There exist s € R and E,F €
Peofin(s) with y = ins(E)/ <~p>, z = ing(F)/ <~p>and ENF = (. We get
(in.({a}),ins(FUF)) €<~p>and FUF = {a}. Therefore y € {0,in,.({a})/ <~p>}
holds and in,({a})/ <~p> is an atom of B. ]
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Theorem 12 Let D = (P, R) be a hypergraph such that each line of D is finite and

(1n,({a}),n,(F)) e<~p> implies I/ = {a}
foracer e R and F C s € R. Then the following conditions are equivalent:

1. D is a diagram.
2. Condition (C2) holds.
3. Condition (C3) holds.

Proof.

1 — 2: Trivial

2= 3

Let r € R. Because of (C2) the set [r] is a Boolean subalgebra of [D]. Let B be
another Boolean subalgebra of [D] with [r] € B and let # € B. The line r is finite,
so there exists a finite Boolean subalgebra €' < B which contains [r] and = (take
for example the sublattice of B which is generated by [r] U {x, 2’} with respect to
the lattice operations). For all a € r the element in,({a})/ <~p> is an atom of C
because of Lemma 11. We have D{in.({a})/ <~p> |a € r} = in.(r)/ <~p>=1,
so atoms(C) = {in,({a})/ <~p> |a € r} and « € C = [r] which proves B = [r], so
(C3) holds.

3 — 1:

(C1) is satisfied because

in.({a})/ <~p>=ins({b})/ <~p> impliesa = b

foraerec Randbese R.
Let r € R. Then [r] is a Boolean subalgebra of [ D] because of (C3) and the function

¢ 1= nalcups 0 in, 2 P (r) — [r]

is an OMA-homomorphism between Boolean algebras and therefore a Boolean lattice
homomorphism (see [BM98]). Of course ¢ is surjective. Because of

(in,({a}), in,(0)) g<~p>

for a € r the equivalence class 0/kern(¢) in PLin(r) cannot contain an atom of

Peofin(r) 5o ¢ is injective. A bijective lattice homomorphism between Boolean OMAs

is an OMA-isomorphism, so (C2) holds and D is a diagram. [
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This theorem states that for every hypergraph D = (P, R) with finite lines in
which no point @ € P is equivalent to a different set £ € PLin(s) of points, we
only have to check condition (C2) (which is easier than (C3)) to decide whether D
is a diagram. Later it will be shown that for every OMA-diagram in which each
block is generated by its atoms (in,.({a}),ins(F)) €<~p> implies £ = {a} for all
a€r € Rand s € R with £ € P2n(s) (see Theorem 17).

Lemma 13 Let (D;)ier = (P, Ri)icr be a directed family of hypergraphs, that means
for each v,5 € I there exists a k € I with R; U R; C Ry.
Let D := (P, R) := (U;e; P U;er Bi). Then the following properties hold:

(1) <~p>=Uier <~p.>

(2) Forallr,s € R and E € P2 (r) and F € PFI7(s) the equality
in.(E)] <~p>=ins(F)] <~p>
holds iff there exists an i € I such that
in.(E)/ <~p,>=1ins(F)/ <~p,>
holds.
(3) For all r,s,1 € R and E € P (r), F € P (s),G € PP (1) the equality
in(E)] <~p>@ins(F)/ <~p>=in(G)] <~p>
holds iff there exists an i € I such that
in.(E)] <~p,> @ing(F)] <~p,>=1n(G)] <~p,>
holds.
Proof.

Proof of (1):
For R; C R; we have

~p;,C~p,C~p and

I 7t < T 2a(r) < [T 2ia(r)

reR; reR; reR

12



Therefore we get <~p,>C<~p,>C<~p>. The union of a directed family of con-
gruence relations is a congruence relation and we have

so we get

<~p>=J<~p>.
el

Proof of (2):

(2) follows from (1).

Proof of (3):

!

Let 1 € [ and r,s,t € R; and E € Pfin(r) | e Peofin(s) G € Peofin(¢) such that

ing(E)] <~p,> @ing(F)] <~p,>=1n(G)] <~p,>
holds. Then there exist u € R; and o, Fy, Gy € P () with
EanEy,=0,
FEy U Fy = Gy,
(1n,(E),in,(E;)) €<~p,> C<~p>,
(1ns(F),in,(F2)) €<~p,> C<~p>,

(1ns(G),1n, (Gz)) E<~p,> C<~p> .

Therefore in,.(F)/ <~p> @ins(F)/ <~p>=in,(G)/ <~p> holds.
—:
Let r,s,t € R; and E € PLin(r), [ € PLin(s), G € Pefin(¢) such that

Zn,,(E)/ <~p> @ins(F)/ <~p>= Znt(G)/ <~p>
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holds. Then there exist u € R and Ey, Iy, Gy € Pin(w) with

EynNFy, =0,
Ey Uy = Gy,

(iny(E),in(Es)) €<~p> =] <~p>,
el

(ins(F), inu(F3)) €<~p> = || <~p>,
el

(ine(G),iny(Ga)) €<~p> = ] <~p,> .

el

The family is directed, so there is an element ¢ € [ with

ing(F)) <~p,>=1n,(Fs)] <~p,>,
ing( ()] <~p,>=1n,(G3)/ <~p,>, and therefore

in (E)] <~p,> @ing(F)/ <~p,>=in(G)] <~p,>.

These properties are helpful to analyse infinite hypergraphs: The finite subdia-
grams form a directed family of diagrams, so we can use the properties of Lemma 13
to get informations about the structure of the whole diagram while only considering
finite subdiagrams. These properties are used in the following theorem to show that
a union of a directed family of diagrams with finite lines is again a diagram.

Theorem 14 Let (D;)ic; = (P, R:)ier be a directed family of diagrams in which each
line is finite. Then D := (P, R) := (U,c; Pi.U;er Bs) is a diagram.

Proof.

Proof of (C1):

Condition (C1) follows from (2) of Lemma 13 because (C1) holds for D;.

Proof of (C2):

For r € R the injectivity of nat<. s oin, follows from (2) of Lemma 13. The closed-
ness follows from (3) of Lemma 13.

Proof of (C3):

Let r € R. Because of (C2) the set [r] is a Boolean subalgebra of [D]. Let B be
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another Boolean subalgebra of [D] with [r] € B and let # € B. The line r is finite,
so there exists a finite Boolean subalgebra €' < B which contains [r] and z. The
family is directed, so because of Lemma 13 and the finiteness of (' there exists a k € [
such that the set A := {in,(£)/ <~p,> |in.(E)/ <~p>€ C} is a subalgebra which
is isomorphic to C'. The Boolean algebra A contains inr(T%%ﬁn(r))/ <~p,> and we
get A = in, (PL(r))/ <~p,> because Dy, is a diagram, therefore z € [r]. So we
get B = [r] and (C3) holds in D. ]

The Union of a directed family of OMA-hypergraph is an OMA-hypergraph:

(P, R))ier be a directed family of OMA-hypergraphs.

Theorem 15 Let (D;)ic; =
= (Uier Pis Uier ) is an OMA-hypergraph.

Then D := (P, R) :

Proof. The axioms (A0)-(A4) and (A9) hold in [D] because of Theorem 8.
Proof of (A8):

Let @ = in.(F)/ <~p>€ [D],y = ins(F)) <~p>€ [D],z = in/G)/ <~p>€ [D]
such that Gy, y® 2 and = & z exist. The family is directed, so with Lemma 13 there
exists an ¢ € [ such that

in.(E)] <~p,> @ins(F)/ <~p,>,
ing(F)) <~p,> &in(G)] <~p,>,
Zn,,(E)/ <~p,;> @int(G)/ <~p,>

exist, so in,.(F)/ <~p,> G(ins(F)/ <~p,> ®in.(E)/ <~p,>) exists because D; is
an OMA. With Lemma 13 we get the existence of in,.(F)/ <~p> &(ins(F)/ <~p>
din(E)/ <~p>).

Proof of (A5) and (AT7):

Analogously (A8).

(A6) follows from the other axioms, so D is an OMA-hypergraph. [

The following theorem shows, that in an OMA-diagram, in which each block is
generated by its atoms the interpretation of the set of points P is the set of the atoms,

which occur in a block of [D].

Theorem 16 Let D = (P, R) be an OMA-diagram such that each block of [D] is
generated by its atoms. Then P = |J{atoms(B)|B block of [D]} = atoms([D])
holds.

Proof.
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U{atoms(B)|B block of [D]} = atoms([D]) holds because of Theorem 5.
Because of the conditions (C2) and (C3) each equivalence class in,({a})/ <~p> for
a € r € Ris an atom of the block [r], so we have

P C U{atoms(ﬁﬂﬁ block of [D]}.

For @ = n,(F)/ <~p>€ atoms([D]) we get |E| = 1 because 0 = in,.(0)/ <~p>¢
atoms([D]) holds and |F| > 1 would imply that @ = y & z for some y,z € [D]
with y # 0 # z which is a contradiction to « € atoms([D]). Therefore @ € P, so
atoms([D]) € P holds. ]

For every complete diagram D = (P, R) we also get the equality

P= U{atoms(ﬁﬂﬁ block of [D]}

because each block B is induced by a line r, so the atoms of B are exactly the elements
of r. If the diagram is not an OMA-diagram then we do not always have an order
on [D], so it does not make sense to ask whether P = atoms([D]) holds. If D is a
complete OMA-diagram then each block B < [D] is generated by its atoms because
B is induced by a line r € R, so we get P = atoms([D]) with Theorem 16.

Theorem 17 Let D = (P,R) be an OMA-diagram such that each block of [D]
is generated by its atoms. Let a € r € R and s € Rand F € Tﬁ;ﬁn(s) with
(in.({a}),ins(F)) €<~p>. Then E ={a} holds.

Proof. iny(F)/ <~p>=1in,({a})/ <~p>€ P = atoms([D]) holds, so |E| =1 like
in the proof of 16, and with condition (C1) we get £ = {a}. ]

This theorem shows that a point of a OMA-diagram in which each block is gen-
erated by its atoms cannot be equivalent to another set of points. Together with the
following lemma this theorem can be used to prove that every two points a,b € P for
which the sum «a & b exists are connected by a line.

Lemma 18 Let D = (P, R) be a hypergraph such that (in.({a}),ins(F)) €<~p>
implies £ = {a} for alla € r € R and s € R and I € Tﬁ;ﬁn(s) Let a,b € P with
a#b. Then [a] & [b] exists iff there exvists a line t € R with a,b € t.

Proof.
—:
Let r,s € R with a € r and b € s. Because of the existence of the sum

in,({a})/ <~p> Dins({0})/ <~p>
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there exist t € R and E, I’ € PL(¢) with £ N F = @ such that

(in.({a}),in(F)) e<~p> and (ins({b}), ins(F)) E<~p>

hold, so we have £ = {a} and F' = {b}.
!
The function nat<. > oin; is a homomorphism. [

This leads to the following theorem:.

Theorem 19 Let D = (P, R) be an OMA-diagram such that each block of [D] is

generated by its atoms. For EE C P the following conditions are equivalent:
1. E generates a Boolean subalgebra B < [D] with E C atoms(B).
2. For all a,b € F with a # b the sum [a] & [b] exists in [D].

3. For all a,b € I there exists a line r € R with a,b € r.

Proof.

1 — 2: Lemma 2

2 — 1: With Theorem 3 F generates a Boolean subalgebra B with £ C atoms(B) U
{0} and with condition (C2) we get £ C atoms(B).

2 ¢» 3: Theorem 17 and Lemma 18. [

In a hypergraph D = (P, R) a maximal subset £ C P in which each pair of points
is connected by a line is called clique.

Theorem 20 [f D is an OMA-diagram, such that each block of [ D] is generated by
its atoms then the blocks of [D] are exactly the subalgebras, that are induced by a
clique. = atoms < E > holds for every clique.

Proof.

—:

For a block B < [D] take E := atoms(B) C P, then each pair of points in E is
connected by a line. Let £ C ' C P such that each pair of points in F' is connected
by a line, then with Theorem 19 F' generates a Boolean subalgebra C' < [D] with
B C C. The Boolean subalgebra B is maximal, so B = (' and

F Catoms(C) = atoms(B) = E
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hold, which proves that F is a clique.

!

Let E be a clique. With Theorem 19 E generates a Boolean subalgebra B with
E C atoms(B). The algebra B is contained in a block €. With Theorem 16 the
set ' := atoms(C) is contained in P and with Theorem 19 each pair of points
of F'is connected by a line. For e € E we have ¢ € atoms(B) C C and with
Theorem 16 € is an atom of [D] and therefore e € atoms(C) = F. So we have
E C I and therefore I/ = [I' because I is maximal. So B = (C is a block and
E =F = atoms(C) = atoms < FE > holds. n

For a diagram D = (P, R) the completion of D is defined by Comp(D) :=
(P, R.) where R, := {E C P|{[e]|e € E} is the set of all atoms of a block of [D]} =
{atoms(B)|B block of [D] with atoms(B) C P}.

Corollary 21 If D is an OMA-diagram, such that each block of [D] is generated by
its atoms then R. = {FE C P|E is a clique} holds.

Proof. The atoms of each block are contained in P because of Theorem 16 and the
cliques are exactly the atoms of blocks because of Theorem 20. [

To analyse a Greechie diagram with respect to some properties (for example
whether it is an OMA-diagram) it is sometimes better if the diagram is complete.
There exists a canonical isomorphism between a diagram in which each block is gen-
erated by its atoms and the completion of the diagram, which is shown in the next
theorem.

Theorem 22 Let D = (P, R) be a diagram such that each block of [D] is generated
by its atoms. Then (P, R.) := Comp(D) is a diagram with R C R. and [D] =
[Comp(D)], where the isomorphism is defined by

¢ : [D] = [Comp(D)],in.(E)] <~p>— in.(E)] <~Compn)> -

If atoms(B) C P holds for each block B < [D] then Comp(D) is complete.

Proof. We have & ¢ R, because each block of D is generated by its atoms. D
is a diagram, so the set {[a]|a € r} for r € R is the set of all atoms of the block
[r], and we have R C R.. First we prove the isomorphy [D] = [(J(RUT), RU T)]
for every finite set T C R.. Define {ri,rq,... ,r,} := T\ R with r; # r; for i # 7,
R; == RU{ri,re,...,r;} and D; := (P, R;) for 0 < j < n. The conditions (C1),
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(C2), (C3) for D; and the isomorphy [D] = [D;] are proved by induction:
Let 0 < 5 < n such that D;_; is a diagram and

dj—1: [D] = [Dj-1],in.(E)/ <~p>— in.(F)/ <~p,_,>

is an isomorphism.

For a € P let s, € R with a € s,. For r € R, the set {in,,({a})/ <~p> |a € r} is
the set of all atoms of a block in [D], and because of the isomorphism ¢;_; the set
{ing,({a})/ <~p,_,> |a € r} is the set of all atoms of a block in [D;_,]. For r € R,
define

7, Peoin(yy — [D;_,] with
T.(F) = @{inse({e})/ <~p,_, > le € B} and
r(r\ B) = (D{in..({e})/ <~p,_,>|e € B}

for finite sets £ C r. This function is welldefined and an embedding because of
Theorem 3 (with A :=< {in,,({a})/ <~p,_,> |a € r} > as Boolean OMA), so
E # Fiff 7,.(E) # 7.(F) holds for E, F € Pelin(y).

Define

Y [Di1] = [D;],in,.(E)/ <~p,_, > in(E)/ <~p,>

and ¢; := ¢ o ¢;_;. These functions are welldefined and compatible with the opera-
tions because of R;_; C R; and ~p,_, C~p_, so they are homomorphisms.
Surjectivity of :

Let € [D;]. Then there exist r € R; C R, and E € Pin(r) with

in.(B)/ <~p,>=z.

¥ is a homomorphism, so if F is finite then

U(r(E)) =

P(D{ins.({e})] <~p,.,>le € E}) =
D{v(in..({e})/ <~p,_,>)le € B} =
D{in,.({e})/ <~p,> e € E} =
D{in.({e})/ <~p,> e € E} =

in(E)/ <~p,>=ux
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holds and if ¥ is infinite then r \ £ is finite so we get

$(7 ()
S\ )
(in(r\ B)/ <~p,>) =

Therefore v is surjective.

In the following each equivalence class 7., (E) for E € Pgin(r;) is used as a subset of
HreR] Peofin(ry . Define p 1= p; U py U p3 U py, where

P1 ::<NDJ_1>7

o2 = Ut ()} 7 (BB € Pn(r,),

s = U, (B) x {in,, (EE € P0n(r),

o1 = {ine (B, in, (E|E C 1.

Now we prove, that p is a congruence relation on HreR] Peofin(q):

Reflexivity of p:

p is reflexive because every pair (in,(E),in,.(E)) forr € R;, E € P (r) is an element
of p1 or py.

Symmetry of p:

p is symmetrical because py, p2 U ps and py are symmetrical.

Transitivity of p:

Let

(in.(F),ins(F)) € p and (ing(F),in:(G)) € p

with r,s,t € R;, and E € Pein(r) € Peolin(s) G € Peling). If (in,.(E),ins(F)) €
pa ot (ins(F),iny(G)) € ps holds then we have (in.(F),in(G)) € p so we just have
to consider the relations py, po and ps.

Case 1: (in,(E),iny(F)) € p

If (ins(F),in(G)) € p1 also holds, then (in.(F),in(G)) € p1 C p because p; is
transitive.

I (in,(F), ind(G)) € py then in(F) € (Ier,_, P()) M in, (P5=(r)) = {0,1)
holds. For in,(F') = 0 we get F' = O and in,(G) € 7,,(F) = {0} because condition
(C2) holds for D;_y. If iny(F') = 1 then F' = s and we have in,(G) € 7., (F) = {1}.
So ins(F') = iny(G) holds and (in,.(F),in(G)) € p.

If (ins(F),in:(G)) € ps holds, then (in,(E),in(G)) € ps C p.

Case 2: (in,(E),ing(F)) € p2

) € p1 holds then (in,.(E),in:(G)) € p2 C p.

)) € p2 holds then iny(F) = iny(G) € {0,1} and therefore we get
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If (ins(F'),in(G)) € p1Ups holds then ing(F) = iny(G) € {0,1} and therefore we get
(in.(F),in:(G)) € p.

If (ins(F),in(G)) € pa holds then (in.(E),in(G)) € p1 C p.

Therefore p is transitive.

Compatibility with ’:

p1 and py are compatible with ’.

Let (in.(E),ins(F)) € py. Then r = r; and in,(F) € 7. (£) hold and therefore

ing(F')" € 7.,(r \ ) because 7,, is an homomorphism. So we have

(in (EY.in(FY) = (in,(r \ E),in(FY) € ps € p

and analogously for ps, so p is compatible with the operation ’.

Compatibility with &:

Let (in.(F),ins(F)) € p and (in(G),in,(H)) € p such that in,.(E) @ in,(G) and
ing(F) @ in,(H) exist.

Case 1: (in,(E),iny(F)) € p

If (ini(G),in,(H)) € p1 holds then (in.(F) @ iny(G),ins(F) & in,(H)) € p1 C p.

If (ini(G),in,(H)) € py then in.(E) = 0 or in,(G) = 0 because in,.(F) & in:(G)

exists. Therefore we get
(in.(E),ins(F)) = (0,0) or (inG),in,(H)) = (0,0).

So (in.(F) & iny(G),ins(F) & in,(H)) € p.
Analogiously for (in:(G),in,(H)) € ps U ps.
Case 2: (in,(E),ing(F)) € p2

If (ini(G),in, (H)) € p1 U ps U py we have

(in.(F),ins(F)) = (0,0) or (in,(G),in,(H)) = (0,0)

so (in.(E) @ ing(G),ing(F) & in,(H)) € p.

If (iny(G),in(H)) € py then r = r; = L, ENG = O and ing(F) € 7., (F) and
iny(H) € 7.,(G) and therefore in,(F) @ in,(H) € 7. (E @ G) because 7, is an
homomorphism. So we have (in,(F) @& inyG),ins(F) & in,(H)) € pa C p.

Case 3: (in,(E),iny(F)) € pa

Analogously case 2.

Case 4: (in,(E),iny(F)) € p4

If (ini(G),in,(H)) € p1 U p2 U ps we have

(in.(F),ins(F)) = (0,0) or (in:(G),in,(H)) = (0,0),
so (in.(E) @ ing(G),ing(F) & in,(H)) € p.
If (ini(G),in,(H)) € ps then (in,(E) & inG),ins(F) & iny,(H)) € ps C p hold.

: : cofin
So p is a congruence relation on HreR] Peoin ().
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Let (in,({a}), iny({a})) E~p,.
If r # r; # s holds, then (in,({a}
If r =r; # s holds, then (in,({a}
If r # r; = s holds, then (in.({a}),ins({a})) € p3 C p.
If r =r; = s holds, then (in.({a}),ins({a})) € ps C p.
So we have ~p C p and therefore <~p . >C p.
Injectivity of :

Let in,.(E)/ <~p,_,>,iny(F)/ <~p,_,>€ [D;_1] with

” Zns({a})
” Zns({a})
({a})

€pt Cp.
€p2 Cp.

e N N N’
e N N N’

Y(in(E)/ <~p;>) = $(ing(F)/ <~p;_,>).

Then (in,(£),ins(F)) €<~p,>C p and r # r; # s hold, so we get

(in(B),insF)) € pr =<~op,_,>
and in,.(F)/ <~p,_,>=ins(F')/ <~p,_, > which proves the injectivity.

Closedness of :
Let in,.(E)/ <~p,_,>,iny(F)/ <~p,_,>€ [D;_1] such that

P(in(E)] <~p;>) @ Y(ins(F)] <~p,>)

exists. Then there exist ¢ € R;, G, H € Pin(¢) with

GNH=0,0n.(FE),in(G)) €E<~p,> and (iny(F),in(H)) €E<~p,> .
The sum 7(G) & 7(H) exists because 7y is an homomorphism,
V(1(G)) = in(G)] <~p,>=in.(E)/ <~p,>= (in,(F)/ <~p j—1 >) and
¢(Tt(H)) = Znt(H)/ <ND]>: Zns(F)/ <ND]>: ¢(lns(F)/ <NDJ_1>)

hold, and because of the injectivity of ¢» we get 7(G) = in,(E)/ <~p,_,)and 7,(H) =
in.(E)/ <~p,_,> and therefore ¢ is closed. This proves, that ¢ and ¢; = ¢ 0 ¢;_4
are isomorphism.

D; is a diagram:

Let a e r € Rj,b € s € R; with a # b. Then

iny({a})/ <~p,>= ¢j(in,({a}/ <~p>) # ¢ij(in.({b})/ <~p>) = ins({b})/ <~p,>

holds, so (C1) is satisfied for the hypergraph D;. Let r € R;. Then r = atoms(B)
for a block B < [D]. B is generated by atoms(B) and ¢;(B) is a block of [D;], so
with Theorem 3 we get in, (P (r))/ <~p,>= ¢;(B) which proves condition (C3).
For a € r € R; the element in,({a})/ <~p> is an atom of in, (P (r))/ <~p>, so
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in.({a})/ <~p,> is an atom of in,(Pgi(r))/ <~p,> because of the isomorphism
¢;. With Lemma 10 D; is a diagram.
So Dy :=(P,RUT) is a diagram and the map

or : [D] — [Dr],in(E)/ <~p>—in.(F)] <~p.>

is an isomorphism for all finite subsets T' C R..

Now we prove that ¢ : [D] — [Comp(D)] is an isomorphism. ¢ is compatible with
@," and 0 because of B; C R. and ~pC~gomp(n)-

Surjectivity of ¢:

Let z € [Comp(D)]. Then there exist r € R., E € PLn(r) with

an(E)/ <~Comp(D)>= T.

For T := {r} there exists an element y = in,(F)/ <~p>€ [D] with

or(y) = ine(E)] <~p;>

because ¢ is surjective. Therefore

ing(F)) <~pp.>= ér(y) =in,(F)/ <~p,> and
&(y) = ins(F)] <~compny>= 11 (E) ] <~compp)>=

hold, which proves the surjectivity.
Injectivity of ¢:
Let in,.(E)/ <~p>,ins(F)/ <~p>€ [D] with

Bin,(E)] <~p>) = $lin(F)] <p>).

Then (in,(E),ins(F)) €<~compp)> and because of Lemma 13 there is a finite set
T C R. with (in.(F),ins(F)) €<~p,.> and because of the injectivity of ¢r we get
in.(E)/ <~p>=1ins(F)/ <~p> which proves the injectivity of ¢.

Closedness of ¢:

This proof is analogously to the proof of the injecivity.

Therefore ¢ is an isomorphism.

Comp(D) is a diagram:

This prove is the same as the prove for D; (see above).

Completeness of Comp(D):

Now assume that atoms(B) C P holds for each block B < [D]. Let B be a
block of [Comp(D)]. Then C := ¢ *(B) is a block of [D] and C is generated
by r := atoms(C) € R., so in,(Pein(r))/ <~Gomp(p)>= B and therefore C'omp(D)
is complete. [
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For a diagram D in which each block is generated by its atoms this theorem
states, that we can compute the completion without changing the interpretation. The
completion is again a diagram and the interpretation of the completion is isomorphic
to the interpretation of D. If atoms(B) C P holds for each block B < [D] then every
block of Comp(D) is induced by a line r € R..

Let D be a diagram such that each block of [D] is generated by its atoms. Then
Comp(D) is an OMA-diagram iff D is an OMA-diagram. If these diagrams are OMA-
diagrams then Comp(D) is a complete diagram with [D] = [Comp(D)] and the lines
of Comp(D) are exactly the cliques of D (see Theorems 16 and 22 and Corollary 21).

Definition 23 Let A be a nontrivial OMA (|A] > 1) such that each block of A is
generated by its atoms. Define Diag(A) := (P, R) with P = atoms(A) and R =
{atoms(B)|B block of A}.

Note that for Diag(A) = (P, R) we get P = |JR because of Theorem 5. We
have &) ¢ R because the Boolean subalgebra {0,1} is contained in a block which is
generated by its atoms. Therefore Diag(A) is a hypergraph.

Lemma 24 Let D = (P, R) be a hypergraph in which each line is finite. Let E C r €
Rand FFC s € R. Let t € R such that t is the disjoint union of £ and s\ F. Then
(in.(F),ins(F)) €<~p> holds.

Proof. Because t is finite we get I/ € PLin(¢) and s\ I € PLin(¢) and therefore

ins(F) = (ins(s \ F)) <~p> (iny(s\ F)) = in,(E) <~p>in,.(F)

In the following theorem we use this lemma to prove that every nontrivial OMA,
in which each block is finite, is induced by a complete OMA-diagram.

Theorem 25 Let A be an nontrivial OMA in which each block s finite.
Then D := (P, R) := Diag(A) is a complete OMA-diagram with A= [D].

Proof. Every line r € R is finite because of the finiteness of the blocks. Let

v [ PRir) = A,

reR

in.(E) — BE
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for £ Cr € R. Then v is a welldefined homomorphism because of Theorem 3. For
r € R the restriction

T 1=

cofingy ¢ ine(PEIN(RY) < >
ing (LN (1) i, (Pea™(r) r

is an isomorphism because of Theorem 3.

For (in,({a}),ins({a})) €~p we have ¢ (in,.({a})) = a = Y(ins({a})) so we get
~pC kern(v)

and therefore <~p>C kern(y). Let ¢ : [D] — A be the induced homomorphism
with ¢(in,(E)/ <~p>) = ¢(in, (L)) for E Cr € R.

Now we prove that e < ¢(in,.(F£)/ <~p>) holds in A for alle € E C r € R. For
¢ € E we have in,({e}) < in,(F) in the Boolean OMA in, (P (1)), and because of

the isomorphism 7, we get

¢ = Ti(in.({e}) < 7 (in,(E)) = dlin, ()] <~p>).

Surjectivity of ¢:

Let @ € A. Then a is in a block B < A, so a is generated by atoms(B) =: r and with
Theorem 3 we get a € ¢([r]). Therefore ¢ is surjective.

Injectivity of ¢:

Let in,(E)/ <~p>,in,(F)/ <~p>e€ [D] with

Bin,(E)] <~p>) = $lin(F)] <p>).

Let e € E and g € s\ F. Then g < ¢(ing(s \ F)/ <~p>) = ¢(ins(F)/ <~p>)

holds, so we get the existence of

o(iny(F)) <~p>) &g = d(in.(E)/ <~p>) D g
= o(in (E\{e})/ <~p> @in,({e})/ <~p>) D g
= (o(in (E\{e})/ <~p>) D e) Dy

and with axiom (A5) we get the existence of e@® g. With Theorem 3 the set FU(s\ F')
generates a Boolean algebra which is contained in a block B. Let t := atoms(B) € R.
Fach element ¢ € EU (s\ F') C P is an atom of a block, so with theorem 5 we have
a € atoms(A) and therefore FU (s \ F') C atoms(B) = t. The union EU (s \ F) is
disjoint because of the existence of ¢ @ g for all e € F and g € s\ F.
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We have
DEV(\F)=DEe D\ F)=
$line(B)[ <~p>) & D(s\ F) =
¢lin,(E)/ <~p>) @ D(s\ F') =
$ins(F)/ <~p>)D(s\ F) =
Ds =1

Therefore EU(s \ F) = atoms(B) = t. With Lemma 24 we get in,(E)/ <~p>=
ing(F')/ <~p>, which proves the injectivity.

Closedness of ¢:

Let E Cr e Rand F C s € R, such that

¢(iny(E)[ <~p>) @ ¢(ins(F)/ <~p>)

exists. With Theorem 3 the set H := {¢(in,(F)/ <~p>),é(ins(F)/ <~p>)} gen-
erates a Boolean subalgebra of A which is contained in a block B < A.

Let ¢t := atoms(B) € R. The function 7, is surjective, so there exist Fy, Fy C 1
with 7(in(E2)) = o(in.(E)/ <~p>) and 7(in(F)) = o(ins(F)/ <~p>). The
function 7 is closed, so we get the existence of in,(Fy) & iny(F2) and because of the
homomorphism nat<. > we get the existence in,(Fs)/ <~p> Gin(Fr)/ <~p>. We
have

o(ind(Eq)/ <~p>) = m(ind Eq)) = ¢(in,.(E)/ <~p>) and
P(iny(Fa)/ <~p>) = mi(iny(F32)) = d(ins(F)/ <~p>),

and because of the injectivity of ¢ we get in,(FEy)/ <~p>= in.(F)/ <~p> and
ing(Fy)/ <~p>=ins(F)/ <~p>, so ¢ is closed.

Therefore ¢ is an isomorphism.

D is a diagram:

Fora €r e Rand b€ s € R with a # b we get

¢(in.({a})/ <~p>) = a# b= d(ins({b})/ <~p>),

so in.({a})/ <~p>+# ins;({b})/ <~p> which proves (C1). For r € R the function
naten,s 0in, = ¢~1 o7, 0in, is closed and injective, so (C2) holds.

Let r € R and B < A be the block generated by r = atoms(B).

Then ¢~'(B) = [r] is a block of [D], which proves (C3).

Completeness of D:

Each block B < [D] is induced by the line atoms(¢(B)) =:r € R. ]
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Corollary 26 The mappings Diag and [-] are bijective functions (up to isomorphy)
between the class of all nontrivial OMAs with finite blocks and all complete OMA-
diagrams with finite lines. For every nontrivial OMA A with finite blocks [ Diag(A)] =
A holds. For every complete OMA-diagrams D with finite lines Diag([D]) = D holds.

Proof. [Diag(A)] = A was proved in Theorem 25 and

Diag([D]) = (atoms([D]), {atoms(B)|B block of [D]}) = (P,R) =D

holds because of Theorem 16 and completeness of D. [

So every nontrivial OMA A in which each block is finite is induced by a complete
OMA-diagram

Diag(A) = (atoms(A),{atoms(B)|B block of A})

with finite lines. For every complete OMA-diagram D with finite lines each block of
[D] is finite because the block is induced by a line. For complete diagrams D; and
Dy with finite lines with [D;] = [D2] we have

Dy = Diag([D1]) = Diag([Ds]) = D,

and for two OMAs A, and A, in which each block is finite with Diag(A,) = Diag(A,)

we have
A1 = [[Diag(Al)]] = [[Dmg(éz)]] = Az-

So these operators are bijections between the isomorphy classes of all complete OMA-
diagrams with finite lines and the isomorphy classes of all nontrivial OMAs in which
each block is finite.

The following theorem shows, that the congruence relation <~p> can easily be
computed, if the diagram satisfies some conditions. Later it will be shown that these
conditions allways hold for complete OMA-diagrams with finite lines.

Theorem 27 Let D = (P, R) be a diagram in which each line is finite such that the
following two conditions hold:

1. For every r,s,t € R there exists a line u € R with
(rns)U(snt)u(rnt) Cu and
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2. for every r,s,t € R with s C r Ut there exists a line uw € R with (r\ s) U (¢\
s)U(rnt) Cu.

Let p := {(in,(E),ins(F))| there exist t,u € R witht = EU(s\F) andu = FU(r\ E)}.
Then p =<~p> holds.

Proof.

Because of Lemma 24 p is a subset of <~p>. Now we prove, that p is a congruence
relation on [, _p Pgofin(r):

Reflexivity of p:

For r € R and E € PLn(r) take t := r =: u, so (in,.(F),in,.(F)) € p holds.
Symmetry of p:

For (in,.(E),in,(F)) € p we have the existence of t,u € R with ¢t = EU(s \ F) and
u=FU(r\ E), so (ins(F),in.(E)) € p holds.

Transitivity of p:

Let (in,.(E),ins(F)) € p and (ins(F),in(G)) € p. Then we get the existence of
v,q € R with v = FU(r \ E) and ¢ = GU(s \ F'). So we have s C qU v and because
of condition 2 we get a line w € R with (¢ \ s)U (v \ s)U(¢Nv) C w. Now we show
r\E Cwand G Cw. Letaer\ E. lf a g sthenaé€v\sCwandifaé€sthen
a € s\ F because of (r\ E)NF =0, s0wehavea € (s\ F)N(r\E)Cq¢gnov Cw.
Therefore r \ F C w holds. Let ¢ € G. If a« € s then a € ¢\ s C w and if ¢ € s
then @ € F because of GN (s\ F) = @, so we have « € GNF C ¢gnv C w.
Therefore ¢ C w holds. Because of p C<~p> we have (in.(F),in(G)) €<~p>
because <~p> is transitive, so we get

ing(G)] <~p>=1n(G)} <~p>
in.(E)/ <~p>
= (in.(r\ E)/ <~p>)
= (1nu(r\ E)/ <~p>)

= iny(w\ (r\ E))/ <~p>

and because of condition (C2) we have G = w\ (r\ E), so w = GU(r\ E). Analogously
we get a line u = FU(t\ () € R, and therefore (in,(E),in/G)) € p. This proves the
transitivity.

Compatibility with ’:

Let (in.(F),ins(F)) € p. Then there exist t,u € R with

t=FEU(s\ F)and u= FU(r\ E).
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So (in.(E),ins(F)) = (in,(r\ E),ins(s\ F')) € p and this proves that p is compatible
with /.

Compatibility with &:

Let (in, (F1),ing (F1)) € pand (in.,(E2),ins,(F2)) € p such that in, (F1)®in.,(Es)
and ing, (Fy)@in,, (Fy) exist. Then we have ry = ry (or By = O or Fy = O, but in that
case we can redefine ry or ry to get the same situation because in, () =0 = in,,(0)
holds) and s; = s3. Because of the existence of the sums we have

FiNE,=0=FnNFE.
From the definition of p we get the existence of elements ¢, u € R with
t=FEU(s; \ F1) and u = EyU(sy \ Fy) = FyU(sy \ Fy).
With condition 1 we get a line v € R with
FiUFEU(si\(F1UR)C(rmNnHU(mnu)U(Enu) Co.

Because of (in,,(E1),ins, (F1)) € p C<~p> and (in.,(E2),ins, (F)) € p S<~p> we
have

ing(s1\ (F1 8 Fy))/ <~p>=1ins, (s1\ (F1 & Fy))/ <~p>
= (ing, (11 & %)/ <~p>)’

= (in, (1 @ Ep)/ <~p>)

(in,(E1 @ )/ <~p>)
=n,(v\ (F1 & Ey))/ <~p>

and because of condition (C2) we get
si\(F1® F) =0\ (F & FEy)
and therefore v = (E; @& Ey)U(s; \ (Fi & Fy)). Analogously we get a line
w = (Fl @ FQ)U(Tl \ (El @ Ez)) € R
50 (inrl(El) b inr2(E2)7 inﬁ(Fl) b in52(F2)) € p.
Therefore p is a congruence relation.
For (in,({a}),ins({a})) €~p we have (in,({a}),ins({a})) € p with ¢t := s and u :=r.

So we have ~pC p and <~p>C p. Therefore <~p>= p holds.
n
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In this theorem condition 1 says, that for every triangle of D there exists a line
which contains the corners of the triangle, where the corner of two lines is defined as
their intersection. Condition 2 says, that for every line which is covered by two other
lines there exists a line containing the rest of the other lines and their intersection.
These conditions are sufficient for the property, that the condition of Lemma 24
characterises the whole congruence relation <~p>.

The following lemma gives a sufficient condition for the property that a nontrivial
diagram is an OMA-diagram.

Lemma 28 Let D = (P, R) be a nontrivial diagram such that the following three
conditions hold:

1. For every r,s,t € R there exists a line u € R with
(rns)U(snt)u(rnt) Cu and

2. for everyr,s € R and E € Tﬁ;ﬁn(r) and F € Tﬁ;ﬁn(s) with
(in.(F),ins(F)) €<~p> there exists t € R with EU (s \ F) C t,

3. for everyr,s € R and F € Tﬁ;ﬁn(r) with £ C s # r the set E is finite.
Then D is an OMA-diagram.

Proof.

The axioms (A0)-(A4), (A7) and (A9) hold because of Theorem 8.

Proof of (A5):

Let x,y,z € [D] such that (z & y) & =z exists. Then there exist G, H C r € R and
E.F Cs e Rwith x = in.(G)/ <~p>,y = in,(H)/ <~p>,z = iny(L)/ <~p>
and @ &y = ing(F)/ <~p> such that G & H and F' & E exist. Then we have
(in,(G @& H),ins(F)) €<~p> and with condition 2 we get a line t € R with (G &
H)U(s\ F)Ct,so E,G,H Ct because of the existence of F' & £. With condition
3 we get @ = iny(()/ <~p>,y = iny(H)/ <~p>,z = iny(F)/ <~p>. Because of
condition (C2) and the existence of

(B y) B z=(in(G)) <~p>Bin(H)] <~p>) Bin(E)] <~p>

we get the existence of (G'@ H) & E in Tg%ﬁn(t) and therefore G & (H & F) exists and

(GoH) o E=Go(HDFE)
holds because Tg%ﬁn(t) is an OMA. So

(B y) B z=(in(G)) <~p>Bin(H)] <~p>) Bin(E)] <~p>

=GB HBE) <~p>=a2d(yd 2)
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which proves (A5).

Proof of (A8):

Let @,y,z € [D] such that « @ y,y @ z and x @ z exist.

Then there exist F,, F, Cr € Rand I, I, Cs € Rand G,,G, Ct e R with

ing(Ey) <~p>=x=1in(Gy)] <~p>,
Z'n,,(Ey)/ <~p> =Y = ins(Fy)/ <~p>,
ing(F.)) <~p>=z=1im(G.)] <~p>

such that F, & F,, F, & F, and G, & G, exist. Because of (in,.(E,),in(Gy)) €<~p>
condition 2 implies the existence of v € R with E, U (¢t \ () C u. Because of
the existence of GG, & GG, we have E,, G, C u. Analogously we get v,w € R with
F,,G, Cvand E,, I, Cw. Condition 1 implies the existence of a line ¢ € R with
FE,UF, UG, C (unw)U(wnw)U(unv) C q With condition 3 we get & =
ing(Ey)/ <~p>,y = iny(F,)/ <~p>,z = in,(G,)/ <~p>. Because of condition
(C2) E, @ F, and F, ® G, and E, & G, exist in P (q), so B, @ (F, @ G.) exists

because Pefin(q) satisfies axiom (A8). So we have the existence of

ing(Ey)[ <ovp> Bling(Fy)/ <~p> Bing(G.)/ <~p>) =2 @ (y © 2)

which proves (AS).
Axiom (A6) follows from the other axioms, so [D] is an OMA. ]

In the following characterisation Theorem 29 we use Theorem 27 and Lemma 28
to get some conditions which are equivalent to the property, that a complete diagram
with finite lines is an OMA-diagram.

Theorem 29 Let D = (P, R) be a nontrivial complete diagram in which each line is
finite. The following conditions are equivalent:

1. D is an OMA-diagram.
2. (a) For everyr,s,t € R there exists a line u € R with
(ros)U(snt)u(rnt) Cu and
(b) for everyr,s,t € R with s Cr Ut there exists a line uw € R with (r\ s) U
(t\s)U(rnt) Cu.
3. (a) For everyr,s,t € R there exists a line uw € R with
(ros)U(snt)u(rnt) Cu and

(b) for everyr,s € R and E € Tﬁ;ﬁn(r) and F € Tﬁ;ﬁn(s) with
(in.(F),ins(F)) €<~p> there exists t € R with EU (s \ F') Ct .
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Proof.

I —2:

Because of the completeness each block of [D] is generated by its atoms.

Let r,s,t € Rand F := (rNns)U(snNt)U(rnt). Forall a,b € E there exists
v € {r,s,t} C R with a,b € v. So because of Theorem 19 E generates a Boolean
subalgebra, which is contained in a block. D is complete, so there exists a line u € R
with F C [u] and therefore £ C u because of Theorem 17 which proves condition 2a.
Now let r, s, € R with s CrUt. Fora€r\sandbet\swehaveaer\ (s\t)
and b sNtso P(sNt)Dbexists, s\t Cr holds and

Dsnt)yob=(D(s\t)) Db
=D\ (s\1) @b
= (D0 \{a}U(s\ 1) @ a) Db

With axiom (A5) we get the existence of a & b. Define £ := (r\ s)U(t\ s)U(rnNt).
Then for all a,b € F with a # b the sum a & b exists, and therefore F generates a
Boolean subalgebra which is contained in a block. D is complete, so there exists a
line v € R with £ C u which proves condition 2b.

2 =3

See Theorem 27.

3 — 1

See Lemma 28. [

The implication 1 — 2 of Theorem 29 may not hold if D is contains infinite lines.
This will be proved in the next chapter. The characterisation of the congruence
relation in Theorem 27 also holds for complete OMA-diagrams with finite lines:

Corollary 30 Let D = (P, R) be a complete OMA-diagram in which each line is
finite, r,s € R and E € Tﬁ;ﬁn(r) and F € Tﬁ;ﬁn(s) Then

(in,.(E),ing(F)) e<~p> ff EU(s\ F)€ R and FU(r \ E) € R
holds.
Proof. See Theorems 27 and 29. n

In Theorem 33 we will give a characterisation of complete OMA-diagrams with a
weaker precondition than in Theorem 29. First we need the following lemma:
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Lemma 31 Let D = (P, R) be a hypergraph in which each clique is a line. Then
condition (2a) of Theorem 29 is satisfied.

Proof. lLet r,s,t€ R. In E:=(rNs)U(sNt)U(rNt) C u each pair of points is
connected by a line (for example @ € r N s is connected to b € s Nt by the line ), so
E is contained in a clique, and there exists a line u € R with £ C u. [

Note that the property that each clique is a line is equivalent to the property that
each clique is contained in a line because a line can not be a proper superset of a
clique because of the maximality.

For nontrivial finite hypergraphs the two conditions of this lemma are equivalent:

Lemma 32 Let D = (P, R) be a nontrivial finite hypergraph. Fach clique is a line
iff condition (2a) of Theorem 29 is satisfied.

Proof. Assume that condition (2a) holds and that there exists a clique which is not a
line. Because of the finiteness of P there exists a minimal subset £ C P, in which each
pair of points is connected by a line, but £ is not contained in a line. We have |E| > 1
because of P # (), so there exist a,b € E with a # b. Because of the minimality of F
the set EF\{a} is contained in a liner € R and F\{b} is contained in a line s € R. The
set {a,b} is also contained in a line t € R because a is connected to b. With condition
(2a) we get alineu € Rwith £ = (E\{a,b})U{b}U{a} C (rns)U(rnt)u(snt) C u,
which is a contradiction. [

For infinite hypergraphs this lemma may not hold. In chapter 3 we show that
there exists an OMA-diagram with finite lines, such condition (2a) of Theorem 29 is
satisfied, but there exists a clique which is not contained in a line (see example 4).

Theorem 33 Let D = (P, R) be a diagram in which each line is finite such that
every block of [ D] is generated by its atoms. The following conditions are equivalent:

1. D is a complete OMA-diagram.

2. (a) Fvery clique is a line, and

(b) for everyr,s,t € R with s Cr Ut there exists a line uw € R with (r\ s) U
(t\s)U(rnt) Cu.

3. (a) Fvery clique is a line, and

(b) for everyr,s € R and E € Tﬁ;ﬁn(r) and F € Tﬁ;ﬁn(s) with
(in.(F),ins(F)) €<~p> there exists t € R with EU (s \ F') Ct .
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Proof.

1 —2:

See Theorem 20 and Theorem 29.

2= 3

See Lemma 31 and Theorem 27.

33— 1

We have R # () because otherwise the empty set would be a clique which is not a
line. Lemma 31 and Lemma 28 imply that D is an OMA-diagram. Let B be a block
of [D]. With Theorem 20 B is induced by a clique £ C P, so F is a line £ =r € R.

The Boolean subalgebra B is maximal, so we get B = [r] and D is complete. [

This theorem characterises complete OMA-diagrams under the assumption that
each block of [D] for a diagram D with finite lines is generated by its atoms: D is a
complete OMA-diagram iff every clique is a line and for every line which is covered
by two other lines there exists a line containing the rest of the other lines and their
intersection. In the following characterisation theorem the assumption that D is a
diagram is not needed, so the theorem holds for every hypergraph with finite lines,
such that each block is generated by its atoms.

Theorem 34 Let D = (P, R) be a hypergraph in which each line is finite such that
each block of [D] is generated by its atoms. D is a complete OMA-diagram iff the
following conditions are satisfied:

1. r\ s| > 1 holds for all r,s € R with r # s,

2. the relation p = {(in,(E),ins(F))| there exist t,u € R with t = FU(s \ F)
and w = FU(r \ E)} is transitive and compatible with & (in the coproduct

en P (r).

3. every clique is a line,

4. for every r,s,t € R with s Cr Ut there exists a line w € R with
(r\s)u(t\s)U(rnt) Cu.

Proof.

—:

If D is a complete OMA-diagram then the conditions 1-4 follow from Lemma 9, The-
orem 33 and Theorem 27.

!

Let the four conditions be satisfied. Then p =<~p> holds (see proof of Theorem
27). Now we use Theorem 12 to show that D is a diagram.

Let (in.({a}),ins(F)) €<~p>= p. Then there exists a line v € R with u =
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{a}U(s\ E), so with condition 1 we get u = s. Therefore F = {a} holds.

Now we proof (C2):

Let (in,(E),in,(F)) €<~p>= p. Then there exists a line u € R with v = EU(r \ F).
With condition 1 we get u = r and £ = F, so natc.,> o 1n, is injective. Let
E,F Cr € R such that in.(F)/ <~p> @in,(F)/ <~p> exists. Then there exist
G,H C s € R with (in,(F),in,(G)) e<~p>= p, (in.(F),ins(H)) €E<~p>= p and
G'NH = Q. Then there exist t,u € R with t = EU(s\ ) and u = FU(s\ H). With
condition 3 and Lemma 31 we get the existence of v € R with (sNt)U(tNu)U(sNu) C v.
We have s = GUH U (s\(GUH)) C(uns)U(tNs)U(tNs) C v, so with condition
1 we get s =v. We have ENF CtNu Cv=s The union FU(s \ &) is disjoint,
so we get (EN F)N(s\G) =0 and analogously (EF N F)N (s\ H) = . Therefore
ENF=(FnNF)Ns=(ENF)N((s\G)U (s\ H)) = O holds and natc~,> o in,
is closed. So D is a diagram because of Theorem 12. D is a complete OMA-diagram
because of Theorem 33. [

If D is a hypergraph with finite lines and each block of [D] is generated by
its atoms, the four conditions of this theorem are usefull to check wether a D is a
complete OMA-diagram. If D is finite then all lines of D are finite and each block is
generated by its atoms, so for finite diagrams it can be easily checked, whether D is
a complete OMA-diagram: We need not to compute the interpretation [D], we just
have to check the conditions of Theorem 34.

3 Examples

The first example is a counterexample for Theorem 29 with infinite lines.
Example 1:
Let R = {r,s,t} with

T:A1UA2,S:A2UA3,t:A3UA4 and
Al =N x {1},142 =N x {2},143 = N x {3},144 =N x {4}

Let P=JR and D = (P, R). Now we show that D is a complete OMA-diagram,
but condition 2b of Theorem 29 is not satisfied. Let

p1 = {(in,(E),iny(E)|E C Ay, E finite },
p2 = {(in,(r \ E),iny(s \ E)|E C Ay, E finite 1,
ps = {(iny(E), ind( E)|E C As, E finite 1,

pa:= {(iny(s \ B),iny(t\ E)|E C As, E finite } and

pi=prUpyUpsUpy
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It is not difficult to see that the congruence relation generated by p is the reflexive
and symmetrical closure:

< p>=ref(sym(p))

We have ~pC ref(sym(p)) and therefore <~p>C ref(sym(p)).
The relation ref(sym(p)) is generated by ~p, so we get

<~p>=ref(sym(p)) =<p>.

D is a diagram:

(C1) holds because of <~p>= ref(sym(p)).

Let u € R. The mapping nat<.,s oin, is injective because of <~p>= ref(sym(p)).
Now let in,(E)/ <~p>,in,(F)/ <~p>€ [D] such that

ing(F)/ <~p> @&in,(F)/ <~p>
exists. Then there exist w € R and G, H € P (w) with G N H = () and

(iny(E),in,(G)) e<~p> =ref(sym(p)) and
(inu(F).ing(H)) €<~p> = ref(sym(p)).

Then G or H must be finite (because of G N H = (), so we assume now that G is
finite. Therefore £ = (G holds. If F' = H holds then we get K N F = () otherwise we
get E=GCw\ H=u\F,s0o ENF =Q. Therefore £ & F exists in PL(u) and
the mapping nat<. s oin, is closed which proves (C2).

Let uw € R and in,(F)/ <~p>€ [D] such that the set [u] U {in,(F)/ <~p>} is
contained in a Boolean subalgebra B < [D]. Now we show that in,(E)/ <~p>€ [u]
holds. For a € u we have in,({a})/ <~p>€ atoms(B) because of Lemma 11. We
only have to consider the case u # v because if v = v then in,(F)/ <~p>€ [u]
holds.

Case 1: u =5

Then we can assume that v = r holds because v =t works analogously.

For a := (3,3) € s \ r we have

ins({a})) <~p><in,(F)/ <~p> orins({a})/ <~p><in,(v\ F)/ <~p>
because of Lemma 2. If

ins({a})) <~p><in,(v\ F)/ <~p>
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holds then
ins({a})/ <~p> ®in,(F)/ <~p>

exists and because of <~p>= ref(sym(p)) we have [t] N [r] = {0,1}, so we get a
set G € Pefin(s) with (in,(F),in,(G)) €<~p> and therefore

in, (F)/ <~p>€ [s].

If ins({a})/ <~p><in,(F)/ <~p> holds then we get analogously

iny(v\ F)/ <~p>€ [s].

Case 2: u=r

Analogiosly case 1 with a := (1,1).

Therefore we have B = [u] and (C3) holds, so D is a diagram.

Completeness of D:

Assume that there exists a block B < [D] with [u] # B for all w € R. If B C [s]
holds then we get B = [s] because B is a maximal Boolean subalgebra. Therefore
B cannot be a subset of [s] and there exists an element @ € B with z € [s]. In
the following we assume that @ € [r] holds because the proof with « € [t] works
analogously. The block B cannot be a subset of [r], so there exists an element y € B
with y & [r]. With [BM98] we get the existence of a,b,¢ € B witha®b=z,bhc=y
such that a @ ¢ exists. Because of © ¢ [s] and [t] N [r] = {0,1}, we we get the
existence of E, F € Pin(r) with EN F = () and

in.(E)/ <~p>=aand in.(F)/ <~p>=b.
There exists an v € R and G, H € PLW(v) with GN H = @ and

ing(G)) <~p>=bandin,(H)/ <~p>=c.
We have b @ ¢ =y & [r], so u # r holds. Because of

in.(F)/ <~p>=b=1in,(G)/ <~p> and

eI N r] ={0,1},

we get u = s or b= 0.
Case 1: b= 0 or (in,(F),ins(G)) € p1
Then £ and (7 are finite subsets of A, with ' = (7. Because of the existence of a@c at
least one of the sets £ and H must be a finite subset of A5. If F is a finite subset of A,

then @ = in,(FUF)/ <~p>=ins(EUF)/ <~p> holds, which is a contradiction to
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x ¢ [s]. If H is a finite subset of Ay then y = ins(GUH)/ <~p>=in,.(GUH)/ <~p>
holds, which is a contradiction to y ¢ [r].

Case 2: u = s and (in,.(F),in(G)) & py

Then (in.(F),ins(G)) € pa, so there is a finite subset J C Ay with F' = r\ J
and G = s\ J, therefore F is a finite subset of Ay because of E N F = . So
=i (FUF) <~p>=ins(FE UG)/ <~p> holds which is a contradiction to
Therefore D is complete. D is an OMA-diagram because of Lemma 28. Condition
2b of Theorem 29 is not satisfied.

The next example shows that there exist OMAs, which are not induced by dia-
grams, so Theorem 25 does not hold for OMAs with infinite blocks. We also show
that there exist two different OMAs (with infinite blocks) for that the operator Diag
of definition 23 produces isomorphic diagrams.

Example 2:

Let D = (P, R) with P =J R and R = {r, s} with

r=NuU{-1,-2},
s=Nu{-3,—4}.

Now we show that D is an OMA-diagram. Let

p:={(in.(F),ins(F))|E CN, E finite } U

{(in,({=1, =2} U(N\ E)),ins({-3, -4} U(N\ E)))|E C N, F finite }

Then we have < p >=ref(sym(p)) =<~p> like in example 1.

D is a diagram:

(C1) holds because of <~p>= ref(sym(p)). We show (C2) only for the line r,
because for s the proof works analogously. The mapping nat<.,> o1in, is injective
because of <~p>= ref(sym(p)). Now let in.(F)/ <~p>,in.(F)/ <~p>€ [D]
such that in,(E)/ <~p> @in,(F)/ <~p> exists. Then there exist w € R and
G, H € Pein(w) with GO H = @ and (in,(E),in,(G)) €<~p>= ref(sym(p)) and
(in.(F),in,(H)) €E<~p>=ref(sym(p)). Then we get ENF = O, so F & F exists
in Pefin(y and the mapping nat<. > oin, is closed which proves (C2). The prove of
(C3) is the same like in example 1 (with ¢ := —3 in case 1 and « := —1 in case 2).
Therefore D is a diagram.

[D] is an OMA:

The axioms (A0)-(A4), (A7) and (A9) hold because of Theorem 8.

Proof of (A5):

Let x,y,z € [D] such that (v & y) & z exists. Then there exist u,v € R and
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G, H € Pein(y) and B, F € Pein(y) with

such that GNH =0 = F @ F hold. We can assume u # v because axiom (A5) holds
in the Boolean OMAs [r] and [s]. Then we have (in,(G & H),in,(F)) €E<~p>=
ref(sym(p)) so we only have to consider the following two cases:

Case 1: GUH = I C N and F'is finite.

Then @,y,z € [v] and (xS y) Bz =2 F (y & z) holds.

Case 2: u\ (GUH)=v\ FCNand v\ Fis finite.

Then £ C v\ F is finite and z,y,z € [u] and (x B y) Sz =2 & (y & z) holds.
Proof of (A8):

Let @,y,z € [D] such that « @ y,y @ z and x @ z exist.

Then there exist F,, F, Cu & Rand I, I, Cve Rand G, G, Cw € R with

ing(Ey)) <~p>=a =1in,(G,)/ <~p>,
Znu(Ey)/ <~p> =Y = inU(Fy)/ <~p>,
ing(F.)/ <~p>=z=1in,(G.)] <~p>

such that £, & E,, F, & F, and G, & G, exist. We have |R| = 2, so we can assume
u = v (the cases u = w and v = w work analogously). Then we get x,y, z € [u] and
x @ (y & z) exists because [u] is an OMA.

Axiom (A6) follows from the other axioms, so [D] is an OMA.

Let C :=[1,cx Pioin(r) and

o ={(in,(E),in,(E))|E € PE(N)} U
{(in, ({=1,—2} U E), in,({=3, 4} U £))|E € Pi(N)}

Then the congruence relation < o > generated by o is the reflexive symmetrical
closure of o:

< o >=ref(sym(o)).

Let A:=C/ < o >. To show that A is an OMA, just use an analogue proof like
above with < ¢ > Instead of <~p>.
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Note that in,.(Pein(r))/ < o > and ing (P (s))/ < o > are blocks of A. This can
be shown like the proof of (C2) and (C3) for D with < o > instead of <~p>.
Proof of Diag(A) = D = Diag([D]):

Let v € {~p,o}. Now assume that there exists a block B < €/ < ~ > with
ine(Pn(r))] < >4 B £ ing(PEn())/ <7 >. 1 B C iny(Pn(s))/ < 7 > holds
then we get B = in (Pein(s))/ < 4 > because B is a maximal Boolean subalgebra.
So B cannot be a subset of in,(Pi"(s))/ < v > and there exists an element x € B
with = € ing (P2 (s))/ < v > and analogously we get the existence of an element
y € B with y & in,(Pein(r))/ < v >. With [BM98] we get the existence of a,b,c € B
with a®b = z,bF ¢ = y such that aFcexists. Because of © ¢ ins(T%%ﬁn(S))/ <y >and
y & in, (Pefin(r))/ < v > we get the existence of £, ' € PLin(r) and G, H € Peofin(s)
with

in.(E)/ <y>=a,
in(F)) <~y>=b=1ins(G)/ <~y > and
ing(H)/ <y>=¢

such that ENF =@ = G N H holds. Then we have (in,.(F),ins(G)) €< v >.
Case 1: y=o0
Because of

m(EUF)) <o>=a®b=xdin,(PL(s))) <o >

we get [(E U F)N{-1,-2} = 1. Let {e} := (FU F) N {-1,-2}. Because of
(in.(F),ins(G)) €< o0 > we have e & F,s0o e € E and |[EN{-1,-2}| = 1. Anal-
ogously we get |H N {—3,—4}| = 1, which is a contradiction to the existence of
a®c=1in (L) <o>@mn,(H)/ <o >.

Case 2: 7y =~p

If there is a finite subset J C N with F' = {—1,-2}UN\J and G = {—3, -4} UN\ J
then F is a finite subset of N because of EN F = (), so

r=1in.(FUF)/ <~p>=in(FEUG)/ <~p>

holds which is a contradiction to @ & [s]. Therefore F' and G are finite subsets of N
with F' = (. Because of the existence of a @ ¢ at least one of the sets I/ and H must
be a finite subset of N. If £ is a finite subset of N then « = in,.(F U F)/ <~p>=
ins(E U F)/ <~p> holds, which is a contradiction to « ¢ [s]. If H is a finite subset
of N then

y=1in,(GUH)/ <~p>=in,(GUH)/ <~p>

holds, which is a contradiction to y ¢ [r].
So in, (Pein(r))/ < v > and ing (P (s))/ < v > are the only blocks of O/ < v >.
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We get R = {atoms(B)|B block of '/ < v >} and P = atoms(C/ < v >) with
Theorem 5. Therefore Diag(A) = D = Diag([D]) holds and D is complete.

Now we show that A is not the interpretation of a diagram. Assume that there exists
a diagram Dy with [Dy] 2 A. Each block of [D;] is generated by its atoms, because
this property holds in A. Because of the Theorems 16 and 22 the diagram Comp(D>)
is complete and [Comp(Ds)] = [D2] = A holds. So we get

Comp(Dy) = (atoms([Comp(D3)]), {atoms(B)|B block of [Comp(D3)]})
= Diag(A) = D.

Therefore we get [D] = [Comp(D2)] = A.

The OMA A contains two blocks: in,(Pein(r))/ < o > and in,(Pin(s))/ <
o >. The corresponding blocks in [D] are [r] = in,(PL(r))/ <~p> and [s] =
in, (Pin(s))/ <~p>. In the block in,.(PL(r))/ < o > there exist two elements
z:=1in,({=1})/ <o >and y:=in.({-2})/ < o > with

z,y & ing(Pei(s))/ < o > and
e @y =in.({—1,-2})/ <o >=in,({-3,-4})/ < 0 > in (Pri"(s))/ <o >.

But in the two blocks of [D] such elements with these properties do not exist, so
[D] 2 A, which is a contradiction. Therefore A is not induced by a diagram and
[Diag(A)] # A holds.

The following example shows that there exists a diagram D in which each block
is generated by its atoms such that the atoms of a block B < [D] are not contained
in P. So Theorem 16 does not hold for diagrams which are not OMA-diagrams. This
example also shows that there may exist blocks in the interpretation of a diagram
which are not generated by its atoms.

Example 3:

Let M be a set with |[M| >3 and N :=P(M)\ {0, M}. Let D = (P, R) with

P={d|1<i<4,TeN}U
U{IY1<i<6,T,UeN,TNU=0,TUU # M} U

U{b!"1 <i <4, T, UEN,TNU=0,TUU =M}
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with a7 = (¢, T) and biT’U = (1, T,U) and

R=1{"IT € N}uU
U{s"Y|T,Ue N, TNU =0} U
U{u™Y|T,Ue NTNU=0}U
U™ T, U e NTNU =0} U
U{w™Y T, U e NNTNU =0, TUU # M}
with

{a17a27a37a4}

uT {a37 Ay,

= {a¥,a{, 00" 01"},

bTU bT U}7

U T.U
U __ {b b TUU TuU

w s @y s Uy

U= b by by by b b Y i TU U # M and

sTV = {60V o) 03 b YY, H TUU = M.
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For T € N let

X

T={ine({al,al}),inane ({ab af P} U

{inanre ({as, a) DU € N (M\T)NU =0} U

{ingro ({677, 00" WU e Ny TNU =0} U

{inyoane ({3, adN DU € NJ(M\T)NU = 0O} U

{inuor ({0570 H|U e N, TnU =@} U

{ingzo ({077, 65" DU e N,TNU = 0} U

{inwr({bST 0" HU e N TNU =0} U

{inov ({05 00" DU,V eNUNV =0, U0V = M\ T}U

{ingov ({00Y 057 65V WY DUV e NUNYV =0, U0V =T}U

{inoane ({6 YN BN pUMAT WUMTYV 17 e N T A (MN\T) =@, U U (M\T) # M} U
{inanaw ({bY VU MDY GMATU WAL 17 N T (M T) = 0,0 U(M\T) # M} U
{inov({BYYV 0V DUV e NNUNV =0, UUV = M\ T} U

{ingov ({aX,dIH|U,V e NUAV =0, U UV =T}
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Define

p1 :={(in,rov({a}), in,ro({a}))]
T,UeNTNU=0,TUlU #M,a € {al"Y, al""}}

p2 :={(inyro({a}),inyviw({a}))]
T.UeNTNU=0=VAW,TUU=VUW # M,a € {aIY,al""}}

ps :={(in,r({a}), in,rv({a}))|
T,Ue N.TNU =0,a € {al,al'}}

pa :={(in,({a}), (in,vr ({a}))]
T,Ue N.TNU =0,a € {al,al'}}

ps :={(inyrv({a}),in,rv({a}))|
T, U,VeNTNU=0=TnV,ac {al,dl}}

pe :={(inyrv({a}),in,vr({a}))|
T.UVeNTNU=0=TnV,ac {al,all}

pr :={(inor({a}), (inyvr({a}))]
T.UVeNTNU=0=TnV,ac {al,all}

ps :={(inuro ({0}), (insro ({b}))]
T, UeN,TNU=0,bec{b;" 6,7}

po :={(in,rv ({b}), (insrv ({0}))]
T,.Ue N,TNU=0@,be{b2Y bI"}}

pro :={(tnyro ({}), (in,ro({b}))|
T.UeN,TNU=0,TUU#M,bec {7 v5V}}

pi+io =p; == {(y,2)|(y,2) € p;} for 1 <j <10
par = J{z" x 2"|T € N}

Let p = U cico; pi- Now we show that ref(sym(p)) is a congruence relation.
ref(sym(p)) is reflexive, symmetrical and compatible with ’.
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Transitivity of ref(sym(p)):

For 7,7 <21 let

= ()l

r) € p;} and

pi o p; = {(x, z)| there exists an y with (x,y) € p; and (y,2) € p;}.

We just have to consider those relations p;, p; which have a common component.

We only consider pairs (x,y) € p; U p;

priop Spa C

p1ops S p1 C

p20p2 C pa C

p3 ops Cps C

P30 ps Cps C

p30ps C p3 C

P30 ps C psy C

pitopsCpr C

paopg

g/):a

paopr S py C

ps 0 ps C ps C

ps 0 pe C pe ©

P60 pg

§P5

pe ops Cpr C

' and (
i > 7 holds then we have (z,y) € p; U ,oj_l and (y,

sym(p
ref
ref
ref
ref
ref
ref

sym(p

sym(p

sym(p

sym(p

sym(p

sym(p
ref
ref
ref
ref
ref
ref

sym(p

sym(p
sym(p
sym(p

sym(p

3

sym(p

ps © pr S ps S ref(sym(p

ef(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
ref(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))
(sym(p))

propr C pr Sref(sym(p
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y,z) € pj Upjt
z) € piUpi!

with ¢« < j because if
with 7 <i. We have



For (z,y) € p; Up;! and (y,2) € p; U ,0;1 with 11 <7 <5 <20 we have

(2',y") € pimio U piyg and (v, 2") € pj-10 U pil,

s0 (a/, ) € ref(sym(p)) and (2, 2) € ref(sym(p)) = ref(sym(p)).

We have pyy 0 p1 = pa1, therefore p is transitive.

Compatibility with &:

Let (x1,y1) € ref(sym(p;)) and (x2,y2) € ref(sym(p;)) with 1 < ¢ < j < 21 such
that x1 @ x5 and y; @ y2 exist. We can assume 0 € {xy,29,y1,y2} because if for
example 21 = 0 then we get y; = 0 and (x1 & @2, y1 D y2) = (12,y2) € ref(sym(p)).
If 21 = y; holds then we get x5 = y, because of the existence of the sums, so
(v1 @ 2,51 © y2) € ref(sym(p)).

If i, 7 < 10 then ¢ = 7 and (1 & 29, y1 D y2) € p21 C ref(sym(p)).

If i <10 <5 <20 then j =i+ 10 and (21 P 22,11 B y2) = (1,1) € ref(sym(p)).

If i =1 and j = 21 then there exist T,U € N and a € {a?"Y, al"V} with

x1 = in,rov({a}), y1 = in,ro({a}) and

Ty = ianUU({ag:UUv aZUU )7 Y2 = ianvU({b?U? bgU})?

so (21 B w2, y1 B y2) € pu1 S ref(sym(p)).
Analogously for i € {2,3,4,5,6,7},5 = 21.
If i = 8 and j = 21 then there exist T,/ € N and b € {b]"V, 62"} with

x1 = in,ro ({b}), y1 = ingru({b}) and

v = inyro({ag, ai })yye = ingro (s {b7, 6,71,

s0 (x1 B a2,y1 D y2) € p1s S ref(sym(p)).

Analogously for ¢ € {9,10},5 = 21.

If 11 < ¢ < 20 then the sums x; & x5 and y; & y2 do not exist because of 7 > 1.

i =21 = j then (e1 ® 22,31 ® y2) € pm U{(1, 1)}  ref(sym(p)).

Therefore ref(sym(p)) is a congruence relation. We have ~pC ref(sym(p)) and
therefore <~p>C ref(sym(p)).

Proof of ref(sym(p)) C<~p>:

For 1 <20 we have p; C<~p>. Now we show py; C<~p>.

We have p; C<~p> and with the operation & we get

(ingr({aT 2 D), ino ({al, a11)) €<mp>
for all T,U,V € N with UUV = T and with the operation ’ we get

(in,ane({ay™" ad™}) in o ({65057 })) €<~p>
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forall T,U,V € N with UUV = M\ T.
We have p3 C<~p> and with the operation & we get

(in,ane (s, ay™ "}, inane ({ay™ a)}) €<~p>
and with the operation ’ we get

(ingr({aF, aD), inyro (677,617 }) €<mp> |
We have py C<~p> and with the operation & we get

(in,ane (s, ad™ ), ingoane ({ag 0y })) €<mp>

and with the operation ’ we get
(ian({afv ag})v ianvT ({bg7T7 bzlljj})) c<~p>.
We have pg C<~p> and with the operation & we get
(ingro ({61, 05N inro ({67Y 01V)) e<~p>
and with the operation ’ we get

(inaneo ({3 @™} in e ({0377 0N 05N 5Ny e<np >

We have pg C<~p> and with the operation & we get
(inyur ({057,051 )), ingor ({057, 00 1Y)) e<~p>

and with the operation ’ we get

M\T M\T

(inyoanr ({ay"", ayN), ingoane ({05

pUM\T JUM\T béJ,M\T

) » Y5 ’ })) c<~p>.

We have p1g C<~p> and with the operation & we get
(imyov ({65, b6 })inow ({0577, 557 })) €<~p>
and with the operation ’ we get
(1o ({a¥ VYY), ingow ({05765 05V 00V ) e<~p>
We have pg C<~p> and with the operation & we get

(inyrane ({07 6, NN ingrane ({6 ;M) e<mp>
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and with the operation ’ we get

pTM\T b4T,M\T})

(inuT,M\T({ag,GZ}),insT,M\T({ 3 R cl~p>,

and with the transitivity of <~p> we get
(in,r({al,al V), inyoane ({6 N bEM)Y €<y >,
and again with the operation ' and transitivity we get
(in,r({af, a3 ) inane ({ag 1, ayM}) €<mp>
With the transitivity of <~p> we get 27 x 27 C<~p> for all T' € N. Therefore
< p>=ref(sym(p)) =<~p> holds.
D is a diagram:
Fora € p€ Rand E C g € R with (in,({a}),in,(F)) e<~p>= ref(sym(p)) we get
FE ={a}, so with Theorem 12 we only have to proof (C2). Let p € R. The mapping

nat<~,s 01in, is injective because of <~p>=ref(sym(p)).
Now let in,(F)/ <~p>,in,(F)/ <~p>€ [D] such that

in,(E)/ <~p> @in,(F)/ <~p>
exists. Then there exist ¢ € R and G, H € P (¢) with G N H = @ and
(iny,(E),in,(G)) €<~p> = ref(sym(p)) and
(1np (1), ing(H)) €<~p> = ref(sym(p)).
If £ = or ' = holds then we get ENF = @) and E & F exists, so in the following
we can assume that £ # O # F holds. We get ¢ # @ # H. If p = ¢ holds then we

get ¥ = G and F' = H because of the definition of p, so EN F = (. In the following
we can assume p # ¢. Let 1,7 < 21 with

(iny(1),iny(G)) €pi U p7" and
(iny (F),ing(H)) €p; U pj,
We can assume that ¢ < j holds, because otherwise we exchange £/ and F. If 5 <10

holds then we get : <10 and ENF =GN H = @. If 11 < j < 20 holds then we get
lg\ H| =1 and G = ¢\ H, therefore

(inp(p\ E),ing(H)) = (iny(E)',ing(G)') € ref(sym(p)),

48



so (iny(p \ F),in,(F)) € ref(sym(p)) and p\ £ = F which implies E N F = .
Analogously for 11 < < 20.

Now let 7 = 21. If ¢ < 10 holds, then we get ' = G and |E| = 1. Let £ = {e}.
Assume that £ N F # @ holds. Note that for 7, U € N we have T' = U iff 27 = 2Y.
Because of ¢ € pNg and ¢ € F and (in,(F),in,(H)) € pyn U py we just have to
consider the following four cases:

Case 1: 'Cpnyg

Then we get (in,(F),in,(H)) € ref(sym(p)) and F = H, therefore

ENF=GNnH=0

which is a contradiction.

Case 2: There exist U,V € N with p = s¥"V and F = {bij’v,bgj’v,bg]’v,bg’v}

Then we have 1 € {8,9} because of G = F C F. If i = 8 holds then we get ¢ = u%"V
and H = {aY, aY{}, which is a contradiction to (in,(F),in,(H)) € ps Upy. Ifi=9
holds then we get ¢ = vV and H = {aY,al'}, again a contradiction.

Case 3: There exist U,V € N with p = s¥V and F = {80V, 65V 60 65"}

Then we have 1 € {8,10}. If : = 8 holds then we get ¢ = vV and H = {aY,d¥},
which is a contradiction to (in,(F),in,(H)) € pa U py'. If i = 10 holds then we
get ¢ = WV and H = {aV"V, af"V}, again a contradiction to (in,(F'),in,(H)) €
par U pyy-

Case 4: There exist U,V € N with p = s¥V and F = {65V, 00", 60" 05"}

Then we have 1 € {9,10}. If 7 = 9 holds then we get ¢ = vV and H = {a},a)},
again a contradiction to (in,(F),in,(H)) € pa U p3; .

If 7 = 10 holds then we get ¢ = w%Y and H = {a!/“V, af"V}, again a contradiction
to (in,(1),iny(H)) € por U p3y -

Now let : =21 = 5. If G = ¢\ H then we get ENF = O like in the case 11 < ;7 < 20,
so we assume (G # ¢\ H. Therefore there exist T,U € N with T UU # M and
q = s and |G| = 2 = |H|. Assume that £ N F # O holds. We have £ # F
because otherwise we get (in,(G),in,(H)) € ref(sym(p)) because of the transitivity.
Therefore there exist VW € N with VUW # M.p = sV'W |E| = 4 = |F| and
|FF N F| = 2. Then we just have to consider three cases:

Case 1: G = {b]"V b1V}

Then in,(G) € 2T holds and we get in,(E) € zT because of (in,(E),in,(G)) € par.
We have H = {b2V 61"} or H = {61V, b}, so we get in,(H) € 2V or in,(H) €
xM\(TUU)‘

Case 1.1: E = {6, 07" 65" b/} then we get VUW = T because of the
definition of 7. We have I = {bY’W, b;/’w, b;/’w, bZ’W} or ' = {b;/’w, bZ’W, b;/’w, bg’w},
so we get in,(F) € ™\W or in,(F) € 2M\V. We have TN(M\W) # O # TN(M\V)
but TNU =0 =TN(M\(TUU)),soU £ M\W #M\(TUU)and U # M\V #
M\ (T UU), soin,(F) & 2V and in,(F) & «™\T9Y) which is a contradiction to
(inp(F7),in4(H)) € par.

Case 1.2: E = {b,"", b5 X" 50"
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Then we get M\W =T, so in,(F) € ™\V or in,(F) € "V, We have U C M\ T =
W but M\ V € W because of VUW # M. We have U C M\T =W C M\ V but
UZ M\(TUU), therefore U # M\V # M\ (TUU) holds. We have VC M\W =T,
soVZUand VEZ M\ (TUU), therefore U £ VUW # M\ (T'UU) holds. This is
a contradiction to (in,(F'),in,(H)) € pa.

Case 1.3: E = {b5" 0" 00" 50"

Then we get M\V =T, so0 in,(F) € 2M\W or in,(F) € ¥V which is a contradiction
to (iny(F),in,(H)) € pa1 U p3; like in Case 1.2 (just exchange V and W).

Case 2: G = {blV bV}

Then in,(G) € 2V holds and we get in,(H) € 7 or in,(H) € «M\TYY) 56 we get
the contradiction like in case 1 (just exchange T and U).

Case 3: G = {b]"V b1V}

Then H = {61V 61"} or H = {62V, b1V holds, so we can exchange E with I and
G with H to get the same situation like in case 1 or case 2.

In all cases we get a contradiction, so £ N F = @ holds and E & F exists in PL(p)
and the mapping nat<., > oin, is closed which proves (C2). So D is a diagram
because of Theorem 12.

For T € N the set 2T is an equivalence class: ! = in.r({al,al})/ <~p>€ [D]
Define 29 := 0,z :=1and B:= {T|T C M} C [D].

Proof of B = P(M):

We have z7 # 2V iff T # U for T,U C M. Therefore the mapping

¢:P(M)— B, T+ 2t

is bijective. For T, U € N with U = M \ T we have
ST) = (") = (ino ({017, 0,7})/ <~p>)
= ingro ({637, 0,7})/ <~p>= 2" = ¢(T"),
so ¢ is compatible with ’.
For T' = @ the sum 27 @ 2V exists and equals to 2V for all U C M. Now let T, U € N

such that 7' @ U exists in P(M). Then we get 27 = ingro ({d1Y,62V})/ <~p> and
2V = ingo ({65, 00)) ) <~p>, s0 2T @ 2V exists. If TU U = M then we get

1=

o(T) © S(U)

T o U) =™

ingro({b1, 607 65V 1Y) ) <~p>= 2T @Y

and if TUU # M then we get

ST o U) =™ = ingo ({07, 6,7, 0570, <~p>= ol @ = o(T) @ o(U),
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so ¢ is compatible with &.
Now let T,U € N such that 27 @ 2V exists. Then there exist F, F' C ¢ € R with

ENF =0 and 27 =in,(E)/ <~p> and 2V = in,(F)/ <~p>.

Because of the definition of 27 we have to consider the following cases:
Case 1: There exists a set V € N with

qc {TT M\T M\TV WV VM\T oV V,M\(TUV)7wV,T\V7SV,T\V7SV,M\T7 SM\T,V}

Then we get T'= M \ U because of ENF =@, so T & U exists in P(M).
Case 2: There exists a set V € N with TNV =@ and g = sV
Then we have

E={b;" b, }and Fe {by" by} b5 05 b {by by by g

If F={b1" 61"} then we get U =V and T & U exists.

If = {b2", bV} then we get U= M\ (T'UV) and T & U exists.

If £ = {627, 60", b5V b5V then we get U = M\ T and T' @ U exists.
Case 3: There exists aset V € N with TNV = @ and ¢ = s""T

Then we have

B = 0T 0T} and B {000 T T (T BT T BT,

If F={b]"" 65"} then we get U = V and T' & U exists.

If = {b)7 b7} then we get U = M\ (T'UV) and T @ U exists.

If £ = {67,657 b0 b1} then we get U = M\ T and T @ U exists.
Case 4: There exists a set V € N with TNV =0 and ¢ = s""M\TWY)
Then we have

B = {b;/,M\(TUV)7 bé/,M\(TUV)} and

Y

Fe {{b;/,M\(TUV)7 b;/,M\(TLJV)}7 {b;/,M\(TLJV)7 bjl/,M\(TLJV)}>

{b;/,M\(TLJV)7 b;/,M\(TLJV)7 b;)/,M\(TLJV)7 bZ,M\(TUV)}}‘

If = {bVM\(TUV) bVM\ W) } then we get U =V and T' @ U exists.

If = {bVM\ ™) bVM\(TUV)} then we get U = M\ (TUV)and T § U exists.

If ¥ = {bVM\(TUV) bVM\(TUV) bVM\(TUV) bVM\(TUV} then we get U = M \ T and
T & U exists.

Therefore ¢ is closed. We have ¢(0) = 0, therefore ¢ is an isomorphism.

Now we show that B is a block of [D]. Let €' < [D] a Boolean subalgebra which
contains B. Assume that there exists an element y = in,(E)/ <~p>€ C \ B. Here

51



we choose £ with minimal cardinality. Then y' = in,(¢ \ F)/ <~p>€ C\ B also
holds. Let Ty, Uy € N with

= {T.TO gt To.Uo oo wTo7U0}‘
Because of |M| > 3 there exists a set Z C M with
Z&{0, M, To, Uy, M\ To, M\ Uy, To U Uy, M\ (To U Up) }.

We have the existence (see [BM98]) of a,b,c € C with a @b = 2Z,b® ¢ = y such that
a & c exists. There exist F, G C p € R with

b=in,(F)/ <~p>,c=1in,(G)] <~p> and in,(FUG)/ <~p>=in,(E)/ <~p> .
Because of y € B we have
E#0,
E#{ai, a3},
B # {az, a3},
B #{b",0,"},
B # {bs",0,"},
B #{b5", 05"},
B # b 0,7, 057,07,
B # b, 0,7, 057 b ),
B # {bs", 0,7, 0577 b,
B # (b 0,
E# {o " oM

forall T,U € N with TNU = @, TUU # M. Therefore we have (in,(FUG), in,(E)) €
pa1. Because of the minimality of |E| we have |¢\ E| > 1, so (in,(FUG),in,(E)) &
p; U p],_l for 7 > 10 and we get FUG = E C ¢q. At least one of the elements b and ¢
is not contained in B because we have b& ¢ = y € B. Because of the minimality of
|| we get FF € {F,G} and therefore b= 0 or ¢ = 0.

Case 1: b =10

We get the existence of a & ¢ = 4 @ ing(E)/ <~p> and therefore there exists

52



H,I C 1 € R with 27 = iny(H)/ <~p>,in,(E)] <~p>= in(I)] <~p> and
HNI=0. We have | # ¢ because of

7 & {0, M, Ty, Up, M\ To, M\ Ug, Ty U Ug, M \ (Ty U Up)}.

We have |H| > 2 because of the definition of 2%, therefore |/ \ I| > 1 holds. We have
(tni(1),ing(E)) & p21. Therefore there exists 1 <¢ < 10 with

(im(1),ing(E)) € pi U p; .
If (iny(1),in,(E)) € p1 then we get g = w™™ and

an(H) = IN,Tut, (agOUUO7aZOUU0) c 2 M\(ToLlo) 7£ 22
which is a contradiction to in;(H)/ <~p>= 72
It (an([)vlnq(E)) € ,01_1 then we get q = rTo and

an(H) = ianuv(bg’V7bg’V) c xM\TO 7£ 27

which is again a contradiction.

Analogously we get a contradiction if (in;(H),in,(E)) € p; U p;' holds with 2 < j <
10.

Case 2: c =0

Then we get a @ in,(E)/ <~p>=a®b= 27, 50 in,(F)/ <~p>< zZ and

ing(B)] <~p> ®(x?) =in,(E)] <~p> @\’

exists. We have
M\ Z ¢ {0, M, To,Up, M\ To, M \ Uy, To U Uy, M \ (15 U Up)},

so we get the contradiction like in case 1 (with M \ Z instead of 7). Therefore B is a
block. The atoms of B are not contained in P. If M is finite then each block of [D]
is finite and therefore each block is generated by its atoms. So theorem 16 does not
hold for diagrams which are not OMA-diagrams. If M is infinite then the block B is
not generated by atoms(B).

The following example shows that there exists an OMA-diagram with finite lines,
such that condition (2a) of Theorem 29 is satisfied, but there exists a clique which is
not contained in a line.

Example 4:

Let D = (P, R) with R = {r,|n > 3} with r, = {ao,a1,a9,... ,a,,b,,¢,} for n >3
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and a, = (0,n) for n € Nand b, = (1,n) and ¢, = (2,n) for n > 3 and P = |JR.
Let p = p1 U pg with

p1 = {(in.(E),ins(E))|E CrNsandrsée R} and
p2 = {(in,(r\ E),ins(s\ F))|F CrNnsandr,sec R}

Then p is reflexive and symmetrical. We have p] = py and p}, = p1, so p is compatible
with ’. It is not difficult to see that p is transitive and compatible with ¢, so p is a
congruence relation. p is generated by ~p, so we get <~p>= p.

D is a diagram:

Fora € r € Rand £ C s € Rwith (in.({a}),ins(E)) E<~p>= p weget I/ = {a}, so
with Theorem 12 we only have to proof (C2). Let r € R. The mapping nat<. s oin,
is injective because of <~p>= p.

Now let in.(F)/ <~p>,in.(F)/ <~p>€ [D] such that

Zn,,(E)/ <~p> @inr(F)/ <~p>
exists. Then there exist s € R and G, H € Pein(s) with GN H = (@ and

in(E)/ <~p>=1ins(G)} <~p> and in,.(F)/ <~p>=ins(H)/ <~p> .

Because of <~p>= p we get EN F = O, so natc~,s 01n, is closed. Therefore D
is a diagram. D is an OMA-diagram because of Theorem 27 and Lemma 28. The
set A = {a,|n € N} is a clique which is not contained in a line. Condition (2a) of
theorem 29 is satisfied. The diagram D is not complete because with Theorem 3 the
set A = {[a,]|n € N} generates an infinite Boolean subalgebra, but D contains only
finite lines, so every block would be finite, if D is complete.

4 Conclusion

With the theorems of chapter 2 we get an algorithm how to check whether the inter-
pretation of a finite hypergraph is a complete OMA-diagram:
Input: finite hypergraph D = (P, R)
Output: “yes” if D is a complete OMA-diagram, “no” otherwise
Algorithm: If there exist r,s € R with r # s and |r \ s| < 1 then the algorithm
ends with output “no”. If the relation p := {(in,(F),ins(F))| there exist t,u € R
with ¢ = EU(s \ F) and « = FU(r \ E)} is not transitive or not compatible with &
then output “no”. If there exists a triangle but no line containing the corners of the
triangle then output “no”. If there exists a line s € R which is covered by two other
lines but there does not exist a line containing the rest of the two other lines and
their intersection, then output “no”. Otherwise output “yes”.

This algorithm has been implemented by the author in the program “omacheck”.
The correctness of this algorithm follows from Theorem 34 and from Lemma 32.
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