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Universal entral extensions of Lie groups

Karl-Hermann Neeb

Abstrat. We all a entral Z -extension of a group G weakly universal for an abelian group A

if the orrespondene assigning to a homomorphism Z!A the orresponding A -extension yields a

bijetion of extension lasses. The main problem disussed in this paper is the existene of entral

Lie group extensions of a onneted Fr�ehet{Lie group G whih is weakly universal for all abelian

Fr�ehet{Lie groups whose identity omponents are quotients of vetor spaes by disrete subgroups.

We all these abelian groups regular. In the �rst part of the paper we deal with the orresponding

question in the ontext of topologial, Fr�ehet-, and Banah{Lie algebras, and in the seond part

we turn to the groups. Here we start with a disussion of the weak universality for disrete abelian

groups and then turn to regular Fr�ehet{Lie groups A . The main results are a Reognition- and a

Charaterization Theorem for weakly universal entral extensions.

Introdution

If G is a perfet group, then there exists a universal entral extension q:

b

G ! G whih

has the property that for any other entral extensions q

1

:

b

G

1

! G there exists a unique homo-

morphism ':

b

G !

b

G

1

with q

1

Æ ' = q . The kernel of q is sometimes alled H

2

(G), the seond

homology group of G ([We95℄, [Ro95, p. 227℄).

Similar results hold for Lie algebras. For every perfet Lie algebra g there exists a universal

entral extension q:

b

g ! g suh that for any other entral extensions q

1

:

b

g

1

! g there exists a

unique Lie algebra homomorphism ':

b

g!

b

g

1

with q

1

Æ ' = q . Here the kernel an be identi�ed

with the seond Lie algebra homology spae H

2

(g) ([We95℄, [Ro95, p. 228℄).

The main purpose of this paper is to understand under whih irumstanes similar results

hold for Lie groups. Here we work with not neessarily �nite-dimensional Lie groups whih

are modeled over sequentially omplete loally onvex spaes ([Mil83℄) and onsider only those

entral extensions q:

b

G ! G whih are loally trivial smooth prinipal bundles, i.e., there exist

smooth loal setions. Moreover, we restrit the lass of kernels to those abelian Lie groups Z

whih are regular in the sense that their identity omponent is the quotient of a vetor spae by

a disrete subgroup. Both restritions are vauous for �nite-dimensional groups, and the seond

one for Banah{Lie groups.

Our main tool to address entral extensions in this ontext are the results of [Ne00℄ relating

them to entral extensions of the orresponding Lie algebras. This is why the �rst three setions of

the paper are devoted to (universal) entral extensions q:

b

g! g of topologial Lie algebras whih

are linearly split in the sense that they have a ontinuous linear setion (whih of ourse does not

have to be a Lie algebra homomorphism). This assumption is ruial beause otherwise it would

be impossible to parameterize the equivalene lasses by objets that one ould alulate for

spei� Lie algebras sine extension lasses of topologial vetor spaes would enter the piture,

and the groups formed by these extension lasses seem to be quite inaessible.

In Setion I we disuss entral extensions of topologial Lie algebras in general. Here a

entral result is an exat sequene

(0:1) 0! Hom(g; a)��!Hom(

b

g; a)! Lin(z; a)

Æ

a

��!H

2



(g; a)��!H

2



(

b

g; z; a)! 0
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assoiated to a entral extension z ,!

b

g!! g and a topologial vetor spae a , where H

2



denotes

the ontinuous Lie algebra ohomology, Hom stands for ontinuous Lie algebra homomorphisms,

and Lin for ontinuous linear maps. We all the entral extension

b

g of g by z weakly universal

for a if the homomorphism Æ

a

in (0.1) is bijetive. This onept is weaker than the universality

used in the algebrai ontext and makes it possible to disuss universality properties for restrited

lasses of spaes a . This turns out to be a good strategy to split the problem into tratable piees.

We will see in partiular that for eah �nite-dimensional Lie algebra g all diÆulties vanish and

that there exists a unique entral extension whih is weakly universal for all spaes a . This

extension is universal in the sense de�ned above if and only if the Lie algebra g is perfet.

In Setion I we also disuss uniqueness properties for other lasses of in�nite-dimensional

Lie algebras, but the hard part is to deide when weakly universal entral extensions exist. This

question is disussed in Setion II for Fr�ehet{Lie algebras. The restrition to this lass of Lie

algebras is natural beause on the one hand side it is natural to restrit to loally onvex spaes

to have natural topologies on tensor produts, and on the other hand, it is very helpful to have

the Open Mapping Theorem available. The main result of Setion II is an existene riterion

for a entral extension whih is weakly universal for all omplete loally onvex spaes. Our

riterion is always satis�ed if g is (algebraially) perfet and its seond ohomology spae is

�nite-dimensional. In the short Setion III we briey disuss ertain re�nements for the lass of

Banah{Lie algebras.

The struture of Setions IV and V is similar, but here we work on the group side. Setion

IV is parallel to Setion I. Here we derive for a entral Lie group extension Z ,!

b

G !! G and

eah abelian Lie group A an exat sequene

1! Hom(G;A)��!Hom(

b

G;A)��!Hom(Z;A)

Æ

A

��!H

2

s

(G;A)��!H

2

s

(

b

G;Z;A)! Ext

ab

(Z;A)

whih is the group version of (0.1). We all

b

G weakly A-universal if Æ

A

is bijetive and disuss

this onept for several lasses of Lie groups. In partiular we obtain a useful haraterization

of those entral extensions whih are weakly universal for all disrete groups A . Sine every

regular abelian Lie group is a diret produt of a disrete and a onneted group, this redues

the problems to entral extensions by onneted abelian groups, whih by [Ne00℄ are essentially

faithfully represented by the orresponding Lie algebra extensions. The seond main result of

Setion IV is the Reognition Theorem IV.13 whih gives a suÆient riterion for a given entral

extension Z ,!

b

G !! G to be weakly universal for all regular Fr�ehet{Lie groups A . It is

interesting that we do not need any perfetness assumption for our onstrution, but for groups

whih are not simply onneted, the existene of a entral extension weakly universal for K

(whih is R or C ) implies that �

1

(G) is ontained in the Lie ommutator group D(

e

G) of the

universal overing group

e

G of G .

In Setion V we then turn to the existene problem for universal entral extensions. For

�nite-dimensional groups we �nd that the neessary ondition �

1

(G) � D(

e

G) is already suÆient

for the existene of a entral extension whih is weakly universal for all regular Fr�ehet{Lie

groups. Under the assumption that the Lie algebra g of G has a entral extension whih is

weakly universal for all Fr�ehet spaes, R 
 �

2

(G) is a �nite-dimensional real vetor spae, and

�

1

(G) � D(

e

G), we also obtain an existene result for Fr�ehet{Lie groups. If �

2

(G) is too big

in the sense that R 
 �

2

(G) is in�nite-dimensional, then we have a �ner riterion formulated in

Theorem V.7.

The outome of this paper is that we see quite learly where the obstrutions for the

existene of (weakly) universal entral extensions of Lie groups, resp., Lie algebras lie. For Lie

algebras diÆulties may arise if they are not (algebraially) perfet or their seond ohomology is

in�nite-dimensional. Under the assumption that their Lie algebra has a weakly universal entral

extension, the additional diÆulties for groups ome from the ondition �

1

(G) � D(

e

G) whih is

quite harmless, and from the struture of �

2

(G) whih is more serious beause it is related to

the non-existene of Lie groups for given Lie algebra extensions.
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I. Central extensions of Lie algebras

All Lie algebras g in this setion are assumed to be topologial Lie algebras, i.e., g is a

topologial vetor spae over K 2 fR; C g suh that the Lie braket is a ontinuous bilinear

map. We write Hom(g; h) for the set of ontinuous homomorphism between the topologial Lie

algebras g and h and Lin(X;Y ) for the set of ontinuous linear maps between the topologial

vetor spaes X and Y .

General properties of entral Lie algebra extensions

De�nition I.1. (a) Let z be a topologial vetor spae and g a topologial Lie algebra. A

ontinuous z-valued 2-oyle is a ontinuous skew-symmetri funtion !: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is alled a oboundary if there exists a ontinuous linear map � 2 Lin(g; z) with !(x; y) =

�([x; y℄) for all x; y 2 g . We write Z

2



(g; z) for the spae of ontinuous z-valued 2-oyles and

B

2



(g; z) for the subspae of oboundaries de�ned by ontinuous linear maps. We also de�ne the

seond ontinuous Lie algebra ohomology spae

H

2



(g; z) := Z

2



(g; z)=B

2



(g; z):

(b) If ! is a ontinuous z-valued oyle on g , then we write g �

!

z for the topologial Lie

algebra whose underlying topologial vetor spae is the produt spae g� z , and the braket is

de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z! g; (x; z) 7! x is a entral extension and �: g! g�

!

z; x 7! (x; 0) is a ontinuous

linear setion of q .

Remark I.2. (a) If q:

b

g ! g is a quotient homomorphism of topologial Lie algebras with

ker q � z(

b

g) for whih there exists a ontinuous linear setion �: g!

b

g , then

(1:1) !(x; y) := [�(x); �(y)℄ � �([x; y℄)

de�nes a ontinuous z-valued 2-oyle on g for whih the map

': g�

!

z !

b

g; (x; z) 7! �(x) + z

is an isomorphism of topologial Lie algebras.

(b) If q:

b

g ! g and q

1

:

b

g

1

! g are entral extensions, then a morphism of entral extensions is

a ontinuous homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . We thus obtain a ategory of entral

g-extensions. In partiular, it is lear what an isomorphism of entral g-extensions means.

For

b

g = g�

!

z and

b

g

1

= g�

�

a a morphism ':

b

g ! g

1

has the form

'(x; z) = (x; �(x) + (z)); � 2 Lin(g; a);  2 Lin(z; a);

where the ondition that ' is a Lie algebra homomorphism means that

�([x; x

0

℄) + (!(x; x

0

)) = �(x; x

0

); x; x

0

2 g:

It follows in partiular that for a given  2 Lin(z; a) an extension to a morphism of entral

g-extensions exists if and only if [ Æ !℄ = [�℄ in H

2



(g; a).
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In partiular, two entral extensions g�

!

z and g�

�

a are isomorphi if and only if there

exists an isomorphism : z! a with [ Æ !℄ = [�℄ .

() We all two entral extensions g �

!

z and g �

�

z equivalent if there exists an isomorphism

of entral extensions ': g �

!

z ! g �

�

z induing the identity on z . In view of (b), suh an

isomorphism exists if and only if [!℄ = [�℄ . Therefore ! 7! g �

!

z indues a bijetion between

the spae H

2



(g; z) and the set of equivalene lasses of entral extensions of g by z .

(d) If z = z

1

� z

2

is a diret produt, then we aordingly obtain a deomposition

H

2



(g; z)

�

=

H

2



(g; z

1

)�H

2



(g; z

2

):

(e) We write V

C

:= C 
V for the omplexi�ation of a real vetor spae V . For K = R we have

Z

2



(g; z)

C

�

=

Z

2



(g

C

; z

C

); B

2



(g; z)

C

�

=

B

2



(g

C

; z

C

) and therefore also

H

2



(g; z)

C

�

=

H

2



(g

C

; z

C

):

All entral extensions q:

b

g! g that we onsider in the following will be linearly split in the

sense that there exists a ontinuous linear map �: g!

b

g with qÆ� = id

g

. In the preeding remark

we have explained how H

2



(g; z) lassi�es the linearly split entral extensions of a topologial Lie

algebra g by a topologial vetor spae z .

Lemma I.3. Let z ,!

b

g

q

��!g be a linearly split entral extension with

b

g

�

=

g �

!

z for

! 2 Z

2



(g; z) , and : z! a be a linear map. Then

b

g() := (

b

g� a)=b; b = f(x;�(x)):x 2 zg;

is a entral extension of g with respet to the surjetive map q



:

b

g()! g; [(x; y)℄ 7! q(x) , where

we write [(x; y)℄ := (x; y) + b , x 2

b

g , y 2 a , for the elements of

b

g() . It is equivalent to the

entral extension g�

Æ!

a de�ned by the oyle  Æ ! 2 Z

2



(g; a) .

Proof. First we observe that

ker q



= f[(x; y)℄:x 2 z; y 2 ag = f[(0; y + (x))℄:x 2 z; y 2 ag = f[(0; y)℄: y 2 ag

�

=

a:

We write

b

g as g�

!

z and onsider the ontinuous linear map �



: g!

b

g(); x 7! [((x; 0); 0)℄: The

orresponding oyle is given by

[�



(x); �



(y)℄� �



([x; y℄) = [((0; !(x; y)); 0)℄ = [

�

(0; 0); (!(x; y))

�

℄;

so that the oyle orresponding to �



is  Æ ! 2 Z

2



(g; a).

The exat sequene for entral extensions

If z �

b

g is a entral ideal, then we write Z

2



(

b

g; z; a) for the set of ontinuous a-valued

oyles ! with !(z;

b

g) = f0g . Then B

2



(

b

g; a) � Z

2



(

b

g; z; a) follows from �([

b

g; z℄) = f0g for eah

� 2 Lin(

b

g; z), so that we may de�ne

H

2



(

b

g; z; a) := Z

2



(

b

g; z; a)=B

2



(

b

g; a) � Z

2



(

b

g; z)=B

2



(

b

g; a) = H

2



(

b

g; z):

Theorem I.4. Let

z ,!

b

g = g�

!

z

q

��!g

be a linearly split entral extension of topologial Lie algebras de�ned by the oyle ! 2 Z

2



(g; z) .

Then we have for eah topologial vetor spae a an exat sequene

0! Hom(g; a)

q

�

��!Hom(

b

g; a)! Lin(z; a)

Æ

a

��!H

2



(g; a)

q

�

��!H

2



(

b

g; z; a)! 0;
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where Æ

a

() = [ Æ !℄ .

Proof. The exatness in Hom(g; a) and Hom(

b

g; a) is trivial beause, sine q has a ontinuous

linear setion, a ontinuous Lie algebra homomorphism

b

g! a fators through q if and only if it

vanishes on the kernel z .

Exatness in Lin(z; a): Let  2 Lin(z; a). We write

b

g = g �

!

z , so that every ontinuous

linear extension e:

b

g ! a of  has the form e(x; z) = �(x) + (z) with � 2 Lin(g; z). Suh an

extension is a Lie algebra homomorphism if and only if it vanishes on all brakets, i.e.,

0 = e([(x; z); (x

0

; z

0

)℄) = �([x; x

0

℄) + (!(x; x

0

)) for x; x

0

2 g; z; z

0

2 z:

The existene of � 2 Lin(g; z) with this property is equivalent to the triviality of the oyle

 Æ ! 2 Z

2



(g; a). This proves the exatness in Lin(z; a).

Exatness in H

2



(g; a): First we show that q

�

Æ Æ

a

= 0. So let  2 Lin(z; a) and onsider

e 2 Lin(

b

g; z) de�ned by e(x; z) := (z). Then

e([(x; z); (x

0

; z

0

)℄) = (!(x; x

0

)) = 

�

!(q(x; z); q(x

0

; z

0

))

�

= q

�

( Æ !)

�

(x; z); (x

0

; z

0

)

�

implies that q

�

( Æ !) is a oboundary. This means that im(Æ

a

) � ker(q

�

).

To see that ker(q

�

) � im(Æ

a

), let ' 2 Z

2



(g; a) be a oyle for whih q

�

' is a oboundary.

Let e 2 Lin(

b

g; a) with

e([(x; z); (x

0

; z

0

)℄) = q

�

'

�

(x; z); (x

0

; z

0

)

�

= '(x; x

0

); x; x

0

2 g; z; z

0

2 z:

For 

g

(x) := e(x; 0) and (z) := e(0; z) we then obtain

'(x; x

0

) = 

g

([x; x

0

℄) + (!(x; x

0

))

whih shows that ['℄ = [ Æ !℄ 2 im(Æ

a

).

Exatness in H

2



(

b

g; z; a): First we note that for eah ' 2 Z

2



(g; a) we trivially have

q

�

' 2 Z

2



(

b

g; z; a). If, onversely,  2 Z

2



(

b

g; z; a), then  vanishes on

b

g� z , hene fators through

a ontinuous oyle ' 2 Z

2



(g; a) with q

�

' =  . This means that q

�

:H

2



(g; a) ! H

2



(

b

g; z; a) is

surjetive.

Coverings

In the following we write D(g) := [g; g℄ for the derived Lie algebra of a topologial Lie

algebra g and ab(g) := g=D(g) for the largest abelian quotient of g .

De�nition I.5. A entral extension q:

b

g! g is alled a topologial overing if ker q � D(

b

g).

Remark I.6. (a) That q:

b

g! g is a topologial overing is equivalent to the ondition that the

restrition map Hom(

b

g; a) ! Lin(z; a) vanishes for eah topologial vetor spae a , onsidered

as an abelian Lie algebra. We onlude that if q is a topologial overing, then Theorem I.4

implies that the map

Æ

a

: Lin(z; a)! H

2



(g; a)

is injetive.

(b) If

b

g is loally onvex, then the set Hom(

b

g;K ) of all ontinuous linear funtionals on

b

g

vanishing on D(

b

g) separates the points of

b

g=D(

b

g). Therefore q is a topologial overing if and

only if Hom(

b

g;K ) j

z

= 0:

Lemma I.7. If g is topologially perfet and q:

b

g ! g is a topologial overing, then

b

g is

topologially perfet.

Proof. Sine ker q � D(

b

g), the quotient homomorphism

b

g! ab(

b

g) :=

b

g=D(

b

g) fators through

a Lie algebra homomorphism g! ab(

b

g) whih is trivial beause g is topologially perfet. This

implies that

b

g is topologially perfet.
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Proposition I.8. Let q:

b

g! g be a linearly split entral extension of topologial Lie algebras

with z = ker q whih is a topologial overing. Then we have for eah topologial vetor spae a

a short exat sequene

0! Lin(z; a)

Æ

a

��!H

2



(g; a)

q

�

��!H

2



(

b

g; z; a)! 0:

Proof. This follows from Theorem I.4 and Remark I.6.

De�nition I.9. Let g be a topologial Lie algebra.

(a) Let a be a topologial vetor spae onsidered as a trivial g-module. We all a entral

extension q:

b

g ! g with z = ker q (or simply the Lie algebra

b

g) weakly universal

1

for a if the

orresponding map Æ

a

: Lin(z; a)! H

2



(g; a) is bijetive.

We all q:

b

g! g universal for a if for every linearly split entral extension q

1

:

b

g

1

! g of g

by a there exists a unique homomorphism ':

b

g !

b

g

1

with q

1

Æ ' = q . Note that this universal

property immediately implies that two entral extensions

b

g

1

and

b

g

2

of g by a

1

and a

2

whih

are both universal for a

1

and a

2

are isomorphi.

() We all g entrally losed if H

2



(g;K ) = 0 .

Remark I.10. (a) In view of Remark I.2(b), the injetivity of Æ

a

means that for eah � 2

Z

2



(g; a) all morphisms ':

b

g

�

=

g�

!

z! g�

�

a of entral extensions have the same restrition to

z whih in turn means that the natural map Hom(g; a)! Hom(

b

g; a) is bijetive.

A similar argument shows that Æ

a

is surjetive if and only if for eah � 2 Z

2



(g; a) there

exists a morphism ': g�

!

z ! g�

�

a of entral extensions.

These observations show that

b

g is a-universal if and only if the map Æ

a

is bijetive and,

in addition, Hom(

b

g; a)

�

=

Hom(g; a) = 0 .

(b) For K = R we have Æ

a

C

= Æ

a


 id

C

and (g �

!

z)

C

�

=

g

C

�

!

C

z

C

, where !

C

2 Z

2



(g

C

; z

C

)

denotes the unique omplex bilinear extension of ! 2 Z

2



(g; z) to a map g

C

� g

C

! z

C

(Remark

I.2(e)). From that it follows that

b

g is (weakly) a-universal if and only if

b

g

C

is (weakly) a

C

-

universal.

Lemma I.11. We onsider the entral extension

b

g = g�

!

z of g by z .

(i) If

b

g is universal for a , then it is weakly universal for a .

(ii) If

b

g is weakly universal for a 6= 0 and g and z are loally onvex, then it is a topologial

overing.

(iii) If g and z are loally onvex and

b

g is universal for a 6= 0 , then

b

g and g are topologially

perfet.

(iv) If q:

b

g! g is a topologial overing with H

2



(

b

g; a) = 0 , then

b

g is weakly a-universal.

Proof. (i) is a diret onsequene of Remark I.10(a).

(ii) In view of Theorem I.4, we have Hom(

b

g; a) j

z

= 0 . Further a 6= 0 yields Hom(K ; a) 6= 0 , so

that we also get Hom(

b

g;K ) j

z

= 0 , whih means that the entral extension

b

g of g is a topologial

overing beause

b

g is loally onvex (Remark I.6(b)).

(iii) The uniqueness assumptions for morphisms ':

b

g ! g �

�

a implies in partiular that 0 =

Hom(

b

g; a)

�

=

Lin(

b

g=D(

b

g); a). Sine, as a topologial vetor spae,

b

g

�

=

g � z is loally onvex,

the same is true for the abelian Lie algebra

b

g=D(

b

g), so that the Hahn{Banah Extension

Theorem implies that the ontinuous linear funtionals on this spae separate points. Therefore

Lin(K ; a) 6= 0 implies that

b

g=D(

b

g) is trivial, whih means that

b

g is topologially perfet. Sine

the quotient map q:

b

g! g is surjetive and maps [

b

g;

b

g℄ onto [g; g℄ , it follows that [g; g℄ is dense

in g , i.e., g is also topologially perfet.

(iv) In view of Theorem I.4, the relation z � D(

b

g) implies that Æ

a

is injetive. Moreover,

H

2



(

b

g; z; a) � H

2



(

b

g; a) = 0 entails that Æ

a

is surjetive.

1

In the literature one also �nds the terminology \versal" with the same meaning, whih is sort of justi�ed

by Remark I.10 aording to whih weak universality is universality without the uniqueness requirement.



7 unien.tex May 15, 2001

Lemma I.12. Suppose that q:

b

g ! g is weakly universal for K and that g and z are loally

onvex. Then the following assertions hold:

(i) q is a topologial overing.

(ii)

b

g is weakly universal for eah �nite-dimensional vetor spae a .

(iii)

b

g is universal for a 6= 0 if and only if g is topologially perfet and weakly a-universal.

Proof. (i) follows from Lemma I.11(ii).

(ii) We write

b

g

�

=

g �

!

z with ! 2 Z

2



(g; z). Remark I.10 and (i) imply that Æ

a

is injetive, so

that it remains to show that it is surjetive. So let a

1

; : : : ; a

n

be a basis of a and ' 2 Z

2



(g; a).

Then ' =

P

n

j=1

'

j

a

j

with '

j

2 Z

2



(g;K ). Sine q is weakly universal, there exist ontinuous

linear funtionals �

j

2 z

0

with [�

j

Æ !℄ = �

K

(�

j

) = ['

j

℄ . Hene we �nd �

j

2 g

0

with

(�

j

Æ ! � '

j

)(x; y) = �

j

([x; y℄); x; y 2 g:

De�ne � 2 Lin(z; a) by � :=

P

n

j=1

�

j

� a

j

and � 2 Lin(g; a) by � :=

P

n

j=1

�

j

� a

j

. Then

(� Æ ! � ')(x; y) = �([x; y℄); x; y 2 g;

whih means that �

a

(�) = [� Æ !℄ = ['℄: Therefore Æ

a

is surjetive, hene bijetive.

(iii) If

b

g is universal for a 6= 0 , then g is topologially perfet and weakly a-universal by Lemma

I.11(i),(iii).

If, onversely, D(g) = g , then for eah spae a , viewed as an abelian Lie algebra, (i) implies

that eah Lie algebra homomorphism ':

b

g ! a vanishes on z � D(

b

g), hene fators through g .

This implies that ' = 0 beause g is topologially perfet. In view of Remark I.10(a), this

ompletes the proof.

Lemma I.13. Let q

j

:

b

g

j

! g be two linearly split entral extensions and z

j

:= ker q

j

. If

b

g

1

and

b

g

2

are weakly universal for both spaes z

1

and z

2

, then the entral extensions

b

g

1

and

b

g

2

of

g are isomorphi.

Proof. Let !

j

2 Z

2



(g; z

j

) be oyles with

b

g

j

�

=

g

j

�

!

j

z

j

. We de�ne ' := Æ

�1

z

2

([!

2

℄) 2

Lin(z

1

; z

2

) and  := Æ

�1

z

1

([!

1

℄) 2 Lin(z

2

; z

1

). Then

Æ

z

1

( Æ ') = [ Æ ' Æ !

1

℄ =  Æ [' Æ !

1

℄ =  Æ [!

2

℄ = [ Æ !

2

℄ = [!

1

℄ = Æ

z

1

(id

z

1

)

implies that  Æ ' = id

z

1

, and similarly we get ' Æ  = id

z

2

. Therefore ' is an isomorphism,

and eah extension to a morphism of entral extensions e':

b

g

1

!

b

g

2

, whose existene follows from

Remark I.10, is a topologial isomorphism of entral extensions.

Corollary I.14. The following onditions determine a linearly split entral extension q:

b

g! g

up to isomorphism:

(i) g and

b

g are Fr�ehet{, resp., Banah{Lie algebras and

b

g is weakly universal for all Fr�ehet,

resp., Banah spaes.

(ii)

b

g is weakly K -universal and ker q is �nite-dimensional.

Proof. (i) If we have two entral extensions with these properties, then Lemma I.13 implies

that both are isomorphi.

(ii) First we reall that the weak universality for K implies that

b

g is also weakly universal for all

�nite-dimensional spaes. Therefore the isomorphy of two weakly K -universal entral extensions

with �nite-dimensional kernels follows from Lemma I.13.

The proof of the following theorem grew out of a disussion with F. Wagemann. Its main

idea an also be found in [Ro95℄.

Theorem I.15. If H

2



(g;K ) is �nite-dimensional, then g has a weakly K -universal entral

extension q:

b

g ! g with �nite-dimensional kernel whih is unique up to isomorphism of entral

extensions.
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Proof. Let !

1

; : : : ; !

r

2 Z

2



(g;K ) be suh that [!

j

℄ , j = 1; : : : ; r , is a basis of the �nite-

dimensional spae H

2



(g;K ). We de�ne z := K

r

. By !(x; y) := (!

j

(x; y))

j=1;:::;r

, we obtain a

z-valued ontinuous 2-oyle on g . Let q:

b

g := g �

!

z ! g denote the orresponding entral

extension.

If e

�

j

, j = 1; : : : ; n , denotes the dual basis of z

�

, then Æ

K

(e

�

j

) = [e

�

j

Æ !℄ = [!

j

℄ implies that

the map

Æ

K

: z

�

�

=

Lin(z;K ) ! H

2



(g;K )

is a linear isomorphism, hene that q:

b

g! g is weakly K -universal.

The uniqueness up to isomorphism follows from Corollary I.14(ii).

Problem I.1. (a) Suppose that

b

g is loally onvex and that Æ

K

is surjetive. Does this imply

that Æ

a

is surjetive for all loally onvex spaes a?

(b) Does dimH

2



(g;K ) <1 imply that D(g) has �nite-odimension? One has a natural injetion

�:Alt

2

(ab(g);K )

�

=

H

2



(ab(g);K ) ,! Z

2



(g;K ):

If �(') is a oboundary d� , then � vanishes on [g; [g; g℄℄ , but this does not redue the problem

to two-step nilpotent Lie algebras beause the image of � might onsist of oboundaries if g is a

generalized Heisenberg algebra of the type �

2

(V )�V with braket [(x; v); (x

0

; v

0

)℄ = (v^v

0

; 0).

II. Universal entral extensions of Lie algebras

In this setion we will study onstrutions of universal entral extensions based on homology

of topologial Lie algebras. To put this into an appropriate topologial framework, we will

assume that all Lie algebras and topologial vetor spaes are loally onvex. The main point is

that the tensor produt of two loally onvex spaes has a natural topology whih behaves well

with respet to universal properties. Later we will anyway restrit our attention to Fr�ehet{Lie

algebras to disuss onditions for the existene of a entral extension whih is weakly universal

for all omplete loally onvex spaes. The main result of this setion are the Existene Theorem

II.11 and its onsequenes.

De�nition II.1. Let E , F and G be loally onvex spaes over K 2 fR; C g . Then the

projetive topology on the tensor produt E 
 F is de�ned by the seminorms

(p
 q)(x) = inf

n

n

X

j=1

p(y

j

)q(z

j

):x =

X

j

y

j


 z

j

o

;

where p , resp., q is a ontinuous seminorm on E , resp., F (f. [Tr67, Prop. 43.4℄). We write

E


�

F for the loally onvex spae obtained by endowing E
F with the loally onvex topology

de�ned by this family of seminorms. It is alled the projetive tensor produt of E and F . It

has the universal property that the ontinuous bilinear maps E � F ! G are in one-to-one

orrespondene with the ontinuous linear maps E 


�

F ! G (here we need that G is loally

onvex). We write E

b




�

F for the ompletion of the projetive tensor produt of E and F .

If E and F are Fr�ehet spaes, then every element of the ompletion E

b




�

F an be written

as

� =

1

X

n=1

�

n

x

n


 y

n

;

where � 2 `

1

(N;K ) and lim

n!1

x

n

= lim

n!1

y

n

= 0 ([Tr67, Th. 45.1℄). If, in addition, E

and F are Banah spaes, then the tensor produt of the two norms is a norm on E 
 F and

E

b


F also is a Banah spae. For k�k < 1 we then obtain a representation with k�k

1

< 1 and

kx

n

k; ky

n

k < 1 for all n 2 N ([Tr67, p.465℄).
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We identify �

2

(E) with the quotient spae of E


�

E modulo the losed subspae generated

by all elements of the type x 
 x . We thus obtain a loally onvex topology on �

2

(E). Let

�

2



(E) denote its ompletion. Then we have a ontinuous bilinear map

^:E �E ! �

2



(E); (x; y) 7! x ^ y

with the universal property that every ontinuous bilinear map ':E�F ! G to a loally onvex

spae G an be written as ' = '

0

Æ ^ for a unique ontinuous linear map '

0

2 Lin(E 
 F;G).

Remark II.2. Let E be a metrizable topologial vetor spae and N � E a losed subspae.

We write

b

E for the ompletion of E and

b

N for the losure of N in

b

E , whih is isomorphi to

the ompletion of N . Then we have a natural map E=N !

b

E=

b

N with a dense range, where the

spae on the right hand side is omplete. Hene

b

E=

b

N is anonially isomorphi to the ompletion

of E=N (f. [Tr67, Ex. 8.6℄).

(b) Let ':E ! F be a ontinuous linear map between metrizable topologial vetor spaes

and b':

b

E !

b

F the anonial extension to the ompletions whih are F -spaes. Suppose that

b' is surjetive. Then the Open Mapping Theorem implies that b' is an open map, so that

b

F

�

=

b

E= ker b' . In general the subspae ker' is not dense in ker b' . A typial example arises as

F =

b

E=K x for x 2

b

E nE and '(y) = y + Kx . Then ker' = 0 and ker b' = Kx .

De�nition II.3. Let g be a omplete topologial Lie algebra whih is a loally onvex spae.

The Lie braket yields a ontinuous linear map b: �

2



(g)! g: Let

Z



2

(g) := ker b � �

2



(g) and H



2

(g) := Z



2

(g)=B



2

(g);

where B



2

(g) � Z



2

(g) denotes the losure of the subspae B

2

(g) spanned by all elements of the

type

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄

(f. [Fu86℄). We de�ne

H



2

(g) := Z



2

(g)=B



2

(g):

As a quotient of a loally onvex spae, this homology spae inherits a natural struture as a

loally onvex spae, but there is no a priori reason for it to be omplete

1

.

Lemma II.4. Let wov(g) := �

2



(g)=B



2

(g) and write x := x + B



2

(g) , x 2 �

2



(g) , for the

elements of wov(g) . Then the ontinuous bilinear map

�

2



(g)� �

2



(g)! �

2



(g); (x; y) 7! b(x) ^ b(y)

indues on the quotient spae wov(g) a Lie braket with the following properties:

(i) The natural map b:wov(g)! g; x 7! b(x) is a homomorphism of Lie algebras.

(ii) H



2

(g) = Z



2

(g)=B



2

(g) = ker b is entral in wov(g) .

(iii) For every omplete loally onvex spae z we have Lin(wov(g); z)

�

=

Z

2



(g; z) , the spae of

ontinuous z-valued 2-oyles. In partiular wov(g)

0

�

=

Z

2



(g;K ) .

(iv) The natural ation of g on �

2



(g) indues an ation of g on wov(g) by derivations.

(v) The map wov(g)o g! g; (x; y) 7! b(x) + y is a homomorphism of Lie algebras.

Proof. That the braket is well de�ned follows from B



2

(g) � Z



2

(g) = ker b . It is learly

skew-symmetri, so that it remains to verify the Jaobi identity. For x; y; z 2 �

2



(g) we have

�

x; [y; z℄

�

= [x; b(y) ^ b(z)℄ = b(x) ^ b

�

b(y) ^ b(z)

�

= b(x) ^ [b(y); b(z)℄:

1

In x31.6 of K�othe's book [K�o69℄ one �nds an example of a omplete loally onvex spae X and a losed

subspae Y�X for whih the quotient spae X=Y is not omplete. This does not happen if X is metrizable and

omplete, i.e., an F -spae. Then all quotients of X by losed subspaes are omplete.
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Summing over all yli permutations, the de�nition of B



2

(g) implies that the Jaobi identity

holds in wov(g).

(i) That the map b:wov(g)! g is a homomorphism of Lie algebras follows from

b([x; y℄) = b

�

b(x) ^ b(y)

�

= [b(x); b(y)℄ = [b(x); b(y)℄:

(ii) If b(x) = 0, then [x; y℄ = b(x) ^ b(y) = 0 for all y 2 wov(g) implies that x 2 z(wov(g)).

(iii) This is an immediate onsequene of the de�nitions. The spae Lin(�

2



(g); z) orresponds to

the spae of ontinuous skew-symmetri bilinear maps g� g! z , and the annihilator of B



2

(g),

whih an be identi�ed with Lin(wov(g); z), is the subspae of 2-oyles.

(iv) Sine the ation of g on �

2

(g) is an ation by ontinuous linear maps preserving the

subspae B

2

(g), we obtain an ation of g on the ompletion �

2



(g) preserving the subspae

B



2

(g). Therefore we also obtain a natural ation on wov(g). To see that eah x 2 g ats on

wov(g) by a derivation, we �rst observe that the homomorphism b:wov(g)! g is g-equivariant,

whih follows from

b(x:y ^ z) = b([x; y℄ ^ z + y ^ [x; z℄) = b([x; y℄ ^ z + y ^ [x; z℄)

= [[x; y℄; z℄ + [y; [x; z℄℄ = [x; [y; z℄℄ = [x; b(y ^ z)℄

for y; z 2 g . Now we obtain

x:[y; z℄ = x:b(y) ^ b(z) = [x; b(y)℄ ^ b(z) + b(y) ^ [x; b(z)℄

= b(x:y) ^ b(z) + b(y) ^ b(x:z) = [x:y; z℄ + [y; x:z℄:

(v) This follows from

q([(x; y); (x

0

; y

0

)℄) = q([x; x

0

℄ + y:x

0

� y

0

:x; [y; y

0

℄) = b([x; x

0

℄) + b(y:x

0

)� b(y

0

:x) + [y; y

0

℄

= [b(x); b(x

0

)℄ + [y; b(x

0

)℄� [y

0

; b(x)℄ + [y; y

0

℄ = [b(x) + y; b(x

0

) + y

0

℄:

Proposition II.5. If g is a omplete loally onvex Lie algebra, then the map : g�g! x ^ y

is a wov(g)-valued 2-oyle and the orresponding entral extension q:

b

g := g�



wov(g) ! g

has the following properties:

(a) For every entral extension g �

!

z there exists a homomorphism ':

b

g ! g �

!

z with

' j

wov(g)

= ! , viewed as an element of Lin(wov(g); z) .

(b) D(

b

g) \wov(g) = H



2

(g) .

Proof. That  is a oyle follows diretly from the fat that

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄ 2 B



2

(g)

for x; y; z 2 g .

(a) We simply de�ne '(x; z) := (x; !(z)) and obtain

'([(x; z); (x

0

; z

0

)℄) = '([x; x

0

℄; x ^ x

0

) = ([x; x

0

℄; !(x ^ x

0

))

= ([x; x

0

℄; !(x; x

0

)) = ['(x; z); '(x

0

; z

0

)℄:

(b) The brakets in

b

g are all of the form (b(x); x) = (b(x); x), x 2 �

2



(g), and, onversely, all

these elements are ontained in D(

b

g). It follows in partiular that f0g �H



2

(g) � D(

b

g). Sine

the map b:wov(g) ! g is ontinuous, its graph is losed, hene ontains D(

b

g). Therefore

D(

b

g) \ (f0g �wov(g)) � f0g � ker b = f0g �H



2

(g).



11 unien.tex May 15, 2001

De�nition II.6. In the following we will always identify the spae Z

2



(g; z) of ontinuous

z-valued 2-oyles on g with the spae Lin(wov(g); z). Then B

2



(g; z) = im b

�

, where b

�

is the

pull bak map Lin(g; z)! Z

2



(g; z)

�

=

Lin(wov(g); z). On the other hand H



2

(g)

�

=

ker b , so that

the restrition map Z

2



(g; z)! Lin(H



2

(g); z) fators through a map

�

z

:H

2



(g; z)! Lin(H



2

(g); z):

On an show that the Lie algebra g = B

2

(H) of Hilbert-Shmidt operators on an in�nite-

dimensional Hilbert spae satis�es H



2

(g) = 0 and H

2



(g;K ) 6= 0 (f. [Ne01a℄). This means in

partiular that the map �

K

is in general not injetive.

In the following we all a losed subspae E of a topologial vetor spae X projetable

if there exists a ontinuous projetion p:X ! X with p(X) = E . If X is an F -spae, i.e.,

omplete and metrizable, then the Open Mapping Theorem implies that a losed subspae E � X

is projetable if and only if it is omplemented in the sense that it has a losed vetor spae

omplement.

Lemma II.7. (a) If z is �nite-dimensional or the subspae H



2

(g) � wov(g) is projetable,

then �

z

:H

2



(g; z)! Lin(H



2

(g); z) is surjetive. In partiular �

K

:H

2



(g;K ) ! H

2



(g)

0

is surjetive.

(b) If H

2



(g;K ) is �nite-dimensional, then H



2

(g) is �nite-dimensional.

() If H

2



(g;K ) = 0 , then H



2

(g) = 0 .

Proof. (a) If z is �nite-dimensional, then every ontinuous linear map �:H



2

(g)! z extends

to a ontinuous linear map e�:wov(g) ! z by the Hahn{Banah Theorem. Hene � = �

z

([e�℄) ,

if we onsider e� as an element of Z

2



(g; z).

If H



2

(g) is the range of a ontinuous projetion p on wov(g), then ' Æ p is an extension

of a linear map ':H



2

(g) ! z to wov(g). Therefore �

z

is surjetive for eah topologial vetor

spae z .

(b) If the loally onvex spae H



2

(g) is in�nite-dimensional, then its dual spae H



2

(g)

0

is also

in�nite-dimensional, so that (a) implies that H

2



(g;K ) is in�nite-dimensional.

() follows diretly from (a) beause H



2

(g)

0

separates the points of H



2

(g).

Lemma II.8. Suppose that g is a Fr�ehet{Lie algebra for whih b has losed range.

(i) If for the loally onvex spae z eah ontinuous linear map D(g)! z extends to a ontinuous

linear map g! z , then

�

z

:H

2



(g; z)! Lin(H



2

(g); z)

is injetive. A oyle ! 2 Z

2



(g; z) is a oboundary if and only if for eah � 2 z

0

the oyle

� Æ ! is a oboundary.

(ii) If z is �nite-dimensional, then �

z

is bijetive.

(iii) If H



2

(g) � wov(g) and D(g) � g are projetable, then for eah omplete loally onvex

spae z the map �

z

is bijetive.

(iv) Let ! 2 Z

2



(g; z) and q:

b

g := g �

!

z ! g be the orresponding entral extension. Then the

following assertions hold:

(a) D(

b

g) + z = D(g)� z and q(D(

b

g)) = D(g) .

(b) D(

b

g) \ z = im �

z

(!):

() If D(

b

g)\ z = 0 and either D(g) is projetable or z is �nite-dimensional, then [!℄ = 0 .

(d) For � 2 z

0

we have [� Æ !℄ = 0 if and only if � vanishes on z \D(

b

g) .

Proof. (i) The assumption that b has losed range means that its range is D(g). Now we

apply the Open Mapping Theorem to the indued map b:wov(g)! D(g) whih is a ontinuous

surjetion between Fr�ehet spaes, hene a quotient map. For �

z

(f) = 0 we onlude that

f 2 Lin(wov(g); z)

�

=

Z

2



(g; z) fators through a ontinuous linear map f :D(g) ! z with

f Æ b = f , whih means that f is a oboundary. Therefore �

z

is injetive.

In partiular, a oyle ! 2 Z

2



(g; z) is a oboundary if and only if H



2

(g) � ker! . The

ontinuous linear funtionals on the loally onvex z separate points, so that �

z

([!℄) = 0 is

equivalent to the ondition that for eah � 2 z

0

the oyle � Æ ! vanishes on H



2

(g) whih in

turns means that it is a oboundary.
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(ii) If z is �nite-dimensional, then Lemma II.7(a) implies that �

z

is surjetive. Moreover, the

Hahn{Banah Extension Theorem implies that eah ontinuous linear map D(g)! z extends to

a ontinuous linear map g! z , so that (i) entails that �

z

is also injetive.

(iii) In view of Lemma II.7(a), the projetability of H



2

(g) implies that �

z

is surjetive. Moreover,

in view of (i), the projetability of D(g) entails that �

z

is also injetive.

(iv)(a) The inlusion \�" is trivial. It remains to show that D(g) � 0 is ontained in the left

hand side. Let x 2 D(g) and pik a sequene x

n

2 [g; g℄ with x

n

! x . Sine b has losed range,

the indued map b: �

2



(g)! D(g) is a surjetive map between Fr�ehet spaes, hene open by the

Open Mapping Theorem ([Ru73, Cor. 2.12℄). Therefore there exists a sequene y

n

2 �

2



(g) with

y

n

! y and b(y

n

) = x

n

. Then

(x

n

; !(y

n

)) = (b(y

n

); !(y

n

))! (x; !(y)) 2 D(

b

g):

(b) We onsider the map

b

b := b� !: �

2



(g)!

b

g = g�

!

z:

For x; y 2 g we have

b

b(x; y) = (b(x; y); !(x; y)) = ([x; y℄; !(x; y)) = [(x; 0); (y; 0)℄;

whih shows that im

b

b = D(

b

g) beause g ^ g is dense in �

2



(g). Moreover, we have

(im

b

b) \ z = !(Z



2

(g)) = �

z

(!)(H



2

(g));

whih implies the inlusion \�".

Let (0; z) 2 D(

b

g) \ z and pik a sequene (x

n

; z

n

) 2 [

b

g;

b

g℄ with (x

n

; z

n

) ! (0; z). As in

(a), we �nd a sequene y

n

2 �

2



(g) with y

n

! 0 and b(y

n

) = x

n

. Then

(x

n

; z

n

)�

b

b(y

n

) = (0; z

n

� !(y

n

))! (0; z)

implies that z 2 im(�

z

(!)) beause (0; z

n

� !(y

n

)) 2 (im

b

b) \ z = im(�

z

(!)).

() In view of (b), our �rst assumption implies that �

z

(!) = 0. The seond assumption entails

that the restrition map Lin(g; z)! Lin(D(g); z) is surjetive, so that (a) implies [!℄ = 0.

(d) First (b) shows that � vanishes on z\D(

b

g) if and only if � Æ �

z

([!℄) = �

K

([� Æ!℄) = 0. Now

the assertion follows from the injetivity of �

K

proved in (ii).

If D(g) has �nite odimension in g , then D(g) is projetable, so that the map Lin(g; z)!

Lin(D(g); z) is surjetive, and the assumption in Lemma II.8(i) is satis�ed.

Corollary II.9. If g is a Fr�ehet{Lie algebra for whih b is surjetive, then for eah omplete

loally onvex topologial vetor spae z the map �

z

:H

2



(g; z) ! Lin(H



2

(g); z) is injetive. This

holds in partiular if g is perfet.

Proposition II.10. For a perfet Fr�ehet{Lie algebra g the following are equivalent:

(1) H

2



(g; z) = 0 for all omplete loally onvex spaes z .

(2) g is entrally losed, i.e., H

2



(g;K ) = 0 .

(3) H



2

(g) = 0 .

Proof. (1) ) (2) is trivial.

(2) ) (3) is Lemma II.7().

(3) ) (1): In view of Corollary II.9, for eah omplete loally onvex spae z the map

�

z

:H

2



(g; z)! Lin(H



2

(g); z) is injetive. Hene (3) implies that that H

2



(g; z) vanishes.

The following theorem is a entral result of this setion.



13 unien.tex May 15, 2001

Theorem II.11. (Existene Theorem) Let g be a Fr�ehet{Lie algebra for whih H



2

(g;K ) �

wov(g) is projetable, D(g) is projetable in g , and b has losed range. Then g has a entral

extension

z := H



2

(g) ,!

b

g := g�

!

z ! g

whih is weakly universal for eah omplete loally onvex spae.

Proof. Let z := H



2

(g). In view of Lemma II.8(iii), the map

�

z

:H

2



(g; z)! Lin(H



2

(g); z) = Lin(z; z)

is bijetive. Let ! 2 Z

2



(g; z) be a representative of �

�1

z

(id

z

). Then for eah omplete loally

onvex spae a the map

Æ

a

: Lin(z; a)! H

2



(g; a); � 7! [� Æ !℄

is a bijetion beause (�

a

Æ Æ

a

)(�) = � Æ ! j

H



2

(g)

= � , and �

a

is bijetive (Lemma II.8(iii)). This

implies in partiular that

b

g := g�

!

z is weakly a-universal, and the proof is omplete.

The following orollary is a stronger version of Theorem I.15 for a more restrited lass of

Lie algebras. Here the re�ned information on the struture of g permits us to draw stronger

onlusions.

Corollary II.12. Let g be a Fr�ehet{Lie algebra for whih b is surjetive and the subspae

H

2



(g;K ) of wov(g) is omplemented. Then b:wov(g)! g is a linearly split entral extension

whih is universal for eah omplete loally onvex spae a .

Proof. The surjetivity of b:wov(g) ! g entails D(g) = g . Therefore all assumptions

of Theorem II.11 are satis�ed. Sine z := H



2

(g) is omplemented, there exists a ontinuous

projetion p:wov(g) ! H



2

(g) and �: g ! wov(g); b(x) 7! x � p(x) is a ontinuous setion of

b . The orresponding oyle satis�es

!(b(x); b(y)) = [x� p(x); y � p(y)℄� ([x; y℄� p([x; y℄)) = p([x; y℄) = p(b(x) ^ b(y)):

This means that p is the element of Lin(wov(g); z) representing ! , and we have �

z

(!) = id

z

.

Hene the entral extension onstruted in the proof of Theorem I.11 is equivalent to wov(g).

This ompletes the proof.

Corollary II.13. Let g be a perfet Fr�ehet{Lie algebra for whih H

2



(g;K ) is �nite-dimen-

sional. Then b:wov(g)! g is a entral extension with kernel H



2

(g) whih is universal for eah

omplete loally onvex spae a .

Proof. Sine g is perfet, the map b:wov(g)! g is surjetive. Moreover, the H



2

(g) is �nite-

dimensional by Lemma II.7, hene projetable. Therefore all assumptions of Corollary II.12 are

satis�ed.

Examples II.14. (a) (Restrited Lie algebras) Let H be an in�nite-dimensional omplex

Hilbert spae and g := B

2

(H) the omplex Hilbert{Lie algebra of Hilbert{ Shmidt operators

on H . Let D 2 B(H) be a hermitian operator with �nite spetrum and z

B(H)

(D) its entralizer

in the Lie algebra B(H). Then g(D) := g + z

B(H)

(D) � B(H) is alled the restrited Lie

algebra assoiated to g and D . If H

1

; : : : ; H

k

are the eigenspaes of D , then the entralizer

z

B(H)

(D) of D is isomorphi to �

k

j=1

B(H

j

). Viewing operators on H as blok matries with

entries in B(H

j

; H

k

), the elements of g(D) are those matries whose o�-diagonal entries are

Hilbert{Shmidt. In [Ne01b, Prop. I.11℄ we have seen that the Lie algebras g(D) have a natural

Banah{Lie algebra struture and that

dimH

2



(g(D); C ) = jfj: dimH

j

=1gj � 1:

Moreover g(D) is perfet ([Ne01b, Prop. I.10℄), so that Corollary II.13 shows that g(D) has a

universal entral extension with enter z = H



2

(g(D)).
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Similar results hold for the Lie algebras g(D), where

g = fx 2 B

2

(H): Ix

�

I

�1

= �xg

for an antilinear isometry I with I

2

= �1 and ID = �DI .

(b) (Virasoro Lie algebra) Let g denote the Lie algebra of smooth vetor �elds on the irle

S

1

�

=

R=Z . Then g an be identi�ed with the Fr�ehet spae C

1

(S

1

;R) endowed with the Lie

braket

[f; g℄ = fg

0

� f

0

g:

Using the Fourier expansion of suh funtions, it is easily seen that g is perfet. Moreover,

dimH

2



(g;R) = 1, and a generating oyle is given by

!(f; g) :=

Z

S

1

f

0

g

00

� f

00

g

0

dt

([Ro95, p. 237℄). Corollary II.13 applies and shows that the orresponding entral extension vir ,

alled the Virasoro algebra, is universal for all omplete loally onvex spaes and isomorphi to

wov(g).

() Let k be a simple ompat Lie algebra and A a ommutative unital assoiative Fr�ehet

algebra. Then g := A


R

k has a natural struture of a Fr�ehet{Lie algebra with the braket

[f 
 x; g 
 y℄ := fg 
 [x; y℄:

From the perfetness of k and the existene of an identity in A it easily follows that g is perfet.

Let 


1

(A) denote the topologial version of the module of K�ahler di�erentials of A and

d

A

:A ! 


1

(A) the di�erential. Further let z := A=im d

A

and denote the elements of z by [�℄ ,

� 2 


1

(A). Then z

A

is a Fr�ehet spae. If � denote the Cartan{Killing form on k , then we

obtain a oyle ! 2 Z

2



(g; z) by the formula

!(f 
 x; g 
 y) := �(x; y)[fd

A

(g)℄:

It is shown in [Fe88, p. 61℄ (see also [Ma01℄) that dimH

2



(g;R) = 1 and that [!℄ is a generator of

the seond ohomology spae. That ! is non-trivial an easily be seen as follows. Let 0 6= x 2 k

and note that �(x; x) 6= 0. Then

!(f 
 x; g 
 x) = �(x; x)[fd

A

(g)℄ and [f 
 x; g 
 x℄ = 0

implies that ! is non-trivial. Again we are in a setting where Corollary II.13 applies.

For the speial ase A = C(X;K ) , X a ompat spae and K 2 fR; C g it is shown in

[Ma01℄ that 


1

(A) = 0 . The situation is di�erent for the Fr�ehet algebra A = C

1

(M) of smooth

funtions on a �nite-dimensional smooth manifold. Then 


1

(A) is the spae of smooth 1-forms

on M and d

A

:C

1

(M) ! 


1

(M) is the natural di�erential ([Ma01℄). Therefore im d

A

is the

spae of exat 1-forms. Sine this spae is ontained in the losed spae of losed 1-forms and

a losed 1-form is exat if and only if all its period integrals vanish, the range of d

A

is losed.

Therefore z

�

=




1

= im d

A

has a natural Fr�ehet spae struture and ontains H

1

dR

(M;R) as a

losed subspae.

The following proposition explains where to look for weakly universal entral extensions.

We will see in Setion III that it an in partiular be used to prove that in ertain ases weakly

universal entral extensions do not exist.

Proposition II.15. Let g be a Fr�ehet{Lie algebra, z a Fr�ehet spae, and

b

g = g�

!

z be a

entral extension of g by z whih is weakly universal for z and all quotients of wov(g) . Then

the following assertions hold:

(i) The oyle ! 2 Lin(wov(g); z) indues an isomorphism wov(g)= ker! ! z .

(ii)

b

g is a topologial overing.
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(iii)

b

g is weakly universal for all omplete loally onvex spaes a .

(iv) Identifying Lin(z; a) with the subspae of Z

2



(g; a)

�

=

Lin(wov(g); a) onsisting of all those

linear maps fatoring through z , we have for eah omplete loally onvex spae a the relation

Z

2



(g; a) = Lin(z; a)�B

2



(g; a):

Proof. (i) Let p:wov(g) !

e

z := wov(g)= ker! denote the quotient map and q

z

:

e

z ! z the

injetive map indued by ! . Then ! = q

z

Æ p Æ  , where  2 Z

2



(g;wov(g)) is the universal

oyle (x; y) := x ^ y (Proposition II.5). Sine

b

g is weakly universal for

e

z , there exists a linear

map  2 Lin(z;

e

z) with [ Æ !℄ = [p Æ ℄ . Now

Æ

z

(q

z

Æ ) = [q

z

Æ  Æ !℄ = [q

z

Æ p Æ ℄ = [!℄ = Æ

z

(id

z

)

implies that q

z

Æ  = id

z

beause

b

g is weakly z-universal. Moreover, we have q

z

Æ  Æ q

z

= q

z

, so

that q

z

Æ ( Æ q

z

� id

ez

) and the injetivity of q

z

entail  Æ q

z

= id

ez

. Therefore q

z

is a topologial

isomorphism.

(ii) If z = 0 this is trivial, and if z 6= 0 , it follows from Lemma I.11(ii).

(iii) Sine

b

g is a topologial overing, Proposition I.8 implies that for eah topologial vetor

spae a the map Æ

a

is injetive. To see that it is also surjetive if a is omplete and loally

onvex, let � 2 Z

2



(g; a)

�

=

Lin(wov(g); a), de�ne

e

a := wov(g)= ker � , and write q

a

:

e

a ! a for

the injetive ontinuous map indued by � . Further let p:wov(g)!

e

a denote the quotient map

and  2 Z

2



(g;wov(g)) the oyle from the proof of (i). Then q

a

Æ p Æ  = � . Sine

b

g is weakly

universal for

e

a , there exists an � 2 Lin(z;

e

a) with [� Æ !℄ = [p Æ ℄ . Now

Æ

a

(q

a

Æ �) = [q

a

Æ � Æ !℄ = [q

a

Æ p Æ ℄ = [�℄:

(iv) Identifying Lin(z; a) with a subspae of Z

2



(g; a)

�

=

Lin(wov(g); a), the oyle ! orre-

sponds, as a linear map wov(g)! z , to the quotient map p , and eah  2 Lin(z; a) is identi�ed

with  Æ p . Hene the map

Æ

a

: Lin(z; a)! H

2



(g; a); Æ

a

() = [ Æ p℄

orresponds to the restrition of the quotient map Z

2



(g; a)! H

2



(g; a) to the subspae Lin(z; a).

Sine Æ

a

is bijetive by (iii), the assertion follows.

In the remainder of this setion we give some more details on how the topologial struture

of g inuenes the extension theory. The main point of Proposition II.16 below is that is explains

how the ohomology spae H

2



(g; z) is built together from piees oming from the algebrai

struture of g whih is somehow enoded in the homology spae H



2

(g), and other piees whih

ome from topologial obstrutions to extend maps im(b)! z for whih the omposition with b

is ontinuous to ontinuous linear maps on g .

Proposition II.16. Let wov(g)

red

:= wov(g)=H



2

(g) with quotient map q:wov(g) !

wov(g)

red

. Then we have an injetive map b

red

:wov(g)

red

! D(g) with dense range and

b

red

Æ q = b . Moreover, for every omplete loally onvex spae z we have the following exat

sequene of maps:

Lin(ab(g); z) ,! Lin(g; z)

(b

red

)

�

���!Lin(wov(g)

red

; z)

Æ

z

��!H

2



(g; z)

�

z

��!Lin(H



2

(g); z);

where Æ

z

(') = [' Æ q℄ and we use the identi�ation Lin(wov(g); z)

�

=

Z

2



(g; z) .

Proof. Exatness in Lin(g; z) means that a ontinuous linear map ': g! z is the pull-bak of

a linear map ab(g)! z if and only if it vanishes on the range of b

red

. This follows immediately

from the density of the range of this map in D(g).

The exatness in Lin(wov(g)

red

; z) is the de�nition of the spae B

2



(g; z) of oboundaries.

The exatness in H

2



(g; z) follows from the fat that �

z

([!℄) = 0 if and only if ! , viewed as

an element of Lin(wov(g); z), vanishes on H



2

(g), but this in turn means that it fators through

a ontinuous linear map wov(g)

red

! z , whih means that it is ontained in the range of Æ

z

.
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Corollary II.17. If g is topologially perfet and H



2

(g) = 0 , then for eah omplete loally

onvex spae z we have

H

2



(g; z)

�

=

Lin(wov(g); z)=Lin(g; z):

Proof. In this ase the exat sequene in Proposition II.16 redues to a short exat sequene

Lin(g; z) ,! Lin(wov(g)

red

; z) = Lin(wov(g); z)!! H

2



(g; z):

Example II.18. (a) A typial example, where Corollary II.17 applies is the Lie algebra g =

B

2

(H) of Hilbert-Shmidt operators on an in�nite-dimensional K -Hilbert spae. If B

1

(H)

denotes the spae of trae lass operators on H , then we have H



2

(g) = 0 , wov(g)

�

=

sl(H) =

fx 2 B

1

(H): trx = 0g , and g is topologially perfet. Therefore the isomorphism g

�

=

g

0

obtained

from the trae form yields

H

2



(g;K )

�

=

wov(g)

0

=g

0

�

=

sl(H)

0

=g

�

=

pgl(H)=g;

where pgl(H) := B(H)=K1 (f. [Ne01a℄).

(b) Let g be an abelian loally onvex Lie algebra. Then Z



2

(g) = �

2



(g) and D(g) = 0 , so that

g trivially satis�es the assumption of Theorem II.11. On the other hand it follows diretly from

the de�nitions that

�

z

:H

2



(g; z)

�

=

Alt

2

(g; z)! Lin(H



2

(g); z)

�

=

Lin

�

�

2



(g); z

�

is a bijetion.

Remark II.19. (a) In the algebrai theory of Lie algebras, there are no problems arising from

non-splitting of ertain subspaes or non-extendability of linear maps. Therefore wov(g) :=

�

2

(g)=B

2

(g) is a entral extension of [g; g℄ , and the preeding arguments imply that for eah

vetor spae z the map

�

z

:H

2

(g; z)! Lin(H

2

(g); z)

is a linear isomorphism.

(b) For an in�nite-dimensional spae Z and a losed subspae B of the Fr�ehet spae A , the

restrition map Hom(A;Z)! Hom(B;Z) need not be surjetive. A simple example is given by

A = Z = 

0

(N;R) � B = `

1

(N;R). Then there is no ontinuous linear map ':B ! Z with

' j

A

= id

A

beause the kernel of suh a map would be a losed omplement of A , but suh a

omplement does not exist.

If, onversely, B has a losed omplement C , then the Open Mapping Theorem implies

that the addition map B�C ! A is a homeomorphism. Hene the restrition map Hom(A;Z)!

Hom(B;Z) is surjetive for every topologial vetor spae Z .

() One ould also desribe the range of � by extending the exat sequene from Proposition

II.16 further by a map

(2:1) Lin(H



2

(g); z)! Ext(wov(g)

red

; z);

where Ext(X;Y ) stands for the group of equivalene lasses of extensions of the topologial

vetor spae X by the topologial vetor spae Y . The map (2.1) an be desribed as follows.

Let E be a losed subspae of the topologial vetor spae F and G := F=E . Then we have a

map

: Lin(E; z)! Ext(G; z)

given by

b

F := (F � z)=f(x; '(x)):x 2 Eg; q:

b

F ! G; q([f; z℄) := f +E;

where ('): z ,!

b

F !! G stands for the orresponding exat sequene. Note that ' is ontinuous,

so that its graph is a losed subspae of F � z . It is easy to see that the subspae z �

b

F splits

topologially if and only if ' extends to a ontinuous linear map F ! z . In fat, a linear setion

�:G !

b

F an always be written as �(x + E) = [x; f(x)℄ , where f :F ! z is a linear map

extending ' . The image of � is a losed subspae of

b

F if and only if its inverse image, the graph

of f , is a losed subspae of F � z . In view of the Closed Graph Theorem (whih applies to

mappings between Fr�ehet spaes), this ondition is equivalent to f being ontinuous.
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III. The speial ase of Banah{Lie algebras

In this setion we briey disuss the speial ase of Banah{Lie algebras beause some of

the results, resp., assumptions from the preeding setion simplify for Banah{Lie algebras. This

is due to the fat that the rih theory of operators on Banah spaes sometimes an be used to

weaken the assumptions we had to make in Setion II.

If g is a Banah{Lie algebra, then �

2



(g) also is a Banah spae, so that wov(g) inherits

the struture of a Banah{Lie algebra.

Lemma III.1. If ':X ! Y is a ontinuous linear map between F -spaes and '(X) has �nite

odimension, then '(X) is losed.

Proof. This is proved as [HS71, Satz 25.4℄. We only need that the Open Mapping Theorem

also holds for F -spaes.

Lemma III.2. If ':E ! F is a ontinuous linear map between Banah spaes whose adjoint

'

0

:F

0

! E

0

has �nite-dimensional okernel, then '(E) is losed.

Proof. First we use Lemma III.1 to onlude that im('

0

) is losed, and then the Closed Range

Theorem ([Ru73, Th. 4.14℄) to see that this implies that '(E) is losed.

Lemma III.3. If g is a Banah{Lie algebra with dimH

2



(g;K ) <1 , then b has losed range.

Proof. We onsider the homomorphism b:wov(g)! g whih has the same range as b . Then

im(b

0

) = B

2



(g;K ) � Z

2



(g;K )

�

=

wov(g)

0

:

Therefore our assumption implies that b

0

has �nite-dimensional okernel, and hene that b has

losed range (Lemma III.2).

Lemma III.4. If H

2



(g;K ) = 0 and D(g) has �nite odimension, then H

2



(g; z) = 0 for all

omplete loally onvex spaes z .

Proof. First we use Lemma III.3 to see that the braket map b has losed range. The

assumption that D(g) has �nite odimension implies that the assumptions of Lemma II.8(i) are

satis�ed, so that for eah omplete loally onvex spae z the map �

z

:H

2



(g; z) ! Lin(H



2

(g); z)

is injetive. Sine H



2

(g) = 0 by Lemma II.7(), the spae H

2



(g; z) vanishes.

The following proposition is an extension of the results in Proposition II.10 for Banah{Lie

algebras.

Proposition III.5. For a Banah{Lie algebra g for whih D(g) has �nite odimension the

following are equivalent:

(1) H

2



(g; z) = 0 for all omplete loally onvex spaes z .

(2) g is entrally losed.

(3) H



2

(g) = 0 and im(b) is losed.

Proof. (1) ) (2) is trivial.

(2) ) (3) follows from Lemma II.7() and Lemma III.3.

(3) ) (1) As in the proof of Lemma III.4, the assumption that D(g) has �nite odimension

implies that the assumptions of Lemma II.8 are satis�ed, so that for eah omplete loally onvex

spae z the map �

z

:H

2



(g; z)! Lin(H



2

(g); z) = 0 is injetive, and therefore H

2



(g; z) vanishes.

Example III.6. (Full operator Lie algebras) Let

b

g := B(H) be the Banah{Lie algebra of

bounded operators on an in�nite-dimensional Hilbert spae H . Then

b

g is perfet and entrally

losed ([Ne01b, Lemma I.3,Prop. I.5℄). Therefore Proposition III.5 implies that H

2

(

b

g; a) = 0

for eah omplete loally onvex spae a . Now Lemma I.11(iv) shows that

b

g is a overing of

g := B(H)=C 1 whih is universal for all omplete loally onvex spaes.
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Lemma III.7. Let X be a Banah spae, Y � X a losed subspae and Z a Banah spae

for whih there exists a ontinuous injetive map j:Z ! X with X = j(X)� Z . Then j(X) is

losed and j is an embedding.

Proof. The map Y � Z ! X; (y; z) 7! y + j(z) is a ontinuous bijetion of Banah spaes,

hene an isomorphism by the Open Mapping Theorem. It follows in partiular that j(X) is

losed and that j is an embedding.

The following theorem shows that for topologially perfet Banah{Lie algebras the ondi-

tion in the Existene Theorem II.11 is neessary for the existene of a weakly universal entral

extension.

Theorem III.8. Let g be a topologially perfet Banah{Lie algebra and

b

g = g�

!

z a entral

extension whih is weakly universal for all Banah spaes. Then the entral extension

b

g ! g is

equivalent to the one given by the braket map b:wov(g) ! g whih is surjetive. Moreover,

H



2

(g) is omplemented in wov(g) .

Proof. We know from Proposition II.15 that z is a quotient of wov(g). Let q

z

:wov(g)! z

denote the quotient map. Then Proposition II.15 also implies that

wov(g)

0

�

=

Z

2



(g;K ) = im(q

0

z

)�B

2



(g;K );

where im(q

0

z

) is losed. Therefore Lemma III.7 implies that B

2



(g;K ) is a losed subspae of

the Banah spae wov(g)

0

. This means that the range of the adjoint of the braket map

b:wov(g) ! g has losed range, so that the Closed Range Theorem ([Ru73, Th. 4.14℄) shows

that im(b) is losed. Sine im(b) is dense beause of D(g) = g , it follows that b is surjetive,

and hene that b is surjetive.

Lemma II.7 and Corollary II.9 imply that the map �

K

:H

2



(g;K ) ! H



2

(g)

0

is bijetive.

Identifying H

2



(g;K ) via Æ

a

with z

0

� wov(g)

0

, it follows that the adjoint map of q

z

j

H



2

(g)

is a

bijetive ontinuous map

(q

z

j

H



2

(g)

)

0

: z

0

,! H



2

(g)

0

:

We onlude that q

z

maps H



2

(g) injetively onto a dense subspae of z , and Lemma III.2 further

implies that it is losed, hene that q

z

j

H



2

(g)

is an isomorphism of Banah spaes. It follows in

partiular that ker q

z

is a losed omplement of H



2

(g) in wov(g). Now Theorem II.11 and the

uniqueness assertion from Corollary I.14 imply that

b

g

�

=

wov(g).

Example III.9. We reall the setting of Example II.18(a). Here g = B

2

(H) is the Hilbert{Lie

algebra of Hilbert-Shmidt operators on an in�nite-dimensional Hilbert spae and wov(g)

�

=

sl(H), where the natural map b:wov(g) ! g is the inlusion map sl(H) ! B

2

(H). Sine the

range of this map is dense and not losed, and g is topologially perfet, Theorem III.8 implies

that g has no entral extension whih is weakly universal for all Banah spaes.

IV. Weakly universal entral extensions of Lie groups

In the following we will use the onept of an in�nite-dimensional Lie group modeled over a

sequentially omplete loally onvex spae ([Mil83℄). In this ontext entral extensions of Lie

groups are always assumed to have a smooth loal setion, i.e., they are loally trivial smooth

prinipal bundles. Let Z ,!

b

G !! G be a entral extension of the onneted Lie group G by

the abelian group Z whih is regular in the sense that its identity omponent Z

e

is isomorphi

to z=�

1

(Z), where z is the Lie algebra of Z . This means that the additive group of z an be

identi�ed in a natural way with the universal overing group of Z

e

, and that Z

e

is a quotient

of the sequentially omplete loally onvex spae z modulo a disrete subgroup whih an then

be identi�ed with �

1

(Z). Sine the quotient map q:

b

G ! G has a smooth loal setion, the

orresponding Lie algebra homomorphism

b

g ! g has a ontinuous linear setion, hene is

isomorphi to g�

!

z for some ! 2 Z

2



(g; z) (Remark I.2).
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From [Ne00, Def. IV.10℄ we reall the period homomorphism per

!

:�

2

(G) ! z of ! whih

on smooth representatives :S

2

! G of elements of �

2

(G) is given by per

!

([℄) =

R

S

2



�


,

where 
 is the z-valued left invariant 2-form on G with 


e

= ! ([Ne00, Th. IV.12℄). If we

have a entral Lie group extension q:

b

G ! G as above, then the period map an be interpreted

topologially as the onneting map �

2

(G)! �

1

(Z) in the exat homotopy sequene

�

2

(Z) = 1! �

2

(

b

G) ,! �

2

(G)! �

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z)!! �

0

(

b

G)! �

0

(G) = 1

of the Z -prinipal bundle

b

G ([Ne00, Prop. VII.7℄).

We reall from [Ne00, Prop. IV.2℄ that entral Lie group extensions as above an always

be written as

b

G

�

=

G�

f

Z;

where f 2 Z

2

s

(G;Z), the set of group oyles f :G�G! Z whih are smooth in a neighborhood

of (e; e), where e 2 G is the identity element. Two suh oyles f

1

, f

2

de�ne equivalent

extensions if and only if their di�erene f

1

f

�1

2

is of the form h(gg

0

)h(g)

�1

h(g

0

)

�1

, where

h:G ! Z is smooth in an identity neighborhood. The abelian group of all these funtions

is alled B

2

s

(G;Z), and the quotient group H

2

s

(G;Z) := Z

2

s

(G;Z)=B

2

s

(G;Z) now parameterizes

the equivalene lasses of entral Z -extensions of G with smooth loal setions ([Ne00, Remark

IV.4℄).

The abelian Lie groups A ourring below will always be assumed to be regular, i.e.,

A

e

�

=

a=�

1

(A).

In this setion we �rst derive an exat sequene for entral Lie group extensions orre-

sponding to the one obtained in Setion I for topologial Lie algebras. Then we haraterize

those entral extensions whih are weakly universal for all disrete groups A . The entral result

of this setion is the Reognition Theorem IV.13, whih gives a suÆient riterion for a entral

extension to be weakly universal for all regular Fr�ehet{Lie groups.

General properties of entral group extensions

Remark IV.1. (a) If q:

b

G ! G and q

1

:

b

G

1

! G are entral Lie group extensions, then a

morphism of entral extensions is a smooth homomorphism ':

b

G !

b

G

1

with q

1

Æ ' = q . We

thus obtain a ategory of entral G-extensions. In partiular it is lear what an isomorphism of

entral G-extensions is.

For

b

G = G �

f

Z and

b

G

1

= G �

h

A a morphism of entral G-extensions ':

b

G !

b

G

1

has

the form

e(g; z) = (g; �(g)(z)); �:G! A;  2 Hom(Z;A);

where � is smooth in a neighborhood of the identity, and the ondition that e is a group

homomorphism means that

�(g)�(g

0

)h(g; g

0

) = �(gg

0

)(f(g; g

0

)); g; g

0

2 G:

It follows in partiular that for a given  2 Hom(Z;A) an extension to a morphism of entral

G-extensions exists if and only if [ Æ f ℄ = [h℄ in H

2

s

(G;A).

(b) If Z = Z

1

� Z

2

is a diret produt, then it is easy to see that we aordingly have a

deomposition

H

2

s

(G;Z)

�

=

H

2

s

(G;Z

1

)�H

2

s

(G;Z

2

):

If

b

G = G�

f

Z with f 2 Z

2

s

(G;Z), then we write

Z

2

s

(

b

G;Z;A) := ff 2 Z

2

s

(

b

G;A): (8x 2

b

G)(8z 2 Z) f(x; z) = f(z; x)g:

Then B

2

s

(

b

G;A) � Z

2

s

(

b

G;Z;A), and we de�ne

H

2

s

(

b

G;Z;A) := Z

2

s

(

b

G;Z;A)=B

2

s

(

b

G;A):

The following theorem provides a version of the exat sequene that we have seen in

Theorem I.4 for groups. For the sake of ompleteness we inlude the proof whih is a signi�ant

simpli�ation of the one ontained in [Ne00℄.
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Theorem IV.2. Let q:

b

G

�

=

G�

f

Z ! G be a entral Lie group extension with f 2 Z

2

s

(G;Z) .

Then we have for eah abelian Lie group A an exat sequene

1! Hom(G;A)

q

�

��!Hom(

b

G;A)

res

��!Hom(Z;A)

Æ

A

��!H

2

s

(G;A)

q

�

��!H

2

s

(

b

G;Z;A)! Ext

ab

(Z;A);

where Æ

A

() = [ Æ f ℄ and Ext

ab

(Z;A) denotes the group of equivalene lasses of abelian Lie

group extensions of Z by A .

Proof. The exatness in Hom(G;A) and Hom(

b

G;A) is trivial beause the fat that q:

b

G! G

is a smooth prinipal bundle implies that a Lie group morphism

b

G! A fators through q if and

only if its kernel ontains Z .

Exatness in Hom(Z;A): Let  2 Hom(Z;A). Every extension to a loally smooth map

e:

b

G ! A with e(gz) = e(g)(z) for z 2 Z has the form e(g; z) = �(g)(z) with a loally

smooth map �:G! Z . Suh an extension is a Lie group homomorphism if and only if

�(g)�(g

0

) = �(gg

0

)(f(g; g

0

)); g; g

0

2 G:

The existene of � with this property is equivalent to the triviality of the oyle Æf 2 Z

2

s

(G;A).

This proves the exatness in Hom(Z;A).

Exatness in H

2

s

(G;A): First we show that im Æ

A

� ker q

�

. So let  2 Hom(Z;A) and

onsider e:

b

G! A; (x; z) 7! (z). Then

e((g; z)(g

0

; z

0

)) = (f(g; g

0

))(zz

0

) = (f(g; g

0

))e(g; z)e(g

0

; z

0

);

whih implies that q

�

( Æ f) is a oboundary. This means that im Æ

A

� ker q

�

.

To see that ker q

�

� im(Æ

A

), let ' 2 Z

2



(G;A) be a oyle for whih q

�

' is a oboundary.

Then there exists a loally smooth map e:

b

G! Z with

(4:1) e((g; z)(g

0

; z

0

)) = '(g; g

0

)e(g; z)e(g

0

; z

0

); g; g

0

2 G; z; z

0

2 Z:

Then (z) := e(e; z) de�nes a Lie group homomorphism Z ! A , and we obtain

e(g; z

0

) = e(g; e)(z

0

); g 2 G; z

0

2 Z:

Therefore (4.1) leads to

'(g; g

0

) = e(gg

0

; e)(f(g; g

0

))e(g; e)

�1

e(g

0

; e)

�1

;

and this implies that ['℄ = Æ

A

().

Exatness in H

2

s

(

b

G;Z;A): For eah ' 2 Z

2

s

(G;A) the pull-bak to

b

G vanishes on Z �Z ,

hene de�nes a trivial entral extension of Z by A .

Suppose, onversely, that ' 2 Z

2

s

(

b

G;Z;A) suh that ' j

Z�Z

is a oboundary. Then

the entral extension

b

G �

'

A splits over Z , so that there exists a smooth homomorphism

�

Z

:Z !

b

G �

'

A with �

Z

(z) = (z; (z)), :Z ! A a loally smooth map. We de�ne a

loally smooth setion

�:

b

G!

b

G�

'

A; (g; z) 7! ((g; z); (z)) = (g; e)�

Z

(z):

The orresponding oyle e' is equivalent to ' and by de�nition given by

e'(bg; bg

0

) = �(bg)�(bg

0

)�(bgbg

0

)

�1

:

Hene

e'((g; z); (g

0

; z

0

)) = (g; e)�

Z

(z)(g

0

; e)�

Z

(z

0

)(gg

0

; e)

�1

�

Z

(zz

0

)

�1

�

Z

(f(g; g

0

))

�1

= (g; e)(g

0

; e)(gg

0

; e)

�1

�

Z

(f(g; g

0

))

�1

is independent of z and z

0

, and this implies that ['℄ = [e'℄ 2 im q

�

.
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Universal and weakly universal entral extensions

De�nition IV.3. We all a entral extension

b

G = G�

f

Z of the onneted Lie group G by

the abelian group Z weakly universal for the abelian Lie group A if the map

Æ

A

: Hom(Z;A)! H

2

s

(G;A);  7! [ Æ f ℄

is bijetive.

It is alled universal for the abelian group A if for every entral extension q

1

:G�

'

A! G

there exists a unique Lie group homomorphism ':G�

f

Z ! G�

'

A with q

1

Æ ' = q .

Remark IV.4. (a) In view of the exat sequene in Theorem IV.2, the entral extension G�

f

Z

is A-universal if and only if the homomorphisms

Res: Hom(

b

G;A)! Hom(Z;A) and q

�

:H

2

s

(G;A)! H

2

s

(

b

G;Z;A)

vanish.

(b) That q

�

vanishes means that the pull-bak of every entral extension of G by A to

b

G is

trivial. Let A ,!

b

G

1

q

1

��!G be suh a entral extension and

H := q

�

1

b

G

1

:= f(x; y) 2

b

G�

b

G

1

: q(x) = q

1

(y)g

the pull-bak of the extension G

1

to an A-extension of

b

G . This entral extension is trivial if

and only if there exists a smooth homomorphism �:

b

G! H with p

b

G

Æ� = id

b

G

. This means that

�(g) = (g; f(g)); g 2

b

G;

where f :

b

G!

b

G

1

is a homomorphism with q

1

Æ f = q . Thus the vanishing of q

�

is equivalent to

the existene of homomorphisms f :

b

G!

b

G

1

with q

1

Æ f = q .

That, in addition, Res: Hom(

b

G;A) ! Hom(Z;A) is trivial means that the restrition

' j

Z

:Z ! A of ' 2 Hom(

b

G;A) uniquely determines the homomorphism ' .

() That the homomorphisms ':

b

G!

b

G

1

with q

1

Æ' = q are unique is equivalent to the stronger

ondition that Hom(

b

G;A) = 1 .

Lemma IV.5. (a) A-universal entral extensions are weakly A-universal.

(b) If q:

b

G! G is a weakly A-universal entral extension, dimA > 0 , and

b

G is simply onneted,

then it is A-universal if and only if the Lie algebra

b

g is topologially perfet.

Proof. (a) The disussion in Remark IV.4 shows that the requirements for A-universality

are that the homomorphism q

�

and the group Hom(

b

G;A) are trivial. This is weaker than the

triviality of q

�

and of the restrition map Hom(

b

G;A)! Hom(Z;A).

(b) Sine

b

G is simply onneted, the triviality of Hom(

b

G;A) is equivalent to Hom(

b

g; a) = 0

(f. [Mil83, Th. 8.1℄, [Ne00, Cor. III.20℄) whih in turn is equivalent to Hom(

b

g;K ) = 0 beause

dim a > 0 entails Hom(K ; a) 6= 0 . Moreover, Hom(

b

g;K ) = 0 means that D(

b

g) =

b

g , i.e., that

b

g

is topologially perfet.

We start our investigation of weak universality for ertain lasses of groups with the simplest

ase, the disrete abelian groups.
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Lemma IV.6. For the onneted entral extension q:

b

G = G �

f

Z ! G the following are

equivalent:

(1)

b

G is weakly universal for all disrete abelian groups A .

(2) The onneting homomorphism �:�

1

(G)! �

0

(Z) from the exat homotopy sequene of the

Z -bundle

b

G! G is bijetive.

(3) � is injetive.

(4) The homomorphism �

1

(Z)! �

1

(

b

G) indued by the inlusion Z ,!

b

G is surjetive.

(5)

b

G=Z

e

�

=

e

G .

Proof. For a disrete abelian group A all entral A-extensions of G are overings. Therefore

the universal property of the universal overing group q

G

:

e

G ! G means that it is weakly

universal for all disrete abelian groups A , i.e., the orresponding map

e

Æ

A

: Hom(�

1

(G); A) !

H

2

s

(G;A) is a bijetion (f. Remark IV(b)).

We also note that Hom(Z;A)

�

=

Hom(Z=Z

e

; A)

�

=

Hom(�

0

(Z); A) beause A is disrete.

Therefore Æ

A

an be viewed as the homomorphism

(4:2) Æ

A

: Hom(�

0

(Z); A)! H

2

s

(G;A)

�

=

Hom(�

1

(G); A);  7!  Æ �;

as an be seen from the geometri interpretation of � by lifting loops � in G to urves in

b

G

starting in e and ending in the onneted omponent of Z given by �([�℄) 2 �

0

(Z). This proess

is ompatible with passing from

b

G to (

b

G�A)=�(

�1

),  2 Hom(Z;A), whih yields the entral

extension de�ned by Æ

A

() ([Ne00, Rem. I.3℄).

Sine Hom(

b

G;A) vanishes for the onneted group

b

G , the exat sequene in Theorem IV.2

shows that Æ

A

is always injetive. For A := oker� , this implies that A = 0 , so that � is

surjetive, and hene (2) and (3) are equivalent. The equivalene of (3) and (4) follows diretly

from the exat homotopy sequene of Z ,!

b

G!! G .

(1) , (2): If � is bijetive, then (4.2) implies that eah Æ

A

is bijetive. If, onversely, � is not

bijetive, then it is not injetive, and for A = �

1

(G) the map id

�

1

(G)

is not ontained in the

range of Æ

�

1

(G)

.

(1) ) (5): In view of Hom(Z; �

1

(G))

�

=

H

2

s

(G; �

1

(G)), there exists a homomorphism :Z !

�

1

(G) orresponding to the universal overing q

G

:

e

G! G . Then

e

G

�

=

(

b

G� �

1

(G))=�(

�1

):

Sine

e

G is onneted, it follows that

b

G� �

1

(G) � (

b

G� f1g)�(

�1

) =

b

G� im(), whih means

that  is surjetive. We onlude that

e

G

�

=

b

G= ker . The disreteness of the group �

1

(G)

implies that ker  is an open subgroup of Z , so that the natural map

b

G=(ker)

e

!

b

G= ker

�

=

e

G

is a onneted overing, hene an isomorphism. This implies that ker  is onneted, and hene

that ker  = Z

e

.

(5) ) (3): If

e

G

�

=

b

G=Z

e

, then �

1

(G)

�

=

Z=Z

e

�

=

�

0

(Z). Let �:Z ! �

1

(G) denote the

orresponding quotient homomorphism. Then �

0

(�) Æ � = id

�

1

(G)

implies that � is injetive.

Proposition IV.7. If q:

b

G = G�

f

Z ! G is weakly universal for all disrete abelian groups

A , then the following assertions hold:

(i) �

0

(Z)

�

=

�

1

(G) .

(ii)

e

G

�

=

b

G=Z

e

.

(iii) Z

�

=

Z

e

� �

1

(G) .

(iv) Let A be a regular abelian Lie group. The homomorphism

e

Æ

A

: Hom(�

1

(G); A) ! H

2

s

(G;A)

de�ned by the universal overing q

G

:

e

G ! G , orresponds to the natural map

Hom(�

0

(Z); A)! Hom(Z;A) . In partiular it is injetive.
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(v) Let Æ:�

2

(G)! �

1

(Z) denote the onneting map de�ned by the exat homotopy sequene of

the Z -prinipal bundle

b

G! G . Then

�

2

(

b

G)

�

=

ker Æ and �

1

(

b

G)

�

=

oker Æ:

In partiular

b

G is simply onneted if and only if Æ is surjetive.

(vi)

b

G is weakly A-universal if and only if

b

G is weakly A

e

-universal.

Proof. (i) is a onsequene of Lemma IV.6(2).

(ii) follows from Lemma IV.6(5).

(iii) Sine the identity omponent Z

e

of Z is divisible, we have Z

�

=

Z

e

� (Z=Z

e

)

�

=

Z

e

��

1

(G).

(iv) The map

e

Æ

A

assigns to  2 Hom(�

1

(G); A) the entral extension

(

e

G�A)=�(

�1

)! G; [g; a℄ 7! g:

In view of (ii),

(

e

G�A)=�(

�1

)

�

=

�

(

b

G=Z

e

)�A

�

=�(

�1

)

�

=

(

b

G�A)=�(e

�1

);

where e:Z ! A; z 7! (zZ

e

) with the notation of (ii) above.

(v) In view of �

2

(Z) = 1 , the exat homotopy sequene of

b

G! G leads to an exat sequene

�

2

(

b

G) ,! �

2

(G)

Æ

��!�

1

(Z)! �

1

(

b

G)! �

1

(G)!! �

0

(Z):

Aording to Lemma IV.6, the map �

1

(G)! �

0

(Z) is an isomorphism, so that we have an exat

sequene

�

2

(

b

G) ,! �

2

(G)

Æ

��!�

1

(Z)!! �

1

(

b

G);

and the assertion follows.

(vi) Sine the identity omponent A

e

of A is divisible and �

0

(A) = A=A

e

is disrete, we have

A

�

=

A

e

�

=

�

0

(A). This implies that

Æ

A

�

=

Æ

A

e

� Æ

�

0

(A)

: Hom(Z;A)

�

=

Hom(Z;A

e

)�Hom(Z; �

0

(A))!

H

2

s

(G;A)

�

=

H

2

s

(G;A

e

)�H

2

s

(G; �

0

(A)):

Our assumption implies that Æ

�

0

(A)

is bijetive, and this implies (vi).

The derived group of a onneted Lie group

De�nition IV.8. Let G be a onneted Lie group and q

G

:

e

G ! G the universal overing

homomorphism. If �:

e

G ! ab(g) := g=D(g) is the anonial homomorphism orresponding on

the Lie algebra level to the quotient map g ! ab(g) (f. [Mil83, Th. 8.1℄, [Ne00, Cor. III.20℄),

then we de�ne derived Lie group of

e

G as D(

e

G) := ker� . We also de�ne

D(G) := q

G

(D(

e

G));

but this group is less natural than the one in

e

G , and we will not need it in the following.

If G is �nite-dimensional, then D(

e

G) = (

e

G;

e

G) is the ommutator subgroup of

e

G whih is

a losed normal Lie subgroup ([Ho65℄).

In general it seems to be hard to say muh about the image of the smooth homomorphism

�:

e

G ! ab(g). If G is abelian, then we have ab(g) = g , and if G is regular, then � is an

isomorphism. But if G is not regular, it is hard to say something about the range of � . On the

other hand it is not known whether non-regular Lie groups exist at all.
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Lemma IV.9. (a) D(G) is a losed subgroup with the property that every homomorphism '

of G to a regular abelian Lie group A satis�es D(G) � ker':

(b) If G is simply onneted, then Hom(G;K ) separates points of G=D(G) .

Proof. (a) Let A be as above and ':G! A a homomorphism. Then e' := ' Æ q

G

:

e

G! A is

a homomorphism of Lie groups. We have natural isomorphisms

Hom(

e

G;A)

�

=

Hom(g; a)

�

=

Hom(ab(g); a)

�

=

Hom(ab(g); A);

showing that e' = '

0

Æ r holds for some '

0

2 Hom(ab(g); A). Therefore

ker� = D(

e

G) � ker e' = q

�1

G

(ker'):

Hene q

G

(D(

e

G)) � ker' , and thus D(G) � ker' .

(b) Sine D(G) is the kernel of the natural homomorphism G ! ab(g), it suÆes to observe

that Hom(g;K )

�

=

Lin(ab(g);K )

�

=

ab(g)

0

separates points of ab(g)

0

, whih is a onsequene of

the loal onvexity of ab(g).

More onsequenes of weak universality

Now we onsider weak universality for onneted groups A . The following lemma shows

that not every Lie group G has a weakly universal entral extension.

Lemma IV.10. If G has a entral extension whih is weakly universal for K , then �

1

(G) �

D(

e

G) .

Proof. Sine the sequene

0! Hom(G;K ) ! Hom(

e

G;K ) ! Hom(�

1

(G);K )

Æ

K

��!H

2

s

(G;K ) ! H

2

s

(

e

G; �

1

(G);K )

is exat (Theorem IV.2), the restrition map Hom(

e

G;K ) ! Hom(�

1

(G);K ) is trivial beause Æ

K

is injetive by assumption. This implies that �

1

(G) � D(

e

G) (Lemma IV.9(b)).

Lemma IV.11. If �

1

(G) � D(

e

G) and G �

f

Z is a entral extension of G whih is weakly

universal for the onneted group A , then

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A);

where the inlusion Hom(�

1

(G); A) ,! Hom(Z;A)

�

=

H

2

s

(G;A) omes from the onneting map

�

0

(Z)! �

1

(G) .

Proof. Sine �

1

(G) is ontained in D(

e

G), every homomorphism

e

G ! A , where A is a

onneted regular Lie group vanishes (Lemma IV.9). Moreover, Ext

ab

(�

1

(G); A) = 1 follows

from the fat that �

1

(G) is disrete and A = A

e

�

=

a=�

1

(A) is divisible. Therefore the restrition

maps Hom(

e

G;A) ! Hom(�

1

(G); A) and H

2

s

(

e

G; �

1

(G); A) ! Ext

ab

(�

1

(G); A) vanish, so that

Theorem IV.2 leads to the short exat sequene

Hom(�

1

(G); A) ,! H

2

s

(G;A)

�

=

Hom(Z;A)!! H

2

s

(

e

G; �

1

(G); A):

We onlude that

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A):

If, in addition, to the assumptions of Lemma IV.11, the map �

0

(Z) ! �

1

(G) is bijetive

(f. Lemma IV.6), then Z

�

=

Z

e

� �

1

(G) and we obtain

H

2

s

(

e

G; �

1

(G); A)

�

=

Hom(Z;A)=Hom(�

1

(G); A)

�

=

Hom(Z

e

; A):

The following theorem ombines the neessary ondition for the weak universality for

disrete groups and for quotient of z by disrete subgroups. In partiular its assumptions are

satis�ed if

b

G is weakly universal for all regular abelian groups whose Lie algebra is a quotient of

z .



25 unien.tex May 15, 2001

Theorem IV.12. Let Z ,!

b

G

q

��!G be a entral extension whih is weakly universal for all

disrete groups and quotients of z by disrete subgroups. Then the following assertions hold:

(i)

b

G is simply onneted.

(ii) If �

2

(G) = 1 , then Z is simply onneted.

(iii) If

b

G is weakly universal for K , then

(a) Z � D(

b

G) .

(b) z � D(

b

g) , i.e.,

b

g!! g is a topologial overing of Lie algebras.

() �

1

(G) � D(

e

G) .

Proof. (i) In view of Proposition IV.7(v), we only have to show that Æ:�

2

(G) ! �

1

(Z)

is surjetive. Let �

1

:= im Æ � � := �

1

(Z) � z . We onsider the overing group Z

1

:=

(z=�

1

) � �

1

(G) of Z

�

=

(z=�) � �

1

(G) (Lemma IV.6) and write q

1

:Z

1

! Z for the natural

overing map.

Let D:Z

2

s

(G;Z) ! Z

2



(g; z) be the natural map obtained by assigning to a group oyle

f 2 Z

2

s

(G;Z) the Lie algebra oyle

(4:3) D(f)(x; y) := (d

2

f)(e; e)(x; y)� (d

2

f)(e; e)(y; x)

(f. [Ne00, Set. IV℄), and onsider ! := D(f), where

b

G

�

=

G�

f

Z . Now we use the notation of

Setion V of [Ne00℄. In view of [Ne00, Prop. VII.7℄, we have

per

!

= �Æ:�

2

(G)! �

1

(Z)

�

=

� � z:

Therefore im(per

!

) � �

1

, so that [Ne00, Th. V.7℄ implies the existene of a entral extension

Z

1

,!

b

G

1

!! G orresponding to ! , and hene overing the extension

b

G !! G . Now the

weak universality of

b

G with respet to Z

1

shows that there exists a homomorphism :Z ! Z

1

orresponding to the entral extension

b

G

1

!! G . On the other hand, we have a natural overing

map q

G

1

:

b

G

1

!

b

G with q

G

1

j

Z

1

= q

1

, so that q

1

Æ  = id

Z

follows again from the universal

property of

b

G . Taking derivatives in 1 , we now see that d: z! z is the identity, and therefore

that � = (�) � �

1

. This proves that � = �

1

, whih means that Æ is surjetive.

(ii) follows from the surjetivity of Æ .

(iii) (a) Sine

b

G is simply onneted and weakly universal for K , every smooth homomorphism

�:

b

G! K vanishes on Z , so that Z � D(

b

G) (Lemma IV.9(b)).

(b) In view of (a), we have Z � D(

b

G), and therefore z is ontained in the kernel of the quotient

map

b

g! ab(

b

g), whih is D(

b

g).

() We reall from Proposition IV.7 that

e

G

�

=

G=Z

e

, so that Z � D(

b

G) implies that the anonial

homomorphism �:

b

G ! ab(g) fators through the homomorphism �

G

:

e

G ! ab(g) whih then

satis�es �

1

(G)

�

=

Z=Z

e

� D(

e

G) = ker�

G

.

Criteria for universality of group extensions

The following theorem provides a onvenient devie to test whether a given entral extension

is universal.

Theorem IV.13. (Reognition Theorem) Assume that q:

b

G! G is a entral Z -extension of

Fr�ehet{Lie groups for whih

(1) the orresponding Lie algebra extension

b

g! g is weakly K -universal,

(2)

b

G is simply onneted, and

(3) �

1

(G) � D(

e

G) .

If

b

g is weakly universal for a Fr�ehet spae a , then

b

G is weakly universal for eah regular abelian

Fr�ehet{Lie group A with Lie algebra a .

Proof. Let A be an abelian regular Fr�ehet{Lie group with Lie algebra a . We have to show

that the map Æ

A

: Hom(Z;A)! H

2

s

(G;A) is bijetive.
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Sine A

e

is divisible, the identity omponent A

e

splits, so that A

�

=

A

e

� �

0

(A). Then

Hom(Z;A) and H

2

s

(G;A) split aordingly as diret produts. Hene is suÆes that the maps

Æ

A

e

and Æ

�

0

(A)

are bijetive.

The assumption that

b

G is simply onneted implies that

b

G is universal for all disrete

groups (Lemma IV.6(4)), so that Æ

�

0

(A)

is bijetive. Therefore we may w.l.o.g. assume that A

is onneted.

In view of Lemma I.11(ii), assumption (1) implies that z � D(

b

g) and therefore Z

e

� D(

b

G).

From Lemma IV.6 and (2) we further derive that

b

G=Z

e

�

=

e

G , where Z is mapped onto �

1

(G) �

e

G . Hene the homomorphism

b

G! ab(

b

g) fators through

e

G , and (3) implies Z � D(

b

G). Hene

the restrition map Hom(

b

G;A) ! Hom(Z;A) vanishes, and we onlude from Theorem IV.2

that Æ

A

is injetive.

So far we have only used (1){(3). To see that Æ

A

is surjetive, we assume that

b

g is weakly

a-universal. Let D

A

:Z

2



(G;A) ! Z

2



(g; a) be the map from (4.3) and  2 Z

2



(G;A). The weak

a-universality of

b

g implies the existene of  2 Lin(z; a) with Æ

a

() = [ Æ !℄ = [D

A

 ℄ . For the

orresponding period maps per

!

:�

2

(G) ! z and per

D 

:�

2

(G) ! a we then have  Æ per

!

=

per

D 

. Sine per

!

an also be interpreted as the onneting map �

2

(G) ! �

1

(Z) ([Ne00,

Prop. VII.7℄), we obtain with �

1

(

b

G) = 1 and the exat homotopy sequene of Z ,!

b

G! G that

im(per

!

) = �

1

(Z), viewed as a subgroup of z . Hene

(�

1

(Z)) � im(per

D 

) � �

1

(A);

and therefore  integrates to a Lie group homomorphism Z

e

! A , whih, in view of Z

�

=

Z

e

��

0

(Z), extends to a homomorphism 

Z

:Z ! A . Now Æ

A

(

Z

) 2 H

2

s

(G;A) has a Lie algebra

oyle in the same lass Æ

a

() as D .

Therefore it remains to see that kerD � im(Æ

A

). Aording to [Ne00, Th. V.9℄, kerD

oinides with the image of the map

e

Æ

A

: Hom(�

1

(G); A)! H

2

s

(G;A):

For  2 Hom(�

1

(G); A) and p:Z ! �

0

(Z)

�

=

�

1

(G) we onsider  Æ p 2 Hom(Z;A). Then

Æ

A

( Æ p) = [ Æ p Æ f ℄ =

e

Æ

A

()

implies that kerD = im(

e

Æ

A

) � im(Æ

A

). Therefore Æ

A

is surjetive.

Corollary IV.14. Let g be a Fr�ehet{Lie algebra and

b

g

�

=

g �

!

z ! g a entral extension

whih is weakly universal for all Fr�ehet spaes. Suppose that G is a onneted simply onneted

Lie group with Lie algebra g and that �

!

:= im(per

!

) � z is disrete. Then there exists a entral

Lie group extension Z ,!

b

G!! G whih is universal for all abelian regular Fr�ehet{Lie groups.

Proof. In view of [Ne00, Th. V.7℄, there exists a simply onneted entral extension q:

b

G! G

with ker q = Z

�

=

z=�

!

orresponding to the Lie algebra extension

b

g ! g . Sine �

1

(G) is

trivial, all assumptions of Theorem IV.13 are satis�ed by

b

G .

As we shall see in Setion V, for some groups it is too muh to hope for that a weakly

universal entral extension

b

g orresponds to a Lie group whih is equivalent to the assumption

of Corollary IV.14. In this ase Theorem V.7 below is an appropriate re�nement of Theorem

IV.13.

Proposition IV.15. If G is a onneted regular abelian Fr�ehet{Lie group, then G has a

K -weakly universal entral extension

b

G if and only if G is simply onneted. In this ase

b

G is

weakly universal for all regular abelian Fr�ehet{Lie groups.

Proof. Sine G is onneted and regular, we have G

�

=

g=�

1

(G). We have g = ab(g)

�

=

e

G ,

so that D(

e

G) = 0 . If G has a K -weakly universal entral extension, then Lemma IV.10 implies

that �

1

(G) � D(

e

G) is trivial.
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If, onversely, G is simply onneted, then G

�

=

g , and Remark VI.1(a) in [Ne00℄ implies

that

H

2

s

(G;Z)

�

=

H

2



(g; z)

�

=

Z

2



(g; z)

�

=

Alt

2

(g; z)

�

=

Lin(�

2



(g); z);

so that the entral Lie algebra extension

H



2

(g)

�

=

�

2



(g) ,!

b

g!! g

from Theorem II.11 an also be viewed as a entral Lie group extension whih is weakly universal

for all abelian regular Fr�ehet{Lie groups (Theorem IV.13).

V. Constrution of weakly universal entral extensions

In this setion we eventually turn to the existene problem for weakly universal entral

extension in the ontext of Fr�ehet{Lie groups.

Let G be a onneted Fr�ehet{Lie group with Lie algebra g , z a Fr�ehet spae, and

! 2 Z

2



(g; z) a ontinuous 2-oyle. Further let Z denote a regular abelian Fr�ehet{Lie

group with Lie algebra z , so that Z

e

�

=

z=�

1

(Z), where we identity �

1

(Z) with the subgroup

ker exp

Z

� z and exp

Z

: z ! Z

e

is a quotient map with disrete kernel. In the �rst part of

this setion we will disuss the property of a entral Z -extension

b

G to be weakly universal for

a regular abelian Lie group A . This disussion will lead to some neessary onditions for the

existene of entral extensions whih are weakly universal for all regular abelian Fr�ehet{Lie

groups. The main result of this setion is the Charaterization Theorem V.7 whih, provided

a entral Lie algebra extension whih is weakly universal for all Fr�ehet spaes, haraterizes

when there exists a entral group extension whih is weakly universal for all regular abelian

Fr�ehet{Lie groups. The situation beomes partiularly simple if the vetor spae R 
 �

2

(G) is

�nite-dimensional.

From Setion IV we reall the period homomorphism per

!

:�

2

(G)! z and de�ne

P

1

(!) := exp

Z

Æ per

!

:�

2

(G)! Z:

Moreover, we de�ne

P

2

(!):�

1

(G)! Lin(g; z); P

2

(!)([�℄)(x) =

Z

[�℄

i(x

r

):
;

where 
 is the unique left invariant losed z-valued 2-form on G with 


e

= ! , and x

r

is the

right invariant vetor �eld with x

r

(e) = x . We reall from [Ne00, Def. V.1℄ that P

1=2

(!) only

depends on the ohomology lass [!℄ of ! . Let �

!

:= im(per

!

) denote the period group of !

and put

N

!

:= P

2

(!)(�

1

(G))(g) � z:

In the following the restrition to Fr�ehet{Lie groups is mainly needed to pass from spaes

like z to quotient spaes without loosing the ompleteness requirement.

Theorem V.1. The entral extension g�

!

z integrates to a entral Z extension of G if and

only if P

1

(!) and P

2

(!) vanish, whih means that

(5:1) �

!

� �

1

(Z) and N

!

= 0:

This is further equivalent to [!℄ being ontained in the range of the homomorphism

D

Z

:H

2

s

(G;Z)! H

2



(g; z); D

Z

(f)(x; y) := (d

2

f)(e; e)(x; y)� (d

2

f)(e; e)(y; x);
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The kernel of D

Z

oinides with the image of the homomorphism

Æ

Z;

e

G

: Hom(�

1

(G); Z)! H

2

s

(G;Z)

assoiated to the universal overing q

G

:

e

G! G .

Proof. The ase where Z is onneted follows from [Ne00, Th. V.9℄, and the redution to this

ase is ontained in [Ne00, Prop. V.12℄, where it is shown that

H

2

s

(G;Z)

�

=

H

2

s

(G;Z

e

)�Hom(�

1

(G); Z):

Let A be a onneted regular abelian Lie group with Lie algebra a . Now we analyze the

question when a entral Z -extension

b

G of G is weakly A-universal. The following lemmas

prepare Propositions V.5 and V.6.

Lemma V.2. For  2 Lin(z; a) the following are equivalent:

(1) Æ

a

() is in the range of D

A

:H

2

s

(G;A)! H

2



(g; a) .

(2) (�

!

) � �

1

(A) and N

!

� ker  .

Proof. First we note that

(5:2) P

1

( Æ !) = exp

A

Æ Æ per

!

and P

2

( Æ !) =  Æ P

2

(!):

It follows that (2) is equivalent to �

Æ!

= (�

!

) � �

1

(A) and N

Æ!

= 0 , so that the equivalene

of (1) and (2) follows from Theorem V.1.

Lemma V.3. Let z be a topologial vetor spae, � � z an additive subgroup, and b � z a

losed vetor subspae. Then the following onditions are equivalent :

(1) b is an open subgroup of b+ � .

(2) The image of � in z=b is disrete.

The set of all subspaes b satisfying these onditions is losed under �nite intersetions.

Proof. The equivalene of (1) and (2) is a trivial onsequene of the de�nitions.

Suppose that b

1

; : : : ; b

n

satisfy this ondition and let U

j

� z be an open 0-neighborhood

in z with U

j

\ (b

j

+ �) � b

j

. Then U :=

T

n

j=1

U

j

satis�es U \

�

(\

n

j=1

b

j

) + �

�

� b

i

for eah i ,

and therefore U \ ((\

n

j=1

b

j

) + �) �

T

n

j=1

b

j

. This ompletes the proof.

Lemma V.4. Let b � z be a losed subspae, a := z=b and q

b

: z ! a the quotient map. Then

Æ

a

(q

b

) 2 im(D

A

) for some regular Lie group A with Lie algebra a if and only if

(A1)N

!

� b , and

(A2) b is open in b+�

!

.

Proof. If Æ

a

(q

b

) = D

A

([f ℄) for some f 2 Z

2

s

(G;A), then Lemma V.2 implies that N

!

� b =

ker q

b

and that q

b

(�

!

) � �

1

(A), whih is disrete in a . Therefore (A2) is satis�ed by Lemma

V.3.

If, onversely, (A1) and (A2) are satis�ed, then we set A := a=q

b

(�

!

) and observe that

the onditions of Lemma V.2 are satis�ed.

The following proposition desribes a suÆient ondition for the existene of a weakly

universal entral extension.

Proposition V.5. Suppose that there exists a minimal losed subspae b � z satisfying

(A1/2). We set

z

1

:= z=b; Z

1

:=

�

z=(b+�

!

)

�

� �

1

(G);

and write q

b

: z ! z

1

for the quotient map. Then the group Z

1

is a regular abelian Fr�ehet{Lie

group and !

1

:= q

b

Æ! satis�es [!

1

℄ = D[f ℄ for some f 2 Z

2

s

(G;Z

1

) for whih the orresponding

oyle f

0

2 Z

2

s

(G; �

0

(Z

1

))

�

=

Z

2

s

(G; �

1

(G)) satis�es

e

G

�

=

G �

f

0

�

1

(G) . If �

1

(G) � D(

e

G) ,
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then the orresponding entral extension

b

G := G �

f

Z

1

is weakly A-universal if g is weakly

a-universal.

Proof. First we note that q

b

satis�es (A1/2), whih implies that [!

1

℄ = D[f

1

℄ for some

f

1

2 Z

2

s

(G; (Z

1

)

e

). Let f

0

2 Z

2

s

(G; �

1

(G)) denote a oyle with

e

G

�

=

G �

f

0

�

1

(G). Then

f := (f

1

; f

0

) 2 Z

2

s

(G;Z

1

) and we de�ne

b

G := G�

f

Z

1

. This entral Z

1

-extension of G satis�es

in partiular

b

G=(Z

1

)

e

�

=

G �

f

0

�

1

(G)

�

=

e

G , so that it is weakly universal for disrete abelian

groups (Lemma IV.6).

Let A be a regular abelian Lie group and assume that g �

!

z is weakly a-universal. We

may w.l.o.g. assume that A is not disrete, whih means that a 6= 0 . We have to show that the

map

Æ

A

: Hom(Z

1

; A)! H

2

s

(G;A); ' 7! [' Æ f ℄

is bijetive.

To see that Æ

A

is injetive, we have to show that the homomorphism

Hom(

b

G;A)! Hom(Z;A)

vanishes (Theorem IV.2). So let  :

b

G ! A be a Lie group homomorphism. Then L( ) 2

Hom(

b

g; a) vanishes on D(

b

g). Moreover, in view of a 6= 0 , Lemma I.11(ii) implies that g�

!

z! g

is a topologial overing, whih implies that the quotient algebra

b

g = g�

!

1

z

1

also is a topologial

overing beause pulling bak homomorphisms to K leads to

Hom(

b

g;K ) j

z

1

,! Hom(g�

!

z;K ) j

z

= 0

(Remark I.6(b)). We onlude that L( ) vanishes on z

1

� D(

b

g) and therefore that (Z

1

)

e

�

ker . Hene  fators through

b

G=(Z

1

)

e

�

=

e

G , and �

1

(G) � D(

e

G) further implies that

Z

1

� ker . This proves that Æ

A

is injetive.

To see that Æ

A

is surjetive, let f

A

2 Z

2

s

(G;A) and  := Æ

�1

a

�

D

A

(f

A

)

�

2 Hom(z; a).

Then  vanishes on N

!

and maps �

!

into the disrete group �

1

(A) (Lemma V.2). Therefore

ker  = 

�1

(0) is open in 

�1

(�

1

(A)) � ker  + �

!

. Hene ker  is open in ker  + �

!

, and

the minimality of b entails b � ker  , showing that  fators through a ontinuous linear map



1

2 Lin(z

1

; a) with



1

(�

1

(Z

1

)) = 

1

(q

b

(�

!

)) = (�

!

) � �

1

(A):

Therefore 

1

integrates to a group homomorphism ': (Z

1

)

e

! A whih an be extended to

Z

1

�

=

(Z

1

)

e

� �

1

(G), and we have

D

A

(' Æ f) = 

1

ÆD

Z

1

(f) = 

1

Æ [q

b

Æ !℄ = [ Æ !℄ = Æ

a

():

Hene D

A

(('Æf)f

�1

A

) = 0, so that, in view of ['Æf ℄ 2 im Æ

A

, we may from now on assume that

D

A

(f

A

) = 0. Then

[f

A

℄ 2 Æ

A

(Hom(�

1

(G); A)) � Æ

A

(Hom(Z

1

; A))

follows from �

1

(G)

�

=

�

0

(Z

1

). This ompletes the proof of the bijetivity of Æ

A

.

The following proposition omplements Proposition V.5 in the sense that it desribes

neessary onditions for universality.

Proposition V.6. Let g �

!

z be a entral z-extension of g and

b

G := G �

f

Z

1

a entral

Z

1

-extension of G . Assume that

(1) g�

!

z is weakly universal for z

1

and quotients of z by losed subspaes.

(2)

b

G is weakly universal for Z

1

, and quotients of z by losed subgroups S for whih there exists

a losed subspae s � z whih is an open subgroup of S .

Then (Z

1

)

e

�

=

z=b; where b � z is a minimal losed subspae satisfying (A1/2).

Proof. Step 1: Suppose that  � z satis�es (A1/2), de�ne the Fr�ehet spae z



:= z= , and

write q



: z ! z



for the quotient map. Then Z



:= z=q



(�

!

) is a regular abelian Lie group, and
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by (1), g�

!

z is weakly universal for z



, so that we an use Lemma V.2 to obtain f



2 Z

2

s

(G;Z



)

with D[f



℄ = [q



Æ !℄ .

Next we use the weak Z



-universality of

b

G to �nd a unique homomorphism '



:Z

1

! Z



with ['



Æ f ℄ = Æ

Z



('



) = [f



℄: Using (1), we de�ne  := Æ

�1

z

1

(D[f ℄) 2 Lin(z; z

1

) and observe that

[ Æ !℄ = D[f ℄ = [Df ℄:

Then

Æ

z



(q



) = [q



Æ !℄ = D[f



℄ = D['



Æ f ℄ = L('



)D[f ℄ = L('



)[ Æ !℄ = Æ

z



(L('



) Æ );

and the weak z



-universality of g�

!

z yields

(5:3) q



= L('



) Æ :

Step 2: We will show that  is a quotient homomorphism. In view of Lemma V.2,

b := ker satis�es (A1/2). As above, we de�ne z

b

:= z=b , q

b

: z ! z

b

, and Z

b

:= z=q

b

(�

!

).

Now (�

!

) � �

1

(Z

1

) (Lemma V.2) implies the existene of a unique Lie group homomorphism

 :Z

b

! Z

1

with L( ) Æ q

b

=  .

By assumption (1), g �

!

z is also weakly universal for z

b

, so that we an use Lemma

V.2 to obtain f

b

2 Z

2

s

(G;Z

b

) with D[f

b

℄ = [q

b

Æ !℄ . Let '

b

:Z

1

! Z

b

be as in Step 1 with

['

b

Æ f ℄ = [f

b

℄ .

Now we have

Æ

Z

1

( Æ '

b

) = [ Æ '

b

Æ f ℄ = [ Æ f

b

℄

with

D[ Æ f

b

℄ = L( ) ÆD[f

b

℄ = [L( ) Æ q

b

Æ !℄ = [ Æ !℄ = D[f ℄:

This means that there exists a homomorphism " : �

1

(G)

�

=

�

0

(Z

1

)! Z

1

with

Æ

Z

1

(id

Z

1

) = [f ℄ = Æ

Z

1

(( Æ '

b

) � ") = [( Æ '

b

Æ f) � (" Æ f)℄

([Ne00, Th. V.9℄), so that the weak Z

1

-universality of

b

G leads to  Æ '

b

= "

�1

, whih implies

that L( ) Æ L('

b

) = id

z

1

.

On the other hand

L('

b

) Æ L( ) Æ q

b

= L('

b

) Æ  2 Lin(z; z

b

)

satis�es



z

b

(L('

b

) Æ ) = [L('

b

) Æ  Æ !℄ = [L('

b

) ÆDf ℄ = D['

b

Æ f ℄ = D[f

b

℄ = [q

b

Æ !℄ = Æ

z

b

(q

b

);

and the weak z

b

-universality of g�

!

z entails

q

b

= L('

b

) Æ  = L('

b

) Æ L( ) Æ q

b

;

whene L('

b

) ÆL( ) = id

z

b

. We onlude that z

b

�

=

z

1

, and furthermore that  :Z

b

! (Z

1

)

e

is

a Lie group isomorphism whose inverse is given by '

b

j

Z

1;e

.

Step 3: From now on we assume that Z

b

�

=

Z

1;e

. It remains to show that b is minimal

with (A1/2). If  � z satis�es (A1/2), then (5.3) implies that

b = ker  � ker q



= ;

whih proves the minimality of b .
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Theorem V.7. (Charaterization Theorem) Let G be a onneted Fr�ehet{Lie group and

suppose that g has a entral extension g �

!

z whih is weakly universal for all Fr�ehet spaes.

Then G has a entral extension

b

G = G �

f

Z whih is weakly universal for all regular abelian

Fr�ehet{Lie groups if and only if

(WU1) �

1

(G) � D(

e

G) , and

(WU2) there exists a minimal losed subspae in z satisfying (A1/2).

Proof. The neessity of (WU1) follows from Lemma IV.10, and the neessity of (WU2) from

Proposition V.6. The suÆieny of both onditions follows from Proposition V.5.

Sine all abelian Banah{Lie groups are regular, we likewise obtain a version of Theorem

V.7 for Banah{Lie groups.

Theorem V.8. Let G be a onneted Banah{Lie group and suppose that g has a entral

extension g�

!

z whih is weakly universal for all Banah spaes. Then G has a entral extension

b

G = G�

f

Z whih is weakly universal for all abelian Banah{Lie groups if and only if

(WU1) �

1

(G) � D(

e

G) , and

(WU2) there exists a minimal losed subspae in z satisfying (A1/2).

Corollary V.9. If G is a onneted �nite-dimensional Lie group, then the following are

equivalent:

(1) �

1

(G) � D(

e

G) .

(2) G has a onneted entral extension

b

G whih is weakly universal for all regular abelian

Fr�ehet{Lie groups.

The group

b

G is �nite-dimensional.

Proof. \(2) ) (1)" follows from Theorem V.7.

\(1) ) (2)" Sine g is �nite-dimensional, the same holds for �

2

(g) and hene for wov(g).

Therefore Theorem II.11 implies the existene of a entral extension

b

g = g �

!

z , where z =

H



2

(g) = H

2

(g) whih is weakly universal for all Fr�ehet spaes. In partiular z is �nite-

dimensional and therefore

b

g is �nite-dimensional.

Sine �

2

(G) vanishes ([Mim95℄), we have �

!

= 0 , so that b := N

!

is minimal with (A1/2).

Now Theorem V.7 applies.

Corollary V.10. If G is a onneted Fr�ehet{Lie group with dimR 
 �

2

(G) <1 and g has

a weakly Fr�ehet-universal entral extension, then the following are equivalent:

(1) �

1

(G) � D(

e

G) .

(2) G has a onneted entral Fr�ehet{Lie group extension

b

G whih is a weakly universal for

all regular abelian Fr�ehet{Lie groups.

Proof. \(2) ) (1)" follows from Theorem V.7.

\(1) ) (2)" The assumption dim(R 
 �

2

(G)) < 1 implies that span�

!

is �nite-dimensional.

Let : z ! z=N

!

denote the quotient map. Then (�

!

) is a subgroup ontained in a �nite-

dimensional vetor spae. If b � z satis�es (A1/2), then the image of �

!

in z=b is disrete, and

therefore (b) ontains the identity omponent a of the losure of (�

!

) in z=N

!

. On the other

hand the struture of losed subgroups of �nite-dimensional vetor spaes implies that a is open

in (�

!

). Therefore 

�1

(a) � z is a losed subspae whih is minimal with respet to (A1/2).

Now Theorem V.7 applies.

Remark V.11. The assumptions of Corollary V.10 are in partiular satis�ed if the Lie algebra

g is topologially perfet and the abelian group �

2

(G) is �nitely generated.

Examples V.12. (a) (Restrited groups) For a omplex in�nite-dimensional Hilbert spae H

we reall the restrited Lie algebra g(D) � B(H) from Example II.14(a). For the orresponding

onneted Lie group G

r

it has been shown in [Ne01b, Th. III.7℄ that G

r

is simply onneted

with

�

2

(G

r

)

�

=

Z

dimH

2



(g(D);C )

:
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Let ! 2 H

2



(g(D); H

2

(g(D)) be a universal oyle. Then the period map per

!

:�

2

(G

r

) !

H



2

(g(D)) maps �

2

(G

r

) injetively onto a disrete subgroup. We therefore obtain a universal

entral extension Z ,!

b

G

r

!! G

r

with Z

�

=

H



2

(g(D))=�

!

(Corollary IV.14). In [Ne01b,

Th. IV.10℄ this entral extension has been obtained by a diret onstrutions.

Similar results hold for the onneted group G

r

orresponding to g(D) for g = gl(H; I),

where I :H ! H is an antilinear isometri involution with I

2

= �1 . In this ase G

r

is also

simply onneted ([Ne01b, Th. III.14℄), and everything works as above.

(b) (Viraroso group) In [Ne00, Ex. VI.4℄ we have seen that the group G = Di�

+

(S

1

) of

oriented di�eomorphisms of the irle is homotopy equivalent to the rotation subgroup T . Hene

�

2

(G) = 0 and �

1

(G)

�

=

Z . In Example II.14(b) we have disussed the entral extension of the

orresponding Lie algebra g , the smooth vetor �elds on S

1

. Let ! 2 Z

2



(g;R) be a universal

oyle. First �

2

(G) = 0 yields �

!

= 0 , and the disussion in [Ne00, Ex. VI.4℄ implies that

N

!

= 0 .

We therefore obtain a universal entral extension

b

G! G with kernel Z

�

=

H

2

(g)��

1

(G)

�

=

R �Z .

() (Current groups) Let K be a ompat Lie group with simple Lie algebra, M a ompat

smooth manifold and onsider the Fr�ehet{Lie group G := C

1

(M;K). In Example II.14()

we have seen that the Lie algebra g

�

=

C

1

(M; k)

�

=

C

1

(M;R) 


R

k of G has a universal

entral extension by the in�nite-dimensional Fr�ehet spae z = 


1

(M)=dC

1

(M) whih ontains

H

1

dR

(M;R) as a losed subspae whih here is �nite-dimensional beause M is ompat.

If ! is the universal oyle from Example II.14(), then on an show that N

!

= 0 and

�

!

�

=




1

Z

(M)=dC

1

(M) � H

1

dR

(M;R)

([MN01℄, see also [PS86℄), where 


1

Z

(M) � 


1

(M) denotes the losed additive subgroup of all 1-

forms whose periods are integral. This ondition implies in partiular that they are losed beause

their pull-bak to the universal overing manifold

f

M is exat. Identifying H

1

dR

(M;R) via the

theorems of de Rham and Hurewiz with H

1

sing

(M;R)

�

=

Hom(H

1

(M);R)

�

=

Hom(�

1

(M);R) ,

the group �

!

orresponds to Hom(�

1

(M);Z). Sine the ompatness of M implies that �

1

(M)

is �nitely generated, �

!

is desribed by �nitely many integrality onditions, hene a disrete

subgroup of z . Now Proposition V.5 shows that there exists a entral extension Z ,!

b

G !! G

with

Z

�

=

(z=�

!

)� �

1

(G)

whih is weakly universal for all regular abelian Fr�ehet{Lie groups.

(d) Let H be an in�nite-dimensional omplex Hilbert spae and PGL(H) := GL(H)=C

�

1 its

projetive linear group. This is a Banah{Lie group with Lie algebra pgl(H) := B(H)=C 1 . In

Example III.6 we have see that gl(H) := B(H) is a entral extension of pgl(H) by C whih is

universal for all omplete loally onvex spaes. Sine the group GL(H) is simply onneted by

Kuiper's Theorem (f. [Ne01b, Th. II.4℄), the Reognition Theorem IV.13 shows that GL(H) is

a universal entral extension of the group PGL(H).

A similar statement holds for the real group U(H) whih is a universal entral extension

of PU(H) := U(H)=T1 .

Problems V. It would be interesting to determine, if they exist, weakly universal entral

extensions for the following types of groups:

(1) C

1

(M;K), M a ompat manifold and K a onneted �nite-dimensional Lie group whih

is not neessarily simple (f. [Ma01℄, [PS86℄ for results on the Lie algebra level).

(2) C(X;G), X a ompat spae and K a Lie group. This should be parallel to (1), but one

expets here less entral extensions beause the universal di�erential module of C(X;R) is

trivial ([Ma01℄).

(3) GL

n

(A), A a unital Banah algebra. Here one expets the universal enter to be indepen-

dent of n , so that one an also onsider a limit ase for n ! 1 , where the period map

should be related to the K -theory of A .

(4) Di�(M), M a ompat manifold.

(5) Sp(M;
), (M;
) a ompat sympleti manifold.
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