Central Extensions of Topological Current Algebras
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Abstract

In this note we describe universal central extensions of certain Fréchet current algebras,
which in our context are algebras of type A® g, where g is a finite dimensional semisimple
real Lie algebra and A a commutative associative Fréchet algebra.

Introduction

Although in the algebraic setting the problem to determine all central extensions of a given
current algebra, i.e., a Lie algebra of type A ®p g, where F is any field and A is some
commutative associative unital F-algebra, is satisfactorily solved for char(F') # 2 (see [4] for
the case char(F) = 0 and [14] for the general case) not much is known if one deals with
central extensions of topological Lie algebras. In this note we construct a universal central
extension for Lie algebras of type g ® A, where g is a finite dimensional semisimple real Lie
algebra and A a commutative associative Fréchet algebra. If A equals the algebra C°°(M)
of smooth functions on a smooth finite dimensional manifold M, we explicitly describe this
universal extension by using the A-module Q!(M) of smooth 1-forms on M, thereby proving
that this is the universal differential module for A in the category of Fréchet A-modules. As a
consequence of our results, we obtain a generalisation of a theorem due to Pressley and Segal.

Topological Tensor, Alternating, and Symmetric Products

Let E and F' be locally convex topological vector spaces, and let £ ® F' denote their algebraic
tensor product (if nothing else is specified, tensor products are always taken over the reals).
The projective topology on £ ® F' is the finest topology for which the map

(x,y) 2Ry ExXF —>EQF
is continuous. It has the following universal property:

1 Theorem. Let E, F, and G be locally convez spaces, and let § : EXF — G be a continuous
bilinear map. Then there exists a unique continuous linear map 6:E®F — G such that

f=Po®.

We call the so-defined topological tensor product of two locally convex vector spaces the
projective tensor product. In the sequel we give another description for the projective
topology which shows that this topology, indeed, is a locally convex vector space topology.
Moreover, the description below yields that for two metrizable spaces £ and F' the projective
tensor product again is a metrizable space. Let p be a seminorm on F and let ¢ be a seminorm
on F. We define the tensor product p ® ¢ of these seminorms by the prescription

(r® )(z) = inf {3 planalu) | S ov @ =2}

It turns out that this again is a seminorm and moreover, if (p;);er and (g;)jcs are two families
of seminorms which define the topologies on £ and F', respectively, then (p; ® ¢;)(; j)erxs is
a family of seminorms which defines the projective topology on EF ® F (cf. [6], 15.1). In



general the projective tensor product of complete spaces E and F fails to be complete. We
write E®F for its completion. Because of the universal property of the completion of a
(metrizable) locally convex vector space we immediately obtain the following consequence of
Theorem 1.

2 Corollary. Let E, F, and G be complete, resp. metrizable, resp. completely metrizable,
locally convex spaces, and let f: E X F — G be a continuous bilinear map. Then there exists
a unique continuous linear map B: E® F — G such that 8 = fo ®.

In the sequel the letter K stands for the category of locally convex vector spaces with
continuous linear maps as morphisms or for one of its full subcategories consisting of all
complete, resp., metrizable, resp., completely metrizable (=Fréchet), spaces. Furthermore,
given two spaces F, F' € K we write £ ®k F for tensor product having the universal property
described in Theorem 1, resp., Corollary 2. Note that uniqueness of the map 3 arising in
Theorem 1 and Corollary 2 implies that the algebraic tensor product £ ® F' always is dense
in F®kg F. Now let F = F € K, then the map

0 EXE—-EQkE: (z,y)—yQux
induces a continuous linear involution
cg: EFRx F > EQk E
which yields a decomposition
E®k E = S%(F) ® Ak (E),

where S (F) := ker(1 — 7) and Ak (F) := ker(1 + ). Putting

1 1
fvg=5(f®g+tg®f) and  fAg:=(f@®g-9®f)
we obtain as a consequence of Theorem 1 and Corollary 2 the following result:

3 Theorem. Let E,F € K. Then for any continuous symmetric, resp., skew-symmetric
bilinear map B : EE x EE — F there exists a uniquely determined continuous linear map

B:S&(F) — F, resp., B:Ak(E) = F
such that = BoV, resp., B=[FoA.

Now, we consider a special situation which will be of interest for us later on. Let M
be a finite dimensional smooth manifold and E a Fréchet space. We topologize the space
C®(M, E) in the following way: For any two topological spaces X and Y we denote by
C(X,Y). the space C(X,Y) endowed with the topology of compact convergence. We identify
the tangent bundle TE of F with E x E, so that for any smooth map f : M — E we obtain
a smooth map df : TM — E by letting df (v) := pry(Tf(v)). Inductively, this yields maps
d"f : T"M — E for any n € Ny by putting d’f := f (T°M := M) and d"f := d(d" ' f) for
n > (0. Using these maps, we get an injection

C®(M,E) —» [] C(IT"M,E). : f = (d" fneno-
neNp



We endow C*°(M, E) with the topology induced by the product topology via this embedding.
Since for each of the spaces T"M, n € Ny, the respective topology has a countable basis
consisting of relatively compact neighborhoods, the topology of each space C(T"M, E), can
be defined by a countable separating family of seminorms and therefore is locally convex and
metrizable. As a subspace of a countable product of locally convex metrizable spaces the space
C®(M, E) is locally convex and metrizable as well. In fact, it turns out that its topology
even is complete (cf. the proof of Proposition III.1 in [10]) whence C*°(M, E) is a Fréchet
space. Now we restrict our attention to the special case where £ = R and write C*°(M) for
C*°(M,R). While the isomorphism C®(M) & C®(N) = C*®°(M x N) is well-known if M and
N are open subsets of some R" a proof for the general case in which M and N are smooth
finite dimensional manifolds is not easy to find in the literature.

4 Theorem. Let M and N be smooth finite dimensional manifolds. Then the map
CX¥(M)BC®(N) = C®(M x N): f@ g~ ((p,9) = [(p)g(a))
is an isomorphism of Fréchet spaces.

PROOF. We first recall some facts. Let X, Y, and Z be Hausdorff topological spaces. For
feC(XxY,Z)and z € X we put f, := (y — f(z,y)) € C(Y,Z). It is well- known that the
map

a:C(XxY,Z). = C(X,C(Y,2Z))e: [ rr (x> fr)

is a homeomorphism if Y is locally compact, and since «, obviously, is natural in X and Z,
we obtain that C(Y,-). is a right adjoint self functor of the category of Hausdorff topological
spaces and thus preserves limits. For the remaining proof we note that, according to [10],
Theorem I11.4, the image of the map a|ce(yrx ) is contained in C°°(M,C*°(N)), and that
for any Fréchet space E the map

C®(M)RE — C®(M,E): f @z +— fx

is an isomorphism of Fréchet spaces (cf. [3], Chapter II, p. 81). Hence we are done, if we can
show that the map

B:C%M x N)— C®(M,C®(N)): f—a(f)

is an isomorphism of Fréchet spaces. Thanks to the Open Mapping Theorem for Fréchet spaces
it suffices to show that § is a continuous linear bijection. Clearly, £ is injective. For the prove
of its surjectivity we have to show that for g € C*(M, C*°(N)) we have a~!(g) € C®°(M x N),
i.e., that a~!(g) is smooth at any point. Since the latter is a local property we can assume
M and N to be open subsets of some R"; but in this case the assertion is already proved,
see [13], Theorem 40.1. It remains to show continuity of 5. By definition of the topology of
C>®(M,C*®(N)) the map § is continuous exactly if for any m € Ny the map

B : CC(M x N) = C(T"M,C>®(N))c: f—d"B(f)

is continuous. Since C°(N) is embedded into the product [, .y, C(T"N)., and since
C(T™M,-) preserves limits, the map /3, is continuous exactly if for any n € Ny the map

B : CP(M x N) — C(T"M,C(T"N)¢)e : f = d" o Bn(f)



is continuous. In view of the isomorphism C(T™M,C(T"N).). = C(T™M xT" N ). continuity
of B, 1s equivalent to continuity of the map

C®(M x N) = C(T™M x T"N), : f — d"d}f

where d; and dy denote the respective “partial derivatives”. But the latter is clearly fulfilled,
since f is smooth. O

Universal Differential Modules

In this section we point out that the concept of a universal differential module for a commu-
tative associative algebra, which is well-known in the algebraic setting, not only makes sense,
but even is a very useful tool, in a categorial framework. By an algebra object in the category
K, or simply a K-algebra, we mean an object A € K together with a morphism

p:AQKA—A

called multiplication. Suppose for the rest of this note that A is a unital K-algebra with
commutative and associative multiplication. An A-module in the category K is an object M
together with a morphism

vV:AQxk M — M

that satisfies vo (idy @ v) = vo (p®idys) and v(1 ® m) = m for each m € M. A derivation
from such an algebra A into an A-module M is defined to be a linear map D : A — M
satisfying

D(ab) = aDb+ bDa
for all a,b € A. The embedding
a—~a®l:A— ARk A,

turns the K-algebra A ®k A into an A-module with respect to the multiplication map on
A ®k A, and in view of this module structure the map @ also is a morphism of A-modules.
Consequently, its kernel I is an A-submodule of A Rk A.

5 Lemma. Let J:=1N(A®A). Then we have J =spany{1®@b—b®1|b€ A} and I = J.

PROOF. Obviously, we have J' :=span,{1®b—-b®1|b € A} C J. In order to show the
reverse inclusion consider ¢ = > ap ® by, € J, that is, > agby = 0. Then we have

c= Zak®bk — (Zakbk) ®1= Zak(1®bk —-bp®1) e,
and the first claim follows. To prove the second claim we note that the map
c— (c—ple)®L, pule) Ak A= Id A
is an isomorphism of K-A-modules whose inverse is given by

(bya)—mb+a®1l:I®A— ARk A.



As a consequence of this, the map
AMARKkA—=T:c—c—pulc)®1

is a surjective morphism of K-A-modules satisfying A(A ® A) = J, by what we have just
shown. As A ® A is dense in A ®k A, this implies the second claim. O

Now we put Qg (A) := I/I? and define a continuous linear map d4 : A — Qk (A) by the
prescription

dala) =[1®a—a®1],
where [c] denotes the class of an element ¢ € I in Qg (A). Since we have

da(ab) —ada(b) —bda(a) = [1®@ab—-—ab®1]-[a®@b—ab®1]-[b®a—ba®1]

= [l®ab—a®b-b®a+ab® 1]
(1®a—a®1)(1®@b—-bR1)]

0

for all a,b € A, we see that d4 in fact is a derivation. We call the pair (2x(A),d4) the
K-universal differential module of the algebra A. It has the following universal property:

6 Theorem. Let F' be a K-A-module and let D : A — F be a continuous derivation. Then
there exists a unique continuous A-linear map D : Qg (A) — F such that D = D o dy.

PROOF. In order to prove the existence of the map D, we consider the continuous bilinear
map

A:AxA— F:(a,b)— aDb
which induces a continuous linear map A : A ®g A — F satisfying
A(a ®b) = aDb
for all a,b € A. As is easy to verify, this map fulfils the identity
Alec) = u(0)A() + u(c)A(e) (1)

for all ¢, € A® A, and hence for all ¢, € A ®k A, because of the density of A® A in
A ®k A. Equation (1) shows that A vanishes on J 2 and thus on I2. Hence, the restriction
Al factors to a map

for which we have

(Doda)(a) =D(1®a—a®1])=1Da - aD1 = Da,

as desired. B
Uniqueness of the map D follows from the fact that, according to Lemma 5, the image of
d generates a dense A-submodule of Qk(A). O



Now we consider a special situation. Let M be a finite dimensional smooth manifold,
A:=C*®(M), resp., B := C*®°(M x M) the algebra of smooth functions on M, resp., M x M,
and let A, and B, the respective subalgebras consisting of compactly supported functions.
Then A and B are Fréchet algebras whereas A. and B, in general are just locally convex
algebras. Denoting the category of Fréchet spaces by F, we seek for a convenient description
of the universal module Qg(A). In the sequel we view the Fréchet algebra B as a Fréchet
A-module with respect to the embedding

A= B:fe((p,g)~ fp).

Further, we consider the following morphisms of Fréchet A-modules:
0*:B—A:F+— Fod,
where § is the diagonal map p — (p,p) : M — M x M, and
0:AQr A — B
which is induced by the continuous bilinear map

0:AxA— B:(f.9)— (p,q) ~ flp)g(q))-

Both maps §* and @ are also morphisms of the underlying Fréchet algebras and moreover, 0 is
a homeomorphism according to Theorem 4. Denoting by p: A @ A — A the multiplication
map on A, we have

p=25od.

From this relation we immediately infer K := ker(6*) = 6(I) and therefore obtain the following
isomorphism of Fréchet A-modules:

Qr(4) = K/K2.

In the sequel we think of Qp(A) as K /ﬁ with respect to this isomorphism. Likewise, we
identify A @ A with B via 6. Now let TM be the tangent bundle of M. Then the space
C>®(TM) is a Fréchet A-module in which the space

QY(M) = {a € C®°(TM)|(Vp € M) a|r, is linear}

of smooth 1-forms on M is a closed A-submodule and therefore is a Fréchet A-module as well.
We define the support of a 1-form « € Q'(M) to be the set

supp' () == {p € M |a|r,; #0} C M

and denote the space of compactly supported 1-forms on M by QL(M). This space is a locally
convex A.module as well as a locally convex A-module, and it is dense in Q!(M) since the
identity element in A is a limit of elements in A.. We want to show that Q'(M) and Qp(A)
are isomorphic Fréchet A-modules, and in order to do this, we first collect some information
on QL(M).

We put K, := ker(6*|g,) = KN B, and consider the continuous linear map 7 : B — Q*(M)
defined by

7(F)(z,X) := dF (z,z)(0, X).



7 Proposition. The kernel of 7|k, equals K2 and the kernel of T|x equals K2.

PRrROOF. We have
T(FG) = 6" (F)1(G) + 0" (G)1(F) (2)

for all F,G € B (which is easily verified for ', G € A® A and then follows by density). Hence,
we have K2 C ker(7|g,) and K2 C ker(7|xg). Moreover, equation (2) shows that ker(7|x,)
and ker(7|g) are ideals in B. For the rest of this proof let (Uy)xen be a locally finite open
covering of M x M counsisting of relatively compact neighborhoods which are diffeomorphic
to open convex neighborhoods in R" and let (¢x)ren be a partition of unity subordinate to
this covering. Now let F' € B,. Since supp(F') is compact there exists some [ € N such that

[
supp(F) C | supp ().
k=1

Putting

Fyi= = F
Zk:1 Pk

for kK <1 we have F' = F| +--- + Fj. Since ker(7|g,) is an ideal in B, it follows that
F € ker(7|k,) = (Vk <) Fy, € ker(7|k,),

and so the problem is reduced to the case M = R".
In order to prove the desired inclusion for this case, we define for each pair (z,y) € R* xR"
functions gz ), hzy) : R = R" X R" by

Y(ay) (t) := (tm +(1- t)y,y) and Py (t) := (:r,ta; +(1- t)y).
Now we have

2F(z,y) = F(z,y) — F(y,y) + F(z,y) — F(z, )

= [y (Foguy) t)dt — [ (Fohgy,) (t)dt

and thus

n

F(I,y) = Z(xk - yk)Fk(xvy)7 (3)

k=1

where

1
Fulo) =5 [ (Gt ®) = 5o (a1 )

and z1,...,%n, Y1, --,Yn denote the coordinate functions on M x M. Applying 7 to equation
(3) leads to the 1-form

T(F) = <a; — — ZFk(x,x)da;k)

k=1

7



on R® and we see that vanishing of 7 on F' implies that any Fj vanishes on the diagonal
and so F' € K. We claim that each Fj has compact support, but this easily follows from the
definition, since supp(F) C [—a,a)*” for a € R implies

oF oF

Oh(

g C o) = gy O e = 0

for (z,y) € R?" \ [~a,a]*”. Replacing the coordinate functions by functions Z,...,7, on R?
which coincide with the coordinate functions on [—a,a]*® and vanish outside some compact
neighborhood of [—a, a]?® shows that F' € K2.

Now let F' € B. Similar as in the previous case we put

l
Fy = MF
2130:1 Pk

and obtain a sequence (F});cy in B, which converges to F' in B (because of the local finiteness
of the covering (U)ken). Now we have

F € ker(7|k) — (Vi e N) F} € ker(7|k.),

since ker(7| ) is an ideal in B and B.K C K. But since we already know that ker(7|x,) = K?

this implies ker(7|x) C K2 C K2, as desired. O
8 Proposition. We have 7(B.) = 7(A. ® A.) = QL(M) and 7(B) = Q' (M).

Proor. Clearly, we have 7(4, ® A.) C 7(B.) and so it suffices to show 7(4. ® A.) =
QL(M). So let a € QL(M). First we consider the case that M is diffeomorphic to an open
convex subset U of R*, where n := dim M. Then we have in local coordinates

alp) =Y fu(p)day.
k=1

Choosing functions Z1, . .., T, € C*®°(R™) with compact support in U which coincide with the
coordinate functions on supp’(«), we obtain

alp) =Y felp)dT), =7 (Z fe(p) ® Ek>
k=1 k=1

and see that QL(M) = 7(A.® A.) in this case. Now let M be any finite dimensional manifold.
By choosing a suitable partition of unity we get a decomposition &« = a1 + - -+ + «,, where
each of the sets supp’(ay) is contained in some neighborhood Uy which is diffeomorphic to an
open convex neighborhood in R*. Now 7(A4. ® A.) = QL(M) follows by what we have just
proved.

In order to prove 7(B) = Q!(M) we choose a locally finite open covering (Uy)ken of
M consisting of relatively compact neighborhoods which are diffeomorphic to open convex
neighborhoods in R". Furthermore, we choose a partition of unity (pg)ren subordinate to
this covering. Now let o« € Q'(M) and put oy := ppa € QL(M) for each k. Then we have
o = ey in QH(M). At the beginning of the proof we have seen that for any of these
1-forms oy, we find a function Fj, € QL(M) with 7(F}) = oy and supp(Fg) C U x Up. We
put Gy := F) +--- + Fj, for k € N and note that the sequence (G)gen converges to some G
in B because of the local finiteness of (Uy)ken. Continuity of 7 now yields 7(G) = «, and we
are done. O



9 Theorem. The map d: Qp(A) — QY (M) induced by the differential d : A — QY (M) is an
isomorphism of Fréchet A-modules.

Proor. Thanks to the Open Mapping Theorem for Fréchet spaces it suffices to show
bijectivity of the map d. With respect to the identification Qp(A4) = K /K? the injectivity
of 7 is equivalent to the equality ker(7|x) = K? and thus is an immediate consequence of
Proposition 7. In order to show surjectivity, we have to show that 7(K) = Q!(M). From
Proposition 8 we know that 7(B) = QY(M). But this implies 7(K) = Q' (M) since we have
T(F -6 (F)®1l)=7(F)and F —0*(F)®1 € K for any F € B. O

10 Remark. In fact, Theorem 9 seems to be well-known (although unproved in full strength,
as far as the author knows) if M is compact (cf. [2]).

The Continuous Case

An opposite to the smooth situation we are concerned with in the preceding discussion is
the continuous case. Given a compact topological space X, one may ask for a universal
differential module for the Banach algebra A := C(X) in the category of Banach A-modules.
Indeed, such an object exists, and can be obtained by our general construction described in
the previous section. Surprisingly, this construction always leads to the trivial module, as we
shall see in the sequel. In order to show this, we introduce the notion of an amenable Banach
algebra. Let A be a Banach algebra. For any Banach A-bimodule M the dual Banach space
M’ also carries the structure of an A-bimodule via

(af)(z) = f(za)  and  (fa)(z):= f(az)

fora € A,z € M, and f € M'. We call A amenable, if for any A-bimodule M and any
continuous derivation § : A — M’ there exists f € M’ such that

da) =af — fa

for all @ € A. Such derivations of A are called inner M'-derivations. In [1] the following is
shown:

11 Theorem. If X is a compact topological space, then C(X) is an amenable Banach algebra
and furthermore, for any C(X)-bimodule M each M -derivation of C(X) is inner.

PROOF. See [1], Theorem VI.12, and Proposition VI.14. O
As an immediate consequence of Theorem 11 we now obtain the following result:

12 Corollary. If X is a compact topological space, then the universal differential modul for
the Banach algebra C(X) in category of all Banach spaces is trivial.

PROOF. Let A := C(X) and let 25(A) denote the universal differential modul for A in
category of Banach spaces. We define on Q5(A4) an A-bimodule structure by wa = aw.
Theorem 11 now implies that each 4 (A)-derivation is inner, but with respect to the above
defined bimodule structure on Qf(A4), any such inner derivation obviously is trivial, which
implies that Q5 (A) itself is trivial. O



Finally we note that the situation even changes if we consider a compact C'-manifold M,
since in this case the differential d : M — Q}(M) (where Q}(M) denotes the Banach space
of continuous 1-forms on M) is a non-trivial derivation, and thus the respective universal
differential module has to be non-trivial.

Central Extensions of Fréchet Current Algebras

In this section we investigate central extensions of Fréchet current algebras, which are Lie
algebras of type A®p g, where F denotes the category of Fréchet spaces and g is some Fréchet—
Lie algebra. We are only interested in extensions that are described by continuous Lie algebra
cocycles. Given a Fréchet-Lie algebra g, an abelian Fréchet-Lie algebra 3, and a continuous
2-cocycle w: g x g — 3, we write g @, 3 for the Lie algebra g x 3 with the bracket

[(z,a), (y,b)] := ([z, 9], w(=,y)).
These extensions are exactly those which are given by an exact sequence
0—3—bhb"g—0

of Fréchet-Lie algebras in which the map 7 admits a continuous linear section. Such an
extension is called weakly universal if for any other central extension g @, 3’ there exists a
morphism of Fréchet-Lie algebras ¢ : 3 — 3/ such that w’ = pow, it is called universal if the
morphism ¢ is unique. In any of these cases w is called a universal cocycle. We note that
a weakly universal extension g @, 3 is universal if g is perfect (cf. [7], 1.9, Proposition 1).

Now we consider the following situation: Given a finite-dimensional Lie algebra g, then
the space g4 := A ® g is a Fréchet—Lie algebra with respect to the bracket defined by

[a®z,b®y|:=ab® [z,y].
Since it is skew-symmetric this bracket induces a continuous linear map
B Ap(g4) — ga
which, because of the Jacobian identity, factors to a map
B: Af(ga)/B5 (g4) — ga,
where BY (g4) denotes the closure of the span of all elements of the form
Ay, z) +yAz,z]+ 2z A[z,y]

in AL(ga). Writing ga := A%(ga)/BY(ga) and [z] := = + BE(ga) for z € A(ga) the
prescription

defines a continuous Lie bracket on the space g4. Denoting the kernel of the map 8 by Z¥ (g4)
we have the following result (cf. [11]):

10



13 Theorem. The Fréchet—Lie algebra g4 possesses a weakly universal central extension if
and only if the space Z¥ (g4) has a closed vector space complement in A%(ga). In this case a
weakly universal extension is given by the Fréchet—Lie algebra ga, and a universal cocycle is
given by

wa:ga X ga— H3 (ga): (z,y) = [2 Ay,
where Hj (g4) := Z3 (94)/ B3 (g4)-

In case g is semisimple there is a more explicit way of describing this universal central
extension of g4. It goes as follows: Consider the action of g on S?(g) given by

w(yVz) =,y Vz+yVl
put V(g) := S?(g)/95%(g), and define a symmetric bilinear map  : g x g — V(g) by
ke, y) = [z Vyl,
where [2] denotes the class of an element z € S?(g) in V(g). Since we have
s(l,yl2) + 6y, [9,2]) = [[2,9] V2 +y V2, 2] = [2(y v 2)] = 0.

for all z,y, z € g, this map is invariant. Furthermore, it has the following universal property:

14 Lemma. Let E be a Fréchet space and 8 : g X g — E a continuous invariant symmetric
bilinear map. Then there exists a unique (continuous) linear map (8 : V(g) — E such that

B=Por.

PRrROOF. Uniqueness of § is clear. For the proof of the existence we note that, because of
the symmetry of 3, the universal property of S%(g) yields a linear map 3 : S%(g) — E with
B(zVy) = B(z,y). The invariance of 4 then implies that gS?(g) is contained in the kernel of

/3, whence 3 factors to the desired map 8 : V(g) — E. |
Now we put 34 := V(g) ® (Qr(A)/daA) and define a map w4 : ga X ga — 34 by

wa(f ®z,9®Y) = k(x,y) @ [fdalg)],

where [a] denotes the class of & € Qp(A) in Qr(A)/d4A. Taking into account the invariance
of x, this map is easily verified to be a continuous 2-cocycle on g4 and hence defines a central
extension of g4. For this central extension we have the following result:

15 Theorem. If the Lie algebra g is semisimple, then the Lie algebra g4 := ga ®uw, 34 5 a
universal central extension of ga.

Before we prove this result, we state two preparatory lemmas. For a finite dimensional
Lie group G and a locally convex G-module E we put

Egy :={v € E|Gv = {v}}, Eg, = {v € E'| dimspan(Gv) < oo},

and

Egg :=span{gv —v|g € G,v € E}.

The elements of Eg, are called G-finite. Furthermore, we write E¢ for the complexification
C® FE of E and G¢ for the complexification of G.

11



16 Lemma. Let G be a connected finite dimensional semisimple Lie group, g its Lie algebra,
and let E be a complete locally convex G-module whose complexification is a holomorphic
Gc-module. Then for any closed G-submodule F C E satisfying gv C F for each v € Eg, we
have E = Eg + F.

PROOF. Let v € (Ec)an and z € ge. According to the assumption, there exists a finite
dimensional complex subspace F' C F¢ containing zv and thus containing e*v — v € (E¢)gp-
Connectivity of G now implies gv —v € (E¢)gy, for any g € Ge. Let K be a compact real form
of G¢. Since the G¢-finite elements in E¢ are exactly the K-finite elements, the Big Theorem
of Peter and Weyl (cf. [5], Theorem 3.51) applies and yields that the Gc-finite elements are
dense in E¢. Therefore we obtain (E¢)gpg C Fe and thus Ec = (Eg)ax + Fc in view of [5],
Theorem 3.36. Now the assertion follows, since we have (E¢)gx = (Fx)c- O

17 Lemma. Let G be a Lie group that acts continuously on a finite dimensional vector space
V. Then the induced action of G on the Fréchet A-module AQV also is continuous.

Proor. Choosing a basis vy,...,v,, we obtain an isomorphism V = R" as well as an
isomorphism A ® V' = A" of Fréchet A-modules. With respect to these identifications, the
action of G on R" is given by a continuous morphism 7 : G — GL(n,R) and the induced
A-linear action on A" is given by a morphism p : G — GL(n, A) which is simply the push-
forward of 7 by the embedding GL(n,R) — GL(n, A). Since the latter embedding obviously
is continuous, p, and therefore the related action, is continuous as well. O

Now we are ready to prove the main result of this section.

PROOF OF THEOREM 15. We note that the central extension g, is automatically universal
if it is weakly universal, since g4 is perfect. So it remains to show that w4 is a universal
cocycle. So let w' € Z&(ga,3') be 3'-valued cocycle on g4. We denote by L2(ga,3’) the space
of continuous 3’-valued bilinear maps on g4. Endowing this space with the compact open
topology, it becomes a complete locally convex space (cf. [13], Corollary 11.32.4) and as a
closed subspace, Z%(g 4,3') is a complete locally convex space as well.

Let GG be the simply connected group associated to g. According to Lemma, 17, the adjoint
action of G on g induces a continuous action of G on g4, turning g4 into a Fréchet G-module.
For later use we note that the complexification (ga)c of g4 is a Fréchet Gc-module, since we
have (ga)c = (gc)a- If C(ga X ga,3’ ) denotes the space of continuous maps from g4 X ga
to 3’ endowed with the compact-open topology, then the setting

z,9 ty) (4)

defines a continuous action of G on C(ga X ga,3')c (cf. [10], Lemma II1.2). As a closed
G-invariant subspace of C(ga X g4,3')c, the space ZZ(ga,3') therefore is a complete locally
convex G-module. The so-defined action of G on ZI% (g4,3) induces a continuous action of g
on Z2(g4,3') given by

(g9) (. y) == o(g "

(zw)(y, 2) = —w(lz,yl, 2) = w(y, [z, 2])- (5)

Denoting the space of continuous alternating 3'-valued p-linear maps on g4 by Cp(g4,3’), we
have for any = € g4 the insertion map i(z) : Cp(ga,3') — Cffl(gA,g') defined by n — n(z,-).
For w € Z2(ga,3') the Cartan formula now yields

zw = d(i(r)w) + i(z)(dw) = d(i(z)w) € Ba(ga,3').

12



Thus, applying Lemma 16, we obtain

ZI%(QA73,) = Z%(9A73,)ﬁx + B%‘(gA73,)

Therefore we can assume that w is invariant with respect to the actions defined by (4) and
(5). The latter invariance of w implies

wl®z,ab®[y,2z]) = —w@®y,b®[z,z]) —wb®z,a® [z,y])
= —w(a®[:r,y],b®z)—w(b®z,a®[m,y])
= 0,
and thus
w(1®g,84) =0, (6)

since g4 is perfect. Fixing a,b € A, the map
Wiap) 08X 83 (,9) »wa®z,b®y)

is a continuous g-invariant bilinear map and therefore has to be skew-symmetric, since g does
not posses any non-zero symmetric g-invariant bilinear from (cf. [8]). In view of Lemma 14,
there exists a unique continuous linear map w, ) : V(g) — 3 satisfying W(a,b) = W(ap) © K-
From the uniqueness of the maps W, ), (a,b) € A X A, and the continuity of w, we deduce
the existence of a continuous linear map

n: A®r A — Hom(V(g),3')
satisfying
n(a®b)(k(z,y)) =wla@z,b®y).

Now the skew-symmetry of w together with the symmetry of x and the fact that im(k)
generates V (g) as a vector space imply that 7 is skew-symmetric. Using the invariance of &,
the fact that w is a 2-cocycle yields

n(ab® ¢+ bc® a+ ca @ b)(k([z,y],2)) =0

for all a,b,c € A and all z,y,z € g. Since g is perfect and im(k) is generating, we conclude
from the latter equation that n vanishes on all expressions of the form

ab@c+bc®a+ca®be ARr A.

From (6) it follows that n vanishes on 1 ® A and since, in view of Lemma 5, the elements of
the form

a(leb—-0®1)(1®c—c®l)=a®@bc—ab®c—ac@b+abc®1 € A®r A

generate a dense subset of I? (recall that I was defined to be the kernel of the multiplication
map p: A®p A — A), we see that n vanishes on I? and hence induces a continuous linear
map

7: Qr(A) — Hom(V (g),3').
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For this map we have
T(da@) = n(l®a—a®1) = 25(1®a) =0,

whence it factors to a continuous linear map

¢+ Qr(A)/da(A) — Hom(V(g),3)-
In view of the canonical isomorphism
Hom, (E, Hom,.(F,3')) = Hom.(E ® F,3'),

we can consider £ as a continuous linear map 34 — 3/, and with respect to this identification
the above calculations yield w = —€ o w 4. O

Having Theorem 9 in mind, we consider the Fréchet-Lie algebra gy := C*(M,g) = ga.
In order to obtain a convenient description of a universal central extension of this algebra we
put 3a7 := Q'(M)/dA, and define a continuous 2-cocycle wy; on gy by

wp (f @ x,9®y) = kg(z,y)fdg] € 3m, (7)

where kg denotes the Killing form of g. Since in case g is simple all invariant symmetric
bilinear forms on g are multiples of the Killing form, we get the following consequence of
Theorem 15 which generalizes Proposition 4.2.8 in [12]:

18 Corollary. If the Lie algebra g is simple, then the Lie algebra gy = gp Puwy, 30 1S @
universal central extension of gas.
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