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Abstract

Two iterative schemes for the solution of the one-dimensional station-
ary full hydrodynamic model for semiconductor devices are studied. This
model consists of a system of balance equations for the electron density,
temperature and the electric field. The first iterative scheme relies on a de-
coupling of the equations in the spirit of the well-known Gummel-iteration
for the standard drift diffusion model. Convergence is proven in the case of
small deviations from the equilibrium state and high lattice temperature.
Secondly, a full Newton—iteration is analyzed and its local second order
convergence is proven.

Key words. Full hydrodynamic equations, Gummel-iteration, Newton-iteration,
linearization, convergence.

AMS(MOS) subject classification. 65J15, T6N10

Acknowledgements. The authors acknowledge support from the German-—
Argentinian Program DAAD-Antorchas.



1 Introduction

The ongoing miniaturization of semiconductor devices posed several challenges
for numerical simulation techniques. Usually, drift diffusion models are employed,
but they are not capable of resolving accurately high field phenomena such as
hot electron effects, impact ionization and heat generation in the bulk material.
Thus, generalizations of the drift diffusion equations were developed such as the
energy transport or the hydrodynamic equations (see [MRS90, Jin01] and the
references therein).

Here, we consider a full hydrodynamic model consisting of balance equations for
the carrier density, momentum and energy, which are self-consistently coupled
to Poisson’s equation for the electric field. They can be derived as a moment
expansion of the Boltzmann equation assuming appropriate closure conditions
[GMRY6]. We want to consider the one—dimensional stationary equations with
non—isentropic pressure, which are stated on the bounded domain Q2 = (0,1):
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Here, the variables are the electron density n(x), the temperature T'(z) and the
electric field E(z). The parameters are the current density j, the effective electron
mass m, the elementary charge ¢, the relaxation times for momentum and energy
7, and 7, respectively, and the semiconductor permittivity e,. The pressure
function is given by P(n,T) and the heat conductivity is a(n,T"). The density of
charged background ions is denoted by C(x). Further, the energy @ = w(n,T)
can be written as

W =wy+1pw(n,T —Tg),

where T, denotes the lattice temperature and it holds w(n,0) = 0 for all n > 0.
The system (1.1) is supplemented with boundary conditions

n(0) =ny, E0)=E, T(0)=Ty, T(1)="T. (1.2)

System (1.1) has been studied analytically only recently by several authors [Yeh96,
Yeh97, ZH98] employing the polytropic gas ansatz, by [DM90, DM93] for isen-
tropic pressure functions and by [AVJMOO] in the case of general pressure func-
tions.

Generally, hyperbolic methods from computational gas dynamics are well suited
for the transient simulations and the steady—state is obtained as the asymptotic



large time limit. However, for the computation of current—voltage characteristics
one only needs the stationary solution. This led to the development of solution
methods, which work directly on the stationary equations and which proved to
be one magnitude faster than the transient solvers [GJR89].

In this paper we will introduce two schemes for the numerical treatment of (1.1)
and prove their convergence in the subsonic regime and for large lattice temper-
ature. The first one is a Gummel-type iteration, which is robust and globally
convergent. In the second approach we consider a Newton iteration, which ex-
hibits the typical local second order convergence.

Especially, for semiconductor device simulations a combination of both methods
proved to be well suited, i.e. employing the Gummel-type iteration to compute a
good starting point for the Newton scheme. Alternatively, in [GJR89] a damped
Newton—iteration was used to solve system (1.1) with a different set of variables
and boundary conditions. For an excellent overview on hydrodynamical models
and modern numerical approaches we refer to [AR99] and the references therein.

The paper is organized as follows. In Section 2 we decouple system (1.1) in
a Gummel-type manner and prove the contractivity of the induced fixed point
mapping. The full Newton—Iteration is considered in Section 3, where the unique
solvability of the linearized system is shown which yields the local quadratic
convergence of the iteration.

2 Gummel-type Iteration

In this section we decouple system (1.1) in the spirit of the well known Gummel-
iteration for the standard drift diffusion model [Gum64]. We prove convergence
of this iteration by means of Banach’s fixed point principle in case of a subsonic
regime and large lattice temperature.

For notational convenience we assume here and in the following section that
m=q=¢€="T, =Ty = L.
In [AVJMOO, Theorem1] an existence result for (1.1) is given for subsonic states

near the thermal equilibrium and large lattice temperature. Accordingly we as-
sume

A.1 a(n,T) is continuously differentiable and a(n,T) > 0 in (n,T) € (0, 00).

A.2 P(n,T) is continuously differentiable in (n,T) € (0,00)* and there exist
positive constants n, 7, I, T and K, such that

O,P(p,0) > K foralln<p<m, T<O<LT,



A.3 w is continuously differentiable and
w(n, T —Tp)(T'—1Tg) >0
for all (n,T) € (0,00)? and some T, > 0.
A.4 C e LY0,1).

The proof of this theorem employs a fixed point argument based on the following
reformulation of (1.1a):

<0nP(n,T) — ﬁ) ny =—(0rP(n,T) +nE + j).

n2

A compact operator T : B — Bis defined, where B is the closed convex set given
by

B ={(p,0) € C°([0,1])) x C"((0,1]) : n < p()
T <0(x) <T, |0 - ¢)a(w)] < M for z € [0,1]}
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with p(z) = To+ (11 —Tp)z. Our aim is to prove that if we assume the additional
condition

A5 (U)(p, 0, — TL) — w(p, 0, — TL))(01 — 62) >0 forall P, 91, 05 > 0.

then a Gummel-type iteration is applicable and convergent, i.e. we decouple the
equations of system (1.1) in an appropriate way, defining a fixed point operator,
and show that it is in fact a contraction. For this purpose we define the operator

T:
For any (p,#) € B we set

E(x) = Ey + /OI(C — p)ds

and let n € C''([0,1]) be the unique solution of the linear problem

<8nP(p, ) — ‘Z)—z) ngy = — (0rP(p,0)0, + pE + j), n(0) = ny, (2.1)

which is well defined for j small enough.

Finally, we set 7 (p,8) = (n,T), where T is the unique solution of the monotone
problem

5 3
(a(n, Q)Ta:)a: =JjE+ w(p,T - TL) + §JTx - 1[7)_377/907 T(O) = Ty, T(l) =1.



We remark that the condition 6, € C°([0,1]) is not used in this definition; this
allows us to extend the operator T to a more convenient domain:

B ={(p,0) € C°([0,1]) x H"(0,1)

:n < pz) <7,
T <6(x)

<
< T for x €[0,1], [[(6 — ©)]l2 < M}

Following the outline of the proof of [AVIMO00, Theoreml], it is easy to check
that 7(B) C B.

The main result of this section is

Theorem 2.1. Assume A.1-A.5 and let VP be Lipschitz—continuous on [n, n| X

[T, T). Then there exist constants jo,d > 0 such that for
7 < jo,  |[To —TL|+ [Ty —TL| <6,

the mapping T : B — B is a contraction with respect to the product norm on

c0([0,1]) x H'(0,1).

Remark 2.2. Subsonic flow is characterized by |j/n| < v/0,, P which is certainly
fulfilled for jo/n < VK.

. def .
. 1y V4 y =1, i = 1Y) )1
Proof. For (p;,6;) € B,i=1,2 and n; = (T (p;,6;))1, we estimate

/0 (OuP(pr,6) (1) — 3P (2, 02)(n2)) (s — o) d =
/0 OnP(p1,61)(ny — nz)i dzx

1
4 / (0uP(p1,8:) — 0y P (2, 62)) (n2)o (1 — o), da
0
> K|[(n1 — n2)ell7: = L(|lp1 = palliee + 161 = O] 1o)[[(n2)2 || 22 ]| (n1 — 12|22

where L is the Lipschitz constant for 0, P. Further,

/1 (jz(m)x - j2(n2)x> (n1 —ny), do =
0 Vi 03
1 2 1
o [T —mna)i 11
j/i%-j/(———)nxn—n z d
0 Vi o \pi p%(z)(l 2)

72 on
< 2 ||(”1 - n2)x||L2 + ﬁ”ﬂl - Pz||L°°||(”2)x||L2||(”1 - n2)x||L2

From (2.1) and the continuity of OrP, it is clear that ||(ng)s||2 is uniformly
bounded for large K, which also ensures the uniform L>(0,1)-bound on n.

5



Hence,

/0 (OnP(p1,61)(11)g — 0P (p2,02)(n2)s) (n1 — n2), da

B /01 (f(;?)x B jz(;l%Q)x) (ny — ), d

-2
j ~
> (K= L) 0 = el = s = gl + 102 =l s = )

for some positive constant L = Z(j, 6, K,n,m,T,T). In the same way,

—A(%me%M%h—%P@m%ﬂ%hﬂm—nﬁwmé

100 P (p1, 01) || oo || (1 — O2)ellz2 || (n1 — n2)e| L2
+ L(||pr = pallpe + (|61 — Ol ) |[(02) 2|2 ]| (P2 — n2) 2| L2
< ci|lor = pallpe + 100 — Oa|5) || (n1 — n2)e |2

for some constant ¢; > 0. Note that [Ey — E| = | [ (p1 — p2)ds| < [|p1 — pal|=,
which implies

1
—/Xma—mamm—mus@wrmmWMm—wmm
0

for some constant ¢y = co(m) > 0. Taking the difference of
j2
(002500 = 22) (00 = = @1 P9 000, + 9B+

and testing with (n; — ny), yields according to the above estimates

.2 ~
(K - 2_2) [(n1 = mn2)zllre < (e1 + o+ L)([[p1 — pallo= + (|00 — b2 m1)

Choosing now K > 0 such that

L
défcri'czt <1
K 2

ﬂ2

we obtain by Poincaré’s inequality

%S
I — nollg < T+x ([[or = p2ll o + 161 — 2] 1)



Consider now 1} © (T (i, 6;))2, and calculate

AwmﬁMﬂ»wwwMBmm Jo dr = —j 1) de

j Tz) dx

fio-s
[

l\')IOT

1
_/ [W(Ple—TL)—W(Pz,Tz—TL)](Tl Tz dx —
0

O L+ I+ 1,

Since T} — T satisfies homogeneous boundary conditions, it is clear that I3 = 0.
Moreover, from A.5 we get

1
I < —/ (w(pr, Ty = Tp) = w(ps, Ty — TL))(Th = Ty) de
0

c(O)lpr = p2ll 2Ty = Ta[ 2,

for some positive constant ¢(d) with ¢(6) — 0 as § — 0 due to A.3 and w(p,0) =
0. Further, we easily check that

I+ 1y < G| By = Bollre + il (nn — n2)oll2 + eallpr — pallpee) [ITh — Tl 12
< ez j(llpr = palloes + (|00 — Oal|g)[| T2 — Tol| 2

for positive constants ¢, k£ = 1,2, 3. For the left-hand side we have:

/0 (a(ny, 0 )(Th)z — a(ng, 02)(12) )Ty — Ts), do = /0 a(ny, 0,)(Ty — Ty)? dx

+A@wmw—M%%NBMﬂ—RhW

with .
/amﬂMﬂ—nﬁmzmm—Bmm,
0

where a = min, g, m <77 @(p, 0), and

/0 (a(ns, 01) — an, 0))(To)a(Th — To)y da

< la(ny, 01) — a(ng, 02)|| 2 [[(T2) || o || (Th — T2) || 22
< L(||ny = naol|p2 + (|61 — Oo|2)[[(12) || oo [|(T7 — T2)a | 2

Employing standard bounds from elliptic theory [GT83] there exist constants

co, ¢1 > 0 such that

j3 (nZ)x
P

|(T%) el pee < o+ ||iE2 +w(pe, To —T) — <r(j,9)

L2




where 7(j,d) > 0 is small for j, and J small.

Hence

al|(Ty = Ta) el < 8(5,0) (lne — nallze + [[p1 — pallze + 1|01 — 02| ),

and by Poincare’s inequality it holds
o1+
177 = Taflm < s(J, 5)7(1 + W) (llpr = pollrz + (|61 — Oz 1),

where s(j,d) can be made small by choosing j, and ¢ small enough.

Altogether, we have

[T (p1,01) = T (p2, 02)llcoxmr < oll(pr, 01) = (p2, 02) |l oo,
for some constant o = o(jy,d, K) € (0,1), which yields the assertion. O

Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then the decoupling
algorithm defined by the operator T converges for any starting value (n°, T°) € B.

Remark 2.4. This theorem also extends the uniqueness result in [AVJIMO00] as
nonconstant heat conductivities are included.

3 Newton Iteration

In this section we investigate the convergence of a full Newton iteration for system
(1.1). To this purpose we show the invertibility of the linearization of (1.1) in
some appropriate function spaces and apply results from the well-known theory
of Newton-Kantorovich [Zei86).

We employ the following assumptions

B.1 w(n,T,j) is continuously differentiable in (0, 00)® and it holds
w(n707]) =0, wn(n707 0) =0, wT(n7T7j) >0,
for all (n,T,j) € (0,00)3.

B.2 P(n,T) is twice continuously differentiable in (0,00)” and there exist posi-
tive constants n,n, 1, T and K such that

Pu(p,9) > K, foralln<p<mn IT<9<T.

B.3 a € C°([0,1]) and there exists a positive constant @ such that a > a > 0.



B.4 C € C°([0,1)).
Remark 3.1.

a) B.1 and B.2 are especially fulfilled in the polytropic gas ansatz

. N3 72
Pn,T)=nT T,j)==-nT+ —.
(n7 ) n ? w(nJ 7]) 2n + 2”

b) For a smoother presentation we assume that the heat conductivity a de-
pends only on the spatial variable (see B.3). Note that all forthcoming
results also hold for arbitrary heat conductivities a(n,T'), since we control
the norm |75, .

For notational convenience we define the Banach spaces

X 00,1 x ([0, 1) x CH([0.1)),

Y & [c°(0,1])]%,

which are equipped with the canonical product norm. The norm of C*([0,1]) is
in the following denoted by [|-[|; .

We introduce the operator A : X — Y which is defined by

<%+P(n,T)> +nE+
def z 4
E, + (n—C(x))

We set u & (n,T, E). As mentioned in the previous section we know that in the
subsonic regime there exist positive constants jg,d,n, 7,1, T such that if

il <o, | To—Tp|+|T1—TL| <6
and assuming B.1-B.4, the classical solution u* o (n*,T*, E*) € X of system
A(n*, T*, E*) = 0 satisfies

n<n*(r)<m, T<T(x)<T.

We consider a ball
B(u) ¥ {u=nT,E)e X : |lu—u,<r}

around the solution u* and choose r < min(n, ). Then it holds n > 0 and 7" > 0
in B, (u*).

For the numerical computation of u* = (n*,T*, E*) we want to employ the New-
ton iteration, which is given by



1. Choose ug € B, (u*).

2. For k=0,1,... set upr; = up — (A (ug)) "t A(ug).

To ensure that this iteration is well defined and convergent we have to check
several properties of the linearization of A. First, the reader easily verifies the
differentiability of A which is stated in the following result.

Lemma 3.2. Assume B.1-B.4. Then the operator A : X —'Y defined by (3.1)
is Fréchet—differentiable in B.(u*) and the Fréchet—derivative at u € B.(u*) in a
direction 0 = (0,,,07,0g) € X is given by

(=2 00+ PO+ PrOr) +E6,+n0s

A O = | (B, + 565 +wn b+ wr by + (36, + 57 6r)

Furthermore, there exists a constant L > 0 such that
[A (w) = A'W)lly < L flu—vllx

for all u,v € B,(u").

Secondly, we have to show the invertibility of A’(u).

Lemma 3.3. Assume B.1-B.4. Then there exist constants jy, 6 > 0 such that
for allu = (n,T, E) € B,(u*) with

1T = Tiflg o0 <0
and if |j| < jo then for oll f = (fu, fr, fr) €Y the linear system
A'(u)[0] = f (3.2)
supplemented with boundary conditions
0,(0) =0, 0u(0)=0, 0r(0)=0, Op(1)=0

has a unique solution 0 = (0,,,07,0r) € X. Furthermore, there exists a constant
M > 0 such that

A @)y x < M (3.3)

for all w € B,.(u*).

10



For the proof of Lemma 3.3 it is most convenient to reduce the hyperbolic—elliptic
system (3.2) to an elliptic equation for 6. To achieve this we define the matrices

Clz(Pnag—i o)} 02:(<Pn—£—i)w+E n)

1 1 0

which only depend on the state u = (n, T, E) € B,(u*). Let (6,,05) € [C([0,1]))°
denote the classical solution of the system of ordinary differential equations

G(§) o) ().

0,,(0) = (0) = 0. (3.4b)

Due to B.2 this system is uniquely solvable for j, sufficiently small. This defines

a solution operator B : C*([0,1]) — [C([0, 1)]? by B(67) = (Bi(6r), Ba(67)) &

(0, 05).
For (fn, f) € [C°([0,1])]° we consider the system

én én _ fn
i)~ @)= (7).

~

which is again uniquely solvable and which defines a solution operator B :

([0, 1DF” = [CM(0, 1)) by B(fu, fz) = (Bu(fu: J5), Bal s ) € (6. 9).
Altogether, any solution 6 = (6, 07,0r) € X of A'(u)[f] = f fulfils

0 = B1(07) + Bi(fu, f5),  Or = Ba(0r) + Ba(fu, [5)
and system (3.2) can be written as
- - g3 - 5
— (@B22)e + J Bol0r) + 1 Ba(0r) + wr O — (— BuOr) + 2 9T>

n xT

A ~ ‘3 ~
= —J Ba(fn, f&) — wn Bi(fu, fu) + fr — (#Bl(fna fE)> (3.5)

x

An easy consequence of Gronwall’s Lemma is the following stability estimate.

Lemma 3.4. Assume B.1-B.4 and let (6,,05) € [C'([0,1])]° be a solution
of the ordinary differential system (3.4). Then there exists a constant ¢ =
c(lInlly o0 1Bl 00 > 1 &) > 0 such that

O

g, H < 10p]l-
0,00 + H E 0,00 =¢ || Tx”LZ

11



Now we are in the position to prove the invertibility result given in Lemma 3.3.

Proof of Lemma 3.3. We show the unique solvability of (3.5) by means of the
Lax-Milgram Lemma. Therefore, we define the bilinear form b : Hj(0,1) X
H;(0,1) —» R by

1
b(6r,6) = [ abr 6.+ (7 Bulbr) + wa Bi(Or) + wror) o
0
7z 5
and the functional G : Hj(0,1) — R by

1 . R 13
G(9) © /0 (=3 Bolfs Ji) = wa By (fus f2) + fr) 6 do + /0 L B1(fus f5) 6 da

Then the weak formulation of the system reads: Find 67 € H}(0,1) such that

for all ¢ € Hy(0,1).

Clearly, b and G are continuous

600, 9)| < o (|07l |01l 1
GO < 2|9l

where ¢; = ¢;(||n T 1Bl oo 051, K) >0, =1,2.

Next, we want to prove the coercivity of b.

1
b(0r, 0r) :/ a 01|’ dx+j/
’ 1 10]'3 _ 1 5
+/ wTQ% dl‘—/ —Bl(QT) HTJ; d$+/ 5]9T0Tx dx
0 0

o n?
> a0zl =3 | Ba00) |, 1602, = lhwnll | Ba(Or)| N6

1,007 2,007 |

1

1
BQ (QT) 0T dx + / Wnp, Bl (QT) 0T dx
0

3
_ )
ﬂ3

By(6r)| , 10z,

L2
2 j3 2
> allralfe = o (34 lwnlln + 55) Wl

where ¢3 = c3(|[nf], oo, |E]l; o » 12, K) > 0. Hence, for jo and ¢ small it holds

b(r,0r) > co 10220

12



where ¢5 = ca([[nll) oo, 1T lo,0 s |1 Bl o0 - 2 @, K o, 0) > 0. Note that [[w,l] e is
small due to B.1 and the smallness of j, and 9.

Now the Lax—Milgram Lemma ensures the unique existence of a weak solution
0 € Hy(0,1) and it holds

107[1;2 < ex (lfallze + 15l + I frll2) -

Further we get from elliptic estimates [GT83]

107100 < €5 (I fallg + 1l + 1l )

and from Lemma 3.4 we deduce

100l e + 105 o0 < 5 (11£

0,00) )

where the positive constants cs, ¢ again only depend on [|n|, o, [Ty | £l oo
n,a, K, jo,d. This immediately implies (3.3). O

0,00 + ||fE||0,oo + ||fT

Hence, the Newton iteration is well defined and Lemma 3.2 and Lemma 3.3 are
sufficient to ensure its convergence [Zei86, Proposition 5.1].

Theorem 3.5. Assume B.1-B.4 and let v* = (n*,T*,E*) € X be a solution
of A(n, T, E) = 0. Then there exist constants jo,r,6 > 0 such that for all u, =
(no, T, Es) € B (u*) with

|]| SjO; ||TO_TL||0,00 S(S

the sequence (ug)ren given by ug1 = up— (A’ (ug)) L A(uy) converges quadratically
to u*, i.e. there exists a constant N = N(L, M, jo,r,90) > 0 such that

upsr — u*|l x < N [lug —u*)% -
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