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Abstrat

This artile deals with asymptoti estimates of strong solutions of Stokes

equations in aperture domain. An aperture domain is a domain, whih outside

a bounded set is idential to two half spaes separated by a wall and onneted

inside the bounded set by one or more holes in the wall. It is known that the

orresponding Stokes operator generates a bounded analyti semigroup in the

losed subspae J

q

(
) of divergene free vetor �elds of L

q

(
)

n

. We deal with

L

q

� L

r

-estimates for the semigroup, whih are known for R

n

, the half spae

and exterior domains.
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1 Introdution and Main Results

Suppose that 
 � R

n

, n � 3 is an aperture domain with smooth boundary, i.e.


 [ B

r

(0) = R

n

+

[ R

n

�

[ B

r

(0)

with R

n

+

= fx = (x

1

; : : : ; x

n

) : x

n

> 0g and R

n

�

= fx = (x

1

; : : : ; x

n

) : x

n

< �dg,

d; r > 0. We onsider the homogeneous non-stationary Stokes equations in (0;1)�
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Figure 1: An aperture domain

onerning the veloity �eld u(t; x) and the salar pressure p(t; x):

�

t

u��u+rp = f in (0;1)� 
; (1)

div u = 0 in (0;1)� 
; (2)

uj

�


= 0 in (0;1)� 
; (3)

�(u) = � in (0;1); (4)

uj

t=0

= u

0

in 
; (5)
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where

�(u(t)) =

Z

M

N � u(t; x)d�(x) = �(t)

is the ux through a smooth, bounded (n� 1)-dimensional manifoldM with normal

vetor N direted downwards dividing 
 into two onneted omponents. This ux

has to be presibed in order to get a unique solution with u(t) 2 L

q

(
) with

n

n�1

<

q < 1. In the ase 1 < q �

n

n�1

the ux has to vanish, i.e. �(u) = 0. (See [8℄ for

the orresponding resolvent problem.)

In this paper we only deal with the ase f = 0 and �(u) = 0. We onsider the

asymptoti behaviour of the solutions u(t). The general ase an be derived from

this ase depending on the asymptoti behaviour of f(t) and �(t). Sine the Stokes

operator A

q

generates a bounded semigroup in J

q

(
) = fu 2 C

1

0

(
)

n

; div u = 0g

k:k

q

the estimate ku(t)k

q

� Cku

0

k

q

holds. The goal of this paper is to prove the following

deay rate measuring u(t) and u

0

in the norm of L

q

for di�erent 1 < q <1.

Theorem 1.1 Let 1 < q � r <1. Then there is a onstant C = C(
; q; r) suh that

ku(t)k

L

r

(
)

� Ct

��

ku

0

k

L

q

(
)

(6)

with � =

n

2

�

1

q

�

1

r

�

for all t > 0 and u

0

2 J

q

(
).

Theorem 1.2 Let 1 < q � r < n. Then there is a onstant C = C(
; q; r) suh that

kru(t)k

L

r

(
)

� Ct

���

1

2

ku

0

k

L

q

(
)

(7)

with � =

n

2

�

1

q

�

1

r

�

for all t > 0 and u

0

2 J

q

(
).

These inequalities are known for other unbounded domains. In [11℄ Ukai showed

these estimates for 1 < q < 1 if the domain is the half-spae R

n

+

. This is done by

using an expliit solution formula in terms of Riesz operators and the heat kernel in

R

n

+

. In the ase of an exterior domain, Iwashita [5℄ showed the validity of (6) for

1 < q � r <1 and (7) for 1 < q � r � n.

The proof of Theorem 1.1 and Theorem 1.2 uses a similar tehnique as in [5℄. It

onsists of �rst showing a loal estimate of the L

q

-norm of u(t) and then omparing

the full L

q

-norm with suitable solutions of the non-stationary Stokes equations in

R

n

+

. The loal estimate is derived from an asymptoti expansion of the resolvent of

the Stokes operator in the aperture domain around 0 in speial weighted L

q

-spaes.

The resolvent expansion is onstruted by using a similar resolvent expansion of the

Stokes operator in the half-spae R

n

+

. For the latter expansion we ombine Ukai's

solution formula [11℄ with an resolvent expansion of the Laplae operator � in R

n

,

based on the results of Murata [7℄.
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Remark 1.3 With the methods of this artile we an't prove Theorem 1.2 for the

ase r = n, whih is done by Iwashita in the ase of the exterior domain. This is

due to a slightly weaker estimate of the loal part of the L

q

-norm. (See Corollary

6.2 and [5, Theorem 1.2 (i)℄.) We get this ondition beause we have to deal with

weighted L

q

-spaes of the kind L

q

(
;!

sq

) suh that !

sq

is a Mukenhoupt weight

(see preliminaries); this ondition on the weights is not needed in [5℄.

2 Preliminaries and Notation

We will onsider the resolvent expansion in a sale of weighted L

q

-spaes

L

q

(
;!

sq

) :=

�

f : 
! R measurable : kfk

L

q

(
;!

sq

)

<1

	

; s 2 R;

kfk

L

q

(
;!

sq

)

:=

�

Z




jf(x)j

q

!

sq

(x)dx

�

1

q

:

Analogously we de�ne the weighted Sobolev spaes as

W

m

q

(
;!

sq

) :=

�

f 2 L

1;lo

(
) : D

�

f 2 L

q

(
;!

sq

); 8j�j � m

	

and W

m

0;q

(
;!

sq

) := C

1

0

(
)

W

m

q

(
;!

sq

)

. Reall that f 2 L

1;lo

(
) means that f 2

L

1

(
 \ B) for all balls B with 
 \ B 6= ;. Moreover D

�

f(x) = �

�

1

x

1

: : : �

�

n

x

n

f(x) for

� 2 N

n

0

. By

_

W

m

q

(
;!

sq

) we denote the orresponding homogeneous Sobolev spae of

L

1;lo

-funtions f with D

�

f 2 L

q

(
;!

sq

) for all j�j = m. Finally

J

q

(
;!

sq

n

) := fu 2 C

1

0

(
)

n

: div u = 0g

L

q

(
;!

sq

n

)

:

For simpliity we often will skip the exponent n if we deal with spaes of vetor �elds;

e.g. we write f 2 L

q

(
) instead of f 2 L

q

(
)

n

. If X; Y are two Banah spaes, we

denote by L(X; Y ) the spae of all bounded linear maps T : X ! Y ; furthermore

L(X) := L(X;X).

In [5, 7℄ the simple weight !(x) = hxi = (1 + jxj

2

)

1

2

is used. For �

n

q

< s <

n

q

0

the weight hxi

sq

is an element of the Mukenhoupt lass A

q

. This is the lass of all

measurable funtions ! : R

n

! [0;1) with

1

jBj

Z

B

!(x)dx

�

1

jBj

Z

B

!(x)

�

q

0

q

dx

�

q

q

0

� A <1;

where B is an arbitrary ball in R

n

and A is independent of B. The weights ! 2 A

q

have the important property that singular integral operators like the Riesz transforms

R

j

f(x) := F

�1

�

i�

j

j�j

^

f(�)

�

= 

n

lim

"!0

Z

R

n

nB

"

(x)

x

j

� y

j

jx� yj

n+1

f(y)dy;
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j = 1; : : : ; n; are ontinuous on L

q

(R

n

;!) into itself. Here F [u℄(�) = û(�) denotes the

Fourier transform with respet to x. (See for example [10, Chapter V: x4.2, Theorem

2℄ for the ontinuity and [9, Chapter III, Setion 1℄ for Riesz transforms.)

We will also use the partial Riesz transforms

S

j

f(x) := F

�1

�

0

7!x

0

�

i�

j

j�

0

j

~

f(�

0

; x

n

)

�

= 

n�1

lim

"!0

Z

R

n�1

nB

"

(x

0

)

x

0

j

� y

0

j

jx

0

� y

0

j

n

f(y

0

; x

n

)dy;

j = 1; : : : ; n�1, x = (x

0

; x

n

); � = (�

0

; �

n

), for funtions f de�ned on R

n

+

or R

n

. These

partial Riesz transforms are used in Ukai's solution formula.

Unfortunately the weight hxi

sq

onsidered for �xed x

n

as weight in R

n�1

is in the

lass A

q

only if �

n�1

q

< s <

n�1

q

0

. Therefore we will use the slightly weaker weight

!

n

(x) :=

Q

n

i=1

hx

i

i

1

n

. For this weight !

n

(x)

sq

onsidered for �xed x

n

is in A

q

on R

n

for �

n

q

< s <

n

q

0

. This is easily derived from the speial produt struture and the

fat that hx

i

i

s

n

is a one-dimensional weight in A

q

. Therefore we get:

Lemma 2.1 Let 
 = R

n

or 
 = R

n

+

, 1 < q < 1, �

n

q

< s <

n

q

0

and !

n

(x) =

Q

n

i=1

hx

i

i

1

n

. Then the (partial) Riesz transforms are ontinuous from L

q

(
;!

sq

n

) into

itself.

Moreover we introdue �

Æ

= fz 2 C n f0g : j arg zj < Æg and �

Æ;"

= �

Æ

\ B

"

(0).

Reall the Helmholtz deomposition of a vetor �eld f 2 L

q

(
;!

sq

n

)

n

, i.e. the

unique deomposition f = f

0

+rp with f

0

2 J

q

(
;!

sq

n

); p 2

_

W

1

q

(
;!

sq

n

). The exis-

tene and ontinuity of the orresponding Helmholtz projetion P

q

: L

q

(
;!

sq

n

)

n

!

J

q

(
;!

sq

n

); f 7! P

q

f = f

0

is proved in [3, Theorem 5℄ for the ase that 
 = R

n

;R

n

+

or 
 is a bounded domain. For the ase of an aperture domain and s = 0 the result

is proved in [8, Theorem 2.6℄.

Furthermore we de�ne the Stokes operator A

q

= �P

q

� in J

q

(
) with D(A

q

) =

W

2

q

(
) \W

1

0;q

(
) \ J

q

(
). Note that the resolvent of A

q

satis�es the estimate

k(z + A

q

)

�1

fk

L

q

(
)

� C

Æ

jzj

�1

kfk

L

q

(
)

(8)

for z 2 �

Æ

; Æ 2 (0; �); if 
 is an aperture domain (see [8, Theorem 2.5℄). Therefore

�A

q

generates an analyti semigroup.

3 The Resolvent Expansion in R

n

+

We onsider the resolvent equations

(z ��)u+rp = f in R

n

+

; (9)

div u = 0 in R

n

+

; (10)

uj

�R

n

+

= 0 on �R

n

+

: (11)

Let R

0

(z) = (z ��)

�1

denote the resolvent of the Laplae operator in R

n

.
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Lemma 3.1 Let 1 � p � 1, 0 < Æ < �, � 2 N

n

0

, j�j � 2,

j�j

2

< � <

n+j�j

2

,

�

n

p

< s

0

< s <

n

p

0

, s

0

= s� 2� + j�j. Then

D

�

R

0

(z) =

[�℄�1

X

j=0

z

j

D

�

G

0j

+G

0r

(z)

where G

0r

(z) = O(z

��1

) in L(W

m

p

(R

n

;!

sp

n

);W

m+2�j�j

p

(R

n

;!

s

0

p

n

)) for z ! 0 with z 2

�

Æ

.

Proof: The proof is the same as [7, Lemma 2.3.(i)℄. It is based on the estimate for

the onvolution operator with the heat kernel E

0

(t):

kD

�

E

0

(t)k

L(L

p

(R

n

;!

sp

);L

p

(R

n

;!

s

0

p

))

� jtj

�

j�j

2

hti

��

(12)

for !(x) = !

n

(x), t 2 �

Æ

0

, 0 < Æ

0

<

�

2

, � 2 N

n

0

, 0 � � <

n

2

and �

n

p

< s

0

< s <

n

p

0

,

s

0

= s� 2�.

The estimate (12) is proved in [7, Lemma 2.2℄ for the ase !(x) = hxi. But this ase

implies the estimate for !(x) = !

n

(x) sine

kD

�

E

0

(t)fk

L

p

(R

n

;!

s

0

p

n

)

�















Z

R

n�1

�

�

�

�

�

D

�

0

e

�

jx

0

�y

0

j

2

4t

(4�t)

n�1

2

�

�

�

�

�











Z

R

�

�

n

x

n

e

�

jx

n

�y

n

j

2

4t

p

4�t

f(y

0

; y

n

)dy

n











L

p

�

R;hx

n

i

s

0

p

n

�

dy

0















L

p

�

R

n�1

;!

s

0

p

n�1

n

n�1

(x

0

)

�

� Cjtj

�

�

n

2

hti

�

�

n











Z

R

n�1

�

�

�

�

�

D

�

0

e

�

jx

0

�y

0

j

2

4t

(4�t)

n�1

2

�

�

�

�

�

kf(y

0

; :)k

L

p

�

R;hx

n

i

sp

n

�

dy

0











L

p

�

R

n�1

;!

s

0

p

n�1

n

n�1

(x

0

)

�

� C

 

n

Y

i=1

jtj

�

�

i

2

hti

�

�

n

!

kfk

L

p(

R

n

;!

sp

n

)

= Cjtj

�

j�j

2

hti

��

kfk

L

p(

R

n

;!

sp

n

)

:

with � = (�

0

; �

n

).

Remark 3.2 The operators G

0j

and G

0r

(z) are given by

G

0j

=

Z

1

0

E

0

(t)

(�t)

j

j!

dt; (13)

G

0r

(z) =

Z

1

0

E

0

(t)f

[�℄

(zt)dt with (14)

f

[�℄

(zt) = e

�zt

�

[�℄�1

X

j=0

(�zt)

j

j!

:
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We reall Ukai's solution formula for the homogeneous non-stationary Stokes equa-

tions in R

n

+

(see [11℄), i.e. (1)-(3), (5) for 
 = R

n

+

, f = 0 with ompatibility ondition

div u

0

= 0 in R

n

+

and u

n

0

= 0, u

0

= (u

0

0

; u

n

0

), on �R

n

+

. Let R

j

, S

j

be as above. More-

over let rf = f j

R

n

+

, f = f j

�R

n

+

and e be the extension operator from R

n

+

to R

n

with

value 0. Finally let E(t) be the solution operator for the heat equation in R

n

+

, whih

is derived from E

0

(t) by odd extension from R

n

+

to R

n

.

Then the solution (u(t); p(t)) of the non-stationary Stokes equations in R

n

+

is u(t) =

WE(t)V u

0

and p(t) = �D�

n

E(t)V

1

u

0

where

W =

�

I �SU

0 U

�

; V =

�

V

2

V

1

�

; U = rR

0

� S(R

0

� S +R

n

)e;

V

1

u

0

= �S � u

0

0

+ u

n

0

; V

2

u = u

0

0

+ Su

n

0

;

R

0

= (R

1

; : : : ; R

n�1

)

T

; S = (S

1

; : : : ; S

n�1

)

T

and D is the Poisson operator for the Dirihlet problem of the Laplae equation in

R

n

+

.

Using this result, we get:

Theorem 3.3 Let 1 < q < 1; 0 < Æ < �, n � 3,

j�j

2

< � <

n+j�j

2

, � 2 N

n

0

,

j�j � 2;�

n

q

< s

0

� 0 � s <

n

q

0

and s

0

= s � 2� + j�j. Then there exist oper-

ators R

+

(z), P

+

(z) with D

�

R

+

(z) 2 L(L

q

(R

n

+

;!

sq

n

);W

2�j�j

q

(R

n

+

;!

s

0

q

n

)) and P

+

(z) 2

L(L

q

(R

n

+

;!

sq

n

);

_

W

1

q

(R

n

+

;!

s

0

q

n

)) depending ontinuously on z 2 �

Æ

[ f0g with:

1. u = R

+

(z)f and p = P

+

(z)f ,f 2 L

q

(R

n

+

;!

sq

n

); is a solution of (9) - (11) for

z 2 �

Æ

.

2. R

+

(z) 2 L(L

q

(R

n

+

;!

sq

n

);W

2

q

(R

n

+

)) and P

+

(z) 2 L(L

q

(R

n

+

;!

sq

n

);

_

W

1

q

(R

n

+

)) for ev-

ery z 2 �

Æ

.

3. The asymptoti expansions

D

�

R

+

(z) =

[�℄�1

X

j=0

z

j

D

�

G

j

+O(z

��1

) in L(L

q

(R

n

+

;!

sq

n

);W

2�j�j

q

(R

n

+

;!

s

0

q

n

));

P

+

(z) =

[�℄�1

X

j=0

z

j

P

+;j

+O(z

��1

) in L(L

q

(R

n

+

;!

sq

n

);

_

W

1

q

(R

n

+

;!

s

0

q

n

))

hold for z ! 0; z 2 �

Æ

.

Proof: Beause of the Helmholtz deomposition in weighted L

q

-Spaes (see [3,

Theorem 5℄), we an assume w.l.o.g. that f 2 J

q

(
;!

sq

).
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Therefore the asymptoti expansion for R

+

(z) simply follows from the expansion of

R

0

(z), the equations (13)-(14),the ontinuity of the Riesz-transforms S

j

and R

j

in

L

q

(R

n

;!

sq

n

) and L

q

(R

n

+

;!

sq

n

) if �

n

q

< s <

n

q

0

and the fat

R

+

(z)f =

Z

1

0

e

�tz

WE(t)V fdt:

In order to get the result for D

�

R

+

(z), j�j � 2 we use the relations

�

n

U = (I � U)jr

0

j = �(I � U)

n�1

X

i=1

S

i

�

i

;

�

i

S = S�

i

i = 1; : : : ; n;

�

i

U = U�

i

i = 1; : : : ; n� 1

and prove the expansion in the same way as in the ase � = 0. We note that the

�rst equation is a onsequene of

F

x

0

7!�

0

[Uf ℄ (�

0

; x

n

) = j�

0

j

Z

x

n

0

e

�j�j(x

n

�y

n

)

~

f(�

0

; x

n

)dy

n

(15)

(see the proof of [11, Theorem 1.1℄); the other equations are obvious.

Finally we get the expansion of rP

+

(z) in the same way using jr

0

jD = �

n

U �U�

n

.

Beause of the estimate (12) and Ukai's formula we also easily get

Lemma 3.4 Let u(t) = WE(t)V u

0

, u

0

2 J

q

(R

n

+

;!

sq

n

); denote the solution of the

homogeneous non-stationary Stokes equations (1)-(3), (5) for 
 = R

n

+

, f = 0. Then

ku(t)k

L

q

(R

n

+

;!

s

0

q

n

)

� C(1 + t)

��

ku

0

k

L

q

(R

n

+

;!

sq

n

)

with 1 < q <1, �

n

q

< s

0

� 0 � s <

n

q

0

, s

0

= s� 2�, t � 0.

4 Resolvent Expansions in Aperture Domains

We onsider the resolvent equation

(z ��)u+rp = f in 
; (16)

div u = 0 in 
; (17)

uj

�


= 0 on �
; (18)

�(u) = 0 (19)

for an aperture domain 
.
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Theorem 4.1 Let 1 < q < 1; 0 < Æ < �, n � 3, 1 < � <

n

2

, �

n

q

< s

0

�

0 � s <

n

q

0

and s

0

:= s � 2�. Then there are an " > 0 and operators R(z) 2

L(L

q

(
;!

sq

n

);W

2

q

(
;!

s

0

q

n

)) and P (z) 2 L(L

q

(
;!

sq

n

);

_

W

1

q

(
;!

s

0

q

n

)), depending ontin-

uously on z 2 �

Æ;"

[ f0g with the following properties:

1. The pair u = R(z)f and p = P (z)f is a solution of (16)-(19).

2. R(z) 2 L(L

q

(
;!

sq

n

);W

2

q

(
)) for every z 2 �

Æ;"

.

3. The operator-valued funtion R(z), z 2 �

Æ;"

0

has an expansion

R(z) =

[�℄�1

X

j=0

z

j

G

j

+G

r

(z)

in L(L

q

(
;!

sq

n

);W

2

q

(
;!

s

0

q

n

)) where G

r

(z) = O(z

��1

) for z ! 0.

Proof: We use the tehnique used in the proof of Theorem 3.1 in [5℄. Let 
[B

r

(0) =

R

n

+

[ R

n

�

[ B

r

(0). We hoose b; R 2 R suh that b > R > r + 3 and denote

R

n

�

:= R

n

+

[ R

n

�

;


�

:= 
 \ R

n

�

;


b

:= 
 \ B

b

(0): Let ';  2 C

1

(
) be ut-o�

funtions with '(x) = 1 for jxj > R, '(x) = 0 for jxj < R � 1,  (x) = 1 for

jxj > R� 2 and  (x) = 0 for jxj < R� 3. We identify  f with its extension by 0 to

R

n

�

. Moreover we de�ne R

�

(z) : L

q

(R

n

�

;!

sq

n

)!W

2

q

(R

n

�

;!

s

0

q

n

) by

R

�

(z)g(x) =

�

R

+

(z)(gj

R

n

+

)(x) if x 2 R

n

+

R

�

(z)(gj

R

n

�

)(x) if x 2 R

n

�

:

The operator P

�

(z) : L

q

(R

n

�

;!

sq

n

) !

_

W

1

q

(R

n

�

;!

s

0

q

n

) is de�ned analogously. Let f

b

:=

f j




b

and (L; P ) : L

q

(


b

)

n

! W

2

q

(


b

)

n

�

_

W

1

q

(


b

) be the solution operator of the

Stokes equation in the bounded domain 


b

. Set R

1

(z) 2 L(L

q

(
;!

sq

n

);W

2

q

(
;!

s

0

q

n

))

by

R

1

(z)f := 'R

�

(z)( f) + (1� ')Lf

b

:

Similarly de�ne �(z) 2 L(L

q

(
;!

sq

n

);

_

W

1

q

(
;!

s

0

q

n

)) by

�(z)f := 'P

�

(z)( f) + (1� ')Pf

b

:

Obviously the operator R

1

(z) has the same type of expansion as R

�

(z). Let

P

�

(z) =

[�℄�1

X

j=0

z

j

P

�;j

+ P

�;r

(z)

8



with P

�;r

(z) = O(z

��1

) in L(L

q

(R

n

�

;!

sq

n

);

_

W

1

q

(R

n

�

;!

s

0

q

n

)) be the expansion for P

�

(z).

We hoose P

�;j

f; P

�;r

f 2

_

W

1

q

(R

n

�

) suh that

Z

D

R

\


P

�;0

fdx =

Z

D

R

\


Pf

b

dx;

Z

D

R

\


P

�;r

(z)fdx = 0;

Z

D

R

\


P

�;j

fdx = 0 for j = 1; � � � ; [�℄� 1

where D

R

:= fx 2 
 : R� 1 < jxj < Rg. Applying Poinar�e's inequality

kfk

q

� C

�

krfk

q

+

�

�

�

�

Z

D

f(x)dx

�

�

�

�

�

for a bounded domain D with C

0

-boundary (see [1, V. Theorem 4.19℄) it follows that

kP

�;0

f � Pf

b

k

L

q

(D

R

\
)

� C

�

krP

�;0

fk

L

q

(D

R

\
)

+ krPf

b

k

L

q

(


b

)

�

� Ckfk

L

q

(
;!

sq

n

)

;

kP

�;j

fk

L

q

(D

R

\
)

� C krP

�;j

fk

L

q

(D

R

\
)

� Ckfk

L

q

(
;!

sq

n

)

;

kP

�;r

(z)fk

L

q

(D

R

\
)

� C krP

�;r

(z)fk

L

q

(D

R

\
)

� Cjzj

��1

kfk

L

q

(
;!

sq

n

)

:

Beause of these inequalities and the identity r�(z)f = 'rP

�

(z)( f) + (1 �

')rPf

b

+(r')(P

�

(z)( f)�Pf) the operator �(z) has the same type of expansion

as P

�

(z).

It remains to orret the divergene ofR

1

(z)f . For this we apply Bogovskii's Theorem

(see e.g. [4, Theorem 3.2℄) to div(R

1

(z)f) = r' � fR

�

(z)( f) � Lf

b

g, whih has

ompat support in D

R

. We note that

Z

D

R

div(R

1

(z)f) = �

Z

B

R

\R

n

�

div((1� ')R

�

(z)( f))dx�

Z




b

div ('Lf

b

) dx

= �

Z

�(B

R

\R

n

�

)

N � (1� ')R

�

(z)( f)d� �

Z

�


b

N � 'Lf

b

d� = 0:

Sine divR

1

(z)f 2 W

2

q

(D

R

)\W

1

0;q

(D

R

), we get a ompat operatorQ(z) : L

q

(
;!

sq

n

)!

W

2

0;q

(D

R

) with divQ(z)f = divR

1

(z)f . The operator Q(z) depends ontinuously on

z 2 �

Æ

[ f0g.

We identify Q(z)f with its extension by zero to a funtion Q(z)f 2 W

2

0;q

(
;!

s

0

q

n

).

Now let R

2

(z) := R

1

(z)�Q(z) 2 L(L

q

(
;!

sq

n

);W

2

q

(
;!

s

0

q

n

)); then

(z ��)R

2

(z)f +r�(z)f = f + S(z)f in 
;

divR

2

(z)f = 0 in 
;

R

2

(z)f = 0 on �


for all f 2 L

q

(
;!

sq

n

), where

S(z)f = �f2(r') � r+ (�')gfR

�

(z)( f)� Lf

b

g

+z(1� ')Lf

b

+ (�� z)Q(z)f +r'(P

�

(z)( f)� Pf

b

):
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Sine suppS(z)f � D

R

, it holds S(z) 2 L(L

q

(
;!

sq

n

)). The term (� � z)Q(z) 2

L(L

q

(
;!

sq

n

)) is a ompat operator sine Q(z) : L

q

(
;!

sq

n

) ! W

2

0;q

(D

R

) is om-

pat. Furthermore S(z) � (� � z)Q(z) : L

q

(
;!

sq

n

) ! W

1

q

(D

R

) is ontinuous,

so S(z) 2 L(L

q

(
;!

sq

n

)) is a ompat operator. Moreover S(z) is ontinuous in

z 2 �

Æ

[ f0g and has the same type of expansion in L(L

q

(
;!

sq

n

)) as R

�

(z) in

L(L

q

(
;!

sq

n

);W

2

q

(
;!

s

0

q

n

)).

In the following Lemma 4.2 we show that I+S(0) is injetive. Sine S(0) is ompat,

the Fredholm alternative yields that (I + S(0))

�1

2 L(L

q

(
;!

sq

n

)) exists. Therefore

(I + S(z))

�1

exists for all z 2 �

Æ;"

for some " > 0 More preisely

(I + S(z))

�1

= (I + S(0))

�1

1

X

k=0

�

(S(0)� S(z))(I + S(0))

�1

�

k

for all z 2 �

Æ;"

0

, where "

0

> 0 is hosen so small that

kS(z)� S(0)k �

1

2k(I + S(0))

�1

k

for all z 2 �

Æ;"

0

:

Sine S(z) and therefore all powers (S(0)�S(z)

k

have an expansion in L(L

q

(
;!

sq

n

))

of the same type as R

�

(z), the inverse (I + S(z))

�1

has the same.

If we now set R(z) := R

2

(z)(I + S(z))

�1

and P (z) = �(z)(I + S(z))

�1

, we get the

solution operators of the resolvent problem with the desired expansion.

Lemma 4.2 Let S(z) denote the same operator as in the proof of Theorem 4.1. Then

I + S(0) 2 L(L

q

(
;!

sq

n

)) is injetive.

Proof: It is known [2, 8℄ that the Stokes equations in an aperture domain have a

unique solution (u; ~p) 2

h

_

W

2

p

(
) \

_

W

1

p

�

(
)

i

n

�

_

W

1

p

(
),

1

p

�

=

1

p

�

1

n

for 1 < p < n, for

given fore f 2 L

p

(
) and presribed ux �(u) = � 2 R.

We alulate the ux of R

2

(0). SineM � B

r

, the identity R

2

(0)f(x) = Lf

b

(x) holds

for all x 2 M . Denote by B

+

the onneted omponent of B

r

(0) nM \above" M .

Then we onlude that

0 =

Z

B

+

divLf

b

dx =

Z

�B

+

Lf

b

�Nd� =

Z

M

Lf

b

�Nd� =

Z

M

R

2

(0)f �Nd�:

Therefore we getR

2

(0)f = 0, �(0) = onst: if we show thatR

2

(0)f 2

h

_

W

2

p

(
) \

_

W

1

p

�

(
)

i

n

and �(0)f 2

_

W

1

p

(
).

Let (I + S(0))f = 0. That means f = �S(0)f ; and therefore the support of f is

ontained in 


b

. This implies f 2 L

p

(
;!

sp

n

) for all s 2 R and 1 � p � q.

Claim: r

2

R

2

(0)f;r�(0)f 2 L

p

(
) for all 1 < p � q and rR

2

(0)f 2 L

p

�

(
) with

1

p

�

=

1

p

�

1

n

and 1 < p < minfq; ng.
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Proof of laim: It holds for i; j 2 f1; : : : ; ng:

�

i

�

j

R

2

(0)f = '�

i

�

j

R

�

(0)( f) + �

i

�

j

[(1� ')Lf

b

℄ + (�

i

')�

j

R

�

(0)( f)

+(�

j

')�

i

R

�

(0)( f) + (�

i

�

j

')R

�

(0)( f)� �

i

�

j

Q(0)f:

The support of every term exept the �rst one is ontained in 


b

. Therefore eah of

these funtion is an element of L

p

(
) for every 1 � p � q.

Considering the �rst term Theorem 3.3 tells us that �

i

�

j

R

�

(0) 2 L(L

p

(R

n

�

;!

sp

n

); L

p

(
; !

s

0

p

n

))

for all �

n

p

< s

0

� 0 � s <

n

p

0

, s

0

= s � 2� + 2, 1 < � <

n

2

. Sine f 2 L

s

p

(
) for

arbitrary s 2 R and 1 � p � q, we an apply this Theorem for s

0

= 0, s = 2� � 2.

Therefore we hoose 1 < � <

n

2

suh that

n

n�2�+2

< p , 2� � 2 <

n

p

0

. Thus we get

�

i

�

j

R

�

(0)( f) 2 L

p

(
) for every 1 < p � q. With the same hoie of s and s

0

we

see r�(0)f 2 L

p

(
) for all 1 < p � q.

The same argumentation an be applied to

�

i

R

2

(0)f = '�

i

R

�

(0)( f) + �

i

[(1� ')Lf

b

℄ + (�

i

')R

�

(0)( f)� �

i

Q(0)f:

In this ase �

i

R

�

(0) 2 L(L

r

(
;!

sr

n

); L

r

(
;!

s

0

r

n

)) holds for all �

n

r

< s

0

� 0 � s <

n

r

0

,

s

0

:= s � 2� + 1, 1 < � <

n

2

. The hoie of s

0

= 0, s = 2� � 1 yields the ondition

2��1 <

n

r

0

. Sine

1

r

+

1

n

=

1

p

, this ondition is equivalent to 2��2 <

n

p

0

, p >

n

n�2�+2

.

This proves the laim.

Thus R

2

(0)f = 0 and r�(0)f = 0. Sine suppQ(0) � fR � 1 � jxj � Rg, it is

obvious that

R

2

(0)f(x) = R

�

(0)( f)(x) = 0; r�(0)f(x) = rP

�

(0)( f)(x) = 0

for x 2 
; jxj � R; and

R

2

(0)f(x) = Lf

b

(x) = 0; r�(0)f(x) = rPf

b

(x) = 0

for x 2 
, jxj � R� 1. This implies f = 0 for jxj � R sine

��R

�

(0)( f) +rP

�

(0)( f) =  f in R

n

�

:

Similarly we get f = 0 for x 2 
; jxj � R� 1; sine

��Lf

b

+rPf

b

= f

b

in 


b

:

The support of (R

�

(0)( f); P

�

(0)( f)) and of (Lf

b

; P f

b

) is ontained in

e

D := fx 2


 : R� 1 < jxj < bg. Therefore both terms solve the Stokes equations

��u +rp = f in

e

D;

div u = 0 in

e

D;

u = 0 on �

e

D:

This implies that R

�

(0)( f) = Lf

b

and rP

�

(0)( f) = rPf

b

in

e

D beause of the

unique solvability of the Stokes equations in a bounded domain. Hene Q(z)f = 0,

Lf

b

= R

2

(0)f = 0, rPf

b

= r�(0)f = 0 in

e

D and �nally f = 0 in the whole domain


.
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5 Deay of the Semigroup in Weighted Spaes

Let A

q

= �P

q

� denote the Stokes operator for an aperture domain 
.

Theorem 5.1 Let n � 3, 1 < � <

n

2

, 1 < q <1, �

n

q

< s

0

� 0 � s <

n

q

0

, s

0

= s�2�.

Then there exists a onstant C = C(q; s; s

0

) suh that





e

�tA

q

f





L

q

(
;!

s

0

q

n

)

� C(1 + t)

��

kfk

L

q

(
;!

sq

n

)

; t � 0;

for all f 2 J

q

(
) \ L

q

(
;!

sq

n

). Furthermore





e

�tA

q

f





W

2

q

(
;!

s

0

q

n

)

� C(1 + t)

��

max

n

kfk

W

2

q

(
)

; kfk

L

q

(
;!

sq

n

)

o

; t � 0;

for all f 2 D(A

q

) \ L

q

(
;!

sq

n

).

Proof: The proof of the inequalities is nearly the same as the proof of Theorem 1.1

in [5℄. So we give only a sketh.

Sine the semigroup e

�tA

q

is bounded in J

q

(
), the �rst estimate is satis�ed for

0 < t < 1. The seond estimate holds for 0 < t < 1 beause of the estimates

kfk

W

2

q

(
)

� k(I + A

q

)fk

L

q

(
)

� Ckfk

W

2

q

(
)

(20)

for all f 2 D(A

q

). (The �rst inequality is a onsequene of [8, Theorem 2.1℄. The

seond inequality is obvious.)

For t � 1 onsider the representation of the semigroup

e

�tA

q

=

1

2�i

Z

�

e

tz

(z + A

q

)

�1

dz

where the urve � oinides outside a ball B

"

(0), 0 < " < "

0

,with the rays e

��i

~

t;

~

t > 0

with

�

2

< � < Æ. (Æ; "

0

are the same numbers as in Theorem 4.1.)

We split the urve � into two parts �

1

= fz 2 � : 0 < jzj < "g and �

2

= fz 2 � :

" � jzjg. So we get

e

�tA

q

f =

1

2�i

Z

�

1

e

tz

R(z)fdz +

1

2�i

Z

�

2

e

tz

(z + A

q

)

�1

fdz

for all f 2 J

q

(
) \ L

q

(
;!

sq

n

) sine R(z)f = (z + A

q

)

�1

f for z 2 �

Æ;"

.

Using the resolvent estimate k(z + A

q

)

�1

fk

q

� Cjzj

�1

kfk

q

we easily get









1

2�i

Z

�

2

e

tz

(z + A

q

)

�1

dzf









L

q

(
;!

s

0

q

n

)

� C

Z

1

"

e

ts os�

s

dskfk

L

q

(
)

� C("; �)

e

�t

t

kfk

L

q

(
;!

sq

n

)

with some onstant  > 0. Analogously we get









1

2�i

Z

�

2

e

tz

(z + A

q

)

�1

dzf









W

2

q

(
;!

s

0

q

n

)

� C

Z

1

"

e

ts os �

s

dskfk

W

2

q

(
)

� C("; �)

e

�t

t

kfk

W

2

q

(
)
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if we use (20) for f 2 D(A

q

).

We use the resolvent expansion of Theorem 4.1 to estimate the �rst integral. Sine

P

[�℄�1

j=0

z

j

G

j

is holomorphi in C , it holds that













[�℄�1

X

j=0

Z

�

1

e

tz

z

j

G

j

dz













L(L

q

(!

sq

n

);W

2

q

(!

s

0

q

n

))

� Ce

"t os(�)

= Ce

�t

with  > 0. In order to estimate the remainder term we deform the urve �

1

to a

urve �

�

whih oinides with z = e

��i

~

t,

~

t 2 [0; "℄. Therefore









1

2�i

Z

�

1

e

tz

G

r

(z)dz









L(L

q

(!

sq

n

);W

2

q

(!

s

0

q

n

))

� C

Z

1

0

e

�t os(�)

�

��1

d� = C

0

t

��

:

Colleting all estimates we proved the Theorem.

6 The L

q

-L

r

-Estimate

In order to get an estimate of ke

�tA

q

fk

L

q

(


b

)

, 


b

= 
 \B

b

(0), we need:

Lemma 6.1 Let 1 < q <1 and �

n

q

< s

0

< 0. Then it holds that

ke

�tA

q

fk

L

q

(
;!

s

0

q

n

)

� C(1 + t)

s

0

2

kfk

L

q

(
)

for all f 2 J

q

(
) and

ke

�tA

q

fk

W

2

q

(
;!

s

0

q

n

)

� C(1 + t)

s

0

2

kfk

W

2

q

(
)

for all f 2 D(A

q

).

Corollary 6.2 Let 1 < q < 1. Then for every 0 � s <

n

2q

there is a onstant

C = C(s; q;
) with

ke

�tA

q

fk

L

q

(


b

)

� C(1 + t)

�s

kfk

L

q

(
)

for all f 2 J

q

(
) and

ke

�tA

q

fk

W

2

q

(


b

)

� C(1 + t)

�s

kfk

W

2

q

(
)

for all f 2 D(A

q

).

13



Proof of Lemma 6.1: If 1 < p <

n

2

then

n

p

> 2; so we an we apply Theorem 5.1

with s = 0. Therefore we get

ke

�tA

p

fk

W

m

p

(
;!

~s

0

p

n

)

� C(1 + t)

~s

0

2

kfk

W

m

p

(
)

(21)

for m = 0; 2, f 2 J

p

(
) resp. f 2 D(A

p

) and �

n

p

< ~s

0

< �2. In order to get the

statement of the theorem we interpolate the estimates (21) and

ke

�tA

r

fk

W

m

r

(
)

� Ckfk

W

m

r

(
)

; m = 0; 2; f 2 J

r

(
) resp: D(A

r

) (22)

for suitable p lose to 1 and large r. For this we need the following statement about

omplex interpolation:

�

L

p

(
;!

~s

0

p

n

); L

r

(
)

�

[�℄

= L

q

(
;!

~s

0

p(1��)

n

)

with 0 < � < 1,

1

q

=

1��

p

+

�

r

(see for example [6, Theorem 5.5.3℄).

Now let 1 < q < 1, �

n

q

< s

0

< 0 be given as in the assumptions. We set for

0 < � < 1

~s

0

=

s

0

1� �

and

1

q

=

1� �

p

+

�

r

:

Then we hoose 0 < � < 1 suh that

�

n

p

(1� �) < s

0

< �2(1� �), �

n

p

< ~s

0

< �2;

whih exists if 1 < p < minf

n

2

; qg. If we furthermore use that

(J

p

(
); J

r

(
))

[�℄

= J

q

(
)

(see appendix), we get with the hosen �; p and the orresponding r that

ke

�tA

q

fk

L

q

(
;!

s

0

q

n

)

� C

h

(1 + t)

~s

0

2

i

1��

kfk

L

q

(
)

= C(1 + t)

s

0

2

kfk

L

q

(
)

for f 2 J

q

(
). Complex interpolation with the same parameters yields the estimate

for f 2 D(A

q

). For this we use the seond estimate of Theorem 5.1 and

(D(A

p

);D(A

r

))

[�℄

= D(A

q

):

The latter equation will be proved in the appendix.

Proof of Theorem 1.1: The proof is similar to that of Theorem 1.2 in [5℄ but a

little bit shorter.

It is suÆient to show the statement for 0 < � <

1

2

sine we an redue the general

ase to this statement. (Choose q = q

0

< q

1

< : : : < q

k

= r suh that �

i

:=

n

2

�

1

q

i

�

1

q

i+1

�

<

1

2

and apply the statement to q

i

and q

i+1

.)

14



1st step: The inequality holds for t � 2.

Let ~u

0

:= e

�A

q

u

0

. Then ~u

0

2 D(A

q

) and k~u

0

k

W

2

q

(
)

� Cku

0

k

L

q

(
)

. Moreover let

~u(t) := e

�tA

q

~u

0

and ~p(t) 2

_

W

1

q

(
) be the pressure orresponding to ~u(t).

Let 
 [ B

r

(0) = R

n

+

[ R

n

�

[ B

r

(0) and b > r + 1. We hoose a ut-o�-funtion

 2 C

1

(
) with  (x) = 1 for jxj � b and  (x) = 0 for jxj � b � 1. Then

div( ~u(t)) = r � ~u(t) 2 W

1

0;q

(D

b

) with D

b

:= fx 2 
 : b � 1 < jxj < bg and

R

D

b

r � ~u(t)dx = 0. Applying Bogovskii's Theorem [4, Theorem 3.2℄ we know that

there exists a v

0

(t) 2 W

2

0;q

(D

b

) with div v

0

(t) = div( ~u(t)) and

kv

0

(t)k

W

2

q

(D

b

)

� Ck~u(t)k

W

1

q

(D

b

)

: (23)

Therefore we have

k�

t

v

0

(t)k

W

1

q

(D

b

)

� Cke

�tA

q

A

q

~u

0

k

L

q

(D

b

)

� C(1 + t)

�~s

k~u

0

k

W

2

q

(
)

(24)

with an arbitrary 0 � ~s <

n

2q

.

If we de�ne v

1

(t) :=  ~u(t)� v

0

(t), it solves the di�erential equation

�

t

v

1

(t)��v

1

(t) +r( ~p(t)) = h(t) in (0;1)� R

n

�

; (25)

div v

1

(t) = 0 in (0;1)� R

n

�

; (26)

v

1

(t)j

�R

n

�

= 0 in (0;1); (27)

v

1

(0) = v

1

(28)

with v

1

=  ~u

0

� v

0

(0) and

h(t) = �f2(r ) � r+ (� )g ~u(t)� (�

t

��)v

0

(t) + (r )~p(t):

Moreover supp h(t) � D

b

. We hoose the pressure ~p(t) suh that

R

D

b

~p(t)dx = 0. If

we now apply (23), (24), Poinar�e's inequality [1, Theorem 4.19℄ and Corollary 6.2,

we get

kh(t)k

L

q

(D

b

)

� C

�

k~u(t)k

W

1

q

(D

b

)

+ kv

0

(t)k

W

2

q

(D

b

)

+ k�

t

v

0

(t)k

L

q

(D

b

)

+ k~p(t)k

L

q

(D

b

)

�

� C

�

(1 + t)

�

~s

2

k~u

0

k

W

2

q

(
)

+ kr~p(t)k

L

q

(


b

)

�

� C

�

(1 + t)

�

~s

2

k~u

0

k

W

2

q

(
)

+ k�

t

~u(t)k

L

q

(D

b

)

+ k~u(t)k

W

2

q

(D

b

)

�

� C(1 + t)

�

~s

2

k~u

0

k

W

2

q

(
)

with an arbitrary ~s suh that 0 � ~s <

n

q

.

Let E

�

(t) denote the semigroup of the Stokes operator in R

n

�

and P

�

denote the

Helmholtz projetion in L

q

(R

n

�

;!

sq

n

). Sine v

1

(t) solves the equations (25)-(28), the

identity

v

1

(t) = E

�

(t)v

1

+

Z

t

0

E

�

(t� �)P

�

h(�)d�
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holds. Beause of Corollary 3.4 and the L

q

� L

r

-estimate in the half spae [11,

Theorem 3.1℄ the semigroup E

�

(t) satis�es

kE

�

(t)fk

L

r

(R

n

�

)

� Ct

��

kfk

L

q

(R

n

�

)

kE

�

(t)fk

L

q

(R

n

�

)

� C(1 + t)

�

s

2

kfk

L

q

(R

n

�

;!

sq

n

)

with 1 < q � r < 1, 0 � s <

n

q

0

and � =

n

2

�

1

q

�

1

r

�

for all t > 0, f 2 J

q

(R

n

�

) resp.

f 2 J

q

(R

n

�

;!

sq

n

). Using both inequalities we get

kE

�

(t)fk

L

r

(R

n

�

)

� Ct

��









E

�

�

t

2

�

f









L

q

(R

n

�

)

� Ct

��

(1 + t)

�

s

2

kfk

L

q

(R

n

�

;!

sq

n

)

for f 2 J

q

(R

n

�

;!

sq

n

), t > 0. Therefore we onlude

kE

�

(t)v

1

k

L

r

(R

n

�

)

� Ct

��

kv

1

k

L

q

(R

n

�

)

� Ct

��

k~u

0

k

L

q

(
)

and









Z

t

0

E

�

(t� �)P

�

h(�)d�









L

r

(R

n

�

)

� C

Z

t

0

(t� �)

��

(1 + t� �)

�

s

2

kP

�

h(�)k

L

q

(R

n

�

;!

sq

n

)

| {z }

�Ckh(�)k

L

q

(R

n

�

;!

sq

n

)

d�

� C

Z

t

0

(t� �)

��

(1 + t� �)

�

s

2

kh(�)k

L

q

(D

b

)

d�

� C

Z

t

0

(t� �)

��

(1 + t� �)

�

s

2

(1 + �)

�

~s

2

d�k~u

0

k

W

2

q

(
)

:

We now hoose 0 � s <

n

q

0

and � �

~s

2

<

n

2q

suh that

s

2

+

~s

2

> 1,

s

2

+� 6= 1 and

~s

2

6= 1.

(This is possible sine

n

2q

+

n

2q

0

=

n

2

> 1.) If we apply Lemma A.2 with this hoie of

s and ~s, we get









Z

t

0

E

�

(t� �)P

�

h(�)d�









L

r

(R

n

�

)

� Ct

��

k~u

0

k

W

2

q

(
)

and therefore

kv

1

(t)k

L

r

(R

n

�

)

� Ct

��

k~u

0

k

W

2

q

(
)

:

Sine u(t; x) = v

1

(t; x) for all x 2 
 n 


b

, the previous estimates, Corollary 6.2 and

Sobolev's embedding theorem imply that

k~u(t)k

L

r

(
)

� k~u(t)k

L

r

(


b

)

+ kv

1

(t)k

L

r

(
n


b

)

� C

�

k~u(t)k

W

2

q

(


b

)

+ kv

1

(t)k

L

r

(
n


b

)

�

� Ct

��

k~u

0

k

W

2

q

(
)

� Ct

��

kfk

L

q

(
)

:

Sine ~u(t) = e

�(t+1)A

q

u

0

we have proved the theorem for t � 2.
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2nd step: The inequality holds for t < 2.

The ase t < 2 is proved in the same way as in the proof of [5, Theorem 1.2℄ using

Sobolev's embedding theorem and an interpolation method.

Proof of Theorem 1.2: Beause of the semigroup property of e

�tA

q

and Theorem

1.1 it suÆes to prove the statement for � = 0, i.e. 1 < q = r < n.

The proof for the ase t < 2 uses the same interpolation method as in the proof of

Theorem 1.2 [5℄.

So let t � 2 and v

1

(t), v

0

(t), h(t) be the funtions used in the proof of Theorem 1.1.

Then it holds that

rv

1

(t) = rE

�

(t)v

1

+

Z

t

0

rE

�

(t� �)P

�

h(�)d�:

The estimate for the Stokes semigroup in R

n

�

yields

krE

�

(t)v

1

k

L

q

(R

n

�

)

� Ct

�

1

2

kv

1

k

L

q

(R

n

+

)

:

Now we hoose 0 � s <

n

q

0

and 1 � ~s <

n

q

with

s

2

+

~s

2

> 1,

~s

2

6= 1 and

1

2

+

s

2

6= 1. So

we get beause of Corollary 6.2 and Lemma A.2









Z

t

0

rE

�

(t� �)P

�

h(�)d�









L

q

(R

n

�

)

� C

Z

t

0

(t� �)

�

1

2

(1 + t� �)

�

s

2

kP

�

h(�)k

L

q

(R

n

�

;!

sq

)

d�

� C

Z

t

0

(t� �)

�

1

2

(1 + t� �)

�

s

2

kh(�)k

L

q

(


b

)

d�

� C

Z

t

0

(t� �)

�

1

2

(1 + t� �)

�

s

2

(1 + �)

�

~s

2

d�k~u

0

k

W

2

q

(
)

� Ct

�

1

2

k~u

0

k

W

2

q

(
)

:

Moreover let ~s = 1 <

n

q

. Therefore we get for t � 1

kre

�(t+1)A

q

fk

L

q

(
)

� C

�

kr~u(t)k

L

q

(


b

)

+ krv

1

(t)k

L

q

(R

n

�

)

�

� C

�

(1 + t)

�

~s

2

+ t

�

1

2

�

k~u

0

k

W

2

q

(
)

� Ct

�

1

2

kfk

L

q

(
)

:

Thus the theorem is also true for t � 2.
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A Appendix

Lemma A.1 Let 1 < p; q; r <1, � 2 (0; 1) with

1

q

=

1��

r

+

�

p

and 
 be an aperture

domain. Then

(D(A

r

);D(A

p

))

[�℄

= D(A

q

);

(J

r

(
); J

p

(
))

[�℄

= J

q

(
):

Proof: To prove the �rst equality we de�ne a ontinuous projetion P

q

:W

2

q

(
)

n

!

D(A

q

) for arbitrary 1 < q < 1. For a funtion u 2 W

2

q

(
)

n

let (v; p) 2 W

2

q

(
)

n

�

_

W

1

q

(
) denote the unique solution of the resolvent equations (16)-(19) with right-

hand side f = (z � �)u for some �xed z 2 �

Æ

(see [8, Theorem 2.1℄). We set

P

q

u = v. Then it holds that

kvk

W

2

q

(
)

� Ck(z ��)uk

L

q

(
)

� Ckuk

W

2

q

(
)

:

If u 2 D(A

q

), (u; 0) is the unique solution of these equations. Therefore P

q

is a

ontinuous projetion on D(A

q

).

If u 2 W

2

r

(
)

n

\W

2

q

(
)

n

the orresponding solutions inW

2

r

(
)

n

andW

2

q

(
)

n

oinide

(see [2, Lemma 3.2℄). Therefore we an extend P

q

and P

r

to a well-de�ned projetion

P (u

r

+u

q

) = P

r

u

r

+P

q

u

q

onW

2

r

(
)

n

+W

2

p

(
)

n

with P j

W

2

r

(
)

n

= P

r

and P j

W

2

p

(
)

n

= P

p

.

Therefore we onlude

D(A

q

) = P

�

W

2

r

(
)

n

;W

2

p

(
)

n

�

[�℄

=

�

PW

2

r

(
)

n

; PW

2

p

(
)

n

�

[�℄

= (D(A

r

);D(A

p

))

[�℄

:

The seond equality immediately follows from the fat that P

q

= P

r

on J

q

(
)\J

r

(
)

(see [8, Lemma 3.2℄).

Lemma A.2 Let 0 � � < 1,� � 0, � � , � +  > 1, �+ � 6= 1 and  6= 1. Then

Z

t

0

(t� s)

��

(1 + t� s)

��

(1 + s)

�

ds: � Ct

��

:

Proof: The ase t 2 (0; 1) is trivial. For t > 1 we simply estimate

Z
t

2

0

(t� s)

��

(1 + t� s)

��

(1 + s)

�

ds � Ct

����

Z
t

2

0

(1 + s)

�

ds

� Ct

����

�

t

1�

; if  < 1;

1; if  > 1;

� Ct

��

:

Similarly we get

Z

t

t

2

(t� s)

��

(1 + t� s)

��

(1 + s)

�

ds � Ct

�

�

t

1����

; if �+ � < 1;

1; if �+ � > 1;

� Ct

��

:
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