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Abstract

We propose an axiomatic approach for the application of the limit
operators method. This approach will be applied to operators in a
C*-algebra which is generated by operators of right convolution on
a homogeneous non-commutative group X and by operators of mul-
tiplication by functions in Lo (X). In terms of limit operators, we
derive necessary and sufficient conditions for these operators to be
semi-Fredholm or Fredholm. As another application, we obtain nec-
essary and sufficient conditions for the semi-Fredholmness and Fred-
holmness of pseudodifferential operators with double symbols in the
class OPS(O),O,O'

1 Introduction

The first appearance of limit operators is in Favard’s paper [2] where they are
used to verify the existence of almost-periodic solutions of ordinary differen-
tial equations with almost-periodic coefficients. Later, Muhamadiev [10, 11]
applied limit operators to the question of solvability of elliptic partial dif-
ferential equations in R”. The method of limit operators method has been
further developed in the papers [6, 7, 8, 13, 14, 15] for the study of the Fred-
holm property of wide classes of pseudo-differential operators and convolution
operators on R" and Z". Note also the paper [1], where the applicability of
the limit operators method to the computation of the essential spectrum of
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singular integral operators on Carleson curves acting in general weighted L2-
spaces has been illustrated. Observe that in all of these papers, the method of
limit operators is applied to a concrete class of operators acting on a concrete
Banach space.

In contrast to this, it is the first goal of the present paper to propose an
axiomatic scheme for the application of the method of limit operators which
contains many of the afore-mentioned applications as special cases. Then,
by means of this scheme, we examine the Fredholm property of operators
in a C*-algebra which is generated by operators of convolution acting on
L?*(X) over a homogeneous non-commutative group X, and by the operators
of multiplication by functions in L*°(X). Our aim to give necessary and
sufficient conditions for operators in this algebra to be semi-Fredholm or
Fredholm.

A well-known and important example of a homogeneous group is the
Heisenberg group. Singular integral operators and pseudo-differential opera-
tors on the Heisenberg group have been intensively studied by many authors
(see, for example, the monographs [17, 12, 21, 22] which contain extensive
bibliographies). Let us also mention the papers [23, 24, 4, 5] which are de-
voted to the analysis of double convolutions on a class of step two nilpotent
Lie groups.

The Fredholm property of operators in certain algebras generated by con-
volution operators and operators of multiplications by bounded functions on
non-commutative locally compact groups was studied in [18, 19] by means of
Simonenko’s local principle (see [16]).

As another illustration of the abstract scheme, we apply it to the problem
of Fredholmness and semi-Fredholmness of pseudo-differential operators with
double symbols in the L. Hérmander class OPSY, , which is connected with
convolutions on the Heisenberg group (see, for instance, [21, 22]).

2 Abstract scheme for the method of limit
operators.

Let H be a Hilbert space and L(H) the C*-algebra of all bounded linear
operators acting on H. Throughout what follows, suppose that we are given

1. bounded sequences (P )xen and (Py)gen of operators in L(H) such that
s—limk_}OOPk =1 and PkPk = Pk for all £.



2. a countable set {U,}qca of unitary operators on H such that, with
kaa = UaPkUCCI,

> Pequll® =||ul]* forallk € Nand u € H. (1)

acA

3. abounded sequence {Q, },cn of operators in L(H) which are compatible
with the Py, in the following sense:

(a) there is a distinguished set B of sequences in A with the property
that every sequence (/3;) which is not in B possesses a subsequence
(Bj,.) such that

VEeNdrye NVr>rgVmeN : P Q. =0. (2)

(b) for each r € N and any sequence (f5;) € ‘B one has
s-limy 00 Ug (I — Q) Up, = 0. (3)
Definition 1 Let A(H) denote the set of all operators A € L(H) such that

lim ||[Pag, A]]| =0 and lim ||[Pyg, A*]|| =0 (4)
k—o0 k—o0

uniformly with respect to o € A. Here, as usual, [A, B] refers to the commu-
tator of the operators A and B.

It is easy to check that A(H) is a C*-algebra.

Definition 2 We say that the operator Ag is a limit operator of A € L(H)
defined by the sequence § = (5;) € B if, for each k € N,

lim H (U3, AU, — 45) ﬁk‘ = lim Hﬁ,:; (U3, A, — 45) H = 0.

j—00 J—o0
The set of all limit operators of A will be denoted by limg(A).
The following proposition describes some properties of limit operators.

Proposition 3 Let § = (5;) € B, and let A,B € L(H) be operators for
which the limit operators Ag and By exist. Then



(@) [ 4]l < [l A]l-

)
(b) (A+ B)g exists and (A+ B)g = Az + Bs.
(c) (AB)g exists and (AB)z = AzBg.

(d) (A*)g exists and (A*)s = (Ap)*.

(e) if C,C"™ € L(H) are operators with ||C — C™|| — 0, and if the limit
opemtors (O(m))/g ewist for all sufficiently large m, then Cg ewists and
ICs = (C™)g]l = 0.

€

Definition 4 Let Ay(H) denote the set of all operators A € A(H) such that
every sequence in B possesses a subsequence (B for which the limit operator
Ap exists.

Proposition 3 implies that Ay(H) is a closed subalgebra of A(H).

In what follows we will need the notion of the lower norm v(A) =
inf) ;=1 ||Af]| of an operator A € L(H). It is well-known that the opera-
tor A is invertible from the left if and only if #(A) > 0, and invertible from
the right if and only if v(A*) > 0. Thus, A is invertible if and only if both
v(A) > 0 and v(A*) > 0. Furthermore, given an operator P € L(H), we set

v(Alpany) = inf ||APf||

1P fll=1
and call this quantity the lower norm of A relative to P.
Let us also recall that an operator A € L(H) is a ®;-operator if A has
a closed range and a finite dimensional kernel, whereas A is called a & -
operator if its adjoint A* is a ®,-operator. ®_-operators are also called
semi-Fredholm operators. An operator A which is both a ¢, and a ®_-
operator is said to be a Fredholm operator. One can show (see [9], Chapter

I, Lemma 2.1) that A is a & -operator if and only if there exists an operator
P € L(H) such that I — P is compact and v(A|pg)) > 0.

Theorem 5 Let A € Ay(H). Then the following conditions are equivalent:
(a) liminf, . v(A|g, ) > 0.
(b) max,. V(A’QT(H)) > 0.

(C) ianBElimsB(A) Z/(A/B) > 0



The proof of this theorem is based on the following proposition.

Proposition 6 Let A € A(H). Then

inf inf Hminfr(Ale, o) < liminfy(Ale.un). (5)

Proof. Set 14 := liminf, o v(Alg, ). Then, for every fixed € > 0, there
is a sequence 1, — 00 such that

v(A

Qe (1)) < pia + €.

This shows that, for every m € N, there is a v,,, € H with ||@Q;,,vn] = 1 and

[AQr, vl < pra + 2¢. (6)

From axiom (1) we obtain for every k € N
1AQy,, vm|* = Z 1 Pea AQy,, vm ||
acA

as well as

1Qr, vll* = Y 1 PraQr, vl
€A
and hence, together with (6),

ZaEA ||Pk,ozAQTmUmH2
ZaEA ||Pk,aQrmUm||2

This inequality implies that, for every m, there is an o, with Py q,,Qy,,0m
not being zero and

< (pa +20)%

||Pk7am AQT‘m Um”
||Pk7am QTmUm ||

Further, since A € A(H), one can find a ky = ko(g) such that

< pa+ 2. (7)

||[A7 Pk,am]|| <e for all £ > ko.
uniformly with respect to m. Hence, for all k¥ > k,

||Pk,amAQvam|| > ||Apk7amQvam|| —¢||@r,, vmll-

5



Since || Py a,, @y, Um|| < C, the latter estimate in combination with (7) yields
that, for each m and k > kg, there exists «, such that

||APk,am Qrmvm ||
||Pk7am QTmUm”

Observe that the condition Py ,,, @y, vm 7 0 implies that the sequence ()
belongs to the set B. Thus, for every € > 0 and k > ky(e), there exists a
sequence (ay,) € B such that

<pa+ (2+Ce.

v(Alp, .. @) < pa+(2+C)e.
This finally shows that

inf inf lim ian(A|Pk,,aj(H)) <pa+ (24 C)e.

k (0;)€B j—o0
Since € > 0 is arbitrary, we arrive at (5). "

Proof of Theorem 5. The implication (a) = (b) is trivial. For the impli-
cation (b) = (c), assume that (b) is fulfilled. Then there exists an ry as well
as a 0 > 0 such that v(Alg, (m)) > J. Consequently,

|AQ, u|| > 6]|Qrul| forallu e H. (8)

Let 8 = (B8;) € B be a sequence for which the limit operator Ag exists.
Then, as follows from (8),

HU/;]_IAQTOUBJ.I%GUH > 5||U5_j1QroU5j13kUH for allu € H.

Passing to the limit j — oo (where we have to take into account condition
(3)) we obtain

| AsPyul| > 8| Pul| for all u € H.

Since s-limy_, o, Py = I, this estimate implies that || Agu|| > 6||u|| for arbitrary
uec H.

(¢) = (a). Suppose that (@) is not satisfied. Then lim inf, . v(A|g, ) = 0,
whence via Proposition 6

inf inf liminfu(A —0.
nf anly i Lol (Ao, )



Thus, for arbitrary € > 0, there exists ky € N such that

(/3%15% hjrgé?f” (Alvs, piymm) <&

This inequality on its hand implies the existence of sequences (8;) € B and
(f3) € H with [| Py, fl| =1 and

. -1
jlggo ||U/3]- AUﬁijofjH < 2

or, equivalently,

lim U5 AUs, Py Pro ] < 2. )
Without loss, we can assume that the limit operator Az with respect to the
sequence [ := (f;) exists (otherwise we pass to a suitable subsequence).
Then inequality (9) implies that ||AgPy, f;|| < 3¢ for j large enough. Thus,
for arbitrary ¢ > 0, there exists a limit operator Az € limg(A) such that
v(Ag) < 3e. This contradicts condition (c). n

3 Fredholmness of convolution operators on
homogeneous groups

3.1 Some notations

Following [17], Chapter XIII, Section 5, we start with recalling some facts
concerning homogeneous groups which are needed in what follows.

Homogeneous groups arise from R™ by equipping this space with a Lie
group structure and with a family of dilations that act as group automor-
phisms on this space. To be precise, to make R™ to a homogeneous group
X, we assume that there is a pair of mappings

R" - R": (z,y)—~2-y and R" = R™: gz gz *

which are smooth and which provide R™ with a Lie group structure such
that 0 € R™ is the identity element of the Lie group. Further we suppose
that there is an m-tuple of positive integers a; < ... < a,, which is specific



for X (with the monotonicity being no essential restriction) such that the
dilations

= (21, ..., Tp) = Dsx = (6%, ..., 8" xy,)
are group automorphisms for every é > 0, i.e. that
Ds(z -y) = Dsx - Dgy  for all z, y € R™.

As follows from these properties, the group operation is necessarily of the
form

zoy=c+y+Q(z,y),
where @) : R™ x R™ satisfies

Q(0,0) = Q(z,0) = Q(0,z) = 0.

Moreover, @ = (Q1, ..., @n), where every @ is a polynomial in 2m real
variables which is homogeneous of degree a,. Thus, ) contains no pure
monomials in x or y.

The Euclidean measure dr on R™ is both left and right invariant with
respect to the group multiplication; i.e. it is a Haar measure on X. Note
also that d(Dsx) = §%x, where a := a; + ... + ay,.

A nontrivial example of a homogeneous non-commutative group is the
Heisenberg group which can be identified with C* x R with the group oper-
ation

(w,s)-(2,t) = (w+ 2,5 +t+2Im(w, 2))

where (w,z) == 377 zw;.
The norm function p on R™ is defined as

p(z) = max{|z;|"% : 1 < j < m}.
Note that p(z) > 0 and p(x) = 0 if and only if z = 0. Also, p(Dsx) = dp(x),
and there exists a constant ¢ > 0 such that
p(z-y) < clp(x) +p(y)) and  pla™") < cp().
Set p(z,y) := p(z~! - y). The collection {B(z,¢)}.~o of all balls
B(z,e) :={y € X:p(z,y) < ¢}

forms an open neighborhood base of the point x € X. Since p is left-invariant,
one also hase B(x,¢) = x- B(0,¢), and because the measure is left invariant,

|B(z,2)| = |B(0,¢)| = £*|B(0,1)].



3.2 Convolution operators on the homogeneous group

Let X be a homogeneous group. A function f is said to be uniformly contin-
uous on X if, for each € > 0, there exists an n > 0 such that |f(z) — f(y)| < e
whenever p(z,y) < 1. The class of all bounded uniformly continuous func-
tions on X will be denoted by BUC(X). Let further Q(X) refer to the set
of all measurable bounded functions @ on X with

lim sup/ la(y - 2)|dr =0
Q

Yy—00

for each compact 2 C X. Set
W(X) := BUC(X) + Q(X) C L*(X).

As it has been proved in [19], W (X)) is a commutative C*-algebra, and Q(X)
is a closed ideal in W(X).

Let k € L'(X). Then we define the operator Cy,, of right convolution by
k by

E(z ' y)u(y)dy = / k(z)u(x - 2)dz, x € R™.

m

(Crr(a) = [

It is well-known and easy to check that Cy, is bounded on L?(R™) and
invariant with respect to the left shift, i.e.

U gCrhy = CrrlUy where (U f)(z):= f(g-z) forgeX.

We denote by V,.(X) the set of all operators Cy, of right convolution by a
function k € L'(R™). Note that, if a € Q(X) and T € V,(X), then aT and
Tal are compact operators on L?(X) (see [19]).

Let Y be a discrete subgroup of the group X which acts freely on X such
that X/Y is a compact manifold. Let M be a fundamental domain of X with
respect to the action of Y on X by left shift, i.e. M is a bounded domain in
X such that

m

X = UOJ-M.

Let f € C(X) be a function which is 1 on M and 0 outside a small neigh-
borhood M’ of M, and which takes values in [0, 1] only. For ¢ > 0, set
fs(x) := f(Dsz) and, for a € Y,
2 fsla - )
PialT) = :
> ZﬂeY f5(5 .T)

9




It is evident that 0 < @s,(z) < 1 and that, for every § > 0, the system
{@g,a}aeY forms a partition of unity on X in the sense that

Z gpg,a(:c) =1, zeX
acY

Proposition 7 Let K € V,(X). Then lims_ ||[¢s.q, K]|| = 0 uniformly with
respect to a € Y.

Proof. Let
) = sup / k(@™ 9)llpsal@) — woaly)ldy,
reX
— sup / k(@ )] [0sa(@) — Psaly)|da.
yeX
Then

1[50, KNIl < max{71(0, @), 72(6, @) }-
Let us suppose for a moment that k(x) = 0 if p(x,0) > R. Then, for j =1, 2,

v(6,a) < sup  [@sa(T) — @saly |/|k )|dx

plx—ty)<R

< sup  |p1() — pre(y |/|k )|d.

ply~1-z)<éR

The function ¢; . is uniformly continuous on X. Thus, for each ¢ > 0, we
find a § > 0 such that v;(0,) < e for j =1,2and foralla €Y.

Since the set of all functions with compact support is dense in L'(X),
we can use a standard approximation argument to get the assertion of the
proposition for arbitrary kernel functions k € L'(X). n

Now we can specify the axioms of the abstract scheme for the limit operators
method as follows:

1. For a sequence (d5) of positive numbers tending to zero, we set
Pk = QO(;,“@I and pk = XkM’I

where Y 1s the characteristic function of the set kM’. It is evident
that

kak = Pkpk = Pk and S—limk_}oolf’k =1.

10



2. The sequence of unitary operators is specified to be {U,;}ocy where
(Ua,u) () = u(e - ) are the operators of left shift by a. If we set

Pk,a = UaPk:Uc:1 = (pgkva],
then condition (1) is satisfied.

3. Let (Q,)ren be the sequence of the operators of multiplication by the
characteristic functions x, of B. := {z € R™ : p(x,0) > r}, and let B
be the set of all sequences in Y (which plays the role of A) which tend
to infinity. Then conditions (2) and (3) are also fulfilled.

Definition 8 We denote by B(W (X), V,(X)) the smallest C*-subalgebra of
L*(X) which contains all operators of the form

p q
ZHainijbij[ (10)

i=1 j=1

where p, ¢ € N, a;;I and bj;I are operators of multiplication by functions
a;; and b;; in W(X), and the operators K;; belong to V,.(X). Let further
B(W(X), V(X)) refer to the smallest unital C*-subalgebra of L*(X) which
contains all operators (10).

Proposition 9 Let A € B(W (X),V,(X)). Then limy_,o ||[A, Proll| = 0
uniformly with respect to o € Y.

The proof follows easily from Proposition 7.
Proposition 10 B(W (X),V,(X)) C Ay(L*(X)).

Proof. Let o = (ag) € B. If al is the operator of multiplication by
the function a € BUC(X), then (Uz'alU,,) is the sequence of operators
of multiplication by the functions # + a(a, ' - ). By the Arzela—Ascoli
theorem, this sequence has a subsequence a(oz,;jl - ) which tends uniformly
on the compact sets in X to a function agz. This function is in BUC(X)
again, and

lim || (U U, — aaD)| = lim [[(Us} al, — aal) Pl = 0

j—o0 J j—o0

Q. .
k] kj k]

11



for every m. Next, if b is a function in Q(X) and K € V,(X), then one has

lim ||]5mU;k1_ bK Uy, || = lim ||U;} bKU,, Pl =0,
J—00 J Jj—o0 J J

N

lim || B, U KbUy, || = lim U KbU,, Pl =0,
J—00 J 7 j—00 7 J

even for an arbitrary sequence (a4, ) tending to infinity, because the operators
P, K and K P,, are compact and the sequence U(;kl bU,, I strongly converges
7 J

to 0. Thus, for every function a € W(X) and every sequence « € B, there
is a subsequence & of « for which the limit operator (al)g is defined.
Further, since the operators in V,(X) are invariant with respect to left
shifts, we conclude that the algebra B(W (X), V,(X)) is completely contained
in Ay(L*(X)). "

For A € B(W(X), V,(X)), we denote by lim,,(A) the set of all limit operators
of A which are defined with respect to sequences in 8. Thus, the following
theorem is a corollary of the general Theorem 5.

Theorem 11 Let A € B(W(X),V,(X)). Then the following assertions are
equivalent:

((l) lim inf,_, V(A|QT(L2(X))) > 0.

(b) inf{r(Ap) : Ap € lim(A)} > 0.

Theorem 12 Let A € B(W(X),V,(X)). Then

(a) A is a ©-operator if and only if inf{v(Ag) : Az € lim(A)} > 0.

(b) A is a ®_-operator if and only if inf{v(A}) : Ag € lim(A)} > 0.

(¢) A is a Fredholm operator if and only if all operators Ag € limy,(A) are
uniformly invertible, i.e. if and only if sup{||AEl|| t Ag € limy(A)} > 0.

Proof. (a) Let inf{v(Ap) : Ag € limy(A)} > 0. Then there exist r € N and
C > 0 such that

QA" AQ, £, Qe /)| = CllQfI* - for every f € L*(X).

Thus, the operator @Q,A*AQ, is invertible from the left on L?(Q,X), i.e.
there is an operator B such that

BQ,.AAQ, = Q,. (11)

12



The operator B belongs to the C*-subalgebra B(W (X), V,(X), @,) of L*(X)
which is generated by the operators in B(W (X), V,(X)) and by Q,. Let J
denote the closed ideal of B(W(X),V,(X),@Q,) which is generated by the
operators of multiplication by functions ¢ € L*(X) with lim, ,, a(z) = 0.
Equality (11) implies that there are operators R’ € B(W (X), V,(X), Q,) and
T € Jy such that RRA =1+ T. Setting R:= R'+ 1 — AR’ we get

RA-T=RA+A—ARA—I=(I—A)(RA-1I). (12)

Note that I — A belongs to the closed ideal .J; of B(W (X), V,(X), @,) which
is generated by the operators in V,.(X). It is evident that, if Ty € Jy and
Ty € Jy, then TyT) and 11T, are compact operators. Thus, the identity (12)
implies that A is a & -operator.

Conversely, let A be a @ -operator. Then, as we have already remarked,
the a priori estimate

Cllull < [[Auf] + || Ku]

holds with a certain compact operator K and a constant C' > 0 ([9], Chapter
[, Lemma 2.1). This estimate gives

|AQrul] = Cf|Qul| — [[KQrul.

Since @, converges *-strongly to 0 as r — oo, we have |KQ,ul| < $(|Qrul|
for a certain ro. Hence, [[AQ,,ull > §||Q,,ul|. Now the assertion follows (a)
as in the proof of the implication (b) = (c¢) of Theorem 5. Assertions (b) and
(¢) are direct consequences of (a). n

3.3 Convolution operators on discrete subgroups of
the homogeneous group

Let [?(Y) be the space of all complex valued functions u on the discrete group
Y for which

lullfoyy = D lu(@) P < o0,

z€Y

and write [*°(Y) for the space of all bounded complex valued functions on
Y, provided with the norm

\|al|e vy := sup |a(z)].
zeY

13



By al we will denote the operator of multiplication by a € [*°(Y) thought
of as acting on [*(Y). Further, given g € Y, we let U,,; and U,, stand for
the unitary operators of left and right shift acting at u € [*(Y) by

(Ugu)(z) :=u(g-z) and (Uy,u)(z):=u(r-g), €Y.
Finally, for every function ¢ on X, we denote its restriction onto Y by 1/3

Definition 13 Let B(I*°(Y),{U,,}gev) denote the closure in L(I*(Y)) of
the set of all operators of the form

Ap =Y agUy,  withay € 1°(Y) (13)

ger
where I' is a finite subset of Y.

It turns out that B(I®(Y), {U,}scy) is even a C*-subalgebra of L(I*(Y)).
Proposition 14 Let A € B(I*(Y),{Uy,}4ev) and ¢ € BUC(X). Then

L[|, Al| L2(x)) = 0 (14)

uniformly with respect to g € Y, where ps(x) = @(Dsx) and @s4(r) =
ps(g - o).

Proof. A simple calculation shows that

159, Usilll = MUz (5,65 Usy]l
< sup ‘@6,(2“1-9) (y) - @6,g(y)‘
yeyY

sup |p(Ds(z") - Ds(g - y)) — &(Ds(g - y))|-

Since ¢ is in BUC, for each € > 0 there is a g = dy(e, z) such that, for all
0 < (50,

21615 [6(Ds(z 1) - Ds(g - y)) — ¢(Ds(g - y))| < e.

This verifies condition (14) for the shift operator. But then this condition
holds for all operators of the form (13), and passage to the closure yields the
proof of the proposition in the general case. [

14



To apply the abstract scheme proposed in Section 2, we will use the sequence
of unitary operators {U,;}scy. Further we let 6, — 0 and define for k € N
andgeY

Pk; = (/3519[7 kag = glekUngl = (/A?(skvg[, p}c = )A(M’vk]-

Finally, let (Q,) be the sequence of the operators of multiplication by the
functions y, where x, is the characteristic function of {x € Y : p(z,0) > r}.

Let Ap be an operator of the form (13) and h = (hy) be a sequence in Y
tending to infinity. Then, for all x € Y,

(Ui AU, 1) (2) = D7 ag (- @) Uy ).

As follows from the Bolzano-Weierstrass theorem and the Cantor diagonal-
ization procedure, there exists a subsequence h = (hg,,) of h such that the
pointwise limit

(P, - ) = (ag);(2)

exists for each g € I'. This implies that, with (Ar); = > (ag);Ugyr,

lim H(Uf;in,lAFUhkm,z — (Ap);)B]| =0 forallr

m— 00

and
lim || (U, ArUp,, , — (Ar)y)ll =0 for all 7.
m—00 m ’

Thus, Ar belongs to Ag(I2(Y)). Taking into account Proposition 3 (5), one
conludes from this result that even

B(*(Y), {Ugr}gex) € Ao(*(Y)).

The conditions (2), (3) are evidently satisfied in the present setting. So we
obtain as a corollary of Theorem 5 the following.

Theorem 15 Let A € B(I™(Y),{Uyr}eev). Then the following assertions
are equivalent:

(a) liminf, _ V(A QT(ZZ(Y))) > 0.
(b) inf{v(Ap) : Az € limy(A)} > 0.

15



The operators I —(),. are compact. So Theorem 15 has the following corollary.

Corollary 16 Let A € B(I*°(Y),{Uyr}sev). Then

(a) A is a O -operator if and only if inf{v(Ag) : Ag € lim,(A)} > 0.

(b) A is a ®_-operator if and only if inf{v(A}) : A € lim(A)} > 0.

(¢) A is a Fredholm operator if and only if all limit operators Ag € limy,(A)
are uniformly invertible.

4 Pseudodifferential operators
We say that a function a on R* x R* x R belongs to the class Sg, if
’afagaga(% Y, 5)’ < Ca57

for all multiindices «, 3, v € N*. The operator A = Op(a) is called a pseudo-
differential operator in the class OPS(, with double symbol a if a € 57,
and

(Au)(w) = Oplayn)(@) = [ [ alop e uy)ayds

for all u € C§°(R™). The well-known Calderon-Vaillancourt theorem ([20])
states that operators in OPS&O,O are bounded on L?(R") and that

[Au| <C ) sup [0;0]0¢a(w, y,6)]. (15)

R3n
ol +181+y|<m (P4

Proposition 17 Let A € OPSj,, and ¢ € CFPR" x R*). Forr > 0
and h = (p,q) € R* x R, set o, (z,&) = plx/r,&/r) and ppp(x,§) =
or(x —p, & —q). Then

lim (4, Op(r)][l = 0 (16)
uniformly with respect to h € R* x R™.

The proof follows easily from the composition rule for pseudo-differential
operators and from estimate (15). n

Let f € C§°(R™) be a function which is 1 on the cube @ := {z € R" : |z;] <
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1for};i=1,...,n} and 0 outside 2Q) and which takes values in [0, 1] only.
For k € N, define fy(x) := f(x/k), and set for every a € Z"
2 fr(@ — )
oo o (x) = :
! > pezn Ju(z — )

It is evident that

Z 903k(37) =1 and 0<ui(zr) <1 forallz e R".

aEL™

We will apply the abstract scheme with the unitary operators U,, a € Z",
acting by (Uyu)(x) = u(x — «), and with the operators Py := Op(pox(z)).
(A more correct but also more cumbersome notation would be Py := Op(a)
with a(z,y,£) = pox(x).) As before, we also set Py, := U,P Ut 1t is
evident that the sequence (Py) is bounded.

Further, let ¢ € C§°(R™) be a function with ¢(z) = 1 if || < 2 and
¢(x) = 0if || > 3 and such that 0 < ¢(z) < 1. For k € N, set ¢p(x) :=
é(z/k) and

Py, := Op(9x())Op(n(@)).

Finally, let x € C*°(R") be such that x(z) = 1 if || > 2 and x(z) = 0 if
|z| <1, let (Q)ren be the sequence of the operators of multiplication by the
functions x — x(z/r) and denote by B the set of all sequences in Z" tending
to infinity. It is evident that the conditions of the axiomatic approach are
satisfied.
We claim that OPS), o C Ao(L*(R")). Let v = (au) € B. Then, clearly,
U, Op(a)Us,,, = Op(by)  with by (2,v,€) == a(x + am, y + am, ).

The sequence (b,,) is bounded in C*®(R3"). As follows from the Arzela—Ascoli
theorem, there is a subsequence (b, ) of (b,,) which converges in the topology
of C®(R*) to a function ag. It is easy to check that as € 53, and that

lim [[(Ug,) Op(a)Us,,, — Oplaa)) B5]| = 0,
—00

lim |15 (Uy,\, Op(a)Ua,,, — Oplaa))]| =0
k—o00 Mk k
for every r. This proves our claim. Thus, Theorem 5 implies:
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Theorem 18 Let A€ OPS),,. Then

lim inf v (Alg, (£2@n)) > 0 (17)
of and only if
inf{v(A,) : A, € liqrgn(A)} > 0. (18)

Let ¢ € Cp°(R"), the space of all smooth functions which are bounded
together with all their derivatives, and set i, (x) := ¢ (z/r) for r > 0. We
denote by B(L*(R")) the subset of L(L*(R")) consisting of all operators A
such that

lim [|[A, 4, 1] = 0 for all v € C3°(R™).
rT—00

It is easy to see that B(L?(R")) is a C*-subalgebra of L(L?(R")) and that
OPS),, C B2 (R"))

Let p € C§°(R™) be a function with p(z) = 1 if |z| > 2 and p(x) = 0 if
|z] <1 and set p,(x) := p(x/r) for r > 0. Let further J stand the set of all
operators 1" € B(L*(R")) with

lim ||p,T|| = lim ||Tp.I|| =0
T—00 r—00
which is in fact a closed ideal of B(L?(R")).

Proposition 19 The condition (17) is satisfied if and only if there exist
operators L € B(L*(R")) and T € J such that LA=T+T.

Proof. Let (17) be satisfied. Then there exist § > 0 and ry > 0 such that
(Xro A" Axr s Xrgw) > 0|xroul?

where x;,, is the characteristic function of the set {x € R" : |x| > ry}. This
inequality implies the existence of an operator L € B(L*(R")) such that
LAx;oI = xr,!, which can be rewritten as

LA=1T—LA(I — xpo1) + (I = Xro1)-
Since I — x,,I € J, we obtain

T:=—LA(I —xpoD)+ (I —xryD) €T

18



which is the assertion. Conversely, let LA = I + T with L € B(L*(R")) and
T € J. Then LAp.I = p. I+ Tp.I. Choose r such that ||Tp,I|| <1, and let
ro be such that x,,pr = Xry- Then LAx, I = (I + Tp.I)x;, and, thus,

(f + TPT‘[)_ILAXTOI = Xrol-

This identity implies estimate (17). n

We would like to conclude this paper with a ‘dual” application of the abstract
scheme and its consequences. In this case, the unitary operators are given
by (Ugu)(x) := e¥*®)y(x), and we further choose

Py := Op(wox(€)):  Lr = Op(d(2))Op(dr(€)), Qv = Op(x(¢/1)).

Again, B denotes the set of all sequences in Z" which tend to infinity.
One can check in the same way as before that all axioms of our approach
are satisfied. Thus, as a corollary of Theorem 5, we get

Theorem 20 Let A € OPSy,,. Then

lim inf v (Alg, (£2@n)) > 0 (19)
if and only if
inf{v(Ag) : Ag € liqrgn(A)} > 0. (20)

Denote by B'(L*(R")) the subset of L(L*(R")) of all operators A satisfying

Jim |14, Op(u ()]l =0 for every v € CFF(R).

B'(L*(R")) is a C*-subalgebra of L(L*(R")), and OPS(,, € B'(L*(R")).
Further, the set J' of all operators A € B'(L?(R")) with

lim [10p(6,(€)All = lim [[AOp(¢,(€))] =0

is a closed ideal of B'(L*(R")).

Proposition 21 The condition (19) holds if and only if there ezist operators
L' e B(L*R")) and T' € J' such that 'A=1+1T".
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The proof is similar to the proof of Proposition 19.
The preceding two theorems have remarkable consequences for the semi-
Fredholmness and Fredholmness of operators in OPSg .

Theorem 22 Let A € OPS&(]’O. Then A is a @, -operator if and only if
inf{v(Ag) : Ag € li%n(A)} >0 and inf{v(Ag):Ape€ li%n(A)'} >0 (21)

where limg (A) is a set of all limit operators of A which are defined by means
of the unitary operators (Uyu)(z) = u(z — «), whereas limg(A)" refers to
the collection of all limit operators of A taken with respect to the unitaries

(Ugu) () := eHl@®y(x),

Proof. Let the condition (21) be satisfied. Then there are operators L €
B(L*(R")) and L' € B'(L*(R")) as well as operators T' € J and 1" € [J' such
that

LA=I1+T and L'A=I1+T.

With the operator B := LAL' — L — L' one finds BA — I =TT'. We claim
that the operator 171" is compact. Indeed, let ¢, be defined as earlier. Then

Tim ([T Op(gr(2)) ]| = Tim 7T Op(6, ()| = 0.

Hence, the operator 17" can be approximated in the norm by the compact

operators T7"(I — Op(¢,(z)))(I — Op(¢,(§))) as closely as desired which

proves our claim. So, BA — I is a compact operator, whence its &, -property.
Conversely, let A be a ®,-operator. Then the a priory estimate

Ollull < [J[Aull + | Kull, we L(L*(R")) (22)

holds with a positive constant 6 and a compact operator K. If (U,)yezn is
one of the sequences of unitary operators considered in the theorem, then it
follows from (22)

Ollull < U AUull + [[UF KUyl (23)

Since the U, converge weakly to zero as v — o0, the operators UW_IKUW
converge strongly to 0. Thus, letting v go to infinity in (23) yields condition
(21). "

Our final result is a corollary to Theorem 22.
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Theorem 23 Let A€ OPS),,. Then
(a) A is a ®_-operator if and only if

(b) A is a Fredholm operator if and only if all operators in limg(A) Ulimeg (A)

inf{v(A3) : Ag € li%n(A)} >0 and inf{v(A}): Ag € li%n(A)'} > 0.

!/

are uniformly invertible, i.e. if

sup{||A/§1 tAg € li%n(A) U liqrgn(A)'} < 00.

The preceding two theorems remain valid without change for operators A in
the closure of OPSg ¢ in L(L*(R")), which is a C*-subalgebra of L(L*(R")).
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