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Banach-Lie Quotients, Enlargibility, and Universal Complexifications

Helge Glockner, Karl-Hermann Neeb

Abstract. We characterize those real Banach-Lie groups which admit universal complexifications,
and present examples of Banach-Lie groups which have none. To achieve these goals, we prove new
results concerning the enlargibility of Banach-Lie algebras, and derive a necessary and sufficient
condition for the existence of Lie group structures on quotients of Banach-Lie groups.

Introduction

In this article, we address several interrelated problems in the theory of Banach-Lie groups,
namely: (a) the existence of Lie group structures on quotient groups; (b) enlargibility of Banach-
Lie algebras; (c) the existence of universal complexifications of Banach-Lie groups.

A classical fact in the theory of Banach-Lie groups asserts that the topological quotient group
G/N of areal Banach-Lie group G by a normal Lie subgroup N can be made a real Banach-Lie
group if N is a split Lie subgroup, i.e., provided L(NV) is complemented in L(G) as a topological
vector space ([Ms62], [Bo89]; see Section 1 below for the terminology). As our first main result,
we show that the assumption that N be split is superfluous (Corollary I1.4):

1. Quotient Theorem. If G is a real Banach-Lie group and N a closed normal subgroup
of G, then the topological quotient group G /N can be given a real Banach-Lie group structure if
and only if N is a Lie subgroup of G.

Equipped with the Quotient Theorem, we turn to enlargibility questions of Banach-Lie algebras.
Since the fundamental work of van Est and Korthagen [EK64], it is known that there are Banach-
Lie algebras which are not enlargible, i.e., which are not the Lie algebra of any Banach-Lie
group. Van Est and Korthagen also proved the following Enlargibility Criterion: o Banach-
Lie algebra g is enlargible if and only if its period group II(g) C 3(g) is discrete [EK64, p.
24]. The Quotient Theorem allows us to approach this important classical fact more directly
(Theorem II1.7). Furthermore, making use of the functoriality of II(e) (Remark III.5), we prove
necessary and sufficient conditions for enlargibility of £°°-direct sums of Banach-Lie algebras
(Theorem III1.9), as well as a characterization of the existence of universal enlargible envelopes
(Theorem III.19):

2. Existence of Universal Enlargible Envelopes. A Banach-Lie algebra g has a universal
enlargible envelope if and only if there is a smallest closed vector subspace a of 3(g) such that a
is open in a+1II(g).

See also [DL66], [Sw71], [Pe92], and [Pe93] for discussions related to enlargibility.

The remaining sections of this article are devoted to the study of universal complexifications
of Banach-Lie groups. Although it is a classical fact that every finite-dimensional Lie group
has a universal complexification ([Bo89], cf. [Ho65], [Ho66]), according to the authors’ best
knowledge, the existence question of universal complexifications of Banach-Lie groups has never
been addressed in the literature until the recent investigations in [Gl00], where an explicit
existence criterion for universal complexifications was formulated. We strengthen this existence
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criterion in Corollary IV.8 below. More importantly, making use of the Quotient Theorem, we
derive a complete characterization of the existence of universal complexifications (Theorem IV.6):

3. Complexification Theorem. Given a real Banach-Lie group G, let Ng be the intersection
of all kernels of smooth homomorphisms from G into complex Banach-Lie groups. Then G has
a universal complexification if and only if Ng is a Lie subgroup of G and the complexification
of L(G)/ L(Ng) is enlargible.

We provide an example of a Banach-Lie group for which N fails to be a Lie subgroup (Section V),
and also examples where Ng = {1} but L(G)c is not enlargible (Section VI). Cf. [Le97] for a
Fréchet-Lie group whose Lie algebra has a non-enlargible complexification.

For simply connected Banach-Lie groups, we also give an alternative characterization of the
existence of universal complexifications in terms of properties of the Lie algebra (Theorem IV.11):

4. Complexifications of Simply Connected Banach-Lie Groups. A simply connected
Banach-Lie group G has a universal complezification if and only if the complexification of its
Lie algebra has a universal enlargible envelope in the category of complex Banach-Lie algebras.

Part of the results and techniques developed here carry over to more general classes of infinite-
dimensional Lie groups, including all smooth mapping groups, test function groups,and classical
direct limit Lie groups. We refer to [Gl01] for these generalizations.

I. Preliminaries, Notation and Terminology

In this section, we describe our terminology concerning enlargibility, Lie subgroups, and universal
complexifications. We also assemble various basic facts.

Recall that a real (resp., complex) Banach-Lie group is a group, equipped with a smooth
(resp., complex analytic) Banach manifold structure, such that the group operations are smooth
(resp., complex analytic). Since every continuous homomorphism between real Banach-Lie
groups is smooth, there is at most one real Banach-Lie group structure on a given topological
group, whence a real Banach-Lie group can be identified with its underlying topological group.
Furthermore, every real Banach-Lie group can be given a unique real analytic structure. For
standard results, notation and terminology concerning Banach-Lie groups, the reader is referred
to [Bo89, Chapter 3] and [Ms62].

Definition I.1. A Banach-Lie algebra g is called enlargible if there exists a Banach-Lie group
G with Lie algebra g. u

In [EK64] one finds several results on enlargibility of Banach-Lie algebras, containing in particular
the construction of examples of non-enlargible Lie algebras.

Lemma 1.2. If g is enlargible and @: b — g is an injective morphism of Banach-Lie algebras,
then by is enlargible.

Proof. This follows from [EK64, (** %) in §3]. ]

Lemma 1.3. If ¢: G — H is a morphism of Banach-Lie groups, then L(G)/kerL(p) is
enlargible.

Proof. The map L(y): L(G) — L(H) factors through an injection L(G)/ker L(y) — L(H),
so that Lemma 1.2 applies. ]

It is useful to distinguish various types of subgroups of Banach-Lie groups. Since the terminology
is not uniform in the literature, we need to explain ours.

Definition I.4. Let G be a Banach-Lie group over K € {R,C}.
(a) An analytic subgroup of G is a Banach-Lie group H over K whose underlying abstract
group is a subgroup of G, such that the inclusion map ¢: H — G is smooth and L(e) :
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L(H) = L(G) is an embedding of topological K-Lie algebras. We identify L(H) with its
image h C L(G) under L(e). Thus, the exponential function of H is expg |y -

(b) An analytic subgroup H of G is called a Lie subgroup of G if the analytic subgroup topology
on H coincides with the topology induced by G, i.e., if the above mapping ¢ is a topological
embedding. If, in addition, L(H) is complemented in L(G) as a topological K-vector space,
we call H a split Lie subgroup of G. ]

Remark I.5. Note that L(H) = {X € L(G): expg(RX) C H } whenever H is a Lie subgroup
of GG in the preceding situation, and note that any Lie subgroup is closed, being locally closed.
Conversely, let H be any closed subgroup of G. Then h := {X € L(G) : expe(RX) C H}
is a closed real Lie subalgebra of L(G), and a closed real Lie algebra ideal if H is a closed
normal subgroup (see [Ms62, Satz 12.4, Satz 12.6]). The closed subgroup H can be given
a (necessarily unique) Banach-Lie group structure over K making it a Lie subgroup of G if
and only if there exists a zero-neighbourhood U in L(G) such that expg |v is injective and
expa(U) N H = expe(U N h), and if furthermore h is a complex Lie subalgebra of L(G) if
K = C. In this case, we shall call the closed subgroup H a Lie subgroup of G, by abuse of
language.

Remark I.6. To prevent confusion, let us point out that “split Lie subgroups” in the our sense
are called “Lie subgroups” in [Bo89] and “differentiable subgroups” in [Ms62], whereas “Lie
subgroups” in the our sense are called “Lie quasi-subgroups” by Bourbaki. Analytic subgroups
in our sense are Maissen’s “Lie subgroups.”

Definition I.7.  Let GG be areal Banach-Lie group. A complex Banach-Lie group G¢ , together
with a smooth homomorphism 7ng: G — G¢, is called a universal complexification of G if for
every smooth homomorphism f: G — H from G into a complex Banach-Lie group H, there
exists a unique complex analytic homomorphism f: G¢ — H such that fong = f. ]

II. Lie group structures on quotient groups

A classical fact in the theory of Banach-Lie groups asserts that the topological quotient group
G/N of a real Banach-Lie group G by a split normal Lie subgroup N can be made a real
Banach-Lie group ([Ms62, Satz 13.1]; [Bo89, Chapter 3, §1.6, Proposition 11]). In this section,
we show that the hypothesis that N be split is superfluous.

First, we recall a useful lemma from [Ne00a].

Lemma I1.1. If f: G — H is a smooth homomorphism between real Banach-Lie groups, then
S := f~Y(T) is a Lie subgroup of G, for every Lie subgroup T of H .

Proof. Set g:= L(G). The naturality of exp entails that s = L(f)~%(t), where t := L(T)
and s := L(S) := {X € g: expg(RX) C S}. If S fails to be a Lie subgroup of G, there
exists a sequence (X, )pen in g\s such that expn(X,) € S for all n, and X,, — 0 in g as
n — oo. Let V be a zero-neighbourhood in L(H) such that expy is injective on V', and
TN expy (V) =expy(tNV). Since U := L(f)~1(V) is a zero-neighbourhood in g, there exists
ng € N such that X,, € U for all n > ng. Then expy(L(f).Xn) = flexpa(X,)) € T forces
L(f).X, €t for all n > ng. Thus X, € L(f)!(t) = s, which is a contradiction. Therefore S is
a Lie subgroup. ]

Theorem II.2 (Quotient Theorem). Let G be a Banach-Lie group over K € {R,C},
with Lie algebra L(G) = g, and suppose that N is a closed normal subgroup of G. Define
n:={X €g:expg(RX) CN}, andlet ¢:G— G/N, Q:g— g/n be the canonical quotient
maps. If K =C , assume in addition that n is a complex Lie subalgebra of g. Then the following
conditions are equivalent:
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(a) There ezists a smooth (resp., complex analytic) homomorphism ¢: G — H into a Banach-
Lie group H over K such that ker(p) = N.

(b) G/N can be made a Banach-Lie group over K with Lie algebra g/n, such that qoexpgy =
expg/N © Q.

(¢) N is a Lie subgroup of G.

Proof. We give the proof in the real case only; the case K = C follows the same lines.

The implication (b) = (a) is trivial.

(a) = (c): This is Lemma II.1.

(¢c) = (b): We choose norms on g and g/n compatible with the topologies which make g, resp.,
g/n normed Lie algebras. Then the Campbell-Hausdorff series converges absolutely on V' x V
for a sufficiently small open ball V' with center 0 in g/n. There is an open ball W C V' centered
at 0 such that W x W C V; thus X xY % Z is defined for all X,Y,Z € W. Furthermore,
there is an open ball U centered at 0 in g such that the Campbell-Hausdorff series converges
absolutely on U. Shrinking U if necessary, we may assume that expq |y is a diffeomorphism
onto an open subset of G, and that exp;(U) NN = exps(U Nn). There is an open, connected,
symmetric zero-neighbourhood A C U in g such that Ax A C U and Q(A) € W. Then
expa(X *Y) = exp(X) expg(Y) for all X,V € A.

Claim 1: If X,Y € A and Q(X) = QY), then q(expz(X)) = glexps(Y)). In fact, from
Q(X) = Q(Y) we deduce that Q(X * (=Y)) = Q(X) * (—Q(Y)) =0, i.e., X x(=Y) € n. Thus
1 = gexpg (X * (=Y))) = g(expg(X) expi(Y)™1), which implies the claim.

Claim 2: If XY € A and q(exps(X)) = ¢(expa(Y)), then X —Y € n. In fact, we
have expg (X x (=Y)) = expg(X)exps(Y)™' € N in this case, where X, —-Y € A and thus
X % (=Y) € U. From the choice of U, we deduce that X * (—Y) € n. Thus 0 = Q(X x(-Y)) =
Q(X) * (—Q(Y)). Since Q(X),Q(Y) € W, multiplication with Q(Y) on the right yields
QYY) =Q(X), as required.

Let B := Q(A) now. By Claim 1, a mapping E: B — G/N can be defined via E(Q(X)) :=
q(exps(X)) for X € A. The mapping Q|5 : A — B being an open surjection, we deduce from
the continuity and openness of g o expg |4 that E is continuous and open. Furthermore, F is
injective by Claim 2. Let C; C A be an open zero-neighbourhood in g such that C; xCy C A,
and define C := Q(Cy). Then for every X,V € C, say X = Q(X;1), ¥ = QY1) with
X1,Y1 € C1, we have E(X xY) = g(exps (X1 %Y1)) = q(expg(X1)exps(Y1)) = E(X)E(Y). We
deduce from [Bo89, Chapter 3, §1.9, Proposition 18] that there is a unique Banach-Lie group
structure on (E(C)) = (E(B)) = (G/N)o which makes E|g(c) a diffeomorphism onto the open

submanifold E(C). Since E(C) is open in G/N and E|g(0) a homeomorphism with respect to
the topology on E(C) induced by G/N, clearly the topology underlying the Banach-Lie group
(G/N)y is the topology induced by G/N. The automorphisms (G/N)o — (G/N)o, g — wgz~?
being continuous and hence analytic on the open normal subgroup (G/N)o of G/N for all
x € G/N, we deduce from [Bo89, Chapter 3, §1.9, Proposition 18] that G/N is a Banach-Lie
group. We extend E to a function expg,y: g/n = G/N via expg/y(X) = E(LX)", where
X € g/n and n € N is chosen such that %X € C. Then eXpg /N 18 well-defined, is analytic, and
is an exponential function for G/N (cf. [Bo89, Chapter 3, §6.4]). By construction of E, we have
€Xpg/N ° Q) = qo expg. [

Remark II.3. Our construction of a Banach-Lie group structure on G/N closely resembles
Maissen’s in the case where N is a split Lie subgroup [Ms62, Satz 13.1]. In fact, Maissen already
noted that the definition of our mapping E (which he called exp) does not require that n be
complemented in g. However, he didn’t realize that a certain mapping 7 he defined is simply
the Campbell-Hausdorff multiplication on g/n (and thus analytic), and believed that nothing
could be said about the differentiability of 7 in the absence of a vector complement.

Corollary I1.4.  Suppose that G is a real Banach-Lie group and N a closed normal subgroup
of G. Then the topological quotient group G/N can be given a real Banach-Lie group structure
compatible with the quotient topology if and only if N is a Lie subgroup of G. ]
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Remark II.5. Let N be a normal Lie subgroup of the real Banach-Lie group G'. According
to Michael’s Theorem ([Mi59]), the quotient map ¢:L(G) — L(G)/L(N) = L(G/N) has a
continuous section o:L(G/N) — L(G). Since the exponential function of G/N is a local
homeomorphism, it follows that the quotient map G — G/N has continuous local sections,
hence is a locally trivial principal bundle. ]

II1. Period groups and enlargibility of Banach-Lie algebras

The period group II(g) of a Banach-Lie algebra g is an additive subgroup of its center. Using a
result of van Est on the existence of certain central extensions ([Es62]) and the Quotient Theorem
we refine the results on the period group given in [EK64] and thus obtain a quite direct proof of
the classical result that g is enlargible if and ouly if its period group II(g) is discrete. With this
characterization, we study the enlargibility of £°°-direct sums of Banach-Lie algebras and derive
a characterization which also provides a method to construct non-enlargible Banach-Lie algebras
as (> -direct sums of enlargible ones (Theorem II1.9). Finally we characterize in Theorem
111.19 those Banach—Lie algebras which have a universal enlargible envelope, which means that
there exists an enlargible quotient ¢: g — g/a such that all continuous homomorphisms of g to
enlargible Banach—Lie algebras factor through g.

The period group of a Banach-Lie algebra

In this subsection we give a direct definition of the period group II(g) of a Banach-Lie algebra g.
This group has been defined in [EK64], but we need some refinements, so that we have to go
through part of the process leading to this group. It will be an additive subgroup of the center

3(g) of g.

Definition III.1. Let G be a connected Banach-Lie group. We write
P(G) :={y € C([0,1],G) : 7(0) =1}

for the path group of G, where the multiplication on P(G) is pointwise. This group is a Banach-
Lie group, and if g = L(G) is the Lie algebra of G, then

P(g) == {y € C([0,1],9) : (0) =0}
is the Lie algebra of P(G). The evaluation map
evi: P(G) = G, v~ ~(1)
being a morphism of Lie groups, its kernel Q(G) is a Lie subgroup of P(G) (Lemma II.1), called

the loop group of G. Clearly G = P(G)/ Q(G).

It is easy to see that P(G) is contractible, hence simply connected, so that the universal covering
group G can be identified with P(G)/Q(G)o, in accordance with mo(Q(G)) = w1 (G).

On the Lie algebra level we have the Banach-Lie algebra P(g) and its Lie subalgebra (g).
Although {a € P(g): (Vt) a(t) = ta(l)} is a natural vector space complement to €2(g), this
subspace is not a Lie subalgebra unless [g,g] = {0}. (]

Definition III.2. Let g be a Banach-Lie algebra, 3 its center and gaq := g/3, endowed with
its natural Banach space topology. Then

(3.1) 38— Gad



6 Lie Quotients, Enlargibility, and Universal Complexifications April 12, 2001

is a central extension, but it is not clear whether it has a continuous linear section, so that we
cannot in general describe it by a continuous Lie algebra cocycle. Lemma 1.2 implies that g,q is
enlargible to a simply connected Banach-Lie group G,q.

The central extension (3.1) can be pulled back via the evaluation map evi: P(gad) — gaq t0 a
central extension

3 P(g) » P(gaa) with  P(g) = {(a,) € P(gaa) x g1 a(1) =z +3}.
The restriction of this extension to Q(gaq) splits by the continuous section
0: (gaa) =+ Ple), o (a,0),

so that the inverse image ﬁ(g) of Q(gaq) in ]3(9) is isomorphic to the direct product Q(gaq) X 3.

Since the group P(Gaq) is contractible, we derive from [Es62, Theorem 7.1] that there exists a
central group extension N

3= P(G)—=P(Gaa),
where the group P(G) is simply connected (we can always pass to the simply connected covering
group). Here we need that the singular cohomology Hszing(P(Gad),g) vanishes, which follows
from the contractibility of P(Gaq). *
Consider the homomorphism -: 13((}') — Gaa, 7(9) = q(g)(1). On the Lie algebra level we have
L(v)(a,z) = a(l) =z + 3 with kerL(y) = Q(g) = Q(gaa) X 3. Moreover, Q(G) := ker~ is a Lie
subgroup of P(G), with P(G)/Q(G) = Gaq (Theorem I1.2).
Since the group Gaq is simply connected, the group SA)(G) is connected, and its universal covering
group is isomorphic to Q(Gaq) X 3, because its Lie algebra is Q(gaq) X 3. In view of [NeOOb,
Prop. IL.8], the group Q(G) is isomorphic to a quotient

(QGaa) x 3)/ L(~pery),

where per, : m1(€2(Gaa)) = m2(Gaa) — 3 is a homomorphism and I'(—pery) is the graph of
—pery. We call pery the period homomorphism of g and its image II(g) := im(per,) C j the
period group. [ ]

Lemma IIL.3. Let ¢: g — b be a homomorphism of Banach-Lie algebras with ¢(3(g)) C 3(h)
and ¢%:Gaq — Haa the group homomorphism induced by p. Then ¢(Il(g)) C II(h) and,
moreover, the following diagram is commutative:

WZ(WaGd)
Up) (Gad) — T2 (Had)

perg pery

3le)  —=— ;).

Proof. Since ¢ maps 3(g) to 3(h), it induces a homomorphism @,q: gaq — haa and hence
a homomorphism P(y) : P(g) — P(h) with P(p)(Q(g)) = Q(h). Integration to the simply
connected group P(G) further leads to a group homomorphism

P(p)°: P(G) » P(H) with L (P(p)%) = P(p).

L' Another possibility to obtain the group P(G) is to use the results in [Sw71]. There it is shown that
g—P(g) is an exact functor, so that P(g.q)~P(g)/P(3), and we obtain a central extension as 3;~P(3)/Q(;)—
P(9)=P(g)/Q(3)—»P(gaq). Using the existence of a simply connected group H with Lie algebra P(g) ([Sw71]),
we obtain a description P(Ga.q)~H/N, where NCH is a normal subgroup with Lie algebra P(3). Since H is a
locally trivial N-bundle (Remark II1.5), the contractibility of the group P(Ga.q) and the exact homotopy sequence
of the locally trivial principal bundle N—H-—H/N implies that N<—H is a weak homotopy equivalence, and in
particular that N is simply connected, hence isomorphic to P(3). From that it follows that Q(3)CP(3) is a normal
Lie subgroup of H, so that ﬁ(G)::H/Q(g) is a Banach-Lie group.
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It is clear that this homomorphism maps the subgroup Q(G) to Q(H), hence induces a homo-
morphism

m(QG)) —» m(QH)).

This means that the induced map

U(Gaa) x 3(g) = Q(Haa) x 3(h)

of the simply connected covering groups maps the graph of per; into the graph of per,. We
conclude that

(3.2) Plae) © Perg = pery om (QAp5h)),

where ¢% : Gaq — Haq is the homomorphism induced by ¢ with L(¢$)) = ¢ad, and Q%))
is the corresponding map Q(Gaq) — Q(Haq). From the isomorphism of functors 7 o = mo
from topological groups to abelian groups, it follows that 1 (€2(¢$,)) corresponds to the map
ma () if we identify my(Gaq) with m1(Q(Gaq)). Therefore (3.2) implies the commutativity of
the diagram and hence in particular that ¢(II(g)) C II(h). ]

Corollary I11.4. (a) If ¢: g — b is a homomorphism of Lie algebras with ¢(3(g)) C 3(h) for
which the induced map 73 (Gaq) — m2(Haq) is surjective, then o(II(g)) = II(h).

(b) If p: g — b is a quotient homomorphism of Lie algebras with p(3(g)) = 3(h) and kerp C 3(g),
then ¢(I1(g)) = ().

Proof. (a) This is an immediate consequence of Lemma II1.3.
(b) Our assumption implies that

gad = 9/3(8) = H/0(3(g)) = bag-

Therefore the induced map (pfd: Gad — Haq is an isomorphism, and the assertion follows from (a).
[ ]

Remark II1.5. Let LZ denote the category whose objects are Banach-Lie algebras and whose
morphisms are continuous Lie algebra homomorphisms mapping center to center. Then Lemma
II1.3 means that II: g — II(g) can be viewed as a functor from LZ to the category of abelian
topological groups. ]

Lemma ITI.6. Let A C 13((}') be the connected analytic subgroup corresponding to the closed
Lie subalgebra Q(gaqa) C P(g). Then AN 3 =1(g), and A is a Lie subgroup if and only if II(g)
is a discrete subgroup of 3.

Proof. The description of (G) as the quotient ({(Gaa) X 3)/T(— perg) (cf. Definition IIL.1)
shows that

ANj = im(pery) = [(g)

because A is the image of Q(Gaq) in Q(QG).

That the normal subgroup A C ]3(G) is a Lie subgroup is equivalent to A being a Lie subgroup

of ﬁ(G) The Lie algebra Q(g) is a direct product Q(gaq) X 3. Therefore A is a Lie subgroup if
and only if there exists a 0-neighborhood U in 3 with ANU = {0}, which is equivalent to II(g)
being discrete. ]

The following theorem is also contained in [EK64]. As our proof shows, it can be obtained as a
rather direct consequence of the existence of the group P(G).
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Theorem II1.7 (Characterization Theorem for enlargible Lie algebras).  The Banach-
Lie algebra g is enlargible if and only if II(g) is discrete.

Proof. We have seen in the construction of II(g) that there exists a group extension
QA(G) = P(G) —» Gaa,
where P(G) is a simply connected group with Lie algebra P(g).
If g is enlargible and G is a corresponding simply connected group, then the simple connect-

edness of Z3(G) permits us to integrate the natural homomorphism P(g) — g to a Lie group
homomorphism p: P(G) — G with
ker L(p) = Q(gaq)-

In view of Theorem II.2, we then have G = Z3(G) / kerp, where ker p is connected because G is
simply connected. Thus kerp coincides with the connected analytic subgroup A corresponding
to the Lie subalgebra Q(g.q) of P(g). In view of Lemma II1.6, this implies that II(g) is discrete.
If, conversely, II(g) is discrete, then A is a Lie subgroup, and Theorem I1.2 implies that P (G /A
is a Lie group with Lie algebra P(g)/ Q(gad) = g. [

Proposition IT1.8. If G is a simply connected Lie group with Lie algebra g, then
Z(G)o =3/(g) and m(Z(G)) = 1l(g) = ker(expg |;)-

Proof.  As in the proof of Theorem IIL.7, we write G as ﬁ(G)/kerp. Since G is simply
connected, the group kerp is connected. Moreover, 3(g) = Q(g)/(gaa) implies that

Z(@)o = UG)/ kerp,
so that SA)(G) = (QGaq) x 3)/T(— per,) implies that Z(G)o = 3/ im(per,) = 3/I1(g). =

Enlargibility of products

In the present subsection, we study enlargibility of £°°-direct sums of Banach-Lie algebras. It is
important for these considerations to endow each Banach-Lie algebra with a fixed norm (rather
than considering it as a completely normable topological Lie algebra).

Theorem II1.9.  Let (g;)jecs be a family of Banach-Lie algebras whose norms satisfy ||[x, y]|| <
=l lyll for @,y € g;, 6; :==inf{[l7[|: 0# v € li(g;)} € [0, o0],
o:={(@))jes € [T a5+ supjes llosll < o0 f
jed
their £°° -direct sum, and go C g their cy-direct sum, i.e., the closure of Zj gj. Then

(3.3) P1i(g;) € (o) € I(g) € ] (ay),
jed jed
and the following assertions are equivalent
(1) g is enlargible.
(2) go s enlargible.
(3) inijJ 6]' > 0.
Proof.  We consider the inclusion maps a;: g; — go and the projection maps 8;: g — g;.
Both map centers into centers, so that Lemma III.3 implies that

a;(I(g;)) € I(go) C Il(g) and  f;(II(g)) S TL(g;).
This entails (3.3).
Let ¢ ;= inf{||7||: 0 # v € II(g)} and d¢p := inf{||7||: 0 # v € II(go)}. In view of Theorem IIL.7,

g, resp., go is enlargible if and only if § > 0, resp., dp > 0. By (3.3), we have § < dp < J; for
each j because II(gg) contains each II(g;). Thus § < dp <infjcyd;.

If 0# v € Il(g), then there exists some j € J with v, := 8;(v) # 0. Then ||v|| > ||l > ¢;.
This implies the converse inequality ¢ > inf;cy 0;. Thus 6 = dp = inf;e ;. ]
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Corollary II1.10.  If b is an enlargible Banach—Lie algebra and J is a set, then g := (>°(J,h)
1s enlargible.

Proof. On b we choose a norm compatible with the topology such that ||[z,y]|| < ||| - |ly]|
holds for z,y € h. Then we apply Theorem IIL.9 with g; := § for each j € J. Now all J; are
equal and positive because b is enlargible, and therefore g is enlargible. ]

The following lemma illuminates the meaning of 4.

Lemma III.11. Let G be a simply connected Lie group with Lie algebra g. Suppose that
lizslll < llall - gl holds for 2,y € g and put & := nf{|7]:0 # ~ € I(g)}. Then for
R = min(r, %) the exponential function exp|p,0): Br(0) = G is injective.

Proof. Let z,y € Bgr(0), ie., ||z|,|lyll < R, and assume that expz = expy. Then
ladz|| < ||lz|| < = implies that Spec(adz) N 2miZ C {0}, so that the exponential function
is regular in x. Therefore [NeOlc, Lemma V.3] implies that [z,y] = 0 and exp(x —y) = 1.
For z := x —y we then have 1 = Ad(expz) = €*% so that adz is diagonalizable with
Spec(ad z) C 2miZ ([NeOlc, Lemma II1.13]). On the other hand ||adz|| < ||2|| < 27, so that
adz = 0, and we get 2 € 3(g). Now Proposition IIL.8 yields z € kerexp |;q) = II(g), so that
|z]| < ¢ eventually leads to z =0. u

The preceding lemma is sharp in the sense that for each z € II(g) we have exp (%) =

exp ( — %) and ”24” may be arbitrarily close to g.

Proposition III1.12. If, under the assumptions of Theorem II1.9, g is enlargible, G is a

simply connected Lie group with Lie algebra g, and G, j € J, are groups with Lie algebra g;,

then the following assertions hold:

(i) There exists a continuous homomorphism @: G- IT
for x €g.

(i) If kerp is discrete, then G := (N}'/ kergp is a Banach—Lie group and ¢ factors through an
injective homomorphism G — H]EJ

(iii) ker is discrete if and only if

jes Gj with plexpz x) = (expg, Tj)jes

inf;r; >0 holds for r; :=inf{[|2[|:0 # z € 3(g;),expg, z = 1}.

(iv) The following conditions are sufficient for kery to be discrete:

(1) The groups G, j € J, are simply connected.

(2) We have gj = for each j € J and G; = H.
Proof. (i) First the enlargibility of g implies the existence of a simply connected Lie group G
with Lie algebra g. Let pg:[]; [[jes G; — G}, denote the projection homomorphisms. In view of
the simple connectedness of G there exists for each k € J a Banach-Lie group homomorphlsm
¢wr: G = Gy, for which L(pg):g — g is the projection map. Then ¢ := (p;)jes: G = H]EJ
is a continuous group homomorphism with pg o = ¢y for k € J. Let N :=keryp C G.
(ii) Since the Lie algebra homomorphisms L(yy):g — g separate the points of g, we have
L(N) = {0}, and each n € N acts via the adjoint representation trivially on each g;, hence on
¢. This implies that N C Z(G). Moreover, N is a Lie subgroup of G if and only if it is discrete.
If this is the case, then we put G := G/N and obtain the required injection G — ngJ
(iii) If N is not discrete, then there exists a sequence g, € N with 1 # g, — 1. Let U g g be
a 0-neighborhood on which expg is a diffeomorphism onto expz(U). We may w.l.o.g. assume
that gn = expgz @, with @, € U. Then x,, — 0, and since Z(é) = ker Ad is a Lie subgroup of
G, we may further assume that z, € 3(g). Pick j € J with L(p;).z, # 0. Then

expg; L(p;).zn = pjlexpgz an) = pj(gn) =1

implies that
rj < Lpg)-anll < [lenll-
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Therefore inf;r; = 0.

Suppose, conversely, that inf;r; = 0. Let ¢;: éj — G denote the homomorphism for which
L(e;):g; — g is the inclusion map.

For z; € g; with expg, z; =1 we then have (p(expa zj) = 1, which means that expg zj €
N. Since inf;r; = 0, there exist sequences j, € J and 0 # z;, € 3(g;) with expg, Zj, = 1
and z;, — 0 in g. Then expsz;, € N converges to 1, and for sufficiently large n we have
eXP3 Zj, # 1, so that N is not discrete.

(iv) (1) If all the groups G; are simply connected and R := min(r, $) as in Lemma IIL11, then
inf;7; > R > 0, and (iii) implies that N is discrete.

(2) If H = G; for each j € J, then we choose R such that expy is injective on {y € h:||y|| < R}.
Then inf;r; > R > 0, and again (iii) shows that N is discrete. u

Remark III.13. (a) An interesting consequence of Theorem IIL.9 is that if J =N, §,, > 0
for each n € N, and §,, — 0, then g is a non-enlargible Lie algebra whose homomorphisms to
enlargible Lie algebras separate points.
(b) If go:é — HjeJ G; is the homomorphism from Proposition II1.12 and all the groups G;
are simply connected, then one might expect that ¢ is injective, i.e., the “analytic subgroup” of
HjeJ G corresponding to the subspace g C HjeJ g; is simply connected. We think that this is
probably true, but we do not have any proof.

This would imply in particular that the exponential function of G is just the componentwise
exponential function, so that 1(g;) = ker(expg, |;(g,)) for each j leads to

11(g) = ker(expg ) = { (#5)ses € [] ey = sup;e llzsll < oo}.
JjeJ

(c) Let BLa. denote the category whose objects are Banach-Lie algebras (g, || - ||), where
Iz, y]Il < llz|| |||l for =,y € g and whose morphisms are contractive Lie algebra homomorphisms.
Then it is easy to see that the £°°-direct sum g := ©Jg g, is a categorical direct product of
(gj)jEJ in BLaC.

On the group level we consider the category CBLg. whose objects are pairs (G,| - ||),
where G is a connected Banach-Lie group and (L(G), ||-]|) is an object of BLac. The morphisms
in CBLg. are those Lie group morphisms ¢ for which L(p) is a morphism in BLa,.

Let (Gj)jes be a family of objects of CBLg.. We claim that their direct product exists
in CBLg, if and only if there exists an r > 0 such that for each j € J the exponential function
expg, is injective on the open ball B,(0) of radius r in L(Gj).

Suppose first that the injectivity condition is satisfied. For 0 # z € II(g;) we have expz =1
by Proposition IIL8, so that the injectivity of expg, on B,(0) implies that J; > r; > r and
hence that g := &% ; L(G;) is enlargible (Theorem 111.9) and the kernel of the homomorphism
0:G - [I;c; G; is discrete by Proposition IIL.12(iii). Now G := G/ ker ¢ is a direct product of
(Gj)jes in CBLg.. In fact, let ¢;: H = G; be a collection of morphisms in CBLg.. Then the
L(p;) yield a continuous Lie algebra homomorphism «:L(H) —+ g which integrates to a unique
continuous group homomorphism an:H — G. Let p;:G — G denote the projection maps.
Then all homomorphisms p; o &y factor through H, and therefore m (H) C ker &y implies that
ay factors through a homomorphism ay: H — G with pj ooy = ¢; for each j € J.

Suppose, conversely, that G is a direct product of the system (G;)jes in CBLg. and
write p;j: G — G for the corresponding projection morphisms and €;:G; — G for the inclusion
maps which are uniquely determined by poc; = 1 for j # k and p; oe; = idg, . If there exists
no r > 0 such that the restriction of the map exp, to the ball B,(0) in L(G;) is injective
for each j € J, then there exist j, € J and @,y € g;, with @n # yn, [zl |lyal] < L, and
eXpg, Tn = €XDg, Yn-

Then a, := L(¢j,).2, and b, := L(ej, ).yn are null sequences in L(G) with L(p;,).an =
Zr # Yn = L(pj;, ).bn, and

eXPg an = €j, (eXPg, Tn) =€, (eXPg, Yn) = €xPg bn.
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This contradicts the injectivity of exps in a neighborhood of 0.
As in the proof of Proposition II1.12, we see that the injectivity condition is satisfied if all
groups G are equal or simply connected. In this case we obtain a direct product in CBLg.. ®

Universal enlargible envelopes

Definition II1.14. Let g be a Banach-Lie algebra over K € {R,C}. A continuous homo-
morphism (y: g — e(g) is called a K-universal enlargible envelope of g if e(g) is an enlargible
K-Banach-Lie algebra and for every continuous homomorphism ¢: g — b, where § is an enlargi-
ble K-Banach-Lie algebra, there exists a unique continuous homomorphism @: e(g) — h with
Poly=¢. u

Remark II1.15. (a) Whenever universal enlargible envelopes exist, they are unique up to
isomorphism.

(b) Let (g: g — e(g) be a universal enlargible envelope. Then Lemma 1.2 implies that g/ ker (g
is enlargible, and it further follows that this Banach-Lie algebra has the universal property of an
enlargible envelope. Therefore e(g) = g/ ker(y and (y: g — e(g) is a quotient homomorphism.
Moreover, ker (g C kerad = 3(g) (Lemma 1.2). u

Lemma II1.16. Let Z be a Banach space, I C Z an additive subgroup, and X C Z a closed
vector subspace. Then the following conditions are equivalent:

(1) X is an open subgroup of X +1T.

(2) X + 7T is a Lie subgroup of Z with Lie algebra X .

(3) The image of I' in Z/X is discrete.

The set of all subspaces X satisfying these conditions is closed under finite intersections.

Proof. The equivalence of (1)-(3) is a trivial consequence of the definitions.

Suppose that Xi,..., X, satisfy this condition and let U; C Z be an open 0-neighborhood
with U; N (X; +T) C X;. Then U :=(;_, U; satisfies

Un((NZ, X;) +T) C X
for each k, and therefore U N ((N7_, X;) +T) C (;_; X;. This completes the proof. (]

Lemma II1.17. Let G be a connected Banach-Lie group, N < G a normal Lie subgroup, and
H D N a subgroup. Then the following conditions are equivalent:

(1) H/N is a Lie subgroup of G/N .

(2) H is a Lie subgroup of G.

Proof. That the quotient G/N carries the structure of a Banach-Lie group follows from
Theorem II1.2. Let g: G — G/N denote the quotient map.

(1) = (2) In view of H = ¢ '(H/N), the subgroup H is the inverse image of a Lie subgroup of
G/N, hence a Lie subgroup of G by Lemma IL.1.

(2) = (1): As N is a Lie subgroup of G, it is a Lie subgroup of H, whence H/N is a Banach-Lie
group by Theorem II.2. The topology on the Banach-Lie group H/N being the one induced by
G/N, we easily deduce that H/N is a Lie subgroup of G/N. =

Lemma III.18. Let a C 3(g) be a closed vector subspace. Then the following are equivalent:
(1) a is an open subgroup of I(g) + a.

(2) a+1II(g) is a Lie subgroup of 3(g) with Lie algebra a.

(3) The quotient Lie algebra g/a is enlargible.

Proof. (1) & (2) follows from Lemma ITI.16.
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(2) = (3): We consider the central extension
3(9) = 2(g) > Q(Gaa)

and write B := (exp (gaq)) for the connected analytic subgroup of Q(G) corresponding to the
closed Lie subalgebra (gaq) (cf. Definition II1.2). Then

li(g) =3NB

(Lemma IIL.6) and on the Lie algebra level we have a trivial central extension ﬁ(g) = 35X Q(gaq) -
Therefore a x Q(gaq) is a closed ideal of Q(g), and for A := CXDG ;) O the product AB C Q(G)

is the normal analytic subgroup corresponding to the ideal a x Q(gaq) .

We claim that AB is a Lie subgroup of Q(G). Let p: (Gaq) X 3 = Q(G) denote the universal
covering homomorphism (cf. Definition III.2). Then

p H(AB) = (AG) x a)I(— pery) = QG) x (a + I(g)).

The assumption that a is open in a + II(g) implies that Q(G) X a is open in p~!(AB), hence
that p~!(AB) is a normal Lie subgroup in €(G) x 3 with Lie algebra Q(g) x a. We conclude
with Lemma II1.17 that AB = p(p~*(AB)) is a normal Lie subgroup of SA)(G) with Lie algebra
Q(g) x a, hence a normal Lie subgroup of Z3(G) In view of Theorem II1.2, the quotient group
P (G)/AB is a Banach-Lie group and its Lie algebra coincides with

~

P(9)/(g) x a) = (P(a)/0))/(a + 2(g)/2s)) = g/a.

Therefore g/a is enlargible.

(3) = (1): Suppose that the Lie algebra g, := g/a with the quotient map ¢4 : g — gq is
enlargible. Then ¢4(3(g)) C 3(gq), so that Lemma III.3 implies that ¢,(II(g)) C II(g4). Since
II(g,) is discrete by Theorem II1.7, {0} is an open subgroup of II(g,), and therefore the inverse
image a = ¢;!(0) is an open subgroup of ¢; ! (Il(g,)) 2 a + I(g). [

Theorem II1.19.  Let g be a Banach-Lie algebra and II(g) C 3(g) its period group. A universal
enlargible envelope of g exists if and only if there exists a minimal closed vector subspace a C 3(g)
for which a is an open subgroup of a + I(g).

Proof. If (;: g — e(g) exists, then Remark III1.15(b) implies that {; is a quotient map with
a:=ker(y; C 3(g). Now Lemma III.18 entails that a is open in a + II(g). In view of Lemma
II1.18 and the universality of e(g) = g/a, the subspace a C 3(g) is contained in all other closed
subspaces b C 3(g) for which b is open in b + II(g) because this property is equivalent to g/b
being enlargible.

Suppose, conversely, that a C 3(g) is a minimal closed subspace with the property that a is
open in a + II(g). Since the set of all these subspaces is closed under finite intersections, it
follows that a is unique and contained in all other closed subspaces with this property (Lemma
II1.16). Then Lemma III.18 implies that e(g) := g/a is enlargible. Let (5: g — e(g) denote
the quotient homomorphism. We show that this map has the required universal property. If
@: g — b is a homomorphism into an enlargible Lie algebra §, then Lemma 1.2 implies that
g/ ker ¢ is enlargible, and since ¢ factors through g/ ker ¢, we may assume that ¢ is a quotient
homomorphism, so that it remains to show that b :=kery D a.

Since ¢(3(g)) C 3(h), it follows from Lemma IIL.3 that ¢(II(g)) C II(g/b), and since II(g/b) is
discrete (Theorem I11.7), the subgroup b; := bN3(g) is open in ¢~ (¢(Il(g)))N3(g) = Il(g) +b;.
Now the minimality of a implies that a C b; C b, and hence that ¢ factors through g/a. This
proves the universal property of g/a. ]
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IV. Enlargibility and universal complexifications

In this section, we characterize those real Banach-Lie groups which have universal complexifi-
cations (Theorem IV.6), and give examples of such groups. In the case of simply connected
Banach-Lie groups, the existence of universal complexifications can be characterized on the Lie-
algebra level (Theorem IV.11).

Lemma IV.1. If ng: G — G¢ is a universal complezification of the real Banach-Lie group G,

then the following assertions hold:

(i) There exists a unique antiholomorphic involutive automorphism o of Geo with oong =g .

(ii) The complexification of L(G)/ker L(ng) is enlargible and ker L(ng) = (ker L(ng))c , where
L(ng) is the complex linear extension of L(ng) to L(G)c .

(iii) L(G)/kerL(ng) is enlargible.

(iv) G/kerng is a Banach-Lie group, and G¢ s also universal for this group.

Proof. (i) First we prove the uniqueness. If o1, 092: Gz — G¢ are antiholomorphic morphisms

with o; o ng = ng, then oy o oy is holomorphic, so that o, o 03 0o ng = ng implies that

o1 00y = idg,. . We likewise obtain o3 0 07 = idg,.. This implies in particular that 0’% =idg,,

so that oo :afl =0.

Let G¢ denote the real Banach-Lie group G¢ endowed with the opposite complex structure.

Then 7 : G — G yields a holomorphic morphism o: G¢ — G¢ with oong = ng. This means

that we can view ¢ as an antiholomorphic endomorphism of G¢ with

im(ne) € G :={g € Gc : o(g) = g}.
As we have seen above, o is uniquely determined by this property, and it is an involution.

(i) Since o o g = 1 and o is antiholomorphic, we obtain for z,y € L(G):

L(0)L(6) (& + iy) = L(o)( L) (@) + i L(na) (4) = L) (@) — i L) (y) = Lne) (& — iy).
Therefore ker L(ng) C L(G)¢ is a conjugation invariant closed subalgebra of L(G)c . Hence it
coincides with (ker L(ng))c . This means that L(ng) : L(G)c — L(G¢) induces an injective
map

(L(G)/ ker L(ng))c = L(G)c/(ker L(ng))c = L(Ge).
In view of Lemma I.2, this implies that the complexification of L(G)/ker L(ng) is enlargible.
(iii) follows from Lemma I.3.
(iv) follows from Theorem II.2. [

In the following, Ng C G denotes the intersection of the kernels of all continuous homomorphisms
of G to complex Banach-Lie groups.

Corollary IV.2.  If L(G)c is not enlargible and L(Ng) = {0}, then G has no universal
complezification.

Proof. Suppose that ng: G — G¢ is a universal complexification. Then kerng = Ng implies
that kerL(ng) = L(Ng) = {0}. Therefore Lemma IV.1(ii) implies that L(G)c is enlargible. =

Lemma IV.3. If L(G)c is enlargible and G is simply connected, then there exists a universal
complezification ng: G — Gc , where G¢ is simply connected and L(Gc) = L(G)c .

Proof. Let G¢ be a simply connected Lie group with Lie algebra L(G)c. Since G is
simply connected, the inclusion map L(G) — L(G)c integrates to a smooth homomorphism
ne: G — Ge. If a: G — H is a smooth homomorphism into a complex Lie group H, then
L(a): L(G) — L(H) extends to a complex linear map L(«a): L(G)c — L(H), which integrates
to a complex analytic homomorphism f: G¢ — H with fong = a. Clearly § is uniquely
determined by the latter property. Therefore 7g is a universal complexification. u

The next lemma allows us to focus on connected Banach-Lie groups in the following proofs.
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Lemma IV.4. Let G be a real Banach-Lie group whose identity component Gy has a universal
complezxification (Go)c. Then G has a universal complexification (Gc,va). Furthermore,

((Ge)o vl ™)
Proof. Part (b) of the proof of [Bo89, Chapter 3, §6.10, Proposition 20 (a)] and Remark (1)

following that proposition can be copied line by line. u

is a universal complexification of Gy, and G [(Ge)o = G/Gy.

Lemma IV.5. Let G be a real Banach-Lie group. If Ng = {1} and L(G)c is enlargible, then
G has a universal complexification with L(Gc) = L(G)c .

Proof. By the preceding lemma, we may assume that G is connected. In view of Lemma IV.3,
the covering group G has a universal complexification n5: G = (G)c with L((G)c) = L(G)c

and (G)¢ simply connected.

Lemma IV.1(i) provides a unique antiholomorphic involution o of (G)c with oony =n5. Then
L(o) is the complex conjugation of L(G)c with respect to the real form L(G).

If ¢: G — H is a Lie group morphism to a complex Lie group H , then ¢oqg: G — H induces a
unique holomorphic morphism ¢¢: (G)c — H with ¢ onz = poqq - Hence qgc (ker 775) C ker g,
so that Ng = {1} implies that ker Ny Cm (@), and hence that

Gi = ((G)2), = nz(G) = G/ kerng
is a covering group of G. Since

ng(m(G)) = m(G)/ kerng C G/ kerng = G,

is a discrete subgroup, it follows that 75(71(G)) is a discrete subgroup of (G)c. It is central
because it is contained in ker Ady, ). -

Let G¢ := ((N}')@/na(m(G)), and observe that the map G — Gg¢ factors through a map
Ng:G — G . It is easy to verify that we thus obtain a universal complexification. ]

Theorem IV.6 (Complexification Theorem). Let G be a real Banach-Lie group. Then G

has a universal complexification if and only if the following two conditions are satisfied:

(i) The intersection Ng C G of all kernels of smooth homomorphisms to complex Banach-Lie
groups (which always is a closed normal subgroup of G) is a Lie subgroup.

(ii) The Banach-Lie algebra (L(G)/L(Ng))(C is enlargible.

Proof. “=7 Suppose that ng: G — G¢ is a universal complexification. Then Ng = ker(ng)
follows from the universal property of ng, and we conclude that Ng is a kernel, hence a Lie
subgroup. The remaining assertion is Lemma IV.1(ii).

“«<” If N¢ is a Lie subgroup, then we use Theorem II.2 to see that H := G/Ng has a natural
structure of a Banach-Lie group with Lie algebra L(H) = L(G)/L(Ng). Obviously Ng = {1}
because the homomorphisms from H into complex Lie groups separate points, and (i) means
that L(H )¢ is enlargible, so that the assertion follows from Lemma IV.5. ]

Corollary IV.7. If Ng = {1}, then G has a universal complexification if and only if L(G)c
is enlargible. ]

Corollary IV.8.  Suppose that G admits a smooth homomorphism f: G — H into a complex
Banach-Lie group H such that L(f): L(G)c — L(H), X +iY — L(f).X+iL(f).Y is injective.
Then G has a universal complexification Ge , and L(Ge) = L(G)¢ .

Proof. The hypothesis entails that N¢ is discrete. Replacing G by G/Ng if necessary, we

may assume that Ng = {1}. In view of Lemma 1.2 and the hypothesis, L(G)¢ is enlargible.
Thus Corollary IV.7 applies. ]
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Examples I'V.9.We give simple examples of Banach-Lie groups with universal complexifications.

(a) Let A be a real Banach algebra. Then every analytic subgroup G of the group of units A*
has a universal complexification, as Corollary IV.8 applies to the inclusion map f: G — (Ac)*
(see also [G100, Corollary 24.21], and [Gl01] for the C°°-analogue).

(b) Let K be a compact topological space and F be a real Banach-Lie group such that ng :
F — Fr has discrete kernel. Then the Banach-Lie group C(K,F) of continuous F-valued
mappings on M has a universal complexification, as Corollary IV.8 applies to the homomorphism
f=C(K,yr): C(K,F) = C(K, Ft) (see also [Gl00, Proposition 25.5]). =

Remark IV.10. The preceding results suggest the following algorithm to decide whether G
has a universal complexification:

1. First check if the intersection Ng of all kernels of smooth homomorphisms G — H, H a
complex Banach-Lie group, is a Lie subgroup. If this is not the case, then G has no universal
complexification.

2. If N¢ is a Lie subgroup, then G/N¢ is a Banach-Lie group by Theorem I1.2. Replacing G by
G/N¢, we may assume that Ng = {1}, i.e., that the morphisms to complex Banach-Lie groups
separate points. Then G has a universal complexification if and only if L(G)¢ is enlargible
(Corollary IV.7).

This means that we have two levels, where the existence of G¢ can fail. An example of a
Banach-Lie group which fails to satisfy Condition (i) of Theorem IV.6 will be given in Section V.
Banach-Lie groups which do not satisfy Condition (ii) are described in Example V1.4 below. =

Complexifications of simply connected groups

If G is a simply connected Lie group, then the general philosophy of Lie theory says that every
group theoretic property of G is somehow encoded in the Lie algebra g. Therefore one would
expect a characterization of those simply connected groups having a universal complexification
in terms of their Lie algebra. The following theorem is a criterion of this type.

Theorem IV.11. Let G be a simply connected Banach-Lie group. Then G has a universal
complexification if and only if the complexification L(G)c of its Lie algebra has a universal
enlargible envelope in the category of complex Banach-Lie algebras.

Proof. Let ng: G — G¢ be a universal complexification and ¢ : L(G)c — h a complex
linear homomorphism into an enlargible complex Lie algebra. Since G is simply connected, we
can integrate ¢|r(w) to a group homomorphism of pg: G — H, where H is a simply connected
complex group H with Lie algebra k. Since this homomorphism factors through g, we obtain
a Lie algebra homomorphism L(p)*: L(Ge) = b with L(pa)? o L(ng) = ¢|v(e)- This implies
that the homomorphism L(ng): L(G)c — L(Ge) has the universal property of the universal
enlargible complex envelope of L(G)c .

Suppose, conversely, that ¢: L(G)c — ¢ is a complex universal enlargible envelope and that E
is a simply connected Lie group with Lie algebra e. Since G is simply connected, there exists
a continuous homomorphism 7ne:G — E with L(ng) = (. We claim that ng is a universal
complexification.

Let ¢: G — H be a continuous homomorphism into a complex Banach-Lie group H. Then
L(y): L(G)c — b is a continuous Lie algebra homomorphism which then factors through ¢. In
view of the simple connectedness of E, the homomorphism ¢ factors through 7. This proves
the universality of n¢g . u
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Complexifications of elliptic groups

Elliptic Banach-Lie algebras defined below are natural generalizations of finite-dimensional
compact Lie algebras. In this section we extend the result that a finite-dimensional connected
Lie group G with a compact Lie algebra has a faithful universal complexification with a polar
decomposition to elliptic Lie algebras. Here the remarkable part is that the existence of a faithful
homomorphism into a complex Lie group is obtained from general geometric results on polar
decompositions.

Definition IV.12. (a) We call a Banach-Lie algebra g elliptic if there exists a norm on
g defining the topology which is invariant under the operators e*? 1z € g. We say that a
connected Banach-Lie group G is elliptic if its Lie algebra g is elliptic, i.e., there exists a norm
on g defining the topology which is invariant under the group Ad(G).

(b) Let G be a Banach-Lie group endowed with an involutive automorphism 7. Then the
eigenspace decomposition of g = L(G) with respect to L(7) yields a direct sum decomposition
g =tDp, where € = ker(L(7) — 1) and p = ker(L(7) +1). We say that the group G has a polar
decomposition if for K := {g € G:7(g) = g} the polar map

pKxp—>G, (kx)— kexpx

is a diffeomorphism. This implies in particular that the inclusion map K — G is a homotopy
equivalence, hence induces an isomorphism w3 (K) — m2(G). =

Lemma IV.13. If g is an elliptic Banach-Lie algebra, then gc is enlargible.

Proof. Let || - || be an e*d9-invariant norm on g compatible with the topology on g.
Then the quotient norm on g,q is also invariant, showing that g,q is elliptic. Moreover, the
complexification gaq,c 0f gaq in enlargible because it is contained in der(ge) (Lemma I1.2). Let
Gaa,c be a corresponding simply connected group. Now [NeOlc, Cor. IV.9 and Th. V.1] imply
that the group Gaq,c has a polar decomposition Guq,c = Gad €xp(igad), where Gag C Gad,c
is the fixed point group for the antiholomorphic automorphism 7 of Gaqc for which L(r) is
the conjugation of gaq,c with respect to the real form g,q. Since the inclusion Gaq — Gaa,c
is a homotopy equivalence, the group Ga.q is simply connected, so that our notation here is
compatible with the definition of Gaq in Section III.

Next we observe that Corollary I11.4(a) applies to the inclusion map g < gc because this maps
3(g) into 3(gc) = 3(g)c and the induced map Gag — (G )aa = Gaa,c induces an isomorphism
of the second homotopy groups. Corollary I11.4(a) implies that II(gc) = II(g) and hence that
gc is enlargible by Theorem II1.7. ]

The following proposition generalizes the standard result on the polar decomposition and the
existence of a universal complexification of compact Lie groups.

Proposition IV.14. If G is an elliptic Banach-Lie group, then G has an injective universal
complexification ng: G — G¢ such that Ge has a polar decomposition Ge = G exp(ig).

Proof. Let CNT’C be a simply connected Lie group with Lie algebra gc (Lemma IV.13). From
[NeOlc, Cor. IV.9 and Th. V.1] we conclude that Ge hasa polar decomposition Ge =G exp(ig),
where the subgroup G C Gc can be identified with the simply connected covering group of G.
Identifying m (G) with a discrete central subgroup of G, we observe that it is also central in
Gc because it acts trivially by the adjoint representation on g¢ . Therefore G¢ = Ge /m(G)
is a complex Lie group containing G /m(G) = G as a real subgroup corresponding to the Lie
subalgebra g C gc. Moreover, the polar decomposition of é@ induces a polar decomposition
Gc = Gexp(ig) of G¢ . From that one easily derives that the inclusion map ng: G < G¢ is a
universal complexification. [ ]
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V. An example of the first kind

In this section and the next, we construct real Banach-Lie groups without universal complexifi-
cations. We begin with a Banach-Lie group which does not satisfy condition (i) of Theorem IV.6.

Step 1. Recall that the universal covering group S = éE(Z,IRi) of the special linear group
SL(2,R) has discrete center Z(S) = Z, and recall that Ng = kerng = Z is a subgroup of
index 2 in Z(S), where ng: S — S¢ = SL(2,C). Let zp be a generator for Ng. For every
n € N, there is a unique homomorphism ¢,,: Ng — R such that ¢,(z0) = % Then the graph
I, of ¢, is a discrete normal subgroup of S x R, and H, := (S x R)/TI',, is a Lie group with
Lie algebra b := s[(2,R) x R and exponential function expy = g, o (expg xidr), where expg
is the exponential function of S and ¢, : S x R — H,, the canonical quotient morphism. The
mapping i,: S = Hy,, g — ¢,(g,0) is an embedding of topological groups.

Step 2. It is apparent from the definition of Ng that i,(Ng) C kerny, =: Ny, , where
nm, : Hy, = (Hp)c is the universal homomorphism. Note that

(5.1) in(20) = (20,0) Ty = (1,-1) T, € Ny,

in particular. On the other hand, Ng, C ¢n(Ns x 1Z) = Z, whence Ny, is discrete. In fact,
since I';; € Ng X L7, the composition

—~ SL(2,R) x R

R
SL(2,R) x R — . =
NS X ZZ

1z

Lie

SL(2,R) x — SL(2,C) x

sle

factors through H,,, giving rise to a continuous homomorphism from H,, into a complex Lie
group with kernel ¢,(Ng x L17Z).

Step 3. Having chosen any norm ||.||' on sl(2,R) making it a normed Lie algebra, we make b
a normed Lie algebra via ||(X,t)]| := max{|| X', |t|} for (X,t) € h. Then the ¢*°-direct sum
g :=£>*°(N,h) is a Banach-Lie algebra with respect to pointwise operations and the supremum-
norm (cf. Theorem II1.9).

Step 4. In view of Theorem II1.9 and d,, = oo for n € N, there exists a simply connected Lie
group G with Lie algebra g, and with Proposition II1.12 we obtain a continuous homomorphism
Y:G = [[,en Hn with 9(exp X) = (expy, (Xn))nen for X € g.

Step 5. Since Ng is discrete in S, there exists an identity neighbourhood W in S such that
W='W N Ng = {1}. For suitable R > 0, we may assume that expq(Bgr(0)) C W, and that
expg is injective on Bgr(0).

Step 6. Then expy is injective on Br(0) x R, for every n € N. In fact, suppose that
X1,X> € Bg(0) Csl(2,R) and t;,t> € R such that expy (X1,t1) =expy (X2,t2). Then there
is z € Ng such that expg(X1)z = expg(X2) and t1 +¢,(2) = t2. Thus expg(X;) L expg(Xz) =
z € NsNW™IW = {1} and therefore expg(X;) = expg(X2) whence X; = X, by injectivity.
Since z = 1, we also have t; = t5.

Step 7. We deduce from Step 6 that 1 o expy is injective on the open ball Br(0) C g and

hence that kerqz is discrete. We define G := G / kerzZ and note that IZ factors to a continuous
injection ¢:G — [],cn Hn such that for all projections py:[[,,cy Hm — Hp the composition
T i= Pp o : G — H,, is a Lie group homomorphism for which L(p,, o ¢) is the point evaluation
en:g =1°(Nbh) = b, (X)men — X, at n.

Step 8. Let v,:h — g denote the inclusion map with e, © v, = 0pm idy . Then the fact that ¢
is injective implies that the Lie algebra homomorphism -, integrates to a group homomorphism
en: Hy — G with p, oy oe, = idy, because the corresponding homomorphism H, — G —
[1,.en Hm factors through Hy,. We then have 9 (e,(h))m =1 for m # n and ¥ (en(h))n = h.
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Step 9. Define Ng C G asin Section IV. As ng, om, is a smooth homomorphism into a complex
Lie group for each n, with kernel 7, (Ng, ), we have Ng C (G N[],en Nu,) =: P, identifying
G with im ¢ now. Here P is totally disconnected, since the continuous homomorphisms 7Tn|gH"
into discrete groups separate points on P. Hence Ng is totally disconnected as well. On the
other hand, by necessity €, (Ng,) C N¢ for each n, whence

(5.2) {(hn)nEN € H Npg, : hy, =1 for almost all n} C Ng.
neN

Step 10. Note that {X € g: expg(RX) C Ng} = {0}, since Ng is totally disconnected.
However, N¢ is not discrete: for every 0 < § < R, we have D := exp,(B;s(0)) N Ng # {1}, as
1# (1,—1)T € my(D) by (5.1) and (5.2), where n € N is chosen such that L+ < §. Hence Ng
is not a Lie subgroup of G, and we have reached our goal: condition (i) of Theorem IV.6 is not
satisfied by G. In particular, G does not have a universal complexification.

Remark V.1. It is interesting to take a closer look at the topology of the groups in the
construction above, to understand them in the context of Proposition III.12. Here we can
get a quite explicit picture of the simply connected group G. We recall that the group S is
homeomorphic to R3 which can most easily be seen from its polar decomposition S = K exp ps,
where Ks = SO(2,R) 2 R and p, = R2. From that it is not hard to derive that the subgroup
of (S x R)N corresponding to £>°(N, ) is homeomorphic to

(N, R) x £>°(N,R?) x (*(N,R),

hence in particular simply connected, whence isomorphic to G.

This implies that for the natural map LZ: G — [I,en Hn the kernel is Gn [I,enTn, and
this group is the graph I' of the homomorphism
o0 (oo} 1
P (N,2) > (*(NR), @l = (~an) .
n neN
This subgroup is discrete and G = G/I, so that m (G) = T. m

VI. Examples of the second kind

In this section, we construct examples of real Banach-Lie groups G which satisfy condition (i)
of Theorem IV.6 (as Ng = {1}) but not condition (ii).

Lemma VI.1. Let g1,...,9, be Banach-Lie algebras with centers 31,...,3n. Let

g:=01D...Bgn, bC3(9)=51D...05n

be a subspace intersecting each 3; trivially, and q: g — g/b denote the quotient map. Then
3(8/0) = 3(8)/b, q(1l(g)) =11(g/b), and Ii(g) = EP1I(g;).
j=1

Proof. It is clear that 3(g)/b is central in g/b. If, conversely, ¢(z) is central in g/b, then for
each j we have [z,g;] C bnj; = {0}, so that = is central in g. Therefore 3(g/b) = 3(g)/b =
q(3(g)). Now Corollary III.4(b) shows that ¢(II(g)) = II(g/b). The relation II(g) = @?:1 II(g;)
follows directly from Theorem II1.9. ]
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Lemma VI.2. Let a be a Banach-Lie algebra over K € {R,C} with dimj(a) =1 and period
group II(a) = Z~yy = Z. Then each of the Lie algebras

gn(a) := (a © a)/K(v0,n7)

is enlargible, but their £>° -direct sum

8(®) == P 0a(@) = { @a)nex € [ 00(@):supenllonll < o0}

neN neN

1s not enlargible, whereas the homomorphisms to the enlargible Lie algebras g, separate points.

Proof. First we note that (3.3) implies that
M(a®a) =1(a) ®(a) = Z2

Now b,, := K(y,nv) is a one-dimensional central subspace of a @ a, so that g, := g,(a) is
a Banach-Lie algebra with 3(g,) = 3(a ® a)/b,, (Lemma VI.1). Since the period group II(a) is
discrete, the Lie algebra a is enlargible (Theorem II1.7). Moreover,

(I(a ® a) + by,) /b, = H(a®a)/(Il(a ® a) N by,)

is isomorphic to Z?/Z(1,n) = Z and therefore discrete in 3(g,) = 3(a ® a)/b,. Hence Lemma
VI.1 implies that
I(g,) = (a @ a)/Z(0,n70) = Z*/Z(1,n) = Z.

We endow the Lie algebra a @ a with the [*°-norm ||(z1,z2)|| = max(||z1]],||z2l]). Then
3(aa) = (K%, || |o) as anormed space and I(a®a) = §Z?, where § = min{||7|:0 # v € H(a)}.
In

3(on) = 3(a @ a)/b, = K* /K(1, 1)

we have with T :=q(z), gza®a — g,:

(L,0)] = infxex [[(1 + A, nA)[loo = infrex max(|1 + Al, n[A])
n

n+1

= infe[—2,0) max(|1 + A, n[A]) =

The elements of the group $1I(g,) correspond to

2%/Z(1,n) = Z(1,0) + Z(0,1) = Z(1,0) + Z(1,0) = Z (X, 0).

n?

This means that 5

_M 51— ,
n+1 " n+1

On = Inf{[[7][: 0 # v € (gn)} =

Therefore the Lie algebras g, do not satisfy the assumptions of Theorem 111.9 because 6, — 0.
This means that their [°°-sum g(a) := @,cx 8 (a) is not enlargible, whereas the continuous Lie
algebra homomorphisms to the enlargible Lie algebras g, separate points. u

Next we construct examples of Banach-Lie algebras a with one-dimensional center and period
group isomorphic to Z because these are needed as input for the construction in Lemma VI.2.

Example VI.3. In this remark we discuss Lie algebras a satisfying the assumptions of Lemma
VI.2. This turns out to be of particular interest for II(a) = {0} and II(ac) = Z which is satisfied
for the algebras in (b) and (c).

(a) The most prominent example of a Lie algebra a with these properties is a = u(H), where
H is an infinite-dimensional complex Hilbert space. In view of Kuiper’s Theorem, the unitary
group U(H) of H is contractible, hence in particular a simply connected Banach-Lie group. Its

~

center is isomorphic to T, so that Proposition III.8 implies that II(a) = 7 (T) = Z.
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If we replace a by its complexification B(H), the Lie algebra of all bounded operators on H,
then the polar decomposition of GL(H) implies that it is also contractible, so that

I((a)c) = m(Z(GL(H))) = m (C*) = Z.
(b) Next we construct an example of a real Banach-Lie algebra a with II(a) = {0} and
H(a@) =7.
Let
ag := Q' (sl(2,K)) := {f € C*(T,sl(2,K)): f(1) = 0}.

Then agy is a K-Banach-Lie algebra which has a central extension a given by the cocycle

alf,9)i= [ w(£0),9'0) dt
T
where k is the Killing form of s[(2,K). More precisely, a = ap x K with the bracket

[(z,2), (@', 2")] = ([2,2"], w(=,2")).
Since 3(ag) = {0}, we see that 3(a) = {0} x K is one-dimensional.
Now
Ap := Q'(SL(2,K))o = Q'(SL(2,K)™)
is a Banach-Lie group with Lie algebra ay. Smoothing of loops easily implies that Ay is homotopy
equivalent to the continuous loop group Q(SL(2,K)7), so that

0 forK=R

Z forK=C
because SL(2,R) is homeomorphic to T x R?, so that SL(2,R)” is homeomorphic to R, hence
has trivial third homotopy, and

73(SL(2,C)) = m3(SU(2,C)) = 73(S?) = 7Z.

Since II(a) is a homomorphic image of m2(Ap) (Definition III.1), this group vanishes for K = R.
For K = C we have II(a) = Z, as is shown in [EK64, p. 26] and [NeOla, Th. II.5], because
the simply connected group corresponding to the Lie algebra a has a center which is not simply
connected.

7o (X (SL(2,K)) 2 ma(SL(2,K)) 2 mo (USL(2, K))) = ms(SL(2,K)) == {

Note that we cannot take C° instead of C' in the above construction since the Lie algebra
C°(T,sl(2,C)) has no non-trivial central extensions.?2

(¢) The following example is simpler and still satisfies II(a) = {0} and II(ac) = Z.

Let H be an infinite-dimensional complex Hilbert space and H® the underlying real Hilbert
space. Let J: H — H,v — iv, denote the complex structure on H and define the symplectic form
Q(v,w) := Im(v, w). We write Sp(H, Q) for the group of all real linear continuous automorphisms
of H preserving the form  and consider the subgroup

Spyes(H, ) = {g € Sp(H, Q):||[g, J]|]2 < oo},

called the restricted symplectic group. This group has a polar decomposition K expp with
K = U(H) and p is the space of antilinear symmetric operators on H®. Kuiper’s Theorem
implies that U(H) and hence Sp,.,(H, ) is contractible, hence in particular simply connected.
As we have seen in [NeOlb, Sect. IV], the group Sp,.(H, ) has a universal complexification
Spres(H,Q)c € GL(Hg) which is also simply connected but has a second homotopy group
isomorphic to Z.

Let A := Mp(H, Q) denote the metaplectic group which is a central T-extension of Sp,.(H, )
([NeO1b, Sect. IV]) and the center of its Lie algebra a is the Lie algebra of T. Therefore the fact
that Sp,.s(H, ) is simply connected implies that Aa.q = Sp,es(H, ), and the contractibility
of this group further implies that II(a) = {0}. The simply connected group corresponding to
the complexification ac is a central C* -extension of Sp,.,(H,Q)c ([NeOlb, Sect. IV]). Hence
Proposition IIL.8 implies that II(ac) = m (C*) 2 Z. n

Now we construct an example of a connected Banach-Lie group G for which the homomorphisms
to complex Lie groups separate points, but G has no universal complexification.

2 This follows from [Ma01 Corollary 12] and the C°-analogue of [Ma01, Theorem 15].
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Example VI.4. In Example VI.3(b),(c) we have seen that there exist real Banach-Lie algebras
a with 3(a) @ R, II(a) = {0} and II(ac) = Z. For each Lie algebra g, (a) we then have

(gn(a)) = {0} and Il(gn(ac)) =Z,

as follows from Lemma VI.1 and the arguments in Lemma VI.2. Therefore Theorem III.9 implies
that II(g(a)) = {0} and that II(g(ac)) is not discrete.

For each n € N let G(ac) denote a simply connected Lie group with Lie algebra g,(ac) and
Gy (a) the Lie subgroup corresponding to the real form g,(a) of gn(ac). That G,(a) is a Lie
subgroup follows from the fact that it is the fixed point set of the antiholomorphic involution on
G (a) whose derivative is the complex conjugation of g,(ac). Now let G(a) C [],cn Gn(a) be
the analytic subgroup with Lie algebra g(a). Since the G, (a) are subgroups of complex groups,
the homomorphism of G(a) to complex groups separate points, i.e., N = {1}. Moreover, we

have L(G(a))c = g(a)c = g(ac), and this Lie algebra is not enlargible. u
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