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Classical Hilbert–Lie groups, their extensions and their homotopy groups

Karl-Hermann Neeb

Abstract. Let H be a complex Hilbert space and D a hermitian operator on H with finite

spectrum. Then the operators for which the commutator with D is of Schatten class p form a
Banach algebra Bp(H,D) . In the present paper we study groups GLp(H,D) associated to this kind
of Lie algebra and also groups GLp(H,I,D) associated to the sub Lie algebras Bp(H,I,D):={x∈
Bp(H,D):Ix∗I−1=−x} , where I is an antilinear isometry with I2∈{±1} . For p=2 we determine the

full second continuous cohomology for these Lie algebras and for the groups we compute all homotopy
groups. These results then lead to a direct description of universal central extensions of the groups
GL2(H,D),GL2(H,I,D) and some of their real forms. In particular we obtain the infinite-dimensional

metaplectic and the metagonal group as special examples. In a last section we discuss associated

complex flag manifolds and show that the unitary forms of the complex groups act transitively.

Introduction

An important feature of finite-dimensional reductive Lie algebras g is that they always possess
a positive definite bilinear form 〈·, ·〉 and a so called Cartan involution θ such that

(0.1) 〈[x, y], z〉 = −〈y, [θ(x), z]〉 for x, y, z ∈ g.

Here the case θ = idg corresponds to the case of a compact Lie algebra.

An interesting class of infinite-dimensional Lie algebras generalizing finite-dimensional real
reductive Lie algebras, in the sense that they still have the structure provided by (0.1), are the
L∗ -algebras. More precisely, these are Lie algebras g which are real Hilbert spaces endowed with
an isometric Lie algebra involution x 7→ x∗ , i.e.,

x∗∗ = x and [x, y]∗ = [y∗, x∗] for x, y ∈ g,

such that

(0.2) 〈[x, y], z〉 = 〈y, [x∗, z]〉 for x, y, z ∈ g.

Using the Closed Graph Theorem, one can derive the continuity of the Lie bracket on g from
(0.2), so that this requirement does not have to be put into the axioms of an L∗ -algebra. If g
is finite-dimensional real reductive, we may define x∗ := −θ(x) for a Cartan involution θ . A
complex L∗ -algebra is a real L∗ -algebra which is a complex Lie algebra for which the involution
∗ is antilinear. This easily implies that g can be turned into a complex Hilbert space by

〈x, y〉C := 〈x, y〉 − i〈ix, y〉, x, y ∈ g,

such that (0.2) is satisfied for the hermitian scalar product 〈·, ·〉C . The structure theory of real
and complex L∗ -algebras has mostly been developed by Schue, Balachandran, de la Harpe and
Unsain, where certain key references are [Sch60], [Sch61], [Ba69], [dlH72] and [Un72]. One finds
further references in de la Harpe’s book.



2 Classical Hilbert–Lie groups, their extensions and their homotopy groups March 5, 2001

The L∗ -algebras of compact type, where x∗ = −x for all x ∈ g , are natural generalizations
of compact Lie algebras, so that the corresponding groups G are generalizations of compact
groups. This point of view suggests that their representation theory lies at the heart of the
representation theory of infinite-dimensional Lie groups. Although we won’t deal with represen-
tations in the present paper, it has very much been motivated by [Ne01a], where we approach the
representation theory via coadjoint orbits of central extensions, or equivalently affine coadjoint
orbits of G . At many points it turns out to be important to have specific geometric and topo-
logical information on groups corresponding to simple L∗ -algebras of compact type and their
complexifications. It is the goal of this paper to provide such information in the concrete setting
of groups of operators on Hilbert spaces, without using the structure theory of L∗ -algebras.

The simple infinite-dimensional complex L∗ -algebras arise in three series which can be
described as follows. If H is a complex Hilbert space, we write

gl2(H) := {x ∈ B(H): tr(xx∗) <∞}

for the Lie algebra of Hilbert-Schmidt operators on H (cf. Definition I.8). If I:H → H is an
antilinear isometry with I2 ∈ {±1} , we define

gl2(H, I) := g(H, I) ∩ gl2(H) and gl(H, I) := {X ∈ gl(H):X + IX∗I−1 = 0}.

For I2 = −1 we also write sp2(H, I) := gl2(H, I) and for I2 = 1 we write o2(H, I) := gl2(H, I).
This notation is motivated by the observation that β(x, y) := 〈x, I.y〉 defines a complex bilinear
form on H which is symmetric for I2 = 1 and skew-symmetric for I2 = −1 and which satisfies

gl2(H, I) = {x ∈ gl2(H): (∀v, w ∈ H)β(x.v, w) + β(v, x.w) = 0}.

Each simple infinite-dimensional L∗ -algebra g is isomorphic to gl2(H), sp2(H, I) or o2(H, I) for
some infinite-dimensional Hilbert space H , and all these algebras are pairwise non-isomorphic
(see [Sch60] for the separable case and [CGM90], [Neh93] and [St99] for different proofs for the
general case). Since we want to treat sp2(H, I) and o2(H, I) in a uniform way, this leaves us
with the two types gl2(H) and gl2(H, I). Separable real simple L∗ -algebras have been classified
independently by Balachandran ([Ba69]), de la Harpe ([dlH70, 71a]) and Unsain ([Un71, 72]).

Passing from finite-dimensional semisimple complex Lie algebras to infinite-dimensional L∗ -
algebras, an important new feature is that these algebras have many non-trivial central extensions
and outer derivations which lead to a large family of related Banach–Lie algebras, where each
one of them has its own specific merits.

It is a general phenomenon in infinite-dimensional Lie theory that non-trivial central
extensions play an important role because geometric actions of groups on certain manifolds
M do not lift to actions on line bundles over M . One first has to enlarge the group by a central
extension. On the representation theoretic side this means that the original symmetry groups
only have projective representations in natural function spaces, and that central extensions are
required to obtain genuine representations. For a general approach to central extensions of
infinite-dimensional Lie groups and criteria for their existences in terms of topological data we
refer to [Ne00b].

It is related, but in general of a different nature, that infinite-dimensional Lie algebras have
many outer derivations, leading to a different kind of extension of the original Lie algebra. For
the classical L∗ -algebras, this kind of extension process leads in particular to the corresponding
restricted Lie algebras and groups. For g = gl2(H), resp., gl2(H, I) we put gb := gl(H):= B(H),
resp., gl(H, I). Let D ∈ gb be a hermitian element with finite spectrum. Then the Lie algebra
g(D) := g + zgb

(D) is called the restricted Lie algebra associated to g and D . For g = gl2(H)
the restricted Lie algebras gl2(H,D) := g(D) has the form

gl2(H,D) = gl2(H) +

k∑
j=1

gl(Hj) = g+ zgb
(D),
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where H = H1 ⊕ · · · ⊕ Hk is the orthogonal eigenspace decomposition for D , and zgb
(D)

corresponds to the Lie algebra of all operators preserving all the spaces Hj . The terminology
“restricted” comes from the fact that operator x = (xij) ∈ gl(H), viewed as a k×k -block matrix
with entries xij ∈ B(Hj ,Hi), is contained in gl(H,D) if and only if all its off-diagonal blocks
xij ∈ B(Hj ,Hi), i 6= j , are Hilbert–Schmidt, which we view as a restriction on x .

Now we describe the contents of this paper in some more detail. In Section I we deal with
the central extensions of the Lie algebras related to gl2(H) and gl2(H, I). In particular we show
that gl(H) and gl(H, I) have no non-trivial central extension if H is infinite-dimensional. Using
this information, we calculate the continuous second Lie algebra cohomology group H2

c (g(D),C)
for the restricted Lie algebras g(D) which turns out to be finite-dimensional. This in turn
implies the existence of a universal central extension which we describe explicitly in Section
IV. For universality of central extensions we use results from [Ne01b], where universal central
extensions of infinite-dimensional Lie groups are studied in detail.

Sections II and III are devoted to the homotopy groups of the corresponding groups. Here
the groups πk , k = 0, 1, 2, are of particular importance. For k = 0 this is obvious, the group
π1(G) is an obstruction to integrate Lie algebra homomorphisms to group homomorphisms, and
the groups π1(G) and π2(G) are closely related to obstructions for the existence of central
extensions ([Ne00b]).

For the full operator groups GL(H) and

GL(H, I) := {g ∈ GL(H): g−1 = Ig∗I−1}

one can use Kuiper’s Theorem saying that the group GL(H) is contractible for a separable
Hilbert space H over K ∈ {R,C ,H} . If H is inseparable, then there seems to be no immediate
reference for this result for real and quaternionic Hilbert spaces. As we will see in Section II,
the inseparable case has a quite elementary proof which does not depend on K . In Section II
we also compute the homotopy groups of the congruence groups GLp(H) of the Schatten ideals
Bp(H) ⊆ B(H), of GLp(H, I) := GL(H, I) ∩GLp(H) for 1 ≤ p ≤ ∞ , and of the corresponding
direct limit groups without the restriction that H is separable. Since the homotopy groups of
the restricted groups GLp(H,D) and GLp(H, I,D) are somewhat more involved, we deal with
them separately in Section III.

Throughout this paper we never have to assume that the Hilbert spaces H under consider-
ation are separable. All statements hold for general Hilbert spaces. To obtain this generality, we
frequently have to extend results on homotopy groups of groups of operators which are known
for the separable case.

Combining the information on central extensions from Section I and on the homotopy
groups from Section III, we show in Section IV that the identity components GL2(H,D)e and
GL2(H, I,D)e of the restricted groups have a universal central extension in the category of
complex Banach–Lie groups whose central fiber is of the type (C×)k . We extend these results
to certain real forms of these groups. If D has only two eigenvalues, this construction leads, for
GL2(H,D), to the central extension of the restricted general linear group of a polarized Hilbert
space, which plays a crucial role in the theory of loop groups (cf. [PS86]). For the real forms
Spres(H,Ω) of Sp2(HC , I,D) and Ores(H

R) of O2(HC , I,D) (see Section IV for the notation),
we obtain as universal central extensions the metagonal and the metaplectic groups discussed
systematically by Vershik in [Ve90]. The metaplectic group has been introduced by I. Segal
and Shale ([Se59], [Sh62]) and the metagonal group by Shale/Stinespring in [ShSt65] (see also
[dlH71b] for a construction of the spin group as a two fold cover of O1(H

R)+ , a real form of
the identity component O1(H, I)

+ of O1(H, I)). These two groups are relatives of the finite-
dimensional spin and metaplectic group, which are twofold covers of SO(2n,R), resp., Sp(2n,R).
The results of Section IV on the universality of certain central extensions form the heart of the
paper. It requires essentially all the information on the homotopy groups collected in Sections
II and III and also the information on Lie algebra cohomology from Section I. Our structure
theoretic approach to central extensions, as opposed to the representation theoretic one, has the
advantage that it immediately provides a good deal of structural and topological information
on the groups: their Banach–Lie group structure, their Lie algebra cocycles, and their topology.
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The representation theoretic approach usually has to face the problem to deal with, a priori,
unbounded operators on a Hilbert spaces. A general motivation is to understand the full set
of central extensions of groups like Ores(H

R) and Spres(H,Ω) is that they act naturally as
symmetry groups of geometric objects (mostly symmetric spaces), so that the knowledge of their
central extensions is important to understand the implementation of the these symmetry groups
in natural Hilbert spaces attached to the geometric objects.

In Section V we finally discuss flag manifolds for the groups GL2(H) and GL2(H, I). For
GL2(H) we consider a flag F = (F0, F1, . . . , Fk), where

{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk = H

are closed subspaces of H . For GL2(H, I) we consider flags F of the type

{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F
⊥β

k ⊆ . . . ⊆ F
⊥β

1 ⊆ F
⊥β

0 = H,

which means that the spaces Fj , j = 1, . . . , k , are isotropic for the bilinear form β(x, y) =
〈x, I.y〉 . Let P (F) ⊆ G denote the stabilizer of the flag F . Then the homogeneous space
G/P (F) has a natural manifold structure and its elements can be viewed as flags g.F of closed
subspaces of H . We will see that in all cases the action of G on G/P (F) extends naturally to
an action of the corresponding restricted group and that the unitary real form U = G ∩ U(H)
acts transitively on G/P (F). For G = GL2(H) and F2 = H this construction leads to the
restricted Graßmannians Grres(F1). For G = GL2(H, I) and k = 2 we obtain for F1 ⊆ H
maximal isotropic the restricted Graßmannian of maximal isotropic subspaces and for dimF1 = 1
the space of isotropic lines in H . Both are hermitian symmetric spaces modeled over Hilbert
spaces. Using some structural results from Section III, it is not hard to get basic information
on the homotopy groups and the corresponding period maps for the flag manifolds. This kind
of information is important for the quantizability of symplectic structures on these manifolds,
viewed as affine coadjoint orbits of the unitary real forms U = G ∩ U(H). For more details on
this interpretation and on affine coadjoint actions of these groups we refer to [Ne01a].

Several special classes of these flag manifolds show up at various places in the literature.
The flag manifolds for GL2(H,D) for separable H have been introduced by A. and G. Helminck
in [HH94a] and [HH94b]. They apply the representations of central extensions of the complex
group GL2(H,D) in Hilbert spaces of holomorphic sections of line bundles on the flag manifolds
to integrable systems. Moreover, they study cell decompositions of the flag manifolds and use
them to obtain a Birkhoff decomposition of the group GL2(H,D) ([HH94b, Prop. 2.4.16]).

The restricted Graßmannian Grres(F ) of a polarized Hilbert space plays a central role
for the structure of loop groups ([PS86]). The Graßmannians are particular cases of hermitian
symmetric spaces, which are dual to symmetric Hilbert domains. These manifolds and their
automorphism have been studied in [Ka75] and [DNS89], [DNS90]. A classification of hermitian
symmetric Hilbert manifolds has been obtained by W. Kaup in [Ka83].

For separable Hilbert spaces the groups GLp(H) and GLp(H, I), 1 ≤ p ≤ ∞ , and their
real forms have been studied in detail by de la Harpe in [dlH72], where one finds all kinds of
information such as the cohomology, the automorphisms, and the derivations of their Lie algebras,
which we use in Section I. De la Harpe’s book also contains a discussion of Riemannian symmetric
spaces of the real forms of these groups, where the aforementioned Graßmannians and several
other related manifolds show up.

In this paper we do not deal with representations of the groups under consideration, al-
though this paper was motivated by and provides important information useful for the theory of
unitary representations of real L∗ -groups and their realization in Hilbert spaces of holomorphic
sections of holomorphic line bundles over coadjoint orbits which are Kähler manifolds. The ge-
ometry of the “elliptic” coadjoint orbits and the corresponding unitary representations will be
studied in forthcoming papers (cf. [Ne01a]). This theory includes in particular the spin represen-
tation of the metagonal group (fermionic second quantization) and the metaplectic representation
(Segal–Shale–Weil representation) of the metaplectic group (bosonic second quantization). For
a nice exposition of the construction of these representations in an ad hoc fashion, we refer
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to Ottesen’s book [Ot95], where it is also explained how embeddings of diffeomorphism groups
and loop groups into Spres(H,Ω) and U2(H,D) lead to interesting unitary representations of
their central extensions (see also [PS86], [CR87] and [Mi89]). The mixed cases correspond to
the infinite wedge representations of the restricted unitary group Ures(H+,H−), which in our
terminology is U2(H,D) := U(H) ∩ GL2(H,D), where D has only two eigenvalues (cf. [PS86]
and also [Wu98] which contains a lot of information on the physical background). The general
L∗ -approach to these representations provides in particular direct geometric explanations for
their intricate analytic properties such as boundedness properties of the corresponding operators
(cf. [Ot95]).

Throughout this paper the letter I will always denote an antilinear isometry on a complex
Hilbert space H with I2 ∈ {±1} . We call I a conjugation if I2 = 1 and an anticonjugation for
I2 = −1 .

I. The second cohomology of classical Lie algebras

In this first section we discuss the second continuous Lie algebra cohomology of the Lie alge-
bras gl(H) and gl(H, I) and also for the corresponding restricted Lie algebras gl2(H,D) and
gl2(H, I,D). In particular we will see that H2

c (g(D),C) is always finite-dimensional and that it
has a universal central extension ([Ne01b]).

The second cohomology groups of full classical Lie algebras

In this subsection we will show that for every Banach space z , considered as a trivial module
of g ∈ {gl(H), gl(H, I)}, the second continuous cohomology group H2

c (g, z) (cf. Definition I.4)
vanishes.

If J is a set we define the set J± as the disjoint union J∪̇ − J , where −J is a copy of the
set J whose elements are denoted −j with the convention that −(−j) = j .

Lemma I.1. Let H be a complex Hilbert space and I:H → H an antilinear isometry with I2 =
±1 . If H is infinite-dimensional or of finite even-dimension, then there exists an orthonormal
basis (ej)j∈J± with

I.ej =

{
e−j for j ∈ J
±e−j for j ∈ −J .

Proof. (cf. [dlH72, App. I]) First we consider the case I2 = −1 . Since I and the complex
structure on H generate a finite group, H is an orthogonal direct sum of complex subspaces
on which I acts irreducibly. Let E be one of these subspaces and v ∈ E a unit vector. The
complex bilinear form β(x, y) := 〈x, I.y〉 is skew-symmetric because

β(y, x) = 〈y, I.x〉 = 〈x, I−1.y〉 = −β(x, y).

Therefore {v, I.v} is an orthonormal basis of E with the required properties. Since H is an
orthogonal direct sum of copies of E , the assertion follows.

Next we consider the case I2 = 1 . Then our assumptions imply that the real Hilbert space
HR := {v ∈ H: I.v = v} has an orthonormal basis of the form (fj)j∈J± . We define

e±j :=
1√
2
(fj ± if−j)

and obtain a basis with the required properties.
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Remark I.2. (a) To obtain a more explicit description of the Lie algebra sp(H, I), we use
Lemma I.1 to obtain an orthonormal basis (ej)j∈J± of H with I.ej = e−j for j ∈ J . Then the
closed subspace H0 generated by the elements ej , j ∈ J , satisfies H0

∼= l2(J,C), and we obtain
a conjugation σ0 on this space by σ0((xj)j∈J) = (xj)j∈J . If we identify H = H0 ⊕ I.H0 with
the space H0 ⊕H0 , the anticonjugation I is given by I.(a, b) = (−σ0(b), σ0(a)).

For x ∈ B(H0) we define x⊤ = σ0x
∗σ0 . Then the Lie algebra sp(H, I) ⊆ B(H0 ⊕H0) can

be described in terms of (2× 2)-block matrices as

sp(H, I) ∼=
{(

a b
c −a⊤

)
∈ gl(H): b = b⊤, c = c⊤

}
.

To get a similar description on the group level, we write I as a composition of (σ0, σ0) and the
operator with the matrix

Ĩ =

(
0 −1
1 0

)
.

Then we have for g =

(
a b
c d

)
the relation

Ig∗I−1 = Ĩg⊤Ĩ−1 =

(
0 −1
1 0

)(
a⊤ c⊤

b⊤ d⊤

)(
0 1
−1 0

)
=

(
d⊤ −b⊤
−c⊤ a⊤

)
,

which shows that

Sp(H, I) ∼=
{(

a b
c d

)
∈ GL(H): ad⊤ − bc⊤ = 1, ab⊤ = ba⊤, cd⊤ = dc⊤

}
.

In particular we see that

GL(H0) ∼=
{(

a 0
0 (a⊤)−1

)
: a ∈ GL(H0)

}
⊆ Sp(H, I).

(b) For o(H, I) and dimH = ∞ or dimH even we write H ∼= H0 ⊕ H0 with I.(a, b) =
(σ0(b), σ0(a)), and keep the other notations from above. Then the Lie algebra o(H, I) can be
described in terms of (2× 2)-block matrices as

o(H, I) ∼=
{(

a b
c −a⊤

)
∈ gl(H0 ⊕H0): b = −b⊤, c = −c⊤}.

(c) If dimH = ∞ or dimH is odd, then we have an orthogonal decomposition H ∼= H0⊕C⊕H0

with I.(a, z, b) = (σ0(b), z, σ0(a)) and obtain a similar explicit description as above by (3 × 3)-
block matrices.

Lemma I.3. Let H be a complex Hilbert space. The Lie algebra gl(H) is perfect if and only if
dimH = ∞ , and gl(H, I) is perfect if and only if not (dimH = 2 and I2 = 1) .

Proof. If H is of finite dimension n , then gl(H) is not perfect because tr: gl(H) → C is a
non-trivial Lie algebra homomorphism. If H is infinite-dimensional, then we use [Ha67, Cor. 2
to Probl. 186] to see that every element in gl(H) is the sum of two commutators, so that gl(H)
is in particular perfect.

Now we consider g := gl(H, I). If H is finite-dimensional, then this Lie algebra is perfect
unless I2 = 1 and dimH = 2. Suppose that H is infinite-dimensional. Then there exists a
closed subspace H0 ⊆ H such that H = H0 ⊕ I.H0 is an orthogonal direct sum (Lemma I.1).
We consider the element

X :=

(
1 0
0 −1

)
∈ gl(H, I)

and define g0 := zg(X). Then g = g0 ⊕ [X, g] , and g0 ∼= gl(H0) (Remark I.2). Since the first
part of the proof implies that g0 is perfect, we conclude that gl(H, I) is perfect.
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Definition I.4. Let g a topological Lie algebra, i.e., a Lie algebra which is a topological vector
space with a continuous Lie bracket, and z be a topological vector space, considered as a trivial
g-module. A continuous z-valued 2-cocycle is a continuous skew-symmetric function ω: g×g → z
with

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

It is called a coboundary if there exists a continuous linear map α: g → z with ω(x, y) = α([x, y])
for all x, y ∈ g . We write Z2

c (g, z) for the space of continuous z -valued 2-cocycles and B2
c (g, z)

for the subspace of coboundaries. We define the second continuous Lie algebra cohomology space

H2
c (g, z) := Z2

c (g, z)/B
2
c (g, z).

See [Ja62, Sect. III.10] for the basic concepts related to Lie algebra cohomology.

In [dlH79] it is shown that the second homology space H2(gl(H)) vanishes (on the algebraic
level) and it is also shown that this implies that all Banach Lie algebra extensions of gl(H) with
finite-dimensional centers are trivial (cf. [dlH79, Cor. 4]). The following proposition sharpens
this result.

Proposition I.5. If H is a complex Hilbert space, then

H2
c (gl(H), z) = 0

holds for all trivial Banach g-modules z .

Proof. Let g := gl(H). If dimH = n is finite, then g ∼= gl(n,C) and therefore H2
c (g, z) =

H2(g, z) = 0 . In fact, in view of Levi’s Theorem, each element [ω] ∈ H2(g, z) can be represented
by an sl(n,C)-invariant z -valued cocycle. Since there is no non-zero skew-symmetric invariant
bilinear form on sl(n,C), and z(gl(n,C)) ∼= C is one-dimensional, it follows that H2(g, z) is
trivial.

Now we assume that H is infinite-dimensional. We consider z as a trivial g -module. Let
ω ∈ Z2

c (g, z) be a continuous z -valued cocycle. In view of H2(g, z) ∼= Lin(H2(g), z) = 0 ([dlH79]),
there exists a linear map λ: g → z with ω(x, y) = λ([x, y]) for all x, y ∈ g . It remains to show
that λ is continuous.

Let x ∈ g . According to [Ha67, Cor. 2 to Probl. 186], there exist operators a, b, c, d ∈ g
with x = [a, b] + [c, d] , where ‖a‖, ‖c‖ ≤ 2‖x‖ and ‖b‖, ‖d‖ ≤ 1. We obtain

‖λ(x)‖ = ‖λ([a, b] + [c, d])‖ ≤ ‖ω(a, b)‖+ ‖ω(c, d)‖ ≤ ‖ω‖ ‖a‖ ‖b‖+ ‖ω‖ ‖c‖ ‖d‖ ≤ 4‖ω‖ ‖x‖.

This proves that λ is continuous and therefore that H2
c (g, z) = 0.

Next we show that the second cohomology of the Lie algebras gl(H, I) vanishes. The proof
is based on a modification of the strategy used in [dlH79].

Proposition I.6. If H is a complex Hilbert space, then the Lie algebra sp(H, I) satisfies

H2
c (sp(H, I), z) = 0

for every Banach space z , considered as a trivial module.

Proof. If H is finite-dimensional with dimH = 2n , then g := sp(H, I) ∼= sp(2n,C) is a
simple complex Lie algebra, and the Whitehead Lemmas ([Ja62, Lemma III.9.6]) imply that
H2

c (g, z) = H2(g, z) = 0 for every Banach space z .

Now we assume that H is infinite-dimensional. We consider the element

X :=

(
1 0
0 −1

)
∈ g

which defines the 3-grading
g = g− ⊕ g0 ⊕ g+,
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where g0 = ker adX ∼= gl(H0) (Remark I.2) and g± = ker(adX∓2). We know from Proposition
I.5 that H2

c (g
0, z) = 0 . This means that all the assumptions of Corollary III.9 in [Ne01a]

are satisfied with d = g0 and D0 = X , so that it suffices to consider a g0 -invariant cocycle
ϕ ∈ Z2

c (g, z) satisfying ϕ(g0, g) = 0 . Therefore it suffices to show that every g0 -invariant
bilinear form ϕ: g+ × g− → z vanishes.

For the sake of simpler notation, we identify g0 with gl(H0) by the map

gl(H0) → g0, x 7→
(
x 0
0 −x⊤

)
(Remark I.2). We further identify g± in the canonical way with Sym(H0) := {a ∈ B(H0): a

⊤ =
a} and consider the natural action of gl(H0) on Sym(H0) given by x.a := xa + ax⊤ . This
corresponds to the action of g0 on g+ , and on g− the action of g0 corresponds to [x, d] =
−x⊤.d = −x⊤d− dx . Therefore ϕ corresponds to a bilinear form

ϕ: Sym(H0)× Sym(H0) → z

satisfying
ϕ(x.a, d)− ϕ(a, x⊤.d) = 0 for all x ∈ gl(H0), a, d ∈ Sym(H0).

For x = x⊤ ∈ gl(H0) we have x.1 = x1+ 1x⊤ = 2x , and therefore

ϕ(a, d) =
1

2
ϕ(a.1, d) =

1

2
ϕ(1, a.d) =

1

2
ϕ(1, da+ ad).

It follows in particular that ϕ is symmetric and that it suffices to show that ϕ(1, ·) = 0. The
g0 -invariance of ϕ leads for x = −x⊤ ∈ gl(H0) to

0 = ϕ(x.a,1)− ϕ(a, x⊤.1) = ϕ(xa+ ax⊤,1) + ϕ(a, x.1︸︷︷︸
=0

) = ϕ(xa− ax,1) = ϕ([x, a],1).

To see that ϕ vanishes, it therefore suffices to show that

[Skew(H0),Sym(H0)] = Sym(H0).

We know already that the Lie algebra gl(H0) = Skew(H0) ⊕ Sym(H0) is perfect (Lemma I.3),
which implies that

gl(H0) = [gl(H0), gl(H0)]

=
(
[Skew(H0),Skew(H0)] + [Sym(H0),Sym(H0)]

)
+ [Skew(H0),Sym(H0)],

and this implies in particular that Sym(H0) = [Skew(H0),Sym(H0)].

Proposition I.7. If dimH > 2 , then

H2
c (o(H, I), z) = 0

for every Banach space z , considered as a trivial module.

Proof. Assume first that n := dimH is finite. Then n > 2 implies that o(H, I) ∼= o(n,C) is
a semisimple complex Lie algebra, and the assertion follows from the Whitehead Lemmas.

Now we assume that H is infinite-dimensional. Let g := o(H, I). We consider the element

X :=

(
1 0
0 −1

)
∈ g

which defines the 3-grading g = g− ⊕ g0 ⊕ g+, where gj = ker(adX − 2j).
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With the same argument as in the proof of Proposition I.6, we see that we may w.l.o.g.
assume that ϕ is g0 -invariant and satisfies ϕ(g0, g) = 0. As in Proposition I.6, this leads to a
bilinear form

ϕ: Skew(H0)× Skew(H0) → z

satisfying
ϕ(x.a, d)− ϕ(a, x⊤.d) = 0 for all x ∈ gl(H0), a, d ∈ Skew(H0),

where x.a = xa + ax⊤ for x ∈ gl(H0) and a ∈ Skew(H0). We have to show that this implies
that ϕ = 0.

We write H0 as H1 ⊕H1 , where H1 is endowed with an antilinear isometric involution σ1
such that σ0(v, w) = (σ1.v, σ1.w) for v, w ∈ H1 . From now on we write operators in gl(H0) as
(2× 2)-block matrices according to the decomposition of H0 into H1 ⊕H1 . Let

S :=

(
0 1
−1 0

)
∈ Skew(H0).

Then

x.S =

(
x⊤12 − x12 x11 + x⊤22
−x⊤11 − x22 x21 − x⊤21

)
shows that for each a ∈ Skew(H0) we have

a = ã.S for ã :=

(
a12 − 1

2a11
1
2a22 0

)
.

Therefore
ϕ(a, d) = ϕ(ã.S, d) = ϕ(S, ã⊤.d),

and it suffices to prove that ϕ(S, ·) = 0 .

For x ∈ gl(H0) with x⊤.S = 0 we have

0 = ϕ(S, x.a)− ϕ(x⊤.S, a) = ϕ(S, x.a).

For x =

(
1 0
0 −1

)
, which satisfies x⊤.S = x⊤S + Sx = 0, we obtain in particular

x.a = xa+ ax =

(
a11 −a12
−a21 a22

)
,

showing that x. Skew(H0) = Skew(H0). This implies that ϕ(S, ·) = 0, and hence that ϕ = 0.

The second cohomology groups of restricted Lie algebras

In this subsection we will use the results of the preceding subsection and the general tools
developed in [Ne01a] to compute the second cohomology of the restricted versions of the Lie
algebras gl2(H) and gl2(H, I).

Definition I.8. (a) Let H be a Hilbert space. For 1 ≤ p <∞ we define

Bp(H) := {X ∈ B(H): tr
(
(XX∗)

p
2

)
<∞}.

For p = ∞ we define B∞(H) := K(H) (cf. [RS78]) as the ideal of compact operators on H .
More generally we define for two Hilbert spaces H1 , H2 :

Bp(H1,H2) := {X ∈ B(H1,H2): tr
(
(XX∗)

p
2

)
<∞} and B∞(H1,H2) := K(H1,H2).
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These sets are are invariant under left and right multiplication with bounded operators and they
are Banach spaces with respect to the norms

‖X‖p := tr
(
(XX∗)

p
2

) 1
p and ‖X‖∞ := ‖X‖,

satisfying
‖XY ‖p ≤ ‖X‖ · ‖Y ‖p and ‖XY ‖p ≤ ‖X‖p · ‖Y ‖.

The spaces Bp(H) are called the Schatten ideals of B(H).

The congruence subgroups

GLp(H) := GL(H) ∩ (1+Bp(H))

with respect to the Schatten ideals are Banach–Lie groups with Lie algebra glp(H) := Bp(H)
(cf. [Ne00a, Def. IV.20] and [Mi89]). The group GL∞(H) is called the Fredholm group. It is
contained in the monoid

Fred(H) := {A ∈ B(H): dimkerA,dim cokerA <∞}
of Fredholm operators on H . The group

Up(H) := U(H) ∩ (1+Bp(H))

is a Lie group with Lie algebra

up(H) := u(H) ∩Bp(H) = {X ∈ Bp(H):X∗ = −X}.
With Hermp(H) := Herm(H) ∩Bp(H) = iup(H) we then have

glp(H) = up(H)⊕Hermp(H) = up(H)⊕ iup(H)

and the polar map
Up(H)×Hermp(H) → GLp(H), (u,X) 7→ ueX

is a diffeomorphism ([Ne00a, Prop. A.4]).

(b) The restricted classical Lie algebras are defined as follows. For g = gl2(H) we put gb :=
gl(H), and for g = gl2(H, I) we put gb := gl(H, I). Let D ∈ gb be a hermitian element with
finite spectrum, g0b := zgb

(D) and g0 := zg(D). Then the Lie algebra

gr := g(D) := g+ g0b

is called the restricted Lie algebra associated to g and D . For g = gl2(H) we also write
gl2(H,D) := g(D) and for g = gl2(H, I) we likewise write gl2(H, I,D) := g(D).

Examples I.9. (a) Let g = gl2(H) for an infinite-dimensional complex Hilbert space H
and D = D∗ ∈ gl(H) diagonalizable with the eigenvalues d1, . . . , dk and the corresponding
eigenspaces Hj := ker(D − dj1). Then H = H1 ⊕ . . .⊕Hk is an orthogonal decomposition, g0

consists of all elements in g preserving this decomposition, and therefore

g0 ∼=
k⊕

j=1

gl2(Hj) and g0b
∼=

k⊕
j=1

gl(Hj)

lead to
gl2(H,D) = {X = (xij)i,j=1,...,k: (∀i 6= j)xij ∈ B2(Hj ,Hi)}.

(b) For g = gl2(H, I) and D = D∗ ∈ gl(H, I), we write d1, . . . , dk for the positive eigenvalues
of D , d−j := −dj , and d0 := 0. Then Spec(D)∪ {0} = {dj : j = −k, . . . , k} (cf. [Ne01a, Lemma
III.12]) and for Hj := ker(D − dj1) we obtain an orthogonal decomposition

H = Hk ⊕ . . .⊕H0 ⊕ . . .⊕H−k

with I.Hj = H−j , so that H0 = kerD is I -invariant, but this space might be trivial. With
I0 := I |H0 and Remark I.2 we now obtain

g0 ∼= gl2(H0, I0)⊕
k⊕

j=1

gl2(Hj) and g0b
∼= gl(H0, I0)⊕

k⊕
j=1

gl(Hj).

In the following we will keep the notation of Examples I.9 whenever we discuss specific
properties of the Lie algebras g(D) and the corresponding groups.
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Proposition I.10. (a) gl2(H,D) is perfect if and only if dimH = ∞ .

(b) gl2(H, I,D) is perfect if not (dimH = 2 and I2 = 1) .

Proof. (a) Let g := gl2(H). If If dimH < ∞ , then g = gl(H) is not perfect, and
[g, g] = sl(H). Suppose that dimH = ∞ . Then there exists at least on j for which Hj is
infinite-dimensional. We consider the direct sum decomposition

g(D) = g0b ⊕
⊕
i̸=j

B2(Hj ,Hi).

Since g(D) = g0b + [D, g] , it suffices to show that g0b ⊆ [g(D), g(D)] . We recall that g0b
∼=⊕k

j=1 gl(Hj) (Examples I.9) and view each gl(Hj) as a subalgebra of g0b .

The commutator algebra of g0b contains the full algebra gl(Hi) ⊆ g0b whenever Hi is
infinite-dimensional ([Ha67, Cor. 2 to Probl. 186]). If Hi is finite-dimensional, then we choose
j with Hj infinite-dimensional and consider elements of B(Hi ⊕Hj) as (2× 2)-block matrices.
For such matrices we have[(

0 B
0 0

)
,

(
0 0
C 0

)]
=

(
BC 0
0 −CB

)
.

Then [g(D), g(D)] contains gl(Hj) and therefore also B2(Hi,Hj)B2(Hj ,Hi) = gl(Hi). Hence
[g(D), g(D)] contains g0b , which shows that g(D) is perfect.

(b) Let g := gl2(H, I). If H is of finite dimension n , then g(D) = g ∼= sp(n,C) or o(n,C) is
semisimple and therefore perfect unless n = 2 and I2 = 1 (Lemma I.3).

Suppose that H is infinite-dimensional. We have g(D) = g0b + [D, g] , so that it suffices
to show that g0b ⊆ [g(D), g(D)] . Using the 3 × 3-block description of gl(H, I) according to

H = H+⊕H0⊕H− with H± :=
∑k

j=1H±j , we see that g(D) is adapted to this decomposition,
and we get with D+ := D |H+

:

g(D) ⊇ gl2(H+, D+) ∼=

{ a 0 0
0 0 0
0 0 −a⊤

 : a ∈ gl2(H+, D+)

}
⊇

k∑
j=1

gl(Hj).

If H+ is finite-dimensional, then the same holds for H− = I.H+ , so that g(D) = gl(H, I),
and the perfectness of g(D) follows from Lemma I.3.

If H+ is infinite-dimensional, then gl2(H+, D+) is perfect by (a), and each gl(Hj), j =
1, . . . , k , is contained in this algebra, so that it remains to see that gl(H0, I0) ⊆ [g(D), g(D)] .
If gl(H0, I0) itself is perfect, this is trivial. If this is not the case, then dimH0 = 2 and

I2 = 1 (Lemma I.3). Then we extend H0 to a four-dimensional I -invariant subspace H̃0 of

H1 +H0 +H−1 , set Ĩ0 := I |
H̃0

, and obtain

[g(D), g(D)] ⊇ [o(H̃0, Ĩ0), o(H̃0, Ĩ0)] = o(H̃0, Ĩ0) ⊇ o(H0, I0) ∼= gl(H0, I0).

This implies that g(D) is perfect.

Proposition I.11. For k∞ := |{j ∈ {1, . . . , k}: dimHj = ∞}| we have

H2
c (gl2(H,D),C) ∼= Ck∞−1 and H2

c (gl2(H, I,D),C) ∼= Ck∞ .

Each cohomology class contains a cocycle of the form

ϕ(z)(x+ d, x′ + d′) := tr([z, x]x′) = tr(z[x, x′]) for d, d′ ∈ g(D)0, x, x′ ∈ g,

where z ∈ z(g(D)0) .
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Proof. In [Ne01a, Ex. III.13] we have seen how to describe the space H2
c (g(D),C) in all

cases. Each continuous 2-cocycle on g(D) is equivalent to a cocycle ϕ(z) given as follows. For
z ∈ z(g0b) we define

ϕ(z)(x+ d, x′ + d′) := tr([z, x]x′) = tr(z[x, x′]), d, d′ ∈ g0b , x, x
′ ∈ g.

This cocycle is trivial if and only if z ∈ z(g0) + C1 , which for g = gl2(H, I) is equivalent to
z ∈ z(g0). We always have z(gl(H0, I0)) = z(gl2(H0, I0)), and for j > 0 we have z(gl(Hj , Ij)) =
C idHj and z(gl2(Hj , Ij)) = 0 if Hj is infinite-dimensional. We conclude that each cohomology
class can be represented by ϕ(z) with z =

∑
dimHj=∞ zj idHj , and that such a cocycle is trivial

if and only if z = 0, for g = gl2(H, I), or z1 = . . . = zk , for g = gl2(H). This implies the
assertion.

Universal central extensions

Definition I.12. (a) Let g be a topological Lie algebra over K ∈ {R,C} , z a topological
vector space, and ω ∈ Z2

c (g, z) a continuous z -valued 2-cocycle. Then we write g ⊕ω z for the
topological Lie algebra whose underlying topological vector space is the product space g× z and
whose Lie bracket is defined by

[(x, z), (x′, z′)] =
(
[x, x′], ω(x, x′)

)
.

Then q: g⊕ω z → g, (x, z) 7→ x is a central extension and σ: g → g⊕ω z, x 7→ (x, 0) is a continuous
linear section of q .

(b) Let a be a topological vector space considered as a trivial g-module. We call a central
extension q: ĝ = g⊕ω z → g with z = ker q weakly a-universal if the map

δa: Lin(z, a) → H2
c (g, a), γ 7→ [γ ◦ ω]

is bijective.

We call q: ĝ → g universal for a if for each central a-extension q1: ĝ1 := g ⊕f a → g of g
there exists a unique continuous homomorphism ϕ: ĝ → ĝ1 with q1 ◦ ϕ = q . In view of [Ne01b,
Remark I.10(b)], the a-universality is equivalent to the weak a-universality plus Hom(g, a) = 0 .

For a 6= {0} this implies in particular that Hom(g,K ) = {0} which for a Banach–Lie
algebra g implies that g is topologically perfect.

Proposition I.13. Let g be a perfect K -Banach–Lie algebra for which H2
c (g,K ) is finite-di-

mensional. Then g has up to isomorphism a unique K -universal central extension

z ↪→ ĝ := g⊕ω z → g

which, in addition, is universal for all Fréchet spaces.

Proof. The uniqueness follows from [Ne01b, Lemma I.13] and the existence from [Ne01b, Cor.
II.12].

Remark I.14. The background for Definition I.12(b) is that the central extension q: ĝ =
g ⊕ω z → g defines for each topological vector space a an exact sequence containing δa . To
describe this exact sequence, let Z2

c (ĝ, z, a) denotes the set of all continuous a-valued 2-cocycles
ω ∈ Z2

c (ĝ, a) with ω(z, ĝ) = {0} . Then B2
c (ĝ, a) ⊆ Z2

c (ĝ, z, a) because β([ĝ, z]) = {0} for
β ∈ Lin(ĝ, z), and we define

H2
c (ĝ, z, a) := Z2

c (ĝ, z, a)/B
2
c (ĝ, z).

According to [Ne01a, Th. I.4], we now have the exact sequence

(1.1) 0 → Hom(g, a)
q∗−−→Hom(ĝ, a)

res−−→Lin(z, a)
δa−−→H2

c (g, a)
q∗−−→H2

c (ĝ, z, a) → 0.

We will see in Section IV below how to realize the universal central extensions of the
restricted Lie algebras gl2(H,D) and gl2(H, I,D) explicitly.
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II. Homotopy groups of classical groups

In this section we first discuss a quite elementary proof of Kuiper’s Theorem for inseparable
Hilbert spaces H over K ∈ {R,C ,H} , and then we use this result to prove that various classical
groups of operators on Hilbert spaces such as GL(H, I) are contractible. Then we turn to
the direct limit groups GL(J,K ) of those invertible J × J -matrices g for which g − 1 has
only finitely many non-zero entries. We will see that for an infinite set J this group is weakly
homotopy equivalent to GL(N,K ), i.e., to the direct limit of the groups GL(n,K ). Combining
these insights with general results of Palais, we compute the homotopy groups of the congruence
groups GLp(H) of the Schatten ideals Bp(H) ⊆ B(H) and GLp(H, I) := GL(H, I) ∩ GLp(H)
for 1 ≤ p ≤ ∞ . In the next section we deal with groups corresponding to the restricted Lie
algebras g(D).

Kuiper’s Theorem

In this subsection we explain how Kuiper’s Theorem that the group GL(H,K ) of K -linear
continuous operators on an infinite-dimensional separable K -Hilbert space H is contractible
([Ku65]) can be obtained in a quite elementary way for inseparable Hilbert spaces.1

The observation is based on the following lemma, which is a refinement of [vNeu50,
Th. 14.10].

Lemma II.1. Let H be a Hilbert space over K = R,C or H and M ⊆ B(H,K ) a separable

set of operators. Then there exists an orthogonal decomposition H ∼=
⊕̂

j∈JHj into M-invariant
subspaces such that each Hj is separable.

If, in addition, H is infinite-dimensional, then the spaces Hj can be chosen in such a way
that they are all infinite-dimensional, hence isomorphic to l2(N,K ) .

Proof. Since the closed ∗ -subalgebra of B(H) generated by M is separable, we may assume
that M is ∗ -invariant with 1 ∈ M , otherwise we replace it by M∪M∗∪{1} . Now the assertion
follows by a standard application of Zorn’s Lemma. Let Hj , j ∈ J , be a maximal set of non-zero
closed M -invariant separable subspaces of H such that the sum

∑
j∈J Hj is orthogonal. Set

H0 :=
∑

j∈J Hj . Then H⊥
0 is M -invariant because M is ∗-invariant. Assume that H0 6= H .

For 0 6= v ∈ H⊥
0 the subspace Hv := spanM.v is a cyclic hence separable subspace orthogonal

to all the spaces Hj , contradicting the maximality of the family (Hj)j∈J . This proves the first
assertion.

To prove the second part, let us assume that H is infinite-dimensional and consider a

decomposition H ∼=
⊕̂

j∈JHj as above. Let

I := {j ∈ J : dimHj <∞}.

Case 1: If I is finite, then there exists a j0 ∈ J \I . Replacing Hj0 by Hj0 +
∑

i∈I Hi , we obtain
the desired decomposition.

Case 2: If I is infinite, then |I × N| = |I| ([La93, App. 2]) implies that I can be partitioned
into infinite countable subsets Ii , i ∈ I . Then all the subspaces Ki :=

∑
j∈Ii

Hj are infinite-
dimensional and separable, and we have the derived orthogonal decomposition of H :

H =
⊕̂

j∈J\I
Hj ⊕

⊕̂
i∈I
Ki.

1 The proof is based on a hint in a footnote in Kuiper’s paper but we don’t know of any direct reference in the

literature which provides the result also for real and quaternionic inseparable Hilbert spaces. For complex Hilbert

spaces it follows from results of Brüning and Willgerodt on the contractibility of unit groups of von Neumann

algebras of infinite type ([BW76]).
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Theorem II.2. (Palais) For a metrizable topological manifold modeled over a sequentially
complete locally convex space the following are equivalent:

(1) πn(X) = 0 for all n ∈ N0 .

(2) X is contractible.

Proof. [Pa66, Cor. to Th. 15]

The proof of the following proposition is inspired by the setting in Mityagin’s paper [Mit70].

Proposition II.3. Let Y be a separable topological space and H an inseparable Hilbert space
over K = R,C or H . Then each continuous map f :Y → GL(H,K ) is homotopic to a constant
map.

Proof. Since f(Y ) is a separable set of operators, Lemma II.1 implies that there exists a set
J and an isomorphism H → l2(J,Hs) with Hs := l2(N,K ) such that the operators in f(Y ) are
diagonal operators on l2(J,Hs).

Step 1: Since H is not separable, the set J is (uncountably) infinite. First we consider
a decomposition J = J1∪̇J2 with |J1| = |J2| = |J | . This leads to an orthogonal decomposition
H ∼= H ⊕ H , and we consider operators on H accordingly as block 2 × 2-matrices. Let
f :Y → GL(H,K ) be as above. Then

f(y) =

(
g1(y) 0
0 g2(y)

)
,

where gj :Y → GL(H,K ) are continuous maps. We claim that f is homotopic to the map

(2.1) f1(y) =

(
g1(y)g2(y) 0

0 1

)
.

It suffices to show that

f(y)−1f1(y) =

(
g2(y) 0
0 g2(y)

−1

)
is homotopic to a constant map. This is implemented by the homotopy

H(t, a) :=

(
1 0

t(a−1 − 1) 1

)(
1 t
0 1

)(
1 0

t(a− 1) 1

)(
1 −ta−1

0 1

)
which satisfies

H(1, a) =

(
a 0
0 a−1

)
and H(0, a) =

(
1 0
0 1

)
.

Step 2: In view of Step 1, we may assume that f1:Y → GL(H,K ) has the form (2.1).
Next we observe that H ∼= l2(N,H) because |J | = |N× J | ([La93, App. 2]). Therefore

H ∼= H ⊕ l2(N,H),

and we may assume that
f1(y) = diag(g(y),1,1, . . .).

Partitioning N into odd numbers Nodd and even numbers Neven , and writing accordingly

l2(N,H) ∼= l2(Nodd,H)⊕ l2(Neven,H),

it follows from Step 1 that the constant map Y → GL(l2(N,H),K ) is equivalent to the map

y 7→ diag(g(y)−1, g(y), g(y)−1, g(y), . . .).

Therefore f1 is homotopic to

f2(y) = diag(g(y), g(y)−1, g(y), g(y)−1, . . .).

Applying the same argument again to the decomposition

H ∼= H ⊕ l2(N,H) ∼= l2({0} ∪ Neven,H)⊕ l2(Nodd,H),

we see that f2 is homotopic to a constant map.



15 classic.tex March 5, 2001

Theorem II.4. (Kuiper’s Theorem for general Hilbert spaces) If H is an infinite-dimensional
Hilbert space over K = R,C or H , then the group GL(H,K ) is contractible.

Proof. In view of Theorem II.2, it suffices to show that all homotopy groups of GL(H,K )
vanish. In [Ku65], this is proved for infinite-dimensional separable Hilbert spaces, and for
inseparable Hilbert spaces, this follows from Proposition II.3 because the spheres Sk , k ∈ N0 ,
are separable.

Consequences of Kuiper’s Theorem

Definition II.5. (a) If H is a Hilbert space over K ∈ {R,C ,H} , then we define

U(H,K ) := {g ∈ GL(H,K ): g∗g = gg∗ = 1}

as the unitary part of this group. We also write

O(H) := U(H,R), U(H) := U(H,C) and Sp(H) := U(H,H).

(b) Let H be a complex Hilbert space and I be an antilinear isometry with I2 ∈ {±1} . For
I2 = 1 we then have

U(H, I) := U(H) ∩GL(H, I) ∼= O(HR) with HR := {x ∈ H: I.x = x},

and for I2 = −1 we have
U(H, I) ∼= U(H,H) ∼= Sp(H),

where the quaternionic structure on H is given by the subalgebra C1 + CI ∼= H of B(H,R),
the real linear endomorphisms of H .

(c) (Hermitian groups) Let H be a complex Hilbert space and H = H+ ⊕H− be an orthogonal
decomposition. Further let T = T ∗ ∈ B(H) with H± = ker(T ∓1). We define the corresponding
pseudo-unitary group

U(H+,H−) := {g ∈ GL(H):Tg∗T−1 = g−1}.

We define Ω(x, y) := Im〈x, y〉 and write HR for the real Hilbert space underlying H . Then

Sp(H,Ω) := {g ∈ GL(HR,R): (∀v, w ∈ HR)Ω(g.v, g.w) = Ω(v, w)}

is called the symplectic group of H . If we start with the real Hilbert space HR and consider an
isometric complex structure I on HR , then we can define

Ω(x, y) := −〈I.x, y〉 = 〈x, I.y〉

and put
Sp(HR, I) := {g ∈ GL(HR,R): (∀v, w ∈ HR)Ω(g.v, g.w) = Ω(v, w)}.

It is easy to see that both constructions lead to isomorphic groups Sp(HR, I) ∼= Sp(H,Ω).

Now let I be a conjugation on the complex Hilbert space H and H+ ⊆ H a subspace for
which we get an orthogonal decomposition H = H+ ⊕H− with H− := I.H+ . Then we define

O∗(H, I) := U(H, I) ∩U(H+,H−).

Theorem II.6. If H is an infinite-dimensional Hilbert space over K ∈ {R,C ,H} , then the
following groups are contractible:

(i) the group of K -linear automorphisms GL(H,K ) .
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(ii) the group of isometric K -linear automorphisms U(H,K ) , and in particular the groups
O(H) = U(H,R) , U(H) = U(H,C) and Sp(H) = U(H,H) .

(iii) the group GL(H, I) if H is complex and I an antilinear isometry with I2 ∈ {±1} . More-
over, GL(H, I) has a smooth polar decomposition.

(iv) the hermitian groups U(H+,H−) , H = H+ ⊕ H− an orthogonal decomposition with two
infinite-dimensional summands, Sp(H,Ω) , and O∗(H, I) .

Proof. (i) is Theorem II.4.

(ii) follows from (i) and the polar decomposition GL(H,K ) ∼= U(H,K ) × Herm(H,K ) of the
group GL(H,K ) with the unitary part U(H,K ).

(iii) In view of Definition II.5(b), the group U(H, I) is contractible, because it is one of the
groups in (ii). Hence the assertion follows from the polar decomposition of GL(H, I) which can
be obtained as follows. We consider the automorphism τ(g) := I(g∗)−1I−1 of GL(H) and write
τg(x) := −Ix∗I−1 for the corresponding antilinear automorphism of its Lie algebra gl(H). Then

GL(H, I) = GL(H)τ := {g ∈ GL(H): τ(g) = g}.

Let g = uex be the polar decomposition of g ∈ GL(H). Then τ(g) = τ(u)eτg(x) is the polar
decomposition of τ(g), so that the uniqueness of this decomposition implies that τ(g) = g , is
equivalent to τ(u) = u and τg(x) = x , i.e., u ∈ U(H, I) and x ∈ Herm(H, I).

(iv) For the hermitian groups we will see below that they have polar decompositions with

U(H+,H−) ∩U(H) ∼= U(H+)×U(H−), Sp(H,Ω) ∩O(HR) ∼= U(H)

and
O∗(H, I) ∩U(H) ∼= U(H+),

where H ∼= H+ ⊕ I.H+ as in Definition II.5(c). Therefore (ii) implies that all these groups are
contractible.

To prove the polar decomposition of U(H+,H−), let g ∈ GL(H) with polar decomposition
g = uex , u ∈ U(H) and x = x∗ . For T as in Definition II.5(c) we consider the automorphism
τ(g) := T (g∗)−1T−1 of GL(H) and write τg(x) := −Tx∗T−1 for the corresponding antilinear
automorphism of its Lie algebra gl(H). Then τ(g) = τ(u)eτg(x) is the polar decomposition of
τ(g), so that the uniqueness of this decomposition implies that τ(g) = g is equivalent to τ(u) = u
and τg(x) = x . Therefore g ∈ U(H+,H−) if and only if

u ∈ U(H+,H−) ∩U(H) ∼= U(H+)×U(H−) and x ∈ u(H+,H−).

To see that Sp(H,Ω) is adapted to the polar decomposition, we observe that

Ω(x, y) = Im〈x, y〉 = Re〈x, iy〉 = (x, Jy),

where (·, ·) := Re〈·, ·〉 denotes the real scalar product on HR . Therefore g ∈ Sp(H,Ω) is
equivalent to g⊤Jg = J , i.e., g = τ(g) := J(g⊤)−1J−1 . Then τ is an involutive automorphism of
GL(HR) and τg(x) := −Jx⊤J−1 is the corresponding Lie algebra automorphism. Let g = uex be
the polar decomposition of g ∈ GL(HR), where u ∈ O(HR) and x⊤ = x . Then τ(g) = τ(u)eτg(x)

is the polar decomposition of τ(g) because ue−x is the polar decomposition of g−⊤ . Therefore
g ∈ Sp(H,Ω) is equivalent to τ(u) = u , i.e., u ∈ U(H), and to Jx = −xJ , i.e., x is antilinear.

The argument for the group O∗(H, I) is similar.

Homotopy groups of direct limit groups

Definition II.7. Let (X,x0) and (Y, y0) be pointed topological spaces. A map f ∈
C∗(X,Y ) := {h ∈ C(X,Y ):h(x0) = y0} is called a weak homotopy equivalence if all induced
maps πk(f):πk(X,x0) → πk(Y, y0) are bijections.

A map f ∈ C∗(X,Y ) is called a homotopy equivalence if there exists g ∈ C∗(Y,X) such
that fg , resp., gf are homotopic to idY , resp., idX in C∗(Y, Y ), resp., C∗(X,X).
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Theorem II.8. (a) Let X be a locally convex topological vector space and E ⊆ X a dense
subspace. We endow E with the direct limit topology with respect to the finite-dimensional
subspaces. For each open subset U ⊆ X the continuous map U ∩ E → U is a weak homotopy
equivalence if U ∩ E is considered as a topological subspace of E .

(b) Let X and Y be metrizable locally convex topological vector spaces and f :X → Y a
continuous linear map with dense range. For each open subset U ⊆ Y let V := f−1(U) and
fV := f |V :V → U . Then fV is a homotopy equivalence.

Proof. These are Theorems 12 and 16 in [Pa66].

Lemma II.9. Let E be a real vector space endowed with the direct limit topology with respect
to its finite-dimensional subspaces. Then the following assertions hold:

(i) Each linearly independent subset of E is closed and discrete.

(ii) Each compact subset of E is contained a finite-dimensional subspace.

(iii) For each subset U ⊆ E and u0 ∈ U we have

πk(U, u0) ∼= lim
F∈F

πk(U ∩ F, u0),

where F denotes the directed set of all finite-dimensional subspaces F ⊆ E containing u0 .

(iv) If U ⊆ E is a subset for which the intersection with all finite-dimensional subspaces are
open, then the subspace topology on U coincides with the direct limit topology with respect
to the sets U ∩ F , F ⊆ E a finite-dimensional subspace.

Proof. (i) (cf. [Pa66, Lemma 5.2]) Let S ⊆ E be a linearly independent subset. Then for
each finite-dimensional subspace F ⊆ E the intersection S ∩ F is closed, and therefore S is
closed in E . The same argument implies that each subset of S is also closed in E . It follows in
particular that S is a discrete topological space.

(ii) (cf. [Pa66, Lemma 5.3]) Let K ⊆ E be a compact subset and S ⊆ K a maximal linearly
independent subset. Then K ⊆ spanS . In view of (i), S is closed, hence compact. On the other
hand, S is discrete and therefore finite.

(iii) Let Y be a compact space with base point y0 and f :Y → U a continuous map with
f(y0) = u0 . Then f(Y ) is a compact subset of E , hence contained in a finite-dimensional
subspace F , and we clearly have u0 = f(y0) ∈ F .

For Y = Sk , it follows that the natural homomorphism

η: lim
F∈F

πk(U ∩ F, u0) → πk(U, u0)

is surjective. To see that it is also injective, suppose that f :Sk → U∩F is a continuous map which
in U is homotopic to the constant map Sk → {u0} . Let H: [0, 1]× Sk → U be a homotopy with
H(0, x) = f(x) and H(1, x) = u0 . Then im(H) is contained in a finite-dimensional subspace
F ⊆ E , and therefore the homotopy class of f in πk(U ∩F, u0) is trivial. This implies that η is
injective.

(iv) This follows from the observation that a subset V ⊆ U is open in the subspace topology if
and only if all intersections V ∩F , F ⊆ E a finite-dimensional subspace, are open, because this
already implies that V is open in E .

Definition II.10. Let J be an infinite set. We view a function m: J × J → K as a matrix
with entries m(i, j). In this sense we write M(J,K ) for the set of all J × J -matrices with
at most finitely many non-zero entries in K . Then M(J,K ) is a real algebra with respect to
matrix multiplication. It has a unit if and only if J is finite. We write 1 = (δij)i,j∈J for the
identity matrix. Then 1+M(J,K ) is a multiplicative monoid, and we define GL(J,K ) to be its
group of units. We endow GL(J,K ) with the direct limit topology with respect to the subgroups
GL(F,K ) := GL(J,K )∩ (1+M(F,K )), where F ⊆ J is a finite subset. It follows directly from
the constructions that the left and right multiplications in the group GL(J,K ) are continuous,
but if J is uncountable, then the multiplication is not jointly continuous ([Gl99, Th. 7.1]). Here
we identify M(F,K ) in a natural way with a subset of M(J,K ) and likewise GL(F,K ) with a
subset of GL(J,K ).
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Proposition II.11. Let J be an infinite set. Then for each injective map N ↪→ J the
corresponding map GL(N,K ) → GL(J,K ) is a weak homotopy equivalence.

Proof. We may w.l.o.g. assume that N ⊆ J . Let η: GL(N,K ) ↪→ GL(J,K ) be the corre-
sponding embedding of groups.

Let Y be a compact space and f :Y → GL(J,K ) be a continuous map. Then there exists a
finite subset F ⊆ J with f(Y ) ⊆ GL(F,K ) (Lemma II.9(ii)). If F ′ ⊆ J is finite with F ∩F ′ = Ø
and |F | = |F ′| = n , then GL(F ∪ F ′,K ) ∼= GL(2n,K ), where we identify F with {1, . . . , n}
and F ′ with {n+ 1, . . . , 2n} . Then f is a map of the form

f(y) =

(
g(y) 0
0 1

)
,

where we write the elements of GL(2n,K ) as block 2× 2-matrices with entries in M(n,K ), and
g:Y → GL(n,K ) is a continuous map.

We consider the map H: [0, 1]×GL(n,K ) → GL(2n,K ) given by

H(t, a) :=

(
1 0

t(a−1 − 1) 1

)(
1 t
0 1

)(
1 0

t(a− 1) 1

)(
1 −ta−1

0 1

)
which satisfies

H(1, a) =

(
a 0
0 a−1

)
and H(0, a) =

(
1 0
0 1

)
.

Then
H̃: [0, 1]× Y → GL(2n,K ), (t, y) 7→ f(y)H(t, g(y))−1

is continuous with H̃(0, y) = f(y) and

H̃(1, y) =

(
1 0
0 g(y)−1

)
.

This construction shows that every continuous map f :Y → GL(F,K ) is homotopic in GL(J,K )
to a continuous map f ′:Y → GL(F ′,K ).

In particular we see that for each continuous map f :Y → GL(J,K ) there exists a finite

subset E ⊆ N such that f is homotopic to a continuous map f̃ :Y → GL(E,K ). In fact, with F
as above, we simply choose E ⊆ N such that |E| = |F | and E ∩ F = Ø. This argument shows
that the natural homomorphism πk(η):πk(GL(N,K )) → πk(GL(J,K )) is surjective.

To see that πk(η) is injective, suppose that f :Y → GL(n,K ) ⊆ GL(N,K ) is in GL(J,K )
homotopic to a constant map. Let H: [0, 1]×Y → GL(J,K ) be a homotopy with H(0, y) = 1 and
H(1, y) = f(y) for all y ∈ Y . Then there exists a finite subset F ⊆ J with im(H) ⊆ GL(F,K ).
Then we may assume that F ⊇ {1, . . . , n} , and since GL(|F |,K ) ∼= GL(F,K ), we see that the
homotopy class of f vanishes in GL(|F |,K ) ⊆ GL(N,K ). In particular f is homotopic to a
constant map in GL(N,K ).

The homotopy groups for GL(N,K ) and hence for all groups GL(J,K ), where J is an
infinite set, are given by the following theorem.

Theorem II.12. (Bott Periodicity Theorem) Let K ∈ {R,C ,H} and d := dimR K . Then
for k ≤ d(n+ 1)− 3 and q ∈ N the maps

πk(GL(n,K )) → πk(GL(n+ q,K ))

are isomorphisms, so that
πk(GL(N,K )) ∼= πk(GL(n,K )).

Moreover, we have the periodicity relations

πn+2(GL(N,C)) ∼= πn(GL(N,C)), πn+4(GL(N,R)) ∼= πn(GL(N,H)),
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πn+4(GL(N,H)) ∼= πn(GL(N,R)), πn(GL(N,H)/GL(N,C)) ∼= πn+1(GL(N,H)),

πn(GL(N,C)/GL(N,R)) := lim
m→∞

πn(GL(m,C)/GL(m,R)) ∼= πn+2(GL(N,H)),

πn(GL(N,R)/GL(N,C)) := lim
m→∞

πn(GL(2m,R)/GL(m,C)) ∼= πn+1(GL(N,R)),

πn(GL(N,C)/GL(N,H)) := lim
m→∞

πn(GL(2m,C)/GL(m,H)) ∼= πn+2(GL(N,R)).

In particular the homotopy groups of GL(N,K ) are determined by the following table:

GL(N,R) GL(N,C) GL(N,H)
π0 Z2 0 0
π1 Z2 Z 0
π2 0 0 0
π3 Z Z Z

Proof. The first easy part is [Hu94, Th. 8.4.1] and the remaining assertions can be found in
[Bo59, pp.314ff] (cf. also [Hu94, Cor. 9.5.2]).

For the sake of completeness, we include a proof of the first part. Using the polar decompo-
sition, we may consider the corresponding maps of the unitary groups U(n,K ). To understand
the effect of the inclusion maps U(n,K ) → U(n+1,K ) for the homotopy groups, we consider the
transitive action of U(n+1,K ) on the sphere Sd(n+1)−1 which leads to a locally trivial principal
bundle

U(n,K ) ↪→ U(n+ 1,K ) → Sd(n+1)−1.

The exact homotopy sequence of this bundles contains the piece

. . .→ πk+1(Sd(n+1)−1) → πk(U(n,K ))
πk(ηn)−−−−−−→πk(U(n+ 1,K )) → πk(Sd(n+1)−1) → . . . .

For k < d(n + 1) − 1, i.e., k ≤ d(n + 1) − 2 the group πk(Sd(n+1)−1) vanishes (this follows by
smoothing and Sard’s Theorem), so that πk(ηn) is surjective. If, in addition, k ≤ d(n+ 1)− 3,
then k + 1 < d(n+ 1)− 1 implies that also πk+1(Sd(n+1)−1) vanishes, so that the injectivity of
πk(ηn) follows.

Homotopy groups of congruence subgroups for Schatten ideals

Let H be a Hilbert space over K ∈ {R,C ,H} . For x, y ∈ H we define Px,y(v) := 〈v, y〉x
and put Px := Px,x . Note that Px,y ∈ B1(H).

Lemma II.13. Let H be a K -Hilbert space and (ej)j∈J an orthonormal basis. Then B0(H) :=
span{Pej ,ek : j, k ∈ J} is dense in each of the spaces Bp(H) , 1 ≤ p ≤ ∞ .

Proof. For each p ∈ [1,∞] we have ‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 and accordingly B1(H) ⊆ Bp(H) ⊆
K(H) = B∞(H).

Since B0(H) and Bp(H) are ∗ -invariant, it suffices to see that each hermitian operator
in Bp(H) is contained in the closure of B0(H). The Spectral Theorem for Compact Hermitian
Operators directly implies that the ideal Bfin(H) of continuous maps with finite-dimensional
image is dense in Bp(H), and hence that B1(H) is dense in Bp(H). Therefore it suffices to see
that B0(H) is dense in B1(H) because ‖x‖p ≤ ‖x‖1 .

In view of the Hahn–Banach Theorem, we have to show that each continuous linear func-
tional f ∈ B1(H)′ vanishing on B0(H) is zero. As B1(H)′ ∼= B(H) ([Ne99, Prop. A.I.10(vi)]),
the functional f can be written as f(X) = tr(AX) for some A ∈ B(H). Hence

f(Pej ,ek) = tr(APej ,ek) = tr(PA.ej ,ek) = 〈A.ej , ek〉.
If f vanishes on B0(H), then the matrix of A with respect to the orthonormal basis (ej)j∈J

vanishes, and this means that A = 0.

The following theorem is well known for the case of separable Hilbert spaces (cf. [Pa65] and
[dlH72, p.II.29]). The results on direct limit groups obtained in the preceding subsection easily
permit us to extend it to general Hilbert spaces.
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Theorem II.14. Let H be an infinite-dimensional Hilbert space over K ∈ {R,C ,H} and
p ∈ [1,∞] . Then the following assertions hold:

(i) For every k ∈ N0 we have πk(GLp(H)) ∼= πk(GL(N,K )) ∼= lim
−→

πk(GL(n,K )
)
.

(ii) If Hs ⊆ H is an infinite-dimensional separable subspace, then the inclusion map GLp(Hs) ↪→
GLp(H) is a weak homotopy equivalence.

(iii) For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H) ↪→ GLq(H) is a homotopy equivalence.

Proof. (i) Let ej , j ∈ J , be an orthonormal basis of H . Then Lemma II.13 above shows
that B0(H) = span{Pej ,ek : j, k ∈ J} is dense Bp(H). We endow B0(H) with the direct limit
topology with respect to the directed set of finite-dimensional subspaces of B0(H).

For the open subset U := GLp(H)− 1 ⊆ Bp(H) we have

U ∩B0(H) = GL(J,K )− 1,

where GL(J,K ) is the set of those elements g ∈ GL(H) for which the matrix of g − 1 with
respect to (ej)j∈J has only finitely many entries, i.e., g and g∗ fix all but finitely many ej .
It easily follows from (g∗)−1 = (g−1)∗ that g−1 has the same property. Therefore the natural
identification of B0(H) with the matrix algebra M(J,K ) leads to an identification of the group
1+ (U ∩B0(H)) with GL(J,K ) as in Definition II.10.

Theorem II.8 implies that if we endow GL(J,K ) with the final topology with respect to
the subgroups GL(F,K ), F ⊆ J a finite subset, the inclusion map GL(J,K ) → GLp(H) is a
weak homotopy equivalence. Further Proposition II.11 shows that we have a weak homotopy
equivalence GL(N,K ) ↪→ GL(J,K ). Composition of these two weak homotopy equivalences
yields a weak homotopy equivalence, and, in view of Lemma II.9(iii), this proves (i).

(ii) We first choose an orthonormal basis (en)n∈N of Hs and then complete it to an orthonormal
basis (ej)j∈J of H . We consider the corresponding maps

ϕ1: GL(N,K ) → GLp(Hs), ϕ2: GL(J,K ) → GLp(H), ϕ3: GL(N,K ) → GL(J,K )

and
ϕ4: GLp(Hs) → GLp(H)

with ϕ4 ◦ ϕ1 = ϕ2 ◦ ϕ3 . Since ϕ1 and ϕ2 are weak homotopy equivalences by the first part of
the proof, and ϕ3 is a weak homotopy equivalence by Proposition II.11, it follows that ϕ4 also
is a weak homotopy equivalence.

(iii) From the elementary inclusion lp(N,R) ⊆ lq(N,R) we derive that Bp(H) ⊆ Bq(H), and
Lemma II.13 implies that Bp(H) is a dense subspace. Therefore (iii) follows by applying Theorem
II.8(b) to the open subset U := GLq(H)−1 ⊆ Bq(H) which satisfies U ∩Bp(H) = GLp(H)−1 .

Corollary II.15. If H is an infinite-dimensional complex Hilbert space, 1 ≤ p ≤ ∞ , and

GLp(H, I) := GL(H, I) ∩GLp(H),

then the following assertions hold:

(i) πk(GLp(H, I)) ∼=
{
πk(GL(N,R)) for I2 = 1
πk(GL(N,H)) for I2 = −1.

(ii) If Hs ⊆ H is an infinite-dimensional separable I -invariant subspace, then the inclusion map
GLp(Hs, I |Hs

) ↪→ GLp(H, I) is a weak homotopy equivalence.

(iii) For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H, I) ↪→ GLq(H, I) is a homotopy equivalence.

Proof. We first observe that the polar decomposition of GLp(H) ([Ne00a, Prop. A.4])
implies that its intersection with GLp(H, I) also has a polar decomposition (see the proof of
Theorem II.6), hence is homotopy equivalent to Up(H, I) := Up(H) ∩ GL(H, I). For I2 =
−1 we have Up(H, I) ∼= Up(H,H), and for I2 = 1 we get Up(H, I) ∼= Up(HR,R), where
HR = {x ∈ H: I.x = x} . Since the group Up(H,K ) is homotopy equivalent to GLp(H,K )
(Theorem II.6), the assertions on the groups GLp(H, I) follow Theorem II.14 and the existence
of polar decompositions.
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III. Homotopy groups of restricted groups

In this section we turn to the homotopy groups of the restricted groups GLp(H,D) and
GLp(H, I,D) defined below for a complex Hilbert space H , an antilinear isometry I with
I2 = ±1 , and a hermitian operator D with finite spectrum.

The main motivation for the study of the restricted groups defined by a hermitian element
D = D∗ ∈ gl(H) comes from the results in [Ne01a]. There it is shown that each continuous Lie
algebra cocycle on g ∈ {gl2(H), gl2(H, I)} can be written in the form ωD(x, y) := tr([D,x]y)
for an element D ∈ gb ∈ {gl(H), gl(H, I)} . If one considers the unitary real form gR :=
{x ∈ g:x∗ = −x} , then the corresponding real cocycles are of the form ωD for D∗ = −D .
Each of these cocycles determines an affine action of GR := G ∩ U(H) on gR ∼= g′R (a twisted
coadjoint action) given by

g.x = gxg−1 +D − gDg−1 = g(x−D)g−1 +D

whose orbits carry natural weak symplectic structures generalizing the Kirillov–Kostant–Souriau
structure on coadjoint orbits of compact groups. The orbit OD of 0 ∈ gR is most naturally
attached to D , and we show in [Ne01a] that it is a submanifold of gR if and only if its symplectic
structure is strongly symplectic if and only if D has finite spectrum, which of course is equivalent
to the hermitian operator iD having finite spectrum. In this sense the condition of having finite
spectrum shows up as a natural condition in regard of the geometry of coadjoint orbits. Now
the restricted real group GR(D) = GRZGR,b(D) acts naturally on these orbits and one obtains
unitary representations of a central T-extension on Hilbert spaces of holomorphic sections of
holomorphic line bundles on the orbits. For more details we refer to [Ne01a] and [Ne00a].

Restricted classical groups

Definition III.1. (a) Let H be a K -Hilbert space with K ∈ {R,C ,H} . If H = H1⊕. . .⊕Hk

is the eigenspace decomposition of D = D∗ ∈ B(H), then we write operators on H accordingly
as (k × k)-block matrices and consider for 1 ≤ p ≤ ∞ the space

Bp(H,D) := {A ∈ B(H): ‖[D,A]‖p <∞} = {A = (aij) ∈ B(H): (∀i 6= j)aij ∈ Bp(Hj ,Hi)}.

This space carries the structure of a Banach algebra given by the natural composition of operators
and the norm

‖X‖ := max{‖ajj‖, j = 1, . . . , k; ‖ajl‖p, j 6= l}.

It is clear that A is complete with respect to this norm. That the norm on A satisfies
‖XY ‖ ≤ k‖X‖ ‖Y ‖ can be seen as follows. We have

‖(XY )jj‖ = ‖
∑
l

XjlYlj‖ ≤ ‖Xjj‖ ‖Yjj‖+
∑
l ̸=j

‖Xjl‖p‖Ylj‖p ≤ k‖X‖ ‖Y ‖

because ‖A‖ ≤ ‖A‖p . We likewise obtain for j 6= l the estimate

‖(XY )jl‖p ≤ ‖XjjYjl‖p + ‖XjlYll‖p +
∑
i ̸=j,l

‖XjiYil‖p

≤ ‖Xjj‖ ‖Yjl‖p + ‖Xjl‖p‖Yll‖+
∑
i ̸=j,l

‖Xji‖p ‖Yil‖p ≤ k‖X‖ ‖Y ‖.

Since Bp(Hi,Hj) = B(Hi,Hj) if and only if one of the spaces Hi and Hj is finite-
dimensional, the algebra Bp(H,D) coincides with B(H) if and only if at most one of the spaces
Hj is infinite-dimensional.
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(b) Next we modify the construction in (a) slightly. The space

B1,2(H,D) := {A = (aij) ∈ B2(H,D): (∀j) ajj ∈ B1(Hj)}

is a Banach algebra with respect to operator composition and the norm

‖X‖ := max{‖ajj‖1; ‖ajl‖2, j 6= l}.

It is clear that A is complete with respect to this norm. We recall that

‖XY ‖1 ≤ ‖X‖2‖Y ‖2 ≤ ‖X‖1‖Y ‖1 for X,Y ∈ B2(H).

In view of this fact, we can show that the norm on B1,2(H) satisfies ‖XY ‖ ≤ k‖X‖ ‖Y ‖ : For
each j we have

‖(XY )jj‖1 = ‖
∑
l

XjlYlj‖1 ≤ ‖Xjj‖1 ‖Yjj‖1 +
∑
l ̸=j

‖Xjl‖2‖Ylj‖2 ≤ k‖X‖ ‖Y ‖.

We likewise obtain for j 6= l the estimate

‖(XY )jl‖2 = ‖XjjYjl‖2 + ‖XjlYll‖2 +
∑
i ̸=j,l

‖XjiYil‖2

≤ ‖Xjj‖ ‖Yjl‖2 + ‖Xjl‖2‖Yll‖+
∑
i ̸=j,l

‖Xji‖2 ‖Yil‖2 ≤ k‖X‖ ‖Y ‖

because ‖A‖ ≤ ‖A‖2 ≤ ‖A‖1 .

Proposition III.2. In the setting of Definition III.1 we have:

(a) For each p ∈ [1,∞] the set GLp(H,D) := GL(H) ∩Bp(H,D) is a group.

(b) GL1,2(H,D) := GL(H) ∩
(
1+B1,2(H,D)) is a group.

(c) The inclusion maps GL1(H) ↪→ GL1,2(H,D) ↪→ GL2(H) are homotopy equivalences.

(d) For each p ∈ [1,∞] the inclusion GLp(H,D) ↪→ GL∞(H,D) is a homotopy equivalence.

(e) For each p ∈ [1,∞] the the polar map

Up(H,D)×Hermp(H,D) → GLp(H,D), (u, x) 7→ uex

is a diffeomorphism and the inclusion Up(H,D) ↪→ GLp(H,D) is a homotopy equivalence.

Proof. (a) Let g ∈ GLp(H,D). We only have to show that (g−1)il ∈ Bp(Hl,Hi) holds for
i 6= l . First we observe that

1 = (g−1)iigii +
∑
j ̸=i

(g−1)ijgji ∈ (g−1)iigii +Bp(Hi).

We also have
gii(g

−1)il = −
∑
j ̸=i

gij(g
−1)jl ∈ Bp(Hl,Hi).

Multiplying this equation with (g−1)ii , we obtain

(g−1)iigii(g
−1)il ∈ Bp(Hl,Hi) ∩

(
(g−1)il +Bp(Hl,Hi)

)
.

The fact that the intersection of these two sets is not empty shows that (g−1)il ∈ Bp(Hl,Hi).

(b) Let g ∈ GL(H) ∩
(
1 + B1,2(H,D)

)
⊆ B2(H,D). Then (a) implies that for j 6= l we have

(g−1)jl ∈ B2(Hl,Hj). We further have for i =, 1 . . . , k :

1 = gii(g
−1)ii +

∑
j ̸=i

gij(g
−1)ji ∈ (1+B1(Hi))(g

−1)ii +B1(Hi) ⊆ (g−1)ii +B1(Hi),
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so that g−1 ∈ 1+B1,2(H,D).

(c) First we observe that the space B1(H) is dense in B1,2(H,D), so that

GL1(H) = GL(H) ∩ (1+B1(H))

further yields
GL1(H) = GL1,2(H,D) ∩ (1+B1(H)),

and now Theorem II.8(b) applies.

Next we note that B1,2(H,D) ⊆ B2(H) is a dense subspace and that (b) implies that
GL1,2(H,D) = GL2(H)∩

(
1+B1,2(H,D)). Therefore Theorem II.8(b) applies again and shows

that the inclusion GL1,2(H,D) → GL2(H) is a homotopy equivalence.

(d) follows as in (c) from Theorem II.8(b) because Bp(H,D) is dense in B∞(H,D) with

GLp(H,D) = GL(H) ∩Bp(H,D) = GL(H) ∩B∞(H,D) ∩Bp(H,D) = GL∞(H,D) ∩Bp(H,D).

(e) (See also [HH94b, Prop. 2.1.14] for the existence of a polar decomposition). In view of (a),
GLp(H,D) = GL(H) ∩ Bp(H,D) is the unit group of the Banach algebra Bp(H,D). Hence
the spectrum of an element of the Banach algebra Bp(H,D) is the same as the spectrum as an
element of B(H).

Let g ∈ GLp(H,D). Then g∗g ∈ Bp(H,D), and SpecBp(H,D)(g
∗g) = Spec(g∗g) is

contained in ]0,∞[ . Therefore [Ne00a, Lemma A.1] implies that log(g∗g) ∈ Bp(H,D) and that
the map GLp(H,D) → Bp(H,D), g 7→ log(g∗g), is smooth. If g = uex is the polar decomposition
of g , then we conclude that x = log(g∗g) ∈ Bp(H,D), hence that ex ∈ GLp(H,D) and therefore
u = ge−x ∈ Up(H,D). Moreover, the polar map

Up(H,D)×Hermp(H,D) → GLp(H,D), (u, x) 7→ uex

is a diffeomorphism since its inverse is also smooth. This means that GLp(H,D) has a smooth
polar decomposition, and (e) follows.

Definition III.3. (Restricted groups) Let g ∈ {gl2(H), gl2(H, I)} and accordingly gb ∈
{gl(H), gl(H, I)} . We fix a hermitian element D ∈ gb with finite spectrum.

For g = gl2(H) we define

Gb := GL(H) and G := GL2(H).

For g = gl2(H, I) we likewise put Gb := GL(H, I) and G := GL2(H, I).

In both cases we define the restricted groups associated to g and D = D∗ ∈ gb by
GLp(H,D) (cf. Proposition III.2) for g = gl2(H) and

GLp(H, I,D) := GL(H, I) ∩GLp(H,D), 1 ≤ p ≤ ∞,

for g = gl2(H, I). We likewise define

GL1,2(H, I,D) := GL(H, I) ∩GL1,2(H,D).

We also put

GL(H)0 := GL(H,D)0 := ZGL(H)(D) ∼=
k∏

j=1

GL(Hj)

and

GL(H, I)0 := GL(H, I,D)0 := ZGL(H,I)(D) ∼= GL(H0, I0)×
k∏

j=1

GL(Hj),

where the last isomorphism follows easily from Remark I.2.
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Remark III.4. Suppose that H is infinite-dimensional. The following remark shows that we
may often reduce considerations about the groups GLp(H,D) or GLp(H, I,D) to the case where
all spaces Hj are infinite-dimensional.

Let gb ∈ {gl(H), gl(H, I)} for g ∈ {gl2(H), gl2(H, I)} . Let D,D′ be hermitian elements
of gb with finite spectrum for which D−D′ has finite rank. Then for x ∈ B(H) the conditions
[D,x] ∈ Bp(H) and [D′, x] ∈ Bp(H) are equivalent because their difference has finite rank,
whence Bp(H,D) = Bp(H,D

′) and therefore Bp(H, I,D) = Bp(H, I,D
′).

We explain the construction for glp(H, I,D), the other case is even simpler. If D is given,
then we construct D′ as follows. If Hj is infinite-dimensional, then we define D′ |Hj as D |Hj . If

H0 is finite-dimensional, then it is even-dimensional and there exists a subspace H+
0 for which

H0 = H+
0 ⊕ I.H+

0 is an orthogonal direct sum (cf. Remark I.2). Pick j0 > 0 such that Hj0 is
infinite-dimensional. Then we define D′ on all finite-dimensional spaces Hj , j > 0, and H+

0 in
such a way that it has the same eigenvalue dj0 as D on Hj0 . Likewise we define it by −dj0 on
H−

0 and the finite-dimensional spaces H−j . Then D′ ∈ gb and D −D′ has finite rank, so that
GLp(H, I,D) = GLp(H, I,D

′).

In the remainder of this section we discuss the homotopy groups of the two types of
restricted groups GLp(H,D) and GLp(H, I,D), where D = D∗ ∈ gb is a hermitian element
with finite spectrum.

The homotopy groups of GLp(H,D)

In Proposition III.2(d) we have seen that for p ∈ [1,∞] the natural inclusion maps
GLp(H,D) ↪→ GL∞(H,D) are homotopy equivalences. Therefore it suffices to determine the
homotopy groups of GL2(H,D) to know them for all the groups GLp(H,D).

In the following we keep the setting of Definition III.1, resp., Examples I.9 and set

k∞ := |{j ∈ {1, . . . , k}: dimHj = ∞}|.

The determination of the connected components of GL2(H,D) described in the following
proposition can be found in [HH94b, Prop. 2.3.1].

Proposition III.5. For each g = (gij) ∈ GL2(H,D) the diagonal operators gjj are Fredholm
operators, and the connected components of the group GL2(H,D) coincide with the fibers of the
continuous homomorphism

Ind:GL2(H,D) → Zk∞ , g 7→ (ind(gjj))dimHj=∞

whose image is the set of those tuples (nj) ∈ Zk∞ with
∑

j nj = 0 . Moreover, the identity
component GL2(H,D)e of GL2(H,D) is given by

ker(Ind) = GL2(H,D)e = GL2(H)GL(H,D)0 = GL1,2(H,D)GL(H,D)0∞,

where GL(H,D)0∞ ⊆ GL(H,D)0 is the subgroup corresponding to the infinite-dimensional ones
among the spaces Hj , j = 1, . . . , k , and

π0(GL2(H,D)) ∼=
{
Zk∞−1 for k∞ ≥ 1
0 for k∞ = 0.

Proof. For each p ∈ [1,∞] we have GLp(H,D) ⊆ GL∞(H,D), and each element g = (gij) of
this group, written as a k×k -matrix with gij ∈ B(Hj ,Hi), is a diagonal matrix modulo compact
operators and invertible as such. Therefore all diagonal entries gjj are invertible modulo compact
operators, hence contained in the monoid Fred(Hj) of Fredholm operators on Hj . This means
that ind(gjj) := dimker gjj − dim coker gjj is well defined. That Ind is a group homomorphism
follows from the observation that modulo compact operators we can view elements of GL2(H,D)
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as diagonal operators, so that the assertion follows from ind(ab) = ind(a) + ind(b) for Fredholm
operators on each space Hj .

The inclusions

(3.1) GL1,2(H,D)GL(H,D)0∞ ⊆ GL2(H)GL(H,D)0 ⊆ GL2(H,D)e ⊆ ker(Ind)

follow from the connectedness of the groups GL1,2(H) and GL2(H) (Theorem II.14, Proposition
III.2(c)) and GL(Hj) and the continuity of the index function.

For the converse, let g ∈ ker(Ind). Since each gjj is a Fredholm operator of index 0,
we conclude that whenever dimHj = ∞ , there exists a finite rank operator bj ∈ B(Hj) with
ker bj = (ker gjj)

⊥ mapping ker(gjj) bijectively onto im(gjj)
⊥ . Then dj := gjj + bj ∈ GL(Hj)

satisfies
gjj = gjj + bj − bj ∈ (gjj + bj)(1+B1(Hj)).

For dimHj < ∞ we put dj := 1 . Then d := diag(d1, . . . , dk) ∈ GL(H,D)0∞ satisfies d−1g ∈
GL1,2(H,D). We thus obtain ker(Ind) ⊆ GL1,2(H,D)GL(H,D)0∞ and hence equality in (3.1).

Since the off-diagonal entries of g are compact, the invertibility of g implies that
0 = ind(g) =

∑
j ind(gjj), hence the corresponding restriction on the image of Ind. If, con-

versely, (nj) ∈ Zk∞ satisfies
∑

j nj = 0, then we can write Hj as l2(Jj ,C) and accordingly H

as l2(J,C) with J = ∪̇jJj . Now there exists a permutation σ of J for which

nj = |Jj ∩ σ−1(J \ Jj)| − |(Jj ∩ σ(J \ Jj))|.

We leave the easy proof to the reader. Then the isometry σ̃ of H defined by σ is contained in
GL2(H,D) and satisfies Ind(σ̃) = (nj)dimHj=∞ .

Definition III.6. Let G be a Banach–Lie group with Lie algebra g = L(G) and h ⊆ g a
closed subalgebra. We call the subgroup H := 〈exp h〉 generated by the exponential image of
h the corresponding analytic subgroup of G . According to [Ma62], this group has a natural Lie
group structure such that the map H ↪→ G is a morphism of Lie groups.

For a closed subgroup H ⊆ G we consider the closed Lie subalgebra

h := L(H) := {X ∈ g: exp(RX) ⊆ H}

of g ([Ne00a, Cor. IV.3]) and say that H is a Lie subgroup if there exists an open 0-neighborhood
V ⊆ g such that exp |V is a diffeomorphism onto an open subset exp(V ) and exp(V ∩ h) =
(expV ) ∩ H . Then H carries a natural Lie group structure such that the map H ↪→ G is a
homomorphism of Lie groups which is a homeomorphism onto its image (cf. [Ne00a, Prop. IV.5]).

We call a Lie subgroup H ⊆ G complemented or split if g contains a closed subspace E
complementing the closed subalgebra h . If this condition is satisfied, then H is a submanifold in
the sense of Bourbaki, and in particular the homogeneous space G/H carries a natural manifold
structure such that the canonical map π:G→ G/H is a submersion (cf. [Ne00a, Prop. IV.5]; see
also [Bou90, Ch. 3, §1.6, Prop. 11]).

The next step is the determination of all homotopy groups of the restricted group
GLp(H,D).

Theorem III.7. If H is infinite-dimensional, then

πm(GL2(H,D)) ∼= πm−1(GL(N,C))k∞−1 ∼=
{
Zk∞−1 for m even
0 for m odd.

Proof. We consider the short exact sequence of groups

(3.2) A := GL2(H) ∩GL(H,D)0∞ ↪→ B := GL2(H)oGL(H,D)0∞ →→ C := GL2(H,D)e,
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where the surjectivity of the multiplication map B → C follows from Proposition III.5. Moreover,
the assumptions of Proposition A.6 are satisfied because GL2(H) is connected and a normal
subgroup of GL2(H,D), since B2(H) is an algebra ideal of B(H). Furthermore, it is clear that

A ∼=
∏

dimHj=∞

GL2(Hj)

is a complemented Lie subgroup of GL2(H). It follows that B has a natural Banach–Lie group
structure and that the map B → C is a locally trivial A-principal bundle.

The homotopy groups of A are given by

πm(A) ∼= πm(GL2(H)k∞) ∼= πm(GL2(H))k∞

(Theorem II.14). Since the group

GL(H,D)0∞
∼=

∏
dimHj=∞

GL(Hj)

is contractible (Theorem II.4), the homomorphisms

χm:πm(A) ∼= πm(GL2(H))k∞ → πm(GL2(H)) ∼= πm(B)

can be viewed as the k∞ -fold summation maps in the abelian group πm(GL2(H)). This map is
surjective with

kerχm
∼= πm(GL2(H))k∞−1.

Therefore the exact homotopy sequence of (3.2) yields for each m ∈ N0 a short exact sequence

· · · 0−−→πm+1(C) ↪→ πm(A)
χm−−→πm(B)

0−−→πm(C) · · · ,

whence
πm+1(C) ∼= kerχm

∼= πm(GL2(H))k∞−1.

The remaining assertions follow from Theorem II.12 and II.14.

The groups GLp(H, I,D)

Our next step it to determine the homotopy groups of the groups GLp(H, I,D). For
that we need some preparation because the case H0 6= 0 is more complicated than the case of
GLp(H,D) discussed above.

Up to a discussion of the connected components, Propositions III.9 below reduces the
general case p ∈ [1,∞] to the special case p = ∞ , which for GLp(H, I,D) seems to be better
accessible than the case p = 2 to determine the connected components.

Proposition III.8. For each 1 ≤ p ≤ ∞ the groups GLp(H,D) and GLp(H, I,D) have
smooth polar decompositions. In particular, the inclusion maps

Up(H, I,D) → GLp(H, I,D)

are homotopy equivalences.

Proof. In Proposition II.2(e) we have seen that GLp(H,D) has a smooth polar decomposition.
If g = uex is the polar decomposition of g ∈ GLp(H, I,D), then it follows from the polar
decompositions of GL(H, I) (Theorem II.6) and of GLp(H,D) that u ∈ Up(H,D) and x ∈
Bp(H,D). That the polar map of GLp(H, I,D) is a diffeomorphism follows by restriction from
the corresponding result for GLp(H,D).
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Proposition III.9. For 1 ≤ p ≤ q ≤ ∞ the inclusion map of the identity components

GLp(H, I,D)e → GLq(H, I,D)e

is a weak homotopy equivalence.

Proof. In view of Remark III.4, we may assume that all spaces Hj are infinite-dimensional.
Then the group

GL(H, I,D)0 ∼= GL(H0, I0)×
k∏

j=1

GL(Hj)

is contractible (Theorem II.6). Since GL(H) acts smoothly by conjugation on the normal
subgroup GLp(H), the group GL(H, I,D)0 acts smoothly on GLp(H, I), so that we can form
the connected Banach–Lie group Gp := GLp(H, I)e o GL(H, I,D)0 . From glp(H, I,D) =
glp(H, I) + gl(H, I,D)0 and Lemma A.5 we derive that the multiplication map m:Gp →Mp :=
GLp(H, I,D)e is surjective with kernel

Hp := GLp(H, I,D)0 ∼= GLp(H0, I0)×
k∏

j=1

GLp(Hj).

The assumptions of Proposition A.6 are satisfied, so that the map Gp → Mp defines a locally
trivial Hp -bundle. Since all the groups GL(Hj) and GL(H0, I0) are contractible, Corollary
II.15(iii) implies that the inclusion maps Hp ↪→ Hq and Gp ↪→ Gq are homotopy equivalences.
Now Proposition A.8 implies that the inclusion map Mp →Mq is a weak homotopy equivalence.

Now we prepare the discussion of the case p = ∞ .

Lemma III.10. Let A be a unital C∗ -algebra and τ a linear antiautomorphism of A com-
muting with the ∗-map. Then

G := {g ∈ GL(A): τ(g) = g−1}

is adapted to the polar decomposition G(A) = U(A) exp(Herm(A)) of G(A) .

Proof. First we note that G is an algebraic subgroup of G(A), hence a Lie group with Lie
algebra g = {x ∈ A: τ(x) = −x} ([Ne00a, Prop. IV.14]). Since τ commutes with ∗ , the group
G is ∗ -invariant.

Now we consider the automorphism of G(A) given by σ(g) := τ(g)−1 . The fact that
τ commutes with ∗ implies that this automorphism preserves the subgroup U(A) of unitary
elements and the subset exp(Herm(A)). Let g ∈ G(A), and let g = uex denote its polar
decomposition. Then

σ(g) = σ(u)σ(ex) = τ(u)−1e−τ(x)

is the polar decomposition of σ(g). Therefore g is fixed by σ if and only if σ fixes u and ex

separately. This means that u ∈ G and τ(x) = −x , i.e., x ∈ g ∩ Herm(A). We conclude that
G = (G ∩U(A)) exp(g ∩Herm(A)).

Proposition III.11. Let I:H → H be an antilinear isometry with I2 ∈ {±1} . We define

Fred(H, I) := {g ∈ Fred(H): gIg∗I−1 ∈ 1+K(H)}.

Then

{g ∈ Fred(H, I): ind(g) = 0} = GL(H, I)(1+K(H)) = GL(H, I) +K(H).

Proof. It is obvious that GL(H, I) +K(H) ⊆ {g ∈ Fred(H, I): ind(g) = 0} . The proof of the
converse is more involved.
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Let A := Cal(H) := B(H)/K(H), write q:B(H) → A for the quotient map, and observe
that the antiautomorphism a 7→ Ia∗I−1 of B(H) preserves K(H), hence induces an antiauto-
morphism τ on A with

τ(q(a)) := q(Ia∗I−1).

We consider the group

G(A)τ := {g ∈ G(A): τ(g) = g−1}.

Since Fred(H) = q−1(G(A)), G(A)e = {q(g): ind(g) = 0} , and q(g) ∈ G(A)τ is equivalent to
q(g) ∈ G(A) and q(gIg∗I−1) = q(g)τ(q(g)) = 1 , we see that

Fred(H, I) = q−1(G(A)τ ) and q(Fred(H, I)) = G(A)τ .

The assertion of the theorem means that G(A)τ ∩G(A)e = q(GL(H, I)).

Since G(A)τ is adapted to the polar decomposition of G(A) (Lemma III.10), we have
G(A)τ = (G(A)τ ∩U(A)) exp(L(G(A)τ ) ∩Herm(A)) with

exp(L(G(A)τ ) ∩Herm(A)) = q(exp(gl(H, I) ∩Herm(H)) ⊆ q(GL(H, I)).

Therefore it suffices to show that G(A)τ ∩U(A)e ⊆ q(GL(H, I)) which in turn will follow from

Fred(H, I) ∩U(H) ⊆ GL(H, I) +K(H)

because q(U(H)) = U(A)e follows from the connectedness of U(H) (Theorem II.4) and
q(u(H)) = {a ∈ A: a∗ = −a} = u(A).

First we consider an element u ∈ U∞(H) = U(H) ∩GL∞(H) with Iu−1I−1 = u and the
eigenspaces Hµ = ker(u− µ1). Then we have for v ∈ Hµ the relation

uI.v = Iu−1.v = I.µv = µI.v,

showing that I.Hµ = Hµ . This implies that u = expx for some x ∈ u∞(H) = u(H) ∩ B∞(H)
and IxI−1 = −x because we can choose x in such a way that on Hµ it is given by iλ idHµ

,
where eiλ = µ for some λ ∈ [−π, π] , and u ∈ U∞(H) implies x ∈ u∞(H). Let u∞(H)− := {x ∈
u∞(H): IxI−1 = −x} . Then

{u ∈ U∞(H): Iu−1I−1 = u} = exp(u∞(H)−).

Now let g ∈ Fred(H, I) ∩U(H) and define u := gIg−1I−1 . Then

Iu−1I−1 = I2gI−1g−1I−1 = gI2I−1g−1I−1 = gIg−1I−1 = u,

so that the preceding paragraph shows that u = expx with x ∈ u∞(H)− . We put

g̃ := exp(− 1
2x)g

and obtain
g̃Ig̃−1I−1 = exp(− 1

2x)gIg
−1 exp( 12x)I

−1

= exp(− 1
2x)uI exp(

1
2x)I

−1 = exp( 12x) exp(−
1
2x) = 1.

This means that g̃ ∈ U(H, I). We conclude that

g = exp
(
1
2x

)
g̃ ∈ g̃ +K(H) ⊆ GL(H, I) +K(H).

This completes the proof.
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Lemma III.12. For g ∈ GL∞(H, I,D) and dimH = ∞ the following assertions hold:

(i) For each j we have gjj ∈ Fred(Hj) with ind(gjj) = ind(g−j,−j) .

(ii) We consider the map

Ind:GL∞(H, I,D) → Z× Zk∞ , Ind(g) =
(
ind(g00), ind(gjj)1≤j≤k,dimHj=∞

)
.

Then Ind is a continuous group homomorphism,

GL∞(H, I,D)Ind := ker(Ind) = GL∞(H, I)GL(H, I,D)0 = GL∞(H, I)GL(H, I,D)0∞,

where GL(H, I,D)0∞ ⊆ GL(H, I,D)0 is the subgroup corresponding to the infinite-dimen-
sional ones among the spaces Hj , j = 0, . . . , k . Moreover

im(Ind) =

{
{(nj):n0 + 2

∑
0<j nj = 0} ∼= Zk∞ for dimH0 = ∞

{(nj):n0 = 0 =
∑

0<j nj} ∼= Zk∞−1 for dimH0 <∞.

Proof. (i) The operator g has an inverse g−1 in B∞(H, I,D), which means that all off-
diagonal blocks of g−1 are compact. Therefore the diagonal block gjj ∈ B(Hj) is invertible
modulo K(Hj), and this means that gjj ∈ Fred(Hj).

In view of Ig∗I−1 = g−1 and I.Hj = H−j , we have (g−1)jj = Ig∗−j,−jI
−1, and therefore

− ind(gjj) = ind(g∗−j,−j) = − ind(g−j,−j).

(ii) That Ind is a group homomorphism follows from Proposition III.5. We may w.l.o.g. assume
that the spaces Hj are infinite-dimensional for 1 ≤ j ≤ k∞ and finite-dimensional for j > k∞ .

In view of (i), for each g ∈ GL∞(H, I,D) we have

0 = ind g = ind(g00) + 2

k∑
j=1

ind(gjj).

Therefore a necessary condition for n = (nj) ∈ im(Ind) is n0 + 2
∑k∞

j=1 nj = 0.

For tuples with n0 = 0 this leads to the requirement
∑

j nj = 0, and Proposition III.5
shows that all these tuples can be obtained from the subgroup

GL∞(H+ ⊕ I.H+, I,D) ∼= GL∞(H+, D+),

where H+ =
∑k

j=1Hj (Remark I.2). Therefore we may assume that n2 = . . . = nk∞ = 0.
Considering only those operators which act non-trivially on the subspaces H±1 and H0 , we may
even assume that k = k∞ = 1, and that H1 and H0 are infinite-dimensional and separable.
Then we identify H with l2(Z±,C) (in the notation of Lemma I.1), where

H±1 = l2(±Z>0,C) and H0 = l2(±Z≤0,C)

and I.ej = e−j for j ∈ Z . We consider the operator S ∈ U(H) given by S.e±j := e±(j+1).
Since this is a unitary operator commuting with I , it is an element of U(H, I). Moreover,
its off-diagonal terms in the (3 × 3)-block decomposition are of finite rank. This implies that
S ∈ GLp(H, I,D) for p ∈ [1,∞] . The operator S11 is a unilateral right shift operator, so
that ind(S11) = −1, and S00 is a (2 × 2)-block diagonal operator, where both components are
unilateral left shift operators, so that ind(S00) = 2. Therefore (2,−1) ∈ im(Ind), and from that
the description of im(Ind) follows.

It is clear that GL∞(H, I)GL(H, I,D)0 ⊆ ker(Ind). For the converse, assume that
Ind(g) = 0. Then each gjj is a Fredholm operator of index 0, so that we find dj ∈ GL(Hj),
j = 1, . . . , k , such that d−1

j gjj ∈ 1+B1(Hj) ⊆ 1+K(Hj). For j = 0 the relation gIg∗I−1 = 1
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implies that g00 ∈ Fred(H0, I0), so that Proposition III.11 yields an element d0 ∈ GL(H0, I0)
with d−1

0 g00 ∈ 1+K(H0). Then

diag(d−1
k , . . . , d−1

1 , d0, Id
∗
1I

−1, . . . , Id∗kI
−1) ∈ GL(H, I,D)0,

so that we may w.l.o.g. assume that gjj ∈ 1+B1(Hj) holds for j = 1, . . . , k and g00 ∈ 1+K(H0).
Then for j > 0 the relation

(g−1)jjgjj ∈ 1+B1(Hj)

implies that (g−1)jj ∈ 1+B1(Hj), and therefore g−1 = Ig∗I−1 leads to g−j,−j ∈ 1+B1(H−j).
Therefore g ∈ GL∞(H, I).

If dimHj <∞ , we may put dj = 1 , so that we get the sharper assertion that

ker(Ind) = GL∞(H, I)GL(H, I,D)0∞.

We will see below that the group GL∞(H, I,D)Ind is not always connected.

Corollary III.13. For 1 ≤ p ≤ q ≤ ∞ the inclusion map GLp(H, I,D) → GLq(H, I,D) is a
weak homotopy equivalence.

Proof. In view of Proposition III.9, it remains to show that the induced homomorphism

αp,q:π0
(
GLp(H, I,D)

)
→ π0

(
GLq(H, I,D)

)
is bijective. For this we may assume that q = ∞ because if we can show the assertion in this
case, the corollary follows from αp,∞ = αq,∞αp,q .

The proof of Lemma III.12 shows in particular that Ind |GLp(H,I,D) has the same range for
each p ∈ [1,∞] . Moreover, GL(H, I,D)0 ⊆ GLp(H, I,D) implies that

GLp(H, I,D)Ind := ker Ind∩GLp(H, I,D) = GLp(H, I)GL(H, I,D)0∞.

Modulo connected components, the inclusion

GLp(H, I,D)Ind ↪→ GL∞(H, I,D)Ind

therefore corresponds to the inclusion map GLp(H, I) ↪→ GL∞(H, I) which is a homotopy
equivalence (Corollary II.15). This completes the proof.

Theorem III.14. (Homotopy groups of GLp(H, I,D)) If H is an infinite-dimensional
complex Hilbert space and k∞ := |{j ∈ {1, . . . , k} : dimHj = ∞}| , then

π0(GLp(H, I,D)Ind) ∼=
{
Z2 for dimH0 <∞ and I2 = 1
0 otherwise,

π0(GLp(H, I,D)) ∼=

Z2 × Zk∞−1 for dimH0 <∞ and I2 = 1
Zk∞−1 for dimH0 <∞ and I2 = −1
Zk∞ for dimH0 = ∞,

π1(GLp(H, I,D)) = 0, and π2(GLp(H, I,D)) ∼= Zk∞ .

The higher homotopy groups are 8-periodic, i.e., πn+8(GLp(H, I,D)) ∼= πn(GLp(H, I,D)) ,
n ∈ N0 , and therefore determined by the following table.

dimH0 = ∞ dimH0 <∞, I2 = 1 dimH0 <∞, I2 = −1
π1 0 0 0
π2 Zk∞ Zk∞ Zk∞

π3 0 0 Z2

π4 Zk∞ Zk∞−1 Z2 ⊕ Zk∞

π5 0 0 0
π6 Zk∞ Zk∞ Zk∞

π7 0 Z2 0
π8 Zk∞ Z2 ⊕ Zk∞−1 Zk∞−1
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Proof. First we use Remark III.4 to see that we may assume that all spaces Hj are infinite-
dimensional and Corollary III.13 to see that we may assume that p = ∞ .

In view of Lemma III.12(b), we have a surjective homomorphism

ϕ: GL∞(H, I)oGL(H, I,D)0 → GL∞(H, I,D)Ind

whose kernel is isomorphic to

A := GL∞(H, I) ∩GL(H, I,D)0 ∼=

{∏k
j=1 GL∞(Hj) for H0 = 0

GL∞(H0, I0)×
∏k

j=1 GL∞(Hj) for H0 6= 0.

Let B := GL∞(H, I)oGL(H, I,D)0 and C := GL∞(H, I,D)Ind . To see that the map B →→ C
defines a locally trivial A-principal bundle, we first observe that, although the group GL∞(H, I)
need not be connected, the group GL(H, I < D)0 acts smoothly on it since it acts smoothly on
the Banach algebra K(H), hence on GL∞(H), and GL∞(H, I) is a complemented Lie subgroup
invariant under this action. In view of Remark A.7, and since all assumptions of Proposition A.6
are easily verified, the multiplication map B → C is a locally trivial A-principal bundle.

The exact homotopy sequence of the principal bundle A ↪→ B →→ C yields a long exact
sequence of homotopy groups

(3.3) · · · → πk+1(C) → πk(A) → πk(B) → πk(C) → πk−1(A) → . . .

ending as an exact sequence in

· · · → π1(C) → π0(A) → π0(B) → π0(C) → 0.

Since the groups GL∞(Hj) are all connected, we have

π0(A) ∼=
{
π0(GL∞(H0, I0)) ∼= Z2 for H0 6= 0 and I2 = 1
0 otherwise

(Theorem II.14). The contractibility of the group GL(H, I,D)0 (Theorem II.6) further leads to

π0(B) ∼= π0(GL∞(H, I)) ∼=
{
Z2 for I2 = 1
0 for I2 = −1.

Here the homomorphism π0(A) → π0(B) is the identity if π0(A) is non-trivial because the
inclusions

O(N,C) ↪→ GL∞(H0, I0) ↪→ GL∞(H, I)

are weak homotopy equivalences (cf. Corollary II.15). This leads directly to

π0(C) ∼=
{
Z2 for H0 = 0 and I2 = 1
0 otherwise.

Now we turn to the higher homotopy groups πm , m ≥ 1. We observe that in all cases
the contractibility of GL(H, I,D)0 shows that B is homotopy equivalent to GL∞(H, I). First
we deal with the simpler case H0 6= 0 . Then the inclusion map GL∞(H0, I0) → GL∞(H, I) is
a weak homotopy equivalence (cf. Corollary II.15). Hence for each m ∈ N0 the homomorphism
χm:πm(A) → πm(B) is surjective. Therefore the exact homotopy sequence of A ↪→ B →→ C
leads to for each m ∈ N to

πm(C) ∼= kerχm−1
∼=

k∏
j=1

πm−1(GL∞(Hj))

∼= πm−1(GL(N,C))k∞ ∼=
{
Zk∞ for m even
0 for m odd.
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Now we turn to the case where H0 = 0 . Here we will need results from Bott’s paper
[Bo59]. Since the first two homotopy groups will be particularly important in the following, it
is instructive to determine them directly. For that we note that in all cases the homomorphism
π0(A) → π0(B) is injective, so that the homomorphism π1(B) → π1(C) is surjective by the
exactness of (3.3). Furthermore π2(A) = 0 and π2(B) = 0 (Theorems II.6, II.14, Corollary
II.15), so that π2(C) = kerχ1 and π1(C) ∼= cokerχ1 . To determine these groups, we observe
that

π1(A) ∼=
{
Z2 × Zk for dimH0 = ∞ and I2 = 1
Zk∞ otherwise

and

π1(B) ∼= π1
(
GL∞(H, I)

) ∼= {
Z2 for I2 = 1
0 for I2 = −1

}
.

For I2 = −1 the homomorphism χ1 is trivial, so that π2(C) ∼= π1(A) ∼= Zk and π1(C) ∼=
π1(B) = 0 .

For the case I2 = 1 we first observe that the block diagonal map

GL(n,C) → O(2n,C), g 7→
(
g 0
0 (g⊤)−1

)
induces a surjective map

π1(GL(n,C)) ∼= Z → π1(O(2n,C)) ∼=
{
Z for n = 1
Z2 for n > 1,

because the generator of π1(O(2n,C)) can be obtained with the natural embedding of SO(2,R) ∼=
T . The homomorphism χ1 is therefore given by

χ1:π1(A) ∼= Zk → π1(B) ∼= Z2, χ1((nj)) =
∑
j

[nj ],

where [n] ∈ Z2
∼= Z/2Z denotes the congruence class modulo 2 of n ∈ Z . Since H is infinite-

dimensional, we have k > 0, showing that χ1 is surjective, so that π1(C) = 0 . Since kerχ1 is a
subgroup of Zk of index 2, we obtain π2(C) ∼= kerχ1

∼= Zk .

We finally turn to the higher homotopy groups. The group A ∼=
∏k

j=1 GL∞(Hj) is

homotopy equivalent to GL(N,C)k . In particular we have π2n−1(A) ∼= Zk and π2n(A) = 0
for all n ∈ N (Theorem II.12). Therefore the exact homotopy sequence of A ↪→ B →→ C contains
the exact pieces

π2n(B) ↪→ π2n(C) → π2n−1(A)
χ2n−1−−−−−−→π2n−1(B) →→ π2n−1(C).

Since every subgroup of π2n−1(A) ∼= Zk is free, hence projective, we can apply this to kerχ2n−1 ⊆
π2n−1(A) to obtain

(3.4) π2n(C) ∼= π2n(B)⊕ kerχ2n−1 and π2n−1(C) ∼= cokerχ2n−1.

We are thus left with the determination of kernel and cokernel of χ2n−1 . Let

ηm: GL(Cm) → GL(C2m, I), g 7→
(
g 0
0 (g⊤)−1

)
and η: GL(N,C) → GL(2N,C , I) := lim

−→
GL(C2m, I) be the corresponding limit map. Then the

homomorphism χ2n−1 is equivalent to

(3.5)

π2n−1(A) ∼= π2n−1(GL(N,C))k → π2n−1(B) ∼= π2n−1(GL(2N,C , I)),

(x1, . . . , xk) 7→
k∑

j=1

π2n−1(η)(xj).
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We conclude in particular that

cokerχ2n−1 = cokerπ2n−1(η).

Next we use polar decompositions to see that for I2 = 1 we have a homotopy equivalence

GL(2N,C , I) ∼ lim
−→

O(2m,C) ∼ lim
−→

O(2m,R) ∼ GL(N,R)

and for I2 = −1 we get

GL(2N,C , I) ∼ lim
−→

Sp(2m,C) ∼ lim
−→

U(Hm,H) ∼ GL(N,H).

The natural embedding GL(N,C) ↪→ GL(2N,C , I) correspond then to the natural inclusions

GL(N,C) ↪→ GL(2N,R) ∼= GL(N,R) and GL(N,C) ↪→ GL(N,H).

Information on the effect of these maps on the level of the homotopy groups comes from Theorem
II.12, where we find
(3.6)
πn(GL(N,R)/GL(N,C)) ∼= πn+1(GL(N,R)), πn(GL(N,H)/GL(N,C)) ∼= πn+1(GL(N,H)).

We first consider the case I2 = 1 in detail. For each m ∈ N we obtain with (3.6) an exact
sequence

π2m(GL(N,C)) = 0 → π2m(GL(N,R)) ↪→ π2m+1(GL(N,R))
→ π2m−1(GL(N,C))

π2m−1(η)−−−−−−→π2n−1(GL(N,R)) →→ π2m(GL(N,R))
→ π2m−2(GL(N,C)) = 0.

In view of the Bott periodicity, it suffices to consider m = 1, 2, 3, 4, which lead to

m = 1 : 0 ↪→ Z → Z π1(η)−−−−−−→Z2 →→ 0

m = 2 : 0 ↪→ 0 → Z π3(η)−−−−−−→Z →→ 0

m = 3 : 0 ↪→ Z → Z π5(η)−−−−−−→0 →→ 0

m = 4 : Z2 ↪→ Z2 → Z π7(η)−−−−−−→Z →→ Z2.

Using (3.4) and (3.5), this information leads to the following table:

m πn(B) kerχn−1 cokerχn πn(C)
1 Z2 — 0 0
2 0 Zk — Zk

3 Z — 0 0
4 0 Zk−1 — Zk−1

5 0 — 0 0
6 0 Zk — Zk

7 Z — Z2 Z2

8 Z2 Zk−1 — Z2 ⊕ Zk−1

From (3.4) and Bott periodicity we further derive that the homotopy groups of C are
8-periodic, so that the table above contains all the information.

For I2 = −1 , Bott periodicity implies that we obtain a similar picture shifted by 4,
therefore the entries for I2 = −1 in the table can simply be obtained from them for I2 = 1 by
a 4-shift.
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Proposition III.15. The inclusion maps

GL1(H, I) ↪→ GL1,2(H, I,D) ↪→ GL2(H, I)

are weak homotopy equivalences.

Proof. Since the subgroup G0 := GL2(H, I,D)0 ⊆ G := GL2(H, I) acts smoothly on
G1,2; = GL1,2(H, I,D) by conjugation, the semidirect product group B := G1,2oG0 has a natural
Banach–Lie group structure. Moreover, the fact hat gl2(H, I,D) = gl1,2(H, I,D) + gl2(H, I)

0

implies that the multiplication map m:B → G has an open image which therefore is a union
of connected components. Since the inclusion map G1 := GL1(H, I) ↪→ G is a weak homotopy
equivalence (Corollary III.13), the map m is surjective.

Using Proposition A.6, we see that G ∼= B/A , where

A ∼= G1,2 ∩G0 = G0
1
∼= GL1(H0, I0)×

k∏
j=1

GL1(Hj).

We consider the exact homotopy sequence of the A -principal bundle B :

. . .→ πk(A) → πk(B) ∼= πk(G1,2)× πk(G
0
2) → πk(G) → πk−1(A) → . . .

Since the inclusion map A ∼= G0
1 ↪→ G0

2 is a weak homotopy equivalence, the homomorphism
πk(A) → πk(G1,2) × πk(G

0
2) corresponds to the inclusion of the second factor. In particular, it

is injective, so that the exactness of the sequence implies that the maps

πk(G1,2) → πk(G), k ∈ N,

are isomorphisms.

Problems III. It is natural to ask for the range of the index map ind on the monoid Fred(H, I).
If I2 = 1 , then Fred(H, I) contains in particular all operators g on the real space HR := {x ∈
H: I.x = x} for which gg∗ − 1 is compact. Since this includes unilateral shift operators on
separable subspaces, it follows that im(ind) = Z in this case.

For I2 = −1 , we may consider H as a quaternionic Hilbert space and obtain, with similar
arguments as above, that im(ind) contains all even numbers, because an unilateral shift operator
on l2(N,H) has index 2. It is an interesting question if for I2 = −1 there exists an element
g ∈ Fred(H, I) with ind(g) = 1. It is clear that this cannot be realized as an H -linear operator,
because all these operator have even index.

In both cases we see that im(ind) ∼= Z , so that we get π0(G(A)τ ) ∼= Z with the notation
from the proof of Proposition III.11.

IV. Universal central extensions of restricted groups

In this section we will draw the results from the preceding section together to describe universal
central extensions Ĝr of the identity components Gr of the restricted groups GL2(H,D) and
GL2(H, I,D) in the category of complex Banach–Lie groups. Extending the results to real forms
of these groups leads in particular to the metagonal and the metaplectic groups, of which we
show that they are universal central extensions of restricted versions of the real groups O(HR)
and Sp(H,Ω) in the category of real Banach–Lie groups. This section is the heart of the
paper because the proof of the universality of the central extensions requires the results on
Lie algebra cohomology from Section I and also the detailed knowledge on the homotopy groups
from Section III, which in turn uses Section II. All statements concerning the universality of the
considered group extensions are new.

Throughout this section H is assumed to be an infinite-dimensional complex Hilbert space.
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Central extensions of complex restricted groups

First we deal with the groups Gr := GL2(H,D)e . We start with a few preparations.

Lemma IV.1. For z ∈ z(gl(H,D)0) the functional x 7→ tr(zx) on g1,2 := gl1,2(H,D) vanishes
on the commutator algebra if and only if all zj are equal.

Proof. We have [g1,2, g1,2] ⊆ [gl2(H), gl2(H)] = sl(H), so that the condition that all zj are
equal is sufficient.

On the other hand we have for i 6= j and A ∈ B2(Hi,Hj), B ∈ B2(Hj ,Hi):

[A,B] = ABEii −BAEjj

in terms of (k × k)-block matrices. Therefore

tr(z[A,B]) = zi tr(AB)− zj tr(BA) = (zi − zj) tr(AB).

Now B2(Hi,Hj)B2(Hj ,Hi) = B1(Hi) implies that zi = zj is also necessary for tr(z[g1,2, g1,2])
to vanish.

Lemma IV.2. The continuous Lie algebra homomorphism tr: gl1,2(H,D) → C integrates to a

continuous group homomorphism det:GL1,2(H,D) → C×.

Proof. (cf. [HH94b] for a similar construction) Since the inclusion map

GL1(H) → GL1,2(H,D)

is a homotopy equivalence (Proposition III.2(c)), we obtain a homomorphism ι: G̃L1(H) →
G̃L1,2(D) which induces a surjective homomorphism

π1(GL1(H)) ∼= Z → π1(GL1,2(H,D)) ∼= Z.

If we compose the unique homomorphism d̃et: G̃L1,2(D) → C× satisfying L(d̃et) = tr with ι ,
then we obtain a lift of the determinant map det:GL1(H) → C× . We conclude that

π1(GL1,2(H,D)) ⊆ ker d̃et,

and this implies the assertion.

Definition IV.3. We define the group

SL(H,D) := ker(det:GL1,2(H,D) → C×).

Let v ∈ Hj for some infinite-dimensional space Hj be a unit vector and define the holomorphic
homomorphism γ:C× → GL1(H1) ⊆ GL1,2(H,D) by γ(z).v = zv and γ(z).w = w for w⊥v .
Then det ◦γ = idC× , and we conclude that the map

GL1,2(H,D) 7→ SL(H,D)oC×, g 7→ (gγ(det g)−1,det(g))

is a diffeomorphism. On the Lie algebra level we have a corresponding semidirect decomposition

gl1,2(H,D) ∼= sl(H,D)oC .

The idea for the direct construction of the central extension in Definition IV.4 is a slight
modification of the construction used in [HH94a,b]. Different constructions for the special case
k = 2 can be found in [PS86] and [Mi89]. These central extensions could also be obtained
more indirectly with the general methods described in [Ne00b], which requires to calculate the
corresponding period maps (cf. Proposition IV.9), but in any case it is more convenient to have
a concrete realization of the central extension.
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Definition IV.4. Let G = GL2(H) and Gr := GL2(H,D)e . Since G
0
b,∞ := GL(H,D)0∞ (cf.

Lemma III.1) acts smoothly on the Banach algebra B1,2(H,D), it acts smoothly by conjugation
on G1,2 := GL1,2(H,D), so that we can form the semidirect product Banach–Lie group
G1,2 oG0

b,∞, and the multiplication map G1,2 oG0
b,∞ →→ Gr induces an isomorphism

(G1,2 oG0
b,∞)/N → Gr, (a, d)N 7→ ad, where N ∼= G1,2 ∩G0

b,∞
∼=

∏
dimHj=∞

GL1(Hj)

(cf. Proposition A.6 and Remark A.7). Here we use that G1,2 and G0
b,∞ are connected (Propo-

sition III.2(c) and Theorem III.6).

In view of Definition IV.3, S := SL(H,D) ⊆ G1,2 is a Lie subgroup which also satisfies
Gr = SG0

b,∞ , so that

Gr
∼= (S oG0

b,∞)/NS with NS := N ∩ (S oG0
b,∞).

The group NS has a natural holomorphic homomorphism

∆:NS → (C×)k∞ , (g, g−1) 7→ (det(gj))dimHj=∞.

With

Z := ∆(NS) =
{
(zj) ∈ (C×)k∞ :

∏
j

zj = 1
}

we then have NS
∼= ker∆ o Z. Since ∆ is invariant under conjugation with elements of G0

b,∞ ,

the subgroup ker∆ is a normal Lie subgroup in S oG0
b,∞ , and it is complemented because NS

is complemented in S . Therefore we can form the quotient group

Ĝr := (S oG0
b,∞)/ ker∆

whose elements we write as [(a, d)] := (a, d) ker∆ (cf. Definition III.6). This group has a natural
homomorphism

q: Ĝr → Gr, q([(a, d)]) := ad with ker q ∼= NS/ ker∆ ∼= Z.

We thus obtain a central extension Z ↪→ Ĝr
q−−→Gr. On the subgroup G1,2 = Sγ(C×) ⊆ Gr

(in the notation of Definition IV.3), this central extension has a natural splitting given by the
homomorphism

σ1:G1,2 = Sγ(C×) → G♯
r, σ1(gγ(z)) := [(g, γ(z))].

Remark IV.5. On the Lie algebra level the construction in Definition IV.4 leads, for g =
gl2(H) and gr := gl2(H,D), to a surjective homomorphism

so g0b,∞ := sl(H,D)o gl(H,D)0∞ →→ gr := gl2(H,D), (x, y) 7→ x+ y,

(cf. Definition III.1(b)), and g0b,∞ = gl(H,D)0∞ is a closed Lie subalgebra of gr . We have the
central extension

z ∼= Ck∞−1 ↪→ ĝr →→ gr.

To describe this central extension by a continuous cocycle, we need a continuous splitting map
σ: gr → ĝr. This can be obtained by from the decomposition gr = g0r ⊕ [D, g], where [D, g] ⊆ s
denotes the closed subspace corresponding to the off-diagonal blocks. Writing elements x ∈ gr
as x = x0 + x1 according to this decomposition, we define

σ(x0 + x1) := [(x1, x0, 0)].
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It is clear that this is a continuous linear splitting map. The corresponding cocycle is given by

ω(x0 + x1, y0 + y1) = [σ(x0 + x1), σ(y0 + y1)]− σ([x0 + x1, y0 + y1])

= [([x0, y1] + [x1, y0] + [x1, y1], [x0, y0], 0)]

− σ([x0, y0] + [x1, y1]0, [x1, y1]1 + [x0, y1] + [x1, y0])

= [([x0, y1] + [x1, y0] + [x1, y1], [x0, y0], 0)]

− [([x1, y1]1 + [x0, y1] + [x1, y0], [x0, y0] + [x1, y1]0, 0)]

= [([x1, y1]0,−[x1, y1]0, 0)]

= [
(
0, 0, d∆([x1, y1]0)

)
] ∼= d∆([x1, y1]0).

If E := [x1, y1]0 denotes the block diagonal part of [x1, y1] , then E is of trace class with trace
0 because [B2(H), B2(H)] ⊆ B1(H) consists of matrices with vanishing trace. Now

d∆(E) = (tr(Ej))dimHj=∞ ∈ z =
{
(zj) ∈ Ck∞ :

∑
j

zj = 0
}
.

Remark IV.6. It is interesting to compare the group Ĝr with the group constructed in
[HH94b]. As in Definition IV.4, we write Gr as a quotient (G1,2 o G0

b,∞)/N , and consider

the homomorphism ∆N :N → (C×)k∞ given by the same formula as in Definition IV.4. We now
obtain a central extension

G♯
r := (G1,2 oG0

b,∞)/ ker∆N

by the same arguments. It is clear that we may view Ĝr as a subgroup of G♯
r which we now

describe as a kernel of a homomorphism to C× .

Since the homomorphism det:G1,2 := GL1,2(H,D) → C× is invariant under the action of
the group G0

b,∞ = GL(H,D)0∞ , it extends to a holomorphic homomorphism

G1,2 oG0
b,∞ → C×

which obviously vanishes on the normal subgroup ker∆N , so that we obtain a holomorphic
homomorphism

D:G♯
r = (G1,2 oG0

b,∞)/ ker∆N → C×

which on Z♯ := N/ ker∆N
∼= (C×)k∞ restricts to the multiplication map (zj) 7→

∏
j zj . From

that we conclude that
kerD = Ĝr and G♯

r
∼= Ĝr × C×,

where the complementary factor can be chosen as the first factor in Z ∼= (C×)k∞ . Our
construction further implies that the section σ:G1,2 → G♯

r, g 7→ [(g,1)] satisfies D ◦ σ = det.

Definition IV.7. For g = gl2(H, I) and gr = gl2(H, I,D) we have a surjective homomor-
phism

gl1,2(H, I,D)o gl(H, I,D)0∞ →→ gr := gl2(H, I,D),

where gl1,2(H, I,D) := gl2(H, I) ∩ B1,2(H,D) (cf. Definition III.1(b)). On the group level, we
obtain for G = GL2(H, I) as in Definition IV.4 an isomorphism

(G1,2 oG0
b,∞)/N → Gr, (a, d)N 7→ ad,

where Gr := GL2(H, I,D)e , G
0
b,∞ := GL(H, I,D)0∞ , G1,2 := GL1,2(H, I,D)e , and

N ∼=
∏

dimHj=∞,j>0

GL1(Hj)×
{
GL1(H0, I0) for dimH0 = ∞
0 for dimH0 <∞

}
(cf. Definition III.3). The group N has a natural holomorphic homomorphism

∆:N → Z♯ := (C×)k∞ , g 7→ (det(gj))dimHj=∞,j>0

with N ∼= ker∆o Z♯ . As in Definition IV.4, we now obtain a central extension

Z♯ ↪→ G♯
r := (G1,2 oG0

b,∞)/ ker∆ →→ Gr.

which splits on the subgroup G1,2 (cf. Remark IV.6). If ĝr denotes the Lie algebra of G♯
r and z

the Lie algebra of Z♯ , then we obtain a central Lie algebra extension z ↪→ ĝr →→ gr .
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Proposition IV.8. For gr = gl2(H,D) let ĝr be as in Definition IV.4 and for gr =
gl2(H, I,D) as in Definition IV.7. Then the following assertions hold:

(i) The central extension z ↪→ ĝr →→ gr is Banach universal over C .

(ii) Every real form zR ↪→ (ĝr)R →→ gr,R of this central extension is a Banach universal central
extension of the real form gr,R of gr .

Proof. (i) First we assume that gr = gl2(H,D). Let ωj , dimHj = ∞ , denote the components
of the cocycle ω from Remark IV.5. Then

∑
j ωj = 0, and Proposition I.11 shows that this is

the only non-trivial relation between the cohomology classes [ωj ] ∈ H2
c (gr,C). Hence we obtain

an isomorphism
δC : z

′ = Lin(z,C) → H2
c (gr,C), α 7→ [α ◦ ω]

so that the central extension ĝr → gr with kernel z is C -universal by Proposition I.13 because
gr is perfect (Proposition I.10). Moreover, Proposition I.13 implies that ĝr is a Banach universal
central extension of gr .

For gr = gl2(H, I,D) Proposition I.11 shows that the components ωj with dimHj = ∞
of the corresponding Lie algebra cocycle ω (Remark IV.5) yield a basis [ωj ] of H2

c (gr,C), so
that ĝr is a universal central extension of gr by Proposition I.13.

(ii) is an immediate consequence of (i) and Remark I.10(c) in [Ne01b].

Before we can turn to the universality assertions on the group level, we have to compute
some homotopy groups of Ĝr and G♯

r . For any central extension Z ↪→ Ĝ →→ G of a connected
Banach–Lie group G with an abelian Banach–Lie group Z , which is a locally trivial Z -bundle,
the vanishing of πm(Z), m ≥ 2, in view of the exact homotopy sequence of the Z -bundle implies

that the maps πm(G) → πm(Ĝ) are isomorphisms for m ≥ 3, and we have an exact sequence

0 → π2(Ĝ) ↪→ π2(G)
δ−−→π1(Z) → π1(Ĝ) → π1(G) → π0(Z) → 0

which describes the relations between π1 and π2 of G and Ĝ . Here the period map δ:π2(G) →
π1(Z) plays a key role because it determines π2(Ĝ) ∼= ker δ and im δ is the kernel of the map

π1(Ĝ) → π1(G). If G is simply connected, we obtain in particular π1(Ĝ) ∼= coker δ .

Next we will analyze the period map for the central extensions Ĝr → Gr and G♯
r → Gr

explicitly in terms of the description of the group π2(Gr) given in Theorems III.6 and III.14. We
will see that in both cases δ is injective, but that it is not surjective for G♯

r . Since Gr is simply
connected, this leads to

π1(G
♯
r)

∼= coker δ.

Proposition IV.9.

(i) For Gr = GL2(H,D)e the period map δ:π2(Gr) → π1(Z) is an isomorphism. The group

Ĝr is simply connected, and π2(Ĝr) = 0 .

(ii) For Gr = GL2(H, I,D)e the period map δ is always injective. If I2 = −1 , then it is also
surjective, and for I2 = 1 we have coker δ ∼= Z2 . The group G♯

r satisfies π1(G
♯
r)

∼= Z2 and
π2(G

♯
r) = 0 .

Proof. (i) In our direct construction of Ĝr in Definition IV.4, we used the description of Gr

as (S oG0
b,∞)/NS and a homomorphism ∆:NS → Z with

Ĝr
∼= (S oG0

b,∞)/ ker∆ and NS
∼= ker∆o Z.

The exact homotopy sequence of the NS -principal bundle S oG0
b,∞ contains a piece

· · ·π2(G1,2 oG0
b,∞) → π2(Gr)

δr−−→π1(NS) → π1(G1,2 oG0
b,∞) → · · · ,

and since π2(G1,2 o G0
b,∞) = 0 (Theorems II.6, II.14, and Proposition III.2(c)), the connecting

map δr:π2(Gr) → π1(NS) is injective. The Z -bundle Ĝr → Gr is associated to the NS -bundle
G1,2 o G0

b,∞ → Gr via the homomorphism ∆:NS → Z , so that the corresponding connecting
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map δ satisfies δ = π1(∆) ◦ δr. Therefore we simply have to identify the image of δr in π1(NS)
and the homomorphism π1(∆):π1(NS) → π1(Z), restricted to this subgroup.

We have

NS =
{
d = diag(dj) ∈

∏
dimHj=∞

GL1(Hj): det d =
∏
j

det(dj) = 1
}
,

ker∆ ∼=
∏

dimHj=∞ SL(Hj), and Z ∼= (C×)k∞−1 . From the proof of Theorem III.7 we derive
that

im(δr) ∼=
{
(nj) ∈ Zk∞ :

∑
nj = 0

}
= π1(N) ∼= Zk∞−1,

and that the map π1(∆):π1(N) → π1(Z) ∼= Zk∞−1 is an isomorphism. Therefore δ:π2(Gr) →
π1(Z) is an isomorphism. The remaining assertions follows from the exact homotopy sequence

of the Z -principal bundle Z ↪→ Ĝr →→ Gr because π1(Gr) = 0 (Theorem III.7) implies that

π1(Ĝr) ∼= coker δ = 0 and π2(Ĝr) ∼= ker δ = 0 .

(ii) For q:G♯
r → Gr = GL2(H, I,D)e the situation is slightly different. Here we have N ∼=∏

dimHj=∞ GL1(Hj) with N ∼= ker∆ o Z , where ker∆ ∼=
∏

dimHj=∞ SL(Hj) is simply con-

nected. Therefore the map π1(∆):π1(N) → π1(Z) is an isomorphism, and again we have a
factorization δ = π1(∆) ◦ δr with δr:π2(Gr) → π1(N). Here the vanishing of π2(G1,2 o G0

b,∞)

follows from the contractibility of G0
b,∞ (Theorem II.6), Proposition III.15, and Corollary II.15.

We conclude that δr is injective.

In view of π1(Gr) = 0 (Theorem II.14), the exactness of

· · ·π2(Gr)
δr−−→π1(N) → π1(G1,2 oG0

b,∞) → π1(Gr) = 0

implies that
coker δr ∼= π1(G1,2 oG0

b,∞) ∼= π1(G1,2).

Using again Proposition III.15 and Corollary II.15, we obtain

π1(G1,2) ∼=
{
Z2 for I2 = 1
0 for I2 = −1.

As in (i), we now obtain π2(G
♯
r) = 0 and π1(G

♯
r)

∼= coker δ ∼= coker δr .

From the topological information contained in Proposition IV.9 and the universality of the
Lie algebra extensions ĝr → gr , we will now derive the description of a universal central group
extension Ĝr → Gr in the category of complex Banach–Lie groups. For I2 = 1 it turns out that
we will have to a twofold covering group Ĝr of G♯

r , which corresponds to the usual passage from
orthogonal groups to spin groups.

Theorem IV.10. If H is infinite-dimensional, then for Gr = GL2(H,D)e the central
extension

Z ∼= (C×)k∞−1 ↪→ Ĝr
q−−→Gr

and for Gr = GL2(H, I,D)e the universal covering group

Z ↪→ Ĝr := G̃♯
r

q−−→Gr

is universal for all abelian complex Banach–Lie groups in the following sense: For each central
extension qH :H → Gr which is a locally trivial A-principal bundle for an abelian Banach–Lie
group A , there exists a unique morphism ϕ: Ĝr → H with qH ◦ ϕ = q .

Proof. We have seen in Proposition IV.9 that for Gr = GL2(H, I,D)e the period map

is not always surjective onto π1(Z). Let q: Ĝr → G♯
r denote the universal covering map for

Gr = O2(HC , I,D)+ := GL2(HC , I,D)e . For Z := q−1(Z♯) ⊆ Ĝr we then have Gr
∼= Ĝr/Z ,
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and since Gr is simply connected, the group Z is connected; otherwise Ĝr/Ze would be a non-

trivial connected covering group of Gr . Therefore Z = exp
Ĝr

z is central in Ĝr , and we see

that q: Ĝr → Gr is in fact a central extension of gr . Furthermore, Proposition IV.9 implies that
π2(Ĝr) ∼= π2(G

♯
r) = 0 .

For Gr = GL2(H,D)e we directly get from Proposition IV.9 that π2(Ĝr) = π1(Ĝr) = 0 .

Therefore in both cases Gr is simply connected (Theorem III.7, Theorem III.14), Ĝr is
simply connected, and ĝr is Banach universal (Proposition IV.8). Now the assertion follows from
[Ne01a, Th. IV.14].

Remark IV.11. If ω ∈ Z2
c (gr,C) is represented by diag(λj) ∈

⊕
dimHj=∞ C idHj (Proposi-

tion I.11), then Proposition IV.9 implies that the corresponding period map perω:π2(Gr) → C
factors through

π2(Gr) → π1(Z) ↪→ z
α−−→C ,

where the linear functional α: z → C is given by α((zj)) =
∑

j λjzj . Then

perω((nj)) =
∑
j

λjnj .

For g = gl2(H, I) this leads to

im(perω) =
∑
j

Zλj ⊆ C

and for g = gl2(H) to

im(perω) =
{∑

j

njλj :
∑
j

nj = 0
}
=

∑
j ̸=k

Z(λj − λk) ⊆ C .

The metaplectic and the metagonal group

In this subsection H denotes a complex infinite-dimensional Hilbert space and J its complex
structure given by J.v = iv , v ∈ H . We write HR for the underlying real Hilbert space.
The complexification HC := (HR)C decomposes into the ±i -eigenspaces H±

C for the complex
extension of J which we also denote by J . In the following we will consider HC as a space
with this decomposition, so that J.(x, y) = (ix,−iy) in these “coordinates.” We write I for
the complex conjugation on HC with HR = {x ∈ HC : I.x = x} and note that IJ = JI on
HC because J preserves the subspace HR . The ±i-eigenvectors of J can be written v ∓ iJv ,
v ∈ HR , and the antilinearity of I implies that I(v ∓ iJv) = v ± iJv . To obtain a convenient
setting, we identify the i-eigenspace H+

C of J with H via the mapping v 7→ 1√
2
(v− iJv) which

is a complex linear isometry. From IJ = IJ and the antilinearity of I , we get I.H+
C = H−

C .
Since each orthonormal basis of H+

C is mapped by I into an orthonormal basis of H−
C , we see

that we may identify H−
C with H in such a way that there exists an antilinear involution σ of

H (fixing the elements of a given orthonormal basis) such that I is given by product coordinates
on HC ∼= H ⊕H by the formula I.(x, y) = (σ(y), σ(x)) (cf. Remark I.2).

Definition IV.12. (a) We define the restricted real linear group of H by

GLres(H
R) := {g ∈ GL(HR): gJg−1 − J ∈ B2(H

R)}.

The condition gJg−1−J ∈ B2(H
R) is equivalent to [g, J ] ∈ B2(H

R). The elements of the group
GLres(H

R) are called almost linear automorphisms of the complex Hilbert space H .

(b) It is clear that GL(H) is a subgroup of GLres(H
R). We also define the corresponding

restricted orthogonal and symplectic group

Ores(H
R) := O(HR) ∩GLres(H

R) and Spres(H,Ω) := Sp(H,Ω) ∩GLres(H
R).
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Lemma IV.13. The operator D := −iJ is a hermitian involution on HC , and the following
assertions hold:

(i) GLres(H
R) = {g ∈ GL2(HC , D): Ig = gI} = GL2(HC , D) ∩ GL(HR) and the group

GLres(H
R) has a smooth polar decomposition with GLres(HR) ∩U(HC ) = Ores(H

R) .

(ii) O(HC , I)∩U(HC ) = O(HC , I)∩GL(HR) = O(HR) and O(HC , I)∩U2(HC , D) = Ores(H
R) .

(iii) The operator Ĩ := iJI is an antilinear isometry with Ĩ2 = −1 and

Sp(H,Ω) = {g ∈ Sp(HC , Ĩ): Ig = gI} and Spres(H,Ω) = {g ∈ Sp2(HC , Ĩ, D): Ig = gI}.

In particular Sp(H,Ω) is a real form of Sp2(HC , I) and Spres(H,Ω) is a real form of
Sp(HC , I,D) . The group Spres(H,Ω) has a polar decomposition with Spres(H

R)∩U(HR) =
U(H) , and it is contractible.

Proof. First we note that D is a hermitian operator on HC with spectrum {±1} , because in
product coordinates on HC it is given by D(x, y) = (−x, y).
(i) The condition g ∈ GLres(H

R) means that if we write its complex linear extension, also denoted
g , to HC according to the decomposition of HC as a matrix

g =

(
a b
c d

)
,

then

[J, g] =
[(

i 0
0 −i

)
,

(
a b
c d

)]
= i

(
0 2b

−2c 0

)
,

so that g ∈ GLres(H
R) is equivalent to g ∈ GL2(HC , D) and gI = Ig .

That the group GL2(HC , D) has a polar decomposition has been shown in Proposition III.7.
Let g ∈ GL2(HC , D) and g = uex be its polar decomposition, where u ∈ U(HC ) and x =

x∗ ∈ Herm(HC ). We then have IgI−1 = IuI−1eIxI
−1

, which is the polar decomposition of
IgI−1 . Therefore the uniqueness of the polar decomposition and the first part of the proof imply
that g ∈ GLres(HR) if and only if u ∈ GLres(HR) ∩ U(HC ) ∼= Ores(H

R) and IxI−1 = x , i.e.,
x ∈ Herm(HC ) ∩ glres(H

R).

(ii) It is clear that the group O(HR) acts unitarily on HC . For g ∈ O(HR) we therefore have
Ig∗I−1 = g∗II−1 = g∗ = g−1 which implies that g ∈ O(HC , I). If, conversely, g ∈ O(HC , I),
then gIg∗ = I , so that g ∈ O(HR) holds if and only if g commutes with I if and only if g is
unitary. This is the first assertion. With (i) and the first part we get

O(HC , I) ∩U2(HC , D) = O(HC , I) ∩U(HC ) ∩GL2(HC , D) = O(HR) ∩GL2(HC , D)

= O(HR) ∩GL(HR) ∩GL2(HC , D) = O(HR) ∩GLres(H
R) = Ores(H

R).

(iii) Its definition implies that Ĩ = iJI is isometric and antilinear. Further Ĩ2 = iJIiJI =

−i2JIJI = J2I2 = −1 . For g ∈ Sp(H,Ω) ⊆ GL(HR) we have Ĩg∗Ĩ−1 = Jg∗J−1 = g−1 ,

showing that g ∈ Sp(HC , Ĩ). If, conversely, g ∈ Sp(HC , Ĩ), then IgI−1 = J(g∗)−1J−1 , so that
Ig = gI is equivalent to g = J(g∗)−1J−1 . We further get with (i):

Spres(H,Ω) = Sp(H,Ω) ∩GLres(H
R) = Sp(H,Ω) ∩GL2(HC , D)

= GL(HR) ∩ Sp2(HC , Ĩ, D) = {g ∈ Sp2(HC , Ĩ, D): Ig = gI}.

To obtain the polar decomposition of Spres(H,Ω), we can argue as in (i), and we get

Spres(H,Ω) ∩O(HR) = {g ∈ O(HR): Jg−1J = Jg∗J−1 = g−1} = U(H).

The contractibility of U(H) (Theorem II.6) implies that Spres(H,Ω) is contractible.
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Remark IV.14. From Lemma IV.13(ii) we get O(HR) = O(HC , I) ∩GL(HR) and therefore

Ores(H
R) = O(HC , I) ∩GLres(H

R) = O2(HC , I,D) ∩GL(HR),

showing that Ores(H
R) is a real form of O2(HC , I,D). Moreover

Ores(H
R) = O2(HC , I,D) ∩U(HC )

by Lemma IV.13(ii), so that the polar decomposition of O2(HC , I,D) implies that the inclusion
map

Ores(H
R) ↪→ O2(HC , I,D)

is a homotopy equivalence. Therefore Theorem III.14 leads to

πk(Ores(H
R)) ∼=

{Z2 for k = 0
0 for k = 1
Z for k = 2.

To see elements of Ores(H
R) \Ores(H

R)+ , we recall from Lemma III.12 that

O∞(HC , I,D) = O∞(HC , I)O(HC , I,D)0∞,

where the group O(HC , I,D)0∞
∼= O(H) is contractible. Moreover, the inclusion map

O1(HC , I) ↪→ O∞(HC , I) is a homotopy equivalence by Corollary III.9. Therefore O1(HC , I)
− :=

{g ∈ O1(HC , I): det g = −1} is not contained in the identity component of O∞(HC , I,D), and
hence

Ores(H
R)− ⊇ O1(HC , I)

−.

The terminology for the groups defined below is taken from Vershik [Ve90], where these
groups are also discussed. Here the main new point is that we can show their universality as
central extensions of the corresponding restricted groups.

Definition IV.15. (Metaplectic and metagonal group) (a) Let D := −iJ as above. Then

ω(x+d, x′+d′) := tr(D[x, x′]) is the universal cocycle for gr := sp2(HC , Ĩ, D) (Proposition I.11,
Remark IV.5). For the antilinear involution θ(x) = IxI−1 we have θ(D) = −IiJI = iIJI =
iJ = −D. Therefore

(θ.ω)(x+ d, x′ + d′) = tr(D[θ.x, θ.x′]) = tr(Dθ.[x, x′])

= tr((θ.D)[x, x′]) = − tr(D[x, x′]) = −ω(x+ d, x′ + d′).

We conclude that
θ̂(x, z) := (θ(x),−z)

defines a complex conjugation of ŝp2(HC , Ĩ, D) := ĝr whose real form is the metaplectic Lie
algebra

mp(H,Ω) := {(x, z) ∈ ŝp2(HC , Ĩ, D):x ∈ spres(H,Ω), z ∈ iR}.

It is a universal central extension of the real Banach–Lie algebra spres(H,Ω) (Proposition
IV.3(iii)).

The involution θ̂ integrates to an antiholomorphic involution θ̂G of the simply connected
complex group Ŝp2(HC , Ĩ, D) := Ĝr (Proposition IV.9), and we define the metaplectic group

Mp(H,Ω) := {g ∈ Ŝp2(HC , Ĩ, D): θ̂G(g) = g}.

Then Mp(H,Ω) is a real Lie subgroup of Ŝp2(HC , Ĩ, D) with Lie algebra mp(H,Ω). This group
is a central extension of Spres(H,Ω) by T = {z ∈ C×: z = z−1}.
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(b) The universal cocycle ω(x+d, x′+d′) := tr(D[x, x′]) of gr := o2(HC , I,D) satisfies θ.ω = −ω
for θ(x) = σxσ−1 . Therefore

θ̂(x, z) := (θ(x),−z)

defines a complex conjugation of ô2(HC , D) := ĝr whose real form is the metagonal Lie algebra

mo(HR) := {(x, z) ∈ ô2(HC , D):x ∈ ores(H
R), z ∈ iR}

which is a universal central extension of the real Banach–Lie algebra ores(H
R) (Proposition

IV.8(iii)).

The involution θ̂ integrates to an antiholomorphic involution θ̂G of the simply connected
complex group Ô2(HC , I,D)+ := Ĝr (Theorem IV.10), and we define the connected metagonal
group

MO(HR)+ := {g ∈ Ô2(HC , I,D)+: θ̂G(g) = g}.

Then MO(HR)+ is a real Lie subgroup of Ô2(HC , I,D)+ with Lie algebra mo(HR) which is
a central extension of the identity component Ores(H

R)+ by ZR ∼= T . Its connectedness now
follows from the connectedness of ZR and of Ores(H

R)+ .

Let r ∈ O(HR)− be a simple reflection, i.e., r − 1 has one-dimensional range, which is
J -antilinear (cf. Remark IV.14). Then

Ores(H
R) ∼= Ores(H

R)+ o {1, r}.

The relation rDr−1 = −D implies that ω(rxr−1, ryr−1) = −ω(x, y), so that r acts as an
involutive automorphism on the Lie algebra mo(HR) by τg.(x, z) := (rxr−1,−z).

Anticipating the result that MO(HR)+ is simply connected (Theorem IV.18), it follows
that τg integrates to an involution τG on this group. We let the group Z4 := Z/4Z act on
MO(HR)+ in such a way that [n] := n+4Z acts as τnG . Then we define the full metagonal group

MO(HR) := (MO(HR)+ o Z4)/{1, (−1, [2])},

where −1 denotes the unique non-trivial involution in the central circle ZR ⊆ MO(HR)+ . Using
reflections s in HR with dim(im(s − 1)) = 2, we obtain, as in the finite-dimensional case,
elements s̃ ∈ MO(HR)+ with s̃2 = −1, and we may even assume that r and s commute. Then
(s̃, [1])2 = (−1, [2]) implies that the group MO(HR) can also be written as a semidirect product
MO(HR)+ o Z2 . The full metagonal group is a natural analog of the groups Pin(2n,R).

Theorem IV.16. The metaplectic group Mp(H,Ω) satisfies

πm(Mp(H,Ω)) ∼= πm(T) ∼=
{
0 for m 6= 1
Z for m = 1.

Its universal covering group M̃p(H,Ω) is contractible, the identity component of its center is
isomorphic to R , and it is a universal central extension of the real Banach–Lie group Spres(H,Ω) .

Proof. Since Mp(H,Ω) is a central T-extension of the contractible group Spres(H,Ω), it is
connected, and the exact homotopy sequence of the locally trivial principal bundle

T ↪→ Mp(H,Ω) →→ Spres(H,Ω)

yields the assertion on the homotopy groups of Mp(H,Ω). Therefore all homotopy groups of

the universal covering group M̃p(H,Ω) are trivial, which implies that it is contractible (Theo-
rem II.2). It is easy to see that the center of Spres(H,Ω) consists of {±1} , so that the identity

component of the center of M̃p(H,Ω) is the universal covering group of T = Z(Mp(H,Ω))e , hence
isomorphic to R . Finally the fact that mp(H,Ω) is a universal central extension of the Banach–

Lie algebra spres(H,Ω) (Proposition IV.8(ii)), and the simple connectedness of M̃p(H,Ω) and

Spres(H,Ω), imply the universality of M̃p(H,Ω) as a central extension of Spres(H,Ω) ([Ne01a,
Th. IV.14]).
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Remark IV.17. (a) Since the group Spres(H,Ω) is contractible, the central extension
Mp(H,Ω) is a trivial principal bundle, hence has a continuous global section. There is no general
reason for this to imply that there is a smooth global section because we do not know whether
there exists a contraction which is a smooth map. For a discussion of the existence of smooth
global sections of central extensions we refer to Section V in [Ne00b]. The polar decomposition of
Spres(H,Ω) implies that it is diffeomorphic to a product of U(H) and a Hilbert space. Since the
space C([0, 1],R) embeds isometrically into u(H) and has no smooth functions with arbitrarily
small support (cf. [KM97]), the same holds for U(H), showing that U(H) and therefore also
Spres(H,Ω) is not smoothly paracompact.

Nevertheless, one can also show directly as follows that Mp(H,Ω) has a smooth global
section. First we observe that the the invariance of spres(H,Ω) under the involution x 7→ x∗

leads to the decomposition

g := spres(H,Ω) = k⊕ p with k = u(H) = {x ∈ g:x∗ = −x}, p = {x ∈ g:x∗ = x}.

Writing elements x ∈ g accordingly as x = xk + xp , the universal cocycle satisfies

ω(x, x′) = tr(D[x, x′]) = tr(D[xp, x
′
p])

because [D,xk] = 0. Therefore the inverse image

k̂ = k⊕ iR ⊆ ĝ = g⊕ω iR

of k is a direct Lie algebra sum k ⊕ iR . Moreover, ĝ = k̂ ⊕ p has the structure of a symmetric
Lie algebra because [̂k, p] ⊆ p and [p, p] ⊆ k̂ . Now the use the methods from [Ne00c] to see

that Mp(H,Ω) has a polar decomposition K̂ exp(p). That the assumptions of [Ne00c, Th.
IV.1] are satisfied follows from the fact that for each x ∈ p the operator (adx)2 |p: p → p is
positive hermitian ([Ne00c, Prop. III.16]). We then conclude that that simply connected covering

group M̃p(H,Ω) has a polar decomposition
(
U(H)× iR

)
exp p because U(H)× iR is the simply

connected group with Lie algebra k̂ . From that it follows directly that Mp(H,Ω) has a polar

decomposition K̂ exp p with K̂ ∼= U(H)× T . Now we get a smooth section

σ: Spres(H,Ω) = U(H) exp p → Mp(H,Ω) = (U(H)× T) exp p, u expx 7→ (u,1) expx

for u ∈ U(H) and x ∈ p .

(b) In the finite-dimensional case H ∼= Cn we have π1(Sp(H,Ω)) ∼= π1(Sp(2n,R)) ∼= Z , and
the Lie algebra sp(H,Ω) is centrally closed. Hence the central T-extensions of Sp(H,Ω) are
classified by

Hom(π1(Sp(Ω,H)),T) ∼= Hom(Z,T) ∼= T,
and the metaplectic group (which in this case is also called Mpc(H,Ω)) is defined by the
homomorphism Z → T mapping 1 to −1. The corresponding Lie algebra extension is trivial, but
the commutator group of Mpc(H,Ω) is a twofold covering of Sp(H,Ω) (which is also frequently
called metaplectic group).

Theorem IV.18. The inclusion map

MO(HR)+ ↪→ Ô2(HC , I,D)+

is a weak homotopy equivalence. In particular the group MO(HR)+ is simply connected. More-
over, it is a universal central extension of the real Banach–Lie group Ores(H

R)+ .

Proof. Since O2(HC , I,D)+ has a polar decomposition with unitary part Ores(HR)
+ (Remark

IV.14), the inclusion map Ores(HR)
+ → O2(HC , I,D)+ is a homotopy equivalence. Further the

inclusion map ZR ∼= T ↪→ Z ∼= C× is a homotopy equivalence. Therefore Proposition A.8 implies
that the inclusion

MO(HR)+ ↪→ Ô2(HC , I,D)+

is a weak homotopy equivalence. We conclude in particular that MO(HR)+ is simply connected.
Therefore the fact that mo(HR) is a universal central extension of the real Banach–Lie algebra
ores(H

R) implies the universality of MO(HR)+ as a central extension of the simply connected
group Ores(H

R)+ ([Ne01a, Th. IV.14]).



45 classic.tex March 5, 2001

Remark IV.19. If H ∼= Cn is finite-dimensional and n > 1, then π1(O(2n,R)) ∼= Z2 , and
there exists a natural T-extension of O(2n,R)+ = SO(2n,R) corresponding to the inclusion
homomorphism π1(O(2n,R)) ∼= Z2 ↪→ T . This central extension would be a natural analog of
MO(HR). Its commutator subgroup is the universal covering group Spin(2n,R) of SO(2n,R).

V. Infinite-dimensional flag manifolds

In this section we discuss analogs of complex flag manifolds for the groups

G ∈ {GL2(H),GL2(H, I)}.

We define these manifolds as the orbits of certain flags F = (F0, F1, . . . , Fk) in H under G .
Let P (F) ⊆ G denote the stabilizer of such a flag. Then the homogeneous space G/P (F) is a
complex manifold, called a flag manifold. We also show that the unitary real form U := G∩U(H)
acts transitively on G/P (F). Similar results hold for the restricted groups Gr .

Definition V.1. (a) We consider a flag F = (F0, F1, . . . , Fk), where

{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk = H

are closed subspaces of H . Let

Pb(F) := {g ∈ GL(H): (∀j)g.Fj = Fj}

denote the stabilizer of this flag. To get a better description of this group, we define closed
subspaces Hj := Fj ∩ F⊥

j−1 for j = 1, . . . , k and thus obtain an orthogonal decomposition
H = H1 ⊕ . . . ⊕ Hk. Accordingly we view operators on H as matrices (xij)i,j=1,...,k with
xij ∈ B(Hj ,Hi). Then

Pb(F) = {g ∈ GL(H): (∀i > j) gij = 0} ∼= N(F)oM(F),

where

M(F) = {g ∈ GL(H): (∀j)g.Hj = Hj} = {g ∈ GL(H): (∀i 6= j)gij = 0} ∼=
k∏

j=1

GL(Hj)

and
N(F) = {g ∈ GL(H): (∀j)(g − 1).Hj ⊆ Hj−1} = {g ∈ Pb(F): (∀j) gjj = 1}.

(b) For G = GL2(H) we now define P := P (F) := Pb(F)∩G . In this case the description in (a)
implies immediately that P (F) is a complemented Lie subgroup of G , so that the homogeneous
space G/P (F) has a natural structure of a complex Banach manifold (cf. Definition III.6) which
we call a flag manifold associated to G .

(c) For G = GL2(H, I) we now consider a chain of closed subspaces

{0} = F0 ⊆ F1 ⊆ . . . ⊆ Fk

which are isotropic, i.e., that all spaces Fj are isotropic for the bilinear form β(x, y) = 〈x, I.y〉 ,
which in turn is equivalent to I.Fj⊥Fj . We extend this chain of subspaces to the flag F defined
by

{0} = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F
⊥β

k ⊆ . . . ⊆ F
⊥β

1 ⊆ F
⊥β

0 = H.

For g ∈ GL(H) and τ(g) := I(g∗)−1I−1 the condition g ∈ GL(H, I) is equivalent to
g = τ(g). Moreover, the condition g.E = E for a closed subspace E ⊆ H is equivalent
to g∗.E⊥ = E⊥ , hence to τ(g).E⊥β = E⊥β because E⊥β = I.E⊥ . Therefore the subgroup
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Pb(F) ⊆ GL(H) is invariant under the involution τ , and its intersection with GL(H, I) coincides
with the set of all elements preserving the subspaces F1, . . . , Fk .

To fix the notation in such a way that it is compatible with Examples I.9, we define for the

flag F the spaces H1, . . . , Hk as above, H0 := F⊥
k ∩ F⊥β

k , and H−j := I.Hj for j = 1, . . . , k .
Then

F
⊥β

j = H1 ⊕ . . .⊕Hk ⊕H0 ⊕H−k ⊕ . . .⊕H−j−1.

Note that H0 is zero if and only if Fk is maximal isotropic for β .

It is clear that the group M(F) is invariant under τ . For g ∈ Pb(F) we have τ(g)jj =
I(g∗−j,−j)

−1I−1 , showing that also N(F) is τ -invariant. Therefore the semidirect decomposition
of Pb(F) leads with

Mb :=M(F)τ ∼= GL(H0, I0)×
k∏

j=1

GL(Hj)

(cf. Remark I.2) and Nb := N(F)τ to the semidirect decomposition Pb = Nb o Mb. On the
Lie algebra level the strictly lower triangular matrices in gl(H) provide a complement invariant
under τg(x) := −Ix∗I−1 , so that passing to τg -fixed points yields a closed complement to
the Lie algebra L(Pb) of Pb in gl(H, I). Therefore Pb is a complemented Lie subgroup of
Gb = GL(H, I).

Similar results hold for the group P := Pb ∩ GL2(H, I), so that we obtain a complex
manifold structure on the homogeneous spaces G/P and Gb/Pb (cf. Definition III.6).

Remark V.2. (a) The equation

N(F)− 1 = {x ∈ B(H): (∀i ≤ j) xij = 0}

shows that this is a closed subspace of B(H), hence that N(F) is contractible. Similar assertions
hold for the intersection with GL2(H).

(b) To obtain the corresponding result for N(F)∩GL(H, I), we note that the exponential function
exp:N(F)−1 → N(F) is a polynomial diffeomorphism inverted by the logarithm function given
by

log(1+ x) =

∞∑
j=1

(−1)n+1

n
xn.

This property is inherited by the subgroup N(F)∩GL(H, I), so that it is also contractible, and
the same holds for N(F) ∩GL2(H, I).

Now we turn to the homotopy groups of the flag manifolds G/P (F).

Proposition V.3. (a) For G = GL2(H) and P = Pb(F) ∩G the manifold G/P satisfies

π0(G/P ) = 0, π1(G/P ) = 0 and π2(G/P ) ∼= Zk−1.

(b) For G = GL2(H, I) and P = Pb(F) ∩G the flag manifold G/P satisfies

π0(G/P ) ∼=
{
0 for I2 = −1
Z2 for I2 = 1 and H0 6= 0

}
, π1(G/P ) = 0 and π2(G/P ) ∼= Zk.

Proof. (a) We have P ∼= N oM , where N is diffeomorphic to a Banach space. Therefore P
is homotopy equivalent to M . We conclude that

π0(P ) = π0(G) = 0, π1(P ) ∼= Zk, π1(G) ∼= Z and π2(P ) ∼= π2(G) = 0.

Hence G/P is connected, and if χ:π1(P ) → π1(G) is the homomorphism induced by the inclusion
map, the exact homotopy sequence of the principal P -bundle G→ G/P implies that

π1(G/P ) ∼= cokerχ and π2(G/P ) ∼= kerχ.
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In view of χ(n1, . . . , nk) =
∑

j nj , we get

π1(G/P ) ∼= 0 and π2(G/P ) ∼= Zk−1.

(b) For G = GL2(H, I) we also have P ∼= N oM , which is homotopy equivalent to M (Remark
V.2(b)). For H0 = 0 we have

π0(P ) = 0, π1(P ) ∼= Zk and π2(P ) = 0,

and

π0(G) ∼= π1(G) ∼=
{
0 for I2 = −1
Z2 for I2 = 1

}
and π2(G) = 0.

Therefore the exact homotopy sequence of the bundle P ↪→ G→ G/P yields

π0(G/P ) ∼=
{
0 for I2 = −1
Z2 for I2 = 1

}
, π1(G/P ) = 0 and π2(G/P ) ∼= Zk

because for I2 = 1 the homomorphism π1(P ) → π1(G) is given by

Zk → Z2 = Z/2Z, (nj) 7→
∑
j

[nj ].

For H0 6= 0 we have

π0(P ) ∼=
{
0 for I2 = −1
Z2 for I2 = 1

}
, π1(P ) ∼=

{
Zk for I2 = −1
Z2 × Zk for I2 = 1

}
, and π2(P ) = 0

and

π0(G) ∼= π1(G) ∼=
{
0 for I2 = −1
Z2 for I2 = 1

}
and π2(G) = 0.

Therefore the exact homotopy sequence yields

π0(G/P ) = 0, π1(G/P ) = 0 and π2(G/P ) ∼= Zk

because for I2 = 1 the homomorphism π0(P ) → π0(G) is surjective.

Remark V.4. (a) In Proposition III.5 we have seen that for G = GL2(H) we have Gr = GG0
b

which implies that with Pr := Gr ∩ P (F) we have Gr = GPr with Pr ∩G = P , so that G acts
transitively on Gr/Pr , and we obtain G/P ∼= Gr/Pr .

For G = GL2(H, I) we have on the Lie algebra level gr = g + g0b , which implies that
Gr = Ge(G

0
b)e (Lemma A.5), and hence that the identity component Ge of G acts transitively

on the connected manifold Gr/Pr for Pr := Gr ∩ P (F). From Pr ∩ G = P we derive that
Gr/Pr

∼= Ge/(Ge ∩ P ) is the connected component of G/P containing the base point 1P .

(b) Suppose that all spaces Hj in Definition V.1 are infinite-dimensional and that Gr =
GL(H, I,D)e , where D is compatible with the flag F in the sense of Examples I.9. Then
the group Pr

∼= Nr oMr is contractible because Nr is contractible and all factors in Mr are
contractible (Theorem II.6, Remark V.2). Therefore the exact homotopy sequence of the Pr -
principal bundle Gr → Gr/Pr

∼= Ge/(P ∩Ge) implies that the quotient map is a weak homotopy
equivalence. In particular we obtain for each m ∈ N0 the relation

πm(G/P ) ∼= πm(Gr).



48 Classical Hilbert–Lie groups, their extensions and their homotopy groups March 5, 2001

Transitivity of the action of the unitary real form on the flag manifolds

In this subsection we show that the unitary real forms of the restricted groups Gr also act
transitively on the corresponding flag manifolds Gr/Pr .

Lemma V.5. If ϕ:H1 → H2 is a topological isomorphism of Hilbert spaces, then there exists
a unitary isomorphism ψ:H1 → H2 .

Proof. The map ϕ∗ϕ ∈ GL(H1) is an invertible positive operator, so that γ :=
√
ϕ∗ϕ ∈

GL(H1) is uniquely defined. Now ψ := ϕ ◦ γ−1:H1 → H2 is unitary because it is invertible and

ψ∗ψ = γ−1ϕ∗ϕγ−1 = γ−1γ2γ−1 = 1.

Lemma V.6. Let H1 and H2 be complex Hilbert spaces and Ij :Hj → Hj antilinear isometries
with I2j = ±1 (same signs). If ϕ: (H1, I1) → (H2, I2) is a topological isomorphism with ϕI1ϕ

∗ =
I2 , then there exists a unitary isomorphism ψ:H1 → H2 with ψI1ψ

∗ = I2 .

Proof. First we observe that the condition ϕI1ϕ
∗ = I2 means that ϕ is an isometry between

the spaces (Hj , βj), where βj(x, y) = 〈x, Ij .y〉 is a non-degenerate complex bilinear form. Indeed,

β2(ϕ(x), ϕ(y)) := 〈ϕ(x), I2.ϕ(y)〉 = 〈x, I1.y〉 =: β1(x, y), x, y ∈ H1,

is equivalent to ϕ∗I2ϕ = I1 , i.e., to ϕ
−1I2(ϕ

∗)−1 = I1 which in turn means that ϕI1ϕ
∗ = I2 .

We define ψ as in the proof of Lemma V.5. The remark above implies that ϕ∗ϕ is a
β1 -isometry, hence in GL(H1, I1). The polar decomposition of this group (Theorem II.6(iii))
implies that γ ∈ GL(H1, I1), so that ψ = ϕγ−1:H1 → H2 satisfies

ψI1ψ
∗ = ϕγ−1I1(γ

∗)−1ϕ∗ = ϕI1ϕ
∗ = I2.

Proposition V.7. Let H = H1 ⊕ . . . ⊕ Hk be the orthogonal eigenspace decomposition
of D = D∗ ∈ B(H) , Fj := H1 + . . . + Hj , Pb := Pb(F) , Pr := Pb ∩ GL2(H,D) and
P := Pb ∩GL2(H) . Then

GL(H) = U(H)Pb, GL2(H,D) = U2(H,D)Pr = U2(H)Pr, and GL2(H) = U2(H)P,

i.e., U(H) acts transitively on GL(H)/Pb and U2(H) acts transitively on GL2(H,D)/Pr and
GL2(H)/P . Moreover, if u ∈ U(H) and g ∈ GL2(H,D) satisfy u−1g ∈ Pb , then u ∈ U2(H,D) .

Proof. (see [PS86, Prop. 7.13] for the case k = 2) Let F ′
j := g.Fj . Then g maps F1

isomorphically onto the Hilbert space F ′
1 . Hence Lemma V.5 implies that there exists a unitary

isomorphism u1:F1 → F ′
1 . Moreover, g induces a topological isomorphism

H2
∼= F2/F1 → F ′

2/F
′
1
∼= H ′

2 := (F ′
1)

⊥ ∩ F ′
2.

Applying Lemma V.5 again, we find a unitary isomorphism u2:H2 → H ′
2 . Continuing this way,

we obtain unitary isomorphisms

uj :Hj → H ′
j := (F ′

j−1)
⊥ ∩ F ′

j , j = 1, . . . , k.

Putting these maps together, we obtain a unitary map u ∈ U(H) with u(Hj) = H ′
j for all j and

therefore in particular with

u(Fj) =

j∑
m=1

H ′
m = F ′

j .

This means that u−1g preserves all spaces Fj . We conclude that GL(H) = U(H)Pb.
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Suppose that g ∈ GL2(H,D). Then for each j the orthogonal projection

pj :F
′
j → F⊥

j

is Hilbert–Schmidt because its composition with g is Hilbert–Schmidt as an operator Fj → F⊥
j .

We conclude that pj ◦u:Fj → F⊥
j is Hilbert–Schmidt, which implies that for i > j the operator

uij ∈ B(Hj ,Hi) is Hilbert–Schmidt. Moreover, for j > 1 the orthogonal projection

qj :H
′
j → Fj−1

is Hilbert–Schmidt because its composition with g corresponds to the operators g1j , . . . , gj−1,j ,
hence is Hilbert–Schmidt. Therefore qj ◦ u |Hj :Hj → Fj−1 is Hilbert–Schmidt, which means
that u1j , . . . , uj−1,j are Hilbert–Schmidt. We conclude that also for i < j we have uij ∈
B2(Hj ,Hi), and hence that u ∈ U2(H,D). Thus u−1g ∈ Pb ∩GL2(H,D) = Pr , and this proves
that GL2(H,D) = U2(H,D)Pr. From the connectedness of the groups U2(H,D) we derive
U2(H,D) = U2(H)U(H)0 ⊆ U2(H)Pr (Lemma A.5), whence GL2(H,D) = U2(H)Pr .

Finally GL2(H) ⊆ GL2(H,D) = U2(H)Pr leads to GL2(H) = U2(H)(Pr ∩ GL2(H)) =
U2(H)P .

Proposition V.8. Let H = H−k ⊕ . . . ⊕ Hk be the orthogonal eigenspace decomposition
of D = D∗ ∈ B(H, I) with IHj = H−j , Fj := H1 + . . . + Hj for j = 1, . . . , k , and define
Pb := Pb(F) and Pe := Pb ∩GL2(H, I)e . Then

GL(H, I) = U(H, I)Pb and GL2(H, I,D) ⊆ U2(H, I,D)Pb.

Moreover, with Gr := GL2(H, I,D)e , Ur := Gr ∩U(H) and Pr := Pb ∩Gr we get

Gr = UrPr = U2(H, I)Pr and GL2(H, I)e = U2(H, I)ePe.

In particular U(H, I) acts transitively on GL(H, I)/Pb and U2(H, I) acts transitively on Gr/Pr .

Proof. Let g ∈ GL(H, I). As in the proof of Proposition V.7, we put F ′
j := g.Fj and obtain

unitary operators
uj :Hj → H ′

j := (F ′
j−1)

⊥ ∩ F ′
j , j = 1, . . . , k.

Putting these maps together, we obtain a unitary map u+:H+ := Fk → H ′
+ := F ′

k mapping
each Hj , j = 1, . . . , k , unitarily onto H ′

j . From g ∈ GL(H, I) we derive that F ′
k is isotropic

for the bilinear form β(x, y) := 〈x, I.y〉 , which means that H ′
− := I.H ′

+ ⊆ H⊥
+ . Therefore

H ′
++ I.H ′

+ ⊆ H is an orthogonal direct sum, hence a closed subspace of H . We define a unitary
map

u−:H− := I.H+ → H ′
−, v 7→ I(u∗+)

−1I−1.v.

Let H ′
0 := g.(H0 +H+) ∩ (H ′

+)
⊥ . Then

(H ′
0 +H ′

+)
⊥ =

(
g.(H0 +H+)

)⊥
= (g∗)−1.

(
(H0 +H+)

⊥) = I−1gI.H− = I.(g.H+) = I.H ′
+ = H ′

−

implies that H = H ′
+ ⊕H ′

0 ⊕H ′
− is an orthogonal direct sum.

Since (H0, β |H0×H0) is, as a space with bilinear form, isomorphic to

(H+ +H0)/(H+ +H0)
⊥β = (H+ +H0)/H+

∼= H0,

the map g ∈ GL(H, I) induces an isomorphism

H0 → g(H0 +H+)/
(
g(H0 +H+)

)⊥β ∼= (H ′
0 +H ′

+)/H
′
+
∼= H ′

0

with respect to the restriction of β to both spaces. Therefore we obtain with with Lemma V.6
a unitary β -isometric map u0:H0 → H ′

0 .
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Combining u0 with u± , we now obtain with H = H+⊕H0⊕H− a unitary map u:H → H .
To see that u ∈ U(H, I), we first recall that u0 is β -isometric. Moreover, u maps (H0)

⊥β =
H+ +H− to the closed subspace H ′

+ +H ′
− = H ′

+ + I.H ′
+ with

(H ′
+ +H ′

−)
⊥β = (H ′

+)
⊥β ∩ (H ′

−)
⊥β = (H ′

+ +H ′
0) ∩ (I.H ′

−)
⊥ = (H ′

+ +H ′
0) ∩ (H ′

+)
⊥ = H ′

0.

Therefore it remains to show that u |H++H− is β -isometric. The subspaces H± and H ′
± are

β -isotropic, so that the assertion follows from

β(u.v+, u.v−) = β(u+.v+, I(u
∗
+)

−1I−1.v−) = −〈u+.v+, (u∗+)−1I−1.v−〉 = 〈v+, I.v−〉 = β(v+, v−)

for v± ∈ H± . We conclude that u ∈ U(H, I), and that u−1g preserves the spaces F1, . . . , Fk ,
hence is contained in Pb .

Suppose that g ∈ GL2(H, I,D). Then g maps the flag

F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ F
⊥β

k ⊆ . . . ⊆ F
⊥β

1

to
F ′
1 ⊆ F ′

2 ⊆ . . . ⊆ F ′
k ⊆ (F ′

k)
⊥β ⊆ . . . ⊆ (F ′

1)
⊥β

and u does the same. Therefore the last assertion in Proposition V.7 entails that u ∈ U2(H,D)
and hence that u ∈ U2(H, I,D). Finally u−1g ∈ Pb implies that GL2(H, I,D) ⊆ U2(H, I,D)Pb .

We conclude in particular that the group Ur = U2(H, I,D)e ⊆ Gr acts on Gr/Pr with
open orbits, and therefore transitively because Gr/Pr is connected, whence Gr = UrPr . With
Lemma A.5 we now obtain from ur = u2(H, I)+ u(H, I,D)0 that Ur = U2(H, I)e U(H, I,D)0 ⊆
U2(H, I)ePr , so that Gr = U2(H, I)ePr , and therefore GL2(H, I)e ⊆ Gr = U2(H, I)ePr yields
GL2(H, I)e = U2(H, I)ePe .

Remark V.9. (a) The decompositions of type G = UP obtained in Propositions V.7/8 are
analogs of the Iwasawa decomposition of finite-dimensional complex reductive Lie groups. It is
an interesting question whether such decompositions could be obtained for infinite flags.

(b) It follows from the proof of Theorem II.14 that the manifolds G/P contain a dense subset
which is the directed union of orbits of finite-dimensional groups GF which are compact complex
flag manifolds. Since the orbits GFP/P ⊆ G/P have the property that all holomorphic functions
on them are constant, it follows easily that all holomorphic functions on G/P are constant (cf.
[HH94b, Cor. 3.2.2] for the case G = GL2(H)).

For refined information on holomorphic sections of complex line bundles on the manifolds
G/P we refer to [HH94a,b], [Ne00a] and [Ne01a]. For an extension of the Bott–Borel–Weil
Theorem to direct limit groups, which is closely related to our setting, we refer to [NRW00].

Remark V.10. (a) First let G = GL2(H). For k = 2 and n := dimF1 < ∞ the orbit G.F1

consists of all n -dimensional subspaces of H . Therefore Grn(H) := G/P is the Graßmannian
of all n -dimensional subspaces of H . For n = 1 we obtain in particular the projective space
P(H) = Gr1(H).

For k = 2, H separable, and F := F1 of infinite dimension and codimension, the manifold
Grres(F ) := G/P is the restricted Graßmannian of the separable Hilbert space H based in F .
This manifold plays a crucial role in the structure theory of loop groups and in theoretical physics
(cf. [PS86], [Wu98]).

(b) The manifolds G/P for arbitrary length of the flag and G = GL2(H) have been introduced
in two papers of A. and G. Helminck (cf. [HH94a] and [HH94b]).

(c) For G = GL2(H) and k = 2 the manifolds G/P ∼= U/(U ∩ P ) (Proposition V.7) are
symmetric spaces because the group U ∩P can be written as the fixed point set of an involution
on U defined as τ(u) = pup−1 , where p2 = 1 and ker(p− 1) = F1 .

Other symmetric spaces are obtained for G = GL2(H, I) and k = 1 and either dimF1 = 1
or F1 ⊆ H maximal isotropic. In the first case we obtain the space of all isotropic lines in P(H)
for the bilinear form β(x, y) = 〈x, I.y〉 , and in the second case we obtain a subset of the restricted
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Graßmannian associated to F1 , consisting of all those subspaces which are isotropic for β . In
the first case the involution on U2(H, I) can be obtained from p2 = p with ker(p + 1) = H0

and ker(p− 1) = F1 + I.F1 . Then each element in U2(H, I) commuting with p either preserves
F1 or maps it to I.F1 , showing that U2(H, I) ∩ P has index 2 in the fixed point group of
τ(u) = pup−1 , hence is an open subgroup. In the second case, where F1 is maximal isotropic,
we define p ∈ GL(H, I) by i on F1 and −i on F⊥

1 . Then τ(u) := pup−1 defines an involution
on U2(H, I) with the required properties.

The important role of the flag manifolds G/P ∼= U/(U ∩ P ) stems from the fact that
these are precisely those coadjoint orbits of central extensions of the real group U which are
strong Kähler manifolds, hence have the “best” geometric structure. We refer to [Ne01a] for this
characterization which was one of the main motivations for writing the present paper.

Appendix

Lemma A.1. Let X and Y be Banach spaces and A:X → Y a continuous linear map.
Suppose that X1, Y1 are Banach spaces with continuous injective linear maps ηX :X1 → X and
ηY :Y1 → Y . If A(ηX(X1)) ⊆ ηY (Y1) , then the induced map

A1:X1 → Y1 with ηY ◦A1 = A ◦ ηX

is continuous.

Proof. We argue with the Closed Graph Theorem. Assume that (xn, A1.xn) → (x, y) ∈
X1 × Y1 . Then ηY (A1.xn) = A.ηX(xn) → A.ηX(x) implies that ηY (y) = A.ηX(x) = ηY (A1.x),
and therefore A1.x = y . Therefore A1 is continuous.

Lemma A.2. Let X,Y, Z be Banach spaces and A:X × Y → Z a continuous bilinear map.
Suppose that X1, Y1, Z1 are Banach spaces with continuous injective linear maps ηX :X1 → X ,
ηY :Y1 → Y and ηZ :Z1 → Z . If A(ηX(X1)× ηY (Y1)) ⊆ ηZ(Z1) , then the induced bilinear map

A1:X1 × Y1 → Z1 with ηZ ◦A1 = A ◦ (ηX × ηY )

is continuous.

Proof. In view of [Ru73, Th. 2.17], it suffices to show that A1 is separately continuous. Fix
y1 ∈ Y1 . Then the map A(·, ηY (y1)) maps ηX(X1) to ηZ(Z1), so that the continuity of the
map A1(·, y1):X1 → Z1 follows from Lemma A.1. We likewise obtain the continuity of the maps
A1(x1, ·). Therefore A1 is separately continuous and therefore continuous.

Lemma A.3. If g is a Banach–Lie algebra and a, b are Banach-Lie algebras with continuous
injective homomorphisms ηa: a → g and ηb: b → g such that ηb(b) normalizes ηa(a) , then the
induced action of b on a is continuous.

Proof. We apply Lemma A.2 with the continuous bilinear map [·, ·]: g × g → g which maps
ηa(a)× ηb(b) to ηa(a).

Lemma A.4. If M and N are Banach manifolds, M1 ⊆M is a submanifold, and f :M1 → N
is a smooth map, then the graph Γ(f) := {(x, f(x)):x ∈M1} is a submanifold of M ×N .

Proof. Passing to local charts, we may assume that M = M0 × M1 holds for a Banach
manifold M0 . Let x = (x0, x1) ∈M . Then we may further assume that N is an open subset of
a Banach space X and that f(x1) = 0. We then consider the smooth function

F :M0 ×M1 ×N →M0 ×M1 ×X, F (y0, y1, y2) := (y0, y1, y2 − f(y1))

which is a local diffeomorphism around (x0, x1, 0) ∈ Γ(f) with

F−1(M × {0}) =M0 × Γ(f).

This implies that Γ(f) is a submanifold of M ×N .
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Lemma A.5. Let A,B,C be Banach–Lie groups with morphisms ηA:A→ C and ηB :B → C .
Assume that

(1) C is connected,

(2) imL(ηA) + imL(ηB) = L(C) , and

(3) ηB(B) normalizes ηA(A) .

Then C = ηA(A)ηB(B) .

Proof. The multiplication map m:A × B → C, (a, b) 7→ ηA(a)ηB(b) is a smooth map whose
differential in (e, e) is given by (x, y) 7→ L(ηA)(x)+L(ηB)(y), and hence is surjective. Therefore
the Implicit Function Theorem implies that im(m) has inner points. Further (3) implies that
im(m) is a subgroup of C and therefore an open subgroup. Now (1) shows that m is surjective.

Proposition A.6. Let A,B,C be Banach–Lie groups and assume that A is connected and
that there exist injective morphisms ηA:A → C and ηB :B → C . Let a , b and c denote the
corresponding Lie algebras and identify a and b with their image under L(ηA) , resp., L(ηB) .
We assume that

(1) b is a closed subalgebra of c ,

(2) c = a+ b ,

(3) B normalizes A , and

(4) a ∩ b is complemented in a .

Then the conjugation action of B on A is smooth, AB is an open subgroup of C , and the
multiplication map m:AoB → AB ⊆ C is a locally trivial A ∩B -principal bundle.

Proof. Since b normalizes a , Lemma A.3 implies that the bracket map a×b → a is continuous
with respect to the Banach space structure on a which might be finer than that inherited from
c . Therefore ao b carries the structure of a Banach–Lie algebra. Lemma A.1 also implies that
for each b ∈ B the map Ada(b) := Ad(b) |a: a → a is a continuous automorphism. The action
of B on a is obtained by integrating a continuous representation of its Lie algebra b , hence is a
continuous homomorphism Ada:B → Aut(a).

For each b ∈ B the conjugation map cA(b):A → A, a 7→ bab−1 is a group automorphism
with cA(b)(expA(x)) = expA(Ada(x)) for x ∈ a , because both sides have the same image in C .
Therefore each cA(b) is smooth in an identity neighborhood, thus a smooth automorphism of A .
Moreover, the smoothness of the action of B on a implies that the B -orbit maps of elements
of A are smooth for regular values of the exponential map expA: a → A , hence for all points in
an identity neighborhood of A . Since B acts by automorphisms of A , the set of all points with
smooth orbit map is a subgroup, so that the connectedness of A entails that all orbit maps of
elements in A are smooth. Now let b0 ∈ B and a0 ∈ Ae . For b ∈ B and a ∈ A we then have

b0baa0(b0b)
−1 = cA(b0)

(
(bab−1cA(b)(a0)).

Since B acts by smooth automorphisms and with smooth orbits maps, the smoothness of the
action of B on A follows from the smoothness close to the identity which in turn follows from
the fact that the exponential function is a local diffeomorphism and the action of B on a is
smooth. Thus the group AoB carries a natural structure of a Banach–Lie group.

As in the proof of Lemma A.5, we see that the multiplication map m:AoB → C, (a, b) 7→ ab
and an open map. Therefore AB is an open subgroup of C . The kernel of m is the Lie subgroup

N = {(a, a−1) ∈ AoB: a ∈ A ∩B}

([Ne00a, Lemma IV.11]). The Lie algebra of N is the subalgebra {(x,−x) ∈ a o b:x ∈ a ∩ b}
which is complemented in aob because, in view of (4), a∩b is complemented as a subspace of a .
Therefore we see with Definition III.6 that the quotient group (AoB)/N is a Lie group, which
then is isomorphic to AB . Moreover, the quotient map A o B → (A o B)/N is a submersion,
hence defines a locally trivial A ∩B -principal bundle.
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Remark A.7. If, under the assumption of Proposition A.6, A is not connected, then we first
obtain with Proposition A.6 that Ae o B → AeB is an Ae ∩ B -principal bundle over the open
subgroup AeB ⊆ C . Moreover, AeBe is an open connected subgroup of C , hence the identity
component Ce of C .

Assume that AB = C . Then the multiplication map AoB → C → C/Ce = π0(C) factors
through a surjective homomorphism

(A/A ∩ Ce)o (B/B ∩ Ce) → π0(C).

If we know, in addition, that B acts continuously on A , then AoB is a topological group
and the open subgroup Ae o B is a Banach–Lie group. This implies that A o B is a Banach–
Lie group because because conjugating by elements of A induces continuous, hence smooth,
isomorphisms of Ae oB .

Proposition A.8. For j = 1, 2 let Gj be a topological group and Hj ⊆ Gj a closed
subgroup. We further assume that qj :Gj → Mj := Gj/Hj defines a locally trivial principal
bundle and that we have a continuous homomorphism ϕ:G1 → G2 with ϕ(H1) ⊆ H2 . Let
ϕM :M1 → M2, g1H1 7→ g2H2 denote the map induced by ϕ . If two of the three maps ϕ , ϕM

and ϕH := ϕ |H1 :H1 → H2 are weak homotopy equivalences, then the same holds for the third
one.

Proof. Since the map ϕ is compatible with the subgroups Hj ⊆ Gj , it induces maps between
the exact homotopy sequences

· · · → πk(Hj) → πk(Gj) → πk(Mj) → πk−1(Hj) → πk−1(Gj) → πk−1(Mj)

of Gj →→Mj :

· · · → πk(H1) → πk(G1) → πk(M1) → πk−1(H1) → πk−1(G1) → . . .yπk(φH)

yπk(φ)

yπk(φM )

yπk−1(φH)

yπk−1(φ)

· · · → πk(H2) → πk(G2) → πk(M2) → πk−1(H2) → πk−1(G2) → . . . .

We assume that ϕ and ϕH are weak homotopy equivalences; the other cases are similar.
Then the maps πk(ϕ) and ϕk(ϕH) are isomorphisms, and the rows in the above diagram are
exact, so that the 5-Lemma ([CE56, Prop. I.1.1]) implies that all homomorphisms πk(ϕM ),
k ∈ N , are isomorphisms. To obtain this also for k = 0 we may extend the exact homotopy
sequence by zeros on the right hand side because the maps π0(Gj) → π0(Mj) are trivially
surjective.
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