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Abstra
t

A semidis
retization in time of a fourth order nonlinear paraboli
 system

in several spa
e dimensions arising in quantum semi
ondu
tor modelling

is studied. The system is numeri
ally treated by introdu
ing an additional

nonlinear potential. The resulting sequen
e of nonlinear se
ond order el-

lipti
 systems admits at ea
h time level stri
tly positive solutions as long as

the latti
e temperature is suÆ
iently large. Exploiting the stability of the

dis
retization, 
onvergen
e is shown in the multi{dimensional 
ase. Under

some assumptions on the regularity of the solution the rate of 
onvergen
e

proves to be optimal.
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1 Introdu
tion

The ongoing miniaturization of semi
ondu
tor devi
es rea
hed nowadays a length

s
ale at whi
h quantum e�e
ts play a dominant role. Thus, standard models like

the 
lassi
al drift di�usion equations are physi
ally ina

urate and have to be

repla
ed by equations whi
h in
orporate the relevant quantum e�e
ts. The state

of the art in quantum semi
ondu
tor devi
e modelling ranges from mi
ros
opi


models su
h as S
hr�odinger{Poisson systems [PU95℄ to ma
ros
opi
 equations

su
h as the quantum hydrodynami
 model (QHD) [Gar94, GJ97, GR98℄.

During the last years a whole hierar
hy of ma
ros
opi
 models has been de-

rived. They deal with ma
ros
opi
, 
uid{type unknowns whi
h allow for a natu-

ral interpretation of boundary 
onditions [Pin99℄. The models 
onsist of balan
e

equations for the parti
le density, 
urrent density and energy density and 
an

be derived via a moment expansion from a many parti
le S
hr�odinger{Poisson

system [GM97, Jun01℄.

Most analyti
al and numeri
al work on these models was spend on the stationary

equations, sin
e the main interest was fo
used on the stationary 
urrent{voltage


hara
teristi
s. Parti
ularly for stationary simulations, a �rst moment version of

the isothermal QHD, the quantum drift di�usion model (QDD) [An
87, AU98℄,

proved to be quite promising sin
e it allows a very e�e
tive numeri
al treatment

[PU99℄. Only re
ently some results on the transient equations are available. The

transient quantum drift di�usion model 
an be derived as a zero relaxation time

limit in the res
aled QHD, whi
h reads

n

t

+ div J = 0;

�

2

relax

J

t

+ �

2

relax

div

�

J 
 J

n

�

+ �rn+ nrV � "

2

nr

�

�

p

n

p

n

�

= �J;

��

2

�V = n� C

dot

:

Here, the parameters are the s
aled Plan
k 
onstant ", the s
aled Debye length �,

the s
aled temperature � and the s
aled relaxation time �

relax

. The distribution

of 
harged ba
kground ions is des
ribed by the doping pro�le C

dot

(x), whi
h is

assumed to be independent of time (for details see [Pin00℄). The variables are the

ele
tron density n(x; t), the 
urrent density J(x; t) and the ele
trostati
 potential

V (x; t). The limiting system (�

relax

= 0), stated on a bounded domain 
, 
an be

written as

n

t

= �

"

2

2

�

2

n +

"

2

2

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

+ ��n+ div (nrV ) ; (1.1a)

��

2

�V = n� C

dot

; (1.1b)

yielding a fourth order nonlinear paraboli
 equation for the ele
tron density n,

whi
h is self{
onsistently 
oupled to Poisson's equation for the potential V .
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To get a well posed problem, system (1.1) has to be supplemented with appro-

priate boundary 
onditions. We assume that the boundary �
 of the domain 


splits into two disjoint parts �

D

and �

N

, where �

D

models the Ohmi
 
onta
ts of

the devi
e and �

N

represents the insulating parts of the boundary. Let � denote

the unit outward normal ve
tor along �
. The ele
tron density is assumed to

ful�ll lo
al 
harge neutrality at the Ohmi
 
onta
ts:

n = C

dot

on �

D

: (1.1
)

Con
erning the potential we assume that it is a superposition of its equilibrium

value and an applied biasing voltage U at the Ohmi
 
onta
ts, and that the

ele
tri
 �eld vanishes along the Neumann part of the boundary:

V = V

eq

+ U on �

D

; rV � � = 0 on �

N

: (1.1d)

Further, it is natural to assume that there is no normal 
omponent of the 
urrent

along the insulating part of the boundary and additionally, the normal 
omponent

of the quantum 
urrent has to vanish:

J � � = 0; r

�

�

p

n

p

n

�

� � = 0 on �

N

: (1.1e)

Lastly, we require that no quantum e�e
ts o

ur at the 
onta
ts:

�

p

n = 0 on �

D

: (1.1f)

These boundary 
onditons are physi
ally motivated and 
ommonly employed

in quantum semi
ondu
tor modelling. The numeri
al investigations in [Pin99℄

underline the reasonability of this 
hoi
e.

System (1.4) is supplemented by the initial 
ondition

n(x; 0) = n

0

(x) in 
: (1.1g)

Let us 
olle
t some results available for system (1.1). In [Pin00℄ the dynami


stability of stationary states with a slightly di�erent set of boundary 
onditions

was established, at least for small s
aled Plan
k 
onstants and small applied

biasing voltages. So far, there are only a few results available 
on
erning the

solvability of (1.1) due to the la
k of an appropriate maximum prin
iple ensuring

the positivity of the ele
tron density n. Nevertheless, for zero temperature (� = 0)

and vanishing ele
tri
 �eld (1.1) simpli�es to

n

t

= �

"

2

2

�

2

n +

"

2

2

d

X

i;j=1

�

x

i

�

x

j

�

�

x

i

n �

x

j

n

n

�

: (1.2)
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Surprisingly, this equation also arises as a s
aling limit in the study of interfa
e


u
tuations in a 
ertain spin system. Bleher et al. [BLS94℄ showed that there

exists a unique positive 
lassi
al solution lo
ally in time in one spa
e dimension,

assuming stri
tly positive H

1

(
){data and periodi
 boundary 
onditions. The

authors [JP00℄ dedu
ed under mu
h weaker assumptions the existen
e of a non{

negative global solution n in one spa
e dimension.

In the last years the question of positivity preservation for the dynami
s of fourth

order equations was thoroughly investigated in the 
ontext of lubri
ation{type

equations [BF90, BP98, PGG98℄, whi
h read

h

t

+ div (f(h)r�h) = 0: (1.3)

They arise in the study of thin liquid �lms and spreading droplets (for an overview

see [Ber98℄ and the referen
es therein). Numeri
ally, there are two ways of deal-

ing with Equation (1.3): Bertozzi et al. [BZ00℄ designed a spa
e dis
retization

using �nite di�eren
es, whi
h exhibits the same properties as the 
ontinuous

equation. Barrett et al. [BBG98℄ proposed a non{negativity preserving �nite

element method, where the non{negativity property is imposed as a 
onstraint

su
h that at ea
h time level a variational inequality has to be solved.

Con
erning system (1.1) in one spa
e dimension a di�erent numeri
al s
heme

was introdu
ed by the authors, whi
h proved to be stable and 
onvergent [JP01℄:

Writing Equation (1.1a) in 
onservation form

n

t

= div

�

nr

�

�"

2

�

p

n

p

n

+ � log(n) + V

��

and introdu
ing the quantum quasi Fermi level

F = �"

2

�

p

n

p

n

+ � log(n) + V

yields the system

n

t

= div(nrF ); (1.4a)

�"

2

�

p

n

p

n

+ � log(n) + V = F; (1.4b)

��

2

�V = n� C

dot

: (1.4
)

Here, �"

2

�

p

n=

p

n is the so{
alled quantum Bohm potential. The additional

boundary 
onditions

F = U on �

D

; rF � � = 0 on �

N

are 
onsistent with (1.1
){(1.1f).

4



Then, an impli
it time dis
retization by a ba
kward Euler s
heme for system

(1.4) is suggested. The resulting sequen
e of ellipti
 systems proves to be uniquely

solvable at ea
h time step and moreover the semidis
rete solution is stri
tly pos-

itive. However, the positivity property relaxes in the limit to non{negativity.

In this paper we generalize this 
onvergen
e result to the multi{dimensional 
ase.

From Remark 2.3 in [JP01℄ we learn that even for several spa
e dimensions the

semidis
retization possesses a stri
tly positive solution n(x; t

k

) as long as the

latti
e temperature � is suÆ
iently large. Sin
e there is no uniform lower bound

on the ele
tron density available we will assume this property and some regularity

of the 
ontinuous solution. This has the bene�t that we 
annot only prove the

desired 
onvergen
e result but get also estimates on the rate of 
onvergen
e whi
h

proves to be optimal for the Euler s
heme.

The proof is based on a stability estimate whi
h is a 
onsequen
e of the bound-

edness of the entropy (or free energy)

S(t) = "

2

Z




�

�

�

r

p

n(t)

�

�

�

2

dx + �

Z




H (n(t)) dx+

�

2

2

Z




jrV (t)j

2

dx: (1.5)

In fa
t, S is non{in
reasing in time (see [JP01℄). Here, H(s)

def

= s (log(s)� 1)+1

denotes a primitive of the logarithm.

The paper is organized as follows. In Se
tion 2 we introdu
e the semidis
retization

of (1.4). Se
tion 3 is devoted to the proof of 
onvergen
e in the multi{dimensional


ase, whi
h relies on an energy estimate for the dis
rete solution. Imposing some

natural assumptions we show that the s
heme is 
onvergent with the optimal

order in some suitable norm.

2 Semidis
retization

In this se
tion we derive the impli
it semidis
retization of (1.4) and state an

existen
e and stability result for the dis
retized system at ea
h time level. In

parti
ular, the positivity of the ele
tron density is guaranteed.

For the following investigations we introdu
e the new variable � =

p

n. Then

(1.4) reads:

�

�

2

�

t

= div(�

2

rF ); (2.1a)

�"

2

��

�

+ � log(�

2

) + V = F; (2.1b)

��

2

�V = �

2

� C

dot

: (2.1
)

For the numeri
al treatment of (2.1) we employ a verti
al line method and repla
e

the transient problem by a sequen
e of ellipti
 problems.
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Let T > 0 be given. We divide the time interval [0; T ℄ into N subintervals by

introdu
ing the temporal mesh ft

k

: k = 0; : : : ; Ng, where 0 = t

0

< t

1

< : : : <

t

N

= T . We set �

k

def

= t

k

� t

k�1

and de�ne the maximal subinterval length

�

def

= max

k=1;::: ;N

�

k

. We assume that the partition ful�lls

� ! 0 as N !1: (2.2)

For any Bana
h spa
e B we de�ne

PC

N

(0; T ;B)

def

=

�

v

�

: (0; T ℄! B : v

�

j

(t

k�1

;t

k

℄

� 
onst: for k = 1; : : : ; N

	

and introdu
e the abreviation v

k

= v

�

(t) for t 2 (t

k�1

; t

k

℄ and k = 1; : : : ; N .

Further, let ~v

�

denote the linear interpolant of v

�

2 PC

N

(0; T ;L

2

(
)) given by

~v

�

(t; x) =

t� t

k�1

�

k

(v

k

� v

k�1

) + v

k�1

; for x 2 
; t 2 (t

k�1

; t

k

℄:

Now we dis
retize (2.1) using an impli
it Euler s
heme:

Set �

0

=

p

n(0). For k = 1; : : : ; N solve re
ursively the ellipti
 systems

1

�

k

�

�

2

k

� �

2

k�1

�

= div(�

2

k

rF

k

); (2.3a)

�"

2

��

k

�

k

+ � log(�

2

k

) + V

k

= F

k

; (2.3b)

��

2

�V

k

= �

2

k

� C

dot

; (2.3
)

subje
t to the boundary 
onditions

�

k

= �

D

; F

k

= F

D

; V

k

= V

D

on �

D

; (2.3d)

r�

k

� � = rF

k

� � = rV

k

� � = 0 on �

N

; (2.3e)

where

�

D

=

p

C

dot

; F

D

= U; V

D

= �� log (C

dot

) + U: (2.4)

Then the approximate solution to (2.1) is given by (�

�

; F

�

; V

�

).

We use the standard notation for Sobolev spa
es (see [Ada75℄), denoting the

norm of W

m;p

(
) (m 2 R

+

0

; p 2 [1;1℄) by k�k

W

m;p

(
)

. In the spe
ial 
ase p = 2

we use H

m

(
) instead of W

m;2

(
). Further, let H

m

0

(
) be the 
losure of C

1




(
)

with respe
t to the H

m

(
) norm and let H

1

0

(
[�

N

) for �

N

� �
 be the 
losure

of C

1




(
 [ �

N

) with respe
t to the H

1

(
) norm [Tro87℄. Moreover, for any

6



Bana
h spa
e B we de�ne the spa
e L

p

(0; T ;B) with p 2 [1;1℄ 
onsisting of all

measurable fun
tions ' : (0; T )! B for whi
h the norm

k'k

L

p

(0;T ;B)

def

=

�

Z

T

0

k'k

p

B

dt

�

1=p

; p 2 [1;1);

k'k

L

1

(0;T ;B)

def

= sup

t2(0;T )

k'(t)k

B

; p =1;

is �nite. If the time interval is 
lear we shortly write k�k

L

p

(B)

.

Naturally, we have to assume some regularity properties on the data. For the

subsequent 
onsiderations we impose the following assumptions:

A.1 Let 
 � R

d

, d = 1; 2 or 3, be a bounded domain with boundary �
 2 C

1;1

.

The boundary �
 is pie
ewise regular and splits into two disjoint parts

�

N

and �

D

. The set �

D

has nonvanishing (d � 1){dimensional Lebesgue{

measure. �

N

is 
losed.

A.2 The boundary data ful�lls (2.4) and

�

D

2 H

4

(
); inf




�

D

> 0; r�

D

� � = 0 on �

N

;

F

D

2 C

2;


(

�


) for 
 2

�

0;

1

2

�

; F

D

� �F

D

< 0;

V

D

2 C

2;


(

�


);

and the initial datum satis�es �

0

2 H

2

(
). Further, C

dot

2 C

0;


(

�


).

A.3 Let 
 2 (0; 1) and a 2 C

0;


(

�


) with a � a > 0. Then there exists a 
onstant

K = K(
;�

D

;�

N

; a; d; 
) > 0 su
h that for f 2 C

0;


(

�


) and u

D

2 C

2;


(

�


)

there exists a solution u 2 C

2;


(

�


) of

div(aru) = f; u� u

D

2 H

1

0

(
 [ �

N

);

whi
h ful�lls

kuk

C

2;


(

�


)

� K

�

ku

D

k

C

2;


(

�


)

+ kfk

C

0;


(

�


)

�

:

Remark 2.1.

(a) Assumption A.3 is essentially a restri
tion on the geometry of 
. It is

ful�lled in the 
ase where the Diri
hlet and the Neumann boundary do not

meet, i.e. �

D

\ �

N

= ; [Tro87℄.

(b) The restri
tion F

D

� �F

D

on the Quantum Quasi Fermi level is purely

te
hni
al. From the physi
al point of view the devi
e behaviour is indepen-

dent of a shift F 7! F + �, V 7! V + �, � 2 R.
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(
) For a smoother presentation we assume that the boundary 
onditions are

independent of time.

In [JP01℄ an existen
e theorem for (2.3) is proved, whi
h reads in the multi{

dimensional 
ase:

Proposition 2.2. Assume A.1|A.3. Furthermore, let k 2 f1; : : : ; Ng and let

�

k�1

2 C

0;


(

�


). Then there exists a 
onstant �

0

> 0 su
h that for all � > �

0

system (2.3) possesses a solution (�

k

; F

k

; V

k

), ful�lling

(a) (�

k

; F

k

; V

k

) 2 H

2

(
)� C

2;


(

�


)� C

2;


(

�


) for 0 < 
 <

1

2

,

(b) 9


k

> 0 : �

k

� 


k

> 0 in 
.

Furthermore, the approximate solution is stable in the following sense (see [JP01,

Corollary 2.5℄).

Lemma 2.3. Assume A.1|A.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re
ur-

sively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)� C

2;


(

�


)�

C

2;


(

�


)). Then �

�

2 L

1

(0; T ;H

1

(
)) and �

�

rF

�

2 L

2

(0; T ;L

2

(
)). Further,

there exists a positive 
onstant 
, independent of � , su
h that

k�

�

k

L

1

(H

1

)

+ kV

�

k

L

1

(H

1

)

+ k�

�

rF

�

k

L

2

(L

2

)

� 
: (2.5)

Remark 2.4. In the one{dimensional 
ase it is possible to prove (see [JP01,

Theorem 3.3℄) the existen
e of a subsequen
e, again denoted by (�

�

; F

�

; V

�

),

su
h that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;


(

�


));

(�

�

)

2

F

�

x

* J weakly in L

2

(0; T ;L

2

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;


(

�


));

as � ! 0, where (�; J; V ) is a weak solution of the 
ontinuous problem (2.1).

3 Convergen
e in Several Spa
e Dimension

In this se
tion we prove the 
onvergen
e of the numeri
al s
heme given by (2.3)

in the multi{dimensional 
ase. Here, the a priori bounds on the approximate

solution in Lemma 2.3 are not suÆ
ient to guarantee 
onvergen
e, sin
e the

argument depends strongly on an L

1

(0; T ;L

1

(
)){bound on �

�

(see [JP01℄).

In one spa
e dimension this is an immediate 
onsequen
e of the estimate (2.5)

and the embedding H

1

(
) ,! L

1

(
). In fa
t, no analyti
al results on system
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(1.4) are available in several spa
e dimensions. Thus, we have to state additional

assumptions on the sequen
e of approximating solutions. These enable us to

give even error estimates, whi
h exhibit the optimal order of 
onvergen
e for the

impli
it Euler s
heme.

Theorem 3.1. Assume A.1|A.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re-


ursively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)�C

2;


(

�


)�

C

2;


(

�


)). Assuming

A.4 9Æ 2 (0; 1) 8� > 0 : Æ � �

�

� Æ

�1

; k�

�

k

L

1

(0;T ;H

2

(
))

� Æ

�1

,

there exists a subsequen
e, again denoted by (�

�

; F

�

; V

�

), su
h that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;


(

�


));

F

�

! F strongly in C

0

([0; T ℄;H

1

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;


(

�


));

as � ! 0, where (�; F; V ) is a solution of the 
ontinuous problem (2.1).

Furthermore, if the embedding H

2

(
) ,! W

m;p

(
) is 
ontinuous for some m � 0,

p � 1 and

A.5 � 2 H

2

(0; T ;L

2

(
)),

then there exists a 
onstant �

0

= �

0

(
; �; Æ) > 0 su
h that for � 2 [0; �

0

) we have

the following error estimate

k�

�

� �k

L

1

(L

2

)

+ "

2

k�

�

� �k

L

2

(W

m;p

)

+ kF

�

� Fk

L

1

(H

2

)

+ kV

�

� V k

L

1

(H

2

)

� C e

�T

�; (3.1)

for some positive 
onstants � = �(
; �; Æ; �

0

) and C = C(
; �; Æ; �

0

).

Remark 3.2.

(a) Assumption A.4 allows us to verify the strong 
onvergen
e F

�

! F whi
h

yields the identi�
ation J = �

2

rF for the limiting 
urrent density. Noti
e

that this extends the one{dimensional result (see Remark 2.4).

(b) Already in the 
lassi
al regime (" = 0) assumption A.5 is employed for

the derivation of the optimal order of 
onvergen
e in one spa
e dimension

[CJ90℄. Remarkably, it is also suÆ
ient in this higher order system in several

spa
e dimensions.

9



(
) An inspe
tion of the proof of Theorem 3.1 shows that the last assumption

in A.4 
an be repla
ed by the weaker 
ondition k�

�

k

L

1

(0;T ;Z)

� Æ

�1

, and Z

is a Sobolev spa
e whi
h embeddes 
ompa
tly into W

1;3

(
).

For the 
onvergen
e result we also need some bound in the energy norm and

on the time derivative. To this purpose we introdu
e the linear interpolant of

(�

�

)

2

2 PC

N

(0; T ;L

2

(
)), de�ned by

~n

�

(t; x)

def

=

t� t

k

�

k

�

�

2

k

(x)� �

2

k�1

(x)

�

+ �

2

k�1

(x); x 2 
; t 2 (t

k�1

; t

k

℄:

Following the outlines of the proof of Lemma 3.1 and Lemma 3.2 in [JP01℄ one

veri�es that A.4 is suÆ
ient to derive the following additional stability estimates.

Lemma 3.3. Assume A.1|A.4. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re
ur-

sively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)� C

2;


(

�


)�

C

2;


(

�


)). Then �

�

2 L

2

(0; T ;H

2

(
)) and ~n

�

2 H

1

(0; T ; H

�1

(
)). Further, there

exists a positive 
onstant 
, independent of � , su
h that

k�

�

k

L

2

(H

2

)

� 
 and k~n

�

t

k

L

2

(H

�1

)

� 
: (3.2)

For the proof of Theorem 3.1 we need the monotoni
ity of the quantum \operator"

A(�) =

1

�

div

�

�

2

r

��

�

�

; � 2 H

4

(
):

Lemma 3.4. Assume A.1 and A.3. Choose m � 0, p � 1 su
h that the 
ontin-

uous embedding H

2

(
) ,! W

m;p

(
) holds. Then there exists for all � 2 R and

all Æ 2 (0; 1) a 
onstant M = M(
; �; Æ) > 0 su
h that for all � 2 H

2

(
) with

Æ � � � 1=Æ and all � 2 H

2

(
) \H

1

0

(
 [ �

N

) it holds

Z




�

�

�

�

�

�

div

�

�

2

r

�

�

�

��

�

�

�

�

2

dx �M k�k

2

W

m;p

(
)

:

The proof of Lemma 3.4 is a slight generalization of the one in [Pin00, Theorem

3.7℄. It follows the monotoni
ity result.

Lemma 3.5. Assume A.1. Let u, v 2 H

4

(
) be su
h that u, v � Æ > 0 in 


and

u� v = 0; �u = �v = 0 on �

D

;

r(u� v) � � = 0; r

�u

u

� � = r

�v

v

� � = 0 on �

N

:

Then

Z




(A(u)� A(v))(u� v)dx =

Z




1

uv

�

�

�

�

div

�

u

2

r

u� v

u

�

�

�

�

�

2

dx: (3.3)
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Proof. By integration by parts we obtain

Z




(A(u)� A(v))(u� v)dx

=

Z




�

�u

u

div

�

u

2

r

u� v

u

�

�

�v

v

div

�

v

2

r

u� v

v

�

�

dx

=

Z




�

v�u� u�v

uv

div

�

u

2

r

u� v

u

�

�

�v

v

div

�

v

2

r

u� v

v

� u

2

r

u� v

u

�

�

dx:

Sin
e

v

2

r

u� v

v

� u

2

r

u� v

u

= 0 in 
;

this implies

Z




(A(u)� A(v))(u� v)dx =

Z




1

uv

�

�

�

�

div

�

u

2

r

u� v

u

�

�

�

�

�

2

dx:

Now we are in the position to prove Theorem 3.1. The �rst part of proof is a

slight generalization of the one for Theorem 3.3 in [JP01℄. However, we in
lude

it for the sake of a 
ompleteness.

Proof of Theorem 3.1. We 
hoose a sequen
e of partitions of [0; T ℄ satisfying

(2.2). A

ording to Lemma 3.3 (�

�

) is bounded in L

2

(0; T ;H

2

(
)). We may


hoose a subsequen
e, again denoted by (�

�

), su
h that, as � ! 0,

�

�

* � weakly in L

2

(0; T;H

2

(
)):

Further, we have due to Lemma 3.3 and Lemma 2.3 that ~n

�

2 H

1

(0; T ;H

�1

(
)).

Sin
e the embeddingH

2

(
) ,! C

0;


(

�


) is 
ompa
t for 1 � d � 3 and 0 < 
 < 1=2

we dedu
e from Aubin's Lemma [Sim87℄ that

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

(0; T ;C

0;


(

�


)) 
ompa
tly:

Hen
e, using assumption A.4, there exists a subsequen
e, not relabeled, su
h

that

~n

�

! n strongly in C

0

(0; T ;C

0;


(

�


)):

The reader easily veri�es the identi�
ation n = �

2

. By assumption A.4 and

inequality (2.5), we get a uniform estimate for ~�

�

t

in L

2

(0; T ;H

�1

(
)). Hen
e,

the 
ompa
t embedding

L

2

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! L

2

(0; T ;H

1

(
))

11



implies that (up to a subsequen
e)

~�

�

! � strongly in L

2

(0; T ;H

1

(
))

and 
onsequently,

�

�

! � strongly in L

2

(0; T ;H

1

(
)):

Standard results from ellipti
 theory and A.2 imply now

V

�

! V strongly in C

0

(0; T; C

2;


(

�


)):

De�ning J

�

= (�

�

)

2

rF

�

we dedu
e from Lemma 2.3 that (J

�

) is bounded in

L

2

(0; T; L

2

(
)), su
h that

J

�

* J weakly in L

2

(0; T ;L

2

(
)):

Now, the 
onvergen
e of (F

�

) to F follows from the uniform bound �

�

� Æ


ombined with standard ellipti
 theory. Further, J = �

2

rF .

The derived 
onvergen
e properties are by far suÆ
ient to pass to the limit in

the weak formulation of (2.3).

In order to estimate the rate of 
onvergen
e, we need some regularity properties

for �

k

and �(t

k

). From

�"

2

��

k

= �

k

(F

k

� � log(�

2

k

)� V

k

) 2 H

2

(
)

and assumption A.2 we obtain �

k

2 H

4

(
). The 
ompa
t embedding

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

([0; T ℄;C

0;


(

�


))

implies that � is 
ontinuous in C

0

([0; T ℄;C

0;


(

�


)) and hen
e,

�"

2

�� = �(F � � log(�

2

)� V ) 2 C

0

([0; T ℄;C

0;


(

�


)):

By a bootstrapping argument, it follows � 2 C

0

([0; T ℄;H

4

(
)).

Now let k 2 f1; : : : ; Ng be �xed. We take the di�eren
e of

2 �

t

=

1

�

div

�

�

2

rF

�

and

2

�

k

(�

k

� �

k�1

)�

1

�

k

(�

k

� �

k�1

)

2

�

k

=

1

�

k

div

�

�

2

k

rF

k

�

:

12



Note that �

k

; � � Æ. Further, by Taylor's expansion we have

�(t

k

) = �(t

k�1

) + �

t

(t

k

) �

k

+

1

2

Z

t

k

t

k�1

�

tt

(s)(s� t

k�1

) ds:

Setting

f

k

def

=

1

2

Z

t

k

t

k�1

�

tt

(s)(s� t

k�1

) ds

and de�ning the error

e

k

def

= �

k

� �(t

k

)

we �nally end up with

2

�

k

(e

k

� e

k�1

)�

1

�

k

(�

k

� �

k�1

)

2

�

k

+

2

�

k

f

k

=

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

:

Now we use � = �

k

e

k

as test fun
tion, whi
h yields

2

Z




(e

k

� e

k�1

)e

k

dx�

Z




(�

k

� �

k�1

)

2

�

k

e

k

dx+ 2

Z




f

k

e

k

dx (3.4)

= �

k

Z




�

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

�

e

k

dx:

We estimate termwise starting on the left{hand side.

Using the identity 2r(r � s) = r

2

� s

2

+ (r � s)

2

we get

2

Z




(e

k

� e

k�1

)e

k

dx = ke

k

k

2

L

2

(
)

� ke

k�1

k

2

L

2

(
)

+ ke

k

� e

k�1

k

2

L

2

(
)

:

Let � = Æ=max

k=1;::: ;N

k�

k

k

L

1

(
)

= Æ

2

. It holds

�

Z




(�

k

� �

k�1

)

2

�

k

e

k

dx � �(1� �)

Z




(�

k

� �

k�1

)

2

dx

= �(1� �)

Z




(e

k

� e

k�1

+ �(t

k

)� �(t

k�1

))

2

dx

� �ke

k

� e

k�1

k

2

L

2

(
)

�

1� �

�

Z




(�

t

(t

k

) �

k

+ f

k

)

2

dx;
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where we used Taylor's expansion and Young's inequality. Trivially, it holds

�2

Z




f

k

e

k

dx � 2 kf

k

k

2

L

2

(
)

+

1

2

ke

k

k

2

L

2

(
)

:

The right hand side of (3.4) 
an be estimated using integration by parts.

�

k

Z




�

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

�

e

k

dx =

� �

k

"

2

Z




(A(�

k

)� A(�(t

k

)))(�

k

� �(t

k

))dx

+ 2 �

k

�

Z




"

��

k

+

jr�

k

j

2

�

k

���(t

k

)�

jr�(t

k

)j

2

�(t

k

)

#

e

k

dx

+ �

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

� ��

k

"

2

Z




(A(�

k

)� A(�(t

k

)))(�

k

� �(t

k

))dx

� 2 �

k

�

Z




�

�

�

�

�(t

k

)

�

k

r�

k

�

�

k

�(t

k

)

r�(t

k

)

�

�

�

�

2

dx

+ �

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx:

The last term 
an be handled as follows.

�

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

= �

k

Z




[2re

k

rV

k

� 2r�(t

k

)r(V (t

k

)� V

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

= �

k

Z




�

�e

2

k

�V

k

� 2r�(t

k

)r(V (t

k

)� V

k

) e

k

+ e

2

k

�V

k

��(t

k

)�(V (t

k

)� V

k

) e

k

℄ dx

= �2 �

k

Z




r�(t

k

)r(V (t

k

)� V

k

) e

k

dx� �

k

Z




�(t

k

)(�(t

k

) + �

k

) e

2

k

dx

� �2 �

k

Z




r�(t

k

)r(V (t

k

)� V

k

) e

k

dx

� 2 �

k

kr�(t

k

)k

L

3

(
)

kr(V (t

k

)� V

k

)k

L

6

(
)

ke

k

k

L

2

(
)

:

The 
ompa
t embedding

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

([0; T ℄;W

1;3

(
))
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yields the uniform bound kr�(t

k

)k

L

3

(
)

� 


0

.

>From the boundary 
onditions for �

k

, F

k

and V

k

(see (2.3d), (2.3e) and (2.4))

we 
on
lude that

r�

k

� � = r

��

k

�

k

� � = 0 in the sense of L

2

(�

N

);

�

k

= �

D

; ��

k

= 0 in the sense of L

2

(�

D

):

Similarly,

r�(t

k

) � � = r

��(t

k

)

�(t

k

)

� � = 0 in the sense of L

2

(�

N

);

�(t

k

) = �

D

; ��(t

k

) = 0 in the sense of L

2

(�

D

):

Combining all these estimates, together with the monotoni
ity of A (see (3.3))

and Lemma 3.4 gives after summation

1

2

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

�

1� �

�

k

X

l=1

Z




(�

t

(t

l

) �

l

+ f

l

)

2

dx

+ 2

k

X

l=1

kf

l

k

2

L

2

(
)

+ 2 


0

k

X

l=1

�

l

kr(V (t

l

)� V

l

)k

L

6

(
)

ke

l

k

L

2

(
)

;

where M =M(
; Æ) > 0 is the 
onstant spe
i�ed in Lemma 3.5. Estimating

kf

k

k

2

L

2

(
)

� �

2

k

k�

tt

k

2

L

2

(
�(t

k�1

;t

k

))

;

and

kr(V (t

k

)� V

k

)k

L

6

(
)

� 


1

Æ

�1

ke

k

k

L

2

(
)

;

with 


1

= 


1

(
; �) > 0, yields

1

2

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

� 


2

k

X

l=1

�

2

l

�

k�

t

k

2

L

1

(t

l�1

;t

l

;L

2

(
))

+ k�

tt

k

2

L

2

(
�(t

l�1

;t

l

))

�

+ 2 


0




1

Æ

�1

k

X

l=1

�

l

ke

l

k

2

L

2

(
)

;
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where 


2

= 


2

(Æ) > 0. Choose �

0

<

Æ

2

4 


1

. Then

�

1

2

� 2 


1

Æ

�2

�

0

�

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

� 


2

k�k

2

H

2

(0;T ;L

2

(
))

�

2

+ 2 


0




1

Æ

�1

k�1

X

l=1

�

l

ke

l

k

2

L

2

(
)

:

Now it follows from the dis
rete Gronwall Lemma that

ke

k

k

2

L

1

(L

2

)

+M "

2

ke

k

k

2

L

2

(W

m;p

)

� 


3

e

at

k

�

2

for some 


3

; a > 0. The estimates on F

�

� F and V

�

� V follow immediately

from standard results of ellipti
 theory.

Remark 3.6. Although we do not get an estimate on �

�

� � in L

2

(0; T;H

2

(
)),

the regularity in spa
e is by far suÆ
ient to de�ne a suitable �nite element dis-


retization of (1.4).
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