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Highest weight representations and infinite-dimensional Kahler manifolds

Karl-Hermann Neeb

Abstract. The geometry of unitary highest weight representations and the corresponding coad-
joint orbits has many infinite-dimensional relatives. This becomes apparent from a geometric ap-
proach to unitary highest weight representations. In this note we discuss such representations for
the unitary group of a C* -algebra and for groups related to L*-groups.

Introduction

In this note we discuss some ideas concerning a geometric analysis of unitary highest
weight representations of infinite-dimensional Lie groups. For a finite-dimensional, not necessarily
semisimple, Lie group G the property of an irreducible unitary representation 7 to be a highest
weight representation can be read off from its convex moment set I, a closed convex subset in the
dual ¢’ of the Lie algebra g of G which encodes the upper bounds of the spectra of the essentially
selfadjoint operators i-dm(X), X € g, of the derived representation. The set I; contains no affine
lines if and only if 7 is a highest weight representation. Based on this geometric characterization,
we describe in Section I an approach to highest weight representations which can be generalized
to infinite-dimensional groups. Another important aspect of the finite-dimensional theory is that
for each unitary highest weight representation 7 the extreme points of the convex moment set I
form a single coadjoint orbit O, which carries a natural Kéhler structure, and 7 can be realized
in a space of holomorphic sections of a complex line bundle over O, . This coincidence motivates
a geometric approach to unitary highest weight representations of infinite-dimensional groups by
first studying their coadjoint Kéhler orbits.

In Section II we explain the framework for coadjoint orbits in the context of Banach—Lie
groups. One aspect of the infinite-dimensional theory is that it does not suffice to consider the
linear coadjoint action. One also has to consider affine coadjoint actions because it is not always
possible to pass to central extensions to embed the affine coadjoint actions into linear actions
restricted to an affine hyperplane. Another difficulty is that for general Banach—Lie groups
coadjoint orbits need not have a natural manifold structure, a difficulty not present for Hilbert—
Lie groups because for these groups the existence of closed complements of Lie subalgebras yields
charts on homogeneous spaces. Finally there is a difficulty coming from different notions of non-
degeneracy for a symplectic structure, which leads to the concepts of weak and strong symplectic
manifolds.

In Section III we briefly discuss those unitary representations of the unitary group G =
U(A) of a unital C*-algebra A obtained by restricting an irreducible algebra representation to
G. Here the results on representations of C*-algebras provide interesting information which
deserves to be considered in the framework of the results described in Section I for finite-
dimensional groups. This situation is also illuminating because it is one of the most regular
situations conceivable for unitary representations of infinite-dimensional groups, although the
group U(A) behaves quite badly as a differentiable manifold in sense that it rarely permits
smooth functions with small support or complements for closed subspaces of its Lie algebra.

In Section IV we turn to the class of L*-groups which we consider as a class of Hilbert—Lie
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groups, where the structure theory of the corresponding Lie algebras is developed far enough
so that one has sufficiently concrete situations for the simple infinite-dimensional L*-algebras.
The main point in Section IV is a description of the elliptic coadjoint orbits of L*-groups which
are strong Kéahler orbits. In some sense these orbits are the nicest ones and geometrically quite
close to the coadjoint Kahler orbits of finite-dimensional semisimple groups. For the compact
L*-algebras they are generalizations of the flag manifolds of finite-dimensional classical groups,
and for the non-compact L*-algebras (which then must be hermitian), they have the structure of
a holomorphic fiber bundle, where the fibers are coadjoint Kahler orbits of compact L*-algebras
and the base is a symmetric Hilbert domain.

After discussing holomorphic highest weight representations of certain complex classical
groups in Section V, we conclude this note by explaining in Section VI why and how these
coadjoint orbits correspond to unitary highest weight representations. As in the finite-dimensional
case one has to restrict one’s attention to those orbits for which the cohomology class of the
symplectic form is integral. But then it turns out that these orbits carry natural holomorphic
line bundles in which we can realize all unitary highest weight representations of the central
extensions of the group G under consideration.

We think of the finite-dimensional case and also of the case of L*-algebras as a model
situation from which one might learn how to address similar questions for more complex infinite-
dimensional groups if no elaborate structure theory is available.

Although we have included almost no proofs in this paper, we give precise definitions and
statements of the results and references where to find detailed proofs.

Acknowledgement: The author cordially thanks Ignacio Bajo and Esperanza Sanmartin
for the invitation to a very nice conference.

I. Highest weight representations of finite-dimensional groups

Moment maps of unitary representations

In this subsection we consider Lie groups G which are manifolds modeled over locally
convex spaces for which the group operations are smooth maps. This is the context of Glockner’s
paper [Gl01] who showed that one can relax Milnor’s setting of sequentially complete locally
convex spaces ([Mi83]) because the basic differential calculus of manifolds does not require the
sequential completeness. The main advantage of this wider context is that one does not run
into the problem that quotient spaces might not be (sequentially) complete. From a differential
geometric point of view the sequential completeness becomes crucial if one needs results on
differential forms whose proof involves the Poincaré Lemma. For groups modeled over Fréchet
spaces our setting for Lie groups coincides with the setup of convenient calculus described in
[KM97]. Here the Lie algebra L(G) of G is the tangent space T,(G) in the identity element e of
G and the Lie bracket on L(G) is given by extending each vector © € T.(G) to a left invariant
vector field z; on G and defining [z,y] := [#;, y]e, which makes sense because the bracket of
two left invariant vector fields is left invariant.

We call G a Fréchet—, Banach—, resp., Hilbert-Lie group if it is modeled over a Fréchet,
Banach, resp., Hilbert space. Banach—Lie groups share with finite-dimensional ones the nice
property that they have an exponential function exp: L(G) — G which permits us to endow G
with a canonical analytic manifold structure. As a consequence, continuous homomorphisms be-
tween Banach—Lie groups are automatically analytic. Similar statements hold for the class of good
Lie groups, which are analytic (not necessarily Banach) manifolds whose group multiplication is
locally given by the Campbell-Hausdorff series (cf. [G101]).

Let G be a connected Lie group. A wunitary representation of G is a pair (w,H), where
‘H is a complex Hilbert space and 7: G — U(H) a continuous group homomorphism, where the
unitary group U(#H) carries the strong operator topology which turns it into a topological group.
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In this sense continuity means that for each v € H the orbit map o0,:G — H,g — 7n(g)v is
continuous. We call v € H a smooth vector if the orbit map o, is smooth and, if G is a Banach—
Lie group, we call v an analytic vector if o, is analytic. We write H* for the space of smooth
vectors and HY C ‘H*> for the space of analytic vectors.

If G is finite-dimensional, then it is not hard to see that H* is dense (Gardings Theorem)
because for each smooth function ¢ with compact support the range of the operator = (p) of the
integrated representation of L!(G) consists of smooth vectors. It is still true, but considerably
harder to show, that H* is dense (Nelson’s Theorem). For this result one considers functions
¢ which are analytic and obtained as fundamental solutions of a left invariant heat equation
(cf. [Wa72]).

On the space H™ we have the derived representation of the Lie algebra g = L(G) by
dr(X).v:=do,(e)(X)

(cf. [Ne00d]). Then each operator da(X) maps H*>° into H* and can be considered as an
unbounded operator on H. If the space H“ of analytic vectors is dense, for each of the operators
i-dn(X) the subspace of analytic vectors is dense, hence i - dr(X) is essentially selfadjoint by a
theorem of Nelson (cf. [Ne99, Prop. X.15]).

For v € H \ {0} we write [v] := Cv for the corresponding one-dimensional subspace and
P(H>) := {[v]:v € H*™}

for the projective space of H*. Let g’ := Lin(g,R) denote the space of continuous linear
functionals on the Lie algebra g := L(G) of G. Then the moment map of 7 is defined as

3 PH®) > g, B(])(X) = ZW

Here we use the continuity of the differential do,(e):g — H to see that the range of ®, consists
indeed of continuous linear functionals on g.

If we consider on P(H*°) the action of G induced by the representation 7 and on g’ the
coadjoint action, then it is easy to see that ®, is equivariant. The weak- *-closure

I, :=conv(im®,) C ¢
of the convex hull of the image of ®, is called the (convex) moment set of w. It is a closed,

convex subset of g’ which is invariant under the coadjoint action. The Hahn—-Banach Separation
Theorem implies that the moment set I is completely determined by the convex function

sig—> RU{o0}, s(X):=sup{l,,X)

because Ir = {a € ¢g': (Vz € g) a(X) < s(X)} is the intersection of the weak-*-closed half spaces
containing it. Therefore all the information on the representation 7 contained in the set I; is
encoded in the function s. If the space H® of analytic vectors is dense, the function s satisfies

s(X) = supSpec(i-dn (X)) for X €g,

so that the convex hull of the spectrum of each of the essentially selfadjoint operators i - dn(X)
is the interval between the possibly infinite elements —s(—X) and s(X) of [—oo, o0].

Definition I.1.  We say that 7 is a (generalized) highest weight representation if the following
conditions are satisfied:

(HW1) 7 is irreducible,

(HW2) the convex cone B(I) :={X € g:inf I;(X) > —oo} has interior points, and

(HW3) H“ is dense. ]
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Note that (HW3) is redundant if G is finite-dimensional.

Of course the terminology is derived from the algebraic structure of unitary highest weight
representations as representations of g, but we do not have to go into this elaborate structure
theory to explain the basic geometric features of unitary highest weight representations.

Typical examples of highest weight representations are all irreducible unitary representa-
tions of compact Lie groups. In this case H is finite-dimensional, so that P(H) = P(H*>) is
compact, I, is bounded, and therefore B(I;) = g. Further typical examples are the holomor-
phic discrete series representations of hermitian Lie groups (e.g. automorphism groups of bounded
symmetric domains), the oscillator representation of the oscillator algebra, and the metaplectic
representation of the group Heis(2n,R) x Sp(2n,R).

Remark 1.2. To clarify the meaning of the geometric condition (HW2), let X be a locally
convex space and C' C X' a weak-x*-closed convex subset.

(a) If X is finite-dimensional, then the condition that B(C) := {z € X:inf(C,z) > —oco} has
interior points is equivalent to the condition that C' does not contain any affine line which in
turn is equivalent to the existence of extreme points in C' ([Ne99, Cor. V.1.11]). If C C X' is a
convex cone, then B(C) C X is the dual cone. The example of the cone C of positive sequences
in X' = (°(N,R) for X = (*(N,R) shows that it may happen in infinite-dimensional spaces
that C does not contain affine lines without B(C) having interior points.

(b) If X is infinite-dimensional and B(C') has an interior point z, then X = Rtz — B(C)
implies that for each s € R each element y € X is bounded from above on the set C, := {a €
C:azx) < s}. We conclude that Cy is weak-x-closed and weak-*-bounded. If X is a Banach
space, then the Uniform Boundedness Principle implies that C is bounded and therefore weak-
x-compact. Hence each z € int B(C') has a minimal value on C'. Furthermore C' has extreme
points by the Krein—-Milman Theorem. u

To see that highest weight representations are related to a variety of interesting geometric
and analytic structures, let us discuss some of their properties for finite-dimensional groups (for
proofs see [Ne99, Chs. X-XV]). In the remainder of this section G denotes a finite-dimensional
connected Lie group.

(1) (Extreme points) The set Ext(I;) of extreme points of I, consists of a single G-orbit O,

satisfying I, = conv(O,). Since I, is in general not compact, it is quite remarkable that we

have I, = conv(Ext(I)).

(2) (Classification) Two highest weight representations m; and w2 of G are equivalent if and

only if their moment set and hence the corresponding orbits O, and O, coincide. This means

that for the class of highest weight representations the moment set carries enough information to
separate the representations. This is far from being true for general irreducible representations.

If g is simple and = is irreducible but not a highest weight representation, then I, = g’, so that

the moment set contains no information at all.

(3) (Coherent states and Kéhler orbits) The existence of extreme points in I is related to the

complex geometry of the Fréchet-K&hler manifold P(#*°) in the following sense. The inverse

image ®1(O;) is non-empty and consists of a single G-orbit Ocs which is called the coherent
state orbit (CS-orbit). This orbit has the following properties:

(a) As a homogeneous space of G, the orbit Ocg has a unique complex structure such that
the orbit map Ocgs — P(H™) is antiholomorphic. Moreover, O¢g is the unique G-orbit in
P(#H®°) with this property. We therefore obtain a close connection between extremality in
I, and the existence of a complex structure on orbits in P(H*).

(b) The restriction of the moment map to O¢g yields a bijection Ocs — O,. In particular
Oy carries a natural Kéhler structure compatible with the symplectic structure such that
G acts by Kéhler isomorphisms on O .

(c) There exists a natural holomorphic line bundle £; — O, such that H embeds in a natural
G -equivariant way into the space I'(£;) of holomorphic sections of L.

(4) (Complex semigroups) Let us call a subset W C g weakly elliptic if Spec(adz) C iR holds for

all x € W. For every closed convex invariant weakly elliptic cone W C g there exists a complex

semigroup I'¢(W) with the following properties:
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(S1) G CT'a(W).

(S2) There is a homeomorphism pg: G x W — T'g(W).

(S3) If the universal complexification ng: G — G of G is injective, then I'g(W) = G expg,. (i)
and p(g, X) = gexp(iX). V

(S4) If ¢:G1 — G2 is a covering map of groups with Lie algebra g, then pg,(¢(g),X) =
ba, (ga X) :

For a more detailed discussion of these semigroups we refer to [Ne99, Ch. XI]. It is important to

note that the semigroup I'¢(W) always contains G, regardless of whether it is contained in a

complex group or not. Since there is always a group G; locally isomorphic to G which has an

injective universal complexification, the semigroup I'¢(W) is uniquely determined by (S1)—(S4).

If 7 is a unitary highest weight representation such that the kernel of the derived repre-
sentation is central, then the convex cone —B(I,) C g has a weakly elliptic closure W and the
(G-action on the complex manifold O, extends holomorphically to an action of the complex semi-
group I'¢(WW). From that one further derives that the G-representation 7 extends to a holomor-
phic representation of I'¢(W) on a dense subspace, and the subsemigroup I'¢(—B(I;)) C I'a(W)
acts by bounded operators on H. On the non-empty interior I'¢(W?°) we obtain a holomorphic
homomorphism 7: g (W°) — B(H) (cf. [Ne99, Sect. XL.3]).

If G is compact or has a compact Lie algebra, then the whole Lie algebra g is weakly
elliptic and I'(g) = G is the universal complexification of G. In this case O, is, as a complex
manifold, a generalized flag manifold of the complex reductive group Gg¢, and we obtain a
holomorphic representation of G¢ on the finite-dimensional Hilbert space H.

These results on highest weight representations of finite-dimensional groups show that
there is a wealth of information available on highest weight representations, and the properties
listed above just scratch the surface of the interesting relations between convex geometry, Kihler
manifolds, holomorphic semigroup actions on manifolds, and holomorphic representations on
Hilbert spaces. There are additional branches such as the algebraic structure of highest weight
representations and the complex geometry of the semigroups I'¢: (W) (cf. [Ne99, Chs. IX, XIII)).

The main objective of the present note is to show that many of the above results and
relations have interesting analogs for infinite-dimensional groups which deserve to be investigated
systematically. In particular they provide a guiding philosophy telling us where to find interesting
objects in infinite-dimensional Lie theory.

We will see below that the context of real L*-algebras, highest weight representations, and
elliptic coadjoint orbits geometrically resembles very much the finite-dimensional case, although
the results known so far, are still far from being as sharp as for finite-dimensional groups.

I1. Affine coadjoint orbits

At the present state of knowledge on infinite-dimensional groups, their geometry and their
representations, there are two natural points to enter the circle of ideas described in Section I.
The first possibility is to use algebraic structures such as root decompositions of the underlying
Lie algebra to approach unitary highest weight representations from the algebraic side. This has
been done in particular in [Ne0Of] for locally finite Lie algebras; see also [KR87] and [Ka90] for
corresponding results for Kac-Moody algebras and the Virasoro algebra. Here the advantage
is that one can stay on the Lie algebra side without needing corresponding groups, but then
the difficulties start when we want to integrate our Lie algebra representations to unitary group
representations. Therefore we will follow a more geometric path by first studying the geometry
of coadjoint orbits, which is a basic philosophy in finite-dimensional and also partly in infinite-
dimensional unitary representation theory (cf. [Ki76], [Ki99]). We will see below that this
geometric approach leads for elliptic orbits of L*-groups naturally to the unitary highest weight
representations of these groups. The main difference to the finite-dimensional context is that we
have to keep track of central extensions and extensions by certain automorphism groups during
the process.
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We think that it is a challenging geometric program, to understand the extent to which
the results of Section I are true for infinite-dimensional groups. It seems that the approach via
“elliptic” coadjoint orbits is a natural path one should also exploit for other types of groups. We
have the feeling that the occurrence of strong Kéahler orbits is closely related to the L*-context
and that in general one should only expect weak Kihler structures on the interesting orbits (cf.
[PS86]).

This program is of particular interest because for infinite-dimensional groups unitary high-
est weight representations seem to play a much more important role among the general unitary
representations than it is the case for finite-dimensional groups. This is mostly due to the fact
that in physical models the lower boundedness of the energy, the particle number, or similar
observables, force the corresponding Lie algebra representation to be a highest weight represen-
tation (cf. [Ne99] for a precise statement for finite-dimensional groups supporting this point of
view).

Throughout this section G' always denotes a connected Banach-Lie group. We will describe
the relevant notions for the study of the coadjoint representation of G. Since not all quotients
by closed subgroups carry natural manifold structures, we first take a look at Lie subgroups.

Definition II.1.  (Lie subgroups) Let G be a Banach—Lie group, H C G a closed subgroup
and

L(H) := {z € L(G): exp(Rz) C H}.

Then L(H) is a closed Lie subalgebra of L(G). We call H a Lie subgroup of G if there exists
an open 0-neighborhood V' C L(G) such that exp(V NL(H)) is a 1-neighborhood in H and
exp|v is injective. This implies that H carries a Lie group structure such that L(H) is the Lie
algebra of H and the exponential map of H is given by the restriction of the exponential map
of G to L(H) ([Ma62]).

If, in addition, the closed subspace L(H) C L(G) is complemented, then we call H a
complemented Lie subgroup. This condition implies that the quotient space G/H carries a
natural manifold structure such that the quotient map ¢: G — G/H is a submersion (cf. [Bou90,
Ch. 3, §1.6, Prop. 11]). Since every closed subspace of a Hilbert space is complemented, every
Lie subgroup of a Hilbert—Lie group is complemented. ]

Next we turn to symplectic structures on coadjoint orbits. There are some subtleties in the
infinite-dimensional context caused by several notions of non-degeneracy for symplectic forms.

Definition I1.2.  (a) Let X be a Banach space and X' its dual space. We call a skew-
symmetric continuous bilinear form w: X x X — R non-degenerate if the map n,: X — X' v
w(v,-) is injective. We call it strongly non-degenerate if the map 7, is bijective. It is not hard
to see that the existence of a strongly non-degenerate form on X implies that X is a reflexive
Banach space.

(b) A weakly symplectic Banach manifold is a pair (M,Q), where Q is a closed 2-form on M
such that for each p € M the form Q, on T,(M) is non-degenerate. We call (M,Q) strongly
symplectic if all the forms ), are strongly non-degenerate and, in addition, in local coordinates
the map p = nq, € GL(T,(M),T,(M)') is smooth. If M is finite-dimensional and weakly
symplectic, then M is automatically strongly symplectic.

If M is a complex manifold with complex structure I and 2 is a weak symplectic structure

on M, then we call (M,Q,I) a weak pseudo-Kdhler manifold if for each p € M the bilinear form
(v,w) = Qp(v, I.w) is symmetric. If, in addition, this form is positive definite, we call (M,Q,1)
a weak Kdihler manifold. Accordingly we define strong (pseudo-)Kdhler manifolds.
(c) Let (M,Q) be a weakly symplectic manifold. A smooth vector field X on M is called
Hamiltonian if there exists a smooth function f:M — R with df = —i(X).Q = -Q(X,-). In
view of the non-degeneracy of Q, the vector field X is uniquely determined by f, and we call
it the Hamiltonian vector field defined by f. If M is strongly symplectic, then for each smooth
function f € C*°(M,R) the 1-form df can be written as df = —i(X).Q for a smooth vector
field X . Hence each function defines a corresponding Hamiltonian vector field.
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(d) Let 0: G x M — M be a smooth action of the connected Banach-Lie group G on the weakly
symplectic manifold M by symplectomorphisms. Then o is called Hamiltonian if there exists
a moment map, i.e., a smooth map ®: M — L(G)" such that for each x € L(G) the smooth
functions ¢(z) := (®,z) satisfy dp(x) = —i(6(x)).Q2, where ¢(z)(p) = % |i=o exp(—tz).p for
peM. ]

Definition II.3. (a) Let g a topological Lie algebra, i.e., a Lie algebra which is a topological
vector space with a continuous Lie bracket, and 3 be a topological vector space, considered as
a trivial g-module. A continuous 3-valued 2-cocycle is a continuous skew-symmetric function
w:g X g— 3 with

W([J,‘, y]v Z) + w([y, Z]v JJ) + w([zv JJ], y) =0.

It is called a coboundary if there exists a continuous linear map a:g — 3 with w(z,y) = a([z,y])
for all z,y € g. We write Z2(g,3) for the space of continuous j3-valued 2-cocycles and B2(g, 3)
for the subspace of coboundaries. We define the second continuous Lie algebra cohomology space

HZ(g,3) = Z2(g,3)/B%(g,3)-

(b) Each continuous cocycle w € Z2(g,3) defines a central extension g @, 3 of g by 3 whose
underlying topological vector space is g x 3 and whose Lie bracket is defined by

[(z,2), (', 2")] = ([z,3'],w(z,a")).

Then ¢:g®, 3 — g, (x,2) — x is a Lie algebra homomorphism with central kernel j. ]

In the following we write Ad*(g).c := a o Ad(g)~! for the coadjoint action of G on ¢,
and ad*(z).a := —a o adz for the corresponding derived action.

Theorem II.4. ([NeOla]) (a) Let G be a connected simply connected real Banach-Lie group
and w € Z2(g,R) a continuous 2-cocycle. Then the homomorphism

adj:g — aff(g’) = ¢’ xal(g’), =~ (w(z,"),ad"(2))
of Banach-Lie algebras integrates to an affine action of G on g' given by
Ad(g).8 = Ad™(9).8 + 6(g),

where 0:G — ¢’ is a 1-cocycle with values in the coadjoint representation of G on g and
df(e)(x) = w(z,-) for xz € g.

(b) If, in addition, G is a Hilbert-Lie group, then every G -orbit Og := Ad},(G).8 C ¢’ carries a
natural structure of a weakly symplectic manifold (Og, Q) such that G acts symplectically and the
inclusion map ®:Opg — ¢’ is a moment map for this symplectic action. The symplectic structure
on Og is given in the base point B by

Qp(ad;, (2).5,ad;,(y).0) = B([z,y]) — w(z,y). u

If G is not a Hilbert—Lie group, there seems to be no way to obtain manifold structures on all
coadjoint orbits because the stabilizer groups are Lie subgroups which need not be complemented.
The situation is much better for quotients G/N where N < G is a normal Lie subgroup. In this
case G/N always is a Banach-Lie group as has recently been shown in [GNO1].

Remark IL.5. (a) The assumption in Theorem II.4 that G is simply connected is important
because if this is not the case and ¢: G — G is the universal covering group, then we can apply
Theorem II.4 to G, and we obtain an affine action of G' on g’ if and only if the central subgroup

m1(G) = kerq acts trivially on g'. In view of m(G) C kerAdy = Z(G), this group acts by
translations on g'. One can show that the triviality of the action of 71 (G) is equivalent to the
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exactness of the closed 1-forms i(z,).Q on G, where z, is the right invariant vector field with
zr(e) =z and Q is the left invariant 2-form with 2, = w ([Ne0la]).
(b) Let g := g @, R denote the central extension defined by w € Z2(g,R) and identify g’ with
the hyperplane H := {(o, —1):a € g’} C¢'. For x € g we then have

ad*(z,0)(a, —1) = —(a, —1) o ad(z, 0) = (ad” z.a, w(z,-)).

If G is a connected Lie group with Lie algebra §, then it fixes the elements of 3 := {0} xR C 3(9)
pointwise, so that the coadjoint action preserves the hyperplane H C g', hence induces an affine
action on g’'. Moreover, the derived affine action of the Lie algebra g factors through the affine
action ad}, of g on g¢'.

The main point in studying affine actions of G instead of linear actions of G is that there
are many situations where the Lie algebra ¢ is not enlargible in the sense that there exists no
global group G with L(G) = g. The obstruction for the existence of G lies in m2(G) (see [Ne0Ob]
for details), hence cannot be resolved by passing to covering groups. Since the obstruction for
the existence of the affine action of G on ¢’ lies in 71 (G), it is much more easily resolved by
replacing G by G.

(c) As [Ne0Ob, Th. II.4] shows, for Proposition II.15(a) one does not need the Banach structure
on G. It holds for any simply connected Lie group modeled over a sequentially complete locally
convex space.

(d) Let w € Z?(g,R) and Ad’, be as above. For a € g’ we consider the equivalent cocycle

C)(m,y) = OJ(LIZ',y) - a([$7y])

Then the translation map 7,:¢9' — g',7 = 7 — a intertwines the actions Ad; and Ad* and

induces a symplectic isomorphism Og — (55,,1 = Adg(G).(ﬂ —a). Therefore it suffices to study
the orbits of the type Op := Ad},(G).0=6(G) Cg'. [

III. C*-algebras

Before we turn to the class of L*-groups in the next section, it is instructive to discuss some
aspects of Section I for irreducible representations of C*-algebras. Let A be a unital C*-algebra,

G:=U)={a€cdiaa" =a"a=1}

be the corresponding unitary group, and L(G) = u(4) := {& € A:2* = —x} its Lie algebra. For
the C*-algebraic facts used in this section we refer to [Dix64].

Let (w,H) be an irreducible unitary representation of G which is obtained by restriction
from a C*-algebra representation m4: A — B(H) with 74(1) = 1. Then 74 is automatically
norm-continuous, so that m:U(A) — U(#H) is a morphism of Banach-Lie groups and therefore
H = H¥. Note that, in view of Schur’s Lemma, each irreducible representation of A restricts to
an irreducible representation of U(A).

We will relate the moment set for 7 to the geometry of states of the C*-algebra A. Let

S(4) = {p € A p(1) = 1,(Va € A) p(a”a) > 1} Ciu(A) C A

denote the set of states of A. The image of the moment map ®,:P(H) — u(A4)' is contained in
1S(A), which implies that I, C iS(A) because of the weak-*-closedness of S(A). We conclude
in particular that I is a weak-*-compact set. According to [Ne99, Th. X.5.13(iii)], we have

I = (iS(A)) Nkermy = iS(A/kermya),

so that I, can be identified with the set of states of the quotient C*-algebra A/kerm,. Since
I is weak-x-compact, the existence of extreme points follows from the Krein—Milman Theorem.
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Theorem ITI.1.  Let (74,H) be an irreducible representation of A and 7 :=7malya). Then

the following assertions hold:

() @x(P(H)) C Ext(Ly).

(i) U(A) acts transitively on P(H).

(iii) The group U(A) acts transitively on Ext(I;) if and only if each irreducible representation
pa with kerps D kermy is equivalent to w4 .

Proof. (i) Since the algebra representation w4 is irreducible, for each [v] € P(H) the functional
—i®,([v]) is a pure state of the C*-algebra A, hence an extreme point of S(A4). Thus

&, (P(H)) C I, N Ext(iS(A)) C Ext(I,).

(ii) For 0 # v € ‘H we derive from [Ne99, Th. X.5.16] that its annihilator Anng(v) := {a €
A:a.v =0} satisfies
Anng(v) + Anny(v)* +C1 = A.

Therefore H = A.w implies that H = Cv + Anny(v)*.v. For a € Anny(v)* we have a.v =
(a —a*).v, so that we further obtain % = Cv + u(A).v. This implies that the tangent map in e
of the orbit map

o:U(A) = P(H), g~ g.[v] =[g.v]

is surjective and hence that the orbit U(A).[v] in P(H) is open by the Non-linear Open Mapping
Theorem ([De85, Cor. 15.2]). Since [v] € P(H) was arbitrary, the orbits of U(A) form a
decomposition of P(H) into pairwise disjoint open subsets, and therefore the connectedness
of P(H) implies that U(A) acts transitively.
(iii) Let ¢ € Ext(I;) C I 2iS(A/kerma). Then ¢ is a pure state of the C*-algebra A/ kermy,
hence corresponds to an irreducible representation py of A with kerps D kermy, and for
p = paluca) the functional ¢ is contained in the image of the moment map ®,.

If this representation is equivalent to w4, then clearly ¢ € im @, . On the other hand, (ii)
shows that the subset im ®, C Ext([,) is a coadjoint orbit for U(A4).

If there exists an irreducible representation ps of A with kerps D kermy which is not
equivalent to m4, then it follows that im &, C Ext(I,) is a different U(A)-orbit. =

Remark II1.2. (a) Theorem III.1(ii) shows that the projective space P(H) plays the role of a
coherent state orbit for irreducible representations of A.
(b) If H is an infinite-dimensional Hilbert space and A = B(H) with w4(a) = a, then kerms =
{0}, so that I, = iS(A). On the other hand the ideal K(#) of compact operators on H is a
proper ideal, so that K(H)* C I, is a proper U(H)-invariant subset, and therefore U(H) does
not acts transitively on Ext(I;). Somehow this difference to the finite-dimensional case seems to
be caused by taking the closure in the weak-x*-topology on u(#)’ which seems to be too coarse.
(¢) The condition in Theorem III.1(iii) means that the class of the representation 74 is a closed
point in the spectrum A of A (cf. [Dix64]).
(d) If A is a postliminary C*-algebra ([Dix64]), then for each irreducible representation 74 of A
the image w4 (A) contains the ideal K (#H) of compact operators, so that the transitivity of the
action on P(#H) follows trivially from the transitivity of the action of the group U(H)N(1+K(H)).
(]

IV. L*-groups

In this section we explain the context of real L*-groups and the phenomena one finds for
their elliptic coadjoint orbits. Here the main point is that those coadjoint orbits which are strongly
symplectic turn out to be quite accessible, whereas the situation for the weakly symplectic orbits
seems to be much harder to understand.

More detailed references for the material in this section are [NeOla,c].
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Definition IV.1. Let g be a real Hilbert space which at the same time is a Lie algebra
with an involutive antiautomorphism z — z*. We call g an L* -algebra if these structures are
compatible in the sense that the involution * is isometric and

(4.1) ([z,9],2) = (y, 2", 2]) for =z,y,2€g.

Then g =€¢@p with ¢ :={xr € g:2* = —z} and p:= {x € g:z* = z}.
We say that g is compact if g = and that g is of hermitian type if the complex subspace
pc C gc decomposes into two subspaces p* such that

gc=pt otcDdp

is a 3-grading in the sense that [p*,p*] = {0}, [pT,pT] C bc, and [Ec,pT] C p*. n

Using the Closed Graph Theorem, one can derive the continuity of the Lie bracket on g,
so that this requirement does not have to be put into the axioms of an L*-algebra. If g is
finite-dimensional real reductive, we may define z* := —6(z) for a Cartan involution 6 to see
that g is an L*-algebra, and it is also not hard to see that every finite-dimensional L*-algebra
is reductive. In this sense L*-algebras are generalizations of finite-dimensional real reductive Lie
algebras which still have the nice feature of a scalar product satisfying (4.1). Note that compact
L*-algebras are generalizations of compact Lie algebras.

Every L*-algebra is the Hilbert space direct sum of its center and its simple ideals ([Sch60])
which reduces many questions on L*-algebras to simple algebras. In particular the splitting of
the center together with the result that Banach—Lie algebras with faithful representations are
enlargible in the sense that they are the Lie algebra of a corresponding group ([EK64]) now leads
to the following theorem:

Theorem IV.2.  For every L*-algebra g there exists a connected Hilbert—Lie group G with
Lie algebra g. u

Example IV.3. To describe some simple L*-algebras and the corresponding groups, let H
be a complex Hilbert space and Ba(H) := {x € B(H):||z||2 := /tr(zz*) < oo} the ideal of
Hilbert-Schmidt operators (cf. [RS78]).

(a) The space gl,(H) := B2(H) is a complex L*-algebra with respect to the operator commutator
and the scalar product (z,y) := tr(zy*). If I: H — H is an antilinear isometry with 1% € {£1},
we define

gl(H,I) = {X € gi(H): X + IX*I"' =0} and gly(H,1I) :=g(H,I)Ngly(H).
For I? = —1 we also write sp,(H,I) := gly(H,I), and for I? = 1 we write 0s(H,I) := gl,(H,I).
This notation is motivated by the observation that 8(x,y) := (x,I.y) defines a complex bilinear
form on H with

gl(H,I) = {x € gl(H): (Vv,w € H) B(z.v,w) + B(v,z.w) = 0}.

This form is skew-symmetric for I? = —1 and symmetric for 12 = 1.
The corresponding groups are

GLy(H) = {g € GL(H):g — 1€ By(H)} with L(GLy(H)) = gly(H)
and
GLo(H,I) :={g € GLy(H):Ig" "' = ¢g7'} with L(GLy(H,I)) = gly(H,I).
Each simple infinite-dimensional L*-algebra g is isomorphic to gl,(H), sp,(H,I) or

02(H, I) for some infinite-dimensional Hilbert space H , and all these algebras are pairwise non-
isomorphic (see [Sch60] for the separable case and [CGM90], [Neh93] and [St99] for different proofs
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for the general case). Real separable simple L*-algebras have been classified independently by
Balachandran ([Ba69]), de la Harpe ([dIH70, 71a]) and Unsain ([Un71, 72]).

(b) Since every complex simple L*-algebra has, up to isomorphism, a unique compact real form,
each compact infinite-dimensional simple L*-algebra is isomorphic to one of the following

u(H) ={zegly(H):z* =—x} or u(HI) ={xecu(H):Izx=zl}
Here the corresponding groups are
Ux(H) :=U(H)NGLy(H) and Uy(H,I):=U(H)NGL:(H,I).

(c) (cf. [NeSt99], [dIH72]) The hermitian simple L*-algebras arise in several series according to
the type of their complexification. For gc = gl,(H) we have the pseudounitary Lie algebras

uZ(H-HH—) = {-T € g[Q(H):Tw*T_l = —w},

where T' € Herm(H) satisfies 7% = 1 and ker(I'+ 1) = Hy. For gc = gly(H,I) we choose a
subspace Hy C H such that H = Hy @ I.H, is an orthogonal direct sum and set H_ :=I.H, .
Then we obtain the hermitian Lie algebras

spo(H, ILR) :=ux(Hy, H_)Nspy(H,I) and o3(H,I):=uy(Hy,H_)Noz(H,I).

We obtain additional real forms of 0o(H,I) as follows: Let H = H, ® H_ be a real Hilbert
space which is the orthogonal sum of the subspaces H., define a symmetric bilinear form on H

by B(z+ +z—,y+ +y-) = (z4,y4+) — (z—,y-), and put
02(Hy, H_,R) := {z € By(H,R): Vv,w € H) B(z.v,w) + f(v,z.w) = 0},

where By(H,R) denotes the space of real linear Hilbert-Schmidt operators on H. Then the
L*-algebra o05(Hi, H_,R) is hermitian if and only if H, or H_ is 2-dimensional.
Corresponding groups are

U(H,,H ) :={x € GLy(H):Tg*T " =g~ '}, Sp(H,I,R) :=Usy(H,,H_)NSp,(H,I),

O*(H,1) := Uy(Hy, H_) N Oy(H, I),

and
Oy(Hy, H_,R) := {g € GLy(H, B): (Vo,w € H) B(g.v, gw) = B(v, w)}. .

We have seen in the preceding section that to understand coadjoint orbits of a real Lie
algebra g in the appropriate generality, it is necessary to study also affine coadjoint actions.
So let w € Z2(g,R) be a continuous cocycle of g. Then the strong non-degeneracy of the
scalar product on g implies the existence of a continuous operator D:g — g with w(z,y) =
wp(z,y) := (D.z,y*). It is easy to verify that D is a derivation and, conversely, for every
continuous derivation D, the prescription wp(z,y) := (D.z,y*) defines an element of Z2(g, R).
Here the coboundaries correspond to the inner derivations, and therefore H?(g, R) = der g/ ad g,
where der g denotes the space of continuous derivations of g.

Let D € derg. As we have seen in Remark I1.5(d), it suffices to study the orbit

of 0 € ¢ for the affine action defined by the cocycle wp. It is a natural question whether
there are certain coadjoint orbits which are better than others. As every orbit Op carries a
natural weakly symplectic structure, one would like to know when these structures are strongly
symplectic. We call Op an elliptic orbit if D* = —D | i.e., D* is a skew-symmetric operator on
the real Hilbert space g.

For the following theorem, we recall that a normal operator A on a Hilbert space has closed
range if and only if {0} is isolated in its spectrum, where the case that A is invertible is included.
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Theorem IV.4. ([NeOla]) For D € derg the following assertions hold:
(i) Op is strongly symplectic if and only if im D is closed.
(i) If im D is closed, then:
(a) D 1us diagonalizable on gc .
(b) ker D contains a Cartan subalgebra, i.e., a maximal abelian *-invariant subalgebra.
(c) If g is simple and gc € {gl,(H),9lo(H,I)} for a complex Hilbert space H, then D
can be written as D.x = [Dy,x], where Dy is a skew-hermitian operator with finite
spectrum which for gc = gly(H,I) commutes with I . [

The preceding theorem shows that the orbits Op are geometrically nice if D has closed
range. From now on we assume this and that g is simple and infinite-dimensional, so that we may
assume that gc € {gly(H),gly,(H,I)} for some infinite-dimensional complex Hilbert space H.
In the following G C GLy(H) will always denote the connected Lie subgroup corresponding to
the Lie subalgebra g C gl,(H) and G¢ C GL2(H) the subgroup corresponding to ge (Example
Iv.3).

We use Theorem IV.4(ii)(c) to write D as D(z) = [Dg,x] for some diagonalizable skew-
hermitian operator Dy with finitely many eigenvalues. Identifying g with g’ via the symmetric
bilinear form s(z,y) = (x,y*) = tr(zy), the affine coadjoint action of G on g corresponding to
wp is given by

Ady,(9)y=9yg '+ Dy —gDug™!

on the group level and by

ady, (¢).y = ad(z).y + [Dy, 2]
on the Lie algebra level. Note that g € GLy(H) implies that Dy — gDgg~' = [Dy,glg™! is a
Hilbert—Schmidt operator.

We know from the theory of finite-dimensional compact Lie algebras that every coadjoint
orbit has a natural Kéhler structure, and we will see below that this generalizes to the fact that
all strongly symplectic orbits of compact L*-algebras have natural Kéhler structures. So let us
assume for a moment that g is compact, hence contained in us(H). Let

g% = {2 € gersup,s ||eTP .z < oo},

and observe that e € Aut(gc) implies that g¥ are subalgebras of gc. The spectral theory
of hermitian operators implies that g* are the maximal closed iD-invariant subspaces of gc on
which the spectrum of the restriction of ¢D is contained in [0, oo[, resp., | — o0, 0]. Since gc¢ is
a Hilbert—Lie algebra, the subalgebras g* are complemented in gc .

Theorem IV.5. ([NeOla.c]) If g is a compact simple L*-algebra and D € derg with closed
range, then there exist Lie subgroups G* C Gg¢ such that G acts transitively on the complex
homogeneous space G¢ /G, and we thus obtain an isomorphism Op = G¢ /G of homogeneous

G -spaces. The complex structure Op inherits from this identification turns it into a strong
Kahler manifold. ]

Theorem IV.6. Let g be a simple real L* -algebra and 0 # D = —D* € derg such that

Op C ¢ is a strong Kdhler orbit. Then the following assertions hold:

(i) g s compact or hermitian.

(i) If pT:=gtNpc, then gc =pt @ tc @ p~ is a 3-grading.

(iii) We have Gt = K*P* = P* x K* and the complex structure on Op can be obtained by
embedding it as an open orbit into Gc /KT P~ . From the fibration

K(c/KJr — Gc/KJrPi —» G(c/KCpi
the coadjoint orbit Op inherits a holomorphic fibration
Kc /Kt = 0p, < Op — D,

where Dy := D|¢ and D C Ge¢/Kc P~ is the open G -orbit of the base point. ]
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Example IV.7. As above, let g be simple with gc € {gly,(H),gl,(H,I)} and Dy skew-
hermitian with finite spectrum (Theorem IV.4). Then the hermitian operator ¢Dy on H defines
an orthogonal decomposition of H into its eigenspaces.
(a) We first consider the case g = up(H). We write dy,...,d;, for the different eigenvalues of
iDg and H; :=ker(Dg — d;1) for the corresponding eigenspaces. We may w.l.o.g. assume that
di >...>dp. Then H = H,®...®Hy is an orthogonal decomposition, and accordingly we write
operators € B(H) as matrices ¢ = (xj) with z;; € B(H;, Hj). Then iD.(x;) = ((d; —di)x )
implies that
g+ ={z = (z;) € gh(H):( > 1) = xj =0}

is the subalgebra of upper triangular matrices.

For j =1,....k let Fj := Hy + ... + H; with Fy := {0}. Then F = (Fy,F\,..., F) is
a flag of closed subspaces of H and GT := {g € GLy(H): (Vj)g.F; = F;} is a complemented
connected Lie subgroup of G¢ with Lie algebra g*. Therefore G¢/GT can be identified with
the set G¢.F of flags of subspaces of H, which justifies the name flag manifold for G¢ /G™T.
(b) For g = gly,(H,I) the fact that Dy commutes with I implies that I.ker(iDyg — dl1) =
ker(iDy + dl1) for d € R. Let d; > ... > di denote the positive eigenvalues of Dy and define
d_; := —d;j and dy := 0. For Hj :=ker(D — d;1) we then obtain an orthogonal decomposition

H=H,®..®Hy®...® H_;
with [.H; = H_j, so that Hy = ker D is I-invariant, but this space might be trivial.
For Fj:==H,+...+ Hj, j=1,...,k, as above, we obtain a flag
{(}=RCRCFRC..CFR,CF*C..CF*CF*=H
and the spaces Fj, j =1,...,k, are isotropic for the bilinear form B(x,y) = (z,I.y). From
di>...>dp,>dy>d_p>...>d_y

and (a) one easily derives that the stabilizer GT C G¢ of this flag is a complemented Lie subgroup
with Lie algebra g but which is not always connected (see [NeOlc, Sect. II] for a discussion of
connected components). Therefore we also obtain in this case a realization of Op = G¢/GT.

(c) For the hermitian real form g = u(Hy,H_) of gc = gl,(H) the realizations of the strong
Kéhler orbits correspond to the following situations. Here the decomposition H = Hy & H_
is invariant under Dy and all eigenvalues on H_ are strictly larger than those on H, . Let
di > ... > dp, denote the eigenvalues on Hy and dp41 > ... > di those on H_. The Kéhler
condition for Op implies that dy > dy, so that the group KTP~ C G¢ = GLs(H) is given by

K*P™ = {g € GLx(H): (Vj)g.F; = Fj}
for Fj, j=1,...,k, asin (a). This group is a semidirect product P~ x KT and

p- o~ { (é f) .Z € By(H_, Hy)),

where Hy = F,, H_ = F;-, and By(H_,H,) := {w € B(H_,H,):tr(z*z) < oo}. We further
have
Kc ={9€ GLx(H):9.Hy = H:} = GLy(Hy ) x GLa(H-)
and
Dx={Z € By(Hy,H_): || Z|| < 1},

where the action of G on this space is obtained by restricting the partial action of GLy(H) on
Bo(Hy,H_) given by

a b _ -1
(c d> z=(c+dz)(a+bz)"".
Replacing Dy by ZNDH with Zl~?H |y = £idg, , the fibration from Theorem IV.6(iii) is
trivial, and we get
Kt = Ke and Op=D.
(d) For g = sp(H,I,R) and g = 0*(H,I) the situation is similar, where we have H_ = I.H,
0>dy >...>dp and K¢ =2 GL2(Hy). ]



Highest weight representations and infinite-dimensional Kahler manifolds 14

For G = GLy(H) and k = 2 the construction above leads to the restricted Gralmannians.
For G = GLy(H,I) and k¥ = 2 we obtain for H; C H maximal isotropic the restricted
GraBBmannian of maximal isotropic subspaces and for dim Hy; = 1 the space of isotropic lines
in H. Both are hermitian symmetric spaces which are dual to symmetric Hilbert domains.
A classification of hermitian symmetric Hilbert manifolds was obtained by W. Kaup in [Ka83]
based on the algebraic characterization of the simply connected symmetric complex Banach
manifolds in terms of hermitian Jordan triple systems ([Ka77]). These manifolds and their
automorphisms have been studied in [Ka75] and [DNS89], [DNS90]. The flag manifolds for
GL»(H) for separable H have been introduced by A. and G. Helminck in [HH94a] and [HH94b].
They apply the representations of central extensions of the complex group GLo(H) in Hilbert
spaces of holomorphic sections of line bundles on the flag manifolds to integrable systems.

Remark IV.8. (a) The domains D showing up in Theorem IV.6 can always be described as
coadjoint orbits if D € derg is the skew-hermitian derivation on g with kerD = 0 and D |,
is the complex structure obtained by identifying it with p~. Then K¢ = K™ and Op can be
identified with the open G-orbit of the base point in G¢/Kc P~ .

The domains obtained this way for the simple hermitian L*-algebras are the infinite-
dimensional irreducible symmetric Hilbert domains. For g = u(H,, H_) one obtains

D={Z € By(H,, H ):||Z| < 1.

Although D is bounded in B(Hy,H_) with respect to the operator norm, it is not bounded in
By(Hi,H_) it Hy and H_ are infinite-dimensional. If one of these spaces is finite-dimensional,
then every bounded operator is Hilbert-Schmidt, and there is no additional restriction.

For g = sp(H,I,R) and g = o*(H,I) we have H_ = I.H,, so that we may define
ZT:=1Z*I7' for Z € By(Hy,H_). Then the corresponding Hilbert domains are

Dt={ZeD:Z"=2Z} and D :={ZeD:Z' =-Z}.
The algebra g = o(Hy, H_,R) with dim H_ = 2 leads to the so-called Lie ball
D= {z € H:||z|I* + V/llz[|* - [{z,7)]> < 1},

where H is a complex Hilbert space and z — T an antilinear isometric involution on H .

(b) It has been shown in [Ne0Oe, Sect. V] that the closed subsemigroup S := {g € G¢:9.D C D}
of Gi¢ containing the real group G behaves very much like the semigroups discussed in Section I
for finite-dimensional groups. In particular S has non-empty interior S°, and this semigroup
has a diffeomorphic polar map

GxW’—= 8% (g9,X)+ gexpiX,
where W9 C g is an open convex invariant cone. [

Remark IV.9. According to the Fundamental Conjecture on Homogeneous Kahler Manifolds
which has been proved in [DoNa88|, each finite-dimensional homogeneous Kéhler manifold M
has the structure of a double fibration

My —>M—»D and F— M —»V.

Here the first fibration is described by the space of bounded holomorphic functions, the base
space D is a bounded homogeneous domain, and on the fiber M; which is a product K&hler
manifold F' x V' ([DoNa88, p. 63]) all bounded holomorphic functions are constant. In view of
the contractibility of D, the first fibration is holomorphically trivial and M = M; x D ([DoNa88,
p. 67]). The second fibration is such that F is a complex flag manifold and V' is a quotient of a
complex vector space by a discrete subgroup.
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If, in addition, M is a coadjoint Kahler orbit, then the situation simplifies somewhat
because D is a bounded symmetric domain and V is a complex vector space. Therefore the
second fibration can be described by the space of all holomorphic functions (cf. [Li95, p. 353]).

For a semisimple group the second fibration is trivial, so that M is, as a complex manifold,
the product of a complex flag manifold and a bounded symmetric domain. This is what we also
observe for the strong K&hler orbits of simple L*-groups.

It is natural to extend the setting of real L*-groups in the sense that one also considers
groups of the type G =V x L, where L is a real L*-group and V is a real Hilbert space on
which L acts by a representation compatible with the involution, i.e., (skew-)hermitian elements
of the Lie algebra of L act by (skew-)hermitian operators on V. A typical example is the
semidirect product G = H x Sp,(H,I,R). Here we obtain in particular a strong Kéhler orbit
O isomorphic to H with the natural affine action of G, and also products of H with coadjoint
Kahler orbits of Sp,(H,I,R). This construction is very similar to the finite-dimensional case,
where it essentially leads to the classification of coadjoint K&hler orbits for unimodular groups
(cf. [Li91], [Ne95], [Ne99, Chs. XII and XV]). All these Kéhler orbits O can be realized as open
G-orbits in a homogeneous space of a complex group G¢, and in [Ne99, Sect. XIIL.3] we have
determined the compression semigroups S := {g € G¢:9.0 C O} for all elliptic coadjoint Kéhler
orbits of finite-dimensional groups (see Remark IV.8 for an indication that many of these results
carry over to infinite-dimensional groups).

It seems that the condition that a Kahler orbit is strong has severe structural consequences
for the Lie algebra. We are not aware of any such orbit which does not have a double fibration
as in the finite-dimensional case. Weak Kéhler orbits seem to behave much wilder in general. m

V. Holomorphic representations of classical groups

The key to the unitary representations of real L*-groups associated to strong K&hler orbits
are holomorphic representations of certain associated complex groups. For details on the results
described in this section we refer to [Ne98].

We consider the groups

GLy(H) := GL(H)N (1 + B;(H)) and GLy(H,I):= GL(H) N GL(H, I),

where I? = 1 as above and B;(H) C B(H) is the ideal of trace class operators. Then GL;(H)
and GL;(H,I). are connected complex Banach—Lie groups with

Z for G1 = GL1 (H)
(51) 7T1(G1) = Z2 for Gl = Ol(H, I)
0 for Gy =Sp,(H,I).

The group GLi(H) is a semidirect product SL(H) x C*, where SL(H) is a simply connected
group, and for 12 = 1 we also write SO;(H,I) := O;(H, I). and note that its universal covering
group Spin, (H, I) is an analog of the complex spin groups Spin(n,C).

As we will explain below, the groups G, from (5.1), resp., their universal covering groups
qutél — (1 have a distinguished family of holomorphic representations whose restrictions to
the unitary group Uy := Gy NU(H), resp., to Uy = qéll(Ul), is unitary.

Let h; C g1 := L(G;) denote a maximal abelian *-invariant subalgebra; called a Cartan
subalgebra. Then §; is simultaneously diagonalizable on H, hence can be viewed as those
operators in g; which are diagonal with respect to a certain orthonormal basis. Moreover, g;
has a topological root decomposition in the sense that there exists a bounded discrete subset
A C b} such that the subspace

by+ ) g with g :={z€g:(Vy€hly,2] = aly)s}
aEA
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is dense in g.
For g; = gl, (H) every Cartan subalgebra can be obtained by first choosing an orthonormal

basis (e;)jes in H and then considering the subspace h; C g; of all diagonal operators with
respect to this basis. Then h; = (1(J,C), so that h] = ¢(J,C), and

A={e;—¢eii#jeJ}, where ¢j(x)=u1j,7€/,

is a root system of type A. We likewise obtain root systems of type B and D for o,(H,I) and
of type C for sp,(H,I).

For each root oo € A the subspace g1 (@) := g + g7~ + [g7, g7 ©] is isomorphic to sl(2,C)
and there exists a unique element & € [gf,97 %] C b1 with a(d) = 2. We call & the coroot
associated to a. Let

P:={rebh:(Vae A)Xa) € Z}

denote the set of weights. Then for each A € P there exists a continuous irreducible representation

pr:g1 — B(Hy)

on a Hilbert space H, which has the property that there exists a A\-weight vector vy € Hj
annihilated by all root spaces g§ with A(&) > 0. In this sense p, is a highest weight representa-
tion. By the general theory of Banach-Lie groups, py integrates to a holomorphic representation
ma: G1 = GL(#H,), and, moreover, my |51 is unitary.

There also exists a classification result saying that two representations =) and m, are
equivalent if and only if A,up € P are in the same orbit for the action of the Weyl group
W C GL(h}) generated by the reflections ro.f := f — f(d)a.

For the representations my of the groups [71 the moment set I;, C uj is a bounded subset,
which corresponds to the boundedness of the Lie algebra representation u; — B(#H),). It would
be interesting to understand which of the results on finite-dimensional Lie algebras discussed in
Section I extend to this class of unitary representations.

VI. Unitary representations of L*-groups

At this point the settings of Sections IV and V seem to be quite unrelated, but it turns out
that they are different approaches to the same mathematical objects.

To relate the two pictures, let us start with a real L*-algebra g. Then there exists a
subalgebra g;, which is a Banach-Lie algebra with an isometric involution such that the Lie
bracket of g induces a continuous bilinear map g X g — g; and we have an isomorphism of
Banach spaces

piderg > g; with  @(D)(ay]) == (Day), =y €a.
For an abstract definition of g; we refer to [NeOla].

From now on we assume that g is compact and simple. If g = uy(H), then g, = uy(H)
and for g = us(H,I) we get g1 = u(H,I). In the setting of Section V we may now identify
the elements A € P with continuous linear functionals on (g1)c by extending them by 0 on the
root spaces. Then A = ¢(iD) for some D € der(g), and Op is a strong Kahler orbit because
D* = —D has finite spectrum and therefore closed range. If, conversely, D € der(g) has closed
range, then ker D contains a Cartan subalgebra (Theorem III.4), which implies that ¢(D) can
be viewed as an element of b} for some Cartan subalgebra h; C g;. The condition ¢(iD) € P is
equivalent to the integrality of the cohomology class of the canonical symplectic form ©Q on Op:

(6.1) o(iD)eP < [Q]€ H(Op,L).

Example VI.1. For g =u(H), g1 = w1 (H) and bh; = (1(J,iR) we think of X as an element of
¢*(J,C), and A € P means A\; — A; € Z for j # . This implies that D can be represented by
a skew-hermitian operator Dy € B(H) with eigenvalues —i);, j € J, and the condition A € P
entails that Dy has finite spectrum. For the other types of Cartan subalgebras the situation is
similar. ]
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Since Op is a Hilbert manifold and therefore smoothly paracompact ([KM97]), the con-
dition (6.1) means that Q is the curvature form of a holomorphic line bundle £y — Op. Let
(L)) denote the space of holomorphic sections of this line bundle. In the following G C GL(H)
denotes an L*-group, ¢g: G — G its universal covering group, and G; = GNGL (H).

Theorem VI.2.  For A € P C b, the following assertions hold:

(i) There exists a central extension q:éA BN of G by T acting holomorphically on L) by
bundle automorphisms such that the corresponding action on Op factors through the action
of G. The Lie algebra of CA}',\ 5 Gx = 9D, R and Op can be viewed as the coadjoint orbit
of (0,-1) € (gx)'-

(i) There exists a natural Hilbert subspace Hy C T'(Ly) such that the natural action of CA¥>\ on

L(Ly) restricts to a stmngly continuous unitary representation (mx,Hx) of Gy .

(iii) On the subgroup Gh - G the central extension splits by a smooth homomorphism o: Gy —
GA, and the representation mwy o o is the unitary highest weight representation constructed
in Section IV,

Proof. (anidea) A central idea in the proof of Theorem VI.2 is to start with the holomorphic
representation 7 of the complex group (G1)c and to consider the holomorphic function

fa: (él)c = C, g {g o, u).

Then one shows that this function extends to a holomorphic function on the group (CA? a)c - Using
the theory of positive definite holomorphic functions on complex groups and semigroups ([Ne99]),
we then obtain a Hilbert space Hx C Hol(G¢) on which we have a natural strongly continuous
unitary representation of G by translation. The final step is to show that the functions in ’HA
can be viewed as holomorphic sections of the bundle £y, realized as holomorphic functions on

Gc . ]

Similar results exist for elliptic strong Kahler orbits of hermitian groups, where the situation
is more complicated because the classification of unitary highest weight representations of these
groups is more involved (see [NQD98]).

The preceding theorem generalizes part of the Borel-Weil Theorem for compact Lie groups.
One can also obtain other results characterizing those equivariant holomorphic line bundles
over Op for which the space of holomorphic sections is non-trivial (see [HH94a/b] for the case
G = Uy(H)). These results are further related to the Bott—Borel-Weil Theorem for direct limit
groups ([NRWO0]), and it remains a promising project to understand this theorem in an analytic
context such as Theorem VI.2.

In the compact and the hermitian case the group (@ A)c is far from being a maximal
complex group acting on Ly . To enlarge this group, one first observes that the group Aut(g)? :=
{g € Aut(g): gD = Dg} also acts on Op C ¢’ in a natural way, and we thus obtain an action
of a bigger group G(D) which is a quotient of the semidirect product G x Aut(g)?. The same
constructions apply to the complex groups, where the construction leads to the restricted groups
discussed in detail for the simple complex L*-algebras in [Ne0lc]. Since the action of Aut(g)?
on @ lifts to the central extension Gy, we obtain a central extension G (D) which has a strongly
continuous unitary representation on H,, where Aut(g)” fixes the highest weight vector vy .

For the hermitian groups it is not necessary to consider several central extensions depending
on A. Here we have one central T-extension G' of G which is universal for all unitary highest
weight representations.

The geometric approach to unitary highest weight representations described above includes
in particular the spin representation of the metagonal group (fermionic second quantization)
and the metaplectic representation (Segal-Shale—Weil representation) of the metaplectic group
(bosonic second quantization). For a nice exposition of the construction of these representations
in an ad hoc fashion we refer to Ottesen’s book [Ot95], where it is also explained how embeddings
of diffeomorphism groups and loop groups into restricted symplectic and unitary groups lead to
interesting unitary representations of their central extensions (see also [PS86], [CR87], [Ve90] and
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[Mi89]). The mixed cases correspond to the infinite wedge representations of the restricted unitary
group which in our terminology is Uz (H)(D), where D has only two eigenvalues (cf. [PS86] and
also [Wu98] which contains a lot of information on the physical background). The general L*-
approach to these representations provides in particular direct geometric explanations for their
intricate analytic properties such as the boundedness behavior of the corresponding operators
(cf. [0195]).
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