General Mixed Integer Programming:
Computational Issues for Branch-and-Cut Algorithms

Alexander Martin

Darmstadt University of Technology, Department of Mathematics, Schlossgartenstr. 7, D-64289
Darmstadt, Germany

Abstract. In this paper we survey the basic features of state-of-the-art branch-and-cut
algorithms for the solution of general mixed integer programming problems. In particular we
focus on preprocessing techniques, branch-and-bound issues and cutting plane generation.

1 Introduction

A general mixed integer program (MIP) is the problem of optimizing a linear objective function
subject to a system of linear constraints, where some or all of the variables are required to be
integer. The solution of general mixed integer programs is one of the challenging problems in
discrete optimization. The problems that can be modeled as mixed integer programs arise, for
instance, in science, technology, business, and environment, and their number is tremendous. It is
therefore no wonder that many solution methods and codes exist for the solution of mixed integer
programs, and not just a few of them are business oriented, see [63] for a survey on commercial
linear and integer programming solvers.

One of the most successful methods to solve mixed integer programming problems are branch-
and-cut algorithms. In Section 2 we outline the principle structure of a branch-and-cut algorithm.
The main ingredients are preprocessing, the solution of the underlying linear programs, branch-
and-bound issues, cut generation, and primal heuristics. Our aim is to give sort of a survey on the
features that state-of-the-art branch-and-cut solvers for mixed integer programs include. Most of
the issues presented are pretty much standard, but our intention is to use this paper more as a
text book and to give the unfamiliar reader of this subject an impression on how mixed integer
programs are solved today. In detail we focus on preprocessing in Section 3, branch-and-bound
issues in Section 4, and cut generation in Section 5.

The software package that we use as a basic reference in this paper is SIP, which is currently
developed at our institute and ZIB [48]. As mentioned most of the described issues are common to
basically all state-of-the-art solvers and there are many other comparable codes that contain many
of the described features. Among them are in particular ABACUS, developed at the University of
Cologne [65], bc-opt, developed at CORE [19], CPLEX, developed at ILOG [39], MIPO, developed
at Columbia University [6], MINTO, developed at Georgia Institute of Technology [52], SYMPHONY,
developed at Cornell University and Lehigh University (see also the article of Leslie Trotter and
Ted Ralphs in this book), and XPRESS-MP, developed at DASH [21].

It is common to use the library Miplib [10] as test set to evaluate certain features of a MIP
code. Miplib is a collection of real-world mixed integer programming problems. From time to time
we will refer to some instances from this library to explain certain phenomena. However, we will
not give computational results here. The reader interested in concrete running times will find them,
for instance, in [11,19,44, 48].

Of course, branch-and-cut algorithms are not the only successful way to solve general mixed
integer programs. For an excellent survey on alternative approaches, including test sets, Gomory’s
group approach and basis reduction, see [1].

2 Branch-and-Cut Algorithms

In this section we sketch the main ideas of a branch-and-cut algorithm. More details and references
on this subject can be found in the survey article [14]. Suppose we want to solve a mixed integer



program

min ¢z

s.t. Ax <b, (1)

where A € Q™*™, c € Q*, b € Q™; the variables z; (i = 1,... ,n) might be binary (z; € {0,1}),
integer (x; € Z), or continuous (x; € R). Let Pp = conv{z € R" : z is feasible for (1)}. The first
step of the algorithm is to consider a relaxation of (1) by choosing a set P’ C R"® with Pp C P’
and to optimize the linear objective function over P'. For example, this relaxation might be the
linear programming relaxation min{c’z : Az < b} or a semidefinite relaxation. We only consider
linear relaxations, hence, the set P’ is always a polyhedron.

Let Z be an optimal solution for the linear relaxation. If Z is integer and all inequalities of Az < b
are satisfied by Z, we have found an optimal solution for (1). Otherwise, there exists a hyperplane
{x € R* : a’z = o} such that a’Z > a and Py C {z € R* : a’z < a}. Such a hyperplane is
called a cutting plane. The problem of finding such a hyperplane is called the separation problem.
More precisely,

given Z € R". Decide, whether € P,,. If not, find some valid inequality a’z < o for P,
such that o’z > a.

It is well known that the separation problem for P and the optimization problem min{cTw tx €
P} are polynomially equivalent, see [30, 31]. Sometimes, the separation problem is restricted to a
certain class of inequalities, in which case we are searching for a violated inequality of that class. If
we are able to find such a cutting plane, we can strengthen the relaxation and continue, for details
see Section 5. This process is iterated until Z is a feasible solution or no more violated inequalities
are found. In the latter case this so-called cutting plane phase is embedded into an enumeration
scheme. This is commonly done by picking some fractional variable Z; that must be binary or
integer and creating two subproblems, one where one requires z; > [Z;], and one where z; < |Z;],
see also the discussions in Section 4. The following algorithm summarizes the whole procedure.

Algorithm 1. (Branch-and-Cut Algorithm)

) Repeat

) Choose a problem IT from L and delete it from L.

) Repeat (iterate)

) Solve the (linear) relaxation of II. Let & be an optimal solution.
) If z is feasible for II, II is solved; goto (10).

) Look for violated inequalities and add them to the LP.
) Until there are no violated inequalities

) Split II into subproblems and add them to L.

0) Until L = 0.

1) Print the optimal solution.

2

The list L is usually organized as a binary tree, the so-called branch-and-bound tree. Each
(sub)problem IT corresponds to a node in the tree, where the unsolved problems are the leaves of
the tree and the node that corresponds to the entire problem (1) is the root. In the remainder of this
section we discuss some issues that can be found in basically every state-of-the-art branch-and-cut
implementation.

LP-Management. We assume that the reader is familiar with linear programming techniques.
A comprehensive treatment of this subject can be found in [17,58]. The method that is commonly
used to solve the LPs within a branch-and-cut algorithm is the dual simplex algorithm, because
an LP basis stays dual feasible when adding cutting planes. There are fast and robust linear
programming solvers available, see, for instance, [39,21].

Nevertheless, one major aspect in the design of a branch-and-cut algorithm is to control the
size of the linear programs. To this end, inequalities are often assigned an “age” (at the beginning



the age is set to 0). Each time the inequality is not tight at the current LP solution, the age is
increased by one. If the inequality gets too old, i.e., the age exceeds a certain limit, the inequality
is eliminated from the LP. The value for this “age limit” varies from application to application.

Another issue of LP-management concerns the questions: When should an inequality be added
to the LP? When is an inequality considered to be “violated”? And, how many and which inequal-
ities should be added? The answers to these questions again depend on the application. It is clear
that one always makes sure that no redundant inequalities are added to the linear program.

A commonly used data structure in this context is the pool. Violated inequalities that are added
to the LP are stored in this data structure. Also inequalities that are eliminated from the LP are
restored in the pool. Reasons for the pool are to reconstruct the LPs when switching from one
node in the branch-and-bound tree to another and to keep inequalities that were “expensive” to
separate for an easier excess in the ongoing solution process.

Heuristics. Raising the lower bound using cutting planes is one important aspect in a branch-
and-cut algorithm, finding good feasible solutions early to enable fathoming of branches of the
search-tree is another. Primal heuristics strongly depend on the application. A very common way
to find feasible solutions for general mixed integer programs is to “plunge” from time to time at
some node of the branch-and-bound tree, i.e., to dive deeper into the tree and look for feasible
solutions. This plunging is done by alternatingly rounding/fixing some variables and solving linear
programs, until all variables are fixed, the LP is infeasible, a feasible solution has been found, or
the LP value exceeds the current best solution. This rounding heuristic can be detached from the
regular branch-and-bound enumeration phase or considered within the global enumeration phase.
The complexity and the sensitivity to the change of the LP solutions influences the frequency in
which the heuristics are called. Some more information hereto can be found, for instance, in [48,
19,11].

Reduced Cost Fizing. The idea is to fix variables by exploiting the reduced costs of the current
optimal LP solution. Let Z = ¢’ % be the objective function value of the current LP solution, 2™
be an upper bound on the value of the optimal solution, and d = (d;)i=1,... ,n the corresponding
reduced cost vector. Consider a non-basic variable z; of the currentIPLfi solution with finite lower
and upper bounds /; and u;, and non-zero reduced cost d;. Set § = ﬁ, rounded down in case x;
is a binary or an integer variable. Now, if x; is currently at its lower bound [; and I; + 6 < u;, the
upper bound of z; can be reduced to I; +§. In case z; is at its upper bound w; and u; — & > [;, the
lower bound of variable z; can be increased to u; —d. In case the new bounds /; and u; coincide, the
variable can be fixed to its bounds and removed from the problem. This strengthening of the bounds
is called reduced cost fizing. It was originally applied for binary variables [20], in which case the
variable can always be fixed if the criterion applies. There are problems where by the reduced cost
criterion many variables can be fixed, see, for instance, [24]. Sometimes, further variables can be
fixed by logical implications, for example, if some binary variable x; is fixed to one by the reduced
cost criterion and it is contained in an SOS constraint (i.e., a constraint of the form 3, ;z; <1
with non-negative variables x;, j € J), all other variables in this SOS constraint can be fixed to
Zero.

Enumeration Aspects. In our description of a branch-and-cut algorithm we left the questions
open which problem to choose in Step (3) and how to split the problem in Step (9). We discuss
these issues in detail in Section 4.

3 Preprocessing

Before entering the branch-and-cut phase as outlined in Section 2 there is usually a preprocessing
step prefixed. Preprocessing aims at eliminating redundant information from the problem formula-
tion given by the user and simultaneously tries to strengthen the formulation by logical implications.
Preprocessing can be very effective and sometimes it might not be possible to solve certain prob-
lems without a good preprocessing. This includes, for instance, Steiner tree problems [42] or set
partitioning problems [12]. Typically, preprocessing is applied only once at the beginning of the
solution procedure, but sometimes it pays to run the preprocessing routine more often on different
nodes in the branch-and-bound phase, see, for instance, [12,37,11]. There is always the question
of the break even point between the running time for preprocessing and the savings in the solution



time for the whole problem. There is no unified answer to this question. It depends on the indi-
vidual problem, when intensive preprocessing pays and when not. In the following we discuss some
preprocessing options and ways to implement them. Most of these options are incorporated in our
code SIP and are drawn from [2,9, 20,37, 64].

We extend our definition of a mixed integer program in (1) slightly and consider it in the
following more general form:

min Lz

s.t. Ax

VoIl IA
S

[<z<u
x € ZN x RY,

where M, N, and C are finite sets with N and C disjoint, A € RM*(NYC) ¢ [ 4 € RVVC b e RM .
If some variable z;, ¢ € N, is binary we have [; = 0 and u; = 1. If some variable z; has no
upper or lower bound, we assume that {; = —oo or u; = +o00. Again we define P = conv{z €
R™ : z is feasible for (2)}. Furthermore, we denote by s; € {<,=, >} the sign of row 4, i.e., (2)
reads min{c’z : Azsb, | <z < u,x € ZY x RY}. In order to avoid too many subcases in the
following discussion we assume without loss of generality that there are no “greater than or equal”
inequalities, i.e., s; € {<,=}. We consider the following cases:

Empty Rows. Suppose there is some row ¢ with no non-zero entry. If

s; = = and bi <0
Tl = |b;] >0

the problem is infeasible, otherwise row ¢ can be removed.
Empty/Infeasible /Fixed Columns. For all columns j check the following: If

lj > uj,
the problem is infeasible. If
u; = lj,

fix column j to its lower (or upper) bound, update the right-hand side, and delete j from the
problem.

Suppose some column j has no non-zero entry. If

{lj:—oo}and{cj>0}
uj; = 00 c; <0

the problem is unbounded (or infeasible in case no feasible solution exists). Otherwise, if

lj > -0 cj > 0 lj
u; < oo pand ¢ ¢; <0 pfix column j to ¢ u;
—lj =u; = & Cj = 0 0

Parallel Rows. Suppose we are given two rows A; xs; b; and Aj.zs;b;. Row ¢ and j are called
parallel if there is some « € R such that a4;. = A;.. The following situations might occur:
1. Conflicting constraints:
(a) §; = ‘:7, S; = ‘:7, and Oébi 7é bj
(b) s; = ‘=", s; = ‘<’, and ab; > b;
(c) s; = ‘<, 55 = ‘<, and ab; > b; (o < 0)
In any of these cases the problem is infeasible.
2. Redundant constraints:
(a) 8y = ‘=", 5; = ‘=", and ab; = b;
(b) s; = ‘=", s; = ‘<’, and ab; < b;
(€) sy = ‘<, 55 = ‘<, and ab; < b; (a>0)



(d) s; =<’y sj = ‘<, and ab; > b (a > 0)
In the first three cases row j is redundant, in (2d) row i.
3. Range constraints:
(a) s; = ‘<, 55 = ‘<, and ab; = b; (a < 0)
The two inequalities can be aggregated into one equation.
(b) s; = ‘<’ sj = ‘<, and ab; < b (a < 0)
In this case both inequalities can be aggregated into one range constraint of the form
Aix+u=1b; WithOSqui—%.
The question remains how to find parallel rows. Tomlin and Welsh [66] describe an efficient
procedure, when the matrix A is stored columnwise, and Andersen and Andersen [2] slightly
refine this approach. The idea is to use a hash function such that rows in different baskets are
not parallel. Possible hash functions are the number of non-zeros, the index of the first and/or
the last index of the row, the coefficient of the first non-zero entry, etc. In practice, the baskets
are rather small so that rows inside one basket can be checked pairwise.

Duality Fixing. Suppose there is some column j with ¢; > 0 that satisfies a;; > 0 if s5; = ‘<,
and a;; = 0if s, = ‘=" fori € M. If [; > —oo, we can fix column j to its lower bound. If
l[; = —oo the problem is unbounded or infeasible. The same arguments apply to some column
J with ¢; < 0. Suppose a;; < 0if s; = ‘<’ a;; =0if 5; = ‘=" fori € M. If u; < oo, we can
fix column j to its upper bound. If u; = oo the problem is unbounded or infeasible.

Singleton Rows. If there is some row ¢ that contains just one non-zero entry a;; # 0, for some
j € N U C say, then we can update the bound of column j in the following way. Initially let
—l; = u; = oo and set

_ . si = ‘<’,a;; >0or
Uj = bz/az] if {Sl 4_7, “

g = =

s; = ‘<,a4 <0 or

lj:b,'/aij lf {S .

If 4; < max{l;,l;} or I; > min{u;,%;} the problem is infeasible. Otherwise, we update the
bounds by setting I; = max{l;,/;} and u; = min{u;,%;} and remove row i. In case variable
x; is integer (binary) we round down u; to the next integer and I; up to the next integer.
If the new bounds coincide we can also delete column j after updating the right-hand side

i = =

accordingly.
Singleton Columns. Suppose there is some column j with just one non-zero entry a;; # 0, for
some ¢ € M say. Let z; be a continuous variable with no upper and lower bounds. If s; = ‘<’

we know after duality firing has been applied that either ¢; < 0 and a;; > 0 or ¢; > 0 and
a;; < 0. In both cases, there is an optimal solution satisfying row ¢ with equality. Thus we can
assume that s; = ‘=". Now, we delete column j and row . After solving the reduced problem
we assign to variable z; the value

bi = D porj QikTh

Ti =
J
Qi

Forcing and Dominated Rows. Here, we exploit the bounds on the variables to detect so-called
forcing and dominated rows. Consider some row ¢ and let

Li= ) ayly+ Y ayu;

JjePr; JEN;
(3)
Ui = E aiju]'+ E aijl]’
JEPR; JEN;

where P; = {j : a;; > 0} and N; = {j : a;; < 0}. Obviously, L; < 2?21 a;jz; < U;. The
following cases might come up:
1. Infeasible row:
(a) s; = ‘=", and L; > b; or U; < b;
(b) s; = ‘<,and L; > b;



In these cases the problem is infeasible.

2. Forcing row:
(a) s, = ‘=", and L; =b; or U; = b;
(b) S; = ‘S’, and Li = bl
Here, all variables in P; can be fixed to its lower (upper) bound and all variables in N; to
its upper (lower) bound when L; = b; (U; = b;). Row i can be deleted afterwards.

3. Redundant row:
(a) s; = ‘<’yand U; < b;.

This row bound analysis can also be used to strengthen the lower and upper bounds of the

variables. Compute for each variable z;

(b; — L;)/as; + 1, if a;; >0
@iy =4 (b; — Ui)/as; +1j, if a;; <0 and s; = =’
(Li —Ui)/aij + 1, if ajj < 0 and 5, = ‘<’

~ (bi—Ui)/aij + ujy, if Q45 >0and s; = ‘=’
lij = (Ll — Ul)/a,] + uj, if Qi > 0and s; = ‘<’
(bz — L,’)/aij + uj, if aj; < 0.

Let @; = min; @;; and I; = max; [;;. If 4; < uj and [; > [, we speak of an implied free variable.
The simplex method might benefit from not updating the bounds but treating variable z; as
a free variable (note, setting the bounds of j to —oo and 400 will not change the feasible
region). Free variables will always be in the basis and are thus useful in finding a starting
basis. For mixed integer programs however, it is better in general to update the bounds by
setting u; = min{u;, ;} and I; = max{l;,;}, because the search region of the variable within
an enumeration scheme is reduced. In case z; is an integer (or binary) variable we round u;
down to the next integer and !; up to the next integer. As an example consider the following
inequality (taken from mod015 from the Miplib):

_45-T6 - 45.1‘30 - 79.1‘54 - 53.1‘78 - 53.1‘102 - 6701‘126 S —443

Since all variables are binary, L; = —945 and U; = 0. For j = 126 we obtain l_ij = (—443 +

945)/ — 670 + 1 = 0.26. After rounding up it follows that z;26 must be one.

Note that with these new lower and upper bounds on the variables it might pay to recompute

the row bounds L; and U;, which again might result in tighter bounds on the variables.
Coefficient Reduction. The row bounds in (3) can also be used to reduce coefficients of binary

variables. Consider some row ¢ with s; = ‘<’ and let z; be a binary variable with a;; # 0.

aj; < 0,U; + aij < b;, set a;j =b; — Uj,

, aly = Ui - b, @
al‘] > OyUZ —au < bl) set { bz = Ul _a/ij7

where a;j denotes the new reduced coefficient. Consider the following inequality of example

p0033 from the Miplib:
—230%10 - 2001‘16 - 400.1‘17 S -5

All variables are binary, U; = 0, and L; = —830. We have U; 4+ a;,10 = —230 < —5 and we can
reduce a;19 to b; — U; = —5. The same can be done for the other coefficients, and we obtain
the inequality

—5x10 — 516 — dx17 < =5

Note that the operation of reducing coefficients to the value of the right-hand side can also be
applied to integer variables if all variables in this row have negative coefficients and lower bound
zero. In addition, we may compute the greatest common divisor of the coeflicients and divide
all coefficients and the right-hand side by this value. In case all involved variables are integer
(or binary) the right-hand side can be rounded down to the next integer. In our example, the
greatest common divisor is 5, and dividing by that number we obtain the set covering inequality

—r10 — T16 — T17 < —1L.



Aggregation. In mixed integer programs very often equations of the form
ai;Tj + a;Tr = by

appear for some i € M, k,j € NUC. In this case, we may replace one of the variables, z, say,
by

bi — aij:z:j

()

In case zy, is binary or integer, the substitution is only possible, if the term (5) is guaran-
teed to be binary or integer as well. If this is true or zj is a continuous variable, we ag-
gregate the two variables. The new bounds of variable z; are {; = max{l;, (b; — aixlr)/ai;}
and u; = min{uj, (b; — apug)/ai;} if ai/a;; < 0, and I; = max{l;, (b; — ajpur)/a;;} and
u; = min{uj, (bl - aiklk)/aij} if aik/aij > 0.

Of course, aggregation can also be applied to equations whose support is greater than two.
However, this might cause additional fill in the matrix. Hence, aggregation is usually restricted
to constraints and columns with small support.

Disaggregation. Disaggregation of columns is to our knowledge not an issue in preprocessing of
mixed integer programs, since this usually blows up the solution space. It is however applied
in interior point algorithms for linear programs, because dense columns result in dense blocks
in the Cholesky decomposition and are thus to be avoided [29].

On the other hand, disaggregation of rows is an important issue for mixed integer programs.
Consider the following inequality (taken from the Miplib-problem p0282)

ik

Tgs + Too + Tos + T100 + T217 + T2 + T227 + Tazz — 8Tags <0 (6)

where all variables involved are binary. The inequality says that whenever one of the variables
x; with ¢ € S := {85,90, 95,100, 217,222,227, 232} is one, x246 must also be one. This fact can
also be expressed by replacing (6) by the following eight inequalities:

T; — Toge <0 for all ¢ € S. (7)

Concerning the LP-relaxation, this formulation is tighter. Whenever any variable in S is one,
Zo46 1s forced to one as well, which is not guaranteed in the original formulation. On the other
hand, one constraint is replaced by many (in our case 8) inequalities, which might blow up
the constraint matrix. However within a cutting plane procedure this problem is not really an
issue, because the inequalities in (7) can be generated on demand.

Probing. Probing is sometimes used in general mixed integer programming codes, see, for instance,
[64]. The idea is to set some binary variable temporarily to zero or one and try to deduce further
fixings from that. These implications can be expressed in inequalities as follows:

o o .%'iZli—f'(Ol—li).%'j
(:L'J_1:>:L'l_a):>{xigui_(ui_a)wj

(8)
z; > a—(a—1;)z;

(xj:():}xi:a):}{xiﬁa—k(ui—a)mj

As an example, suppose we set in (6) variable xa46 temporary to zero. This implies that z; = 0
for all i € S. Applying (8) we deduce the inequality

z; <04+ (1 —0)z246 = T24s
for all i € S which is exactly (7).

In general, all these tests are iteratively applied until all of them fail. In other words, the
original formulation is strengthened as far as possible. Our computational experiences [48] show
that presolve reduces the problem sizes in terms of number of rows, columns, and non-zeros by
around 10%. The time spent in presolve is neglectable (below one per mill). Interesting to note
is also that for some problems presolve is indispensable for their solution. For example, problem
fixnet6 from the Miplib is an instance, where most solvers fail without preprocessing, but with
presolve the instance turns out to be very easy.



4 Branch-and-Bound Strategies

In the general outline of a branch-and-cut algorithm, see Algorithm 1 in Section 2, there are two
steps in the branch-and-bound part that leave some choices. In Step (3) of Algorithm 1 we have to
select the next problem (node) from the list of unsolved problems to work on next, and in Step (9)
we must decide on how to split the problem into subproblems. Popular strategies are to branch on
a variable that is closest to 0.5 and to choose a node with the worst dual bound. In this section we
briefly discuss some more alternatives. We will see that they sometimes outperform the mentioned
standard strategy. For a comprehensive study of branch-and-bound strategies we refer to [43,44]
and the references therein. We assume in this section that a general mixed integer program of the
form (2) is given.

4.1 Node Selection

In the following we discuss three different strategies to select the node to be processed next, see
Step (3) of Algorithm 1.

1. Best First Search (bfs).
Here, a node is chosen with the worst dual bound, i.e., a node with lowest lower bound, since
we are minimizing in (2). The goal is to improve the dual bound. However, if this fails early in
the solution process, the branch-and-bound tree tends to grow considerably resulting in large
memory requirements.

2. Depth First Search (dfs).
This rule chooses the node that is “deepest” in the branch-and-bound tree, i. e., whose path to
the root is longest. The advantages are that the tree tends to stay small, since always one of
the two sons are processed next, if the node could not be fathomed. This fact also implies that
the linear programs from one node to the next are very similar, usually the difference is just
the change of one variable bound and thus the reoptimization goes fast. The main disadvantage
is that the dual bound basically stays untouched during the solution process resulting in bad
solution guarantees.

3. Best Projection.
When selecting a node the most important question is, where are the good (optimal) solutions
hidden in the branch-and-bound tree? In other words, is it possible to guess at some node
whether it contains a better solution? Of course, this is not possible in general. But, there are
some rules that evaluate the nodes according to the potential of having a better solution. One
such rule is best projection. The earliest reference we found for this rule is a paper of Mitra [50]
who gives the credit to J. Hirst. Let z(p) be the dual bound of some node p, z(root) the dual
bound of the root node, Z;» the value of the current best primal solution, and s(p) the sum of
the infeasibilities at node p, i.e., s(p) = >_;cy min{Z; — [%;], [Z;] — Z;}, where 7 is the optimal
LP solution of node p and N the set of all integer variables. Let

~s(p)- 9)

Zp — z(root)

o(p) = 2(p) + 5(root)

The term %&(’T‘)Q can be viewed as a measure for the change in the objective function per

unit decrease in infeasibility. The best projection rule selects the node that minimizes o(-).

The computational tests in [48] show that dfs finds by far the maximal number of feasible
solutions. This indicates that feasible solutions tend to lie deep in the branch-and-bound tree. In
addition, the number of simplex iterations per LP is on average much smaller (around one half)
for dfs than using bfs or best projection. This confirms our statement that reoptimizing a linear
program is fast when just one variable bound is changed. However, dfs forgets to work on the dual
bound. For many more difficult problems the dual bound is not improved resulting in very bad
solution guarantees compared to the other two strategies. Best projection and bfs are doing better
in this respect. There is no clear winner between the two, sometimes best projection outperforms
bfs, but on average bfs is the best. Linderoth and Savelsbergh [44] compare further node selection
strategies and come to a similar conclusion that there is no clear winner and that a sophisticated
MIP solver should allow many different options for node selection.



4.2 Variable Selection

In this section we discuss rules on how to split a problem into subproblems, if it could not be
fathomed in the branch-and-bound tree, see Step (9) of Algorithm 1. The only way to split a
problem within an LP based branch-and-bound algorithm is to branch on linear inequalities in
order to keep the property of having an LP relaxation at hand. The easiest and most common
inequalities are trivial inequalities, i.e., inequalities that split the feasible interval of a singleton
variable. To be more precise, if j is some variable with a fractional value Z; in the current optimal
LP solution, we obtain two subproblems, one by adding the trivial inequality z; < |Z;] (called
the left subproblem or left son) and one by adding the trivial inequality =; > [Z;] (called the right
subproblemn or right son). This rule of branching on trivial inequalities is also called branching on
variables, because it actually does not require to add an inequality, but only to change the bounds
of variable j. Branching on more complicated inequalities or even splitting the problem into more
than two subproblems are rarely incorporated into general solvers, but turn out to be effective in
special cases, see, for instance, [13, 18, 51]. In the following we present three variable selection rules.

1. Most Infeasibility.
This rule chooses the variable that is closest to 0.5. The heuristic reason behind this choice is
that this is a variable where the least tendency can be recognized to which “side” (up or down)
the variable should be rounded. The hope is that a decision on this variable has the greatest
impact on the LP relaxation.
2. Pseudo-costs.
This is a more sophisticated rule in the sense that it keeps a history of the success of the
variables on which one has already branched. To introduce this rule, which goes back to [8],
we need some notation. Let P denote the set of all problems (nodes) except the root node that
have already been solved in the solution process. Initially, this set is empty. PT denotes the
set of all right sons, and P~ the set of all left sons, where P = P+ U P~. For some problem
pEP let
f(p) be the father of problem p.
v(p) be the variable that has been branched on to obtain problem p from the father
f(p).
x(p) be the optimal solution of the final linear program at node p.
z(p) be the optimal objective function value of the final linear program at node p.
The up pseudo-cost of variable j € N is

45+(J) — 1 Z Z(p) — Z(f(p)) (10)

where Pj'" C PT. The down pseudo-cost of variable j € N is

1 z(p) — 2(f(p))

5 (j) = , (1)
| j | _ wv(p) (f(p)) - va(p) (f(p))J
pEP].
— c p- ()= (/1) () (/) :
where F; € P The terms mrbmronT, (o) 204 2 G0N Lew (T TosPectively,

measure the change in the objective function per unit decrease of infeasibility of variable j.
There are many suggestions made on how to choose the sets Pj+ and P, for a survey see [44].
To name one possibility, following the suggestion of Eckstein [22] one could choose PjJr ={pe
Pt : v(p) =j} and P :={pe€ P :v(p) =j} if j has already been considered as a branching
variable, otherwise set Pj+ := P* and P :=P. It remains to discuss how to weight the up
and down pseudo-costs against each other to obtain the final pseudo-costs according to which
the branching variable is selected. Here one typically sets

O(j) = af D7 (j) + a; 27(j), (12)

where a;',aj_ are positive scalars. A variable that maximizes (12) is chosen to be the next

branching variable. As formula (12) shows, the rule takes the previously obtained success of



10

the variables into account when deciding on the next branching variable. The weakness of this
approach is that at the very beginning there is no information available, and &(-) is almost
identical for all variables. Thus, at the beginning where the branching decisions are usually
the most critical the pseudo-costs take no effect. This drawback is tried to overcome in the
following rule.
3. Strong Branching.

The idea of strong branching, invented by CPLEX [38] (see also [3]), is before actually branching
on some variable to test whether it indeed gives some progress. This testing is done by fixing
the variable temporarily to its up and down value, i.e., to [Z;] and |Z;] if Z; is the fractional
LP value of variable j, performing a certain fixed number of dual simplex iterations for each
of the two settings, and measuring the progress in the objective function value. The testing is
done, of course, not only for one variable but for a certain set of variables. Thus, the parameters
of strong branching to be specified are the size of the candidate set, the maximum number of
dual simplex iterations to be performed on each candidate variable, and a criterion according to
which the candidate set is selected. Needless to say that each MIP solver has its own parameter
settings, all are of heuristic nature and that their justification are based only on experimental
results.

The computational experiences in [48] show that branching on a most infeasible variable is by
far the worst, measured in CPU time, in solution quality as well as in the number of branch-and-
bound nodes. Using pseudo-costs gives much better results. The power of pseudo-costs becomes
in particular apparent if the number of solved branch-and-bound nodes is large. In this case the
function @(-) properly represents the variables that are qualified for branching. In addition, the
time necessary to compute the pseudo-costs is basically for free. The statistics change when looking
at strong branching. Strong branching is much more expensive than the other two strategies. This
comes as no surprise, since in general the average number of dual simplex iterations per linear
program is very small (for the Miplib, for instance, below 10 on average). Thus, the testing of a
certain number of variables (even if it is small) in strong branching is relatively expensive. On the
other hand, the number of branch-and-bound nodes is much smaller (around one half) compared
to the pseudo-costs strategy. This decrease, however, does not completely compensate the higher
running times for selecting the variables in general. Thus, strong branching is normally not used
as a default strategy, but can be a good choice for some hard instances. A similar report is given
in [44], where Linderoth and Savelsbergh conclude that there is no branching rule that clearly
dominates the others, though pseudo-cost strategies are essential to solve many instances.

5 Cutting Planes

In this section we discuss cutting planes known from the literature that are incorporated in general
MIP solvers. Cutting planes for integer programs may be classified with regard to the question
whether their derivation requires knowledge about the structure of the underlying constraint ma-
trix. In Section 5.1 we describe cutting planes that do not exploit any structure. An alternative
approach to obtain cutting planes for a mixed integer program follows essentially the scheme to
derive relaxations associated with certain substructures of the underlying constraint matrix, and
tries to find valid inequalities for these relaxations. Crowder, Johnson and Padberg [20] pioneered
this methodology by interpreting each single row of the constraint matrix as a knapsack relaxation
and strengthening the integer program by adding violated knapsack inequalities. This will be the
topic of Section 5.2.

5.1 Cutting Planes Independent of any Problem Structure

Examples of families of cutting planes that do not exploit the structure of the constraint matrix
are mixed integer Gomory cuts [25,27,28,16,62], mixed integer rounding cuts [54], and lift-and-
project cuts [5]. Marchand [45] describes the merits of applying mixed integer rounding cuts, see
also the article by Yves Pochet in this book. Lift-and-project cuts are investigated in [5, 6] and are
comprehensively discussed in the article by Egon Balas in this book.



11

In this section we concentrate on Gomory’s mixed integer cuts. As a warm-up we start with the
pure integer case. We will see that this approach (based on a rounding argument) fails if continuous
variables are involved. In the general mixed integer case a disjunctive argument saves us.

Pure Integer Programs

Consider a pure integer program in the form min{c’z : Az = b,z € 2%} with A, b integer. Set
Py = conv{z € Z't : Az = b}. Let T be an optimal solution of the LP relaxation min{c’z : 2 € P}
with P = {z € R? : Az = b} and B C {1,...,n} be a basis of A with 25 = Ax'b— A 'Ayay
and Zy =0, where N ={1,... ,n} \ B.

If 7 is integer, we terminate with an optimal solution for min{c’z : 2 € P,}. Otherwise, one
of the values Zp must be fractional. Let i € B be some index with Z; ¢ Z. Since every feasible
integral solution x € Py satisfies xp = Aglb - AEIAN:UN,

AT =D AT Ajx € L. (13)
JEN
The term on the left remains integral when adding integer multiples of z;, 7 € N, or an integer to
A; 'b. We obtain

FIATID) = Y F(A Ay € 2, (14)

JEN
where f(a) = a — |a], for a € R. Since 0 < f(*) < 1 and x > 0, we conclude that

FIATTD) = D F(AT Az, <0,

JjEN
or equivalently,

> FAT Az > F(47'D) (15)
JEN
is valid for P;p. Moreover, it is violated by the current linear programming solution Z, since Ty = 0
and f(A;'b) = f(Z;) > 0. After subtracting z; + djen A YA x; = A;Mb from (15) we obtain

mi+ Y LA A ey < LA, (16)
JjEN

which is, when the right-hand side is not rounded, a supporting hyperplane with integer left-hand
side. Moreover, adding this inequality to the system Az = b preserves the property that all data are
integral. Thus, the slack variable that is to be introduced for the new inequality can be required to
be integer as well and the whole procedure can be iterated. In fact, Gomory [28] proves that with
a particular choice of the generating row such cuts lead to a finite algorithm, i.e., after adding a

finite number of inequalities, an integer optimal solution is found.
Later Chvétal [16,62] found a distinct but closely related way of finding a linear description of
P;». He showed when using all supporting hyperplanes with integer left-hand side (an example of
such an hyperplane is given in (16)) and rounding the right-hand sides yields again a polyhedron

that contains Pip. In addition, he proved that iterating this process a finite number of times provides
Pp.

Mixed Integer Programs

The two approaches discussed so far fail when both integer and continuous variables are present.
Chvatal’s approach fails because the right-hand side of a supporting hyperplane cannot be rounded
down. Gomory’s approach fails since it is no longer possible to add integer multiples to continuous
variables to derive (14) from (13). For instance, § + $x1 — 222 € Z with oy € Z4, 7> € R} has a
larger solution set than % + %wl € Z. As a consequence, we cannot guarantee that the coefficients
of the continuous variables are non-negative and therefore show the validity of (15). Nevertheless,
it is possible to derive valid inequalities using the following disjunctive argument.



12

Property 1. Let (a*)Tx < of be a valid inequality for a polyhedron P* for k = 1,2. Then,

[2ad 1

n
Z:min(a1 a?)z; < max(at,a?)
i=1

is valid for both P* U P% and conv(P! U P?).

This property applied in different ways yields valid inequalities for the mixed integer case. We
present Gomory’s mixed integer cuts here, the other two, mixed integer rounding cuts and lift-and-
project-cuts are both more or less also based on Property 1, see the corresponding articles in this
book.

Consider again the situation in (13), where z;,i € B, is required to be integer. We use the
following abbreviations a; = A; ' A.;, b= A;'b, f; = f(a;), fo = f(b),and N* = {j € N : a; >0}
and N~ = N \ N*. Expression (13) is equivalent to >,y a;z; = fo + k for some k € Z. We
distinguish two cases, ZjeN a;xr; > fo >0 and ZjeN a;x; < fo—1 < 0. In the first case,

> ajx; > fo
JENT
must hold. In the second case, we have Z]EN_ a;jz; < fo — 1, which is equivalent to
Jo _
_1 _fo Z a;T; Z fo.

JEN—

Now we apply Property 1 to the disjunction P' = Pip N {z: ;.5 ajz; > 0} and P? = P N{z:
Z]EN a;x; < 0} and obtain the valid inequality

Z a;xT; — ].i—ofo Z a;jzj > fo- (17)

JENT JEN—

This inequality may be strengthened in the following way. Observe that the derivation of (17)
remains unaffected when adding integer multiples to integer variables. By doing this we may put
each integer variable either in the set N* or N~. If a variable is in N, the final coefficient in (17)
is @; and thus the best possible coefficient after adding integer multiples is f; = f(a;). In N~ the

final coefficient in (17) is — L% a; and thus L}m is the best choice. Overall, we obtain the best

1—fo 1-fo
possible coefficient by using min(f;, %}?)) This yields Gomory’s mixed integer cut [26]

1-f;
Y fieit ¥ M

i f5<fo J: f3>fo
j integer j integer
(18)
Fom. fo 7 ..
> A > T 4% = fo-
JENT JENT

j non-integer j non-integer

Gomory [26] shows that an algorithm based on iteratively adding these inequalities solves min{c'z :
z € X} with X = {z € Z% x R}"? : Az = b} in a finite number of steps provided ¢’z € Z for all
reX.

Note that Gomory’s mixed integer cuts can always be applied, the separation problem for the
optimal LP solution is easy. However, adding these inequalities might cause numerical difficulties,
see the discussion in [59]. In [7, 11] it is shown how useful Gomory cuts are if they are incorporated
in the right way.

5.2 Cutting Planes Exploiting Structure

In this section we follow a different route to derive cutting planes and analyze the structure of
the constraint matrix. The idea is to identify some substructure of Az < b and use the polyhedral
knowledge about this substructure to strengthen the original formulation. Let Ajyz; < by with



13

I C M,J C NUC be such a subsystem of (2). If J = N U C, we have that P, C {z €
ZN x RC : Ajz < br} =: P and any cutting plane valid for P, is also valid for Pp. Thus the
task is to identify some substructure where one knows (part of) the polyhedral structure and to
find violated cutting planes for this substructure. This approach was initiated by Crowder, Johnson
and Padberg [20] for 0/1 integer programs, where each row of the constraint matrix was interpreted
as a knapsack problem. Since this approach is still very common to many MIP solvers and is still
very successful, we describe some of the cutting planes known for the 0/1 knapsack polytope that
are used to strengthen general mixed integer programs. In case J is a proper subset of N UC, a
valid inequality for P, is not necessarily valid for Pp. In this case we have to resort to lifting. The
main idea of lifting will be described at the end of this section. As we will see lifting is also useful
to strengthen valid inequalities.

Knapsack Relaxations

Consider the following polytope

Py (N, f, F) := conv{z € {0,1}V : Z fiz; < F} (19)
iEN

with some finite set IV, weights f; € Q, j € N, and a capacity F' € Q. Pg (N, f, F) is called the 0/1
knapsack polytope. We obtain a knapsack relaxation from our integer program (2) by taking some
row ¢ and setting f; = a;; and F' = b;, where we assume that all involved variables are binary. Thus
any valid inequality for Px (N, f, F) is also valid for Pp. In the following we summarize some of
the inequalities known for the 0/1 knapsack polytope that are also used for the solution of integer
programs.

A set S C N is called a cover if its weight exceeds the capacity, i.e., if ;¢ fi > F. With the
cover S one can associate the cover inequality

Z$i§|5|_1

i€S

that is valid for the knapsack polyhedron Pk (N, f, F'). If the cover is minimal, i.e., if ZiES\{s} fi <

F for all s € S, the inequality is called minimal cover inequality (with respect to S). In [4, 56, 36,
68] it was shown that the minimal cover inequality defines a facet of P (S, f, F).

Another well-known class of knapsack inequalities are (1, k)-configuration inequalities that were
introduced by Padberg [57]. A (1, k)-configuration consists of a feasible set S, i.e., a set S such
that ) ;¢ fi < F', plus one additional item z such that every subset of S of cardinality k, together
with z, forms a minimal cover. A (1, k)-configuration S U {z} gives rise to the inequality

Zwi + (S| —k+ 1z, <|5],

i€S

which is called a (1, k) -configuration inequality (with respect to SU{z} ). Note that a minimal cover
S is a (1,]S| — 1)-configuration, and vice versa, a (1, k)-configuration inequality (with respect to
S U{z}) that satisfies k = |S] is a minimal cover. In [57] it was shown that the (1, k)-configuration
inequality defines a facet of Pk (SU{z}, f, F).

Inequalities derived from both covers and (1, k)-configurations are special cases of extended
weight inequalities that have been introduced by Weismantel [67]. Consider a subset T C N with
f(T) < F and let r := F — f(T'). The inequality

Yo+ DY (fi—r)Tw < (D). (20)
ier iEN\T

is called weight inequality with respect to T. It is valid for Pk (N, f, F'). The name weight inequality
reflects that the coefficients of the items in T' equal their original weights and the number r :=
F — f(T) corresponds to the residual capacity of the knapsack when z; = 1 for all ¢ € T'. There



14

is a natural way to extend weight inequalities by (i) replacing the original weights of the items by
relative weights and (ii) resorting to the method of sequential lifting.

Consider again some subset T' C N with f(T) < F, let r = F — f(T) and denote by S the
subset of N\ T such that f; > r for all i € S. The (uniform) extended weight inequality associated
with 7" and some permutation 7y, ...m g of the set S is of the form

S @i+ > wir; < [T, (21)

€T €S

where w;, 7 € S, are the lifting coefficients obtained by applying Algorithm 2 on page 14. These
(uniform) extended weight inequalities subsume the family of minimal cover and (1, k)-configuration
inequalities. They can be generalized to inequalities with arbitrary weights in the starting set T,
see [67].

The separation of minimal cover inequalities is widely discussed in the literature. The complexity
of cover separation has been investigated in [23,41, 32], whereas algorithmic and implementational
issues are treated among others in [20,33,37,61, 71]. The ideas and concepts suggested to separate
cover inequalities basically carry over to extended weight inequalities. Typical features of a sep-
aration algorithm for cover inequalities are: fix all variables that are integer, find a cover (in the
extended weight case some subset T'), and lift the remaining variables sequentially.

Cutting planes derived from knapsack relaxations can sometimes be strengthened if special
ordered set (SOS) inequalities >, o 2; < 1 for some @ C N are available. In connection with a
knapsack inequality these constraints are also called generalized upper bound constraints (GUBs).
It is clear that by taking the additional SOS constraints into account stronger cutting planes may
be derived. This possibility has been studied in [20, 40, 70, 53, 33].

Lifting

As outlined at the beginning of this section and as observed in the description and separation of
knapsack inequalities we are often faced with the following problem.

We are given an inequality Zie[ a;2; < ap that is valid for P N{x € R* : 2; =0forall j €
N\ I} for some I C N. We would like to extend this inequality to a valid inequality of Py and, if
possible, in such a way that it induces a high dimensional face of Py. Or in case Zie] a;x; < Qg
is already facet-defining for the subpolytope (as for instance the minimal cover for Pk (S, f, F)),
we would like to extend the inequality to a facet-defining inequality of P (in the minimal cover
case to a facet-defining inequality of Pk (N, f, F')). One way to solve this problem is the method of
sequential lifting, see [56,68]. The algorithm proceeds in an iterative fashion. It takes into account
step by step a variable ¢ € N \ I, computes an appropriate coefficient a; for this variable and
iterates. We assume in the following that 7y,... ,m,_|;| is a permutation of the items in N\ I.

Algorithm 2. (Sequential lifting)

(1) For k =1 to n — |I| perform the following steps:
(2) For | =1 to u,, perform the following steps:

~v(k,l) = max Z o;x; + Z o;T;

icl ’L’E{Tl’l,...,‘n'kfl}
Z Az + Z Az + AL 1<b
iel i€{my,..., 1}
0<ax; <uj,x; €Zforie IU{ﬂ'l,... ,ﬂ'k_l}.
(3) End(For)
(4) Set
_ : Qo — 7(157 l)
Qp, '= min ———-,
I=1,... ,un, l

(5) End(For)
(6) Stop.

It can be shown by induction on k that the output of this algorithm Zie N @iz < o is a valid
inequality for Pyp. In case, for some k € {m1,... ,m,_ |1/}, the integer program in (2) is infeasible,



15

ie, v(k,1) = —o0, for all I = 1,...,u, we may assign any value to oy and the inequality stays
valid. In fact, the following result is true.

Proposition 1. Let I C N and ;. ; iz < ap an inequality that defines a facet of Py N {x €
R™ : x5 =0 for all j € N\ I}. After applying Algorithm 2, the inequality ),y air; < ag defines
a facet of Pp.

The inequality that results from applying the lifting procedure is dependent on the permutation
of the items in the set V \ I.

Ezxample 1. Consider the knapsack polyhedron
Py = conv{z € {0,1}° : 521 + by + 5x3 + 5x4 + 375 + Sw6 < 17}

The inequality =1 + z2 + z3 + x4 < 3 is valid for P N {z5 = ¢ = 0}. Choosing the permutation
(5,6) yields the inequality x1 + x2 + 3 + x4 + x5 + ¢ < 3. If one chooses the permutation (6,5)
of the items 5 and 6, the resulting inequality reads z; + z2 + x3 + x4 + 226 < 3. Both inequalities
are facet-defining for Pp.

Note that in order to perform the lifting procedure one needs to solve a couple of integer
programs that - at first sight - appear as difficult as the original problem. Sometimes they are
not. For instance, if the integer program is a 0/1 knapsack problem and the starting inequality
Yicr @i < ap is a minimal cover or (1, k)-configuration inequality, the lifting coefficients can
be computed in polynomial time, see [71]. Sometimes it is possible to determine the exact lifting
coefficient without solving integer programs, as was observed by Balas [4] for minimal cover in-
equalities and extended by Weismantel [67] to extended weight inequalities. It is however true that
for many general mixed integer programs the lifting procedure can hardly be implemented in the
way we presented it, because computing the coefficients step by step is just too expensive. In such
cases, one resorts to lower bounds on the coefficients that one obtains from heuristics. Another way
is to look for conditions under which simultaneous lifting of variables is possible. This leads to the
study of superadditive functions [69, 35].

We note that lifting can, of course, also be applied if a variable x; is currently at its upper
bound wu;. In this case, we first “complement” variable x; by replacing it by u; — x;, apply the same
Algorithm 2 and resubstitute the variable afterwards. Lifting (sequential or simultaneous) has also
been applied to general mixed integer programs, see, for instance, [34,47] or in connection with
lift-and-project cuts, see [7,5] and the article in this book.

Computational results about the success of knapsack inequalities with or without GUB con-
straints are given, for instance, in [20,11,19,33,48]. The papers consistently show that knapsack
cuts are crucial for the solution of integer programs that contain knapsack problems as a substruc-
ture.

Of course, knapsack relaxations are not the only ones considered in mixed integer programming
solvers. An analysis of other important relaxations of an integer program allows to incorporate odd
hole and clique inequalities for the stable set polyhedron [55] or flow cover inequalities for certain
mixed integer models [60, 61]. Further recent examples of this second approach are given in [15,47].
More than one knapsack constraint at a time are considered in [49]. Cordier et al. [19] give a nice
survey on which of the mentioned cutting planes help to solve which problems from the Miplib. A
comprehensive survey on cutting planes used to solve integer and mixed integer programs is given
in [46].

6 Conclusions

In this paper we have discussed the basic features of current branch-and-cut algorithms for the
solution of mixed integer programs. We have especially seen that preprocessing, though most of
the ideas are straight-forward, is often very important to solve certain mixed integer programs. We
have also observed that there are various alternative and better strategies for node and variable
selection within the branch-and-bound enumeration scheme than the classical choices of selecting



16

some node deepest in the tree and selecting a variable closest to one half. We also got to know
some cutting planes that are incorporated into todays software. Of course, we could just touch the

Su.

rface of these topics in this survey. The interested reader is most welcome to get deeper into the

field through the cited literature.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. K. Aardal, R. Weismantel, and L.A. Wolsey. Non-standard approaches to integer programming. Tech-
nical Report CORE DP2000/2, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2000.
E. D. Andersen and K. D. Andersen. Presolving in linear programming. Mathematical Programming,
71:221 — 245, 1995.

D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook. Finding cuts in the TSP. Technical Report
95-05, DIMACS, March 1995.

E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146 — 164, 1975.

E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0 — 1
programs. Mathematical Programming, 58:295-324, 1993.

E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-and-cut
framework. Management Science, 42:1229 — 1246, 1996.

E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations Research Letters,
19:1 - 9, 1996.

M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experiments in
mixed-integer programming. Mathematical Programming, 1:76 — 94, 1971.

R. E. Bixby. Lectures on Linear Programming. Rice University, Houston, Texas, Spring 1994.

. R. E. Bixby, S. Ceria, C. McZeal, and M. W. P. Savelsbergh. An updated mixed integer program-
ming library: MIPLIB 3.0. Information on the paper and the problems are available at WWW Page:
http://www.caam.rice.edu/~bixby/miplib/miplib.html, 1998.

R.E. Bixby, M. Fenelon, Z. Guand E. Rothberg, and R. Wunderling. MIP: Theory and practice closing
the gap. Technical report, ILOG Inc., Paris, France, 1999.

R. Borndorfer. Aspects of Set Packing, Partitioning, and Covering. PhD thesis, Technische Universitit
Berlin, 1998.

R. Borndorfer, C. E. Ferreira, and A. Martin. Decomposing matrices into blocks. STAM Journal on
Optimization, 9:236 — 269, 1998.

Alberto Caprara and Matteo Fischetti. Branch-and-cut algorithms. In M. Dell’Amico, F. Maffioli,
and S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages 45—63. John
Wiley & Sons Ltd, Chichester, 1997.

S. Ceria, C. Cordier, H. Marchand, and L. A. Wolsey. Cutting planes for integer programs with general
integer variables. Mathematical Programmaing, 81:201 — 214, 1998.

V. Chvatal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics,
4:305 - 337, 1973.

Vasek Chvéatal. Linear Programming. W. H. Freeman and Company, 1983.

J.M. Clochard and D. Naddef. Using path inequalities in a branch-and-cut code for the symmetric
traveling salesman problem. In Lawrence Wolsey and Giovanni Rinaldi, editors, Proceedings on the
Third IPCO Conference, pages 291-311, 1993.

C. Cordier, H. Marchand, R. Laundy, and L. A. Wolsey. bc — opt: a branch-and-cut code for mixed
integer programs. Mathematical Programming, 86:335 — 354, 1999.

H. Crowder, E. Johnson, and M. W. Padberg. Solving large-scale zero-one linear programming prob-
lems. Operations Research, 31:803-834, 1983.

DASH Associates, Blisworth House, Blisworth, Northants NN7 3BX, UK. XPRESS-MP Optimisation
Subroutine Library, 2001. Information available at URL http://www.dash.co.uk.

J. Eckstein. Parallel branch-and-bound algorithms for general mixed integer programming on the
CM-5. SIAM Journal on Optimization, 4:794 — 814, 1994.

C. E. Ferreira. On Combinatorial Optimization Problems Arising in Computer System Design. PhD
thesis, Technische Universitdt Berlin, 1994.

C. E. Ferreira, A. Martin, and R. Weismantel. Solving multiple knapsack problems by cutting planes.
SIAM Journal on Optimization, 6:858 — 877, 1996.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Society, 64:275 — 278, 1958.

R. E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The RAND
Cooperation, 1960.



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

17

R. E. Gomory. Solving linear programming problems in integers. In R. Bellman and M. Hall, editors,
Combinatorial analysis, Proceedings of Symposia in Applied Mathematics, volume 10, Providence RI,
1960.

R. E. Gomory. An algorithm for integer solutions to linear programming. In R. L. Graves and P. Wolfe,
editors, Recent Advances in Mathematical Programming, pages 269 — 302, New York, 1969. McGraw-
Hill.

J. Gondzio. Presolve analysis of linear programs prior to apply an interior point method. INFORMS
Journal on Computing, 9:73 — 91, 1997.

M. Grétschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1:169 — 197, 1981.

M. Grétschel, L. Lovdsz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer, 1988.

Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Cover inequalities for 0 — 1 linear programs:
complexity. INFORMS Journal on Computing, 11:117 — 123, 1998.

Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Cover inequalities for 0 — 1 linear programs:
computation. INFORMS Journal on Computing, 10:427 — 437, 1998.

Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Lifted flow cover inequalities for mixed 0-1 integer
programs. Mathematical Programming, 85:439 — 468, 1999.

Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Sequence independent lifting in mixed integer
programming. Journal on Combinatorial optimization, 4:109 — 129, 2000.

P. L. Hammer, E. .L. Johnson, and U. N. Peled. Facets of regular 0-1 polytopes. Mathematical
Programming, 8:179 — 206, 1975.

K. L. Hoffman and M. W. Padberg. Improved LP-representations of zero-one linear programs for
branch-and-cut. ORSA Journal on Computing, 3:121-134, 1991.

ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Using the
CPLEX Callable Library, 1997. Information available at URL http://www.cplex.com.

ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Using the
CPLEX Callable Library, 2000. Information available at URL http://www.cplex.com.

E. Johnson and M. W. Padberg. A note on the knapsack problem with special ordered sets. Operations
Research Letters, 1:18 — 22, 1981.

D. Klabjan, G. L. Nemhauser, and C. Tovey. The complexity of cover inequality separation. Operations
Research Letters, 23:35 — 40, 1998.

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:207 —
232, 1998.

A. Land and S. Powell. Computer codes for problems of integer programming. Annals of Discrete
Mathematics, 5:221 — 269, 1979.

J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies for mixed
integer programming. Technical Report LEC-97-12, Georgia Institute of Technology, 1997.

H. Marchand. A Polyhedral Study of the Mized Knapsack Set and its Use to Solve Mized Integer
Programs. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998.

H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey. Cutting planes in integer and mixed integer
programming. Technical Report CORE DP9953, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium, 1999.

H. Marchand and L. A. Wolsey. The 0 — 1 knapsack problem with a single continuous variable.
Mathematical Programmsing, 85:15 — 33, 1999.

A. Martin. Integer programs with block structure. Habilitations-Schrift, Technische Universitit Berlin,
1998.

A. Martin and R. Weismantel. The intersection of knapsack polyhedra and extensions. In R. E. Bixby,
E. A. Boyd, and R. Z. Rfos—Mercado, editors, Integer Programming and Combinatorial Optimization,
Proceedings of the 6th IPCO Conference, pages 243 — 256, 1998.

G. Mitra. Investigations of some branch and bound strategies for the solution of mixed integer linear
programs. Mathematical Programming, 4:155 — 170, 1973.

D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric tsp. In G. Gutin and
A. Punnen, editors, The Traveling Salesman Problem and its Variations. Kluwert, 2001. To appear.
G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger Optimizer.
Operations Research Letters, 15:47 — 58, 1994.

G. L. Nemhauser and P. H. Vance. Lifted cover facets of the 0 — 1 knapsack polytope with GUB
constraints. Operations Research Letters, 16:255 — 263, 1994.

G. L. Nemhauser and L. A. Wolsey. A recursive procedure to generate all cuts for 0 — 1 mixed integer
programs. Mathematical Programming, 46:379 — 390, 1990.

M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5:199—
215, 1973.



18

60.

61.

62.
63.

64.

65.
66.

67.
68.

69.

70.

T1.

. M. W. Padberg. A note on zero-one programming. Operations Research, 23:833-837, 1975.
M. W. Padberg. (1, k)-configurations and facets for packing problems. Mathematical Programming,

18:94-99, 1980.

M. W. Padberg. Linear Optimization and Eztensions. Springer, 1995.

. M. W. Padberg. Classical cuts for mixed-integer programming and branch-and-cut. Technical report,

New York University, 2000. To appear in MMOR.

M. W. Padberg, T. J. Van Roy, and L. A. Wolsey. Valid inequalities for fixed charge problems.

Operations Research, 33:842 — 861, 1985.

T. J. Van Roy and L. A. Wolsey. Solving mixed integer programming problems using automatic

reformulation. Operations Research, 35:45 — 57, 1987.

A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291 — 296, 1980.

Ramesh Sharda. Linear programming solver software for personal computers: 1995 report. OR/MS

Today, 22(5):49 — 57, 1995.

Uwe H. Suhl and R. Szymanski. Supernode processing of mixed-integer models. Computational Opti-

mization and Applications, 3:317 — 331, 1994.

Stefan Thienel. ABACUS A Branch-And-CUt System. PhD thesis, Universitdt zu Koln, 1995.

J. A. Tomlin and J. S. Welsh. Finding duplicate rows in a linear program. Operations Research Letters,

5:7 — 11, 1986.

R. Weismantel. On the 0/1 knapsack polytope. Mathematical Programming, 77:49-68, 1997.

L. A. Wolsey. Faces of linear inequalities in 0-1 variables. Mathematical Programming, 8:165 — 178,

1975.

L. A. Wolsey. Valid inequalities and superadditivity for 0/1 integer programs. Mathematics of Opera-

tions Research, 2:66 — 77, 1977.

L. A. Wolsey. Valid inequalities for 0-1 knapsacks and MIPs with generalized upper bound constraints.

Discrete Applied Mathematics, 29:251-261, 1990.

E. Zemel. Easily computable facets of the knapsack polytope. Mathematics of Operations Research,

14:760 - 764, 1989.



