
1 uni
en.tex May 15, 2001

Universal 
entral extensions of Lie groups

Karl-Hermann Neeb

Abstra
t. We 
all a 
entral Z -extension of a group G weakly universal for an abelian group A

if the 
orresponden
e assigning to a homomorphism Z!A the 
orresponding A -extension yields a

bije
tion of extension 
lasses. The main problem dis
ussed in this paper is the existen
e of 
entral

Lie group extensions of a 
onne
ted Fr�e
het{Lie group G whi
h is weakly universal for all abelian

Fr�e
het{Lie groups whose identity 
omponents are quotients of ve
tor spa
es by dis
rete subgroups.

We 
all these abelian groups regular. In the �rst part of the paper we deal with the 
orresponding

question in the 
ontext of topologi
al, Fr�e
het-, and Bana
h{Lie algebras, and in the se
ond part

we turn to the groups. Here we start with a dis
ussion of the weak universality for dis
rete abelian

groups and then turn to regular Fr�e
het{Lie groups A . The main results are a Re
ognition- and a

Chara
terization Theorem for weakly universal 
entral extensions.

Introdu
tion

If G is a perfe
t group, then there exists a universal 
entral extension q:

b

G ! G whi
h

has the property that for any other 
entral extensions q

1

:

b

G

1

! G there exists a unique homo-

morphism ':

b

G !

b

G

1

with q

1

Æ ' = q . The kernel of q is sometimes 
alled H

2

(G), the se
ond

homology group of G ([We95℄, [Ro95, p. 227℄).

Similar results hold for Lie algebras. For every perfe
t Lie algebra g there exists a universal


entral extension q:

b

g ! g su
h that for any other 
entral extensions q

1

:

b

g

1

! g there exists a

unique Lie algebra homomorphism ':

b

g!

b

g

1

with q

1

Æ ' = q . Here the kernel 
an be identi�ed

with the se
ond Lie algebra homology spa
e H

2

(g) ([We95℄, [Ro95, p. 228℄).

The main purpose of this paper is to understand under whi
h 
ir
umstan
es similar results

hold for Lie groups. Here we work with not ne
essarily �nite-dimensional Lie groups whi
h

are modeled over sequentially 
omplete lo
ally 
onvex spa
es ([Mil83℄) and 
onsider only those


entral extensions q:

b

G ! G whi
h are lo
ally trivial smooth prin
ipal bundles, i.e., there exist

smooth lo
al se
tions. Moreover, we restri
t the 
lass of kernels to those abelian Lie groups Z

whi
h are regular in the sense that their identity 
omponent is the quotient of a ve
tor spa
e by

a dis
rete subgroup. Both restri
tions are va
uous for �nite-dimensional groups, and the se
ond

one for Bana
h{Lie groups.

Our main tool to address 
entral extensions in this 
ontext are the results of [Ne00℄ relating

them to 
entral extensions of the 
orresponding Lie algebras. This is why the �rst three se
tions of

the paper are devoted to (universal) 
entral extensions q:

b

g! g of topologi
al Lie algebras whi
h

are linearly split in the sense that they have a 
ontinuous linear se
tion (whi
h of 
ourse does not

have to be a Lie algebra homomorphism). This assumption is 
ru
ial be
ause otherwise it would

be impossible to parameterize the equivalen
e 
lasses by obje
ts that one 
ould 
al
ulate for

spe
i�
 Lie algebras sin
e extension 
lasses of topologi
al ve
tor spa
es would enter the pi
ture,

and the groups formed by these extension 
lasses seem to be quite ina

essible.

In Se
tion I we dis
uss 
entral extensions of topologi
al Lie algebras in general. Here a


entral result is an exa
t sequen
e

(0:1) 0! Hom(g; a)��!Hom(

b

g; a)! Lin(z; a)

Æ

a

��!H

2




(g; a)��!H

2




(

b

g; z; a)! 0
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asso
iated to a 
entral extension z ,!

b

g!! g and a topologi
al ve
tor spa
e a , where H

2




denotes

the 
ontinuous Lie algebra 
ohomology, Hom stands for 
ontinuous Lie algebra homomorphisms,

and Lin for 
ontinuous linear maps. We 
all the 
entral extension

b

g of g by z weakly universal

for a if the homomorphism Æ

a

in (0.1) is bije
tive. This 
on
ept is weaker than the universality

used in the algebrai
 
ontext and makes it possible to dis
uss universality properties for restri
ted


lasses of spa
es a . This turns out to be a good strategy to split the problem into tra
table pie
es.

We will see in parti
ular that for ea
h �nite-dimensional Lie algebra g all diÆ
ulties vanish and

that there exists a unique 
entral extension whi
h is weakly universal for all spa
es a . This

extension is universal in the sense de�ned above if and only if the Lie algebra g is perfe
t.

In Se
tion I we also dis
uss uniqueness properties for other 
lasses of in�nite-dimensional

Lie algebras, but the hard part is to de
ide when weakly universal 
entral extensions exist. This

question is dis
ussed in Se
tion II for Fr�e
het{Lie algebras. The restri
tion to this 
lass of Lie

algebras is natural be
ause on the one hand side it is natural to restri
t to lo
ally 
onvex spa
es

to have natural topologies on tensor produ
ts, and on the other hand, it is very helpful to have

the Open Mapping Theorem available. The main result of Se
tion II is an existen
e 
riterion

for a 
entral extension whi
h is weakly universal for all 
omplete lo
ally 
onvex spa
es. Our


riterion is always satis�ed if g is (algebrai
ally) perfe
t and its se
ond 
ohomology spa
e is

�nite-dimensional. In the short Se
tion III we brie
y dis
uss 
ertain re�nements for the 
lass of

Bana
h{Lie algebras.

The stru
ture of Se
tions IV and V is similar, but here we work on the group side. Se
tion

IV is parallel to Se
tion I. Here we derive for a 
entral Lie group extension Z ,!

b

G !! G and

ea
h abelian Lie group A an exa
t sequen
e

1! Hom(G;A)��!Hom(

b

G;A)��!Hom(Z;A)

Æ

A

��!H

2

s

(G;A)��!H

2

s

(

b

G;Z;A)! Ext

ab

(Z;A)

whi
h is the group version of (0.1). We 
all

b

G weakly A-universal if Æ

A

is bije
tive and dis
uss

this 
on
ept for several 
lasses of Lie groups. In parti
ular we obtain a useful 
hara
terization

of those 
entral extensions whi
h are weakly universal for all dis
rete groups A . Sin
e every

regular abelian Lie group is a dire
t produ
t of a dis
rete and a 
onne
ted group, this redu
es

the problems to 
entral extensions by 
onne
ted abelian groups, whi
h by [Ne00℄ are essentially

faithfully represented by the 
orresponding Lie algebra extensions. The se
ond main result of

Se
tion IV is the Re
ognition Theorem IV.13 whi
h gives a suÆ
ient 
riterion for a given 
entral

extension Z ,!

b

G !! G to be weakly universal for all regular Fr�e
het{Lie groups A . It is

interesting that we do not need any perfe
tness assumption for our 
onstru
tion, but for groups

whi
h are not simply 
onne
ted, the existen
e of a 
entral extension weakly universal for K

(whi
h is R or C ) implies that �

1

(G) is 
ontained in the Lie 
ommutator group D(

e

G) of the

universal 
overing group

e

G of G .

In Se
tion V we then turn to the existen
e problem for universal 
entral extensions. For

�nite-dimensional groups we �nd that the ne
essary 
ondition �

1

(G) � D(

e

G) is already suÆ
ient

for the existen
e of a 
entral extension whi
h is weakly universal for all regular Fr�e
het{Lie

groups. Under the assumption that the Lie algebra g of G has a 
entral extension whi
h is

weakly universal for all Fr�e
het spa
es, R 
 �

2

(G) is a �nite-dimensional real ve
tor spa
e, and

�

1

(G) � D(

e

G), we also obtain an existen
e result for Fr�e
het{Lie groups. If �

2

(G) is too big

in the sense that R 
 �

2

(G) is in�nite-dimensional, then we have a �ner 
riterion formulated in

Theorem V.7.

The out
ome of this paper is that we see quite 
learly where the obstru
tions for the

existen
e of (weakly) universal 
entral extensions of Lie groups, resp., Lie algebras lie. For Lie

algebras diÆ
ulties may arise if they are not (algebrai
ally) perfe
t or their se
ond 
ohomology is

in�nite-dimensional. Under the assumption that their Lie algebra has a weakly universal 
entral

extension, the additional diÆ
ulties for groups 
ome from the 
ondition �

1

(G) � D(

e

G) whi
h is

quite harmless, and from the stru
ture of �

2

(G) whi
h is more serious be
ause it is related to

the non-existen
e of Lie groups for given Lie algebra extensions.
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I. Central extensions of Lie algebras

All Lie algebras g in this se
tion are assumed to be topologi
al Lie algebras, i.e., g is a

topologi
al ve
tor spa
e over K 2 fR; C g su
h that the Lie bra
ket is a 
ontinuous bilinear

map. We write Hom(g; h) for the set of 
ontinuous homomorphism between the topologi
al Lie

algebras g and h and Lin(X;Y ) for the set of 
ontinuous linear maps between the topologi
al

ve
tor spa
es X and Y .

General properties of 
entral Lie algebra extensions

De�nition I.1. (a) Let z be a topologi
al ve
tor spa
e and g a topologi
al Lie algebra. A


ontinuous z-valued 2-
o
y
le is a 
ontinuous skew-symmetri
 fun
tion !: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is 
alled a 
oboundary if there exists a 
ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2




(g; z) for the spa
e of 
ontinuous z-valued 2-
o
y
les and

B

2




(g; z) for the subspa
e of 
oboundaries de�ned by 
ontinuous linear maps. We also de�ne the

se
ond 
ontinuous Lie algebra 
ohomology spa
e

H

2




(g; z) := Z

2




(g; z)=B

2




(g; z):

(b) If ! is a 
ontinuous z-valued 
o
y
le on g , then we write g �

!

z for the topologi
al Lie

algebra whose underlying topologi
al ve
tor spa
e is the produ
t spa
e g� z , and the bra
ket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a 
entral extension and �: g! g�

!

z; x 7! (x; 0) is a 
ontinuous

linear se
tion of q .

Remark I.2. (a) If q:

b

g ! g is a quotient homomorphism of topologi
al Lie algebras with

ker q � z(

b

g) for whi
h there exists a 
ontinuous linear se
tion �: g!

b

g , then

(1:1) !(x; y) := [�(x); �(y)℄ � �([x; y℄)

de�nes a 
ontinuous z-valued 2-
o
y
le on g for whi
h the map

': g�

!

z !

b

g; (x; z) 7! �(x) + z

is an isomorphism of topologi
al Lie algebras.

(b) If q:

b

g ! g and q

1

:

b

g

1

! g are 
entral extensions, then a morphism of 
entral extensions is

a 
ontinuous homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . We thus obtain a 
ategory of 
entral

g-extensions. In parti
ular, it is 
lear what an isomorphism of 
entral g-extensions means.

For

b

g = g�

!

z and

b

g

1

= g�

�

a a morphism ':

b

g ! g

1

has the form

'(x; z) = (x; �(x) + 
(z)); � 2 Lin(g; a); 
 2 Lin(z; a);

where the 
ondition that ' is a Lie algebra homomorphism means that

�([x; x

0

℄) + 
(!(x; x

0

)) = �(x; x

0

); x; x

0

2 g:

It follows in parti
ular that for a given 
 2 Lin(z; a) an extension to a morphism of 
entral

g-extensions exists if and only if [
 Æ !℄ = [�℄ in H

2




(g; a).
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In parti
ular, two 
entral extensions g�

!

z and g�

�

a are isomorphi
 if and only if there

exists an isomorphism 
: z! a with [
 Æ !℄ = [�℄ .

(
) We 
all two 
entral extensions g �

!

z and g �

�

z equivalent if there exists an isomorphism

of 
entral extensions ': g �

!

z ! g �

�

z indu
ing the identity on z . In view of (b), su
h an

isomorphism exists if and only if [!℄ = [�℄ . Therefore ! 7! g �

!

z indu
es a bije
tion between

the spa
e H

2




(g; z) and the set of equivalen
e 
lasses of 
entral extensions of g by z .

(d) If z = z

1

� z

2

is a dire
t produ
t, then we a

ordingly obtain a de
omposition

H

2




(g; z)

�

=

H

2




(g; z

1

)�H

2




(g; z

2

):

(e) We write V

C

:= C 
V for the 
omplexi�
ation of a real ve
tor spa
e V . For K = R we have

Z

2




(g; z)

C

�

=

Z

2




(g

C

; z

C

); B

2




(g; z)

C

�

=

B

2




(g

C

; z

C

) and therefore also

H

2




(g; z)

C

�

=

H

2




(g

C

; z

C

):

All 
entral extensions q:

b

g! g that we 
onsider in the following will be linearly split in the

sense that there exists a 
ontinuous linear map �: g!

b

g with qÆ� = id

g

. In the pre
eding remark

we have explained how H

2




(g; z) 
lassi�es the linearly split 
entral extensions of a topologi
al Lie

algebra g by a topologi
al ve
tor spa
e z .

Lemma I.3. Let z ,!

b

g

q

��!g be a linearly split 
entral extension with

b

g

�

=

g �

!

z for

! 2 Z

2




(g; z) , and 
: z! a be a linear map. Then

b

g(
) := (

b

g� a)=b; b = f(x;�
(x)):x 2 zg;

is a 
entral extension of g with respe
t to the surje
tive map q




:

b

g(
)! g; [(x; y)℄ 7! q(x) , where

we write [(x; y)℄ := (x; y) + b , x 2

b

g , y 2 a , for the elements of

b

g(
) . It is equivalent to the


entral extension g�


Æ!

a de�ned by the 
o
y
le 
 Æ ! 2 Z

2




(g; a) .

Proof. First we observe that

ker q




= f[(x; y)℄:x 2 z; y 2 ag = f[(0; y + 
(x))℄:x 2 z; y 2 ag = f[(0; y)℄: y 2 ag

�

=

a:

We write

b

g as g�

!

z and 
onsider the 
ontinuous linear map �




: g!

b

g(
); x 7! [((x; 0); 0)℄: The


orresponding 
o
y
le is given by

[�




(x); �




(y)℄� �




([x; y℄) = [((0; !(x; y)); 0)℄ = [

�

(0; 0); 
(!(x; y))

�

℄;

so that the 
o
y
le 
orresponding to �




is 
 Æ ! 2 Z

2




(g; a).

The exa
t sequen
e for 
entral extensions

If z �

b

g is a 
entral ideal, then we write Z

2




(

b

g; z; a) for the set of 
ontinuous a-valued


o
y
les ! with !(z;

b

g) = f0g . Then B

2




(

b

g; a) � Z

2




(

b

g; z; a) follows from �([

b

g; z℄) = f0g for ea
h

� 2 Lin(

b

g; z), so that we may de�ne

H

2




(

b

g; z; a) := Z

2




(

b

g; z; a)=B

2




(

b

g; a) � Z

2




(

b

g; z)=B

2




(

b

g; a) = H

2




(

b

g; z):

Theorem I.4. Let

z ,!

b

g = g�

!

z

q

��!g

be a linearly split 
entral extension of topologi
al Lie algebras de�ned by the 
o
y
le ! 2 Z

2




(g; z) .

Then we have for ea
h topologi
al ve
tor spa
e a an exa
t sequen
e

0! Hom(g; a)

q

�

��!Hom(

b

g; a)! Lin(z; a)

Æ

a

��!H

2




(g; a)

q

�

��!H

2




(

b

g; z; a)! 0;
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where Æ

a

(
) = [
 Æ !℄ .

Proof. The exa
tness in Hom(g; a) and Hom(

b

g; a) is trivial be
ause, sin
e q has a 
ontinuous

linear se
tion, a 
ontinuous Lie algebra homomorphism

b

g! a fa
tors through q if and only if it

vanishes on the kernel z .

Exa
tness in Lin(z; a): Let 
 2 Lin(z; a). We write

b

g = g �

!

z , so that every 
ontinuous

linear extension e
:

b

g ! a of 
 has the form e
(x; z) = �(x) + 
(z) with � 2 Lin(g; z). Su
h an

extension is a Lie algebra homomorphism if and only if it vanishes on all bra
kets, i.e.,

0 = e
([(x; z); (x

0

; z

0

)℄) = �([x; x

0

℄) + 
(!(x; x

0

)) for x; x

0

2 g; z; z

0

2 z:

The existen
e of � 2 Lin(g; z) with this property is equivalent to the triviality of the 
o
y
le


 Æ ! 2 Z

2




(g; a). This proves the exa
tness in Lin(z; a).

Exa
tness in H

2




(g; a): First we show that q

�

Æ Æ

a

= 0. So let 
 2 Lin(z; a) and 
onsider

e
 2 Lin(

b

g; z) de�ned by e
(x; z) := 
(z). Then

e
([(x; z); (x

0

; z

0

)℄) = 
(!(x; x

0

)) = 


�

!(q(x; z); q(x

0

; z

0

))

�

= q

�

(
 Æ !)

�

(x; z); (x

0

; z

0

)

�

implies that q

�

(
 Æ !) is a 
oboundary. This means that im(Æ

a

) � ker(q

�

).

To see that ker(q

�

) � im(Æ

a

), let ' 2 Z

2




(g; a) be a 
o
y
le for whi
h q

�

' is a 
oboundary.

Let e
 2 Lin(

b

g; a) with

e
([(x; z); (x

0

; z

0

)℄) = q

�

'

�

(x; z); (x

0

; z

0

)

�

= '(x; x

0

); x; x

0

2 g; z; z

0

2 z:

For 


g

(x) := e
(x; 0) and 
(z) := e
(0; z) we then obtain

'(x; x

0

) = 


g

([x; x

0

℄) + 
(!(x; x

0

))

whi
h shows that ['℄ = [
 Æ !℄ 2 im(Æ

a

).

Exa
tness in H

2




(

b

g; z; a): First we note that for ea
h ' 2 Z

2




(g; a) we trivially have

q

�

' 2 Z

2




(

b

g; z; a). If, 
onversely,  2 Z

2




(

b

g; z; a), then  vanishes on

b

g� z , hen
e fa
tors through

a 
ontinuous 
o
y
le ' 2 Z

2




(g; a) with q

�

' =  . This means that q

�

:H

2




(g; a) ! H

2




(

b

g; z; a) is

surje
tive.

Coverings

In the following we write D(g) := [g; g℄ for the derived Lie algebra of a topologi
al Lie

algebra g and ab(g) := g=D(g) for the largest abelian quotient of g .

De�nition I.5. A 
entral extension q:

b

g! g is 
alled a topologi
al 
overing if ker q � D(

b

g).

Remark I.6. (a) That q:

b

g! g is a topologi
al 
overing is equivalent to the 
ondition that the

restri
tion map Hom(

b

g; a) ! Lin(z; a) vanishes for ea
h topologi
al ve
tor spa
e a , 
onsidered

as an abelian Lie algebra. We 
on
lude that if q is a topologi
al 
overing, then Theorem I.4

implies that the map

Æ

a

: Lin(z; a)! H

2




(g; a)

is inje
tive.

(b) If

b

g is lo
ally 
onvex, then the set Hom(

b

g;K ) of all 
ontinuous linear fun
tionals on

b

g

vanishing on D(

b

g) separates the points of

b

g=D(

b

g). Therefore q is a topologi
al 
overing if and

only if Hom(

b

g;K ) j

z

= 0:

Lemma I.7. If g is topologi
ally perfe
t and q:

b

g ! g is a topologi
al 
overing, then

b

g is

topologi
ally perfe
t.

Proof. Sin
e ker q � D(

b

g), the quotient homomorphism

b

g! ab(

b

g) :=

b

g=D(

b

g) fa
tors through

a Lie algebra homomorphism g! ab(

b

g) whi
h is trivial be
ause g is topologi
ally perfe
t. This

implies that

b

g is topologi
ally perfe
t.
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Proposition I.8. Let q:

b

g! g be a linearly split 
entral extension of topologi
al Lie algebras

with z = ker q whi
h is a topologi
al 
overing. Then we have for ea
h topologi
al ve
tor spa
e a

a short exa
t sequen
e

0! Lin(z; a)

Æ

a

��!H

2




(g; a)

q

�

��!H

2




(

b

g; z; a)! 0:

Proof. This follows from Theorem I.4 and Remark I.6.

De�nition I.9. Let g be a topologi
al Lie algebra.

(a) Let a be a topologi
al ve
tor spa
e 
onsidered as a trivial g-module. We 
all a 
entral

extension q:

b

g ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal

1

for a if the


orresponding map Æ

a

: Lin(z; a)! H

2




(g; a) is bije
tive.

We 
all q:

b

g! g universal for a if for every linearly split 
entral extension q

1

:

b

g

1

! g of g

by a there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . Note that this universal

property immediately implies that two 
entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

whi
h

are both universal for a

1

and a

2

are isomorphi
.

(
) We 
all g 
entrally 
losed if H

2




(g;K ) = 0 .

Remark I.10. (a) In view of Remark I.2(b), the inje
tivity of Æ

a

means that for ea
h � 2

Z

2




(g; a) all morphisms ':

b

g

�

=

g�

!

z! g�

�

a of 
entral extensions have the same restri
tion to

z whi
h in turn means that the natural map Hom(g; a)! Hom(

b

g; a) is bije
tive.

A similar argument shows that Æ

a

is surje
tive if and only if for ea
h � 2 Z

2




(g; a) there

exists a morphism ': g�

!

z ! g�

�

a of 
entral extensions.

These observations show that

b

g is a-universal if and only if the map Æ

a

is bije
tive and,

in addition, Hom(

b

g; a)

�

=

Hom(g; a) = 0 .

(b) For K = R we have Æ

a

C

= Æ

a


 id

C

and (g �

!

z)

C

�

=

g

C

�

!

C

z

C

, where !

C

2 Z

2




(g

C

; z

C

)

denotes the unique 
omplex bilinear extension of ! 2 Z

2




(g; z) to a map g

C

� g

C

! z

C

(Remark

I.2(e)). From that it follows that

b

g is (weakly) a-universal if and only if

b

g

C

is (weakly) a

C

-

universal.

Lemma I.11. We 
onsider the 
entral extension

b

g = g�

!

z of g by z .

(i) If

b

g is universal for a , then it is weakly universal for a .

(ii) If

b

g is weakly universal for a 6= 0 and g and z are lo
ally 
onvex, then it is a topologi
al


overing.

(iii) If g and z are lo
ally 
onvex and

b

g is universal for a 6= 0 , then

b

g and g are topologi
ally

perfe
t.

(iv) If q:

b

g! g is a topologi
al 
overing with H

2




(

b

g; a) = 0 , then

b

g is weakly a-universal.

Proof. (i) is a dire
t 
onsequen
e of Remark I.10(a).

(ii) In view of Theorem I.4, we have Hom(

b

g; a) j

z

= 0 . Further a 6= 0 yields Hom(K ; a) 6= 0 , so

that we also get Hom(

b

g;K ) j

z

= 0 , whi
h means that the 
entral extension

b

g of g is a topologi
al


overing be
ause

b

g is lo
ally 
onvex (Remark I.6(b)).

(iii) The uniqueness assumptions for morphisms ':

b

g ! g �

�

a implies in parti
ular that 0 =

Hom(

b

g; a)

�

=

Lin(

b

g=D(

b

g); a). Sin
e, as a topologi
al ve
tor spa
e,

b

g

�

=

g � z is lo
ally 
onvex,

the same is true for the abelian Lie algebra

b

g=D(

b

g), so that the Hahn{Bana
h Extension

Theorem implies that the 
ontinuous linear fun
tionals on this spa
e separate points. Therefore

Lin(K ; a) 6= 0 implies that

b

g=D(

b

g) is trivial, whi
h means that

b

g is topologi
ally perfe
t. Sin
e

the quotient map q:

b

g! g is surje
tive and maps [

b

g;

b

g℄ onto [g; g℄ , it follows that [g; g℄ is dense

in g , i.e., g is also topologi
ally perfe
t.

(iv) In view of Theorem I.4, the relation z � D(

b

g) implies that Æ

a

is inje
tive. Moreover,

H

2




(

b

g; z; a) � H

2




(

b

g; a) = 0 entails that Æ

a

is surje
tive.

1

In the literature one also �nds the terminology \versal" with the same meaning, whi
h is sort of justi�ed

by Remark I.10 a

ording to whi
h weak universality is universality without the uniqueness requirement.
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Lemma I.12. Suppose that q:

b

g ! g is weakly universal for K and that g and z are lo
ally


onvex. Then the following assertions hold:

(i) q is a topologi
al 
overing.

(ii)

b

g is weakly universal for ea
h �nite-dimensional ve
tor spa
e a .

(iii)

b

g is universal for a 6= 0 if and only if g is topologi
ally perfe
t and weakly a-universal.

Proof. (i) follows from Lemma I.11(ii).

(ii) We write

b

g

�

=

g �

!

z with ! 2 Z

2




(g; z). Remark I.10 and (i) imply that Æ

a

is inje
tive, so

that it remains to show that it is surje
tive. So let a

1

; : : : ; a

n

be a basis of a and ' 2 Z

2




(g; a).

Then ' =

P

n

j=1

'

j

a

j

with '

j

2 Z

2




(g;K ). Sin
e q is weakly universal, there exist 
ontinuous

linear fun
tionals �

j

2 z

0

with [�

j

Æ !℄ = �

K

(�

j

) = ['

j

℄ . Hen
e we �nd �

j

2 g

0

with

(�

j

Æ ! � '

j

)(x; y) = �

j

([x; y℄); x; y 2 g:

De�ne � 2 Lin(z; a) by � :=

P

n

j=1

�

j

� a

j

and � 2 Lin(g; a) by � :=

P

n

j=1

�

j

� a

j

. Then

(� Æ ! � ')(x; y) = �([x; y℄); x; y 2 g;

whi
h means that �

a

(�) = [� Æ !℄ = ['℄: Therefore Æ

a

is surje
tive, hen
e bije
tive.

(iii) If

b

g is universal for a 6= 0 , then g is topologi
ally perfe
t and weakly a-universal by Lemma

I.11(i),(iii).

If, 
onversely, D(g) = g , then for ea
h spa
e a , viewed as an abelian Lie algebra, (i) implies

that ea
h Lie algebra homomorphism ':

b

g ! a vanishes on z � D(

b

g), hen
e fa
tors through g .

This implies that ' = 0 be
ause g is topologi
ally perfe
t. In view of Remark I.10(a), this


ompletes the proof.

Lemma I.13. Let q

j

:

b

g

j

! g be two linearly split 
entral extensions and z

j

:= ker q

j

. If

b

g

1

and

b

g

2

are weakly universal for both spa
es z

1

and z

2

, then the 
entral extensions

b

g

1

and

b

g

2

of

g are isomorphi
.

Proof. Let !

j

2 Z

2




(g; z

j

) be 
o
y
les with

b

g

j

�

=

g

j

�

!

j

z

j

. We de�ne ' := Æ

�1

z

2

([!

2

℄) 2

Lin(z

1

; z

2

) and  := Æ

�1

z

1

([!

1

℄) 2 Lin(z

2

; z

1

). Then

Æ

z

1

( Æ ') = [ Æ ' Æ !

1

℄ =  Æ [' Æ !

1

℄ =  Æ [!

2

℄ = [ Æ !

2

℄ = [!

1

℄ = Æ

z

1

(id

z

1

)

implies that  Æ ' = id

z

1

, and similarly we get ' Æ  = id

z

2

. Therefore ' is an isomorphism,

and ea
h extension to a morphism of 
entral extensions e':

b

g

1

!

b

g

2

, whose existen
e follows from

Remark I.10, is a topologi
al isomorphism of 
entral extensions.

Corollary I.14. The following 
onditions determine a linearly split 
entral extension q:

b

g! g

up to isomorphism:

(i) g and

b

g are Fr�e
het{, resp., Bana
h{Lie algebras and

b

g is weakly universal for all Fr�e
het,

resp., Bana
h spa
es.

(ii)

b

g is weakly K -universal and ker q is �nite-dimensional.

Proof. (i) If we have two 
entral extensions with these properties, then Lemma I.13 implies

that both are isomorphi
.

(ii) First we re
all that the weak universality for K implies that

b

g is also weakly universal for all

�nite-dimensional spa
es. Therefore the isomorphy of two weakly K -universal 
entral extensions

with �nite-dimensional kernels follows from Lemma I.13.

The proof of the following theorem grew out of a dis
ussion with F. Wagemann. Its main

idea 
an also be found in [Ro95℄.

Theorem I.15. If H

2




(g;K ) is �nite-dimensional, then g has a weakly K -universal 
entral

extension q:

b

g ! g with �nite-dimensional kernel whi
h is unique up to isomorphism of 
entral

extensions.
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Proof. Let !

1

; : : : ; !

r

2 Z

2




(g;K ) be su
h that [!

j

℄ , j = 1; : : : ; r , is a basis of the �nite-

dimensional spa
e H

2




(g;K ). We de�ne z := K

r

. By !(x; y) := (!

j

(x; y))

j=1;:::;r

, we obtain a

z-valued 
ontinuous 2-
o
y
le on g . Let q:

b

g := g �

!

z ! g denote the 
orresponding 
entral

extension.

If e

�

j

, j = 1; : : : ; n , denotes the dual basis of z

�

, then Æ

K

(e

�

j

) = [e

�

j

Æ !℄ = [!

j

℄ implies that

the map

Æ

K

: z

�

�

=

Lin(z;K ) ! H

2




(g;K )

is a linear isomorphism, hen
e that q:

b

g! g is weakly K -universal.

The uniqueness up to isomorphism follows from Corollary I.14(ii).

Problem I.1. (a) Suppose that

b

g is lo
ally 
onvex and that Æ

K

is surje
tive. Does this imply

that Æ

a

is surje
tive for all lo
ally 
onvex spa
es a?

(b) Does dimH

2




(g;K ) <1 imply that D(g) has �nite-
odimension? One has a natural inje
tion

�:Alt

2

(ab(g);K )

�

=

H

2




(ab(g);K ) ,! Z

2




(g;K ):

If �(') is a 
oboundary d� , then � vanishes on [g; [g; g℄℄ , but this does not redu
e the problem

to two-step nilpotent Lie algebras be
ause the image of � might 
onsist of 
oboundaries if g is a

generalized Heisenberg algebra of the type �

2

(V )�V with bra
ket [(x; v); (x

0

; v

0

)℄ = (v^v

0

; 0).

II. Universal 
entral extensions of Lie algebras

In this se
tion we will study 
onstru
tions of universal 
entral extensions based on homology

of topologi
al Lie algebras. To put this into an appropriate topologi
al framework, we will

assume that all Lie algebras and topologi
al ve
tor spa
es are lo
ally 
onvex. The main point is

that the tensor produ
t of two lo
ally 
onvex spa
es has a natural topology whi
h behaves well

with respe
t to universal properties. Later we will anyway restri
t our attention to Fr�e
het{Lie

algebras to dis
uss 
onditions for the existen
e of a 
entral extension whi
h is weakly universal

for all 
omplete lo
ally 
onvex spa
es. The main result of this se
tion are the Existen
e Theorem

II.11 and its 
onsequen
es.

De�nition II.1. Let E , F and G be lo
ally 
onvex spa
es over K 2 fR; C g . Then the

proje
tive topology on the tensor produ
t E 
 F is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q is a 
ontinuous seminorm on E , resp., F (
f. [Tr67, Prop. 43.4℄). We write

E


�

F for the lo
ally 
onvex spa
e obtained by endowing E
F with the lo
ally 
onvex topology

de�ned by this family of seminorms. It is 
alled the proje
tive tensor produ
t of E and F . It

has the universal property that the 
ontinuous bilinear maps E � F ! G are in one-to-one


orresponden
e with the 
ontinuous linear maps E 


�

F ! G (here we need that G is lo
ally


onvex). We write E

b




�

F for the 
ompletion of the proje
tive tensor produ
t of E and F .

If E and F are Fr�e
het spa
es, then every element of the 
ompletion E

b




�

F 
an be written

as

� =

1

X

n=1

�

n

x

n


 y

n

;

where � 2 `

1

(N;K ) and lim

n!1

x

n

= lim

n!1

y

n

= 0 ([Tr67, Th. 45.1℄). If, in addition, E

and F are Bana
h spa
es, then the tensor produ
t of the two norms is a norm on E 
 F and

E

b


F also is a Bana
h spa
e. For k�k < 1 we then obtain a representation with k�k

1

< 1 and

kx

n

k; ky

n

k < 1 for all n 2 N ([Tr67, p.465℄).
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We identify �

2

(E) with the quotient spa
e of E


�

E modulo the 
losed subspa
e generated

by all elements of the type x 
 x . We thus obtain a lo
ally 
onvex topology on �

2

(E). Let

�

2




(E) denote its 
ompletion. Then we have a 
ontinuous bilinear map

^:E �E ! �

2




(E); (x; y) 7! x ^ y

with the universal property that every 
ontinuous bilinear map ':E�F ! G to a lo
ally 
onvex

spa
e G 
an be written as ' = '

0

Æ ^ for a unique 
ontinuous linear map '

0

2 Lin(E 
 F;G).

Remark II.2. Let E be a metrizable topologi
al ve
tor spa
e and N � E a 
losed subspa
e.

We write

b

E for the 
ompletion of E and

b

N for the 
losure of N in

b

E , whi
h is isomorphi
 to

the 
ompletion of N . Then we have a natural map E=N !

b

E=

b

N with a dense range, where the

spa
e on the right hand side is 
omplete. Hen
e

b

E=

b

N is 
anoni
ally isomorphi
 to the 
ompletion

of E=N (
f. [Tr67, Ex. 8.6℄).

(b) Let ':E ! F be a 
ontinuous linear map between metrizable topologi
al ve
tor spa
es

and b':

b

E !

b

F the 
anoni
al extension to the 
ompletions whi
h are F -spa
es. Suppose that

b' is surje
tive. Then the Open Mapping Theorem implies that b' is an open map, so that

b

F

�

=

b

E= ker b' . In general the subspa
e ker' is not dense in ker b' . A typi
al example arises as

F =

b

E=K x for x 2

b

E nE and '(y) = y + Kx . Then ker' = 0 and ker b' = Kx .

De�nition II.3. Let g be a 
omplete topologi
al Lie algebra whi
h is a lo
ally 
onvex spa
e.

The Lie bra
ket yields a 
ontinuous linear map b: �

2




(g)! g: Let

Z




2

(g) := ker b � �

2




(g) and H




2

(g) := Z




2

(g)=B




2

(g);

where B




2

(g) � Z




2

(g) denotes the 
losure of the subspa
e B

2

(g) spanned by all elements of the

type

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄

(
f. [Fu86℄). We de�ne

H




2

(g) := Z




2

(g)=B




2

(g):

As a quotient of a lo
ally 
onvex spa
e, this homology spa
e inherits a natural stru
ture as a

lo
ally 
onvex spa
e, but there is no a priori reason for it to be 
omplete

1

.

Lemma II.4. Let w
ov(g) := �

2




(g)=B




2

(g) and write x := x + B




2

(g) , x 2 �

2




(g) , for the

elements of w
ov(g) . Then the 
ontinuous bilinear map

�

2




(g)� �

2




(g)! �

2




(g); (x; y) 7! b(x) ^ b(y)

indu
es on the quotient spa
e w
ov(g) a Lie bra
ket with the following properties:

(i) The natural map b:w
ov(g)! g; x 7! b(x) is a homomorphism of Lie algebras.

(ii) H




2

(g) = Z




2

(g)=B




2

(g) = ker b is 
entral in w
ov(g) .

(iii) For every 
omplete lo
ally 
onvex spa
e z we have Lin(w
ov(g); z)

�

=

Z

2




(g; z) , the spa
e of


ontinuous z-valued 2-
o
y
les. In parti
ular w
ov(g)

0

�

=

Z

2




(g;K ) .

(iv) The natural a
tion of g on �

2




(g) indu
es an a
tion of g on w
ov(g) by derivations.

(v) The map w
ov(g)o g! g; (x; y) 7! b(x) + y is a homomorphism of Lie algebras.

Proof. That the bra
ket is well de�ned follows from B




2

(g) � Z




2

(g) = ker b . It is 
learly

skew-symmetri
, so that it remains to verify the Ja
obi identity. For x; y; z 2 �

2




(g) we have

�

x; [y; z℄

�

= [x; b(y) ^ b(z)℄ = b(x) ^ b

�

b(y) ^ b(z)

�

= b(x) ^ [b(y); b(z)℄:

1

In x31.6 of K�othe's book [K�o69℄ one �nds an example of a 
omplete lo
ally 
onvex spa
e X and a 
losed

subspa
e Y�X for whi
h the quotient spa
e X=Y is not 
omplete. This does not happen if X is metrizable and


omplete, i.e., an F -spa
e. Then all quotients of X by 
losed subspa
es are 
omplete.
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Summing over all 
y
li
 permutations, the de�nition of B




2

(g) implies that the Ja
obi identity

holds in w
ov(g).

(i) That the map b:w
ov(g)! g is a homomorphism of Lie algebras follows from

b([x; y℄) = b

�

b(x) ^ b(y)

�

= [b(x); b(y)℄ = [b(x); b(y)℄:

(ii) If b(x) = 0, then [x; y℄ = b(x) ^ b(y) = 0 for all y 2 w
ov(g) implies that x 2 z(w
ov(g)).

(iii) This is an immediate 
onsequen
e of the de�nitions. The spa
e Lin(�

2




(g); z) 
orresponds to

the spa
e of 
ontinuous skew-symmetri
 bilinear maps g� g! z , and the annihilator of B




2

(g),

whi
h 
an be identi�ed with Lin(w
ov(g); z), is the subspa
e of 2-
o
y
les.

(iv) Sin
e the a
tion of g on �

2

(g) is an a
tion by 
ontinuous linear maps preserving the

subspa
e B

2

(g), we obtain an a
tion of g on the 
ompletion �

2




(g) preserving the subspa
e

B




2

(g). Therefore we also obtain a natural a
tion on w
ov(g). To see that ea
h x 2 g a
ts on

w
ov(g) by a derivation, we �rst observe that the homomorphism b:w
ov(g)! g is g-equivariant,

whi
h follows from

b(x:y ^ z) = b([x; y℄ ^ z + y ^ [x; z℄) = b([x; y℄ ^ z + y ^ [x; z℄)

= [[x; y℄; z℄ + [y; [x; z℄℄ = [x; [y; z℄℄ = [x; b(y ^ z)℄

for y; z 2 g . Now we obtain

x:[y; z℄ = x:b(y) ^ b(z) = [x; b(y)℄ ^ b(z) + b(y) ^ [x; b(z)℄

= b(x:y) ^ b(z) + b(y) ^ b(x:z) = [x:y; z℄ + [y; x:z℄:

(v) This follows from

q([(x; y); (x

0

; y

0

)℄) = q([x; x

0

℄ + y:x

0

� y

0

:x; [y; y

0

℄) = b([x; x

0

℄) + b(y:x

0

)� b(y

0

:x) + [y; y

0

℄

= [b(x); b(x

0

)℄ + [y; b(x

0

)℄� [y

0

; b(x)℄ + [y; y

0

℄ = [b(x) + y; b(x

0

) + y

0

℄:

Proposition II.5. If g is a 
omplete lo
ally 
onvex Lie algebra, then the map 
: g�g! x ^ y

is a w
ov(g)-valued 2-
o
y
le and the 
orresponding 
entral extension q:

b

g := g�




w
ov(g) ! g

has the following properties:

(a) For every 
entral extension g �

!

z there exists a homomorphism ':

b

g ! g �

!

z with

' j

w
ov(g)

= ! , viewed as an element of Lin(w
ov(g); z) .

(b) D(

b

g) \w
ov(g) = H




2

(g) .

Proof. That 
 is a 
o
y
le follows dire
tly from the fa
t that

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄ 2 B




2

(g)

for x; y; z 2 g .

(a) We simply de�ne '(x; z) := (x; !(z)) and obtain

'([(x; z); (x

0

; z

0

)℄) = '([x; x

0

℄; x ^ x

0

) = ([x; x

0

℄; !(x ^ x

0

))

= ([x; x

0

℄; !(x; x

0

)) = ['(x; z); '(x

0

; z

0

)℄:

(b) The bra
kets in

b

g are all of the form (b(x); x) = (b(x); x), x 2 �

2




(g), and, 
onversely, all

these elements are 
ontained in D(

b

g). It follows in parti
ular that f0g �H




2

(g) � D(

b

g). Sin
e

the map b:w
ov(g) ! g is 
ontinuous, its graph is 
losed, hen
e 
ontains D(

b

g). Therefore

D(

b

g) \ (f0g �w
ov(g)) � f0g � ker b = f0g �H




2

(g).
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De�nition II.6. In the following we will always identify the spa
e Z

2




(g; z) of 
ontinuous

z-valued 2-
o
y
les on g with the spa
e Lin(w
ov(g); z). Then B

2




(g; z) = im b

�

, where b

�

is the

pull ba
k map Lin(g; z)! Z

2




(g; z)

�

=

Lin(w
ov(g); z). On the other hand H




2

(g)

�

=

ker b , so that

the restri
tion map Z

2




(g; z)! Lin(H




2

(g); z) fa
tors through a map

�

z

:H

2




(g; z)! Lin(H




2

(g); z):

On 
an show that the Lie algebra g = B

2

(H) of Hilbert-S
hmidt operators on an in�nite-

dimensional Hilbert spa
e satis�es H




2

(g) = 0 and H

2




(g;K ) 6= 0 (
f. [Ne01a℄). This means in

parti
ular that the map �

K

is in general not inje
tive.

In the following we 
all a 
losed subspa
e E of a topologi
al ve
tor spa
e X proje
table

if there exists a 
ontinuous proje
tion p:X ! X with p(X) = E . If X is an F -spa
e, i.e.,


omplete and metrizable, then the Open Mapping Theorem implies that a 
losed subspa
e E � X

is proje
table if and only if it is 
omplemented in the sense that it has a 
losed ve
tor spa
e


omplement.

Lemma II.7. (a) If z is �nite-dimensional or the subspa
e H




2

(g) � w
ov(g) is proje
table,

then �

z

:H

2




(g; z)! Lin(H




2

(g); z) is surje
tive. In parti
ular �

K

:H

2




(g;K ) ! H

2




(g)

0

is surje
tive.

(b) If H

2




(g;K ) is �nite-dimensional, then H




2

(g) is �nite-dimensional.

(
) If H

2




(g;K ) = 0 , then H




2

(g) = 0 .

Proof. (a) If z is �nite-dimensional, then every 
ontinuous linear map �:H




2

(g)! z extends

to a 
ontinuous linear map e�:w
ov(g) ! z by the Hahn{Bana
h Theorem. Hen
e � = �

z

([e�℄) ,

if we 
onsider e� as an element of Z

2




(g; z).

If H




2

(g) is the range of a 
ontinuous proje
tion p on w
ov(g), then ' Æ p is an extension

of a linear map ':H




2

(g) ! z to w
ov(g). Therefore �

z

is surje
tive for ea
h topologi
al ve
tor

spa
e z .

(b) If the lo
ally 
onvex spa
e H




2

(g) is in�nite-dimensional, then its dual spa
e H




2

(g)

0

is also

in�nite-dimensional, so that (a) implies that H

2




(g;K ) is in�nite-dimensional.

(
) follows dire
tly from (a) be
ause H




2

(g)

0

separates the points of H




2

(g).

Lemma II.8. Suppose that g is a Fr�e
het{Lie algebra for whi
h b has 
losed range.

(i) If for the lo
ally 
onvex spa
e z ea
h 
ontinuous linear map D(g)! z extends to a 
ontinuous

linear map g! z , then

�

z

:H

2




(g; z)! Lin(H




2

(g); z)

is inje
tive. A 
o
y
le ! 2 Z

2




(g; z) is a 
oboundary if and only if for ea
h � 2 z

0

the 
o
y
le

� Æ ! is a 
oboundary.

(ii) If z is �nite-dimensional, then �

z

is bije
tive.

(iii) If H




2

(g) � w
ov(g) and D(g) � g are proje
table, then for ea
h 
omplete lo
ally 
onvex

spa
e z the map �

z

is bije
tive.

(iv) Let ! 2 Z

2




(g; z) and q:

b

g := g �

!

z ! g be the 
orresponding 
entral extension. Then the

following assertions hold:

(a) D(

b

g) + z = D(g)� z and q(D(

b

g)) = D(g) .

(b) D(

b

g) \ z = im �

z

(!):

(
) If D(

b

g)\ z = 0 and either D(g) is proje
table or z is �nite-dimensional, then [!℄ = 0 .

(d) For � 2 z

0

we have [� Æ !℄ = 0 if and only if � vanishes on z \D(

b

g) .

Proof. (i) The assumption that b has 
losed range means that its range is D(g). Now we

apply the Open Mapping Theorem to the indu
ed map b:w
ov(g)! D(g) whi
h is a 
ontinuous

surje
tion between Fr�e
het spa
es, hen
e a quotient map. For �

z

(f) = 0 we 
on
lude that

f 2 Lin(w
ov(g); z)

�

=

Z

2




(g; z) fa
tors through a 
ontinuous linear map f :D(g) ! z with

f Æ b = f , whi
h means that f is a 
oboundary. Therefore �

z

is inje
tive.

In parti
ular, a 
o
y
le ! 2 Z

2




(g; z) is a 
oboundary if and only if H




2

(g) � ker! . The


ontinuous linear fun
tionals on the lo
ally 
onvex z separate points, so that �

z

([!℄) = 0 is

equivalent to the 
ondition that for ea
h � 2 z

0

the 
o
y
le � Æ ! vanishes on H




2

(g) whi
h in

turns means that it is a 
oboundary.
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(ii) If z is �nite-dimensional, then Lemma II.7(a) implies that �

z

is surje
tive. Moreover, the

Hahn{Bana
h Extension Theorem implies that ea
h 
ontinuous linear map D(g)! z extends to

a 
ontinuous linear map g! z , so that (i) entails that �

z

is also inje
tive.

(iii) In view of Lemma II.7(a), the proje
tability of H




2

(g) implies that �

z

is surje
tive. Moreover,

in view of (i), the proje
tability of D(g) entails that �

z

is also inje
tive.

(iv)(a) The in
lusion \�" is trivial. It remains to show that D(g) � 0 is 
ontained in the left

hand side. Let x 2 D(g) and pi
k a sequen
e x

n

2 [g; g℄ with x

n

! x . Sin
e b has 
losed range,

the indu
ed map b: �

2




(g)! D(g) is a surje
tive map between Fr�e
het spa
es, hen
e open by the

Open Mapping Theorem ([Ru73, Cor. 2.12℄). Therefore there exists a sequen
e y

n

2 �

2




(g) with

y

n

! y and b(y

n

) = x

n

. Then

(x

n

; !(y

n

)) = (b(y

n

); !(y

n

))! (x; !(y)) 2 D(

b

g):

(b) We 
onsider the map

b

b := b� !: �

2




(g)!

b

g = g�

!

z:

For x; y 2 g we have

b

b(x; y) = (b(x; y); !(x; y)) = ([x; y℄; !(x; y)) = [(x; 0); (y; 0)℄;

whi
h shows that im

b

b = D(

b

g) be
ause g ^ g is dense in �

2




(g). Moreover, we have

(im

b

b) \ z = !(Z




2

(g)) = �

z

(!)(H




2

(g));

whi
h implies the in
lusion \�".

Let (0; z) 2 D(

b

g) \ z and pi
k a sequen
e (x

n

; z

n

) 2 [

b

g;

b

g℄ with (x

n

; z

n

) ! (0; z). As in

(a), we �nd a sequen
e y

n

2 �

2




(g) with y

n

! 0 and b(y

n

) = x

n

. Then

(x

n

; z

n

)�

b

b(y

n

) = (0; z

n

� !(y

n

))! (0; z)

implies that z 2 im(�

z

(!)) be
ause (0; z

n

� !(y

n

)) 2 (im

b

b) \ z = im(�

z

(!)).

(
) In view of (b), our �rst assumption implies that �

z

(!) = 0. The se
ond assumption entails

that the restri
tion map Lin(g; z)! Lin(D(g); z) is surje
tive, so that (a) implies [!℄ = 0.

(d) First (b) shows that � vanishes on z\D(

b

g) if and only if � Æ �

z

([!℄) = �

K

([� Æ!℄) = 0. Now

the assertion follows from the inje
tivity of �

K

proved in (ii).

If D(g) has �nite 
odimension in g , then D(g) is proje
table, so that the map Lin(g; z)!

Lin(D(g); z) is surje
tive, and the assumption in Lemma II.8(i) is satis�ed.

Corollary II.9. If g is a Fr�e
het{Lie algebra for whi
h b is surje
tive, then for ea
h 
omplete

lo
ally 
onvex topologi
al ve
tor spa
e z the map �

z

:H

2




(g; z) ! Lin(H




2

(g); z) is inje
tive. This

holds in parti
ular if g is perfe
t.

Proposition II.10. For a perfe
t Fr�e
het{Lie algebra g the following are equivalent:

(1) H

2




(g; z) = 0 for all 
omplete lo
ally 
onvex spa
es z .

(2) g is 
entrally 
losed, i.e., H

2




(g;K ) = 0 .

(3) H




2

(g) = 0 .

Proof. (1) ) (2) is trivial.

(2) ) (3) is Lemma II.7(
).

(3) ) (1): In view of Corollary II.9, for ea
h 
omplete lo
ally 
onvex spa
e z the map

�

z

:H

2




(g; z)! Lin(H




2

(g); z) is inje
tive. Hen
e (3) implies that that H

2




(g; z) vanishes.

The following theorem is a 
entral result of this se
tion.
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Theorem II.11. (Existen
e Theorem) Let g be a Fr�e
het{Lie algebra for whi
h H




2

(g;K ) �

w
ov(g) is proje
table, D(g) is proje
table in g , and b has 
losed range. Then g has a 
entral

extension

z := H




2

(g) ,!

b

g := g�

!

z ! g

whi
h is weakly universal for ea
h 
omplete lo
ally 
onvex spa
e.

Proof. Let z := H




2

(g). In view of Lemma II.8(iii), the map

�

z

:H

2




(g; z)! Lin(H




2

(g); z) = Lin(z; z)

is bije
tive. Let ! 2 Z

2




(g; z) be a representative of �

�1

z

(id

z

). Then for ea
h 
omplete lo
ally


onvex spa
e a the map

Æ

a

: Lin(z; a)! H

2




(g; a); � 7! [� Æ !℄

is a bije
tion be
ause (�

a

Æ Æ

a

)(�) = � Æ ! j

H




2

(g)

= � , and �

a

is bije
tive (Lemma II.8(iii)). This

implies in parti
ular that

b

g := g�

!

z is weakly a-universal, and the proof is 
omplete.

The following 
orollary is a stronger version of Theorem I.15 for a more restri
ted 
lass of

Lie algebras. Here the re�ned information on the stru
ture of g permits us to draw stronger


on
lusions.

Corollary II.12. Let g be a Fr�e
het{Lie algebra for whi
h b is surje
tive and the subspa
e

H

2




(g;K ) of w
ov(g) is 
omplemented. Then b:w
ov(g)! g is a linearly split 
entral extension

whi
h is universal for ea
h 
omplete lo
ally 
onvex spa
e a .

Proof. The surje
tivity of b:w
ov(g) ! g entails D(g) = g . Therefore all assumptions

of Theorem II.11 are satis�ed. Sin
e z := H




2

(g) is 
omplemented, there exists a 
ontinuous

proje
tion p:w
ov(g) ! H




2

(g) and �: g ! w
ov(g); b(x) 7! x � p(x) is a 
ontinuous se
tion of

b . The 
orresponding 
o
y
le satis�es

!(b(x); b(y)) = [x� p(x); y � p(y)℄� ([x; y℄� p([x; y℄)) = p([x; y℄) = p(b(x) ^ b(y)):

This means that p is the element of Lin(w
ov(g); z) representing ! , and we have �

z

(!) = id

z

.

Hen
e the 
entral extension 
onstru
ted in the proof of Theorem I.11 is equivalent to w
ov(g).

This 
ompletes the proof.

Corollary II.13. Let g be a perfe
t Fr�e
het{Lie algebra for whi
h H

2




(g;K ) is �nite-dimen-

sional. Then b:w
ov(g)! g is a 
entral extension with kernel H




2

(g) whi
h is universal for ea
h


omplete lo
ally 
onvex spa
e a .

Proof. Sin
e g is perfe
t, the map b:w
ov(g)! g is surje
tive. Moreover, the H




2

(g) is �nite-

dimensional by Lemma II.7, hen
e proje
table. Therefore all assumptions of Corollary II.12 are

satis�ed.

Examples II.14. (a) (Restri
ted Lie algebras) Let H be an in�nite-dimensional 
omplex

Hilbert spa
e and g := B

2

(H) the 
omplex Hilbert{Lie algebra of Hilbert{ S
hmidt operators

on H . Let D 2 B(H) be a hermitian operator with �nite spe
trum and z

B(H)

(D) its 
entralizer

in the Lie algebra B(H). Then g(D) := g + z

B(H)

(D) � B(H) is 
alled the restri
ted Lie

algebra asso
iated to g and D . If H

1

; : : : ; H

k

are the eigenspa
es of D , then the 
entralizer

z

B(H)

(D) of D is isomorphi
 to �

k

j=1

B(H

j

). Viewing operators on H as blo
k matri
es with

entries in B(H

j

; H

k

), the elements of g(D) are those matri
es whose o�-diagonal entries are

Hilbert{S
hmidt. In [Ne01b, Prop. I.11℄ we have seen that the Lie algebras g(D) have a natural

Bana
h{Lie algebra stru
ture and that

dimH

2




(g(D); C ) = jfj: dimH

j

=1gj � 1:

Moreover g(D) is perfe
t ([Ne01b, Prop. I.10℄), so that Corollary II.13 shows that g(D) has a

universal 
entral extension with 
enter z = H




2

(g(D)).
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Similar results hold for the Lie algebras g(D), where

g = fx 2 B

2

(H): Ix

�

I

�1

= �xg

for an antilinear isometry I with I

2

= �1 and ID = �DI .

(b) (Virasoro Lie algebra) Let g denote the Lie algebra of smooth ve
tor �elds on the 
ir
le

S

1

�

=

R=Z . Then g 
an be identi�ed with the Fr�e
het spa
e C

1

(S

1

;R) endowed with the Lie

bra
ket

[f; g℄ = fg

0

� f

0

g:

Using the Fourier expansion of su
h fun
tions, it is easily seen that g is perfe
t. Moreover,

dimH

2




(g;R) = 1, and a generating 
o
y
le is given by

!(f; g) :=

Z

S

1

f

0

g

00

� f

00

g

0

dt

([Ro95, p. 237℄). Corollary II.13 applies and shows that the 
orresponding 
entral extension vir ,


alled the Virasoro algebra, is universal for all 
omplete lo
ally 
onvex spa
es and isomorphi
 to

w
ov(g).

(
) Let k be a simple 
ompa
t Lie algebra and A a 
ommutative unital asso
iative Fr�e
het

algebra. Then g := A


R

k has a natural stru
ture of a Fr�e
het{Lie algebra with the bra
ket

[f 
 x; g 
 y℄ := fg 
 [x; y℄:

From the perfe
tness of k and the existen
e of an identity in A it easily follows that g is perfe
t.

Let 


1

(A) denote the topologi
al version of the module of K�ahler di�erentials of A and

d

A

:A ! 


1

(A) the di�erential. Further let z := A=im d

A

and denote the elements of z by [�℄ ,

� 2 


1

(A). Then z

A

is a Fr�e
het spa
e. If � denote the Cartan{Killing form on k , then we

obtain a 
o
y
le ! 2 Z

2




(g; z) by the formula

!(f 
 x; g 
 y) := �(x; y)[fd

A

(g)℄:

It is shown in [Fe88, p. 61℄ (see also [Ma01℄) that dimH

2




(g;R) = 1 and that [!℄ is a generator of

the se
ond 
ohomology spa
e. That ! is non-trivial 
an easily be seen as follows. Let 0 6= x 2 k

and note that �(x; x) 6= 0. Then

!(f 
 x; g 
 x) = �(x; x)[fd

A

(g)℄ and [f 
 x; g 
 x℄ = 0

implies that ! is non-trivial. Again we are in a setting where Corollary II.13 applies.

For the spe
ial 
ase A = C(X;K ) , X a 
ompa
t spa
e and K 2 fR; C g it is shown in

[Ma01℄ that 


1

(A) = 0 . The situation is di�erent for the Fr�e
het algebra A = C

1

(M) of smooth

fun
tions on a �nite-dimensional smooth manifold. Then 


1

(A) is the spa
e of smooth 1-forms

on M and d

A

:C

1

(M) ! 


1

(M) is the natural di�erential ([Ma01℄). Therefore im d

A

is the

spa
e of exa
t 1-forms. Sin
e this spa
e is 
ontained in the 
losed spa
e of 
losed 1-forms and

a 
losed 1-form is exa
t if and only if all its period integrals vanish, the range of d

A

is 
losed.

Therefore z

�

=




1

= im d

A

has a natural Fr�e
het spa
e stru
ture and 
ontains H

1

dR

(M;R) as a


losed subspa
e.

The following proposition explains where to look for weakly universal 
entral extensions.

We will see in Se
tion III that it 
an in parti
ular be used to prove that in 
ertain 
ases weakly

universal 
entral extensions do not exist.

Proposition II.15. Let g be a Fr�e
het{Lie algebra, z a Fr�e
het spa
e, and

b

g = g�

!

z be a


entral extension of g by z whi
h is weakly universal for z and all quotients of w
ov(g) . Then

the following assertions hold:

(i) The 
o
y
le ! 2 Lin(w
ov(g); z) indu
es an isomorphism w
ov(g)= ker! ! z .

(ii)

b

g is a topologi
al 
overing.
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(iii)

b

g is weakly universal for all 
omplete lo
ally 
onvex spa
es a .

(iv) Identifying Lin(z; a) with the subspa
e of Z

2




(g; a)

�

=

Lin(w
ov(g); a) 
onsisting of all those

linear maps fa
toring through z , we have for ea
h 
omplete lo
ally 
onvex spa
e a the relation

Z

2




(g; a) = Lin(z; a)�B

2




(g; a):

Proof. (i) Let p:w
ov(g) !

e

z := w
ov(g)= ker! denote the quotient map and q

z

:

e

z ! z the

inje
tive map indu
ed by ! . Then ! = q

z

Æ p Æ 
 , where 
 2 Z

2




(g;w
ov(g)) is the universal


o
y
le 
(x; y) := x ^ y (Proposition II.5). Sin
e

b

g is weakly universal for

e

z , there exists a linear

map 
 2 Lin(z;

e

z) with [
 Æ !℄ = [p Æ 
℄ . Now

Æ

z

(q

z

Æ 
) = [q

z

Æ 
 Æ !℄ = [q

z

Æ p Æ 
℄ = [!℄ = Æ

z

(id

z

)

implies that q

z

Æ 
 = id

z

be
ause

b

g is weakly z-universal. Moreover, we have q

z

Æ 
 Æ q

z

= q

z

, so

that q

z

Æ (
 Æ q

z

� id

ez

) and the inje
tivity of q

z

entail 
 Æ q

z

= id

ez

. Therefore q

z

is a topologi
al

isomorphism.

(ii) If z = 0 this is trivial, and if z 6= 0 , it follows from Lemma I.11(ii).

(iii) Sin
e

b

g is a topologi
al 
overing, Proposition I.8 implies that for ea
h topologi
al ve
tor

spa
e a the map Æ

a

is inje
tive. To see that it is also surje
tive if a is 
omplete and lo
ally


onvex, let � 2 Z

2




(g; a)

�

=

Lin(w
ov(g); a), de�ne

e

a := w
ov(g)= ker � , and write q

a

:

e

a ! a for

the inje
tive 
ontinuous map indu
ed by � . Further let p:w
ov(g)!

e

a denote the quotient map

and 
 2 Z

2




(g;w
ov(g)) the 
o
y
le from the proof of (i). Then q

a

Æ p Æ 
 = � . Sin
e

b

g is weakly

universal for

e

a , there exists an � 2 Lin(z;

e

a) with [� Æ !℄ = [p Æ 
℄ . Now

Æ

a

(q

a

Æ �) = [q

a

Æ � Æ !℄ = [q

a

Æ p Æ 
℄ = [�℄:

(iv) Identifying Lin(z; a) with a subspa
e of Z

2




(g; a)

�

=

Lin(w
ov(g); a), the 
o
y
le ! 
orre-

sponds, as a linear map w
ov(g)! z , to the quotient map p , and ea
h 
 2 Lin(z; a) is identi�ed

with 
 Æ p . Hen
e the map

Æ

a

: Lin(z; a)! H

2




(g; a); Æ

a

(
) = [
 Æ p℄


orresponds to the restri
tion of the quotient map Z

2




(g; a)! H

2




(g; a) to the subspa
e Lin(z; a).

Sin
e Æ

a

is bije
tive by (iii), the assertion follows.

In the remainder of this se
tion we give some more details on how the topologi
al stru
ture

of g in
uen
es the extension theory. The main point of Proposition II.16 below is that is explains

how the 
ohomology spa
e H

2




(g; z) is built together from pie
es 
oming from the algebrai


stru
ture of g whi
h is somehow en
oded in the homology spa
e H




2

(g), and other pie
es whi
h


ome from topologi
al obstru
tions to extend maps im(b)! z for whi
h the 
omposition with b

is 
ontinuous to 
ontinuous linear maps on g .

Proposition II.16. Let w
ov(g)

red

:= w
ov(g)=H




2

(g) with quotient map q:w
ov(g) !

w
ov(g)

red

. Then we have an inje
tive map b

red

:w
ov(g)

red

! D(g) with dense range and

b

red

Æ q = b . Moreover, for every 
omplete lo
ally 
onvex spa
e z we have the following exa
t

sequen
e of maps:

Lin(ab(g); z) ,! Lin(g; z)

(b

red

)

�

���!Lin(w
ov(g)

red

; z)

Æ

z

��!H

2




(g; z)

�

z

��!Lin(H




2

(g); z);

where Æ

z

(') = [' Æ q℄ and we use the identi�
ation Lin(w
ov(g); z)

�

=

Z

2




(g; z) .

Proof. Exa
tness in Lin(g; z) means that a 
ontinuous linear map ': g! z is the pull-ba
k of

a linear map ab(g)! z if and only if it vanishes on the range of b

red

. This follows immediately

from the density of the range of this map in D(g).

The exa
tness in Lin(w
ov(g)

red

; z) is the de�nition of the spa
e B

2




(g; z) of 
oboundaries.

The exa
tness in H

2




(g; z) follows from the fa
t that �

z

([!℄) = 0 if and only if ! , viewed as

an element of Lin(w
ov(g); z), vanishes on H




2

(g), but this in turn means that it fa
tors through

a 
ontinuous linear map w
ov(g)

red

! z , whi
h means that it is 
ontained in the range of Æ

z

.
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Corollary II.17. If g is topologi
ally perfe
t and H




2

(g) = 0 , then for ea
h 
omplete lo
ally


onvex spa
e z we have

H

2




(g; z)

�

=

Lin(w
ov(g); z)=Lin(g; z):

Proof. In this 
ase the exa
t sequen
e in Proposition II.16 redu
es to a short exa
t sequen
e

Lin(g; z) ,! Lin(w
ov(g)

red

; z) = Lin(w
ov(g); z)!! H

2




(g; z):

Example II.18. (a) A typi
al example, where Corollary II.17 applies is the Lie algebra g =

B

2

(H) of Hilbert-S
hmidt operators on an in�nite-dimensional K -Hilbert spa
e. If B

1

(H)

denotes the spa
e of tra
e 
lass operators on H , then we have H




2

(g) = 0 , w
ov(g)

�

=

sl(H) =

fx 2 B

1

(H): trx = 0g , and g is topologi
ally perfe
t. Therefore the isomorphism g

�

=

g

0

obtained

from the tra
e form yields

H

2




(g;K )

�

=

w
ov(g)

0

=g

0

�

=

sl(H)

0

=g

�

=

pgl(H)=g;

where pgl(H) := B(H)=K1 (
f. [Ne01a℄).

(b) Let g be an abelian lo
ally 
onvex Lie algebra. Then Z




2

(g) = �

2




(g) and D(g) = 0 , so that

g trivially satis�es the assumption of Theorem II.11. On the other hand it follows dire
tly from

the de�nitions that

�

z

:H

2




(g; z)

�

=

Alt

2

(g; z)! Lin(H




2

(g); z)

�

=

Lin

�

�

2




(g); z

�

is a bije
tion.

Remark II.19. (a) In the algebrai
 theory of Lie algebras, there are no problems arising from

non-splitting of 
ertain subspa
es or non-extendability of linear maps. Therefore w
ov(g) :=

�

2

(g)=B

2

(g) is a 
entral extension of [g; g℄ , and the pre
eding arguments imply that for ea
h

ve
tor spa
e z the map

�

z

:H

2

(g; z)! Lin(H

2

(g); z)

is a linear isomorphism.

(b) For an in�nite-dimensional spa
e Z and a 
losed subspa
e B of the Fr�e
het spa
e A , the

restri
tion map Hom(A;Z)! Hom(B;Z) need not be surje
tive. A simple example is given by

A = Z = 


0

(N;R) � B = `

1

(N;R). Then there is no 
ontinuous linear map ':B ! Z with

' j

A

= id

A

be
ause the kernel of su
h a map would be a 
losed 
omplement of A , but su
h a


omplement does not exist.

If, 
onversely, B has a 
losed 
omplement C , then the Open Mapping Theorem implies

that the addition map B�C ! A is a homeomorphism. Hen
e the restri
tion map Hom(A;Z)!

Hom(B;Z) is surje
tive for every topologi
al ve
tor spa
e Z .

(
) One 
ould also des
ribe the range of � by extending the exa
t sequen
e from Proposition

II.16 further by a map

(2:1) Lin(H




2

(g); z)! Ext(w
ov(g)

red

; z);

where Ext(X;Y ) stands for the group of equivalen
e 
lasses of extensions of the topologi
al

ve
tor spa
e X by the topologi
al ve
tor spa
e Y . The map (2.1) 
an be des
ribed as follows.

Let E be a 
losed subspa
e of the topologi
al ve
tor spa
e F and G := F=E . Then we have a

map


: Lin(E; z)! Ext(G; z)

given by

b

F := (F � z)=f(x; '(x)):x 2 Eg; q:

b

F ! G; q([f; z℄) := f +E;

where 
('): z ,!

b

F !! G stands for the 
orresponding exa
t sequen
e. Note that ' is 
ontinuous,

so that its graph is a 
losed subspa
e of F � z . It is easy to see that the subspa
e z �

b

F splits

topologi
ally if and only if ' extends to a 
ontinuous linear map F ! z . In fa
t, a linear se
tion

�:G !

b

F 
an always be written as �(x + E) = [x; f(x)℄ , where f :F ! z is a linear map

extending ' . The image of � is a 
losed subspa
e of

b

F if and only if its inverse image, the graph

of f , is a 
losed subspa
e of F � z . In view of the Closed Graph Theorem (whi
h applies to

mappings between Fr�e
het spa
es), this 
ondition is equivalent to f being 
ontinuous.
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III. The spe
ial 
ase of Bana
h{Lie algebras

In this se
tion we brie
y dis
uss the spe
ial 
ase of Bana
h{Lie algebras be
ause some of

the results, resp., assumptions from the pre
eding se
tion simplify for Bana
h{Lie algebras. This

is due to the fa
t that the ri
h theory of operators on Bana
h spa
es sometimes 
an be used to

weaken the assumptions we had to make in Se
tion II.

If g is a Bana
h{Lie algebra, then �

2




(g) also is a Bana
h spa
e, so that w
ov(g) inherits

the stru
ture of a Bana
h{Lie algebra.

Lemma III.1. If ':X ! Y is a 
ontinuous linear map between F -spa
es and '(X) has �nite


odimension, then '(X) is 
losed.

Proof. This is proved as [HS71, Satz 25.4℄. We only need that the Open Mapping Theorem

also holds for F -spa
es.

Lemma III.2. If ':E ! F is a 
ontinuous linear map between Bana
h spa
es whose adjoint

'

0

:F

0

! E

0

has �nite-dimensional 
okernel, then '(E) is 
losed.

Proof. First we use Lemma III.1 to 
on
lude that im('

0

) is 
losed, and then the Closed Range

Theorem ([Ru73, Th. 4.14℄) to see that this implies that '(E) is 
losed.

Lemma III.3. If g is a Bana
h{Lie algebra with dimH

2




(g;K ) <1 , then b has 
losed range.

Proof. We 
onsider the homomorphism b:w
ov(g)! g whi
h has the same range as b . Then

im(b

0

) = B

2




(g;K ) � Z

2




(g;K )

�

=

w
ov(g)

0

:

Therefore our assumption implies that b

0

has �nite-dimensional 
okernel, and hen
e that b has


losed range (Lemma III.2).

Lemma III.4. If H

2




(g;K ) = 0 and D(g) has �nite 
odimension, then H

2




(g; z) = 0 for all


omplete lo
ally 
onvex spa
es z .

Proof. First we use Lemma III.3 to see that the bra
ket map b has 
losed range. The

assumption that D(g) has �nite 
odimension implies that the assumptions of Lemma II.8(i) are

satis�ed, so that for ea
h 
omplete lo
ally 
onvex spa
e z the map �

z

:H

2




(g; z) ! Lin(H




2

(g); z)

is inje
tive. Sin
e H




2

(g) = 0 by Lemma II.7(
), the spa
e H

2




(g; z) vanishes.

The following proposition is an extension of the results in Proposition II.10 for Bana
h{Lie

algebras.

Proposition III.5. For a Bana
h{Lie algebra g for whi
h D(g) has �nite 
odimension the

following are equivalent:

(1) H

2




(g; z) = 0 for all 
omplete lo
ally 
onvex spa
es z .

(2) g is 
entrally 
losed.

(3) H




2

(g) = 0 and im(b) is 
losed.

Proof. (1) ) (2) is trivial.

(2) ) (3) follows from Lemma II.7(
) and Lemma III.3.

(3) ) (1) As in the proof of Lemma III.4, the assumption that D(g) has �nite 
odimension

implies that the assumptions of Lemma II.8 are satis�ed, so that for ea
h 
omplete lo
ally 
onvex

spa
e z the map �

z

:H

2




(g; z)! Lin(H




2

(g); z) = 0 is inje
tive, and therefore H

2




(g; z) vanishes.

Example III.6. (Full operator Lie algebras) Let

b

g := B(H) be the Bana
h{Lie algebra of

bounded operators on an in�nite-dimensional Hilbert spa
e H . Then

b

g is perfe
t and 
entrally


losed ([Ne01b, Lemma I.3,Prop. I.5℄). Therefore Proposition III.5 implies that H

2

(

b

g; a) = 0

for ea
h 
omplete lo
ally 
onvex spa
e a . Now Lemma I.11(iv) shows that

b

g is a 
overing of

g := B(H)=C 1 whi
h is universal for all 
omplete lo
ally 
onvex spa
es.
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Lemma III.7. Let X be a Bana
h spa
e, Y � X a 
losed subspa
e and Z a Bana
h spa
e

for whi
h there exists a 
ontinuous inje
tive map j:Z ! X with X = j(X)� Z . Then j(X) is


losed and j is an embedding.

Proof. The map Y � Z ! X; (y; z) 7! y + j(z) is a 
ontinuous bije
tion of Bana
h spa
es,

hen
e an isomorphism by the Open Mapping Theorem. It follows in parti
ular that j(X) is


losed and that j is an embedding.

The following theorem shows that for topologi
ally perfe
t Bana
h{Lie algebras the 
ondi-

tion in the Existen
e Theorem II.11 is ne
essary for the existen
e of a weakly universal 
entral

extension.

Theorem III.8. Let g be a topologi
ally perfe
t Bana
h{Lie algebra and

b

g = g�

!

z a 
entral

extension whi
h is weakly universal for all Bana
h spa
es. Then the 
entral extension

b

g ! g is

equivalent to the one given by the bra
ket map b:w
ov(g) ! g whi
h is surje
tive. Moreover,

H




2

(g) is 
omplemented in w
ov(g) .

Proof. We know from Proposition II.15 that z is a quotient of w
ov(g). Let q

z

:w
ov(g)! z

denote the quotient map. Then Proposition II.15 also implies that

w
ov(g)

0

�

=

Z

2




(g;K ) = im(q

0

z

)�B

2




(g;K );

where im(q

0

z

) is 
losed. Therefore Lemma III.7 implies that B

2




(g;K ) is a 
losed subspa
e of

the Bana
h spa
e w
ov(g)

0

. This means that the range of the adjoint of the bra
ket map

b:w
ov(g) ! g has 
losed range, so that the Closed Range Theorem ([Ru73, Th. 4.14℄) shows

that im(b) is 
losed. Sin
e im(b) is dense be
ause of D(g) = g , it follows that b is surje
tive,

and hen
e that b is surje
tive.

Lemma II.7 and Corollary II.9 imply that the map �

K

:H

2




(g;K ) ! H




2

(g)

0

is bije
tive.

Identifying H

2




(g;K ) via Æ

a

with z

0

� w
ov(g)

0

, it follows that the adjoint map of q

z

j

H




2

(g)

is a

bije
tive 
ontinuous map

(q

z

j

H




2

(g)

)

0

: z

0

,! H




2

(g)

0

:

We 
on
lude that q

z

maps H




2

(g) inje
tively onto a dense subspa
e of z , and Lemma III.2 further

implies that it is 
losed, hen
e that q

z

j

H




2

(g)

is an isomorphism of Bana
h spa
es. It follows in

parti
ular that ker q

z

is a 
losed 
omplement of H




2

(g) in w
ov(g). Now Theorem II.11 and the

uniqueness assertion from Corollary I.14 imply that

b

g

�

=

w
ov(g).

Example III.9. We re
all the setting of Example II.18(a). Here g = B

2

(H) is the Hilbert{Lie

algebra of Hilbert-S
hmidt operators on an in�nite-dimensional Hilbert spa
e and w
ov(g)

�

=

sl(H), where the natural map b:w
ov(g) ! g is the in
lusion map sl(H) ! B

2

(H). Sin
e the

range of this map is dense and not 
losed, and g is topologi
ally perfe
t, Theorem III.8 implies

that g has no 
entral extension whi
h is weakly universal for all Bana
h spa
es.

IV. Weakly universal 
entral extensions of Lie groups

In the following we will use the 
on
ept of an in�nite-dimensional Lie group modeled over a

sequentially 
omplete lo
ally 
onvex spa
e ([Mil83℄). In this 
ontext 
entral extensions of Lie

groups are always assumed to have a smooth lo
al se
tion, i.e., they are lo
ally trivial smooth

prin
ipal bundles. Let Z ,!

b

G !! G be a 
entral extension of the 
onne
ted Lie group G by

the abelian group Z whi
h is regular in the sense that its identity 
omponent Z

e

is isomorphi


to z=�

1

(Z), where z is the Lie algebra of Z . This means that the additive group of z 
an be

identi�ed in a natural way with the universal 
overing group of Z

e

, and that Z

e

is a quotient

of the sequentially 
omplete lo
ally 
onvex spa
e z modulo a dis
rete subgroup whi
h 
an then

be identi�ed with �

1

(Z). Sin
e the quotient map q:

b

G ! G has a smooth lo
al se
tion, the


orresponding Lie algebra homomorphism

b

g ! g has a 
ontinuous linear se
tion, hen
e is

isomorphi
 to g�

!

z for some ! 2 Z

2




(g; z) (Remark I.2).



19 uni
en.tex May 15, 2001

From [Ne00, Def. IV.10℄ we re
all the period homomorphism per

!

:�

2

(G) ! z of ! whi
h

on smooth representatives 
:S

2

! G of elements of �

2

(G) is given by per

!

([
℄) =

R

S

2




�


,

where 
 is the z-valued left invariant 2-form on G with 


e

= ! ([Ne00, Th. IV.12℄). If we

have a 
entral Lie group extension q:

b

G ! G as above, then the period map 
an be interpreted

topologi
ally as the 
onne
ting map �

2

(G)! �

1

(Z) in the exa
t homotopy sequen
e

�

2

(Z) = 1! �

2

(

b

G) ,! �

2

(G)! �

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z)!! �

0

(

b

G)! �

0

(G) = 1

of the Z -prin
ipal bundle

b

G ([Ne00, Prop. VII.7℄).

We re
all from [Ne00, Prop. IV.2℄ that 
entral Lie group extensions as above 
an always

be written as

b

G

�

=

G�

f

Z;

where f 2 Z

2

s

(G;Z), the set of group 
o
y
les f :G�G! Z whi
h are smooth in a neighborhood

of (e; e), where e 2 G is the identity element. Two su
h 
o
y
les f

1

, f

2

de�ne equivalent

extensions if and only if their di�eren
e f

1

f

�1

2

is of the form h(gg

0

)h(g)

�1

h(g

0

)

�1

, where

h:G ! Z is smooth in an identity neighborhood. The abelian group of all these fun
tions

is 
alled B

2

s

(G;Z), and the quotient group H

2

s

(G;Z) := Z

2

s

(G;Z)=B

2

s

(G;Z) now parameterizes

the equivalen
e 
lasses of 
entral Z -extensions of G with smooth lo
al se
tions ([Ne00, Remark

IV.4℄).

The abelian Lie groups A o

urring below will always be assumed to be regular, i.e.,

A

e

�

=

a=�

1

(A).

In this se
tion we �rst derive an exa
t sequen
e for 
entral Lie group extensions 
orre-

sponding to the one obtained in Se
tion I for topologi
al Lie algebras. Then we 
hara
terize

those 
entral extensions whi
h are weakly universal for all dis
rete groups A . The 
entral result

of this se
tion is the Re
ognition Theorem IV.13, whi
h gives a suÆ
ient 
riterion for a 
entral

extension to be weakly universal for all regular Fr�e
het{Lie groups.

General properties of 
entral group extensions

Remark IV.1. (a) If q:

b

G ! G and q

1

:

b

G

1

! G are 
entral Lie group extensions, then a

morphism of 
entral extensions is a smooth homomorphism ':

b

G !

b

G

1

with q

1

Æ ' = q . We

thus obtain a 
ategory of 
entral G-extensions. In parti
ular it is 
lear what an isomorphism of


entral G-extensions is.

For

b

G = G �

f

Z and

b

G

1

= G �

h

A a morphism of 
entral G-extensions ':

b

G !

b

G

1

has

the form

e
(g; z) = (g; �(g)
(z)); �:G! A; 
 2 Hom(Z;A);

where � is smooth in a neighborhood of the identity, and the 
ondition that e
 is a group

homomorphism means that

�(g)�(g

0

)h(g; g

0

) = �(gg

0

)
(f(g; g

0

)); g; g

0

2 G:

It follows in parti
ular that for a given 
 2 Hom(Z;A) an extension to a morphism of 
entral

G-extensions exists if and only if [
 Æ f ℄ = [h℄ in H

2

s

(G;A).

(b) If Z = Z

1

� Z

2

is a dire
t produ
t, then it is easy to see that we a

ordingly have a

de
omposition

H

2

s

(G;Z)

�

=

H

2

s

(G;Z

1

)�H

2

s

(G;Z

2

):

If

b

G = G�

f

Z with f 2 Z

2

s

(G;Z), then we write

Z

2

s

(

b

G;Z;A) := ff 2 Z

2

s

(

b

G;A): (8x 2

b

G)(8z 2 Z) f(x; z) = f(z; x)g:

Then B

2

s

(

b

G;A) � Z

2

s

(

b

G;Z;A), and we de�ne

H

2

s

(

b

G;Z;A) := Z

2

s

(

b

G;Z;A)=B

2

s

(

b

G;A):

The following theorem provides a version of the exa
t sequen
e that we have seen in

Theorem I.4 for groups. For the sake of 
ompleteness we in
lude the proof whi
h is a signi�
ant

simpli�
ation of the one 
ontained in [Ne00℄.
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Theorem IV.2. Let q:

b

G

�

=

G�

f

Z ! G be a 
entral Lie group extension with f 2 Z

2

s

(G;Z) .

Then we have for ea
h abelian Lie group A an exa
t sequen
e

1! Hom(G;A)

q

�

��!Hom(

b

G;A)

res

��!Hom(Z;A)

Æ

A

��!H

2

s

(G;A)

q

�

��!H

2

s

(

b

G;Z;A)! Ext

ab

(Z;A);

where Æ

A

(
) = [
 Æ f ℄ and Ext

ab

(Z;A) denotes the group of equivalen
e 
lasses of abelian Lie

group extensions of Z by A .

Proof. The exa
tness in Hom(G;A) and Hom(

b

G;A) is trivial be
ause the fa
t that q:

b

G! G

is a smooth prin
ipal bundle implies that a Lie group morphism

b

G! A fa
tors through q if and

only if its kernel 
ontains Z .

Exa
tness in Hom(Z;A): Let 
 2 Hom(Z;A). Every extension to a lo
ally smooth map

e
:

b

G ! A with e
(gz) = e
(g)
(z) for z 2 Z has the form e
(g; z) = �(g)
(z) with a lo
ally

smooth map �:G! Z . Su
h an extension is a Lie group homomorphism if and only if

�(g)�(g

0

) = �(gg

0

)
(f(g; g

0

)); g; g

0

2 G:

The existen
e of � with this property is equivalent to the triviality of the 
o
y
le 
Æf 2 Z

2

s

(G;A).

This proves the exa
tness in Hom(Z;A).

Exa
tness in H

2

s

(G;A): First we show that im Æ

A

� ker q

�

. So let 
 2 Hom(Z;A) and


onsider e
:

b

G! A; (x; z) 7! 
(z). Then

e
((g; z)(g

0

; z

0

)) = 
(f(g; g

0

))
(zz

0

) = 
(f(g; g

0

))e
(g; z)e
(g

0

; z

0

);

whi
h implies that q

�

(
 Æ f) is a 
oboundary. This means that im Æ

A

� ker q

�

.

To see that ker q

�

� im(Æ

A

), let ' 2 Z

2




(G;A) be a 
o
y
le for whi
h q

�

' is a 
oboundary.

Then there exists a lo
ally smooth map e
:

b

G! Z with

(4:1) e
((g; z)(g

0

; z

0

)) = '(g; g

0

)e
(g; z)e
(g

0

; z

0

); g; g

0

2 G; z; z

0

2 Z:

Then 
(z) := e
(e; z) de�nes a Lie group homomorphism Z ! A , and we obtain

e
(g; z

0

) = e
(g; e)
(z

0

); g 2 G; z

0

2 Z:

Therefore (4.1) leads to

'(g; g

0

) = e
(gg

0

; e)
(f(g; g

0

))e
(g; e)

�1

e
(g

0

; e)

�1

;

and this implies that ['℄ = Æ

A

(
).

Exa
tness in H

2

s

(

b

G;Z;A): For ea
h ' 2 Z

2

s

(G;A) the pull-ba
k to

b

G vanishes on Z �Z ,

hen
e de�nes a trivial 
entral extension of Z by A .

Suppose, 
onversely, that ' 2 Z

2

s

(

b

G;Z;A) su
h that ' j

Z�Z

is a 
oboundary. Then

the 
entral extension

b

G �

'

A splits over Z , so that there exists a smooth homomorphism

�

Z

:Z !

b

G �

'

A with �

Z

(z) = (z; 
(z)), 
:Z ! A a lo
ally smooth map. We de�ne a

lo
ally smooth se
tion

�:

b

G!

b

G�

'

A; (g; z) 7! ((g; z); 
(z)) = (g; e)�

Z

(z):

The 
orresponding 
o
yle e' is equivalent to ' and by de�nition given by

e'(bg; bg

0

) = �(bg)�(bg

0

)�(bgbg

0

)

�1

:

Hen
e

e'((g; z); (g

0

; z

0

)) = (g; e)�

Z

(z)(g

0

; e)�

Z

(z

0

)(gg

0

; e)

�1

�

Z

(zz

0

)

�1

�

Z

(f(g; g

0

))

�1

= (g; e)(g

0

; e)(gg

0

; e)

�1

�

Z

(f(g; g

0

))

�1

is independent of z and z

0

, and this implies that ['℄ = [e'℄ 2 im q

�

.
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Universal and weakly universal 
entral extensions

De�nition IV.3. We 
all a 
entral extension

b

G = G�

f

Z of the 
onne
ted Lie group G by

the abelian group Z weakly universal for the abelian Lie group A if the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A); 
 7! [
 Æ f ℄

is bije
tive.

It is 
alled universal for the abelian group A if for every 
entral extension q

1

:G�

'

A! G

there exists a unique Lie group homomorphism ':G�

f

Z ! G�

'

A with q

1

Æ ' = q .

Remark IV.4. (a) In view of the exa
t sequen
e in Theorem IV.2, the 
entral extension G�

f

Z

is A-universal if and only if the homomorphisms

Res: Hom(

b

G;A)! Hom(Z;A) and q

�

:H

2

s

(G;A)! H

2

s

(

b

G;Z;A)

vanish.

(b) That q

�

vanishes means that the pull-ba
k of every 
entral extension of G by A to

b

G is

trivial. Let A ,!

b

G

1

q

1

��!G be su
h a 
entral extension and

H := q

�

1

b

G

1

:= f(x; y) 2

b

G�

b

G

1

: q(x) = q

1

(y)g

the pull-ba
k of the extension G

1

to an A-extension of

b

G . This 
entral extension is trivial if

and only if there exists a smooth homomorphism �:

b

G! H with p

b

G

Æ� = id

b

G

. This means that

�(g) = (g; f(g)); g 2

b

G;

where f :

b

G!

b

G

1

is a homomorphism with q

1

Æ f = q . Thus the vanishing of q

�

is equivalent to

the existen
e of homomorphisms f :

b

G!

b

G

1

with q

1

Æ f = q .

That, in addition, Res: Hom(

b

G;A) ! Hom(Z;A) is trivial means that the restri
tion

' j

Z

:Z ! A of ' 2 Hom(

b

G;A) uniquely determines the homomorphism ' .

(
) That the homomorphisms ':

b

G!

b

G

1

with q

1

Æ' = q are unique is equivalent to the stronger


ondition that Hom(

b

G;A) = 1 .

Lemma IV.5. (a) A-universal 
entral extensions are weakly A-universal.

(b) If q:

b

G! G is a weakly A-universal 
entral extension, dimA > 0 , and

b

G is simply 
onne
ted,

then it is A-universal if and only if the Lie algebra

b

g is topologi
ally perfe
t.

Proof. (a) The dis
ussion in Remark IV.4 shows that the requirements for A-universality

are that the homomorphism q

�

and the group Hom(

b

G;A) are trivial. This is weaker than the

triviality of q

�

and of the restri
tion map Hom(

b

G;A)! Hom(Z;A).

(b) Sin
e

b

G is simply 
onne
ted, the triviality of Hom(

b

G;A) is equivalent to Hom(

b

g; a) = 0

(
f. [Mil83, Th. 8.1℄, [Ne00, Cor. III.20℄) whi
h in turn is equivalent to Hom(

b

g;K ) = 0 be
ause

dim a > 0 entails Hom(K ; a) 6= 0 . Moreover, Hom(

b

g;K ) = 0 means that D(

b

g) =

b

g , i.e., that

b

g

is topologi
ally perfe
t.

We start our investigation of weak universality for 
ertain 
lasses of groups with the simplest


ase, the dis
rete abelian groups.
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Lemma IV.6. For the 
onne
ted 
entral extension q:

b

G = G �

f

Z ! G the following are

equivalent:

(1)

b

G is weakly universal for all dis
rete abelian groups A .

(2) The 
onne
ting homomorphism �:�

1

(G)! �

0

(Z) from the exa
t homotopy sequen
e of the

Z -bundle

b

G! G is bije
tive.

(3) � is inje
tive.

(4) The homomorphism �

1

(Z)! �

1

(

b

G) indu
ed by the in
lusion Z ,!

b

G is surje
tive.

(5)

b

G=Z

e

�

=

e

G .

Proof. For a dis
rete abelian group A all 
entral A-extensions of G are 
overings. Therefore

the universal property of the universal 
overing group q

G

:

e

G ! G means that it is weakly

universal for all dis
rete abelian groups A , i.e., the 
orresponding map

e

Æ

A

: Hom(�

1

(G); A) !

H

2

s

(G;A) is a bije
tion (
f. Remark IV(b)).

We also note that Hom(Z;A)

�

=

Hom(Z=Z

e

; A)

�

=

Hom(�

0

(Z); A) be
ause A is dis
rete.

Therefore Æ

A


an be viewed as the homomorphism

(4:2) Æ

A

: Hom(�

0

(Z); A)! H

2

s

(G;A)

�

=

Hom(�

1

(G); A); 
 7! 
 Æ �;

as 
an be seen from the geometri
 interpretation of � by lifting loops � in G to 
urves in

b

G

starting in e and ending in the 
onne
ted 
omponent of Z given by �([�℄) 2 �

0

(Z). This pro
ess

is 
ompatible with passing from

b

G to (

b

G�A)=�(


�1

), 
 2 Hom(Z;A), whi
h yields the 
entral

extension de�ned by Æ

A

(
) ([Ne00, Rem. I.3℄).

Sin
e Hom(

b

G;A) vanishes for the 
onne
ted group

b

G , the exa
t sequen
e in Theorem IV.2

shows that Æ

A

is always inje
tive. For A := 
oker� , this implies that A = 0 , so that � is

surje
tive, and hen
e (2) and (3) are equivalent. The equivalen
e of (3) and (4) follows dire
tly

from the exa
t homotopy sequen
e of Z ,!

b

G!! G .

(1) , (2): If � is bije
tive, then (4.2) implies that ea
h Æ

A

is bije
tive. If, 
onversely, � is not

bije
tive, then it is not inje
tive, and for A = �

1

(G) the map id

�

1

(G)

is not 
ontained in the

range of Æ

�

1

(G)

.

(1) ) (5): In view of Hom(Z; �

1

(G))

�

=

H

2

s

(G; �

1

(G)), there exists a homomorphism 
:Z !

�

1

(G) 
orresponding to the universal 
overing q

G

:

e

G! G . Then

e

G

�

=

(

b

G� �

1

(G))=�(


�1

):

Sin
e

e

G is 
onne
ted, it follows that

b

G� �

1

(G) � (

b

G� f1g)�(


�1

) =

b

G� im(
), whi
h means

that 
 is surje
tive. We 
on
lude that

e

G

�

=

b

G= ker
 . The dis
reteness of the group �

1

(G)

implies that ker 
 is an open subgroup of Z , so that the natural map

b

G=(ker
)

e

!

b

G= ker


�

=

e

G

is a 
onne
ted 
overing, hen
e an isomorphism. This implies that ker 
 is 
onne
ted, and hen
e

that ker 
 = Z

e

.

(5) ) (3): If

e

G

�

=

b

G=Z

e

, then �

1

(G)

�

=

Z=Z

e

�

=

�

0

(Z). Let �:Z ! �

1

(G) denote the


orresponding quotient homomorphism. Then �

0

(�) Æ � = id

�

1

(G)

implies that � is inje
tive.

Proposition IV.7. If q:

b

G = G�

f

Z ! G is weakly universal for all dis
rete abelian groups

A , then the following assertions hold:

(i) �

0

(Z)

�

=

�

1

(G) .

(ii)

e

G

�

=

b

G=Z

e

.

(iii) Z

�

=

Z

e

� �

1

(G) .

(iv) Let A be a regular abelian Lie group. The homomorphism

e

Æ

A

: Hom(�

1

(G); A) ! H

2

s

(G;A)

de�ned by the universal 
overing q

G

:

e

G ! G , 
orresponds to the natural map

Hom(�

0

(Z); A)! Hom(Z;A) . In parti
ular it is inje
tive.
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(v) Let Æ:�

2

(G)! �

1

(Z) denote the 
onne
ting map de�ned by the exa
t homotopy sequen
e of

the Z -prin
ipal bundle

b

G! G . Then

�

2

(

b

G)

�

=

ker Æ and �

1

(

b

G)

�

=


oker Æ:

In parti
ular

b

G is simply 
onne
ted if and only if Æ is surje
tive.

(vi)

b

G is weakly A-universal if and only if

b

G is weakly A

e

-universal.

Proof. (i) is a 
onsequen
e of Lemma IV.6(2).

(ii) follows from Lemma IV.6(5).

(iii) Sin
e the identity 
omponent Z

e

of Z is divisible, we have Z

�

=

Z

e

� (Z=Z

e

)

�

=

Z

e

��

1

(G).

(iv) The map

e

Æ

A

assigns to 
 2 Hom(�

1

(G); A) the 
entral extension

(

e

G�A)=�(


�1

)! G; [g; a℄ 7! g:

In view of (ii),

(

e

G�A)=�(


�1

)

�

=

�

(

b

G=Z

e

)�A

�

=�(


�1

)

�

=

(

b

G�A)=�(e


�1

);

where e
:Z ! A; z 7! 
(zZ

e

) with the notation of (ii) above.

(v) In view of �

2

(Z) = 1 , the exa
t homotopy sequen
e of

b

G! G leads to an exa
t sequen
e

�

2

(

b

G) ,! �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)!! �

0

(Z):

A

ording to Lemma IV.6, the map �

1

(G)! �

0

(Z) is an isomorphism, so that we have an exa
t

sequen
e

�

2

(

b

G) ,! �

2

(G)

Æ

��!�

1

(Z)!! �

1

(

b

G);

and the assertion follows.

(vi) Sin
e the identity 
omponent A

e

of A is divisible and �

0

(A) = A=A

e

is dis
rete, we have

A

�

=

A

e

�

=

�

0

(A). This implies that

Æ

A

�

=

Æ

A

e

� Æ

�

0

(A)

: Hom(Z;A)

�

=

Hom(Z;A

e

)�Hom(Z; �

0

(A))!

H

2

s

(G;A)

�

=

H

2

s

(G;A

e

)�H

2

s

(G; �

0

(A)):

Our assumption implies that Æ

�

0

(A)

is bije
tive, and this implies (vi).

The derived group of a 
onne
ted Lie group

De�nition IV.8. Let G be a 
onne
ted Lie group and q

G

:

e

G ! G the universal 
overing

homomorphism. If �:

e

G ! ab(g) := g=D(g) is the 
anoni
al homomorphism 
orresponding on

the Lie algebra level to the quotient map g ! ab(g) (
f. [Mil83, Th. 8.1℄, [Ne00, Cor. III.20℄),

then we de�ne derived Lie group of

e

G as D(

e

G) := ker� . We also de�ne

D(G) := q

G

(D(

e

G));

but this group is less natural than the one in

e

G , and we will not need it in the following.

If G is �nite-dimensional, then D(

e

G) = (

e

G;

e

G) is the 
ommutator subgroup of

e

G whi
h is

a 
losed normal Lie subgroup ([Ho65℄).

In general it seems to be hard to say mu
h about the image of the smooth homomorphism

�:

e

G ! ab(g). If G is abelian, then we have ab(g) = g , and if G is regular, then � is an

isomorphism. But if G is not regular, it is hard to say something about the range of � . On the

other hand it is not known whether non-regular Lie groups exist at all.
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Lemma IV.9. (a) D(G) is a 
losed subgroup with the property that every homomorphism '

of G to a regular abelian Lie group A satis�es D(G) � ker':

(b) If G is simply 
onne
ted, then Hom(G;K ) separates points of G=D(G) .

Proof. (a) Let A be as above and ':G! A a homomorphism. Then e' := ' Æ q

G

:

e

G! A is

a homomorphism of Lie groups. We have natural isomorphisms

Hom(

e

G;A)

�

=

Hom(g; a)

�

=

Hom(ab(g); a)

�

=

Hom(ab(g); A);

showing that e' = '

0

Æ r holds for some '

0

2 Hom(ab(g); A). Therefore

ker� = D(

e

G) � ker e' = q

�1

G

(ker'):

Hen
e q

G

(D(

e

G)) � ker' , and thus D(G) � ker' .

(b) Sin
e D(G) is the kernel of the natural homomorphism G ! ab(g), it suÆ
es to observe

that Hom(g;K )

�

=

Lin(ab(g);K )

�

=

ab(g)

0

separates points of ab(g)

0

, whi
h is a 
onsequen
e of

the lo
al 
onvexity of ab(g).

More 
onsequen
es of weak universality

Now we 
onsider weak universality for 
onne
ted groups A . The following lemma shows

that not every Lie group G has a weakly universal 
entral extension.

Lemma IV.10. If G has a 
entral extension whi
h is weakly universal for K , then �

1

(G) �

D(

e

G) .

Proof. Sin
e the sequen
e

0! Hom(G;K ) ! Hom(

e

G;K ) ! Hom(�

1

(G);K )

Æ

K

��!H

2

s

(G;K ) ! H

2

s

(

e

G; �

1

(G);K )

is exa
t (Theorem IV.2), the restri
tion map Hom(

e

G;K ) ! Hom(�

1

(G);K ) is trivial be
ause Æ

K

is inje
tive by assumption. This implies that �

1

(G) � D(

e

G) (Lemma IV.9(b)).

Lemma IV.11. If �

1

(G) � D(

e

G) and G �

f

Z is a 
entral extension of G whi
h is weakly

universal for the 
onne
ted group A , then

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A);

where the in
lusion Hom(�

1

(G); A) ,! Hom(Z;A)

�

=

H

2

s

(G;A) 
omes from the 
onne
ting map

�

0

(Z)! �

1

(G) .

Proof. Sin
e �

1

(G) is 
ontained in D(

e

G), every homomorphism

e

G ! A , where A is a


onne
ted regular Lie group vanishes (Lemma IV.9). Moreover, Ext

ab

(�

1

(G); A) = 1 follows

from the fa
t that �

1

(G) is dis
rete and A = A

e

�

=

a=�

1

(A) is divisible. Therefore the restri
tion

maps Hom(

e

G;A) ! Hom(�

1

(G); A) and H

2

s

(

e

G; �

1

(G); A) ! Ext

ab

(�

1

(G); A) vanish, so that

Theorem IV.2 leads to the short exa
t sequen
e

Hom(�

1

(G); A) ,! H

2

s

(G;A)

�

=

Hom(Z;A)!! H

2

s

(

e

G; �

1

(G); A):

We 
on
lude that

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A):

If, in addition, to the assumptions of Lemma IV.11, the map �

0

(Z) ! �

1

(G) is bije
tive

(
f. Lemma IV.6), then Z

�

=

Z

e

� �

1

(G) and we obtain

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A)

�

=

Hom(Z

e

; A):

The following theorem 
ombines the ne
essary 
ondition for the weak universality for

dis
rete groups and for quotient of z by dis
rete subgroups. In parti
ular its assumptions are

satis�ed if

b

G is weakly universal for all regular abelian groups whose Lie algebra is a quotient of

z .
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Theorem IV.12. Let Z ,!

b

G

q

��!G be a 
entral extension whi
h is weakly universal for all

dis
rete groups and quotients of z by dis
rete subgroups. Then the following assertions hold:

(i)

b

G is simply 
onne
ted.

(ii) If �

2

(G) = 1 , then Z is simply 
onne
ted.

(iii) If

b

G is weakly universal for K , then

(a) Z � D(

b

G) .

(b) z � D(

b

g) , i.e.,

b

g!! g is a topologi
al 
overing of Lie algebras.

(
) �

1

(G) � D(

e

G) .

Proof. (i) In view of Proposition IV.7(v), we only have to show that Æ:�

2

(G) ! �

1

(Z)

is surje
tive. Let �

1

:= im Æ � � := �

1

(Z) � z . We 
onsider the 
overing group Z

1

:=

(z=�

1

) � �

1

(G) of Z

�

=

(z=�) � �

1

(G) (Lemma IV.6) and write q

1

:Z

1

! Z for the natural


overing map.

Let D:Z

2

s

(G;Z) ! Z

2




(g; z) be the natural map obtained by assigning to a group 
o
y
le

f 2 Z

2

s

(G;Z) the Lie algebra 
o
y
le

(4:3) D(f)(x; y) := (d

2

f)(e; e)(x; y)� (d

2

f)(e; e)(y; x)

(
f. [Ne00, Se
t. IV℄), and 
onsider ! := D(f), where

b

G

�

=

G�

f

Z . Now we use the notation of

Se
tion V of [Ne00℄. In view of [Ne00, Prop. VII.7℄, we have

per

!

= �Æ:�

2

(G)! �

1

(Z)

�

=

� � z:

Therefore im(per

!

) � �

1

, so that [Ne00, Th. V.7℄ implies the existen
e of a 
entral extension

Z

1

,!

b

G

1

!! G 
orresponding to ! , and hen
e 
overing the extension

b

G !! G . Now the

weak universality of

b

G with respe
t to Z

1

shows that there exists a homomorphism 
:Z ! Z

1


orresponding to the 
entral extension

b

G

1

!! G . On the other hand, we have a natural 
overing

map q

G

1

:

b

G

1

!

b

G with q

G

1

j

Z

1

= q

1

, so that q

1

Æ 
 = id

Z

follows again from the universal

property of

b

G . Taking derivatives in 1 , we now see that d
: z! z is the identity, and therefore

that � = 
(�) � �

1

. This proves that � = �

1

, whi
h means that Æ is surje
tive.

(ii) follows from the surje
tivity of Æ .

(iii) (a) Sin
e

b

G is simply 
onne
ted and weakly universal for K , every smooth homomorphism

�:

b

G! K vanishes on Z , so that Z � D(

b

G) (Lemma IV.9(b)).

(b) In view of (a), we have Z � D(

b

G), and therefore z is 
ontained in the kernel of the quotient

map

b

g! ab(

b

g), whi
h is D(

b

g).

(
) We re
all from Proposition IV.7 that

e

G

�

=

G=Z

e

, so that Z � D(

b

G) implies that the 
anoni
al

homomorphism �:

b

G ! ab(g) fa
tors through the homomorphism �

G

:

e

G ! ab(g) whi
h then

satis�es �

1

(G)

�

=

Z=Z

e

� D(

e

G) = ker�

G

.

Criteria for universality of group extensions

The following theorem provides a 
onvenient devi
e to test whether a given 
entral extension

is universal.

Theorem IV.13. (Re
ognition Theorem) Assume that q:

b

G! G is a 
entral Z -extension of

Fr�e
het{Lie groups for whi
h

(1) the 
orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply 
onne
ted, and

(3) �

1

(G) � D(

e

G) .

If

b

g is weakly universal for a Fr�e
het spa
e a , then

b

G is weakly universal for ea
h regular abelian

Fr�e
het{Lie group A with Lie algebra a .

Proof. Let A be an abelian regular Fr�e
het{Lie group with Lie algebra a . We have to show

that the map Æ

A

: Hom(Z;A)! H

2

s

(G;A) is bije
tive.
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Sin
e A

e

is divisible, the identity 
omponent A

e

splits, so that A

�

=

A

e

� �

0

(A). Then

Hom(Z;A) and H

2

s

(G;A) split a

ordingly as dire
t produ
ts. Hen
e is suÆ
es that the maps

Æ

A

e

and Æ

�

0

(A)

are bije
tive.

The assumption that

b

G is simply 
onne
ted implies that

b

G is universal for all dis
rete

groups (Lemma IV.6(4)), so that Æ

�

0

(A)

is bije
tive. Therefore we may w.l.o.g. assume that A

is 
onne
ted.

In view of Lemma I.11(ii), assumption (1) implies that z � D(

b

g) and therefore Z

e

� D(

b

G).

From Lemma IV.6 and (2) we further derive that

b

G=Z

e

�

=

e

G , where Z is mapped onto �

1

(G) �

e

G . Hen
e the homomorphism

b

G! ab(

b

g) fa
tors through

e

G , and (3) implies Z � D(

b

G). Hen
e

the restri
tion map Hom(

b

G;A) ! Hom(Z;A) vanishes, and we 
on
lude from Theorem IV.2

that Æ

A

is inje
tive.

So far we have only used (1){(3). To see that Æ

A

is surje
tive, we assume that

b

g is weakly

a-universal. Let D

A

:Z

2




(G;A) ! Z

2




(g; a) be the map from (4.3) and  2 Z

2




(G;A). The weak

a-universality of

b

g implies the existen
e of 
 2 Lin(z; a) with Æ

a

(
) = [
 Æ !℄ = [D

A

 ℄ . For the


orresponding period maps per

!

:�

2

(G) ! z and per

D 

:�

2

(G) ! a we then have 
 Æ per

!

=

per

D 

. Sin
e per

!


an also be interpreted as the 
onne
ting map �

2

(G) ! �

1

(Z) ([Ne00,

Prop. VII.7℄), we obtain with �

1

(

b

G) = 1 and the exa
t homotopy sequen
e of Z ,!

b

G! G that

im(per

!

) = �

1

(Z), viewed as a subgroup of z . Hen
e


(�

1

(Z)) � im(per

D 

) � �

1

(A);

and therefore 
 integrates to a Lie group homomorphism Z

e

! A , whi
h, in view of Z

�

=

Z

e

��

0

(Z), extends to a homomorphism 


Z

:Z ! A . Now Æ

A

(


Z

) 2 H

2

s

(G;A) has a Lie algebra


o
y
le in the same 
lass Æ

a

(
) as D .

Therefore it remains to see that kerD � im(Æ

A

). A

ording to [Ne00, Th. V.9℄, kerD


oin
ides with the image of the map

e

Æ

A

: Hom(�

1

(G); A)! H

2

s

(G;A):

For 
 2 Hom(�

1

(G); A) and p:Z ! �

0

(Z)

�

=

�

1

(G) we 
onsider 
 Æ p 2 Hom(Z;A). Then

Æ

A

(
 Æ p) = [
 Æ p Æ f ℄ =

e

Æ

A

(
)

implies that kerD = im(

e

Æ

A

) � im(Æ

A

). Therefore Æ

A

is surje
tive.

Corollary IV.14. Let g be a Fr�e
het{Lie algebra and

b

g

�

=

g �

!

z ! g a 
entral extension

whi
h is weakly universal for all Fr�e
het spa
es. Suppose that G is a 
onne
ted simply 
onne
ted

Lie group with Lie algebra g and that �

!

:= im(per

!

) � z is dis
rete. Then there exists a 
entral

Lie group extension Z ,!

b

G!! G whi
h is universal for all abelian regular Fr�e
het{Lie groups.

Proof. In view of [Ne00, Th. V.7℄, there exists a simply 
onne
ted 
entral extension q:

b

G! G

with ker q = Z

�

=

z=�

!


orresponding to the Lie algebra extension

b

g ! g . Sin
e �

1

(G) is

trivial, all assumptions of Theorem IV.13 are satis�ed by

b

G .

As we shall see in Se
tion V, for some groups it is too mu
h to hope for that a weakly

universal 
entral extension

b

g 
orresponds to a Lie group whi
h is equivalent to the assumption

of Corollary IV.14. In this 
ase Theorem V.7 below is an appropriate re�nement of Theorem

IV.13.

Proposition IV.15. If G is a 
onne
ted regular abelian Fr�e
het{Lie group, then G has a

K -weakly universal 
entral extension

b

G if and only if G is simply 
onne
ted. In this 
ase

b

G is

weakly universal for all regular abelian Fr�e
het{Lie groups.

Proof. Sin
e G is 
onne
ted and regular, we have G

�

=

g=�

1

(G). We have g = ab(g)

�

=

e

G ,

so that D(

e

G) = 0 . If G has a K -weakly universal 
entral extension, then Lemma IV.10 implies

that �

1

(G) � D(

e

G) is trivial.
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If, 
onversely, G is simply 
onne
ted, then G

�

=

g , and Remark VI.1(a) in [Ne00℄ implies

that

H

2

s

(G;Z)

�

=

H

2




(g; z)

�

=

Z

2




(g; z)

�

=

Alt

2

(g; z)

�

=

Lin(�

2




(g); z);

so that the 
entral Lie algebra extension

H




2

(g)

�

=

�

2




(g) ,!

b

g!! g

from Theorem II.11 
an also be viewed as a 
entral Lie group extension whi
h is weakly universal

for all abelian regular Fr�e
het{Lie groups (Theorem IV.13).

V. Constru
tion of weakly universal 
entral extensions

In this se
tion we eventually turn to the existen
e problem for weakly universal 
entral

extension in the 
ontext of Fr�e
het{Lie groups.

Let G be a 
onne
ted Fr�e
het{Lie group with Lie algebra g , z a Fr�e
het spa
e, and

! 2 Z

2




(g; z) a 
ontinuous 2-
o
y
le. Further let Z denote a regular abelian Fr�e
het{Lie

group with Lie algebra z , so that Z

e

�

=

z=�

1

(Z), where we identity �

1

(Z) with the subgroup

ker exp

Z

� z and exp

Z

: z ! Z

e

is a quotient map with dis
rete kernel. In the �rst part of

this se
tion we will dis
uss the property of a 
entral Z -extension

b

G to be weakly universal for

a regular abelian Lie group A . This dis
ussion will lead to some ne
essary 
onditions for the

existen
e of 
entral extensions whi
h are weakly universal for all regular abelian Fr�e
het{Lie

groups. The main result of this se
tion is the Chara
terization Theorem V.7 whi
h, provided

a 
entral Lie algebra extension whi
h is weakly universal for all Fr�e
het spa
es, 
hara
terizes

when there exists a 
entral group extension whi
h is weakly universal for all regular abelian

Fr�e
het{Lie groups. The situation be
omes parti
ularly simple if the ve
tor spa
e R 
 �

2

(G) is

�nite-dimensional.

From Se
tion IV we re
all the period homomorphism per

!

:�

2

(G)! z and de�ne

P

1

(!) := exp

Z

Æ per

!

:�

2

(G)! Z:

Moreover, we de�ne

P

2

(!):�

1

(G)! Lin(g; z); P

2

(!)([�℄)(x) =

Z

[�℄

i(x

r

):
;

where 
 is the unique left invariant 
losed z-valued 2-form on G with 


e

= ! , and x

r

is the

right invariant ve
tor �eld with x

r

(e) = x . We re
all from [Ne00, Def. V.1℄ that P

1=2

(!) only

depends on the 
ohomology 
lass [!℄ of ! . Let �

!

:= im(per

!

) denote the period group of !

and put

N

!

:= P

2

(!)(�

1

(G))(g) � z:

In the following the restri
tion to Fr�e
het{Lie groups is mainly needed to pass from spa
es

like z to quotient spa
es without loosing the 
ompleteness requirement.

Theorem V.1. The 
entral extension g�

!

z integrates to a 
entral Z extension of G if and

only if P

1

(!) and P

2

(!) vanish, whi
h means that

(5:1) �

!

� �

1

(Z) and N

!

= 0:

This is further equivalent to [!℄ being 
ontained in the range of the homomorphism

D

Z

:H

2

s

(G;Z)! H

2




(g; z); D

Z

(f)(x; y) := (d

2

f)(e; e)(x; y)� (d

2

f)(e; e)(y; x);
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The kernel of D

Z


oin
ides with the image of the homomorphism

Æ

Z;

e

G

: Hom(�

1

(G); Z)! H

2

s

(G;Z)

asso
iated to the universal 
overing q

G

:

e

G! G .

Proof. The 
ase where Z is 
onne
ted follows from [Ne00, Th. V.9℄, and the redu
tion to this


ase is 
ontained in [Ne00, Prop. V.12℄, where it is shown that

H

2

s

(G;Z)

�

=

H

2

s

(G;Z

e

)�Hom(�

1

(G); Z):

Let A be a 
onne
ted regular abelian Lie group with Lie algebra a . Now we analyze the

question when a 
entral Z -extension

b

G of G is weakly A-universal. The following lemmas

prepare Propositions V.5 and V.6.

Lemma V.2. For 
 2 Lin(z; a) the following are equivalent:

(1) Æ

a

(
) is in the range of D

A

:H

2

s

(G;A)! H

2




(g; a) .

(2) 
(�

!

) � �

1

(A) and N

!

� ker 
 .

Proof. First we note that

(5:2) P

1

(
 Æ !) = exp

A

Æ
 Æ per

!

and P

2

(
 Æ !) = 
 Æ P

2

(!):

It follows that (2) is equivalent to �


Æ!

= 
(�

!

) � �

1

(A) and N


Æ!

= 0 , so that the equivalen
e

of (1) and (2) follows from Theorem V.1.

Lemma V.3. Let z be a topologi
al ve
tor spa
e, � � z an additive subgroup, and b � z a


losed ve
tor subspa
e. Then the following 
onditions are equivalent :

(1) b is an open subgroup of b+ � .

(2) The image of � in z=b is dis
rete.

The set of all subspa
es b satisfying these 
onditions is 
losed under �nite interse
tions.

Proof. The equivalen
e of (1) and (2) is a trivial 
onsequen
e of the de�nitions.

Suppose that b

1

; : : : ; b

n

satisfy this 
ondition and let U

j

� z be an open 0-neighborhood

in z with U

j

\ (b

j

+ �) � b

j

. Then U :=

T

n

j=1

U

j

satis�es U \

�

(\

n

j=1

b

j

) + �

�

� b

i

for ea
h i ,

and therefore U \ ((\

n

j=1

b

j

) + �) �

T

n

j=1

b

j

. This 
ompletes the proof.

Lemma V.4. Let b � z be a 
losed subspa
e, a := z=b and q

b

: z ! a the quotient map. Then

Æ

a

(q

b

) 2 im(D

A

) for some regular Lie group A with Lie algebra a if and only if

(A1)N

!

� b , and

(A2) b is open in b+�

!

.

Proof. If Æ

a

(q

b

) = D

A

([f ℄) for some f 2 Z

2

s

(G;A), then Lemma V.2 implies that N

!

� b =

ker q

b

and that q

b

(�

!

) � �

1

(A), whi
h is dis
rete in a . Therefore (A2) is satis�ed by Lemma

V.3.

If, 
onversely, (A1) and (A2) are satis�ed, then we set A := a=q

b

(�

!

) and observe that

the 
onditions of Lemma V.2 are satis�ed.

The following proposition des
ribes a suÆ
ient 
ondition for the existen
e of a weakly

universal 
entral extension.

Proposition V.5. Suppose that there exists a minimal 
losed subspa
e b � z satisfying

(A1/2). We set

z

1

:= z=b; Z

1

:=

�

z=(b+�

!

)

�

� �

1

(G);

and write q

b

: z ! z

1

for the quotient map. Then the group Z

1

is a regular abelian Fr�e
het{Lie

group and !

1

:= q

b

Æ! satis�es [!

1

℄ = D[f ℄ for some f 2 Z

2

s

(G;Z

1

) for whi
h the 
orresponding


o
y
le f

0

2 Z

2

s

(G; �

0

(Z

1

))

�

=

Z

2

s

(G; �

1

(G)) satis�es

e

G

�

=

G �

f

0

�

1

(G) . If �

1

(G) � D(

e

G) ,



29 uni
en.tex May 15, 2001

then the 
orresponding 
entral extension

b

G := G �

f

Z

1

is weakly A-universal if g is weakly

a-universal.

Proof. First we note that q

b

satis�es (A1/2), whi
h implies that [!

1

℄ = D[f

1

℄ for some

f

1

2 Z

2

s

(G; (Z

1

)

e

). Let f

0

2 Z

2

s

(G; �

1

(G)) denote a 
o
y
le with

e

G

�

=

G �

f

0

�

1

(G). Then

f := (f

1

; f

0

) 2 Z

2

s

(G;Z

1

) and we de�ne

b

G := G�

f

Z

1

. This 
entral Z

1

-extension of G satis�es

in parti
ular

b

G=(Z

1

)

e

�

=

G �

f

0

�

1

(G)

�

=

e

G , so that it is weakly universal for dis
rete abelian

groups (Lemma IV.6).

Let A be a regular abelian Lie group and assume that g �

!

z is weakly a-universal. We

may w.l.o.g. assume that A is not dis
rete, whi
h means that a 6= 0 . We have to show that the

map

Æ

A

: Hom(Z

1

; A)! H

2

s

(G;A); ' 7! [' Æ f ℄

is bije
tive.

To see that Æ

A

is inje
tive, we have to show that the homomorphism

Hom(

b

G;A)! Hom(Z;A)

vanishes (Theorem IV.2). So let  :

b

G ! A be a Lie group homomorphism. Then L( ) 2

Hom(

b

g; a) vanishes on D(

b

g). Moreover, in view of a 6= 0 , Lemma I.11(ii) implies that g�

!

z! g

is a topologi
al 
overing, whi
h implies that the quotient algebra

b

g = g�

!

1

z

1

also is a topologi
al


overing be
ause pulling ba
k homomorphisms to K leads to

Hom(

b

g;K ) j

z

1

,! Hom(g�

!

z;K ) j

z

= 0

(Remark I.6(b)). We 
on
lude that L( ) vanishes on z

1

� D(

b

g) and therefore that (Z

1

)

e

�

ker . Hen
e  fa
tors through

b

G=(Z

1

)

e

�

=

e

G , and �

1

(G) � D(

e

G) further implies that

Z

1

� ker . This proves that Æ

A

is inje
tive.

To see that Æ

A

is surje
tive, let f

A

2 Z

2

s

(G;A) and 
 := Æ

�1

a

�

D

A

(f

A

)

�

2 Hom(z; a).

Then 
 vanishes on N

!

and maps �

!

into the dis
rete group �

1

(A) (Lemma V.2). Therefore

ker 
 = 


�1

(0) is open in 


�1

(�

1

(A)) � ker 
 + �

!

. Hen
e ker 
 is open in ker 
 + �

!

, and

the minimality of b entails b � ker 
 , showing that 
 fa
tors through a 
ontinuous linear map




1

2 Lin(z

1

; a) with




1

(�

1

(Z

1

)) = 


1

(q

b

(�

!

)) = 
(�

!

) � �

1

(A):

Therefore 


1

integrates to a group homomorphism ': (Z

1

)

e

! A whi
h 
an be extended to

Z

1

�

=

(Z

1

)

e

� �

1

(G), and we have

D

A

(' Æ f) = 


1

ÆD

Z

1

(f) = 


1

Æ [q

b

Æ !℄ = [
 Æ !℄ = Æ

a

(
):

Hen
e D

A

(('Æf)f

�1

A

) = 0, so that, in view of ['Æf ℄ 2 im Æ

A

, we may from now on assume that

D

A

(f

A

) = 0. Then

[f

A

℄ 2 Æ

A

(Hom(�

1

(G); A)) � Æ

A

(Hom(Z

1

; A))

follows from �

1

(G)

�

=

�

0

(Z

1

). This 
ompletes the proof of the bije
tivity of Æ

A

.

The following proposition 
omplements Proposition V.5 in the sense that it des
ribes

ne
essary 
onditions for universality.

Proposition V.6. Let g �

!

z be a 
entral z-extension of g and

b

G := G �

f

Z

1

a 
entral

Z

1

-extension of G . Assume that

(1) g�

!

z is weakly universal for z

1

and quotients of z by 
losed subspa
es.

(2)

b

G is weakly universal for Z

1

, and quotients of z by 
losed subgroups S for whi
h there exists

a 
losed subspa
e s � z whi
h is an open subgroup of S .

Then (Z

1

)

e

�

=

z=b; where b � z is a minimal 
losed subspa
e satisfying (A1/2).

Proof. Step 1: Suppose that 
 � z satis�es (A1/2), de�ne the Fr�e
het spa
e z




:= z=
 , and

write q




: z ! z




for the quotient map. Then Z




:= z=q




(�

!

) is a regular abelian Lie group, and
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by (1), g�

!

z is weakly universal for z




, so that we 
an use Lemma V.2 to obtain f




2 Z

2

s

(G;Z




)

with D[f




℄ = [q




Æ !℄ .

Next we use the weak Z




-universality of

b

G to �nd a unique homomorphism '




:Z

1

! Z




with ['




Æ f ℄ = Æ

Z




('




) = [f




℄: Using (1), we de�ne 
 := Æ

�1

z

1

(D[f ℄) 2 Lin(z; z

1

) and observe that

[
 Æ !℄ = D[f ℄ = [Df ℄:

Then

Æ

z




(q




) = [q




Æ !℄ = D[f




℄ = D['




Æ f ℄ = L('




)D[f ℄ = L('




)[
 Æ !℄ = Æ

z




(L('




) Æ 
);

and the weak z




-universality of g�

!

z yields

(5:3) q




= L('




) Æ 
:

Step 2: We will show that 
 is a quotient homomorphism. In view of Lemma V.2,

b := ker
 satis�es (A1/2). As above, we de�ne z

b

:= z=b , q

b

: z ! z

b

, and Z

b

:= z=q

b

(�

!

).

Now 
(�

!

) � �

1

(Z

1

) (Lemma V.2) implies the existen
e of a unique Lie group homomorphism

 :Z

b

! Z

1

with L( ) Æ q

b

= 
 .

By assumption (1), g �

!

z is also weakly universal for z

b

, so that we 
an use Lemma

V.2 to obtain f

b

2 Z

2

s

(G;Z

b

) with D[f

b

℄ = [q

b

Æ !℄ . Let '

b

:Z

1

! Z

b

be as in Step 1 with

['

b

Æ f ℄ = [f

b

℄ .

Now we have

Æ

Z

1

( Æ '

b

) = [ Æ '

b

Æ f ℄ = [ Æ f

b

℄

with

D[ Æ f

b

℄ = L( ) ÆD[f

b

℄ = [L( ) Æ q

b

Æ !℄ = [
 Æ !℄ = D[f ℄:

This means that there exists a homomorphism " : �

1

(G)

�

=

�

0

(Z

1

)! Z

1

with

Æ

Z

1

(id

Z

1

) = [f ℄ = Æ

Z

1

(( Æ '

b

) � ") = [( Æ '

b

Æ f) � (" Æ f)℄

([Ne00, Th. V.9℄), so that the weak Z

1

-universality of

b

G leads to  Æ '

b

= "

�1

, whi
h implies

that L( ) Æ L('

b

) = id

z

1

.

On the other hand

L('

b

) Æ L( ) Æ q

b

= L('

b

) Æ 
 2 Lin(z; z

b

)

satis�es




z

b

(L('

b

) Æ 
) = [L('

b

) Æ 
 Æ !℄ = [L('

b

) ÆDf ℄ = D['

b

Æ f ℄ = D[f

b

℄ = [q

b

Æ !℄ = Æ

z

b

(q

b

);

and the weak z

b

-universality of g�

!

z entails

q

b

= L('

b

) Æ 
 = L('

b

) Æ L( ) Æ q

b

;

when
e L('

b

) ÆL( ) = id

z

b

. We 
on
lude that z

b

�

=

z

1

, and furthermore that  :Z

b

! (Z

1

)

e

is

a Lie group isomorphism whose inverse is given by '

b

j

Z

1;e

.

Step 3: From now on we assume that Z

b

�

=

Z

1;e

. It remains to show that b is minimal

with (A1/2). If 
 � z satis�es (A1/2), then (5.3) implies that

b = ker 
 � ker q




= 
;

whi
h proves the minimality of b .
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Theorem V.7. (Chara
terization Theorem) Let G be a 
onne
ted Fr�e
het{Lie group and

suppose that g has a 
entral extension g �

!

z whi
h is weakly universal for all Fr�e
het spa
es.

Then G has a 
entral extension

b

G = G �

f

Z whi
h is weakly universal for all regular abelian

Fr�e
het{Lie groups if and only if

(WU1) �

1

(G) � D(

e

G) , and

(WU2) there exists a minimal 
losed subspa
e in z satisfying (A1/2).

Proof. The ne
essity of (WU1) follows from Lemma IV.10, and the ne
essity of (WU2) from

Proposition V.6. The suÆ
ien
y of both 
onditions follows from Proposition V.5.

Sin
e all abelian Bana
h{Lie groups are regular, we likewise obtain a version of Theorem

V.7 for Bana
h{Lie groups.

Theorem V.8. Let G be a 
onne
ted Bana
h{Lie group and suppose that g has a 
entral

extension g�

!

z whi
h is weakly universal for all Bana
h spa
es. Then G has a 
entral extension

b

G = G�

f

Z whi
h is weakly universal for all abelian Bana
h{Lie groups if and only if

(WU1) �

1

(G) � D(

e

G) , and

(WU2) there exists a minimal 
losed subspa
e in z satisfying (A1/2).

Corollary V.9. If G is a 
onne
ted �nite-dimensional Lie group, then the following are

equivalent:

(1) �

1

(G) � D(

e

G) .

(2) G has a 
onne
ted 
entral extension

b

G whi
h is weakly universal for all regular abelian

Fr�e
het{Lie groups.

The group

b

G is �nite-dimensional.

Proof. \(2) ) (1)" follows from Theorem V.7.

\(1) ) (2)" Sin
e g is �nite-dimensional, the same holds for �

2

(g) and hen
e for w
ov(g).

Therefore Theorem II.11 implies the existen
e of a 
entral extension

b

g = g �

!

z , where z =

H




2

(g) = H

2

(g) whi
h is weakly universal for all Fr�e
het spa
es. In parti
ular z is �nite-

dimensional and therefore

b

g is �nite-dimensional.

Sin
e �

2

(G) vanishes ([Mim95℄), we have �

!

= 0 , so that b := N

!

is minimal with (A1/2).

Now Theorem V.7 applies.

Corollary V.10. If G is a 
onne
ted Fr�e
het{Lie group with dimR 
 �

2

(G) <1 and g has

a weakly Fr�e
het-universal 
entral extension, then the following are equivalent:

(1) �

1

(G) � D(

e

G) .

(2) G has a 
onne
ted 
entral Fr�e
het{Lie group extension

b

G whi
h is a weakly universal for

all regular abelian Fr�e
het{Lie groups.

Proof. \(2) ) (1)" follows from Theorem V.7.

\(1) ) (2)" The assumption dim(R 
 �

2

(G)) < 1 implies that span�

!

is �nite-dimensional.

Let 
: z ! z=N

!

denote the quotient map. Then 
(�

!

) is a subgroup 
ontained in a �nite-

dimensional ve
tor spa
e. If b � z satis�es (A1/2), then the image of �

!

in z=b is dis
rete, and

therefore 
(b) 
ontains the identity 
omponent a of the 
losure of 
(�

!

) in z=N

!

. On the other

hand the stru
ture of 
losed subgroups of �nite-dimensional ve
tor spa
es implies that a is open

in 
(�

!

). Therefore 


�1

(a) � z is a 
losed subspa
e whi
h is minimal with respe
t to (A1/2).

Now Theorem V.7 applies.

Remark V.11. The assumptions of Corollary V.10 are in parti
ular satis�ed if the Lie algebra

g is topologi
ally perfe
t and the abelian group �

2

(G) is �nitely generated.

Examples V.12. (a) (Restri
ted groups) For a 
omplex in�nite-dimensional Hilbert spa
e H

we re
all the restri
ted Lie algebra g(D) � B(H) from Example II.14(a). For the 
orresponding


onne
ted Lie group G

r

it has been shown in [Ne01b, Th. III.7℄ that G

r

is simply 
onne
ted

with

�

2

(G

r

)

�

=

Z

dimH

2




(g(D);C )

:
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Let ! 2 H

2




(g(D); H

2

(g(D)) be a universal 
o
y
le. Then the period map per

!

:�

2

(G

r

) !

H




2

(g(D)) maps �

2

(G

r

) inje
tively onto a dis
rete subgroup. We therefore obtain a universal


entral extension Z ,!

b

G

r

!! G

r

with Z

�

=

H




2

(g(D))=�

!

(Corollary IV.14). In [Ne01b,

Th. IV.10℄ this 
entral extension has been obtained by a dire
t 
onstru
tions.

Similar results hold for the 
onne
ted group G

r


orresponding to g(D) for g = gl(H; I),

where I :H ! H is an antilinear isometri
 involution with I

2

= �1 . In this 
ase G

r

is also

simply 
onne
ted ([Ne01b, Th. III.14℄), and everything works as above.

(b) (Viraroso group) In [Ne00, Ex. VI.4℄ we have seen that the group G = Di�

+

(S

1

) of

oriented di�eomorphisms of the 
ir
le is homotopy equivalent to the rotation subgroup T . Hen
e

�

2

(G) = 0 and �

1

(G)

�

=

Z . In Example II.14(b) we have dis
ussed the 
entral extension of the


orresponding Lie algebra g , the smooth ve
tor �elds on S

1

. Let ! 2 Z

2




(g;R) be a universal


o
y
le. First �

2

(G) = 0 yields �

!

= 0 , and the dis
ussion in [Ne00, Ex. VI.4℄ implies that

N

!

= 0 .

We therefore obtain a universal 
entral extension

b

G! G with kernel Z

�

=

H

2

(g)��

1

(G)

�

=

R �Z .

(
) (Current groups) Let K be a 
ompa
t Lie group with simple Lie algebra, M a 
ompa
t

smooth manifold and 
onsider the Fr�e
het{Lie group G := C

1

(M;K). In Example II.14(
)

we have seen that the Lie algebra g

�

=

C

1

(M; k)

�

=

C

1

(M;R) 


R

k of G has a universal


entral extension by the in�nite-dimensional Fr�e
het spa
e z = 


1

(M)=dC

1

(M) whi
h 
ontains

H

1

dR

(M;R) as a 
losed subspa
e whi
h here is �nite-dimensional be
ause M is 
ompa
t.

If ! is the universal 
o
y
le from Example II.14(
), then on 
an show that N

!

= 0 and

�

!

�

=




1

Z

(M)=dC

1

(M) � H

1

dR

(M;R)

([MN01℄, see also [PS86℄), where 


1

Z

(M) � 


1

(M) denotes the 
losed additive subgroup of all 1-

forms whose periods are integral. This 
ondition implies in parti
ular that they are 
losed be
ause

their pull-ba
k to the universal 
overing manifold

f

M is exa
t. Identifying H

1

dR

(M;R) via the

theorems of de Rham and Hurewi
z with H

1

sing

(M;R)

�

=

Hom(H

1

(M);R)

�

=

Hom(�

1

(M);R) ,

the group �

!


orresponds to Hom(�

1

(M);Z). Sin
e the 
ompa
tness of M implies that �

1

(M)

is �nitely generated, �

!

is des
ribed by �nitely many integrality 
onditions, hen
e a dis
rete

subgroup of z . Now Proposition V.5 shows that there exists a 
entral extension Z ,!

b

G !! G

with

Z

�

=

(z=�

!

)� �

1

(G)

whi
h is weakly universal for all regular abelian Fr�e
het{Lie groups.

(d) Let H be an in�nite-dimensional 
omplex Hilbert spa
e and PGL(H) := GL(H)=C

�

1 its

proje
tive linear group. This is a Bana
h{Lie group with Lie algebra pgl(H) := B(H)=C 1 . In

Example III.6 we have see that gl(H) := B(H) is a 
entral extension of pgl(H) by C whi
h is

universal for all 
omplete lo
ally 
onvex spa
es. Sin
e the group GL(H) is simply 
onne
ted by

Kuiper's Theorem (
f. [Ne01b, Th. II.4℄), the Re
ognition Theorem IV.13 shows that GL(H) is

a universal 
entral extension of the group PGL(H).

A similar statement holds for the real group U(H) whi
h is a universal 
entral extension

of PU(H) := U(H)=T1 .

Problems V. It would be interesting to determine, if they exist, weakly universal 
entral

extensions for the following types of groups:

(1) C

1

(M;K), M a 
ompa
t manifold and K a 
onne
ted �nite-dimensional Lie group whi
h

is not ne
essarily simple (
f. [Ma01℄, [PS86℄ for results on the Lie algebra level).

(2) C(X;G), X a 
ompa
t spa
e and K a Lie group. This should be parallel to (1), but one

expe
ts here less 
entral extensions be
ause the universal di�erential module of C(X;R) is

trivial ([Ma01℄).

(3) GL

n

(A), A a unital Bana
h algebra. Here one expe
ts the universal 
enter to be indepen-

dent of n , so that one 
an also 
onsider a limit 
ase for n ! 1 , where the period map

should be related to the K -theory of A .

(4) Di�(M), M a 
ompa
t manifold.

(5) Sp(M;
), (M;
) a 
ompa
t symple
ti
 manifold.
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