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Abstra
t

In this note we des
ribe universal 
entral extensions of 
ertain Fr�e
het 
urrent algebras,

whi
h in our 
ontext are algebras of type A
g, where g is a �nite dimensional semisimple

real Lie algebra and A a 
ommutative asso
iative Fr�e
het algebra.

Introdu
tion

Although in the algebrai
 setting the problem to determine all 
entral extensions of a given


urrent algebra, i.e., a Lie algebra of type A 


F

g, where F is any �eld and A is some


ommutative asso
iative unital F -algebra, is satisfa
torily solved for 
har(F ) 6= 2 (see [4℄ for

the 
ase 
har(F ) = 0 and [14℄ for the general 
ase) not mu
h is known if one deals with


entral extensions of topologi
al Lie algebras. In this note we 
onstru
t a universal 
entral

extension for Lie algebras of type g 
 A, where g is a �nite dimensional semisimple real Lie

algebra and A a 
ommutative asso
iative Fr�e
het algebra. If A equals the algebra C

1

(M)

of smooth fun
tions on a smooth �nite dimensional manifold M , we expli
itly des
ribe this

universal extension by using the A-module 


1

(M) of smooth 1-forms on M , thereby proving

that this is the universal di�erential module for A in the 
ategory of Fr�e
het A-modules. As a


onsequen
e of our results, we obtain a generalisation of a theorem due to Pressley and Segal.

Topologi
al Tensor, Alternating, and Symmetri
 Produ
ts

Let E and F be lo
ally 
onvex topologi
al ve
tor spa
es, and let E
F denote their algebrai


tensor produ
t (if nothing else is spe
i�ed, tensor produ
ts are always taken over the reals).

The proje
tive topology on E 
 F is the �nest topology for whi
h the map

(x; y) 7! x
 y : E � F ! E 
 F

is 
ontinuous. It has the following universal property:

1 Theorem. Let E; F , and G be lo
ally 
onvex spa
es, and let � : E�F ! G be a 
ontinuous

bilinear map. Then there exists a unique 
ontinuous linear map � : E 
 F ! G su
h that

� = � Æ 
.

We 
all the so-de�ned topologi
al tensor produ
t of two lo
ally 
onvex ve
tor spa
es the

proje
tive tensor produ
t. In the sequel we give another des
ription for the proje
tive

topology whi
h shows that this topology, indeed, is a lo
ally 
onvex ve
tor spa
e topology.

Moreover, the des
ription below yields that for two metrizable spa
es E and F the proje
tive

tensor produ
t again is a metrizable spa
e. Let p be a seminorm on E and let q be a seminorm

on F . We de�ne the tensor produ
t p
 q of these seminorms by the pres
ription

(p
 q)(z) := inf

n

X

p(x

k

)q(y

k

)

�

�

�

X

x

k


 y

k

= z

o

:

It turns out that this again is a seminorm and moreover, if (p

i

)

i2I

and (q

j

)

j2J

are two families

of seminorms whi
h de�ne the topologies on E and F , respe
tively, then (p

i


 q

j

)

(i;j)2I�J

is

a family of seminorms whi
h de�nes the proje
tive topology on E 
 F (
f. [6℄, 15.1). In
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general the proje
tive tensor produ
t of 
omplete spa
es E and F fails to be 
omplete. We

write E

b


F for its 
ompletion. Be
ause of the universal property of the 
ompletion of a

(metrizable) lo
ally 
onvex ve
tor spa
e we immediately obtain the following 
onsequen
e of

Theorem 1.

2 Corollary. Let E; F , and G be 
omplete, resp. metrizable, resp. 
ompletely metrizable,

lo
ally 
onvex spa
es, and let � : E �F ! G be a 
ontinuous bilinear map. Then there exists

a unique 
ontinuous linear map � : E

b


F ! G su
h that � = � Æ 
.

In the sequel the letter K stands for the 
ategory of lo
ally 
onvex ve
tor spa
es with


ontinuous linear maps as morphisms or for one of its full sub
ategories 
onsisting of all


omplete, resp., metrizable, resp., 
ompletely metrizable (=Fr�e
het), spa
es. Furthermore,

given two spa
es E;F 2 K we write E


K

F for tensor produ
t having the universal property

des
ribed in Theorem 1, resp., Corollary 2. Note that uniqueness of the map � arising in

Theorem 1 and Corollary 2 implies that the algebrai
 tensor produ
t E 
 F always is dense

in E 


K

F . Now let E = F 2 K, then the map

� : E �E ! E 


K

E : (x; y) 7! y 
 x

indu
es a 
ontinuous linear involution

� : E 


K

E ! E 


K

E

whi
h yields a de
omposition

E 


K

E = S

2

K

(E)� �

K

(E);

where S

2

K

(E) := ker(1� �) and �

K

(E) := ker(1 + �). Putting

f _ g :=

1

2

(f 
 g + g 
 f) and f ^ g :=

1

2

(f 
 g � g 
 f)

we obtain as a 
onsequen
e of Theorem 1 and Corollary 2 the following result:

3 Theorem. Let E;F 2 K. Then for any 
ontinuous symmetri
, resp., skew-symmetri


bilinear map � : E �E ! F there exists a uniquely determined 
ontinuous linear map

� : S

2

K

(E)! F; resp:; � : �

2

K

(E)! F

su
h that � = � Æ _, resp., � = � Æ ^.

Now, we 
onsider a spe
ial situation whi
h will be of interest for us later on. Let M

be a �nite dimensional smooth manifold and E a Fr�e
het spa
e. We topologize the spa
e

C

1

(M;E) in the following way: For any two topologi
al spa
es X and Y we denote by

C(X;Y )




the spa
e C(X;Y ) endowed with the topology of 
ompa
t 
onvergen
e. We identify

the tangent bundle TE of E with E �E, so that for any smooth map f : M ! E we obtain

a smooth map df : TM ! E by letting df(v) := pr

2

(Tf(v)). Indu
tively, this yields maps

d

n

f : T

n

M ! E for any n 2 N

0

by putting d

0

f := f (T

0

M := M) and d

n

f := d(d

n�1

f) for

n > 0. Using these maps, we get an inje
tion

C

1

(M;E)!

Y

n2N

0

C(T

n

M;E)




: f 7! (d

n

f)

n2N

0

:

2



We endow C

1

(M;E) with the topology indu
ed by the produ
t topology via this embedding.

Sin
e for ea
h of the spa
es T

n

M , n 2 N

0

, the respe
tive topology has a 
ountable basis


onsisting of relatively 
ompa
t neighborhoods, the topology of ea
h spa
e C(T

n

M;E)





an

be de�ned by a 
ountable separating family of seminorms and therefore is lo
ally 
onvex and

metrizable. As a subspa
e of a 
ountable produ
t of lo
ally 
onvex metrizable spa
es the spa
e

C

1

(M;E) is lo
ally 
onvex and metrizable as well. In fa
t, it turns out that its topology

even is 
omplete (
f. the proof of Proposition III.1 in [10℄) when
e C

1

(M;E) is a Fr�e
het

spa
e. Now we restri
t our attention to the spe
ial 
ase where E = R and write C

1

(M) for

C

1

(M;R). While the isomorphism C

1

(M)

b


C

1

(N)

�

=

C

1

(M�N) is well-known ifM and

N are open subsets of some R

n

a proof for the general 
ase in whi
h M and N are smooth

�nite dimensional manifolds is not easy to �nd in the literature.

4 Theorem. Let M and N be smooth �nite dimensional manifolds. Then the map

C

1

(M)

b


C

1

(N)! C

1

(M �N) : f 
 g 7!

�

(p; q) 7! f(p)g(q)

�

is an isomorphism of Fr�e
het spa
es.

Proof. We �rst re
all some fa
ts. Let X, Y , and Z be Hausdor� topologi
al spa
es. For

f 2 C(X � Y;Z) and x 2 X we put f

x

:=

�

y 7! f(x; y)

�

2 C(Y;Z). It is well-known that the

map

� : C(X � Y;Z)




! C(X;C(Y;Z)




)




: f 7! (x 7! f

x

)

is a homeomorphism if Y is lo
ally 
ompa
t, and sin
e �, obviously, is natural in X and Z,

we obtain that C(Y; �)




is a right adjoint self fun
tor of the 
ategory of Hausdor� topologi
al

spa
es and thus preserves limits. For the remaining proof we note that, a

ording to [10℄,

Theorem III.4, the image of the map �j

C

1

(M�N)

is 
ontained in C

1

(M;C

1

(N)), and that

for any Fr�e
het spa
e E the map

C

1

(M)

b


E ! C

1

(M;E) : f 
 x 7! fx

is an isomorphism of Fr�e
het spa
es (
f. [3℄, Chapter II, p. 81). Hen
e we are done, if we 
an

show that the map

� : C

1

(M �N)! C

1

(M;C

1

(N)) : f 7! �(f)

is an isomorphism of Fr�e
het spa
es. Thanks to the OpenMapping Theorem for Fr�e
het spa
es

it suÆ
es to show that � is a 
ontinuous linear bije
tion. Clearly, � is inje
tive. For the prove

of its surje
tivity we have to show that for g 2 C

1

(M;C

1

(N)) we have �

�1

(g) 2 C

1

(M�N),

i.e., that �

�1

(g) is smooth at any point. Sin
e the latter is a lo
al property we 
an assume

M and N to be open subsets of some R

n

; but in this 
ase the assertion is already proved,

see [13℄, Theorem 40.1. It remains to show 
ontinuity of �. By de�nition of the topology of

C

1

(M;C

1

(N)) the map � is 
ontinuous exa
tly if for any m 2 N

0

the map

�

m

: C

1

(M �N)! C(T

m

M;C

1

(N))




: f 7! d

m

�(f)

is 
ontinuous. Sin
e C

1

(N) is embedded into the produ
t

Q

n2N

0

C(T

n

N)




, and sin
e

C(T

m

M; �) preserves limits, the map �

m

is 
ontinuous exa
tly if for any n 2 N

0

the map

�

mn

: C

1

(M �N)! C(T

m

M;C(T

n

N)




)




: f 7! d

n

Æ �

m

(f)
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is 
ontinuous. In view of the isomorphismC(T

m

M;C(T

n

N)




)




�

=

C(T

m

M�T

n

N)





ontinuity

of �

mn

is equivalent to 
ontinuity of the map

C

1

(M �N)! C(T

m

M � T

n

N)




: f 7! d

m

1

d

n

2

f

where d

1

and d

2

denote the respe
tive \partial derivatives". But the latter is 
learly ful�lled,

sin
e f is smooth. 2

Universal Di�erential Modules

In this se
tion we point out that the 
on
ept of a universal di�erential module for a 
ommu-

tative asso
iative algebra, whi
h is well-known in the algebrai
 setting, not only makes sense,

but even is a very useful tool, in a 
ategorial framework. By an algebra obje
t in the 
ategory

K, or simply a K-algebra, we mean an obje
t A 2 K together with a morphism

� : A


K

A! A


alled multipli
ation. Suppose for the rest of this note that A is a unital K-algebra with


ommutative and asso
iative multipli
ation. An A-module in the 
ategory K is an obje
t M

together with a morphism

� : A


K

M !M

that satis�es � Æ (id

A


 �) = � Æ (�
 id

M

) and �(1
m) = m for ea
h m 2M . A derivation

from su
h an algebra A into an A-module M is de�ned to be a linear map D : A ! M

satisfying

D(ab) = aDb+ bDa

for all a; b 2 A. The embedding

a 7! a
 1 : A! A


K

A;

turns the K-algebra A 


K

A into an A-module with respe
t to the multipli
ation map on

A 


K

A, and in view of this module stru
ture the map � also is a morphism of A-modules.

Consequently, its kernel I is an A-submodule of A


K

A.

5 Lemma. Let J := I \ (A
A). Then we have J = span

A

f1
 b� b
 1 j b 2 Ag and I = J .

Proof. Obviously, we have J

0

:= span

A

f1
 b� b
 1 j b 2 Ag � J . In order to show the

reverse in
lusion 
onsider 
 =

P

a

k


 b

k

2 J , that is,

P

a

k

b

k

= 0. Then we have


 =

X

a

k


 b

k

�

�

X

a

k

b

k

�


 1 =

X

a

k

(1
 b

k

� b

k


 1) 2 J

0

;

and the �rst 
laim follows. To prove the se
ond 
laim we note that the map


 7!

�


� �(
)
 1; �(
)

�

: A


K

A! I �A

is an isomorphism of K-A-modules whose inverse is given by

(b; a) 7! b+ a
 1 : I �A! A


K

A:

4



As a 
onsequen
e of this, the map

� : A


K

A! I : 
 7! 
� �(
)
 1

is a surje
tive morphism of K-A-modules satisfying �(A 
 A) = J , by what we have just

shown. As A
A is dense in A


K

A, this implies the se
ond 
laim. 2

Now we put 


K

(A) := I=I

2

and de�ne a 
ontinuous linear map d

A

: A ! 


K

(A) by the

pres
ription

d

A

(a) := [1
 a� a
 1℄;

where [
℄ denotes the 
lass of an element 
 2 I in 


K

(A). Sin
e we have

d

A

(ab)� ad

A

(b)� bd

A

(a) = [1
 ab� ab
 1℄� [a
 b� ab
 1℄� [b
 a� ba
 1℄

= [1
 ab� a
 b� b
 a+ ab
 1℄

= [(1
 a� a
 1)(1
 b� b
 1)℄

= 0

for all a; b 2 A, we see that d

A

in fa
t is a derivation. We 
all the pair (


K

(A); d

A

) the

K-universal di�erential module of the algebra A. It has the following universal property:

6 Theorem. Let F be a K-A-module and let D : A ! F be a 
ontinuous derivation. Then

there exists a unique 
ontinuous A-linear map D : 


K

(A)! F su
h that D = D Æ d

A

.

Proof. In order to prove the existen
e of the map D, we 
onsider the 
ontinuous bilinear

map

� : A�A! F : (a; b) 7! aDb

whi
h indu
es a 
ontinuous linear map � : A


K

A! F satisfying

�(a
 b) = aDb

for all a; b 2 A. As is easy to verify, this map ful�ls the identity

�(



0

) = �(
)�(


0

) + �(


0

)�(
) (1)

for all 
; 


0

2 A 
 A, and hen
e for all 
; 


0

2 A 


K

A, be
ause of the density of A 
 A in

A 


K

A. Equation (1) shows that � vanishes on I

2

and thus on I

2

. Hen
e, the restri
tion

�j

I

fa
tors to a map

D : 


K

(A)! F

for whi
h we have

(D Æ d

A

)(a) = D([1 
 a� a
 1℄) = 1Da� aD1 = Da;

as desired.

Uniqueness of the map D follows from the fa
t that, a

ording to Lemma 5, the image of

d

A

generates a dense A-submodule of 


K

(A). 2
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Now we 
onsider a spe
ial situation. Let M be a �nite dimensional smooth manifold,

A := C

1

(M), resp., B := C

1

(M �M) the algebra of smooth fun
tions on M , resp., M �M ,

and let A




and B




the respe
tive subalgebras 
onsisting of 
ompa
tly supported fun
tions.

Then A and B are Fr�e
het algebras whereas A




and B




in general are just lo
ally 
onvex

algebras. Denoting the 
ategory of Fr�e
het spa
es by F, we seek for a 
onvenient des
ription

of the universal module 


F

(A). In the sequel we view the Fr�e
het algebra B as a Fr�e
het

A-module with respe
t to the embedding

A! B : f 7!

�

(p; q) 7! f(p)

�

:

Further, we 
onsider the following morphisms of Fr�e
het A-modules:

Æ

�

: B ! A : F 7! F Æ Æ;

where Æ is the diagonal map p 7! (p; p) :M !M �M , and

� : A


F

A! B

whi
h is indu
ed by the 
ontinuous bilinear map

� : A�A! B : (f; g) 7!

�

(p; q) 7! f(p)g(q)

�

:

Both maps Æ

�

and � are also morphisms of the underlying Fr�e
het algebras and moreover, � is

a homeomorphism a

ording to Theorem 4. Denoting by � : A


F

A! A the multipli
ation

map on A, we have

� = Æ

�

Æ �:

From this relation we immediately inferK := ker(Æ

�

) = �(I) and therefore obtain the following

isomorphism of Fr�e
het A-modules:




F

(A)

�

=

K=K

2

:

In the sequel we think of 


F

(A) as K=K

2

with respe
t to this isomorphism. Likewise, we

identify A 


F

A with B via �. Now let TM be the tangent bundle of M . Then the spa
e

C

1

(TM) is a Fr�e
het A-module in whi
h the spa
e




1

(M) := f� 2 C

1

(TM) j (8p 2M)�j

T

p

M

is linearg

of smooth 1-forms onM is a 
losed A-submodule and therefore is a Fr�e
het A-module as well.

We de�ne the support of a 1-form � 2 


1

(M) to be the set

supp

0

(�) := fp 2M j�j

T

p

M

6= 0g �M

and denote the spa
e of 
ompa
tly supported 1-forms onM by 


1




(M). This spa
e is a lo
ally


onvex A




-module as well as a lo
ally 
onvex A-module, and it is dense in 


1

(M) sin
e the

identity element in A is a limit of elements in A




. We want to show that 


1

(M) and 


F

(A)

are isomorphi
 Fr�e
het A-modules, and in order to do this, we �rst 
olle
t some information

on 


1




(M).

We putK




:= ker(Æ

�

j

B




) = K\B




and 
onsider the 
ontinuous linear map � : B ! 


1

(M)

de�ned by

�(F )(x;X) := dF (x; x)(0;X):

6



7 Proposition. The kernel of � j

K




equals K

2




and the kernel of � j

K

equals K

2

.

Proof. We have

�(FG) = Æ

�

(F )�(G) + Æ

�

(G)�(F ) (2)

for all F;G 2 B (whi
h is easily veri�ed for F;G 2 A
A and then follows by density). Hen
e,

we have K

2




� ker(� j

K




) and K

2

� ker(� j

K

). Moreover, equation (2) shows that ker(� j

K




)

and ker(� j

K

) are ideals in B. For the rest of this proof let (U

k

)

k2N

be a lo
ally �nite open


overing of M �M 
onsisting of relatively 
ompa
t neighborhoods whi
h are di�eomorphi


to open 
onvex neighborhoods in R

n

and let ('

k

)

k2N

be a partition of unity subordinate to

this 
overing. Now let F 2 B




. Sin
e supp(F ) is 
ompa
t there exists some l 2 N su
h that

supp(F ) �

l

[

k=1

supp('

k

):

Putting

F

k

:=

'

k

P

l

k=1

'

k

F

for k � l we have F = F

1

+ � � � + F

l

. Sin
e ker(� j

K




) is an ideal in B




it follows that

F 2 ker(� j

K




) () (8k � l)F

k

2 ker(� j

K




);

and so the problem is redu
ed to the 
ase M = R

n

.

In order to prove the desired in
lusion for this 
ase, we de�ne for ea
h pair (x; y) 2 R

n

�R

n

fun
tions g

(x;y)

; h

(x;y)

: R ! R

n

� R

n

by

g

(x;y)

(t) :=

�

tx+ (1� t)y; y

�

and h

(x;y)

(t) :=

�

x; tx+ (1� t)y

�

:

Now we have

2F (x; y) = F (x; y)� F (y; y) + F (x; y)� F (x; x)

=

R

1

0

(F Æ g

(x;y)

)

0

(t)dt�

R

1

0

(F Æ h

(x;y)

)

0

(t)dt

and thus

F (x; y) =

n

X

k=1

(x

k

� y

k

)F

k

(x; y); (3)

where

F

k

(x; y) :=

1

2

Z

1

0

�

�F

�x

k

(g

(x;y)

(t))�

�F

�y

k

(h

(x;y)

(t))

�

dt

and x

1

; : : : ; x

n

; y

1

; : : : ; y

n

denote the 
oordinate fun
tions on M �M . Applying � to equation

(3) leads to the 1-form

�(F ) =

 

x 7! �

n

X

k=1

F

k

(x; x)dx

k

!

7



on R

n

and we see that vanishing of � on F implies that any F

k

vanishes on the diagonal

and so F 2 K. We 
laim that ea
h F

k

has 
ompa
t support, but this easily follows from the

de�nition, sin
e supp(F ) � [�a; a℄

2n

for a 2 R implies

�F

�x

k

Æ g

(x;y)

=

�F

�y

k

Æ h

(x;y)

= 0

for (x; y) 2 R

2n

n [�a; a℄

2n

. Repla
ing the 
oordinate fun
tions by fun
tions x

1

; : : : ; y

n

on R

n

whi
h 
oin
ide with the 
oordinate fun
tions on [�a; a℄

2n

and vanish outside some 
ompa
t

neighborhood of [�a; a℄

2n

shows that F 2 K

2




.

Now let F 2 B. Similar as in the previous 
ase we put

F

l

:=

P

l

k=1

'

k

P

1

k=1

'

k

F

and obtain a sequen
e (F

l

)

l2N

in B




whi
h 
onverges to F in B (be
ause of the lo
al �niteness

of the 
overing (U

k

)

k2N

). Now we have

F 2 ker(� j

K

) () (8l 2 N)F

l

2 ker(� j

K




);

sin
e ker(� j

K

) is an ideal in B and B




K � K




. But sin
e we already know that ker(� j

K




) = K

2




this implies ker(� j

K

) � K

2




� K

2

, as desired. 2

8 Proposition. We have �(B




) = �(A





A




) = 


1




(M) and �(B) = 


1

(M).

Proof. Clearly, we have �(A





 A




) � �(B




) and so it suÆ
es to show �(A





 A




) =




1




(M). So let � 2 


1




(M). First we 
onsider the 
ase that M is di�eomorphi
 to an open


onvex subset U of R

n

, where n := dimM . Then we have in lo
al 
oordinates

�(p) =

n

X

k=1

f

k

(p)dx

k

:

Choosing fun
tions x

1

; : : : ; x

n

2 C

1

(R

n

) with 
ompa
t support in U whi
h 
oin
ide with the


oordinate fun
tions on supp

0

(�), we obtain

�(p) =

n

X

k=1

f

k

(p)dx

k

= �

 

n

X

k=1

f

k

(p)
 x

k

!

and see that 


1




(M) = �(A





A




) in this 
ase. Now letM be any �nite dimensional manifold.

By 
hoosing a suitable partition of unity we get a de
omposition � = �

1

+ � � � + �

n

where

ea
h of the sets supp

0

(�

k

) is 
ontained in some neighborhood U

k

whi
h is di�eomorphi
 to an

open 
onvex neighborhood in R

n

. Now �(A





 A




) = 


1




(M) follows by what we have just

proved.

In order to prove �(B) = 


1

(M) we 
hoose a lo
ally �nite open 
overing (U

k

)

k2N

of

M 
onsisting of relatively 
ompa
t neighborhoods whi
h are di�eomorphi
 to open 
onvex

neighborhoods in R

n

. Furthermore, we 
hoose a partition of unity ('

k

)

k2N

subordinate to

this 
overing. Now let � 2 


1

(M) and put �

k

:= '

k

� 2 


1




(M) for ea
h k. Then we have

� =

P

k2N

�

k

in 


1

(M). At the beginning of the proof we have seen that for any of these

1-forms �

k

we �nd a fun
tion F

k

2 


1




(M) with �(F

k

) = �

k

and supp(F

k

) � U

k

� U

k

. We

put G

k

:= F

1

+ � � � + F

k

for k 2 N and note that the sequen
e (G

k

)

k2N


onverges to some G

in B be
ause of the lo
al �niteness of (U

k

)

k2N

. Continuity of � now yields �(G) = �, and we

are done. 2

8



9 Theorem. The map d : 


F

(A)! 


1

(M) indu
ed by the di�erential d : A! 


1

(M) is an

isomorphism of Fr�e
het A-modules.

Proof. Thanks to the Open Mapping Theorem for Fr�e
het spa
es it suÆ
es to show

bije
tivity of the map d. With respe
t to the identi�
ation 


F

(A) = K=K

2

the inje
tivity

of � is equivalent to the equality ker(� j

K

) = K

2

and thus is an immediate 
onsequen
e of

Proposition 7. In order to show surje
tivity, we have to show that �(K) = 


1

(M). From

Proposition 8 we know that �(B) = 


1

(M). But this implies �(K) = 


1

(M) sin
e we have

�(F � Æ

�

(F )
 1) = �(F ) and F � Æ

�

(F )
 1 2 K for any F 2 B. 2

10 Remark. In fa
t, Theorem 9 seems to be well-known (although unproved in full strength,

as far as the author knows) if M is 
ompa
t (
f. [2℄).

The Continuous Case

An opposite to the smooth situation we are 
on
erned with in the pre
eding dis
ussion is

the 
ontinuous 
ase. Given a 
ompa
t topologi
al spa
e X, one may ask for a universal

di�erential module for the Bana
h algebra A := C(X) in the 
ategory of Bana
h A-modules.

Indeed, su
h an obje
t exists, and 
an be obtained by our general 
onstru
tion des
ribed in

the previous se
tion. Surprisingly, this 
onstru
tion always leads to the trivial module, as we

shall see in the sequel. In order to show this, we introdu
e the notion of an amenable Bana
h

algebra. Let A be a Bana
h algebra. For any Bana
h A-bimodule M the dual Bana
h spa
e

M

0

also 
arries the stru
ture of an A-bimodule via

(af)(x) := f(xa) and (fa)(x) := f(ax)

for a 2 A, x 2 M , and f 2 M

0

. We 
all A amenable, if for any A-bimodule M and any


ontinuous derivation Æ : A!M

0

there exists f 2M

0

su
h that

Æ(a) = af � fa

for all a 2 A. Su
h derivations of A are 
alled inner M

0

-derivations. In [1℄ the following is

shown:

11 Theorem. If X is a 
ompa
t topologi
al spa
e, then C(X) is an amenable Bana
h algebra

and furthermore, for any C(X)-bimodule M ea
h M -derivation of C(X) is inner.

Proof. See [1℄, Theorem VI.12, and Proposition VI.14. 2

As an immediate 
onsequen
e of Theorem 11 we now obtain the following result:

12 Corollary. If X is a 
ompa
t topologi
al spa
e, then the universal di�erential modul for

the Bana
h algebra C(X) in 
ategory of all Bana
h spa
es is trivial.

Proof. Let A := C(X) and let 


1

B

(A) denote the universal di�erential modul for A in


ategory of Bana
h spa
es. We de�ne on 


1

B

(A) an A-bimodule stru
ture by !a := a!.

Theorem 11 now implies that ea
h 


1

B

(A)-derivation is inner, but with respe
t to the above

de�ned bimodule stru
ture on 


1

B

(A), any su
h inner derivation obviously is trivial, whi
h

implies that 


1

B

(A) itself is trivial. 2

9



Finally we note that the situation even 
hanges if we 
onsider a 
ompa
t C

1

-manifold M ,

sin
e in this 
ase the di�erential d : M ! 


1

0

(M) (where 


1

0

(M) denotes the Bana
h spa
e

of 
ontinuous 1-forms on M) is a non-trivial derivation, and thus the respe
tive universal

di�erential module has to be non-trivial.

Central Extensions of Fr�e
het Current Algebras

In this se
tion we investigate 
entral extensions of Fr�e
het 
urrent algebras, whi
h are Lie

algebras of type A


F

g, where F denotes the 
ategory of Fr�e
het spa
es and g is some Fr�e
het{

Lie algebra. We are only interested in extensions that are des
ribed by 
ontinuous Lie algebra


o
y
les. Given a Fr�e
het{Lie algebra g, an abelian Fr�e
het{Lie algebra z, and a 
ontinuous

2-
o
y
le ! : g� g! z, we write g�

!

z for the Lie algebra g� z with the bra
ket

[(x; a); (y; b)℄ :=

�

[x; y℄; !(x; y)

�

:

These extensions are exa
tly those whi
h are given by an exa
t sequen
e

0 �! z

�

�! h

�

�! g �! 0

of Fr�e
het{Lie algebras in whi
h the map � admits a 
ontinuous linear se
tion. Su
h an

extension is 
alled weakly universal if for any other 
entral extension g�

!

0

z

0

there exists a

morphism of Fr�e
het{Lie algebras ' : z! z

0

su
h that !

0

= ' Æ!, it is 
alled universal if the

morphism ' is unique. In any of these 
ases ! is 
alled a universal 
o
y
le. We note that

a weakly universal extension g�

!

z is universal if g is perfe
t (
f. [7℄, 1.9, Proposition 1).

Now we 
onsider the following situation: Given a �nite-dimensional Lie algebra g, then

the spa
e g

A

:= A
 g is a Fr�e
het{Lie algebra with respe
t to the bra
ket de�ned by

[a
 x; b
 y℄ := ab
 [x; y℄:

Sin
e it is skew-symmetri
 this bra
ket indu
es a 
ontinuous linear map

� : �

2

F

(g

A

)! g

A

whi
h, be
ause of the Ja
obian identity, fa
tors to a map

� : �

2

F

(g

A

)=B

F

2

(g

A

)! g

A

;

where B

F

2

(g

A

) denotes the 
losure of the span of all elements of the form

x ^ [y; z℄ + y ^ [z; x℄ + z ^ [x; y℄

in �

2

F

(g

A

). Writing

e

g

A

:= �

2

F

(g

A

)=B

F

2

(g

A

) and [x℄ := x + B

F

2

(g

A

) for x 2 �

2

F

(g

A

) the

pres
ription

�

[x℄; [y℄

�

:= [x℄ ^ [y℄

de�nes a 
ontinuous Lie bra
ket on the spa
e

e

g

A

. Denoting the kernel of the map � by Z

F

2

(g

A

)

we have the following result (
f. [11℄):

10



13 Theorem. The Fr�e
het{Lie algebra g

A

possesses a weakly universal 
entral extension if

and only if the spa
e Z

F

2

(g

A

) has a 
losed ve
tor spa
e 
omplement in �

2

F

(g

A

). In this 
ase a

weakly universal extension is given by the Fr�e
het{Lie algebra

e

g

A

, and a universal 
o
y
le is

given by

!

A

: g

A

� g

A

! H

F

2

(g

A

) : (x; y) 7! [x ^ y℄;

where H

F

2

(g

A

) := Z

F

2

(g

A

)=B

F

2

(g

A

).

In 
ase g is semisimple there is a more expli
it way of des
ribing this universal 
entral

extension of g

A

. It goes as follows: Consider the a
tion of g on S

2

(g) given by

x(y _ z) := [x; y℄ _ z + y _ [x; z℄;

put V (g) := S

2

(g)=gS

2

(g), and de�ne a symmetri
 bilinear map � : g� g! V (g) by

�(x; y) := [x _ y℄;

where [z℄ denotes the 
lass of an element z 2 S

2

(g) in V (g). Sin
e we have

�([x; y℄; z) + �(y; [x; z℄) =

�

[x; y℄ _ z + y _ [x; z℄

�

= [x(y _ z)℄ = 0:

for all x; y; z 2 g, this map is invariant. Furthermore, it has the following universal property:

14 Lemma. Let E be a Fr�e
het spa
e and � : g� g! E a 
ontinuous invariant symmetri


bilinear map. Then there exists a unique (
ontinuous) linear map � : V (g) ! E su
h that

� = � Æ �.

Proof. Uniqueness of � is 
lear. For the proof of the existen
e we note that, be
ause of

the symmetry of �, the universal property of S

2

(g) yields a linear map

e

� : S

2

(g) ! E with

e

�(x_ y) = �(x; y). The invarian
e of � then implies that gS

2

(g) is 
ontained in the kernel of

e

�, when
e

e

� fa
tors to the desired map � : V (g)! E. 2

Now we put z

A

:= V (g)
 (


F

(A)=d

A

A) and de�ne a map !

A

: g

A

� g

A

! z

A

by

!

A

(f 
 x; g 
 y) := �(x; y)
 [fd

A

(g)℄;

where [�℄ denotes the 
lass of � 2 


F

(A) in 


F

(A)=d

A

A. Taking into a

ount the invarian
e

of �, this map is easily veri�ed to be a 
ontinuous 2-
o
y
le on g

A

and hen
e de�nes a 
entral

extension of g

A

. For this 
entral extension we have the following result:

15 Theorem. If the Lie algebra g is semisimple, then the Lie algebra

e

g

A

:= g

A

�

!

A

z

A

is a

universal 
entral extension of g

A

.

Before we prove this result, we state two preparatory lemmas. For a �nite dimensional

Lie group G and a lo
ally 
onvex G-module E we put

E

�x

:= fv 2 E jGv = fvgg; E

�n

:= fv 2 E j dim span(Gv) <1g;

and

E

E�

:= spanfgv � v j g 2 G; v 2 Eg:

The elements of E

�n

are 
alled G-�nite. Furthermore, we write E

C

for the 
omplexi�
ation

C 
E of E and G

C

for the 
omplexi�
ation of G.

11



16 Lemma. Let G be a 
onne
ted �nite dimensional semisimple Lie group, g its Lie algebra,

and let E be a 
omplete lo
ally 
onvex G-module whose 
omplexi�
ation is a holomorphi


G

C

-module. Then for any 
losed G-submodule F � E satisfying gv � F for ea
h v 2 E

�n

we

have E = E

�x

+ F .

Proof. Let v 2 (E

C

)

�n

and x 2 g

C

. A

ording to the assumption, there exists a �nite

dimensional 
omplex subspa
e F

0

� F

C


ontaining xv and thus 
ontaining e

x

v � v 2 (E

C

)

�n

.

Conne
tivity of G now implies gv�v 2 (E

C

)

�n

for any g 2 G

C

. Let K be a 
ompa
t real form

of G

C

. Sin
e the G

C

-�nite elements in E

C

are exa
tly the K-�nite elements, the Big Theorem

of Peter and Weyl (
f. [5℄, Theorem 3.51) applies and yields that the G

C

-�nite elements are

dense in E

C

. Therefore we obtain (E

C

)

E�

� F

C

and thus E

C

= (E

C

)

�x

+ F

C

in view of [5℄,

Theorem 3.36. Now the assertion follows, sin
e we have (E

C

)

�x

= (E

�x

)

C

. 2

17 Lemma. Let G be a Lie group that a
ts 
ontinuously on a �nite dimensional ve
tor spa
e

V . Then the indu
ed a
tion of G on the Fr�e
het A-module A
 V also is 
ontinuous.

Proof. Choosing a basis v

1

; : : : ; v

n

, we obtain an isomorphism V

�

=

R

n

as well as an

isomorphism A 
 V

�

=

A

n

of Fr�e
het A-modules. With respe
t to these identi�
ations, the

a
tion of G on R

n

is given by a 
ontinuous morphism � : G ! GL(n;R) and the indu
ed

A-linear a
tion on A

n

is given by a morphism � : G ! GL(n;A) whi
h is simply the push-

forward of � by the embedding GL(n;R) ! GL(n;A). Sin
e the latter embedding obviously

is 
ontinuous, �, and therefore the related a
tion, is 
ontinuous as well. 2

Now we are ready to prove the main result of this se
tion.

Proof of Theorem 15. We note that the 
entral extension

e

g

A

is automati
ally universal

if it is weakly universal, sin
e g

A

is perfe
t. So it remains to show that !

A

is a universal


o
y
le. So let !

0

2 Z

2

F

(g

A

; z

0

) be z

0

-valued 
o
y
le on g

A

. We denote by L

2




(g

A

; z

0

) the spa
e

of 
ontinuous z

0

-valued bilinear maps on g

A

. Endowing this spa
e with the 
ompa
t open

topology, it be
omes a 
omplete lo
ally 
onvex spa
e (
f. [13℄, Corollary II.32.4) and as a


losed subspa
e, Z

2

F

(g

A

; z

0

) is a 
omplete lo
ally 
onvex spa
e as well.

Let G be the simply 
onne
ted group asso
iated to g. A

ording to Lemma 17, the adjoint

a
tion of G on g indu
es a 
ontinuous a
tion of G on g

A

, turning g

A

into a Fr�e
het G-module.

For later use we note that the 
omplexi�
ation (g

A

)

C

of g

A

is a Fr�e
het G

C

-module, sin
e we

have (g

A

)

C

�

=

(g

C

)

A

. If C(g

A

� g

A

; z

0

)




denotes the spa
e of 
ontinuous maps from g

A

� g

A

to z

0

endowed with the 
ompa
t-open topology, then the setting

(g')(x; y) := '(g

�1

x; g

�1

y) (4)

de�nes a 
ontinuous a
tion of G on C(g

A

� g

A

; z

0

)




(
f. [10℄, Lemma III.2). As a 
losed

G-invariant subspa
e of C(g

A

� g

A

; z

0

)




, the spa
e Z

2

F

(g

A

; z

0

) therefore is a 
omplete lo
ally


onvex G-module. The so-de�ned a
tion of G on Z

2

F

(g

A

; z

0

) indu
es a 
ontinuous a
tion of g

on Z

2

F

(g

A

; z

0

) given by

(x!)(y; z) = �!([x; y℄; z)� !(y; [x; z℄): (5)

Denoting the spa
e of 
ontinuous alternating z

0

-valued p-linear maps on g

A

by C

p

F

(g

A

; z

0

), we

have for any x 2 g

A

the insertion map i(x) : C

p

F

(g

A

; z

0

)! C

p�1

F

(g

A

; z

0

) de�ned by � 7! �(x; �).

For ! 2 Z

2

F

(g

A

; z

0

) the Cartan formula now yields

x! = d(i(x)!) + i(x)(d!) = d(i(x)!) 2 B

2

F

(g

A

; z

0

):

12



Thus, applying Lemma 16, we obtain

Z

2

F

(g

A

; z

0

) = Z

2

F

(g

A

; z

0

)

�x

+B

2

F

(g

A

; z

0

):

Therefore we 
an assume that ! is invariant with respe
t to the a
tions de�ned by (4) and

(5). The latter invarian
e of ! implies

!(1
 x; ab
 [y; z℄) = �!(a
 y; b
 [z; x℄)� !(b
 z; a
 [x; y℄)

= �!(a
 [x; y℄; b
 z)� !(b
 z; a
 [x; y℄)

= 0;

and thus

!(1
 g; g

A

) = 0; (6)

sin
e g

A

is perfe
t. Fixing a; b 2 A, the map

!

(a;b)

: g� g! z

0

: (x; y) 7! !(a
 x; b
 y)

is a 
ontinuous g-invariant bilinear map and therefore has to be skew-symmetri
, sin
e g does

not posses any non-zero symmetri
 g-invariant bilinear from (
f. [8℄). In view of Lemma 14,

there exists a unique 
ontinuous linear map !

(a;b)

: V (g) ! z

0

satisfying !

(a;b)

= !

(a;b)

Æ �.

From the uniqueness of the maps !

(a;b)

, (a; b) 2 A � A, and the 
ontinuity of !, we dedu
e

the existen
e of a 
ontinuous linear map

� : A


F

A! Hom(V (g); z

0

)

satisfying

�(a
 b)

�

�(x; y)

�

= !(a
 x; b
 y):

Now the skew-symmetry of ! together with the symmetry of � and the fa
t that im(�)

generates V (g) as a ve
tor spa
e imply that � is skew-symmetri
. Using the invarian
e of �,

the fa
t that ! is a 2-
o
y
le yields

�(ab
 
+ b

 a+ 
a
 b)

�

�([x; y℄; z)

�

= 0

for all a; b; 
 2 A and all x; y; z 2 g. Sin
e g is perfe
t and im(�) is generating, we 
on
lude

from the latter equation that � vanishes on all expressions of the form

ab
 
+ b

 a+ 
a
 b 2 A


F

A:

From (6) it follows that � vanishes on 1
A and sin
e, in view of Lemma 5, the elements of

the form

a(1
 b� b
 1)(1 
 
� 

 1) = a
 b
� ab
 
� a

 b+ ab

 1 2 A


F

A

generate a dense subset of I

2

(re
all that I was de�ned to be the kernel of the multipli
ation

map � : A 


F

A ! A), we see that � vanishes on I

2

and hen
e indu
es a 
ontinuous linear

map

� : 


F

(A)! Hom(V (g); z

0

):

13



For this map we have

�(d

A

(a)) = �(1 
 a� a
 1) = 2�(1 
 a) = 0;

when
e it fa
tors to a 
ontinuous linear map

� : 


F

(A)=d

A

(A)! Hom(V (g); z

0

):

In view of the 
anoni
al isomorphism

Hom




�

E;Hom




(F; z

0

)

�

�

=

Hom




(E 
 F; z

0

);

we 
an 
onsider � as a 
ontinuous linear map z

A

! z

0

, and with respe
t to this identi�
ation

the above 
al
ulations yield ! = �� Æ !

A

. 2

Having Theorem 9 in mind, we 
onsider the Fr�e
het{Lie algebra g

M

:= C

1

(M; g)

�

=

g

A

.

In order to obtain a 
onvenient des
ription of a universal 
entral extension of this algebra we

put z

M

:= 


1

(M)=dA, and de�ne a 
ontinuous 2-
o
y
le !

M

on g

M

by

!

M

(f 
 x; g 
 y) := �

g

(x; y)[fdg℄ 2 z

M

; (7)

where �

g

denotes the Killing form of g. Sin
e in 
ase g is simple all invariant symmetri


bilinear forms on g are multiples of the Killing form, we get the following 
onsequen
e of

Theorem 15 whi
h generalizes Proposition 4.2.8 in [12℄:

18 Corollary. If the Lie algebra g is simple, then the Lie algebra

e

g

M

:= g

M

�

!

M

z

M

is a

universal 
entral extension of g

M

.
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