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Abstract

A semidiscretization in time of a fourth order nonlinear parabolic system
in several space dimensions arising in quantum semiconductor modelling
is studied. The system is numerically treated by introducing an additional
nonlinear potential. The resulting sequence of nonlinear second order el-
liptic systems admits at each time level strictly positive solutions as long as
the lattice temperature is sufficiently large. Exploiting the stability of the
discretization, convergence is shown in the multi-dimensional case. Under
some assumptions on the regularity of the solution the rate of convergence
proves to be optimal.
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1 Introduction

The ongoing miniaturization of semiconductor devices reached nowadays a length
scale at which quantum effects play a dominant role. Thus, standard models like
the classical drift diffusion equations are physically inaccurate and have to be
replaced by equations which incorporate the relevant quantum effects. The state
of the art in quantum semiconductor device modelling ranges from microscopic
models such as Schrédinger—Poisson systems [PU95] to macroscopic equations
such as the quantum hydrodynamic model (QHD) [Gar94, GJ97, GR98].

During the last years a whole hierarchy of macroscopic models has been de-
rived. They deal with macroscopic, fluid—type unknowns which allow for a natu-
ral interpretation of boundary conditions [Pin99]. The models consist of balance
equations for the particle density, current density and energy density and can
be derived via a moment expansion from a many particle Schrodinger—Poisson
system [GM97, Jun01].

Most analytical and numerical work on these models was spend on the stationary
equations, since the main interest was focused on the stationary current—voltage
characteristics. Particularly for stationary simulations, a first moment version of
the isothermal QHD, the quantum drift diffusion model (QDD) [Anc87, AU9S|,
proved to be quite promising since it allows a very effective numerical treatment
[PU99]. Ounly recently some results on the transient equations are available. The
transient quantum drift diffusion model can be derived as a zero relaxation time
limit in the rescaled QHD, which reads

nt+diVJ:0,

A
Tr’zelaa: Jt +T7"28lax div <J® J> + evn‘{’nvv — €2TLV ( \/ﬁ> = —J7
n \/ﬁ
XAV = n— Cly.

Here, the parameters are the scaled Planck constant €, the scaled Debye length A,
the scaled temperature 6 and the scaled relaxation time 7,.,,. The distribution
of charged background ions is described by the doping profile Cy(x), which is
assumed to be independent of time (for details see [Pin00]). The variables are the
electron density n(z,t), the current density J(z,t) and the electrostatic potential
V(z,t). The limiting system (7,¢q. = 0), stated on a bounded domain €, can be
written as

2 2 d 9.1 0
g € ;10 Og; 1 .
g A g 2 0l (T) HoAnEdvinVE), - (de)
~NAV =n — Cyy, (1.1b)

yielding a fourth order nonlinear parabolic equation for the electron density n,
which is self—consistently coupled to Poisson’s equation for the potential V.



To get a well posed problem, system (1.1) has to be supplemented with appro-
priate boundary conditions. We assume that the boundary 02 of the domain €2
splits into two disjoint parts I'p and I'y, where I'p models the Ohmic contacts of
the device and I'y represents the insulating parts of the boundary. Let v denote
the unit outward normal vector along 0€). The electron density is assumed to
fulfill local charge neutrality at the Ohmic contacts:

n==Cy onlp. (1.1¢c)

Concerning the potential we assume that it is a superposition of its equilibrium
value and an applied biasing voltage U at the Ohmic contacts, and that the
electric field vanishes along the Neumann part of the boundary:

V=V,+U onlp, VV-vr=0 only. (1.1d)

Further, it is natural to assume that there is no normal component of the current
along the insulating part of the boundary and additionally, the normal component
of the quantum current has to vanish:

Ayn
NG

Lastly, we require that no quantum effects occur at the contacts:

J-v=0, V( >~1/:0 on I'y. (1.1e)

Ayn=0 onTp. (1.1f)

These boundary conditons are physically motivated and commonly employed
in quantum semiconductor modelling. The numerical investigations in [Pin99]
underline the reasonability of this choice.

System (1.4) is supplemented by the initial condition

n(z,0) =ne(z) in . (1.1g)

Let us collect some results available for system (1.1). In [Pin00] the dynamic
stability of stationary states with a slightly different set of boundary conditions
was established, at least for small scaled Planck constants and small applied
biasing voltages. So far, there are only a few results available concerning the
solvability of (1.1) due to the lack of an appropriate maximum principle ensuring
the positivity of the electron density n. Nevertheless, for zero temperature (§ = 0)
and vanishing electric field (1.1) simplifies to

2 2 d 0.1
__E A2 € a; TV Og; T
= ——An+ i;amiaxj (7n ) : (1.2)



Surprisingly, this equation also arises as a scaling limit in the study of interface
fluctuations in a certain spin system. Bleher et al. [BLS94] showed that there
exists a unique positive classical solution locally in time in one space dimension,
assuming strictly positive H'(2)-data and periodic boundary conditions. The
authors [JP00] deduced under much weaker assumptions the existence of a non—
negative global solution n in one space dimension.

In the last years the question of positivity preservation for the dynamics of fourth

order equations was thoroughly investigated in the context of lubrication—type
equations [BF90, BP98, PGG98|, which read

hy + div (f(h) VAR) = 0. (1.3)

They arise in the study of thin liquid films and spreading droplets (for an overview
see [Ber98] and the references therein). Numerically, there are two ways of deal-
ing with Equation (1.3): Bertozzi et al. [BZ00] designed a space discretization
using finite differences, which exhibits the same properties as the continuous
equation. Barrett et al. [BBGI8] proposed a non-negativity preserving finite
element method, where the non—negativity property is imposed as a constraint
such that at each time level a variational inequality has to be solved.

Concerning system (1.1) in one space dimension a different numerical scheme
was introduced by the authors, which proved to be stable and convergent [JPO1]:
Writing Equation (1.1a) in conservation form

A
ny = div (nV (—62 \/\/ﬁﬁ + 60 log(n) + V>>
and introducing the quantum quasi Fermi level
Av/n
Vn

F=-¢ + 60 log(n) +V

yields the system

ny = div(n VF), (1.4a)

A
—52% + 60 log(n) +V = F, (1.4b)
~NAV =n — Cyy. (1.4c)

Here, —?Ay/n//n is the so-called quantum Bohm potential. The additional
boundary conditions

F=U onlp, VF-v=0 only

are consistent with (1.1¢)—(1.1f).



Then, an implicit time discretization by a backward EULER scheme for system
(1.4) is suggested. The resulting sequence of elliptic systems proves to be uniquely
solvable at each time step and moreover the semidiscrete solution is strictly pos-
itiwe. However, the positivity property relaxes in the limit to non—negativity.

In this paper we generalize this convergence result to the multi-dimensional case.
From Remark 2.3 in [JPO1] we learn that even for several space dimensions the
semidiscretization possesses a strictly positive solution n(z,t;) as long as the
lattice temperature 6 is sufficiently large. Since there is no uniform lower bound
on the electron density available we will assume this property and some regularity
of the continuous solution. This has the benefit that we cannot only prove the
desired convergence result but get also estimates on the rate of convergence which
proves to be optimal for the Euler scheme.

The proof is based on a stability estimate which is a consequence of the bound-
edness of the entropy (or free energy)

S() :gzuvm

In fact, S is non-increasing in time (see [JP01]). Here, H(s) g (log(s) —1)+1
denotes a primitive of the logarithm.

’ dx+0/QH(n(t)) d:c+%2/Q|VV(t)|2 dr. (15)

The paper is organized as follows. In Section 2 we introduce the semidiscretization
of (1.4). Section 3 is devoted to the proof of convergence in the multi-dimensional
case, which relies on an energy estimate for the discrete solution. Imposing some
natural assumptions we show that the scheme is convergent with the optimal
order in some suitable norm.

2 Semidiscretization

In this section we derive the implicit semidiscretization of (1.4) and state an
existence and stability result for the discretized system at each time level. In
particular, the positivity of the electron density is guaranteed.

For the following investigations we introduce the new variable p = y/n. Then
(1.4) reads:

(pQ)t = div(p* VF), (2.1a)

2 Ap 2
—€ 7+910g(p )+ V =F, (2.1b)
~NAV = p* — Cyyp. (2.1c)

For the numerical treatment of (2.1) we employ a vertical line method and replace
the transient problem by a sequence of elliptic problems.



Let 7" > 0 be given. We divide the time interval [0, 7] into N subintervals by
introducing the temporal mesh {t; : k =0,... ,N}, where 0 = ¢, < t; < ... <

ty = T. We set 7 def tx — tx—1 and define the maximal subinterval length

r maxg—1,.. N Tk We assume that the partition fulfills

T—=0 as N — oo. (2.2)

For any Banach space B we define

def

PCON(0,T;B) = v : (0,T] = B :v"| = const. for k=1,... ,N}

tr—1,tx]

and introduce the abreviation vy = v7(t) for ¢t € (tx_1,tx] and k = 1,... N.
Further, let o7 denote the linear interpolant of v™ € PCx(0,T; L*(£2)) given by
r t—tp—1
o7 (t,x) = . (v — vg—1) +vp—1, Tforz e, te (tg_1,tk
k

Now we discretize (2.1) using an implicit EULER scheme:

Set pg = v/n(0). For k=1,..., N solve recursively the elliptic systems

1

- (Pt — pi1) = div(pi VE), (2.3a)

A
—sz—ppk + 0log(pp) + Vi = Fr, (2.3b)
ke

—)\2AVk = pi — Cdot; (23C)

subject to the boundary conditions

Pk = PD, Fk = FD7 Vk = VD on FD7 (23d)
Vo, v=VE,-v=VV,-v=0 only, (2.3e)

where
PD =V Cdot7 FD = U, VD = —0 log (Cdot) + U. (24)

Then the approximate solution to (2.1) is given by (p”, F7, V7).

We use the standard notation for Sobolev spaces (see [Ada75]), denoting the
norm of W™P(Q) (m € Ry ,p € [1,00]) by [*[[ymp(q)- In the special case p = 2
we use H™(Q) instead of W™2(Q). Further, let HJ*(2) be the closure of C°()
with respect to the H™(2) norm and let H}(QUT y) for Ty C 99 be the closure
of C=(Q U T'y) with respect to the H'(Q) norm [Tro87]. Moreover, for any



Banach space B we define the space L?(0,7'; B) with p € [1, 0o] consisting of all
measurable functions ¢ : (0,7') — B for which the norm

dof T 1/p
e
usouLp(o,T;B)z(/o Il dt) . pelLoo),

def
||‘P||Loo(o,T;B) = sup le@®)llg, p=o0,
te(0,1)

)

is finite. If the time interval is clear we shortly write [|-[|,z)-

Naturally, we have to assume some regularity properties on the data. For the
subsequent considerations we impose the following assumptions:

A.1 Let Q CR* d=1,2or 3, be a bounded domain with boundary 09 € C%!.
The boundary 0f) is piecewise regular and splits into two disjoint parts
['y and I'p. The set I'p has nonvanishing (d — 1)-dimensional Lebesgue—
measure. 'y is closed.

A.2 The boundary data fulfills (2.4) and

pp € H*(Q), igpr>0, Vop-v=0on [y,

_ 1 _
FpeC?(Q) forye <O,§> , Fp<—-Fp<DO,
Vp € 02’7((2),
and the initial datum satisfies py € H?(€2). Further, Cy; € C%7().

A.3 Lety € (0,1) and a € C*7(Q) with a > a > 0. Then there exists a constant
K = K(Q,Tp,T'n,a,d,v) > 0 such that for f € C*7(Q) and up € C*7()
there exists a solution u € C*7(Q) of

div(aVu) = f, u—up € Hy(QUTy),
which fulfills
lullsngy < K (lupllcan@ + 1/l -

Remark 2.1.

(a) Assumption A.3 is essentially a restriction on the geometry of €. It is
fulfilled in the case where the Dirichlet and the Neumann boundary do not
meet, i.e. [p NIy = 0 [Tro87].

(b) The restriction Fp < —Fp on the Quantum Quasi Fermi level is purely
technical. From the physical point of view the device behaviour is indepen-
dent of a shift F — F+a, V=V +a,ace R

7



(c) For a smoother presentation we assume that the boundary conditions are
independent of time.

In [JPO1] an existence theorem for (2.3) is proved, which reads in the multi-
dimensional case:

Proposition 2.2. Assume A.1—A.3. Furthermore, let k € {1,... N} and let
pr—1 € C™(Q). Then there exists a constant 0y > 0 such that for all 0 > 6
system (2.3) possesses a solution (pg, Fy, Vy), fulfilling

(a) (pr, Fi, Vi) € H?(Q) x C?7(Q) x C*7(Q) for 0 <y < 1,
(b) Jex >0: pr>c, >0 in Q.

Furthermore, the approximate solution is stable in the following sense (see [JPO1,
Corollary 2.5]).

Lemma 2.3. Assume A.1—A.3. Fork=1,... N let (px, Fy, Vi) be the recur-
sively defined solution of (2.3) and (p™, F™, V") € PCn(0,T; H*(Q2) x C*7(Q) x
C*7(Q)). Then p™ € L®(0,T; HX(Q)) and p" VFT € L*(0,T; L*()). Further,

there exists a positive constant ¢, independent of T, such that
107 | 2oy + IV poe gy + 1107 VET[| g2y < (2.5)

Remark 2.4. In the one-dimensional case it is possible to prove (see [JPO1,
Theorem 3.3]) the existence of a subsequence, again denoted by (p™, F'7,V7),
such that

p” — p weakly in L*(0,T; H*(2)),

p" — p strongly in C°([0,T7]; C*7()),
(p")?F] — J  weakly in L*(0,T; L*(Q)),

VT =V  strongly in C°([0,T]; C*7(2)),

as 7 — 0, where (p, J, V) is a weak solution of the continuous problem (2.1).

3 Convergence in Several Space Dimension

In this section we prove the convergence of the numerical scheme given by (2.3)
in the multi—dimensional case. Here, the a priori bounds on the approximate
solution in Lemma 2.3 are not sufficient to guarantee convergence, since the
argument depends strongly on an L*(0,T; L*°(2))-bound on p” (see [JPOL]).
In one space dimension this is an immediate consequence of the estimate (2.5)
and the embedding H'(Q2) < L>*(Q). In fact, no analytical results on system

8



(1.4) are available in several space dimensions. Thus, we have to state additional
assumptions on the sequence of approximating solutions. These enable us to
give even error estimates, which exhibit the optimal order of convergence for the
implicit EULER scheme.

Theorem 3.1. Assume A.1—A.3. Fork =1,... N let (px, F, Vi) be the re-
cursively defined solution of (2.3) and (p7, F7,V7) € PCx(0,T; H*(Q)xC*7(€2) x
C*7(Q)). Assuming

A436€(0,1) Y7r>0: 6<p" <6 |0l peoorariayy <07

there exists a subsequence, again denoted by (p™, F7, V), such that

p" —p weakly in L*(0,T; H*(Q)),

p" — p  strongly in C°([0,T); C*7(Q2)),
F™ — F  strongly in C°([0, T]; H*(S2)),

VT =V strongly in C°([0,T]; C*7(Q)),

as T — 0, where (p, F, V') is a solution of the continuous problem (2.1).

Furthermore, if the embedding H*(Q2) — W™P(Q) is continuous for some m > 0,
p>1and

A5 pe H2(0,T; L)),

then there exists a constant o = 19(2, A, 6) > 0 such that for 7 € [0,7y) we have
the following error estimate

lp" — PHLoo(L?) +e?|p" - pHLZ(WmaP) + || F7 - F||L°°(H2) +[VT - VHLOO(H2)
<Ce*"7, (3.1)

for some positive constants o = a2, A, 8, 79) and C = C(Q, A, 8, 79).

Remark 3.2.

(a) Assumption A.4 allows us to verify the strong convergence F” — F' which
yields the identification J = p? VF for the limiting current density. Notice
that this extends the one-dimensional result (see Remark 2.4).

(b) Already in the classical regime (¢ = 0) assumption A.5 is employed for
the derivation of the optimal order of convergence in one space dimension
[CJ90]. Remarkably, it is also sufficient in this higher order system in several
space dimensions.



(c) An inspection of the proof of Theorem 3.1 shows that the last assumption
in A.4 can be replaced by the weaker condition ||p"||fe.rz) < 6!, and Z
is a Sobolev space which embeddes compactly into W*3(().

For the convergence result we also need some bound in the energy norm and

on the time derivative. To this purpose we introduce the linear interpolant of

(p7)? € PCy(0,T; L*(52)), defined by

t— 1t
Tk

~T ef
AT (t, o) = (Pe(@) = pii (@) + Py (), 2 €Q tE (b, tal.

Following the outlines of the proof of Lemma 3.1 and Lemma 3.2 in [JPO1] one
verifies that A.4 is sufficient to derive the following additional stability estimates.

Lemma 3.3. Assume A.1—A.4. Fork=1,... N let (py, Fy, Vi) be the recur-
sively defined solution of (2.3) and (p7, F7,V7) € PCy(0,T; H*(Q) x C*7(Q) x
C*7(Q)). Then p” € L*(0,T; H*(Q)) and 2™ € H*(0,T; H~*(2)). Further, there
exists a positive constant c, independent of T, such that
10722y < ¢ and [0l 21y < c. (3.2)
For the proof of Theorem 3.1 we need the monotonicity of the quantum “operator”
1 A
Alp) = —div(pQV—p), pe HYQ).
p p

Lemma 3.4. Assume A.1 and A.3. Choose m > 0, p > 1 such that the contin-
uous embedding H?(Q) — W™P(Q) holds. Then there exists for all 5 € R and
all 6 € (0,1) a constant M = M(Q, 3,8) > 0 such that for all p € H*(Q)) with
§ < p<1/6 and all p € H*(Q) N HH(QUTy) it holds

[ (e G

d > M ||6[lymn(e) -
The proof of Lemma 3.4 is a slight generalization of the one in [Pin00, Theorem
3.7]. It follows the monotonicity result.

Lemma 3.5. Assume A.1. Let u, v € H*(Q) be such that u, v > § > 0 in
and

u—v=0, Au=Av=0 onTIp,

A A
V(u—v)-v=0, VTU-V:VTU-VZO on y.

div <u2v“ — U)
u

Then
2

dx. (3.3)

/Q(A(U)—A(v))(u—v)dx:/i

Q uv

10



Proof. By integration by parts we obtain
/(A(u) AW (4 — v)de
Q

= A(%div(zﬁvu;v>—%div(zﬁvu;v))dx

= A(Mdiv(zﬁvu_v> —&div(zﬁvu—v —UQVU_U>)d:U.

uv u v v u

Since

=0 in €,

this implies

0

Now we are in the position to prove Theorem 3.1. The first part of proof is a
slight generalization of the one for Theorem 3.3 in [JP01]. However, we include
it for the sake of a completeness.

Proof of Theorem 3.1. We choose a sequence of partitions of [0, T] satisfying
(2.2). According to Lemma 3.3 (p7) is bounded in L?(0,T; H*(Q2)). We may
choose a subsequence, again denoted by (p7), such that, as 7 — 0,

p” — p weakly in L*(0, T, H*()).

Further, we have due to Lemma 3.3 and Lemma 2.3 that 27 € H'(0,T; H~'(9)).
Since the embedding H?(Q) — C%7(Q) is compact for 1 < d < 3and 0 <y < 1/2
we deduce from Aubin’s Lemma [Sim87] that

L>°(0,T; H*(Q)) N HY(0,T; H *(Q)) — C°(0,T;C*(Q))  compactly.

Hence, using assumption A.4, there exists a subsequence, not relabeled, such
that

T

A" —mn  strongly in C°(0,T;C%7(Q)).

The reader easily verifies the identification n = p?. By assumption A.4 and
inequality (2.5), we get a uniform estimate for 5] in L?(0,7; H *(€2)). Hence,
the compact embedding

L*(0,T; H*(Q)) N HY(0,T; H1(Q)) — L*(0,T; H())

11



implies that (up to a subsequence)
p- — p strongly in L*(0,T; H'(Q))
and consequently,
p" — p strongly in L*(0,T; H'(Q)).
Standard results from elliptic theory and A.2 imply now
VT =V strongly in C°(0,T, C*7(Q)).

Defining J™ = (p")*VE"™ we deduce from Lemma 2.3 that (J7) is bounded in
L*(0,T, L*(f2)), such that

JT —J weakly in L*(0,T; L*(52)).

Now, the convergence of (F7) to F follows from the uniform bound p™ > §
combined with standard elliptic theory. Further, J = p?VF.

The derived convergence properties are by far sufficient to pass to the limit in
the weak formulation of (2.3).

In order to estimate the rate of convergence, we need some regularity properties
for p and p(t). From

—e?Ap = pi(Fy — 0log(py) — Vi) € H*(Q)
and assumption A.2 we obtain p, € H*(Q2). The compact embedding
L>(0,73 H*(Q)) N H' (0,73 H7'(Q)) = C°([0,T]; C*7(Q))
implies that p is continuous in C°([0, T]; C%7(2)) and hence,
—c*Ap = p(F — 0log(p*) — V) € C°([0,T]; C*7(Q)).
By a bootstrapping argument, it follows p € C°([0, T]; H*(Q)).
Now let £ € {1,..., N} be fixed. We take the difference of

Zpt:%div(pQVF)

and

2 1 (o —pp1)® 1 ..
—(pr — pr—1) — ——(pk Pr-1) = —div (pz VFk) .
Tk Tk Pk Pk

12



Note that pg, p > 6. Further, by Taylor’s expansion we have

pte) = plti 1)+ plt) 7+ / " pul(s)(s — ty) ds.

tgp—1

Setting

def 1 b
k= 5 pi(8)(s — tx_1) ds

2 lp—1
and defining the error

def
er = pr — p(tr)

we finally end up with

2 1 — o )? 2
2 epmepy) — L) 2
Tk Tk Pk Tk
1 1
= —div(pAVE,) — ——div (p(t,)2VF(t,)) .
D (pk k) P(tk) (p( k) ( k))

Now we use ¢ = 73 €, as test function, which yields

2
2 / (e, —ex_1)ex do — / Mek dr + 2/ frer dr (3.4)
Q Q Q

Pk
U div (2 b iv 2 e dx

We estimate termwise starting on the left—-hand side.

Using the identity 2r(r — s) =2 — s? + (r — 5)? we get

2 2 2
2 / (e — e r)er 45 = [lealay — lewlZay + ek — exlZagey -

Let n = 5/ maxg—i,.. N HpkHLoo(Q) = §2. It holds

—/Qwek dx > —(1—77)/Q(pk—pk1)2 dx

Pk
——(1-) / (5 — exms + plts) — plter))? da

> — |lex — ex—1 720
1 _
— == (pute) T + fo)? da,
n Q

13



where we used Taylor’s expansion and Young’s inequality. Trivially, it holds
2 1 2
=2 [ frew dz <2 || fullzo(q) + 3 lexl 20 -
Q

The right hand side of (3.4) can be estimated using integration by parts.

Tk/g F div (p; VE;) — iy (p(tr)? VF(tk))] e do =

Pk p(tr)
e / (Alpe) — Alp(te))) (s — plte))da
+2rk0/ Ape + [Voul* _ Aplty) — [Vo(ty)* e, di

Pk p(tr)

+ Tk/ [2 Vpk VVk —2 Vp(tk) VV(tk) + Pk AVk - p(tk) AV(tk)] €L dx
< —n2* [ (A(p0) = Alp()) .~ plte))ds
ptx) Pr
— 271 Q/Q o Vi — p(tk) Vp(tk)
+ Tk/ [2 Vpk VVk —2 Vp(tk) VV(tk) + Pk A‘/k — p(tk) AV(tk)] €L dx.

2

dz

The last term can be handled as follows.
i | RV6TV= 2 Vplt) YV () + o AV = plte) AV ()] do
— 7 [ Ve VY = 29p(0) V(V{t) = i) + pu AV = plta) AV ()] e o
_ /Q [~ AV — 2Vp(te) V(V () — Vi) ex + € AVj
—p(te) AV (k) — Vi) ex] dx

— or [ Vplt) V(V(t) — Vi) ex dr — 7 /Q o(tx) (p(te) + pe) € d

S —2 Tk / Vp(tk) V(V(tk) - Vk) €L dx
Q
<27 ([Vo(ti)ll ey VOV ) = Vi)l oy llerll 2y -
The compact embedding

L0, H*(Q)) N H' (0,75 H7H()) — C°([0, 7] W*(Q))

14



yields the uniform bound ||V p(t)|L3() < co-

;From the boundary conditions for pg, Fj and Vi (see (2.3d), (2.3¢) and (2.4))
we conclude that

A
Vpk-V:V%-VZO in the sense of L*(T'y),
k

Pr = pp, Apr, =0 in the sense of L*(I'p).

Similarly,

Ap(t)
p(tr)
p(te) = pp, Ap(ty) =0 in the sense of L*(I'p).

Vo(ty)-v=V -v=0 in the sense of L*(T'y),

Combining all these estimates, together with the monotonicity of A (see (3.3))
and Lemma 3.4 gives after summation

k
1—
3oy + M2 Znneknw <=1 / (e 7+ £ do

+22||fl||L2 +QCOZTl V(v W)HLﬁ(Q) HelHL?(Q):

where M = M(€,0) > 0 is the constant specified in Lemma 3.5. Estimating

2 2
||fk||L2(Q) <7 HpttHL?(Qx(tk,l,tk)) ’

and
IV(V () = Villl oy < 107 llewll 2y

with ¢; = ¢1(Q, ) > 0, yields

—HekHLz +Me? ZTzHekHme
=1

k

2 2
<6 Zﬁz <Hpt||L°°(tl,17tl;L2(Q)) + ||PttHL2(Qx(tl,1,t,))>
=1

k
+2coc; 671 Z T ||€l||i2(ﬂ) :
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where ¢2 = ¢3(d) > 0. Choose 15 < %. Then

k
1 _ } :
(5 — 201 ) 27—0) H@k”iz(g) + M€2 Ti ||ek||$/[/m’1’(ﬂ)
=1

E—1
< ||p||%12(O,T;L2(Q))7—2 +2cpc1 07" Zn ||€l||iz(ﬂ) )
=1

Now it follows from the discrete Gronwall Lemma that
2 2 2 2
el gty + M 22 lerl 2 ppmy < cse®er

for some c3,a > 0. The estimates on F™ — F and V7 — V follow immediately
from standard results of elliptic theory. O]

Remark 3.6. Although we do not get an estimate on p™ — p in L*(0,7T, H*(2)),
the regularity in space is by far sufficient to define a suitable finite element dis-
cretization of (1.4).
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