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Abstrat

Two iterative shemes for the solution of the one{dimensional station-

ary full hydrodynami model for semiondutor devies are studied. This

model onsists of a system of balane equations for the eletron density,

temperature and the eletri �eld. The �rst iterative sheme relies on a de-

oupling of the equations in the spirit of the well{known Gummel{iteration

for the standard drift di�usion model. Convergene is proven in the ase of

small deviations from the equilibrium state and high lattie temperature.

Seondly, a full Newton{iteration is analyzed and its loal seond order

onvergene is proven.
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1 Introdution

The ongoing miniaturization of semiondutor devies posed several hallenges

for numerial simulation tehniques. Usually, drift di�usion models are employed,

but they are not apable of resolving aurately high �eld phenomena suh as

hot eletron e�ets, impat ionization and heat generation in the bulk material.

Thus, generalizations of the drift di�usion equations were developed suh as the

energy transport or the hydrodynami equations (see [MRS90, J�un01℄ and the

referenes therein).

Here, we onsider a full hydrodynami model onsisting of balane equations for

the arrier density, momentum and energy, whih are self{onsistently oupled

to Poisson's equation for the eletri �eld. They an be derived as a moment

expansion of the Boltzmann equation assuming appropriate losure onditions

[GMR96℄. We want to onsider the one{dimensional stationary equations with

non{isentropi pressure, whih are stated on the bounded domain 
 = (0; 1):

�

mj

2

n

+ P (n; T )

�

x

= �q nE �

mj

�

p

; (1.1a)

(a(n; T )T

x

)

x

= q j E +

~w � w

0

�

w

+

�

mj

3

2n

2

+

5

2

j T

�

x

; (1.1b)

E

x

= �

q

�

s

(n� C(x)): (1.1)

Here, the variables are the eletron density n(x), the temperature T (x) and the

eletri �eld E(x). The parameters are the urrent density j, the e�etive eletron

mass m, the elementary harge q, the relaxation times for momentum and energy

�

p

and �

w

, respetively, and the semiondutor permittivity �

s

. The pressure

funtion is given by P (n; T ) and the heat ondutivity is a(n; T ). The density of

harged bakground ions is denoted by C(x). Further, the energy ~w = ~w(n; T )

an be written as

~w = w

0

+ �

w

w(n; T � T

L

);

where T

L

denotes the lattie temperature and it holds w(n; 0) = 0 for all n > 0.

The system (1.1) is supplemented with boundary onditions

n(0) = n

0

; E(0) = E

0

; T (0) = T

0

; T (1) = T

1

: (1.2)

System (1.1) has been studied analytially only reently by several authors [Yeh96,

Yeh97, ZH98℄ employing the polytropi gas ansatz, by [DM90, DM93℄ for isen-

tropi pressure funtions and by [AVJM00℄ in the ase of general pressure fun-

tions.

Generally, hyperboli methods from omputational gas dynamis are well suited

for the transient simulations and the steady{state is obtained as the asymptoti
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large time limit. However, for the omputation of urrent{voltage harateristis

one only needs the stationary solution. This led to the development of solution

methods, whih work diretly on the stationary equations and whih proved to

be one magnitude faster than the transient solvers [GJR89℄.

In this paper we will introdue two shemes for the numerial treatment of (1.1)

and prove their onvergene in the subsoni regime and for large lattie temper-

ature. The �rst one is a Gummel{type iteration, whih is robust and globally

onvergent. In the seond approah we onsider a Newton iteration, whih ex-

hibits the typial loal seond order onvergene.

Espeially, for semiondutor devie simulations a ombination of both methods

proved to be well suited, i.e. employing the Gummel{type iteration to ompute a

good starting point for the Newton sheme. Alternatively, in [GJR89℄ a damped

Newton{iteration was used to solve system (1.1) with a di�erent set of variables

and boundary onditions. For an exellent overview on hydrodynamial models

and modern numerial approahes we refer to [AR99℄ and the referenes therein.

The paper is organized as follows. In Setion 2 we deouple system (1.1) in

a Gummel{type manner and prove the ontrativity of the indued �xed point

mapping. The full Newton{Iteration is onsidered in Setion 3, where the unique

solvability of the linearized system is shown whih yields the loal quadrati

onvergene of the iteration.

2 Gummel{type Iteration

In this setion we deouple system (1.1) in the spirit of the well known Gummel{

iteration for the standard drift di�usion model [Gum64℄. We prove onvergene

of this iteration by means of Banah's �xed point priniple in ase of a subsoni

regime and large lattie temperature.

For notational onveniene we assume here and in the following setion that

m = q = �

s

= �

p

= �

w

= 1:

In [AVJM00, Theorem1℄ an existene result for (1.1) is given for subsoni states

near the thermal equilibrium and large lattie temperature. Aordingly we as-

sume

A.1 a(n; T ) is ontinuously di�erentiable and a(n; T ) > 0 in (n; T ) 2 (0;1)

2

.

A.2 P (n; T ) is ontinuously di�erentiable in (n; T ) 2 (0;1)

2

and there exist

positive onstants n, n, T , T and K, suh that

�

n

P (�; �) � K for all n � � � n; T � � � T ;
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A.3 w is ontinuously di�erentiable and

w(n; T � T

L

)(T � T

L

) � 0

for all (n; T ) 2 (0;1)

2

and some T

L

> 0.

A.4 C 2 L

1

(0; 1).

The proof of this theorem employs a �xed point argument based on the following

reformulation of (1.1a):

�

�

n

P (n; T )�

j

2

n

2

�

n

x

= � (�

T

P (n; T ) + nE + j) :

A ompat operator T :

e

B !

e

B is de�ned, where

e

B is the losed onvex set given

by

e

B =

�

(�; �) 2 C

0

([0; 1℄)� C

1

([0; 1℄) : n � �(x) � n;

T � �(x) � T ; j(� � ')

x

(x)j �M for x 2 [0; 1℄

	

with '(x) = T

0

+(T

1

�T

0

)x. Our aim is to prove that if we assume the additional

ondition

A.5 (w(�; �

1

� T

L

)� w(�; �

2

� T

L

))(�

1

� �

2

) � 0 for all �; �

1

; �

2

> 0:

then a Gummel{type iteration is appliable and onvergent, i.e. we deouple the

equations of system (1.1) in an appropriate way, de�ning a �xed point operator,

and show that it is in fat a ontration. For this purpose we de�ne the operator

T :

For any (�; �) 2

e

B we set

E(x) = E

0

+

Z

x

0

(C � �)ds

and let n 2 C

1

([0; 1℄) be the unique solution of the linear problem

�

�

n

P (�; �)�

j

2

�

2

�

n

x

= � (�

T

P (�; �)�

x

+ �E + j) ; n(0) = n

0

; (2.1)

whih is well de�ned for j small enough.

Finally, we set T (�; �) = (n; T ), where T is the unique solution of the monotone

problem

(a(n; �)T

x

)

x

= jE + w(�; T � T

L

) +

5

2

jT

x

�

j

3

�

3

n

x

; T (0) = T

0

; T (1) = T

1

:
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We remark that the ondition �

x

2 C

0

([0; 1℄) is not used in this de�nition; this

allows us to extend the operator T to a more onvenient domain:

B =

�

(�; �) 2 C

0

([0; 1℄)�H

1

(0; 1) : n � �(x) � n;

T � �(x) � T for x 2 [0; 1℄; k(� � ')

x

k

2

�M

	

:

Following the outline of the proof of [AVJM00, Theorem1℄, it is easy to hek

that T (B) � B.

The main result of this setion is

Theorem 2.1. Assume A.1{A.5 and let rP be Lipshitz{ontinuous on [n; n℄�

[T ; T ℄. Then there exist onstants j

0

; Æ > 0 suh that for

jjj � j

0

; jT

0

� T

L

j+ jT

1

� T

L

j � Æ;

the mapping T : B ! B is a ontration with respet to the produt norm on

C

0

([0; 1℄)�H

1

(0; 1).

Remark 2.2. Subsoni ow is haraterized by jj=nj <

p

�

n

P whih is ertainly

ful�lled for j

0

=n <

p

K.

Proof. For (�

i

; �

i

) 2 B, i = 1; 2 and n

i

def

= (T (�

i

; �

i

))

1

, we estimate

Z

1

0

(�

n

P (�

1

; �

1

)(n

1

)

x

� �

n

P (�

2

; �

2

)(n

2

)

x

) (n

1

� n

2

)

x

dx =

Z

1

0

�

n

P (�

1

; �

1

)(n

1

� n

2

)

2

x

dx

+

Z

1

0

(�

n

P (�

1

; �

1

)� �

n

P (�

2

; �

2

)) (n

2

)

x

(n

1

� n

2

)

x

dx

� Kk(n

1

� n

2

)

x

k

2

L

2

� L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

L

1

)k(n

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

where L is the Lipshitz onstant for �

n

P . Further,

Z

1

0

�

j

2

(n

1

)

x

�

2

1

�

j

2

(n

2

)

x

�

2

2

�

(n

1

� n

2

)

x

dx =

j

2

Z

1

0

(n

1

� n

2

)

2

x

�

2

1

+ j

2

Z

1

0

�

1

�

2

1

�

1

�

2

2

�

(n

2

)

x

(n

1

� n

2

)

x

dx

�

j

2

n

2

�

k(n

1

� n

2

)

x

k

L

2

+

2n

n

2

k�

1

� �

2

k

L

1

k(n

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

�

From (2.1) and the ontinuity of �

T

P , it is lear that k(n

2

)

x

k

2

is uniformly

bounded for large K, whih also ensures the uniform L

1

(0; 1){bound on n.
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Hene,

Z

1

0

(�

n

P (�

1

; �

1

)(n

1

)

x

� �

n

P (�

2

; �

2

)(n

2

)

x

) (n

1

� n

2

)

x

dx

�

Z

1

0

�

j

2

(n

1

)

x

�

2

1

�

j

2

(n

2

)

x

�

2

2

�

(n

1

� n

2

)

x

dx

�

�

K �

j

2

n

2

�

k(n

1

� n

2

)

x

k

2

L

2

�

e

L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(n

1

� n

2

)

x

k

L

2

for some positive onstant

e

L =

e

L(j; Æ;K; n; n; T ; T ). In the same way,

�

Z

1

0

(�

T

P (�

1

; �

1

)(�

1

)

x

��

T

P (�

2

; �

2

)(�

2

)

x

) (n

1

� n

2

)

x

dx �

k�

T

P (�

1

; �

1

)k

L

1

k(�

1

� �

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

+ L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(�

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

� 

1

(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(n

1

� n

2

)

x

k

L

2

for some onstant 

1

> 0. Note that jE

1

� E

2

j = j

R

x

0

(�

1

� �

2

)dsj � k�

1

� �

2

k

L

1

,

whih implies

�

Z

1

0

(�

1

E

1

� �

2

E

2

)(n

1

� n

2

)

x

� 

2

k�

1

� �

2

k

L

1

k(n

1

� n

2

)

x

k

L

2

for some onstant 

2

= 

2

(n) > 0. Taking the di�erene of

�

�

n

P (�

i

; �

i

)�

j

2

�

2

i

�

(n

i

)

x

= � (�

T

P (�

i

; �

i

)(�

i

)

x

+ �

i

E + j)

and testing with (n

1

� n

2

)

x

yields aording to the above estimates

�

K �

j

2

n

2

�

k(n

1

� n

2

)

x

k

L

2

� (

1

+ 

2

+

e

L)(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)

Choosing now K > 0 suh that

�

def

=



1

+ 

2

+

e

L

K �

j

2

n

2

< 1

we obtain by Poinar�e's inequality

kn

1

� n

2

k

H

1

�

��

1 + �

(k�

1

� �

2

k

C

0

+ k�

1

� �

2

k

H

1

)
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Consider now T

i

def

= (T (�

i

; �

i

))

2

, and alulate

Z

1

0

(a(n

1

; �

1

)(T

1

)

x

�a(n

2

; �

2

)(T

2

)

x

)(T

1

�T

2

)

x

dx = �j

Z

1

0

(E

1

�E

2

)(T

1

�T

2

) dx

�

Z

1

0

[w(�

1

; T

1

�T

L

)�w(�

2

; T

2

�T

L

)℄(T

1

�T

2

) dx�

5

2

j

Z

1

0

(T

1

�T

2

)

x

(T

1

�T

2

) dx

+ j

3

Z

1

0

�

(n

1

)

x

�

3

1

�

(n

2

)

x

�

3

2

�

(T

1

� T

2

) dx

def

= I

1

+ I

2

+ I

3

+ I

4

Sine T

1

� T

2

satis�es homogeneous boundary onditions, it is lear that I

3

= 0.

Moreover, from A.5 we get

I

2

� �

Z

1

0

(w(�

1

; T

1

� T

L

)� w(�

2

; T

1

� T

L

))(T

1

� T

2

) dx

� (Æ)k�

1

� �

2

k

L

2

kT

1

� T

2

k

L

2

;

for some positive onstant (Æ) with (Æ)! 0 as Æ ! 0 due to A.3 and w(�; 0) =

0. Further, we easily hek that

I

1

+ I

4

� j

�

kE

1

� E

2

k

L

2

+ 

1

k(n

1

� n

2

)

x

k

L

2

+ 

2

k�

1

� �

2

k

L

1

�

kT

1

� T

2

k

L

2

� 

3

j(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)kT

1

� T

2

k

L

2

for positive onstants 

k

, k = 1; 2; 3. For the left{hand side we have:

Z

1

0

(a(n

1

; �

1

)(T

1

)

x

� a(n

2

; �

2

)(T

2

)

x

)(T

1

� T

2

)

x

dx =

Z

1

0

a(n

1

; �

1

)(T

1

� T

2

)

2

x

dx

+

Z

1

0

(a(n

1

; �

1

)� a(n

2

; �

2

))(T

2

)

x

(T

1

� T

2

)

x

dx;

with

Z

1

0

a(n

1

; �

1

)(T

1

� T

2

)

2

x

dx � ak(T

1

� T

2

)

x

k

2

L

2

;

where a = min

(�;�)2[n;n℄�[T;T ℄

a(�; �), and

Z

1

0

(a(n

1

; �

1

)� a(n

2

; �

2

))(T

2

)

x

(T

1

� T

2

)

x

dx

� ka(n

1

; �

1

)� a(n

2

; �

2

)k

L

2

k(T

2

)

x

k

L

1

k(T

1

� T

2

)

x

k

L

2

� L(kn

1

� n

2

k

L

2

+ k�

1

� �

2

k

L

2

)k(T

2

)

x

k

L

1

k(T

1

� T

2

)

x

k

L

2

Employing standard bounds from ellipti theory [GT83℄ there exist onstants



0

; 

1

> 0 suh that

k(T

2

)

x

k

L

1

� 

0

+ 

1









jE

2

+ w(�

2

; T

2

� T

L

)�

j

3

(n

2

)

x

�

3

2









L

2

� r(j; Æ)
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where r(j; Æ) > 0 is small for j

0

and Æ small.

Hene

ak(T

1

� T

2

)

x

k

L

2

� s(j; Æ) (kn

1

� n

2

k

L

2

+ k�

1

� �

2

k

L

2

+ k�

1

� �

2

k

H

1

) ;

and by Poinare's inequality it holds

kT

1

� T

2

k

H

1

� s(j; Æ)

1 + �

a�

(1 + �)(k�

1

� �

2

k

L

2

+ k�

1

� �

2

k

H

1

);

where s(j; Æ) an be made small by hoosing j

0

and Æ small enough.

Altogether, we have

kT (�

1

; �

1

)� T (�

2

; �

2

)k

C

0

�H

1

� �k(�

1

; �

1

)� (�

2

; �

2

)k

C

0

�H

1

;

for some onstant � = �(j

0

; Æ;K) 2 (0; 1), whih yields the assertion.

Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then the deoupling

algorithm de�ned by the operator T onverges for any starting value (n

0

; T

0

) 2 B.

Remark 2.4. This theorem also extends the uniqueness result in [AVJM00℄ as

nononstant heat ondutivities are inluded.

3 Newton Iteration

In this setion we investigate the onvergene of a full Newton iteration for system

(1.1). To this purpose we show the invertibility of the linearization of (1.1) in

some appropriate funtion spaes and apply results from the well{known theory

of Newton{Kantorovih [Zei86℄.

We employ the following assumptions

B.1 w(n; T; j) is ontinuously di�erentiable in (0;1)

3

and it holds

w(n; 0; j) = 0; w

n

(n; 0; 0) = 0; w

T

(n; T; j) � 0;

for all (n; T; j) 2 (0;1)

3

.

B.2 P (n; T ) is twie ontinuously di�erentiable in (0;1)

2

and there exist posi-

tive onstants n; n; T ; T and K suh that

P

n

(�; #) � K; for all n � � � n; T � # � T :

B.3 a 2 C

0

([0; 1℄) and there exists a positive onstant a suh that a � a > 0.
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B.4 C 2 C

0

([0; 1℄).

Remark 3.1.

a) B.1 and B.2 are espeially ful�lled in the polytropi gas ansatz

P (n; T ) = nT; ~w(n; T; j) =

3

2

nT +

j

2

2n

:

b) For a smoother presentation we assume that the heat ondutivity a de-

pends only on the spatial variable (see B.3). Note that all forthoming

results also hold for arbitrary heat ondutivities a(n; T ), sine we ontrol

the norm kT

x

k

1;1

.

For notational onveniene we de�ne the Banah spaes

X

def

= C

1

([0; 1℄)� C

2

([0; 1℄)� C

1

([0; 1℄);

Y

def

=

�

C

0

([0; 1℄)

�

3

;

whih are equipped with the anonial produt norm. The norm of C

k

([0; 1℄) is

in the following denoted by k�k

k;1

.

We introdue the operator A : X ! Y whih is de�ned by

A(n; T; E)

def

=

0

B

B

�

�

j

2

n

+ P (n; T )

�

x

+ nE + j

�(a T

x

)

x

+ j E + w(n; T ) +

�

j

3

2n

2

+

5

2

j T

�

x

E

x

+ (n� C(x))

1

C

C

A

: (3.1)

We set u

def

= (n; T; E). As mentioned in the previous setion we know that in the

subsoni regime there exist positive onstants j

0

; Æ; n; n; T ; T suh that if

jjj � j

0

; jT

0

� T

L

j+ jT

1

� T

L

j � Æ

and assuming B.1{B.4, the lassial solution u

�

def

= (n

�

; T

�

; E

�

) 2 X of system

A(n

�

; T

�

; E

�

) = 0 satis�es

n � n

�

(x) � n; T � T

�

(x) � T :

We onsider a ball

B

r

(u

�

)

def

= fu = (n; T; E) 2 X : ku� u

�

k

X

< rg

around the solution u

�

and hoose r < min(n; T ). Then it holds n > 0 and T > 0

in B

r

(u

�

).

For the numerial omputation of u

�

= (n

�

; T

�

; E

�

) we want to employ the New-

ton iteration, whih is given by

9



1. Choose u

0

2 B

r

(u

�

).

2. For k = 0; 1; : : : set u

k+1

= u

k

� (A

0

(u

k

))

�1

A(u

k

).

To ensure that this iteration is well de�ned and onvergent we have to hek

several properties of the linearization of A. First, the reader easily veri�es the

di�erentiability of A whih is stated in the following result.

Lemma 3.2. Assume B.1{B.4. Then the operator A : X ! Y de�ned by (3.1)

is Fr�ehet{di�erentiable in B

r

(u

�

) and the Fr�ehet{derivative at u 2 B

r

(u

�

) in a

diretion � = (�

n

; �

T

; �

E

) 2 X is given by

A

0

(u)[�℄ =

0

B

B

�

�

�

j

2

n

2

�

n

+ P

n

�

n

+ P

T

�

T

�

x

+ E �

n

+ n �

E

�(a �

Tx

)

x

+ j �

E

+ w

n

�

n

+ w

T

�

T

+

�

�

j

3

n

3

�

n

+

5

2

j �

T

�

x

�

Ex

+ �

n

1

C

C

A

:

Furthermore, there exists a onstant L > 0 suh that

kA

0

(u)� A

0

(v)k

Y

� L ku� vk

X

for all u; v 2 B

r

(u

�

).

Seondly, we have to show the invertibility of A

0

(u).

Lemma 3.3. Assume B.1{B.4. Then there exist onstants j

0

; Æ > 0 suh that

for all u = (n; T; E) 2 B

r

(u

�

) with

kT � T

L

k

0;1

� Æ

and if jjj � j

0

then for all f = (f

n

; f

T

; f

E

) 2 Y the linear system

A

0

(u)[�℄ = f (3.2)

supplemented with boundary onditions

�

n

(0) = 0; �

E

(0) = 0; �

T

(0) = 0; �

T

(1) = 0

has a unique solution � = (�

n

; �

T

; �

E

) 2 X. Furthermore, there exists a onstant

M > 0 suh that





(A

0

(u))

�1





Y;X

�M (3.3)

for all u 2 B

r

(u

�

).
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For the proof of Lemma 3.3 it is most onvenient to redue the hyperboli{ellipti

system (3.2) to an ellipti equation for �

T

. To ahieve this we de�ne the matries

C

1

=

�

P

n

�

j

2

n

2

0

0 1

�

; C

2

=

 

�

P

n

�

j

2

n

2

�

x

+ E n

1 0

!

;

whih only depend on the state u = (n; T; E) 2 B

r

(u

�

). Let (

~

�

n

;

~

�

E

) 2 [C

1

([0; 1℄)℄

2

denote the lassial solution of the system of ordinary di�erential equations

C

1

�

~

�

n

~

�

E

�

x

+ C

2

�

~

�

n

~

�

E

�

=

�

�(P

T

�

T

)

x

0

�

; (3.4a)

~

�

n

(0) =

~

�

E

(0) = 0: (3.4b)

Due to B.2 this system is uniquely solvable for j

0

suÆiently small. This de�nes

a solution operator

~

B : C

1

([0; 1℄)! [C

1

([0; 1℄)℄

2

by

~

B(�

T

) = (

~

B

1

(�

T

);

~

B

2

(�

T

))

def

=

(

~

�

n

;

~

�

E

).

For (f

n

; f

E

) 2 [C

0

([0; 1℄)℄

2

we onsider the system

C

1

�

^

�

n

^

�

E

�

x

+ C

2

�

^

�

n

^

�

E

�

=

�

f

n

f

E

�

;

^

�

n

(0) =

^

�

E

(0) = 0;

whih is again uniquely solvable and whih de�nes a solution operator

^

B :

[C

0

([0; 1℄)℄

2

! [C

1

([0; 1℄)℄

2

by

^

B(f

n

; f

E

) = (

^

B

1

(f

n

; f

E

);

^

B

2

(f

n

; f

E

))

def

= (

^

�

n

;

^

�

E

).

Altogether, any solution � = (�

n

; �

T

; �

E

) 2 X of A

0

(u)[�℄ = f ful�ls

�

n

=

~

B

1

(�

T

) +

^

B

1

(f

n

; f

E

); �

E

=

~

B

2

(�

T

) +

^

B

2

(f

n

; f

E

)

and system (3.2) an be written as

� (a �

Tx

)

x

+ j

~

B

2

(�

T

) + w

n

~

B

1

(�

T

) + w

T

�

T

�

�

�

j

3

n

3

~

B

1

(�

T

) +

5

2

j �

T

�

x

= �j

^

B

2

(f

n

; f

E

)� w

n

^

B

1

(f

n

; f

E

) + f

T

�

�

j

3

n

3

^

B

1

(f

n

; f

E

)

�

x

(3.5)

An easy onsequene of Gronwall's Lemma is the following stability estimate.

Lemma 3.4. Assume B.1{B.4 and let (

~

�

n

;

~

�

E

) 2 [C

1

([0; 1℄)℄

2

be a solution

of the ordinary di�erential system (3.4). Then there exists a onstant  =

(knk

1;1

; kEk

1;1

; n;K) > 0 suh that







~

�

n







0;1

+







~

�

E







0;1

�  k�

Tx

k

L

2
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Now we are in the position to prove the invertibility result given in Lemma 3.3.

Proof of Lemma 3.3. We show the unique solvability of (3.5) by means of the

Lax{Milgram Lemma. Therefore, we de�ne the bilinear form b : H

1

0

(0; 1) �

H

1

0

(0; 1)! R by

b(�

T

; �) =

Z

1

0

a �

Tx

�

x

+

�

j

~

B

2

(�

T

) + w

n

~

B

1

(�

T

) + w

T

�

T

�

�

+

�

�

j

3

n

3

~

B

1

(�

T

) +

5

2

j �

T

�

�

x

dx

and the funtional G : H

1

0

(0; 1)! R by

G(�)

def

=

Z

1

0

�

�j

^

B

2

(f

n

; f

E

)� w

n

^

B

1

(f

n

; f

E

) + f

T

�

� dx +

Z

1

0

j

3

n

3

^

B

1

(f

n

; f

E

)�

x

dx

Then the weak formulation of the system reads: Find �

T

2 H

1

0

(0; 1) suh that

b(�

T

; �) = G(�)

for all � 2 H

1

0

(0; 1).

Clearly, b and G are ontinuous

jb(�

T

; �)j � 

1

k�

T

k

H

1

k�k

H

1

;

jG(�)j � 

2

k�k

H

1

;

where 

i

= 

i

(knk

1;1

; kTk

2;1

; kEk

1;1

; a; n;K) > 0, i = 1; 2.

Next, we want to prove the oerivity of b.

b(�

T

; �

T

) =

Z

1

0

a j�

Tx

j

2

dx+ j

Z

1

0

~

B

2

(�

T

) �

T

dx+

Z

1

0

w

n

~

B

1

(�

T

) �

T

dx

+

Z

1

0

w

T

�

2

T

dx�

Z

1

0

j

3

n

3

~

B

1

(�

T

) �

Tx

dx+

Z

1

0

5

2

j �

T

�

Tx

dx

� a k�

Tx

k

2

L

2

� j







~

B

2

(�

T

)







L

2

k�

T

k

L

2

� kw

n

k

L

1







~

B

1

(�

T

)







L

2

k�

T

k

L

2

�

j

3

n

3







~

B

1

(�

T

)







L

2

k�

Tx

k

L

2

� a k�

Tx

k

2

L

2

� 

3

�

j + kw

n

k

L

1

+

j

3

n

3

�

k�

Tx

k

2

L

2

;

where 

3

= 

3

(knk

1;1

; kEk

1;1

; n;K) > 0. Hene, for j

0

and Æ small it holds

b(�

T

; �

T

) � 

4

k�

T

k

2

H

1

;
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where 

4

= 

4

(knk

1;1

; kTk

2;1

; kEk

1;1

; n; a;K; j

0

; Æ) > 0. Note that kw

n

k

L

1

is

small due to B.1 and the smallness of j

0

and Æ.

Now the Lax{Milgram Lemma ensures the unique existene of a weak solution

�

T

2 H

1

0

(0; 1) and it holds

k�

T

k

H

1

� 

�1

4

(kf

n

k

L

2

+ kf

E

k

L

2

+ kf

T

k

L

2

) :

Further we get from ellipti estimates [GT83℄

k�

T

k

2;1

� 

5

�

kf

n

k

0;1

+ kf

E

k

0;1

+ kf

T

k

0;1

�

and from Lemma 3.4 we dedue

k�

n

k

1;1

+ k�

E

k

1;1

� 

6

�

kf

n

k

0;1

+ kf

E

k

0;1

+ kf

T

k

0;1

�

;

where the positive onstants 

5

; 

6

again only depend on knk

1;1

; kTk

2;1

; kEk

1;1

,

n; a;K; j

0

; Æ. This immediately implies (3.3).

Hene, the Newton iteration is well de�ned and Lemma 3.2 and Lemma 3.3 are

suÆient to ensure its onvergene [Zei86, Proposition 5.1℄.

Theorem 3.5. Assume B.1{B.4 and let u

�

= (n

�

; T

�

; E

�

) 2 X be a solution

of A(n; T; E) = 0. Then there exist onstants j

0

; r; Æ > 0 suh that for all u

Æ

=

(n

Æ

; T

Æ

; E

Æ

) 2 B

r

(u

�

) with

jjj � j

0

; kT

Æ

� T

L

k

0;1

� Æ

the sequene (u

k

)

k2N

given by u

k+1

= u

k

�(A

0

(u

k

))

�1

A(u

k

) onverges quadratially

to u

�

, i.e. there exists a onstant N = N(L;M; j

0

; r; Æ) > 0 suh that

ku

k+1

� u

�

k

X

� N ku

k

� u

�

k

2

X

:
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