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Highest weight representations and in�nite-dimensional K�ahler manifolds

Karl-Hermann Neeb

Abstrat. The geometry of unitary highest weight representations and the orresponding oad-

joint orbits has many in�nite-dimensional relatives. This beomes apparent from a geometri ap-

proah to unitary highest weight representations. In this note we disuss suh representations for

the unitary group of a C

�

-algebra and for groups related to L

�

-groups.

Introdution

In this note we disuss some ideas onerning a geometri analysis of unitary highest

weight representations of in�nite-dimensional Lie groups. For a �nite-dimensional, not neessarily

semisimple, Lie group G the property of an irreduible unitary representation � to be a highest

weight representation an be read o� from its onvex moment set I

�

, a losed onvex subset in the

dual g

0

of the Lie algebra g of G whih enodes the upper bounds of the spetra of the essentially

selfadjoint operators i�d�(X), X 2 g , of the derived representation. The set I

�

ontains no aÆne

lines if and only if � is a highest weight representation. Based on this geometri haraterization,

we desribe in Setion I an approah to highest weight representations whih an be generalized

to in�nite-dimensional groups. Another important aspet of the �nite-dimensional theory is that

for eah unitary highest weight representation � the extreme points of the onvex moment set I

�

form a single oadjoint orbit O

�

whih arries a natural K�ahler struture, and � an be realized

in a spae of holomorphi setions of a omplex line bundle over O

�

. This oinidene motivates

a geometri approah to unitary highest weight representations of in�nite-dimensional groups by

�rst studying their oadjoint K�ahler orbits.

In Setion II we explain the framework for oadjoint orbits in the ontext of Banah{Lie

groups. One aspet of the in�nite-dimensional theory is that it does not suÆe to onsider the

linear oadjoint ation. One also has to onsider aÆne oadjoint ations beause it is not always

possible to pass to entral extensions to embed the aÆne oadjoint ations into linear ations

restrited to an aÆne hyperplane. Another diÆulty is that for general Banah{Lie groups

oadjoint orbits need not have a natural manifold struture, a diÆulty not present for Hilbert{

Lie groups beause for these groups the existene of losed omplements of Lie subalgebras yields

harts on homogeneous spaes. Finally there is a diÆulty oming from di�erent notions of non-

degeneray for a sympleti struture, whih leads to the onepts of weak and strong sympleti

manifolds.

In Setion III we briey disuss those unitary representations of the unitary group G =

U(A) of a unital C

�

-algebra A obtained by restriting an irreduible algebra representation to

G . Here the results on representations of C

�

-algebras provide interesting information whih

deserves to be onsidered in the framework of the results desribed in Setion I for �nite-

dimensional groups. This situation is also illuminating beause it is one of the most regular

situations oneivable for unitary representations of in�nite-dimensional groups, although the

group U(A) behaves quite badly as a di�erentiable manifold in sense that it rarely permits

smooth funtions with small support or omplements for losed subspaes of its Lie algebra.

In Setion IV we turn to the lass of L

�

-groups whih we onsider as a lass of Hilbert{Lie
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groups, where the struture theory of the orresponding Lie algebras is developed far enough

so that one has suÆiently onrete situations for the simple in�nite-dimensional L

�

-algebras.

The main point in Setion IV is a desription of the ellipti oadjoint orbits of L

�

-groups whih

are strong K�ahler orbits. In some sense these orbits are the niest ones and geometrially quite

lose to the oadjoint K�ahler orbits of �nite-dimensional semisimple groups. For the ompat

L

�

-algebras they are generalizations of the ag manifolds of �nite-dimensional lassial groups,

and for the non-ompat L

�

-algebras (whih then must be hermitian), they have the struture of

a holomorphi �ber bundle, where the �bers are oadjoint K�ahler orbits of ompat L

�

-algebras

and the base is a symmetri Hilbert domain.

After disussing holomorphi highest weight representations of ertain omplex lassial

groups in Setion V, we onlude this note by explaining in Setion VI why and how these

oadjoint orbits orrespond to unitary highest weight representations. As in the �nite-dimensional

ase one has to restrit one's attention to those orbits for whih the ohomology lass of the

sympleti form is integral. But then it turns out that these orbits arry natural holomorphi

line bundles in whih we an realize all unitary highest weight representations of the entral

extensions of the group G under onsideration.

We think of the �nite-dimensional ase and also of the ase of L

�

-algebras as a model

situation from whih one might learn how to address similar questions for more omplex in�nite-

dimensional groups if no elaborate struture theory is available.

Although we have inluded almost no proofs in this paper, we give preise de�nitions and

statements of the results and referenes where to �nd detailed proofs.

Aknowledgement: The author ordially thanks Ignaio Bajo and Esperanza Sanmart��n

for the invitation to a very nie onferene.

I. Highest weight representations of �nite-dimensional groups

Moment maps of unitary representations

In this subsetion we onsider Lie groups G whih are manifolds modeled over loally

onvex spaes for whih the group operations are smooth maps. This is the ontext of Gl�okner's

paper [Gl01℄ who showed that one an relax Milnor's setting of sequentially omplete loally

onvex spaes ([Mi83℄) beause the basi di�erential alulus of manifolds does not require the

sequential ompleteness. The main advantage of this wider ontext is that one does not run

into the problem that quotient spaes might not be (sequentially) omplete. From a di�erential

geometri point of view the sequential ompleteness beomes ruial if one needs results on

di�erential forms whose proof involves the Poinar�e Lemma. For groups modeled over Fr�ehet

spaes our setting for Lie groups oinides with the setup of onvenient alulus desribed in

[KM97℄. Here the Lie algebra L(G) of G is the tangent spae T

e

(G) in the identity element e of

G and the Lie braket on L(G) is given by extending eah vetor x 2 T

e

(G) to a left invariant

vetor �eld x

l

on G and de�ning [x; y℄ := [x

l

; y

l

℄

e

, whih makes sense beause the braket of

two left invariant vetor �elds is left invariant.

We all G a Fr�ehet{, Banah{, resp., Hilbert{Lie group if it is modeled over a Fr�ehet,

Banah, resp., Hilbert spae. Banah{Lie groups share with �nite-dimensional ones the nie

property that they have an exponential funtion exp:L(G) ! G whih permits us to endow G

with a anonial analyti manifold struture. As a onsequene, ontinuous homomorphisms be-

tween Banah{Lie groups are automatially analyti. Similar statements hold for the lass of good

Lie groups, whih are analyti (not neessarily Banah) manifolds whose group multipliation is

loally given by the Campbell{Hausdor� series (f. [Gl01℄).

Let G be a onneted Lie group. A unitary representation of G is a pair (�;H), where

H is a omplex Hilbert spae and �:G ! U(H) a ontinuous group homomorphism, where the

unitary group U(H) arries the strong operator topology whih turns it into a topologial group.
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In this sense ontinuity means that for eah v 2 H the orbit map �

v

:G ! H; g 7! �(g):v is

ontinuous. We all v 2 H a smooth vetor if the orbit map �

v

is smooth and, if G is a Banah{

Lie group, we all v an analyti vetor if �

v

is analyti. We write H

1

for the spae of smooth

vetors and H

!

� H

1

for the spae of analyti vetors.

If G is �nite-dimensional, then it is not hard to see that H

1

is dense (G�ardings Theorem)

beause for eah smooth funtion ' with ompat support the range of the operator �(') of the

integrated representation of L

1

(G) onsists of smooth vetors. It is still true, but onsiderably

harder to show, that H

!

is dense (Nelson's Theorem). For this result one onsiders funtions

' whih are analyti and obtained as fundamental solutions of a left invariant heat equation

(f. [Wa72℄).

On the spae H

1

we have the derived representation of the Lie algebra g = L(G) by

d�(X):v := d�

v

(e)(X)

(f. [Ne00d℄). Then eah operator d�(X) maps H

1

into H

1

and an be onsidered as an

unbounded operator on H . If the spae H

!

of analyti vetors is dense, for eah of the operators

i � d�(X) the subspae of analyti vetors is dense, hene i � d�(X) is essentially selfadjoint by a

theorem of Nelson (f. [Ne99, Prop. X.15℄).

For v 2 H n f0g we write [v℄ := C v for the orresponding one-dimensional subspae and

P(H

1

) := f[v℄: v 2 H

1

g

for the projetive spae of H

1

. Let g

0

:= Lin(g;R) denote the spae of ontinuous linear

funtionals on the Lie algebra g := L(G) of G . Then the moment map of � is de�ned as

�

�

:P(H

1

)! g

0

; �

�

([v℄)(X) := i

hd�(X):v; vi

hv; vi

:

Here we use the ontinuity of the di�erential d�

v

(e): g! H to see that the range of �

�

onsists

indeed of ontinuous linear funtionals on g .

If we onsider on P(H

1

) the ation of G indued by the representation � and on g

0

the

oadjoint ation, then it is easy to see that �

�

is equivariant. The weak-�-losure

I

�

:= onv(im�

�

) � g

0

of the onvex hull of the image of �

�

is alled the (onvex) moment set of � . It is a losed,

onvex subset of g

0

whih is invariant under the oadjoint ation. The Hahn{Banah Separation

Theorem implies that the moment set I

�

is ompletely determined by the onvex funtion

s: g! R [ f1g; s(X) := suphI

�

; Xi

beause I

�

= f� 2 g

0

: (8x 2 g)�(X) � s(X)g is the intersetion of the weak-�-losed half spaes

ontaining it. Therefore all the information on the representation � ontained in the set I

�

is

enoded in the funtion s . If the spae H

!

of analyti vetors is dense, the funtion s satis�es

s(X) = sup Spe(i � d�(X)) for X 2 g;

so that the onvex hull of the spetrum of eah of the essentially selfadjoint operators i � d�(X)

is the interval between the possibly in�nite elements �s(�X) and s(X) of [�1;1℄ .

De�nition I.1. We say that � is a (generalized) highest weight representation if the following

onditions are satis�ed:

(HW1) � is irreduible,

(HW2) the onvex one B(I

�

) := fX 2 g: inf I

�

(X) > �1g has interior points, and

(HW3) H

!

is dense.
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Note that (HW3) is redundant if G is �nite-dimensional.

Of ourse the terminology is derived from the algebrai struture of unitary highest weight

representations as representations of g , but we do not have to go into this elaborate struture

theory to explain the basi geometri features of unitary highest weight representations.

Typial examples of highest weight representations are all irreduible unitary representa-

tions of ompat Lie groups. In this ase H is �nite-dimensional, so that P(H) = P(H

1

) is

ompat, I

�

is bounded, and therefore B(I

�

) = g . Further typial examples are the holomor-

phi disrete series representations of hermitian Lie groups (e.g. automorphism groups of bounded

symmetri domains), the osillator representation of the osillator algebra, and the metapleti

representation of the group Heis(2n;R) o Sp(2n;R).

Remark I.2. To larify the meaning of the geometri ondition (HW2), let X be a loally

onvex spae and C � X

0

a weak-�-losed onvex subset.

(a) If X is �nite-dimensional, then the ondition that B(C) := fx 2 X : infhC; xi > �1g has

interior points is equivalent to the ondition that C does not ontain any aÆne line whih in

turn is equivalent to the existene of extreme points in C ([Ne99, Cor. V.1.11℄). If C � X

0

is a

onvex one, then B(C) � X is the dual one. The example of the one C of positive sequenes

in X

0

= `

1

(N;R) for X = `

1

(N;R) shows that it may happen in in�nite-dimensional spaes

that C does not ontain aÆne lines without B(C) having interior points.

(b) If X is in�nite-dimensional and B(C) has an interior point x , then X = R

+

x � B(C)

implies that for eah s 2 R eah element y 2 X is bounded from above on the set C

s

:= f� 2

C:�(x) � sg . We onlude that C

s

is weak-�-losed and weak-�-bounded. If X is a Banah

spae, then the Uniform Boundedness Priniple implies that C

s

is bounded and therefore weak-

�-ompat. Hene eah x 2 intB(C) has a minimal value on C . Furthermore C has extreme

points by the Krein{Milman Theorem.

To see that highest weight representations are related to a variety of interesting geometri

and analyti strutures, let us disuss some of their properties for �nite-dimensional groups (for

proofs see [Ne99, Chs. X-XV℄). In the remainder of this setion G denotes a �nite-dimensional

onneted Lie group.

(1) (Extreme points) The set Ext(I

�

) of extreme points of I

�

onsists of a single G-orbit O

�

satisfying I

�

= onv(O

�

). Sine I

�

is in general not ompat, it is quite remarkable that we

have I

�

= onv(Ext(I

�

)).

(2) (Classi�ation) Two highest weight representations �

1

and �

2

of G are equivalent if and

only if their moment set and hene the orresponding orbits O

�

1

and O

�

2

oinide. This means

that for the lass of highest weight representations the moment set arries enough information to

separate the representations. This is far from being true for general irreduible representations.

If g is simple and � is irreduible but not a highest weight representation, then I

�

= g

0

, so that

the moment set ontains no information at all.

(3) (Coherent states and K�ahler orbits) The existene of extreme points in I

�

is related to the

omplex geometry of the Fr�ehet-K�ahler manifold P(H

1

) in the following sense. The inverse

image �

�1

�

(O

�

) is non-empty and onsists of a single G-orbit O

CS

whih is alled the oherent

state orbit (CS-orbit). This orbit has the following properties:

(a) As a homogeneous spae of G , the orbit O

CS

has a unique omplex struture suh that

the orbit map O

CS

! P(H

1

) is antiholomorphi. Moreover, O

CS

is the unique G-orbit in

P(H

1

) with this property. We therefore obtain a lose onnetion between extremality in

I

�

and the existene of a omplex struture on orbits in P(H

1

).

(b) The restrition of the moment map to O

CS

yields a bijetion O

CS

! O

�

. In partiular

O

�

arries a natural K�ahler struture ompatible with the sympleti struture suh that

G ats by K�ahler isomorphisms on O

�

.

() There exists a natural holomorphi line bundle L

�

! O

�

suh that H embeds in a natural

G-equivariant way into the spae �(L

�

) of holomorphi setions of L

�

.

(4) (Complex semigroups) Let us all a subset W � g weakly ellipti if Spe(adx) � iR holds for

all x 2W . For every losed onvex invariant weakly ellipti one W � g there exists a omplex

semigroup �

G

(W ) with the following properties:
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(S1) G � �

G

(W ).

(S2) There is a homeomorphism p

G

:G�W ! �

G

(W ).

(S3) If the universal omplexi�ation �

G

:G! G

C

of G is injetive, then �

G

(W )

�

=

G exp

G

C

(iW )

and p(g;X) = g exp(iX).

(S4) If ':G

1

! G

2

is a overing map of groups with Lie algebra g , then p

G

2

('(g); X) =

p

G

1

(g;X).

For a more detailed disussion of these semigroups we refer to [Ne99, Ch. XI℄. It is important to

note that the semigroup �

G

(W ) always ontains G , regardless of whether it is ontained in a

omplex group or not. Sine there is always a group G

1

loally isomorphi to G whih has an

injetive universal omplexi�ation, the semigroup �

G

(W ) is uniquely determined by (S1){(S4).

If � is a unitary highest weight representation suh that the kernel of the derived repre-

sentation is entral, then the onvex one �B(I

�

) � g has a weakly ellipti losure W and the

G-ation on the omplex manifold O

�

extends holomorphially to an ation of the omplex semi-

group �

G

(W ). From that one further derives that the G-representation � extends to a holomor-

phi representation of �

G

(W ) on a dense subspae, and the subsemigroup �

G

(�B(I

�

)) � �

G

(W )

ats by bounded operators on H . On the non-empty interior �

G

(W

0

) we obtain a holomorphi

homomorphism b�: �

G

(W

0

)! B(H) (f. [Ne99, Set. XI.3℄).

If G is ompat or has a ompat Lie algebra, then the whole Lie algebra g is weakly

ellipti and �

G

(g) = G

C

is the universal omplexi�ation of G . In this ase O

�

is, as a omplex

manifold, a generalized ag manifold of the omplex redutive group G

C

, and we obtain a

holomorphi representation of G

C

on the �nite-dimensional Hilbert spae H .

These results on highest weight representations of �nite-dimensional groups show that

there is a wealth of information available on highest weight representations, and the properties

listed above just srath the surfae of the interesting relations between onvex geometry, K�ahler

manifolds, holomorphi semigroup ations on manifolds, and holomorphi representations on

Hilbert spaes. There are additional branhes suh as the algebrai struture of highest weight

representations and the omplex geometry of the semigroups �

G

(W ) (f. [Ne99, Chs. IX, XIII℄).

The main objetive of the present note is to show that many of the above results and

relations have interesting analogs for in�nite-dimensional groups whih deserve to be investigated

systematially. In partiular they provide a guiding philosophy telling us where to �nd interesting

objets in in�nite-dimensional Lie theory.

We will see below that the ontext of real L

�

-algebras, highest weight representations, and

ellipti oadjoint orbits geometrially resembles very muh the �nite-dimensional ase, although

the results known so far, are still far from being as sharp as for �nite-dimensional groups.

II. AÆne oadjoint orbits

At the present state of knowledge on in�nite-dimensional groups, their geometry and their

representations, there are two natural points to enter the irle of ideas desribed in Setion I.

The �rst possibility is to use algebrai strutures suh as root deompositions of the underlying

Lie algebra to approah unitary highest weight representations from the algebrai side. This has

been done in partiular in [Ne00f℄ for loally �nite Lie algebras; see also [KR87℄ and [Ka90℄ for

orresponding results for Ka{Moody algebras and the Virasoro algebra. Here the advantage

is that one an stay on the Lie algebra side without needing orresponding groups, but then

the diÆulties start when we want to integrate our Lie algebra representations to unitary group

representations. Therefore we will follow a more geometri path by �rst studying the geometry

of oadjoint orbits, whih is a basi philosophy in �nite-dimensional and also partly in in�nite-

dimensional unitary representation theory (f. [Ki76℄, [Ki99℄). We will see below that this

geometri approah leads for ellipti orbits of L

�

-groups naturally to the unitary highest weight

representations of these groups. The main di�erene to the �nite-dimensional ontext is that we

have to keep trak of entral extensions and extensions by ertain automorphism groups during

the proess.
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We think that it is a hallenging geometri program, to understand the extent to whih

the results of Setion I are true for in�nite-dimensional groups. It seems that the approah via

\ellipti" oadjoint orbits is a natural path one should also exploit for other types of groups. We

have the feeling that the ourrene of strong K�ahler orbits is losely related to the L

�

-ontext

and that in general one should only expet weak K�ahler strutures on the interesting orbits (f.

[PS86℄).

This program is of partiular interest beause for in�nite-dimensional groups unitary high-

est weight representations seem to play a muh more important role among the general unitary

representations than it is the ase for �nite-dimensional groups. This is mostly due to the fat

that in physial models the lower boundedness of the energy, the partile number, or similar

observables, fore the orresponding Lie algebra representation to be a highest weight represen-

tation (f. [Ne99℄ for a preise statement for �nite-dimensional groups supporting this point of

view).

Throughout this setion G always denotes a onneted Banah{Lie group. We will desribe

the relevant notions for the study of the oadjoint representation of G . Sine not all quotients

by losed subgroups arry natural manifold strutures, we �rst take a look at Lie subgroups.

De�nition II.1. (Lie subgroups) Let G be a Banah{Lie group, H � G a losed subgroup

and

L(H) := fx 2 L(G): exp(Rx) � Hg:

Then L(H) is a losed Lie subalgebra of L(G). We all H a Lie subgroup of G if there exists

an open 0-neighborhood V � L(G) suh that exp(V \ L(H)) is a 1-neighborhood in H and

exp j

V

is injetive. This implies that H arries a Lie group struture suh that L(H) is the Lie

algebra of H and the exponential map of H is given by the restrition of the exponential map

of G to L(H) ([Ma62℄).

If, in addition, the losed subspae L(H) � L(G) is omplemented, then we all H a

omplemented Lie subgroup. This ondition implies that the quotient spae G=H arries a

natural manifold struture suh that the quotient map q:G! G=H is a submersion (f. [Bou90,

Ch. 3, x1.6, Prop. 11℄). Sine every losed subspae of a Hilbert spae is omplemented, every

Lie subgroup of a Hilbert{Lie group is omplemented.

Next we turn to sympleti strutures on oadjoint orbits. There are some subtleties in the

in�nite-dimensional ontext aused by several notions of non-degeneray for sympleti forms.

De�nition II.2. (a) Let X be a Banah spae and X

0

its dual spae. We all a skew-

symmetri ontinuous bilinear form !:X �X ! R non-degenerate if the map �

!

:X ! X

0

; v 7!

!(v; �) is injetive. We all it strongly non-degenerate if the map �

!

is bijetive. It is not hard

to see that the existene of a strongly non-degenerate form on X implies that X is a reexive

Banah spae.

(b) A weakly sympleti Banah manifold is a pair (M;
), where 
 is a losed 2-form on M

suh that for eah p 2 M the form 


p

on T

p

(M) is non-degenerate. We all (M;
) strongly

sympleti if all the forms 


p

are strongly non-degenerate and, in addition, in loal oordinates

the map p 7! �




p

2 GL(T

p

(M); T

p

(M)

0

) is smooth. If M is �nite-dimensional and weakly

sympleti, then M is automatially strongly sympleti.

If M is a omplex manifold with omplex struture I and 
 is a weak sympleti struture

on M , then we all (M;
; I) a weak pseudo-K�ahler manifold if for eah p 2M the bilinear form

(v; w) 7! 


p

(v; I:w) is symmetri. If, in addition, this form is positive de�nite, we all (M;
; I)

a weak K�ahler manifold. Aordingly we de�ne strong (pseudo-)K�ahler manifolds.

() Let (M;
) be a weakly sympleti manifold. A smooth vetor �eld X on M is alled

Hamiltonian if there exists a smooth funtion f :M ! R with df = �i(X):
 = �
(X; �). In

view of the non-degeneray of 
, the vetor �eld X is uniquely determined by f , and we all

it the Hamiltonian vetor �eld de�ned by f . If M is strongly sympleti, then for eah smooth

funtion f 2 C

1

(M;R) the 1-form df an be written as df = �i(X):
 for a smooth vetor

�eld X . Hene eah funtion de�nes a orresponding Hamiltonian vetor �eld.
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(d) Let �:G�M !M be a smooth ation of the onneted Banah{Lie group G on the weakly

sympleti manifold M by sympletomorphisms. Then � is alled Hamiltonian if there exists

a moment map, i.e., a smooth map �:M ! L(G)

0

suh that for eah x 2 L(G) the smooth

funtions '(x) := h�; xi satisfy d'(x) = �i( _�(x)):
, where _�(x)(p) =

d

dt

j

t=0

exp(�tx):p for

p 2M .

De�nition II.3. (a) Let g a topologial Lie algebra, i.e., a Lie algebra whih is a topologial

vetor spae with a ontinuous Lie braket, and z be a topologial vetor spae, onsidered as

a trivial g-module. A ontinuous z-valued 2-oyle is a ontinuous skew-symmetri funtion

!: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is alled a oboundary if there exists a ontinuous linear map �: g! z with !(x; y) = �([x; y℄)

for all x; y 2 g . We write Z

2



(g; z) for the spae of ontinuous z-valued 2-oyles and B

2



(g; z)

for the subspae of oboundaries. We de�ne the seond ontinuous Lie algebra ohomology spae

H

2



(g; z) := Z

2



(g; z)=B

2



(g; z):

(b) Eah ontinuous oyle ! 2 Z

2



(g; z) de�nes a entral extension g �

!

z of g by z whose

underlying topologial vetor spae is g� z and whose Lie braket is de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z ! g; (x; z) 7! x is a Lie algebra homomorphism with entral kernel z .

In the following we write Ad

�

(g):� := � Æ Ad(g)

�1

for the oadjoint ation of G on g

0

,

and ad

�

(x):� := �� Æ adx for the orresponding derived ation.

Theorem II.4. ([Ne01a℄) (a) Let G be a onneted simply onneted real Banah{Lie group

and ! 2 Z

2



(g;R) a ontinuous 2-oyle. Then the homomorphism

ad

�

!

: g! aff(g

0

)

�

=

g

0

o gl(g

0

); x 7! (!(x; �); ad

�

(x))

of Banah{Lie algebras integrates to an aÆne ation of G on g

0

given by

Ad

�

!

(g):� = Ad

�

(g):� + �(g);

where �:G ! g

0

is a 1-oyle with values in the oadjoint representation of G on g

0

and

d�(e)(x) = !(x; �) for x 2 g .

(b) If, in addition, G is a Hilbert{Lie group, then every G-orbit O

�

:= Ad

�

!

(G):� � g

0

arries a

natural struture of a weakly sympleti manifold (O

�

;
) suh that G ats sympletially and the

inlusion map �:O

�

! g

0

is a moment map for this sympleti ation. The sympleti struture

on O

�

is given in the base point � by




�

(ad

�

!

(x):�; ad

�

!

(y):�) := �([x; y℄) � !(x; y):

If G is not a Hilbert{Lie group, there seems to be no way to obtain manifold strutures on all

oadjoint orbits beause the stabilizer groups are Lie subgroups whih need not be omplemented.

The situation is muh better for quotients G=N where N E G is a normal Lie subgroup. In this

ase G=N always is a Banah{Lie group as has reently been shown in [GN01℄.

Remark II.5. (a) The assumption in Theorem II.4 that G is simply onneted is important

beause if this is not the ase and q:

e

G ! G is the universal overing group, then we an apply

Theorem II.4 to

e

G , and we obtain an aÆne ation of G on g

0

if and only if the entral subgroup

�

1

(G)

�

=

ker q ats trivially on g

0

. In view of �

1

(G) � kerAd

e

G

= Z(

e

G), this group ats by

translations on g

0

. One an show that the triviality of the ation of �

1

(G) is equivalent to the
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exatness of the losed 1-forms i(x

r

):
 on G , where x

r

is the right invariant vetor �eld with

x

r

(e) = x and 
 is the left invariant 2-form with 


e

= ! ([Ne01a℄).

(b) Let

b

g := g�

!

R denote the entral extension de�ned by ! 2 Z

2



(g;R) and identify g

0

with

the hyperplane H := f(�;�1):� 2 g

0

g �

b

g

0

. For x 2 g we then have

ad

�

(x; 0)(�;�1) = �(�;�1) Æ ad(x; 0) = (ad

�

x:�; !(x; �)):

If

b

G is a onneted Lie group with Lie algebra

b

g , then it �xes the elements of z := f0g�R � z(

b

g)

pointwise, so that the oadjoint ation preserves the hyperplane H �

b

g

0

, hene indues an aÆne

ation on g

0

. Moreover, the derived aÆne ation of the Lie algebra

b

g fators through the aÆne

ation ad

�

!

of g on g

0

.

The main point in studying aÆne ations of G instead of linear ations of

b

G is that there

are many situations where the Lie algebra

b

g is not enlargible in the sense that there exists no

global group

b

G with L(

b

G) =

b

g . The obstrution for the existene of

b

G lies in �

2

(G) (see [Ne00b℄

for details), hene annot be resolved by passing to overing groups. Sine the obstrution for

the existene of the aÆne ation of G on g

0

lies in �

1

(G), it is muh more easily resolved by

replaing G by

e

G .

() As [Ne00b, Th. II.4℄ shows, for Proposition II.15(a) one does not need the Banah struture

on G . It holds for any simply onneted Lie group modeled over a sequentially omplete loally

onvex spae.

(d) Let ! 2 Z

2



(g;R) and Ad

�

!

be as above. For � 2 g

0

we onsider the equivalent oyle

e!(x; y) = !(x; y)� �([x; y℄):

Then the translation map �

�

: g

0

! g

0

;  7!  � � intertwines the ations Ad

�

!

and Ad

�

e!

and

indues a sympleti isomorphism O

�

!

e

O

���

:= Ad

�

e!

(G):(���). Therefore it suÆes to study

the orbits of the type O

0

:= Ad

�

!

(G):0 = �(G) � g

0

:

III. C

�

-algebras

Before we turn to the lass of L

�

-groups in the next setion, it is instrutive to disuss some

aspets of Setion I for irreduible representations of C

�

-algebras. Let A be a unital C

�

-algebra,

G := U(A) = fa 2 A: aa

�

= a

�

a = 1g

be the orresponding unitary group, and L(G) = u(A) := fx 2 A:x

�

= �xg its Lie algebra. For

the C

�

-algebrai fats used in this setion we refer to [Dix64℄.

Let (�;H) be an irreduible unitary representation of G whih is obtained by restrition

from a C

�

-algebra representation �

A

:A ! B(H) with �

A

(1) = 1 . Then �

A

is automatially

norm-ontinuous, so that �: U(A) ! U(H) is a morphism of Banah{Lie groups and therefore

H = H

!

. Note that, in view of Shur's Lemma, eah irreduible representation of A restrits to

an irreduible representation of U(A).

We will relate the moment set for � to the geometry of states of the C

�

-algebra A . Let

S(A) := f' 2 A

0

:'(1) = 1; (8a 2 A)'(a

�

a) � 1g � iu(A)

0

� A

0

denote the set of states of A . The image of the moment map �

�

:P(H)! u(A)

0

is ontained in

iS(A), whih implies that I

�

� iS(A) beause of the weak-�-losedness of S(A). We onlude

in partiular that I

�

is a weak-�-ompat set. Aording to [Ne99, Th. X.5.13(iii)℄, we have

I

�

=

�

iS(A)

�

\ ker�

A

�

=

iS(A= ker�

A

);

so that I

�

an be identi�ed with the set of states of the quotient C

�

-algebra A= ker�

A

. Sine

I

�

is weak-�-ompat, the existene of extreme points follows from the Krein{Milman Theorem.



9 vigo.tex April 9, 2001

Theorem III.1. Let (�

A

;H) be an irreduible representation of A and � := �

A

j

U(A)

. Then

the following assertions hold:

(i) �

�

(P(H)) � Ext(I

�

):

(ii) U(A) ats transitively on P(H) .

(iii) The group U(A) ats transitively on Ext(I

�

) if and only if eah irreduible representation

�

A

with ker �

A

� ker�

A

is equivalent to �

A

.

Proof. (i) Sine the algebra representation �

A

is irreduible, for eah [v℄ 2 P(H) the funtional

�i�

�

([v℄) is a pure state of the C

�

-algebra A , hene an extreme point of S(A). Thus

�

�

(P(H)) � I

�

\ Ext(iS(A)) � Ext(I

�

):

(ii) For 0 6= v 2 H we derive from [Ne99, Th. X.5.16℄ that its annihilator Ann

A

(v) := fa 2

A: a:v = 0g satis�es

Ann

A

(v) + Ann

A

(v)

�

+ C 1 = A:

Therefore H = A:v implies that H = C v + Ann

A

(v)

�

:v . For a 2 Ann

A

(v)

�

we have a:v =

(a� a

�

):v , so that we further obtain H = C v + u(A):v: This implies that the tangent map in e

of the orbit map

�: U(A)! P(H); g 7! g:[v℄ = [g:v℄

is surjetive and hene that the orbit U(A):[v℄ in P(H) is open by the Non-linear Open Mapping

Theorem ([De85, Cor. 15.2℄). Sine [v℄ 2 P(H) was arbitrary, the orbits of U(A) form a

deomposition of P(H) into pairwise disjoint open subsets, and therefore the onnetedness

of P(H) implies that U(A) ats transitively.

(iii) Let ' 2 Ext(I

�

) � I

�

�

=

iS(A= ker�

A

). Then ' is a pure state of the C

�

-algebra A= ker�

A

,

hene orresponds to an irreduible representation �

A

of A with ker �

A

� ker�

A

, and for

� := �

A

j

U(A)

the funtional ' is ontained in the image of the moment map �

�

.

If this representation is equivalent to �

A

, then learly ' 2 im�

�

. On the other hand, (ii)

shows that the subset im�

�

� Ext(I

�

) is a oadjoint orbit for U(A).

If there exists an irreduible representation �

A

of A with ker �

A

� ker�

A

whih is not

equivalent to �

A

, then it follows that im�

�

� Ext(I

�

) is a di�erent U(A)-orbit.

Remark III.2. (a) Theorem III.1(ii) shows that the projetive spae P(H) plays the role of a

oherent state orbit for irreduible representations of A .

(b) If H is an in�nite-dimensional Hilbert spae and A = B(H) with �

A

(a) = a , then ker�

A

=

f0g , so that I

�

= iS(A). On the other hand the ideal K(H) of ompat operators on H is a

proper ideal, so that K(H)

?

� I

�

is a proper U(H)-invariant subset, and therefore U(H) does

not ats transitively on Ext(I

�

). Somehow this di�erene to the �nite-dimensional ase seems to

be aused by taking the losure in the weak-�-topology on u(H)

0

whih seems to be too oarse.

() The ondition in Theorem III.1(iii) means that the lass of the representation �

A

is a losed

point in the spetrum

b

A of A (f. [Dix64℄).

(d) If A is a postliminary C

�

-algebra ([Dix64℄), then for eah irreduible representation �

A

of A

the image �

A

(A) ontains the ideal K(H) of ompat operators, so that the transitivity of the

ation on P(H) follows trivially from the transitivity of the ation of the group U(H)\(1+K(H)).

IV. L

�

-groups

In this setion we explain the ontext of real L

�

-groups and the phenomena one �nds for

their ellipti oadjoint orbits. Here the main point is that those oadjoint orbits whih are strongly

sympleti turn out to be quite aessible, whereas the situation for the weakly sympleti orbits

seems to be muh harder to understand.

More detailed referenes for the material in this setion are [Ne01a,℄.
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De�nition IV.1. Let g be a real Hilbert spae whih at the same time is a Lie algebra

with an involutive antiautomorphism x 7! x

�

. We all g an L

�

-algebra if these strutures are

ompatible in the sense that the involution � is isometri and

(4:1) h[x; y℄; zi = hy; [x

�

; z℄i for x; y; z 2 g:

Then g = k� p with k := fx 2 g:x

�

= �xg and p := fx 2 g:x

�

= xg .

We say that g is ompat if g = k and that g is of hermitian type if the omplex subspae

p

C

� g

C

deomposes into two subspaes p

�

suh that

g

C

= p

+

� k

C

� p

�

is a 3-grading in the sense that [p

�

; p

�

℄ = f0g , [p

�

; p

�

℄ � k

C

, and [k

C

; p

�

℄ � p

�

.

Using the Closed Graph Theorem, one an derive the ontinuity of the Lie braket on g ,

so that this requirement does not have to be put into the axioms of an L

�

-algebra. If g is

�nite-dimensional real redutive, we may de�ne x

�

:= ��(x) for a Cartan involution � to see

that g is an L

�

-algebra, and it is also not hard to see that every �nite-dimensional L

�

-algebra

is redutive. In this sense L

�

-algebras are generalizations of �nite-dimensional real redutive Lie

algebras whih still have the nie feature of a salar produt satisfying (4.1). Note that ompat

L

�

-algebras are generalizations of ompat Lie algebras.

Every L

�

-algebra is the Hilbert spae diret sum of its enter and its simple ideals ([Sh60℄)

whih redues many questions on L

�

-algebras to simple algebras. In partiular the splitting of

the enter together with the result that Banah{Lie algebras with faithful representations are

enlargible in the sense that they are the Lie algebra of a orresponding group ([EK64℄) now leads

to the following theorem:

Theorem IV.2. For every L

�

-algebra g there exists a onneted Hilbert{Lie group G with

Lie algebra g .

Example IV.3. To desribe some simple L

�

-algebras and the orresponding groups, let H

be a omplex Hilbert spae and B

2

(H) := fx 2 B(H): kxk

2

:=

p

tr(xx

�

) < 1g the ideal of

Hilbert{Shmidt operators (f. [RS78℄).

(a) The spae gl

2

(H) := B

2

(H) is a omplex L

�

-algebra with respet to the operator ommutator

and the salar produt hx; yi := tr(xy

�

). If I :H ! H is an antilinear isometry with I

2

2 f�1g ,

we de�ne

gl(H; I) := fX 2 gl(H):X + IX

�

I

�1

= 0g and gl

2

(H; I) := g(H; I) \ gl

2

(H):

For I

2

= �1 we also write sp

2

(H; I) := gl

2

(H; I); and for I

2

= 1 we write o

2

(H; I) := gl

2

(H; I).

This notation is motivated by the observation that �(x; y) := hx; I:yi de�nes a omplex bilinear

form on H with

gl(H; I) = fx 2 gl(H): (8v; w 2 H)�(x:v; w) + �(v; x:w) = 0g:

This form is skew-symmetri for I

2

= �1 and symmetri for I

2

= 1 .

The orresponding groups are

GL

2

(H) := fg 2 GL(H): g � 1 2 B

2

(H)g with L(GL

2

(H)) = gl

2

(H)

and

GL

2

(H; I) := fg 2 GL

2

(H): Ig

�

I

�1

= g

�1

g with L(GL

2

(H; I)) = gl

2

(H; I):

Eah simple in�nite-dimensional L

�

-algebra g is isomorphi to gl

2

(H), sp

2

(H; I) or

o

2

(H; I) for some in�nite-dimensional Hilbert spae H , and all these algebras are pairwise non-

isomorphi (see [Sh60℄ for the separable ase and [CGM90℄, [Neh93℄ and [St99℄ for di�erent proofs
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for the general ase). Real separable simple L

�

-algebras have been lassi�ed independently by

Balahandran ([Ba69℄), de la Harpe ([dlH70, 71a℄) and Unsain ([Un71, 72℄).

(b) Sine every omplex simple L

�

-algebra has, up to isomorphism, a unique ompat real form,

eah ompat in�nite-dimensional simple L

�

-algebra is isomorphi to one of the following

u

2

(H) := fx 2 gl

2

(H):x

�

= �xg or u

2

(H; I) := fx 2 u

2

(H): Ix = xIg:

Here the orresponding groups are

U

2

(H) := U(H) \GL

2

(H) and U

2

(H; I) := U(H) \GL

2

(H; I):

() (f. [NeSt99℄, [dlH72℄) The hermitian simple L

�

-algebras arise in several series aording to

the type of their omplexi�ation. For g

C

= gl

2

(H) we have the pseudounitary Lie algebras

u

2

(H

+

; H

�

) := fx 2 gl

2

(H):Tx

�

T

�1

= �xg;

where T 2 Herm(H) satis�es T

2

= 1 and ker(T � 1) = H

�

. For g

C

= gl

2

(H; I) we hoose a

subspae H

+

� H suh that H = H

+

� I:H

+

is an orthogonal diret sum and set H

�

:= I:H

+

.

Then we obtain the hermitian Lie algebras

sp

2

(H; I;R) := u

2

(H

+

; H

�

) \ sp

2

(H; I) and o

�

2

(H; I) := u

2

(H

+

; H

�

) \ o

2

(H; I):

We obtain additional real forms of o

2

(H; I) as follows: Let H = H

+

� H

�

be a real Hilbert

spae whih is the orthogonal sum of the subspaes H

�

, de�ne a symmetri bilinear form on H

by �(x

+

+ x

�

; y

+

+ y

�

) := hx

+

; y

+

i � hx

�

; y

�

i; and put

o

2

(H

+

; H

�

;R) := fx 2 B

2

(H;R): (8v; w 2 H)�(x:v; w) + �(v; x:w) = 0g;

where B

2

(H;R) denotes the spae of real linear Hilbert-Shmidt operators on H . Then the

L

�

-algebra o

2

(H

+

; H

�

;R) is hermitian if and only if H

+

or H

�

is 2-dimensional.

Corresponding groups are

U(H

+

; H

�

) := fx 2 GL

2

(H):Tg

�

T

�1

= g

�1

g; Sp(H; I;R) := U

2

(H

+

; H

�

) \ Sp

2

(H; I);

O

�

(H; I) := U

2

(H

+

; H

�

) \O

2

(H; I);

and

O

2

(H

+

; H

�

;R) := fg 2 GL

2

(H;R): (8v; w 2 H)�(g:v; g:w) = �(v; w)g:

We have seen in the preeding setion that to understand oadjoint orbits of a real Lie

algebra g in the appropriate generality, it is neessary to study also aÆne oadjoint ations.

So let ! 2 Z

2



(g;R) be a ontinuous oyle of g . Then the strong non-degeneray of the

salar produt on g implies the existene of a ontinuous operator D: g ! g with !(x; y) =

!

D

(x; y) := hD:x; y

�

i . It is easy to verify that D is a derivation and, onversely, for every

ontinuous derivation D , the presription !

D

(x; y) := hD:x; y

�

i de�nes an element of Z

2



(g;R) .

Here the oboundaries orrespond to the inner derivations, and therefore H

2



(g;R)

�

=

der g= ad g;

where der g denotes the spae of ontinuous derivations of g .

Let D 2 der g . As we have seen in Remark II.5(d), it suÆes to study the orbit

O

D

:= �(G) � g

0

of 0 2 g

0

for the aÆne ation de�ned by the oyle !

D

. It is a natural question whether

there are ertain oadjoint orbits whih are better than others. As every orbit O

D

arries a

natural weakly sympleti struture, one would like to know when these strutures are strongly

sympleti. We all O

D

an ellipti orbit if D

�

= �D , i.e., D

�

is a skew-symmetri operator on

the real Hilbert spae g .

For the following theorem, we reall that a normal operator A on a Hilbert spae has losed

range if and only if f0g is isolated in its spetrum, where the ase that A is invertible is inluded.
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Theorem IV.4. ([Ne01a℄) For D 2 der g the following assertions hold:

(i) O

D

is strongly sympleti if and only if imD is losed.

(ii) If imD is losed, then:

(a) D is diagonalizable on g

C

.

(b) kerD ontains a Cartan subalgebra, i.e., a maximal abelian �-invariant subalgebra.

() If g is simple and g

C

2 fgl

2

(H); gl

2

(H; I)g for a omplex Hilbert spae H , then D

an be written as D:x = [D

H

; x℄ , where D

H

is a skew-hermitian operator with �nite

spetrum whih for g

C

= gl

2

(H; I) ommutes with I .

The preeding theorem shows that the orbits O

D

are geometrially nie if D has losed

range. From now on we assume this and that g is simple and in�nite-dimensional, so that we may

assume that g

C

2 fgl

2

(H); gl

2

(H; I)g for some in�nite-dimensional omplex Hilbert spae H .

In the following G � GL

2

(H) will always denote the onneted Lie subgroup orresponding to

the Lie subalgebra g � gl

2

(H) and G

C

� GL

2

(H) the subgroup orresponding to g

C

(Example

IV.3).

We use Theorem IV.4(ii)() to write D as D(x) = [D

H

; x℄ for some diagonalizable skew-

hermitian operator D

H

with �nitely many eigenvalues. Identifying g with g

0

via the symmetri

bilinear form �(x; y) = hx; y

�

i = tr(xy), the aÆne oadjoint ation of G on g orresponding to

!

D

is given by

Ad

!

D

(g):y = gyg

�1

+D

H

� gD

H

g

�1

on the group level and by

ad

!

D

(x):y = ad(x):y + [D

H

; x℄

on the Lie algebra level. Note that g 2 GL

2

(H) implies that D

H

� gD

H

g

�1

= [D

H

; g℄g

�1

is a

Hilbert{Shmidt operator.

We know from the theory of �nite-dimensional ompat Lie algebras that every oadjoint

orbit has a natural K�ahler struture, and we will see below that this generalizes to the fat that

all strongly sympleti orbits of ompat L

�

-algebras have natural K�ahler strutures. So let us

assume for a moment that g is ompat, hene ontained in u

2

(H). Let

g

�

= fx 2 g

C

: sup

t>0

ke

�itD

:xk <1g;

and observe that e

itD

2 Aut(g

C

) implies that g

�

are subalgebras of g

C

. The spetral theory

of hermitian operators implies that g

�

are the maximal losed iD -invariant subspaes of g

C

on

whih the spetrum of the restrition of iD is ontained in [0;1[ , resp., ℄�1; 0℄. Sine g

C

is

a Hilbert{Lie algebra, the subalgebras g

�

are omplemented in g

C

.

Theorem IV.5. ([Ne01a,℄) If g is a ompat simple L

�

-algebra and D 2 der g with losed

range, then there exist Lie subgroups G

�

� G

C

suh that G ats transitively on the omplex

homogeneous spae G

C

=G

+

, and we thus obtain an isomorphism O

D

�

=

G

C

=G

+

of homogeneous

G-spaes. The omplex struture O

D

inherits from this identi�ation turns it into a strong

K�ahler manifold.

Theorem IV.6. Let g be a simple real L

�

-algebra and 0 6= D = �D

�

2 der g suh that

O

D

� g

0

is a strong K�ahler orbit. Then the following assertions hold:

(i) g is ompat or hermitian.

(ii) If p

�

:= g

�

\ p

C

, then g

C

= p

+

� k

C

� p

�

is a 3-grading.

(iii) We have G

�

= K

�

P

�

�

=

P

�

oK

�

and the omplex struture on O

D

an be obtained by

embedding it as an open orbit into G

C

=K

+

P

�

. From the �bration

K

C

=K

+

,! G

C

=K

+

P

�

!! G

C

=K

C

P

�

the oadjoint orbit O

D

inherits a holomorphi �bration

K

C

=K

+

�

=

O

D

K

,! O

D

!! D;

where D

K

:= D j

k

and D � G

C

=K

C

P

�

is the open G-orbit of the base point.
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Example IV.7. As above, let g be simple with g

C

2 fgl

2

(H); gl

2

(H; I)g and D

H

skew-

hermitian with �nite spetrum (Theorem IV.4). Then the hermitian operator iD

H

on H de�nes

an orthogonal deomposition of H into its eigenspaes.

(a) We �rst onsider the ase g = u

2

(H). We write d

1

; : : : ; d

k

for the di�erent eigenvalues of

iD

H

and H

j

:= ker(D

H

� d

j

1) for the orresponding eigenspaes. We may w.l.o.g. assume that

d

1

> : : : > d

k

. Then H = H

1

�: : :�H

k

is an orthogonal deomposition, and aordingly we write

operators x 2 B(H) as matries x = (x

jl

) with x

jl

2 B(H

l

; H

j

). Then iD:(x

jl

) = ((d

j

�d

l

)x

jl

)

implies that

g

+

= fx = (x

jl

) 2 gl

2

(H): (j > l) ) x

jl

= 0g

is the subalgebra of upper triangular matries.

For j = 1; : : : ; k let F

j

:= H

1

+ : : : +H

j

with F

0

:= f0g . Then F = (F

0

; F

1

; : : : ; F

k

) is

a ag of losed subspaes of H and G

+

:= fg 2 GL

2

(H): (8j)g:F

j

= F

j

g is a omplemented

onneted Lie subgroup of G

C

with Lie algebra g

+

. Therefore G

C

=G

+

an be identi�ed with

the set G

C

:F of ags of subspaes of H , whih justi�es the name ag manifold for G

C

=G

+

.

(b) For g = gl

2

(H; I) the fat that D

H

ommutes with I implies that I: ker(iD

H

� d1) =

ker(iD

H

+ d1) for d 2 R . Let d

1

> : : : > d

k

denote the positive eigenvalues of D

H

and de�ne

d

�j

:= �d

j

and d

0

:= 0. For H

j

:= ker(D � d

j

1) we then obtain an orthogonal deomposition

H = H

k

� : : :�H

0

� : : :�H

�k

with I:H

j

= H

�j

, so that H

0

= kerD is I -invariant, but this spae might be trivial.

For F

j

:= H

1

+ : : :+H

j

, j = 1; : : : ; k , as above, we obtain a ag

f0g = F

0

� F

1

� F

2

� : : : � F

k

� F

?

�

k

� : : : � F

?

�

1

� F

?

�

0

= H

and the spaes F

j

, j = 1; : : : ; k , are isotropi for the bilinear form �(x; y) = hx; I:yi . From

d

1

> : : : > d

k

> d

0

> d

�k

> : : : > d

�1

and (a) one easily derives that the stabilizer G

+

� G

C

of this ag is a omplemented Lie subgroup

with Lie algebra g

+

but whih is not always onneted (see [Ne01, Set. III℄ for a disussion of

onneted omponents). Therefore we also obtain in this ase a realization of O

D

�

=

G

C

=G

+

.

() For the hermitian real form g = u(H

+

; H

�

) of g

C

= gl

2

(H) the realizations of the strong

K�ahler orbits orrespond to the following situations. Here the deomposition H = H

+

� H

�

is invariant under iD

H

and all eigenvalues on H

�

are stritly larger than those on H

+

. Let

d

1

> : : : > d

p

denote the eigenvalues on H

+

and d

p+1

> : : : > d

k

those on H

�

. The K�ahler

ondition for O

D

implies that d

k

> d

1

, so that the group K

+

P

�

� G

C

= GL

2

(H) is given by

K

+

P

�

= fg 2 GL

2

(H): (8j)g:F

j

= F

j

g

for F

j

, j = 1; : : : ; k , as in (a). This group is a semidiret produt P

�

oK

+

and

P

�

�

=

n

�

1 Z

0 1

�

:Z 2 B

2

(H

�

; H

+

)g;

where H

+

= F

p

, H

�

= F

?

p

, and B

2

(H

�

; H

+

) := fx 2 B(H

�

; H

+

): tr(x

�

x) < 1g . We further

have

K

C

= fg 2 GL

2

(H): g:H

�

= H

�

g

�

=

GL

2

(H

+

)�GL

2

(H

�

)

and

D

�

=

fZ 2 B

2

(H

+

; H

�

): kZk < 1g;

where the ation of G on this spae is obtained by restriting the partial ation of GL

2

(H) on

B

2

(H

+

; H

�

) given by

�

a b

 d

�

:z = (+ dz)(a+ bz)

�1

:

Replaing D

H

by

e

D

H

with i

e

D

H

j

H

�

= � id

H

�

, the �bration from Theorem IV.6(iii) is

trivial, and we get

K

+

= K

C

and O

D

�

=

D:

(d) For g = sp(H; I;R) and g = o

�

(H; I) the situation is similar, where we have H

�

= I:H

+

,

0 > d

1

> : : : > d

k

and K

C

�

=

GL

2

(H

+

).
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For G = GL

2

(H) and k = 2 the onstrution above leads to the restrited Gra�mannians.

For G = GL

2

(H; I) and k = 2 we obtain for H

1

� H maximal isotropi the restrited

Gra�mannian of maximal isotropi subspaes and for dimH

1

= 1 the spae of isotropi lines

in H . Both are hermitian symmetri spaes whih are dual to symmetri Hilbert domains.

A lassi�ation of hermitian symmetri Hilbert manifolds was obtained by W. Kaup in [Ka83℄

based on the algebrai haraterization of the simply onneted symmetri omplex Banah

manifolds in terms of hermitian Jordan triple systems ([Ka77℄). These manifolds and their

automorphisms have been studied in [Ka75℄ and [DNS89℄, [DNS90℄. The ag manifolds for

GL

2

(H) for separable H have been introdued by A. and G. Helmink in [HH94a℄ and [HH94b℄.

They apply the representations of entral extensions of the omplex group GL

2

(H) in Hilbert

spaes of holomorphi setions of line bundles on the ag manifolds to integrable systems.

Remark IV.8. (a) The domains D showing up in Theorem IV.6 an always be desribed as

oadjoint orbits if D 2 der g is the skew-hermitian derivation on g with kerD = 0 and D j

p

is the omplex struture obtained by identifying it with p

�

. Then K

C

= K

+

and O

D

an be

identi�ed with the open G-orbit of the base point in G

C

=K

C

P

�

.

The domains obtained this way for the simple hermitian L

�

-algebras are the in�nite-

dimensional irreduible symmetri Hilbert domains. For g = u(H

+

; H

�

) one obtains

D = fZ 2 B

2

(H

+

; H

�

): kZk < 1g:

Although D is bounded in B(H

+

; H

�

) with respet to the operator norm, it is not bounded in

B

2

(H

+

; H

�

) if H

+

and H

�

are in�nite-dimensional. If one of these spaes is �nite-dimensional,

then every bounded operator is Hilbert-Shmidt, and there is no additional restrition.

For g = sp(H; I;R) and g = o

�

(H; I) we have H

�

= I:H

+

, so that we may de�ne

Z

>

:= IZ

�

I

�1

for Z 2 B

2

(H

+

; H

�

). Then the orresponding Hilbert domains are

D

+

:= fZ 2 D:Z

>

= Zg and D

�

:= fZ 2 D:Z

>

= �Zg:

The algebra g = o(H

+

; H

�

;R) with dimH

�

= 2 leads to the so-alled Lie ball

D = fx 2 H : kxk

2

+

p

kxk

4

� jhx; xij

2

< 1g;

where H is a omplex Hilbert spae and x 7! x an antilinear isometri involution on H .

(b) It has been shown in [Ne00e, Set. V℄ that the losed subsemigroup S := fg 2 G

C

: g:D � Dg

of G

C

ontaining the real group G behaves very muh like the semigroups disussed in Setion I

for �nite-dimensional groups. In partiular S has non-empty interior S

0

, and this semigroup

has a di�eomorphi polar map

G�W

0

! S

0

; (g;X) 7! g exp iX;

where W

0

� g is an open onvex invariant one.

Remark IV.9. Aording to the Fundamental Conjeture on Homogeneous K�ahler Manifolds

whih has been proved in [DoNa88℄, eah �nite-dimensional homogeneous K�ahler manifold M

has the struture of a double �bration

M

1

,!M !! D and F ,!M

1

!! V:

Here the �rst �bration is desribed by the spae of bounded holomorphi funtions, the base

spae D is a bounded homogeneous domain, and on the �ber M

1

whih is a produt K�ahler

manifold F � V ([DoNa88, p. 63℄) all bounded holomorphi funtions are onstant. In view of

the ontratibility of D , the �rst �bration is holomorphially trivial and M

�

=

M

1

�D ([DoNa88,

p. 67℄). The seond �bration is suh that F is a omplex ag manifold and V is a quotient of a

omplex vetor spae by a disrete subgroup.
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If, in addition, M is a oadjoint K�ahler orbit, then the situation simpli�es somewhat

beause D is a bounded symmetri domain and V is a omplex vetor spae. Therefore the

seond �bration an be desribed by the spae of all holomorphi funtions (f. [Li95, p. 353℄).

For a semisimple group the seond �bration is trivial, so that M is, as a omplex manifold,

the produt of a omplex ag manifold and a bounded symmetri domain. This is what we also

observe for the strong K�ahler orbits of simple L

�

-groups.

It is natural to extend the setting of real L

�

-groups in the sense that one also onsiders

groups of the type G = V o L , where L is a real L

�

-group and V is a real Hilbert spae on

whih L ats by a representation ompatible with the involution, i.e., (skew-)hermitian elements

of the Lie algebra of L at by (skew-)hermitian operators on V . A typial example is the

semidiret produt G = H o Sp

2

(H; I;R). Here we obtain in partiular a strong K�ahler orbit

O isomorphi to H with the natural aÆne ation of G , and also produts of H with oadjoint

K�ahler orbits of Sp

2

(H; I;R). This onstrution is very similar to the �nite-dimensional ase,

where it essentially leads to the lassi�ation of oadjoint K�ahler orbits for unimodular groups

(f. [Li91℄, [Ne95℄, [Ne99, Chs. XII and XV℄). All these K�ahler orbits O an be realized as open

G-orbits in a homogeneous spae of a omplex group G

C

, and in [Ne99, Set. XII.3℄ we have

determined the ompression semigroups S := fg 2 G

C

: g:O � Og for all ellipti oadjoint K�ahler

orbits of �nite-dimensional groups (see Remark IV.8 for an indiation that many of these results

arry over to in�nite-dimensional groups).

It seems that the ondition that a K�ahler orbit is strong has severe strutural onsequenes

for the Lie algebra. We are not aware of any suh orbit whih does not have a double �bration

as in the �nite-dimensional ase. Weak K�ahler orbits seem to behave muh wilder in general.

V. Holomorphi representations of lassial groups

The key to the unitary representations of real L

�

-groups assoiated to strong K�ahler orbits

are holomorphi representations of ertain assoiated omplex groups. For details on the results

desribed in this setion we refer to [Ne98℄.

We onsider the groups

GL

1

(H) := GL(H) \ (1+B

1

(H)) and GL

1

(H; I) := GL

1

(H) \GL(H; I);

where I

2

= �1 as above and B

1

(H) � B(H) is the ideal of trae lass operators. Then GL

1

(H)

and GL

1

(H; I)

e

are onneted omplex Banah{Lie groups with

(5:1) �

1

(G

1

)

�

=

8

<

:

Z for G

1

= GL

1

(H)

Z

2

for G

1

= O

1

(H; I)

0 for G

1

= Sp

1

(H; I).

The group GL

1

(H) is a semidiret produt SL(H) o C

�

, where SL(H) is a simply onneted

group, and for I

2

= 1 we also write SO

1

(H; I) := O

1

(H; I)

e

and note that its universal overing

group Spin

1

(H; I) is an analog of the omplex spin groups Spin(n; C ).

As we will explain below, the groups G

1

from (5.1), resp., their universal overing groups

q

G

1

:

e

G

1

! G

1

have a distinguished family of holomorphi representations whose restritions to

the unitary group U

1

:= G

1

\U(H), resp., to

e

U

1

:= q

�1

G

1

(U

1

), is unitary.

Let h

1

� g

1

:= L(G

1

) denote a maximal abelian �-invariant subalgebra; alled a Cartan

subalgebra. Then h

1

is simultaneously diagonalizable on H , hene an be viewed as those

operators in g

1

whih are diagonal with respet to a ertain orthonormal basis. Moreover, g

1

has a topologial root deomposition in the sense that there exists a bounded disrete subset

� � h

0

1

suh that the subspae

h

1

+

X

�2�

g

�

1

with g

�

1

:= fx 2 g

1

: (8y 2 h)[y; x℄ = �(y)xg
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is dense in g .

For g

1

= gl

1

(H) every Cartan subalgebra an be obtained by �rst hoosing an orthonormal

basis (e

j

)

j2J

in H and then onsidering the subspae h

1

� g

1

of all diagonal operators with

respet to this basis. Then h

1

�

=

`

1

(J; C ), so that h

0

1

�

=

`

1

(J; C ), and

� = f"

i

� "

j

: i 6= j 2 Jg; where "

j

(x) = x

j

; j 2 J;

is a root system of type A . We likewise obtain root systems of type B and D for o

1

(H; I) and

of type C for sp

1

(H; I).

For eah root � 2 � the subspae g

1

(�) := g

�

1

+ g

��

1

+ [g

�

1

; g

��

1

℄ is isomorphi to sl(2; C )

and there exists a unique element �� 2 [g

�

1

; g

��

1

℄ � h

1

with �(��) = 2. We all �� the oroot

assoiated to � . Let

P := f� 2 h

0

1

: (8� 2 �)�(��) 2 Zg

denote the set of weights. Then for eah � 2 P there exists a ontinuous irreduible representation

�

�

: g

1

! B(H

�

)

on a Hilbert spae H

�

whih has the property that there exists a �-weight vetor v

�

2 H

�

annihilated by all root spaes g

�

1

with �(��) � 0. In this sense �

�

is a highest weight representa-

tion. By the general theory of Banah{Lie groups, �

�

integrates to a holomorphi representation

�

�

:

e

G

1

! GL(H

�

), and, moreover, �

�

j

e

U

1

is unitary.

There also exists a lassi�ation result saying that two representations �

�

and �

�

are

equivalent if and only if �; � 2 P are in the same orbit for the ation of the Weyl group

W � GL(h

0

1

) generated by the reetions r

�

:f := f � f(��)� .

For the representations �

�

of the groups

e

U

1

the moment set I

�

�

� u

0

1

is a bounded subset,

whih orresponds to the boundedness of the Lie algebra representation u

1

! B(H

�

). It would

be interesting to understand whih of the results on �nite-dimensional Lie algebras disussed in

Setion I extend to this lass of unitary representations.

VI. Unitary representations of L

�

-groups

At this point the settings of Setions IV and V seem to be quite unrelated, but it turns out

that they are di�erent approahes to the same mathematial objets.

To relate the two pitures, let us start with a real L

�

-algebra g . Then there exists a

subalgebra g

1

, whih is a Banah{Lie algebra with an isometri involution suh that the Lie

braket of g indues a ontinuous bilinear map g � g ! g

1

and we have an isomorphism of

Banah spaes

': der g! g

0

1

with '(D)([x; y℄) := hD:x; y

�

i; x; y 2 g:

For an abstrat de�nition of g

1

we refer to [Ne01a℄.

From now on we assume that g is ompat and simple. If g = u

2

(H), then g

1

= u

1

(H)

and for g = u

2

(H; I) we get g

1

= u

1

(H; I). In the setting of Setion V we may now identify

the elements � 2 P with ontinuous linear funtionals on (g

1

)

C

by extending them by 0 on the

root spaes. Then � = '(iD) for some D 2 der(g), and O

D

is a strong K�ahler orbit beause

D

�

= �D has �nite spetrum and therefore losed range. If, onversely, D 2 der(g) has losed

range, then kerD ontains a Cartan subalgebra (Theorem III.4), whih implies that '(D) an

be viewed as an element of h

0

1

for some Cartan subalgebra h

1

� g

1

. The ondition '(iD) 2 P is

equivalent to the integrality of the ohomology lass of the anonial sympleti form 
 on O

D

:

(6:1) '(iD) 2 P () [
℄ 2 H

2

dR

(O

D

;Z):

Example VI.1. For g = u(H), g

1

= u

1

(H) and h

1

�

=

`

1

(J; iR) we think of � as an element of

`

1

(J; C ), and � 2 P means �

j

� �

l

2 Z for j 6= l . This implies that D an be represented by

a skew-hermitian operator D

H

2 B(H) with eigenvalues �i�

j

, j 2 J , and the ondition � 2 P

entails that D

H

has �nite spetrum. For the other types of Cartan subalgebras the situation is

similar.
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Sine O

D

is a Hilbert manifold and therefore smoothly paraompat ([KM97℄), the on-

dition (6.1) means that 
 is the urvature form of a holomorphi line bundle L

�

! O

D

: Let

�(L

�

) denote the spae of holomorphi setions of this line bundle. In the following G � GL(H)

denotes an L

�

-group, q

G

:

e

G! G its universal overing group, and G

1

= G \GL

1

(H).

Theorem VI.2. For � 2 P � h

0

1

the following assertions hold:

(i) There exists a entral extension q:

b

G

�

!

e

G of

e

G by T ating holomorphially on L

�

by

bundle automorphisms suh that the orresponding ation on O

D

fators through the ation

of G . The Lie algebra of

b

G

�

is

b

g

�

= g�

!

D

R and O

D

an be viewed as the oadjoint orbit

of (0;�1) 2 (

b

g

�

)

0

.

(ii) There exists a natural Hilbert subspae H

�

� �(L

�

) suh that the natural ation of

b

G

�

on

�(L

�

) restrits to a strongly ontinuous unitary representation (�

�

;H

�

) of

b

G

�

.

(iii) On the subgroup

e

G

1

�

e

G the entral extension splits by a smooth homomorphism �:

e

G

1

!

b

G

�

, and the representation �

�

Æ � is the unitary highest weight representation onstruted

in Setion IV.

Proof. (an idea) A entral idea in the proof of Theorem VI.2 is to start with the holomorphi

representation �

�

of the omplex group (

e

G

1

)

C

and to onsider the holomorphi funtion

f

�

: (

e

G

1

)

C

! C ; g 7! hg

�1

:v

�

; v

�

i:

Then one shows that this funtion extends to a holomorphi funtion on the group (

b

G

�

)

C

. Using

the theory of positive de�nite holomorphi funtions on omplex groups and semigroups ([Ne99℄),

we then obtain a Hilbert spae

e

H

�

� Hol(

e

G

C

) on whih we have a natural strongly ontinuous

unitary representation of

e

G by translation. The �nal step is to show that the funtions in

e

H

�

an be viewed as holomorphi setions of the bundle L

�

, realized as holomorphi funtions on

e

G

C

.

Similar results exist for ellipti strong K�ahler orbits of hermitian groups, where the situation

is more ompliated beause the lassi�ation of unitary highest weight representations of these

groups is more involved (see [N�98℄).

The preeding theorem generalizes part of the Borel{Weil Theorem for ompat Lie groups.

One an also obtain other results haraterizing those equivariant holomorphi line bundles

over O

D

for whih the spae of holomorphi setions is non-trivial (see [HH94a/b℄ for the ase

G = U

2

(H)). These results are further related to the Bott{Borel{Weil Theorem for diret limit

groups ([NRW00℄), and it remains a promising projet to understand this theorem in an analyti

ontext suh as Theorem VI.2.

In the ompat and the hermitian ase the group (

b

G

�

)

C

is far from being a maximal

omplex group ating on L

�

. To enlarge this group, one �rst observes that the group Aut(g)

D

:=

fg 2 Aut(g): gD = Dgg also ats on O

D

� g

0

in a natural way, and we thus obtain an ation

of a bigger group G(D) whih is a quotient of the semidiret produt Go Aut(g)

D

. The same

onstrutions apply to the omplex groups, where the onstrution leads to the restrited groups

disussed in detail for the simple omplex L

�

-algebras in [Ne01℄. Sine the ation of Aut(g)

D

on G lifts to the entral extension

b

G

�

, we obtain a entral extension

b

G(D) whih has a strongly

ontinuous unitary representation on H

�

, where Aut(g)

D

�xes the highest weight vetor v

�

.

For the hermitian groups it is not neessary to onsider several entral extensions depending

on � . Here we have one entral T-extension

b

G of

e

G whih is universal for all unitary highest

weight representations.

The geometri approah to unitary highest weight representations desribed above inludes

in partiular the spin representation of the metagonal group (fermioni seond quantization)

and the metapleti representation (Segal{Shale{Weil representation) of the metapleti group

(bosoni seond quantization). For a nie exposition of the onstrution of these representations

in an ad ho fashion we refer to Ottesen's book [Ot95℄, where it is also explained how embeddings

of di�eomorphism groups and loop groups into restrited sympleti and unitary groups lead to

interesting unitary representations of their entral extensions (see also [PS86℄, [CR87℄, [Ve90℄ and
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[Mi89℄). The mixed ases orrespond to the in�nite wedge representations of the restrited unitary

group whih in our terminology is U

2

(H)(D), where D has only two eigenvalues (f. [PS86℄ and

also [Wu98℄ whih ontains a lot of information on the physial bakground). The general L

�

-

approah to these representations provides in partiular diret geometri explanations for their

intriate analyti properties suh as the boundedness behavior of the orresponding operators

(f. [Ot95℄).
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