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Abstra
t

We propose an axiomati
 approa
h for the appli
ation of the limit

operators method. This approa
h will be applied to operators in a

C

�

-algebra whi
h is generated by operators of right 
onvolution on

a homogeneous non-
ommutative group X and by operators of mul-

tipli
ation by fun
tions in L

1

(X). In terms of limit operators, we

derive ne
essary and suÆ
ient 
onditions for these operators to be

semi-Fredholm or Fredholm. As another appli
ation, we obtain ne
-

essary and suÆ
ient 
onditions for the semi-Fredholmness and Fred-

holmness of pseudodi�erential operators with double symbols in the


lass OPS

0

0;0;0

.

1 Introdu
tion

The �rst appearan
e of limit operators is in Favard's paper [2℄ where they are

used to verify the existen
e of almost-periodi
 solutions of ordinary di�eren-

tial equations with almost-periodi
 
oeÆ
ients. Later, Muhamadiev [10, 11℄

applied limit operators to the question of solvability of ellipti
 partial dif-

ferential equations in R

n

. The method of limit operators method has been

further developed in the papers [6, 7, 8, 13, 14, 15℄ for the study of the Fred-

holm property of wide 
lasses of pseudo-di�erential operators and 
onvolution

operators on R

n

and Z

n

. Note also the paper [1℄, where the appli
ability of

the limit operators method to the 
omputation of the essential spe
trum of

�
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singular integral operators on Carleson 
urves a
ting in general weighted L

2

-

spa
es has been illustrated. Observe that in all of these papers, the method of

limit operators is applied to a 
on
rete 
lass of operators a
ting on a 
on
rete

Bana
h spa
e.

In 
ontrast to this, it is the �rst goal of the present paper to propose an

axiomati
 s
heme for the appli
ation of the method of limit operators whi
h


ontains many of the afore-mentioned appli
ations as spe
ial 
ases. Then,

by means of this s
heme, we examine the Fredholm property of operators

in a C

�

-algebra whi
h is generated by operators of 
onvolution a
ting on

L

2

(X) over a homogeneous non-
ommutative group X, and by the operators

of multipli
ation by fun
tions in L

1

(X). Our aim to give ne
essary and

suÆ
ient 
onditions for operators in this algebra to be semi-Fredholm or

Fredholm.

A well-known and important example of a homogeneous group is the

Heisenberg group. Singular integral operators and pseudo-di�erential opera-

tors on the Heisenberg group have been intensively studied by many authors

(see, for example, the monographs [17, 12, 21, 22℄ whi
h 
ontain extensive

bibliographies). Let us also mention the papers [23, 24, 4, 5℄ whi
h are de-

voted to the analysis of double 
onvolutions on a 
lass of step two nilpotent

Lie groups.

The Fredholm property of operators in 
ertain algebras generated by 
on-

volution operators and operators of multipli
ations by bounded fun
tions on

non-
ommutative lo
ally 
ompa
t groups was studied in [18, 19℄ by means of

Simonenko's lo
al prin
iple (see [16℄).

As another illustration of the abstra
t s
heme, we apply it to the problem

of Fredholmness and semi-Fredholmness of pseudo-di�erential operators with

double symbols in the L. H�ormander 
lass OPS

0

0;0;0

whi
h is 
onne
ted with


onvolutions on the Heisenberg group (see, for instan
e, [21, 22℄).

2 Abstra
t s
heme for the method of limit

operators.

Let H be a Hilbert spa
e and L(H) the C

�

-algebra of all bounded linear

operators a
ting on H. Throughout what follows, suppose that we are given

1. bounded sequen
es (P

k

)

k2N

and (

^

P

k

)

k2N

of operators in L(H) su
h that

s-lim

k!1

^

P

k

= I and

^

P

k

P

k

= P

k

for all k:
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2. a 
ountable set fU

�

g

�2�

of unitary operators on H su
h that, with

P

k;�

:= U

�

P

k

U

�1

�

,

X

�2�

kP

k;�

uk

2

= kuk

2

for all k 2 N and u 2 H: (1)

3. a bounded sequen
e fQ

r

g

r2N

of operators in L(H) whi
h are 
ompatible

with the P

k;�

in the following sense:

(a) there is a distinguished set B of sequen
es in � with the property

that every sequen
e (�

j

) whi
h is not inB possesses a subsequen
e

(�

j

m

) su
h that

8 k 2 N 9 r

0

2 N 8 r � r

0

8m 2 N : P

k;�

j

m

Q

r

= 0: (2)

(b) for ea
h r 2 N and any sequen
e (�

j

) 2 B one has

s-lim

j!1

U

�1

�

j

(I �Q

r

)U

�

j

= 0: (3)

De�nition 1 Let A(H) denote the set of all operators A 2 L(H) su
h that

lim

k!1

k[P

�;k

; A℄k = 0 and lim

k!1

k[P

�;k

; A

�

℄k = 0 (4)

uniformly with respe
t to � 2 �. Here, as usual, [A;B℄ refers to the 
ommu-

tator of the operators A and B.

It is easy to 
he
k that A(H) is a C

�

-algebra.

De�nition 2 We say that the operator A

�

is a limit operator of A 2 L(H)

de�ned by the sequen
e � = (�

j

) 2 B if, for ea
h k 2 N,

lim

j!1










�

U

�1

�

j

AU

�

j

� A

�

�

^

P

k










= lim

j!1










^

P

�

k

�

U

�1

�

j

AU

�

j

� A

�

�










= 0:

The set of all limit operators of A will be denoted by lim

B

(A).

The following proposition des
ribes some properties of limit operators.

Proposition 3 Let � = (�

j

) 2 B, and let A;B 2 L(H) be operators for

whi
h the limit operators A

�

and B

�

exist. Then
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(a) kA

�

k � kAk.

(b) (A+B)

�

exists and (A+B)

�

= A

�

+B

�

.

(
) (AB)

�

exists and (AB)

�

= A

�

B

�

.

(d) (A

�

)

�

exists and (A

�

)

�

= (A

�

)

�

.

(e) if C;C

(m)

2 L(H) are operators with kC �C

(m)

k ! 0, and if the limit

operators (C

(m)

)

�

exist for all suÆ
iently large m, then C

�

exists and

kC

�

� (C

(m)

)

�

k ! 0.

De�nition 4 Let A

0

(H) denote the set of all operators A 2 A(H) su
h that

every sequen
e in B possesses a subsequen
e � for whi
h the limit operator

A

�

exists.

Proposition 3 implies that A

0

(H) is a 
losed subalgebra of A(H).

In what follows we will need the notion of the lower norm �(A) :=

inf

kfk=1

kAfk of an operator A 2 L(H). It is well-known that the opera-

tor A is invertible from the left if and only if �(A) > 0, and invertible from

the right if and only if �(A

�

) > 0. Thus, A is invertible if and only if both

�(A) > 0 and �(A

�

) > 0. Furthermore, given an operator P 2 L(H), we set

�(Aj

P (H)

) := inf

kPfk=1

kAPfk

and 
all this quantity the lower norm of A relative to P .

Let us also re
all that an operator A 2 L(H) is a �

+

-operator if A has

a 
losed range and a �nite dimensional kernel, whereas A is 
alled a �

�

-

operator if its adjoint A

�

is a �

+

-operator. �

�

-operators are also 
alled

semi-Fredholm operators. An operator A whi
h is both a �

+

and a �

�

-

operator is said to be a Fredholm operator. One 
an show (see [9℄, Chapter

I, Lemma 2.1) that A is a �

+

-operator if and only if there exists an operator

P 2 L(H) su
h that I � P is 
ompa
t and �(Aj

P (H)

) > 0.

Theorem 5 Let A 2 A

0

(H). Then the following 
onditions are equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(H)

) > 0.

(b) max

r

�(Aj

Q

r

(H)

) > 0.

(
) inf

A

�

2lim

B

(A)

�(A

�

) > 0.
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The proof of this theorem is based on the following proposition.

Proposition 6 Let A 2 A(H). Then

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

P

�

j

;k

(H)

) � lim inf

r!1

�(Aj

Q

r

(H)

): (5)

Proof. Set �

A

:= lim inf

r!1

�(Aj

Q

r

(H)

). Then, for every �xed " > 0, there

is a sequen
e r

m

!1 su
h that

�(Aj

Q

r

m

(H)

) � �

A

+ ":

This shows that, for every m 2 N , there is a v

m

2 H with kQ

r

m

v

m

k = 1 and

kAQ

r

m

v

m

k � �

A

+ 2": (6)

From axiom (1) we obtain for every k 2 N

kAQ

r

m

v

m

k

2

=

X

�2�

kP

k;�

AQ

r

m

v

m

k

2

as well as

kQ

r

m

v

m

k

2

=

X

�2�

kP

k;�

Q

r

m

v

m

k

2

and hen
e, together with (6),

P

�2�

kP

k;�

AQ

r

m

v

m

k

2

P

�2�

kP

k;�

Q

r

m

v

m

k

2

� (�

A

+ 2")

2

:

This inequality implies that, for every m, there is an �

m

with P

k;�

m

Q

r

m

v

m

not being zero and

kP

k;�

m

AQ

r

m

v

m

k

kP

k;�

m

Q

r

m

v

m

k

� �

A

+ 2": (7)

Further, sin
e A 2 A(H), one 
an �nd a k

0

= k

0

(") su
h that

k[A; P

k;�

m

℄k � " for all k � k

0

:

uniformly with respe
t to m. Hen
e, for all k � k

0

,

kP

k;�

m

AQ

r

m

v

m

k � kAP

k;�

m

Q

r

m

v

m

k � "kQ

r

m

v

m

k:
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Sin
e kP

k;�

m

Q

r

m

v

m

k � C, the latter estimate in 
ombination with (7) yields

that, for ea
h m and k � k

0

, there exists �

m

su
h that

kAP

k;�

m

Q

r

m

v

m

k

kP

k;�

m

Q

r

m

v

m

k

� �

A

+ (2 + C)":

Observe that the 
ondition P

k;�

m

Q

r

m

v

m

6= 0 implies that the sequen
e (�

m

)

belongs to the set B. Thus, for every " > 0 and k > k

0

("), there exists a

sequen
e (�

m

) 2 B su
h that

�(Aj

P

k;�

m

(H)

) � �

A

+ (2 + C)":

This �nally shows that

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

P

k;�

j

(H)

) � �

A

+ (2 + C)":

Sin
e " > 0 is arbitrary, we arrive at (5).

Proof of Theorem 5. The impli
ation (a) ) (b) is trivial. For the impli-


ation (b)) (
), assume that (b) is ful�lled. Then there exists an r

0

as well

as a Æ > 0 su
h that �(Aj

Q

r

0

(H)

) � Æ. Consequently,

kAQ

r

0

uk � ÆkQ

r

0

uk for all u 2 H: (8)

Let � = (�

j

) 2 B be a sequen
e for whi
h the limit operator A

�

exists.

Then, as follows from (8),

kU

�1

�

j

AQ

r

0

U

�

j

^

P

k

uk � ÆkU

�1

�

j

Q

r

0

U

�

j

^

P

k

uk for all u 2 H:

Passing to the limit j ! 1 (where we have to take into a

ount 
ondition

(3)) we obtain

kA

�

^

P

k

uk � Æk

^

P

k

uk for all u 2 H:

Sin
e s-lim

k!1

^

P

k

= I, this estimate implies that kA

�

uk � Ækuk for arbitrary

u 2 H.

(
)) (a). Suppose that (a) is not satis�ed. Then lim inf

r!1

�(Aj

Q

r

(H)

) = 0,

when
e via Proposition 6

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

U

�

j

P

k

(H)

) = 0:

6



Thus, for arbitrary " > 0, there exists k

0

2 N su
h that

inf

(�

j

)2B

lim inf

j!1

�(Aj

U

�

j

P

k

0

(H)

) < ":

This inequality on its hand implies the existen
e of sequen
es (�

j

) 2 B and

(f

j

) � H with kP

k

0

f

j

k = 1 and

lim

j!1

kU

�1

�

j

AU

�

j

P

k

0

f

j

k � 2"

or, equivalently,

lim

j!1

kU

�1

�

j

AU

�

j

^

P

k

0

P

k

0

f

j

k � 2": (9)

Without loss, we 
an assume that the limit operator A

�

with respe
t to the

sequen
e � := (�

j

) exists (otherwise we pass to a suitable subsequen
e).

Then inequality (9) implies that kA

�

P

k

0

f

j

k � 3" for j large enough. Thus,

for arbitrary " > 0, there exists a limit operator A

�

2 lim

B

(A) su
h that

�(A

�

) < 3". This 
ontradi
ts 
ondition (
).

3 Fredholmness of 
onvolution operators on

homogeneous groups

3.1 Some notations

Following [17℄, Chapter XIII, Se
tion 5, we start with re
alling some fa
ts


on
erning homogeneous groups whi
h are needed in what follows.

Homogeneous groups arise from R

m

by equipping this spa
e with a Lie

group stru
ture and with a family of dilations that a
t as group automor-

phisms on this spa
e. To be pre
ise, to make R

m

to a homogeneous group

X, we assume that there is a pair of mappings

R

m

! R

m

: (x; y) 7! x � y and R

m

! R

m

: x 7! x

�1

whi
h are smooth and whi
h provide R

m

with a Lie group stru
ture su
h

that 0 2 R

m

is the identity element of the Lie group. Further we suppose

that there is an m-tuple of positive integers a

1

� : : : � a

m

whi
h is spe
i�
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for X (with the monotoni
ity being no essential restri
tion) su
h that the

dilations

x = (x

1

; : : : ; x

m

) 7! D

Æ

x := (Æ

a

1

x

1

; : : : ; Æ

a

m

x

m

)

are group automorphisms for every Æ > 0, i.e. that

D

Æ

(x � y) = D

Æ

x �D

Æ

y for all x; y 2 R

m

:

As follows from these properties, the group operation is ne
essarily of the

form

x � y = x+ y +Q(x; y);

where Q : R

m

� R

m

satis�es

Q(0; 0) = Q(x; 0) = Q(0; x) = 0:

Moreover, Q = (Q

1

; : : : ; Q

m

), where every Q

k

is a polynomial in 2m real

variables whi
h is homogeneous of degree a

k

. Thus, Q 
ontains no pure

monomials in x or y.

The Eu
lidean measure dx on R

m

is both left and right invariant with

respe
t to the group multipli
ation; i.e. it is a Haar measure on X. Note

also that d(D

Æ

x) = Æ

a

dx; where a := a

1

+ : : :+ a

m

.

A nontrivial example of a homogeneous non-
ommutative group is the

Heisenberg group whi
h 
an be identi�ed with C

n

� R with the group oper-

ation

(w; s) � (z; t) = (w + z; s + t+ 2 Im hw; zi)

where hw; zi :=

P

n

j=1

z

j

�w

j

.

The norm fun
tion � on R

m

is de�ned as

�(x) := maxfjx

j

j

1=a

j

: 1 � j � mg:

Note that �(x) � 0 and �(x) = 0 if and only if x = 0. Also, �(D

Æ

x) = Æ�(x),

and there exists a 
onstant 
 > 0 su
h that

�(x � y) � 
(�(x) + �(y)) and �(x

�1

) � 
�(x):

Set �(x; y) := �(x

�1

� y). The 
olle
tion fB(x; ")g

">0

of all balls

B(x; ") := fy 2 X : �(x; y) < "g

forms an open neighborhood base of the point x 2 X. Sin
e � is left-invariant,

one also hase B(x; ") = x �B(0; "), and be
ause the measure is left invariant,

jB(x; ")j = jB(0; ")j = "

a

jB(0; 1)j:

8



3.2 Convolution operators on the homogeneous group

Let X be a homogeneous group. A fun
tion f is said to be uniformly 
ontin-

uous on X if, for ea
h " > 0, there exists an � > 0 su
h that jf(x)�f(y)j < "

whenever �(x; y) < �. The 
lass of all bounded uniformly 
ontinuous fun
-

tions on X will be denoted by BUC(X). Let further Q(X) refer to the set

of all measurable bounded fun
tions a on X with

lim sup

y!1

Z




ja(y

�1

� x)jdx = 0

for ea
h 
ompa
t 
 � X. Set

W (X) := BUC(X) +Q(X) � L

1

(X):

As it has been proved in [19℄, W (X) is a 
ommutative C

�

-algebra, and Q(X)

is a 
losed ideal in W (X).

Let k 2 L

1

(X). Then we de�ne the operator C

k;r

of right 
onvolution by

k by

(C

k;r

u)(x) :=

Z

R

m

k(x

�1

� y)u(y)dy =

Z

R

m

k(z)u(x � z)dz; x 2 R

m

:

It is well-known and easy to 
he
k that C

k;r

is bounded on L

2

(R

m

) and

invariant with respe
t to the left shift, i.e.

U

l;g

C

k;r

= C

k;r

U

l;g

where (U

l;g

f)(x) := f(g � x) for g 2 X:

We denote by V

r

(X) the set of all operators C

k;r

of right 
onvolution by a

fun
tion k 2 L

1

(R

m

). Note that, if a 2 Q(X) and T 2 V

r

(X), then aT and

TaI are 
ompa
t operators on L

2

(X) (see [19℄).

Let Y be a dis
rete subgroup of the group X whi
h a
ts freely on X su
h

thatX=Y is a 
ompa
t manifold. LetM be a fundamental domain ofX with

respe
t to the a
tion of Y on X by left shift, i.e. M is a bounded domain in

X su
h that

X =

[

�2Y

� �M:

Let f 2 C(X) be a fun
tion whi
h is 1 on M and 0 outside a small neigh-

borhood M

0

of M , and whi
h takes values in [0; 1℄ only. For Æ > 0, set

f

Æ

(x) := f(D

Æ

x) and, for � 2 Y,

'

2

Æ;�

(x) :=

f

Æ

(� � x)

P

�2Y

f

Æ

(� � x)

:

9



It is evident that 0 � '

Æ;�

(x) � 1 and that, for every Æ > 0, the system

f'

2

Æ;�

g

�2Y

forms a partition of unity on X in the sense that

X

�2Y

'

2

Æ;�

(x) = 1; x 2 X:

Proposition 7 Let K 2 V

r

(X). Then lim

Æ!0

k['

Æ;�

; K℄k = 0 uniformly with

respe
t to � 2 Y.

Proof. Let




1

(Æ; �) := sup

x2X

Z

X

jk(x

�1

� y)jj'

Æ;�

(x)� '

Æ;�

(y)jdy;




2

(Æ; �) := sup

y2X

Z

X

jk(x

�1

� y)jj'

Æ;�

(x)� '

Æ;�

(y)jdx:

Then

k['

Æ;�

; K℄k � maxf


1

(Æ; �); 


2

(Æ; �)g:

Let us suppose for a moment that k(x) = 0 if �(x; 0) � R. Then, for j = 1; 2,




j

(Æ; �) � sup

�(x

�1

�y)�R

j'

Æ;�

(x)� '

Æ;�

(y)j

Z

X

jk(x)jdx

� sup

�(y

�1

�x)�ÆR

j'

1;e

(x)� '

1;e

(y)j

Z

X

jk(x)jdx:

The fun
tion '

1;e

is uniformly 
ontinuous on X. Thus, for ea
h " > 0, we

�nd a Æ > 0 su
h that 


j

(Æ; �) � " for j = 1; 2 and for all � 2 Y.

Sin
e the set of all fun
tions with 
ompa
t support is dense in L

1

(X),

we 
an use a standard approximation argument to get the assertion of the

proposition for arbitrary kernel fun
tions k 2 L

1

(X).

Now we 
an spe
ify the axioms of the abstra
t s
heme for the limit operators

method as follows:

1. For a sequen
e (Æ

k

) of positive numbers tending to zero, we set

P

k

:= '

Æ

k

;e

I and

^

P

k

:= �

kM

0

I

where �

kM

0

is the 
hara
teristi
 fun
tion of the set kM

0

. It is evident

that

^

P

k

P

k

= P

k

^

P

k

= P

k

and s-lim

k!1

^

P

k

= I:

10



2. The sequen
e of unitary operators is spe
i�ed to be fU

�;l

g

�2Y

where

(U

�;l

u)(x) = u(� � x) are the operators of left shift by �. If we set

P

k;�

:= U

�

P

k

U

�1

�

= '

Æ

k

;�

I;

then 
ondition (1) is satis�ed.

3. Let (Q

r

)

r2N

be the sequen
e of the operators of multipli
ation by the


hara
teristi
 fun
tions �

r

of B

0

r

:= fx 2 R

m

: �(x; 0) > rg, and let B

be the set of all sequen
es in Y (whi
h plays the role of �) whi
h tend

to in�nity. Then 
onditions (2) and (3) are also ful�lled.

De�nition 8 We denote by B(W (X); V

r

(X)) the smallest C

�

-subalgebra of

L

2

(X) whi
h 
ontains all operators of the form

p

X

i=1

q

Y

j=1

a

ij

K

ij

b

ij

I (10)

where p; q 2 N, a

ij

I and b

ij

I are operators of multipli
ation by fun
tions

a

ij

and b

ij

in W (X), and the operators K

ij

belong to V

r

(X). Let further

_

B(W (X); V

r

(X)) refer to the smallest unital C

�

-subalgebra of L

2

(X) whi
h


ontains all operators (10).

Proposition 9 Let A 2

_

B(W (X); V

r

(X)). Then lim

k!1

k[A; P

k;�

℄k = 0

uniformly with respe
t to � 2 Y.

The proof follows easily from Proposition 7.

Proposition 10

_

B(W (X); V

r

(X)) � A

0

(L

2

(X)).

Proof. Let � = (�

k

) 2 B. If aI is the operator of multipli
ation by

the fun
tion a 2 BUC(X), then (U

�1

�

k

aU

�

k

) is the sequen
e of operators

of multipli
ation by the fun
tions x 7! a(�

�1

k

� x). By the Arzel�a{As
oli

theorem, this sequen
e has a subsequen
e a(�

�1

k

j

� x) whi
h tends uniformly

on the 
ompa
t sets in X to a fun
tion a

~�

. This fun
tion is in BUC(X)

again, and

lim

j!1

k

^

P

m

(U

�1

�

k

j

aU

�

k

j

� a

~�

I)k = lim

j!1

k(U

�1

�

k

j

aU

�

k

j

� a

~�

I)

^

P

m

k = 0

11



for every m. Next, if b is a fun
tion in Q(X) and K 2 V

r

(X), then one has

lim

j!1

k

^

P

m

U

�1

�

k

j

bKU

�

k

j

k = lim

j!1

kU

�1

�

k

j

bKU

�

k

j

^

P

m

k = 0;

lim

j!1

k

^

P

m

U

�1

�

k

j

KbU

�

k

j

k = lim

j!1

kU

�1

�

k

j

KbU

�

k

j

^

P

m

k = 0;

even for an arbitrary sequen
e (�

k

j

) tending to in�nity, be
ause the operators

^

P

m

K and K

^

P

m

are 
ompa
t and the sequen
e U

�1

�

k

j

bU

�

k

j

I strongly 
onverges

to 0. Thus, for every fun
tion a 2 W (X) and every sequen
e � 2 B, there

is a subsequen
e ~� of � for whi
h the limit operator (aI)

~�

is de�ned.

Further, sin
e the operators in V

r

(X) are invariant with respe
t to left

shifts, we 
on
lude that the algebra

_

B(W (X); V

r

(X)) is 
ompletely 
ontained

in A

0

(L

2

(X)).

For A 2

_

B(W (X); V

r

(X)), we denote by lim

1

(A) the set of all limit operators

of A whi
h are de�ned with respe
t to sequen
es in B. Thus, the following

theorem is a 
orollary of the general Theorem 5.

Theorem 11 Let A 2

_

B(W (X); V

r

(X)). Then the following assertions are

equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(L

2

(X))

) > 0.

(b) inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

Theorem 12 Let A 2

_

B(W (X); V

r

(X)). Then

(a) A is a �

+

-operator if and only if inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

(b) A is a �

�

-operator if and only if inff�(A

�

�

) : A

�

2 lim

1

(A)g > 0.

(
) A is a Fredholm operator if and only if all operators A

�

2 lim

1

(A) are

uniformly invertible, i.e. if and only if supfkA

�1

�

k : A

�

2 lim

1

(A)g > 0.

Proof. (a) Let inff�(A

�

) : A

�

2 lim

1

(A)g > 0. Then there exist r 2 N and

C > 0 su
h that

khQ

r

A

�

AQ

r

f;Q

r

fik � CkQ

r

fk

2

for every f 2 L

2

(X):

Thus, the operator Q

r

A

�

AQ

r

is invertible from the left on L

2

(Q

r

X), i.e.

there is an operator B su
h that

BQ

r

A

�

AQ

r

= Q

r

: (11)

12



The operator B belongs to the C

�

-subalgebra

_

B(W (X); V

r

(X); Q

r

) of L

2

(X)

whi
h is generated by the operators in

_

B(W (X); V

r

(X)) and by Q

r

. Let J

0

denote the 
losed ideal of

_

B(W (X); V

r

(X); Q

r

) whi
h is generated by the

operators of multipli
ation by fun
tions a 2 L

1

(X) with lim

x!1

a(x) = 0.

Equality (11) implies that there are operators R

0

2

_

B(W (X); V

r

(X); Q

r

) and

T 2 J

0

su
h that R

0

A = I + T . Setting R := R

0

+ I � AR

0

we get

RA� I = R

0

A + A� AR

0

A� I = (I � A)(R

0

A� I): (12)

Note that I �A belongs to the 
losed ideal J

1

of

_

B(W (X); V

r

(X); Q

r

) whi
h

is generated by the operators in V

r

(X). It is evident that, if T

0

2 J

0

and

T

1

2 J

1

, then T

0

T

1

and T

1

T

0

are 
ompa
t operators. Thus, the identity (12)

implies that A is a �

+

-operator.

Conversely, let A be a �

+

-operator. Then, as we have already remarked,

the a priori estimate

Ckuk � kAuk+ kKuk

holds with a 
ertain 
ompa
t operator K and a 
onstant C > 0 ([9℄, Chapter

I, Lemma 2.1). This estimate gives

kAQ

r

uk � CkQ

r

uk � kKQ

r

uk:

Sin
e Q

r


onverges

�

-strongly to 0 as r!1, we have kKQ

r

0

uk �

C

2

kQ

r

0

uk

for a 
ertain r

0

. Hen
e, kAQ

r

0

uk �

C

2

kQ

r

0

uk. Now the assertion follows (a)

as in the proof of the impli
ation (b)) (
) of Theorem 5. Assertions (b) and

(
) are dire
t 
onsequen
es of (a).

3.3 Convolution operators on dis
rete subgroups of

the homogeneous group

Let l

2

(Y) be the spa
e of all 
omplex valued fun
tions u on the dis
rete group

Y for whi
h

kuk

2

l

2

(Y)

:=

X

x2Y

ju(x)j

2

<1;

and write l

1

(Y) for the spa
e of all bounded 
omplex valued fun
tions on

Y, provided with the norm

kak

l

1

(Y)

:= sup

x2Y

ja(x)j:

13



By aI we will denote the operator of multipli
ation by a 2 l

1

(Y) thought

of as a
ting on l

2

(Y). Further, given g 2 Y, we let U

g;l

and U

g;r

stand for

the unitary operators of left and right shift a
ting at u 2 l

2

(Y) by

(U

g;l

u)(x) := u(g � x) and (U

g;r

u)(x) := u(x � g); x 2 Y:

Finally, for every fun
tion  on X, we denote its restri
tion onto Y by

^

 .

De�nition 13 Let B(l

1

(Y); fU

g;r

g

g2Y

) denote the 
losure in L(l

2

(Y)) of

the set of all operators of the form

A

�

:=

X

g2�

a

g

U

g;r

with a

g

2 l

1

(Y) (13)

where � is a �nite subset of Y.

It turns out that B(l

1

(Y); fU

g;r

g

g2Y

) is even a C

�

-subalgebra of L(l

2

(Y)).

Proposition 14 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

) and ' 2 BUC(X). Then

lim

Æ!0

k['̂

Æ;g

; A℄k

L(l

2

(Y))

= 0 (14)

uniformly with respe
t to g 2 Y, where '

Æ

(x) := '(D

Æ

x) and '

Æ;g

(x) :=

'

Æ

(g � x).

Proof. A simple 
al
ulation shows that

k['̂

Æ;g

; U

z;r

℄k = kU

�1

z;r

['̂

Æ;g

; U

z;r

℄k

� sup

y2Y

j'̂

Æ;(z

�1

�g)

(y)� '̂

Æ;g

(y)j

= sup

y2Y

j'̂(D

Æ

(z

�1

) �D

Æ

(g � y))� '̂(D

Æ

(g � y))j:

Sin
e ' is in BUC, for ea
h " > 0 there is a Æ

0

= Æ

0

("; z) su
h that, for all

Æ < Æ

0

,

sup

y2Y

j'̂(D

Æ

(z

�1

) �D

Æ

(g � y))� '̂(D

Æ

(g � y))j < ":

This veri�es 
ondition (14) for the shift operator. But then this 
ondition

holds for all operators of the form (13), and passage to the 
losure yields the

proof of the proposition in the general 
ase.

14



To apply the abstra
t s
heme proposed in Se
tion 2, we will use the sequen
e

of unitary operators fU

g;l

g

g2Y

. Further we let Æ

k

! 0 and de�ne for k 2 N

and g 2 Y

P

k

:= '̂

Æ

k

I; P

k;g

:= U

g;l

P

k

U

�1

g;l

= '̂

Æ

k

;g

I;

^

P

k

:= �̂

M

0

;k

I:

Finally, let (Q

r

) be the sequen
e of the operators of multipli
ation by the

fun
tions �̂

r

where �

r

is the 
hara
teristi
 fun
tion of fx 2 Y : �(x; 0) > rg.

Let A

�

be an operator of the form (13) and h = (h

k

) be a sequen
e in Y

tending to in�nity. Then, for all x 2 Y,

�

U

�1

h

k;l

A

�

U

h

k;l

u

�

(x) =

X

g2�

a

g

(h

�1

k

� x)(U

g;r

u)(x):

As follows from the Bolzano-Weierstrass theorem and the Cantor diagonal-

ization pro
edure, there exists a subsequen
e

~

h = (h

k

m

) of h su
h that the

pointwise limit

a

g

(h

k

m

� x)! (a

g

)

~

h

(x)

exists for ea
h g 2 �. This implies that, with (A

�

)

~

h

:=

P

g2�

(a

g

)

~

h

U

g;r

,

lim

m!1

k(U

�1

h

k

m

;l

A

�

U

h

k

m

;l

� (A

�

)

~

h

)

^

P

r

k = 0 for all r

and

lim

m!1

k

^

P

�

r

(U

�1

h

k

m

;l

A

�

U

h

k

m

;l

� (A

�

)

~

h

)k = 0 for all r:

Thus, A

�

belongs to A

0

(l

2

(Y)). Taking into a

ount Proposition 3 (5), one


onludes from this result that even

B(l

1

(Y); fU

g;r

g

g2Y

) � A

0

(l

2

(Y)):

The 
onditions (2), (3) are evidently satis�ed in the present setting. So we

obtain as a 
orollary of Theorem 5 the following.

Theorem 15 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

). Then the following assertions

are equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(l

2

(Y))

) > 0.

(b) inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

15



The operators I�Q

r

are 
ompa
t. So Theorem 15 has the following 
orollary.

Corollary 16 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

). Then

(a) A is a �

+

-operator if and only if inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

(b) A is a �

�

-operator if and only if inff�(A

�

�

) : A

�

2 lim

1

(A)g > 0.

(
) A is a Fredholm operator if and only if all limit operators A

�

2 lim

1

(A)

are uniformly invertible.

4 Pseudodi�erential operators

We say that a fun
tion a on R

n

� R

n

� R

n

belongs to the 
lass S

0

0;0;0

if

j�

�

x

�




y

�

�

�

a(x; y; �)j � C

��


for all multiindi
es �; �; 
 2 N

n

. The operator A = Op(a) is 
alled a pseudo-

di�erential operator in the 
lass OPS

0

0;0;0

with double symbol a if a 2 S

0

0;0;0

and

(Au)(x) = (Op(a)u)(x) =

Z

R

n

Z

R

n

a(x; y; �)e

i(x�y;�)

u(y)dy d�

for all u 2 C

1

0

(R

n

). The well-known Calderon-Vaillan
ourt theorem ([20℄)

states that operators in OPS

0

0;0;0

are bounded on L

2

(R

n

) and that

kAuk � C

X

j�j+j�j+j
j�m

sup

(x;y;�)2R

3n

j�

�

x

�




y

�

�

�

a(x; y; �)j: (15)

Proposition 17 Let A 2 OPS

0

0;0;0

and ' 2 C

1

0

(R

n

� R

n

). For r > 0

and h = (p; q) 2 R

n

� R

n

, set '

r

(x; �) := '(x=r; �=r) and '

r;h

(x; �) :=

'

r

(x� p; � � q). Then

lim

r!1

k[A;Op('

r;h

)℄k = 0 (16)

uniformly with respe
t to h 2 R

n

� R

n

.

The proof follows easily from the 
omposition rule for pseudo-differential

operators and from estimate (15).

Let f 2 C

1

0

(R

n

) be a fun
tion whi
h is 1 on the 
ube Q := fx 2 R

n

: jx

i

j �

16



1 forg; i = 1; : : : ; ng and 0 outside 2Q and whi
h takes values in [0; 1℄ only.

For k 2 N , de�ne f

k

(x) := f(x=k), and set for every � 2 Z

n

'

2

�;k

(x) :=

f

k

(x� �)

P

�2Z

n

f

k

(x� �)

:

It is evident that

X

�2Z

n

'

2

�;k

(x) = 1 and 0 � '

�;k

(x) � 1 for all x 2 R

n

:

We will apply the abstra
t s
heme with the unitary operators U

�

, � 2 Z

n

,

a
ting by (U

�

u)(x) = u(x � �), and with the operators P

k

:= Op('

0;k

(x)).

(A more 
orre
t but also more 
umbersome notation would be P

k

:= Op(a)

with a(x; y; �) = '

0;k

(x).) As before, we also set P

k;�

:= U

�

P

k

U

�1

�

. It is

evident that the sequen
e (P

k

) is bounded.

Further, let � 2 C

1

0

(R

n

) be a fun
tion with �(x) = 1 if jxj � 2 and

�(x) = 0 if jxj � 3 and su
h that 0 � �(x) � 1. For k 2 N , set �

k

(x) :=

�(x=k) and

^

P

k

:= Op(�

k

(�))Op(�

k

(x)):

Finally, let � 2 C

1

(R

n

) be su
h that �(x) = 1 if jxj � 2 and �(x) = 0 if

jxj � 1, let (Q

r

)

r2N

be the sequen
e of the operators of multipli
ation by the

fun
tions x 7! �(x=r) and denote by B the set of all sequen
es in Z

n

tending

to in�nity. It is evident that the 
onditions of the axiomati
 approa
h are

satis�ed.

We 
laim that OPS

0

0;0;0

� A

0

(L

2

(R

n

)). Let � = (�

m

) 2 B. Then, 
learly,

U

�1

�

m

Op(a)U

�

m

= Op(b

m

) with b

m

(x; y; �) := a(x + �

m

; y + �

m

; �):

The sequen
e (b

m

) is bounded in C

1

(R

3n

). As follows from the Arzel�a{As
oli

theorem, there is a subsequen
e (b

m

k

) of (b

m

) whi
h 
onverges in the topology

of C

1

(R

3n

) to a fun
tion a

~�

. It is easy to 
he
k that a

~�

2 S

0

0;0;0

and that

lim

k!1

k(U

�1

�

m

k

Op(a)U

�

m

k

�Op(a

~�

))

^

P

r

k = 0;

lim

k!1

k

^

P

�

r

(U

�1

�

m

k

Op(a)U

�

m

k

�Op(a

~�

))k = 0

for every r. This proves our 
laim. Thus, Theorem 5 implies:
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Theorem 18 Let A 2 OPS

0

0;0;0

. Then

lim inf

r!1

�(Aj

Q

r

(L

2

(R

n

))

) > 0 (17)

if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0: (18)

Let  2 C

1

b

(R

n

), the spa
e of all smooth fun
tions whi
h are bounded

together with all their derivatives, and set  

r

(x) :=  (x=r) for r > 0. We

denote by B(L

2

(R

n

)) the subset of L(L

2

(R

n

)) 
onsisting of all operators A

su
h that

lim

r!1

k[A;  

r

I℄k = 0 for all  2 C

1

0

(R

n

):

It is easy to see that B(L

2

(R

n

)) is a C

�

-subalgebra of L(L

2

(R

n

)) and that

OPS

0

0;0;0

� B(L

2

(R

n

)).

Let � 2 C

1

0

(R

n

) be a fun
tion with �(x) = 1 if jxj � 2 and �(x) = 0 if

jxj � 1 and set �

r

(x) := �(x=r) for r > 0. Let further J stand the set of all

operators T 2 B(L

2

(R

n

)) with

lim

r!1

k�

r

Tk = lim

r!1

kT�

r

Ik = 0

whi
h is in fa
t a 
losed ideal of B(L

2

(R

n

)).

Proposition 19 The 
ondition (17) is satis�ed if and only if there exist

operators L 2 B(L

2

(R

n

)) and T 2 J su
h that LA = I + T .

Proof. Let (17) be satis�ed. Then there exist Æ > 0 and r

0

> 0 su
h that

h�

r

0

A

�

A�

r

0

u; �

r

0

ui � Æk�

r

0

uk

2

where �

r

0

is the 
hara
teristi
 fun
tion of the set fx 2 R

n

: jxj > r

0

g. This

inequality implies the existen
e of an operator L 2 B(L

2

(R

n

)) su
h that

LA�

r

0

I = �

r

0

I, whi
h 
an be rewritten as

LA = I � LA(I � �

r

0

I) + (I � �

r

0

I):

Sin
e I � �

r

0

I 2 J , we obtain

T := �LA(I � �

r

0

I) + (I � �

r

0

I) 2 J

18



whi
h is the assertion. Conversely, let LA = I + T with L 2 B(L

2

(R

n

)) and

T 2 J . Then LA�

r

I = �

r

I + T�

r

I. Choose r su
h that kT�

r

Ik < 1, and let

r

0

be su
h that �

r

0

�

r

= �

r

0

. Then LA�

r

0

I = (I + T�

r

I)�

r

0

and, thus,

(I + T�

r

I)

�1

LA�

r

0

I = �

r

0

I:

This identity implies estimate (17).

We would like to 
on
lude this paper with a `dual' appli
ation of the abstra
t

s
heme and its 
onsequen
es. In this 
ase, the unitary operators are given

by (U

�

u)(x) := e

ih�;xi

u(x), and we further 
hoose

P

k

:= Op('

0;k

(�));

^

P

k

:= Op(�

k

(x))Op(�

k

(�)); Q

r

:= Op(�(�=r)):

Again, B denotes the set of all sequen
es in Z

n

whi
h tend to in�nity.

One 
an 
he
k in the same way as before that all axioms of our approa
h

are satis�ed. Thus, as a 
orollary of Theorem 5, we get

Theorem 20 Let A 2 OPS

0

0;0;0

. Then

lim inf

r!1

�(Aj

Q

r

(L

2

(R

n

))

) > 0 (19)

if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0: (20)

Denote by B

0

(L

2

(R

n

)) the subset of L(L

2

(R

n

)) of all operators A satisfying

lim

r!1

k[A; Op( 

r

(�))℄k = 0 for every  2 C

1

0

(R

n

):

B

0

(L

2

(R

n

)) is a C

�

-subalgebra of L(L

2

(R

n

)), and OPS

0

0;0;0

� B

0

(L

2

(R

n

)).

Further, the set J

0

of all operators A 2 B

0

(L

2

(R

n

)) with

lim

r!1

kOp(�

r

(�))Ak = lim

r!1

kAOp(�

r

(�))k = 0

is a 
losed ideal of B

0

(L

2

(R

n

)).

Proposition 21 The 
ondition (19) holds if and only if there exist operators

L

0

2 B

0

(L

2

(R

n

)) and T

0

2 J

0

su
h that L

0

A = I + T

0

.

19



The proof is similar to the proof of Proposition 19.

The pre
eding two theorems have remarkable 
onsequen
es for the semi-

Fredholmness and Fredholmness of operators in OPS

0

0;0;0

.

Theorem 22 Let A 2 OPS

0

0;0;0

. Then A is a �

+

-operator if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0 and inff�(A

�

) : A

�

2 lim

B

(A)

0

g > 0 (21)

where lim

B

(A) is a set of all limit operators of A whi
h are de�ned by means

of the unitary operators (U

�

u)(x) = u(x � �), whereas lim

B

(A)

0

refers to

the 
olle
tion of all limit operators of A taken with respe
t to the unitaries

(U

�

u)(x) := e

ih�;xi

u(x).

Proof. Let the 
ondition (21) be satis�ed. Then there are operators L 2

B(L

2

(R

n

)) and L

0

2 B

0

(L

2

(R

n

)) as well as operators T 2 J and T

0

2 J

0

su
h

that

LA = I + T and L

0

A = I + T

0

:

With the operator B := LAL

0

� L� L

0

one �nds BA � I = TT

0

. We 
laim

that the operator TT

0

is 
ompa
t. Indeed, let �

r

be de�ned as earlier. Then

lim

r!1

kTT

0

Op(�

r

(x))k = lim

r!1

kTT

0

Op(�

r

(�))k = 0:

Hen
e, the operator TT

0


an be approximated in the norm by the 
ompa
t

operators TT

0

(I � Op(�

r

(x)))(I � Op(�

r

(�))) as 
losely as desired whi
h

proves our 
laim. So, BA�I is a 
ompa
t operator, when
e its �

+

-property.

Conversely, let A be a �

+

-operator. Then the a priory estimate

Ækuk � kAuk+ kKuk; u 2 L(L

2

(R

n

)) (22)

holds with a positive 
onstant Æ and a 
ompa
t operator K. If (U




)


2Z

n

is

one of the sequen
es of unitary operators 
onsidered in the theorem, then it

follows from (22)

Ækuk � kU

�1




AU




uk+ kU

�1




KU




uk: (23)

Sin
e the U





onverge weakly to zero as 
 ! 1, the operators U

�1




KU





onverge strongly to 0. Thus, letting 
 go to in�nity in (23) yields 
ondition

(21).

Our �nal result is a 
orollary to Theorem 22.

20



Theorem 23 Let A 2 OPS

0

0;0;0

. Then

(a) A is a �

�

-operator if and only if

inff�(A

�

�

) : A

�

2 lim

B

(A)g > 0 and inff�(A

�

�

) : A

�

2 lim

B

(A)

0

g > 0:

(b) A is a Fredholm operator if and only if all operators in lim

B

(A)[lim

B

(A)

0

are uniformly invertible, i.e. if

supfkA

�1

�

: A

�

2 lim

B

(A) [ lim

B

(A)

0

g <1:

The pre
eding two theorems remain valid without 
hange for operators A in

the 
losure of OPS

0

0;0;0

in L(L

2

(R

n

)), whi
h is a C

�

-subalgebra of L(L

2

(R

n

)).
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