
Central Extensions of Topologial Current Algebras

Peter Maier

Abstrat

In this note we desribe universal entral extensions of ertain Fr�ehet urrent algebras,

whih in our ontext are algebras of type A
g, where g is a �nite dimensional semisimple

real Lie algebra and A a ommutative assoiative Fr�ehet algebra.

Introdution

Although in the algebrai setting the problem to determine all entral extensions of a given

urrent algebra, i.e., a Lie algebra of type A 


F

g, where F is any �eld and A is some

ommutative assoiative unital F -algebra, is satisfatorily solved for har(F ) 6= 2 (see [4℄ for

the ase har(F ) = 0 and [14℄ for the general ase) not muh is known if one deals with

entral extensions of topologial Lie algebras. In this note we onstrut a universal entral

extension for Lie algebras of type g 
 A, where g is a �nite dimensional semisimple real Lie

algebra and A a ommutative assoiative Fr�ehet algebra. If A equals the algebra C

1

(M)

of smooth funtions on a smooth �nite dimensional manifold M , we expliitly desribe this

universal extension by using the A-module 


1

(M) of smooth 1-forms on M , thereby proving

that this is the universal di�erential module for A in the ategory of Fr�ehet A-modules. As a

onsequene of our results, we obtain a generalisation of a theorem due to Pressley and Segal.

Topologial Tensor, Alternating, and Symmetri Produts

Let E and F be loally onvex topologial vetor spaes, and let E
F denote their algebrai

tensor produt (if nothing else is spei�ed, tensor produts are always taken over the reals).

The projetive topology on E 
 F is the �nest topology for whih the map

(x; y) 7! x
 y : E � F ! E 
 F

is ontinuous. It has the following universal property:

1 Theorem. Let E; F , and G be loally onvex spaes, and let � : E�F ! G be a ontinuous

bilinear map. Then there exists a unique ontinuous linear map � : E 
 F ! G suh that

� = � Æ 
.

We all the so-de�ned topologial tensor produt of two loally onvex vetor spaes the

projetive tensor produt. In the sequel we give another desription for the projetive

topology whih shows that this topology, indeed, is a loally onvex vetor spae topology.

Moreover, the desription below yields that for two metrizable spaes E and F the projetive

tensor produt again is a metrizable spae. Let p be a seminorm on E and let q be a seminorm

on F . We de�ne the tensor produt p
 q of these seminorms by the presription

(p
 q)(z) := inf

n

X

p(x

k

)q(y

k

)

�

�

�

X

x

k


 y

k

= z

o

:

It turns out that this again is a seminorm and moreover, if (p

i

)

i2I

and (q

j

)

j2J

are two families

of seminorms whih de�ne the topologies on E and F , respetively, then (p

i


 q

j

)

(i;j)2I�J

is

a family of seminorms whih de�nes the projetive topology on E 
 F (f. [6℄, 15.1). In

1



general the projetive tensor produt of omplete spaes E and F fails to be omplete. We

write E

b


F for its ompletion. Beause of the universal property of the ompletion of a

(metrizable) loally onvex vetor spae we immediately obtain the following onsequene of

Theorem 1.

2 Corollary. Let E; F , and G be omplete, resp. metrizable, resp. ompletely metrizable,

loally onvex spaes, and let � : E �F ! G be a ontinuous bilinear map. Then there exists

a unique ontinuous linear map � : E

b


F ! G suh that � = � Æ 
.

In the sequel the letter K stands for the ategory of loally onvex vetor spaes with

ontinuous linear maps as morphisms or for one of its full subategories onsisting of all

omplete, resp., metrizable, resp., ompletely metrizable (=Fr�ehet), spaes. Furthermore,

given two spaes E;F 2 K we write E


K

F for tensor produt having the universal property

desribed in Theorem 1, resp., Corollary 2. Note that uniqueness of the map � arising in

Theorem 1 and Corollary 2 implies that the algebrai tensor produt E 
 F always is dense

in E 


K

F . Now let E = F 2 K, then the map

� : E �E ! E 


K

E : (x; y) 7! y 
 x

indues a ontinuous linear involution

� : E 


K

E ! E 


K

E

whih yields a deomposition

E 


K

E = S

2

K

(E)� �

K

(E);

where S

2

K

(E) := ker(1� �) and �

K

(E) := ker(1 + �). Putting

f _ g :=

1

2

(f 
 g + g 
 f) and f ^ g :=

1

2

(f 
 g � g 
 f)

we obtain as a onsequene of Theorem 1 and Corollary 2 the following result:

3 Theorem. Let E;F 2 K. Then for any ontinuous symmetri, resp., skew-symmetri

bilinear map � : E �E ! F there exists a uniquely determined ontinuous linear map

� : S

2

K

(E)! F; resp:; � : �

2

K

(E)! F

suh that � = � Æ _, resp., � = � Æ ^.

Now, we onsider a speial situation whih will be of interest for us later on. Let M

be a �nite dimensional smooth manifold and E a Fr�ehet spae. We topologize the spae

C

1

(M;E) in the following way: For any two topologial spaes X and Y we denote by

C(X;Y )



the spae C(X;Y ) endowed with the topology of ompat onvergene. We identify

the tangent bundle TE of E with E �E, so that for any smooth map f : M ! E we obtain

a smooth map df : TM ! E by letting df(v) := pr

2

(Tf(v)). Indutively, this yields maps

d

n

f : T

n

M ! E for any n 2 N

0

by putting d

0

f := f (T

0

M := M) and d

n

f := d(d

n�1

f) for

n > 0. Using these maps, we get an injetion

C

1

(M;E)!

Y

n2N

0

C(T

n

M;E)



: f 7! (d

n

f)

n2N

0

:

2



We endow C

1

(M;E) with the topology indued by the produt topology via this embedding.

Sine for eah of the spaes T

n

M , n 2 N

0

, the respetive topology has a ountable basis

onsisting of relatively ompat neighborhoods, the topology of eah spae C(T

n

M;E)



an

be de�ned by a ountable separating family of seminorms and therefore is loally onvex and

metrizable. As a subspae of a ountable produt of loally onvex metrizable spaes the spae

C

1

(M;E) is loally onvex and metrizable as well. In fat, it turns out that its topology

even is omplete (f. the proof of Proposition III.1 in [10℄) whene C

1

(M;E) is a Fr�ehet

spae. Now we restrit our attention to the speial ase where E = R and write C

1

(M) for

C

1

(M;R). While the isomorphism C

1

(M)

b


C

1

(N)

�

=

C

1

(M�N) is well-known ifM and

N are open subsets of some R

n

a proof for the general ase in whih M and N are smooth

�nite dimensional manifolds is not easy to �nd in the literature.

4 Theorem. Let M and N be smooth �nite dimensional manifolds. Then the map

C

1

(M)

b


C

1

(N)! C

1

(M �N) : f 
 g 7!

�

(p; q) 7! f(p)g(q)

�

is an isomorphism of Fr�ehet spaes.

Proof. We �rst reall some fats. Let X, Y , and Z be Hausdor� topologial spaes. For

f 2 C(X � Y;Z) and x 2 X we put f

x

:=

�

y 7! f(x; y)

�

2 C(Y;Z). It is well-known that the

map

� : C(X � Y;Z)



! C(X;C(Y;Z)



)



: f 7! (x 7! f

x

)

is a homeomorphism if Y is loally ompat, and sine �, obviously, is natural in X and Z,

we obtain that C(Y; �)



is a right adjoint self funtor of the ategory of Hausdor� topologial

spaes and thus preserves limits. For the remaining proof we note that, aording to [10℄,

Theorem III.4, the image of the map �j

C

1

(M�N)

is ontained in C

1

(M;C

1

(N)), and that

for any Fr�ehet spae E the map

C

1

(M)

b


E ! C

1

(M;E) : f 
 x 7! fx

is an isomorphism of Fr�ehet spaes (f. [3℄, Chapter II, p. 81). Hene we are done, if we an

show that the map

� : C

1

(M �N)! C

1

(M;C

1

(N)) : f 7! �(f)

is an isomorphism of Fr�ehet spaes. Thanks to the OpenMapping Theorem for Fr�ehet spaes

it suÆes to show that � is a ontinuous linear bijetion. Clearly, � is injetive. For the prove

of its surjetivity we have to show that for g 2 C

1

(M;C

1

(N)) we have �

�1

(g) 2 C

1

(M�N),

i.e., that �

�1

(g) is smooth at any point. Sine the latter is a loal property we an assume

M and N to be open subsets of some R

n

; but in this ase the assertion is already proved,

see [13℄, Theorem 40.1. It remains to show ontinuity of �. By de�nition of the topology of

C

1

(M;C

1

(N)) the map � is ontinuous exatly if for any m 2 N

0

the map

�

m

: C

1

(M �N)! C(T

m

M;C

1

(N))



: f 7! d

m

�(f)

is ontinuous. Sine C

1

(N) is embedded into the produt

Q

n2N

0

C(T

n

N)



, and sine

C(T

m

M; �) preserves limits, the map �

m

is ontinuous exatly if for any n 2 N

0

the map

�

mn

: C

1

(M �N)! C(T

m

M;C(T

n

N)



)



: f 7! d

n

Æ �

m

(f)

3



is ontinuous. In view of the isomorphismC(T

m

M;C(T

n

N)



)



�

=

C(T

m

M�T

n

N)



ontinuity

of �

mn

is equivalent to ontinuity of the map

C

1

(M �N)! C(T

m

M � T

n

N)



: f 7! d

m

1

d

n

2

f

where d

1

and d

2

denote the respetive \partial derivatives". But the latter is learly ful�lled,

sine f is smooth. 2

Universal Di�erential Modules

In this setion we point out that the onept of a universal di�erential module for a ommu-

tative assoiative algebra, whih is well-known in the algebrai setting, not only makes sense,

but even is a very useful tool, in a ategorial framework. By an algebra objet in the ategory

K, or simply a K-algebra, we mean an objet A 2 K together with a morphism

� : A


K

A! A

alled multipliation. Suppose for the rest of this note that A is a unital K-algebra with

ommutative and assoiative multipliation. An A-module in the ategory K is an objet M

together with a morphism

� : A


K

M !M

that satis�es � Æ (id

A


 �) = � Æ (�
 id

M

) and �(1
m) = m for eah m 2M . A derivation

from suh an algebra A into an A-module M is de�ned to be a linear map D : A ! M

satisfying

D(ab) = aDb+ bDa

for all a; b 2 A. The embedding

a 7! a
 1 : A! A


K

A;

turns the K-algebra A 


K

A into an A-module with respet to the multipliation map on

A 


K

A, and in view of this module struture the map � also is a morphism of A-modules.

Consequently, its kernel I is an A-submodule of A


K

A.

5 Lemma. Let J := I \ (A
A). Then we have J = span

A

f1
 b� b
 1 j b 2 Ag and I = J .

Proof. Obviously, we have J

0

:= span

A

f1
 b� b
 1 j b 2 Ag � J . In order to show the

reverse inlusion onsider  =

P

a

k


 b

k

2 J , that is,

P

a

k

b

k

= 0. Then we have

 =

X

a

k


 b

k

�

�

X

a

k

b

k

�


 1 =

X

a

k

(1
 b

k

� b

k


 1) 2 J

0

;

and the �rst laim follows. To prove the seond laim we note that the map

 7!

�

� �()
 1; �()

�

: A


K

A! I �A

is an isomorphism of K-A-modules whose inverse is given by

(b; a) 7! b+ a
 1 : I �A! A


K

A:

4



As a onsequene of this, the map

� : A


K

A! I :  7! � �()
 1

is a surjetive morphism of K-A-modules satisfying �(A 
 A) = J , by what we have just

shown. As A
A is dense in A


K

A, this implies the seond laim. 2

Now we put 


K

(A) := I=I

2

and de�ne a ontinuous linear map d

A

: A ! 


K

(A) by the

presription

d

A

(a) := [1
 a� a
 1℄;

where [℄ denotes the lass of an element  2 I in 


K

(A). Sine we have

d

A

(ab)� ad

A

(b)� bd

A

(a) = [1
 ab� ab
 1℄� [a
 b� ab
 1℄� [b
 a� ba
 1℄

= [1
 ab� a
 b� b
 a+ ab
 1℄

= [(1
 a� a
 1)(1
 b� b
 1)℄

= 0

for all a; b 2 A, we see that d

A

in fat is a derivation. We all the pair (


K

(A); d

A

) the

K-universal di�erential module of the algebra A. It has the following universal property:

6 Theorem. Let F be a K-A-module and let D : A ! F be a ontinuous derivation. Then

there exists a unique ontinuous A-linear map D : 


K

(A)! F suh that D = D Æ d

A

.

Proof. In order to prove the existene of the map D, we onsider the ontinuous bilinear

map

� : A�A! F : (a; b) 7! aDb

whih indues a ontinuous linear map � : A


K

A! F satisfying

�(a
 b) = aDb

for all a; b 2 A. As is easy to verify, this map ful�ls the identity

�(

0

) = �()�(

0

) + �(

0

)�() (1)

for all ; 

0

2 A 
 A, and hene for all ; 

0

2 A 


K

A, beause of the density of A 
 A in

A 


K

A. Equation (1) shows that � vanishes on I

2

and thus on I

2

. Hene, the restrition

�j

I

fators to a map

D : 


K

(A)! F

for whih we have

(D Æ d

A

)(a) = D([1 
 a� a
 1℄) = 1Da� aD1 = Da;

as desired.

Uniqueness of the map D follows from the fat that, aording to Lemma 5, the image of

d

A

generates a dense A-submodule of 


K

(A). 2

5



Now we onsider a speial situation. Let M be a �nite dimensional smooth manifold,

A := C

1

(M), resp., B := C

1

(M �M) the algebra of smooth funtions on M , resp., M �M ,

and let A



and B



the respetive subalgebras onsisting of ompatly supported funtions.

Then A and B are Fr�ehet algebras whereas A



and B



in general are just loally onvex

algebras. Denoting the ategory of Fr�ehet spaes by F, we seek for a onvenient desription

of the universal module 


F

(A). In the sequel we view the Fr�ehet algebra B as a Fr�ehet

A-module with respet to the embedding

A! B : f 7!

�

(p; q) 7! f(p)

�

:

Further, we onsider the following morphisms of Fr�ehet A-modules:

Æ

�

: B ! A : F 7! F Æ Æ;

where Æ is the diagonal map p 7! (p; p) :M !M �M , and

� : A


F

A! B

whih is indued by the ontinuous bilinear map

� : A�A! B : (f; g) 7!

�

(p; q) 7! f(p)g(q)

�

:

Both maps Æ

�

and � are also morphisms of the underlying Fr�ehet algebras and moreover, � is

a homeomorphism aording to Theorem 4. Denoting by � : A


F

A! A the multipliation

map on A, we have

� = Æ

�

Æ �:

From this relation we immediately inferK := ker(Æ

�

) = �(I) and therefore obtain the following

isomorphism of Fr�ehet A-modules:




F

(A)

�

=

K=K

2

:

In the sequel we think of 


F

(A) as K=K

2

with respet to this isomorphism. Likewise, we

identify A 


F

A with B via �. Now let TM be the tangent bundle of M . Then the spae

C

1

(TM) is a Fr�ehet A-module in whih the spae




1

(M) := f� 2 C

1

(TM) j (8p 2M)�j

T

p

M

is linearg

of smooth 1-forms onM is a losed A-submodule and therefore is a Fr�ehet A-module as well.

We de�ne the support of a 1-form � 2 


1

(M) to be the set

supp

0

(�) := fp 2M j�j

T

p

M

6= 0g �M

and denote the spae of ompatly supported 1-forms onM by 


1



(M). This spae is a loally

onvex A



-module as well as a loally onvex A-module, and it is dense in 


1

(M) sine the

identity element in A is a limit of elements in A



. We want to show that 


1

(M) and 


F

(A)

are isomorphi Fr�ehet A-modules, and in order to do this, we �rst ollet some information

on 


1



(M).

We putK



:= ker(Æ

�

j

B



) = K\B



and onsider the ontinuous linear map � : B ! 


1

(M)

de�ned by

�(F )(x;X) := dF (x; x)(0;X):

6



7 Proposition. The kernel of � j

K



equals K

2



and the kernel of � j

K

equals K

2

.

Proof. We have

�(FG) = Æ

�

(F )�(G) + Æ

�

(G)�(F ) (2)

for all F;G 2 B (whih is easily veri�ed for F;G 2 A
A and then follows by density). Hene,

we have K

2



� ker(� j

K



) and K

2

� ker(� j

K

). Moreover, equation (2) shows that ker(� j

K



)

and ker(� j

K

) are ideals in B. For the rest of this proof let (U

k

)

k2N

be a loally �nite open

overing of M �M onsisting of relatively ompat neighborhoods whih are di�eomorphi

to open onvex neighborhoods in R

n

and let ('

k

)

k2N

be a partition of unity subordinate to

this overing. Now let F 2 B



. Sine supp(F ) is ompat there exists some l 2 N suh that

supp(F ) �

l

[

k=1

supp('

k

):

Putting

F

k

:=

'

k

P

l

k=1

'

k

F

for k � l we have F = F

1

+ � � � + F

l

. Sine ker(� j

K



) is an ideal in B



it follows that

F 2 ker(� j

K



) () (8k � l)F

k

2 ker(� j

K



);

and so the problem is redued to the ase M = R

n

.

In order to prove the desired inlusion for this ase, we de�ne for eah pair (x; y) 2 R

n

�R

n

funtions g

(x;y)

; h

(x;y)

: R ! R

n

� R

n

by

g

(x;y)

(t) :=

�

tx+ (1� t)y; y

�

and h

(x;y)

(t) :=

�

x; tx+ (1� t)y

�

:

Now we have

2F (x; y) = F (x; y)� F (y; y) + F (x; y)� F (x; x)

=

R

1

0

(F Æ g

(x;y)

)

0

(t)dt�

R

1

0

(F Æ h

(x;y)

)

0

(t)dt

and thus

F (x; y) =

n

X

k=1

(x

k

� y

k

)F

k

(x; y); (3)

where

F

k

(x; y) :=

1

2

Z

1

0

�

�F

�x

k

(g

(x;y)

(t))�

�F

�y

k

(h

(x;y)

(t))

�

dt

and x

1

; : : : ; x

n

; y

1

; : : : ; y

n

denote the oordinate funtions on M �M . Applying � to equation

(3) leads to the 1-form

�(F ) =

 

x 7! �

n

X

k=1

F

k

(x; x)dx

k

!

7



on R

n

and we see that vanishing of � on F implies that any F

k

vanishes on the diagonal

and so F 2 K. We laim that eah F

k

has ompat support, but this easily follows from the

de�nition, sine supp(F ) � [�a; a℄

2n

for a 2 R implies

�F

�x

k

Æ g

(x;y)

=

�F

�y

k

Æ h

(x;y)

= 0

for (x; y) 2 R

2n

n [�a; a℄

2n

. Replaing the oordinate funtions by funtions x

1

; : : : ; y

n

on R

n

whih oinide with the oordinate funtions on [�a; a℄

2n

and vanish outside some ompat

neighborhood of [�a; a℄

2n

shows that F 2 K

2



.

Now let F 2 B. Similar as in the previous ase we put

F

l

:=

P

l

k=1

'

k

P

1

k=1

'

k

F

and obtain a sequene (F

l

)

l2N

in B



whih onverges to F in B (beause of the loal �niteness

of the overing (U

k

)

k2N

). Now we have

F 2 ker(� j

K

) () (8l 2 N)F

l

2 ker(� j

K



);

sine ker(� j

K

) is an ideal in B and B



K � K



. But sine we already know that ker(� j

K



) = K

2



this implies ker(� j

K

) � K

2



� K

2

, as desired. 2

8 Proposition. We have �(B



) = �(A




A



) = 


1



(M) and �(B) = 


1

(M).

Proof. Clearly, we have �(A




 A



) � �(B



) and so it suÆes to show �(A




 A



) =




1



(M). So let � 2 


1



(M). First we onsider the ase that M is di�eomorphi to an open

onvex subset U of R

n

, where n := dimM . Then we have in loal oordinates

�(p) =

n

X

k=1

f

k

(p)dx

k

:

Choosing funtions x

1

; : : : ; x

n

2 C

1

(R

n

) with ompat support in U whih oinide with the

oordinate funtions on supp

0

(�), we obtain

�(p) =

n

X

k=1

f

k

(p)dx

k

= �

 

n

X

k=1

f

k

(p)
 x

k

!

and see that 


1



(M) = �(A




A



) in this ase. Now letM be any �nite dimensional manifold.

By hoosing a suitable partition of unity we get a deomposition � = �

1

+ � � � + �

n

where

eah of the sets supp

0

(�

k

) is ontained in some neighborhood U

k

whih is di�eomorphi to an

open onvex neighborhood in R

n

. Now �(A




 A



) = 


1



(M) follows by what we have just

proved.

In order to prove �(B) = 


1

(M) we hoose a loally �nite open overing (U

k

)

k2N

of

M onsisting of relatively ompat neighborhoods whih are di�eomorphi to open onvex

neighborhoods in R

n

. Furthermore, we hoose a partition of unity ('

k

)

k2N

subordinate to

this overing. Now let � 2 


1

(M) and put �

k

:= '

k

� 2 


1



(M) for eah k. Then we have

� =

P

k2N

�

k

in 


1

(M). At the beginning of the proof we have seen that for any of these

1-forms �

k

we �nd a funtion F

k

2 


1



(M) with �(F

k

) = �

k

and supp(F

k

) � U

k

� U

k

. We

put G

k

:= F

1

+ � � � + F

k

for k 2 N and note that the sequene (G

k

)

k2N

onverges to some G

in B beause of the loal �niteness of (U

k

)

k2N

. Continuity of � now yields �(G) = �, and we

are done. 2

8



9 Theorem. The map d : 


F

(A)! 


1

(M) indued by the di�erential d : A! 


1

(M) is an

isomorphism of Fr�ehet A-modules.

Proof. Thanks to the Open Mapping Theorem for Fr�ehet spaes it suÆes to show

bijetivity of the map d. With respet to the identi�ation 


F

(A) = K=K

2

the injetivity

of � is equivalent to the equality ker(� j

K

) = K

2

and thus is an immediate onsequene of

Proposition 7. In order to show surjetivity, we have to show that �(K) = 


1

(M). From

Proposition 8 we know that �(B) = 


1

(M). But this implies �(K) = 


1

(M) sine we have

�(F � Æ

�

(F )
 1) = �(F ) and F � Æ

�

(F )
 1 2 K for any F 2 B. 2

10 Remark. In fat, Theorem 9 seems to be well-known (although unproved in full strength,

as far as the author knows) if M is ompat (f. [2℄).

The Continuous Case

An opposite to the smooth situation we are onerned with in the preeding disussion is

the ontinuous ase. Given a ompat topologial spae X, one may ask for a universal

di�erential module for the Banah algebra A := C(X) in the ategory of Banah A-modules.

Indeed, suh an objet exists, and an be obtained by our general onstrution desribed in

the previous setion. Surprisingly, this onstrution always leads to the trivial module, as we

shall see in the sequel. In order to show this, we introdue the notion of an amenable Banah

algebra. Let A be a Banah algebra. For any Banah A-bimodule M the dual Banah spae

M

0

also arries the struture of an A-bimodule via

(af)(x) := f(xa) and (fa)(x) := f(ax)

for a 2 A, x 2 M , and f 2 M

0

. We all A amenable, if for any A-bimodule M and any

ontinuous derivation Æ : A!M

0

there exists f 2M

0

suh that

Æ(a) = af � fa

for all a 2 A. Suh derivations of A are alled inner M

0

-derivations. In [1℄ the following is

shown:

11 Theorem. If X is a ompat topologial spae, then C(X) is an amenable Banah algebra

and furthermore, for any C(X)-bimodule M eah M -derivation of C(X) is inner.

Proof. See [1℄, Theorem VI.12, and Proposition VI.14. 2

As an immediate onsequene of Theorem 11 we now obtain the following result:

12 Corollary. If X is a ompat topologial spae, then the universal di�erential modul for

the Banah algebra C(X) in ategory of all Banah spaes is trivial.

Proof. Let A := C(X) and let 


1

B

(A) denote the universal di�erential modul for A in

ategory of Banah spaes. We de�ne on 


1

B

(A) an A-bimodule struture by !a := a!.

Theorem 11 now implies that eah 


1

B

(A)-derivation is inner, but with respet to the above

de�ned bimodule struture on 


1

B

(A), any suh inner derivation obviously is trivial, whih

implies that 


1

B

(A) itself is trivial. 2

9



Finally we note that the situation even hanges if we onsider a ompat C

1

-manifold M ,

sine in this ase the di�erential d : M ! 


1

0

(M) (where 


1

0

(M) denotes the Banah spae

of ontinuous 1-forms on M) is a non-trivial derivation, and thus the respetive universal

di�erential module has to be non-trivial.

Central Extensions of Fr�ehet Current Algebras

In this setion we investigate entral extensions of Fr�ehet urrent algebras, whih are Lie

algebras of type A


F

g, where F denotes the ategory of Fr�ehet spaes and g is some Fr�ehet{

Lie algebra. We are only interested in extensions that are desribed by ontinuous Lie algebra

oyles. Given a Fr�ehet{Lie algebra g, an abelian Fr�ehet{Lie algebra z, and a ontinuous

2-oyle ! : g� g! z, we write g�

!

z for the Lie algebra g� z with the braket

[(x; a); (y; b)℄ :=

�

[x; y℄; !(x; y)

�

:

These extensions are exatly those whih are given by an exat sequene

0 �! z

�

�! h

�

�! g �! 0

of Fr�ehet{Lie algebras in whih the map � admits a ontinuous linear setion. Suh an

extension is alled weakly universal if for any other entral extension g�

!

0

z

0

there exists a

morphism of Fr�ehet{Lie algebras ' : z! z

0

suh that !

0

= ' Æ!, it is alled universal if the

morphism ' is unique. In any of these ases ! is alled a universal oyle. We note that

a weakly universal extension g�

!

z is universal if g is perfet (f. [7℄, 1.9, Proposition 1).

Now we onsider the following situation: Given a �nite-dimensional Lie algebra g, then

the spae g

A

:= A
 g is a Fr�ehet{Lie algebra with respet to the braket de�ned by

[a
 x; b
 y℄ := ab
 [x; y℄:

Sine it is skew-symmetri this braket indues a ontinuous linear map

� : �

2

F

(g

A

)! g

A

whih, beause of the Jaobian identity, fators to a map

� : �

2

F

(g

A

)=B

F

2

(g

A

)! g

A

;

where B

F

2

(g

A

) denotes the losure of the span of all elements of the form

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄

in �

2

F

(g

A

). Writing

e

g

A

:= �

2

F

(g

A

)=B

F

2

(g

A

) and [x℄ := x + B

F

2

(g

A

) for x 2 �

2

F

(g

A

) the

presription

�

[x℄; [y℄

�

:= [x℄ ^ [y℄

de�nes a ontinuous Lie braket on the spae

e

g

A

. Denoting the kernel of the map � by Z

F

2

(g

A

)

we have the following result (f. [11℄):

10



13 Theorem. The Fr�ehet{Lie algebra g

A

possesses a weakly universal entral extension if

and only if the spae Z

F

2

(g

A

) has a losed vetor spae omplement in �

2

F

(g

A

). In this ase a

weakly universal extension is given by the Fr�ehet{Lie algebra

e

g

A

, and a universal oyle is

given by

!

A

: g

A

� g

A

! H

F

2

(g

A

) : (x; y) 7! [x ^ y℄;

where H

F

2

(g

A

) := Z

F

2

(g

A

)=B

F

2

(g

A

).

In ase g is semisimple there is a more expliit way of desribing this universal entral

extension of g

A

. It goes as follows: Consider the ation of g on S

2

(g) given by

x(y _ z) := [x; y℄ _ z + y _ [x; z℄;

put V (g) := S

2

(g)=gS

2

(g), and de�ne a symmetri bilinear map � : g� g! V (g) by

�(x; y) := [x _ y℄;

where [z℄ denotes the lass of an element z 2 S

2

(g) in V (g). Sine we have

�([x; y℄; z) + �(y; [x; z℄) =

�

[x; y℄ _ z + y _ [x; z℄

�

= [x(y _ z)℄ = 0:

for all x; y; z 2 g, this map is invariant. Furthermore, it has the following universal property:

14 Lemma. Let E be a Fr�ehet spae and � : g� g! E a ontinuous invariant symmetri

bilinear map. Then there exists a unique (ontinuous) linear map � : V (g) ! E suh that

� = � Æ �.

Proof. Uniqueness of � is lear. For the proof of the existene we note that, beause of

the symmetry of �, the universal property of S

2

(g) yields a linear map

e

� : S

2

(g) ! E with

e

�(x_ y) = �(x; y). The invariane of � then implies that gS

2

(g) is ontained in the kernel of

e

�, whene

e

� fators to the desired map � : V (g)! E. 2

Now we put z

A

:= V (g)
 (


F

(A)=d

A

A) and de�ne a map !

A

: g

A

� g

A

! z

A

by

!

A

(f 
 x; g 
 y) := �(x; y)
 [fd

A

(g)℄;

where [�℄ denotes the lass of � 2 


F

(A) in 


F

(A)=d

A

A. Taking into aount the invariane

of �, this map is easily veri�ed to be a ontinuous 2-oyle on g

A

and hene de�nes a entral

extension of g

A

. For this entral extension we have the following result:

15 Theorem. If the Lie algebra g is semisimple, then the Lie algebra

e

g

A

:= g

A

�

!

A

z

A

is a

universal entral extension of g

A

.

Before we prove this result, we state two preparatory lemmas. For a �nite dimensional

Lie group G and a loally onvex G-module E we put

E

�x

:= fv 2 E jGv = fvgg; E

�n

:= fv 2 E j dim span(Gv) <1g;

and

E

E�

:= spanfgv � v j g 2 G; v 2 Eg:

The elements of E

�n

are alled G-�nite. Furthermore, we write E

C

for the omplexi�ation

C 
E of E and G

C

for the omplexi�ation of G.

11



16 Lemma. Let G be a onneted �nite dimensional semisimple Lie group, g its Lie algebra,

and let E be a omplete loally onvex G-module whose omplexi�ation is a holomorphi

G

C

-module. Then for any losed G-submodule F � E satisfying gv � F for eah v 2 E

�n

we

have E = E

�x

+ F .

Proof. Let v 2 (E

C

)

�n

and x 2 g

C

. Aording to the assumption, there exists a �nite

dimensional omplex subspae F

0

� F

C

ontaining xv and thus ontaining e

x

v � v 2 (E

C

)

�n

.

Connetivity of G now implies gv�v 2 (E

C

)

�n

for any g 2 G

C

. Let K be a ompat real form

of G

C

. Sine the G

C

-�nite elements in E

C

are exatly the K-�nite elements, the Big Theorem

of Peter and Weyl (f. [5℄, Theorem 3.51) applies and yields that the G

C

-�nite elements are

dense in E

C

. Therefore we obtain (E

C

)

E�

� F

C

and thus E

C

= (E

C

)

�x

+ F

C

in view of [5℄,

Theorem 3.36. Now the assertion follows, sine we have (E

C

)

�x

= (E

�x

)

C

. 2

17 Lemma. Let G be a Lie group that ats ontinuously on a �nite dimensional vetor spae

V . Then the indued ation of G on the Fr�ehet A-module A
 V also is ontinuous.

Proof. Choosing a basis v

1

; : : : ; v

n

, we obtain an isomorphism V

�

=

R

n

as well as an

isomorphism A 
 V

�

=

A

n

of Fr�ehet A-modules. With respet to these identi�ations, the

ation of G on R

n

is given by a ontinuous morphism � : G ! GL(n;R) and the indued

A-linear ation on A

n

is given by a morphism � : G ! GL(n;A) whih is simply the push-

forward of � by the embedding GL(n;R) ! GL(n;A). Sine the latter embedding obviously

is ontinuous, �, and therefore the related ation, is ontinuous as well. 2

Now we are ready to prove the main result of this setion.

Proof of Theorem 15. We note that the entral extension

e

g

A

is automatially universal

if it is weakly universal, sine g

A

is perfet. So it remains to show that !

A

is a universal

oyle. So let !

0

2 Z

2

F

(g

A

; z

0

) be z

0

-valued oyle on g

A

. We denote by L

2



(g

A

; z

0

) the spae

of ontinuous z

0

-valued bilinear maps on g

A

. Endowing this spae with the ompat open

topology, it beomes a omplete loally onvex spae (f. [13℄, Corollary II.32.4) and as a

losed subspae, Z

2

F

(g

A

; z

0

) is a omplete loally onvex spae as well.

Let G be the simply onneted group assoiated to g. Aording to Lemma 17, the adjoint

ation of G on g indues a ontinuous ation of G on g

A

, turning g

A

into a Fr�ehet G-module.

For later use we note that the omplexi�ation (g

A

)

C

of g

A

is a Fr�ehet G

C

-module, sine we

have (g

A

)

C

�

=

(g

C

)

A

. If C(g

A

� g

A

; z

0

)



denotes the spae of ontinuous maps from g

A

� g

A

to z

0

endowed with the ompat-open topology, then the setting

(g')(x; y) := '(g

�1

x; g

�1

y) (4)

de�nes a ontinuous ation of G on C(g

A

� g

A

; z

0

)



(f. [10℄, Lemma III.2). As a losed

G-invariant subspae of C(g

A

� g

A

; z

0

)



, the spae Z

2

F

(g

A

; z

0

) therefore is a omplete loally

onvex G-module. The so-de�ned ation of G on Z

2

F

(g

A

; z

0

) indues a ontinuous ation of g

on Z

2

F

(g

A

; z

0

) given by

(x!)(y; z) = �!([x; y℄; z)� !(y; [x; z℄): (5)

Denoting the spae of ontinuous alternating z

0

-valued p-linear maps on g

A

by C

p

F

(g

A

; z

0

), we

have for any x 2 g

A

the insertion map i(x) : C

p

F

(g

A

; z

0

)! C

p�1

F

(g

A

; z

0

) de�ned by � 7! �(x; �).

For ! 2 Z

2

F

(g

A

; z

0

) the Cartan formula now yields

x! = d(i(x)!) + i(x)(d!) = d(i(x)!) 2 B

2

F

(g

A

; z

0

):

12



Thus, applying Lemma 16, we obtain

Z

2

F

(g

A

; z

0

) = Z

2

F

(g

A

; z

0

)

�x

+B

2

F

(g

A

; z

0

):

Therefore we an assume that ! is invariant with respet to the ations de�ned by (4) and

(5). The latter invariane of ! implies

!(1
 x; ab
 [y; z℄) = �!(a
 y; b
 [z; x℄)� !(b
 z; a
 [x; y℄)

= �!(a
 [x; y℄; b
 z)� !(b
 z; a
 [x; y℄)

= 0;

and thus

!(1
 g; g

A

) = 0; (6)

sine g

A

is perfet. Fixing a; b 2 A, the map

!

(a;b)

: g� g! z

0

: (x; y) 7! !(a
 x; b
 y)

is a ontinuous g-invariant bilinear map and therefore has to be skew-symmetri, sine g does

not posses any non-zero symmetri g-invariant bilinear from (f. [8℄). In view of Lemma 14,

there exists a unique ontinuous linear map !

(a;b)

: V (g) ! z

0

satisfying !

(a;b)

= !

(a;b)

Æ �.

From the uniqueness of the maps !

(a;b)

, (a; b) 2 A � A, and the ontinuity of !, we dedue

the existene of a ontinuous linear map

� : A


F

A! Hom(V (g); z

0

)

satisfying

�(a
 b)

�

�(x; y)

�

= !(a
 x; b
 y):

Now the skew-symmetry of ! together with the symmetry of � and the fat that im(�)

generates V (g) as a vetor spae imply that � is skew-symmetri. Using the invariane of �,

the fat that ! is a 2-oyle yields

�(ab
 + b
 a+ a
 b)

�

�([x; y℄; z)

�

= 0

for all a; b;  2 A and all x; y; z 2 g. Sine g is perfet and im(�) is generating, we onlude

from the latter equation that � vanishes on all expressions of the form

ab
 + b
 a+ a
 b 2 A


F

A:

From (6) it follows that � vanishes on 1
A and sine, in view of Lemma 5, the elements of

the form

a(1
 b� b
 1)(1 
 � 
 1) = a
 b� ab
 � a
 b+ ab
 1 2 A


F

A

generate a dense subset of I

2

(reall that I was de�ned to be the kernel of the multipliation

map � : A 


F

A ! A), we see that � vanishes on I

2

and hene indues a ontinuous linear

map

� : 


F

(A)! Hom(V (g); z

0

):

13



For this map we have

�(d

A

(a)) = �(1 
 a� a
 1) = 2�(1 
 a) = 0;

whene it fators to a ontinuous linear map

� : 


F

(A)=d

A

(A)! Hom(V (g); z

0

):

In view of the anonial isomorphism

Hom



�

E;Hom



(F; z

0

)

�

�

=

Hom



(E 
 F; z

0

);

we an onsider � as a ontinuous linear map z

A

! z

0

, and with respet to this identi�ation

the above alulations yield ! = �� Æ !

A

. 2

Having Theorem 9 in mind, we onsider the Fr�ehet{Lie algebra g

M

:= C

1

(M; g)

�

=

g

A

.

In order to obtain a onvenient desription of a universal entral extension of this algebra we

put z

M

:= 


1

(M)=dA, and de�ne a ontinuous 2-oyle !

M

on g

M

by

!

M

(f 
 x; g 
 y) := �

g

(x; y)[fdg℄ 2 z

M

; (7)

where �

g

denotes the Killing form of g. Sine in ase g is simple all invariant symmetri

bilinear forms on g are multiples of the Killing form, we get the following onsequene of

Theorem 15 whih generalizes Proposition 4.2.8 in [12℄:

18 Corollary. If the Lie algebra g is simple, then the Lie algebra

e

g

M

:= g

M

�

!

M

z

M

is a

universal entral extension of g

M

.
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