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Abstrat

We propose an axiomati approah for the appliation of the limit

operators method. This approah will be applied to operators in a

C

�

-algebra whih is generated by operators of right onvolution on

a homogeneous non-ommutative group X and by operators of mul-

tipliation by funtions in L

1

(X). In terms of limit operators, we

derive neessary and suÆient onditions for these operators to be

semi-Fredholm or Fredholm. As another appliation, we obtain ne-

essary and suÆient onditions for the semi-Fredholmness and Fred-

holmness of pseudodi�erential operators with double symbols in the

lass OPS

0

0;0;0

.

1 Introdution

The �rst appearane of limit operators is in Favard's paper [2℄ where they are

used to verify the existene of almost-periodi solutions of ordinary di�eren-

tial equations with almost-periodi oeÆients. Later, Muhamadiev [10, 11℄

applied limit operators to the question of solvability of ellipti partial dif-

ferential equations in R

n

. The method of limit operators method has been

further developed in the papers [6, 7, 8, 13, 14, 15℄ for the study of the Fred-

holm property of wide lasses of pseudo-di�erential operators and onvolution

operators on R

n

and Z

n

. Note also the paper [1℄, where the appliability of

the limit operators method to the omputation of the essential spetrum of

�
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singular integral operators on Carleson urves ating in general weighted L

2

-

spaes has been illustrated. Observe that in all of these papers, the method of

limit operators is applied to a onrete lass of operators ating on a onrete

Banah spae.

In ontrast to this, it is the �rst goal of the present paper to propose an

axiomati sheme for the appliation of the method of limit operators whih

ontains many of the afore-mentioned appliations as speial ases. Then,

by means of this sheme, we examine the Fredholm property of operators

in a C

�

-algebra whih is generated by operators of onvolution ating on

L

2

(X) over a homogeneous non-ommutative group X, and by the operators

of multipliation by funtions in L

1

(X). Our aim to give neessary and

suÆient onditions for operators in this algebra to be semi-Fredholm or

Fredholm.

A well-known and important example of a homogeneous group is the

Heisenberg group. Singular integral operators and pseudo-di�erential opera-

tors on the Heisenberg group have been intensively studied by many authors

(see, for example, the monographs [17, 12, 21, 22℄ whih ontain extensive

bibliographies). Let us also mention the papers [23, 24, 4, 5℄ whih are de-

voted to the analysis of double onvolutions on a lass of step two nilpotent

Lie groups.

The Fredholm property of operators in ertain algebras generated by on-

volution operators and operators of multipliations by bounded funtions on

non-ommutative loally ompat groups was studied in [18, 19℄ by means of

Simonenko's loal priniple (see [16℄).

As another illustration of the abstrat sheme, we apply it to the problem

of Fredholmness and semi-Fredholmness of pseudo-di�erential operators with

double symbols in the L. H�ormander lass OPS

0

0;0;0

whih is onneted with

onvolutions on the Heisenberg group (see, for instane, [21, 22℄).

2 Abstrat sheme for the method of limit

operators.

Let H be a Hilbert spae and L(H) the C

�

-algebra of all bounded linear

operators ating on H. Throughout what follows, suppose that we are given

1. bounded sequenes (P

k

)

k2N

and (

^

P

k

)

k2N

of operators in L(H) suh that

s-lim

k!1

^

P

k

= I and

^

P

k

P

k

= P

k

for all k:
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2. a ountable set fU

�

g

�2�

of unitary operators on H suh that, with

P

k;�

:= U

�

P

k

U

�1

�

,

X

�2�

kP

k;�

uk

2

= kuk

2

for all k 2 N and u 2 H: (1)

3. a bounded sequene fQ

r

g

r2N

of operators in L(H) whih are ompatible

with the P

k;�

in the following sense:

(a) there is a distinguished set B of sequenes in � with the property

that every sequene (�

j

) whih is not inB possesses a subsequene

(�

j

m

) suh that

8 k 2 N 9 r

0

2 N 8 r � r

0

8m 2 N : P

k;�

j

m

Q

r

= 0: (2)

(b) for eah r 2 N and any sequene (�

j

) 2 B one has

s-lim

j!1

U

�1

�

j

(I �Q

r

)U

�

j

= 0: (3)

De�nition 1 Let A(H) denote the set of all operators A 2 L(H) suh that

lim

k!1

k[P

�;k

; A℄k = 0 and lim

k!1

k[P

�;k

; A

�

℄k = 0 (4)

uniformly with respet to � 2 �. Here, as usual, [A;B℄ refers to the ommu-

tator of the operators A and B.

It is easy to hek that A(H) is a C

�

-algebra.

De�nition 2 We say that the operator A

�

is a limit operator of A 2 L(H)

de�ned by the sequene � = (�

j

) 2 B if, for eah k 2 N,

lim

j!1







�

U

�1

�

j

AU

�

j

� A

�

�

^

P

k







= lim

j!1







^

P

�

k

�

U

�1

�

j

AU

�

j

� A

�

�







= 0:

The set of all limit operators of A will be denoted by lim

B

(A).

The following proposition desribes some properties of limit operators.

Proposition 3 Let � = (�

j

) 2 B, and let A;B 2 L(H) be operators for

whih the limit operators A

�

and B

�

exist. Then
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(a) kA

�

k � kAk.

(b) (A+B)

�

exists and (A+B)

�

= A

�

+B

�

.

() (AB)

�

exists and (AB)

�

= A

�

B

�

.

(d) (A

�

)

�

exists and (A

�

)

�

= (A

�

)

�

.

(e) if C;C

(m)

2 L(H) are operators with kC �C

(m)

k ! 0, and if the limit

operators (C

(m)

)

�

exist for all suÆiently large m, then C

�

exists and

kC

�

� (C

(m)

)

�

k ! 0.

De�nition 4 Let A

0

(H) denote the set of all operators A 2 A(H) suh that

every sequene in B possesses a subsequene � for whih the limit operator

A

�

exists.

Proposition 3 implies that A

0

(H) is a losed subalgebra of A(H).

In what follows we will need the notion of the lower norm �(A) :=

inf

kfk=1

kAfk of an operator A 2 L(H). It is well-known that the opera-

tor A is invertible from the left if and only if �(A) > 0, and invertible from

the right if and only if �(A

�

) > 0. Thus, A is invertible if and only if both

�(A) > 0 and �(A

�

) > 0. Furthermore, given an operator P 2 L(H), we set

�(Aj

P (H)

) := inf

kPfk=1

kAPfk

and all this quantity the lower norm of A relative to P .

Let us also reall that an operator A 2 L(H) is a �

+

-operator if A has

a losed range and a �nite dimensional kernel, whereas A is alled a �

�

-

operator if its adjoint A

�

is a �

+

-operator. �

�

-operators are also alled

semi-Fredholm operators. An operator A whih is both a �

+

and a �

�

-

operator is said to be a Fredholm operator. One an show (see [9℄, Chapter

I, Lemma 2.1) that A is a �

+

-operator if and only if there exists an operator

P 2 L(H) suh that I � P is ompat and �(Aj

P (H)

) > 0.

Theorem 5 Let A 2 A

0

(H). Then the following onditions are equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(H)

) > 0.

(b) max

r

�(Aj

Q

r

(H)

) > 0.

() inf

A

�

2lim

B

(A)

�(A

�

) > 0.
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The proof of this theorem is based on the following proposition.

Proposition 6 Let A 2 A(H). Then

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

P

�

j

;k

(H)

) � lim inf

r!1

�(Aj

Q

r

(H)

): (5)

Proof. Set �

A

:= lim inf

r!1

�(Aj

Q

r

(H)

). Then, for every �xed " > 0, there

is a sequene r

m

!1 suh that

�(Aj

Q

r

m

(H)

) � �

A

+ ":

This shows that, for every m 2 N , there is a v

m

2 H with kQ

r

m

v

m

k = 1 and

kAQ

r

m

v

m

k � �

A

+ 2": (6)

From axiom (1) we obtain for every k 2 N

kAQ

r

m

v

m

k

2

=

X

�2�

kP

k;�

AQ

r

m

v

m

k

2

as well as

kQ

r

m

v

m

k

2

=

X

�2�

kP

k;�

Q

r

m

v

m

k

2

and hene, together with (6),

P

�2�

kP

k;�

AQ

r

m

v

m

k

2

P

�2�

kP

k;�

Q

r

m

v

m

k

2

� (�

A

+ 2")

2

:

This inequality implies that, for every m, there is an �

m

with P

k;�

m

Q

r

m

v

m

not being zero and

kP

k;�

m

AQ

r

m

v

m

k

kP

k;�

m

Q

r

m

v

m

k

� �

A

+ 2": (7)

Further, sine A 2 A(H), one an �nd a k

0

= k

0

(") suh that

k[A; P

k;�

m

℄k � " for all k � k

0

:

uniformly with respet to m. Hene, for all k � k

0

,

kP

k;�

m

AQ

r

m

v

m

k � kAP

k;�

m

Q

r

m

v

m

k � "kQ

r

m

v

m

k:
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Sine kP

k;�

m

Q

r

m

v

m

k � C, the latter estimate in ombination with (7) yields

that, for eah m and k � k

0

, there exists �

m

suh that

kAP

k;�

m

Q

r

m

v

m

k

kP

k;�

m

Q

r

m

v

m

k

� �

A

+ (2 + C)":

Observe that the ondition P

k;�

m

Q

r

m

v

m

6= 0 implies that the sequene (�

m

)

belongs to the set B. Thus, for every " > 0 and k > k

0

("), there exists a

sequene (�

m

) 2 B suh that

�(Aj

P

k;�

m

(H)

) � �

A

+ (2 + C)":

This �nally shows that

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

P

k;�

j

(H)

) � �

A

+ (2 + C)":

Sine " > 0 is arbitrary, we arrive at (5).

Proof of Theorem 5. The impliation (a) ) (b) is trivial. For the impli-

ation (b)) (), assume that (b) is ful�lled. Then there exists an r

0

as well

as a Æ > 0 suh that �(Aj

Q

r

0

(H)

) � Æ. Consequently,

kAQ

r

0

uk � ÆkQ

r

0

uk for all u 2 H: (8)

Let � = (�

j

) 2 B be a sequene for whih the limit operator A

�

exists.

Then, as follows from (8),

kU

�1

�

j

AQ

r

0

U

�

j

^

P

k

uk � ÆkU

�1

�

j

Q

r

0

U

�

j

^

P

k

uk for all u 2 H:

Passing to the limit j ! 1 (where we have to take into aount ondition

(3)) we obtain

kA

�

^

P

k

uk � Æk

^

P

k

uk for all u 2 H:

Sine s-lim

k!1

^

P

k

= I, this estimate implies that kA

�

uk � Ækuk for arbitrary

u 2 H.

()) (a). Suppose that (a) is not satis�ed. Then lim inf

r!1

�(Aj

Q

r

(H)

) = 0,

whene via Proposition 6

inf

k

inf

(�

j

)2B

lim inf

j!1

�(Aj

U

�

j

P

k

(H)

) = 0:

6



Thus, for arbitrary " > 0, there exists k

0

2 N suh that

inf

(�

j

)2B

lim inf

j!1

�(Aj

U

�

j

P

k

0

(H)

) < ":

This inequality on its hand implies the existene of sequenes (�

j

) 2 B and

(f

j

) � H with kP

k

0

f

j

k = 1 and

lim

j!1

kU

�1

�

j

AU

�

j

P

k

0

f

j

k � 2"

or, equivalently,

lim

j!1

kU

�1

�

j

AU

�

j

^

P

k

0

P

k

0

f

j

k � 2": (9)

Without loss, we an assume that the limit operator A

�

with respet to the

sequene � := (�

j

) exists (otherwise we pass to a suitable subsequene).

Then inequality (9) implies that kA

�

P

k

0

f

j

k � 3" for j large enough. Thus,

for arbitrary " > 0, there exists a limit operator A

�

2 lim

B

(A) suh that

�(A

�

) < 3". This ontradits ondition ().

3 Fredholmness of onvolution operators on

homogeneous groups

3.1 Some notations

Following [17℄, Chapter XIII, Setion 5, we start with realling some fats

onerning homogeneous groups whih are needed in what follows.

Homogeneous groups arise from R

m

by equipping this spae with a Lie

group struture and with a family of dilations that at as group automor-

phisms on this spae. To be preise, to make R

m

to a homogeneous group

X, we assume that there is a pair of mappings

R

m

! R

m

: (x; y) 7! x � y and R

m

! R

m

: x 7! x

�1

whih are smooth and whih provide R

m

with a Lie group struture suh

that 0 2 R

m

is the identity element of the Lie group. Further we suppose

that there is an m-tuple of positive integers a

1

� : : : � a

m

whih is spei�

7



for X (with the monotoniity being no essential restrition) suh that the

dilations

x = (x

1

; : : : ; x

m

) 7! D

Æ

x := (Æ

a

1

x

1

; : : : ; Æ

a

m

x

m

)

are group automorphisms for every Æ > 0, i.e. that

D

Æ

(x � y) = D

Æ

x �D

Æ

y for all x; y 2 R

m

:

As follows from these properties, the group operation is neessarily of the

form

x � y = x+ y +Q(x; y);

where Q : R

m

� R

m

satis�es

Q(0; 0) = Q(x; 0) = Q(0; x) = 0:

Moreover, Q = (Q

1

; : : : ; Q

m

), where every Q

k

is a polynomial in 2m real

variables whih is homogeneous of degree a

k

. Thus, Q ontains no pure

monomials in x or y.

The Eulidean measure dx on R

m

is both left and right invariant with

respet to the group multipliation; i.e. it is a Haar measure on X. Note

also that d(D

Æ

x) = Æ

a

dx; where a := a

1

+ : : :+ a

m

.

A nontrivial example of a homogeneous non-ommutative group is the

Heisenberg group whih an be identi�ed with C

n

� R with the group oper-

ation

(w; s) � (z; t) = (w + z; s + t+ 2 Im hw; zi)

where hw; zi :=

P

n

j=1

z

j

�w

j

.

The norm funtion � on R

m

is de�ned as

�(x) := maxfjx

j

j

1=a

j

: 1 � j � mg:

Note that �(x) � 0 and �(x) = 0 if and only if x = 0. Also, �(D

Æ

x) = Æ�(x),

and there exists a onstant  > 0 suh that

�(x � y) � (�(x) + �(y)) and �(x

�1

) � �(x):

Set �(x; y) := �(x

�1

� y). The olletion fB(x; ")g

">0

of all balls

B(x; ") := fy 2 X : �(x; y) < "g

forms an open neighborhood base of the point x 2 X. Sine � is left-invariant,

one also hase B(x; ") = x �B(0; "), and beause the measure is left invariant,

jB(x; ")j = jB(0; ")j = "

a

jB(0; 1)j:

8



3.2 Convolution operators on the homogeneous group

Let X be a homogeneous group. A funtion f is said to be uniformly ontin-

uous on X if, for eah " > 0, there exists an � > 0 suh that jf(x)�f(y)j < "

whenever �(x; y) < �. The lass of all bounded uniformly ontinuous fun-

tions on X will be denoted by BUC(X). Let further Q(X) refer to the set

of all measurable bounded funtions a on X with

lim sup

y!1

Z




ja(y

�1

� x)jdx = 0

for eah ompat 
 � X. Set

W (X) := BUC(X) +Q(X) � L

1

(X):

As it has been proved in [19℄, W (X) is a ommutative C

�

-algebra, and Q(X)

is a losed ideal in W (X).

Let k 2 L

1

(X). Then we de�ne the operator C

k;r

of right onvolution by

k by

(C

k;r

u)(x) :=

Z

R

m

k(x

�1

� y)u(y)dy =

Z

R

m

k(z)u(x � z)dz; x 2 R

m

:

It is well-known and easy to hek that C

k;r

is bounded on L

2

(R

m

) and

invariant with respet to the left shift, i.e.

U

l;g

C

k;r

= C

k;r

U

l;g

where (U

l;g

f)(x) := f(g � x) for g 2 X:

We denote by V

r

(X) the set of all operators C

k;r

of right onvolution by a

funtion k 2 L

1

(R

m

). Note that, if a 2 Q(X) and T 2 V

r

(X), then aT and

TaI are ompat operators on L

2

(X) (see [19℄).

Let Y be a disrete subgroup of the group X whih ats freely on X suh

thatX=Y is a ompat manifold. LetM be a fundamental domain ofX with

respet to the ation of Y on X by left shift, i.e. M is a bounded domain in

X suh that

X =

[

�2Y

� �M:

Let f 2 C(X) be a funtion whih is 1 on M and 0 outside a small neigh-

borhood M

0

of M , and whih takes values in [0; 1℄ only. For Æ > 0, set

f

Æ

(x) := f(D

Æ

x) and, for � 2 Y,

'

2

Æ;�

(x) :=

f

Æ

(� � x)

P

�2Y

f

Æ

(� � x)

:

9



It is evident that 0 � '

Æ;�

(x) � 1 and that, for every Æ > 0, the system

f'

2

Æ;�

g

�2Y

forms a partition of unity on X in the sense that

X

�2Y

'

2

Æ;�

(x) = 1; x 2 X:

Proposition 7 Let K 2 V

r

(X). Then lim

Æ!0

k['

Æ;�

; K℄k = 0 uniformly with

respet to � 2 Y.

Proof. Let



1

(Æ; �) := sup

x2X

Z

X

jk(x

�1

� y)jj'

Æ;�

(x)� '

Æ;�

(y)jdy;



2

(Æ; �) := sup

y2X

Z

X

jk(x

�1

� y)jj'

Æ;�

(x)� '

Æ;�

(y)jdx:

Then

k['

Æ;�

; K℄k � maxf

1

(Æ; �); 

2

(Æ; �)g:

Let us suppose for a moment that k(x) = 0 if �(x; 0) � R. Then, for j = 1; 2,



j

(Æ; �) � sup

�(x

�1

�y)�R

j'

Æ;�

(x)� '

Æ;�

(y)j

Z

X

jk(x)jdx

� sup

�(y

�1

�x)�ÆR

j'

1;e

(x)� '

1;e

(y)j

Z

X

jk(x)jdx:

The funtion '

1;e

is uniformly ontinuous on X. Thus, for eah " > 0, we

�nd a Æ > 0 suh that 

j

(Æ; �) � " for j = 1; 2 and for all � 2 Y.

Sine the set of all funtions with ompat support is dense in L

1

(X),

we an use a standard approximation argument to get the assertion of the

proposition for arbitrary kernel funtions k 2 L

1

(X).

Now we an speify the axioms of the abstrat sheme for the limit operators

method as follows:

1. For a sequene (Æ

k

) of positive numbers tending to zero, we set

P

k

:= '

Æ

k

;e

I and

^

P

k

:= �

kM

0

I

where �

kM

0

is the harateristi funtion of the set kM

0

. It is evident

that

^

P

k

P

k

= P

k

^

P

k

= P

k

and s-lim

k!1

^

P

k

= I:
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2. The sequene of unitary operators is spei�ed to be fU

�;l

g

�2Y

where

(U

�;l

u)(x) = u(� � x) are the operators of left shift by �. If we set

P

k;�

:= U

�

P

k

U

�1

�

= '

Æ

k

;�

I;

then ondition (1) is satis�ed.

3. Let (Q

r

)

r2N

be the sequene of the operators of multipliation by the

harateristi funtions �

r

of B

0

r

:= fx 2 R

m

: �(x; 0) > rg, and let B

be the set of all sequenes in Y (whih plays the role of �) whih tend

to in�nity. Then onditions (2) and (3) are also ful�lled.

De�nition 8 We denote by B(W (X); V

r

(X)) the smallest C

�

-subalgebra of

L

2

(X) whih ontains all operators of the form

p

X

i=1

q

Y

j=1

a

ij

K

ij

b

ij

I (10)

where p; q 2 N, a

ij

I and b

ij

I are operators of multipliation by funtions

a

ij

and b

ij

in W (X), and the operators K

ij

belong to V

r

(X). Let further

_

B(W (X); V

r

(X)) refer to the smallest unital C

�

-subalgebra of L

2

(X) whih

ontains all operators (10).

Proposition 9 Let A 2

_

B(W (X); V

r

(X)). Then lim

k!1

k[A; P

k;�

℄k = 0

uniformly with respet to � 2 Y.

The proof follows easily from Proposition 7.

Proposition 10

_

B(W (X); V

r

(X)) � A

0

(L

2

(X)).

Proof. Let � = (�

k

) 2 B. If aI is the operator of multipliation by

the funtion a 2 BUC(X), then (U

�1

�

k

aU

�

k

) is the sequene of operators

of multipliation by the funtions x 7! a(�

�1

k

� x). By the Arzel�a{Asoli

theorem, this sequene has a subsequene a(�

�1

k

j

� x) whih tends uniformly

on the ompat sets in X to a funtion a

~�

. This funtion is in BUC(X)

again, and

lim

j!1

k

^

P

m

(U

�1

�

k

j

aU

�

k

j

� a

~�

I)k = lim

j!1

k(U

�1

�

k

j

aU

�

k

j

� a

~�

I)

^

P

m

k = 0

11



for every m. Next, if b is a funtion in Q(X) and K 2 V

r

(X), then one has

lim

j!1

k

^

P

m

U

�1

�

k

j

bKU

�

k

j

k = lim

j!1

kU

�1

�

k

j

bKU

�

k

j

^

P

m

k = 0;

lim

j!1

k

^

P

m

U

�1

�

k

j

KbU

�

k

j

k = lim

j!1

kU

�1

�

k

j

KbU

�

k

j

^

P

m

k = 0;

even for an arbitrary sequene (�

k

j

) tending to in�nity, beause the operators

^

P

m

K and K

^

P

m

are ompat and the sequene U

�1

�

k

j

bU

�

k

j

I strongly onverges

to 0. Thus, for every funtion a 2 W (X) and every sequene � 2 B, there

is a subsequene ~� of � for whih the limit operator (aI)

~�

is de�ned.

Further, sine the operators in V

r

(X) are invariant with respet to left

shifts, we onlude that the algebra

_

B(W (X); V

r

(X)) is ompletely ontained

in A

0

(L

2

(X)).

For A 2

_

B(W (X); V

r

(X)), we denote by lim

1

(A) the set of all limit operators

of A whih are de�ned with respet to sequenes in B. Thus, the following

theorem is a orollary of the general Theorem 5.

Theorem 11 Let A 2

_

B(W (X); V

r

(X)). Then the following assertions are

equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(L

2

(X))

) > 0.

(b) inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

Theorem 12 Let A 2

_

B(W (X); V

r

(X)). Then

(a) A is a �

+

-operator if and only if inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

(b) A is a �

�

-operator if and only if inff�(A

�

�

) : A

�

2 lim

1

(A)g > 0.

() A is a Fredholm operator if and only if all operators A

�

2 lim

1

(A) are

uniformly invertible, i.e. if and only if supfkA

�1

�

k : A

�

2 lim

1

(A)g > 0.

Proof. (a) Let inff�(A

�

) : A

�

2 lim

1

(A)g > 0. Then there exist r 2 N and

C > 0 suh that

khQ

r

A

�

AQ

r

f;Q

r

fik � CkQ

r

fk

2

for every f 2 L

2

(X):

Thus, the operator Q

r

A

�

AQ

r

is invertible from the left on L

2

(Q

r

X), i.e.

there is an operator B suh that

BQ

r

A

�

AQ

r

= Q

r

: (11)

12



The operator B belongs to the C

�

-subalgebra

_

B(W (X); V

r

(X); Q

r

) of L

2

(X)

whih is generated by the operators in

_

B(W (X); V

r

(X)) and by Q

r

. Let J

0

denote the losed ideal of

_

B(W (X); V

r

(X); Q

r

) whih is generated by the

operators of multipliation by funtions a 2 L

1

(X) with lim

x!1

a(x) = 0.

Equality (11) implies that there are operators R

0

2

_

B(W (X); V

r

(X); Q

r

) and

T 2 J

0

suh that R

0

A = I + T . Setting R := R

0

+ I � AR

0

we get

RA� I = R

0

A + A� AR

0

A� I = (I � A)(R

0

A� I): (12)

Note that I �A belongs to the losed ideal J

1

of

_

B(W (X); V

r

(X); Q

r

) whih

is generated by the operators in V

r

(X). It is evident that, if T

0

2 J

0

and

T

1

2 J

1

, then T

0

T

1

and T

1

T

0

are ompat operators. Thus, the identity (12)

implies that A is a �

+

-operator.

Conversely, let A be a �

+

-operator. Then, as we have already remarked,

the a priori estimate

Ckuk � kAuk+ kKuk

holds with a ertain ompat operator K and a onstant C > 0 ([9℄, Chapter

I, Lemma 2.1). This estimate gives

kAQ

r

uk � CkQ

r

uk � kKQ

r

uk:

Sine Q

r

onverges

�

-strongly to 0 as r!1, we have kKQ

r

0

uk �

C

2

kQ

r

0

uk

for a ertain r

0

. Hene, kAQ

r

0

uk �

C

2

kQ

r

0

uk. Now the assertion follows (a)

as in the proof of the impliation (b)) () of Theorem 5. Assertions (b) and

() are diret onsequenes of (a).

3.3 Convolution operators on disrete subgroups of

the homogeneous group

Let l

2

(Y) be the spae of all omplex valued funtions u on the disrete group

Y for whih

kuk

2

l

2

(Y)

:=

X

x2Y

ju(x)j

2

<1;

and write l

1

(Y) for the spae of all bounded omplex valued funtions on

Y, provided with the norm

kak

l

1

(Y)

:= sup

x2Y

ja(x)j:

13



By aI we will denote the operator of multipliation by a 2 l

1

(Y) thought

of as ating on l

2

(Y). Further, given g 2 Y, we let U

g;l

and U

g;r

stand for

the unitary operators of left and right shift ating at u 2 l

2

(Y) by

(U

g;l

u)(x) := u(g � x) and (U

g;r

u)(x) := u(x � g); x 2 Y:

Finally, for every funtion  on X, we denote its restrition onto Y by

^

 .

De�nition 13 Let B(l

1

(Y); fU

g;r

g

g2Y

) denote the losure in L(l

2

(Y)) of

the set of all operators of the form

A

�

:=

X

g2�

a

g

U

g;r

with a

g

2 l

1

(Y) (13)

where � is a �nite subset of Y.

It turns out that B(l

1

(Y); fU

g;r

g

g2Y

) is even a C

�

-subalgebra of L(l

2

(Y)).

Proposition 14 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

) and ' 2 BUC(X). Then

lim

Æ!0

k['̂

Æ;g

; A℄k

L(l

2

(Y))

= 0 (14)

uniformly with respet to g 2 Y, where '

Æ

(x) := '(D

Æ

x) and '

Æ;g

(x) :=

'

Æ

(g � x).

Proof. A simple alulation shows that

k['̂

Æ;g

; U

z;r

℄k = kU

�1

z;r

['̂

Æ;g

; U

z;r

℄k

� sup

y2Y

j'̂

Æ;(z

�1

�g)

(y)� '̂

Æ;g

(y)j

= sup

y2Y

j'̂(D

Æ

(z

�1

) �D

Æ

(g � y))� '̂(D

Æ

(g � y))j:

Sine ' is in BUC, for eah " > 0 there is a Æ

0

= Æ

0

("; z) suh that, for all

Æ < Æ

0

,

sup

y2Y

j'̂(D

Æ

(z

�1

) �D

Æ

(g � y))� '̂(D

Æ

(g � y))j < ":

This veri�es ondition (14) for the shift operator. But then this ondition

holds for all operators of the form (13), and passage to the losure yields the

proof of the proposition in the general ase.

14



To apply the abstrat sheme proposed in Setion 2, we will use the sequene

of unitary operators fU

g;l

g

g2Y

. Further we let Æ

k

! 0 and de�ne for k 2 N

and g 2 Y

P

k

:= '̂

Æ

k

I; P

k;g

:= U

g;l

P

k

U

�1

g;l

= '̂

Æ

k

;g

I;

^

P

k

:= �̂

M

0

;k

I:

Finally, let (Q

r

) be the sequene of the operators of multipliation by the

funtions �̂

r

where �

r

is the harateristi funtion of fx 2 Y : �(x; 0) > rg.

Let A

�

be an operator of the form (13) and h = (h

k

) be a sequene in Y

tending to in�nity. Then, for all x 2 Y,

�

U

�1

h

k;l

A

�

U

h

k;l

u

�

(x) =

X

g2�

a

g

(h

�1

k

� x)(U

g;r

u)(x):

As follows from the Bolzano-Weierstrass theorem and the Cantor diagonal-

ization proedure, there exists a subsequene

~

h = (h

k

m

) of h suh that the

pointwise limit

a

g

(h

k

m

� x)! (a

g

)

~

h

(x)

exists for eah g 2 �. This implies that, with (A

�

)

~

h

:=

P

g2�

(a

g

)

~

h

U

g;r

,

lim

m!1

k(U

�1

h

k

m

;l

A

�

U

h

k

m

;l

� (A

�

)

~

h

)

^

P

r

k = 0 for all r

and

lim

m!1

k

^

P

�

r

(U

�1

h

k

m

;l

A

�

U

h

k

m

;l

� (A

�

)

~

h

)k = 0 for all r:

Thus, A

�

belongs to A

0

(l

2

(Y)). Taking into aount Proposition 3 (5), one

onludes from this result that even

B(l

1

(Y); fU

g;r

g

g2Y

) � A

0

(l

2

(Y)):

The onditions (2), (3) are evidently satis�ed in the present setting. So we

obtain as a orollary of Theorem 5 the following.

Theorem 15 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

). Then the following assertions

are equivalent:

(a) lim inf

r!1

�(Aj

Q

r

(l

2

(Y))

) > 0.

(b) inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

15



The operators I�Q

r

are ompat. So Theorem 15 has the following orollary.

Corollary 16 Let A 2 B(l

1

(Y); fU

g;r

g

g2Y

). Then

(a) A is a �

+

-operator if and only if inff�(A

�

) : A

�

2 lim

1

(A)g > 0.

(b) A is a �

�

-operator if and only if inff�(A

�

�

) : A

�

2 lim

1

(A)g > 0.

() A is a Fredholm operator if and only if all limit operators A

�

2 lim

1

(A)

are uniformly invertible.

4 Pseudodi�erential operators

We say that a funtion a on R

n

� R

n

� R

n

belongs to the lass S

0

0;0;0

if

j�

�

x

�



y

�

�

�

a(x; y; �)j � C

��

for all multiindies �; �;  2 N

n

. The operator A = Op(a) is alled a pseudo-

di�erential operator in the lass OPS

0

0;0;0

with double symbol a if a 2 S

0

0;0;0

and

(Au)(x) = (Op(a)u)(x) =

Z

R

n

Z

R

n

a(x; y; �)e

i(x�y;�)

u(y)dy d�

for all u 2 C

1

0

(R

n

). The well-known Calderon-Vaillanourt theorem ([20℄)

states that operators in OPS

0

0;0;0

are bounded on L

2

(R

n

) and that

kAuk � C

X

j�j+j�j+jj�m

sup

(x;y;�)2R

3n

j�

�

x

�



y

�

�

�

a(x; y; �)j: (15)

Proposition 17 Let A 2 OPS

0

0;0;0

and ' 2 C

1

0

(R

n

� R

n

). For r > 0

and h = (p; q) 2 R

n

� R

n

, set '

r

(x; �) := '(x=r; �=r) and '

r;h

(x; �) :=

'

r

(x� p; � � q). Then

lim

r!1

k[A;Op('

r;h

)℄k = 0 (16)

uniformly with respet to h 2 R

n

� R

n

.

The proof follows easily from the omposition rule for pseudo-differential

operators and from estimate (15).

Let f 2 C

1

0

(R

n

) be a funtion whih is 1 on the ube Q := fx 2 R

n

: jx

i

j �

16



1 forg; i = 1; : : : ; ng and 0 outside 2Q and whih takes values in [0; 1℄ only.

For k 2 N , de�ne f

k

(x) := f(x=k), and set for every � 2 Z

n

'

2

�;k

(x) :=

f

k

(x� �)

P

�2Z

n

f

k

(x� �)

:

It is evident that

X

�2Z

n

'

2

�;k

(x) = 1 and 0 � '

�;k

(x) � 1 for all x 2 R

n

:

We will apply the abstrat sheme with the unitary operators U

�

, � 2 Z

n

,

ating by (U

�

u)(x) = u(x � �), and with the operators P

k

:= Op('

0;k

(x)).

(A more orret but also more umbersome notation would be P

k

:= Op(a)

with a(x; y; �) = '

0;k

(x).) As before, we also set P

k;�

:= U

�

P

k

U

�1

�

. It is

evident that the sequene (P

k

) is bounded.

Further, let � 2 C

1

0

(R

n

) be a funtion with �(x) = 1 if jxj � 2 and

�(x) = 0 if jxj � 3 and suh that 0 � �(x) � 1. For k 2 N , set �

k

(x) :=

�(x=k) and

^

P

k

:= Op(�

k

(�))Op(�

k

(x)):

Finally, let � 2 C

1

(R

n

) be suh that �(x) = 1 if jxj � 2 and �(x) = 0 if

jxj � 1, let (Q

r

)

r2N

be the sequene of the operators of multipliation by the

funtions x 7! �(x=r) and denote by B the set of all sequenes in Z

n

tending

to in�nity. It is evident that the onditions of the axiomati approah are

satis�ed.

We laim that OPS

0

0;0;0

� A

0

(L

2

(R

n

)). Let � = (�

m

) 2 B. Then, learly,

U

�1

�

m

Op(a)U

�

m

= Op(b

m

) with b

m

(x; y; �) := a(x + �

m

; y + �

m

; �):

The sequene (b

m

) is bounded in C

1

(R

3n

). As follows from the Arzel�a{Asoli

theorem, there is a subsequene (b

m

k

) of (b

m

) whih onverges in the topology

of C

1

(R

3n

) to a funtion a

~�

. It is easy to hek that a

~�

2 S

0

0;0;0

and that

lim

k!1

k(U

�1

�

m

k

Op(a)U

�

m

k

�Op(a

~�

))

^

P

r

k = 0;

lim

k!1

k

^

P

�

r

(U

�1

�

m

k

Op(a)U

�

m

k

�Op(a

~�

))k = 0

for every r. This proves our laim. Thus, Theorem 5 implies:
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Theorem 18 Let A 2 OPS

0

0;0;0

. Then

lim inf

r!1

�(Aj

Q

r

(L

2

(R

n

))

) > 0 (17)

if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0: (18)

Let  2 C

1

b

(R

n

), the spae of all smooth funtions whih are bounded

together with all their derivatives, and set  

r

(x) :=  (x=r) for r > 0. We

denote by B(L

2

(R

n

)) the subset of L(L

2

(R

n

)) onsisting of all operators A

suh that

lim

r!1

k[A;  

r

I℄k = 0 for all  2 C

1

0

(R

n

):

It is easy to see that B(L

2

(R

n

)) is a C

�

-subalgebra of L(L

2

(R

n

)) and that

OPS

0

0;0;0

� B(L

2

(R

n

)).

Let � 2 C

1

0

(R

n

) be a funtion with �(x) = 1 if jxj � 2 and �(x) = 0 if

jxj � 1 and set �

r

(x) := �(x=r) for r > 0. Let further J stand the set of all

operators T 2 B(L

2

(R

n

)) with

lim

r!1

k�

r

Tk = lim

r!1

kT�

r

Ik = 0

whih is in fat a losed ideal of B(L

2

(R

n

)).

Proposition 19 The ondition (17) is satis�ed if and only if there exist

operators L 2 B(L

2

(R

n

)) and T 2 J suh that LA = I + T .

Proof. Let (17) be satis�ed. Then there exist Æ > 0 and r

0

> 0 suh that

h�

r

0

A

�

A�

r

0

u; �

r

0

ui � Æk�

r

0

uk

2

where �

r

0

is the harateristi funtion of the set fx 2 R

n

: jxj > r

0

g. This

inequality implies the existene of an operator L 2 B(L

2

(R

n

)) suh that

LA�

r

0

I = �

r

0

I, whih an be rewritten as

LA = I � LA(I � �

r

0

I) + (I � �

r

0

I):

Sine I � �

r

0

I 2 J , we obtain

T := �LA(I � �

r

0

I) + (I � �

r

0

I) 2 J

18



whih is the assertion. Conversely, let LA = I + T with L 2 B(L

2

(R

n

)) and

T 2 J . Then LA�

r

I = �

r

I + T�

r

I. Choose r suh that kT�

r

Ik < 1, and let

r

0

be suh that �

r

0

�

r

= �

r

0

. Then LA�

r

0

I = (I + T�

r

I)�

r

0

and, thus,

(I + T�

r

I)

�1

LA�

r

0

I = �

r

0

I:

This identity implies estimate (17).

We would like to onlude this paper with a `dual' appliation of the abstrat

sheme and its onsequenes. In this ase, the unitary operators are given

by (U

�

u)(x) := e

ih�;xi

u(x), and we further hoose

P

k

:= Op('

0;k

(�));

^

P

k

:= Op(�

k

(x))Op(�

k

(�)); Q

r

:= Op(�(�=r)):

Again, B denotes the set of all sequenes in Z

n

whih tend to in�nity.

One an hek in the same way as before that all axioms of our approah

are satis�ed. Thus, as a orollary of Theorem 5, we get

Theorem 20 Let A 2 OPS

0

0;0;0

. Then

lim inf

r!1

�(Aj

Q

r

(L

2

(R

n

))

) > 0 (19)

if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0: (20)

Denote by B

0

(L

2

(R

n

)) the subset of L(L

2

(R

n

)) of all operators A satisfying

lim

r!1

k[A; Op( 

r

(�))℄k = 0 for every  2 C

1

0

(R

n

):

B

0

(L

2

(R

n

)) is a C

�

-subalgebra of L(L

2

(R

n

)), and OPS

0

0;0;0

� B

0

(L

2

(R

n

)).

Further, the set J

0

of all operators A 2 B

0

(L

2

(R

n

)) with

lim

r!1

kOp(�

r

(�))Ak = lim

r!1

kAOp(�

r

(�))k = 0

is a losed ideal of B

0

(L

2

(R

n

)).

Proposition 21 The ondition (19) holds if and only if there exist operators

L

0

2 B

0

(L

2

(R

n

)) and T

0

2 J

0

suh that L

0

A = I + T

0

.

19



The proof is similar to the proof of Proposition 19.

The preeding two theorems have remarkable onsequenes for the semi-

Fredholmness and Fredholmness of operators in OPS

0

0;0;0

.

Theorem 22 Let A 2 OPS

0

0;0;0

. Then A is a �

+

-operator if and only if

inff�(A

�

) : A

�

2 lim

B

(A)g > 0 and inff�(A

�

) : A

�

2 lim

B

(A)

0

g > 0 (21)

where lim

B

(A) is a set of all limit operators of A whih are de�ned by means

of the unitary operators (U

�

u)(x) = u(x � �), whereas lim

B

(A)

0

refers to

the olletion of all limit operators of A taken with respet to the unitaries

(U

�

u)(x) := e

ih�;xi

u(x).

Proof. Let the ondition (21) be satis�ed. Then there are operators L 2

B(L

2

(R

n

)) and L

0

2 B

0

(L

2

(R

n

)) as well as operators T 2 J and T

0

2 J

0

suh

that

LA = I + T and L

0

A = I + T

0

:

With the operator B := LAL

0

� L� L

0

one �nds BA � I = TT

0

. We laim

that the operator TT

0

is ompat. Indeed, let �

r

be de�ned as earlier. Then

lim

r!1

kTT

0

Op(�

r

(x))k = lim

r!1

kTT

0

Op(�

r

(�))k = 0:

Hene, the operator TT

0

an be approximated in the norm by the ompat

operators TT

0

(I � Op(�

r

(x)))(I � Op(�

r

(�))) as losely as desired whih

proves our laim. So, BA�I is a ompat operator, whene its �

+

-property.

Conversely, let A be a �

+

-operator. Then the a priory estimate

Ækuk � kAuk+ kKuk; u 2 L(L

2

(R

n

)) (22)

holds with a positive onstant Æ and a ompat operator K. If (U



)

2Z

n

is

one of the sequenes of unitary operators onsidered in the theorem, then it

follows from (22)

Ækuk � kU

�1



AU



uk+ kU

�1



KU



uk: (23)

Sine the U



onverge weakly to zero as  ! 1, the operators U

�1



KU



onverge strongly to 0. Thus, letting  go to in�nity in (23) yields ondition

(21).

Our �nal result is a orollary to Theorem 22.

20



Theorem 23 Let A 2 OPS

0

0;0;0

. Then

(a) A is a �

�

-operator if and only if

inff�(A

�

�

) : A

�

2 lim

B

(A)g > 0 and inff�(A

�

�

) : A

�

2 lim

B

(A)

0

g > 0:

(b) A is a Fredholm operator if and only if all operators in lim

B

(A)[lim

B

(A)

0

are uniformly invertible, i.e. if

supfkA

�1

�

: A

�

2 lim

B

(A) [ lim

B

(A)

0

g <1:

The preeding two theorems remain valid without hange for operators A in

the losure of OPS

0

0;0;0

in L(L

2

(R

n

)), whih is a C

�

-subalgebra of L(L

2

(R

n

)).
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