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Banah-Lie Quotients, Enlargibility, and Universal Complexi�ations

Helge Gl�okner, Karl-Hermann Neeb

Abstrat. We haraterize those real Banah-Lie groups whih admit universal omplexi�ations,

and present examples of Banah-Lie groups whih have none. To ahieve these goals, we prove new

results onerning the enlargibility of Banah-Lie algebras, and derive a neessary and suÆient

ondition for the existene of Lie group strutures on quotients of Banah-Lie groups.

Introdution

In this artile, we address several interrelated problems in the theory of Banah-Lie groups,

namely: (a) the existene of Lie group strutures on quotient groups; (b) enlargibility of Banah-

Lie algebras; () the existene of universal omplexi�ations of Banah-Lie groups.

A lassial fat in the theory of Banah-Lie groups asserts that the topologial quotient group

G=N of a real Banah-Lie group G by a normal Lie subgroup N an be made a real Banah-Lie

group if N is a split Lie subgroup, i.e., provided L(N) is omplemented in L(G) as a topologial

vetor spae ([Ms62℄, [Bo89℄; see Setion 1 below for the terminology). As our �rst main result,

we show that the assumption that N be split is superuous (Corollary II.4):

1. Quotient Theorem. If G is a real Banah-Lie group and N a losed normal subgroup

of G , then the topologial quotient group G=N an be given a real Banah-Lie group struture if

and only if N is a Lie subgroup of G .

Equipped with the Quotient Theorem, we turn to enlargibility questions of Banah-Lie algebras.

Sine the fundamental work of van Est and Korthagen [EK64℄, it is known that there are Banah-

Lie algebras whih are not enlargible, i.e., whih are not the Lie algebra of any Banah-Lie

group. Van Est and Korthagen also proved the following Enlargibility Criterion: a Banah-

Lie algebra g is enlargible if and only if its period group �(g) � z(g) is disrete [EK64, p.

24℄. The Quotient Theorem allows us to approah this important lassial fat more diretly

(Theorem III.7). Furthermore, making use of the funtoriality of �(�) (Remark III.5), we prove

neessary and suÆient onditions for enlargibility of `

1

-diret sums of Banah-Lie algebras

(Theorem III.9), as well as a haraterization of the existene of universal enlargible envelopes

(Theorem III.19):

2. Existene of Universal Enlargible Envelopes. A Banah-Lie algebra g has a universal

enlargible envelope if and only if there is a smallest losed vetor subspae a of z(g) suh that a

is open in a+�(g) .

See also [DL66℄, [Sw71℄, [Pe92℄, and [Pe93℄ for disussions related to enlargibility.

The remaining setions of this artile are devoted to the study of universal omplexi�ations

of Banah-Lie groups. Although it is a lassial fat that every �nite-dimensional Lie group

has a universal omplexi�ation ([Bo89℄, f. [Ho65℄, [Ho66℄), aording to the authors' best

knowledge, the existene question of universal omplexi�ations of Banah-Lie groups has never

been addressed in the literature until the reent investigations in [Gl00℄, where an expliit

existene riterion for universal omplexi�ations was formulated. We strengthen this existene
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riterion in Corollary IV.8 below. More importantly, making use of the Quotient Theorem, we

derive a omplete haraterization of the existene of universal omplexi�ations (Theorem IV.6):

3. Complexi�ation Theorem. Given a real Banah-Lie group G , let N

G

be the intersetion

of all kernels of smooth homomorphisms from G into omplex Banah-Lie groups. Then G has

a universal omplexi�ation if and only if N

G

is a Lie subgroup of G and the omplexi�ation

of L(G)=L(N

G

) is enlargible.

We provide an example of a Banah-Lie group for whih N

G

fails to be a Lie subgroup (Setion V),

and also examples where N

G

= f1g but L(G)

C

is not enlargible (Setion VI). Cf. [Le97℄ for a

Fr�ehet-Lie group whose Lie algebra has a non-enlargible omplexi�ation.

For simply onneted Banah-Lie groups, we also give an alternative haraterization of the

existene of universal omplexi�ations in terms of properties of the Lie algebra (Theorem IV.11):

4. Complexi�ations of Simply Conneted Banah-Lie Groups. A simply onneted

Banah-Lie group G has a universal omplexi�ation if and only if the omplexi�ation of its

Lie algebra has a universal enlargible envelope in the ategory of omplex Banah-Lie algebras.

Part of the results and tehniques developed here arry over to more general lasses of in�nite-

dimensional Lie groups, inluding all smooth mapping groups, test funtion groups,and lassial

diret limit Lie groups. We refer to [Gl01℄ for these generalizations.

I. Preliminaries, Notation and Terminology

In this setion, we desribe our terminology onerning enlargibility, Lie subgroups, and universal

omplexi�ations. We also assemble various basi fats.

Reall that a real (resp., omplex) Banah-Lie group is a group, equipped with a smooth

(resp., omplex analyti) Banah manifold struture, suh that the group operations are smooth

(resp., omplex analyti). Sine every ontinuous homomorphism between real Banah-Lie

groups is smooth, there is at most one real Banah-Lie group struture on a given topologial

group, whene a real Banah-Lie group an be identi�ed with its underlying topologial group.

Furthermore, every real Banah-Lie group an be given a unique real analyti struture. For

standard results, notation and terminology onerning Banah-Lie groups, the reader is referred

to [Bo89, Chapter 3℄ and [Ms62℄.

De�nition I.1. A Banah-Lie algebra g is alled enlargible if there exists a Banah-Lie group

G with Lie algebra g .

In [EK64℄ one �nds several results on enlargibility of Banah-Lie algebras, ontaining in partiular

the onstrution of examples of non-enlargible Lie algebras.

Lemma I.2. If g is enlargible and ' : h ! g is an injetive morphism of Banah-Lie algebras,

then h is enlargible.

Proof. This follows from [EK64, (� � �) in x3℄.

Lemma I.3. If ' : G ! H is a morphism of Banah-Lie groups, then L(G)= kerL(') is

enlargible.

Proof. The map L(') : L(G) ! L(H) fators through an injetion L(G)= kerL(')! L(H),

so that Lemma I.2 applies.

It is useful to distinguish various types of subgroups of Banah-Lie groups. Sine the terminology

is not uniform in the literature, we need to explain ours.

De�nition I.4. Let G be a Banah-Lie group over K 2 fR; C g .

(a) An analyti subgroup of G is a Banah-Lie group H over K whose underlying abstrat

group is a subgroup of G , suh that the inlusion map " : H ! G is smooth and L(") :
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L(H) ! L(G) is an embedding of topologial K -Lie algebras. We identify L(H) with its

image h � L(G) under L("). Thus, the exponential funtion of H is exp

G

j

h

.

(b) An analyti subgroup H of G is alled a Lie subgroup of G if the analyti subgroup topology

on H oinides with the topology indued by G , i.e., if the above mapping " is a topologial

embedding. If, in addition, L(H) is omplemented in L(G) as a topologial K -vetor spae,

we all H a split Lie subgroup of G .

Remark I.5. Note that L(H) = fX 2 L(G) : exp

G

(RX) � H g whenever H is a Lie subgroup

of G in the preeding situation, and note that any Lie subgroup is losed, being loally losed.

Conversely, let H be any losed subgroup of G . Then h := fX 2 L(G) : exp

G

(RX) � H g

is a losed real Lie subalgebra of L(G), and a losed real Lie algebra ideal if H is a losed

normal subgroup (see [Ms62, Satz 12.4, Satz 12.6℄). The losed subgroup H an be given

a (neessarily unique) Banah-Lie group struture over K making it a Lie subgroup of G if

and only if there exists a zero-neighbourhood U in L(G) suh that exp

G

j

U

is injetive and

exp

G

(U) \ H = exp

G

(U \ h), and if furthermore h is a omplex Lie subalgebra of L(G) if

K = C . In this ase, we shall all the losed subgroup H a Lie subgroup of G , by abuse of

language.

Remark I.6. To prevent onfusion, let us point out that \split Lie subgroups" in the our sense

are alled \Lie subgroups" in [Bo89℄ and \di�erentiable subgroups" in [Ms62℄, whereas \Lie

subgroups" in the our sense are alled \Lie quasi-subgroups" by Bourbaki. Analyti subgroups

in our sense are Maissen's \Lie subgroups."

De�nition I.7. Let G be a real Banah-Lie group. A omplex Banah-Lie group G

C

, together

with a smooth homomorphism �

G

: G ! G

C

, is alled a universal omplexi�ation of G if for

every smooth homomorphism f : G ! H from G into a omplex Banah-Lie group H , there

exists a unique omplex analyti homomorphism

e

f : G

C

! H suh that

e

f Æ �

G

= f .

II. Lie group strutures on quotient groups

A lassial fat in the theory of Banah-Lie groups asserts that the topologial quotient group

G=N of a real Banah-Lie group G by a split normal Lie subgroup N an be made a real

Banah-Lie group ([Ms62, Satz 13.1℄; [Bo89, Chapter 3, x1.6, Proposition 11℄). In this setion,

we show that the hypothesis that N be split is superuous.

First, we reall a useful lemma from [Ne00a℄.

Lemma II.1. If f : G! H is a smooth homomorphism between real Banah-Lie groups, then

S := f

�1

(T ) is a Lie subgroup of G , for every Lie subgroup T of H .

Proof. Set g := L(G). The naturality of exp entails that s = L(f)

�1

(t), where t := L(T )

and s := L(S) := fX 2 g : exp

G

(RX) � S g . If S fails to be a Lie subgroup of G , there

exists a sequene (X

n

)

n2N

in g n s suh that exp

G

(X

n

) 2 S for all n , and X

n

! 0 in g as

n ! 1 . Let V be a zero-neighbourhood in L(H) suh that exp

H

is injetive on V , and

T \ exp

H

(V ) = exp

H

(t \ V ). Sine U := L(f)

�1

(V ) is a zero-neighbourhood in g , there exists

n

0

2 N suh that X

n

2 U for all n � n

0

. Then exp

H

(L(f):X

n

) = f(exp

G

(X

n

)) 2 T fores

L(f):X

n

2 t for all n � n

0

. Thus X

n

2 L(f)

�1

(t) = s , whih is a ontradition. Therefore S is

a Lie subgroup.

Theorem II.2 (Quotient Theorem). Let G be a Banah-Lie group over K 2 fR; C g ,

with Lie algebra L(G) = g , and suppose that N is a losed normal subgroup of G . De�ne

n := fX 2 g : exp

G

(RX) � N g , and let q : G ! G=N , Q : g ! g=n be the anonial quotient

maps. If K = C , assume in addition that n is a omplex Lie subalgebra of g . Then the following

onditions are equivalent:
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(a) There exists a smooth (resp., omplex analyti) homomorphism ' : G! H into a Banah-

Lie group H over K suh that ker(') = N .

(b) G=N an be made a Banah-Lie group over K with Lie algebra g=n , suh that q Æ exp

G

=

exp

G=N

ÆQ .

() N is a Lie subgroup of G .

Proof. We give the proof in the real ase only; the ase K = C follows the same lines.

The impliation (b) ) (a) is trivial.

(a) ) (): This is Lemma II.1.

() ) (b): We hoose norms on g and g=n ompatible with the topologies whih make g , resp.,

g=n normed Lie algebras. Then the Campbell-Hausdor� series onverges absolutely on V � V

for a suÆiently small open ball V with enter 0 in g=n . There is an open ball W � V entered

at 0 suh that W � W � V ; thus X � Y � Z is de�ned for all X;Y; Z 2 W . Furthermore,

there is an open ball U entered at 0 in g suh that the Campbell-Hausdor� series onverges

absolutely on U . Shrinking U if neessary, we may assume that exp

G

j

U

is a di�eomorphism

onto an open subset of G , and that exp

G

(U) \N = exp

G

(U \ n). There is an open, onneted,

symmetri zero-neighbourhood A � U in g suh that A � A � U and Q(A) � W . Then

exp

G

(X � Y ) = exp

G

(X) exp

G

(Y ) for all X;Y 2 A .

Claim 1: If X;Y 2 A and Q(X) = Q(Y ) , then q(exp

G

(X)) = q(exp

G

(Y )). In fat, from

Q(X) = Q(Y ) we dedue that Q(X � (�Y )) = Q(X) � (�Q(Y )) = 0, i.e., X � (�Y ) 2 n . Thus

1 = q(exp

G

(X � (�Y ))) = q(exp

G

(X) exp

G

(Y )

�1

), whih implies the laim.

Claim 2: If X;Y 2 A and q(exp

G

(X)) = q(exp

G

(Y )) , then X � Y 2 n . In fat, we

have exp

G

(X � (�Y )) = exp

G

(X) exp

G

(Y )

�1

2 N in this ase, where X;�Y 2 A and thus

X � (�Y ) 2 U . From the hoie of U , we dedue that X � (�Y ) 2 n . Thus 0 = Q(X � (�Y )) =

Q(X) � (�Q(Y )). Sine Q(X); Q(Y ) 2 W , multipliation with Q(Y ) on the right yields

Q(Y ) = Q(X), as required.

Let B := Q(A) now. By Claim 1, a mapping E : B ! G=N an be de�ned via E(Q(X)) :=

q(exp

G

(X)) for X 2 A . The mapping Qj

B

A

: A ! B being an open surjetion, we dedue from

the ontinuity and openness of q Æ exp

G

j

A

that E is ontinuous and open. Furthermore, E is

injetive by Claim 2. Let C

1

� A be an open zero-neighbourhood in g suh that C

1

� C

1

� A ,

and de�ne C := Q(C

1

). Then for every X;Y 2 C , say X = Q(X

1

), Y = Q(Y

1

) with

X

1

; Y

1

2 C

1

, we have E(X �Y ) = q(exp

G

(X

1

�Y

1

)) = q(exp

G

(X

1

) exp

G

(Y

1

)) = E(X)E(Y ). We

dedue from [Bo89, Chapter 3, x1.9, Proposition 18℄ that there is a unique Banah-Lie group

struture on hE(C)i = hE(B)i = (G=N)

0

whih makes Ej

E(C)

C

a di�eomorphism onto the open

submanifold E(C). Sine E(C) is open in G=N and Ej

E(C)

C

a homeomorphism with respet to

the topology on E(C) indued by G=N , learly the topology underlying the Banah-Lie group

(G=N)

0

is the topology indued by G=N . The automorphisms (G=N)

0

! (G=N)

0

, g 7! xgx

�1

being ontinuous and hene analyti on the open normal subgroup (G=N)

0

of G=N for all

x 2 G=N , we dedue from [Bo89, Chapter 3, x1.9, Proposition 18℄ that G=N is a Banah-Lie

group. We extend E to a funtion exp

G=N

: g=n ! G=N via exp

G=N

(X) := E(

1

n

X)

n

, where

X 2 g=n and n 2 N is hosen suh that

1

n

X 2 C . Then exp

G=N

is well-de�ned, is analyti, and

is an exponential funtion for G=N (f. [Bo89, Chapter 3, x6.4℄). By onstrution of E , we have

exp

G=N

ÆQ = q Æ exp

G

.

Remark II.3. Our onstrution of a Banah-Lie group struture on G=N losely resembles

Maissen's in the ase where N is a split Lie subgroup [Ms62, Satz 13.1℄. In fat, Maissen already

noted that the de�nition of our mapping E (whih he alled exp) does not require that n be

omplemented in g . However, he didn't realize that a ertain mapping � he de�ned is simply

the Campbell-Hausdor� multipliation on g=n (and thus analyti), and believed that nothing

ould be said about the di�erentiability of � in the absene of a vetor omplement.

Corollary II.4. Suppose that G is a real Banah-Lie group and N a losed normal subgroup

of G . Then the topologial quotient group G=N an be given a real Banah-Lie group struture

ompatible with the quotient topology if and only if N is a Lie subgroup of G .
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Remark II.5. Let N be a normal Lie subgroup of the real Banah-Lie group G . Aording

to Mihael's Theorem ([Mi59℄), the quotient map q:L(G) ! L(G)=L(N) = L(G=N) has a

ontinuous setion �:L(G=N) ! L(G). Sine the exponential funtion of G=N is a loal

homeomorphism, it follows that the quotient map G ! G=N has ontinuous loal setions,

hene is a loally trivial prinipal bundle.

III. Period groups and enlargibility of Banah-Lie algebras

The period group �(g) of a Banah-Lie algebra g is an additive subgroup of its enter. Using a

result of van Est on the existene of ertain entral extensions ([Es62℄) and the Quotient Theorem

we re�ne the results on the period group given in [EK64℄ and thus obtain a quite diret proof of

the lassial result that g is enlargible if and only if its period group �(g) is disrete. With this

haraterization, we study the enlargibility of `

1

-diret sums of Banah-Lie algebras and derive

a haraterization whih also provides a method to onstrut non-enlargible Banah{Lie algebras

as `

1

-diret sums of enlargible ones (Theorem III.9). Finally we haraterize in Theorem

III.19 those Banah{Lie algebras whih have a universal enlargible envelope, whih means that

there exists an enlargible quotient q: g ! g=a suh that all ontinuous homomorphisms of g to

enlargible Banah{Lie algebras fator through q .

The period group of a Banah-Lie algebra

In this subsetion we give a diret de�nition of the period group �(g) of a Banah-Lie algebra g .

This group has been de�ned in [EK64℄, but we need some re�nements, so that we have to go

through part of the proess leading to this group. It will be an additive subgroup of the enter

z(g) of g .

De�nition III.1. Let G be a onneted Banah-Lie group. We write

P (G) := f 2 C( [0; 1℄; G) : (0) = 1g

for the path group of G , where the multipliation on P (G) is pointwise. This group is a Banah-

Lie group, and if g = L(G) is the Lie algebra of G , then

P (g) := f 2 C( [0; 1℄; g) : (0) = 0g

is the Lie algebra of P (G). The evaluation map

ev

1

: P (G)! G;  7! (1)

being a morphism of Lie groups, its kernel 
(G) is a Lie subgroup of P (G) (Lemma II.1), alled

the loop group of G . Clearly G

�

=

P (G)=
(G).

It is easy to see that P (G) is ontratible, hene simply onneted, so that the universal overing

group

e

G an be identi�ed with P (G)=
(G)

0

, in aordane with �

0

(
(G))

�

=

�

1

(G).

On the Lie algebra level we have the Banah-Lie algebra P (g) and its Lie subalgebra 
(g).

Although f� 2 P (g) : (8t) �(t) = t �(1)g is a natural vetor spae omplement to 
(g), this

subspae is not a Lie subalgebra unless [g; g℄ = f0g .

De�nition III.2. Let g be a Banah-Lie algebra, z its enter and g

ad

:= g=z , endowed with

its natural Banah spae topology. Then

(3:1) z ,! g !! g

ad
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is a entral extension, but it is not lear whether it has a ontinuous linear setion, so that we

annot in general desribe it by a ontinuous Lie algebra oyle. Lemma I.2 implies that g

ad

is

enlargible to a simply onneted Banah-Lie group G

ad

.

The entral extension (3.1) an be pulled bak via the evaluation map ev

1

:P (g

ad

) ! g

ad

to a

entral extension

z ,!

b

P (g)!! P (g

ad

) with

b

P (g) := f(�; x) 2 P (g

ad

)� g : �(1) = x+ zg:

The restrition of this extension to 
(g

ad

) splits by the ontinuous setion

� : 
(g

ad

)!

b

P (g); � 7! (�; 0);

so that the inverse image

b


(g) of 
(g

ad

) in

b

P (g) is isomorphi to the diret produt 
(g

ad

)� z .

Sine the group P (G

ad

) is ontratible, we derive from [Es62, Theorem 7.1℄ that there exists a

entral group extension

z ,!

b

P (G)

q

��!P (G

ad

);

where the group

b

P (G) is simply onneted (we an always pass to the simply onneted overing

group). Here we need that the singular ohomology H

2

sing

(P (G

ad

); z) vanishes, whih follows

from the ontratibility of P (G

ad

).

1

Consider the homomorphism  :

b

P (G)! G

ad

, (g) = q(g)(1). On the Lie algebra level we have

L()(�; x) = �(1) = x+ z with kerL() =

b


(g)

�

=


(g

ad

)� z . Moreover,

b


(G) := ker  is a Lie

subgroup of

b

P (G), with

b

P (G)=

b


(G)

�

=

G

ad

(Theorem II.2).

Sine the group G

ad

is simply onneted, the group

b


(G) is onneted, and its universal overing

group is isomorphi to

e


(G

ad

) � z , beause its Lie algebra is 
(g

ad

) � z . In view of [Ne00b,

Prop. II.8℄, the group

b


(G) is isomorphi to a quotient

�

e


(G

ad

)� z

�

=�(� per

g

);

where per

g

: �

1

(
(G

ad

))

�

=

�

2

(G

ad

) ! z is a homomorphism and �(� per

g

) is the graph of

� per

g

. We all per

g

the period homomorphism of g and its image �(g) := im(per

g

) � z the

period group.

Lemma III.3. Let ' : g ! h be a homomorphism of Banah-Lie algebras with '(z(g)) � z(h)

and '

G

ad

:G

ad

! H

ad

the group homomorphism indued by ' . Then '(�(g)) � �(h) and,

moreover, the following diagram is ommutative:

�

2

(G

ad

)

�

2

('

G

ad

)

������! �

2

(H

ad

)

?

?

y

per

g

?

?

y

per

h

z(g)

'

������! z(h):

Proof. Sine ' maps z(g) to z(h), it indues a homomorphism '

ad

: g

ad

! h

ad

and hene

a homomorphism

b

P (') :

b

P (g) !

b

P (h) with

b

P (')

�

b


(g)

�

=

b


(h). Integration to the simply

onneted group

b

P (G) further leads to a group homomorphism

b

P (')

G

:

b

P (G)!

b

P (H) with L

�

b

P (')

G

�

=

b

P ('):

1

Another possibility to obtain the group

b

P (G) is to use the results in [Sw71℄. There it is shown that

g7!P (g) is an exat funtor, so that P (g

ad

)

�

=

P (g)=P (z) , and we obtain a entral extension as z

�

=

P (z)=
(z),!

b

P (g)

�

=

P (g)=
(z)!!P (g

ad

) . Using the existene of a simply onneted group H with Lie algebra P (g) ([Sw71℄),

we obtain a desription P (G

ad

)

�

=

H=N , where N�H is a normal subgroup with Lie algebra P (z) . Sine H is a

loally trivial N -bundle (Remark II.5), the ontratibility of the group P (G

ad

) and the exat homotopy sequene

of the loally trivial prinipal bundle N,!H!!H=N implies that N,!H is a weak homotopy equivalene, and in

partiular that N is simply onneted, hene isomorphi to P (z) . From that it follows that 
(z)�P (z) is a normal

Lie subgroup of H , so that

b

P (G):=H=
(z) is a Banah{Lie group.
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It is lear that this homomorphism maps the subgroup

b


(G) to

b


(H), hene indues a homo-

morphism

�

1

(

b


(G))! �

1

(

b


(H)):

This means that the indued map

e


(G

ad

)� z(g)!

e


(H

ad

)� z(h)

of the simply onneted overing groups maps the graph of per

g

into the graph of per

h

. We

onlude that

(3:2) ' j

z(g)

Æ per

g

= per

h

Æ�

1

�


('

G

ad

)

�

;

where '

G

ad

: G

ad

! H

ad

is the homomorphism indued by ' with L('

G

ad

) = '

ad

, and 
('

G

ad

)

is the orresponding map 
(G

ad

) ! 
(H

ad

). From the isomorphism of funtors �

1

Æ 


�

=

�

2

from topologial groups to abelian groups, it follows that �

1

(
('

G

ad

)) orresponds to the map

�

2

('

G

ad

) if we identify �

2

(G

ad

) with �

1

(
(G

ad

)). Therefore (3.2) implies the ommutativity of

the diagram and hene in partiular that '(�(g)) � �(h).

Corollary III.4. (a) If ' : g ! h is a homomorphism of Lie algebras with '(z(g)) � z(h) for

whih the indued map �

2

(G

ad

)! �

2

(H

ad

) is surjetive, then '(�(g)) = �(h) .

(b) If ' : g ! h is a quotient homomorphism of Lie algebras with '(z(g)) = z(h) and ker' � z(g) ,

then '(�(g)) = �(h) .

Proof. (a) This is an immediate onsequene of Lemma III.3.

(b) Our assumption implies that

g

ad

= g=z(g)

�

=

h='(z(g))

�

=

h

ad

:

Therefore the indued map '

G

ad

:G

ad

! H

ad

is an isomorphism, and the assertion follows from (a).

Remark III.5. Let LZ denote the ategory whose objets are Banah-Lie algebras and whose

morphisms are ontinuous Lie algebra homomorphisms mapping enter to enter. Then Lemma

III.3 means that �: g 7! �(g) an be viewed as a funtor from LZ to the ategory of abelian

topologial groups.

Lemma III.6. Let A �

b

P (G) be the onneted analyti subgroup orresponding to the losed

Lie subalgebra 
(g

ad

) �

b

P (g) . Then A\ z = �(g) , and A is a Lie subgroup if and only if �(g)

is a disrete subgroup of z .

Proof. The desription of

b


(G) as the quotient (

e


(G

ad

)� z)=�(� per

g

) (f. De�nition III.1)

shows that

A \ z

�

=

im(per

g

) = �(g)

beause A is the image of

e


(G

ad

) in

b


(G).

That the normal subgroup A �

b

P (G) is a Lie subgroup is equivalent to A being a Lie subgroup

of

b


(G). The Lie algebra

b


(g) is a diret produt 
(g

ad

)� z . Therefore A is a Lie subgroup if

and only if there exists a 0-neighborhood U in z with A\U = f0g , whih is equivalent to �(g)

being disrete.

The following theorem is also ontained in [EK64℄. As our proof shows, it an be obtained as a

rather diret onsequene of the existene of the group

b

P (G).
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Theorem III.7 (Charaterization Theorem for enlargible Lie algebras). The Banah-

Lie algebra g is enlargible if and only if �(g) is disrete.

Proof. We have seen in the onstrution of �(g) that there exists a group extension

b


(G) ,!

b

P (G)!! G

ad

;

where

b

P (G) is a simply onneted group with Lie algebra

b

P (g).

If g is enlargible and G is a orresponding simply onneted group, then the simple onnet-

edness of

b

P (G) permits us to integrate the natural homomorphism

b

P (g) ! g to a Lie group

homomorphism p :

b

P (G)! G with

kerL(p) = 
(g

ad

):

In view of Theorem II.2, we then have G

�

=

b

P (G)= ker p , where kerp is onneted beause G is

simply onneted. Thus ker p oinides with the onneted analyti subgroup A orresponding

to the Lie subalgebra 
(g

ad

) of

b

P (g). In view of Lemma III.6, this implies that �(g) is disrete.

If, onversely, �(g) is disrete, then A is a Lie subgroup, and Theorem II.2 implies that

b

P (G)=A

is a Lie group with Lie algebra

b

P (g)=
(g

ad

)

�

=

g .

Proposition III.8. If G is a simply onneted Lie group with Lie algebra g , then

Z(G)

0

�

=

z=�(g) and �

1

(Z(G))

�

=

�(g) = ker(exp

G

j

z

):

Proof. As in the proof of Theorem III.7, we write G as

b

P (G)= ker p . Sine G is simply

onneted, the group ker p is onneted. Moreover, z(g)

�

=

b


(g)=
(g

ad

) implies that

Z(G)

0

�

=

b


(G)= ker p;

so that

b


(G)

�

=

(

e


(G

ad

)� z)=�(� per

g

) implies that Z(G)

0

�

=

z= im(per

g

) = z=�(g).

Enlargibility of produts

In the present subsetion, we study enlargibility of `

1

-diret sums of Banah-Lie algebras. It is

important for these onsiderations to endow eah Banah-Lie algebra with a �xed norm (rather

than onsidering it as a ompletely normable topologial Lie algebra).

Theorem III.9. Let (g

j

)

j2J

be a family of Banah-Lie algebras whose norms satisfy k[x; y℄k �

kxk kyk for x; y 2 g

j

, Æ

j

:= inffkk : 0 6=  2 �(g

j

)g 2 [0;1℄;

g :=

n

(x

j

)

j2J

2

Y

j2J

g

j

: sup

j2J

kx

j

k <1

o

their `

1

-diret sum, and g

0

� g their 

0

-diret sum, i.e., the losure of

P

j

g

j

. Then

(3:3)

M

j2J

�(g

j

) � �(g

0

) � �(g) �

Y

j2J

�(g

j

);

and the following assertions are equivalent

(1) g is enlargible.

(2) g

0

is enlargible.

(3) inf

j2J

Æ

j

> 0 .

Proof. We onsider the inlusion maps �

j

: g

j

! g

0

and the projetion maps �

j

: g ! g

j

.

Both map enters into enters, so that Lemma III.3 implies that

�

j

(�(g

j

)) � �(g

0

) � �(g) and �

j

(�(g)) � �(g

j

):

This entails (3.3).

Let Æ := inffkk : 0 6=  2 �(g)g and Æ

0

:= inffkk : 0 6=  2 �(g

0

)g . In view of Theorem III.7,

g , resp., g

0

is enlargible if and only if Æ > 0, resp., Æ

0

> 0. By (3.3), we have Æ � Æ

0

� Æ

j

for

eah j beause �(g

0

) ontains eah �(g

j

). Thus Æ � Æ

0

� inf

j2J

Æ

j

.

If 0 6=  2 �(g), then there exists some j 2 J with 

j

:= �

j

() 6= 0. Then kk � k

j

k � Æ

j

.

This implies the onverse inequality Æ � inf

j2J

Æ

j

. Thus Æ = Æ

0

= inf

j2J

Æ

j

.
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Corollary III.10. If h is an enlargible Banah{Lie algebra and J is a set, then g := `

1

(J; h)

is enlargible.

Proof. On h we hoose a norm ompatible with the topology suh that k[x; y℄k � kxk � kyk

holds for x; y 2 h . Then we apply Theorem III.9 with g

j

:= h for eah j 2 J . Now all Æ

j

are

equal and positive beause h is enlargible, and therefore g is enlargible.

The following lemma illuminates the meaning of Æ .

Lemma III.11. Let G be a simply onneted Lie group with Lie algebra g . Suppose that

k[x; y℄k � kxk � kyk holds for x; y 2 g and put Æ := inffkk: 0 6=  2 �(g)g . Then for

R = min(�;

Æ

2

) the exponential funtion exp j

B

R

(0)

:B

R

(0)! G is injetive.

Proof. Let x; y 2 B

R

(0), i.e., kxk; kyk < R , and assume that expx = exp y . Then

k adxk � kxk < � implies that Spe(adx) \ 2�iZ � f0g , so that the exponential funtion

is regular in x . Therefore [Ne01, Lemma V.3℄ implies that [x; y℄ = 0 and exp(x � y) = 1 .

For z := x � y we then have 1 = Ad(exp z) = e

ad z

, so that ad z is diagonalizable with

Spe(ad z) � 2�iZ ([Ne01, Lemma III.13℄). On the other hand k ad zk � kzk < 2� , so that

ad z = 0, and we get z 2 z(g). Now Proposition III.8 yields z 2 ker exp j

z(g)

= �(g), so that

kzk < Æ eventually leads to z = 0.

The preeding lemma is sharp in the sense that for eah z 2 �(g) we have exp

�

z

2

�

=

exp

�

�

z

2

�

and

kzk

2

may be arbitrarily lose to

Æ

2

.

Proposition III.12. If, under the assumptions of Theorem III.9, g is enlargible,

e

G is a

simply onneted Lie group with Lie algebra g , and G

j

, j 2 J , are groups with Lie algebra g

j

,

then the following assertions hold:

(i) There exists a ontinuous homomorphism ':

e

G!

Q

j2J

G

j

with '(exp

e

G

x) = (exp

G

j

x

j

)

j2J

for x 2 g .

(ii) If ker' is disrete, then G :=

e

G= ker' is a Banah{Lie group and ' fators through an

injetive homomorphism G ,!

Q

j2J

G

j

.

(iii) ker' is disrete if and only if

inf

j

r

j

> 0 holds for r

j

:= inffkzk: 0 6= z 2 z(g

j

); exp

G

j

z = 1g:

(iv) The following onditions are suÆient for ker' to be disrete:

(1) The groups G

j

, j 2 J , are simply onneted.

(2) We have g

j

= h for eah j 2 J and G

j

= H .

Proof. (i) First the enlargibility of g implies the existene of a simply onneted Lie group

e

G

with Lie algebra g . Let p

k

:

Q

j2J

G

j

! G

k

denote the projetion homomorphisms. In view of

the simple onnetedness of

e

G , there exists for eah k 2 J a Banah{Lie group homomorphism

'

k

:

e

G ! G

k

for whih L('

k

): g ! g

k

is the projetion map. Then ' := ('

j

)

j2J

:

e

G !

Q

j2J

G

j

is a ontinuous group homomorphism with p

k

Æ ' = '

k

for k 2 J . Let N := ker' �

e

G .

(ii) Sine the Lie algebra homomorphisms L('

k

): g ! g

k

separate the points of g , we have

L(N) = f0g , and eah n 2 N ats via the adjoint representation trivially on eah g

j

, hene on

g . This implies that N � Z(

e

G). Moreover, N is a Lie subgroup of

e

G if and only if it is disrete.

If this is the ase, then we put G :=

e

G=N and obtain the required injetion G ,!

Q

j2J

G

j

.

(iii) If N is not disrete, then there exists a sequene g

n

2 N with 1 6= g

n

! 1 . Let U � g be

a 0-neighborhood on whih exp

e

G

is a di�eomorphism onto exp

e

G

(U). We may w.l.o.g. assume

that g

n

= exp

e

G

x

n

with x

n

2 U . Then x

n

! 0, and sine Z(

e

G) = kerAd is a Lie subgroup of

e

G , we may further assume that x

n

2 z(g). Pik j 2 J with L(p

j

):x

n

6= 0. Then

exp

G

j

L(p

j

):x

n

= p

j

(exp

e

G

x

n

) = p

j

(g

n

) = 1

implies that

r

j

� kL(p

j

):x

n

k � kx

n

k:
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Therefore inf

j

r

j

= 0.

Suppose, onversely, that inf

j

r

j

= 0. Let "

j

:

e

G

j

!

e

G denote the homomorphism for whih

L("

j

): g

j

! g is the inlusion map.

For z

j

2 g

j

with exp

G

j

z

j

= 1 we then have '(exp

e

G

z

j

) = 1 , whih means that exp

e

G

z

j

2

N . Sine inf

j

r

j

= 0, there exist sequenes j

n

2 J and 0 6= z

j

n

2 z(g

j

) with exp

G

j

z

j

n

= 1

and z

j

n

! 0 in g . Then exp

e

G

z

j

n

2 N onverges to 1 , and for suÆiently large n we have

exp

e

G

z

j

n

6= 1 , so that N is not disrete.

(iv) (1) If all the groups G

j

are simply onneted and R := min(�;

Æ

2

) as in Lemma III.11, then

inf

j

r

j

� R > 0, and (iii) implies that N is disrete.

(2) If H = G

j

for eah j 2 J , then we hoose R suh that exp

H

is injetive on fy 2 h: kyk < Rg .

Then inf

j

r

j

� R > 0, and again (iii) shows that N is disrete.

Remark III.13. (a) An interesting onsequene of Theorem III.9 is that if J = N , Æ

n

> 0

for eah n 2 N , and Æ

n

! 0, then g is a non-enlargible Lie algebra whose homomorphisms to

enlargible Lie algebras separate points.

(b) If ':

e

G !

Q

j2J

G

j

is the homomorphism from Proposition III.12 and all the groups G

j

are simply onneted, then one might expet that ' is injetive, i.e., the \analyti subgroup" of

Q

j2J

G

j

orresponding to the subspae g �

Q

j2J

g

j

is simply onneted. We think that this is

probably true, but we do not have any proof.

This would imply in partiular that the exponential funtion of G is just the omponentwise

exponential funtion, so that �(g

j

) = ker(exp

G

j

j

z(g

j

)

) for eah j leads to

�(g) = ker(exp

G

j

z(g)

) =

n

(x

j

)

j2J

2

Y

j2J

�(g

j

) : sup

j2J

kx

j

k <1

o

:

() Let BLa



denote the ategory whose objets are Banah{Lie algebras (g; k � k), where

k[x; y℄k � kxk kyk for x; y 2 g and whose morphisms are ontrative Lie algebra homomorphisms.

Then it is easy to see that the `

1

-diret sum g := �

1

j2J

g

j

is a ategorial diret produt of

(g

j

)

j2J

in BLa



.

On the group level we onsider the ategory CBLg



whose objets are pairs (G; k � k),

where G is a onneted Banah{Lie group and (L(G); k�k) is an objet of BLa



. The morphisms

in CBLg



are those Lie group morphisms ' for whih L(') is a morphism in BLa



.

Let (G

j

)

j2J

be a family of objets of CBLg



. We laim that their diret produt exists

in CBLg



if and only if there exists an r > 0 suh that for eah j 2 J the exponential funtion

exp

G

j

is injetive on the open ball B

r

(0) of radius r in L(G

j

).

Suppose �rst that the injetivity ondition is satis�ed. For 0 6= z 2 �(g

j

) we have exp z = 1

by Proposition III.8, so that the injetivity of exp

G

j

on B

r

(0) implies that Æ

j

� r

j

� r and

hene that g := �

1

j2J

L(G

j

) is enlargible (Theorem III.9) and the kernel of the homomorphism

':

e

G!

Q

j2J

G

j

is disrete by Proposition III.12(iii). Now G :=

e

G= ker' is a diret produt of

(G

j

)

j2J

in CBLg



. In fat, let '

j

:H ! G

j

be a olletion of morphisms in CBLg



. Then the

L('

j

) yield a ontinuous Lie algebra homomorphism �:L(H)! g whih integrates to a unique

ontinuous group homomorphism e�

H

:

e

H ! G . Let p

j

:G ! G

j

denote the projetion maps.

Then all homomorphisms p

j

Æ e�

H

fator through H , and therefore �

1

(H) � ker e�

H

implies that

e�

H

fators through a homomorphism �

H

:H ! G with p

j

Æ �

H

= '

j

for eah j 2 J .

Suppose, onversely, that G is a diret produt of the system (G

j

)

j2J

in CBLg



and

write p

j

:G! G

j

for the orresponding projetion morphisms and "

j

:G

j

! G for the inlusion

maps whih are uniquely determined by p

k

Æ "

j

= 1 for j 6= k and p

j

Æ "

j

= id

G

j

. If there exists

no r > 0 suh that the restrition of the map exp

G

j

to the ball B

r

(0) in L(G

j

) is injetive

for eah j 2 J , then there exist j

n

2 J and x

n

; y

n

2 g

j

n

with x

n

6= y

n

, kx

n

k; ky

n

k <

1

n

, and

exp

G

j

n

x

n

= exp

G

j

n

y

n

.

Then a

n

:= L("

j

n

):x

n

and b

n

:= L("

j

n

):y

n

are null sequenes in L(G) with L(p

j

n

):a

n

=

x

n

6= y

n

= L(p

j

n

):b

n

and

exp

G

a

n

= "

j

n

(exp

G

j

n

x

n

) = "

j

n

(exp

G

j

n

y

n

) = exp

G

b

n

:



11 uniomp.tex April 12, 2001

This ontradits the injetivity of exp

G

in a neighborhood of 0.

As in the proof of Proposition III.12, we see that the injetivity ondition is satis�ed if all

groups G

j

are equal or simply onneted. In this ase we obtain a diret produt in CBLg



.

Universal enlargible envelopes

De�nition III.14. Let g be a Banah-Lie algebra over K 2 fR; C g . A ontinuous homo-

morphism �

g

: g ! e(g) is alled a K -universal enlargible envelope of g if e(g) is an enlargible

K -Banah-Lie algebra and for every ontinuous homomorphism ' : g ! h , where h is an enlargi-

ble K -Banah-Lie algebra, there exists a unique ontinuous homomorphism ' : e(g) ! h with

' Æ �

g

= ' .

Remark III.15. (a) Whenever universal enlargible envelopes exist, they are unique up to

isomorphism.

(b) Let �

g

: g ! e(g) be a universal enlargible envelope. Then Lemma I.2 implies that g= ker �

g

is enlargible, and it further follows that this Banah-Lie algebra has the universal property of an

enlargible envelope. Therefore e(g)

�

=

g= ker �

g

and �

g

: g ! e(g) is a quotient homomorphism.

Moreover, ker �

g

� ker ad = z(g) (Lemma I.2).

Lemma III.16. Let Z be a Banah spae, � � Z an additive subgroup, and X � Z a losed

vetor subspae. Then the following onditions are equivalent :

(1) X is an open subgroup of X + � .

(2) X + � is a Lie subgroup of Z with Lie algebra X .

(3) The image of � in Z=X is disrete.

The set of all subspaes X satisfying these onditions is losed under �nite intersetions.

Proof. The equivalene of (1)-(3) is a trivial onsequene of the de�nitions.

Suppose that X

1

; : : : ; X

n

satisfy this ondition and let U

j

� Z be an open 0-neighborhood

with U

j

\ (X

j

+ �) � X

j

. Then U :=

T

n

j=1

U

j

satis�es

U \

�

(\

n

j=1

X

j

) + �

�

� X

k

for eah k , and therefore U \ ((\

n

j=1

X

j

) + �) �

T

n

j=1

X

j

. This ompletes the proof.

Lemma III.17. Let G be a onneted Banah-Lie group, N E G a normal Lie subgroup, and

H � N a subgroup. Then the following onditions are equivalent:

(1) H=N is a Lie subgroup of G=N .

(2) H is a Lie subgroup of G .

Proof. That the quotient G=N arries the struture of a Banah-Lie group follows from

Theorem II.2. Let q : G! G=N denote the quotient map.

(1) ) (2) In view of H = q

�1

(H=N), the subgroup H is the inverse image of a Lie subgroup of

G=N , hene a Lie subgroup of G by Lemma II.1.

(2) ) (1): As N is a Lie subgroup of G , it is a Lie subgroup of H , whene H=N is a Banah-Lie

group by Theorem II.2. The topology on the Banah-Lie group H=N being the one indued by

G=N , we easily dedue that H=N is a Lie subgroup of G=N .

Lemma III.18. Let a � z(g) be a losed vetor subspae. Then the following are equivalent:

(1) a is an open subgroup of �(g) + a .

(2) a+�(g) is a Lie subgroup of z(g) with Lie algebra a .

(3) The quotient Lie algebra g=a is enlargible.

Proof. (1) , (2) follows from Lemma III.16.
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(2) ) (3): We onsider the entral extension

z(g) ,!

b


(g)! 
(G

ad

)

and write B := hexp
(g

ad

)i for the onneted analyti subgroup of

b


(G) orresponding to the

losed Lie subalgebra 
(g

ad

) (f. De�nition III.2). Then

�(g) = z \B

(Lemma III.6) and on the Lie algebra level we have a trivial entral extension

b


(g)

�

=

z�
(g

ad

).

Therefore a�
(g

ad

) is a losed ideal of

b


(g); and for A := exp

b


(G)

a the produt AB �

b


(G)

is the normal analyti subgroup orresponding to the ideal a�
(g

ad

).

We laim that AB is a Lie subgroup of

b


(G). Let p :

e


(G

ad

)� z !

b


(G) denote the universal

overing homomorphism (f. De�nition III.2). Then

p

�1

(AB) = (

e


(G)� a)�(� per

g

) =

e


(G) � (a+�(g)):

The assumption that a is open in a + �(g) implies that

e


(G) � a is open in p

�1

(AB), hene

that p

�1

(AB) is a normal Lie subgroup in

e


(G) � z with Lie algebra 
(g) � a . We onlude

with Lemma III.17 that AB = p(p

�1

(AB)) is a normal Lie subgroup of

b


(G) with Lie algebra


(g) � a , hene a normal Lie subgroup of

b

P (G). In view of Theorem II.2, the quotient group

b

P (G)=AB is a Banah{Lie group and its Lie algebra oinides with

b

P (g)=(
(g)� a)

�

=

(

b

P (g)=
(g))=(a+
(g)=
(g))

�

=

g=a:

Therefore g=a is enlargible.

(3) ) (1): Suppose that the Lie algebra g

a

:= g=a with the quotient map q

a

: g ! g

a

is

enlargible. Then q

a

(z(g)) � z(g

a

), so that Lemma III.3 implies that q

a

(�(g)) � �(g

a

): Sine

�(g

a

) is disrete by Theorem III.7, f0g is an open subgroup of �(g

a

), and therefore the inverse

image a = q

�1

a

(0) is an open subgroup of q

�1

a

(�(g

a

)) � a+�(g).

Theorem III.19. Let g be a Banah-Lie algebra and �(g) � z(g) its period group. A universal

enlargible envelope of g exists if and only if there exists a minimal losed vetor subspae a � z(g)

for whih a is an open subgroup of a+�(g):

Proof. If �

g

: g ! e(g) exists, then Remark III.15(b) implies that �

g

is a quotient map with

a := ker �

g

� z(g). Now Lemma III.18 entails that a is open in a + �(g). In view of Lemma

III.18 and the universality of e(g)

�

=

g=a , the subspae a � z(g) is ontained in all other losed

subspaes b � z(g) for whih b is open in b + �(g) beause this property is equivalent to g=b

being enlargible.

Suppose, onversely, that a � z(g) is a minimal losed subspae with the property that a is

open in a + �(g). Sine the set of all these subspaes is losed under �nite intersetions, it

follows that a is unique and ontained in all other losed subspaes with this property (Lemma

III.16). Then Lemma III.18 implies that e(g) := g=a is enlargible. Let �

g

: g ! e(g) denote

the quotient homomorphism. We show that this map has the required universal property. If

' : g ! h is a homomorphism into an enlargible Lie algebra h , then Lemma I.2 implies that

g= ker' is enlargible, and sine ' fators through g= ker' , we may assume that ' is a quotient

homomorphism, so that it remains to show that b := ker' � a .

Sine '(z(g)) � z(h), it follows from Lemma III.3 that '(�(g)) � �(g=b), and sine �(g=b) is

disrete (Theorem III.7), the subgroup b

z

:= b\ z(g) is open in '

�1

('(�(g)))\ z(g) = �(g)+b

z

.

Now the minimality of a implies that a � b

z

� b , and hene that ' fators through g=a . This

proves the universal property of g=a .
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IV. Enlargibility and universal omplexi�ations

In this setion, we haraterize those real Banah-Lie groups whih have universal omplexi�-

ations (Theorem IV.6), and give examples of suh groups. In the ase of simply onneted

Banah-Lie groups, the existene of universal omplexi�ations an be haraterized on the Lie-

algebra level (Theorem IV.11).

Lemma IV.1. If �

G

: G! G

C

is a universal omplexi�ation of the real Banah-Lie group G ,

then the following assertions hold :

(i) There exists a unique antiholomorphi involutive automorphism � of G

C

with � Æ�

G

= �

G

.

(ii) The omplexi�ation of L(G)= kerL(�

G

) is enlargible and ker

e

L(�

G

) = (kerL(�

G

))

C

, where

e

L(�

G

) is the omplex linear extension of L(�

G

) to L(G)

C

.

(iii) L(G)= kerL(�

G

) is enlargible.

(iv) G= ker�

G

is a Banah-Lie group, and G

C

is also universal for this group.

Proof. (i) First we prove the uniqueness. If �

1

; �

2

:G

C

! G

C

are antiholomorphi morphisms

with �

j

Æ �

G

= �

G

, then �

1

Æ �

2

is holomorphi, so that �

1

Æ �

2

Æ �

G

= �

G

implies that

�

1

Æ �

2

= id

G

C

. We likewise obtain �

2

Æ �

1

= id

G

C

. This implies in partiular that �

2

1

= id

G

C

,

so that �

2

= �

�1

1

= �

1

.

Let G

C

denote the real Banah-Lie group G

C

endowed with the opposite omplex struture.

Then �

G

: G! G

C

yields a holomorphi morphism � : G

C

! G

C

with � Æ�

G

= �

G

. This means

that we an view � as an antiholomorphi endomorphism of G

C

with

im(�

G

) � G

�

C

:= fg 2 G

C

: �(g) = gg:

As we have seen above, � is uniquely determined by this property, and it is an involution.

(ii) Sine � Æ �

G

= �

G

and � is antiholomorphi, we obtain for x; y 2 L(G):

L(�)

e

L(�

G

)(x + iy) = L(�)

�

L(�

G

)(x) + iL(�

G

)(y)

�

= L(�

G

)(x) � iL(�

G

)(y) =

e

L(�

G

)(x� iy):

Therefore ker

e

L(�

G

) � L(G)

C

is a onjugation invariant losed subalgebra of L(G)

C

. Hene it

oinides with (kerL(�

G

))

C

. This means that

e

L(�

G

) : L(G)

C

! L(G

C

) indues an injetive

map

(L(G)= kerL(�

G

))

C

�

=

L(G)

C

=(kerL(�

G

))

C

,! L(G

C

):

In view of Lemma I.2, this implies that the omplexi�ation of L(G)= kerL(�

G

) is enlargible.

(iii) follows from Lemma I.3.

(iv) follows from Theorem II.2.

In the following, N

G

� G denotes the intersetion of the kernels of all ontinuous homomorphisms

of G to omplex Banah-Lie groups.

Corollary IV.2. If L(G)

C

is not enlargible and L(N

G

) = f0g , then G has no universal

omplexi�ation.

Proof. Suppose that �

G

: G! G

C

is a universal omplexi�ation. Then ker �

G

= N

G

implies

that kerL(�

G

) = L(N

G

) = f0g . Therefore Lemma IV.1(ii) implies that L(G)

C

is enlargible.

Lemma IV.3. If L(G)

C

is enlargible and G is simply onneted, then there exists a universal

omplexi�ation �

G

: G! G

C

, where G

C

is simply onneted and L(G

C

)

�

=

L(G)

C

.

Proof. Let G

C

be a simply onneted Lie group with Lie algebra L(G)

C

. Sine G is

simply onneted, the inlusion map L(G) ,! L(G)

C

integrates to a smooth homomorphism

�

G

: G ! G

C

. If � : G ! H is a smooth homomorphism into a omplex Lie group H , then

L(�) : L(G) ! L(H) extends to a omplex linear map

e

L(�) : L(G)

C

! L(H), whih integrates

to a omplex analyti homomorphism � : G

C

! H with � Æ �

G

= � . Clearly � is uniquely

determined by the latter property. Therefore �

G

is a universal omplexi�ation.

The next lemma allows us to fous on onneted Banah-Lie groups in the following proofs.
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Lemma IV.4. Let G be a real Banah-Lie group whose identity omponent G

0

has a universal

omplexi�ation (G

0

)

C

. Then G has a universal omplexi�ation (G

C

; 

G

) . Furthermore,

((G

C

)

0

; 

G

j

(G

C

)

0

G

0

) is a universal omplexi�ation of G

0

, and G

C

=(G

C

)

0

�

=

G=G

0

.

Proof. Part (b) of the proof of [Bo89, Chapter 3, x6.10, Proposition 20 (a)℄ and Remark (1)

following that proposition an be opied line by line.

Lemma IV.5. Let G be a real Banah-Lie group. If N

G

= f1g and L(G)

C

is enlargible, then

G has a universal omplexi�ation with L(G

C

)

�

=

L(G)

C

.

Proof. By the preeding lemma, we may assume that G is onneted. In view of Lemma IV.3,

the overing group

e

G has a universal omplexi�ation �

e

G

:

e

G ! (

e

G)

C

with L((

e

G)

C

) = L(G)

C

and (

e

G)

C

simply onneted.

Lemma IV.1(i) provides a unique antiholomorphi involution � of (

e

G)

C

with � Æ�

e

G

= �

e

G

. Then

L(�) is the omplex onjugation of L(G)

C

with respet to the real form L(G).

If ' : G! H is a Lie group morphism to a omplex Lie group H , then 'Æq

G

:

e

G! H indues a

unique holomorphi morphism '

C

: (

e

G)

C

! H with '

C

Æ�

e

G

= 'Æq

G

. Hene q

G

(ker �

e

G

) � ker' ,

so that N

G

= f1g implies that ker �

e

G

� �

1

(G), and hene that

G

1

:=

�

(

e

G)

�

C

�

0

= �

e

G

(

e

G)

�

=

e

G= ker�

e

G

is a overing group of G . Sine

�

e

G

(�

1

(G))

�

=

�

1

(G)= ker �

e

G

�

e

G= ker�

e

G

�

=

G

1

is a disrete subgroup, it follows that �

e

G

(�

1

(G)) is a disrete subgroup of (

e

G)

C

. It is entral

beause it is ontained in kerAd

L(G)

C

.

Let G

C

:= (

e

G)

C

=�

e

G

(�

1

(G)), and observe that the map

e

G ! G

C

fators through a map

�

G

:G! G

C

. It is easy to verify that we thus obtain a universal omplexi�ation.

Theorem IV.6 (Complexi�ation Theorem). Let G be a real Banah-Lie group. Then G

has a universal omplexi�ation if and only if the following two onditions are satis�ed:

(i) The intersetion N

G

� G of all kernels of smooth homomorphisms to omplex Banah-Lie

groups (whih always is a losed normal subgroup of G ) is a Lie subgroup.

(ii) The Banah-Lie algebra

�

L(G)=L(N

G

)

�

C

is enlargible.

Proof. \)" Suppose that �

G

: G! G

C

is a universal omplexi�ation. Then N

G

= ker(�

G

)

follows from the universal property of �

G

, and we onlude that N

G

is a kernel, hene a Lie

subgroup. The remaining assertion is Lemma IV.1(ii).

\(" If N

G

is a Lie subgroup, then we use Theorem II.2 to see that H := G=N

G

has a natural

struture of a Banah-Lie group with Lie algebra L(H) = L(G)=L(N

G

). Obviously N

H

= f1g

beause the homomorphisms from H into omplex Lie groups separate points, and (ii) means

that L(H)

C

is enlargible, so that the assertion follows from Lemma IV.5.

Corollary IV.7. If N

G

= f1g , then G has a universal omplexi�ation if and only if L(G)

C

is enlargible.

Corollary IV.8. Suppose that G admits a smooth homomorphism f : G! H into a omplex

Banah-Lie group H suh that

e

L(f) : L(G)

C

! L(H) , X+iY 7! L(f):X+iL(f):Y is injetive.

Then G has a universal omplexi�ation G

C

, and L(G

C

)

�

=

L(G)

C

.

Proof. The hypothesis entails that N

G

is disrete. Replaing G by G=N

G

if neessary, we

may assume that N

G

= f1g . In view of Lemma I.2 and the hypothesis, L(G)

C

is enlargible.

Thus Corollary IV.7 applies.
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Examples IV.9.We give simple examples of Banah-Lie groups with universal omplexi�ations.

(a) Let A be a real Banah algebra. Then every analyti subgroup G of the group of units A

�

has a universal omplexi�ation, as Corollary IV.8 applies to the inlusion map f : G ! (A

C

)

�

(see also [Gl00, Corollary 24.21℄, and [Gl01℄ for the C

1

-analogue).

(b) Let K be a ompat topologial spae and F be a real Banah-Lie group suh that �

F

:

F ! F

C

has disrete kernel. Then the Banah-Lie group C(K;F ) of ontinuous F -valued

mappings on M has a universal omplexi�ation, as Corollary IV.8 applies to the homomorphism

f := C(K; 

F

) : C(K;F )! C(K;F

C

) (see also [Gl00, Proposition 25.5℄).

Remark IV.10. The preeding results suggest the following algorithm to deide whether G

has a universal omplexi�ation:

1. First hek if the intersetion N

G

of all kernels of smooth homomorphisms G ! H , H a

omplex Banah-Lie group, is a Lie subgroup. If this is not the ase, then G has no universal

omplexi�ation.

2. If N

G

is a Lie subgroup, then G=N

G

is a Banah-Lie group by Theorem II.2. Replaing G by

G=N

G

, we may assume that N

G

= f1g , i.e., that the morphisms to omplex Banah-Lie groups

separate points. Then G has a universal omplexi�ation if and only if L(G)

C

is enlargible

(Corollary IV.7).

This means that we have two levels, where the existene of G

C

an fail. An example of a

Banah-Lie group whih fails to satisfy Condition (i) of Theorem IV.6 will be given in Setion V.

Banah-Lie groups whih do not satisfy Condition (ii) are desribed in Example VI.4 below.

Complexi�ations of simply onneted groups

If G is a simply onneted Lie group, then the general philosophy of Lie theory says that every

group theoreti property of G is somehow enoded in the Lie algebra g . Therefore one would

expet a haraterization of those simply onneted groups having a universal omplexi�ation

in terms of their Lie algebra. The following theorem is a riterion of this type.

Theorem IV.11. Let G be a simply onneted Banah-Lie group. Then G has a universal

omplexi�ation if and only if the omplexi�ation L(G)

C

of its Lie algebra has a universal

enlargible envelope in the ategory of omplex Banah-Lie algebras.

Proof. Let �

G

: G ! G

C

be a universal omplexi�ation and ' : L(G)

C

! h a omplex

linear homomorphism into an enlargible omplex Lie algebra. Sine G is simply onneted, we

an integrate 'j

L(G)

to a group homomorphism of '

G

: G! H , where H is a simply onneted

omplex group H with Lie algebra h . Sine this homomorphism fators through �

G

, we obtain

a Lie algebra homomorphism L('

G

)

℄

: L(G

C

)! h with L('

G

)

℄

Æ L(�

G

) = 'j

L(G)

. This implies

that the homomorphism

e

L(�

G

) : L(G)

C

! L(G

C

) has the universal property of the universal

enlargible omplex envelope of L(G)

C

.

Suppose, onversely, that � : L(G)

C

! e is a omplex universal enlargible envelope and that E

is a simply onneted Lie group with Lie algebra e . Sine G is simply onneted, there exists

a ontinuous homomorphism �

G

:G ! E with L(�

G

) = � . We laim that �

G

is a universal

omplexi�ation.

Let ' : G ! H be a ontinuous homomorphism into a omplex Banah-Lie group H . Then

e

L(') : L(G)

C

! h is a ontinuous Lie algebra homomorphism whih then fators through � . In

view of the simple onnetedness of E , the homomorphism ' fators through �

G

. This proves

the universality of �

G

.
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Complexi�ations of ellipti groups

Ellipti Banah-Lie algebras de�ned below are natural generalizations of �nite-dimensional

ompat Lie algebras. In this setion we extend the result that a �nite-dimensional onneted

Lie group G with a ompat Lie algebra has a faithful universal omplexi�ation with a polar

deomposition to ellipti Lie algebras. Here the remarkable part is that the existene of a faithful

homomorphism into a omplex Lie group is obtained from general geometri results on polar

deompositions.

De�nition IV.12. (a) We all a Banah-Lie algebra g ellipti if there exists a norm on

g de�ning the topology whih is invariant under the operators e

adx

, x 2 g . We say that a

onneted Banah-Lie group G is ellipti if its Lie algebra g is ellipti, i.e., there exists a norm

on g de�ning the topology whih is invariant under the group Ad(G).

(b) Let G be a Banah-Lie group endowed with an involutive automorphism � . Then the

eigenspae deomposition of g = L(G) with respet to L(�) yields a diret sum deomposition

g = k� p , where k = ker(L(�)� 1) and p = ker(L(�) + 1). We say that the group G has a polar

deomposition if for K := fg 2 G: �(g) = gg the polar map

p : K � p! G; (k; x) 7! k expx

is a di�eomorphism. This implies in partiular that the inlusion map K ,! G is a homotopy

equivalene, hene indues an isomorphism �

2

(K)! �

2

(G).

Lemma IV.13. If g is an ellipti Banah-Lie algebra, then g

C

is enlargible.

Proof. Let k � k be an e

ad g

-invariant norm on g ompatible with the topology on g .

Then the quotient norm on g

ad

is also invariant, showing that g

ad

is ellipti. Moreover, the

omplexi�ation g

ad;C

of g

ad

in enlargible beause it is ontained in der(g

C

) (Lemma I.2). Let

G

ad;C

be a orresponding simply onneted group. Now [Ne01, Cor. IV.9 and Th. V.1℄ imply

that the group G

ad;C

has a polar deomposition G

ad;C

= G

ad

exp(ig

ad

), where G

ad

� G

ad;C

is the �xed point group for the antiholomorphi automorphism � of G

ad;C

for whih L(�) is

the onjugation of g

ad;C

with respet to the real form g

ad

. Sine the inlusion G

ad

,! G

ad;C

is a homotopy equivalene, the group G

ad

is simply onneted, so that our notation here is

ompatible with the de�nition of G

ad

in Setion III.

Next we observe that Corollary III.4(a) applies to the inlusion map g ,! g

C

beause this maps

z(g) into z(g

C

)

�

=

z(g)

C

and the indued map G

ad

,! (G

C

)

ad

�

=

G

ad;C

indues an isomorphism

of the seond homotopy groups. Corollary III.4(a) implies that �(g

C

) = �(g) and hene that

g

C

is enlargible by Theorem III.7.

The following proposition generalizes the standard result on the polar deomposition and the

existene of a universal omplexi�ation of ompat Lie groups.

Proposition IV.14. If G is an ellipti Banah-Lie group, then G has an injetive universal

omplexi�ation �

G

: G! G

C

suh that G

C

has a polar deomposition G

C

= G exp(ig) .

Proof. Let

e

G

C

be a simply onneted Lie group with Lie algebra g

C

(Lemma IV.13). From

[Ne01, Cor. IV.9 and Th. V.1℄ we onlude that

e

G

C

has a polar deomposition

e

G

C

=

e

G exp(ig),

where the subgroup

e

G � G

C

an be identi�ed with the simply onneted overing group of G .

Identifying �

1

(G) with a disrete entral subgroup of

e

G , we observe that it is also entral in

e

G

C

beause it ats trivially by the adjoint representation on g

C

. Therefore G

C

:=

e

G

C

=�

1

(G)

is a omplex Lie group ontaining

e

G=�

1

(G)

�

=

G as a real subgroup orresponding to the Lie

subalgebra g � g

C

. Moreover, the polar deomposition of

e

G

C

indues a polar deomposition

G

C

= G exp(ig) of G

C

. From that one easily derives that the inlusion map �

G

: G ,! G

C

is a

universal omplexi�ation.



17 uniomp.tex April 12, 2001

V. An example of the �rst kind

In this setion and the next, we onstrut real Banah-Lie groups without universal omplexi�-

ations. We begin with a Banah-Lie group whih does not satisfy ondition (i) of Theorem IV.6.

Step 1. Reall that the universal overing group S :=

f

SL(2;R) of the speial linear group

SL(2;R) has disrete enter Z(S)

�

=

Z , and reall that N

S

= ker �

S

�

=

Z is a subgroup of

index 2 in Z(S), where �

S

: S ! S

C

�

=

SL(2; C ). Let z

0

be a generator for N

S

. For every

n 2 N , there is a unique homomorphism '

n

: N

S

! R suh that '

n

(z

0

) =

1

n

. Then the graph

�

n

of '

n

is a disrete normal subgroup of S � R , and H

n

:= (S � R)=�

n

is a Lie group with

Lie algebra h := sl(2;R) � R and exponential funtion exp

H

n

= q

n

Æ (exp

S

� id

R

), where exp

S

is the exponential funtion of S and q

n

: S � R ! H

n

the anonial quotient morphism. The

mapping i

n

: S ! H

n

, g 7! q

n

(g; 0) is an embedding of topologial groups.

Step 2. It is apparent from the de�nition of N

S

that i

n

(N

S

) � ker �

H

n

=: N

H

n

, where

�

H

n

: H

n

! (H

n

)

C

is the universal homomorphism. Note that

(5:1) i

n

(z

0

) = (z

0

; 0) �

n

= (1;�

1

n

) �

n

2 N

H

n

in partiular. On the other hand, N

H

n

� q

n

(N

S

�

1

n

Z)

�

=

Z , whene N

H

n

is disrete. In fat,

sine �

n

� N

S

�

1

n

Z , the omposition

f

SL(2;R) � R !

f

SL(2;R) � R

N

S

�

1

n

Z

�

=

!

SL(2;R) �

R

1

n

Z

,! SL(2; C )�

C

1

n

Z

fators through H

n

, giving rise to a ontinuous homomorphism from H

n

into a omplex Lie

group with kernel q

n

(N

S

�

1

n

Z).

Step 3. Having hosen any norm k:k

0

on sl(2;R) making it a normed Lie algebra, we make h

a normed Lie algebra via k(X; t)k := maxfkXk

0

; jtjg for (X; t) 2 h . Then the `

1

-diret sum

g := `

1

(N; h) is a Banah-Lie algebra with respet to pointwise operations and the supremum-

norm (f. Theorem III.9).

Step 4. In view of Theorem III.9 and Æ

n

= 1 for n 2 N , there exists a simply onneted Lie

group

e

G with Lie algebra g , and with Proposition III.12 we obtain a ontinuous homomorphism

e

 :

e

G!

Q

n2N

H

n

with

e

 (expX) = (exp

H

n

(X

n

))

n2N

for X 2 g .

Step 5. Sine N

S

is disrete in S , there exists an identity neighbourhood W in S suh that

W

�1

W \ N

S

= f1g . For suitable R > 0, we may assume that exp

S

(B

R

(0)) � W , and that

exp

S

is injetive on B

R

(0).

Step 6. Then exp

H

n

is injetive on B

R

(0) � R , for every n 2 N . In fat, suppose that

X

1

; X

2

2 B

R

(0) � sl(2;R) and t

1

; t

2

2 R suh that exp

H

n

(X

1

; t

1

) = exp

H

n

(X

2

; t

2

). Then there

is z 2 N

S

suh that exp

S

(X

1

)z = exp

S

(X

2

) and t

1

+'

n

(z) = t

2

. Thus exp

S

(X

1

)

�1

exp

S

(X

2

) =

z 2 N

S

\W

�1

W = f1g and therefore exp

S

(X

1

) = exp

S

(X

2

) whene X

1

= X

2

by injetivity.

Sine z = 1 , we also have t

1

= t

2

.

Step 7. We dedue from Step 6 that

e

 Æ exp

e

G

is injetive on the open ball B

R

(0) � g and

hene that ker

e

 is disrete. We de�ne G :=

e

G= ker

e

 and note that

e

 fators to a ontinuous

injetion  :G !

Q

n2N

H

n

suh that for all projetions p

n

:

Q

m2N

H

m

! H

n

the omposition

�

n

:= p

n

Æ :G! H

n

is a Lie group homomorphism for whih L(p

n

Æ ) is the point evaluation

e

n

: g = l

1

(N; h) ! h; (X

m

)

m2N

7! X

n

at n .

Step 8. Let 

n

: h ,! g denote the inlusion map with e

m

Æ 

n

= Æ

nm

id

h

. Then the fat that  

is injetive implies that the Lie algebra homomorphism 

n

integrates to a group homomorphism

"

n

:H

n

! G with p

n

Æ  Æ "

n

= id

H

n

beause the orresponding homomorphism

e

H

n

! G !

Q

m2N

H

m

fators through H

n

. We then have  ("

n

(h))

m

= 1 for m 6= n and  ("

n

(h))

n

= h .
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Step 9. De�ne N

G

� G as in Setion IV. As �

H

n

Æ�

n

is a smooth homomorphism into a omplex

Lie group for eah n , with kernel �

�1

n

(N

H

n

), we have N

G

�

�

G \

Q

n2N

N

H

n

�

=: P , identifying

G with im  now. Here P is totally disonneted, sine the ontinuous homomorphisms �

n

j

N

H

n

P

into disrete groups separate points on P . Hene N

G

is totally disonneted as well. On the

other hand, by neessity "

n

(N

H

n

) � N

G

for eah n , whene

(5:2)

n

(h

n

)

n2N

2

Y

n2N

N

H

n

: h

n

= 1 for almost all n

o

� N

G

:

Step 10. Note that fX 2 g : exp

G

(RX) � N

G

g = f0g , sine N

G

is totally disonneted.

However, N

G

is not disrete: for every 0 < Æ < R , we have D := exp

G

(B

Æ

(0)) \N

G

6= f1g , as

1 6= (1;�

1

n

) �

n

2 �

n

(D) by (5.1) and (5.2), where n 2 N is hosen suh that

1

n

< Æ . Hene N

G

is not a Lie subgroup of G , and we have reahed our goal: ondition (i) of Theorem IV.6 is not

satis�ed by G . In partiular, G does not have a universal omplexi�ation.

Remark V.1. It is interesting to take a loser look at the topology of the groups in the

onstrution above, to understand them in the ontext of Proposition III.12. Here we an

get a quite expliit piture of the simply onneted group

e

G . We reall that the group S is

homeomorphi to R

3

whih an most easily be seen from its polar deomposition S = K

S

exp p

s

,

where K

S

�

=

f

SO(2;R)

�

=

R and p

s

�

=

R

2

. From that it is not hard to derive that the subgroup

of (S � R)

N

orresponding to `

1

(N; h) is homeomorphi to

`

1

(N;R) � `

1

(N;R

2

)� `

1

(N;R);

hene in partiular simply onneted, whene isomorphi to

e

G .

This implies that for the natural map

e

 :

e

G !

Q

n2N

H

n

the kernel is

e

G \

Q

n2N

�

n

, and

this group is the graph � of the homomorphism

': `

1

(N;Z)! `

1

(N;R); '(x

n

)

n2N

=

�

1

n

x

n

�

n2N

:

This subgroup is disrete and G

�

=

e

G=�, so that �

1

(G)

�

=

�.

VI. Examples of the seond kind

In this setion, we onstrut examples of real Banah-Lie groups G whih satisfy ondition (i)

of Theorem IV.6 (as N

G

= f1g) but not ondition (ii).

Lemma VI.1. Let g

1

; : : : ; g

n

be Banah-Lie algebras with enters z

1

; : : : ; z

n

. Let

g := g

1

� : : :� g

n

; b � z(g) = z

1

� : : :� z

n

be a subspae interseting eah z

j

trivially, and q : g ! g=b denote the quotient map. Then

z(g=b) = z(g)=b; q(�(g)) = �(g=b); and �(g)

�

=

n

M

j=1

�(g

j

):

Proof. It is lear that z(g)=b is entral in g=b . If, onversely, q(x) is entral in g=b , then for

eah j we have [x; g

j

℄ � b \ z

j

= f0g , so that x is entral in g . Therefore z(g=b) = z(g)=b =

q(z(g)). Now Corollary III.4(b) shows that q(�(g)) = �(g=b). The relation �(g)

�

=

L

n

j=1

�(g

j

)

follows diretly from Theorem III.9.
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Lemma VI.2. Let a be a Banah-Lie algebra over K 2 fR; C g with dim z(a) = 1 and period

group �(a) = Z

0

�

=

Z. Then eah of the Lie algebras

g

n

(a) := (a� a)=K (

0

; n

0

)

is enlargible, but their `

1

-diret sum

g(a) :=

1

M

n2N

g

n

(a) :=

n

(x

n

)

n2N

2

Y

n2N

g

n

(a): sup

n2N

kx

n

k <1

o

is not enlargible, whereas the homomorphisms to the enlargible Lie algebras g

n

separate points.

Proof. First we note that (3.3) implies that

�(a� a) = �(a)��(a)

�

=

Z

2

:

Now b

n

:= K (

0

; n

0

) is a one-dimensional entral subspae of a � a , so that g

n

:= g

n

(a) is

a Banah-Lie algebra with z(g

n

) = z(a � a)=b

n

(Lemma VI.1). Sine the period group �(a) is

disrete, the Lie algebra a is enlargible (Theorem III.7). Moreover,

�

�(a� a) + b

n

�

=b

n

�

=

�(a� a)=

�

�(a� a) \ b

n

�

is isomorphi to Z

2

=Z(1; n)

�

=

Z and therefore disrete in z(g

n

)

�

=

z(a � a)=b

n

. Hene Lemma

VI.1 implies that

�(g

n

)

�

=

�(a� a)=Z(

0

; n

0

)

�

=

Z

2

=Z(1; n)

�

=

Z:

We endow the Lie algebra a � a with the l

1

-norm k(x

1

; x

2

)k = max(kx

1

k; kx

2

k). Then

z(a�a)

�

=

(K

2

; k�k

1

) as a normed spae and �(a�a)

�

=

ÆZ

2

, where Æ = minfkk: 0 6=  2 �(a)g .

In

z(g

n

) = z(a� a)=b

n

�

=

K

2

=K (1; n)

we have with x := q(x), q: a� a! g

n

:

k(1; 0)k = inf

�2K

k(1 + �; n�)k

1

= inf

�2K

max(j1 + �j; nj�j)

= inf

�2[�2;0℄

max(j1 + �j; nj�j) =

n

n+ 1

:

The elements of the group

1

Æ

�(g

n

) orrespond to

Z

2

=Z(1; n) = Z(1; 0)+Z(0; 1) = Z(1; 0)+Z(

1

n

; 0) = Z(

1

n

; 0):

This means that

Æ

n

:= inffkk: 0 6=  2 �(g

n

)g =

n

n+ 1

Æ

1

n

=

Æ

n+ 1

:

Therefore the Lie algebras g

n

do not satisfy the assumptions of Theorem III.9 beause Æ

n

! 0.

This means that their l

1

-sum g(a) :=

L

1

n2N

g

n

(a) is not enlargible, whereas the ontinuous Lie

algebra homomorphisms to the enlargible Lie algebras g

n

separate points.

Next we onstrut examples of Banah-Lie algebras a with one-dimensional enter and period

group isomorphi to Z beause these are needed as input for the onstrution in Lemma VI.2.

Example VI.3. In this remark we disuss Lie algebras a satisfying the assumptions of Lemma

VI.2. This turns out to be of partiular interest for �(a) = f0g and �(a

C

)

�

=

Z whih is satis�ed

for the algebras in (b) and ().

(a) The most prominent example of a Lie algebra a with these properties is a = u(H), where

H is an in�nite-dimensional omplex Hilbert spae. In view of Kuiper's Theorem, the unitary

group U(H) of H is ontratible, hene in partiular a simply onneted Banah-Lie group. Its

enter is isomorphi to T , so that Proposition III.8 implies that �(a)

�

=

�

1

(T)

�

=

Z .
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If we replae a by its omplexi�ation B(H), the Lie algebra of all bounded operators on H ,

then the polar deomposition of GL(H) implies that it is also ontratible, so that

�((a)

C

)

�

=

�

1

(Z(GL(H)))

�

=

�

1

(C

�

)

�

=

Z:

(b) Next we onstrut an example of a real Banah-Lie algebra a with �(a) = f0g and

�(a

C

)

�

=

Z .

Let

a

0

:= 


1

(sl(2;K )) := ff 2 C

1

(T; sl(2;K )): f(1) = 0g:

Then a

0

is a K -Banah-Lie algebra whih has a entral extension a given by the oyle

!(f; g) :=

Z

T

�(f(t); g

0

(t)) dt;

where � is the Killing form of sl(2;K ) . More preisely, a = a

0

� K with the braket

[(x; z); (x

0

; z

0

)℄ = ([x; x

0

℄; !(x; x

0

)):

Sine z(a

0

) = f0g , we see that z(a) = f0g � K is one-dimensional.

Now

A

0

:= 


1

(SL(2;K ))

0

�

=




1

(SL(2;K )e)

is a Banah-Lie group with Lie algebra a

0

. Smoothing of loops easily implies that A

0

is homotopy

equivalent to the ontinuous loop group 
(SL(2;K )e), so that

�

2

(


1

(SL(2;K )e)

�

=

�

2

(
(SL(2;K )e)

�

=

�

2

(
(SL(2;K )))

�

=

�

3

(SL(2;K ))

�

=

n

0 for K = R

Z for K = C

beause SL(2;R) is homeomorphi to T� R

2

, so that SL(2;R)e is homeomorphi to R

3

, hene

has trivial third homotopy, and

�

3

(SL(2; C ))

�

=

�

3

(SU(2; C ))

�

=

�

3

(S

3

)

�

=

Z:

Sine �(a) is a homomorphi image of �

2

(A

0

) (De�nition III.1), this group vanishes for K = R .

For K = C we have �(a)

�

=

Z , as is shown in [EK64, p. 26℄ and [Ne01a, Th. II.5℄, beause

the simply onneted group orresponding to the Lie algebra a has a enter whih is not simply

onneted.

Note that we annot take C

0

instead of C

1

in the above onstrution sine the Lie algebra

C

0

(T; sl(2; C )) has no non-trivial entral extensions.

2

() The following example is simpler and still satis�es �(a) = f0g and �(a

C

)

�

=

Z .

Let H be an in�nite-dimensional omplex Hilbert spae and H

R

the underlying real Hilbert

spae. Let J : H ! H; v 7! iv , denote the omplex struture on H and de�ne the sympleti form


(v; w) := Imhv; wi . We write Sp(H;
) for the group of all real linear ontinuous automorphisms

of H preserving the form 
 and onsider the subgroup

Sp

res

(H;
) := fg 2 Sp(H;
): k[g; J ℄k

2

<1g;

alled the restrited sympleti group. This group has a polar deomposition K exp p with

K

�

=

U(H) and p is the spae of antilinear symmetri operators on H

R

. Kuiper's Theorem

implies that U(H) and hene Sp

res

(H;
) is ontratible, hene in partiular simply onneted.

As we have seen in [Ne01b, Set. IV℄, the group Sp

res

(H;
) has a universal omplexi�ation

Sp

res

(H;
)

C

� GL(H

C

) whih is also simply onneted but has a seond homotopy group

isomorphi to Z .

Let A := Mp(H;
) denote the metapleti group whih is a entral T-extension of Sp

res

(H;
)

([Ne01b, Set. IV℄) and the enter of its Lie algebra a is the Lie algebra of T . Therefore the fat

that Sp

res

(H;
) is simply onneted implies that A

ad

�

=

Sp

res

(H;
), and the ontratibility

of this group further implies that �(a) = f0g . The simply onneted group orresponding to

the omplexi�ation a

C

is a entral C

�

-extension of Sp

res

(H;
)

C

([Ne01b, Set. IV℄). Hene

Proposition III.8 implies that �(a

C

)

�

=

�

1

(C

�

)

�

=

Z .

Now we onstrut an example of a onneted Banah-Lie group G for whih the homomorphisms

to omplex Lie groups separate points, but G has no universal omplexi�ation.

2

This follows from [Ma01 Corollary 12℄ and the C

0

-analogue of [Ma01, Theorem 15℄.
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Example VI.4. In Example VI.3(b),() we have seen that there exist real Banah-Lie algebras

a with z(a)

�

=

R , �(a) = f0g and �(a

C

)

�

=

Z . For eah Lie algebra g

n

(a) we then have

�(g

n

(a)) = f0g and �(g

n

(a

C

))

�

=

Z;

as follows from Lemma VI.1 and the arguments in Lemma VI.2. Therefore Theorem III.9 implies

that �(g(a)) = f0g and that �(g(a

C

)) is not disrete.

For eah n 2 N let G

n

(a

C

) denote a simply onneted Lie group with Lie algebra g

n

(a

C

) and

G

n

(a) the Lie subgroup orresponding to the real form g

n

(a) of g

n

(a

C

). That G

n

(a) is a Lie

subgroup follows from the fat that it is the �xed point set of the antiholomorphi involution on

G

n

(a) whose derivative is the omplex onjugation of g

n

(a

C

). Now let G(a) �

Q

n2N

G

n

(a) be

the analyti subgroup with Lie algebra g(a). Sine the G

n

(a) are subgroups of omplex groups,

the homomorphism of G(a) to omplex groups separate points, i.e., N = f1g . Moreover, we

have L(G(a))

C

= g(a)

C

�

=

g(a

C

), and this Lie algebra is not enlargible.
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