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Highest weight representations and in�nite-dimensional K�ahler manifolds

Karl-Hermann Neeb

Abstra
t. The geometry of unitary highest weight representations and the 
orresponding 
oad-

joint orbits has many in�nite-dimensional relatives. This be
omes apparent from a geometri
 ap-

proa
h to unitary highest weight representations. In this note we dis
uss su
h representations for

the unitary group of a C

�

-algebra and for groups related to L

�

-groups.

Introdu
tion

In this note we dis
uss some ideas 
on
erning a geometri
 analysis of unitary highest

weight representations of in�nite-dimensional Lie groups. For a �nite-dimensional, not ne
essarily

semisimple, Lie group G the property of an irredu
ible unitary representation � to be a highest

weight representation 
an be read o� from its 
onvex moment set I

�

, a 
losed 
onvex subset in the

dual g

0

of the Lie algebra g of G whi
h en
odes the upper bounds of the spe
tra of the essentially

selfadjoint operators i�d�(X), X 2 g , of the derived representation. The set I

�


ontains no aÆne

lines if and only if � is a highest weight representation. Based on this geometri
 
hara
terization,

we des
ribe in Se
tion I an approa
h to highest weight representations whi
h 
an be generalized

to in�nite-dimensional groups. Another important aspe
t of the �nite-dimensional theory is that

for ea
h unitary highest weight representation � the extreme points of the 
onvex moment set I

�

form a single 
oadjoint orbit O

�

whi
h 
arries a natural K�ahler stru
ture, and � 
an be realized

in a spa
e of holomorphi
 se
tions of a 
omplex line bundle over O

�

. This 
oin
iden
e motivates

a geometri
 approa
h to unitary highest weight representations of in�nite-dimensional groups by

�rst studying their 
oadjoint K�ahler orbits.

In Se
tion II we explain the framework for 
oadjoint orbits in the 
ontext of Bana
h{Lie

groups. One aspe
t of the in�nite-dimensional theory is that it does not suÆ
e to 
onsider the

linear 
oadjoint a
tion. One also has to 
onsider aÆne 
oadjoint a
tions be
ause it is not always

possible to pass to 
entral extensions to embed the aÆne 
oadjoint a
tions into linear a
tions

restri
ted to an aÆne hyperplane. Another diÆ
ulty is that for general Bana
h{Lie groups


oadjoint orbits need not have a natural manifold stru
ture, a diÆ
ulty not present for Hilbert{

Lie groups be
ause for these groups the existen
e of 
losed 
omplements of Lie subalgebras yields


harts on homogeneous spa
es. Finally there is a diÆ
ulty 
oming from di�erent notions of non-

degenera
y for a symple
ti
 stru
ture, whi
h leads to the 
on
epts of weak and strong symple
ti


manifolds.

In Se
tion III we brie
y dis
uss those unitary representations of the unitary group G =

U(A) of a unital C

�

-algebra A obtained by restri
ting an irredu
ible algebra representation to

G . Here the results on representations of C

�

-algebras provide interesting information whi
h

deserves to be 
onsidered in the framework of the results des
ribed in Se
tion I for �nite-

dimensional groups. This situation is also illuminating be
ause it is one of the most regular

situations 
on
eivable for unitary representations of in�nite-dimensional groups, although the

group U(A) behaves quite badly as a di�erentiable manifold in sense that it rarely permits

smooth fun
tions with small support or 
omplements for 
losed subspa
es of its Lie algebra.

In Se
tion IV we turn to the 
lass of L

�

-groups whi
h we 
onsider as a 
lass of Hilbert{Lie
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groups, where the stru
ture theory of the 
orresponding Lie algebras is developed far enough

so that one has suÆ
iently 
on
rete situations for the simple in�nite-dimensional L

�

-algebras.

The main point in Se
tion IV is a des
ription of the ellipti
 
oadjoint orbits of L

�

-groups whi
h

are strong K�ahler orbits. In some sense these orbits are the ni
est ones and geometri
ally quite


lose to the 
oadjoint K�ahler orbits of �nite-dimensional semisimple groups. For the 
ompa
t

L

�

-algebras they are generalizations of the 
ag manifolds of �nite-dimensional 
lassi
al groups,

and for the non-
ompa
t L

�

-algebras (whi
h then must be hermitian), they have the stru
ture of

a holomorphi
 �ber bundle, where the �bers are 
oadjoint K�ahler orbits of 
ompa
t L

�

-algebras

and the base is a symmetri
 Hilbert domain.

After dis
ussing holomorphi
 highest weight representations of 
ertain 
omplex 
lassi
al

groups in Se
tion V, we 
on
lude this note by explaining in Se
tion VI why and how these


oadjoint orbits 
orrespond to unitary highest weight representations. As in the �nite-dimensional


ase one has to restri
t one's attention to those orbits for whi
h the 
ohomology 
lass of the

symple
ti
 form is integral. But then it turns out that these orbits 
arry natural holomorphi


line bundles in whi
h we 
an realize all unitary highest weight representations of the 
entral

extensions of the group G under 
onsideration.

We think of the �nite-dimensional 
ase and also of the 
ase of L

�

-algebras as a model

situation from whi
h one might learn how to address similar questions for more 
omplex in�nite-

dimensional groups if no elaborate stru
ture theory is available.

Although we have in
luded almost no proofs in this paper, we give pre
ise de�nitions and

statements of the results and referen
es where to �nd detailed proofs.

A
knowledgement: The author 
ordially thanks Igna
io Bajo and Esperanza Sanmart��n

for the invitation to a very ni
e 
onferen
e.

I. Highest weight representations of �nite-dimensional groups

Moment maps of unitary representations

In this subse
tion we 
onsider Lie groups G whi
h are manifolds modeled over lo
ally


onvex spa
es for whi
h the group operations are smooth maps. This is the 
ontext of Gl�o
kner's

paper [Gl01℄ who showed that one 
an relax Milnor's setting of sequentially 
omplete lo
ally


onvex spa
es ([Mi83℄) be
ause the basi
 di�erential 
al
ulus of manifolds does not require the

sequential 
ompleteness. The main advantage of this wider 
ontext is that one does not run

into the problem that quotient spa
es might not be (sequentially) 
omplete. From a di�erential

geometri
 point of view the sequential 
ompleteness be
omes 
ru
ial if one needs results on

di�erential forms whose proof involves the Poin
ar�e Lemma. For groups modeled over Fr�e
het

spa
es our setting for Lie groups 
oin
ides with the setup of 
onvenient 
al
ulus des
ribed in

[KM97℄. Here the Lie algebra L(G) of G is the tangent spa
e T

e

(G) in the identity element e of

G and the Lie bra
ket on L(G) is given by extending ea
h ve
tor x 2 T

e

(G) to a left invariant

ve
tor �eld x

l

on G and de�ning [x; y℄ := [x

l

; y

l

℄

e

, whi
h makes sense be
ause the bra
ket of

two left invariant ve
tor �elds is left invariant.

We 
all G a Fr�e
het{, Bana
h{, resp., Hilbert{Lie group if it is modeled over a Fr�e
het,

Bana
h, resp., Hilbert spa
e. Bana
h{Lie groups share with �nite-dimensional ones the ni
e

property that they have an exponential fun
tion exp:L(G) ! G whi
h permits us to endow G

with a 
anoni
al analyti
 manifold stru
ture. As a 
onsequen
e, 
ontinuous homomorphisms be-

tween Bana
h{Lie groups are automati
ally analyti
. Similar statements hold for the 
lass of good

Lie groups, whi
h are analyti
 (not ne
essarily Bana
h) manifolds whose group multipli
ation is

lo
ally given by the Campbell{Hausdor� series (
f. [Gl01℄).

Let G be a 
onne
ted Lie group. A unitary representation of G is a pair (�;H), where

H is a 
omplex Hilbert spa
e and �:G ! U(H) a 
ontinuous group homomorphism, where the

unitary group U(H) 
arries the strong operator topology whi
h turns it into a topologi
al group.
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In this sense 
ontinuity means that for ea
h v 2 H the orbit map �

v

:G ! H; g 7! �(g):v is


ontinuous. We 
all v 2 H a smooth ve
tor if the orbit map �

v

is smooth and, if G is a Bana
h{

Lie group, we 
all v an analyti
 ve
tor if �

v

is analyti
. We write H

1

for the spa
e of smooth

ve
tors and H

!

� H

1

for the spa
e of analyti
 ve
tors.

If G is �nite-dimensional, then it is not hard to see that H

1

is dense (G�ardings Theorem)

be
ause for ea
h smooth fun
tion ' with 
ompa
t support the range of the operator �(') of the

integrated representation of L

1

(G) 
onsists of smooth ve
tors. It is still true, but 
onsiderably

harder to show, that H

!

is dense (Nelson's Theorem). For this result one 
onsiders fun
tions

' whi
h are analyti
 and obtained as fundamental solutions of a left invariant heat equation

(
f. [Wa72℄).

On the spa
e H

1

we have the derived representation of the Lie algebra g = L(G) by

d�(X):v := d�

v

(e)(X)

(
f. [Ne00d℄). Then ea
h operator d�(X) maps H

1

into H

1

and 
an be 
onsidered as an

unbounded operator on H . If the spa
e H

!

of analyti
 ve
tors is dense, for ea
h of the operators

i � d�(X) the subspa
e of analyti
 ve
tors is dense, hen
e i � d�(X) is essentially selfadjoint by a

theorem of Nelson (
f. [Ne99, Prop. X.15℄).

For v 2 H n f0g we write [v℄ := C v for the 
orresponding one-dimensional subspa
e and

P(H

1

) := f[v℄: v 2 H

1

g

for the proje
tive spa
e of H

1

. Let g

0

:= Lin(g;R) denote the spa
e of 
ontinuous linear

fun
tionals on the Lie algebra g := L(G) of G . Then the moment map of � is de�ned as

�

�

:P(H

1

)! g

0

; �

�

([v℄)(X) := i

hd�(X):v; vi

hv; vi

:

Here we use the 
ontinuity of the di�erential d�

v

(e): g! H to see that the range of �

�


onsists

indeed of 
ontinuous linear fun
tionals on g .

If we 
onsider on P(H

1

) the a
tion of G indu
ed by the representation � and on g

0

the


oadjoint a
tion, then it is easy to see that �

�

is equivariant. The weak-�-
losure

I

�

:= 
onv(im�

�

) � g

0

of the 
onvex hull of the image of �

�

is 
alled the (
onvex) moment set of � . It is a 
losed,


onvex subset of g

0

whi
h is invariant under the 
oadjoint a
tion. The Hahn{Bana
h Separation

Theorem implies that the moment set I

�

is 
ompletely determined by the 
onvex fun
tion

s: g! R [ f1g; s(X) := suphI

�

; Xi

be
ause I

�

= f� 2 g

0

: (8x 2 g)�(X) � s(X)g is the interse
tion of the weak-�-
losed half spa
es


ontaining it. Therefore all the information on the representation � 
ontained in the set I

�

is

en
oded in the fun
tion s . If the spa
e H

!

of analyti
 ve
tors is dense, the fun
tion s satis�es

s(X) = sup Spe
(i � d�(X)) for X 2 g;

so that the 
onvex hull of the spe
trum of ea
h of the essentially selfadjoint operators i � d�(X)

is the interval between the possibly in�nite elements �s(�X) and s(X) of [�1;1℄ .

De�nition I.1. We say that � is a (generalized) highest weight representation if the following


onditions are satis�ed:

(HW1) � is irredu
ible,

(HW2) the 
onvex 
one B(I

�

) := fX 2 g: inf I

�

(X) > �1g has interior points, and

(HW3) H

!

is dense.
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Note that (HW3) is redundant if G is �nite-dimensional.

Of 
ourse the terminology is derived from the algebrai
 stru
ture of unitary highest weight

representations as representations of g , but we do not have to go into this elaborate stru
ture

theory to explain the basi
 geometri
 features of unitary highest weight representations.

Typi
al examples of highest weight representations are all irredu
ible unitary representa-

tions of 
ompa
t Lie groups. In this 
ase H is �nite-dimensional, so that P(H) = P(H

1

) is


ompa
t, I

�

is bounded, and therefore B(I

�

) = g . Further typi
al examples are the holomor-

phi
 dis
rete series representations of hermitian Lie groups (e.g. automorphism groups of bounded

symmetri
 domains), the os
illator representation of the os
illator algebra, and the metaple
ti


representation of the group Heis(2n;R) o Sp(2n;R).

Remark I.2. To 
larify the meaning of the geometri
 
ondition (HW2), let X be a lo
ally


onvex spa
e and C � X

0

a weak-�-
losed 
onvex subset.

(a) If X is �nite-dimensional, then the 
ondition that B(C) := fx 2 X : infhC; xi > �1g has

interior points is equivalent to the 
ondition that C does not 
ontain any aÆne line whi
h in

turn is equivalent to the existen
e of extreme points in C ([Ne99, Cor. V.1.11℄). If C � X

0

is a


onvex 
one, then B(C) � X is the dual 
one. The example of the 
one C of positive sequen
es

in X

0

= `

1

(N;R) for X = `

1

(N;R) shows that it may happen in in�nite-dimensional spa
es

that C does not 
ontain aÆne lines without B(C) having interior points.

(b) If X is in�nite-dimensional and B(C) has an interior point x , then X = R

+

x � B(C)

implies that for ea
h s 2 R ea
h element y 2 X is bounded from above on the set C

s

:= f� 2

C:�(x) � sg . We 
on
lude that C

s

is weak-�-
losed and weak-�-bounded. If X is a Bana
h

spa
e, then the Uniform Boundedness Prin
iple implies that C

s

is bounded and therefore weak-

�-
ompa
t. Hen
e ea
h x 2 intB(C) has a minimal value on C . Furthermore C has extreme

points by the Krein{Milman Theorem.

To see that highest weight representations are related to a variety of interesting geometri


and analyti
 stru
tures, let us dis
uss some of their properties for �nite-dimensional groups (for

proofs see [Ne99, Chs. X-XV℄). In the remainder of this se
tion G denotes a �nite-dimensional


onne
ted Lie group.

(1) (Extreme points) The set Ext(I

�

) of extreme points of I

�


onsists of a single G-orbit O

�

satisfying I

�

= 
onv(O

�

). Sin
e I

�

is in general not 
ompa
t, it is quite remarkable that we

have I

�

= 
onv(Ext(I

�

)).

(2) (Classi�
ation) Two highest weight representations �

1

and �

2

of G are equivalent if and

only if their moment set and hen
e the 
orresponding orbits O

�

1

and O

�

2


oin
ide. This means

that for the 
lass of highest weight representations the moment set 
arries enough information to

separate the representations. This is far from being true for general irredu
ible representations.

If g is simple and � is irredu
ible but not a highest weight representation, then I

�

= g

0

, so that

the moment set 
ontains no information at all.

(3) (Coherent states and K�ahler orbits) The existen
e of extreme points in I

�

is related to the


omplex geometry of the Fr�e
het-K�ahler manifold P(H

1

) in the following sense. The inverse

image �

�1

�

(O

�

) is non-empty and 
onsists of a single G-orbit O

CS

whi
h is 
alled the 
oherent

state orbit (CS-orbit). This orbit has the following properties:

(a) As a homogeneous spa
e of G , the orbit O

CS

has a unique 
omplex stru
ture su
h that

the orbit map O

CS

! P(H

1

) is antiholomorphi
. Moreover, O

CS

is the unique G-orbit in

P(H

1

) with this property. We therefore obtain a 
lose 
onne
tion between extremality in

I

�

and the existen
e of a 
omplex stru
ture on orbits in P(H

1

).

(b) The restri
tion of the moment map to O

CS

yields a bije
tion O

CS

! O

�

. In parti
ular

O

�


arries a natural K�ahler stru
ture 
ompatible with the symple
ti
 stru
ture su
h that

G a
ts by K�ahler isomorphisms on O

�

.

(
) There exists a natural holomorphi
 line bundle L

�

! O

�

su
h that H embeds in a natural

G-equivariant way into the spa
e �(L

�

) of holomorphi
 se
tions of L

�

.

(4) (Complex semigroups) Let us 
all a subset W � g weakly ellipti
 if Spe
(adx) � iR holds for

all x 2W . For every 
losed 
onvex invariant weakly ellipti
 
one W � g there exists a 
omplex

semigroup �

G

(W ) with the following properties:
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(S1) G � �

G

(W ).

(S2) There is a homeomorphism p

G

:G�W ! �

G

(W ).

(S3) If the universal 
omplexi�
ation �

G

:G! G

C

of G is inje
tive, then �

G

(W )

�

=

G exp

G

C

(iW )

and p(g;X) = g exp(iX).

(S4) If ':G

1

! G

2

is a 
overing map of groups with Lie algebra g , then p

G

2

('(g); X) =

p

G

1

(g;X).

For a more detailed dis
ussion of these semigroups we refer to [Ne99, Ch. XI℄. It is important to

note that the semigroup �

G

(W ) always 
ontains G , regardless of whether it is 
ontained in a


omplex group or not. Sin
e there is always a group G

1

lo
ally isomorphi
 to G whi
h has an

inje
tive universal 
omplexi�
ation, the semigroup �

G

(W ) is uniquely determined by (S1){(S4).

If � is a unitary highest weight representation su
h that the kernel of the derived repre-

sentation is 
entral, then the 
onvex 
one �B(I

�

) � g has a weakly ellipti
 
losure W and the

G-a
tion on the 
omplex manifold O

�

extends holomorphi
ally to an a
tion of the 
omplex semi-

group �

G

(W ). From that one further derives that the G-representation � extends to a holomor-

phi
 representation of �

G

(W ) on a dense subspa
e, and the subsemigroup �

G

(�B(I

�

)) � �

G

(W )

a
ts by bounded operators on H . On the non-empty interior �

G

(W

0

) we obtain a holomorphi


homomorphism b�: �

G

(W

0

)! B(H) (
f. [Ne99, Se
t. XI.3℄).

If G is 
ompa
t or has a 
ompa
t Lie algebra, then the whole Lie algebra g is weakly

ellipti
 and �

G

(g) = G

C

is the universal 
omplexi�
ation of G . In this 
ase O

�

is, as a 
omplex

manifold, a generalized 
ag manifold of the 
omplex redu
tive group G

C

, and we obtain a

holomorphi
 representation of G

C

on the �nite-dimensional Hilbert spa
e H .

These results on highest weight representations of �nite-dimensional groups show that

there is a wealth of information available on highest weight representations, and the properties

listed above just s
rat
h the surfa
e of the interesting relations between 
onvex geometry, K�ahler

manifolds, holomorphi
 semigroup a
tions on manifolds, and holomorphi
 representations on

Hilbert spa
es. There are additional bran
hes su
h as the algebrai
 stru
ture of highest weight

representations and the 
omplex geometry of the semigroups �

G

(W ) (
f. [Ne99, Chs. IX, XIII℄).

The main obje
tive of the present note is to show that many of the above results and

relations have interesting analogs for in�nite-dimensional groups whi
h deserve to be investigated

systemati
ally. In parti
ular they provide a guiding philosophy telling us where to �nd interesting

obje
ts in in�nite-dimensional Lie theory.

We will see below that the 
ontext of real L

�

-algebras, highest weight representations, and

ellipti
 
oadjoint orbits geometri
ally resembles very mu
h the �nite-dimensional 
ase, although

the results known so far, are still far from being as sharp as for �nite-dimensional groups.

II. AÆne 
oadjoint orbits

At the present state of knowledge on in�nite-dimensional groups, their geometry and their

representations, there are two natural points to enter the 
ir
le of ideas des
ribed in Se
tion I.

The �rst possibility is to use algebrai
 stru
tures su
h as root de
ompositions of the underlying

Lie algebra to approa
h unitary highest weight representations from the algebrai
 side. This has

been done in parti
ular in [Ne00f℄ for lo
ally �nite Lie algebras; see also [KR87℄ and [Ka90℄ for


orresponding results for Ka
{Moody algebras and the Virasoro algebra. Here the advantage

is that one 
an stay on the Lie algebra side without needing 
orresponding groups, but then

the diÆ
ulties start when we want to integrate our Lie algebra representations to unitary group

representations. Therefore we will follow a more geometri
 path by �rst studying the geometry

of 
oadjoint orbits, whi
h is a basi
 philosophy in �nite-dimensional and also partly in in�nite-

dimensional unitary representation theory (
f. [Ki76℄, [Ki99℄). We will see below that this

geometri
 approa
h leads for ellipti
 orbits of L

�

-groups naturally to the unitary highest weight

representations of these groups. The main di�eren
e to the �nite-dimensional 
ontext is that we

have to keep tra
k of 
entral extensions and extensions by 
ertain automorphism groups during

the pro
ess.
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We think that it is a 
hallenging geometri
 program, to understand the extent to whi
h

the results of Se
tion I are true for in�nite-dimensional groups. It seems that the approa
h via

\ellipti
" 
oadjoint orbits is a natural path one should also exploit for other types of groups. We

have the feeling that the o

urren
e of strong K�ahler orbits is 
losely related to the L

�

-
ontext

and that in general one should only expe
t weak K�ahler stru
tures on the interesting orbits (
f.

[PS86℄).

This program is of parti
ular interest be
ause for in�nite-dimensional groups unitary high-

est weight representations seem to play a mu
h more important role among the general unitary

representations than it is the 
ase for �nite-dimensional groups. This is mostly due to the fa
t

that in physi
al models the lower boundedness of the energy, the parti
le number, or similar

observables, for
e the 
orresponding Lie algebra representation to be a highest weight represen-

tation (
f. [Ne99℄ for a pre
ise statement for �nite-dimensional groups supporting this point of

view).

Throughout this se
tion G always denotes a 
onne
ted Bana
h{Lie group. We will des
ribe

the relevant notions for the study of the 
oadjoint representation of G . Sin
e not all quotients

by 
losed subgroups 
arry natural manifold stru
tures, we �rst take a look at Lie subgroups.

De�nition II.1. (Lie subgroups) Let G be a Bana
h{Lie group, H � G a 
losed subgroup

and

L(H) := fx 2 L(G): exp(Rx) � Hg:

Then L(H) is a 
losed Lie subalgebra of L(G). We 
all H a Lie subgroup of G if there exists

an open 0-neighborhood V � L(G) su
h that exp(V \ L(H)) is a 1-neighborhood in H and

exp j

V

is inje
tive. This implies that H 
arries a Lie group stru
ture su
h that L(H) is the Lie

algebra of H and the exponential map of H is given by the restri
tion of the exponential map

of G to L(H) ([Ma62℄).

If, in addition, the 
losed subspa
e L(H) � L(G) is 
omplemented, then we 
all H a


omplemented Lie subgroup. This 
ondition implies that the quotient spa
e G=H 
arries a

natural manifold stru
ture su
h that the quotient map q:G! G=H is a submersion (
f. [Bou90,

Ch. 3, x1.6, Prop. 11℄). Sin
e every 
losed subspa
e of a Hilbert spa
e is 
omplemented, every

Lie subgroup of a Hilbert{Lie group is 
omplemented.

Next we turn to symple
ti
 stru
tures on 
oadjoint orbits. There are some subtleties in the

in�nite-dimensional 
ontext 
aused by several notions of non-degenera
y for symple
ti
 forms.

De�nition II.2. (a) Let X be a Bana
h spa
e and X

0

its dual spa
e. We 
all a skew-

symmetri
 
ontinuous bilinear form !:X �X ! R non-degenerate if the map �

!

:X ! X

0

; v 7!

!(v; �) is inje
tive. We 
all it strongly non-degenerate if the map �

!

is bije
tive. It is not hard

to see that the existen
e of a strongly non-degenerate form on X implies that X is a re
exive

Bana
h spa
e.

(b) A weakly symple
ti
 Bana
h manifold is a pair (M;
), where 
 is a 
losed 2-form on M

su
h that for ea
h p 2 M the form 


p

on T

p

(M) is non-degenerate. We 
all (M;
) strongly

symple
ti
 if all the forms 


p

are strongly non-degenerate and, in addition, in lo
al 
oordinates

the map p 7! �




p

2 GL(T

p

(M); T

p

(M)

0

) is smooth. If M is �nite-dimensional and weakly

symple
ti
, then M is automati
ally strongly symple
ti
.

If M is a 
omplex manifold with 
omplex stru
ture I and 
 is a weak symple
ti
 stru
ture

on M , then we 
all (M;
; I) a weak pseudo-K�ahler manifold if for ea
h p 2M the bilinear form

(v; w) 7! 


p

(v; I:w) is symmetri
. If, in addition, this form is positive de�nite, we 
all (M;
; I)

a weak K�ahler manifold. A

ordingly we de�ne strong (pseudo-)K�ahler manifolds.

(
) Let (M;
) be a weakly symple
ti
 manifold. A smooth ve
tor �eld X on M is 
alled

Hamiltonian if there exists a smooth fun
tion f :M ! R with df = �i(X):
 = �
(X; �). In

view of the non-degenera
y of 
, the ve
tor �eld X is uniquely determined by f , and we 
all

it the Hamiltonian ve
tor �eld de�ned by f . If M is strongly symple
ti
, then for ea
h smooth

fun
tion f 2 C

1

(M;R) the 1-form df 
an be written as df = �i(X):
 for a smooth ve
tor

�eld X . Hen
e ea
h fun
tion de�nes a 
orresponding Hamiltonian ve
tor �eld.



7 vigo.tex April 9, 2001

(d) Let �:G�M !M be a smooth a
tion of the 
onne
ted Bana
h{Lie group G on the weakly

symple
ti
 manifold M by symple
tomorphisms. Then � is 
alled Hamiltonian if there exists

a moment map, i.e., a smooth map �:M ! L(G)

0

su
h that for ea
h x 2 L(G) the smooth

fun
tions '(x) := h�; xi satisfy d'(x) = �i( _�(x)):
, where _�(x)(p) =

d

dt

j

t=0

exp(�tx):p for

p 2M .

De�nition II.3. (a) Let g a topologi
al Lie algebra, i.e., a Lie algebra whi
h is a topologi
al

ve
tor spa
e with a 
ontinuous Lie bra
ket, and z be a topologi
al ve
tor spa
e, 
onsidered as

a trivial g-module. A 
ontinuous z-valued 2-
o
y
le is a 
ontinuous skew-symmetri
 fun
tion

!: g� g! z with

!([x; y℄; z) + !([y; z℄; x) + !([z; x℄; y) = 0:

It is 
alled a 
oboundary if there exists a 
ontinuous linear map �: g! z with !(x; y) = �([x; y℄)

for all x; y 2 g . We write Z

2




(g; z) for the spa
e of 
ontinuous z-valued 2-
o
y
les and B

2




(g; z)

for the subspa
e of 
oboundaries. We de�ne the se
ond 
ontinuous Lie algebra 
ohomology spa
e

H

2




(g; z) := Z

2




(g; z)=B

2




(g; z):

(b) Ea
h 
ontinuous 
o
y
le ! 2 Z

2




(g; z) de�nes a 
entral extension g �

!

z of g by z whose

underlying topologi
al ve
tor spa
e is g� z and whose Lie bra
ket is de�ned by

[(x; z); (x

0

; z

0

)℄ =

�

[x; x

0

℄; !(x; x

0

)

�

:

Then q: g�

!

z ! g; (x; z) 7! x is a Lie algebra homomorphism with 
entral kernel z .

In the following we write Ad

�

(g):� := � Æ Ad(g)

�1

for the 
oadjoint a
tion of G on g

0

,

and ad

�

(x):� := �� Æ adx for the 
orresponding derived a
tion.

Theorem II.4. ([Ne01a℄) (a) Let G be a 
onne
ted simply 
onne
ted real Bana
h{Lie group

and ! 2 Z

2




(g;R) a 
ontinuous 2-
o
y
le. Then the homomorphism

ad

�

!

: g! aff(g

0

)

�

=

g

0

o gl(g

0

); x 7! (!(x; �); ad

�

(x))

of Bana
h{Lie algebras integrates to an aÆne a
tion of G on g

0

given by

Ad

�

!

(g):� = Ad

�

(g):� + �(g);

where �:G ! g

0

is a 1-
o
y
le with values in the 
oadjoint representation of G on g

0

and

d�(e)(x) = !(x; �) for x 2 g .

(b) If, in addition, G is a Hilbert{Lie group, then every G-orbit O

�

:= Ad

�

!

(G):� � g

0


arries a

natural stru
ture of a weakly symple
ti
 manifold (O

�

;
) su
h that G a
ts symple
ti
ally and the

in
lusion map �:O

�

! g

0

is a moment map for this symple
ti
 a
tion. The symple
ti
 stru
ture

on O

�

is given in the base point � by




�

(ad

�

!

(x):�; ad

�

!

(y):�) := �([x; y℄) � !(x; y):

If G is not a Hilbert{Lie group, there seems to be no way to obtain manifold stru
tures on all


oadjoint orbits be
ause the stabilizer groups are Lie subgroups whi
h need not be 
omplemented.

The situation is mu
h better for quotients G=N where N E G is a normal Lie subgroup. In this


ase G=N always is a Bana
h{Lie group as has re
ently been shown in [GN01℄.

Remark II.5. (a) The assumption in Theorem II.4 that G is simply 
onne
ted is important

be
ause if this is not the 
ase and q:

e

G ! G is the universal 
overing group, then we 
an apply

Theorem II.4 to

e

G , and we obtain an aÆne a
tion of G on g

0

if and only if the 
entral subgroup

�

1

(G)

�

=

ker q a
ts trivially on g

0

. In view of �

1

(G) � kerAd

e

G

= Z(

e

G), this group a
ts by

translations on g

0

. One 
an show that the triviality of the a
tion of �

1

(G) is equivalent to the
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exa
tness of the 
losed 1-forms i(x

r

):
 on G , where x

r

is the right invariant ve
tor �eld with

x

r

(e) = x and 
 is the left invariant 2-form with 


e

= ! ([Ne01a℄).

(b) Let

b

g := g�

!

R denote the 
entral extension de�ned by ! 2 Z

2




(g;R) and identify g

0

with

the hyperplane H := f(�;�1):� 2 g

0

g �

b

g

0

. For x 2 g we then have

ad

�

(x; 0)(�;�1) = �(�;�1) Æ ad(x; 0) = (ad

�

x:�; !(x; �)):

If

b

G is a 
onne
ted Lie group with Lie algebra

b

g , then it �xes the elements of z := f0g�R � z(

b

g)

pointwise, so that the 
oadjoint a
tion preserves the hyperplane H �

b

g

0

, hen
e indu
es an aÆne

a
tion on g

0

. Moreover, the derived aÆne a
tion of the Lie algebra

b

g fa
tors through the aÆne

a
tion ad

�

!

of g on g

0

.

The main point in studying aÆne a
tions of G instead of linear a
tions of

b

G is that there

are many situations where the Lie algebra

b

g is not enlargible in the sense that there exists no

global group

b

G with L(

b

G) =

b

g . The obstru
tion for the existen
e of

b

G lies in �

2

(G) (see [Ne00b℄

for details), hen
e 
annot be resolved by passing to 
overing groups. Sin
e the obstru
tion for

the existen
e of the aÆne a
tion of G on g

0

lies in �

1

(G), it is mu
h more easily resolved by

repla
ing G by

e

G .

(
) As [Ne00b, Th. II.4℄ shows, for Proposition II.15(a) one does not need the Bana
h stru
ture

on G . It holds for any simply 
onne
ted Lie group modeled over a sequentially 
omplete lo
ally


onvex spa
e.

(d) Let ! 2 Z

2




(g;R) and Ad

�

!

be as above. For � 2 g

0

we 
onsider the equivalent 
o
y
le

e!(x; y) = !(x; y)� �([x; y℄):

Then the translation map �

�

: g

0

! g

0

; 
 7! 
 � � intertwines the a
tions Ad

�

!

and Ad

�

e!

and

indu
es a symple
ti
 isomorphism O

�

!

e

O

���

:= Ad

�

e!

(G):(���). Therefore it suÆ
es to study

the orbits of the type O

0

:= Ad

�

!

(G):0 = �(G) � g

0

:

III. C

�

-algebras

Before we turn to the 
lass of L

�

-groups in the next se
tion, it is instru
tive to dis
uss some

aspe
ts of Se
tion I for irredu
ible representations of C

�

-algebras. Let A be a unital C

�

-algebra,

G := U(A) = fa 2 A: aa

�

= a

�

a = 1g

be the 
orresponding unitary group, and L(G) = u(A) := fx 2 A:x

�

= �xg its Lie algebra. For

the C

�

-algebrai
 fa
ts used in this se
tion we refer to [Dix64℄.

Let (�;H) be an irredu
ible unitary representation of G whi
h is obtained by restri
tion

from a C

�

-algebra representation �

A

:A ! B(H) with �

A

(1) = 1 . Then �

A

is automati
ally

norm-
ontinuous, so that �: U(A) ! U(H) is a morphism of Bana
h{Lie groups and therefore

H = H

!

. Note that, in view of S
hur's Lemma, ea
h irredu
ible representation of A restri
ts to

an irredu
ible representation of U(A).

We will relate the moment set for � to the geometry of states of the C

�

-algebra A . Let

S(A) := f' 2 A

0

:'(1) = 1; (8a 2 A)'(a

�

a) � 1g � iu(A)

0

� A

0

denote the set of states of A . The image of the moment map �

�

:P(H)! u(A)

0

is 
ontained in

iS(A), whi
h implies that I

�

� iS(A) be
ause of the weak-�-
losedness of S(A). We 
on
lude

in parti
ular that I

�

is a weak-�-
ompa
t set. A

ording to [Ne99, Th. X.5.13(iii)℄, we have

I

�

=

�

iS(A)

�

\ ker�

A

�

=

iS(A= ker�

A

);

so that I

�


an be identi�ed with the set of states of the quotient C

�

-algebra A= ker�

A

. Sin
e

I

�

is weak-�-
ompa
t, the existen
e of extreme points follows from the Krein{Milman Theorem.
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Theorem III.1. Let (�

A

;H) be an irredu
ible representation of A and � := �

A

j

U(A)

. Then

the following assertions hold:

(i) �

�

(P(H)) � Ext(I

�

):

(ii) U(A) a
ts transitively on P(H) .

(iii) The group U(A) a
ts transitively on Ext(I

�

) if and only if ea
h irredu
ible representation

�

A

with ker �

A

� ker�

A

is equivalent to �

A

.

Proof. (i) Sin
e the algebra representation �

A

is irredu
ible, for ea
h [v℄ 2 P(H) the fun
tional

�i�

�

([v℄) is a pure state of the C

�

-algebra A , hen
e an extreme point of S(A). Thus

�

�

(P(H)) � I

�

\ Ext(iS(A)) � Ext(I

�

):

(ii) For 0 6= v 2 H we derive from [Ne99, Th. X.5.16℄ that its annihilator Ann

A

(v) := fa 2

A: a:v = 0g satis�es

Ann

A

(v) + Ann

A

(v)

�

+ C 1 = A:

Therefore H = A:v implies that H = C v + Ann

A

(v)

�

:v . For a 2 Ann

A

(v)

�

we have a:v =

(a� a

�

):v , so that we further obtain H = C v + u(A):v: This implies that the tangent map in e

of the orbit map

�: U(A)! P(H); g 7! g:[v℄ = [g:v℄

is surje
tive and hen
e that the orbit U(A):[v℄ in P(H) is open by the Non-linear Open Mapping

Theorem ([De85, Cor. 15.2℄). Sin
e [v℄ 2 P(H) was arbitrary, the orbits of U(A) form a

de
omposition of P(H) into pairwise disjoint open subsets, and therefore the 
onne
tedness

of P(H) implies that U(A) a
ts transitively.

(iii) Let ' 2 Ext(I

�

) � I

�

�

=

iS(A= ker�

A

). Then ' is a pure state of the C

�

-algebra A= ker�

A

,

hen
e 
orresponds to an irredu
ible representation �

A

of A with ker �

A

� ker�

A

, and for

� := �

A

j

U(A)

the fun
tional ' is 
ontained in the image of the moment map �

�

.

If this representation is equivalent to �

A

, then 
learly ' 2 im�

�

. On the other hand, (ii)

shows that the subset im�

�

� Ext(I

�

) is a 
oadjoint orbit for U(A).

If there exists an irredu
ible representation �

A

of A with ker �

A

� ker�

A

whi
h is not

equivalent to �

A

, then it follows that im�

�

� Ext(I

�

) is a di�erent U(A)-orbit.

Remark III.2. (a) Theorem III.1(ii) shows that the proje
tive spa
e P(H) plays the role of a


oherent state orbit for irredu
ible representations of A .

(b) If H is an in�nite-dimensional Hilbert spa
e and A = B(H) with �

A

(a) = a , then ker�

A

=

f0g , so that I

�

= iS(A). On the other hand the ideal K(H) of 
ompa
t operators on H is a

proper ideal, so that K(H)

?

� I

�

is a proper U(H)-invariant subset, and therefore U(H) does

not a
ts transitively on Ext(I

�

). Somehow this di�eren
e to the �nite-dimensional 
ase seems to

be 
aused by taking the 
losure in the weak-�-topology on u(H)

0

whi
h seems to be too 
oarse.

(
) The 
ondition in Theorem III.1(iii) means that the 
lass of the representation �

A

is a 
losed

point in the spe
trum

b

A of A (
f. [Dix64℄).

(d) If A is a postliminary C

�

-algebra ([Dix64℄), then for ea
h irredu
ible representation �

A

of A

the image �

A

(A) 
ontains the ideal K(H) of 
ompa
t operators, so that the transitivity of the

a
tion on P(H) follows trivially from the transitivity of the a
tion of the group U(H)\(1+K(H)).

IV. L

�

-groups

In this se
tion we explain the 
ontext of real L

�

-groups and the phenomena one �nds for

their ellipti
 
oadjoint orbits. Here the main point is that those 
oadjoint orbits whi
h are strongly

symple
ti
 turn out to be quite a

essible, whereas the situation for the weakly symple
ti
 orbits

seems to be mu
h harder to understand.

More detailed referen
es for the material in this se
tion are [Ne01a,
℄.
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De�nition IV.1. Let g be a real Hilbert spa
e whi
h at the same time is a Lie algebra

with an involutive antiautomorphism x 7! x

�

. We 
all g an L

�

-algebra if these stru
tures are


ompatible in the sense that the involution � is isometri
 and

(4:1) h[x; y℄; zi = hy; [x

�

; z℄i for x; y; z 2 g:

Then g = k� p with k := fx 2 g:x

�

= �xg and p := fx 2 g:x

�

= xg .

We say that g is 
ompa
t if g = k and that g is of hermitian type if the 
omplex subspa
e

p

C

� g

C

de
omposes into two subspa
es p

�

su
h that

g

C

= p

+

� k

C

� p

�

is a 3-grading in the sense that [p

�

; p

�

℄ = f0g , [p

�

; p

�

℄ � k

C

, and [k

C

; p

�

℄ � p

�

.

Using the Closed Graph Theorem, one 
an derive the 
ontinuity of the Lie bra
ket on g ,

so that this requirement does not have to be put into the axioms of an L

�

-algebra. If g is

�nite-dimensional real redu
tive, we may de�ne x

�

:= ��(x) for a Cartan involution � to see

that g is an L

�

-algebra, and it is also not hard to see that every �nite-dimensional L

�

-algebra

is redu
tive. In this sense L

�

-algebras are generalizations of �nite-dimensional real redu
tive Lie

algebras whi
h still have the ni
e feature of a s
alar produ
t satisfying (4.1). Note that 
ompa
t

L

�

-algebras are generalizations of 
ompa
t Lie algebras.

Every L

�

-algebra is the Hilbert spa
e dire
t sum of its 
enter and its simple ideals ([S
h60℄)

whi
h redu
es many questions on L

�

-algebras to simple algebras. In parti
ular the splitting of

the 
enter together with the result that Bana
h{Lie algebras with faithful representations are

enlargible in the sense that they are the Lie algebra of a 
orresponding group ([EK64℄) now leads

to the following theorem:

Theorem IV.2. For every L

�

-algebra g there exists a 
onne
ted Hilbert{Lie group G with

Lie algebra g .

Example IV.3. To des
ribe some simple L

�

-algebras and the 
orresponding groups, let H

be a 
omplex Hilbert spa
e and B

2

(H) := fx 2 B(H): kxk

2

:=

p

tr(xx

�

) < 1g the ideal of

Hilbert{S
hmidt operators (
f. [RS78℄).

(a) The spa
e gl

2

(H) := B

2

(H) is a 
omplex L

�

-algebra with respe
t to the operator 
ommutator

and the s
alar produ
t hx; yi := tr(xy

�

). If I :H ! H is an antilinear isometry with I

2

2 f�1g ,

we de�ne

gl(H; I) := fX 2 gl(H):X + IX

�

I

�1

= 0g and gl

2

(H; I) := g(H; I) \ gl

2

(H):

For I

2

= �1 we also write sp

2

(H; I) := gl

2

(H; I); and for I

2

= 1 we write o

2

(H; I) := gl

2

(H; I).

This notation is motivated by the observation that �(x; y) := hx; I:yi de�nes a 
omplex bilinear

form on H with

gl(H; I) = fx 2 gl(H): (8v; w 2 H)�(x:v; w) + �(v; x:w) = 0g:

This form is skew-symmetri
 for I

2

= �1 and symmetri
 for I

2

= 1 .

The 
orresponding groups are

GL

2

(H) := fg 2 GL(H): g � 1 2 B

2

(H)g with L(GL

2

(H)) = gl

2

(H)

and

GL

2

(H; I) := fg 2 GL

2

(H): Ig

�

I

�1

= g

�1

g with L(GL

2

(H; I)) = gl

2

(H; I):

Ea
h simple in�nite-dimensional L

�

-algebra g is isomorphi
 to gl

2

(H), sp

2

(H; I) or

o

2

(H; I) for some in�nite-dimensional Hilbert spa
e H , and all these algebras are pairwise non-

isomorphi
 (see [S
h60℄ for the separable 
ase and [CGM90℄, [Neh93℄ and [St99℄ for di�erent proofs
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for the general 
ase). Real separable simple L

�

-algebras have been 
lassi�ed independently by

Bala
handran ([Ba69℄), de la Harpe ([dlH70, 71a℄) and Unsain ([Un71, 72℄).

(b) Sin
e every 
omplex simple L

�

-algebra has, up to isomorphism, a unique 
ompa
t real form,

ea
h 
ompa
t in�nite-dimensional simple L

�

-algebra is isomorphi
 to one of the following

u

2

(H) := fx 2 gl

2

(H):x

�

= �xg or u

2

(H; I) := fx 2 u

2

(H): Ix = xIg:

Here the 
orresponding groups are

U

2

(H) := U(H) \GL

2

(H) and U

2

(H; I) := U(H) \GL

2

(H; I):

(
) (
f. [NeSt99℄, [dlH72℄) The hermitian simple L

�

-algebras arise in several series a

ording to

the type of their 
omplexi�
ation. For g

C

= gl

2

(H) we have the pseudounitary Lie algebras

u

2

(H

+

; H

�

) := fx 2 gl

2

(H):Tx

�

T

�1

= �xg;

where T 2 Herm(H) satis�es T

2

= 1 and ker(T � 1) = H

�

. For g

C

= gl

2

(H; I) we 
hoose a

subspa
e H

+

� H su
h that H = H

+

� I:H

+

is an orthogonal dire
t sum and set H

�

:= I:H

+

.

Then we obtain the hermitian Lie algebras

sp

2

(H; I;R) := u

2

(H

+

; H

�

) \ sp

2

(H; I) and o

�

2

(H; I) := u

2

(H

+

; H

�

) \ o

2

(H; I):

We obtain additional real forms of o

2

(H; I) as follows: Let H = H

+

� H

�

be a real Hilbert

spa
e whi
h is the orthogonal sum of the subspa
es H

�

, de�ne a symmetri
 bilinear form on H

by �(x

+

+ x

�

; y

+

+ y

�

) := hx

+

; y

+

i � hx

�

; y

�

i; and put

o

2

(H

+

; H

�

;R) := fx 2 B

2

(H;R): (8v; w 2 H)�(x:v; w) + �(v; x:w) = 0g;

where B

2

(H;R) denotes the spa
e of real linear Hilbert-S
hmidt operators on H . Then the

L

�

-algebra o

2

(H

+

; H

�

;R) is hermitian if and only if H

+

or H

�

is 2-dimensional.

Corresponding groups are

U(H

+

; H

�

) := fx 2 GL

2

(H):Tg

�

T

�1

= g

�1

g; Sp(H; I;R) := U

2

(H

+

; H

�

) \ Sp

2

(H; I);

O

�

(H; I) := U

2

(H

+

; H

�

) \O

2

(H; I);

and

O

2

(H

+

; H

�

;R) := fg 2 GL

2

(H;R): (8v; w 2 H)�(g:v; g:w) = �(v; w)g:

We have seen in the pre
eding se
tion that to understand 
oadjoint orbits of a real Lie

algebra g in the appropriate generality, it is ne
essary to study also aÆne 
oadjoint a
tions.

So let ! 2 Z

2




(g;R) be a 
ontinuous 
o
y
le of g . Then the strong non-degenera
y of the

s
alar produ
t on g implies the existen
e of a 
ontinuous operator D: g ! g with !(x; y) =

!

D

(x; y) := hD:x; y

�

i . It is easy to verify that D is a derivation and, 
onversely, for every


ontinuous derivation D , the pres
ription !

D

(x; y) := hD:x; y

�

i de�nes an element of Z

2




(g;R) .

Here the 
oboundaries 
orrespond to the inner derivations, and therefore H

2




(g;R)

�

=

der g= ad g;

where der g denotes the spa
e of 
ontinuous derivations of g .

Let D 2 der g . As we have seen in Remark II.5(d), it suÆ
es to study the orbit

O

D

:= �(G) � g

0

of 0 2 g

0

for the aÆne a
tion de�ned by the 
o
y
le !

D

. It is a natural question whether

there are 
ertain 
oadjoint orbits whi
h are better than others. As every orbit O

D


arries a

natural weakly symple
ti
 stru
ture, one would like to know when these stru
tures are strongly

symple
ti
. We 
all O

D

an ellipti
 orbit if D

�

= �D , i.e., D

�

is a skew-symmetri
 operator on

the real Hilbert spa
e g .

For the following theorem, we re
all that a normal operator A on a Hilbert spa
e has 
losed

range if and only if f0g is isolated in its spe
trum, where the 
ase that A is invertible is in
luded.
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Theorem IV.4. ([Ne01a℄) For D 2 der g the following assertions hold:

(i) O

D

is strongly symple
ti
 if and only if imD is 
losed.

(ii) If imD is 
losed, then:

(a) D is diagonalizable on g

C

.

(b) kerD 
ontains a Cartan subalgebra, i.e., a maximal abelian �-invariant subalgebra.

(
) If g is simple and g

C

2 fgl

2

(H); gl

2

(H; I)g for a 
omplex Hilbert spa
e H , then D


an be written as D:x = [D

H

; x℄ , where D

H

is a skew-hermitian operator with �nite

spe
trum whi
h for g

C

= gl

2

(H; I) 
ommutes with I .

The pre
eding theorem shows that the orbits O

D

are geometri
ally ni
e if D has 
losed

range. From now on we assume this and that g is simple and in�nite-dimensional, so that we may

assume that g

C

2 fgl

2

(H); gl

2

(H; I)g for some in�nite-dimensional 
omplex Hilbert spa
e H .

In the following G � GL

2

(H) will always denote the 
onne
ted Lie subgroup 
orresponding to

the Lie subalgebra g � gl

2

(H) and G

C

� GL

2

(H) the subgroup 
orresponding to g

C

(Example

IV.3).

We use Theorem IV.4(ii)(
) to write D as D(x) = [D

H

; x℄ for some diagonalizable skew-

hermitian operator D

H

with �nitely many eigenvalues. Identifying g with g

0

via the symmetri


bilinear form �(x; y) = hx; y

�

i = tr(xy), the aÆne 
oadjoint a
tion of G on g 
orresponding to

!

D

is given by

Ad

!

D

(g):y = gyg

�1

+D

H

� gD

H

g

�1

on the group level and by

ad

!

D

(x):y = ad(x):y + [D

H

; x℄

on the Lie algebra level. Note that g 2 GL

2

(H) implies that D

H

� gD

H

g

�1

= [D

H

; g℄g

�1

is a

Hilbert{S
hmidt operator.

We know from the theory of �nite-dimensional 
ompa
t Lie algebras that every 
oadjoint

orbit has a natural K�ahler stru
ture, and we will see below that this generalizes to the fa
t that

all strongly symple
ti
 orbits of 
ompa
t L

�

-algebras have natural K�ahler stru
tures. So let us

assume for a moment that g is 
ompa
t, hen
e 
ontained in u

2

(H). Let

g

�

= fx 2 g

C

: sup

t>0

ke

�itD

:xk <1g;

and observe that e

itD

2 Aut(g

C

) implies that g

�

are subalgebras of g

C

. The spe
tral theory

of hermitian operators implies that g

�

are the maximal 
losed iD -invariant subspa
es of g

C

on

whi
h the spe
trum of the restri
tion of iD is 
ontained in [0;1[ , resp., ℄�1; 0℄. Sin
e g

C

is

a Hilbert{Lie algebra, the subalgebras g

�

are 
omplemented in g

C

.

Theorem IV.5. ([Ne01a,
℄) If g is a 
ompa
t simple L

�

-algebra and D 2 der g with 
losed

range, then there exist Lie subgroups G

�

� G

C

su
h that G a
ts transitively on the 
omplex

homogeneous spa
e G

C

=G

+

, and we thus obtain an isomorphism O

D

�

=

G

C

=G

+

of homogeneous

G-spa
es. The 
omplex stru
ture O

D

inherits from this identi�
ation turns it into a strong

K�ahler manifold.

Theorem IV.6. Let g be a simple real L

�

-algebra and 0 6= D = �D

�

2 der g su
h that

O

D

� g

0

is a strong K�ahler orbit. Then the following assertions hold:

(i) g is 
ompa
t or hermitian.

(ii) If p

�

:= g

�

\ p

C

, then g

C

= p

+

� k

C

� p

�

is a 3-grading.

(iii) We have G

�

= K

�

P

�

�

=

P

�

oK

�

and the 
omplex stru
ture on O

D


an be obtained by

embedding it as an open orbit into G

C

=K

+

P

�

. From the �bration

K

C

=K

+

,! G

C

=K

+

P

�

!! G

C

=K

C

P

�

the 
oadjoint orbit O

D

inherits a holomorphi
 �bration

K

C

=K

+

�

=

O

D

K

,! O

D

!! D;

where D

K

:= D j

k

and D � G

C

=K

C

P

�

is the open G-orbit of the base point.
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Example IV.7. As above, let g be simple with g

C

2 fgl

2

(H); gl

2

(H; I)g and D

H

skew-

hermitian with �nite spe
trum (Theorem IV.4). Then the hermitian operator iD

H

on H de�nes

an orthogonal de
omposition of H into its eigenspa
es.

(a) We �rst 
onsider the 
ase g = u

2

(H). We write d

1

; : : : ; d

k

for the di�erent eigenvalues of

iD

H

and H

j

:= ker(D

H

� d

j

1) for the 
orresponding eigenspa
es. We may w.l.o.g. assume that

d

1

> : : : > d

k

. Then H = H

1

�: : :�H

k

is an orthogonal de
omposition, and a

ordingly we write

operators x 2 B(H) as matri
es x = (x

jl

) with x

jl

2 B(H

l

; H

j

). Then iD:(x

jl

) = ((d

j

�d

l

)x

jl

)

implies that

g

+

= fx = (x

jl

) 2 gl

2

(H): (j > l) ) x

jl

= 0g

is the subalgebra of upper triangular matri
es.

For j = 1; : : : ; k let F

j

:= H

1

+ : : : +H

j

with F

0

:= f0g . Then F = (F

0

; F

1

; : : : ; F

k

) is

a 
ag of 
losed subspa
es of H and G

+

:= fg 2 GL

2

(H): (8j)g:F

j

= F

j

g is a 
omplemented


onne
ted Lie subgroup of G

C

with Lie algebra g

+

. Therefore G

C

=G

+


an be identi�ed with

the set G

C

:F of 
ags of subspa
es of H , whi
h justi�es the name 
ag manifold for G

C

=G

+

.

(b) For g = gl

2

(H; I) the fa
t that D

H


ommutes with I implies that I: ker(iD

H

� d1) =

ker(iD

H

+ d1) for d 2 R . Let d

1

> : : : > d

k

denote the positive eigenvalues of D

H

and de�ne

d

�j

:= �d

j

and d

0

:= 0. For H

j

:= ker(D � d

j

1) we then obtain an orthogonal de
omposition

H = H

k

� : : :�H

0

� : : :�H

�k

with I:H

j

= H

�j

, so that H

0

= kerD is I -invariant, but this spa
e might be trivial.

For F

j

:= H

1

+ : : :+H

j

, j = 1; : : : ; k , as above, we obtain a 
ag

f0g = F

0

� F

1

� F

2

� : : : � F

k

� F

?

�

k

� : : : � F

?

�

1

� F

?

�

0

= H

and the spa
es F

j

, j = 1; : : : ; k , are isotropi
 for the bilinear form �(x; y) = hx; I:yi . From

d

1

> : : : > d

k

> d

0

> d

�k

> : : : > d

�1

and (a) one easily derives that the stabilizer G

+

� G

C

of this 
ag is a 
omplemented Lie subgroup

with Lie algebra g

+

but whi
h is not always 
onne
ted (see [Ne01
, Se
t. III℄ for a dis
ussion of


onne
ted 
omponents). Therefore we also obtain in this 
ase a realization of O

D

�

=

G

C

=G

+

.

(
) For the hermitian real form g = u(H

+

; H

�

) of g

C

= gl

2

(H) the realizations of the strong

K�ahler orbits 
orrespond to the following situations. Here the de
omposition H = H

+

� H

�

is invariant under iD

H

and all eigenvalues on H

�

are stri
tly larger than those on H

+

. Let

d

1

> : : : > d

p

denote the eigenvalues on H

+

and d

p+1

> : : : > d

k

those on H

�

. The K�ahler


ondition for O

D

implies that d

k

> d

1

, so that the group K

+

P

�

� G

C

= GL

2

(H) is given by

K

+

P

�

= fg 2 GL

2

(H): (8j)g:F

j

= F

j

g

for F

j

, j = 1; : : : ; k , as in (a). This group is a semidire
t produ
t P

�

oK

+

and

P

�

�

=

n

�

1 Z

0 1

�

:Z 2 B

2

(H

�

; H

+

)g;

where H

+

= F

p

, H

�

= F

?

p

, and B

2

(H

�

; H

+

) := fx 2 B(H

�

; H

+

): tr(x

�

x) < 1g . We further

have

K

C

= fg 2 GL

2

(H): g:H

�

= H

�

g

�

=

GL

2

(H

+

)�GL

2

(H

�

)

and

D

�

=

fZ 2 B

2

(H

+

; H

�

): kZk < 1g;

where the a
tion of G on this spa
e is obtained by restri
ting the partial a
tion of GL

2

(H) on

B

2

(H

+

; H

�

) given by

�

a b


 d

�

:z = (
+ dz)(a+ bz)

�1

:

Repla
ing D

H

by

e

D

H

with i

e

D

H

j

H

�

= � id

H

�

, the �bration from Theorem IV.6(iii) is

trivial, and we get

K

+

= K

C

and O

D

�

=

D:

(d) For g = sp(H; I;R) and g = o

�

(H; I) the situation is similar, where we have H

�

= I:H

+

,

0 > d

1

> : : : > d

k

and K

C

�

=

GL

2

(H

+

).
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For G = GL

2

(H) and k = 2 the 
onstru
tion above leads to the restri
ted Gra�mannians.

For G = GL

2

(H; I) and k = 2 we obtain for H

1

� H maximal isotropi
 the restri
ted

Gra�mannian of maximal isotropi
 subspa
es and for dimH

1

= 1 the spa
e of isotropi
 lines

in H . Both are hermitian symmetri
 spa
es whi
h are dual to symmetri
 Hilbert domains.

A 
lassi�
ation of hermitian symmetri
 Hilbert manifolds was obtained by W. Kaup in [Ka83℄

based on the algebrai
 
hara
terization of the simply 
onne
ted symmetri
 
omplex Bana
h

manifolds in terms of hermitian Jordan triple systems ([Ka77℄). These manifolds and their

automorphisms have been studied in [Ka75℄ and [DNS89℄, [DNS90℄. The 
ag manifolds for

GL

2

(H) for separable H have been introdu
ed by A. and G. Helmin
k in [HH94a℄ and [HH94b℄.

They apply the representations of 
entral extensions of the 
omplex group GL

2

(H) in Hilbert

spa
es of holomorphi
 se
tions of line bundles on the 
ag manifolds to integrable systems.

Remark IV.8. (a) The domains D showing up in Theorem IV.6 
an always be des
ribed as


oadjoint orbits if D 2 der g is the skew-hermitian derivation on g with kerD = 0 and D j

p

is the 
omplex stru
ture obtained by identifying it with p

�

. Then K

C

= K

+

and O

D


an be

identi�ed with the open G-orbit of the base point in G

C

=K

C

P

�

.

The domains obtained this way for the simple hermitian L

�

-algebras are the in�nite-

dimensional irredu
ible symmetri
 Hilbert domains. For g = u(H

+

; H

�

) one obtains

D = fZ 2 B

2

(H

+

; H

�

): kZk < 1g:

Although D is bounded in B(H

+

; H

�

) with respe
t to the operator norm, it is not bounded in

B

2

(H

+

; H

�

) if H

+

and H

�

are in�nite-dimensional. If one of these spa
es is �nite-dimensional,

then every bounded operator is Hilbert-S
hmidt, and there is no additional restri
tion.

For g = sp(H; I;R) and g = o

�

(H; I) we have H

�

= I:H

+

, so that we may de�ne

Z

>

:= IZ

�

I

�1

for Z 2 B

2

(H

+

; H

�

). Then the 
orresponding Hilbert domains are

D

+

:= fZ 2 D:Z

>

= Zg and D

�

:= fZ 2 D:Z

>

= �Zg:

The algebra g = o(H

+

; H

�

;R) with dimH

�

= 2 leads to the so-
alled Lie ball

D = fx 2 H : kxk

2

+

p

kxk

4

� jhx; xij

2

< 1g;

where H is a 
omplex Hilbert spa
e and x 7! x an antilinear isometri
 involution on H .

(b) It has been shown in [Ne00e, Se
t. V℄ that the 
losed subsemigroup S := fg 2 G

C

: g:D � Dg

of G

C


ontaining the real group G behaves very mu
h like the semigroups dis
ussed in Se
tion I

for �nite-dimensional groups. In parti
ular S has non-empty interior S

0

, and this semigroup

has a di�eomorphi
 polar map

G�W

0

! S

0

; (g;X) 7! g exp iX;

where W

0

� g is an open 
onvex invariant 
one.

Remark IV.9. A

ording to the Fundamental Conje
ture on Homogeneous K�ahler Manifolds

whi
h has been proved in [DoNa88℄, ea
h �nite-dimensional homogeneous K�ahler manifold M

has the stru
ture of a double �bration

M

1

,!M !! D and F ,!M

1

!! V:

Here the �rst �bration is des
ribed by the spa
e of bounded holomorphi
 fun
tions, the base

spa
e D is a bounded homogeneous domain, and on the �ber M

1

whi
h is a produ
t K�ahler

manifold F � V ([DoNa88, p. 63℄) all bounded holomorphi
 fun
tions are 
onstant. In view of

the 
ontra
tibility of D , the �rst �bration is holomorphi
ally trivial and M

�

=

M

1

�D ([DoNa88,

p. 67℄). The se
ond �bration is su
h that F is a 
omplex 
ag manifold and V is a quotient of a


omplex ve
tor spa
e by a dis
rete subgroup.
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If, in addition, M is a 
oadjoint K�ahler orbit, then the situation simpli�es somewhat

be
ause D is a bounded symmetri
 domain and V is a 
omplex ve
tor spa
e. Therefore the

se
ond �bration 
an be des
ribed by the spa
e of all holomorphi
 fun
tions (
f. [Li95, p. 353℄).

For a semisimple group the se
ond �bration is trivial, so that M is, as a 
omplex manifold,

the produ
t of a 
omplex 
ag manifold and a bounded symmetri
 domain. This is what we also

observe for the strong K�ahler orbits of simple L

�

-groups.

It is natural to extend the setting of real L

�

-groups in the sense that one also 
onsiders

groups of the type G = V o L , where L is a real L

�

-group and V is a real Hilbert spa
e on

whi
h L a
ts by a representation 
ompatible with the involution, i.e., (skew-)hermitian elements

of the Lie algebra of L a
t by (skew-)hermitian operators on V . A typi
al example is the

semidire
t produ
t G = H o Sp

2

(H; I;R). Here we obtain in parti
ular a strong K�ahler orbit

O isomorphi
 to H with the natural aÆne a
tion of G , and also produ
ts of H with 
oadjoint

K�ahler orbits of Sp

2

(H; I;R). This 
onstru
tion is very similar to the �nite-dimensional 
ase,

where it essentially leads to the 
lassi�
ation of 
oadjoint K�ahler orbits for unimodular groups

(
f. [Li91℄, [Ne95℄, [Ne99, Chs. XII and XV℄). All these K�ahler orbits O 
an be realized as open

G-orbits in a homogeneous spa
e of a 
omplex group G

C

, and in [Ne99, Se
t. XII.3℄ we have

determined the 
ompression semigroups S := fg 2 G

C

: g:O � Og for all ellipti
 
oadjoint K�ahler

orbits of �nite-dimensional groups (see Remark IV.8 for an indi
ation that many of these results


arry over to in�nite-dimensional groups).

It seems that the 
ondition that a K�ahler orbit is strong has severe stru
tural 
onsequen
es

for the Lie algebra. We are not aware of any su
h orbit whi
h does not have a double �bration

as in the �nite-dimensional 
ase. Weak K�ahler orbits seem to behave mu
h wilder in general.

V. Holomorphi
 representations of 
lassi
al groups

The key to the unitary representations of real L

�

-groups asso
iated to strong K�ahler orbits

are holomorphi
 representations of 
ertain asso
iated 
omplex groups. For details on the results

des
ribed in this se
tion we refer to [Ne98℄.

We 
onsider the groups

GL

1

(H) := GL(H) \ (1+B

1

(H)) and GL

1

(H; I) := GL

1

(H) \GL(H; I);

where I

2

= �1 as above and B

1

(H) � B(H) is the ideal of tra
e 
lass operators. Then GL

1

(H)

and GL

1

(H; I)

e

are 
onne
ted 
omplex Bana
h{Lie groups with

(5:1) �

1

(G

1

)

�

=

8

<

:

Z for G

1

= GL

1

(H)

Z

2

for G

1

= O

1

(H; I)

0 for G

1

= Sp

1

(H; I).

The group GL

1

(H) is a semidire
t produ
t SL(H) o C

�

, where SL(H) is a simply 
onne
ted

group, and for I

2

= 1 we also write SO

1

(H; I) := O

1

(H; I)

e

and note that its universal 
overing

group Spin

1

(H; I) is an analog of the 
omplex spin groups Spin(n; C ).

As we will explain below, the groups G

1

from (5.1), resp., their universal 
overing groups

q

G

1

:

e

G

1

! G

1

have a distinguished family of holomorphi
 representations whose restri
tions to

the unitary group U

1

:= G

1

\U(H), resp., to

e

U

1

:= q

�1

G

1

(U

1

), is unitary.

Let h

1

� g

1

:= L(G

1

) denote a maximal abelian �-invariant subalgebra; 
alled a Cartan

subalgebra. Then h

1

is simultaneously diagonalizable on H , hen
e 
an be viewed as those

operators in g

1

whi
h are diagonal with respe
t to a 
ertain orthonormal basis. Moreover, g

1

has a topologi
al root de
omposition in the sense that there exists a bounded dis
rete subset

� � h

0

1

su
h that the subspa
e

h

1

+

X

�2�

g

�

1

with g

�

1

:= fx 2 g

1

: (8y 2 h)[y; x℄ = �(y)xg
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is dense in g .

For g

1

= gl

1

(H) every Cartan subalgebra 
an be obtained by �rst 
hoosing an orthonormal

basis (e

j

)

j2J

in H and then 
onsidering the subspa
e h

1

� g

1

of all diagonal operators with

respe
t to this basis. Then h

1

�

=

`

1

(J; C ), so that h

0

1

�

=

`

1

(J; C ), and

� = f"

i

� "

j

: i 6= j 2 Jg; where "

j

(x) = x

j

; j 2 J;

is a root system of type A . We likewise obtain root systems of type B and D for o

1

(H; I) and

of type C for sp

1

(H; I).

For ea
h root � 2 � the subspa
e g

1

(�) := g

�

1

+ g

��

1

+ [g

�

1

; g

��

1

℄ is isomorphi
 to sl(2; C )

and there exists a unique element �� 2 [g

�

1

; g

��

1

℄ � h

1

with �(��) = 2. We 
all �� the 
oroot

asso
iated to � . Let

P := f� 2 h

0

1

: (8� 2 �)�(��) 2 Zg

denote the set of weights. Then for ea
h � 2 P there exists a 
ontinuous irredu
ible representation

�

�

: g

1

! B(H

�

)

on a Hilbert spa
e H

�

whi
h has the property that there exists a �-weight ve
tor v

�

2 H

�

annihilated by all root spa
es g

�

1

with �(��) � 0. In this sense �

�

is a highest weight representa-

tion. By the general theory of Bana
h{Lie groups, �

�

integrates to a holomorphi
 representation

�

�

:

e

G

1

! GL(H

�

), and, moreover, �

�

j

e

U

1

is unitary.

There also exists a 
lassi�
ation result saying that two representations �

�

and �

�

are

equivalent if and only if �; � 2 P are in the same orbit for the a
tion of the Weyl group

W � GL(h

0

1

) generated by the re
e
tions r

�

:f := f � f(��)� .

For the representations �

�

of the groups

e

U

1

the moment set I

�

�

� u

0

1

is a bounded subset,

whi
h 
orresponds to the boundedness of the Lie algebra representation u

1

! B(H

�

). It would

be interesting to understand whi
h of the results on �nite-dimensional Lie algebras dis
ussed in

Se
tion I extend to this 
lass of unitary representations.

VI. Unitary representations of L

�

-groups

At this point the settings of Se
tions IV and V seem to be quite unrelated, but it turns out

that they are di�erent approa
hes to the same mathemati
al obje
ts.

To relate the two pi
tures, let us start with a real L

�

-algebra g . Then there exists a

subalgebra g

1

, whi
h is a Bana
h{Lie algebra with an isometri
 involution su
h that the Lie

bra
ket of g indu
es a 
ontinuous bilinear map g � g ! g

1

and we have an isomorphism of

Bana
h spa
es

': der g! g

0

1

with '(D)([x; y℄) := hD:x; y

�

i; x; y 2 g:

For an abstra
t de�nition of g

1

we refer to [Ne01a℄.

From now on we assume that g is 
ompa
t and simple. If g = u

2

(H), then g

1

= u

1

(H)

and for g = u

2

(H; I) we get g

1

= u

1

(H; I). In the setting of Se
tion V we may now identify

the elements � 2 P with 
ontinuous linear fun
tionals on (g

1

)

C

by extending them by 0 on the

root spa
es. Then � = '(iD) for some D 2 der(g), and O

D

is a strong K�ahler orbit be
ause

D

�

= �D has �nite spe
trum and therefore 
losed range. If, 
onversely, D 2 der(g) has 
losed

range, then kerD 
ontains a Cartan subalgebra (Theorem III.4), whi
h implies that '(D) 
an

be viewed as an element of h

0

1

for some Cartan subalgebra h

1

� g

1

. The 
ondition '(iD) 2 P is

equivalent to the integrality of the 
ohomology 
lass of the 
anoni
al symple
ti
 form 
 on O

D

:

(6:1) '(iD) 2 P () [
℄ 2 H

2

dR

(O

D

;Z):

Example VI.1. For g = u(H), g

1

= u

1

(H) and h

1

�

=

`

1

(J; iR) we think of � as an element of

`

1

(J; C ), and � 2 P means �

j

� �

l

2 Z for j 6= l . This implies that D 
an be represented by

a skew-hermitian operator D

H

2 B(H) with eigenvalues �i�

j

, j 2 J , and the 
ondition � 2 P

entails that D

H

has �nite spe
trum. For the other types of Cartan subalgebras the situation is

similar.
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Sin
e O

D

is a Hilbert manifold and therefore smoothly para
ompa
t ([KM97℄), the 
on-

dition (6.1) means that 
 is the 
urvature form of a holomorphi
 line bundle L

�

! O

D

: Let

�(L

�

) denote the spa
e of holomorphi
 se
tions of this line bundle. In the following G � GL(H)

denotes an L

�

-group, q

G

:

e

G! G its universal 
overing group, and G

1

= G \GL

1

(H).

Theorem VI.2. For � 2 P � h

0

1

the following assertions hold:

(i) There exists a 
entral extension q:

b

G

�

!

e

G of

e

G by T a
ting holomorphi
ally on L

�

by

bundle automorphisms su
h that the 
orresponding a
tion on O

D

fa
tors through the a
tion

of G . The Lie algebra of

b

G

�

is

b

g

�

= g�

!

D

R and O

D


an be viewed as the 
oadjoint orbit

of (0;�1) 2 (

b

g

�

)

0

.

(ii) There exists a natural Hilbert subspa
e H

�

� �(L

�

) su
h that the natural a
tion of

b

G

�

on

�(L

�

) restri
ts to a strongly 
ontinuous unitary representation (�

�

;H

�

) of

b

G

�

.

(iii) On the subgroup

e

G

1

�

e

G the 
entral extension splits by a smooth homomorphism �:

e

G

1

!

b

G

�

, and the representation �

�

Æ � is the unitary highest weight representation 
onstru
ted

in Se
tion IV.

Proof. (an idea) A 
entral idea in the proof of Theorem VI.2 is to start with the holomorphi


representation �

�

of the 
omplex group (

e

G

1

)

C

and to 
onsider the holomorphi
 fun
tion

f

�

: (

e

G

1

)

C

! C ; g 7! hg

�1

:v

�

; v

�

i:

Then one shows that this fun
tion extends to a holomorphi
 fun
tion on the group (

b

G

�

)

C

. Using

the theory of positive de�nite holomorphi
 fun
tions on 
omplex groups and semigroups ([Ne99℄),

we then obtain a Hilbert spa
e

e

H

�

� Hol(

e

G

C

) on whi
h we have a natural strongly 
ontinuous

unitary representation of

e

G by translation. The �nal step is to show that the fun
tions in

e

H

�


an be viewed as holomorphi
 se
tions of the bundle L

�

, realized as holomorphi
 fun
tions on

e

G

C

.

Similar results exist for ellipti
 strong K�ahler orbits of hermitian groups, where the situation

is more 
ompli
ated be
ause the 
lassi�
ation of unitary highest weight representations of these

groups is more involved (see [N�98℄).

The pre
eding theorem generalizes part of the Borel{Weil Theorem for 
ompa
t Lie groups.

One 
an also obtain other results 
hara
terizing those equivariant holomorphi
 line bundles

over O

D

for whi
h the spa
e of holomorphi
 se
tions is non-trivial (see [HH94a/b℄ for the 
ase

G = U

2

(H)). These results are further related to the Bott{Borel{Weil Theorem for dire
t limit

groups ([NRW00℄), and it remains a promising proje
t to understand this theorem in an analyti



ontext su
h as Theorem VI.2.

In the 
ompa
t and the hermitian 
ase the group (

b

G

�

)

C

is far from being a maximal


omplex group a
ting on L

�

. To enlarge this group, one �rst observes that the group Aut(g)

D

:=

fg 2 Aut(g): gD = Dgg also a
ts on O

D

� g

0

in a natural way, and we thus obtain an a
tion

of a bigger group G(D) whi
h is a quotient of the semidire
t produ
t Go Aut(g)

D

. The same


onstru
tions apply to the 
omplex groups, where the 
onstru
tion leads to the restri
ted groups

dis
ussed in detail for the simple 
omplex L

�

-algebras in [Ne01
℄. Sin
e the a
tion of Aut(g)

D

on G lifts to the 
entral extension

b

G

�

, we obtain a 
entral extension

b

G(D) whi
h has a strongly


ontinuous unitary representation on H

�

, where Aut(g)

D

�xes the highest weight ve
tor v

�

.

For the hermitian groups it is not ne
essary to 
onsider several 
entral extensions depending

on � . Here we have one 
entral T-extension

b

G of

e

G whi
h is universal for all unitary highest

weight representations.

The geometri
 approa
h to unitary highest weight representations des
ribed above in
ludes

in parti
ular the spin representation of the metagonal group (fermioni
 se
ond quantization)

and the metaple
ti
 representation (Segal{Shale{Weil representation) of the metaple
ti
 group

(bosoni
 se
ond quantization). For a ni
e exposition of the 
onstru
tion of these representations

in an ad ho
 fashion we refer to Ottesen's book [Ot95℄, where it is also explained how embeddings

of di�eomorphism groups and loop groups into restri
ted symple
ti
 and unitary groups lead to

interesting unitary representations of their 
entral extensions (see also [PS86℄, [CR87℄, [Ve90℄ and
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[Mi89℄). The mixed 
ases 
orrespond to the in�nite wedge representations of the restri
ted unitary

group whi
h in our terminology is U

2

(H)(D), where D has only two eigenvalues (
f. [PS86℄ and

also [Wu98℄ whi
h 
ontains a lot of information on the physi
al ba
kground). The general L

�

-

approa
h to these representations provides in parti
ular dire
t geometri
 explanations for their

intri
ate analyti
 properties su
h as the boundedness behavior of the 
orresponding operators

(
f. [Ot95℄).
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