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Abstra
t

Two iterative s
hemes for the solution of the one{dimensional station-

ary full hydrodynami
 model for semi
ondu
tor devi
es are studied. This

model 
onsists of a system of balan
e equations for the ele
tron density,

temperature and the ele
tri
 �eld. The �rst iterative s
heme relies on a de-


oupling of the equations in the spirit of the well{known Gummel{iteration

for the standard drift di�usion model. Convergen
e is proven in the 
ase of

small deviations from the equilibrium state and high latti
e temperature.

Se
ondly, a full Newton{iteration is analyzed and its lo
al se
ond order


onvergen
e is proven.
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1 Introdu
tion

The ongoing miniaturization of semi
ondu
tor devi
es posed several 
hallenges

for numeri
al simulation te
hniques. Usually, drift di�usion models are employed,

but they are not 
apable of resolving a

urately high �eld phenomena su
h as

hot ele
tron e�e
ts, impa
t ionization and heat generation in the bulk material.

Thus, generalizations of the drift di�usion equations were developed su
h as the

energy transport or the hydrodynami
 equations (see [MRS90, J�un01℄ and the

referen
es therein).

Here, we 
onsider a full hydrodynami
 model 
onsisting of balan
e equations for

the 
arrier density, momentum and energy, whi
h are self{
onsistently 
oupled

to Poisson's equation for the ele
tri
 �eld. They 
an be derived as a moment

expansion of the Boltzmann equation assuming appropriate 
losure 
onditions

[GMR96℄. We want to 
onsider the one{dimensional stationary equations with

non{isentropi
 pressure, whi
h are stated on the bounded domain 
 = (0; 1):

�

mj

2

n

+ P (n; T )

�

x

= �q nE �

mj

�

p

; (1.1a)

(a(n; T )T

x

)

x

= q j E +

~w � w

0

�

w

+

�

mj

3

2n

2

+

5

2

j T

�

x

; (1.1b)

E

x

= �

q

�

s

(n� C(x)): (1.1
)

Here, the variables are the ele
tron density n(x), the temperature T (x) and the

ele
tri
 �eld E(x). The parameters are the 
urrent density j, the e�e
tive ele
tron

mass m, the elementary 
harge q, the relaxation times for momentum and energy

�

p

and �

w

, respe
tively, and the semi
ondu
tor permittivity �

s

. The pressure

fun
tion is given by P (n; T ) and the heat 
ondu
tivity is a(n; T ). The density of


harged ba
kground ions is denoted by C(x). Further, the energy ~w = ~w(n; T )


an be written as

~w = w

0

+ �

w

w(n; T � T

L

);

where T

L

denotes the latti
e temperature and it holds w(n; 0) = 0 for all n > 0.

The system (1.1) is supplemented with boundary 
onditions

n(0) = n

0

; E(0) = E

0

; T (0) = T

0

; T (1) = T

1

: (1.2)

System (1.1) has been studied analyti
ally only re
ently by several authors [Yeh96,

Yeh97, ZH98℄ employing the polytropi
 gas ansatz, by [DM90, DM93℄ for isen-

tropi
 pressure fun
tions and by [AVJM00℄ in the 
ase of general pressure fun
-

tions.

Generally, hyperboli
 methods from 
omputational gas dynami
s are well suited

for the transient simulations and the steady{state is obtained as the asymptoti
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large time limit. However, for the 
omputation of 
urrent{voltage 
hara
teristi
s

one only needs the stationary solution. This led to the development of solution

methods, whi
h work dire
tly on the stationary equations and whi
h proved to

be one magnitude faster than the transient solvers [GJR89℄.

In this paper we will introdu
e two s
hemes for the numeri
al treatment of (1.1)

and prove their 
onvergen
e in the subsoni
 regime and for large latti
e temper-

ature. The �rst one is a Gummel{type iteration, whi
h is robust and globally


onvergent. In the se
ond approa
h we 
onsider a Newton iteration, whi
h ex-

hibits the typi
al lo
al se
ond order 
onvergen
e.

Espe
ially, for semi
ondu
tor devi
e simulations a 
ombination of both methods

proved to be well suited, i.e. employing the Gummel{type iteration to 
ompute a

good starting point for the Newton s
heme. Alternatively, in [GJR89℄ a damped

Newton{iteration was used to solve system (1.1) with a di�erent set of variables

and boundary 
onditions. For an ex
ellent overview on hydrodynami
al models

and modern numeri
al approa
hes we refer to [AR99℄ and the referen
es therein.

The paper is organized as follows. In Se
tion 2 we de
ouple system (1.1) in

a Gummel{type manner and prove the 
ontra
tivity of the indu
ed �xed point

mapping. The full Newton{Iteration is 
onsidered in Se
tion 3, where the unique

solvability of the linearized system is shown whi
h yields the lo
al quadrati



onvergen
e of the iteration.

2 Gummel{type Iteration

In this se
tion we de
ouple system (1.1) in the spirit of the well known Gummel{

iteration for the standard drift di�usion model [Gum64℄. We prove 
onvergen
e

of this iteration by means of Bana
h's �xed point prin
iple in 
ase of a subsoni


regime and large latti
e temperature.

For notational 
onvenien
e we assume here and in the following se
tion that

m = q = �

s

= �

p

= �

w

= 1:

In [AVJM00, Theorem1℄ an existen
e result for (1.1) is given for subsoni
 states

near the thermal equilibrium and large latti
e temperature. A

ordingly we as-

sume

A.1 a(n; T ) is 
ontinuously di�erentiable and a(n; T ) > 0 in (n; T ) 2 (0;1)

2

.

A.2 P (n; T ) is 
ontinuously di�erentiable in (n; T ) 2 (0;1)

2

and there exist

positive 
onstants n, n, T , T and K, su
h that

�

n

P (�; �) � K for all n � � � n; T � � � T ;
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A.3 w is 
ontinuously di�erentiable and

w(n; T � T

L

)(T � T

L

) � 0

for all (n; T ) 2 (0;1)

2

and some T

L

> 0.

A.4 C 2 L

1

(0; 1).

The proof of this theorem employs a �xed point argument based on the following

reformulation of (1.1a):

�

�

n

P (n; T )�

j

2

n

2

�

n

x

= � (�

T

P (n; T ) + nE + j) :

A 
ompa
t operator T :

e

B !

e

B is de�ned, where

e

B is the 
losed 
onvex set given

by

e

B =

�

(�; �) 2 C

0

([0; 1℄)� C

1

([0; 1℄) : n � �(x) � n;

T � �(x) � T ; j(� � ')

x

(x)j �M for x 2 [0; 1℄

	

with '(x) = T

0

+(T

1

�T

0

)x. Our aim is to prove that if we assume the additional


ondition

A.5 (w(�; �

1

� T

L

)� w(�; �

2

� T

L

))(�

1

� �

2

) � 0 for all �; �

1

; �

2

> 0:

then a Gummel{type iteration is appli
able and 
onvergent, i.e. we de
ouple the

equations of system (1.1) in an appropriate way, de�ning a �xed point operator,

and show that it is in fa
t a 
ontra
tion. For this purpose we de�ne the operator

T :

For any (�; �) 2

e

B we set

E(x) = E

0

+

Z

x

0

(C � �)ds

and let n 2 C

1

([0; 1℄) be the unique solution of the linear problem

�

�

n

P (�; �)�

j

2

�

2

�

n

x

= � (�

T

P (�; �)�

x

+ �E + j) ; n(0) = n

0

; (2.1)

whi
h is well de�ned for j small enough.

Finally, we set T (�; �) = (n; T ), where T is the unique solution of the monotone

problem

(a(n; �)T

x

)

x

= jE + w(�; T � T

L

) +

5

2

jT

x

�

j

3

�

3

n

x

; T (0) = T

0

; T (1) = T

1

:
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We remark that the 
ondition �

x

2 C

0

([0; 1℄) is not used in this de�nition; this

allows us to extend the operator T to a more 
onvenient domain:

B =

�

(�; �) 2 C

0

([0; 1℄)�H

1

(0; 1) : n � �(x) � n;

T � �(x) � T for x 2 [0; 1℄; k(� � ')

x

k

2

�M

	

:

Following the outline of the proof of [AVJM00, Theorem1℄, it is easy to 
he
k

that T (B) � B.

The main result of this se
tion is

Theorem 2.1. Assume A.1{A.5 and let rP be Lips
hitz{
ontinuous on [n; n℄�

[T ; T ℄. Then there exist 
onstants j

0

; Æ > 0 su
h that for

jjj � j

0

; jT

0

� T

L

j+ jT

1

� T

L

j � Æ;

the mapping T : B ! B is a 
ontra
tion with respe
t to the produ
t norm on

C

0

([0; 1℄)�H

1

(0; 1).

Remark 2.2. Subsoni
 
ow is 
hara
terized by jj=nj <

p

�

n

P whi
h is 
ertainly

ful�lled for j

0

=n <

p

K.

Proof. For (�

i

; �

i

) 2 B, i = 1; 2 and n

i

def

= (T (�

i

; �

i

))

1

, we estimate

Z

1

0

(�

n

P (�

1

; �

1

)(n

1

)

x

� �

n

P (�

2

; �

2

)(n

2

)

x

) (n

1

� n

2

)

x

dx =

Z

1

0

�

n

P (�

1

; �

1

)(n

1

� n

2

)

2

x

dx

+

Z

1

0

(�

n

P (�

1

; �

1

)� �

n

P (�

2

; �

2

)) (n

2

)

x

(n

1

� n

2

)

x

dx

� Kk(n

1

� n

2

)

x

k

2

L

2

� L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

L

1

)k(n

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

where L is the Lips
hitz 
onstant for �

n

P . Further,

Z

1

0

�

j

2

(n

1

)

x

�

2

1

�

j

2

(n

2

)

x

�

2

2

�

(n

1

� n

2

)

x

dx =

j

2

Z

1

0

(n

1

� n

2

)

2

x

�

2

1

+ j

2

Z

1

0

�

1

�

2

1

�

1

�

2

2

�

(n

2

)

x

(n

1

� n

2

)

x

dx

�

j

2

n

2

�

k(n

1

� n

2

)

x

k

L

2

+

2n

n

2

k�

1

� �

2

k

L

1

k(n

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

�

From (2.1) and the 
ontinuity of �

T

P , it is 
lear that k(n

2

)

x

k

2

is uniformly

bounded for large K, whi
h also ensures the uniform L

1

(0; 1){bound on n.
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Hen
e,

Z

1

0

(�

n

P (�

1

; �

1

)(n

1

)

x

� �

n

P (�

2

; �

2

)(n

2

)

x

) (n

1

� n

2

)

x

dx

�

Z

1

0

�

j

2

(n

1

)

x

�

2

1

�

j

2

(n

2

)

x

�

2

2

�

(n

1

� n

2

)

x

dx

�

�

K �

j

2

n

2

�

k(n

1

� n

2

)

x

k

2

L

2

�

e

L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(n

1

� n

2

)

x

k

L

2

for some positive 
onstant

e

L =

e

L(j; Æ;K; n; n; T ; T ). In the same way,

�

Z

1

0

(�

T

P (�

1

; �

1

)(�

1

)

x

��

T

P (�

2

; �

2

)(�

2

)

x

) (n

1

� n

2

)

x

dx �

k�

T

P (�

1

; �

1

)k

L

1

k(�

1

� �

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

+ L(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(�

2

)

x

k

L

2

k(n

1

� n

2

)

x

k

L

2

� 


1

(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)k(n

1

� n

2

)

x

k

L

2

for some 
onstant 


1

> 0. Note that jE

1

� E

2

j = j

R

x

0

(�

1

� �

2

)dsj � k�

1

� �

2

k

L

1

,

whi
h implies

�

Z

1

0

(�

1

E

1

� �

2

E

2

)(n

1

� n

2

)

x

� 


2

k�

1

� �

2

k

L

1

k(n

1

� n

2

)

x

k

L

2

for some 
onstant 


2

= 


2

(n) > 0. Taking the di�eren
e of

�

�

n

P (�

i

; �

i

)�

j

2

�

2

i

�

(n

i

)

x

= � (�

T

P (�

i

; �

i

)(�

i

)

x

+ �

i

E + j)

and testing with (n

1

� n

2

)

x

yields a

ording to the above estimates

�

K �

j

2

n

2

�

k(n

1

� n

2

)

x

k

L

2

� (


1

+ 


2

+

e

L)(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)

Choosing now K > 0 su
h that

�

def

=




1

+ 


2

+

e

L

K �

j

2

n

2

< 1

we obtain by Poin
ar�e's inequality

kn

1

� n

2

k

H

1

�

��

1 + �

(k�

1

� �

2

k

C

0

+ k�

1

� �

2

k

H

1

)
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Consider now T

i

def

= (T (�

i

; �

i

))

2

, and 
al
ulate

Z

1

0

(a(n

1

; �

1

)(T

1

)

x

�a(n

2

; �

2

)(T

2

)

x

)(T

1

�T

2

)

x

dx = �j

Z

1

0

(E

1

�E

2

)(T

1

�T

2

) dx

�

Z

1

0

[w(�

1

; T

1

�T

L

)�w(�

2

; T

2

�T

L

)℄(T

1

�T

2

) dx�

5

2

j

Z

1

0

(T

1

�T

2

)

x

(T

1

�T

2

) dx

+ j

3

Z

1

0

�

(n

1

)

x

�

3

1

�

(n

2

)

x

�

3

2

�

(T

1

� T

2

) dx

def

= I

1

+ I

2

+ I

3

+ I

4

Sin
e T

1

� T

2

satis�es homogeneous boundary 
onditions, it is 
lear that I

3

= 0.

Moreover, from A.5 we get

I

2

� �

Z

1

0

(w(�

1

; T

1

� T

L

)� w(�

2

; T

1

� T

L

))(T

1

� T

2

) dx

� 
(Æ)k�

1

� �

2

k

L

2

kT

1

� T

2

k

L

2

;

for some positive 
onstant 
(Æ) with 
(Æ)! 0 as Æ ! 0 due to A.3 and w(�; 0) =

0. Further, we easily 
he
k that

I

1

+ I

4

� j

�

kE

1

� E

2

k

L

2

+ 


1

k(n

1

� n

2

)

x

k

L

2

+ 


2

k�

1

� �

2

k

L

1

�

kT

1

� T

2

k

L

2

� 


3

j(k�

1

� �

2

k

L

1

+ k�

1

� �

2

k

H

1

)kT

1

� T

2

k

L

2

for positive 
onstants 


k

, k = 1; 2; 3. For the left{hand side we have:

Z

1

0

(a(n

1

; �

1

)(T

1

)

x

� a(n

2

; �

2

)(T

2

)

x

)(T

1

� T

2

)

x

dx =

Z

1

0

a(n

1

; �

1

)(T

1

� T

2

)

2

x

dx

+

Z

1

0

(a(n

1

; �

1

)� a(n

2

; �

2

))(T

2

)

x

(T

1

� T

2

)

x

dx;

with

Z

1

0

a(n

1

; �

1

)(T

1

� T

2

)

2

x

dx � ak(T

1

� T

2

)

x

k

2

L

2

;

where a = min

(�;�)2[n;n℄�[T;T ℄

a(�; �), and

Z

1

0

(a(n

1

; �

1

)� a(n

2

; �

2

))(T

2

)

x

(T

1

� T

2

)

x

dx

� ka(n

1

; �

1

)� a(n

2

; �

2

)k

L

2

k(T

2

)

x

k

L

1

k(T

1

� T

2

)

x

k

L

2

� L(kn

1

� n

2

k

L

2

+ k�

1

� �

2

k

L

2

)k(T

2

)

x

k

L

1

k(T

1

� T

2

)

x

k

L

2

Employing standard bounds from ellipti
 theory [GT83℄ there exist 
onstants




0

; 


1

> 0 su
h that

k(T

2

)

x

k

L

1

� 


0

+ 


1













jE

2

+ w(�

2

; T

2

� T

L

)�

j

3

(n

2

)

x

�

3

2













L

2

� r(j; Æ)
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where r(j; Æ) > 0 is small for j

0

and Æ small.

Hen
e

ak(T

1

� T

2

)

x

k

L

2

� s(j; Æ) (kn

1

� n

2

k

L

2

+ k�

1

� �

2

k

L

2

+ k�

1

� �

2

k

H

1

) ;

and by Poin
are's inequality it holds

kT

1

� T

2

k

H

1

� s(j; Æ)

1 + �

a�

(1 + �)(k�

1

� �

2

k

L

2

+ k�

1

� �

2

k

H

1

);

where s(j; Æ) 
an be made small by 
hoosing j

0

and Æ small enough.

Altogether, we have

kT (�

1

; �

1

)� T (�

2

; �

2

)k

C

0

�H

1

� �k(�

1

; �

1

)� (�

2

; �

2

)k

C

0

�H

1

;

for some 
onstant � = �(j

0

; Æ;K) 2 (0; 1), whi
h yields the assertion.

Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then the de
oupling

algorithm de�ned by the operator T 
onverges for any starting value (n

0

; T

0

) 2 B.

Remark 2.4. This theorem also extends the uniqueness result in [AVJM00℄ as

non
onstant heat 
ondu
tivities are in
luded.

3 Newton Iteration

In this se
tion we investigate the 
onvergen
e of a full Newton iteration for system

(1.1). To this purpose we show the invertibility of the linearization of (1.1) in

some appropriate fun
tion spa
es and apply results from the well{known theory

of Newton{Kantorovi
h [Zei86℄.

We employ the following assumptions

B.1 w(n; T; j) is 
ontinuously di�erentiable in (0;1)

3

and it holds

w(n; 0; j) = 0; w

n

(n; 0; 0) = 0; w

T

(n; T; j) � 0;

for all (n; T; j) 2 (0;1)

3

.

B.2 P (n; T ) is twi
e 
ontinuously di�erentiable in (0;1)

2

and there exist posi-

tive 
onstants n; n; T ; T and K su
h that

P

n

(�; #) � K; for all n � � � n; T � # � T :

B.3 a 2 C

0

([0; 1℄) and there exists a positive 
onstant a su
h that a � a > 0.

8



B.4 C 2 C

0

([0; 1℄).

Remark 3.1.

a) B.1 and B.2 are espe
ially ful�lled in the polytropi
 gas ansatz

P (n; T ) = nT; ~w(n; T; j) =

3

2

nT +

j

2

2n

:

b) For a smoother presentation we assume that the heat 
ondu
tivity a de-

pends only on the spatial variable (see B.3). Note that all forth
oming

results also hold for arbitrary heat 
ondu
tivities a(n; T ), sin
e we 
ontrol

the norm kT

x

k

1;1

.

For notational 
onvenien
e we de�ne the Bana
h spa
es

X

def

= C

1

([0; 1℄)� C

2

([0; 1℄)� C

1

([0; 1℄);

Y

def

=

�

C

0

([0; 1℄)

�

3

;

whi
h are equipped with the 
anoni
al produ
t norm. The norm of C

k

([0; 1℄) is

in the following denoted by k�k

k;1

.

We introdu
e the operator A : X ! Y whi
h is de�ned by

A(n; T; E)

def

=

0

B

B

�

�

j

2

n

+ P (n; T )

�

x

+ nE + j

�(a T

x

)

x

+ j E + w(n; T ) +

�

j

3

2n

2

+

5

2

j T

�

x

E

x

+ (n� C(x))

1

C

C

A

: (3.1)

We set u

def

= (n; T; E). As mentioned in the previous se
tion we know that in the

subsoni
 regime there exist positive 
onstants j

0

; Æ; n; n; T ; T su
h that if

jjj � j

0

; jT

0

� T

L

j+ jT

1

� T

L

j � Æ

and assuming B.1{B.4, the 
lassi
al solution u

�

def

= (n

�

; T

�

; E

�

) 2 X of system

A(n

�

; T

�

; E

�

) = 0 satis�es

n � n

�

(x) � n; T � T

�

(x) � T :

We 
onsider a ball

B

r

(u

�

)

def

= fu = (n; T; E) 2 X : ku� u

�

k

X

< rg

around the solution u

�

and 
hoose r < min(n; T ). Then it holds n > 0 and T > 0

in B

r

(u

�

).

For the numeri
al 
omputation of u

�

= (n

�

; T

�

; E

�

) we want to employ the New-

ton iteration, whi
h is given by

9



1. Choose u

0

2 B

r

(u

�

).

2. For k = 0; 1; : : : set u

k+1

= u

k

� (A

0

(u

k

))

�1

A(u

k

).

To ensure that this iteration is well de�ned and 
onvergent we have to 
he
k

several properties of the linearization of A. First, the reader easily veri�es the

di�erentiability of A whi
h is stated in the following result.

Lemma 3.2. Assume B.1{B.4. Then the operator A : X ! Y de�ned by (3.1)

is Fr�e
het{di�erentiable in B

r

(u

�

) and the Fr�e
het{derivative at u 2 B

r

(u

�

) in a

dire
tion � = (�

n

; �

T

; �

E

) 2 X is given by

A

0

(u)[�℄ =

0

B

B

�

�

�

j

2

n

2

�

n

+ P

n

�

n

+ P

T

�

T

�

x

+ E �

n

+ n �

E

�(a �

Tx

)

x

+ j �

E

+ w

n

�

n

+ w

T

�

T

+

�

�

j

3

n

3

�

n

+

5

2

j �

T

�

x

�

Ex

+ �

n

1

C

C

A

:

Furthermore, there exists a 
onstant L > 0 su
h that

kA

0

(u)� A

0

(v)k

Y

� L ku� vk

X

for all u; v 2 B

r

(u

�

).

Se
ondly, we have to show the invertibility of A

0

(u).

Lemma 3.3. Assume B.1{B.4. Then there exist 
onstants j

0

; Æ > 0 su
h that

for all u = (n; T; E) 2 B

r

(u

�

) with

kT � T

L

k

0;1

� Æ

and if jjj � j

0

then for all f = (f

n

; f

T

; f

E

) 2 Y the linear system

A

0

(u)[�℄ = f (3.2)

supplemented with boundary 
onditions

�

n

(0) = 0; �

E

(0) = 0; �

T

(0) = 0; �

T

(1) = 0

has a unique solution � = (�

n

; �

T

; �

E

) 2 X. Furthermore, there exists a 
onstant

M > 0 su
h that







(A

0

(u))

�1







Y;X

�M (3.3)

for all u 2 B

r

(u

�

).
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For the proof of Lemma 3.3 it is most 
onvenient to redu
e the hyperboli
{ellipti


system (3.2) to an ellipti
 equation for �

T

. To a
hieve this we de�ne the matri
es

C

1

=

�

P

n

�

j

2

n

2

0

0 1

�

; C

2

=

 

�

P

n

�

j

2

n

2

�

x

+ E n

1 0

!

;

whi
h only depend on the state u = (n; T; E) 2 B

r

(u

�

). Let (

~

�

n

;

~

�

E

) 2 [C

1

([0; 1℄)℄

2

denote the 
lassi
al solution of the system of ordinary di�erential equations

C

1

�

~

�

n

~

�

E

�

x

+ C

2

�

~

�

n

~

�

E

�

=

�

�(P

T

�

T

)

x

0

�

; (3.4a)

~

�

n

(0) =

~

�

E

(0) = 0: (3.4b)

Due to B.2 this system is uniquely solvable for j

0

suÆ
iently small. This de�nes

a solution operator

~

B : C

1

([0; 1℄)! [C

1

([0; 1℄)℄

2

by

~

B(�

T

) = (

~

B

1

(�

T

);

~

B

2

(�

T

))

def

=

(

~

�

n

;

~

�

E

).

For (f

n

; f

E

) 2 [C

0

([0; 1℄)℄

2

we 
onsider the system

C

1

�

^

�

n

^

�

E

�

x

+ C

2

�

^

�

n

^

�

E

�

=

�

f

n

f

E

�

;

^

�

n

(0) =

^

�

E

(0) = 0;

whi
h is again uniquely solvable and whi
h de�nes a solution operator

^

B :

[C

0

([0; 1℄)℄

2

! [C

1

([0; 1℄)℄

2

by

^

B(f

n

; f

E

) = (

^

B

1

(f

n

; f

E

);

^

B

2

(f

n

; f

E

))

def

= (

^

�

n

;

^

�

E

).

Altogether, any solution � = (�

n

; �

T

; �

E

) 2 X of A

0

(u)[�℄ = f ful�ls

�

n

=

~

B

1

(�

T

) +

^

B

1

(f

n

; f

E

); �

E

=

~

B

2

(�

T

) +

^

B

2

(f

n

; f

E

)

and system (3.2) 
an be written as

� (a �

Tx

)

x

+ j

~

B

2

(�

T

) + w

n

~

B

1

(�

T

) + w

T

�

T

�

�

�

j

3

n

3

~

B

1

(�

T

) +

5

2

j �

T

�

x

= �j

^

B

2

(f

n

; f

E

)� w

n

^

B

1

(f

n

; f

E

) + f

T

�

�

j

3

n

3

^

B

1

(f

n

; f

E

)

�

x

(3.5)

An easy 
onsequen
e of Gronwall's Lemma is the following stability estimate.

Lemma 3.4. Assume B.1{B.4 and let (

~

�

n

;

~

�

E

) 2 [C

1

([0; 1℄)℄

2

be a solution

of the ordinary di�erential system (3.4). Then there exists a 
onstant 
 =


(knk

1;1

; kEk

1;1

; n;K) > 0 su
h that










~

�

n










0;1

+










~

�

E










0;1

� 
 k�

Tx

k

L

2
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Now we are in the position to prove the invertibility result given in Lemma 3.3.

Proof of Lemma 3.3. We show the unique solvability of (3.5) by means of the

Lax{Milgram Lemma. Therefore, we de�ne the bilinear form b : H

1

0

(0; 1) �

H

1

0

(0; 1)! R by

b(�

T

; �) =

Z

1

0

a �

Tx

�

x

+

�

j

~

B

2

(�

T

) + w

n

~

B

1

(�

T

) + w

T

�

T

�

�

+

�

�

j

3

n

3

~

B

1

(�

T

) +

5

2

j �

T

�

�

x

dx

and the fun
tional G : H

1

0

(0; 1)! R by

G(�)

def

=

Z

1

0

�

�j

^

B

2

(f

n

; f

E

)� w

n

^

B

1

(f

n

; f

E

) + f

T

�

� dx +

Z

1

0

j

3

n

3

^

B

1

(f

n

; f

E

)�

x

dx

Then the weak formulation of the system reads: Find �

T

2 H

1

0

(0; 1) su
h that

b(�

T

; �) = G(�)

for all � 2 H

1

0

(0; 1).

Clearly, b and G are 
ontinuous

jb(�

T

; �)j � 


1

k�

T

k

H

1

k�k

H

1

;

jG(�)j � 


2

k�k

H

1

;

where 


i

= 


i

(knk

1;1

; kTk

2;1

; kEk

1;1

; a; n;K) > 0, i = 1; 2.

Next, we want to prove the 
oer
ivity of b.

b(�

T

; �

T

) =

Z

1

0

a j�

Tx

j

2

dx+ j

Z

1

0

~

B

2

(�

T

) �

T

dx+

Z

1

0

w

n

~

B

1

(�

T

) �

T

dx

+

Z

1

0

w

T

�

2

T

dx�

Z

1

0

j

3

n

3

~

B

1

(�

T

) �

Tx

dx+

Z

1

0

5

2

j �

T

�

Tx

dx

� a k�

Tx

k

2

L

2

� j










~

B

2

(�

T

)










L

2

k�

T

k

L

2

� kw

n

k

L

1










~

B

1

(�

T

)










L

2

k�

T

k

L

2

�

j

3

n

3










~

B

1

(�

T

)










L

2

k�

Tx

k

L

2

� a k�

Tx

k

2

L

2

� 


3

�

j + kw

n

k

L

1

+

j

3

n

3

�

k�

Tx

k

2

L

2

;

where 


3

= 


3

(knk

1;1

; kEk

1;1

; n;K) > 0. Hen
e, for j

0

and Æ small it holds

b(�

T

; �

T

) � 


4

k�

T

k

2

H

1

;

12



where 


4

= 


4

(knk

1;1

; kTk

2;1

; kEk

1;1

; n; a;K; j

0

; Æ) > 0. Note that kw

n

k

L

1

is

small due to B.1 and the smallness of j

0

and Æ.

Now the Lax{Milgram Lemma ensures the unique existen
e of a weak solution

�

T

2 H

1

0

(0; 1) and it holds

k�

T

k

H

1

� 


�1

4

(kf

n

k

L

2

+ kf

E

k

L

2

+ kf

T

k

L

2

) :

Further we get from ellipti
 estimates [GT83℄

k�

T

k

2;1

� 


5

�

kf

n

k

0;1

+ kf

E

k

0;1

+ kf

T

k

0;1

�

and from Lemma 3.4 we dedu
e

k�

n

k

1;1

+ k�

E

k

1;1

� 


6

�

kf

n

k

0;1

+ kf

E

k

0;1

+ kf

T

k

0;1

�

;

where the positive 
onstants 


5

; 


6

again only depend on knk

1;1

; kTk

2;1

; kEk

1;1

,

n; a;K; j

0

; Æ. This immediately implies (3.3).

Hen
e, the Newton iteration is well de�ned and Lemma 3.2 and Lemma 3.3 are

suÆ
ient to ensure its 
onvergen
e [Zei86, Proposition 5.1℄.

Theorem 3.5. Assume B.1{B.4 and let u

�

= (n

�

; T

�

; E

�

) 2 X be a solution

of A(n; T; E) = 0. Then there exist 
onstants j

0

; r; Æ > 0 su
h that for all u

Æ

=

(n

Æ

; T

Æ

; E

Æ

) 2 B

r

(u

�

) with

jjj � j

0

; kT

Æ

� T

L

k

0;1

� Æ

the sequen
e (u

k

)

k2N

given by u

k+1

= u

k

�(A

0

(u

k

))

�1

A(u

k

) 
onverges quadrati
ally

to u

�

, i.e. there exists a 
onstant N = N(L;M; j

0

; r; Æ) > 0 su
h that

ku

k+1

� u

�

k

X

� N ku

k

� u

�

k

2

X

:
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