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Abstrat. In this paper we survey the basi features of state-of-the-art branh-and-ut

algorithms for the solution of general mixed integer programming problems. In partiular we

fous on preproessing tehniques, branh-and-bound issues and utting plane generation.

1 Introdution

A general mixed integer program (MIP) is the problem of optimizing a linear objetive funtion

subjet to a system of linear onstraints, where some or all of the variables are required to be

integer. The solution of general mixed integer programs is one of the hallenging problems in

disrete optimization. The problems that an be modeled as mixed integer programs arise, for

instane, in siene, tehnology, business, and environment, and their number is tremendous. It is

therefore no wonder that many solution methods and odes exist for the solution of mixed integer

programs, and not just a few of them are business oriented, see [63℄ for a survey on ommerial

linear and integer programming solvers.

One of the most suessful methods to solve mixed integer programming problems are branh-

and-ut algorithms. In Setion 2 we outline the priniple struture of a branh-and-ut algorithm.

The main ingredients are preproessing, the solution of the underlying linear programs, branh-

and-bound issues, ut generation, and primal heuristis. Our aim is to give sort of a survey on the

features that state-of-the-art branh-and-ut solvers for mixed integer programs inlude. Most of

the issues presented are pretty muh standard, but our intention is to use this paper more as a

text book and to give the unfamiliar reader of this subjet an impression on how mixed integer

programs are solved today. In detail we fous on preproessing in Setion 3, branh-and-bound

issues in Setion 4, and ut generation in Setion 5.

The software pakage that we use as a basi referene in this paper is SIP, whih is urrently

developed at our institute and ZIB [48℄. As mentioned most of the desribed issues are ommon to

basially all state-of-the-art solvers and there are many other omparable odes that ontain many

of the desribed features. Among them are in partiular ABACUS, developed at the University of

Cologne [65℄, b-opt, developed at CORE [19℄, CPLEX, developed at ILOG [39℄, MIPO, developed

at Columbia University [6℄, MINTO, developed at Georgia Institute of Tehnology [52℄, SYMPHONY,

developed at Cornell University and Lehigh University (see also the artile of Leslie Trotter and

Ted Ralphs in this book), and XPRESS-MP, developed at DASH [21℄.

It is ommon to use the library Miplib [10℄ as test set to evaluate ertain features of a MIP

ode. Miplib is a olletion of real-world mixed integer programming problems. From time to time

we will refer to some instanes from this library to explain ertain phenomena. However, we will

not give omputational results here. The reader interested in onrete running times will �nd them,

for instane, in [11, 19, 44, 48℄.

Of ourse, branh-and-ut algorithms are not the only suessful way to solve general mixed

integer programs. For an exellent survey on alternative approahes, inluding test sets, Gomory's

group approah and basis redution, see [1℄.

2 Branh-and-Cut Algorithms

In this setion we sketh the main ideas of a branh-and-ut algorithm. More details and referenes

on this subjet an be found in the survey artile [14℄. Suppose we want to solve a mixed integer
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program

min 

T

x

s.t. Ax � b;

(1)

where A 2 Q

m�n

;  2 Q

n

; b 2 Q

m

; the variables x

i

(i = 1; : : : ; n) might be binary (x

i

2 f0; 1g),

integer (x

i

2 Z), or ontinuous (x

i

2 R). Let P

IP

= onvfx 2 R

n

: x is feasible for (1)g. The �rst

step of the algorithm is to onsider a relaxation of (1) by hoosing a set P

0

� R

n

with P

IP

� P

0

and to optimize the linear objetive funtion over P

0

. For example, this relaxation might be the

linear programming relaxation minf

T

x : Ax � bg or a semide�nite relaxation. We only onsider

linear relaxations, hene, the set P

0

is always a polyhedron.

Let �x be an optimal solution for the linear relaxation. If �x is integer and all inequalities of Ax � b

are satis�ed by �x, we have found an optimal solution for (1). Otherwise, there exists a hyperplane

fx 2 R

n

: a

T

x = �g suh that a

T

�x > � and P

IP

� fx 2 R

n

: a

T

x � �g. Suh a hyperplane is

alled a utting plane. The problem of �nding suh a hyperplane is alled the separation problem.

More preisely,

given �x 2 R

n

. Deide, whether �x 2 P

IP

. If not, �nd some valid inequality a

T

x � � for P

IP

suh that a

T

�x > �.

It is well known that the separation problem for P

IP

and the optimization problem minf

T

x : x 2

P

IP

g are polynomially equivalent, see [30, 31℄. Sometimes, the separation problem is restrited to a

ertain lass of inequalities, in whih ase we are searhing for a violated inequality of that lass. If

we are able to �nd suh a utting plane, we an strengthen the relaxation and ontinue, for details

see Setion 5. This proess is iterated until �x is a feasible solution or no more violated inequalities

are found. In the latter ase this so-alled utting plane phase is embedded into an enumeration

sheme. This is ommonly done by piking some frational variable �x

i

that must be binary or

integer and reating two subproblems, one where one requires x

i

� d�x

i

e, and one where x

i

� b�x

i

,

see also the disussions in Setion 4. The following algorithm summarizes the whole proedure.

Algorithm 1. (Branh-and-Cut Algorithm)

(1) Let L be a list of unsolved problems. Initialize L with (1).

(2) Repeat

(3) Choose a problem � from L and delete it from L.

(4) Repeat (iterate)

(5) Solve the (linear) relaxation of � . Let �x be an optimal solution.

(6) If �x is feasible for � , � is solved; goto (10).

(7) Look for violated inequalities and add them to the LP.

(8) Until there are no violated inequalities

(9) Split � into subproblems and add them to L.

(10)Until L = ;.

(11)Print the optimal solution.

(12)STOP.

The list L is usually organized as a binary tree, the so-alled branh-and-bound tree. Eah

(sub)problem � orresponds to a node in the tree, where the unsolved problems are the leaves of

the tree and the node that orresponds to the entire problem (1) is the root. In the remainder of this

setion we disuss some issues that an be found in basially every state-of-the-art branh-and-ut

implementation.

LP-Management. We assume that the reader is familiar with linear programming tehniques.

A omprehensive treatment of this subjet an be found in [17, 58℄. The method that is ommonly

used to solve the LPs within a branh-and-ut algorithm is the dual simplex algorithm, beause

an LP basis stays dual feasible when adding utting planes. There are fast and robust linear

programming solvers available, see, for instane, [39, 21℄.

Nevertheless, one major aspet in the design of a branh-and-ut algorithm is to ontrol the

size of the linear programs. To this end, inequalities are often assigned an \age" (at the beginning
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the age is set to 0). Eah time the inequality is not tight at the urrent LP solution, the age is

inreased by one. If the inequality gets too old, i. e., the age exeeds a ertain limit, the inequality

is eliminated from the LP. The value for this \age limit" varies from appliation to appliation.

Another issue of LP-management onerns the questions: When should an inequality be added

to the LP? When is an inequality onsidered to be \violated"? And, how many and whih inequal-

ities should be added? The answers to these questions again depend on the appliation. It is lear

that one always makes sure that no redundant inequalities are added to the linear program.

A ommonly used data struture in this ontext is the pool. Violated inequalities that are added

to the LP are stored in this data struture. Also inequalities that are eliminated from the LP are

restored in the pool. Reasons for the pool are to reonstrut the LPs when swithing from one

node in the branh-and-bound tree to another and to keep inequalities that were \expensive" to

separate for an easier exess in the ongoing solution proess.

Heuristis. Raising the lower bound using utting planes is one important aspet in a branh-

and-ut algorithm, �nding good feasible solutions early to enable fathoming of branhes of the

searh-tree is another. Primal heuristis strongly depend on the appliation. A very ommon way

to �nd feasible solutions for general mixed integer programs is to \plunge" from time to time at

some node of the branh-and-bound tree, i. e., to dive deeper into the tree and look for feasible

solutions. This plunging is done by alternatingly rounding/�xing some variables and solving linear

programs, until all variables are �xed, the LP is infeasible, a feasible solution has been found, or

the LP value exeeds the urrent best solution. This rounding heuristi an be detahed from the

regular branh-and-bound enumeration phase or onsidered within the global enumeration phase.

The omplexity and the sensitivity to the hange of the LP solutions inuenes the frequeny in

whih the heuristis are alled. Some more information hereto an be found, for instane, in [48,

19, 11℄.

Redued Cost Fixing. The idea is to �x variables by exploiting the redued osts of the urrent

optimal LP solution. Let �z = 

T

�x be the objetive funtion value of the urrent LP solution, z

IP

be an upper bound on the value of the optimal solution, and d = (d

i

)

i=1;::: ;n

the orresponding

redued ost vetor. Consider a non-basi variable x

i

of the urrent LP solution with �nite lower

and upper bounds l

i

and u

i

, and non-zero redued ost d

i

. Set Æ =

z

IP

��z

jd

i

j

, rounded down in ase x

j

is a binary or an integer variable. Now, if x

i

is urrently at its lower bound l

i

and l

i

+ Æ < u

i

, the

upper bound of x

i

an be redued to l

i

+ Æ. In ase x

i

is at its upper bound u

i

and u

i

� Æ > l

i

, the

lower bound of variable x

i

an be inreased to u

i

�Æ. In ase the new bounds l

i

and u

i

oinide, the

variable an be �xed to its bounds and removed from the problem. This strengthening of the bounds

is alled redued ost �xing. It was originally applied for binary variables [20℄, in whih ase the

variable an always be �xed if the riterion applies. There are problems where by the redued ost

riterion many variables an be �xed, see, for instane, [24℄. Sometimes, further variables an be

�xed by logial impliations, for example, if some binary variable x

i

is �xed to one by the redued

ost riterion and it is ontained in an SOS onstraint (i. e., a onstraint of the form

P

j2J

x

j

� 1

with non-negative variables x

j

; j 2 J), all other variables in this SOS onstraint an be �xed to

zero.

Enumeration Aspets. In our desription of a branh-and-ut algorithm we left the questions

open whih problem to hoose in Step (3) and how to split the problem in Step (9). We disuss

these issues in detail in Setion 4.

3 Preproessing

Before entering the branh-and-ut phase as outlined in Setion 2 there is usually a preproessing

step pre�xed. Preproessing aims at eliminating redundant information from the problem formula-

tion given by the user and simultaneously tries to strengthen the formulation by logial impliations.

Preproessing an be very e�etive and sometimes it might not be possible to solve ertain prob-

lems without a good preproessing. This inludes, for instane, Steiner tree problems [42℄ or set

partitioning problems [12℄. Typially, preproessing is applied only one at the beginning of the

solution proedure, but sometimes it pays to run the preproessing routine more often on di�erent

nodes in the branh-and-bound phase, see, for instane, [12, 37, 11℄. There is always the question

of the break even point between the running time for preproessing and the savings in the solution
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time for the whole problem. There is no uni�ed answer to this question. It depends on the indi-

vidual problem, when intensive preproessing pays and when not. In the following we disuss some

preproessing options and ways to implement them. Most of these options are inorporated in our

ode SIP and are drawn from [2, 9, 20, 37, 64℄.

We extend our de�nition of a mixed integer program in (1) slightly and onsider it in the

following more general form:

min 

T

x

s.t. Ax

8

<

:

�

=

�

9

=

;

b

l � x � u

x 2 Z

N

� R

C

;

(2)

where M;N , and C are �nite sets with N and C disjoint, A 2 R

M�(N[C)

; ; l; u 2 R

N[C

; b 2 R

M

.

If some variable x

i

; i 2 N; is binary we have l

i

= 0 and u

i

= 1. If some variable x

j

has no

upper or lower bound, we assume that l

j

= �1 or u

j

= +1. Again we de�ne P

IP

= onvfx 2

R

n

: x is feasible for (2)g. Furthermore, we denote by s

i

2 f�;=;�g the sign of row i, i. e., (2)

reads minf

T

x : Axs b; l � x � u; x 2 Z

N

� R

C

g. In order to avoid too many subases in the

following disussion we assume without loss of generality that there are no \greater than or equal"

inequalities, i. e., s

i

2 f�;=g. We onsider the following ases:

Empty Rows. Suppose there is some row i with no non-zero entry. If

s

i

=

�

�

=

�

and

�

b

i

< 0

jb

i

j > 0

�

the problem is infeasible, otherwise row i an be removed.

Empty/Infeasible/Fixed Columns. For all olumns j hek the following: If

l

j

> u

j

;

the problem is infeasible. If

u

j

= l

j

;

�x olumn j to its lower (or upper) bound, update the right-hand side, and delete j from the

problem.

Suppose some olumn j has no non-zero entry. If

�

l

j

= �1

u

j

= 1

�

and

�



j

> 0



j

< 0

�

the problem is unbounded (or infeasible in ase no feasible solution exists). Otherwise, if

8

<

:

l

j

> �1

u

j

< 1

�l

j

= u

j

= 1

9

=

;

and

8

<

:



j

� 0



j

� 0



j

= 0

9

=

;

�x olumn j to

8

<

:

l

j

u

j

0

9

=

;

:

Parallel Rows. Suppose we are given two rows A

i�

x s

i

b

i

and A

j�

x s

j

b

j

. Row i and j are alled

parallel if there is some � 2 R suh that �A

i�

= A

j�

. The following situations might our:

1. Coniting onstraints:

(a) s

i

= `='; s

j

= `=', and �b

i

6= b

j

(b) s

i

= `='; s

j

= `�', and �b

i

> b

j

() s

i

= `�'; s

j

= `�', and �b

i

> b

j

(� < 0)

In any of these ases the problem is infeasible.

2. Redundant onstraints:

(a) s

i

= `='; s

j

= `=', and �b

i

= b

j

(b) s

i

= `='; s

j

= `�', and �b

i

� b

j

() s

i

= `�'; s

j

= `�', and �b

i

� b

j

(� > 0)
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(d) s

i

= `�'; s

j

= `�', and �b

i

> b

j

(� > 0)

In the �rst three ases row j is redundant, in (2d) row i.

3. Range onstraints:

(a) s

i

= `�'; s

j

= `�', and �b

i

= b

j

(� < 0)

The two inequalities an be aggregated into one equation.

(b) s

i

= `�'; s

j

= `�', and �b

i

< b

j

(� < 0)

In this ase both inequalities an be aggregated into one range onstraint of the form

A

i�

x+ u = b

i

with 0 � u � b

i

�

b

j

�

.

The question remains how to �nd parallel rows. Tomlin and Welsh [66℄ desribe an eÆient

proedure, when the matrix A is stored olumnwise, and Andersen and Andersen [2℄ slightly

re�ne this approah. The idea is to use a hash funtion suh that rows in di�erent baskets are

not parallel. Possible hash funtions are the number of non-zeros, the index of the �rst and/or

the last index of the row, the oeÆient of the �rst non-zero entry, et. In pratie, the baskets

are rather small so that rows inside one basket an be heked pairwise.

Duality Fixing. Suppose there is some olumn j with 

j

� 0 that satis�es a

ij

� 0 if s

i

= `�',

and a

ij

= 0 if s

i

= `=' for i 2 M . If l

j

> �1, we an �x olumn j to its lower bound. If

l

j

= �1 the problem is unbounded or infeasible. The same arguments apply to some olumn

j with 

j

� 0. Suppose a

ij

� 0 if s

i

= `�', a

ij

= 0 if s

i

= `=' for i 2 M . If u

j

< 1, we an

�x olumn j to its upper bound. If u

j

=1 the problem is unbounded or infeasible.

Singleton Rows. If there is some row i that ontains just one non-zero entry a

ij

6= 0, for some

j 2 N [ C say, then we an update the bound of olumn j in the following way. Initially let

�

�

l

j

= �u

j

=1 and set

�u

j

= b

i

=a

ij

if

�

s

i

= `�'; a

ij

> 0 or

s

i

= `='

�

l

j

= b

i

=a

ij

if

�

s

i

= `�'; a

ij

< 0 or

s

i

= `='

If �u

j

< maxfl

j

;

�

l

j

g or

�

l

j

> minfu

j

; �u

j

g the problem is infeasible. Otherwise, we update the

bounds by setting l

j

= maxfl

j

;

�

l

j

g and u

j

= minfu

j

; �u

j

g and remove row i. In ase variable

x

j

is integer (binary) we round down u

j

to the next integer and l

j

up to the next integer.

If the new bounds oinide we an also delete olumn j after updating the right-hand side

aordingly.

Singleton Columns. Suppose there is some olumn j with just one non-zero entry a

ij

6= 0, for

some i 2M say. Let x

j

be a ontinuous variable with no upper and lower bounds. If s

i

= `�'

we know after duality �xing has been applied that either 

j

� 0 and a

ij

> 0 or 

j

� 0 and

a

ij

< 0. In both ases, there is an optimal solution satisfying row i with equality. Thus we an

assume that s

i

= `='. Now, we delete olumn j and row i. After solving the redued problem

we assign to variable x

j

the value

x

j

=

b

i

�

P

k 6=j

a

ik

x

k

a

ij

:

Foring and Dominated Rows. Here, we exploit the bounds on the variables to detet so-alled

foring and dominated rows. Consider some row i and let

L

i

=

X

j2P

i

a

ij

l

j

+

X

j2N

i

a

ij

u

j

U

i

=

X

j2P

i

a

ij

u

j

+

X

j2N

i

a

ij

l

j

(3)

where P

i

= fj : a

ij

> 0g and N

i

= fj : a

ij

< 0g. Obviously, L

i

�

P

n

j=1

a

ij

x

j

� U

i

. The

following ases might ome up:

1. Infeasible row:

(a) s

i

= `=', and L

i

> b

i

or U

i

< b

i

(b) s

i

= `�', and L

i

> b

i
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In these ases the problem is infeasible.

2. Foring row:

(a) s

i

= `=', and L

i

= b

i

or U

i

= b

i

(b) s

i

= `�', and L

i

= b

i

Here, all variables in P

i

an be �xed to its lower (upper) bound and all variables in N

i

to

its upper (lower) bound when L

i

= b

i

(U

i

= b

i

). Row i an be deleted afterwards.

3. Redundant row:

(a) s

i

= `�', and U

i

< b

i

.

This row bound analysis an also be used to strengthen the lower and upper bounds of the

variables. Compute for eah variable x

j

�u

ij

=

8

<

:

(b

i

� L

i

)=a

ij

+ l

j

; if a

ij

> 0

(b

i

� U

i

)=a

ij

+ l

j

; if a

ij

< 0 and s

i

= `='

(L

i

� U

i

)=a

ij

+ l

j

; if a

ij

< 0 and s

i

= `�'

�

l

ij

=

8

<

:

(b

i

� U

i

)=a

ij

+ u

j

; if a

ij

> 0 and s

i

= `='

(L

i

� U

i

)=a

ij

+ u

j

; if a

ij

> 0 and s

i

= `�'

(b

i

� L

i

)=a

ij

+ u

j

; if a

ij

< 0:

Let �u

j

= min

i

�u

ij

and

�

l

j

= max

i

�

l

ij

. If �u

j

� u

j

and

�

l

j

� l

j

, we speak of an implied free variable.

The simplex method might bene�t from not updating the bounds but treating variable x

j

as

a free variable (note, setting the bounds of j to �1 and +1 will not hange the feasible

region). Free variables will always be in the basis and are thus useful in �nding a starting

basis. For mixed integer programs however, it is better in general to update the bounds by

setting u

j

= minfu

j

; �u

j

g and l

j

= maxfl

j

;

�

l

j

g, beause the searh region of the variable within

an enumeration sheme is redued. In ase x

j

is an integer (or binary) variable we round u

j

down to the next integer and l

j

up to the next integer. As an example onsider the following

inequality (taken from mod015 from the Miplib):

�45x

6

� 45x

30

� 79x

54

� 53x

78

� 53x

102

� 670x

126

� �443

Sine all variables are binary, L

i

= �945 and U

i

= 0. For j = 126 we obtain

�

l

ij

= (�443 +

945)=� 670 + 1 = 0:26. After rounding up it follows that x

126

must be one.

Note that with these new lower and upper bounds on the variables it might pay to reompute

the row bounds L

i

and U

i

, whih again might result in tighter bounds on the variables.

CoeÆient Redution. The row bounds in (3) an also be used to redue oeÆients of binary

variables. Consider some row i with s

i

= `�' and let x

j

be a binary variable with a

ij

6= 0.

If

8

<

:

a

ij

< 0; U

i

+ a

ij

< b

i

; set a

0

ij

= b

i

� U

i

;

a

ij

> 0; U

i

� a

ij

< b

i

; set

�

a

0

ij

= U

i

� b

i

;

b

i

= U

i

� a

ij

;

(4)

where a

0

ij

denotes the new redued oeÆient. Consider the following inequality of example

p0033 from the Miplib:

�230x

10

� 200x

16

� 400x

17

� �5

All variables are binary, U

i

= 0, and L

i

= �830. We have U

i

+ a

i;10

= �230 < �5 and we an

redue a

i;10

to b

i

� U

i

= �5. The same an be done for the other oeÆients, and we obtain

the inequality

�5x

10

� 5x

16

� 5x

17

� �5

Note that the operation of reduing oeÆients to the value of the right-hand side an also be

applied to integer variables if all variables in this row have negative oeÆients and lower bound

zero. In addition, we may ompute the greatest ommon divisor of the oeÆients and divide

all oeÆients and the right-hand side by this value. In ase all involved variables are integer

(or binary) the right-hand side an be rounded down to the next integer. In our example, the

greatest ommon divisor is 5, and dividing by that number we obtain the set overing inequality

�x

10

� x

16

� x

17

� �1:
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Aggregation. In mixed integer programs very often equations of the form

a

ij

x

j

+ a

ik

x

k

= b

i

appear for some i 2M; k; j 2 N [C. In this ase, we may replae one of the variables, x

k

say,

by

b

i

� a

ij

x

j

a

ik

: (5)

In ase x

k

is binary or integer, the substitution is only possible, if the term (5) is guaran-

teed to be binary or integer as well. If this is true or x

k

is a ontinuous variable, we ag-

gregate the two variables. The new bounds of variable x

j

are l

j

= maxfl

j

; (b

i

� a

ik

l

k

)=a

ij

g

and u

j

= minfu

j

; (b

i

� a

ik

u

k

)=a

ij

g if a

ik

=a

ij

< 0, and l

j

= maxfl

j

; (b

i

� a

ik

u

k

)=a

ij

g and

u

j

= minfu

j

; (b

i

� a

ik

l

k

)=a

ij

g if a

ik

=a

ij

> 0.

Of ourse, aggregation an also be applied to equations whose support is greater than two.

However, this might ause additional �ll in the matrix. Hene, aggregation is usually restrited

to onstraints and olumns with small support.

Disaggregation. Disaggregation of olumns is to our knowledge not an issue in preproessing of

mixed integer programs, sine this usually blows up the solution spae. It is however applied

in interior point algorithms for linear programs, beause dense olumns result in dense bloks

in the Cholesky deomposition and are thus to be avoided [29℄.

On the other hand, disaggregation of rows is an important issue for mixed integer programs.

Consider the following inequality (taken from the Miplib-problem p0282)

x

85

+ x

90

+ x

95

+ x

100

+ x

217

+ x

222

+ x

227

+ x

232

� 8x

246

� 0 (6)

where all variables involved are binary. The inequality says that whenever one of the variables

x

i

with i 2 S := f85; 90; 95; 100; 217; 222; 227; 232g is one, x

246

must also be one. This fat an

also be expressed by replaing (6) by the following eight inequalities:

x

i

� x

246

� 0 for all i 2 S: (7)

Conerning the LP-relaxation, this formulation is tighter. Whenever any variable in S is one,

x

246

is fored to one as well, whih is not guaranteed in the original formulation. On the other

hand, one onstraint is replaed by many (in our ase 8) inequalities, whih might blow up

the onstraint matrix. However within a utting plane proedure this problem is not really an

issue, beause the inequalities in (7) an be generated on demand.

Probing. Probing is sometimes used in general mixed integer programming odes, see, for instane,

[64℄. The idea is to set some binary variable temporarily to zero or one and try to dedue further

�xings from that. These impliations an be expressed in inequalities as follows:

(x

j

= 1) x

i

= �))

�

x

i

� l

i

+ (�� l

i

)x

j

x

i

� u

i

� (u

i

� �)x

j

(x

j

= 0) x

i

= �))

�

x

i

� �� (�� l

i

)x

j

x

i

� �+ (u

i

� �)x

j

(8)

As an example, suppose we set in (6) variable x

246

temporary to zero. This implies that x

i

= 0

for all i 2 S. Applying (8) we dedue the inequality

x

i

� 0 + (1� 0)x

246

= x

246

for all i 2 S whih is exatly (7).

In general, all these tests are iteratively applied until all of them fail. In other words, the

original formulation is strengthened as far as possible. Our omputational experienes [48℄ show

that presolve redues the problem sizes in terms of number of rows, olumns, and non-zeros by

around 10%. The time spent in presolve is negletable (below one per mill). Interesting to note

is also that for some problems presolve is indispensable for their solution. For example, problem

�xnet6 from the Miplib is an instane, where most solvers fail without preproessing, but with

presolve the instane turns out to be very easy.
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4 Branh-and-Bound Strategies

In the general outline of a branh-and-ut algorithm, see Algorithm 1 in Setion 2, there are two

steps in the branh-and-bound part that leave some hoies. In Step (3) of Algorithm 1 we have to

selet the next problem (node) from the list of unsolved problems to work on next, and in Step (9)

we must deide on how to split the problem into subproblems. Popular strategies are to branh on

a variable that is losest to 0:5 and to hoose a node with the worst dual bound. In this setion we

briey disuss some more alternatives. We will see that they sometimes outperform the mentioned

standard strategy. For a omprehensive study of branh-and-bound strategies we refer to [43, 44℄

and the referenes therein. We assume in this setion that a general mixed integer program of the

form (2) is given.

4.1 Node Seletion

In the following we disuss three di�erent strategies to selet the node to be proessed next, see

Step (3) of Algorithm 1.

1. Best First Searh (bfs).

Here, a node is hosen with the worst dual bound, i. e., a node with lowest lower bound, sine

we are minimizing in (2). The goal is to improve the dual bound. However, if this fails early in

the solution proess, the branh-and-bound tree tends to grow onsiderably resulting in large

memory requirements.

2. Depth First Searh (dfs).

This rule hooses the node that is \deepest" in the branh-and-bound tree, i. e., whose path to

the root is longest. The advantages are that the tree tends to stay small, sine always one of

the two sons are proessed next, if the node ould not be fathomed. This fat also implies that

the linear programs from one node to the next are very similar, usually the di�erene is just

the hange of one variable bound and thus the reoptimization goes fast. The main disadvantage

is that the dual bound basially stays untouhed during the solution proess resulting in bad

solution guarantees.

3. Best Projetion.

When seleting a node the most important question is, where are the good (optimal) solutions

hidden in the branh-and-bound tree? In other words, is it possible to guess at some node

whether it ontains a better solution? Of ourse, this is not possible in general. But, there are

some rules that evaluate the nodes aording to the potential of having a better solution. One

suh rule is best projetion. The earliest referene we found for this rule is a paper of Mitra [50℄

who gives the redit to J. Hirst. Let z(p) be the dual bound of some node p, z(root) the dual

bound of the root node, �z

IP

the value of the urrent best primal solution, and s(p) the sum of

the infeasibilities at node p, i. e., s(p) =

P

i2N

minf�x

i

�b�x

i

; d�x

i

e� �x

i

g, where �x is the optimal

LP solution of node p and N the set of all integer variables. Let

%(p) = z(p) +

�z

IP

� z(root)

s(root)

� s(p): (9)

The term

�z

IP

�z(root)

s(root)

an be viewed as a measure for the hange in the objetive funtion per

unit derease in infeasibility. The best projetion rule selets the node that minimizes %(�).

The omputational tests in [48℄ show that dfs �nds by far the maximal number of feasible

solutions. This indiates that feasible solutions tend to lie deep in the branh-and-bound tree. In

addition, the number of simplex iterations per LP is on average muh smaller (around one half)

for dfs than using bfs or best projetion. This on�rms our statement that reoptimizing a linear

program is fast when just one variable bound is hanged. However, dfs forgets to work on the dual

bound. For many more diÆult problems the dual bound is not improved resulting in very bad

solution guarantees ompared to the other two strategies. Best projetion and bfs are doing better

in this respet. There is no lear winner between the two, sometimes best projetion outperforms

bfs, but on average bfs is the best. Linderoth and Savelsbergh [44℄ ompare further node seletion

strategies and ome to a similar onlusion that there is no lear winner and that a sophistiated

MIP solver should allow many di�erent options for node seletion.
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4.2 Variable Seletion

In this setion we disuss rules on how to split a problem into subproblems, if it ould not be

fathomed in the branh-and-bound tree, see Step (9) of Algorithm 1. The only way to split a

problem within an LP based branh-and-bound algorithm is to branh on linear inequalities in

order to keep the property of having an LP relaxation at hand. The easiest and most ommon

inequalities are trivial inequalities, i. e., inequalities that split the feasible interval of a singleton

variable. To be more preise, if j is some variable with a frational value �x

j

in the urrent optimal

LP solution, we obtain two subproblems, one by adding the trivial inequality x

j

� b�x

j

 (alled

the left subproblem or left son) and one by adding the trivial inequality x

j

� d�x

j

e (alled the right

subproblem or right son). This rule of branhing on trivial inequalities is also alled branhing on

variables, beause it atually does not require to add an inequality, but only to hange the bounds

of variable j. Branhing on more ompliated inequalities or even splitting the problem into more

than two subproblems are rarely inorporated into general solvers, but turn out to be e�etive in

speial ases, see, for instane, [13, 18, 51℄. In the following we present three variable seletion rules.

1. Most Infeasibility.

This rule hooses the variable that is losest to 0:5. The heuristi reason behind this hoie is

that this is a variable where the least tendeny an be reognized to whih \side" (up or down)

the variable should be rounded. The hope is that a deision on this variable has the greatest

impat on the LP relaxation.

2. Pseudo-osts.

This is a more sophistiated rule in the sense that it keeps a history of the suess of the

variables on whih one has already branhed. To introdue this rule, whih goes bak to [8℄,

we need some notation. Let P denote the set of all problems (nodes) exept the root node that

have already been solved in the solution proess. Initially, this set is empty. P

+

denotes the

set of all right sons, and P

�

the set of all left sons, where P = P

+

[ P

�

. For some problem

p 2 P let

f(p) be the father of problem p.

v(p) be the variable that has been branhed on to obtain problem p from the father

f(p).

x(p) be the optimal solution of the �nal linear program at node p.

z(p) be the optimal objetive funtion value of the �nal linear program at node p.

The up pseudo-ost of variable j 2 N is

�

+

(j) =

1

jP

+

j

j

X

p2P

+

j

z(p)� z(f(p))

dx

v(p)

(f(p))e � x

v(p)

(f(p))

; (10)

where P

+

j

� P

+

. The down pseudo-ost of variable j 2 N is

�

�

(j) =

1

jP

�

j

j

X

p2P

�

j

z(p)� z(f(p))

x

v(p)

(f(p))� bx

v(p)

(f(p))

; (11)

where P

�

j

� P

�

. The terms

z(p)�z(f(p))

dx

v(p)

(f(p))e�x

v(p)

(f(p))

and

z(p)�z(f(p))

x

v(p)

(f(p))�bx

v(p)

(f(p))

, respetively,

measure the hange in the objetive funtion per unit derease of infeasibility of variable j.

There are many suggestions made on how to hoose the sets P

+

j

and P

�

j

, for a survey see [44℄.

To name one possibility, following the suggestion of Ekstein [22℄ one ould hoose P

+

j

:= fp 2

P

+

: v(p) = jg and P

�

j

:= fp 2 P

�

: v(p) = jg, if j has already been onsidered as a branhing

variable, otherwise set P

+

j

:= P

+

and P

�

j

:= P

�

. It remains to disuss how to weight the up

and down pseudo-osts against eah other to obtain the �nal pseudo-osts aording to whih

the branhing variable is seleted. Here one typially sets

�(j) = �

+

j

�

+

(j) + �

�

j

�

�

(j); (12)

where �

+

j

; �

�

j

are positive salars. A variable that maximizes (12) is hosen to be the next

branhing variable. As formula (12) shows, the rule takes the previously obtained suess of
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the variables into aount when deiding on the next branhing variable. The weakness of this

approah is that at the very beginning there is no information available, and �(�) is almost

idential for all variables. Thus, at the beginning where the branhing deisions are usually

the most ritial the pseudo-osts take no e�et. This drawbak is tried to overome in the

following rule.

3. Strong Branhing.

The idea of strong branhing, invented by CPLEX [38℄ (see also [3℄), is before atually branhing

on some variable to test whether it indeed gives some progress. This testing is done by �xing

the variable temporarily to its up and down value, i. e., to d�x

j

e and b�x

j

 if �x

j

is the frational

LP value of variable j, performing a ertain �xed number of dual simplex iterations for eah

of the two settings, and measuring the progress in the objetive funtion value. The testing is

done, of ourse, not only for one variable but for a ertain set of variables. Thus, the parameters

of strong branhing to be spei�ed are the size of the andidate set, the maximum number of

dual simplex iterations to be performed on eah andidate variable, and a riterion aording to

whih the andidate set is seleted. Needless to say that eah MIP solver has its own parameter

settings, all are of heuristi nature and that their justi�ation are based only on experimental

results.

The omputational experienes in [48℄ show that branhing on a most infeasible variable is by

far the worst, measured in CPU time, in solution quality as well as in the number of branh-and-

bound nodes. Using pseudo-osts gives muh better results. The power of pseudo-osts beomes

in partiular apparent if the number of solved branh-and-bound nodes is large. In this ase the

funtion �(�) properly represents the variables that are quali�ed for branhing. In addition, the

time neessary to ompute the pseudo-osts is basially for free. The statistis hange when looking

at strong branhing. Strong branhing is muh more expensive than the other two strategies. This

omes as no surprise, sine in general the average number of dual simplex iterations per linear

program is very small (for the Miplib, for instane, below 10 on average). Thus, the testing of a

ertain number of variables (even if it is small) in strong branhing is relatively expensive. On the

other hand, the number of branh-and-bound nodes is muh smaller (around one half) ompared

to the pseudo-osts strategy. This derease, however, does not ompletely ompensate the higher

running times for seleting the variables in general. Thus, strong branhing is normally not used

as a default strategy, but an be a good hoie for some hard instanes. A similar report is given

in [44℄, where Linderoth and Savelsbergh onlude that there is no branhing rule that learly

dominates the others, though pseudo-ost strategies are essential to solve many instanes.

5 Cutting Planes

In this setion we disuss utting planes known from the literature that are inorporated in general

MIP solvers. Cutting planes for integer programs may be lassi�ed with regard to the question

whether their derivation requires knowledge about the struture of the underlying onstraint ma-

trix. In Setion 5.1 we desribe utting planes that do not exploit any struture. An alternative

approah to obtain utting planes for a mixed integer program follows essentially the sheme to

derive relaxations assoiated with ertain substrutures of the underlying onstraint matrix, and

tries to �nd valid inequalities for these relaxations. Crowder, Johnson and Padberg [20℄ pioneered

this methodology by interpreting eah single row of the onstraint matrix as a knapsak relaxation

and strengthening the integer program by adding violated knapsak inequalities. This will be the

topi of Setion 5.2.

5.1 Cutting Planes Independent of any Problem Struture

Examples of families of utting planes that do not exploit the struture of the onstraint matrix

are mixed integer Gomory uts [25, 27, 28, 16, 62℄, mixed integer rounding uts [54℄, and lift-and-

projet uts [5℄. Marhand [45℄ desribes the merits of applying mixed integer rounding uts, see

also the artile by Yves Pohet in this book. Lift-and-projet uts are investigated in [5, 6℄ and are

omprehensively disussed in the artile by Egon Balas in this book.
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In this setion we onentrate on Gomory's mixed integer uts. As a warm-up we start with the

pure integer ase. We will see that this approah (based on a rounding argument) fails if ontinuous

variables are involved. In the general mixed integer ase a disjuntive argument saves us.

Pure Integer Programs

Consider a pure integer program in the form minf

T

x : Ax = b; x 2 Z

n

+

g with A, b integer. Set

P

IP

= onvfx 2 Z

n

+

: Ax = bg. Let �x be an optimal solution of the LP relaxation minf

T

x : x 2 Pg

with P = fx 2 R

n

+

: Ax = bg and B � f1; : : : ; ng be a basis of A with �x

B

= A

�1

B

b � A

�1

B

A

N

x

N

and �x

N

= 0, where N = f1; : : : ; ng nB.

If �x is integer, we terminate with an optimal solution for minf

T

x : x 2 P

IP

g. Otherwise, one

of the values �x

B

must be frational. Let i 2 B be some index with �x

i

=2 Z. Sine every feasible

integral solution x 2 P

IP

satis�es x

B

= A

�1

B

b�A

�1

B

A

N

x

N

,

A

�1

i�

b�

X

j2N

A

�1

i�

A

�j

x

j

2 Z: (13)

The term on the left remains integral when adding integer multiples of x

j

; j 2 N; or an integer to

A

�1

i�

b. We obtain

f(A

�1

i�

b)�

X

j2N

f(A

�1

i�

A

�j

)x

j

2 Z; (14)

where f(�) = �� b�, for � 2 R. Sine 0 � f(�) < 1 and x � 0, we onlude that

f(A

�1

i�

b)�

X

j2N

f(A

�1

i�

A

�j

)x

j

� 0;

or equivalently,

X

j2N

f(A

�1

i�

A

�j

)x

j

� f(A

�1

i�

b) (15)

is valid for P

IP

. Moreover, it is violated by the urrent linear programming solution �x, sine �x

N

= 0

and f(A

�1

i�

b) = f(�x

i

) > 0. After subtrating x

i

+

P

j2N

A

�1

i�

A

�j

x

j

= A

�1

i�

b from (15) we obtain

x

i

+

X

j2N

bA

�1

i�

A

�j

x

j

� bA

�1

i�

b; (16)

whih is, when the right-hand side is not rounded, a supporting hyperplane with integer left-hand

side. Moreover, adding this inequality to the system Ax = b preserves the property that all data are

integral. Thus, the slak variable that is to be introdued for the new inequality an be required to

be integer as well and the whole proedure an be iterated. In fat, Gomory [28℄ proves that with

a partiular hoie of the generating row suh uts lead to a �nite algorithm, i. e., after adding a

�nite number of inequalities, an integer optimal solution is found.

Later Chv�atal [16, 62℄ found a distint but losely related way of �nding a linear desription of

P

IP

. He showed when using all supporting hyperplanes with integer left-hand side (an example of

suh an hyperplane is given in (16)) and rounding the right-hand sides yields again a polyhedron

that ontains P

IP

. In addition, he proved that iterating this proess a �nite number of times provides

P

IP

.

Mixed Integer Programs

The two approahes disussed so far fail when both integer and ontinuous variables are present.

Chv�atal's approah fails beause the right-hand side of a supporting hyperplane annot be rounded

down. Gomory's approah fails sine it is no longer possible to add integer multiples to ontinuous

variables to derive (14) from (13). For instane,

1

3

+

1

3

x

1

� 2x

2

2 Z with x

1

2 Z

+

; x

2

2 R

+

has a

larger solution set than

1

3

+

1

3

x

1

2 Z. As a onsequene, we annot guarantee that the oeÆients

of the ontinuous variables are non-negative and therefore show the validity of (15). Nevertheless,

it is possible to derive valid inequalities using the following disjuntive argument.
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Property 1. Let (a

k

)

T

x � �

k

be a valid inequality for a polyhedron P

k

for k = 1; 2. Then,

n

X

i=1

min(a

1

i

; a

2

i

)x

i

� max(�

1

; �

2

)

is valid for both P

1

[ P

2

and onv(P

1

[ P

2

).

This property applied in di�erent ways yields valid inequalities for the mixed integer ase. We

present Gomory's mixed integer uts here, the other two, mixed integer rounding uts and lift-and-

projet-uts are both more or less also based on Property 1, see the orresponding artiles in this

book.

Consider again the situation in (13), where x

i

; i 2 B; is required to be integer. We use the

following abbreviations �a

j

= A

�1

i�

A

�j

,

�

b = A

�1

i�

b; f

j

= f(�a

j

); f

0

= f(

�

b), and N

+

= fj 2 N : �a

j

� 0g

and N

�

= N n N

+

. Expression (13) is equivalent to

P

j2N

�a

j

x

j

= f

0

+ k for some k 2 Z. We

distinguish two ases,

P

j2N

�a

j

x

j

� f

0

� 0 and

P

j2N

�a

j

x

j

� f

0

� 1 < 0. In the �rst ase,

X

j2N

+

�a

j

x

j

� f

0

must hold. In the seond ase, we have

P

j2N

�

�a

j

x

j

� f

0

� 1, whih is equivalent to

�

f

0

1� f

0

X

j2N

�

�a

j

x

j

� f

0

:

Now we apply Property 1 to the disjuntion P

1

= P

IP

\ fx :

P

j2N

�a

j

x

j

� 0g and P

2

= P

IP

\ fx :

P

j2N

�a

j

x

j

� 0g and obtain the valid inequality

X

j2N

+

�a

j

x

j

�

f

0

1� f

0

X

j2N

�

�a

j

x

j

� f

0

: (17)

This inequality may be strengthened in the following way. Observe that the derivation of (17)

remains una�eted when adding integer multiples to integer variables. By doing this we may put

eah integer variable either in the set N

+

or N

�

. If a variable is in N

+

, the �nal oeÆient in (17)

is �a

j

and thus the best possible oeÆient after adding integer multiples is f

j

= f(�a

j

). In N

�

the

�nal oeÆient in (17) is �

f

0

1�f

0

�a

j

and thus

f

0

(1�f

j

)

1�f

0

is the best hoie. Overall, we obtain the best

possible oeÆient by using min(f

j

;

f

0

(1�f

j

)

1�f

0

). This yields Gomory's mixed integer ut [26℄

P

j: f

j

�f

0

j integer

f

j

x

j

+

P

j: f

j

>f

0

j integer

f

0

(1�f

j

)

1�f

0

x

j

+

P

j2N

+

j non-integer

�a

j

x

j

�

P

j2N

�

j non-integer

f

0

1�f

0

�a

j

x

j

� f

0

:

(18)

Gomory [26℄ shows that an algorithm based on iteratively adding these inequalities solves minf

T

x :

x 2 Xg with X = fx 2 Z

p

+

� R

n�p

+

: Ax = bg in a �nite number of steps provided 

T

x 2 Z for all

x 2 X .

Note that Gomory's mixed integer uts an always be applied, the separation problem for the

optimal LP solution is easy. However, adding these inequalities might ause numerial diÆulties,

see the disussion in [59℄. In [7, 11℄ it is shown how useful Gomory uts are if they are inorporated

in the right way.

5.2 Cutting Planes Exploiting Struture

In this setion we follow a di�erent route to derive utting planes and analyze the struture of

the onstraint matrix. The idea is to identify some substruture of Ax � b and use the polyhedral

knowledge about this substruture to strengthen the original formulation. Let A

IJ

x

J

� b

I

with
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I � M;J � N [ C be suh a subsystem of (2). If J = N [ C, we have that P

IP

� fx 2

Z

N

� R

C

: A

I�

x � b

I

g =: P

rel

and any utting plane valid for P

rel

is also valid for P

IP

. Thus the

task is to identify some substruture where one knows (part of) the polyhedral struture and to

�nd violated utting planes for this substruture. This approah was initiated by Crowder, Johnson

and Padberg [20℄ for 0=1 integer programs, where eah row of the onstraint matrix was interpreted

as a knapsak problem. Sine this approah is still very ommon to many MIP solvers and is still

very suessful, we desribe some of the utting planes known for the 0=1 knapsak polytope that

are used to strengthen general mixed integer programs. In ase J is a proper subset of N [ C, a

valid inequality for P

rel

is not neessarily valid for P

IP

. In this ase we have to resort to lifting. The

main idea of lifting will be desribed at the end of this setion. As we will see lifting is also useful

to strengthen valid inequalities.

Knapsak Relaxations

Consider the following polytope

P

K

(N; f; F ) := onvfx 2 f0; 1g

N

:

X

i2N

f

j

x

j

� Fg (19)

with some �nite set N , weights f

j

2 Q; j 2 N; and a apaity F 2 Q. P

K

(N; f; F ) is alled the 0=1

knapsak polytope. We obtain a knapsak relaxation from our integer program (2) by taking some

row i and setting f

j

= a

ij

and F = b

i

, where we assume that all involved variables are binary. Thus

any valid inequality for P

K

(N; f; F ) is also valid for P

IP

. In the following we summarize some of

the inequalities known for the 0=1 knapsak polytope that are also used for the solution of integer

programs.

A set S � N is alled a over if its weight exeeds the apaity, i. e., if

P

i2S

f

i

> F . With the

over S one an assoiate the over inequality

X

i2S

x

i

� jSj � 1

that is valid for the knapsak polyhedron P

K

(N; f; F ). If the over is minimal, i. e., if

P

i2Snfsg

f

i

�

F for all s 2 S, the inequality is alled minimal over inequality (with respet to S). In [4, 56, 36,

68℄ it was shown that the minimal over inequality de�nes a faet of P

K

(S; f; F ).

Another well-known lass of knapsak inequalities are (1; k)-on�guration inequalities that were

introdued by Padberg [57℄. A (1; k)-on�guration onsists of a feasible set S, i. e., a set S suh

that

P

i2S

f

i

� F , plus one additional item z suh that every subset of S of ardinality k, together

with z, forms a minimal over. A (1; k)-on�guration S [ fzg gives rise to the inequality

X

i2S

x

i

+ (jSj � k + 1)x

z

� jSj;

whih is alled a (1; k)-on�guration inequality (with respet to S[fzg). Note that a minimal over

S is a (1; jSj � 1)-on�guration, and vie versa, a (1; k)-on�guration inequality (with respet to

S [fzg) that satis�es k = jSj is a minimal over. In [57℄ it was shown that the (1; k)-on�guration

inequality de�nes a faet of P

K

(S [ fzg; f; F ).

Inequalities derived from both overs and (1; k)-on�gurations are speial ases of extended

weight inequalities that have been introdued by Weismantel [67℄. Consider a subset T � N with

f(T ) < F and let r := F � f(T ). The inequality

X

i2T

f

i

x

i

+

X

i2NnT

(f

i

� r)

+

x

i

� f(T ): (20)

is alled weight inequality with respet to T . It is valid for P

K

(N; f; F ). The name weight inequality

reets that the oeÆients of the items in T equal their original weights and the number r :=

F � f(T ) orresponds to the residual apaity of the knapsak when x

i

= 1 for all i 2 T . There
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is a natural way to extend weight inequalities by (i) replaing the original weights of the items by

relative weights and (ii) resorting to the method of sequential lifting.

Consider again some subset T � N with f(T ) � F , let r = F � f(T ) and denote by S the

subset of N n T suh that f

i

� r for all i 2 S. The (uniform) extended weight inequality assoiated

with T and some permutation �

1

; : : : �

jSj

of the set S is of the form

X

i2T

x

i

+

X

i2S

w

i

x

i

� jT j; (21)

where w

i

; i 2 S; are the lifting oeÆients obtained by applying Algorithm 2 on page 14. These

(uniform) extended weight inequalities subsume the family of minimal over and (1; k)-on�guration

inequalities. They an be generalized to inequalities with arbitrary weights in the starting set T ,

see [67℄.

The separation of minimal over inequalities is widely disussed in the literature. The omplexity

of over separation has been investigated in [23, 41, 32℄, whereas algorithmi and implementational

issues are treated among others in [20, 33, 37, 61, 71℄. The ideas and onepts suggested to separate

over inequalities basially arry over to extended weight inequalities. Typial features of a sep-

aration algorithm for over inequalities are: �x all variables that are integer, �nd a over (in the

extended weight ase some subset T ), and lift the remaining variables sequentially.

Cutting planes derived from knapsak relaxations an sometimes be strengthened if speial

ordered set (SOS) inequalities

P

i2Q

x

i

� 1 for some Q � N are available. In onnetion with a

knapsak inequality these onstraints are also alled generalized upper bound onstraints (GUBs).

It is lear that by taking the additional SOS onstraints into aount stronger utting planes may

be derived. This possibility has been studied in [20, 40, 70, 53, 33℄.

Lifting

As outlined at the beginning of this setion and as observed in the desription and separation of

knapsak inequalities we are often faed with the following problem.

We are given an inequality

P

i2I

�

i

x

i

� �

0

that is valid for P

IP

\ fx 2 R

n

: x

j

= 0 for all j 2

N n Ig for some I � N . We would like to extend this inequality to a valid inequality of P

IP

and, if

possible, in suh a way that it indues a high dimensional fae of P

IP

. Or in ase

P

i2I

�

i

x

i

� �

0

is already faet-de�ning for the subpolytope (as for instane the minimal over for P

K

(S; f; F )),

we would like to extend the inequality to a faet-de�ning inequality of P

IP

(in the minimal over

ase to a faet-de�ning inequality of P

K

(N; f; F )). One way to solve this problem is the method of

sequential lifting, see [56, 68℄. The algorithm proeeds in an iterative fashion. It takes into aount

step by step a variable i 2 N n I , omputes an appropriate oeÆient �

i

for this variable and

iterates. We assume in the following that �

1

; : : : ; �

n�jIj

is a permutation of the items in N n I .

Algorithm 2. (Sequential lifting)

(1) For k = 1 to n� jI j perform the following steps:

(2) For l = 1 to u

�

k

perform the following steps:

(k; l) = max

X

i2I

�

i

x

i

+

X

i2f�

1

;::: ;�

k�1

g

�

i

x

i

X

i2I

A

�i

x

i

+

X

i2f�

1

;::: ;�

k�1

g

A

�i

x

i

+A

��

k

l � b

0 � x

i

� u

i

; x

i

2 Z for i 2 I [ f�

1

; : : : ; �

k�1

g:

(3) End(For)

(4) Set

�

�

k

:= min

l=1;::: ;u

�

k

�

0

� (k; l)

l

:

(5) End(For)

(6) Stop.

It an be shown by indution on k that the output of this algorithm

P

i2N

�

i

x

i

� �

0

is a valid

inequality for P

IP

. In ase, for some k 2 f�

1

; : : : ; �

n�jIj

g, the integer program in (2) is infeasible,
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i. e., (k; l) = �1, for all l = 1; : : : ; u

k

, we may assign any value to �

k

and the inequality stays

valid. In fat, the following result is true.

Proposition 1. Let I � N and

P

i2I

�

i

x

i

� �

0

an inequality that de�nes a faet of P

IP

\ fx 2

R

n

: x

j

= 0 for all j 2 N n Ig. After applying Algorithm 2, the inequality

P

i2N

�

i

x

i

� �

0

de�nes

a faet of P

IP

.

The inequality that results from applying the lifting proedure is dependent on the permutation

of the items in the set N n I .

Example 1. Consider the knapsak polyhedron

P

IP

= onvfx 2 f0; 1g

6

: 5x

1

+ 5x

2

+ 5x

3

+ 5x

4

+ 3x

5

+ 8x

6

� 17g:

The inequality x

1

+ x

2

+ x

3

+ x

4

� 3 is valid for P

IP

\ fx

5

= x

6

= 0g: Choosing the permutation

(5; 6) yields the inequality x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

� 3. If one hooses the permutation (6; 5)

of the items 5 and 6, the resulting inequality reads x

1

+ x

2

+ x

3

+ x

4

+ 2x

6

� 3. Both inequalities

are faet-de�ning for P

IP

.

Note that in order to perform the lifting proedure one needs to solve a ouple of integer

programs that - at �rst sight - appear as diÆult as the original problem. Sometimes they are

not. For instane, if the integer program is a 0=1 knapsak problem and the starting inequality

P

i2I

�

i

x

i

� �

0

is a minimal over or (1; k)-on�guration inequality, the lifting oeÆients an

be omputed in polynomial time, see [71℄. Sometimes it is possible to determine the exat lifting

oeÆient without solving integer programs, as was observed by Balas [4℄ for minimal over in-

equalities and extended by Weismantel [67℄ to extended weight inequalities. It is however true that

for many general mixed integer programs the lifting proedure an hardly be implemented in the

way we presented it, beause omputing the oeÆients step by step is just too expensive. In suh

ases, one resorts to lower bounds on the oeÆients that one obtains from heuristis. Another way

is to look for onditions under whih simultaneous lifting of variables is possible. This leads to the

study of superadditive funtions [69, 35℄.

We note that lifting an, of ourse, also be applied if a variable x

i

is urrently at its upper

bound u

i

. In this ase, we �rst \omplement" variable x

i

by replaing it by u

i

�x

i

, apply the same

Algorithm 2 and resubstitute the variable afterwards. Lifting (sequential or simultaneous) has also

been applied to general mixed integer programs, see, for instane, [34, 47℄ or in onnetion with

lift-and-projet uts, see [7, 5℄ and the artile in this book.

Computational results about the suess of knapsak inequalities with or without GUB on-

straints are given, for instane, in [20, 11, 19, 33, 48℄. The papers onsistently show that knapsak

uts are ruial for the solution of integer programs that ontain knapsak problems as a substru-

ture.

Of ourse, knapsak relaxations are not the only ones onsidered in mixed integer programming

solvers. An analysis of other important relaxations of an integer program allows to inorporate odd

hole and lique inequalities for the stable set polyhedron [55℄ or ow over inequalities for ertain

mixed integer models [60, 61℄. Further reent examples of this seond approah are given in [15, 47℄.

More than one knapsak onstraint at a time are onsidered in [49℄. Cordier et al. [19℄ give a nie

survey on whih of the mentioned utting planes help to solve whih problems from the Miplib. A

omprehensive survey on utting planes used to solve integer and mixed integer programs is given

in [46℄.

6 Conlusions

In this paper we have disussed the basi features of urrent branh-and-ut algorithms for the

solution of mixed integer programs. We have espeially seen that preproessing, though most of

the ideas are straight-forward, is often very important to solve ertain mixed integer programs. We

have also observed that there are various alternative and better strategies for node and variable

seletion within the branh-and-bound enumeration sheme than the lassial hoies of seleting
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some node deepest in the tree and seleting a variable losest to one half. We also got to know

some utting planes that are inorporated into todays software. Of ourse, we ould just touh the

surfae of these topis in this survey. The interested reader is most welome to get deeper into the

�eld through the ited literature.
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