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Universal central extensions of Lie groups

Karl-Hermann Neeb

Abstract. We call a central Z-extension of a group G weakly universal for an abelian group A
if the correspondence assigning to a homomorphism Z—A the corresponding A-extension yields a
bijection of extension classes. The main problem discussed in this paper is the existence of central
Lie group extensions of a connected Fréchet-Lie group G which is weakly universal for all abelian
Fréchet—Lie groups whose identity components are quotients of vector spaces by discrete subgroups.
We call these abelian groups regular. In the first part of the paper we deal with the corresponding
question in the context of topological, Fréchet-, and Banach—Lie algebras, and in the second part
we turn to the groups. Here we start with a discussion of the weak universality for discrete abelian
groups and then turn to regular Fréchet-Lie groups A. The main results are a Recognition- and a
Characterization Theorem for weakly universal central extensions.

Introduction

If G is a perfect group, then there exists a universal central extension q:é — G which
has the property that for any other central extensions ¢;: Gy — G there exists a unique homo-
morphism ¢: G — G with ¢ o ¢ = ¢. The kernel of ¢ is sometimes called Hy(G), the second
homology group of G ([We95], [R0o95, p. 227]).

Similar results hold for Lie algebras. For every perfect Lie algebra g there exists a universal
central extension q:g — g such that for any other central extensions q;:g; — g there exists a
unique Lie algebra homomorphism ¢:g — g1 with ¢; o ¢ = q. Here the kernel can be identified
with the second Lie algebra homology space Hz(g) ([We95], [R095, p. 228]).

The main purpose of this paper is to understand under which circumstances similar results
hold for Lie groups. Here we work with not necessarily finite-dimensional Lie groups which
are modeled over sequentially complete locally convex spaces ([Mil83]) and consider only those
central extensions ¢: G — G which are locally trivial smooth principal bundles, i.e., there exist
smooth local sections. Moreover, we restrict the class of kernels to those abelian Lie groups Z
which are regular in the sense that their identity component is the quotient of a vector space by
a discrete subgroup. Both restrictions are vacuous for finite-dimensional groups, and the second
one for Banach-Lie groups.

Our main tool to address central extensions in this context are the results of [Ne00] relating
them to central extensions of the corresponding Lie algebras. This is why the first three sections of
the paper are devoted to (universal) central extensions q: g — g of topological Lie algebras which
are linearly split in the sense that they have a continuous linear section (which of course does not
have to be a Lie algebra homomorphism). This assumption is crucial because otherwise it would
be impossible to parameterize the equivalence classes by objects that one could calculate for
specific Lie algebras since extension classes of topological vector spaces would enter the picture,
and the groups formed by these extension classes seem to be quite inaccessible.

In Section I we discuss central extensions of topological Lie algebras in general. Here a
central result is an exact sequence

(0.1) 0 — Hom(g, a)— Hom(g, a) — Lin(3, a)—=+H2(g, a)— H2(g,3,a) — 0
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associated to a central extension 3 < g — g and a topological vector space a, where H? denotes
the continuous Lie algebra cohomology, Hom stands for continuous Lie algebra homomorphisms,
and Lin for continuous linear maps. We call the central extension g of g by 3 weakly universal
for a if the homomorphism d, in (0.1) is bijective. This concept is weaker than the universality
used in the algebraic context and makes it possible to discuss universality properties for restricted
classes of spaces a. This turns out to be a good strategy to split the problem into tractable pieces.
We will see in particular that for each finite-dimensional Lie algebra g all difficulties vanish and
that there exists a unique central extension which is weakly universal for all spaces a. This
extension is universal in the sense defined above if and only if the Lie algebra g is perfect.

In Section I we also discuss uniqueness properties for other classes of infinite-dimensional
Lie algebras, but the hard part is to decide when weakly universal central extensions exist. This
question is discussed in Section II for Fréchet—Lie algebras. The restriction to this class of Lie
algebras is natural because on the one hand side it is natural to restrict to locally convex spaces
to have natural topologies on tensor products, and on the other hand, it is very helpful to have
the Open Mapping Theorem available. The main result of Section II is an existence criterion
for a central extension which is weakly universal for all complete locally convex spaces. Our
criterion is always satisfied if g is (algebraically) perfect and its second cohomology space is
finite-dimensional. In the short Section III we briefly discuss certain refinements for the class of
Banach-Lie algebras.

The structure of Sections IV and V is similar, but here we work on the group side. Section
1V is parallel to Section I. Here we derive for a central Lie group extension Z — G — G and
each abelian Lie group A an exact sequence

1 — Hom(G, A)— Hom(G, A)— Hom(Z, A) 22 H2(G, A)— H2(G, Z, A) — Extap(Z, A)

which is the group version of (0.1). We call G weakly A-universal if §4 is bijective and discuss
this concept for several classes of Lie groups. In particular we obtain a useful characterization
of those central extensions which are weakly universal for all discrete groups A. Since every
regular abelian Lie group is a direct product of a discrete and a connected group, this reduces
the problems to central extensions by connected abelian groups, which by [Ne00] are essentially
faithfully represented by the corresponding Lie algebra extensions. The second main result of
Section IV is the Recognition Theorem IV.13 which gives a sufficient criterion for a given central
extension Z — G —» G to be weakly universal for all regular Fréchet—Lie groups A. It is
interesting that we do not need any perfectness assumption for our construction, but for groups
which are not simply connected, the existence of a central extension weakly universal for K
(which is R or C) implies that 71 (G) is contained in the Lie commutator group D(G) of the
universal covering group G of G.

In Section V we then turn to the existence problem for universal central extensions. For
finite-dimensional groups we find that the necessary condition 1 (G) C D(G) is already sufficient
for the existence of a central extension which is weakly universal for all regular Fréchet—Lie
groups. Under the assumption that the Lie algebra g of G has a central extension which is
weakly universal for all Fréchet spaces, R ® m2(G) is a finite-dimensional real vector space, and
m1(G) C D(G), we also obtain an existence result for Fréchet-Lie groups. If m(G) is too big
in the sense that R ® m2(G) is infinite-dimensional, then we have a finer criterion formulated in
Theorem V.7.

The outcome of this paper is that we see quite clearly where the obstructions for the
existence of (weakly) universal central extensions of Lie groups, resp., Lie algebras lie. For Lie
algebras difficulties may arise if they are not (algebraically) perfect or their second cohomology is
infinite-dimensional. Under the assumption that their Lie algebra has a weakly universal central
extension, the additional difficulties for groups come from the condition m;(G) C D(G) which is
quite harmless, and from the structure of m3(G) which is more serious because it is related to
the non-existence of Lie groups for given Lie algebra extensions.
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I. Central extensions of Lie algebras

All Lie algebras g in this section are assumed to be topological Lie algebras, i.e., g is a
topological vector space over K € {R,C} such that the Lie bracket is a continuous bilinear
map. We write Hom(g, h) for the set of continuous homomorphism between the topological Lie
algebras g and h and Lin(X,Y") for the set of continuous linear maps between the topological
vector spaces X and Y.

General properties of central Lie algebra extensions

Definition I.1.  (a) Let 3 be a topological vector space and g a topological Lie algebra. A
continuous §-valued 2-cocycle is a continuous skew-symmetric function w:g x g — 3 with

w([z,yl, 2) +w(ly, 2], 2) + w([z, 2], y) = 0.

It is called a coboundary if there exists a continuous linear map « € Lin(g,3) with w(z,y) =
a([z,y]) for all z,y € g. We write Z2(g,3) for the space of continuous j-valued 2-cocycles and
B2(g,3) for the subspace of coboundaries defined by continuous linear maps. We also define the
second continuous Lie algebra cohomology space

HX(g,3) = Z2(8,3)/B2(9,3)-

(b) If w is a continuous z-valued cocycle on g, then we write g @, 3 for the topological Lie
algebra whose underlying topological vector space is the product space g x 3, and the bracket is

defined by
[(z,2), (', 2")] = ([z,3'],w(z,a")).

Then q:g®, 3 — g, (x,z) — x is a central extension and o:g — g®, 3,« — (x,0) is a continuous
linear section of g. ]

Remark 1.2. (a) If ¢:g — g is a quotient homomorphism of topological Lie algebras with
ker g C 3(g) for which there exists a continuous linear section o:g — @, then

(1.1) w(z,y) = [o(x),0(y)] — o([z,y])
defines a continuous 3-valued 2-cocycle on g for which the map
P gduy =8 (,2) o)tz

is an isomorphism of topological Lie algebras.
(b) If ¢:g — g and ¢;: g1 — g are central extensions, then a morphism of central extensions is
a continuous homomorphism ¢:g — g; with ¢; o ¢ = ¢. We thus obtain a category of central
g-extensions. In particular, it is clear what an isomorphism of central g-extensions means.

For g =g ®, 3 and g = g ®, a a morphism ¢:g — g; has the form

o(x,z) = (z,a(z) + v(2)), a € Lin(g,a), -~ € Lin(3,a),
where the condition that ¢ is a Lie algebra homomorphism means that
a([z,2']) + y(w(w,2") = n(z,2"), x4’ €g.

It follows in particular that for a given v € Lin(3,a) an extension to a morphism of central
g-extensions exists if and only if [yow] =[] in H2(g,a).



4 Universal central extensions of Lie groups May 15, 2001

In particular, two central extensions g @, 3 and g ®, a are isomorphic if and only if there
exists an isomorphism y:3 = a with [yow] = [n].
(c) We call two central extensions g &, 3 and g @, 3 equivalent if there exists an isomorphism
of central extensions ¢:g @, 3 — g @, 3 inducing the identity on 3. In view of (b), such an
isomorphism exists if and only if [w] = [§]. Therefore w — g @, 3 induces a bijection between
the space HZ(g,3) and the set of equivalence classes of central extensions of g by j.
(d) If 3 =31 X 32 is a direct product, then we accordingly obtain a decomposition

H2(g,3) = H2(9,31) ® H2(g,32)-

(e) We write Vg := C®V for the complexification of a real vector space V. For K = R we have
Z2(9,3)c = ZZ(gc,5c), BX(9,3)c = Bi(ac,5c) and therefore also

HZ?(g,3)c = H.(gc,3c)- u

All central extensions ¢:g — g that we consider in the following will be linearly split in the
sense that there exists a continuous linear map o: g — g with goo = idy. In the preceding remark
we have explained how H?2(g,3) classifies the linearly split central extensions of a topological Lie
algebra g by a topological vector space j3.

Lemma I.3. Let 3 — ﬁ#g be a linearly split central extension with § = g ®, 3 for
w € Z2(9,3), and v:3 — a be a linear map. Then

a(7):=(@®a)/b, b={(z,—v(x)):z €5},

is a central extension of g with respect to the surjective map q,:9(v) — @, [(z,y)] = q(z), where
we write [(x,y)] := (z,y) + b, x €7, y € a, for the elements of g(y). It is equivalent to the
central extension g B~on a defined by the cocycle yow € Z2(g,a).

Proof. First we observe that

kerg, = {[(z,y)l:w € 3,y € a} = {[(0,y +7v(2))]:z € 3,y € a} = {[(0,y)]:y € a} = 0.

We write g as g &, 3 and consider the continuous linear map o.:g — g(7),z — [((x,0),0)]. The
corresponding cocycle is given by

[o(@), 04 ()] = o5 ([, 9]) = [((0, w(z,3)),0)] = [((0,0),y(w(z,1)))],

so that the cocycle corresponding to o, is yow € Z%(g,a). ]

The exact sequence for central extensions

If 3 C g is a central ideal, then we write Z2(g,3,a) for the set of continuous a-valued
cocycles w with w(3,d) = {0}. Then B2(g,a) C Z2(g,3,a) follows from 3([g,3]) = {0} for each
B € Lin(g,3), so that we may define

HZ(8,5,0) == Z2(8,5,%)/B2(8,0) € Z:(8,5)/B2(8, 0) = HZ(3,5)-

Theorem I1.4. Let
3 =00, 53— 0

be a linearly split central extension of topological Lie algebras defined by the cocycle w € Z2(g,3).
Then we have for each topological vector space a an exact sequence

0 — Hom(g, )~ Hom(g, a) — Lin(3, a)—>H2(g, )~ H2(g,3,a) — 0,
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where 04(y) = [yow].

Proof. The exactness in Hom(g, a) and Hom(g, a) is trivial because, since ¢ has a continuous
linear section, a continuous Lie algebra homomorphism g — a factors through ¢ if and only if it
vanishes on the kernel j.

Exactness in Lin(j,a): Let v € Lin(3,a). We write g = g ®,, 3, so that every continuous
linear extension 7:g — a of v has the form F(z,2) = a(x) + v(z) with « € Lin(g,3). Such an
extension is a Lie algebra homomorphism if and only if it vanishes on all brackets, i.e.,

0=79((z,2), (", 2")]) = a([z,2']) + y(w(z,2")) for =z, €g,z22 €3

The existence of a € Lin(g,3) with this property is equivalent to the triviality of the cocycle
yow € Z2(g,a). This proves the exactness in Lin(3,a).

Exactness in H?(g,a): First we show that ¢* o §; = 0. So let v € Lin(3,a) and consider
5 € Lin(g, 3) defined by F(z,z) := v(z). Then

?([(JI, Z)v (x’azl)]) = V(W(wawl)) = ’Y(W(Q(xv Z)v Q(xlv Z’))) = q*(7 o w)((waz)a ('TI,ZI))

implies that ¢*(vow) is a coboundary. This means that im(d,) C ker(¢*).
To see that ker(g*) C im(dq4), let ¢ € Z2(g,a) be a cocycle for which ¢*¢ is a coboundary.
Let 7 € Lin(g, a) with

F(z,2), (", 2)]) = ¢ ¢((x,2), (", 7)) = pl(w,2"), @,2" €g,2,2" €5

For ~4(z) :=7(x,0) and v(z) :=7(0,2) we then obtain

p(w,2") = va([z, 2']) + y(w(x, "))

which shows that [p] = [y o w] € im(d,).

Exactness in H2(g,3,a): First we note that for each ¢ € ZZ(g,a) we trivially have
q*¢ € Z2(g,3,0). If, conversely, 1 € Z2(g,3,a), then ¢ vanishes on g x 3, hence factors through
a continuous cocycle ¢ € Z?(g,a) with ¢*¢ = 1. This means that ¢*: H2(g,a) = H2(g,3,a) is
surjective. n

Coverings

In the following we write D(g) := [g,g] for the derived Lie algebra of a topological Lie
algebra g and ab(g) := g/D(g) for the largest abelian quotient of g.

Definition I.5. A central extension q:g — ¢ is called a topological covering if kerq C D(g) .m

Remark I.6. (a) That ¢:g — g is a topological covering is equivalent to the condition that the
restriction map Hom(g,a) — Lin(3,a) vanishes for each topological vector space a, considered
as an abelian Lie algebra. We conclude that if ¢ is a topological covering, then Theorem [.4
implies that the map
8q:Lin(3,a) — H2(g,q)

is injective.

(b) If g is locally convex, then the set Hom(g,K) of all continuous linear functionals on g
vanishing on D(g) separates the points of g/D(g). Therefore ¢ is a topological covering if and
only if Hom(g,K)|; = 0. [

Lemma 1.7. If g is topologically perfect and q:g — g 1is a topological covering, then g is
topologically perfect.

Proof. Since kerq C D(g), the quotient homomorphism g — ab(g) := g/D(g) factors through
a Lie algebra homomorphism g — ab(g) which is trivial because g is topologically perfect. This
implies that g is topologically perfect. ]
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Proposition 1.8.  Let ¢:g — g be a linearly split central extension of topological Lie algebras
with 3 = kerq which is a topological covering. Then we have for each topological vector space a
a short exact sequence

0 — Lin(3, a)LHf(g, a)LHE(ﬁaéaa) — 0.

Proof. This follows from Theorem 1.4 and Remark I.6. |

Definition 1.9. Let g be a topological Lie algebra.
(a) Let a be a topological vector space considered as a trivial g-module. We call a central
extension ¢:g — g with 3 = kerq (or simply the Lie algebra g) weakly universal' for a if the
corresponding map d,: Lin(3,a) — H2(g,a) is bijective.

We call q:g — g universal for a if for every linearly split central extension g;:g; — g of g
by a there exists a unique homomorphism ¢:g — g1 with ¢; o ¢ = g. Note that this universal
property immediately implies that two central extensions g; and g» of g by a; and as which
are both universal for a; and as are isomorphic.

(c) We call g centrally closed if H2(g,K) = 0. n

Remark I.10. (a) In view of Remark I.2(b), the injectivity of §; means that for each ¢ €
Z?2(g,a) all morphisms ¢p:g = g&, 3 — g P a of central extensions have the same restriction to
3 which in turn means that the natural map Hom(g, a) — Hom(g, a) is bijective.

A similar argument shows that &, is surjective if and only if for each ¢ € Z2%(g,a) there
exists a morphism ¢:g @, 3 — g ©¢ a of central extensions.

These observations show that g is a-universal if and only if the map §, is bijective and,
in addition, Hom(g, a) & Hom(g,a) = 0.
(b) For K = R we have §,. = 6, ® idc and (g &, 3)c = gc Duw. 3¢, where we € Z2(gc, 3¢)
denotes the unique complex bilinear extension of w € Z2(g,3) to a map gc X gc — jc (Remark
I.2(e)). From that it follows that g is (weakly) a-universal if and only if gc is (weakly) ac-
universal. ]

Lemma I1.11.  We consider the central extension g =g®,3 of g by 3.

(i) If gis universal for a, then it is weakly universal for a.

(i) If gis weakly universal for a # 0 and g and 3 are locally convex, then it is a topological
covering.

(i) If g and 3 are locally convex and g is universal for a # 0, then g and g are topologically
perfect.

(iv) If ¢:g — g is a topological covering with H>(g,a) = 0, then g is weakly a-universal.

Proof. (i) is a direct consequence of Remark 1.10(a).

(ii) In view of Theorem 1.4, we have Hom(g, a)|; = 0. Further a # 0 yields Hom(K,a) # 0, so
that we also get Hom(g, K)|; = 0, which means that the central extension g of g is a topological
covering because g is locally convex (Remark 1.6(b)).

(iii) The uniqueness assumptions for morphisms ¢:g — g ®¢ a implies in particular that 0 =
Hom(g,a) = Lin(g/D(g),a). Since, as a topological vector space, g = g x 3 is locally convex,
the same is true for the abelian Lie algebra g/D(g), so that the Hahn-Banach Extension
Theorem implies that the continuous linear functionals on this space separate points. Therefore
Lin(K, a) # 0 implies that g/D(g) is trivial, which means that g is topologically perfect. Since
the quotient map ¢:g — g is surjective and maps [g,g] onto [g, g], it follows that [g, g] is dense
in g, i.e., g is also topologically perfect.

(iv) In view of Theorem 1.4, the relation 3 C D(g) implies that d, is injective. Moreover,
H?2(g,3,a) C H2(g,a) = 0 entails that d, is surjective. [

L' In the literature one also finds the terminology “versal” with the same meaning, which is sort of justified
by Remark 1.10 according to which weak universality is universality without the uniqueness requirement.
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Lemma 1.12. Suppose that ¢:g — ¢ is weakly universal for K and that g and 3 are locally
convex. Then the following assertions hold:

(i) g s a topological covering.

(ii) @ is weakly universal for each finite-dimensional vector space a.

(iii) @ is universal for a # 0 if and only if g is topologically perfect and weakly a-universal.

Proof. (i) follows from Lemma I.11(ii).

(i) We write g = g ®,, 3 with w € Z2(g,3). Remark 1.10 and (i) imply that &, is injective, so
that it remains to show that it is surjective. So let ay,...,a, be a basis of a and ¢ € Z2(g,a).
Then ¢ = 2?21 pja; with p; € Z2(g,K). Since ¢ is weakly universal, there exist continuous
linear functionals A; € 3 with [A; o w] = nx(A;) = [¢;]. Hence we find §; € g’ with

(Ajow —@))(z,y) = Bi([z,y]), =,y€ap.

Define A € Lin(3,a) by X:=3>7_) A;-a; and B € Lin(g,a) by 8:= 37, 8;-a;. Then

(Aow_@>(w7y>:ﬂ([w7y])7 T,y €49,

which means that 74(A) = [A ow] = [¢]. Therefore d, is surjective, hence bijective.
(iii) If g is universal for a # 0, then g is topologically perfect and weakly a-universal by Lemma,
L.11(1),(iii).

If, conversely, D(g) = g, then for each space a, viewed as an abelian Lie algebra, (i) implies
that each Lie algebra homomorphism ¢:g — a vanishes on 3 C D(g), hence factors through g.
This implies that ¢ = 0 because g is topologically perfect. In view of Remark I.10(a), this
completes the proof. ]

Lemma 1.13. Let q;:9; — g be two linearly split central extensions and 3; = kergq;. If g1
and go are weakly universal for both spaces 31 and 32, then the central extensions g1 and g2 of
g are isomorphic.

Proof.  Let w; € Z2(g,3;) be cocycles with §; = g; ®u; 3;. We define ¢ 1= 9, ' ([wa]) €
Lin(31,32) and % := 9" ([w1]) € Lin(32,31). Then

I (Yop)=[popow]=1olpow]=1olw]=[pow]=[wn]=0;(id;)

implies that 3 o ¢ = id;, , and similarly we get ¢ o4 = id,,. Therefore ¢ is an isomorphism,
and each extension to a morphism of central extensions @:g; — g2, whose existence follows from
Remark I.10, is a topological isomorphism of central extensions. ]

Corollary 1.14.  The following conditions determine a linearly split central extension q:g — g

up to isomorphism:

(i) g and g are Fréchet—, resp., Banach—Lie algebras and g is weakly universal for all Fréchet,
resp., Banach spaces.

(i) g is weakly K-universal and ker q is finite-dimensional.

Proof. (i) If we have two central extensions with these properties, then Lemma I.13 implies
that both are isomorphic.

(ii) First we recall that the weak universality for K implies that g is also weakly universal for all
finite-dimensional spaces. Therefore the isomorphy of two weakly K-universal central extensions
with finite-dimensional kernels follows from Lemma 1.13. ]

The proof of the following theorem grew out of a discussion with F. Wagemann. Its main
idea can also be found in [Ro95].

Theorem 1.15.  If H2(g,K) is finite-dimensional, then g has a weakly K-universal central
extension q:g — g with finite-dimensional kernel which is unique up to isomorphism of central
extensions.
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Proof. Let wi,...,w, € Z%(g,K) be such that [w;], j = 1,...,r, is a basis of the finite-
dimensional space H?(g,K). We define 3 := K". By w(z,y) := (wj(2,y))j=1,...,r, We obtain a
3-valued continuous 2-cocycle on g. Let q:g := g @, 3 — g denote the corresponding central
extension.
If e, j =1,...,n, denotes the dual basis of 3*, then dk(e}) = [e] ow] = [w;] implies that
the map
Sk:3" 2 Lin(3, K) — HZ(g,K)

is a linear isomorphism, hence that ¢:g — g is weakly K-universal.
The uniqueness up to isomorphism follows from Corollary I.14(ii). ]

Problem I.1. (a) Suppose that g is locally convex and that dk is surjective. Does this imply
that &, is surjective for all locally convex spaces a?

(b) Does dim H?(g, K) < oo imply that D(g) has finite-codimension? One has a natural injection
I: Alt* (ab(g), K) = H7(ab(g), K) = Z7(g, K).

If T'(y) is a coboundary df, then / vanishes on [g, [g, g]], but this does not reduce the problem
to two-step nilpotent Lie algebras because the image of T' might consist of coboundaries if g is a
generalized Heisenberg algebra of the type A%(V) @&V with bracket [(z,v), (2',v")] = (vAv',0).m

II. Universal central extensions of Lie algebras

In this section we will study constructions of universal central extensions based on homology
of topological Lie algebras. To put this into an appropriate topological framework, we will
assume that all Lie algebras and topological vector spaces are locally convex. The main point is
that the tensor product of two locally convex spaces has a natural topology which behaves well
with respect to universal properties. Later we will anyway restrict our attention to Fréchet—Lie
algebras to discuss conditions for the existence of a central extension which is weakly universal
for all complete locally convex spaces. The main result of this section are the Existence Theorem
I1.11 and its consequences.

Definition II.1. Let E, F and G be locally convex spaces over K € {R,C}. Then the
projective topology on the tensor product £ ® F' is defined by the seminorms

(v a)(e) =it { 3opluy)az)e = v © %),

where p, resp., ¢ is a continuous seminorm on E, resp., F (cf. [Tr67, Prop. 43.4]). We write
E®, F for the locally convex space obtained by endowing E® F' with the locally convex topology
defined by this family of seminorms. It is called the projective tensor product of E and F. It
has the universal property that the continuous bilinear maps E x F' — (G are in one-to-one
correspondence with the continuous linear maps F ®, F — G (here we need that G is locally
convex). We write E®,F for the completion of the projective tensor product of E and F.

If E and F are Fréchet spaces, then every element of the completion E®,F can be written
as

(o]
6= Z)\nmn ® Yn,

n=1

where A\ € (1(N,K) and lim, oo 7, = limy, 00 yn = 0 ([Tr67, Th. 45.1]). If, in addition, E
and F' are Banach spaces, then the tensor product of the two norms is a norm on £ ® F' and
EQF also is a Banach space. For ||f]| < 1 we then obtain a representation with ||A||; < 1 and
lznll, llynll < 1 for all n € N ([Tr67, p.465]).
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We identify A?(E) with the quotient space of E®, E modulo the closed subspace generated
by all elements of the type z ® z. We thus obtain a locally convex topology on A?(E). Let
A2(E) denote its completion. Then we have a continuous bilinear map

ANExE— A2(E), (z,y)—zAy

with the universal property that every continuous bilinear map : E x F' — G to a locally convex
space GG can be written as ¢ = ¢’ o A for a unique continuous linear map ¢’ € Lin(E ® F,G) .m

Remark I1.2. Let E be a metrizable topological vector space and [N C E a closed subspace.
We write E for the completion of E and N for the closure of N in E which is isomorphic to
the completion of N. Then we have a natural map E/N — E/N with a dense range, where the
space on the right hand side is complete. Hence E / N is canonically isomorphic to the completion
of E/N (cf. [Tr67, Ex. 8.6]).

(b) Let ¢p: E — F be a continuous linear map between metrizable topological vector spaces
and @: E — F the canonical extension to the completions which are F'-spaces. Suppose that
@ is surjective. Then the Open Mapping Theorem implies that ¢ is an open map, so that
F~F / kerp. In general the subspace ker¢ is not dense in ker @. A typical example arises as

F—E/]K:L' for:L'EE\E and ¢(y) =y + Kr. Then kerp =0 and kerp = Kz. u

Definition I1.3. Let g be a complete topological Lie algebra which is a locally convex space.
The Lie bracket yields a continuous linear map b: A2(g) — g. Let

Z3(g) =kerb C Ai(g) and Hj(g) == Z5(a)/B5(0),

where BS(g) C Z5(g) denotes the closure of the subspace By(g) spanned by all elements of the
type
ANy, 2l+y Az o]+ 2 A fx,y]

(cf. [Fu86]). We define
H3(g) := Z5(0)/ B3(9)-

As a quotient of a locally convex space, this homology space inherits a natural structure as a
locally convex space, but there is no a priori reason for it to be complete!. ]

Lemma II.4. Let rocov(g) := A%(g)/BS(g) and write T := x + BS(g), = € A%(g), for the
elements of wcov(g). Then the continuous bilinear map

AZ(g) x AZ(g) = AZ(g), (z,y) = b(z) Ab(y)

induces on the quotient space wcov(g) a Lie bracket with the following properties:

(i) The natural map b:rocov(g) — g, T > b(x) is a homomorphism of Lie algebras.

(i) HS(g) = Z5(g)/Bs(g) = kerb is central in rocov(g).

(iii) For every complete locally convex space 3 we have Lin(wcov(g),3) = Z2(g,3), the space of
continuous 3-valued 2-cocycles. In particular rocov(g) = Z2(g,K).

(iv) The natural action of g on A%(g) induces an action of g on rocov(g) by derivations.

(v) The map wcov(g) x g — g, (z,y) — b(z) +y is a homomorphism of Lie algebras.

Proof.  That the bracket is well defined follows from B$(g) C Z5(g) = kerb. It is clearly

skew-symmetric, so that it remains to verify the Jacobi identity. For z,y,z € A%(g) we have

[@,[7,7]] = [7,b(y) Ab(2)] = b(z) Ab(b(y) Ab(2)) = b(a) A [b(y), b(2)]-

L'In §31.6 of K6the’s book [K&69] one finds an example of a complete locally convex space X and a closed
subspace YCX for which the quotient space X/Y is not complete. This does not happen if X is metrizable and
complete, i.e., an F-space. Then all quotients of X by closed subspaces are complete.
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Summing over all cyclic permutations, the definition of BS(g) implies that the Jacobi identity
holds in wcob(g).
(i) That the map b:tocov(g) — g is a homomorphism of Lie algebras follows from

[7,7]) = b(b(=) A b(y)) = [b), b(»)] = [b(@), b@)]-

(ii) If b(z) = 0, then [Z,7] = b(z) A b(y) = 0 for all ¥ € rcov(g) implies that T € 3(wcov(g)).
(iii) This is an immediate consequence of the definitions. The space Lin(A2(g),3) corresponds to
the space of continuous skew-symmetric bilinear maps g x g — 3, and the annihilator of BS(g),
which can be identified with Lin(wcov(g),3), is the subspace of 2-cocycles.

(iv) Since the action of g on A?(g) is an action by continuous linear maps preserving the
subspace B(g), we obtain an action of g on the completion A2(g) preserving the subspace
B5(g). Therefore we also obtain a natural action on wcov(g). To see that each x € g acts on
rocov(g) by a derivation, we first observe that the homomorphism b: tocov(g) — g is g-equivariant,
which follows from

b(zyAz) =blz,yl Az +yAln,z]) =b([z,y] Az +y Al 2])

=[lz,y], 2] + [y, [z, 2]] = [, [y, 2]] = [, by~ 2)]

for y,z € g. Now we obtain

2.[y,7] = z.b(y) A b(2) = [2,b(y)] Ab(2) + b(y) A [z, b(2)]
=b(z.7) Ab(2) +b(y) Ab(x.Z) = [¢.7,Z] + [7, 2]

(v) This follows from

o[z, 2"+ yo' =y, [y, y']) = b([w, «']) + bly.-2") = b(y' ) + [y, ¥/]
[b(2), b(z")] + [y, b(=")] = [, b(@)] + [y, 4] = [b(x) +y,b(z") +¢].

([(z, v), (", y")])

Proposition I1.5.  If g is a complete locally convex Lie algebra, then the map c:gxg — x Ay
is a rocov(g) -valued 2-cocycle and the corresponding central extension q:g := g D, weov(g) — ¢
has the following properties:

(a) For every central extension g @, 3 there exists a homomorphism p:g — g ©, 3 with
Plrcon(a) = W, viewed as an element of Lin(wcov(g),3) .

(b) D(g) Nrcov(g) = H5(g)-
Proof. That c is a cocycle follows directly from the fact that

Ny, 2l +y Nz 2l + 2 A [z,y] € By(g)

for z,y,z € g.
(a) We simply define ¢(x,2) := (z,w(z)) and obtain

o(((z,2), (@, 2)]) = o(fr,2'],z Aa') = ([z, 2], w(z A ')
= ([z,2'],w(@,2") = [e(x, 2), p(a', 2]

(b) The brackets in g are all of the form (b(z),Z) = (b(Z),Z), = € A?(g), and, conversely, all
these elements are contained in D(g). It follows in particular that {0} x HS(g) C D(g). Since
the map b:rocov(g) — g is continuous, its graph is closed, hence contains D(g). Therefore
D(g) N ({0} x weov(g)) C {0} x kerd = {0} x H5(g). .
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Definition II.6.  In the following we will always identify the space Z2(g,3) of continuous
3-valued 2-cocycles on g with the space Lin(wcov(g),3). Then B3(g,3) = imE*, where " is the
pull back map Lin(g,3) — Z2(g,3) = Lin(wcov(g),3). On the other hand H$(g) = kerb, so that
the restriction map Z2(g,3) — Lin(HS$(g),3) factors through a map

ny: H2(g,3) — Lin(H5(g), 3)- u

On can show that the Lie algebra g = B2(H) of Hilbert-Schmidt operators on an infinite-
dimensional Hilbert space satisfies HS(g) = 0 and H?(g,K) # 0 (cf. [NeOla]). This means in
particular that the map 7k is in general not injective.

In the following we call a closed subspace E of a topological vector space X projectable
if there exists a continuous projection p: X — X with p(X) = E. If X is an F-space, i.e.,
complete and metrizable, then the Open Mapping Theorem implies that a closed subspace £ C X
is projectable if and only if it is complemented in the sense that it has a closed vector space
complement.

Lemma II.7. (a) If 3 is finite-dimensional or the subspace HS(g) C tocov(g) is projectable,
then n;: H2(g,3) — Lin(HS(g),3) is surjective. In particular nx: H?(g,K) — HZ2(g)' is surjective.
(b) If H?(g,K) is finite-dimensional, then HS(g) is finite-dimensional.

(c) If H?(g,K) =0, then HS5(g) = 0.

Proof. (a) If 3 is finite-dimensional, then every continuous linear map a: HS(g) — 3 extends
to a continuous linear map &:rcov(g) — 3 by the Hahn-Banach Theorem. Hence a = n;([@]),
if we consider & as an element of Z2(g,3).

If HS(g) is the range of a continuous projection p on rcov(g), then ¢ o p is an extension
of a linear map ¢: H5(g) — 3 to tocov(g). Therefore n; is surjective for each topological vector
space j.

(b) If the locally convex space HS(g) is infinite-dimensional, then its dual space H§(g)' is also
infinite-dimensional, so that (a) implies that H?(g,KK) is infinite-dimensional.
(c) follows directly from (a) because H$(g)' separates the points of HS(g). ]

Lemma II.8. Suppose that g is a Fréchet—Lie algebra for which b has closed range.

(i) If for the locally convex space 3 each continuous linear map D(g) — 3 extends to a continuous
linear map g — 3, then

n;: H; (9,3) — Lin(H(g),3)

is injective. A cocycle w € Z2(g,3) is a coboundary if and only if for each o € §' the cocycle
aow s a coboundary.

(i) If 3 is finite-dimensional, then n; is bijective.

(iii) If HS(g) C weov(g) and D(g) C g are projectable, then for each complete locally convex
space 3 the map n; is bijective.

(iv) Let w € Z%(g,3) and q¢:g := g D, 3 — g be the corresponding central extension. Then the
following assertions hold:

(a) D(g) +3=D(g) x 3 and ¢(D(g)) = D(g).

(b) D(g) N3 = immn;(w).

() If D(@)N3 =0 and either D(g) is projectable or } is finite-dimensional, then [w] = 0.

(d) For a € 3' we have [aow] =0 if and only if a vanishes on 3N D(g).
Proof. (i) The assumption that b has closed range means that its range is D(g). Now we
apply the Open Mapping Theorem to the induced map b: weov(g) — D(g) which is a continuous
surjection between Fréchet spaces, hence a quotient map. For 7;(f) = 0 we conclude that

f € Lin(rcoo(g),3) = Z2(g,3) factors through a continuous linear map f:D(g) — 3 with
fob=f, which means that f is a coboundary. Therefore n; is injective.

In particular, a cocycle w € Z%(g,3) is a coboundary if and only if HS(g) C kerw. The
continuous linear functionals on the locally convex ; separate points, so that n;([w]) = 0 is
equivalent to the condition that for each « € 3' the cocycle « ow vanishes on HS(g) which in
turns means that it is a coboundary.
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(ii) If 3 is finite-dimensional, then Lemma II.7(a) implies that n; is surjective. Moreover, the
Hahn-Banach Extension Theorem implies that each continuous linear map D(g) — 3 extends to
a continuous linear map g — 3, so that (i) entails that n, is also injective.

(iii) In view of Lemma II1.7(a), the projectability of H5(g) implies that n; is surjective. Moreover,
in view of (i), the projectability of D(g) entails that n; is also injective.

(iv)(a) The inclusion “C” is trivial. It remains to show that D(g) x O is contained in the left
hand side. Let « € D(g) and pick a sequence z,, € [g,g] with x,, = . Since b has closed range,
the induced map b: A%(g) — D(g) is a surjective map between Fréchet spaces, hence open by the
Open Mapping Theorem ([Ru73, Cor. 2.12]). Therefore there exists a sequence y,, € A%(g) with
yn — y and b(y,) = ©,. Then

(@n,w(yn)) = (b(yn), w(yn)) = (z,w(y)) € D(g).

(b) We consider the map
b:=bxwA%(g) > §=0gb 3

For z,y € g we have

~

b(x,y) = (b(x,y),w(@,y)) = ([z,y], w(x,y)) = [(2,0), (v, 0)],

which shows that im b = D(g) because g A g is dense in A2(g). Moreover, we have

-~

(imd) N3 = w(Z5(g)) = 1;(w) (Hs(g)),

which implies the inclusion “27”.
Let (0,2) € D(g) N3 and pick a sequence (zy,z,) € [8,8] with (z,,2,) — (0,2). As in
(a), we find a sequence y,, € A%(g) with y, — 0 and b(y,) = x,,. Then

~

(@n, 2n) — byn) = (0,20 —w(yn)) — (0,2)
implies that z € im(n; (w)) because (0,2, —w(yn)) € (img) N3 = im(n;(w)).
(c) In view of (b), our first assumption implies that n;(w) = 0. The second assumption entails
that the restriction map Lin(g, 3) — Lin(D(g),3) is surjective, so that (a) implies [w] = 0.
(d) First (b) shows that « vanishes on 3N D(g) if and only if aon;([w]) = nk([aow]) = 0. Now
the assertion follows from the injectivity of ng proved in (ii). [

If D(g) has finite codimension in g, then D(g) is projectable, so that the map Lin(g,3) —
Lin(D(g),3) is surjective, and the assumption in Lemma I1.8(i) is satisfied.

Corollary I1.9. If g is a Fréchet—Lie algebra for which b is surjective, then for each complete
locally convex topological vector space 3 the map n;: H2(g,3) — Lin(H$(g),3) is injective. This
holds in particular if g s perfect. ]

Proposition I1.10.  For a perfect Fréchet—Lie algebra g the following are equivalent:

(1) H?2(g,3) = 0 for all complete locally convex spaces .

(2) g is centrally closed, i.e., H?(g,K) = 0.

(3) H3(g) =0.

Proof. (1) = (2) is trivial.

(2) = (3) is Lemma IL.7(c).

(3) = (1): In view of Corollary IL1.9, for each complete locally convex space 3 the map
ny: H2(9,3) — Lin(HS(g),3) is injective. Hence (3) implies that that H?(g,3) vanishes. L]

The following theorem is a central result of this section.
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Theorem II.11. (Existence Theorem) Let g be a Fréchet-Lie algebra for which H5(g,K) C
wcov(g) is projectable, D(g) is projectable in g, and b has closed range. Then g has a central
extension

3=Hi(g) 29 =g®u3 >0
which is weakly universal for each complete locally conver space.

Proof. Let 3:= H5(g). In view of Lemma II.8(iii), the map

ny: H2(g,3) — Lin(H$(g),3) = Lin(3,3)

is bijective. Let w € Z2(g,3) be a representative of n;l(idg). Then for each complete locally
convex space a the map
Sa:Lin(z,a) = H2(g,a), a+ [aouw]

is a bijection because (14 0da)(a) = aow|mg(g) = @, and 7, is bijective (Lemma I1.8(iii)). This
implies in particular that g := g @, 3 is weakly a-universal, and the proof is complete. ]

The following corollary is a stronger version of Theorem 1.15 for a more restricted class of
Lie algebras. Here the refined information on the structure of g permits us to draw stronger
conclusions.

Corollary I1.12.  Let g be a Fréchet-Lie algebra for which b is surjective and the subspace
H2(g,K) of wcov(g) is complemented. Then b:wcov(g) — g is a linearly split central extension
which is universal for each complete locally convex space a.

Proof. The surjectivity of b:wcov(g) — g entails D(g) = g. Therefore all assumptions
of Theorem II.11 are satisfied. Since 3 := HS§(g) is complemented, there exists a continuous
projection p:rocov(g) — Hs(g) and o:g — wcov(g),b(z) — = — p(x) is a continuous section of
b. The corresponding cocycle satisfies

) = [z = p(@),y = pW)] = ([z.y] = p(z,y])) = p(lz,y]) = p(b(x) Ab(y)).

<

w(b(x),

This means that p is the element of Lin(rcov(g),3) representing w, and we have n;(w) = id;.
Hence the central extension constructed in the proof of Theorem I.11 is equivalent to tocov(g).
This completes the proof. [ ]

Corollary I1.13.  Let g be a perfect Fréchet-Lie algebra for which H2(g,K) is finite-dimen-
sional. Then b:rocov(g) — g is a central extension with kernel HS(g) which is universal for each
complete locally convex space a.

Proof. Since g is perfect, the map b: rocov(g) — g is surjective. Moreover, the HS(g) is finite-
dimensional by Lemma II.7, hence projectable. Therefore all assumptions of Corollary I1.12 are
satisfied. u

Examples I1.14. (a) (Restricted Lie algebras) Let H be an infinite-dimensional complex
Hilbert space and g := B2(H) the complex Hilbert-Lie algebra of Hilbert— Schmidt operators
on H. Let D € B(H) be a hermitian operator with finite spectrum and 3z (D) its centralizer
in the Lie algebra B(H). Then g(D) := g + jp)(D) C B(H) is called the restricted Lie
algebra associated to g and D. If Hy,...,Hy are the eigenspaces of D, then the centralizer
3(m) (D) of D is isomorphic to @leB(Hj). Viewing operators on H as block matrices with
entries in B(H;, Hy), the elements of g(D) are those matrices whose off-diagonal entries are
Hilbert—Schmidt. In [Ne0O1b, Prop. I.11] we have seen that the Lie algebras g(D) have a natural
Banach—Lie algebra structure and that

dim HZ(g(D),C) = [{j:dim H; = co}| — 1.

Moreover g(D) is perfect ([NeOlb, Prop. 1.10]), so that Corollary II.13 shows that g(D) has a
universal central extension with center 3 = HS(g(D)).
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Similar results hold for the Lie algebras g(D), where
g={x € By(H): Iz*] ' = —x}

for an antilinear isometry I with I2 = £1 and ID = —DI.

(b) (Virasoro Lie algebra) Let g denote the Lie algebra of smooth vector fields on the circle
St = R/Z. Then g can be identified with the Fréchet space C°°(S!,R) endowed with the Lie
bracket

[f,9l=1rg - f'g.

Using the Fourier expansion of such functions, it is easily seen that g is perfect. Moreover,
dim H2(g,R) = 1, and a generating cocycle is given by

w(f,g) = /Slf’g” — f"qg dt

([R095, p. 237]). Corollary I1.13 applies and shows that the corresponding central extension bit,
called the Virasoro algebra, is universal for all complete locally convex spaces and isomorphic to
rcoo(g).

(c) Let € be a simple compact Lie algebra and A a commutative unital associative Fréchet
algebra. Then g:= A ®g ¢ has a natural structure of a Fréchet—Lie algebra with the bracket

[f@z,g®y]:= fgx[z,y]

From the perfectness of £ and the existence of an identity in A it easily follows that g is perfect.

Let Q'(A) denote the topological version of the module of Kihler differentials of A and
da: A — Q(A) the differential. Further let 3 := A/imds and denote the elements of 3 by [a],
a € Q1(A). Then 34 is a Fréchet space. If x denote the Cartan-Killing form on €, then we
obtain a cocycle w € Z2(g,3) by the formula

It is shown in [Fe88, p. 61] (see also [Ma01]) that dim H2(g,R) = 1 and that [w] is a generator of
the second cohomology space. That w is non-trivial can easily be seen as follows. Let 0 # x € £
and note that s(z,z) # 0. Then

w(f ©w,g @) =r(r,o)[fda(g)] and [fOz,902]=0

implies that w is non-trivial. Again we are in a setting where Corollary 11.13 applies.

For the special case A = C(X,K), X a compact space and K € {R,C} it is shown in
[Ma01] that Q'(A) = 0. The situation is different for the Fréchet algebra A = C°°(M) of smooth
functions on a finite-dimensional smooth manifold. Then Q!(A) is the space of smooth 1-forms
on M and dq:C®(M) — QY(M) is the natural differential ([Ma0l]). Therefore imdy is the
space of exact 1-forms. Since this space is contained in the closed space of closed 1-forms and
a closed 1-form is exact if and only if all its period integrals vanish, the range of d4 is closed.
Therefore 3 = Q'/imd4 has a natural Fréchet space structure and contains H}g (M,R) as a
closed subspace. u

The following proposition explains where to look for weakly universal central extensions.
We will see in Section III that it can in particular be used to prove that in certain cases weakly
universal central extensions do not exist.

Proposition I1.15.  Let g be a Fréchet-Lie algebra, 3 a Fréchet space, and g = gD, 3 be a
central extension of g by 3 which is weakly universal for 3 and all quotients of wcov(g). Then
the following assertions hold:

(i) The cocycle w € Lin(wcov(g),3) induces an isomorphism rocoo(g)/ kerw — 3.

(ii) g is a topological covering.



15 unicen.tex May 15, 2001

(iii) @ is weakly universal for all complete locally convex spaces a.
(iv) Identifying Lin(3,a) with the subspace of Z2(g,a) = Lin(tcov(g),a) consisting of all those
linear maps factoring through 3, we have for each complete locally convex space a the relation

Z?(g,a) = Lin(3,a) ® B2 (g, a).

Proof. (i) Let p:rocov(g) — 3 := wcov(g)/ kerw denote the quotient map and ¢;:3 — 3 the
injective map induced by w. Then w = ¢; opo ¢, where ¢ € Z2(g,wcov(g)) is the universal
cocycle c(x,y) ;= z Ay (Proposition I1.5). Since g is weakly universal for 3, there exists a linear
map « € Lin(3,3) with [yow] =[poc]. Now

0;(g507) =[gs0vow] =[gs0poc] = [w] = ;(id;)

implies that g; oy = id; because g is weakly j-universal. Moreover, we have g; oyog; = g;, so
that g; o (yogq; — 1d;) and the injectivity of ¢; entail yog¢; = id;. Therefore g; is a topological
isomorphism.

(ii) If 3 = O this is trivial, and if 3 # 0, it follows from Lemma I.11(ii).

(iii) Since g is a topological covering, Proposition 1.8 implies that for each topological vector
space a the map J, is injective. To see that it is also surjective if a is complete and locally
convex, let n € Z2(g,a) = Lin(rocov(g), a), define a := wcov(g)/ kern, and write g,:a — a for
the injective continuous map induced by 5. Further let p:rocov(g) — @ denote the quotient map
and ¢ € Z2(g,wcov(g)) the cocycle from the proof of (i). Then g, opoc=r1. Since g is weakly
universal for @, there exists an « € Lin(3,a) with [¢ow] = [poc]. Now

da(gaoa) =[gaoaow]=[gaopoc| =y

(iv) Identifying Lin(3,a) with a subspace of ZZ(g,a) = Lin(rocov(g),a), the cocycle w corre-
sponds, as a linear map rcov(g) — 3, to the quotient map p, and each v € Lin(3,a) is identified
with o p. Hence the map

Sa:Lin(z,a) = HZ(g,a), da(v) = [yop]

corresponds to the restriction of the quotient map Z2(g,a) — H?2(g, a) to the subspace Lin(3,a).
Since d, is bijective by (iii), the assertion follows. |

In the remainder of this section we give some more details on how the topological structure
of g influences the extension theory. The main point of Proposition I1.16 below is that is explains
how the cohomology space H?Z(g,3) is built together from pieces coming from the algebraic
structure of g which is somehow encoded in the homology space H$(g), and other pieces which
come from topological obstructions to extend maps im(b) — 3 for which the composition with b
is continuous to continuous linear maps on g.

Proposition II.16. Let rocov(g)req = rocov(g)/HS(g) with quotient map g:rocoo(g) —
rcov(g)req. Then we have an injective map breq:wcov(g)ea — D(g) with dense range and
bred © ¢ = b. Moreover, for every complete locally convex space 3 we have the following exact
sequence of maps:

. . Zre N . [ < 3 - c
Lin(ab(g),3) < Lin(g, 3= Lin(roco0(g)red, 5) — H2(g, 5) = Lin(H5 (g), 3),

where 0;(¢) = [p o q] and we use the identification Lin(rocov(g),3) = Z2(g,3)

Proof. Exactnessin Lin(g,3) means that a continuous linear map ¢:g — 3 is the pull-back of
a linear map ab(g) — 3 if and only if it vanishes on the range of byeq. This follows immediately
from the density of the range of this map in D(g).
The exactness in Lin(tocov(g)red, 3) is the definition of the space B2(g,3) of coboundaries.
The exactness in H2(g,3) follows from the fact that n;([w]) = 0 if and only if w, viewed as
an element of Lin(rocov(g),3), vanishes on HS(g), but this in turn means that it factors through
a continuous linear map 1cov(g)rea —+ 3, which means that it is contained in the range of J;. =
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Corollary I1.17.  If g is topologically perfect and H$(g) = 0, then for each complete locally
convex space 3 we have

H(g,3) = Lin(wcov(g),3)/ Lin(g, 3).
Proof. In this case the exact sequence in Proposition II.16 reduces to a short exact sequence

Lin(g, 3) < Lin(twcov(g)red, 3) = Lin(wcov(g),3) —» H: (g, 3). m

Example II.18. (a) A typical example, where Corollary II.17 applies is the Lie algebra g =
By(H) of Hilbert-Schmidt operators on an infinite-dimensional K-Hilbert space. If B (H)
denotes the space of trace class operators on H, then we have H$(g) = 0, wcov(g) = sl(H) =
{z € By(H):trz = 0}, and g is topologically perfect. Therefore the isomorphism g 2 g’ obtained
from the trace form yields

HZ(g,K) = wcov(g)' /g’ = sl(H)' /g = pal(H) /g,

where pgl(H) := B(H)/K1 (cf. [NeOlal).

(b) Let g be an abelian locally convex Lie algebra. Then Z§(g) = A2?(g) and D(g) = 0, so that
g trivially satisfies the assumption of Theorem II.11. On the other hand it follows directly from
the definitions that

ny: H2(g,3) = Alt*(g,3) — Lin(Hj(g),3) = Lin (A2(g), 3)

is a bijection. u

Remark II.19. (a) In the algebraic theory of Lie algebras, there are no problems arising from
non-splitting of certain subspaces or non-extendability of linear maps. Therefore wcov(g) :=
A?(g)/Ba(g) is a central extension of [g,g], and the preceding arguments imply that for each
vector space 3 the map

ns: H*(g,5) — Lin(H>(g),3)

is a linear isomorphism.

(b) For an infinite-dimensional space Z and a closed subspace B of the Fréchet space A, the
restriction map Hom(A, Z) — Hom(B, Z) need not be surjective. A simple example is given by
A=7=c¢(N,R) C B =(*(N,R). Then there is no continuous linear map ¢: B — Z with
@ |a = id4 because the kernel of such a map would be a closed complement of A, but such a
complement does not exist.

If, conversely, B has a closed complement C', then the Open Mapping Theorem implies
that the addition map BxC — A is a homeomorphism. Hence the restriction map Hom(A4, Z) —
Hom(B, Z) is surjective for every topological vector space Z.

(¢) One could also describe the range of 1 by extending the exact sequence from Proposition
I1.16 further by a map

(2.1) Lin(H5(g),3) — Ext(rocov(g)red;3),

where Ext(X,Y) stands for the group of equivalence classes of extensions of the topological
vector space X by the topological vector space Y. The map (2.1) can be described as follows.
Let E be a closed subspace of the topological vector space F' and G := F/E. Then we have a
map

~v:Lin(E,3) — Ext(G, 3)

given by

Fi=(Fx3)/{(z,p):z € E}, ¢F—=G, q(fz]):=f+E,

where v(p): 5 — F —» G stands for the corresponding exact sequence. Note that ¢ is continuous,
so that its graph is a closed subspace of F' x 3. It is easy to see that the subspace 3 C F splits
topologically if and only if ¢ extends to a continuous linear map F' — 3. In fact, a linear section
0:G — F can always be written as o(z + E) = [z, f(z)], where f:F — 3 is a linear map
extending . The image of o is a closed subspace of F if and only if its inverse image, the graph
of f, is a closed subspace of F x 3. In view of the Closed Graph Theorem (which applies to
mappings between Fréchet spaces), this condition is equivalent to f being continuous. u
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III. The special case of Banach—Lie algebras

In this section we briefly discuss the special case of Banach—Lie algebras because some of
the results, resp., assumptions from the preceding section simplify for Banach—Lie algebras. This
is due to the fact that the rich theory of operators on Banach spaces sometimes can be used to
weaken the assumptions we had to make in Section II.

If g is a Banach-Lie algebra, then A%(g) also is a Banach space, so that twcov(g) inherits
the structure of a Banach—Lie algebra.

Lemma ITL.1. If ¢: X — Y is a continuous linear map between F -spaces and ¢(X) has finite
codimension, then o(X) is closed.

Proof.  This is proved as [HS71, Satz 25.4]. We only need that the Open Mapping Theorem
also holds for F'-spaces. u

Lemma IIL.2. If o: E — F is a continuous linear map between Banach spaces whose adjoint
@' F' — E' has finite-dimensional cokernel, then o(E) is closed.

Proof. First we use Lemma III.1 to conclude that im(¢') is closed, and then the Closed Range
Theorem ([Ru73, Th. 4.14]) to see that this implies that ¢(E) is closed. n

Lemma IIL1.3. If g is a Banach-Lie algebra with dim H?(g,K) < oo, then b has closed range.
Proof. We consider the homomorphism b: wceov(g) — g which has the same range as . Then

im(%') = B2(g,K) C Z2(g, K) = wocov(g)’.

Therefore our assumption implies that b has finite-dimensional cokernel, and hence that b has
closed range (Lemma II1.2). ]

Lemma IIL.4. If H?(g,K) = 0 and D(g) has finite codimension, then H2(g,3) = 0 for all
complete locally convex spaces .

Proof. First we use Lemma III.3 to see that the bracket map b has closed range. The
assumption that D(g) has finite codimension implies that the assumptions of Lemma II1.8(i) are
satisfied, so that for each complete locally convex space 3 the map n;: H2(g,3) — Lin(H5(g),3)
is injective. Since H$(g) = 0 by Lemma IL.7(c), the space H?(g,3) vanishes. =

The following proposition is an extension of the results in Proposition I1.10 for Banach-Lie
algebras.

Proposition IIL.5.  For a Banach-Lie algebra g for which D(g) has finite codimension the
following are equivalent:

(1) H2(g,3) = 0 for all complete locally convex spaces .

(2) g s centrally closed.

(3) HS(g) =0 and im(b) is closed.

Proof. (1) = (2) is trivial.

(2) = (3) follows from Lemma II.7(c) and Lemma III.3.

(3) = (1) As in the proof of Lemma II1.4, the assumption that D(g) has finite codimension
implies that the assumptions of Lemma I1.8 are satisfied, so that for each complete locally convex
space ; the map n;: H2(g,3) — Lin(H$(g),3) = 0 is injective, and therefore H?(g,3) vanishes.m

Example IIL.6. (Full operator Lie algebras) Let g := B(H) be the Banach-Lie algebra of
bounded operators on an infinite-dimensional Hilbert space H. Then g is perfect and centrally
closed ([NeOlb, Lemma 1.3,Prop. 1.5]). Therefore Proposition IIL5 implies that H?(g,a) = 0
for each complete locally convex space a. Now Lemma I.11(iv) shows that g is a covering of
g := B(H)/C1 which is universal for all complete locally convex spaces. |
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Lemma IIL.7. Let X be a Banach space, Y C X a closed subspace and Z a Banach space
for which there ezists a continuous injective map j:Z — X with X = j(X)® Z. Then j(X) is
closed and 7 is an embedding.

Proof. Themap Y xZ — X,(y,z) — y + j(2) is a continuous bijection of Banach spaces,
hence an isomorphism by the Open Mapping Theorem. It follows in particular that j(X) is
closed and that j is an embedding. ]

The following theorem shows that for topologically perfect Banach—Lie algebras the condi-
tion in the Existence Theorem II.11 is necessary for the existence of a weakly universal central
extension.

Theorem III.8. Let g be a topologically perfect Banach—Lie algebra and g = g ®, 3 a central
extension which is weakly universal for all Banach spaces. Then the central extension g — g is
equivalent to the one given by the bracket map E:mcon(g) — g which is surjective. Moreover,
HS(g) is complemented in tocov(g) .

Proof. We know from Proposition IL.15 that 3 is a quotient of wcov(g). Let g;:rocov(g) — 3
denote the quotient map. Then Proposition I1.15 also implies that

weov(g)’ = Z72(g,K) = im(q)) ® B (9,K),

where im(g;) is closed. Therefore Lemma IIL7 implies that B?(g,K) is a closed subspace of
the Banach space tocov(g)’. This means that the range of the adjoint of the bracket map
b:tocov(g) — g has closed range, so that the Closed Range Theorem ([Ru73, Th. 4.14]) shows
that im(b) is closed. Since im(b) is dense because of D(g) = g, it follows that b is surjective,
and hence that b is surjective.

Lemma IL.7 and Corollary I1.9 imply that the map nx: H2(g, K) — H$(g)' is bijective.
Identifying HZ(g,K) via 6, with 3’ C wcov(g)’, it follows that the adjoint map of g; |Hg(g) 18 @
bijective continuous map

(¢ |rs ()" 3" — Hs(g)".
We conclude that ¢; maps Hj(g) injectively onto a dense subspace of 3, and Lemma III.2 further
implies that it is closed, hence that g; | H;(g) 1S an isomorphism of Banach spaces. It follows in

particular that kerg; is a closed complement of H5(g) in wcov(g). Now Theorem II.11 and the
uniqueness assertion from Corollary 1.14 imply that g = rcob(g). [

Example II1.9. We recall the setting of Example I1.18(a). Here g = By(H) is the Hilbert-Lie
algebra of Hilbert-Schmidt operators on an infinite-dimensional Hilbert space and mwcov(g) =
s[(H), where the natural map b:rocov(g) — g is the inclusion map sl((H) — By(H). Since the
range of this map is dense and not closed, and g is topologically perfect, Theorem IIL.8 implies

that g has no central extension which is weakly universal for all Banach spaces. u

IV. Weakly universal central extensions of Lie groups

In the following we will use the concept of an infinite-dimensional Lie group modeled over a
sequentially complete locally convex space ([Mil83]). In this context central extensions of Lie
groups are always assumed to have a smooth local section, i.e., they are locally trivial smooth
principal bundles. Let Z < G — G be a central extension of the connected Lie group G by
the abelian group Z which is regular in the sense that its identity component Z. is isomorphic
to 3/m(Z), where 3 is the Lie algebra of Z. This means that the additive group of 3 can be
identified in a natural way with the universal covering group of Z., and that Z. is a quotient
of the sequentially complete locally convex space 3 modulo a discrete subgroup which can then
be identified with m1(Z). Since the quotient map ¢:G — G has a smooth local section, the
corresponding Lie algebra homomorphism g — g has a continuous linear section, hence is
isomorphic to g &, 3 for some w € Z2(g,3) (Remark 1.2).
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From [Ne00, Def. IV.10] we recall the period homomorphism per,,: m2(G) — 3 of w which
on smooth representatives 7:S* — G of elements of m3(G) is given by per,([v]) = [57*Q,
where Q is the 3-valued left invariant 2-form on G with Q. = w ([Ne00, Th. IV.12]). If we
have a central Lie group extension g: G- G as above, then the period map can be interpreted
topologically as the connecting map w2(G) — 71 (Z) in the exact homotopy sequence

m(2) =1 5 m(GF) = m(G) = m(Z) = 711 (G) = 71 (G) = mo(Z) = mo(G) = mo(G) = 1
of the Z-principal bundle G ([Ne00, Prop. VIL7]).

We recall from [Ne00, Prop. IV.2] that central Lie group extensions as above can always
be written as R

G=2d Xf Z,

where f € Z2(G, Z), the set of group cocycles f: G xG — Z which are smooth in a neighborhood
of (e,e), where e € G is the identity element. Two such cocycles fi, fo define equivalent
extensions if and only if their difference fif, ! is of the form h(gg')h(g)~'h(g')™", where
h:G — Z is smooth in an identity neighborhood. The abelian group of all these functions
is called B2(@G, Z), and the quotient group H2(G, Z) := Z2(G, Z)/ B%(G, Z) now parameterizes
the equivalence classes of central Z-extensions of G with smooth local sections ([Ne0O, Remark
v 4)).

The abelian Lie groups A occurring below will always be assumed to be regular, i.e.,
A. =Za/m(A).

In this section we first derive an exact sequence for central Lie group extensions corre-
sponding to the one obtained in Section I for topological Lie algebras. Then we characterize
those central extensions which are weakly universal for all discrete groups A. The central result
of this section is the Recognition Theorem IV.13, which gives a sufficient criterion for a central
extension to be weakly universal for all regular Fréchet—Lie groups.

General properties of central group extensions

Remark IV.1. (a) If q:@ — G and ql:@l — G are central Lie group extensions, then a
morphism of central extensions is a smooth homomorphism w:@ — G with guop =q. We
thus obtain a category of central G -extensions. In particular it is clear what an isomorphism of
central G -extensions is.

For G =G Xy Z and él = G xp A a morphism of central G-extensions ¢: G— G’l has
the form

V(9,2) = (9,2(g)(2)), a:G — A, ~€Hom(Z,A),

where « is smooth in a neighborhood of the identity, and the condition that % is a group
homomorphism means that

a(g)a(g)h(g,g') = algg ) (f(9,9'), 9.9 € G.

It follows in particular that for a given 7 € Hom(Z, A) an extension to a morphism of central
G -extensions exists if and only if [yo f] = [h] in H2(G, A).
(b) If Z = Z; x Zy is a direct product, then it is easy to see that we accordingly have a
decomposition

If G =G x;Z with f € Z2(G, Z), then we write

Z2(G, 2, A) = {f € Z2(G, A): (Vz € G)(Vz € Z) f(x,2) = f(z,2)}.
Then B2(G, A) C Z3(G, Z, A), and we define
H2(G, 7, A) = 22(G, 7, )/ B2(G, A).
The following theorem provides a version of the exact sequence that we have seen in

Theorem 1.4 for groups. For the sake of completeness we include the proof which is a significant
simplification of the one contained in [Ne00].
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Theorem IV.2. Let ¢: G=@ Xy Z — G be a central Lie group extension with f € Z2(G, Z).
Then we have for each abelian Lie group A an exact sequence

1 — Hom(G, A)—“ Hom(G, A) % Hom(Z, A) -3 H2(G, A) S5 H2(G, Z, A) — Extap(Z, A),

where 04(y) = [yo f] and Extap(Z, A) denotes the group of equivalence classes of abelian Lie
group extensions of Z by A.
Proof. The exactness in Hom(G, 4) and Hom(G, A) is trivial because the fact that ¢: G — G
is a smooth principal bundle implies that a Lie group morphism G — A factors through ¢ if and
only if its kernel contains Z.

Exactness in Hom(Z, A): Let v € Hom(Z, A). Every extension to a locally smooth map
3:G — A with ¥(gz) = 7(g)v(z) for z € Z has the form (g, z) = a(g)y(z) with a locally
smooth map a:G — Z. Such an extension is a Lie group homomorphism if and only if

a(g)alg') = algg)v(f(9,9'), 9,9 €G.

The existence of a with this property is equivalent to the triviality of the cocycle yof € Z2(G, A).
This proves the exactness in Hom(Z, 4).

Exactness in H2(G, A): First we show that imds C kerg*. So let v € Hom(Z, A) and
consider 7:G — A, (x,z) = v(2). Then

F((g,2)(g", 2") = v(f(g,9)v(z2") = ~(f (9,9 )79, 2)7(9', "),

which implies that ¢*(y o f) is a coboundary. This means that imd4 C kerg*.
To see that kerg* Cim(d4), let ¢ € Z2(G, A) be a cocycle for which ¢*¢ is a coboundary.
Then there exists a locally smooth map 7: G — Z with

(4.1) F((9,2)(¢",2") = ¢(9,9")7(9,2)7(g",2"), 9,9’ €G,2,2' € Z.

Then (z) := (e, z) defines a Lie group homomorphism Z — A, and we obtain

7(9,2") =7(g,e)1(2"), g€G,2' €.
Therefore (4.1) leads to

o(g,9') =799, e)v(f(9,9))V(g,e) Ay, €) 7,

and this implies that [p] = da(y).

Exactness in HSQ(CA}', Z,A): For each ¢ € Z2(G, A) the pull-back to G vanishes on Z x Z,
hence defines a trivial central extension of Z by A.

Suppose, conversely, that ¢ € ZE(CA?,Z, A) such that ¢ | zxz is a coboundary. Then
the central extension G x, A splits over Z, so that there exists a smooth homomorphism

0z 7 — G X, A with 0z(2) = (2,7(2)), v:Z — A a locally smooth map. We define a
locally smooth section

0:G = G xp A, (9,2) = ((9:2),7(2)) = (9,€)05(2)-

The corresponding cocyle ¢ is equivalent to ¢ and by definition given by

$(9,9") = 0(g)o(g)o(gg")
Hence

?((g,2),(9',2") = (g, €)oz(2)(g",e)oz(2) (99" €)' oz (22") oz (f(g,9")

(g.€)(g',e)(gg,e) toz(f(g,9') "

is independent of z and z', and this implies that [¢] = [¢] € im¢*. (]
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Universal and weakly universal central extensions

Definition IV.3.  We call a central extension G = G x ¢ Z of the connected Lie group G by
the abelian group Z weakly universal for the abelian Lie group A if the map

Sa:Hom(Z, A) = HZ(G,A), v~ [yof]

is bijective.
It is called wniversal for the abelian group A if for every central extension ¢1:G X, A = G
there exists a unique Lie group homomorphism ¢:G x¢y Z = G x, A with ¢ op =¢. ]

Remark IV.4. (a)In view of the exact sequence in Theorem I'V.2, the central extension G x yZ
is A-universal if and only if the homomorphisms

Res:Hom(CA}',A) — Hom(Z,4) and ¢":H(G,A) — Hf(é,Z, A)

vanish.
(b) That ¢* vanishes means that the pull-back of every central extension of G by 4 to G is
trivial. Let A — G4 @ be such a central extension and

H:=qiGy = {(z,y) € G x G1:q(z) = 1 (y)}

the pull-back of the extension GG; to an A—extensioAn of G. This central extension is trivial if
and only if there exists a smooth homomorphism o:G — H with p5oo =idz. This means that

a(9) = (9, f(9)), g€G,

where f: G- CA}'l is a homomorphism with ¢; o f = ¢. Thus the vanishing of ¢* is equivalent to
the existence of homomorphisms f:G — G; with ¢y o f =¢q.

That, in addition, Res:Hom(CA}',A) — Hom(Z, A) is trivial means that the restriction
Ylz:Z > Aof pe Hom(é, A) uniquely determines the homomorphism ¢.
(c¢) That the homomorphisms ¢: G — G, with ¢ 0 = ¢ are unique is equivalent to the stronger
condition that Hom(G, A) = 1. ]

Lemma IV.5. (a) A-universal central extensions are weakly A-universal.

(b) If ¢ G- Gisa weakly A -universal central extension, dim A > 0, and G is simply connected,
then it is A-universal if and only if the Lie algebra g is topologically perfect.

Proof. (a) The discussion in Remark IV.4 shows that the requirements for A-universality
are that the homomorphism ¢* and the group Hom(@,A) are trivial. This is weaker than the
triviality of ¢* and of the restriction map Hom(G, A) — Hom(Z, A).

(b) Since G is simply connected, the triviality of Hom(@,A) is equivalent to Hom(g,a) = 0
(cf. [Mil83, Th. 8.1], [Ne00, Cor. III.20]) which in turn is equivalent to Hom(g, K) = 0 because
dima > 0 entails Hom(K, a) # 0. Moreover, Hom(g, K) = 0 means that D(g) =, i.e., that g
is topologically perfect. ]

We start our investigation of weak universality for certain classes of groups with the simplest
case, the discrete abelian groups.
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Lemma IV.6. For the connected central extension q:CA}' = G xy Z — G the following are
equivalent:
(1) G is weakly universal for all discrete abelian groups A.
(2) The connecting homomorphism a: 7w (G) — wo(Z) from the exact homotopy sequence of the
Z-bundle G = G is bijective.

(3) « is injective.
(4) The homomorphism w1 (Z) = w1 (G) induced by the inclusion Z — G is surjective.
6) G/Z.=QG.
Proof. For a discrete abelian group A all central A-extensions of G are coverings. Therefore
the universal property of the universal covering group qG:é — G means that it is weakly
universal for all discrete abelian groups A, i.e., the corresponding map 04: Hom(mi (G), A) —
H2?(G, A) is a bijection (cf. Remark IV(b)).

We also note that Hom(Z, A) =2 Hom(Z/Z,, A) = Hom(my(Z), A) because A is discrete.
Therefore 64 can be viewed as the homomorphism

(4.2) Sa:Hom(m(Z), A) — H2(G, A) = Hom(m (G), 4), v~ voaq,

as can be seen from the geometric interpretation of « by lifting loops 8 in G to curves in G
starting in e and ending in the connected component of Z given by «([3]) € mo(Z). This process
is compatible with passing from @ to (é’ x A)/T(v™Y), v € Hom(Z, A), which yields the central
extension defined by d4() ([Ne0O, Rem. 1.3]).

Since Hom(@ , A) vanishes for the connected group G , the exact sequence in Theorem IV.2
shows that d4 is always injective. For A := cokera, this implies that A = 0, so that « is
surjective, and hence (2) and (3) are equivalent. The equivalence of (3) and (4) follows directly
from the exact homotopy sequence of Z — GG,

(1) & (2): If « is bijective, then (4.2) implies that each d4 is bijective. If, conversely, « is not
bijective, then it is not injective, and for A = 71(G) the map id. () is not contained in the
range of 0, (q)-

(1) = (5): In view of Hom(Z, 7 (GQ)) = H?(G,m1(G)), there exists a homomorphism v: Z —

71 (G) corresponding to the universal covering qg: G — G. Then
G2 (G x m(G)/T(y7Y).

Since @ is connected, it follows that G x m (@) C (G x {APHrH=1) = G x im(7), which means
that 7 is surjective. We conclude that G = G/kery. The discreteness of the group w1 (G)
implies that ker is an open subgroup of Z, so that the natural map

é’/(ker’y)8 — é/ kery = G

is a connected covering, hence an isomorphism. This implies that ker~y is connected, and hence
that kervy = Z,.

() = 3): If G = G/Z., then m(G) = Z/Z, = wo(Z). Let B:Z — m(G) denote the
corresponding quotient homomorphism. Then m(8) o a = id,, (o) implies that « is injective. m

Proposition IV.7. If ¢: G=aG Xy Z — G is weakly universal for all discrete abelian groups

A, then the following assertions hold:

(i) m(2) =m(G).

i) G=G/Z..

(i) Z2Z xm(G).

(iv) Let A be a regular abelian Lie group. The homomorphism 64: Hom(m (G), A) — H2(G, A)
defined by the wuniversal covering qg: G — G, corresponds to the mnatural map
Hom(mo(Z),A) — Hom(Z, A). In particular it is injective.
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(v) Let 0:m3(G) = w1 (Z) denote the connecting map defined by the exact homotopy sequence of
the Z -principal bundle G — G. Then

7@(@') Zkerd and m (CA}') & coker 6.

In particular G is simply connected if and only if § is surjective.
(vi) G is weakly A-universal if and only if G is weakly A. -universal.
Proof. (i) is a consequence of Lemma IV.6(2).
(ii) follows from Lemma IV.6(5).
(iii) Since the identity component Z. of Z is divisible, we have Z = Z, x (Z/Z.) = Z. x m1(G).
(iv) The map o4 assigns to v € Hom(m (G), A) the central extension

(Gx /L) =G, [garg
In view of (ii),
(G x /LG = (G/2.) x A) /167 = (@ x H/TGE™),

where 7: Z — A,z — y(zZ.) with the notation of (ii) above.
(v) In view of m5(Z) = 1, the exact homotopy sequence of G — G leads to an exact sequence

~

(@) = m(G)—m1(Z2) = m(G) = m1(G) = mo(Z).

According to Lemma IV.6, the map w1 (G) — 79(Z) is an isomorphism, so that we have an exact

sequence . 5 N
7T2(G) — 7T2(G)—)7T1(Z> —» 7T1(G),

and the assertion follows.
(vi) Since the identity component A, of A is divisible and mo(A) = A/A, is discrete, we have
A= A, =279(A). This implies that

04 =04, X 0py(a): Hom(Z, A) = Hom(Z, A.) x Hom(Z, m(4)) —
HSQ(GaA) = HSQ(GaAe) X Hsz(Gvﬂ-O(A))

Our assumption implies that J.,(4) is bijective, and this implies (vi). u

The derived group of a connected Lie group

Definition IV.8.  Let G be a connected Lie group and qu(N}' — G the universal covering
homomorphism. If a: G — ab(g) := g/D(g) is the canonical homomorphism corresponding on
the Lie algebra level to the quotient map g — ab(g) (cf. [Mil83, Th. 8.1], [Ne00, Cor. III.20]),

then we define derived Lie group of G as D(G) :=kera. We also define

D(G) := qa(D(G)),

but this group is less natural than the one in C~¥, and we will not need it in the following. ]

If G is finite-dimensional, then D(G) = (G, &) is the commutator subgroup of G which is
a closed normal Lie subgroup ([Ho65]).

_ In general it seems to be hard to say much about the image of the smooth homomorphism
a:G — ab(g). If G is abelian, then we have ab(g) = g, and if G is regular, then a is an
isomorphism. But if G is not regular, it is hard to say something about the range of «. On the
other hand it is not known whether non-regular Lie groups exist at all.
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Lemma IV.9. (a) D(G) is a closed subgroup with the property that every homomorphism ¢
of G to a regular abelian Lie group A satisfies D(G) C ker .
(b) If G is simply connected, then Hom (G, K) separates points of G/D(G).

Proof. (a) Let A be as above and ¢:G — A a homomorphism. Then @ := ¢ o gg: G—Ais
a homomorphism of Lie groups. We have natural isomorphisms

Hom (G, A) = Hom(g, a) = Hom(ab(g), a) = Hom(ab(g), A),
showing that @ = ¢’ or holds for some ¢' € Hom(ab(g), A). Therefore
kera = D(G) Cker g = a* (ker o).

Hence gg(D(G)) C ker g, and thus D(G) C ker¢.

(b) Since D(G) is the kernel of the natural homomorphism G — ab(g), it suffices to observe
that Hom(g,K) = Lin(ab(g), K) = ab(g)’ separates points of ab(g)’, which is a consequence of
the local convexity of ab(g). ]

More consequences of weak universality

Now we consider weak universality for connected groups A. The following lemma shows
that not every Lie group G has a weakly universal central extension.

Lemma IV.10. If G has a central extension which is weakly universal for K, then m (G) C
D(G).
Proof. Since the sequence

0 — Hom(G, K) — Hom(G,K) — Hom(m (G), ) S H?(G,K) - HZ(G m1(G),K)

is exact (Theorem IV.2), the restriction map Hom(@, K) — Hom(m (G),K) is trivial because dx
is injective by assumption. This implies that m (@) C D(G) (Lemma IV.9(b)). ]

Lemma IV.11. If 7,(G) C D(G) and G Xs Z is a central extension of G which is weakly
universal for the connected group A, then

H(G,m(G), 4) = Hom(Z, 4)/ Hom(m1 (G), 4),
where the inclusion Hom(m (G), A) — Hom(Z, A) = H?(G, A) comes from the connecting map
7T0(Z> — 7T1(G) .

Proof.  Since m(G) is contained in D(G), every homomorphism G — A, where A is a
connected regular Lie group vanishes (Lemma IV.9). Moreover, Ext,, (71 (G), A) = 1 follows
from the fact that 71 (@) is discrete and A = A, = a/m;(A) is divisible. Therefore the restriction
maps Hom(G, A) — Hom(m (G), A) and H2(G,71(G), A) = Exta,(m1(G), A) vanish, so that
Theorem IV.2 leads to the short exact sequence

Hom(m, (G), A) — H2(G, A) = Hom(Z, A) —» H2(G,m(G), A).
We conclude that B
H2(G,m(G),A) = Hom(Z, A)/ Hom(m (G), A). n

If, in addition, to the assumptions of Lemma IV.11, the map 7o(Z) — 71 (G) is bijective
(cf. Lemma IV.6), then Z = Z, x 71 (G) and we obtain

H2(G,m (@), A) = Hom(Z, A)/ Hom(m, (G), A) = Hom(Z,, A).

The following theorem combines the necessary condition for the weak universality for
discrete groups and for quotient of 3 by discrete subgroups. In particular its assumptions are
satisfied if GG is weakly universal for all regular abelian groups whose Lie algebra is a quotient of

3-
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Theorem IV.12. Let Z < G—5G be a central extension which is weakly universal for all
discrete groups and quotients of 3 by discrete subgroups. Then the following assertions hold:
(i) G is simply connected.
(i) If m(G) =1, then Z is simply connected.
(i) If G is weakly universal for K, then

(a) ZC D(G).

(b) 3 C D(g), i.e., g —» g is a topological covering of Lie algebras.

() m(G) € D(G).
Proof. (i) In view of Proposition IV.7(v), we only have to show that 0:m(G) — 71 (2)
is surjective. Let I'y := imd C I := m(Z) C 3. We consider the covering group Z; :=
(3/T1) x m(G) of Z =2 (3/T) x m(G) (Lemma IV.6) and write ¢;: Z; — Z for the natural
covering map.

Let D:Z2(G,Z) — Z*(g,3) be the natural map obtained by assigning to a group cocycle
f € ZX(G, Z) the Lie algebra cocycle

(4.3) D(f)(x,y) = (& f)(e,e)(x,y) — (d*f)(e,e)(y, 2)

(cf. [Ne00, Sect. IV]), and consider w := D(f), where G=G Xy Z. Now we use the notation of
Section V of [Ne00]. In view of [Ne0O, Prop. VIL.7], we have
per, = —0:m2(G) » m(Z) =T Cj3.

w

Therefore im(per,) C I';, so that [Ne0O, Th. V.7] implies the existence of a central extension
Zi = G, —» G corresponding to w, and hence covering the extension G —» G. Now the
weak universality of G with respect to Z1 shows that there exists a homomorphism v: Z — Z;
correspondlng to the central extension G1 —» GG. On the other hand, we have a natural covering
map ¢ G1 — G with ¢ |z, = a1, so that ¢, oy = idy follows again from the universal

property of G. Taking derivatives in 1, we now see that dv:3 — 3 is the identity, and therefore
that I' = ~([') C I'y. This proves that I' =I';, which means that ¢ is surjective.

(ii) follows from the surjectivity of 4.

(iii) (a) Since G is simply connected and weakly universal for K, every smooth homomorphism
a: G — K vanishes on Z, so that Z C D(G) (Lemma IV.9(b)).

(b) In view of (a), we have Z C D(G), and therefore 3 is contained in the kernel of the quotient
map g — ab(g), which is D(g).

(¢) We recall from Proposition IV.7 that G = G/Z, , so that Z C D(@) implies that the canonical
homomorphism [3:@ — ab(g) factors through the homomorphism ag:G - ab(g) which then
satisfies 7, (G) = Z/Z, C D(G) = kerag . =

Criteria for universality of group extensions

The following theorem provides a convenient device to test whether a given central extension
is universal.

Theorem IV.13. (Recognition Theorem) Assume that ¢: G = G is a central Z -estension of
Fréchet—Lie groups for which

(1) the corresponding Lie algebra extension § — g is weakly K-universal,

(2) G is simply Nconnected, and

(3) m(G) € D(G).

If g is weakly universal for a Fréchet space a, then G is weakly universal for each reqular abelian
Fréchet-Lie group A with Lie algebra a.

Proof. Let A be an abelian regular Fréchet—Lie group with Lie algebra a. We have to show
that the map 64:Hom(Z, A) - H2(G, A) is bijective.
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Since A, is divisible, the identity component A. splits, so that A = A, x mp(A4). Then
Hom(Z, A) and H2(G,A) split accordingly as direct products. Hence is suffices that the maps
04, and dr,(4) are bijective.

The assumption that G is simply connected implies that G is universal for all discrete
groups (Lemma IV.6(4)), so that d.,.4) is bijective. Therefore we may w.l.o.g. assume that A
is connected.

In view of Lemma L11(ii), assumption (1) implies that 3 C D(§) and therefore Z, C D(G).
From Lemma IV.6 and (2) we further derive that @/Ze =~ (7, where Z is mapped onto 71 (G) C
G. Hence the homomorphism G — ab(g) factors through G, and (3) implies Z C D(G). Hence
the restriction map Hom(G, A) — Hom(Z, A) vanishes, and we conclude from Theorem IV.2
that 64 is injective.

So far we have only used (1)—(3). To see that §4 is surjective, we assume that g is weakly
a-universal. Let D4: Z2(G, A) — Z%(g,a) be the map from (4.3) and ¢ € Z2(G, A). The weak
a-universality of g implies the existence of v € Lin(3,a) with d4(y) = [y ow] = [Da¢]. For the
corresponding period maps per,:m2(G) — 3 and perp,:m2(G) — a we then have v o per, =
perp,. Since per, can also be interpreted as the connecting map m(G) — w1 (Z) ([Ne0O,
Prop. VIL.7]), we obtain with (é) = 1 and the exact homotopy sequence of Z — G — G that
im(per,,) = 71 (Z), viewed as a subgroup of 3. Hence

v(m(Z2)) € im(perpy) € m(A),

and therefore 7 integrates to a Lie group homomorphism Z, — A, which, in view of Z =
Z. xmo(Z), extends to a homomorphism vz: Z — A. Now 64(vz) € H2(G, A) has a Lie algebra
cocycle in the same class dq(7y) as D).

Therefore it remains to see that ker D C im(d4). According to [Ne00, Th. V.9], ker D
coincides with the image of the map

4: Hom(m (@), A) — H2(G, A).
For v € Hom(m, (G), A) and p: Z — mo(Z) = 71 (G) we consider v op € Hom(Z, A). Then

ba(vop) =[ryopo f]=0da()
implies that ker D = im(d4) C im(64). Therefore §4 is surjective. n

Corollary IV.14. Let g be a Fréchet-Lie algebra and § = g ®, 3 — ¢ a central extension
which is weakly universal for all Fréchet spaces. Suppose that G is a connected simply connected
Lie group with Lie algebra g and that 11, := im(per,) C j is discrete. Then there exists a central

Lie group extension Z — G —» G which is universal for all abelian regular Fréchet—Lie groups.

Proof. In view of [Ne00, Th. V.7], there exists a simply connected central extension g¢: GG
with kerq = Z 2 3/II,, corresponding to the Lie algebra extension g — g . Since m1(G) is
trivial, all assumptions of Theorem IV.13 are satisfied by G. ]

As we shall see in Section V, for some groups it is too much to hope for that a weakly
universal central extension g corresponds to a Lie group which is equivalent to the assumption
of Corollary IV.14. In this case Theorem V.7 below is an appropriate refinement of Theorem
1v.13.

Proposition IV.15.  If G is a connected regular abelian Fréchet-Lie group, then G has a
K-weakly wniversal central extension G if and only if G is simply connected. In this case G is
weakly universal for all regular abelian Fréchet—Lie groups.

Proof. Since G is connected and regular, we have G = g/m;(G). We have g = ab(g) = G,

so that D(G) = 0. If G has a K-weakly universal central extension, then Lemma IV.10 implies

that 7 (G) C D(G) is trivial.
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If, conversely, G is simply connected, then G = g, and Remark VI.1(a) in [Ne00] implies
that

HX(G,Z) = H2(g,3) = Z2(g,3) = Alt’(g,3) = Lin(A2(g),3),

so that the central Lie algebra extension
Hi(g) = A(g) =T > g

from Theorem II.11 can also be viewed as a central Lie group extension which is weakly universal
for all abelian regular Fréchet-Lie groups (Theorem IV.13). ]

V. Construction of weakly universal central extensions

In this section we eventually turn to the existence problem for weakly universal central
extension in the context of Fréchet—Lie groups.

Let G be a connected Fréchet—Lie group with Lie algebra g, 3 a Fréchet space, and
w € Z%(g,3) a continuous 2-cocycle. Further let Z denote a regular abelian Fréchet—Lie
group with Lie algebra 3, so that Z, = 3/m1(Z), where we identity m;(Z) with the subgroup
kerexp, C 3 and exp,:3 — Z. is a quotient map with discrete kernel. In the first part of
this section we will discuss the property of a central Z-extension G to be weakly universal for
a regular abelian Lie group A. This discussion will lead to some necessary conditions for the
existence of central extensions which are weakly universal for all regular abelian Fréchet—Lie
groups. The main result of this section is the Characterization Theorem V.7 which, provided
a central Lie algebra extension which is weakly universal for all Fréchet spaces, characterizes
when there exists a central group extension which is weakly universal for all regular abelian
Fréchet—Lie groups. The situation becomes particularly simple if the vector space R @ mo(G) is
finite-dimensional.

From Section IV we recall the period homomorphism per : 7 (G) — 3 and define

P (w) :=expy oper,:m(G) = Z.

Moreover, we define
Py(w):m(G) — Lin(g,3), P(w)([e])(z) = /[ ]i(wr)ﬁ

where (2 is the unique left invariant closed 3-valued 2-form on G with Q, = w, and x, is the
right invariant vector field with z,.(e) = . We recall from [Ne00, Def. V.1] that P, ,(w) only
depends on the cohomology class [w] of w. Let II, := im(per,) denote the period group of w
and put

Ny = Po(w)(m (&) (g) €3

In the following the restriction to Fréchet—Lie groups is mainly needed to pass from spaces
like 3 to quotient spaces without loosing the completeness requirement.

Theorem V.1.  The central extension g @, 3 integrates to a central Z extension of G if and
only if Py(w) and Ps(w) vanish, which means that

(5.1) I, Cm(Z) and N, =0.
This is further equivalent to [w] being contained in the range of the homomorphism

Dz:H;(G,Z) = HZ(g,3), Dz(f)(z,y) = (d*f)(e,e)(z,y) — (d°f)(e, e)(y, ),
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The kernel of Dy coincides with the image of the homomorphism

8, &+ Hom(m (G), Z) — HX(G,Z)

associated to the universal covering qg: G—a.

Proof. The case where Z is connected follows from [Ne00, Th. V.9], and the reduction to this
case is contained in [Ne00, Prop. V.12], where it is shown that

H2(G,Z) = H?(G, Z.) x Hom(m (G), Z). n

Let A be a connected regular abelian Lie group with Lie algebra a. Now we analyze the
question when a central Z-extension G of G is weakly A-universal. The following lemmas
prepare Propositions V.5 and V.6.

Lemma V.2. For v € Lin(3,a) the following are equivalent:
(1) da(7y) is in the range of Da: H2(G, A) — HZ2(g,a).
(2) y(M,) € m(A) and N, Ckervy.

Proof. First we note that
(5.2) Pi(yow) =expyoyoper, and Py(yow)=ro P(w).

It follows that (2) is equivalent to IL,o, = Y(Il,) C 71 (A4) and Nyo, = 0, so that the equivalence
of (1) and (2) follows from Theorem V.1. =

Lemma V.3. Let ;3 be a topological vector space, I' C 3 an additive subgroup, and b C 3 a
closed vector subspace. Then the following conditions are equivalent:
(1) b is an open subgroup of b+ I.
(2) The image of T in 3/b is discrete.
The set of all subspaces b satisfying these conditions is closed under finite intersections.
Proof. The equivalence of (1) and (2) is a trivial consequence of the definitions.

Suppose that by,...,b, satisfy this condition and let U; C 3 be an open 0-neighborhood
in 3 with U; N (b; +T) C b;. Then U := (j_, U; satisfies U N ((N72,b;) +T') € b; for each 4,
and therefore U N ((N7_,b;) +T) € N;_, b;. This completes the proof. n

Lemma V.4. Let b C 3 be a closed subspace, a:=3/b and qo:3 — a the quotient map. Then
0a(ge) € iIm(D 4) for some regular Lie group A with Lie algebra a if and only if
(A1) N, Cb, and
(A2) b is open in b+ 11, .
Proof. If 0,(qs) = Da([f]) for some f € Z2(G, A), then Lemma V.2 implies that N, C b =
ker ¢, and that g, (II,) C 71(A), which is discrete in a. Therefore (A2) is satisfied by Lemma
V.3.

If, conversely, (Al) and (A2) are satisfied, then we set A := a/gy(Il,) and observe that
the conditions of Lemma V.2 are satisfied. ]

The following proposition describes a sufficient condition for the existence of a weakly
universal central extension.

Proposition V.5. Suppose that there exists a minimal closed subspace b C 3 satisfying
(A1/2). We set
35 :=13/b, Z:= (3/(5 —I—Hw)) x w1 (G),

and write qy:3 — 31 for the quotient map. Then the group Z1 is a reqular abelian Fréchet—Lie
group and wy = qyow satisfies [w1] = D[f] for some f € Z2(G,Z1) for which the corresponding

cocycle fo € Z2(G,mo(Z1)) = Z2(G,m(G)) satisfies G = G x4, m(G). If m(G) C D(G),
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then the corresponding central extension G:=0G Xy Z1 is weakly A-universal if g is weakly
a-universal.

Proof.  First we note that g, satisfies (A1/2), which implies that [wi] = D[fi] for some
fi € Z3(G,(Z1).). Let fo € Z2(G,m(G)) denote a cocycle with G = G Xt m(G). Then
f = (f1, fo) € Z2(G, Z1) and we define G:=G X Z1. This central Z;-extension of G satisfies
in particular é/(zl)e =G xyp m(G) = G, so that it is weakly universal for discrete abelian
groups (Lemma IV.6).

Let A be a regular abelian Lie group and assume that g @®,, 3 is weakly a-universal. We
may w.l.o.g. assume that A is not discrete, which means that a # 0. We have to show that the
map

Sa:Hom(Z1,A) — H(G,A), ¢+ [pof]

is bijective.
To see that d4 is injective, we have to show that the homomorphism

Hom(é, A) — Hom(Z, A)

vanishes (Theorem IV.2). So let ¢: G — A be a Lie group homomorphism. Then L(y) €
Hom(g, a) vanishes on D(g). Moreover, in view of a # 0, Lemma [.11(ii) implies that g, — g
is a topological covering, which implies that the quotient algebra g = g®,,, 31 also is a topological
covering because pulling back homomorphisms to K leads to

Hom(a7 K) |31 — Hom(g DBuw 3> K) |Z =0

(Remark 1.6(b)). We conclude that L(+)) vanishes on 3; C D(g) and therefore that (7). C
keri. Hence ¢ factors through @/(Zl)e ~ @, and m(G) C D(G) further implies that
71 C kert. This proves that d4 is injective.

To see that 84 is surjective, let fa € Z2(G,A) and v := 6, (Da(fa)) € Hom(3,a).
Then + vanishes on N, and maps I, into the discrete group m(A4) (Lemma V.2). Therefore
kery = y~1(0) is open in 7y !(m1(4)) D kery + II,. Hence ker+y is open in kervy + II,, and
the minimality of b entails b C ker-y, showing that  factors through a continuous linear map
7 € Lin(31,a) with

T (m(Z1)) = 7(qe () = 7(Ily) € i (A).
Therefore -, integrates to a group homomorphism ¢:(Z;). — A which can be extended to
Z1 = (Z1)e x m1(G), and we have

Dalpof)=m0Dz(f) =molgeow]=[yow]=da(y)

Hence DA((gDOf)fgl) = 0, so that, in view of [po f] € im § 4, we may from now on assume that
DA(fA) = 0. Then
[fa] € da(Hom(m (G), A)) C d4(Hom(Zy, A))

follows from 71 (G) = mo(Z1). This completes the proof of the bijectivity of 4. u

The following proposition complements Proposition V.5 in the sense that it describes
necessary conditions for universality.

Proposition V.6. Let g @, 3 be a central 3-extension of g and G:=G Xy Z1 a central

Zy -extension of G. Assume that

(1) @@, 3 is weakly universal for 31 and quotients of 3 by closed subspaces.

(2) G is weakly universal for Zy , and quotients of 3 by closed subgroups S for which there exists
a closed subspace s C 3 which is an open subgroup of S.

Then (Z1)e = 3/b, where b C 3 is a minimal closed subspace satisfying (A1/2).

Proof. Step 1: Suppose that ¢ C 3 satisfies (A1/2), define the Fréchet space 3. := 3/c, and

write ¢.:3 — 3. for the quotient map. Then Z. := 3/¢.(Il,) is a regular abelian Lie group, and
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by (1), g, 3 is weakly universal for 3, so that we can use Lemma V.2 to obtain f. € Z%(G, Z.)
with D[fc] = [ge o w].

Next we use the weak Z.-universality of G to find a unique homomorphism ¢.: 27 — Z,
with [pc o f] = 0z, (pc) = [fe]- Using (1), we define v := 4, '(D[f]) € Lin(3,31) and observe that

[yow]=D[f] =[Df].
Then

0;.(qc) = [gc ow] = D[f] = D[pc o f] = L(pc) D[f] = L(ipc)[y o w] = 85, (L(pc) ©7),

and the weak j.-universality of g @, 3 yields
(5.3) e = L(pc) 0.

Step 2: We will show that ~ is a quotient homomorphism. In view of Lemma V.2,
b := ker~y satisfies (A1/2). As above, we define 35 := 3/b, ¢o:3 — 36, and Zp := 3/qe(ILy,).
Now ~(I1,) C m1(Z1) (Lemma V.2) implies the existence of a unique Lie group homomorphism
V: Zy — Zyp with L(y) o gy = 7.

By assumption (1), g @, 3 is also weakly universal for 3, so that we can use Lemma
V.2 to obtain f, € Z2(G,Zy) with D[fs] = [gs ow]. Let pp:Z1 — Zp be as in Step 1 with
oo 0 1= [fel.

Now we have
0z, (Y ope) =[owso fl=[o fo]
with
D[y o fo] = L(¢) o D[fp] = [L(¥)) 0 go o w] = [y ow] = DI[f].

This means that there exists a homomorphism € : 71 (G) = 79(Z;) — Z; with
02,(dz,) = [f]=02,((Y o ps) -€) = [(Y oo f)-(c0 f)]
([Ne00, Th. V.9]), so that the weak Z;-universality of G leads to ¥ o ¢, = e~!, which implies

that L(t) o L(po) = id,,
On the other hand

L(pp) o L(t)) 0 go = L(ps) oy € Lin(3, 35)
satisfies
V3o (L) 0 7) = [Llpe) 0 v ow] = [L(gs) o D f] = Dy o f] = D[fe] = [qv © w] = 03, (a),
and the weak jp-universality of g @, 3 entails
g6 = L(pe) o7 = L(po) o L(¥) 0 ge,

whence L(pp) o L(¢) =1id;, . We conclude that 3, = 31, and furthermore that ¢: Zy = (Z1). is
a Lie group isomorphism whose inverse is given by ¢y |z, . -

Step 3: From now on we assume that Zy, = Z; .. It remains to show that b is minimal
with (A1/2). If ¢ C 3 satisfies (A1/2), then (5.3) implies that

b =kery Ckerq. =r¢,

which proves the minimality of b. ]
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Theorem V.7. (Characterization Theorem) Let G be a connected Fréchet-Lie group and
suppose that g has a central extension g . 3 which is weakly universal for all Fréchet spaces.
Then G has a central extension G = G xy Z which is weakly universal for all regular abelian
Fréchet-Lie groups if and only if

(WU1) 71 (G) C D(G), and

(WU2) there exists a minimal closed subspace in 3 satisfying (A1/2).

Proof. The necessity of (WU1) follows from Lemma IV.10, and the necessity of (WU2) from
Proposition V.6. The sufficiency of both conditions follows from Proposition V.5. ]

Since all abelian Banach-Lie groups are regular, we likewise obtain a version of Theorem
V.7 for Banach-Lie groups.

Theorem V.8. Let G be a connected Banach—Lie group and suppose that g has a central
extension g, 3 which is weakly universal for all Banach spaces. Then G has a central extension
G = G xy Z which is weakly universal for all abelian Banach—Lie groups if and only if

(WU1) m1(G) C D(G), and
(WU2) there exists a minimal closed subspace in 3 satisfying (A1/2). ]

Corollary V.9. If G is a connected finite-dimensional Lie group, then the following are
equivalent: N
1) m(G) € D(G).
(2) G has a connected central extension G which is weakly universal for all regular abelian
Fréchet-Lie groups.
The group G is finite-dimensional.
Proof. “(2) = (1)” follows from Theorem V.7.
“(1) = (2)” Since g is finite-dimensional, the same holds for A%(g) and hence for wcov(g).
Therefore Theorem II.11 implies the existence of a central extension g = g ®, 3, where 3 =
HS(g) = Hy(g) which is weakly universal for all Fréchet spaces. In particular 3 is finite-
dimensional and therefore g is finite-dimensional.
Since m2(G) vanishes ([Mim95]), we have II,, = 0, so that b := N,, is minimal with (A1/2).
Now Theorem V.7 applies. ]

Corollary V.10. If G is a connected Fréchet—Lie group with dim R ® m3(G) < 0o and g has

a weakly Fréchet-yniversal central extension, then the following are equivalent:

1) m(G) € D(G).

(2) G has a connected central Fréchet-Lie group extension G which is a weakly universal for
all regular abelian Fréchet—Lie groups.

Proof. “(2) = (1)” follows from Theorem V.7.

“(1) = (2)” The assumption dim(R ® m2(G)) < oo implies that spanll,, is finite-dimensional.
Let ~y:3 — 3/N, denote the quotient map. Then ~(IL,) is a subgroup contained in a finite-
dimensional vector space. If b C 3 satisfies (A1/2), then the image of II,, in 3/b is discrete, and
therefore v(b) contains the identity component a of the closure of «(II,) in 3/N, . On the other
hand the structure of closed subgroups of finite-dimensional vector spaces implies that a is open
in y(IL,). Therefore v !(a) C 3 is a closed subspace which is minimal with respect to (A1/2).
Now Theorem V.7 applies. ]

Remark V.11. The assumptions of Corollary V.10 are in particular satisfied if the Lie algebra
¢ is topologically perfect and the abelian group m2(G) is finitely generated. ]

Examples V.12. (a) (Restricted groups) For a complex infinite-dimensional Hilbert space H
we recall the restricted Lie algebra g(D) C B(H) from Example I1.14(a). For the corresponding
connected Lie group G, it has been shown in [NeOlb, Th. IIL.7] that G, is simply connected
with

72 (G,) = Z4imH(a(D).C)
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Let w € H?(g(D),H(g(D)) be a universal cocycle. Then the period map per,:m(G,) —
HS(g(D)) maps ma(G,) injectively onto a discrete subgroup. We therefore obtain a universal
central extension Z < G, —» G, with Z = HS(g(D))/I1, (Corollary IV.14). In [NeOlb,
Th. IV.10] this central extension has been obtained by a direct constructions.

Similar results hold for the connected group G, corresponding to g(D) for g = gl(H, I),

where I: H — H is an antilinear isometric involution with 1?2 = £1. In this case G, is also
simply connected ([NeOlb, Th. ITI1.14]), and everything works as above.
(b) (Viraroso group) In [Ne00, Ex. VI.4] we have seen that the group G = Diff {(S!) of
oriented diffeomorphisms of the circle is homotopy equivalent to the rotation subgroup T. Hence
m2(G) = 0 and 7 (G) =2 Z. In Example I1.14(b) we have discussed the central extension of the
corresponding Lie algebra g, the smooth vector fields on S!. Let w € Z%(g,R) be a universal
cocycle. First mo(G) = 0 yields II,, = 0, and the discussion in [Ne00, Ex. VI.4] implies that
N, =0.

We therefore obtain a universal central extension G — G with kernel Z = H, (9)xm (G) =

RXZ.
(¢) (Current groups) Let K be a compact Lie group with simple Lie algebra, M a compact
smooth manifold and consider the Fréchet—Lie group G := C*®°(M,K). In Example I1.14(c)
we have seen that the Lie algebra g = C®°(M,t) = C*°(M,R) ®r t of G has a universal
central extension by the infinite-dimensional Fréchet space 3 = Q'(M)/dC> (M) which contains
Hl . (M,R) as a closed subspace which here is finite-dimensional because M is compact.

If w is the universal cocycle from Example I1.14(c), then on can show that N, = 0 and

I, = Q3 (M)/dC* (M) C Hgg (M, R)

([MNO1], see also [PS86]), where Q1 (M) C Q' (M) denotes the closed additive subgroup of all 1-
forms whose periods are integral. This condition implies in particular that they are closed because
their pull-back to the universal covering manifold M is exact. Identifying Hig(M,R) via the
theorems of de Rham and Hurewicz with Hg, (M, R) = Hom(H;(M),R) = Hom(m (M),R),
the group II,, corresponds to Hom(m (M), Z). Since the compactness of M implies that 71 (M)
is finitely generated, II, is described by finitely many integrality conditions, hence a discrete
subgroup of 3. Now Proposition V.5 shows that there exists a central extension Z — G —» G
with
Z = (3/11,) x m(G)

which is weakly universal for all regular abelian Fréchet—Lie groups.
(d) Let H be an infinite-dimensional complex Hilbert space and PGL(H) := GL(H)/C™*1 its
projective linear group. This is a Banach-Lie group with Lie algebra pgl(H) := B(H)/C1. In
Example IT1.6 we have see that gl(H) := B(H) is a central extension of pgl(H) by C which is
universal for all complete locally convex spaces. Since the group GL(H) is simply connected by
Kuiper’s Theorem (cf. [NeOlb, Th. II.4]), the Recognition Theorem IV.13 shows that GL(H) is
a universal central extension of the group PGL(H).

A similar statement holds for the real group U(H) which is a universal central extension
of PU(H):=U(H)/T1. ]

Problems V. It would be interesting to determine, if they exist, weakly universal central
extensions for the following types of groups:
(1) C*(M,K), M acompact manifold and K a connected finite-dimensional Lie group which
is not necessarily simple (cf. [Ma01], [PS86] for results on the Lie algebra level).
(2) C(X,G), X acompact space and K a Lie group. This should be parallel to (1), but one
expects here less central extensions because the universal differential module of C(X,R) is
trivial ([Ma01]).

(3) GL,(A), A a unital Banach algebra. Here one expects the universal center to be indepen-
dent of n, so that one can also consider a limit case for n — oo, where the period map
should be related to the K -theory of A.

(4) Diff(M), M a compact manifold.
(5) Sp(M,Q), (M,Q) a compact symplectic manifold. ]
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