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Abstract

This article deals with asymptotic estimates of strong solutions of Stokes
equations in aperture domain. An aperture domain is a domain, which outside
a bounded set is identical to two half spaces separated by a wall and connected
inside the bounded set by one or more holes in the wall. It is known that the
corresponding Stokes operator generates a bounded analytic semigroup in the
closed subspace J,(§2) of divergence free vector fields of L,(£2)". We deal with
L, — L,-estimates for the semigroup, which are known for R", the half space
and exterior domains.
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1 Introduction and Main Results

Suppose that 2 C R*, n > 3 is an aperture domain with smooth boundary, i.e.
QUB,(0) =R} UR" U B,(0)

with R} = {z = (21,...,2,) : @, > 0} and R? = {2 = (21,...,2,) : #, < —d},
d,r > 0. We consider the homogeneous non-stationary Stokes equations in (0, 00) x {2

Figure 1: An aperture domain

concerning the velocity field u(t, z) and the scalar pressure p(t, z):

Ou—Au+Vp = f in (0,00) x €, (1)
divu = 0 in (0,00) x €, (2)
ulgg = 0 in (0,00) x €, (3)
Q(u) = « in (0, 00), (4)
Um0 = g in Q, (5)



where
B(u(t)) = /MN ult, 2)do(x) = ()

is the flux through a smooth, bounded (n — 1)-dimensional manifold M with normal
vector N directed downwards dividing €2 into two connected components. This flux
has to be prescibed in order to get a unique solution with u(t) € L,(2) with -~ <
q < oo. In the case 1 < ¢ < "+ the flux has to vanish, i.e. ®(u) = 0. (See [8] for
the corresponding resolvent problem.)

In this paper we only deal with the case f = 0 and ®(u) = 0. We consider the
asymptotic behaviour of the solutions u(t). The general case can be derived from
this case depending on the asymptotic behaviour of f(¢) and «(t). Since the Stokes

operator A, generates a bounded semigroup in J,(Q2) = {u € CF(Q)",divu = O}"'Hq
the estimate ||u(t)||, < C|luol|q holds. The goal of this paper is to prove the following
decay rate measuring u(¢) and ug in the norm of L, for different 1 < ¢ < 0.

Theorem 1.1 Let 1 < ¢ <7 < 0o. Then there is a constant C' = C(£2, ¢, ) such that
()L, 0y < CT 7ol Ly() (6)
with o = 2 (L = 1) for all ¢ > 0 and u € J,(%2).

Theorem 1.2 Let 1 < ¢ <7 < n. Then there is a constant C' = C(2, ¢, 7) such that

Vu()]

ol
L) < Ct772|ugl| L, (7)

with o = 2 (l - l) for all t > 0 and ug € J, ().

2 \gq T

These inequalities are known for other unbounded domains. In [11] Ukai showed
these estimates for 1 < ¢ < oo if the domain is the half-space R’,. This is done by
using an explicit solution formula in terms of Riesz operators and the heat kernel in
R?%. In the case of an exterior domain, Iwashita [5] showed the validity of (6) for
l<g<r<ooand (7)forl<g<r<n.

The proof of Theorem 1.1 and Theorem 1.2 uses a similar technique as in [5]. It
consists of first showing a local estimate of the L,norm of u(t) and then comparing
the full L,-norm with suitable solutions of the non-stationary Stokes equations in
R% . The local estimate is derived from an asymptotic expansion of the resolvent of
the Stokes operator in the aperture domain around 0 in special weighted L,-spaces.
The resolvent expansion is constructed by using a similar resolvent expansion of the
Stokes operator in the half-space R’ . For the latter expansion we combine Ukai’s
solution formula [11] with an resolvent expansion of the Laplace operator A in R”,
based on the results of Murata [7].



Remark 1.3 With the methods of this article we can’t prove Theorem 1.2 for the
case r = n, which is done by Iwashita in the case of the exterior domain. This is
due to a slightly weaker estimate of the local part of the L,-norm. (See Corollary
6.2 and [5, Theorem 1.2 (i)].) We get this condition because we have to deal with
weighted Lg-spaces of the kind L,(£2;w®?) such that w®® is a Muckenhoupt weight
(see preliminaries); this condition on the weights is not needed in [5].

2 Preliminaries and Notation
We will consider the resolvent expansion in a scale of weighted L,-spaces

Ly(w*) = {f:Q — R measurable : || f||1, s < 00}, s € R,

1l = ( / |f<w>|‘1w8q<w>dx)q

Analogously we define the weighted Sobolev spaces as
W Q;w*) := {f € L110c(Q) : D*f € Ly(w*),V|a| <m}

and Wil (Q;w*) = C’go(Q)qu(Q;wsq) Recall that f € Lj.(Q) means that f €
Li(Q N B) for all balls B with QN B # (. Moreover D*f(x) = 02! ...09" f(x) for
a € Ny. By W (Q;w*?) we denote the corresponding homogeneous Sobolev space of

Ly joe-functions f with D*f € L,(€; w?®?) for all |a] = m. Finally

J,(Q:050) == Tu € Co(Q)n - diva = 0} ),
For simplicity we often will skip the exponent n if we deal with spaces of vector fields;
e.g. we write f € L,(f2) instead of f € L,(Q2)". If X,Y are two Banach spaces, we
denote by L£(X,Y) the space of all bounded linear maps 7' : X — Y; furthermore
L(X):=L(X,X).

In [5, 7] the simple weight w(z) = (z) = (1 + |#|?)2 is used. For -7 <s<g
the weight (z)®¢ is an element of the Muckenhoupt class A,. This is the class of all
measurable functions w : R* — [0, 00) with

|B|/ <|B| / (I)_%dx>-;9 < A < oo,

where B is an arbitrary ball in R* and A is independent of B. The weights w € A,
have the important property that singular integral operators like the Riesz transforms

msta) = i

f(f)] — ¢ lim Y )dy,

=0 Jra\ B, (z |x — gy tt



j=1,...,n, are continuous on L,(R";w) into itself. Here Flu](§) = u(&) denotes the
Fourier transform with respect to z. (See for example [10, Chapter V: §4.2, Theorem
2] for the continuity and [9, Chapter III, Section 1] for Riesz transforms.)

We will also use the partial Riesz transforms

o[ : Yj
Sif(x) == Fal [—]f(f',xn)] = ¢, lim I
’ el I e0 Jpu-1\ g2y |7 — Y'|"
j=1...,n=1,2=(a,2,),{ = ({,&,), for functions f defined on R} or R". These
partial Riesz transforms are used in Ukai’s solution formula.
Unfortunately the weight (x)*¢ considered for fixed z, as weight in R*"! is in the

class A, only if —”T_l <5< ”q_,l. Therefore we will use the slightly weaker weight

wp(x) = H?:l(xiﬁ. For this weight w,(x)*? considered for fixed =z, is in A, on R”
for —% < s < (’;—,. This is easily derived from the special product structure and the

x! —
. (v, zn)dy,

fact that (z;)» is a one-dimensional weight in A,. Therefore we get:

Lemma 2.1 Let Q = R*" or Q =R}, 1 < ¢ < 00, =2 < 5 < 2 and wy(z) =
+ q q

H?Zl(xz)% Then the (partial) Riesz transforms are continuous from Ly(€2;wi?) into
itself.

Moreover we introduce £5 = {z € C\ {0} : |argz| < ¢} and E;. = X5 N B.(0).
Recall the Helmholtz decomposition of a vector field f € L (Q;wi?)™, ie. the
unique decomposition f = fo + Vp with fy € J,(Q;wi?),p € W;(Q;w;”ﬂ). The exis-
tence and continuity of the corresponding Helmholtz projection P, : Ly (€2;wi?)™ —
Jo(Q;w0), [ +— Pyf = fo is proved in [3, Theorem 5] for the case that Q@ = R*, R}
or € is a bounded domain. For the case of an aperture domain and s = 0 the result
is proved in [8, Theorem 2.6].

Furthermore we define the Stokes operator A, = —P,A in J,(Q?) with D(4,) =
WZ2(Q) N Wy, (2) NJ,(Q2). Note that the resolvent of A, satisfies the estimate

1(z + A9) " Fllzaw < Cslel Iy (8)

for z € X5, € (0,7), if 2 is an aperture domain (see [8, Theorem 2.5]). Therefore
—A, generates an analytic semigroup.

3 The Resolvent Expansion in R

We consider the resolvent equations

(z—=Au+Vp = f in R?, 9)
divu = 0 in R}, (10)
u]am =0 on OR’ . (11)

Let Ro(2) = (2 — A)™! denote the resolvent of the Laplace operator in R".
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Lemma3.1Let1§p§oo,0<5<7r,ozEN6‘,|a|§2,%<0< 5
—5 <8 <s<, s'=s-20+|a|. Then

[o]-1
DO‘RO(z) = Z ZjDaGoj + Gor (Z)

§=0

where Go.(2) = O(2°7) in LW, (R™; wiP), Wyt (Re: W8P for 2 — 0 with 2 €
ds.

Proof: The proof is the same as [7, Lemma 2.3.(i)]. It is based on the estimate for
the convolution operator with the heat kernel Ey(t):

@ 7@ —a
1D Eo(t)"E(LP(R”;wSP),Lp(R”;wS’P)) < [t = () (12)

for w(z) = wp(z), t € Bsy, 0 < &y < 7,
s'=s—20.

The estimate (12) is proved in [7, Lemma 2.2] for the case w(z) = (). But this case
implies the estimate for w(z) = w,(x) since

1D Bo(t) 11,

aENg,0§a<%and—%<s’<s<§,

Jen—ynl?

ey
1 € 4t e 4t
< D* - Oy ——=—=—=—f (¥, yn)dy dy'
/Rn—1 (47t) o ‘ RO At e . (RV@ >5_;2> )
P N slp=1
LP<R”—1;wnfln (a;’))
e_lw/?lty/|2
el o F| [ DY 10y )
et | (dnt) T ) T i)

<c (H |t|—%<t>—%) 11l (i) = CHI™ 5 (0 11, ()

1=1

with a = (o/, ). |

Remark 3.2 The operators Gy; and G, (2) are given by

Goj — / " B = (13)

J!
Gorl2) = / T Bo(®)fi ()t with (14)
0
o=,
f[o'](Zt) — efzt_ ( Z‘t)J
=0 7



We recall Ukai’s solution formula for the homogeneous non-stationary Stokes equa-
tions in R} (see [11]), i.e. (1)-(3), (5) for @ = R}, f = 0 with compatibility condition
divug = 0 in R} and uy = 0, ug = (ug, uy), on IR’ Let R;, S; be as above. More-
over let 7f = flgn, vf = florr and e be the extension operator from RY} to R" with
value 0. Finally let E(t) be the solution operator for the heat equation in R’} , which
is derived from Ej(t) by odd extension from R?} to R".

Then the solution (u(t),p(t)) of the non-stationary Stokes equations in R is u(t) =
WE(t)Vuy and p(t) = —Dv0, E(t)Viuy where

(1 =SU (W Pl ’
W_<O I >, V_<V1>’ U=rR -SR-S+ R,)e,

Viug = =S - ug +ug,  Vou = ugy + Sug,
R =(Ry,...,R, )", S=(S,...,8. )"

and D is the Poisson operator for the Dirichlet problem of the Laplace equation in
R? .
Using this result, we get:

Theorem3.3Let1<q<oo,0<5<7r,n23,%<0<%M,QEN6‘,
laf <2,-2 < <0< s < %ands =s—20+|al. Then there exist oper-
ators R, (z), Py(z) with DR, (2) € L(Ly(R";w), W, ™ *|(R"; ws0)) and Py (2) €
L(Ly(R%;wse), W) (R?;ws 1)) depending continuously on z € X5 U {0} with:

1. u=Ry(2)f and p = P(2)f.f € Ly(R};w;?), is a solution of (9) - (11) for
z € Y.

2. Ry(z) € L(Ly(RY;ws?), WA(RE)) and Py (2) € L(Ly(RY;ws), WEHR?)) for ev-
ery z € Y.

3. The asymptotic expansions

[o]-1

DUR,(2) = 3 9D+ O in £ (R ), WE (R s
=0
[o]-1

Po(z) = 3 AP+ 00 in L(L,(RY;wlf), W (R w)))

),

n
J=0

hold for z — 0,z € Xs.

Proof: Because of the Helmholtz decomposition in weighted L,-Spaces (see |3,
Theorem 5]), we can assume w.l.o.g. that f € J,(Q;w®).



Therefore the asymptotic expansion for R, (z) simply follows from the expansion of
Ry(z), the equations (13)-(14),the continuity of the Riesz-transforms S; and R; in
Ly(R*;wy?) and Ly (R} ;wpf) if =2 <'s < 7 and the fact

n

Ri(2)f = /OOO e “WE(t)V fdt.

In order to get the result for D*R. (z), |a| < 2 we use the relations

n—1
U = (I-U)V|=-(I-0))_ S,
=1

@S = S@Z izl,...,n,
@U = U@Z izl,...,n—l

and prove the expansion in the same way as in the case a = 0. We note that the
first equation is a consequence of

Fomse W (€)= €] / " @) F (¢ ) dy (15)

(see the proof of [11, Theorem 1.1]); the other equations are obvious.

Finally we get the expansion of VP, (z) in the same way using |V'|Dy = 0,U — U0,
|

Because of the estimate (12) and Ukai’s formula we also easily get

Lemma 3.4 Let u(t) = WE()Vuo, ug € J(R};wyd), denote the solution of the
homogeneous non-stationary Stokes equations (1)-(3), (5) for Q=R%, f=0. Then

o), g ey < OO+ ol ey

with1<q<oo,—%<s’§0§s<%,s’:3—20,t20.

4 Resolvent Expansions in Aperture Domains

We consider the resolvent equation

(z—A)u+ Vp f inQ, (16)
divu = 0 in €, (17)
ulsga = 0 on 01, (18)
Ou) = 0 (19)

for an aperture domain €.



Theorem4.1Let1<q<oo,0<5<7r,n23,1<0<%,—%<s’§

0 < s < g4 ands :=s—20. Then there are an ¢ > 0 and operators R(z) €

L(Ly(Q;wi), W2(Q;ws ) and P(z) € L(Ly(;ws?), W) (w5 7)), depending contin-
uously on z € X5 . U {0} with the following properties:

1. The pair u = R(z)f and p = P(z)f is a solution of (16)-(19).
2. R(z) € L(Lg(Qwi), W2(RQ)) for every z € ¥
3. The operator-valued function R(z), z € ¥;., has an expansion

lo]—1

R(z) = Z G+ G(2)

=0
in L£(Ly(;ws), WHQ;wi 1)) where G,(z) = O(2°7") for z — 0.

Proof: We use the technique used in the proof of Theorem 3.1 in [5]. Let QUB,(0) =
R? UR® U B,(0). We choose b, R € R such that b > R > r + 3 and denote
Rt =R} UR", Q) = QNRLE,Q := QN By(0). Let ¢, v € C°(Q2) be cut-off
functions with ¢(z) = 1 for |z|] > R, ¢(z) = 0 for |z| < R —1, ¢(z) = 1 for
|z| > R —2 and ¢(x) = 0 for |z| < R — 3. We identify ¢ f with its extension by 0 to
R . Moreover we define Ry(z) : L,(R};wi?) — Wf(m;wgq) by

Re(2)(glay)(@) ifz €RE
Rl = | 5 D) e R

The operator Py(z) : L,(R};wi?) — qu (R2;ws?) is defined analogously. Let f; :=
fla, and (L, P) : Lg(S%)™ — WZ()" x W;(Qb) be the solution operator of the
Stokes equation in the bounded domain €. Set R;(2) € L(Lg(€%ws?), W2(ws 7))
by

By (2)f = oRx(2)(Vf) + (1 — @) Lfy.
Similarly define TI(z) € L£(Ly(Q;w3?), WHQ;ws)) by
M(z)f == oPe(2)(0f) + (1 = ) Pfo.

Obviously the operator R;(z) has the same type of expansion as Ry (z). Let

[o]—1

Pi(z) =Y 2/Pij+ Pi,(z)

J=0



with Py (2) = O(2771) in L(Ly(RL;wi?), WHRY; wg?)) be the expansion for Py (2).
We choose Py ;f, Py, f € qu (R%) such that

| pgar = [ ppan [ pera-o
DrNQ DrNQ DrNQ

/ P.ifde = 0 forj=1,---,[0] —1
DgrN<2

where D :={z € Q: R—1 < |z| < R}. Applying Poincaré’s inequality

/D f(w)da )

for a bounded domain D with C%-boundary (see [1, V. Theorem 4.19]) it follows that

1Peof = Plollp, ey S CUIVPeofllL,mrre) + VP follz,00) < Cllf Ly,
||Pivjf||Lq(DRﬁQ) < C vaﬁ:,ijLq(DRmQ) < O||f||Lq(Q;wfﬂ)a
HPi,r(Z)fHLq(DRmQ) < C vaﬁ:ﬂ"(z)fHLq(DRmQ) < C|Z|gil||f||Lq(Q;wiq)'

Because of these inequalities and the identity VII(z)f = oVPi(z)(¢vf) + (1 —
©)VPfy+ (Vo) (Pe(z)(¢f) — Pf) the operator II(z) has the same type of expansion
as Py(2).

[t remains to correct the divergence of Ry (z) f. For this we apply Bogovskii’s Theorem
(see e.g. [4, Theorem 3.2]) to div(R,(z)f) = Ve - {R+(2)(¢¥f) — Lf,}, which has
compact support in Dg. We note that

/D div(Ri(2)f) = _/BOR" div((l—w)Ri(z)(z/)f))dx—/ div (pLf,) dx

Qp

Il <C <||Vf||q+

_ _/ N-(1— @)Ru(2)Wf)do — [ N-pLfydo = 0.
d(BRrNRY) oY

Since div Ry (2) f € W2 (Dgr)"Wy ,(Dg), we get a compact operator Q(z) : Ly(Q; wp?) —
Wi (Dg) with div Q(z) f = div Ry (z)f. The operator Q(z) depends continuously on
z € X5 U {0}

We identify Q(z)f with its extension by zero to a function Q(2)f € Wo%q(Q;wfl'q).
Now let Ry(2) := Ri(z) — Q(2) € L(Lg(wsd), W2(;ws9)); then

(: = ARy(2)f + VL) = f+S()f i,
divRy(2)f = 0 in Q,
Ry(2)f = 0 on 0N

for all f € Ly(2;w3?), where

SR = —{2(Ve) -V + (Ap)H{Re(2) (v f) — Lfv}
+2(1 = @)Lfy + (A = 2)Q(2)f + Vo(P:(2) (L f) = Pfy).
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Since supp S(z)f C Dg, it holds S(z) € L(Ly(Q;ws9)). The term (A — 2)Q(z) €
L(Lg(wif)) is a compact operator since Q(z) : Lg(wi?) — W5, (Dg) is com-
pact. Furthermore S(z) — (A — 2)Q(2) : Lg(Q;wi?) — W, (Dg) is continuous,
so S(z) € L(Ly(Q;w?)) is a compact operator. Moreover S(z) is continuous in
z € Y5 U{0} and has the same type of expansion in L£(L,(Q;wi?)) as Ri(z) in
£(Ly(e00), W2 ()

In the following Lemma 4.2 we show that I +.5(0) is injective. Since S(0) is compact,
the Fredholm alternative yields that (I + S(0))™' € L(L,(;w??)) exists. Therefore
(I +S(2))7" exists for all z € X;, for some € > 0 More precisely

[(S(0) = S(=))(1 + S(0)7]"*

NE

(I+5(=)"" = (I +5(0)

i

0
for all z € 5., where g9 > 0 is chosen so small that

1
I5() = SO € 57T

for all z € Xs,,.

Since S(z) and therefore all powers (S(0) — S(z)* have an expansion in £(L,(; wi?))
of the same type as Ry (z), the inverse (I + S(z)) ! has the same.

If we now set R(z) := Ry(2)({ + S(2))"! and P(z) = I(2)(I + S(z)) !, we get the
solution operators of the resolvent problem with the desired expansion. [ |

Lemma 4.2 Let S(z)
I+ 5(0) € L(Ly(2;wt
2,

enote the same operator as in the proof of Theorem 4.1. Then
) is injective.

d
)

Proof: It is known 8] that the Stokes equations in an aperture domain have a

unique solution (u, p) € [WPZ(Q) N W;(Q)]n x WHQ), =5 =y for L<p<mn, for
given force f € L,(€2) and prescribed flux ®(u) =a € R

We calculate the flux of Ry(0). Since M C B,, the identity Ry(0)f(z) = L fy(x) holds
for all x € M. Denote by B, the connected component of B,(0) \ M “above” M.

Then we conclude that

0 = / divabdx:/ Lfb-Nda:/ Lf,,-Nda:/ Ry»(0)f - Ndo.
By OB, M M

Therefore we get R2(0) f = 0, [1(0) = const. if we show that Ry (0)f € [WQ(Q) NIWL(Q)

p
and I1(0) f € WA(9).
Let (I + S(0))f = 0. That means f = —S(0)f; and therefore the support of f is
contained in . This implies f € L,(Q;w) forall se Rand 1 < p < gq.
Claim: V?R,(0)f, VII(0)f € L,(Q) for all 1 < p < ¢ and VRy(0)f € L,-(Q) with
1

F:;——and1<p<mlﬂ{q7”}

10



Proof of claim: It holds for i,j € {1,... ,n}:

0;0;R2(0)f = 90,0, R+ (0)(¢f) + 9:0; [(1 — )L fo] + (0ip)0; R+ (0) (¥ f)
+(050)0i R (0) (¥ f) + (0:0;0) R+ (0) (¢ f) — 9;0;Q(0) .
The support of every term except the first one is contained in €,. Therefore each of
these function is an element of L,(€2) for every 1 < p < gq.

Considering the first term Theorem 3.3 tells us that 0;0; R (0) € L(L,(R%;w?P), L,(Q, wi?))

forall -2 <& <0<s< 8 =5-20+21<0 <3 Since f € Ly(Q) for

arbitrary s € R and 1 < p < ¢, we can apply this Theorem for ' = 0, s = 20 — 2.

Therefore we choose 1 < ¢ < % such that —*—= < p & 20 — 2 < &. Thus we get
2 n—20+2 P

0;0;R+(0)(x0f) € Ly(2) for every 1 < p < g. With the same choice of s and s' we
see VII(0)f € L,(Q2) forall 1 <p <gq.
The same argumentation can be applied to

OiR(0)f = @OiR:(0)(¥f) + 0 [(L — ) Lfy] + (9ip) RL(0) (4 f) — B:Q(0) f.

In this case O;R(0) € L(L,(Qws"), Ly (;wi™)) holds for all -2 < &' <0 <5< 2
s':=5—20+1,1 <0 <% The choice of s =0, s = 20 — 1 yields the condition

n . 1 1 1 . o, . . . n n
20—-1 < %. Since >+ > this condition is equivalent to 20 —2 < 7 o> s

This proves the claim.

Thus Ry(0)f = 0 and VII(0)f = 0. Since suppQ(0) C {R —1 < |z] < R}, it is
obvious that

Ry(0)f(2) = Re(0)(¥f)(x) = 0, VII(0)[(z) = VPL(0)(¢f)(x) = 0
for x € Q, |z| > R, and
Ry(0)f(z) = Lfy(z) =0, VI0)f(z) = VP fy(z) =0
for x € Q, |x| < R — 1. This implies f = 0 for || > R since
—ARL(0)(Wf) + VP(0)(¥f) =vf  inRE.
Similarly we get f =0 for z € Q,|z| < R — 1, since
—ALf,+VPf,=1f, in Q.

The support of (Rx(0)(10f), P.(0)(¢0f)) and of (Lfy, Pf,) is contained in D := {z €
2: R—1<|z| <b}. Therefore both terms solve the Stokes equations
—Au+Vp = f in IN),
divu = 0 in 15,
u = 0 on OD.
This implies that Ry (0)(¢0f) = Lf, and VPL(0)(1pf) = VP, in D because of the
unique solvability of the Stokes equations in a bounded domain. Hence Qz)f =0,
Lf,=Ry(0)f =0, VPf, = VII(0)f =0 in D and finally f = 0 in the whole domain
Q. ]
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5 Decay of the Semigroup in Weighted Spaces
Let A, = —FP,A denote the Stokes operator for an aperture domain €.

Theorem 5.1 Letn23,1<0<%,1<q<oo,—%<s’§0§s<§,s’:s—20.
Then there exists a constant C' = C(q, s, s') such that

e f ]l sy S CAFD M iyt £20,

for all f € J,(2) N L,(€;w;?). Furthermore

e f Lz < €+ 877 max { I Flhwztoys Ifllegqomznr ¢ 20,

for all f € D(A,) N Ly(;wi).

Proof: The proof of the inequalities is nearly the same as the proof of Theorem 1.1
in [5]. So we give only a sketch.

Since the semigroup e 4 is bounded in J, (), the first estimate is satisfied for
0 <t < 1. The second estimate holds for 0 < ¢ < 1 because of the estimates

[fllwz@) < ell(I + Ag) flly@) < Cllfllwz@ (20)

for all f € D(A,). (The first inequality is a consequence of [8, Theorem 2.1]. The
second inequality is obvious.)
For ¢ > 1 consider the representation of the semigroup

1
—tAq _ tz A 71d
e ot ). e“(z 4+ Ag) dz

where the curve I' coincides outside a ball B.(0), 0 < & < &y ,with the rays e*%# { > 0
with § < ¢ < 4. (0,2 are the same numbers as in Theorem 4.1.)

We split the curve I' into two parts I'y = {z € I': 0 < |z| < e} and 'y = {2z € I":
e < |z|}. So we get

1 1
PRl ge—— /r e R(z) fdz + 30 e (z + A,) "' fdz
1

2mi T Jp,

for all f € J,(Q) N Ly(Q;wi?) since R(2)f = (2 + Ay) 1 f for z € ;.
Using the resolvent estimate ||(z + 4,) "' fl, < C|z|7 | f]l, we easily get

with some constant ¢ > 0. Analogously we get

0 L ts cos ¢ t

e e ¢

1
< 0 S dslflw < €05
Ly(Qw ) e F

2

/ e (z + Ay)"'dzf
I

||f||Lq(Q;wfﬂ)

1
271

e

ct
— I fllwz

00 etscosd)
< o[ S sl g < Cle9)

S

/ e (z + Ay)"'dzf
I

. ’
‘qu(ﬂ;wi")

12



if we use (20) for f € D(A,).
We use the resolvent expansion of Theorem 4.1 to estimate the first integral. Since
Zgﬂgl 2/G; is holomorphic in C, it holds that

[o]-1

Z/ €tZZjdoZ < Ceatcos(d)) — (e
. T ,

=0 (Lo (i) W2 )

with ¢ > 0. In order to estimate the remainder term we deform the curve I'; to a
curve I'* which coincides with z = e=%¢, t € [0,¢]. Therefore

1 o0
‘ —/ e G, (2)dz < C’/ e es@\T=lg = ¢,
2mi Jry £(Ly i)W @) 0
Collecting all estimates we proved the Theorem. [

6 The L,-L,-Estimate

In order to get an estimate of [le~4 f[| (q,), % = QN By(0), we need:

Lemma 6.1 Let 1 < g < oo and —% < s < 0. Then it holds that

17 Ul iy < CAADZ N Nz
for all f € J,(Q) and

17 Flligg ey < CA+ D llwzcey
for all f € D(A,).

n

Corollary 6.2 Let 1 < ¢ < oo. Then for every 0 < s < 2 there is a constant
C = C(s,q,) with

e fll Ly < CO+8) 1 FllLy@)
for all f € J,(2) and
le ™ fllwaay < CL+ )| fllwae)

for all f € D(A,).

13



Proof of Lemma 6.1: If 1 <p < 7 then % > 2; so we can we apply Theorem 5.1
with s = 0. Therefore we get

16 Sl < €O+ D5 1w 2

for m = 0,2, f € J,(Q) resp. f € D(4,) and -7 < §' < —2. In order to get the
statement of the theorem we interpolate the estimates (21) and

He_tAerW;n(Q) < CHfHWJ”(Q)? m = O7 2, f € JT(Q) resp. D(Ar) (22)

for suitable p close to 1 and large r. For this we need the following statement about
complex interpolation:

(Lo 7). Li(@) | = L@
G
with 0 < 6 < 1, % = 11.%9 + £ (see for example [6, Theorem 5.5.3]).
Now let 1 < ¢ < o0, —% < s < 0 be given as in the assumptions. We set for
0<f<1
, s' 1 1-6 0

= d =747
1-0 atl q P +7“

5

Then we choose 0 < 8 < 1 such that
——2(1——0)<:s'< —2(1——0)¢¢——21<:§’< -2,
p p

which exists if 1 < p < min{%,¢}. If we furthermore use that

(see appendix), we get with the chosen 8, p and the corresponding r that

#71-0 s
e il ugny < € [(1+t)7] I lzg@ = €A+ 8= fllz,@

for f € J,(Q2). Complex interpolation with the same parameters yields the estimate
for f € D(A,). For this we use the second estimate of Theorem 5.1 and

(D(4,), D(Ar)gy = D(Ay).

(6]
The latter equation will be proved in the appendix. [ |

Proof of Theorem 1.1: The proof is similar to that of Theorem 1.2 in [5] but a
little bit shorter.
It is sufficient to show the statement for 0 < o < % since we can reduce the general

case to this statement. (Choose ¢ = ¢y < ¢1 < ... < ¢ = r such that o; =

5 (q% — %’i—l) < % and apply the statement to ¢; and g;1;.)

14



1st step: The inequality holds for t > 2.

Let g := e %ug. Then @y € D(A,) and [[do|lwz@) < ClluollL, ). Moreover let
a(t) := e gy and p(t) € qu(Q) be the pressure corresponding to u(t).

Let QU B,(0) = R} UR" UB,(0) and b > r+ 1. We choose a cut-off-function
Y € C*(Q) with ¢(z) = 1 for |z| > b and ¢(x) = 0 for || < b — 1. Then
div(ya(t)) = Vo - a(t) € Wy, (Dy) with Dy := {z € Q : b—1 < |z| < b} and
be Vi - a(t)de = 0. Applying Bogovskii’s Theorem [4, Theorem 3.2] we know that
there exists a vo(t) € W5, (Ds) with divvy(t) = div(¢a(t)) and

lvo () llwzpy,y < Clla()]|wa(py)- (23)
Therefore we have
10wo() lwap,y < Clle™ 4 Agtioll,p,) < C(1+1)°[tollwzoy (24)

with an arbitrary 0 < 5 < 2%.
If we define vy (t) := ¥a(t) — vo(t), it solves the differential equation

O (t) — Av (t) + V(¥p(t)) = h(t) in (0,00) x RY, (25)
divu(t) = 0 in (0,00) x R}, (26)

vi(t)|orz = 0 in (0, 00), (27)

v1(0) = n (28)

with vy = iy — vy(0) and
h(t) = ={2(V) - V + (AY) }a(t) — (8 — A)vo(t) + (V)B(t).

Moreover supp h(t) C D;. We choose the pressure p(t) such that beji(t)dx =0. If
we now apply (23), (24), Poincaré’s inequality [1, Theorem 4.19] and Corollary 6.2,
we get

1PCE)| g (1)

A

(1) ) + ooz + 100z, + 1Bz, o)
((+ 8 laollwze) + 50 Iz, e
(0 + 0l llwac) + 10D 12,0 + 138 lwacp,)

C(1+ )72 |lo[l w2 (o)

A

C
C
C

IN

IN

with an arbitrary s such that 0 < 5 < %

Let E(t) denote the semigroup of the Stokes operator in R} and Py denote the
Helmholtz projection in L, (R%;w:?). Since vy(t) solves the equations (25)-(28), the
identity

v1(t) = Ex(t)vy + /Ot EL(t —71)Pyh(T)dT

15



holds. Because of Corollary 3.4 and the L, — L,-estimate in the half space [11,
Theorem 3.1] the semigroup E.(t) satisfies

N1EL(®) flle,®ny < Ct 7| fllL,®y)
IE<(t) fllLyee) < CA+1) 72| fllL, @myws)

With1<q§7“<oo,()§s<%andaz%(%—%) for allt > 0, f € J,(R}) resp.

f e Jy(RY;ws?). Using both inequalities we get

- ()

for f € J,(R};ws), t > 0. Therefore we conclude

|EL(t) fllz,my) < Ct7

S CEO(L+8) 21 f |y ey
Lq(RY)

[EL@)ville, @) < C7or]|Lyrn) < C7[dol| L, ()

and

t

< C/ (t=7) A+t —7) 2 [[Peh(7)] L, rey i) dT

Ly (R%) 0 ) l
SCHh(T)HLq(RZLE;qu)

t
< c / (t =)7L+t — 1) A oy o
0

/t EL(t — 7)Pyh(T)dr

IN

¢ .
C'/ t—7)"(1+t—7)"2(1+ T)_%d7'||l~l/0||qu(Q).
0

< 34 such that %—{—% >1,5+0#1and % # 1.
> 1.) If we apply Lemma A.2 with this choice of

NIV

We now choose 0 < s < % and o
no_
2¢

SIS A

(This is possible since 2q T
s and s, we get

/t Ba(t — 1) Puh(r)dr

< Ct™7[tollwz ()
Lr(R})

and therefore

[[or ()]

Since u(t,x) = vi(t,x) for all z € Q\ Q, the previous estimates, Corollary 6.2 and
Sobolev’s embedding theorem imply that

la(t)

L(ry) < CtigHﬁOHWq?(Q)-

Loy < 10wy + 1@ o < C (130 Iz, + 010z @ay )

< Ct™aollwey < Ct7| fllLy@)-
Since @(t) = e~ (D494 we have proved the theorem for ¢ > 2.
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2nd step: The inequality holds for t < 2.
The case ¢t < 2 is proved in the same way as in the proof of [5, Theorem 1.2] using
Sobolev’s embedding theorem and an interpolation method. [

~t44 and Theorem

Proof of Theorem 1.2: Because of the semigroup property of e
1.1 it suffices to prove the statement for 0 =0,i.e. 1 < q¢=17 <n.

The proof for the case t < 2 uses the same interpolation method as in the proof of
Theorem 1.2 [5].

So let ¢t > 2 and v (t), vy(t), h(t) be the functions used in the proof of Theorem 1.1.

Then it holds that
Vui(t) = VEL(t)vy + /t VEL(t —7)Peh(r)dr.
0
The estimate for the Stokes semigroup in R} yields
IVE:@®)villzyen) < CF =l

Nowwechoose0§s<§and1§§<%With§+§>1,g#land%+§7ﬁ1. So
we get because of Corollary 6.2 and Lemma A.2

/t VEL(t —T)Peh(r)dr

Lq(RY)

t
< / (b= 1) 5 (L4t — 1) [ Peh(r)| iy a7
0
t

[

t .
C'/ (t — 7')_%(1 +t—7)72(1+ T)_%dT||ﬂo||W;(Q)
0

Do

C
< C (1+t—T)*§Hh(T)||Lq(Qb)dT

IN

1.
< Otz ||dollwze)-

Moreover let 5 =1 < %. Therefore we get for ¢ > 1

IVe % Sl < C (190 |y + V01 () r,e)
< C ((1 b +t‘%) laollwz) < CE2f |z, 0)-

Thus the theorem is also true for ¢t > 2. [ |
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A Appendix

Lemma A.1 Let1 < p,q,r < o0, § € (0,1) wz’th%: 1-0 4

. % and 2 be an aperture
domain. Then

(D(4,), D(Ap)) D(4y),
(- (€2), Jp(Q))[a} = Jg(2).
Proof: To prove the first equality we define a continuous projection P, : W2 ()" —

D(A,) for arbitrary 1 < ¢ < co. For a function u € WZ(Q)" let (v,p) € WZ(Q)" x

qu(Q) denote the unique solution of the resolvent equations (16)-(19) with right-
hand side f = (z — A)u for some fixed z € X5 (see [8, Theorem 2.1]). We set
Pyu = v. Then it holds that

[ollwe) < Clli(z = A)ullr,@) < Cllullwze)-

If uw € D(4,), (u,0) is the unique solution of these equations. Therefore P, is a
continuous projection on D(A,).

If u € W2(Q)"NW7 ()™ the corresponding solutions in W?(Q)"™ and W7 (€2)" coincide
(see [2, Lemma 3.2]). Therefore we can extend P, and P, to a well-defined projection
P(urtug) = Prup+Pyug on W2 (Q)"+W3H(Q)" with Pl = P and Plwzyn = By

Therefore we conclude

The second equality immediately follows from the fact that P, = P, on J,(Q)N.J,.(2)
(see [8, Lemma 3.2]). |

Lemma A.2 Let 0<a<1,>0,a<y,B8+7v>1, a+B#1 andv# 1. Then

/t(t —8) 14+t —8)P(L+s)"ds. < Ct™.

Proof: The case t € (0,1) is trivial. For ¢ > 1 we simply estimate

t t

/E(t—s)a(l—l—t—s)ﬁ(l—l—s)Ws < Cta6/§(1+s)ms

iy <1
—a—p ) v ’
ct { 1, ify>1,

IA

< Ct .
Similarly we get

=P if a4 B <1,

¢
i —a - -8B - -
L(t s) “(1+t—s5)"(1+s)7ds < Ct { 1, ifa+p>1,

2

ct .

IA
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