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Abstra
t. In this paper we survey the basi
 features of state-of-the-art bran
h-and-
ut

algorithms for the solution of general mixed integer programming problems. In parti
ular we

fo
us on prepro
essing te
hniques, bran
h-and-bound issues and 
utting plane generation.

1 Introdu
tion

A general mixed integer program (MIP) is the problem of optimizing a linear obje
tive fun
tion

subje
t to a system of linear 
onstraints, where some or all of the variables are required to be

integer. The solution of general mixed integer programs is one of the 
hallenging problems in

dis
rete optimization. The problems that 
an be modeled as mixed integer programs arise, for

instan
e, in s
ien
e, te
hnology, business, and environment, and their number is tremendous. It is

therefore no wonder that many solution methods and 
odes exist for the solution of mixed integer

programs, and not just a few of them are business oriented, see [63℄ for a survey on 
ommer
ial

linear and integer programming solvers.

One of the most su

essful methods to solve mixed integer programming problems are bran
h-

and-
ut algorithms. In Se
tion 2 we outline the prin
iple stru
ture of a bran
h-and-
ut algorithm.

The main ingredients are prepro
essing, the solution of the underlying linear programs, bran
h-

and-bound issues, 
ut generation, and primal heuristi
s. Our aim is to give sort of a survey on the

features that state-of-the-art bran
h-and-
ut solvers for mixed integer programs in
lude. Most of

the issues presented are pretty mu
h standard, but our intention is to use this paper more as a

text book and to give the unfamiliar reader of this subje
t an impression on how mixed integer

programs are solved today. In detail we fo
us on prepro
essing in Se
tion 3, bran
h-and-bound

issues in Se
tion 4, and 
ut generation in Se
tion 5.

The software pa
kage that we use as a basi
 referen
e in this paper is SIP, whi
h is 
urrently

developed at our institute and ZIB [48℄. As mentioned most of the des
ribed issues are 
ommon to

basi
ally all state-of-the-art solvers and there are many other 
omparable 
odes that 
ontain many

of the des
ribed features. Among them are in parti
ular ABACUS, developed at the University of

Cologne [65℄, b
-opt, developed at CORE [19℄, CPLEX, developed at ILOG [39℄, MIPO, developed

at Columbia University [6℄, MINTO, developed at Georgia Institute of Te
hnology [52℄, SYMPHONY,

developed at Cornell University and Lehigh University (see also the arti
le of Leslie Trotter and

Ted Ralphs in this book), and XPRESS-MP, developed at DASH [21℄.

It is 
ommon to use the library Miplib [10℄ as test set to evaluate 
ertain features of a MIP


ode. Miplib is a 
olle
tion of real-world mixed integer programming problems. From time to time

we will refer to some instan
es from this library to explain 
ertain phenomena. However, we will

not give 
omputational results here. The reader interested in 
on
rete running times will �nd them,

for instan
e, in [11, 19, 44, 48℄.

Of 
ourse, bran
h-and-
ut algorithms are not the only su

essful way to solve general mixed

integer programs. For an ex
ellent survey on alternative approa
hes, in
luding test sets, Gomory's

group approa
h and basis redu
tion, see [1℄.

2 Bran
h-and-Cut Algorithms

In this se
tion we sket
h the main ideas of a bran
h-and-
ut algorithm. More details and referen
es

on this subje
t 
an be found in the survey arti
le [14℄. Suppose we want to solve a mixed integer
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program

min 


T

x

s.t. Ax � b;

(1)

where A 2 Q

m�n

; 
 2 Q

n

; b 2 Q

m

; the variables x

i

(i = 1; : : : ; n) might be binary (x

i

2 f0; 1g),

integer (x

i

2 Z), or 
ontinuous (x

i

2 R). Let P

IP

= 
onvfx 2 R

n

: x is feasible for (1)g. The �rst

step of the algorithm is to 
onsider a relaxation of (1) by 
hoosing a set P

0

� R

n

with P

IP

� P

0

and to optimize the linear obje
tive fun
tion over P

0

. For example, this relaxation might be the

linear programming relaxation minf


T

x : Ax � bg or a semide�nite relaxation. We only 
onsider

linear relaxations, hen
e, the set P

0

is always a polyhedron.

Let �x be an optimal solution for the linear relaxation. If �x is integer and all inequalities of Ax � b

are satis�ed by �x, we have found an optimal solution for (1). Otherwise, there exists a hyperplane

fx 2 R

n

: a

T

x = �g su
h that a

T

�x > � and P

IP

� fx 2 R

n

: a

T

x � �g. Su
h a hyperplane is


alled a 
utting plane. The problem of �nding su
h a hyperplane is 
alled the separation problem.

More pre
isely,

given �x 2 R

n

. De
ide, whether �x 2 P

IP

. If not, �nd some valid inequality a

T

x � � for P

IP

su
h that a

T

�x > �.

It is well known that the separation problem for P

IP

and the optimization problem minf


T

x : x 2

P

IP

g are polynomially equivalent, see [30, 31℄. Sometimes, the separation problem is restri
ted to a


ertain 
lass of inequalities, in whi
h 
ase we are sear
hing for a violated inequality of that 
lass. If

we are able to �nd su
h a 
utting plane, we 
an strengthen the relaxation and 
ontinue, for details

see Se
tion 5. This pro
ess is iterated until �x is a feasible solution or no more violated inequalities

are found. In the latter 
ase this so-
alled 
utting plane phase is embedded into an enumeration

s
heme. This is 
ommonly done by pi
king some fra
tional variable �x

i

that must be binary or

integer and 
reating two subproblems, one where one requires x

i

� d�x

i

e, and one where x

i

� b�x

i


,

see also the dis
ussions in Se
tion 4. The following algorithm summarizes the whole pro
edure.

Algorithm 1. (Bran
h-and-Cut Algorithm)

(1) Let L be a list of unsolved problems. Initialize L with (1).

(2) Repeat

(3) Choose a problem � from L and delete it from L.

(4) Repeat (iterate)

(5) Solve the (linear) relaxation of � . Let �x be an optimal solution.

(6) If �x is feasible for � , � is solved; goto (10).

(7) Look for violated inequalities and add them to the LP.

(8) Until there are no violated inequalities

(9) Split � into subproblems and add them to L.

(10)Until L = ;.

(11)Print the optimal solution.

(12)STOP.

The list L is usually organized as a binary tree, the so-
alled bran
h-and-bound tree. Ea
h

(sub)problem � 
orresponds to a node in the tree, where the unsolved problems are the leaves of

the tree and the node that 
orresponds to the entire problem (1) is the root. In the remainder of this

se
tion we dis
uss some issues that 
an be found in basi
ally every state-of-the-art bran
h-and-
ut

implementation.

LP-Management. We assume that the reader is familiar with linear programming te
hniques.

A 
omprehensive treatment of this subje
t 
an be found in [17, 58℄. The method that is 
ommonly

used to solve the LPs within a bran
h-and-
ut algorithm is the dual simplex algorithm, be
ause

an LP basis stays dual feasible when adding 
utting planes. There are fast and robust linear

programming solvers available, see, for instan
e, [39, 21℄.

Nevertheless, one major aspe
t in the design of a bran
h-and-
ut algorithm is to 
ontrol the

size of the linear programs. To this end, inequalities are often assigned an \age" (at the beginning
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the age is set to 0). Ea
h time the inequality is not tight at the 
urrent LP solution, the age is

in
reased by one. If the inequality gets too old, i. e., the age ex
eeds a 
ertain limit, the inequality

is eliminated from the LP. The value for this \age limit" varies from appli
ation to appli
ation.

Another issue of LP-management 
on
erns the questions: When should an inequality be added

to the LP? When is an inequality 
onsidered to be \violated"? And, how many and whi
h inequal-

ities should be added? The answers to these questions again depend on the appli
ation. It is 
lear

that one always makes sure that no redundant inequalities are added to the linear program.

A 
ommonly used data stru
ture in this 
ontext is the pool. Violated inequalities that are added

to the LP are stored in this data stru
ture. Also inequalities that are eliminated from the LP are

restored in the pool. Reasons for the pool are to re
onstru
t the LPs when swit
hing from one

node in the bran
h-and-bound tree to another and to keep inequalities that were \expensive" to

separate for an easier ex
ess in the ongoing solution pro
ess.

Heuristi
s. Raising the lower bound using 
utting planes is one important aspe
t in a bran
h-

and-
ut algorithm, �nding good feasible solutions early to enable fathoming of bran
hes of the

sear
h-tree is another. Primal heuristi
s strongly depend on the appli
ation. A very 
ommon way

to �nd feasible solutions for general mixed integer programs is to \plunge" from time to time at

some node of the bran
h-and-bound tree, i. e., to dive deeper into the tree and look for feasible

solutions. This plunging is done by alternatingly rounding/�xing some variables and solving linear

programs, until all variables are �xed, the LP is infeasible, a feasible solution has been found, or

the LP value ex
eeds the 
urrent best solution. This rounding heuristi
 
an be deta
hed from the

regular bran
h-and-bound enumeration phase or 
onsidered within the global enumeration phase.

The 
omplexity and the sensitivity to the 
hange of the LP solutions in
uen
es the frequen
y in

whi
h the heuristi
s are 
alled. Some more information hereto 
an be found, for instan
e, in [48,

19, 11℄.

Redu
ed Cost Fixing. The idea is to �x variables by exploiting the redu
ed 
osts of the 
urrent

optimal LP solution. Let �z = 


T

�x be the obje
tive fun
tion value of the 
urrent LP solution, z

IP

be an upper bound on the value of the optimal solution, and d = (d

i

)

i=1;::: ;n

the 
orresponding

redu
ed 
ost ve
tor. Consider a non-basi
 variable x

i

of the 
urrent LP solution with �nite lower

and upper bounds l

i

and u

i

, and non-zero redu
ed 
ost d

i

. Set Æ =

z

IP

��z

jd

i

j

, rounded down in 
ase x

j

is a binary or an integer variable. Now, if x

i

is 
urrently at its lower bound l

i

and l

i

+ Æ < u

i

, the

upper bound of x

i


an be redu
ed to l

i

+ Æ. In 
ase x

i

is at its upper bound u

i

and u

i

� Æ > l

i

, the

lower bound of variable x

i


an be in
reased to u

i

�Æ. In 
ase the new bounds l

i

and u

i


oin
ide, the

variable 
an be �xed to its bounds and removed from the problem. This strengthening of the bounds

is 
alled redu
ed 
ost �xing. It was originally applied for binary variables [20℄, in whi
h 
ase the

variable 
an always be �xed if the 
riterion applies. There are problems where by the redu
ed 
ost


riterion many variables 
an be �xed, see, for instan
e, [24℄. Sometimes, further variables 
an be

�xed by logi
al impli
ations, for example, if some binary variable x

i

is �xed to one by the redu
ed


ost 
riterion and it is 
ontained in an SOS 
onstraint (i. e., a 
onstraint of the form

P

j2J

x

j

� 1

with non-negative variables x

j

; j 2 J), all other variables in this SOS 
onstraint 
an be �xed to

zero.

Enumeration Aspe
ts. In our des
ription of a bran
h-and-
ut algorithm we left the questions

open whi
h problem to 
hoose in Step (3) and how to split the problem in Step (9). We dis
uss

these issues in detail in Se
tion 4.

3 Prepro
essing

Before entering the bran
h-and-
ut phase as outlined in Se
tion 2 there is usually a prepro
essing

step pre�xed. Prepro
essing aims at eliminating redundant information from the problem formula-

tion given by the user and simultaneously tries to strengthen the formulation by logi
al impli
ations.

Prepro
essing 
an be very e�e
tive and sometimes it might not be possible to solve 
ertain prob-

lems without a good prepro
essing. This in
ludes, for instan
e, Steiner tree problems [42℄ or set

partitioning problems [12℄. Typi
ally, prepro
essing is applied only on
e at the beginning of the

solution pro
edure, but sometimes it pays to run the prepro
essing routine more often on di�erent

nodes in the bran
h-and-bound phase, see, for instan
e, [12, 37, 11℄. There is always the question

of the break even point between the running time for prepro
essing and the savings in the solution
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time for the whole problem. There is no uni�ed answer to this question. It depends on the indi-

vidual problem, when intensive prepro
essing pays and when not. In the following we dis
uss some

prepro
essing options and ways to implement them. Most of these options are in
orporated in our


ode SIP and are drawn from [2, 9, 20, 37, 64℄.

We extend our de�nition of a mixed integer program in (1) slightly and 
onsider it in the

following more general form:

min 


T

x

s.t. Ax

8

<

:

�

=

�

9

=

;

b

l � x � u

x 2 Z

N

� R

C

;

(2)

where M;N , and C are �nite sets with N and C disjoint, A 2 R

M�(N[C)

; 
; l; u 2 R

N[C

; b 2 R

M

.

If some variable x

i

; i 2 N; is binary we have l

i

= 0 and u

i

= 1. If some variable x

j

has no

upper or lower bound, we assume that l

j

= �1 or u

j

= +1. Again we de�ne P

IP

= 
onvfx 2

R

n

: x is feasible for (2)g. Furthermore, we denote by s

i

2 f�;=;�g the sign of row i, i. e., (2)

reads minf


T

x : Axs b; l � x � u; x 2 Z

N

� R

C

g. In order to avoid too many sub
ases in the

following dis
ussion we assume without loss of generality that there are no \greater than or equal"

inequalities, i. e., s

i

2 f�;=g. We 
onsider the following 
ases:

Empty Rows. Suppose there is some row i with no non-zero entry. If

s

i

=

�

�

=

�

and

�

b

i

< 0

jb

i

j > 0

�

the problem is infeasible, otherwise row i 
an be removed.

Empty/Infeasible/Fixed Columns. For all 
olumns j 
he
k the following: If

l

j

> u

j

;

the problem is infeasible. If

u

j

= l

j

;

�x 
olumn j to its lower (or upper) bound, update the right-hand side, and delete j from the

problem.

Suppose some 
olumn j has no non-zero entry. If

�

l

j

= �1

u

j

= 1

�

and

�




j

> 0




j

< 0

�

the problem is unbounded (or infeasible in 
ase no feasible solution exists). Otherwise, if

8

<

:

l

j

> �1

u

j

< 1

�l

j

= u

j

= 1

9

=

;

and

8

<

:




j

� 0




j

� 0




j

= 0

9

=

;

�x 
olumn j to

8

<

:

l

j

u

j

0

9

=

;

:

Parallel Rows. Suppose we are given two rows A

i�

x s

i

b

i

and A

j�

x s

j

b

j

. Row i and j are 
alled

parallel if there is some � 2 R su
h that �A

i�

= A

j�

. The following situations might o

ur:

1. Con
i
ting 
onstraints:

(a) s

i

= `='; s

j

= `=', and �b

i

6= b

j

(b) s

i

= `='; s

j

= `�', and �b

i

> b

j

(
) s

i

= `�'; s

j

= `�', and �b

i

> b

j

(� < 0)

In any of these 
ases the problem is infeasible.

2. Redundant 
onstraints:

(a) s

i

= `='; s

j

= `=', and �b

i

= b

j

(b) s

i

= `='; s

j

= `�', and �b

i

� b

j

(
) s

i

= `�'; s

j

= `�', and �b

i

� b

j

(� > 0)
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(d) s

i

= `�'; s

j

= `�', and �b

i

> b

j

(� > 0)

In the �rst three 
ases row j is redundant, in (2d) row i.

3. Range 
onstraints:

(a) s

i

= `�'; s

j

= `�', and �b

i

= b

j

(� < 0)

The two inequalities 
an be aggregated into one equation.

(b) s

i

= `�'; s

j

= `�', and �b

i

< b

j

(� < 0)

In this 
ase both inequalities 
an be aggregated into one range 
onstraint of the form

A

i�

x+ u = b

i

with 0 � u � b

i

�

b

j

�

.

The question remains how to �nd parallel rows. Tomlin and Welsh [66℄ des
ribe an eÆ
ient

pro
edure, when the matrix A is stored 
olumnwise, and Andersen and Andersen [2℄ slightly

re�ne this approa
h. The idea is to use a hash fun
tion su
h that rows in di�erent baskets are

not parallel. Possible hash fun
tions are the number of non-zeros, the index of the �rst and/or

the last index of the row, the 
oeÆ
ient of the �rst non-zero entry, et
. In pra
ti
e, the baskets

are rather small so that rows inside one basket 
an be 
he
ked pairwise.

Duality Fixing. Suppose there is some 
olumn j with 


j

� 0 that satis�es a

ij

� 0 if s

i

= `�',

and a

ij

= 0 if s

i

= `=' for i 2 M . If l

j

> �1, we 
an �x 
olumn j to its lower bound. If

l

j

= �1 the problem is unbounded or infeasible. The same arguments apply to some 
olumn

j with 


j

� 0. Suppose a

ij

� 0 if s

i

= `�', a

ij

= 0 if s

i

= `=' for i 2 M . If u

j

< 1, we 
an

�x 
olumn j to its upper bound. If u

j

=1 the problem is unbounded or infeasible.

Singleton Rows. If there is some row i that 
ontains just one non-zero entry a

ij

6= 0, for some

j 2 N [ C say, then we 
an update the bound of 
olumn j in the following way. Initially let

�

�

l

j

= �u

j

=1 and set

�u

j

= b

i

=a

ij

if

�

s

i

= `�'; a

ij

> 0 or

s

i

= `='

�

l

j

= b

i

=a

ij

if

�

s

i

= `�'; a

ij

< 0 or

s

i

= `='

If �u

j

< maxfl

j

;

�

l

j

g or

�

l

j

> minfu

j

; �u

j

g the problem is infeasible. Otherwise, we update the

bounds by setting l

j

= maxfl

j

;

�

l

j

g and u

j

= minfu

j

; �u

j

g and remove row i. In 
ase variable

x

j

is integer (binary) we round down u

j

to the next integer and l

j

up to the next integer.

If the new bounds 
oin
ide we 
an also delete 
olumn j after updating the right-hand side

a

ordingly.

Singleton Columns. Suppose there is some 
olumn j with just one non-zero entry a

ij

6= 0, for

some i 2M say. Let x

j

be a 
ontinuous variable with no upper and lower bounds. If s

i

= `�'

we know after duality �xing has been applied that either 


j

� 0 and a

ij

> 0 or 


j

� 0 and

a

ij

< 0. In both 
ases, there is an optimal solution satisfying row i with equality. Thus we 
an

assume that s

i

= `='. Now, we delete 
olumn j and row i. After solving the redu
ed problem

we assign to variable x

j

the value

x

j

=

b

i

�

P

k 6=j

a

ik

x

k

a

ij

:

For
ing and Dominated Rows. Here, we exploit the bounds on the variables to dete
t so-
alled

for
ing and dominated rows. Consider some row i and let

L

i

=

X

j2P

i

a

ij

l

j

+

X

j2N

i

a

ij

u

j

U

i

=

X

j2P

i

a

ij

u

j

+

X

j2N

i

a

ij

l

j

(3)

where P

i

= fj : a

ij

> 0g and N

i

= fj : a

ij

< 0g. Obviously, L

i

�

P

n

j=1

a

ij

x

j

� U

i

. The

following 
ases might 
ome up:

1. Infeasible row:

(a) s

i

= `=', and L

i

> b

i

or U

i

< b

i

(b) s

i

= `�', and L

i

> b

i
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In these 
ases the problem is infeasible.

2. For
ing row:

(a) s

i

= `=', and L

i

= b

i

or U

i

= b

i

(b) s

i

= `�', and L

i

= b

i

Here, all variables in P

i


an be �xed to its lower (upper) bound and all variables in N

i

to

its upper (lower) bound when L

i

= b

i

(U

i

= b

i

). Row i 
an be deleted afterwards.

3. Redundant row:

(a) s

i

= `�', and U

i

< b

i

.

This row bound analysis 
an also be used to strengthen the lower and upper bounds of the

variables. Compute for ea
h variable x

j

�u

ij

=

8

<

:

(b

i

� L

i

)=a

ij

+ l

j

; if a

ij

> 0

(b

i

� U

i

)=a

ij

+ l

j

; if a

ij

< 0 and s

i

= `='

(L

i

� U

i

)=a

ij

+ l

j

; if a

ij

< 0 and s

i

= `�'

�

l

ij

=

8

<

:

(b

i

� U

i

)=a

ij

+ u

j

; if a

ij

> 0 and s

i

= `='

(L

i

� U

i

)=a

ij

+ u

j

; if a

ij

> 0 and s

i

= `�'

(b

i

� L

i

)=a

ij

+ u

j

; if a

ij

< 0:

Let �u

j

= min

i

�u

ij

and

�

l

j

= max

i

�

l

ij

. If �u

j

� u

j

and

�

l

j

� l

j

, we speak of an implied free variable.

The simplex method might bene�t from not updating the bounds but treating variable x

j

as

a free variable (note, setting the bounds of j to �1 and +1 will not 
hange the feasible

region). Free variables will always be in the basis and are thus useful in �nding a starting

basis. For mixed integer programs however, it is better in general to update the bounds by

setting u

j

= minfu

j

; �u

j

g and l

j

= maxfl

j

;

�

l

j

g, be
ause the sear
h region of the variable within

an enumeration s
heme is redu
ed. In 
ase x

j

is an integer (or binary) variable we round u

j

down to the next integer and l

j

up to the next integer. As an example 
onsider the following

inequality (taken from mod015 from the Miplib):

�45x

6

� 45x

30

� 79x

54

� 53x

78

� 53x

102

� 670x

126

� �443

Sin
e all variables are binary, L

i

= �945 and U

i

= 0. For j = 126 we obtain

�

l

ij

= (�443 +

945)=� 670 + 1 = 0:26. After rounding up it follows that x

126

must be one.

Note that with these new lower and upper bounds on the variables it might pay to re
ompute

the row bounds L

i

and U

i

, whi
h again might result in tighter bounds on the variables.

CoeÆ
ient Redu
tion. The row bounds in (3) 
an also be used to redu
e 
oeÆ
ients of binary

variables. Consider some row i with s

i

= `�' and let x

j

be a binary variable with a

ij

6= 0.

If

8

<

:

a

ij

< 0; U

i

+ a

ij

< b

i

; set a

0

ij

= b

i

� U

i

;

a

ij

> 0; U

i

� a

ij

< b

i

; set

�

a

0

ij

= U

i

� b

i

;

b

i

= U

i

� a

ij

;

(4)

where a

0

ij

denotes the new redu
ed 
oeÆ
ient. Consider the following inequality of example

p0033 from the Miplib:

�230x

10

� 200x

16

� 400x

17

� �5

All variables are binary, U

i

= 0, and L

i

= �830. We have U

i

+ a

i;10

= �230 < �5 and we 
an

redu
e a

i;10

to b

i

� U

i

= �5. The same 
an be done for the other 
oeÆ
ients, and we obtain

the inequality

�5x

10

� 5x

16

� 5x

17

� �5

Note that the operation of redu
ing 
oeÆ
ients to the value of the right-hand side 
an also be

applied to integer variables if all variables in this row have negative 
oeÆ
ients and lower bound

zero. In addition, we may 
ompute the greatest 
ommon divisor of the 
oeÆ
ients and divide

all 
oeÆ
ients and the right-hand side by this value. In 
ase all involved variables are integer

(or binary) the right-hand side 
an be rounded down to the next integer. In our example, the

greatest 
ommon divisor is 5, and dividing by that number we obtain the set 
overing inequality

�x

10

� x

16

� x

17

� �1:
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Aggregation. In mixed integer programs very often equations of the form

a

ij

x

j

+ a

ik

x

k

= b

i

appear for some i 2M; k; j 2 N [C. In this 
ase, we may repla
e one of the variables, x

k

say,

by

b

i

� a

ij

x

j

a

ik

: (5)

In 
ase x

k

is binary or integer, the substitution is only possible, if the term (5) is guaran-

teed to be binary or integer as well. If this is true or x

k

is a 
ontinuous variable, we ag-

gregate the two variables. The new bounds of variable x

j

are l

j

= maxfl

j

; (b

i

� a

ik

l

k

)=a

ij

g

and u

j

= minfu

j

; (b

i

� a

ik

u

k

)=a

ij

g if a

ik

=a

ij

< 0, and l

j

= maxfl

j

; (b

i

� a

ik

u

k

)=a

ij

g and

u

j

= minfu

j

; (b

i

� a

ik

l

k

)=a

ij

g if a

ik

=a

ij

> 0.

Of 
ourse, aggregation 
an also be applied to equations whose support is greater than two.

However, this might 
ause additional �ll in the matrix. Hen
e, aggregation is usually restri
ted

to 
onstraints and 
olumns with small support.

Disaggregation. Disaggregation of 
olumns is to our knowledge not an issue in prepro
essing of

mixed integer programs, sin
e this usually blows up the solution spa
e. It is however applied

in interior point algorithms for linear programs, be
ause dense 
olumns result in dense blo
ks

in the Cholesky de
omposition and are thus to be avoided [29℄.

On the other hand, disaggregation of rows is an important issue for mixed integer programs.

Consider the following inequality (taken from the Miplib-problem p0282)

x

85

+ x

90

+ x

95

+ x

100

+ x

217

+ x

222

+ x

227

+ x

232

� 8x

246

� 0 (6)

where all variables involved are binary. The inequality says that whenever one of the variables

x

i

with i 2 S := f85; 90; 95; 100; 217; 222; 227; 232g is one, x

246

must also be one. This fa
t 
an

also be expressed by repla
ing (6) by the following eight inequalities:

x

i

� x

246

� 0 for all i 2 S: (7)

Con
erning the LP-relaxation, this formulation is tighter. Whenever any variable in S is one,

x

246

is for
ed to one as well, whi
h is not guaranteed in the original formulation. On the other

hand, one 
onstraint is repla
ed by many (in our 
ase 8) inequalities, whi
h might blow up

the 
onstraint matrix. However within a 
utting plane pro
edure this problem is not really an

issue, be
ause the inequalities in (7) 
an be generated on demand.

Probing. Probing is sometimes used in general mixed integer programming 
odes, see, for instan
e,

[64℄. The idea is to set some binary variable temporarily to zero or one and try to dedu
e further

�xings from that. These impli
ations 
an be expressed in inequalities as follows:

(x

j

= 1) x

i

= �))

�

x

i

� l

i

+ (�� l

i

)x

j

x

i

� u

i

� (u

i

� �)x

j

(x

j

= 0) x

i

= �))

�

x

i

� �� (�� l

i

)x

j

x

i

� �+ (u

i

� �)x

j

(8)

As an example, suppose we set in (6) variable x

246

temporary to zero. This implies that x

i

= 0

for all i 2 S. Applying (8) we dedu
e the inequality

x

i

� 0 + (1� 0)x

246

= x

246

for all i 2 S whi
h is exa
tly (7).

In general, all these tests are iteratively applied until all of them fail. In other words, the

original formulation is strengthened as far as possible. Our 
omputational experien
es [48℄ show

that presolve redu
es the problem sizes in terms of number of rows, 
olumns, and non-zeros by

around 10%. The time spent in presolve is negle
table (below one per mill). Interesting to note

is also that for some problems presolve is indispensable for their solution. For example, problem

�xnet6 from the Miplib is an instan
e, where most solvers fail without prepro
essing, but with

presolve the instan
e turns out to be very easy.
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4 Bran
h-and-Bound Strategies

In the general outline of a bran
h-and-
ut algorithm, see Algorithm 1 in Se
tion 2, there are two

steps in the bran
h-and-bound part that leave some 
hoi
es. In Step (3) of Algorithm 1 we have to

sele
t the next problem (node) from the list of unsolved problems to work on next, and in Step (9)

we must de
ide on how to split the problem into subproblems. Popular strategies are to bran
h on

a variable that is 
losest to 0:5 and to 
hoose a node with the worst dual bound. In this se
tion we

brie
y dis
uss some more alternatives. We will see that they sometimes outperform the mentioned

standard strategy. For a 
omprehensive study of bran
h-and-bound strategies we refer to [43, 44℄

and the referen
es therein. We assume in this se
tion that a general mixed integer program of the

form (2) is given.

4.1 Node Sele
tion

In the following we dis
uss three di�erent strategies to sele
t the node to be pro
essed next, see

Step (3) of Algorithm 1.

1. Best First Sear
h (bfs).

Here, a node is 
hosen with the worst dual bound, i. e., a node with lowest lower bound, sin
e

we are minimizing in (2). The goal is to improve the dual bound. However, if this fails early in

the solution pro
ess, the bran
h-and-bound tree tends to grow 
onsiderably resulting in large

memory requirements.

2. Depth First Sear
h (dfs).

This rule 
hooses the node that is \deepest" in the bran
h-and-bound tree, i. e., whose path to

the root is longest. The advantages are that the tree tends to stay small, sin
e always one of

the two sons are pro
essed next, if the node 
ould not be fathomed. This fa
t also implies that

the linear programs from one node to the next are very similar, usually the di�eren
e is just

the 
hange of one variable bound and thus the reoptimization goes fast. The main disadvantage

is that the dual bound basi
ally stays untou
hed during the solution pro
ess resulting in bad

solution guarantees.

3. Best Proje
tion.

When sele
ting a node the most important question is, where are the good (optimal) solutions

hidden in the bran
h-and-bound tree? In other words, is it possible to guess at some node

whether it 
ontains a better solution? Of 
ourse, this is not possible in general. But, there are

some rules that evaluate the nodes a

ording to the potential of having a better solution. One

su
h rule is best proje
tion. The earliest referen
e we found for this rule is a paper of Mitra [50℄

who gives the 
redit to J. Hirst. Let z(p) be the dual bound of some node p, z(root) the dual

bound of the root node, �z

IP

the value of the 
urrent best primal solution, and s(p) the sum of

the infeasibilities at node p, i. e., s(p) =

P

i2N

minf�x

i

�b�x

i


; d�x

i

e� �x

i

g, where �x is the optimal

LP solution of node p and N the set of all integer variables. Let

%(p) = z(p) +

�z

IP

� z(root)

s(root)

� s(p): (9)

The term

�z

IP

�z(root)

s(root)


an be viewed as a measure for the 
hange in the obje
tive fun
tion per

unit de
rease in infeasibility. The best proje
tion rule sele
ts the node that minimizes %(�).

The 
omputational tests in [48℄ show that dfs �nds by far the maximal number of feasible

solutions. This indi
ates that feasible solutions tend to lie deep in the bran
h-and-bound tree. In

addition, the number of simplex iterations per LP is on average mu
h smaller (around one half)

for dfs than using bfs or best proje
tion. This 
on�rms our statement that reoptimizing a linear

program is fast when just one variable bound is 
hanged. However, dfs forgets to work on the dual

bound. For many more diÆ
ult problems the dual bound is not improved resulting in very bad

solution guarantees 
ompared to the other two strategies. Best proje
tion and bfs are doing better

in this respe
t. There is no 
lear winner between the two, sometimes best proje
tion outperforms

bfs, but on average bfs is the best. Linderoth and Savelsbergh [44℄ 
ompare further node sele
tion

strategies and 
ome to a similar 
on
lusion that there is no 
lear winner and that a sophisti
ated

MIP solver should allow many di�erent options for node sele
tion.
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4.2 Variable Sele
tion

In this se
tion we dis
uss rules on how to split a problem into subproblems, if it 
ould not be

fathomed in the bran
h-and-bound tree, see Step (9) of Algorithm 1. The only way to split a

problem within an LP based bran
h-and-bound algorithm is to bran
h on linear inequalities in

order to keep the property of having an LP relaxation at hand. The easiest and most 
ommon

inequalities are trivial inequalities, i. e., inequalities that split the feasible interval of a singleton

variable. To be more pre
ise, if j is some variable with a fra
tional value �x

j

in the 
urrent optimal

LP solution, we obtain two subproblems, one by adding the trivial inequality x

j

� b�x

j


 (
alled

the left subproblem or left son) and one by adding the trivial inequality x

j

� d�x

j

e (
alled the right

subproblem or right son). This rule of bran
hing on trivial inequalities is also 
alled bran
hing on

variables, be
ause it a
tually does not require to add an inequality, but only to 
hange the bounds

of variable j. Bran
hing on more 
ompli
ated inequalities or even splitting the problem into more

than two subproblems are rarely in
orporated into general solvers, but turn out to be e�e
tive in

spe
ial 
ases, see, for instan
e, [13, 18, 51℄. In the following we present three variable sele
tion rules.

1. Most Infeasibility.

This rule 
hooses the variable that is 
losest to 0:5. The heuristi
 reason behind this 
hoi
e is

that this is a variable where the least tenden
y 
an be re
ognized to whi
h \side" (up or down)

the variable should be rounded. The hope is that a de
ision on this variable has the greatest

impa
t on the LP relaxation.

2. Pseudo-
osts.

This is a more sophisti
ated rule in the sense that it keeps a history of the su

ess of the

variables on whi
h one has already bran
hed. To introdu
e this rule, whi
h goes ba
k to [8℄,

we need some notation. Let P denote the set of all problems (nodes) ex
ept the root node that

have already been solved in the solution pro
ess. Initially, this set is empty. P

+

denotes the

set of all right sons, and P

�

the set of all left sons, where P = P

+

[ P

�

. For some problem

p 2 P let

f(p) be the father of problem p.

v(p) be the variable that has been bran
hed on to obtain problem p from the father

f(p).

x(p) be the optimal solution of the �nal linear program at node p.

z(p) be the optimal obje
tive fun
tion value of the �nal linear program at node p.

The up pseudo-
ost of variable j 2 N is

�

+

(j) =

1

jP

+

j

j

X

p2P

+

j

z(p)� z(f(p))

dx

v(p)

(f(p))e � x

v(p)

(f(p))

; (10)

where P

+

j

� P

+

. The down pseudo-
ost of variable j 2 N is

�

�

(j) =

1

jP

�

j

j

X

p2P

�

j

z(p)� z(f(p))

x

v(p)

(f(p))� bx

v(p)

(f(p))


; (11)

where P

�

j

� P

�

. The terms

z(p)�z(f(p))

dx

v(p)

(f(p))e�x

v(p)

(f(p))

and

z(p)�z(f(p))

x

v(p)

(f(p))�bx

v(p)

(f(p))


, respe
tively,

measure the 
hange in the obje
tive fun
tion per unit de
rease of infeasibility of variable j.

There are many suggestions made on how to 
hoose the sets P

+

j

and P

�

j

, for a survey see [44℄.

To name one possibility, following the suggestion of E
kstein [22℄ one 
ould 
hoose P

+

j

:= fp 2

P

+

: v(p) = jg and P

�

j

:= fp 2 P

�

: v(p) = jg, if j has already been 
onsidered as a bran
hing

variable, otherwise set P

+

j

:= P

+

and P

�

j

:= P

�

. It remains to dis
uss how to weight the up

and down pseudo-
osts against ea
h other to obtain the �nal pseudo-
osts a

ording to whi
h

the bran
hing variable is sele
ted. Here one typi
ally sets

�(j) = �

+

j

�

+

(j) + �

�

j

�

�

(j); (12)

where �

+

j

; �

�

j

are positive s
alars. A variable that maximizes (12) is 
hosen to be the next

bran
hing variable. As formula (12) shows, the rule takes the previously obtained su

ess of
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the variables into a

ount when de
iding on the next bran
hing variable. The weakness of this

approa
h is that at the very beginning there is no information available, and �(�) is almost

identi
al for all variables. Thus, at the beginning where the bran
hing de
isions are usually

the most 
riti
al the pseudo-
osts take no e�e
t. This drawba
k is tried to over
ome in the

following rule.

3. Strong Bran
hing.

The idea of strong bran
hing, invented by CPLEX [38℄ (see also [3℄), is before a
tually bran
hing

on some variable to test whether it indeed gives some progress. This testing is done by �xing

the variable temporarily to its up and down value, i. e., to d�x

j

e and b�x

j


 if �x

j

is the fra
tional

LP value of variable j, performing a 
ertain �xed number of dual simplex iterations for ea
h

of the two settings, and measuring the progress in the obje
tive fun
tion value. The testing is

done, of 
ourse, not only for one variable but for a 
ertain set of variables. Thus, the parameters

of strong bran
hing to be spe
i�ed are the size of the 
andidate set, the maximum number of

dual simplex iterations to be performed on ea
h 
andidate variable, and a 
riterion a

ording to

whi
h the 
andidate set is sele
ted. Needless to say that ea
h MIP solver has its own parameter

settings, all are of heuristi
 nature and that their justi�
ation are based only on experimental

results.

The 
omputational experien
es in [48℄ show that bran
hing on a most infeasible variable is by

far the worst, measured in CPU time, in solution quality as well as in the number of bran
h-and-

bound nodes. Using pseudo-
osts gives mu
h better results. The power of pseudo-
osts be
omes

in parti
ular apparent if the number of solved bran
h-and-bound nodes is large. In this 
ase the

fun
tion �(�) properly represents the variables that are quali�ed for bran
hing. In addition, the

time ne
essary to 
ompute the pseudo-
osts is basi
ally for free. The statisti
s 
hange when looking

at strong bran
hing. Strong bran
hing is mu
h more expensive than the other two strategies. This


omes as no surprise, sin
e in general the average number of dual simplex iterations per linear

program is very small (for the Miplib, for instan
e, below 10 on average). Thus, the testing of a


ertain number of variables (even if it is small) in strong bran
hing is relatively expensive. On the

other hand, the number of bran
h-and-bound nodes is mu
h smaller (around one half) 
ompared

to the pseudo-
osts strategy. This de
rease, however, does not 
ompletely 
ompensate the higher

running times for sele
ting the variables in general. Thus, strong bran
hing is normally not used

as a default strategy, but 
an be a good 
hoi
e for some hard instan
es. A similar report is given

in [44℄, where Linderoth and Savelsbergh 
on
lude that there is no bran
hing rule that 
learly

dominates the others, though pseudo-
ost strategies are essential to solve many instan
es.

5 Cutting Planes

In this se
tion we dis
uss 
utting planes known from the literature that are in
orporated in general

MIP solvers. Cutting planes for integer programs may be 
lassi�ed with regard to the question

whether their derivation requires knowledge about the stru
ture of the underlying 
onstraint ma-

trix. In Se
tion 5.1 we des
ribe 
utting planes that do not exploit any stru
ture. An alternative

approa
h to obtain 
utting planes for a mixed integer program follows essentially the s
heme to

derive relaxations asso
iated with 
ertain substru
tures of the underlying 
onstraint matrix, and

tries to �nd valid inequalities for these relaxations. Crowder, Johnson and Padberg [20℄ pioneered

this methodology by interpreting ea
h single row of the 
onstraint matrix as a knapsa
k relaxation

and strengthening the integer program by adding violated knapsa
k inequalities. This will be the

topi
 of Se
tion 5.2.

5.1 Cutting Planes Independent of any Problem Stru
ture

Examples of families of 
utting planes that do not exploit the stru
ture of the 
onstraint matrix

are mixed integer Gomory 
uts [25, 27, 28, 16, 62℄, mixed integer rounding 
uts [54℄, and lift-and-

proje
t 
uts [5℄. Mar
hand [45℄ des
ribes the merits of applying mixed integer rounding 
uts, see

also the arti
le by Yves Po
het in this book. Lift-and-proje
t 
uts are investigated in [5, 6℄ and are


omprehensively dis
ussed in the arti
le by Egon Balas in this book.
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In this se
tion we 
on
entrate on Gomory's mixed integer 
uts. As a warm-up we start with the

pure integer 
ase. We will see that this approa
h (based on a rounding argument) fails if 
ontinuous

variables are involved. In the general mixed integer 
ase a disjun
tive argument saves us.

Pure Integer Programs

Consider a pure integer program in the form minf


T

x : Ax = b; x 2 Z

n

+

g with A, b integer. Set

P

IP

= 
onvfx 2 Z

n

+

: Ax = bg. Let �x be an optimal solution of the LP relaxation minf


T

x : x 2 Pg

with P = fx 2 R

n

+

: Ax = bg and B � f1; : : : ; ng be a basis of A with �x

B

= A

�1

B

b � A

�1

B

A

N

x

N

and �x

N

= 0, where N = f1; : : : ; ng nB.

If �x is integer, we terminate with an optimal solution for minf


T

x : x 2 P

IP

g. Otherwise, one

of the values �x

B

must be fra
tional. Let i 2 B be some index with �x

i

=2 Z. Sin
e every feasible

integral solution x 2 P

IP

satis�es x

B

= A

�1

B

b�A

�1

B

A

N

x

N

,

A

�1

i�

b�

X

j2N

A

�1

i�

A

�j

x

j

2 Z: (13)

The term on the left remains integral when adding integer multiples of x

j

; j 2 N; or an integer to

A

�1

i�

b. We obtain

f(A

�1

i�

b)�

X

j2N

f(A

�1

i�

A

�j

)x

j

2 Z; (14)

where f(�) = �� b�
, for � 2 R. Sin
e 0 � f(�) < 1 and x � 0, we 
on
lude that

f(A

�1

i�

b)�

X

j2N

f(A

�1

i�

A

�j

)x

j

� 0;

or equivalently,

X

j2N

f(A

�1

i�

A

�j

)x

j

� f(A

�1

i�

b) (15)

is valid for P

IP

. Moreover, it is violated by the 
urrent linear programming solution �x, sin
e �x

N

= 0

and f(A

�1

i�

b) = f(�x

i

) > 0. After subtra
ting x

i

+

P

j2N

A

�1

i�

A

�j

x

j

= A

�1

i�

b from (15) we obtain

x

i

+

X

j2N

bA

�1

i�

A

�j


x

j

� bA

�1

i�

b
; (16)

whi
h is, when the right-hand side is not rounded, a supporting hyperplane with integer left-hand

side. Moreover, adding this inequality to the system Ax = b preserves the property that all data are

integral. Thus, the sla
k variable that is to be introdu
ed for the new inequality 
an be required to

be integer as well and the whole pro
edure 
an be iterated. In fa
t, Gomory [28℄ proves that with

a parti
ular 
hoi
e of the generating row su
h 
uts lead to a �nite algorithm, i. e., after adding a

�nite number of inequalities, an integer optimal solution is found.

Later Chv�atal [16, 62℄ found a distin
t but 
losely related way of �nding a linear des
ription of

P

IP

. He showed when using all supporting hyperplanes with integer left-hand side (an example of

su
h an hyperplane is given in (16)) and rounding the right-hand sides yields again a polyhedron

that 
ontains P

IP

. In addition, he proved that iterating this pro
ess a �nite number of times provides

P

IP

.

Mixed Integer Programs

The two approa
hes dis
ussed so far fail when both integer and 
ontinuous variables are present.

Chv�atal's approa
h fails be
ause the right-hand side of a supporting hyperplane 
annot be rounded

down. Gomory's approa
h fails sin
e it is no longer possible to add integer multiples to 
ontinuous

variables to derive (14) from (13). For instan
e,

1

3

+

1

3

x

1

� 2x

2

2 Z with x

1

2 Z

+

; x

2

2 R

+

has a

larger solution set than

1

3

+

1

3

x

1

2 Z. As a 
onsequen
e, we 
annot guarantee that the 
oeÆ
ients

of the 
ontinuous variables are non-negative and therefore show the validity of (15). Nevertheless,

it is possible to derive valid inequalities using the following disjun
tive argument.
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Property 1. Let (a

k

)

T

x � �

k

be a valid inequality for a polyhedron P

k

for k = 1; 2. Then,

n

X

i=1

min(a

1

i

; a

2

i

)x

i

� max(�

1

; �

2

)

is valid for both P

1

[ P

2

and 
onv(P

1

[ P

2

).

This property applied in di�erent ways yields valid inequalities for the mixed integer 
ase. We

present Gomory's mixed integer 
uts here, the other two, mixed integer rounding 
uts and lift-and-

proje
t-
uts are both more or less also based on Property 1, see the 
orresponding arti
les in this

book.

Consider again the situation in (13), where x

i

; i 2 B; is required to be integer. We use the

following abbreviations �a

j

= A

�1

i�

A

�j

,

�

b = A

�1

i�

b; f

j

= f(�a

j

); f

0

= f(

�

b), and N

+

= fj 2 N : �a

j

� 0g

and N

�

= N n N

+

. Expression (13) is equivalent to

P

j2N

�a

j

x

j

= f

0

+ k for some k 2 Z. We

distinguish two 
ases,

P

j2N

�a

j

x

j

� f

0

� 0 and

P

j2N

�a

j

x

j

� f

0

� 1 < 0. In the �rst 
ase,

X

j2N

+

�a

j

x

j

� f

0

must hold. In the se
ond 
ase, we have

P

j2N

�

�a

j

x

j

� f

0

� 1, whi
h is equivalent to

�

f

0

1� f

0

X

j2N

�

�a

j

x

j

� f

0

:

Now we apply Property 1 to the disjun
tion P

1

= P

IP

\ fx :

P

j2N

�a

j

x

j

� 0g and P

2

= P

IP

\ fx :

P

j2N

�a

j

x

j

� 0g and obtain the valid inequality

X

j2N

+

�a

j

x

j

�

f

0

1� f

0

X

j2N

�

�a

j

x

j

� f

0

: (17)

This inequality may be strengthened in the following way. Observe that the derivation of (17)

remains una�e
ted when adding integer multiples to integer variables. By doing this we may put

ea
h integer variable either in the set N

+

or N

�

. If a variable is in N

+

, the �nal 
oeÆ
ient in (17)

is �a

j

and thus the best possible 
oeÆ
ient after adding integer multiples is f

j

= f(�a

j

). In N

�

the

�nal 
oeÆ
ient in (17) is �

f

0

1�f

0

�a

j

and thus

f

0

(1�f

j

)

1�f

0

is the best 
hoi
e. Overall, we obtain the best

possible 
oeÆ
ient by using min(f

j

;

f

0

(1�f

j

)

1�f

0

). This yields Gomory's mixed integer 
ut [26℄

P

j: f

j

�f

0

j integer

f

j

x

j

+

P

j: f

j

>f

0

j integer

f

0

(1�f

j

)

1�f

0

x

j

+

P

j2N

+

j non-integer

�a

j

x

j

�

P

j2N

�

j non-integer

f

0

1�f

0

�a

j

x

j

� f

0

:

(18)

Gomory [26℄ shows that an algorithm based on iteratively adding these inequalities solves minf


T

x :

x 2 Xg with X = fx 2 Z

p

+

� R

n�p

+

: Ax = bg in a �nite number of steps provided 


T

x 2 Z for all

x 2 X .

Note that Gomory's mixed integer 
uts 
an always be applied, the separation problem for the

optimal LP solution is easy. However, adding these inequalities might 
ause numeri
al diÆ
ulties,

see the dis
ussion in [59℄. In [7, 11℄ it is shown how useful Gomory 
uts are if they are in
orporated

in the right way.

5.2 Cutting Planes Exploiting Stru
ture

In this se
tion we follow a di�erent route to derive 
utting planes and analyze the stru
ture of

the 
onstraint matrix. The idea is to identify some substru
ture of Ax � b and use the polyhedral

knowledge about this substru
ture to strengthen the original formulation. Let A

IJ

x

J

� b

I

with
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I � M;J � N [ C be su
h a subsystem of (2). If J = N [ C, we have that P

IP

� fx 2

Z

N

� R

C

: A

I�

x � b

I

g =: P

rel

and any 
utting plane valid for P

rel

is also valid for P

IP

. Thus the

task is to identify some substru
ture where one knows (part of) the polyhedral stru
ture and to

�nd violated 
utting planes for this substru
ture. This approa
h was initiated by Crowder, Johnson

and Padberg [20℄ for 0=1 integer programs, where ea
h row of the 
onstraint matrix was interpreted

as a knapsa
k problem. Sin
e this approa
h is still very 
ommon to many MIP solvers and is still

very su

essful, we des
ribe some of the 
utting planes known for the 0=1 knapsa
k polytope that

are used to strengthen general mixed integer programs. In 
ase J is a proper subset of N [ C, a

valid inequality for P

rel

is not ne
essarily valid for P

IP

. In this 
ase we have to resort to lifting. The

main idea of lifting will be des
ribed at the end of this se
tion. As we will see lifting is also useful

to strengthen valid inequalities.

Knapsa
k Relaxations

Consider the following polytope

P

K

(N; f; F ) := 
onvfx 2 f0; 1g

N

:

X

i2N

f

j

x

j

� Fg (19)

with some �nite set N , weights f

j

2 Q; j 2 N; and a 
apa
ity F 2 Q. P

K

(N; f; F ) is 
alled the 0=1

knapsa
k polytope. We obtain a knapsa
k relaxation from our integer program (2) by taking some

row i and setting f

j

= a

ij

and F = b

i

, where we assume that all involved variables are binary. Thus

any valid inequality for P

K

(N; f; F ) is also valid for P

IP

. In the following we summarize some of

the inequalities known for the 0=1 knapsa
k polytope that are also used for the solution of integer

programs.

A set S � N is 
alled a 
over if its weight ex
eeds the 
apa
ity, i. e., if

P

i2S

f

i

> F . With the


over S one 
an asso
iate the 
over inequality

X

i2S

x

i

� jSj � 1

that is valid for the knapsa
k polyhedron P

K

(N; f; F ). If the 
over is minimal, i. e., if

P

i2Snfsg

f

i

�

F for all s 2 S, the inequality is 
alled minimal 
over inequality (with respe
t to S). In [4, 56, 36,

68℄ it was shown that the minimal 
over inequality de�nes a fa
et of P

K

(S; f; F ).

Another well-known 
lass of knapsa
k inequalities are (1; k)-
on�guration inequalities that were

introdu
ed by Padberg [57℄. A (1; k)-
on�guration 
onsists of a feasible set S, i. e., a set S su
h

that

P

i2S

f

i

� F , plus one additional item z su
h that every subset of S of 
ardinality k, together

with z, forms a minimal 
over. A (1; k)-
on�guration S [ fzg gives rise to the inequality

X

i2S

x

i

+ (jSj � k + 1)x

z

� jSj;

whi
h is 
alled a (1; k)-
on�guration inequality (with respe
t to S[fzg). Note that a minimal 
over

S is a (1; jSj � 1)-
on�guration, and vi
e versa, a (1; k)-
on�guration inequality (with respe
t to

S [fzg) that satis�es k = jSj is a minimal 
over. In [57℄ it was shown that the (1; k)-
on�guration

inequality de�nes a fa
et of P

K

(S [ fzg; f; F ).

Inequalities derived from both 
overs and (1; k)-
on�gurations are spe
ial 
ases of extended

weight inequalities that have been introdu
ed by Weismantel [67℄. Consider a subset T � N with

f(T ) < F and let r := F � f(T ). The inequality

X

i2T

f

i

x

i

+

X

i2NnT

(f

i

� r)

+

x

i

� f(T ): (20)

is 
alled weight inequality with respe
t to T . It is valid for P

K

(N; f; F ). The name weight inequality

re
e
ts that the 
oeÆ
ients of the items in T equal their original weights and the number r :=

F � f(T ) 
orresponds to the residual 
apa
ity of the knapsa
k when x

i

= 1 for all i 2 T . There
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is a natural way to extend weight inequalities by (i) repla
ing the original weights of the items by

relative weights and (ii) resorting to the method of sequential lifting.

Consider again some subset T � N with f(T ) � F , let r = F � f(T ) and denote by S the

subset of N n T su
h that f

i

� r for all i 2 S. The (uniform) extended weight inequality asso
iated

with T and some permutation �

1

; : : : �

jSj

of the set S is of the form

X

i2T

x

i

+

X

i2S

w

i

x

i

� jT j; (21)

where w

i

; i 2 S; are the lifting 
oeÆ
ients obtained by applying Algorithm 2 on page 14. These

(uniform) extended weight inequalities subsume the family of minimal 
over and (1; k)-
on�guration

inequalities. They 
an be generalized to inequalities with arbitrary weights in the starting set T ,

see [67℄.

The separation of minimal 
over inequalities is widely dis
ussed in the literature. The 
omplexity

of 
over separation has been investigated in [23, 41, 32℄, whereas algorithmi
 and implementational

issues are treated among others in [20, 33, 37, 61, 71℄. The ideas and 
on
epts suggested to separate


over inequalities basi
ally 
arry over to extended weight inequalities. Typi
al features of a sep-

aration algorithm for 
over inequalities are: �x all variables that are integer, �nd a 
over (in the

extended weight 
ase some subset T ), and lift the remaining variables sequentially.

Cutting planes derived from knapsa
k relaxations 
an sometimes be strengthened if spe
ial

ordered set (SOS) inequalities

P

i2Q

x

i

� 1 for some Q � N are available. In 
onne
tion with a

knapsa
k inequality these 
onstraints are also 
alled generalized upper bound 
onstraints (GUBs).

It is 
lear that by taking the additional SOS 
onstraints into a

ount stronger 
utting planes may

be derived. This possibility has been studied in [20, 40, 70, 53, 33℄.

Lifting

As outlined at the beginning of this se
tion and as observed in the des
ription and separation of

knapsa
k inequalities we are often fa
ed with the following problem.

We are given an inequality

P

i2I

�

i

x

i

� �

0

that is valid for P

IP

\ fx 2 R

n

: x

j

= 0 for all j 2

N n Ig for some I � N . We would like to extend this inequality to a valid inequality of P

IP

and, if

possible, in su
h a way that it indu
es a high dimensional fa
e of P

IP

. Or in 
ase

P

i2I

�

i

x

i

� �

0

is already fa
et-de�ning for the subpolytope (as for instan
e the minimal 
over for P

K

(S; f; F )),

we would like to extend the inequality to a fa
et-de�ning inequality of P

IP

(in the minimal 
over


ase to a fa
et-de�ning inequality of P

K

(N; f; F )). One way to solve this problem is the method of

sequential lifting, see [56, 68℄. The algorithm pro
eeds in an iterative fashion. It takes into a

ount

step by step a variable i 2 N n I , 
omputes an appropriate 
oeÆ
ient �

i

for this variable and

iterates. We assume in the following that �

1

; : : : ; �

n�jIj

is a permutation of the items in N n I .

Algorithm 2. (Sequential lifting)

(1) For k = 1 to n� jI j perform the following steps:

(2) For l = 1 to u

�

k

perform the following steps:


(k; l) = max

X

i2I

�

i

x

i

+

X

i2f�

1

;::: ;�

k�1

g

�

i

x

i

X

i2I

A

�i

x

i

+

X

i2f�

1

;::: ;�

k�1

g

A

�i

x

i

+A

��

k

l � b

0 � x

i

� u

i

; x

i

2 Z for i 2 I [ f�

1

; : : : ; �

k�1

g:

(3) End(For)

(4) Set

�

�

k

:= min

l=1;::: ;u

�

k

�

0

� 
(k; l)

l

:

(5) End(For)

(6) Stop.

It 
an be shown by indu
tion on k that the output of this algorithm

P

i2N

�

i

x

i

� �

0

is a valid

inequality for P

IP

. In 
ase, for some k 2 f�

1

; : : : ; �

n�jIj

g, the integer program in (2) is infeasible,
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i. e., 
(k; l) = �1, for all l = 1; : : : ; u

k

, we may assign any value to �

k

and the inequality stays

valid. In fa
t, the following result is true.

Proposition 1. Let I � N and

P

i2I

�

i

x

i

� �

0

an inequality that de�nes a fa
et of P

IP

\ fx 2

R

n

: x

j

= 0 for all j 2 N n Ig. After applying Algorithm 2, the inequality

P

i2N

�

i

x

i

� �

0

de�nes

a fa
et of P

IP

.

The inequality that results from applying the lifting pro
edure is dependent on the permutation

of the items in the set N n I .

Example 1. Consider the knapsa
k polyhedron

P

IP

= 
onvfx 2 f0; 1g

6

: 5x

1

+ 5x

2

+ 5x

3

+ 5x

4

+ 3x

5

+ 8x

6

� 17g:

The inequality x

1

+ x

2

+ x

3

+ x

4

� 3 is valid for P

IP

\ fx

5

= x

6

= 0g: Choosing the permutation

(5; 6) yields the inequality x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

� 3. If one 
hooses the permutation (6; 5)

of the items 5 and 6, the resulting inequality reads x

1

+ x

2

+ x

3

+ x

4

+ 2x

6

� 3. Both inequalities

are fa
et-de�ning for P

IP

.

Note that in order to perform the lifting pro
edure one needs to solve a 
ouple of integer

programs that - at �rst sight - appear as diÆ
ult as the original problem. Sometimes they are

not. For instan
e, if the integer program is a 0=1 knapsa
k problem and the starting inequality

P

i2I

�

i

x

i

� �

0

is a minimal 
over or (1; k)-
on�guration inequality, the lifting 
oeÆ
ients 
an

be 
omputed in polynomial time, see [71℄. Sometimes it is possible to determine the exa
t lifting


oeÆ
ient without solving integer programs, as was observed by Balas [4℄ for minimal 
over in-

equalities and extended by Weismantel [67℄ to extended weight inequalities. It is however true that

for many general mixed integer programs the lifting pro
edure 
an hardly be implemented in the

way we presented it, be
ause 
omputing the 
oeÆ
ients step by step is just too expensive. In su
h


ases, one resorts to lower bounds on the 
oeÆ
ients that one obtains from heuristi
s. Another way

is to look for 
onditions under whi
h simultaneous lifting of variables is possible. This leads to the

study of superadditive fun
tions [69, 35℄.

We note that lifting 
an, of 
ourse, also be applied if a variable x

i

is 
urrently at its upper

bound u

i

. In this 
ase, we �rst \
omplement" variable x

i

by repla
ing it by u

i

�x

i

, apply the same

Algorithm 2 and resubstitute the variable afterwards. Lifting (sequential or simultaneous) has also

been applied to general mixed integer programs, see, for instan
e, [34, 47℄ or in 
onne
tion with

lift-and-proje
t 
uts, see [7, 5℄ and the arti
le in this book.

Computational results about the su

ess of knapsa
k inequalities with or without GUB 
on-

straints are given, for instan
e, in [20, 11, 19, 33, 48℄. The papers 
onsistently show that knapsa
k


uts are 
ru
ial for the solution of integer programs that 
ontain knapsa
k problems as a substru
-

ture.

Of 
ourse, knapsa
k relaxations are not the only ones 
onsidered in mixed integer programming

solvers. An analysis of other important relaxations of an integer program allows to in
orporate odd

hole and 
lique inequalities for the stable set polyhedron [55℄ or 
ow 
over inequalities for 
ertain

mixed integer models [60, 61℄. Further re
ent examples of this se
ond approa
h are given in [15, 47℄.

More than one knapsa
k 
onstraint at a time are 
onsidered in [49℄. Cordier et al. [19℄ give a ni
e

survey on whi
h of the mentioned 
utting planes help to solve whi
h problems from the Miplib. A


omprehensive survey on 
utting planes used to solve integer and mixed integer programs is given

in [46℄.

6 Con
lusions

In this paper we have dis
ussed the basi
 features of 
urrent bran
h-and-
ut algorithms for the

solution of mixed integer programs. We have espe
ially seen that prepro
essing, though most of

the ideas are straight-forward, is often very important to solve 
ertain mixed integer programs. We

have also observed that there are various alternative and better strategies for node and variable

sele
tion within the bran
h-and-bound enumeration s
heme than the 
lassi
al 
hoi
es of sele
ting
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some node deepest in the tree and sele
ting a variable 
losest to one half. We also got to know

some 
utting planes that are in
orporated into todays software. Of 
ourse, we 
ould just tou
h the

surfa
e of these topi
s in this survey. The interested reader is most wel
ome to get deeper into the

�eld through the 
ited literature.
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