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Abstrat

A semidisretization in time of a fourth order nonlinear paraboli system

in several spae dimensions arising in quantum semiondutor modelling

is studied. The system is numerially treated by introduing an additional

nonlinear potential. The resulting sequene of nonlinear seond order el-

lipti systems admits at eah time level stritly positive solutions as long as

the lattie temperature is suÆiently large. Exploiting the stability of the

disretization, onvergene is shown in the multi{dimensional ase. Under

some assumptions on the regularity of the solution the rate of onvergene

proves to be optimal.
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1 Introdution

The ongoing miniaturization of semiondutor devies reahed nowadays a length

sale at whih quantum e�ets play a dominant role. Thus, standard models like

the lassial drift di�usion equations are physially inaurate and have to be

replaed by equations whih inorporate the relevant quantum e�ets. The state

of the art in quantum semiondutor devie modelling ranges from mirosopi

models suh as Shr�odinger{Poisson systems [PU95℄ to marosopi equations

suh as the quantum hydrodynami model (QHD) [Gar94, GJ97, GR98℄.

During the last years a whole hierarhy of marosopi models has been de-

rived. They deal with marosopi, uid{type unknowns whih allow for a natu-

ral interpretation of boundary onditions [Pin99℄. The models onsist of balane

equations for the partile density, urrent density and energy density and an

be derived via a moment expansion from a many partile Shr�odinger{Poisson

system [GM97, Jun01℄.

Most analytial and numerial work on these models was spend on the stationary

equations, sine the main interest was foused on the stationary urrent{voltage

harateristis. Partiularly for stationary simulations, a �rst moment version of

the isothermal QHD, the quantum drift di�usion model (QDD) [An87, AU98℄,

proved to be quite promising sine it allows a very e�etive numerial treatment

[PU99℄. Only reently some results on the transient equations are available. The

transient quantum drift di�usion model an be derived as a zero relaxation time

limit in the resaled QHD, whih reads
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Here, the parameters are the saled Plank onstant ", the saled Debye length �,

the saled temperature � and the saled relaxation time �

relax

. The distribution

of harged bakground ions is desribed by the doping pro�le C

dot

(x), whih is

assumed to be independent of time (for details see [Pin00℄). The variables are the

eletron density n(x; t), the urrent density J(x; t) and the eletrostati potential

V (x; t). The limiting system (�
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= 0), stated on a bounded domain 
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+ ��n+ div (nrV ) ; (1.1a)
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dot

; (1.1b)

yielding a fourth order nonlinear paraboli equation for the eletron density n,

whih is self{onsistently oupled to Poisson's equation for the potential V .
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To get a well posed problem, system (1.1) has to be supplemented with appro-

priate boundary onditions. We assume that the boundary �
 of the domain 


splits into two disjoint parts �

D

and �

N

, where �

D

models the Ohmi ontats of

the devie and �

N

represents the insulating parts of the boundary. Let � denote

the unit outward normal vetor along �
. The eletron density is assumed to

ful�ll loal harge neutrality at the Ohmi ontats:

n = C

dot

on �

D

: (1.1)

Conerning the potential we assume that it is a superposition of its equilibrium

value and an applied biasing voltage U at the Ohmi ontats, and that the

eletri �eld vanishes along the Neumann part of the boundary:

V = V

eq

+ U on �

D

; rV � � = 0 on �

N

: (1.1d)

Further, it is natural to assume that there is no normal omponent of the urrent

along the insulating part of the boundary and additionally, the normal omponent

of the quantum urrent has to vanish:

J � � = 0; r

�

�

p

n

p

n

�

� � = 0 on �

N

: (1.1e)

Lastly, we require that no quantum e�ets our at the ontats:

�

p

n = 0 on �

D

: (1.1f)

These boundary onditons are physially motivated and ommonly employed

in quantum semiondutor modelling. The numerial investigations in [Pin99℄

underline the reasonability of this hoie.

System (1.4) is supplemented by the initial ondition

n(x; 0) = n

0

(x) in 
: (1.1g)

Let us ollet some results available for system (1.1). In [Pin00℄ the dynami

stability of stationary states with a slightly di�erent set of boundary onditions

was established, at least for small saled Plank onstants and small applied

biasing voltages. So far, there are only a few results available onerning the

solvability of (1.1) due to the lak of an appropriate maximum priniple ensuring

the positivity of the eletron density n. Nevertheless, for zero temperature (� = 0)

and vanishing eletri �eld (1.1) simpli�es to

n

t

= �
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2
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: (1.2)
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Surprisingly, this equation also arises as a saling limit in the study of interfae

utuations in a ertain spin system. Bleher et al. [BLS94℄ showed that there

exists a unique positive lassial solution loally in time in one spae dimension,

assuming stritly positive H

1

(
){data and periodi boundary onditions. The

authors [JP00℄ dedued under muh weaker assumptions the existene of a non{

negative global solution n in one spae dimension.

In the last years the question of positivity preservation for the dynamis of fourth

order equations was thoroughly investigated in the ontext of lubriation{type

equations [BF90, BP98, PGG98℄, whih read

h

t

+ div (f(h)r�h) = 0: (1.3)

They arise in the study of thin liquid �lms and spreading droplets (for an overview

see [Ber98℄ and the referenes therein). Numerially, there are two ways of deal-

ing with Equation (1.3): Bertozzi et al. [BZ00℄ designed a spae disretization

using �nite di�erenes, whih exhibits the same properties as the ontinuous

equation. Barrett et al. [BBG98℄ proposed a non{negativity preserving �nite

element method, where the non{negativity property is imposed as a onstraint

suh that at eah time level a variational inequality has to be solved.

Conerning system (1.1) in one spae dimension a di�erent numerial sheme

was introdued by the authors, whih proved to be stable and onvergent [JP01℄:

Writing Equation (1.1a) in onservation form

n

t

= div

�

nr

�

�"

2

�

p

n

p

n

+ � log(n) + V

��

and introduing the quantum quasi Fermi level

F = �"

2

�

p

n

p

n

+ � log(n) + V

yields the system

n

t

= div(nrF ); (1.4a)

�"

2

�

p

n

p

n

+ � log(n) + V = F; (1.4b)

��

2

�V = n� C

dot

: (1.4)

Here, �"

2

�

p

n=

p

n is the so{alled quantum Bohm potential. The additional

boundary onditions

F = U on �

D

; rF � � = 0 on �

N

are onsistent with (1.1){(1.1f).
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Then, an impliit time disretization by a bakward Euler sheme for system

(1.4) is suggested. The resulting sequene of ellipti systems proves to be uniquely

solvable at eah time step and moreover the semidisrete solution is stritly pos-

itive. However, the positivity property relaxes in the limit to non{negativity.

In this paper we generalize this onvergene result to the multi{dimensional ase.

From Remark 2.3 in [JP01℄ we learn that even for several spae dimensions the

semidisretization possesses a stritly positive solution n(x; t

k

) as long as the

lattie temperature � is suÆiently large. Sine there is no uniform lower bound

on the eletron density available we will assume this property and some regularity

of the ontinuous solution. This has the bene�t that we annot only prove the

desired onvergene result but get also estimates on the rate of onvergene whih

proves to be optimal for the Euler sheme.

The proof is based on a stability estimate whih is a onsequene of the bound-

edness of the entropy (or free energy)

S(t) = "

2

Z




�

�

�

r

p

n(t)

�

�

�

2

dx + �

Z




H (n(t)) dx+

�

2

2

Z




jrV (t)j

2

dx: (1.5)

In fat, S is non{inreasing in time (see [JP01℄). Here, H(s)

def

= s (log(s)� 1)+1

denotes a primitive of the logarithm.

The paper is organized as follows. In Setion 2 we introdue the semidisretization

of (1.4). Setion 3 is devoted to the proof of onvergene in the multi{dimensional

ase, whih relies on an energy estimate for the disrete solution. Imposing some

natural assumptions we show that the sheme is onvergent with the optimal

order in some suitable norm.

2 Semidisretization

In this setion we derive the impliit semidisretization of (1.4) and state an

existene and stability result for the disretized system at eah time level. In

partiular, the positivity of the eletron density is guaranteed.

For the following investigations we introdue the new variable � =

p

n. Then

(1.4) reads:

�

�

2

�

t

= div(�

2

rF ); (2.1a)

�"

2

��

�

+ � log(�

2

) + V = F; (2.1b)

��

2

�V = �

2

� C

dot

: (2.1)

For the numerial treatment of (2.1) we employ a vertial line method and replae

the transient problem by a sequene of ellipti problems.
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Let T > 0 be given. We divide the time interval [0; T ℄ into N subintervals by

introduing the temporal mesh ft

k

: k = 0; : : : ; Ng, where 0 = t

0

< t

1

< : : : <

t

N

= T . We set �

k

def

= t

k

� t

k�1

and de�ne the maximal subinterval length

�

def

= max

k=1;::: ;N

�

k

. We assume that the partition ful�lls

� ! 0 as N !1: (2.2)

For any Banah spae B we de�ne

PC

N

(0; T ;B)

def

=

�

v

�

: (0; T ℄! B : v

�

j

(t

k�1

;t

k

℄

� onst: for k = 1; : : : ; N

	

and introdue the abreviation v

k

= v

�

(t) for t 2 (t

k�1

; t

k

℄ and k = 1; : : : ; N .

Further, let ~v

�

denote the linear interpolant of v

�

2 PC

N

(0; T ;L

2

(
)) given by

~v

�

(t; x) =

t� t

k�1

�

k

(v

k

� v

k�1

) + v

k�1

; for x 2 
; t 2 (t

k�1

; t

k

℄:

Now we disretize (2.1) using an impliit Euler sheme:

Set �

0

=

p

n(0). For k = 1; : : : ; N solve reursively the ellipti systems

1

�

k

�

�

2

k

� �

2

k�1

�

= div(�

2

k

rF

k

); (2.3a)

�"

2

��

k

�

k

+ � log(�

2

k

) + V

k

= F

k

; (2.3b)

��

2

�V

k

= �

2

k

� C

dot

; (2.3)

subjet to the boundary onditions

�

k

= �

D

; F

k

= F

D

; V

k

= V

D

on �

D

; (2.3d)

r�

k

� � = rF

k

� � = rV

k

� � = 0 on �

N

; (2.3e)

where

�

D

=

p

C

dot

; F

D

= U; V

D

= �� log (C

dot

) + U: (2.4)

Then the approximate solution to (2.1) is given by (�

�

; F

�

; V

�

).

We use the standard notation for Sobolev spaes (see [Ada75℄), denoting the

norm of W

m;p

(
) (m 2 R

+

0

; p 2 [1;1℄) by k�k

W

m;p

(
)

. In the speial ase p = 2

we use H

m

(
) instead of W

m;2

(
). Further, let H

m

0

(
) be the losure of C

1



(
)

with respet to the H

m

(
) norm and let H

1

0

(
[�

N

) for �

N

� �
 be the losure

of C

1



(
 [ �

N

) with respet to the H

1

(
) norm [Tro87℄. Moreover, for any
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Banah spae B we de�ne the spae L

p

(0; T ;B) with p 2 [1;1℄ onsisting of all

measurable funtions ' : (0; T )! B for whih the norm

k'k

L

p

(0;T ;B)

def

=

�

Z

T

0

k'k

p

B

dt

�

1=p

; p 2 [1;1);

k'k

L

1

(0;T ;B)

def

= sup

t2(0;T )

k'(t)k

B

; p =1;

is �nite. If the time interval is lear we shortly write k�k

L

p

(B)

.

Naturally, we have to assume some regularity properties on the data. For the

subsequent onsiderations we impose the following assumptions:

A.1 Let 
 � R

d

, d = 1; 2 or 3, be a bounded domain with boundary �
 2 C

1;1

.

The boundary �
 is pieewise regular and splits into two disjoint parts

�

N

and �

D

. The set �

D

has nonvanishing (d � 1){dimensional Lebesgue{

measure. �

N

is losed.

A.2 The boundary data ful�lls (2.4) and

�

D

2 H

4

(
); inf




�

D

> 0; r�

D

� � = 0 on �

N

;

F

D

2 C

2;

(

�


) for  2

�

0;

1

2

�

; F

D

� �F

D

< 0;

V

D

2 C

2;

(

�


);

and the initial datum satis�es �

0

2 H

2

(
). Further, C

dot

2 C

0;

(

�


).

A.3 Let  2 (0; 1) and a 2 C

0;

(

�


) with a � a > 0. Then there exists a onstant

K = K(
;�

D

;�

N

; a; d; ) > 0 suh that for f 2 C

0;

(

�


) and u

D

2 C

2;

(

�


)

there exists a solution u 2 C

2;

(

�


) of

div(aru) = f; u� u

D

2 H

1

0

(
 [ �

N

);

whih ful�lls

kuk

C

2;

(

�


)

� K

�

ku

D

k

C

2;

(

�


)

+ kfk

C

0;

(

�


)

�

:

Remark 2.1.

(a) Assumption A.3 is essentially a restrition on the geometry of 
. It is

ful�lled in the ase where the Dirihlet and the Neumann boundary do not

meet, i.e. �

D

\ �

N

= ; [Tro87℄.

(b) The restrition F

D

� �F

D

on the Quantum Quasi Fermi level is purely

tehnial. From the physial point of view the devie behaviour is indepen-

dent of a shift F 7! F + �, V 7! V + �, � 2 R.
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() For a smoother presentation we assume that the boundary onditions are

independent of time.

In [JP01℄ an existene theorem for (2.3) is proved, whih reads in the multi{

dimensional ase:

Proposition 2.2. Assume A.1|A.3. Furthermore, let k 2 f1; : : : ; Ng and let

�

k�1

2 C

0;

(

�


). Then there exists a onstant �

0

> 0 suh that for all � > �

0

system (2.3) possesses a solution (�

k

; F

k

; V

k

), ful�lling

(a) (�

k

; F

k

; V

k

) 2 H

2

(
)� C

2;

(

�


)� C

2;

(

�


) for 0 <  <

1

2

,

(b) 9

k

> 0 : �

k

� 

k

> 0 in 
.

Furthermore, the approximate solution is stable in the following sense (see [JP01,

Corollary 2.5℄).

Lemma 2.3. Assume A.1|A.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the reur-

sively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)� C

2;

(

�


)�

C

2;

(

�


)). Then �

�

2 L

1

(0; T ;H

1

(
)) and �

�

rF

�

2 L

2

(0; T ;L

2

(
)). Further,

there exists a positive onstant , independent of � , suh that

k�

�

k

L

1

(H

1

)

+ kV

�

k

L

1

(H

1

)

+ k�

�

rF

�

k

L

2

(L

2

)

� : (2.5)

Remark 2.4. In the one{dimensional ase it is possible to prove (see [JP01,

Theorem 3.3℄) the existene of a subsequene, again denoted by (�

�

; F

�

; V

�

),

suh that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;

(

�


));

(�

�

)

2

F

�

x

* J weakly in L

2

(0; T ;L

2

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;

(

�


));

as � ! 0, where (�; J; V ) is a weak solution of the ontinuous problem (2.1).

3 Convergene in Several Spae Dimension

In this setion we prove the onvergene of the numerial sheme given by (2.3)

in the multi{dimensional ase. Here, the a priori bounds on the approximate

solution in Lemma 2.3 are not suÆient to guarantee onvergene, sine the

argument depends strongly on an L

1

(0; T ;L

1

(
)){bound on �

�

(see [JP01℄).

In one spae dimension this is an immediate onsequene of the estimate (2.5)

and the embedding H

1

(
) ,! L

1

(
). In fat, no analytial results on system
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(1.4) are available in several spae dimensions. Thus, we have to state additional

assumptions on the sequene of approximating solutions. These enable us to

give even error estimates, whih exhibit the optimal order of onvergene for the

impliit Euler sheme.

Theorem 3.1. Assume A.1|A.3. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the re-

ursively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)�C

2;

(

�


)�

C

2;

(

�


)). Assuming

A.4 9Æ 2 (0; 1) 8� > 0 : Æ � �

�

� Æ

�1

; k�

�

k

L

1

(0;T ;H

2

(
))

� Æ

�1

,

there exists a subsequene, again denoted by (�

�

; F

�

; V

�

), suh that

�

�

* � weakly in L

2

(0; T ;H

2

(
));

�

�

! � strongly in C

0

([0; T ℄;C

0;

(

�


));

F

�

! F strongly in C

0

([0; T ℄;H

1

(
));

V

�

! V strongly in C

0

([0; T ℄;C

2;

(

�


));

as � ! 0, where (�; F; V ) is a solution of the ontinuous problem (2.1).

Furthermore, if the embedding H

2

(
) ,! W

m;p

(
) is ontinuous for some m � 0,

p � 1 and

A.5 � 2 H

2

(0; T ;L

2

(
)),

then there exists a onstant �

0

= �

0

(
; �; Æ) > 0 suh that for � 2 [0; �

0

) we have

the following error estimate

k�

�

� �k

L

1

(L

2

)

+ "

2

k�

�

� �k

L

2

(W

m;p

)

+ kF

�

� Fk

L

1

(H

2

)

+ kV

�

� V k

L

1

(H

2

)

� C e

�T

�; (3.1)

for some positive onstants � = �(
; �; Æ; �

0

) and C = C(
; �; Æ; �

0

).

Remark 3.2.

(a) Assumption A.4 allows us to verify the strong onvergene F

�

! F whih

yields the identi�ation J = �

2

rF for the limiting urrent density. Notie

that this extends the one{dimensional result (see Remark 2.4).

(b) Already in the lassial regime (" = 0) assumption A.5 is employed for

the derivation of the optimal order of onvergene in one spae dimension

[CJ90℄. Remarkably, it is also suÆient in this higher order system in several

spae dimensions.
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() An inspetion of the proof of Theorem 3.1 shows that the last assumption

in A.4 an be replaed by the weaker ondition k�

�

k

L

1

(0;T ;Z)

� Æ

�1

, and Z

is a Sobolev spae whih embeddes ompatly into W

1;3

(
).

For the onvergene result we also need some bound in the energy norm and

on the time derivative. To this purpose we introdue the linear interpolant of

(�

�

)

2

2 PC

N

(0; T ;L

2

(
)), de�ned by

~n

�

(t; x)

def

=

t� t

k

�

k

�

�

2

k

(x)� �

2

k�1

(x)

�

+ �

2

k�1

(x); x 2 
; t 2 (t

k�1

; t

k

℄:

Following the outlines of the proof of Lemma 3.1 and Lemma 3.2 in [JP01℄ one

veri�es that A.4 is suÆient to derive the following additional stability estimates.

Lemma 3.3. Assume A.1|A.4. For k = 1; : : : ; N let (�

k

; F

k

; V

k

) be the reur-

sively de�ned solution of (2.3) and (�

�

; F

�

; V

�

) 2 PC

N

(0; T ;H

2

(
)� C

2;

(

�


)�

C

2;

(

�


)). Then �

�

2 L

2

(0; T ;H

2

(
)) and ~n

�

2 H

1

(0; T ; H

�1

(
)). Further, there

exists a positive onstant , independent of � , suh that

k�

�

k

L

2

(H

2

)

�  and k~n

�

t

k

L

2

(H

�1

)

� : (3.2)

For the proof of Theorem 3.1 we need the monotoniity of the quantum \operator"

A(�) =

1

�

div

�

�

2

r

��

�

�

; � 2 H

4

(
):

Lemma 3.4. Assume A.1 and A.3. Choose m � 0, p � 1 suh that the ontin-

uous embedding H

2

(
) ,! W

m;p

(
) holds. Then there exists for all � 2 R and

all Æ 2 (0; 1) a onstant M = M(
; �; Æ) > 0 suh that for all � 2 H

2

(
) with

Æ � � � 1=Æ and all � 2 H

2

(
) \H

1

0

(
 [ �

N

) it holds

Z




�

�

�

�

�

�

div

�

�

2

r

�

�

�

��

�

�

�

�

2

dx �M k�k

2

W

m;p

(
)

:

The proof of Lemma 3.4 is a slight generalization of the one in [Pin00, Theorem

3.7℄. It follows the monotoniity result.

Lemma 3.5. Assume A.1. Let u, v 2 H

4

(
) be suh that u, v � Æ > 0 in 


and

u� v = 0; �u = �v = 0 on �

D

;

r(u� v) � � = 0; r

�u

u

� � = r

�v

v

� � = 0 on �

N

:

Then

Z




(A(u)� A(v))(u� v)dx =

Z




1

uv

�

�

�

�

div

�

u

2

r

u� v

u

�

�

�

�

�

2

dx: (3.3)

10



Proof. By integration by parts we obtain

Z




(A(u)� A(v))(u� v)dx

=

Z




�

�u

u

div

�

u

2

r

u� v

u

�

�

�v

v

div

�

v

2

r

u� v

v

�

�

dx

=

Z




�

v�u� u�v

uv

div

�

u

2

r

u� v

u

�

�

�v

v

div

�

v

2

r

u� v

v

� u

2

r

u� v

u

�

�

dx:

Sine

v

2

r

u� v

v

� u

2

r

u� v

u

= 0 in 
;

this implies

Z




(A(u)� A(v))(u� v)dx =

Z




1

uv

�

�

�

�

div

�

u

2

r

u� v

u

�

�

�

�

�

2

dx:

Now we are in the position to prove Theorem 3.1. The �rst part of proof is a

slight generalization of the one for Theorem 3.3 in [JP01℄. However, we inlude

it for the sake of a ompleteness.

Proof of Theorem 3.1. We hoose a sequene of partitions of [0; T ℄ satisfying

(2.2). Aording to Lemma 3.3 (�

�

) is bounded in L

2

(0; T ;H

2

(
)). We may

hoose a subsequene, again denoted by (�

�

), suh that, as � ! 0,

�

�

* � weakly in L

2

(0; T;H

2

(
)):

Further, we have due to Lemma 3.3 and Lemma 2.3 that ~n

�

2 H

1

(0; T ;H

�1

(
)).

Sine the embeddingH

2

(
) ,! C

0;

(

�


) is ompat for 1 � d � 3 and 0 <  < 1=2

we dedue from Aubin's Lemma [Sim87℄ that

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

(0; T ;C

0;

(

�


)) ompatly:

Hene, using assumption A.4, there exists a subsequene, not relabeled, suh

that

~n

�

! n strongly in C

0

(0; T ;C

0;

(

�


)):

The reader easily veri�es the identi�ation n = �

2

. By assumption A.4 and

inequality (2.5), we get a uniform estimate for ~�

�

t

in L

2

(0; T ;H

�1

(
)). Hene,

the ompat embedding

L

2

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! L

2

(0; T ;H

1

(
))

11



implies that (up to a subsequene)

~�

�

! � strongly in L

2

(0; T ;H

1

(
))

and onsequently,

�

�

! � strongly in L

2

(0; T ;H

1

(
)):

Standard results from ellipti theory and A.2 imply now

V

�

! V strongly in C

0

(0; T; C

2;

(

�


)):

De�ning J

�

= (�

�

)

2

rF

�

we dedue from Lemma 2.3 that (J

�

) is bounded in

L

2

(0; T; L

2

(
)), suh that

J

�

* J weakly in L

2

(0; T ;L

2

(
)):

Now, the onvergene of (F

�

) to F follows from the uniform bound �

�

� Æ

ombined with standard ellipti theory. Further, J = �

2

rF .

The derived onvergene properties are by far suÆient to pass to the limit in

the weak formulation of (2.3).

In order to estimate the rate of onvergene, we need some regularity properties

for �

k

and �(t

k

). From

�"

2

��

k

= �

k

(F

k

� � log(�

2

k

)� V

k

) 2 H

2

(
)

and assumption A.2 we obtain �

k

2 H

4

(
). The ompat embedding

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

([0; T ℄;C

0;

(

�


))

implies that � is ontinuous in C

0

([0; T ℄;C

0;

(

�


)) and hene,

�"

2

�� = �(F � � log(�

2

)� V ) 2 C

0

([0; T ℄;C

0;

(

�


)):

By a bootstrapping argument, it follows � 2 C

0

([0; T ℄;H

4

(
)).

Now let k 2 f1; : : : ; Ng be �xed. We take the di�erene of

2 �

t

=

1

�

div

�

�

2

rF

�

and

2

�

k

(�

k

� �

k�1

)�

1

�

k

(�

k

� �

k�1

)

2

�

k

=

1

�

k

div

�

�

2

k

rF

k

�

:

12



Note that �

k

; � � Æ. Further, by Taylor's expansion we have

�(t

k

) = �(t

k�1

) + �

t

(t

k

) �

k

+

1

2

Z

t

k

t

k�1

�

tt

(s)(s� t

k�1

) ds:

Setting

f

k

def

=

1

2

Z

t

k

t

k�1

�

tt

(s)(s� t

k�1

) ds

and de�ning the error

e

k

def

= �

k

� �(t

k

)

we �nally end up with

2

�

k

(e

k

� e

k�1

)�

1

�

k

(�

k

� �

k�1

)

2

�

k

+

2

�

k

f

k

=

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

:

Now we use � = �

k

e

k

as test funtion, whih yields

2

Z




(e

k

� e

k�1

)e

k

dx�

Z




(�

k

� �

k�1

)

2

�

k

e

k

dx+ 2

Z




f

k

e

k

dx (3.4)

= �

k

Z




�

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

�

e

k

dx:

We estimate termwise starting on the left{hand side.

Using the identity 2r(r � s) = r

2

� s

2

+ (r � s)

2

we get

2

Z




(e

k

� e

k�1

)e

k

dx = ke

k

k

2

L

2

(
)

� ke

k�1

k

2

L

2

(
)

+ ke

k

� e

k�1

k

2

L

2

(
)

:

Let � = Æ=max

k=1;::: ;N

k�

k

k

L

1

(
)

= Æ

2

. It holds

�

Z




(�

k

� �

k�1

)

2

�

k

e

k

dx � �(1� �)

Z




(�

k

� �

k�1

)

2

dx

= �(1� �)

Z




(e

k

� e

k�1

+ �(t

k

)� �(t

k�1

))

2

dx

� �ke

k

� e

k�1

k

2

L

2

(
)

�

1� �

�

Z




(�

t

(t

k

) �

k

+ f

k

)

2

dx;
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where we used Taylor's expansion and Young's inequality. Trivially, it holds

�2

Z




f

k

e

k

dx � 2 kf

k

k

2

L

2

(
)

+

1

2

ke

k

k

2

L

2

(
)

:

The right hand side of (3.4) an be estimated using integration by parts.

�

k

Z




�

1

�

k

div

�

�

2

k

rF

k

�

�

1

�(t

k

)

div

�

�(t

k

)

2

rF (t

k

)

�

�

e

k

dx =

� �

k

"

2

Z




(A(�

k

)� A(�(t

k

)))(�

k

� �(t

k

))dx

+ 2 �

k

�

Z




"

��

k

+

jr�

k

j

2

�

k

���(t

k

)�

jr�(t

k

)j

2

�(t

k

)

#

e

k

dx

+ �

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

� ��

k

"

2

Z




(A(�

k

)� A(�(t

k

)))(�

k

� �(t

k

))dx

� 2 �

k

�

Z




�

�

�

�

�(t

k

)

�

k

r�

k

�

�

k

�(t

k

)

r�(t

k

)

�

�

�

�

2

dx

+ �

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx:

The last term an be handled as follows.

�

k

Z




[2r�

k

rV

k

� 2r�(t

k

)rV (t

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

= �

k

Z




[2re

k

rV

k

� 2r�(t

k

)r(V (t

k

)� V

k

) + �

k

�V

k

� �(t

k

)�V (t

k

)℄ e

k

dx

= �

k

Z




�

�e

2

k

�V

k

� 2r�(t

k

)r(V (t

k

)� V

k

) e

k

+ e

2

k

�V

k

��(t

k

)�(V (t

k

)� V

k

) e

k

℄ dx

= �2 �

k

Z




r�(t

k

)r(V (t

k

)� V

k

) e

k

dx� �

k

Z




�(t

k

)(�(t

k

) + �

k

) e

2

k

dx

� �2 �

k

Z




r�(t

k

)r(V (t

k

)� V

k

) e

k

dx

� 2 �

k

kr�(t

k

)k

L

3

(
)

kr(V (t

k

)� V

k

)k

L

6

(
)

ke

k

k

L

2

(
)

:

The ompat embedding

L

1

(0; T ;H

2

(
)) \H

1

(0; T ;H

�1

(
)) ,! C

0

([0; T ℄;W

1;3

(
))
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yields the uniform bound kr�(t

k

)k

L

3

(
)

� 

0

.

>From the boundary onditions for �

k

, F

k

and V

k

(see (2.3d), (2.3e) and (2.4))

we onlude that

r�

k

� � = r

��

k

�

k

� � = 0 in the sense of L

2

(�

N

);

�

k

= �

D

; ��

k

= 0 in the sense of L

2

(�

D

):

Similarly,

r�(t

k

) � � = r

��(t

k

)

�(t

k

)

� � = 0 in the sense of L

2

(�

N

);

�(t

k

) = �

D

; ��(t

k

) = 0 in the sense of L

2

(�

D

):

Combining all these estimates, together with the monotoniity of A (see (3.3))

and Lemma 3.4 gives after summation

1

2

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

�

1� �

�

k

X

l=1

Z




(�

t

(t

l

) �

l

+ f

l

)

2

dx

+ 2

k

X

l=1

kf

l

k

2

L

2

(
)

+ 2 

0

k

X

l=1

�

l

kr(V (t

l

)� V

l

)k

L

6

(
)

ke

l

k

L

2

(
)

;

where M =M(
; Æ) > 0 is the onstant spei�ed in Lemma 3.5. Estimating

kf

k

k

2

L

2

(
)

� �

2

k

k�

tt

k

2

L

2

(
�(t

k�1

;t

k

))

;

and

kr(V (t

k

)� V

k

)k

L

6

(
)

� 

1

Æ

�1

ke

k

k

L

2

(
)

;

with 

1

= 

1

(
; �) > 0, yields

1

2

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

� 

2

k

X

l=1

�

2

l

�

k�

t

k

2

L

1

(t

l�1

;t

l

;L

2

(
))

+ k�

tt

k

2

L

2

(
�(t

l�1

;t

l

))

�

+ 2 

0



1

Æ

�1

k

X

l=1

�

l

ke

l

k

2

L

2

(
)

;
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where 

2

= 

2

(Æ) > 0. Choose �

0

<

Æ

2

4 

1

. Then

�

1

2

� 2 

1

Æ

�2

�

0

�

ke

k

k

2

L

2

(
)

+M "

2

k

X

l=1

�

l

ke

k

k

2

W

m;p

(
)

� 

2

k�k

2

H

2

(0;T ;L

2

(
))

�

2

+ 2 

0



1

Æ

�1

k�1

X

l=1

�

l

ke

l

k

2

L

2

(
)

:

Now it follows from the disrete Gronwall Lemma that

ke

k

k

2

L

1

(L

2

)

+M "

2

ke

k

k

2

L

2

(W

m;p

)

� 

3

e

at

k

�

2

for some 

3

; a > 0. The estimates on F

�

� F and V

�

� V follow immediately

from standard results of ellipti theory.

Remark 3.6. Although we do not get an estimate on �

�

� � in L

2

(0; T;H

2

(
)),

the regularity in spae is by far suÆient to de�ne a suitable �nite element dis-

retization of (1.4).

Referenes

[Ada75℄ R. A. Adams. Sobolev Spaes. Aademi Press, New York, �rst edition,

1975.

[An87℄ M. G. Anona. Di�usion{drift modelling of strong inversion layers.

COMPEL, 6:11{18, 1987.

[AU98℄ N. Ben Abdallah and A. Unterreiter. On the stationary quantum drift

di�usion model. Z. Angew. Math. Phys., 49:251{275, 1998.

[BBG98℄ J. Barrett, J. Blowey, and H. Garke. Finite element approximation of

a fourth order nonlinear degenerate paraboli equation. Num. Math.,

80(4):525{556, 1998.

[Ber98℄ A. L. Bertozzi. The mathematis of moving ontat lines in thin liquid

�lms. Noties of the AMS, 45:689{697, 1998.

[BF90℄ F. Bernis and A. Friedman. Higher order nonlinear degenerate paraboli

equations. J. Di�. Eqns., 83:179{206, 1990.

[BLS94℄ P. M. Bleher, J. L. Lebowitz, and E. R. Speer. Existene and positiv-

ity of solutions of a fourth{order nonlinear PDE desribing interfae

utuations. Comm. Pure Appl. Math., 47:923{942, 1994.

16



[BP98℄ A. L. Bertozzi and M. C. Pugh. Long{wave instabilities and saturation

in thin �lm equations. Comm. Pure Appl. Math., 51:625{661, 1998.

[BZ00℄ A. L. Bertozzi and L. Zhornitskaya. Positivity preserving numeri-

al shemes for lubriation{type equations. Siam J. Numer. Anal.,

37(2):523{555, 2000.

[CJ90℄ W.M. Coughran and J.W. Jerome. Modular alorithms for transient

semiondutor devie simulation. Part I: Analysis of the outer iteration.

In R.E. Bank, editor, Computational Aspets of VLSI Design with an

Emphasis on Semiondutor Devie Simulations., pages 107{149, 1990.

[Gar94℄ C. L. Gardner. The quantum hydrodynami model for semiondutor

devies. SIAM J. Appl. Math., 54(2):409{427, April 1994.

[GJ97℄ I. Gasser and A. J�ungel. The quantum hydrodynami model for semi-

ondutors in thermal equilibrium. Z. Angew. Math. Phys., 48(1):45{

59, 1997.

[GM97℄ I. Gasser and P. A. Markowih. Quantum hydrodynamis, Wigner

transform and the lassial limit. Asymptoti Anal., 14(2):97{116, 1997.

[GR98℄ C. L. Gardner and Ch. Ringhofer. Approximation of thermal equilib-

rium for quantum gases with disontinuous potentials and appliations

to semiondutor devies. SIAM J. Appl. Math., 58(3):780{805, June

1998.

[Jun01℄ A. J�ungel. Quasi-hydrodynami semiondutor equations. Birkh�auser,

Basel, 2001.

[JP00℄ A. J�ungel and R. Pinnau. Global non{negative solutions of a non-

linear fourth order paraboli equation for quantum systems. SIAM

J. Math. Anal., 32(4):760{777, 2000.

[JP01℄ A. J�ungel and R. Pinnau. A positivity preserving numerial sheme

for a nonlinear fourth order paraboli system. SIAM J. Num. Anal.,

39(2):385{406, 2001.

[PGG98℄ R. Dal Passo, H. Garke, and G. Gr�un. On a fourth{order degenerate

paraboli equation: Global entropy estimates, existene and quantita-

tive behavior of solutions. SIAM J. Math. Anal., 29(2):321{342, Marh

1998.

[Pin99℄ R. Pinnau. A note on boundary onditions for quantum hydrodynami

models. Appl. Math. Lett., 12(5):77{82, 1999.

17



[Pin00℄ R. Pinnau. The linearized transient quantum drift di�usion model |

stability of stationary states. ZAMM, 80(5):327{344, 2000.

[PU95℄ F. Paard and A. Unterreiter. A variational analysis of the thermal

equilibrium state of harged quantum uids. Comm. Part. Di�er. Eq.,

20(5-6):885{900, 1995.

[PU99℄ R. Pinnau and A. Unterreiter. The stationary urrent{voltage hara-

teristis of the quantum drift di�usion model. SIAM J. Num. Anal.,

37(1):211{245, 1999.

[Sim87℄ J. Simon. Compat sets in the spae L

p

(0; T ;B). Ann. Math. Pura

Appl., 146:65{96, 1987.

[Tro87℄ G. M. Troianiello. Ellipti Di�erential Equations and Obstale Prob-

lems. Plenum Press, New York, �rst edition, 1987.

18


