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Abstrat. The aim of the paper is to develop a logi of relations on

semionept graphs orresponding to the Contextual Logi of Relations

on power ontext families. Semionept graphs allow the representation

of negations. The operations from Peirean Algebrai Logi (i.e., the

operations of relation algebras of power ontext families) are used to

generate ompound semionepts (or relations, resp.). For an arbitrary

(semi-)onept graph, most spei� semionept graphs are onstruted

where a ompound semionept is assigned to eah of the edges, i.e.

ompound semionepts are onstruted diretly on semionept graphs

independent of the orresponding power ontext family.
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1 Introdution

Contextual Logi of Relations an be seen as one part of Contextual Logi (es-

peially, Contextual Judgment Logi) as explained in [Wi00℄. Sowas theory

of oneptual graphs [So92℄ has been ombined with Formal Conept Analysis

[GW99a℄ in [Wi97℄ and [PrW99℄ to design a mathematial Logi of Judgment

in the framework of Contextual Logi [Wi00℄. Conepts and relations of on-

eptual graphs an be mathematially represented by power ontext families.

In [PoW00℄ and [Wi00a℄ a Contextual Logi of Relations has been developed

as a Contextual Attribute Logi [GW99b℄ on the relational ontexts of a power

ontext family.

In this paper, semionept graphs (as introdued in [Wi01℄) are used to rep-

resent the information of power ontext families. Compound semionepts (and

relations, resp.) are introdued in the sense of the Contextual Logi of Rela-

tions inorporating the operations based on the Peirean Algebrai Logi whih

R.W.Burh reonstruted in [Bu91℄. The paper deals with the onstrution of

semionept graphs ontaining ompound semionepts assigned to the verties

and edges. For that, an arbitrary semionept graph of a power ontext family

1



is onsidered. For eah ompound semionept the question is answered how a

most spei� onept graph of this power ontext family where the ompound

semionept is assigned to eah of the edges an be onstruted from the given

semionept graph. That allows relational onstrutions on semionept graphs

without using the power ontext family. Nevertheless, they orrespond to the

Contextual Logi of Relations on power ontext families.

2 Contextual Logi of Relations on Power Context

Families

Contextual Logi of Relations has been developed as a Contextual Attribute

Logi on power ontext families in [PoW00℄ and [Wi00a℄ within the theory of

Formal Conept Analysis (see [GW99a℄ for the mathematial foundations of

Formal Conept Analysis). The aim is to support knowledge representation and

knowledge proessing.

The basi struture is the data table. There an be represented simply ob-

jets and their attributes, as well as relational onnetions. We start with an

example. We onsider the family tree of the Bah family of famous omposers

and musiians in [Me90℄. There is given some short information about eah per-

son, like name, dates, plae, and profession, whih an be represented in

a data table where the rows are denoted by the persons, the olumns by the

attributes. From the name we an derive the attributes man or woman, whih

an also be understood as unary relations. The lines in suh a family tree in-

diate two binary relations, hild�of and married�to. These two binary rela-

tions are suÆient to determine the family relationships between eah two or

more of these persons. Relations like mother�of, grandfather�of, brother�of,

or mother-father-hild an be derived. We are interested in the question how

we an derive and represent suh relations by a omputer, and suggest to use

the formal methods of Contextual Logi and semionept graphs. ([Ba92℄ deals

with a related problem in the framework of the terminologial knowledge repre-

sentation.)

Contextual Logi is based on the mathematial notion of a formal ontext,

whih is de�ned as a triple K := (G;M; I) onsisting of a set G of objets, a set

M of attributes, and a binary relation I � G �M . The relation I between G

and M an be read \the objet g has the attribute m" for gIm (i.e., (g;m) 2 I).

For eah attribute m 2M of a formal ontext (G;M; I), the extent is de�ned as

the set

m

I

:= fg 2 GjgImg

of all objets of (G;M; I) that have this attribute. Analogously, for eah set

A �M of attributes, the extent is de�ned as the set

A

I

:= fg 2 Gj8

m2A

gImg =

\

fm

I

jm 2 Ag

of all objets of (G;M; I) that have all these attributes. Dually, exhanging

objets and attributes, we get the intent of an objet (set). Using this prime op-

eration, relationships between formal attributes an be expressed. For example,
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we say an attribute m implies an attribute n if the extent of m is a subset of

the extent of n (i.e., m

I

� n

I

).

In order to have more expressivity in Contextual Attribute Logi ompound

attributes of a formal ontext (G;M; I) have been introdued in [GW99b℄ by

using the operational elements :,

V

and

W

for negation, onjuntion and dis-

juntion.

This idea has been extended in [PoW00℄ and [Wi00a℄ to relation ontexts of

power ontext families. A power ontext family is a sequene

�!

K := (K

0

;K

1

; : : : ;K

k

; : : :)

of formal ontexts K

k

:= (G

k

;M

k

; I

k

) with G

k

� (G

0

)

k

for k = 0; 1; : : :. A

power ontext family

�!

K is alled limited of type n 2 N if

�!

K := (K

0

;K

1

; : : : ;K

n

),

otherwise it is alled unlimited. Eah ontext K

k

an be extended to the relation

ontext

_

K

k

:= ((G

0

)

k

;M

k

; I

k

), for unifying notion we write

_

K

0

:= K

0

.

Now, the data of our example an be represented by a power ontext family

�!

K := (K

0

;K

1

;K

2

). We restrit our onsiderations to 14 (of the 44) people of the

Bah family ontained in the given family tree. These 14 persons are the objets

of the formal ontext K

0

, i.e.

G

0

:= f Johannes, Christoph, Heinrih, Johann Ambrosius, Elisabeth

L�ammerhirt, Johann Christoph, JohannMihael, Johann Sebastian, Maria

Barbara, Anna Magdalena Wilken, Johann Christoph Friedrih, Johann

Christian, Wilhelm Friedemann, Carl Philipp Emanuelg.

As attribute set we hose M := fdates, plae, profession, womang. So we

get a \many-valued ontext". In [GW89℄ saling methods have been desribed

to derive a (one-valued) ontext from the many-valued ontext by splitting the

attributes. For the ontext K

1

of unary relations we hose G

1

:= G

0

and M

1

:=

fmang. The ontext K

2

of binary relations is given by G

2

:= G

0

� G

0

and

M

2

:= fhild�of, married�tog. Then the relation hild�of is de�ned in the

following way:

hild�of := f(Christoph, Johannes), (Heinrih, Joh.), (Joh.Ambr. Chr.),

(Joh. Christoph, Heinrih), (Joh.Mihael, Heinrih), (Joh. Seb., Joh.Ambr.),

(Joh. Seb., Elisabeth L.), (Maria Barbara, Joh. Mihael), (Joh.Chr. Friedrih,

Anna MagdalenaW. ), (Joh. Christoph Friedrih, Joh. Seb.), (Joh. Christian,

Anna Magdalena W.), (Joh. Christian, Joh. Seb.), (Wilh. Friedemann,

Maria Barbara), (Wilh. Friedemann, Joh. Seb.), (Carl Ph.Emanuel, Maria

Barbara), (Carl Ph.Emanuel, Joh. Seb.)g;

and married�to is the symmetri relation generated by

f(Joh.Ambrosius, Elisabeth L.), (Joh. Seb., Maria Barbara), (Joh. Seb.,

Anna Magdalena W.)g.

In order to disuss the Contextual Logi of ordinal strutures, in [PoW00℄ the

Contextual Logi of (unary and) binary relations has been developed using bi-

nary power ontext families

�!

K := (K

0

;K

1

;K

2

). In analogy to [GW99b℄, om-

pound attributes for

�!

K an be introdued with the operational elements :,

V

,
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W

, ?, and Æ. Thus, (for k = 0; 1; 2) ompound attributes are: eah attribute

m 2 M

k

, the \onstants" ?

k

(i.e., the empty relation), >

k

(i.e., the universal

relation), and id

2

(i.e., the binary identity relation) as well as all attributes gen-

erated by iteration of the operations negation :, onjuntion

V

, disjuntion

W

,

onversion ? and onatenation Æ. There are no mathematial reasons to restrit

these de�nitions to binary relations.

In [Wi00a℄ the more general relation algebras of power ontext families have

been introdued. This paper is mainly based on the book [Bu91℄, where the

Peirean Algebrai Logi has been reonstruted. It has been shown, that the

expressibility of the introdued language of relation algebras reahes the ex-

pressibility of the �rst order logi. That is the reason for us to hoose these basi

operations for our investigations, too (f. hapter 4).

In [PoW00℄ a entral question onerns the equivalene of ompound at-

tributes of a power ontext family. Now we are interested in the onstrutions

themselves. There is a lose onnetion between power ontext families and on-

ept graphs. So the question arrises: How an ompound attributes be on-

struted on onept graphs?

As in [Wi00b℄ is pointed out, it is not possible to de�ne a negation in the

sense of G.Boole on onepts, beause a negated onept need not to be a

onept again. But, negation (or omplementation) plays an important role in

the logi of relations. This problem has been disussed in [Wi01℄ with the result

that the best generalization of onepts keeping the orrespondene between

negation and set-omplement seems to be the notion of protoonepts: Let K :=

(G;M; I) be a formal ontext. Then the pair (A;B) is alled a protoonept

of K if A � G, B � M , and A

II

= B

I

(i.e. B

II

= A

I

). The negation of

a protoonept (A;B) of K is de�ned as the protoonept :(A;B) := (G n

A; (GnA)

I

). Considering protoonepts we have algebraially to deal with double

Boolean algebras. Many appliations show that protoonepts whih are not

formal onepts often our only as negated onepts or as meets of those. Suh

protoonepts are u-semionepts. Therefore we restrit our onsiderations to

u-semionepts, and have to deal only with Boolean algebras of u-semionepts.

If it is required by some appliations, these investigations an be extended to

protoonepts in further researh.

3 Semionept Graphs

Considering a formal ontext K := (G;M; I), we all a pair (A;A

I

) with A � G

a u-semionept of K . We write H

u

(K ) := f(A;A

I

)jA � Gg for the set of all

u-semionepts of K . On H

u

(K ) the following operations an be de�ned:

{ :(A;A

I

) := (G nA; (G nA)

I

),

{ (A;A

I

) u (B;B

I

) := (A \ B; (A \ B)

I

),

{ (A;A

I

)t(B;B

I

) := (A [ B; (A [ B)

I

),

{ ? := (;;M),

{ > := (G;G

I

).
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(We use t and > beause these operations do not oinide with the operations

t and > on onepts.) Then H

u

(K ) := (H

u

(K );u;t;:;?;>) is the Boolean

algebra of semionepts of the formal ontext K := (G;M; I). An order relation

on H

u

(K ) an be de�ned by

(A;A

I

) v (B;B

I

) :() A � B (and A

I

� B

I

):

The extent A of a u-semionept b := (A;A

I

) usually is denoted by Ext(b).

The following notions are introdued as in [Wi01℄. A relational graph is a

set struture (V;E; �) onsisting of a set V of verties a set E of edges and a

mapping � : E !

S

k=1;2;:::

V

k

. For �(e) = (v

1

; : : : ; v

k

) we say v

1

; : : : ; v

k

are the

adjaent verties of the k-ary edge e. The arity of e is jej := k, the arity of any

vertex v is jvj := 0. We write E

(k)

:= fu 2 V [ Ejjuj = kg for k = 0; 1; : : :, i.e.

E

(0)

= V for k = 0. A relational graph is said to be limited of type n 2 N if

E = E

(1)

[ : : : [E

(n)

, otherwise it is alled unlimited.

A semionept graph of a power ontext family

�!

K := (K

0

; : : : ;K

k

; : : :) with

K

k

:= (G

k

;M

k

; I

k

) for k = 0; 1; : : : is a set struture G := (V;E; �; �; �) for whih

(V;E; �) is a relational graph and

{ � : V [ E !

S

k=0;1;:::

H

u

(

_

K

k

) is a mapping with �(u) 2 H

u

(

_

K

k

) for all

u 2 E

(k)

(k = 0; 1; : : :),

{ � : V ! P(G

0

) n f;g is a mapping with �

+

(v) := �(v) \ Ext(�(v)) and

�

�

(v) := �(v) n �

+

(v) suh that, for �(e) = (v

1

; : : : ; v

k

), �

+

(v

j

) 6= ; for all

j = 1; : : : ; k or �

�

(v

j

) 6= ; for all j = 1; : : : ; k and �

+

(v

1

) � : : :� �

+

(v

k

) �

Ext(�(e)) and �

�

(v

1

)� : : :� �

�

(v

k

) � (G

0

)

k

nExt(�(e)).

A semionept graph G

1

of the power ontext family in our example is presented

in the following �gure

1

.

child of

child of

child of

child of

composer: JS | man

woman: AMW | JCF,JC,JS

woman: MB | WF,CPE,JS

born > 1730:  JCF,JC | MB,AMW

born > 1705: WF,CPE | MB,AMW man

man

The mapping � an also be onsidered on edges (not only on verties). For

�(e) = (v

1

; : : : ; v

k

), the mapping �(e) := �

+

(e) [ �

�

(e) is de�ned by �

+

(e) :=

�

+

(v

1

)� : : :��

+

(v

k

) and �

�

(e) := �

�

(v

1

)� : : :��

�

(v

k

). Then for a semionept

graph G := (V;E; �; �; �), the triples [�(u) : �

+

(u)j�

�

(u)℄ for u 2 V [ E are

alled semionept instanes of G. The set of all semionept instanes of a

1

As mentioned above, properties like \to be a man" or \to be a woman" may appear

as a unary relation as well as a onept. To illustrate this, in our example oure

the onept \woman" and the unary relation \man".
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formal ontext K

0

is denoted by H

inst

u

(K

0

). Its elements are triples [b : CjD℄

with b 2 H

u

(

_

K

0

), C � Ext(b), and D � (G

0

)nExt(b). We write H

0�inst

u

(

_

K

0

) :=

H

inst

u

(K

0

). The set of all k-ary semionept instanes of a ontext

_

K

k

is denoted

by H

k�inst

u

(

_

K

k

) (k = 1; 2 : : :). Its elements are triples [b : C

1

� : : :�C

k

jD

1

� : : :�

D

k

℄ with b 2 H

u

(

_

K

k

), C

1

�: : :�C

k

� Ext(b), andD

1

�: : :�D

k

� (G

0

)

k

nExt(b).

The set of the following semionept instanes desribes a graph G

2

of the

power ontext family in our example (names are abbreviated by initials):

[married�to: fJSg � fMB,AMWg j fMB,AMWg � fJAg℄,

[married�to: fJAg � fELg j fELg � fJSg℄,

[married�to: fMB,AMWg � fJSg j fJAg � fMB,AMWg℄,

[married�to: fELg � fJAg j fJSg � fELg℄,

[hild�of: fJAg � fCg j fCg � fJAg℄,

[hild�of: fJC,JMg � fHg j fHg � fJC,JMg℄,

[hild�of: fJSg � fJA,ELg j fJA,ELg � fJSg℄,

[hild�of: fMBg � fJMg j fJMg � fMBg℄,

[man: fJA,JC,JM,JSg j fEL,AMW,MBg℄,

[JS: fJSg j ;℄,

[woman: fEL,MB,AMWg j fJA,JSg℄.

On H

k�inst

u

(

_

K

k

), a generalization order (onerning the ontent of information)

is de�ned by

[b

1

: C

1

jD

1

℄ � [b

2

: C

2

jD

2

℄ :() b

1

w b

2

; C

1

� C

2

; D

1

� D

2

:

This relation an be read \the semionept instane [b

1

: C

1

jD

1

℄ is more general

than [b

2

: C

2

jD

2

℄". In our example holds

[desendant�of: (Wilh. Friedemann, Joh. Seb.)j (Joh. Seb., Wilh. Fr.)℄

� [hild�of: fWilh. Fr., C. Ph. Emanuelg� fJoh. Seb., Maria Barbaragj

fJoh. Seb., Maria Barbarag� fWilh. Fr., C. Ph. Emanuelg℄

This generalization order between semionept instanes an be extended to

semionept graphs. For that the semi-oneptual ontent C(G) := (C

0

(G); : : : ;

C

k

(G); : : :) of a semionept graph G := (V;E; �; �; �) of a power ontext family

�!

K is de�ned by

C

k

(G) := f(g; b) 2 (G

0

)

k

�H

u

(

_

K

k

)j there are 

t

(t 2 T ) with b w u

t2T



t

and

8t 2 T9u

t

2 E

(k)

: 

t

= �(u

t

); g 2 �

+

(u

t

) or 

t

= :�(u

t

); g 2 �

�

(u

t

)g

for k = 0; 1; : : :. The k-th omponent C

k

(G) is alled the semi-oneptual k-

ontent of the semionept graph G. We say, a semionept graph G

1

is more

general (less spei�) than G

2

if

G

1

>

�

G

2

:() C

k

(G

1

) � C

k

(G

2

) for k = 0; 1; : : : :

Thus, we have a generalization order between semionept graphs (onerning

the ontent of information). It indues an equivalene relation on semionept
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graphs in the natural way. Two semionept graphs G

1

and G

2

are eqivalent

(G

1

� G

2

) if G

1

>

�

G

2

and G

1

<

�

G

2

, i.e. if C(G

1

) = C(G

2

).

Considering ompound relations on semionept graphs we are interested

in \most spei� graphs" where suh \ompound relation" are assigned to the

edges.

4 Contextual Logi of Relations on Semionept Graphs

Let G := (V;E; �; �; �) be a semionept graph of an arbitrary power ontext

family. Then we denote the lass of all power ontext families

�!

K with the prop-

erty that G is a semionept graph of

�!

K by

~

C (G). What is the intrinsi informa-

tion of G independent of

�!

K 2

~

C (G)? Considering only the semionept graph

we get G

0

� �(V ) and

S

k=0;1;:::

H

u

(

_

K

k

) � �(V [ E); only the semionepts

assigned to the edges and verties are known, not all objets and semionepts

of

�!

K . We all the semi-oneptual (k-)ontent C(G) (or C

k

(G)) of G represented

independently of

�!

K 2

~

C (G), the intrinsi semi-oneptual (k-)ontent of G. For

eah semionept b 2 H

u

(

_

K

k

) we de�ne the semi-oneptual k-ontent of G with

respet to b by

C

k

(G; b) := fg 2 (G

0

)

k

j there are 

t

(t 2 T ) with b w u

t2T



t

and

8t 2 T9u

t

2 E

(k)

: 

t

= �(u

t

); g 2 �

+

(u

t

) or 

t

= :�(u

t

); g 2 �

�

(u

t

):g

Analogously, we de�ne the intrinsi semi-oneptual k-ontent of G with respet

to b independent of

�!

K 2 C (G). The following proposition an easily be proved:

Proposition 1. For eah semionept graph G the intrinsi semi-oneptual

ontent of G is ompletely desribed by the set of all semionept instanes of G.

Our aim is to determine the semi-oneptual k-ontent of a semionept

graph G with respet to \ompound semionepts" b, and to desribe it by

semionept instanes of a semionept graph G

0

. Obviously, suh a onstrution

yields a semionept graph G

0

of

�!

K for eah power ontext family

�!

K 2

~

C (G).

Thus, adding G

0

to G by juxtaposition yields a semionept graph of eah power

ontext family

�!

K 2

~

C (G), again.

Eah semionept of a relation ontext

_

K

k

(k = 1; 2; : : :) of a power ontext

family

�!

K := (

_

K

0

;

_

K

1

;

_

K

2

; : : :) an be interpreted as a k-ary relation on G

0

.

Analogous to the operations of the relation algebras of power ontext families

in [Wi00a℄, we introdue operations on semionepts of

�!

K . The basi operations

we are interested in are the operations of the Peirean Algebrai Logi (see

[Bu91℄) and their iterations. So we reah the expressibility of the �rst order

logi

2

. We extend our onsiderations to all the operations introdued in [Wi00a℄

beause these operations are relevant for many appliations, and the resulting

onstrutions beome less omplex than by iterating the basi operations.

2

Thus, all operations of SPC-, SPCU-, SPJ-, SPJR-algebras, and similar algebras

from the theory of databases (f. [AHV95℄) are inluded in the Peirean Algebrai

Logi.
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In the main part of the paper we present only the onstrutions for two basi

operations in order to demonstrate the priniple of the onstrutions. The speial

results for eah of the operations are added in the appendix of the paper.

Let G := (V;E; �; �; �) be a semionept graph. Our aim is to determine the

intrinsi semi-oneptual k-ontents C

k

(G; b) of G with respet to ompound

semionepts b. We desribe these semi-oneptual ontents by semionept in-

stanes. These semionept instanes orrespond to graphs ontaining only edges

labeled by the onsidered ompound semionepts, whih an be added to G by

juxtaposition without hanging the semi-oneptual ontent of G. Note: to every

semionept graph or semionept instane eah more general graph or instane

an be onstruted and added in this sense.

The semi-oneptual ontent of a semionept graph G where : is assigned

to an edge an be represented by semionept instanes ontaining  instead of

:, exhanging eah semionept instane [: : AjB℄ by [ : BjA℄. In the follow-

ing, for a more onvenient representation of the formal relational onstrutions

using semionepts  we assume that there are no edges of G where : is as-

signed to. Empty semionept instanes have to be omitted in the following

onstrutions. The examples of semionept instanes orrespond to the set of

semionept instanes desribing the semionept graph G

2

in hapter 3.

Two important non-trivial operations on semionepts of

�!

K are negation and

onatenation (see the appendix of this paper for the other operations).

1. The negation : is the unary operation mapping  2 H

u

(

_

K

k

) (k = 1; 2; : : :)

to

: := (A;A

I

k

) 2 H

u

(

_

K

k

) with

A := G

k

0

nExt():

E.g., the unary relation woman an be de�ned by woman:= :man.

Then the semi-oneptual k-ontent of the semionept graphG with respet

to the ompound semionept : is

C

k

(G;:) = f(g

1

; : : : ; g

k

)j9e 2 E : �(e) = ; (g

1

; : : : ; g

k

) 2 �

�

(e)g:

This semi-oneptual ontent an be desribed by the semionept instane

f[: : �

�

(e) j�

+

(e)℄ je 2 E; �(e) = g:

(Notie, that the semi-oneptual k-ontent of G with respet to  is onsid-

ered, too.) E.g., we get in G

2

: [woman: fEL,MB,AMWg j fJA,JC,JM,JSg℄.

Thus, this semionept instane represents the ompound semionept :

with a set of objets belonging to its extent and a set of objets not belong-

ing to the extent. For all other objets it is not possible to deide whether

they belong to the extent of : or not. The semionept instane an be

represented by a (part of a) semionept graph. The onstrution yields the

most spei� semionept graph, i.e. the semionept graph ontaining all

information about the ompound semionept ontained in the semionept

graph G.

8



2. For i � k; j � l 2 N, the ij-onatenation (i Æ j) is the binary operation

mapping (

1

; 

2

) 2 H

u

(

_

K

k

)� H

u

(

_

K

l

) (k; l = 1; 2; : : :) to



1

(i Æ j)

2

:= (A;A

I

k+l�2

) 2 H

u

(

_

K

k+l�2

) with

A := f(g

1

; : : : ; g

i�1

; g

i+1

; : : : ; g

k

; h

1

; : : : ; h

j�1

; h

j+1

; : : : ; h

k

)j

9g

i

= h

j

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext(

1

) and (h

1

; : : : ; h

k

) 2 Ext(

2

)g:

E.g., we de�ne grandhild�of := hild�of (2 Æ 1) hild�of.

Then the semi-oneptual k-ontent of the semionept graphG with respet

to the ompound semionept 

1

(i Æ j)

2

is

C

k+l�2

(G; 

1

(i Æ j)

2

) =

f(g

1

; : : : ; g

i�1

; g

i+1

; : : : ; g

k

; h

1

; : : : ; h

j�1

; h

j+1

; : : : ; h

k

)j

9e

1

; e

2

2 E : �(e

1

) = 

1

; �(e

2

) = 

2

; �

+

(�(e

1

)

i

) \ �

+

(�(e

2

)

j

) 6= ;;

9g

i

; h

j

: (g

1

; : : : ; g

k

) 2 �

+

(e

1

); (h

1

; : : : ; h

l

) 2 �

+

(e

2

)g:

This semioneptual ontent an be desribed by the following set of semi-

onept instanes (with �(e

1

) = (v

11

; : : : ; v

1k

) and �(e

2

) = (v

21

; : : : ; v

2k

)).

f [

1

(i Æ j)

2

) : �

+

(�(v

11

)� : : :� �

+

(v

1(i�1)

)� �

+

(v

1(i+1)

)� : : :� �

+

(v

1k

)

��

+

(v

21

)� : : :� �

+

(v

2(j�1)

)� �

+

(v

2(j+1)

)� : : :� �

+

(v

2l

) j;℄ j

e

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

; �

+

(v

1i

) \ �

+

(v

2j

) 6= ;g:

E.g., we get in G

2

: [grandhild�of: fMBg � fHg j ;℄,

[grandhild�of: fJSg � fCg j ;℄. These semionept instanes an be rep-

resented by a semionept graph again. It an easily be shown that the

onstruted semionept instanes are minimal, i.e. ontaining as muh in-

formation as possible.

Analogous onstrutions for all operations mentioned above are represented in

the appendix. These onstrutions are independent of the power ontext family

�!

K 2

~

C (G). I.e., the onstrutions desribed in this hapter and in the appendix

an be applied to eah semionept graph independent of the hosen power

ontext family. The following two propositions an be heked for eah of the

de�ned ompound attributes:

For the onstrutions 1 and 2 in this hapter as well as the onstrutions 1

to 11 in the appendix yields:

Proposition 2. The onstrutions of semionept instanes ontaining om-

pound semionepts yield semionept instanes orresponding to semionept

graphs.

Thus, the desribed onstrutions on semionept instanes orrespond diretly

to onstrutions on semionept graphs.

Proposition 3. The onstruted semionept instanes ontaining ompound

semionepts are minimal (i.e. most spei�).

9



Thus, in general the onstruted semionept graphs reet all information

about the ompound semionepts (or relations, resp.) ontained in a semion-

ept graph. Possibly, there are known further dependenies like superonept-

subonept-relations. Then, moreover, we have to take into onsideration that

every more general graph an be derived from a more spei� graph. Possibly,

the set G

0

of objets may be known. In this ase the onstrutions an also

be extended to get more spei� graphs. There are many possibilities how pre-

knowledge an be inluded. This is a wide �eld for further researh. In this paper

we restrited our investigations to the semi-oneptual ontent of semionept

graphs.

Appendix: Formal Construtions

The onstrutions realized in hapter 4 for negation and onatenation an be

transfered to all operations on semionept instanes orresponding to the op-

erations introdued in [Wi00a℄. The aim of this appendix is to sketh the formal

results without any proof. For shortness, we present only the formal de�nitions

of the operations on semionept instanes (i.e., of the ompound relations) and

the resulting minimal semionept instanes ontaining only these ompound

relations. (Let G

0

0

:=

S

v2V

�(v).)

1. For k 2 N, the k-univeral >

k

, the k-null ?

k

, and the k-identity Id

k

are

nullary operations given by

>

k

:= (A;A

I

k

) 2 H

u

(

_

K

k

) with A := G

k

0

;

?

k

:= (A;A

I

k

) 2 H

u

(

_

K

k

) with A := ;;

Id

k

:= (A;A

I

k

) 2 H

u

(

_

K

k

) with A := f(g

1

; : : : ; g

k

)jg

1

= : : : = g

k

2 G

0

g:

These operations result in the following sets of semionept instanes:

f[>

k

: (G

0

0

)

k

j;℄g;

f[?

k

: ; j(G

0

0

)

k

℄g;

f[Id

k

: fgg

k

j;℄jg 2 G

0

0

g [

f[Id

k

: ; j(g

1

; : : : ; g

k

)℄jg

1

; : : : ; g

k

2 G

0

0

; 9i; j 2 f1; : : : ; kg : g

i

6= g

j

g:

For k = 2, the semi-oneptual ontent C

2

(G; Id

2

) an be desribed by

f[Id

k

: fgg

k

j;℄jg 2 G

0

0

g [ f[Id

k

: ;jfgg � (G

0

0

n fgg)℄jg 2 G

0

0

g:

In the semionept graph G

2

(desribed by a set of semionept instanes in

hapter 3) we get, e.g., [>

1

: fJS,JA,MB,AMW,EL,JC,JM,C,Hg j ;℄.

2. For eah semionept s 2 H

u

(

_

K

0

) and i 2 N, the (i; s)-restrition (i; s) is the

unary operation mapping  2 H

u

(

_

K

k

) (k = 1; 2; : : :) to



(i;s)

:= (A;A

I

k

) 2 H

u

(

_

K

k

) with

A := f(g

1

; : : : ; g

k

) 2 Ext()jg

i

2 Ext(s)g:

10



E.g., the relations wife�of and hild-mother an be de�ned by

wife�of := married�to

(1;woman)

, and hild-mother := hild�of

(2;woman)

,

where \woman" denotes the K

0

-(semi)onept (fwomang

I

0

; fwomang

I

0

I

0

).

We get the following set of semionept instanes (with �(e) = (v

1

; : : : ; v

k

)):

f [

(i;s)

: �

+

(v

1

)� : : :� �

+

(v

i�1

)� (�

+

(v

i

) \ A

+

)

��

+

(v

i+1

)� : : :� �

+

(v

k

) j�

�

(e)℄ je 2 E; �(e) = g [

f [

(i;s)

: ; j(G

0

0

)

i�1

�A

�

� (G

0

0

)

maxf0;k�i�1g

℄g

E.g., we get in G

2

: [wife�of: fMB,AMWg � fJSg j fJAg � fMB,AMWg℄,

[wife�of: fELg � fJAg j fJSg � fELg℄,

[wife�of: ; j fMB,AMWg � fJAg℄,

[wife�of: ; j fELg � fJSg℄,

[wife�of: ; j fJS,JAg � fJS,JA,MB,AMW,ELg℄;

and in G

1

:

[hild-mother: fJCF,JCg � fAMWg j fMB,AMWg � fJCF,JC,JSg℄,

[hild-mother: fWF,CPEg � fMBg j fMB,AMWg � fWF,CPE,JSg℄,

[hild-mother: ; j fJCF,JC,WF,CPE,MB,AMW,JSg

� fJCF,JC,WF,CPE,JSg℄.

3. For eah permutation � on the set f1; : : : ; kg, the permutation � is the unary

operation mapping  2 H

u

(

_

K

k

) (k = 1; 2; : : :) to



�

:= (A;A

I

k

) 2 H

u

(

_

K

k

) with

A := f(g

�(1)

; : : : ; g

�(k)

)j(g

1

; : : : ; g

k

) 2 Ext()g:

This operation inludes the onversion in the binary ase. E.g., we de�ne

husband of := wife of

�(12)

.

We get the following set of semionept instanes (with �(e) = (v

1

; : : : ; v

k

)):

f [

�

: �

+

(v

�(1)

)� : : :� �

+

(v

�(k)

)j�

�

(v

�(1)

)� : : :� �

�

(v

�(k)

)℄ j

e 2 E; �(e) = g

E.g., we get in G

2

:

[husband�of: fJSg � fMB,AMWg j fMB,AMWg � fJAg℄,

[husband�of: fJAg � fELg j fELg � fJSg℄,

[husband�of: ; j fJAg � fMB,AMWg℄, [husband�of: ; j fJSg � fELg℄,

[husband�of: ; j fJS,JA,MB,AMW,ELg � fJS,JAg℄.

4. The (Cartesian) produt� is the binary operation mapping (

1

; 

2

) 2 H

u

(

_

K

k

)�

H

u

(

_

K

l

) (k; l = 1; 2; : : :) to



1

� 

2

:= (A;A

I

k+l

) 2 H

u

(

_

K

k+l

) with

A := f(g

1

; : : : ; g

k

; h

1

; : : : ; h

l

)j

(g

1

; : : : ; g

k

) 2 Ext(

1

) and (h

1

; : : : ; h

l

) 2 Ext(

2

)g

The onstrution yields

f [

1

� 

2

: �

+

(e

1

)� �

+

(e

2

) j;℄ je

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

g

[f [

1

� 

2

: ;j�

�

(e

1

)� (G

0

0

)

l

℄ je

1

2 E; �(e

1

) = 

1

g

[f [

1

� 

2

: ;j(G

0

0

)

k

� �

+

(e

2

)℄ je

2

2 E; �(e

2

) = 

2

g:
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E.g., we get in G

1

:

[>

1

�man: fJCF,JC,WF,CPE,MB,AMW,JSg � fJCF,JC,WF,CPE,JS g j ;℄,

[>

1

�man: ; j fJCF,JC,WF,CPE,MB,AMW,JSg � fMB,AMWg℄.

5. For i � k; l 2 N, the (i-onjuntion) ^

i

is the binary operation mapping

(

1

; 

2

) 2 H

u

(

_

K

k

)�H

u

(

_

K

l

) (k; l = 1; 2; : : :) to



1

^

i



2

:= (A;A

I

i

) 2 H

u

(

_

K

i

) with

A := f(g

1

; : : : ; g

i

)j9g

i+1

; : : : ; g

k

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext(

1

)

and 9h

i+1

; : : : ; h

l

2 G

0

: (g

1

; : : : ; g

i

; h

i+1

; : : : ; h

l

) 2 Ext(

2

)g

E.g., we de�ne hild-father := hild�of ^

2

(>

1

�man).

We get the following set of semionept instanes (with �(e

1

) = (v

11

; : : : ; v

1k

)

and �(e

2

) = (v

21

; : : : ; v

2l

)):

f [

1

^

i



2

: (�

+

(v

11

) \ �

+

(v

11

))� : : :� (�

+

(v

1i

) \ �

+

(v

2i

))j

�

�

(v

11

))� : : :� �

�

(v

1i

)℄;

[

1

^

i



2

: (�

+

(v

11

) \ �

+

(v

11

))� : : :� (�

+

(v

1i

) \ �

+

(v

2i

))j

�

�

(v

21

))� : : :� �

�

(v

2i

)℄ j

e

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

g:

For the ase k = l = i we get

f [

1

^

k



2

: �

+

(e

1

) \ �

+

(e

2

)j�

�

(e

1

)℄;

[

1

^

k



2

: �

+

(e

1

) \ �

+

(e

2

)j�

�

(e

2

)℄ j

e

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

g:

E.g., we get in G

1

:

[hild-father: fJCF,JC,WF,CPEg � fJSg j ;℄,

[hild-father: ; j fJCF,JC,WF,CPE,MB,AMW,JSg � fMB,AMWg℄,

[hild-father: ; j fMB,AMWg � fJCF,JC,WF,CPE,JSg℄.

6. For i � k; l 2 N, the (i-disjuntion) _

i

is the binary operation mapping

(

1

; 

2

) 2 H

u

(

_

K

k

)�H

u

(

_

K

l

) (k; l = 1; 2; : : :) to



1

_

i



2

:= (A;A

I

i

) 2 H

u

(

_

K

i

) with

A := f(g

1

; : : : ; g

i

)j9g

i+1

; : : : ; g

k

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext(

1

)

or 9h

i+1

; : : : ; h

l

2 G

0

: (g

1

; : : : ; g

i

; h

i+1

; : : : ; h

l

) 2 Ext(

2

)g

We get the following set of semionept instanes (with �(e

1

) = (v

11

; : : : ; v

1k

)

and �(e

2

) = (v

21

; : : : ; v

2l

)):

f [

1

_

i



2

: �

+

(v

11

))� : : :� �

+

(v

1i

) j

(�

�

(v

11

) \ �

�

(v

11

))� : : :� (�

�

(v

1i

) \ �

�

(v

2i

))℄;

[

1

_

i



2

: �

+

(v

21

))� : : :� �

+

(v

2i

) j

(�

�

(v

11

) \ �

�

(v

11

))� : : :� (�

�

(v

1i

) \ �

�

(v

2i

))℄ j

e

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

g:
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For the ase k = l = i we get

f [

1

_

k



2

: �

+

(e

1

)j�

�

(e

1

) \ �

�

(e

2

)℄;

[

1

_

k



2

: �

+

(e

2

)j�

�

(e

1

) \ �

�

(e

2

)℄ j

e

1

; e

2

2 E; �(e

1

) = 

1

; �(e

2

) = 

2

g:

7. For i < j � k 2 N and l := j � i + 1, the ij-projetion (i # j) is the unary

operation mapping  2 H

u

(

_

K

k

) (k = 1; 2; : : :) to



i#j

:= (A;A

I

l

) 2 H

u

(

_

K

l

) with

A := f(g

i

; : : : ; g

j

)j9g

1

; : : : ; g

i�1

; g

i+1

: : : ; g

k

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext()g:

E.g., the unary relation married�to�J.S. an be de�ned by

married�to�J.S. := (married to

(2;J:S:)

)

(1#1)

,

where \J.S." indiates the K

0

-semionept (fJ:S:g; fJ:S:g

I

0

).

We get the following set of semionept instanes (with �(e) = (v

1

; : : : ; v

k

)):

f [

(i#j)

: �

+

(v

i

)� : : :� �

+

(v

j

) j;℄ je 2 E; �(e) = g:

E.g., we get in G

2

: [married�to�J.S.: fMB,AMWg j ;℄.

8. For i 2 N, the i-omma operation (ii) is the unary operation mapping  2

H

u

(

_

K

k

) (k = 1; 2; : : :) to



(ii)

:= (A;A

I

k+1

) 2 H

u

(

_

K

k+1

) with

A := f(g

1

; : : : ; g

i�1

; g

i

; g

i

; g

i+1

; : : : ; g

k

)j(g

1

; : : : ; g

k

) 2 Ext()g

E.g., the ternary relation hild-mother-father an be de�ned by

hild-mother-father := hild-mother

(11)

(1 Æ 1) hild-father.

The onstrution results in the following set of semionept instanes (with

�(e) = (v

1

; : : : ; v

k

)):

f [

(ii)

: �

+

(v

1

)� : : :� �

+

(v

i�1

)� fg

i

g � fg

i

g � �

+

(v

i+1

)� : : :� �

+

(v

k

)j

�

�

(v

1

)� : : :� �

�

(v

i�1

)� �

�

(v

i

)� �

�

(v

i

)� �

�

(v

i+1

)� : : :� �

�

(v

k

)℄ j

e 2 E; �(e) = ; g

i

2 �

+

(v

i

)g

[f [

(ii)

: ;j(g

1

; : : : ; g

k+1

)℄jg

1

; : : : ; g

k+1

2 G

0

0

; g

i

6= g

i+1

g:

E.g., we get in G

1

: [hild-mother-father: fWF,CPEg � fMBg � fJSg j ;℄,

[hild-mother-father: fJCF,JCg � fAMWg � fJSg j ;℄.

9. For i < j 2 N, the ij-oupled deletion (i\j) is the unary operation mapping

 2 H

u

(

_

K

k

) (k = 1; 2; : : :) to



\

:= (A;A

I

k�2

) 2 H

u

(

_

K

k�2

) with

A := f(g

1

; : : : ; g

i�1

; g

i+1

; : : : ; g

j�1

; g

j+1

; : : : ; g

k

)j

9g

i

= g

j

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext()g

if k � 3; and 

\

:= (;; ;

I

1

) 2 H

u

(

_

K

1

) if k � 2. E.g., we de�ne

have�same�parents

:= (hild-mother-father(3 Æ 3)hild-mother-father)

\

24

.

13



We get the following set of semionept instanes (with �(e) = (v

1

; : : : ; v

k

)):

f [

(i\j)

: �

+

(v

1

)� : : :� �

+

(v

i�1

)� �

+

(v

i+1

)� : : :� �

+

(v

j�1

)�

�

+

(v

j+1

)� : : :� �

+

(v

k

) j;℄ je 2 E; �(e) = g:

For k � 2 holds 

(i\j)

) = ?

1

. E.g., we get in G

1

:

[have�same�parents: fWF,CPEg � fWF,CPEg j ;℄,

[have�same�parents: fJCF,JCg � fJCF,JCg j ;℄.

10. For i < j 2 N, the (i=j)-hook identi�ation (i = j) is the unary operation

mapping  2 H

u

(

_

K

k

) (k = 1; 2; : : :) for k > 1 to



(i=j)

:= (A;A

I

k�1

) 2 H

u

(

_

K

k�1

) with

A := f(g

1

; : : : ; g

j�1

; g

j+1

; : : : ; g

k

)j(g

1

; : : : ; g

k

) 2 Ext(); g

i

= g

j

g;

and for k = 1 to 

(i=j)

:= (A;A

0

) 2 H

u

(

_

K

1

) with A := ;. E.g., the relation

hild-mother-father an be desribed by

hild-mother-father = (hild-mother� hild-father)

(1=3)

.

The onstrution results in the following set of semionept instanes (with

�(e) = (v

1

; : : : ; v

k

)):

f [

(i=j)

: �

+

(v

1

)� : : :� �

+

(v

i�1

)� (�

+

(v

i

) \ �

+

(v

j

))� �

+

(v

i+1

)

� : : :� �

+

(v

j�1

)� �

+

(v

j+1

)� : : :� �

+

(v

k

)j;℄ je 2 E; �(e) = g:

For k = 1 holds 

(i=j)

= ?

1

. E.g., we get in G

1

(see 10. for another de�nition

of the same relation):

[hild-mother-father: fWF,CPEg � fMBg � fJSg j ;℄,

[hild-mother-father: fJCF,JCg � fAMWg � fJSg j ;℄.

11. For i 2 N, the existential i-quanti�ation (i) is the unary operation mapping

 2 H

u

(

_

K

k

) (k = 1; 2; : : :) for k > 1 to



(i)

:= (A;A

I

k�1

) 2 H

u

(

_

K

k�1

) with

A := f(g

1

; : : : ; g

i�1

; g

i+1

; : : : ; g

k

)j9g

i

2 G

0

: (g

1

; : : : ; g

k

) 2 Ext()g;

and for k = 1 to 

(i)

:= (A;A

0

) 2 H

u

(

_

K

1

) with A := ;. E.g., we de�ne

has�brother�or�sister := (have�same�parents^

2

(:Id

2

))

(2)

.

We get the following set of semionept instanes (with �(e) = (v

1

; : : : ; v

k

)):

f [

(i)

: �

+

(v

1

)� : : :� �

+

(v

i�1

)� �

+

(v

i+1

)� : : :� �

+

(v

k

)j;℄ j

e 2 E; �(e) = g:

For k = 1 holds 

(i)

= ?

1

. E.g., we get in G

1

:

[has�brother�or�sister: fWF,CPE,JCF,JCg j ;℄.

These operations inlude all operations of the Peirean Algebrai Logi (see

[Bu91℄). The onstruted semionept instanes and the orresponding semion-

epts graph are minimal in the sense of hapter 4.
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