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Abstract This article deals with the Stokes equations in aperture do-
mains. Geometrically spoken, such domains consist of two halfspaces sep-
arated by a wall, but connected by a hole within that wall. It is well known
that in these domains the solution of the Stokes equations is not unique, but
that an additional boundary condition has to be imposed: This can be either
the flux through the hole or the pressure drop between the two halfspaces.
In this paper suitable Stokes operators are constructed for both cases, which
are shown to generate bounded analytic semigroups. This is used to prove
the existence and uniqueness of strong solutions of the Stokes and Navier-
Stokes equations subject to one of the additional boundary conditions.
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1 Introduction

The flow of a viscous incompressible fluid in a region {2 with rigid walls is
governed by the following Navier-Stokes equations:

u — Au+u-Vu+Vp=f in2x(0,7),
divu=0 inf2x(0,7),
u=0 ondf?x(0,7),
u(0) =up in £2.

)

Here w is the velocity field, p the pressure and f, ug are the given external
force and initial velocity respectively. It turns out that for some domains
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even the solution of the stationary Stokes equations is not uniquely deter-
mined by the corresponding equations, but one has to impose an auxiliary
condition to single out a unique solution. This was first discovered by Hey-
wood, considering a so called aperture domain, see [10]:

Definition 1 For n > 2 let R} = {a: e R” : £z, > d/2}, d > 0 and
B={zeR":|z| <R}, R>0. Then 2 C R" is called an aperture
domain, if {2 is a domain satisfying the uniform cone condition and

Q2UB=R?UR" UB.

Fig. 1 An aperture domain

By means of the Galerkin method, Heywood [10], [11] has shown the local
existence and uniqueness of so called generalized solutions of the Navier-
Stokes equations for both of the additional boundary conditions.

Farwig and Sohr [4], [S] analysed the resolvent system for the Stokes
problem. They showed that the Stokes operator, associated to a prescribed
flux, is the generator of a bounded analytic semigroup.

In [7] the Stokes operator in L? for a prescribed pressure drop is con-
structed. Moreover, the local existence and uniqueness of strong solutions
of the Navier-Stokes equations for both of the additional boundary condi-
tions is shown.

In the present article the results of [7] are generalized to LY spaces. It
turns out that the behaviour of the (Navier-) Stokes equations depends on
the space dimension n:

Let n = 2. For 1 < g < 2 the solution is unique and the flux vanishes,
whereas for ¢ > 2 a flux has to be given. A pressure drop can never be
prescribed.

Let n > 3. For 1 < ¢ < -5 = n' the solution is unique, without
claiming any additional boundary condition. If n’ < g < n, either the flux
or the pressure drop can be prescribed, whereas for ¢ > n only a flux can
be given.
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This paper is organized as follows: First the basic function spaces for
the Navier-Stokes equations will be analysed. Then the Helmholtz decom-
positions appropriat to prescribe a flux or pressure drop respectively will be
defined. Afterwards the associated Stokes operators will be shown to gen-
erate bounded analytic semigroups. This is used to prove the existence and
uniqueness of solutions of the Stokes equations under one of the additional
boundary conditions. Finally, using the technique of [9], local solutions of
the corresponding Navier-Stokes equations are constructed.

2 The Basic Function Spaces

The following standard notation is used: If {2 C R" is a domain, then
C§°(£2) denotes the set of the smooth functions with compact support in
£2, whereas C§°(£2) are the functions of C§°(R™), restricted to {2.

Let 1 < g < oo. Then L?(f2) denote the Lebesgue space and || - ||,

its norm. The dual exponent ¢’ is defined by é + % =1.Ifu € LY(N2)",
v € LY ()", then (u,v) denotes the duality pairing

<u,v>=/u-vda:,
N

where stands for the scalar product in R".

Let m € N. Then W *({2) is the Sobolev space of all functions, whose
weak derivatives up to order m are in L%({2). Moreover, VOV(}(Q) denotes
the closure of C§°(£2) with respect to the W (£2)-norm.

Beside the standard Sobolev spaces, appropriate function spaces for the
velocity u and the pressure p have to be introduced. Concerning the velocity
there are two possibilities:

(13 2

Definition 2 Ler 2 C R"”, n > 2 be an aperture domain and 1 < q < oc.

Then
1 _ o e | o
THR) = {u € 02 () L divu = o}, )
) [I-ll1,q
JH2) = {u € () : divu = 0} , 3)
where — || - ||1,4 denotes the closure with respect to the W (12)-norm.

In contrast to the case of a bounded domain or an exterior domain, these
two spaces do not always coincide.

To understand this phenomenon, the physical flux has to be defined pre-
cisely:
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Definition 3 Ler 2 C R", n > 2 be an aperture domain and M C 2N B
a smooth (n — 1)-dimensional manifold such that £2\ M consists of two
disjoint domains (2 and (2_ with M = 02+ N 0(2_. Furthermore let N
be the normal vector on M directed into §2_. Then, for u € Jql(Q),

@(u)z/MN-udo

is called the flux through the aperture from (2, to {2_.

By the trace theorem it is easy to see that @ is a linear functional on
qu(Q). Since the vector fields are solenoidal, the flux ¢ does not depend
on the special shape of M i.e. one can take M = R’} N JB.

Indeed, for a special aperture domain, Heywood [10] has shown the
existence of a vector field x € qu(Q)”, n’ < g < oo such that () = 1.

On the other hand it is easily seen by Gauss’ theorem that @(u) vanishes
for u € J7(£2), hence J;(£2) # J7(2). This result applies to arbitrary
aperture domains:

Theorem 1 Let {2 C R", n > 2 be an aperture domain. Then there is a
vector field x € C™(£2)" N W2(2)", n' < q < oo such that

Xlono =0, divxy = 0, d(x) = 1. 4)

) Ifn' < q< oo, then
JH2) = {u € JHQ) : B(u) = o}. 5)
i) If1 < q < 1/, then
J3(02) = J}H(92). 6)

Proof. Let {770, N+, 77_} be a partition of unity in {2 with the following
property: There exists aball B’ = {z € R" : |z| < R'}, R’ > R such that
no=1on2NB,n; =1on2,\B and n_ = 1on 2_\ B’. Furthermore,
let 29 C 2 N B’ be a domain satisfying the uniform cone condition and
supp n+ C §2p.

For the special aperture domain G = {z € R" : z, # Oor |z| < 1}
there is a vector field ¢y € C®(G)" N W2(G)", n/ < q < oo, satisfying
(4), see [8], chap. I11.4.

Choosing B large enough guarantees that x; = (1 — 79) vanishes on
012. Furthermore, g = —div x; = ¢ - Vg € C§°(f29) with

/gdwz— N - xi1do =0.
0 RPN
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Hence by [8], Theorem II1.3.2 there is a vector field xo € C§°(£2p)" with
divxp = g. Now x = xo0 + x1 € WCIQ((Z)" N C> (ﬁ)n has the desired
properties.

In order to show i), let u € 7, (£2) with $(u) = 0. Then uy = un €
Wl(!2+)” and divuy = u - V77+ = g4. Because of the compatibility
condltlon

/ g+d3::/ N -uydo =—P(u) =0,
24NB’ 8(Q+OB’)

[8], Theorem II1.3.2 can be used once more to get v € W (2. NnBH"
such that divey = gy. Hence uy — vy € 7, 1(9+) In the same way a
vector field v_ € Wl(_Q N B')" with u_ —v_ € J;(£2_) can be found.
Setting ug = ung and vy = vy + v_ yields ug + vo € J; (2N B’) and
u = (uy —v4)+ (u— —v_)~+ (ug +vo). Now Jq1 and qu coincide for the
perturbed halfspaces (24 and the bounded domain {2 N B’, see [8], Chapter
114, hence u € J, (12).

In order to prove ii), it has to be shown that #(u) = 0 for u € J (12),
provided 1 < ¢ < n/: For r > R, the Gauss theorem yields

:/Nudo':—/ Nuda
M 2,.NOB,

Extending u by zero outside of {2 and using Holder’s inequality shows

_ n—1\1-1/q 1/
|D(u)| = Cn(r" ) lul? do .
OBy

Integration yields

o) S q
/R r(n=1)(¢g-1) dr < C/R /83T lul?do dr < Cllul|f < oo.

Now because of (n — 1)(qg — 1) < 1 the flux @(u) has to vanish. O

Similar to the case of the velocity field u, for the pressure p there are
also two possibilities for the appropriate function space:

Definition 4 Ler (2 C R"™, n > 2 be an aperture domain. Then

Wi(2) = {pe L, (@) : Vp e L1(2)}, (7)

/Wl(g) — COOO (ﬁ) ||V||q (8)

q

Here L1 (£2) denotes those functions u such that u € L4(£2 N B) for all
balls B C R™.
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If {2 is a bounded domain or an exterior domain, these two spaces coincide.
For aperture domains however, the situation is as follows:

Theorem 2 Let {2 C R™, n > 2 be an aperture domain.
i) If 1 < q < n, then there are constants p+ € R such that for % = % — %
P — pllLr 04y < ClIVDlLaoy)-
The pressure drop [p]| = p+ — p— can be estimated by
[Pl < ClIVPllLaa)-

Moreover,

—~

Wi2) = {peW}(2): b =0}. ©)
ii) If n < q < oo, then W)(£2) = W}(2).

q

Proof. See [5]. It is clear from the proof that the theorem applies to do-
mains fulfilling the uniform cone condition only. O

Theorem 3 Let {2 be an aperture domain, v € J, (2) and p € qu(Q)
Then

/ Vp-udr = —[p|P(u). (10)
N

Proof. Letu € J.(£2). Then, for py € C5°(£2), by Gauss’ theorem

/Vpo-udx = 0.
02

This applies to py € qu (£2) by density. Taking 7, instead of pg yields

/Vn+-udx:/ V(n+—1)-ud:z::—/ N -udo = —P(u).
2 24NB’ M

Now the assertion follows, using the decomposition Vp = Vpg + [p]Vn4,
see (9). O
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3 The Helmholtz Decomposition

After the introduction of suitable function spaces for the velocity u and the
pressure p, the next step is to find Helmholtz decompositions appropriate
for a given flux or a given pressure drop.

It will be shown, under certain restrictions on 1 < g < oo, that

LA(02)" = Jg(£2) ® Go(£2) = T4(£2) @ G4(£2),
where the underlying function spaces are defined as follows:

Definition 5 Ler {2 C R", n > 2 be an aperture domain with 02 € C 1
and 1 < q < oo. Then

T(2) =TI, (11)
Jo(2) = T, (12)
Gy(12) = {Vp peWi 0}, (13)
Go(2) = {Vp:peWi(2)}. (14)

The construction of both of the Helmholtz decompositions is based on the
following weak Neumann problem for the Laplace equation:

Theorem 4 Let 2 C R", n > 3 be an aperture domain with 9§2 € C L and
n' < q<n.

— —~ o~ /
i) The operator —Aq : W1(2) = W, 1(2) = [qu,(ﬁ)] defined by

—Agp = (Vp,V-)

is an isomorphism, in particular, for p € /qu(ﬂ)

Vp,Vu
Vol < sup SRV 15
vG/V[?ql,(Q) [Vol[y
i) If Vp € /qu(ﬂ) and
Vp,V
sup w < 00, (16)
vEWL,(12) [Vl

for some n/ <1 < n, thenp € W(£2).

ii)If n > 2and 1 < g, r < oo, then i), ii) apply to the corresponding
W -spaces as well.
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Proof. If (2 is abounded domain or a halfspace, a proof of iii) can be found
in [12]. If {2 is an aperture domain, then the first part of iii) is proved in [5],
whereas the second part is proved similarly to ii).

To show i), let my € qu(Q) be the unique solution (independent of
n' < q<n)of

(Vmo, Vo) = [v]
forv € qu(Q) Because of 0 < (Vmg, Vg) = [mg], one can normalize
m = 7o /[mo)- (17)
Letv € W (£2). Thenw = v — [v]m € W (£2) with |Vw|ly < C[|[ Vvl
Moreover, for p € /qu(ﬂ),
<Vp, Vv> = <Vp, Vw>.

Hence,

Vp,V Vp,V
Vol <0 sp BV ooy, YRV
Uel/i/ql,(()) [Vl wqul,(Q) [Vwl[y

In particular, —4A, : /W;(Q) — Wq_l(ﬂ) is injective and has a closed
range. Obviously (—4,)" = —A, therefore by the closed range theorem
— A, is surjective.

To prove ii), let p € W, (£2) fulfil (16), i.e. p € W,;'(£2). Then by i)
there exists a function p; € er (§2) such that

/Vpl-Vvdaz :/Vp-Vvdaz.
Q Q

In the following, by interchanging p and p; if necessary, it can be assumed
that ¢ > r. Let U = (2, R’} and n = np, n+ respectively. Because v
and p are determined up to constants only, they can be chosen to have a
vanishing mean value over (2. Hence, by the Poincaré inequality np €
qu (U). Furthermore,

/ V(np) - Vvdx = / (an -Vv—ouVn-Vp+ Vp; - V(m))) dz .
U 0

Since suppn C 2y, the Poincaré and the Holder inequality yield

/U V(np) - Vo dz

< C(IVplgIvalls + 1Vp1lL ) 190 o o
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forl =1 %. Now Cg°(R") is dense in W},(U), hence np € /V[Z}(U)
But p = nop + n4p + n_p and therefore p € W}(Q)
Since qu(U) =W, (U).1 < g < ooforU = (2, RY, the above proof

applies also to the IV -spaces. O

Theorem 5 Let 2 C R", n > 3 be an aperture domain with 052 € C L and
n' <q<n.

i) The following topological and algebraical decomposition holds true:

Li(2)" = T,(82) @ G4(02). (18)
it) If P, denotes the associated Helmholtz projection onto J,(§2), then
(Pg) =Py

with respect to the duality pairing (-, -). Moreover, the dual space
T4 (82) can be identified with Jy(2) in this sense.

iti) The Helmholtz projection Py is independent of q: If w € Li(£2)" N
L"(£2)" forn' < q, r < n, then Pyu = Pru.

w)Ifn>2and1l < q, r < oo, then i) —iii) apply to P, J,(12), G4(12) as
well.

Proof. For u € L9({2)" define P,u = u — Vp, where p € /qu(ﬁ) is the
unique solution of

(Vp,Vv) = (u, Vv) (19)

for v € qu,(ﬁ), see Theorem 4. Then P, is linear and continuous. Fur-
thermore, Pyu € G, (§2)* with respect to (-, -). It remains to show that
Gy () = J,(02). Because J,(§2) is reflexive as a closed subspace of
Li(£2)™, it is enough to prove qu (2)1 = G, (£2) leading to
G = T} =TF@ " = @), o

To show this, let v € J} (12)* C LY(2)", ie. (v,u) = 0foru € T (£2).
Then v = Vp € Gy (§2) by [8], Theorem III.1.1. Now Theorem 3 yields
[p] = 0, hence Vp € G (£2).

If, on the other hand, Vp € G,(42), then (Vp,u) = 0 for u € Jql(Q)
by the same Theorem, hence Vp € qu(())L . This proves i).

To show ii), let u € LI(2)" and v € L9 (2)". Then Pju = u — Vp
with Vp € G,(£2) = J,(£2)* and therefore

<u, Pq/v> = <Pqu, Pq/v>.
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Analogously (Pyu,v) = (Pyu, Pyv). This yields (P,) = Py

Define 1" : Jy(2) — Jy(£2)’ via the duality pairing by (7'v)(u) =
(v,u) foru € J,(£2). If Tv = 0, then (v, Pyu) = (v,u) = 0 for u €
L4(£2)", showing that 7" is injective.

Let F € J,(£2)". Then by Hahn-Banach’s theorem there exists f &
(L9(2)") = LY(2)" with F(u) = (f,u) = (Pyf,u) for u € T,(£2).
Now P f € J,(£2), hence T is surjective. This proves J,(£2)" = T (12).

The property iii) follows from the definition of P, and Theorem 4.

Letn > 2and 1 < g < oo. For u € L4(2)" define Pju = u — Vp,
where Vp € qu(Q) is the unique solution of (19) for v € qu,(Q). Then
the proof of iv) is similar to the one above. O

Letn' < g < nand Vrr € G,(12) be the function defined by (17). Then
obviously Vrr € G,/ (2)*+ = J,(£2). Hence,

Ve J,(2) NGy(02).
Combining this with (18) yields the decomposition
J4($2)

N\

-~

LUQ)" = J,(2) & span {Vr} & G,(12). @1

-

Gy($2)

4 The Stokes Operator

The Helmholtz projections of the last section are used to define the Stokes
operators for the aperture domain:
Definition 6 Let 2 C R" be an aperture domain with 052 € C V1.

i)Forn > 3 and n' < q < n the Stokes operator associated with a
prescribed pressure drop is defined by

Ay =Pg(=A4) : D(Ag) C TJ4(£2) — T4(82),
where

D(A,) = {u € Wg((})” tulpn =0, divue =0, }

ii)Form > 2and 1 < q < oo the Stokes operator associated with a
prescribed flux is defined by

Ay =PFy(—4): D(Ay) C Jy(£2) = Jy(£2),
where

D(4,) = {u € W2(2)" : ugg = 0, divu =0, &(u) = o}.
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In order to show that the Stokes operators generate bounded analytic semi-
groups, the following resolvent system has to be analysed:

Au—Au+Vp=f in {2, (22a)
divu =0 in {2, (22b)
ulpn = 0. (22¢)

This was done by Farwig and Sohr in [4], [5]. Their results are used to
prove the next theorem.

Theorem 6 Let 2 C R™, n > 3 be an aperture domain with 0(2 € C L1
O<e<m/2andn’ < q<n.

i) For every f € J,(£2) and

/\Ezez{ze(C:|argz| <7T—s}
there exists a unique solution uw € D(A,) of the equation
M+ Agu = f. (23)
This solution satisfies the estimate
[Mllly + [ Aqull, < Cell £l 24)

Therefore, A + A, has a bounded inverse in J,(§2) with

[A(Ag + M) 7| < Ce. (25)
ii) For u € D(A,)
lulliweie) < Cll(Ag + D, (26)
and

iii) (Aq)" = Ay with respect to the duality pairing (-, -).
iv) Ag is injective and R(Ay) is dense in J,(12).

v)Letn > 2and 1 < q < oo. Then i) — iv) applies to Ay, J,4(§2) respec-
tively, where (27) is valid only for 1 < q < n.
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Proof. By [4], Theorem 1.2 for every A € > _, f € J,(£2) there is a
unique solution (u, Vp) € W2(£2)" x L1(£2)" of the resolvent equations
(22) with [p] = 0. This solution satisfies

Alllullg + 1V*ully < Cel| fllq-

Obviously u € D(A,) is the unique solution of (23) and (24), (25) follow
from the preceding estimate.
Moreover, since f = (A; + A)u, the estimate (26) follows by setting
A = 1. Letting A\ — 0 yields (27), since the estimate is uniform in A > O.
To show iii), let u € D(Ay) and v € D(A}) C Jy(£2). Then by
definition there exists f € J(£2) with ((A; + I)u,v) = (u, f). Because
Ay + I is surjective, there is a w € D(Ay) with (Ay + I)w = f. Hence,

((Ag + Du,v) = (u, (Ay + Dw).

By Theorem 5 there exist Vp € G,(§2), Vg € G (§2) such that Aju =
—Au+Vpand Ayw = —Aw+ Vg respectively. Now (20) and integration
by parts yield

(u, (Agy + Iw) = (u,w — Aw + Vq) = (u — Au+ Vp,w)
= ((Ag + Iu,w).
Since A, + I is surjective, v = w € D(A) and
<Aqu,v> = <u,Aq/v>.

The injectivity of A, follows from (27), whereas R(4,) = N (A,)+ =
J,(£2) by iv) and Hahn-Banach’s theorem.

The proof for A,, n > 2,1 < g < oo is similar to the proof above. One
considers the resolvent equations (22) with @(u) = 0 instead of [p] = 0, for
details see [5]. The only problem is the injectivity of A, for n < g < oo:
Let u € D(Ay) with Aju = 0. Then u is a weak solution of the homoge-
neous stationary Stokes equations with prescribed flux in the sense of [6].
Hence, u = 0 and A, is injective. O

S The Stokes Equations

Now the well-known theory of analytic semigroups is used to analyse the
Stokes equations

u—Au+Vp=f inf2x(0,7T), (28a)
divu=0 in£ x (0,7), (28b)
ulpp =0 ondf2 x (0,T), (28¢)

w(0) =uy int=0. (28d)



Strong L?-Theory of the Navier-Stokes Equations in Aperture Domains 13
Therefore it is assumed that the right-hand side f is locally Holder contin-
uous in time with exponent x € (0,1), i.e. f € C*(0,T, L1(02)").

Theorem 7 Let 2 C R™ be an aperture domain with 82 € CY! and
0 < & < 1. Moreover, let uy € Jy(f2) and f € C*(0,T;LI(2)") N
LY(0,T; L9(£2)™) be given.

i) Forn > 2and 1 < q < n' there is a unique solution
(u, Vp) € (C25(0, T3 L(2)") 1 C* (0, T; WE(R2)") )
x C*(0,T; LI(12)")

(29)

of the Stokes equations (28).

i) Forn > 2,n' < ¢ < coand a € C1*(0,T) N WL(0,T) such that
@(ug) = «a(0), there is a unique solution of the Stokes equations (28)
with

D(u) = .

iii) Forn >3, n' < q<mnand 3 € C*(0,T) N LY(0,T) there is a unique
solution of the Stokes equations (28) with

[p] = 6.
Proof. Let (u, Vp) be a solution of the Stokes equations with ¢(u) = a.
Applying P, to (28a) shows that v = u — ay € CY(0,T;J,(2)) N
C*(0,T; D(Ay)) is a solution of

v+ Agu=1F, (f —ayx + an), (30a)
v(0) = up — a(0)x. (30b)

It is well known that this initial value problem has a unique solution v €
C15(0,T; J4(£2)) N C*(0,T; D(Ag)). Setting u = v + ax yields

us — Au — f = —Vp € G4(£2),

by the properties of the Helmholtz decomposition. Hence, (u, Vp) is the
solution of the Stokes equations with #(u) = «. This proves ii). Prescribing
a = 0 the proof of i) is similar.

To prove iii), let (u, Vp) be a solution of the Stokes equations with
[p] = B. Applying P, to (28a) shows that u € C1*(0,T;7J,(£2)) N
C*(0,T; D(Ay)) is a solution of

u; + Aqu =Py f — [p|V, (31a)
u(0) = up. (31b)
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On the other hand, for the solution u of this initial value problem,
u — Au+ [p]Vr — f = —Vpy € Go(£2),

by the properties of the Helmholtz decomposition.
Hence, (u, Vp) with Vp = [p]V 7 + Vpy is the unique solution of (28)

with [p] = . O

Following [2], it is possible to show estimates of maximal Holder regularity
as well. For maximal L? -regularity see [7].

6 The Navier-Stokes Equations

The construction of solutions of the Navier-Stokes equations (1) is based
on their abstract integral formulation

t

o(t) = e My + / e~ (t=9)Ap (g — (u- Vu)) (s)ds. (32)
0

Looking at the Stokes equations, it is clear how to deal with the additional

boundary conditions: If a pressure drop [p] = (3 is prescribed, then A = A,

P =P, g=f—[p|Vmand u = v. On the other hand, if a flux ¢(u) = «

isgiven,then A=A, P=PF,,9g=f —ayx + aAxand u = v + ax.

By means of this identification the two different boundary conditions
can be dealt with simultaneously, where in the latter case n’ < ¢ < n is
assumed.

Solutions of the integral equation (32) are constructed via a fixed point
iteration, see [9]. In order to estimate the nonlinear term P(u - Vu), the
boundedness of the imaginary powers of the Stokes operator is assumed in
[9]. Up to now this has not been proved for aperture domains. Nevertheless,
the nonlinear term can still be estimated, yielding a slightly weaker result.

For these reasons, fractional powers of positive operators and complex
interpolation theory are needed. In order to fix notations a short summary
is given, cf. [13]:

Interpolation theory: Let X, X1 be complex Banach spaces, both con-
tinuously embedded in a complex linear Hausdorff space X'; then { X, X1}
is said to be an interpolation couple. For such an interpolation couple the
spaces Xo N X7 and Xy + X1, equipped with their natural norms, are also
Banach spaces.

Let S = {z € C:0 < Rez < 1}. Then F(Xy, X1) denotes the space
of analytic functions f : S — Xy + Xj such that f(j +it) : R = X},
7 = 0, 1 1s continuous and bounded. Provided with the norm

£l 5, = ma {jglgllf(ﬂ' + it)\lxj}
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F(Xo, X1) is a Banach space.
For 0 < # < 1 the interpolation space Xy = [Xo, X 1] o 18 defined by

X, = {a: — f(0): f € ]—"(XO,Xl)}.
Endowed with the norm
lello = it {11l x5 £0) =2

it becomes a Banach space.
Let {Yy, Y1} be another interpolation couple and let 7" : Xy + X; —
Yy + Y3 be a linear operator such that T : X; — Y, j = 0, 1 is bounded.
Then Xy, Yy have the interpolation property, i.e. T': X9 — Yjp is bounded.
It is well known that the Bessel potential spaces H;(R") for s > 0,
1 < g < oo are interpolation spaces with

[Hz0(R™), Hyt (R™)], = Hy(R"),
where

5= (1—0)sy+0s1, ~=(1—0)~+0L.
q 40 q1

This applies to H 5(!2) whenever {2 C R” has the extension property, i.e.
whenever there is a linear bounded operator £ : Hj(§2) — H;(R™), s > 0,
1 < g < oo such that 8u‘9 = wu. If {2 is an aperture domain with d > 0,
the extension property holds, see [1].

Fractional powers: Let X be a Banach spaceand A: D(A) C X — X
a densely defined positive operator, i.e.

< K A>0
— 14X -

Then for z € C, 0 < Re z < 1 the fractional power A~7 is defined by

lCA+27

sinmz

A% =

/ ATF(A+ NN,
0

7r
This operator is continuous and its norm can be estimated by

sin 7wz

4~ < - )

sinmRe z

Furthermore, it can be shown that A% extends to an analytic semigroup
for Rez > 0.
Since A™7 is injective, one can define the closed operators

A7 = (A% DAY Cc X = X,
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with dense domain D(A%) = {x = A7y : y € X}.

Suppose A allows the definition of bounded imaginary powers A%,
t € R, where ||A%|| < Ce for some constants C, v > 0. Then for
meNand0 <60 <1

[X,D(A™)], = D(A"™)

with respect to the graph norm. Without the boundedness of the imaginary
powers, only the following can be shown:

Theorem 8 Let A be a densely defined postive Operator on X, m € N and
0 <60 <1 Thenfora_ <6fm < ay

D(A%*) — [X,D(Am)]9 — D(A“-). (34)
Proof. Forxz € D(A™) let
f(z) = (70 A= (z=0)my,
By (33) and the boundedness of A7l
JA77]) < CeemA,
for 0 < ¢ < Re z < m. Consequently,

|70 = [let-07" A Crm gomreg |
< ] armeal,
Hf(l + it)HD(Am) _ He(1+it—0)2A—mA—(E—I—itm)AGm—H-:

< ol

xHD(Am)

Choosing e small enough yields f € F(X, D(A™)). Because f(0) = =

HxH[X,D(Am)]g < HfHF(X,D(A)) < CEHAHWF%HX'

This applies to 2 € D(A?™%¢) by density. Since ¢ can be chosen arbitrarily
small,

D(A®+) < [X, D(A™)],.

To show the reverse embedding let z € D(A™) and f € F(X,D(A))
with f(0) = z. Moreover, let J;, = k(A + k)~!, k € N be the Yosida
approximation and € > 0. Then

g(z) = e(z_e)zAzm_EJg”f(z)



Strong L?-Theory of the Navier-Stokes Equations in Aperture Domains 17

is analytic on S with g(9) = A%"~¢J™z. Hence, by the theorem of the
three lines,

AT e gia]| < Cell T8 || o pamy) -

Letting kK — oo and taking the infimum over all f with f(6) = x yields

Om—
|47 < Cellf | piamy,
because J/"x — x. This estimate applies to z € [ X, D(A™)] o by density.
As € can be chosen arbitrarily small,

[X, D(A™)], — D(A*").
O

The above results are used to prove the following Sobolev type embed-
dings: Since (A, + I), n’ < ¢ < n is positive, the fractional powers of
the Stokes operator are well defined. By the previous theorem, (26) and
complex interpolation

[ullp2s (@) < ClI(Ag + I)%ullg, (35)

where u € D(AY) and 0 < s < a < 1. Applying the Sobolev embedding
theorem yields

2c

E _ = (36)
n

lelly < Cl(A + D) ullg, 2

> >

1 1
roq
By iteration this estimate applies to all > 0. Similary follows

1 1 2
>--= @37
n

1
Vaul, < C 1)et1/2 >
[Vull, < C||(Ag + 1) ullq, P

for all @ > 0. The corresponding estimates for A,, 1 < g < oo are valid,
too.
For n’ < ¢ < n and a > 0 one defines
D(A4;%) = D(A3)"

q

Since (Ag‘)/ = A7 it follows that D(A; ) is the completion of J,({2)
with respect to the norm H (A, + 1) Hq. Hence, the operators A, and

e *A4 can be uniquely extended to D(Aq_ O‘). For 1 < g < oo the spaces

D (Aq_ O‘) enjoy the same properties.

After these preparations the following estimate of the nonlinear term
can be shown:
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Theorem 9 Let 2 C R", n > 3 be an aperture domain with 02 € ct1

and d > 0. Furthermore, letn' < g <nand0 < 6 < % + %(1 — %) Then

[(Ag + 1)~ Py(u - Vo), < O (Aq + J)%Hq“(Aq +0)°||, 38

with a constant C = C(6, 0, p, q), provided that p, 8 > 0, § + p > % and
0+0+p> % + % Ifn>2and 1 < q < oo, then Ay can be substituted
by A,.

Proof. For 6 = 0 the Holder inequality yields
1 1
Pt w0, < Clul w0l E=tel

where by assumption r, s can be chosen to satisfy

1 1 26 1 1 2p-—-1

r g n’ s q n

Hence, (36) and (37) show that
[Py (- Vo), < Of(Ag + D%, || (Ag + )]

Now let % <6< % + %(1 — %) Choose m € N large enough such
that V(vw) € Gy (£2) forv € D(A7') and w € D(A7). Hence, for u €

D(Af) N 7} (£2) Theorem 3 implies

OZ/QU-V(Uw)d:U z/g(u-Vv)wd:L’—l—/ (u- Ve)vd.

Q2
The Holder inequality yields
1 1 1
(Pl - Vo), w)| < COful [ol [ Vell, — Z+Z+2=1,
where by assumption r, s, o can be chosen to satisfy

11 26 1 1 2p 1 1 2(5—1>

r-q n’ s g n’ o q

By (36) and (37) follows that
|(PuCa Fo),w)] < €A+ Dl | (Ag + 0] Ay + D

q”

This estimate applies to u € D(Af), v € D(A7) and w € D(AJ) by
density, proving (38) for § > %
For0 <4 < % the theorem follows by interpolation: Choose 0 < § < 8

and 0 < p < p such that 5, p, 0 fulfil the above assumptions. Then choose
po = p+9,d00 = Oand% <1 < %‘1‘%(1—%),/}1 > 0 with p;+01 = p+9.
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Due to the previous results, v — Py(u - Vv) can be regarded as a linear
bounded operator T : D(A}") — J,(£2) and T : D(AF') — D(A;).
By complex interpolation

T :[D(Ago),D(Agl)]M_) [Jq(ﬂ),D(Aq—&)}u

1s bounded. ~ ~
Choose pn = §/61. Since § > § = pd1 and p > p = (1 — p)po + pp1,
Theorem 8 shows that

D(A)) < [D(Af), D(AM)] [J4(£2), D(A;)] , = D(A”).

Therefore
T : D(A?) — D(A;°)

is bounded, proving the assertion for 0 < § < % The proof for A,, where
n > 2,1 < g < oo is analogous. O

Now similar to [9] the following existence and uniqueness theorem can
be proven:

Theorem 10 Let 2 C R", n > 3 be an aperture domain with 02 € c Ll
and d > 0.

i) (Existence) Fix v and choose n' < q < n, 6 > 0 such that

n 1< <1 <d<1-—1|y
2 2 Y ) Y Y-

Assume that ug € D(A}) and that ||(A + I)~°P,gl|, is continuous on
(0,T) and satisfies

1(Ag + 1) Pyg(®)llg = o) as t = 0.

Then there is a local solution u(t) of (32) such that

(a) u € C([0,T%); D(AJ)), u(0) = uy,

(b) u € C((0,T.]; D(AY)) for some T, > 0,

(c) || A%u(t)|lq = o(t7~*) ast = O forally < a <1 -9,

ii) (Uniqueness) Any solution of (32) satisfying (a) and

(b’) u € C((0,T.); D(AD)),

(') [ A%u(t)|ly = o(t7F) for some ] <

IS unique.
iii) If n > 2 and 1 < q < oo, then the Theorem applies to A, as well.
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If the given data are sufficiently smooth, the solutions of the preceding
theorem are solutions of the Navier-Stokes equations:

Theorem 11 Let 2 C R" be an aperture domain with 02 € CbY! and
d > 0. Moreover, let uy € Jy(£2) and f € L*(0,T; LY(£2)") be locally
Holder continuous.

i)Forn > 2and 1 < q < n' there is a solution of the Navier Stokes
equations (1) on (0,T*).

ii) Let n > 2 and n' < q < oo. Then for every o € Wi (0, T) such that cv
is locally Holder continuous and ®(ug) = «, there is a solution of the
Navier Stokes equations (1) on (0, 1) with ¢(u) = a.

iii) Let n > 3 and n' < q < n. Then for every B € L'(0,T) being locally
Holder continuous, there is a solution of the Navier-Stokes equations
(1) on (0,T%) with [p] = B.

Proof. To prove i) let u be the solution of the Navier-Stokes equations

constructed in Theorem 10.i). Then u € C*(0,T*, D(AY)) for e + £ < 1

by [9], Proposition 2.4. Hence, P, (u- Vu) is locally Holder continuous and

by the well-known theory of analytic semigroups, u is a solution of (1).
The proof of ii) and iii) is analogous.
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