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Abstract This article deals with the Stokes equations in aperture do-

mains. Geometrically spoken, such domains consist of two halfspaces sep-

arated by a wall, but connected by a hole within that wall. It is well known

that in these domains the solution of the Stokes equations is not unique, but

that an additional boundary condition has to be imposed: This can be either

the flux through the hole or the pressure drop between the two halfspaces.

In this paper suitable Stokes operators are constructed for both cases, which

are shown to generate bounded analytic semigroups. This is used to prove

the existence and uniqueness of strong solutions of the Stokes and Navier-

Stokes equations subject to one of the additional boundary conditions.
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1 Introduction

The flow of a viscous incompressible fluid in a region 
 with rigid walls is

governed by the following Navier-Stokes equations:

u

t

��u+ u � ru+rp = f in 
 � (0; T );

divu = 0 in 
 � (0; T );

u = 0 on �
 � (0; T );

u(0) = u

0

in 
:

(1)

Here u is the velocity field, p the pressure and f , u
0

are the given external

force and initial velocity respectively. It turns out that for some domains
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even the solution of the stationary Stokes equations is not uniquely deter-

mined by the corresponding equations, but one has to impose an auxiliary

condition to single out a unique solution. This was first discovered by Hey-

wood, considering a so called aperture domain, see [10]:

Definition 1 For n � 2 let Rn

�

=

�

x 2 R

n

: �x

n

> d=2

	

, d � 0 and

B =

�

x 2 R

n

: jxj < R

	

, R > 0. Then 
 � R

n is called an aperture

domain, if 
 is a domain satisfying the uniform cone condition and


 [B = R

n

+

[ R

n

�

[B:

M

�




+




�




Fig. 1 An aperture domain

By means of the Galerkin method, Heywood [10], [11] has shown the local

existence and uniqueness of so called generalized solutions of the Navier-

Stokes equations for both of the additional boundary conditions.

Farwig and Sohr [4], [5] analysed the resolvent system for the Stokes

problem. They showed that the Stokes operator, associated to a prescribed

flux, is the generator of a bounded analytic semigroup.

In [7] the Stokes operator in L2 for a prescribed pressure drop is con-

structed. Moreover, the local existence and uniqueness of strong solutions

of the Navier-Stokes equations for both of the additional boundary condi-

tions is shown.

In the present article the results of [7] are generalized to Lq spaces. It

turns out that the behaviour of the (Navier-) Stokes equations depends on

the space dimension n:

Let n = 2. For 1 < q � 2 the solution is unique and the flux vanishes,

whereas for q > 2 a flux has to be given. A pressure drop can never be

prescribed.

Let n � 3. For 1 < q <

n

n�1

= n

0 the solution is unique, without

claiming any additional boundary condition. If n0 < q < n, either the flux

or the pressure drop can be prescribed, whereas for q � n only a flux can

be given.
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This paper is organized as follows: First the basic function spaces for

the Navier-Stokes equations will be analysed. Then the Helmholtz decom-

positions appropriat to prescribe a flux or pressure drop respectively will be

defined. Afterwards the associated Stokes operators will be shown to gen-

erate bounded analytic semigroups. This is used to prove the existence and

uniqueness of solutions of the Stokes equations under one of the additional

boundary conditions. Finally, using the technique of [9], local solutions of

the corresponding Navier-Stokes equations are constructed.

2 The Basic Function Spaces

The following standard notation is used: If 
 � R

n is a domain, then

C

1

0

(
) denotes the set of the smooth functions with compact support in


, whereas C1

0

(
) are the functions of C1

0

(R

n

), restricted to 
.

Let 1 � q � 1. Then Lq(
) denote the Lebesgue space and k � k
q

its norm. The dual exponent q0 is defined by 1

q

+

1

q

0

= 1. If u 2 L

q

(
)

n,

v 2 L

q

0

(
)

n, then



u; v

�

denotes the duality pairing




u; v

�

=

Z




u � v dx ;

where “ � ” stands for the scalar product in R

n .

Let m 2 N . Then Wm

q

(
) is the Sobolev space of all functions, whose

weak derivatives up to order m are in Lq(
). Moreover,
Æ

W

1

q

(
) denotes

the closure of C1

0

(
) with respect to the W 1

q

(
)-norm.

Beside the standard Sobolev spaces, appropriate function spaces for the

velocity u and the pressure p have to be introduced. Concerning the velocity

there are two possibilities:

Definition 2 Let 
 � R

n , n � 2 be an aperture domain and 1 < q < 1.

Then

J

1

q

(
) =

n

u 2 C

1

0

(
)

n

k�k

1;q

: divu = 0

o

; (2)

J

1

q

(
) =

n

u 2 C

1

0

(
)

n

: divu = 0

o

k�k

1;q

; (3)

where k � k

1;q

denotes the closure with respect to the W 1

q

(
)-norm.

In contrast to the case of a bounded domain or an exterior domain, these

two spaces do not always coincide.

To understand this phenomenon, the physical flux has to be defined pre-

cisely:



4 Martin Franzke

Definition 3 Let 
 � R

n , n � 2 be an aperture domain and M � 
 \ B

a smooth (n � 1)-dimensional manifold such that 
 nM consists of two

disjoint domains 

+

and 

�

with M = �


+

\ �


�

. Furthermore let N

be the normal vector on M directed into 

�

. Then, for u 2 J 1

q

(
),

�(u) =

Z

M

N � u do

is called the flux through the aperture from 


+

to 

�

.

By the trace theorem it is easy to see that � is a linear functional on

J

1

q

(
). Since the vector fields are solenoidal, the flux � does not depend

on the special shape of M ; i.e. one can take M = R

n

+

\ �B.

Indeed, for a special aperture domain, Heywood [10] has shown the

existence of a vector field � 2W 1

q

(
)

n, n0 < q <1 such that �(�) = 1.

On the other hand it is easily seen by Gauss’ theorem that �(u) vanishes

for u 2 J

1

q

(
), hence J 1

q

(
) 6= J

1

q

(
). This result applies to arbitrary

aperture domains:

Theorem 1 Let 
 � R

n , n � 2 be an aperture domain. Then there is a

vector field � 2 C1

�




�

n

\W

2

q

(
)

n, n0 < q <1 such that

�j

�


= 0; div� = 0; �(�) = 1: (4)

i) If n0 < q <1, then

J

1

q

(
) =

n

u 2 J

1

q

(
) : �(u) = 0

o

: (5)

ii) If 1 < q � n

0, then

J

1

q

(
) = J

1

q

(
): (6)

Proof . Let
�

�

0

; �

+

; �

�

	

be a partition of unity in 
 with the following

property: There exists a ball B0

=

�

x 2 R

n

: jxj � R

0

	

, R0 > R such that

�

0

= 1 on 
 \B, �
+

= 1 on 

+

nB

0 and �
�

= 1 on 

�

nB

0. Furthermore,

let 

0

� 
 \ B

0 be a domain satisfying the uniform cone condition and

supp �

+

� 


0

.

For the special aperture domain G = fx 2 R

n

: x

n

6= 0 or jxj < 1g

there is a vector field  2 C

1

(G)

n

\W

2

q

(G)

n, n0 < q < 1, satisfying

(4), see [8], chap. III.4.

Choosing B large enough guarantees that �
1

=  (1� �

0

) vanishes on

�
. Furthermore, g = �div�

1

=  � r�

0

2 C

1

0

(


0

) with

Z




0

g dx = �

Z

�


0

N � �

1

d� = 0:
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Hence by [8], Theorem III.3.2 there is a vector field �
0

2 C

1

0

(


0

)

n with

div�

0

= g. Now � = �

0

+ �

1

2 W

2

q

(
)

n

\ C

1

�




�

n

has the desired

properties.

In order to show i), let u 2 J 1

q

(
) with �(u) = 0. Then u
+

= u�

+

2

Æ

W

1

q

(


+

)

n and div u

+

= u � r�

+

= g

+

. Because of the compatibility

condition
Z




+

\B

0

g

+

dx =

Z

�(


+

\B

0

)

N � u

+

do = ��(u) = 0;

[8], Theorem III.3.2 can be used once more to get v
+

2

Æ

W

1

q

(


+

\B

0

)

n

such that div v
+

= g

+

. Hence u
+

� v

+

2 J

1

q

(


+

). In the same way a

vector field v
�

2

Æ

W

1

q

(


�

\B

0

)

n with u
�

� v

�

2 J

1

q

(


�

) can be found.

Setting u
0

= u�

0

and v
0

= v

+

+ v

�

yields u
0

+ v

0

2 J

1

q

(
 \ B

0

) and

u = (u

+

� v

+

)+ (u

�

� v

�

)+ (u

0

+ v

0

). Now J

1

q

and J 1

q

coincide for the

perturbed halfspaces 

�

and the bounded domain 
 \B0, see [8], Chapter

III.4, hence u 2 J1

q

(
).

In order to prove ii), it has to be shown that �(u) = 0 for u 2 J 1

q

(
),

provided 1 < q � n

0: For r > R, the Gauss theorem yields

�(u) =

Z

M

N � u d� = �

Z




+

\�B

r

N � u d� :

Extending u by zero outside of 
 and using Hölder’s inequality shows

j�(u)j = C

n

�

r

n�1

�

1�1=q

�

Z

�B

r

juj

q

d�

�

1=q

:

Integration yields

Z

1

R

j�(u)j

q

r

(n�1)(q�1)

dr � C

Z

1

R

Z

�B

r

juj

q

d� dr � Ckuk

q

q

<1:

Now because of (n� 1)(q � 1) � 1 the flux �(u) has to vanish. ut

Similar to the case of the velocity field u, for the pressure p there are

also two possibilities for the appropriate function space:

Definition 4 Let 
 � R

n , n � 2 be an aperture domain. Then

_

W

1

q

(
) =

n

p 2 L

q

lo

(
) : rp 2 L

q

(
)

o

; (7)



W

1

q

(
) = C

1

0

�




�

kr�k

q

: (8)

Here L
q

lo

(
) denotes those functions u such that u 2 L

q

(
 \ B) for all

balls B � R

n .
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If 
 is a bounded domain or an exterior domain, these two spaces coincide.

For aperture domains however, the situation is as follows:

Theorem 2 Let 
 � R

n , n � 2 be an aperture domain.

i) If 1 < q < n, then there are constants p
�

2 R such that for 1

r

=

1

q

�

1

n

kp� p

�

k

L

r

(


�

)

� Ckrpk

L

q

(


�

)

:

The pressure drop [p℄ = p

+

� p

�

can be estimated by

j[p℄j � Ckrpk

L

q

(
)

:

Moreover,



W

1

q

(
) =

n

p 2

_

W

1

q

(
) : [p℄ = 0

o

: (9)

ii) If n � q <1, then W 1

q

(
) =

_

W

1

q

(
).

Proof . See [5]. It is clear from the proof that the theorem applies to do-

mains fulfilling the uniform cone condition only. ut

Theorem 3 Let 
 be an aperture domain, u 2 J

1

q

(
) and p 2 _

W

1

q

(
).

Then

Z




rp � u dx = �[p℄�(u): (10)

Proof . Let u 2 J 1

q

(
). Then, for p
0

2 C

1

0

�




�

, by Gauss’ theorem

Z




rp

0

� u dx = 0:

This applies to p
0

2



W

1

q

(
) by density. Taking �
+

instead of p
0

yields

Z




r�

+

� u dx =

Z




+

\B

0

r

�

�

+

� 1

�

� u dx = �

Z

M

N � u do = ��(u):

Now the assertion follows, using the decomposition rp = rp

0

+ [p℄r�

+

,

see (9). ut
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3 The Helmholtz Decomposition

After the introduction of suitable function spaces for the velocity u and the

pressure p, the next step is to find Helmholtz decompositions appropriate

for a given flux or a given pressure drop.

It will be shown, under certain restrictions on 1 < q <1, that

L

q

(
)

n

= J

q

(
) �G

q

(
) = J

q

(
) � G

q

(
);

where the underlying function spaces are defined as follows:

Definition 5 Let 
 � R

n , n � 2 be an aperture domain with �
 2 C

1

and 1 < q <1. Then

J

q

(
) = J

1

q

(
)

k�k

q

; (11)

J

q

(
) = J

1

q

(
)

k�k

q

; (12)

G

q

(
) =

n

rp : p 2



W

1

q

(
)

o

; (13)

G

q

(
) =

n

rp : p 2

_

W

1

q

(
)

o

: (14)

The construction of both of the Helmholtz decompositions is based on the

following weak Neumann problem for the Laplace equation:

Theorem 4 Let
 � R

n , n � 3 be an aperture domain with �
 2 C

1 and

n

0

< q < n.

i) The operator ��
q

:



W

1

q

(
) !



W

�1

q

(
) =

h



W

1

q

0

(
)

i

0

defined by

��

q

p =




rp;r�

�

is an isomorphism, in particular, for p 2 

W

1

q

(
)

krpk

q

� C sup

v2



W

1

q

0

(
)




rp;rv

�

krvk

q

0

: (15)

ii) If rp 2 

W

1

q

(
) and

sup

v2



W

1

r

0

(
)




rp;rv

�

krvk

r

0

<1; (16)

for some n0 < r < n, then p 2 

W

1

r

(
).

iii) If n � 2 and 1 < q; r < 1, then i), ii) apply to the corresponding
_

W -spaces as well.
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Proof . If
 is a bounded domain or a halfspace, a proof of iii) can be found

in [12]. If 
 is an aperture domain, then the first part of iii) is proved in [5],

whereas the second part is proved similarly to ii).

To show i), let �
0

2

_

W

1

q

(
) be the unique solution (independent of

n

0

< q < n) of




r�

0

;rv

�

= [v℄

for v 2 _

W

1

q

(
). Because of 0 <



r�

0

;r�

0

�

= [�

0

℄, one can normalize

� = �

0

=[�

0

℄: (17)

Let v 2 _

W

1

q

0

(
). Then w = v� [v℄� 2



W

1

q

0

(
) with krwk
q

0

� Ckrvk

q

0 .

Moreover, for p 2 

W

1

q

(
),




rp;rv

�

=




rp;rw

�

:

Hence,

krpk

q

� C sup

v2

_

W

1

q

0

(
)




rp;rv

�

krvk

q

0

� C sup

w2



W

1

q

0

(
)




rp;rw

�

krwk

q

0

:

In particular, ��
q

:



W

1

q

(
) !



W

�1

q

(
) is injective and has a closed

range. Obviously (��

q

)

0

= ��

q

0 , therefore by the closed range theorem

��

q

is surjective.

To prove ii), let p 2 

W

1

q

(
) fulfil (16), i.e. p 2 

W

�1

r

(
). Then by i)

there exists a function p
1

2



W

1

r

(
) such that

Z




rp

1

� rv dx =

Z




rp � rv dx :

In the following, by interchanging p and p
1

if necessary, it can be assumed

that q > r. Let U = 


0

, Rn

�

and � = �

0

, �
�

respectively. Because v

and p are determined up to constants only, they can be chosen to have a

vanishing mean value over 

0

. Hence, by the Poincaré inequality �p 2



W

1

q

(U). Furthermore,

Z

U

r(�p) � rv dx =

Z




�

pr� � rv � vr� � rp+rp

1

� r(�v)

�

dx :

Since supp � � 


0

, the Poincaré and the Hölder inequality yield

�

�

�

�

Z

U

r(�p) � rv dx

�

�

�

�

� C

�

krpk

q

kr�k

s

+ krp

1

k

r

�

krvk

L

r

0

(U)
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for 1

s

=

1

r

�

1

q

. Now C

1

0

(R

n

) is dense in 

W

1

r

0

(U), hence �p 2 

W

1

r

(U).

But p = �

0

p+ �

+

p+ �

�

p and therefore p 2 

W

1

r

(
).

Since _

W

1

q

(U) =



W

1

q

(U), 1 < q <1 for U = 


0

, Rn

�

, the above proof

applies also to the _

W -spaces. ut

Theorem 5 Let
 � R

n , n � 3 be an aperture domain with �
 2 C

1 and

n

0

< q < n.

i) The following topological and algebraical decomposition holds true:

L

q

(
)

n

= J

q

(
) � G

q

(
): (18)

ii) If P
q

denotes the associated Helmholtz projection onto J
q

(
), then

(P

q

)

0

= P

q

0

with respect to the duality pairing h � ; � i. Moreover, the dual space

J

q

(
)

0 can be identified with J
q

0

(
) in this sense.

iii) The Helmholtz projection P
q

is independent of q: If u 2 L

q

(
)

n

\

L

r

(
)

n for n0 < q; r < n, then P
q

u = P

r

u.

iv) If n � 2 and 1 < q; r <1, then i) – iii) apply to P
q

, J
q

(
), G
q

(
) as

well.

Proof . For u 2 L

q

(
)

n define P
q

u = u � rp, where p 2 

W

1

q

(
) is the

unique solution of




rp;rv

�

=




u;rv

�

(19)

for v 2 

W

1

q

0

(
), see Theorem 4. Then P
q

is linear and continuous. Fur-

thermore, P
q

u 2 G

q

0

(
)

? with respect to h � ; � i. It remains to show that

G

q

0

(
)

?

= J

q

(
). Because J
q

(
) is reflexive as a closed subspace of

L

q

(
)

n, it is enough to prove J 1

q

(
)

?

= G

q

0

(
) leading to

G

q

0

(
)

?

= J

1

q

(
)

??

= J

1

q

(
)

k�k

q

= J

q

(
): (20)

To show this, let v 2 J 1

q

(
)

?

� L

q

0

(
)

n, i.e. hv; ui = 0 for u 2 J 1

q

(
).

Then v = rp 2 G

q

0

(
) by [8], Theorem III.1.1. Now Theorem 3 yields

[p℄ = 0, hence rp 2 G
q

0

(
).

If, on the other hand, rp 2 G
q

0

(
), then hrp; ui = 0 for u 2 J

1

q

(
)

by the same Theorem, hence rp 2 J 1

q

(
)

? . This proves i).

To show ii), let u 2 L

q

(
)

n and v 2 L

q

0

(
)

n. Then P
q

u = u � rp

with rp 2 G
q

(
) = J

q

0

(
)

? and therefore




u;P

q

0

v

�

=




P

q

u;P

q

0

v

�

:
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Analogously hP
q

u; vi =




P

q

u;P

q

0

v

�

. This yields (P
q

)

0

= P

q

0 .

Define � : J

q

0

(
) ! J

q

(
)

0 via the duality pairing by
�

�v

�

(u) =

hv; ui for u 2 J

q

(
). If �v = 0, then hv;P
q

ui = hv; ui = 0 for u 2

L

q

(
)

n, showing that � is injective.

Let F 2 J

q

(
)

0. Then by Hahn-Banach’s theorem there exists f 2

�

L

q

(
)

n

�

0

= L

q

0

(
)

n with F (u) = hf; ui =




P

q

0

f; u

�

for u 2 J

q

(
).

Now P

q

0

f 2 J

q

0

(
), hence � is surjective. This proves J
q

(
)

0

= J

q

0

(
).

The property iii) follows from the definition of P
q

and Theorem 4.

Let n � 2 and 1 < q < 1. For u 2 L

q

(
)

n define P
q

u = u � rp,

where rp 2 _

W

1

q

(
) is the unique solution of (19) for v 2 _

W

1

q

0

(
). Then

the proof of iv) is similar to the one above. ut

Let n0 < q < n andr� 2 G
q

(
) be the function defined by (17). Then

obviously r� 2 G
q

0

(
)

?

= J

q

(
). Hence,

r� 2 J

q

(
) \G

q

(
):

Combining this with (18) yields the decomposition

J

q

(
)

z }| {

L

q

(
)

n

= J

q

(
) � span fr�g � G

q

(
):

| {z }

G

q

(
)

(21)

4 The Stokes Operator

The Helmholtz projections of the last section are used to define the Stokes

operators for the aperture domain:

Definition 6 Let 
 � R

n be an aperture domain with �
 2 C

1;1.

i) For n � 3 and n

0

< q < n the Stokes operator associated with a

prescribed pressure drop is defined by

A

q

= P

q

(��) : D(A

q

) � J

q

(
) ! J

q

(
);

where

D(A

q

) =

n

u 2W

2

q

(
)

n

: uj

�


= 0; divu = 0;

o

:

ii) For n � 2 and 1 < q < 1 the Stokes operator associated with a

prescribed flux is defined by

A

q

= P

q

(��) : D(A

q

) � J

q

(
) ! J

q

(
);

where

D(A

q

) =

n

u 2W

2

q

(
)

n

: uj

�


= 0; divu = 0; �(u) = 0

o

:
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In order to show that the Stokes operators generate bounded analytic semi-

groups, the following resolvent system has to be analysed:

�u��u+rp = f in 
; (22a)

divu = 0 in 
; (22b)

uj

�


= 0: (22c)

This was done by Farwig and Sohr in [4], [5]. Their results are used to

prove the next theorem.

Theorem 6 Let 
 � R

n , n � 3 be an aperture domain with �
 2 C

1;1,

0 < " < �=2 and n0 < q < n.

i) For every f 2 J
q

(
) and

� 2

X

"

=

n

z 2 C : j arg zj < � � "

o

there exists a unique solution u 2 D(A

q

) of the equation

�u+A

q

u = f: (23)

This solution satisfies the estimate

�

�

�

�

�





u





q

+





A

q

u





q

� C

"





f





q

: (24)

Therefore, �+A

q

has a bounded inverse in J
q

(
) with





�(A

q

+ �)

�1





� C

"

: (25)

ii) For u 2 D(A

q

)





u





W

2

q

(
)

� C





(A

q

+ I)u





q

(26)

and





r

2

u





q

� C





A

q

u





q

: (27)

iii) (A
q

)

0

= A

q

0 with respect to the duality pairing h � ; � i.

iv) A
q

is injective and R(A

q

) is dense in J
q

(
).

v) Let n � 2 and 1 < q < 1. Then i) – iv) applies to A
q

, J
q

(
) respec-

tively, where (27) is valid only for 1 < q < n.
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Proof . By [4], Theorem 1.2 for every � 2

P

"

, f 2 J

q

(
) there is a

unique solution (u;rp) 2 W

2

q

(
)

n

� L

q

(
)

n of the resolvent equations

(22) with [p℄ = 0. This solution satisfies

j�jkuk

q

+ kr

2

uk

q

� C

"

kfk

q

:

Obviously u 2 D(A

q

) is the unique solution of (23) and (24), (25) follow

from the preceding estimate.

Moreover, since f = (A

q

+ �)u, the estimate (26) follows by setting

� = 1. Letting �! 0 yields (27), since the estimate is uniform in � > 0.

To show iii), let u 2 D(A

q

) and v 2 D(A

0

q

) � J

q

0

(
). Then by

definition there exists f 2 J
q

0

(
) with h(A
q

+ I)u; vi = hu; fi. Because

A

q

0

+ I is surjective, there is a w 2 D(A

q

0

) with (A

q

0

+ I)w = f . Hence,



(A

q

+ I)u; v

�

=




u; (A

q

0

+ I)w

�

:

By Theorem 5 there exist rp 2 G
q

(
), rq 2 G
q

0

(
) such that A
q

u =

��u+rp andA
q

0

w = ��w+rq respectively. Now (20) and integration

by parts yield



u; (A

q

0

+ I)w

�

=




u;w ��w +rq

�

=




u��u+rp;w

�

=




(A

q

+ I)u;w

�

:

Since A
q

+ I is surjective, v = w 2 D(A

q

0

) and



A

q

u; v

�

=




u;A

q

0

v

�

:

The injectivity ofA
q

follows from (27), whereasR(A

q

) = N (A

q

0

)

?

=

J

q

(
) by iv) and Hahn-Banach’s theorem.

The proof for A
q

, n � 2, 1 < q <1 is similar to the proof above. One

considers the resolvent equations (22) with �(u) = 0 instead of [p℄ = 0, for

details see [5]. The only problem is the injectivity of A
q

for n � q < 1:

Let u 2 D(A

q

) with A
q

u = 0. Then u is a weak solution of the homoge-

neous stationary Stokes equations with prescribed flux in the sense of [6].

Hence, u = 0 and A
q

is injective. ut

5 The Stokes Equations

Now the well-known theory of analytic semigroups is used to analyse the

Stokes equations

u

t

��u+rp = f in 
 � (0; T ); (28a)

divu = 0 in 
 � (0; T ); (28b)

uj

�


= 0 on �
 � (0; T ); (28c)

u(0) = u

0

in t = 0: (28d)
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Therefore it is assumed that the right-hand side f is locally Hölder contin-

uous in time with exponent � 2 (0; 1), i.e. f 2 C�

�

0; T; L

q

(
)

n

�

.

Theorem 7 Let 
 � R

n be an aperture domain with �
 2 C

1;1 and

0 < � < 1. Moreover, let u
0

2 J

q

(
) and f 2 C

�

�

0; T ;L

q

(
)

n

�

\

L

1

�

0; T ;L

q

(
)

n

�

be given.

i) For n � 2 and 1 < q � n

0 there is a unique solution

�

u;rp

�

2

�

C

1;�

�

0; T ;L

q

(
)

n

�

\ C

�

�

0; T ;W

2

q

(
)

n

�

�

� C

�

�

0; T ;L

q

(
)

n

�

(29)

of the Stokes equations (28).

ii) For n � 2, n0 < q < 1 and � 2 C

1;�

(0; T ) \W

1

1

(0; T ) such that

�(u

0

) = �(0), there is a unique solution of the Stokes equations (28)

with

�(u) = �:

iii) For n � 3, n0 < q < n and � 2 C �

(0; T ) \ L

1

(0; T ) there is a unique

solution of the Stokes equations (28) with

[p℄ = �:

Proof . Let (u;rp) be a solution of the Stokes equations with �(u) = �.

Applying P
q

to (28a) shows that v = u � �� 2 C

1;�

�

0; T ;J

q

(
)

�

\

C

�

�

0; T ;D(A

q

)

�

is a solution of

v

t

+A

q

v = P

q

�

f � �

t

�+ ���

�

; (30a)

v(0) = u

0

� �(0)�: (30b)

It is well known that this initial value problem has a unique solution v 2

C

1;�

�

0; T ;J

q

(
)

�

\ C

�

�

0; T ;D(A

q

)

�

. Setting u = v + �� yields

u

t

��u� f = �rp 2 G

q

(
);

by the properties of the Helmholtz decomposition. Hence, (u;rp) is the

solution of the Stokes equations with�(u) = �. This proves ii). Prescribing

� = 0 the proof of i) is similar.

To prove iii), let (u;rp) be a solution of the Stokes equations with

[p℄ = �. Applying P

q

to (28a) shows that u 2 C

1;�

�

0; T ;J

q

(
)

�

\

C

�

�

0; T ;D(A

q

)

�

is a solution of

u

t

+A

q

u = P

q

f � [p℄r�; (31a)

u(0) = u

0

: (31b)
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On the other hand, for the solution u of this initial value problem,

u

t

��u+ [p℄r� � f = �rp

0

2 G

q

(
);

by the properties of the Helmholtz decomposition.

Hence, (u;rp) with rp = [p℄r� +rp

0

is the unique solution of (28)

with [p℄ = �. ut

Following [2], it is possible to show estimates of maximal Hölder regularity

as well. For maximal L2 -regularity see [7].

6 The Navier-Stokes Equations

The construction of solutions of the Navier-Stokes equations (1) is based

on their abstract integral formulation

v(t) = e

�tA

v

0

+

Z

t

0

e

�(t�s)A

P

�

g �

�

u � ru

�

�

(s) ds : (32)

Looking at the Stokes equations, it is clear how to deal with the additional

boundary conditions: If a pressure drop [p℄ = � is prescribed, thenA = A

q

,

P = P

q

, g = f � [p℄r� and u = v. On the other hand, if a flux �(u) = �

is given, then A = A

q

, P = P

q

, g = f � �

t

�+ ��� and u = v + ��.

By means of this identification the two different boundary conditions

can be dealt with simultaneously, where in the latter case n0 < q < n is

assumed.

Solutions of the integral equation (32) are constructed via a fixed point

iteration, see [9]. In order to estimate the nonlinear term P (u � ru), the

boundedness of the imaginary powers of the Stokes operator is assumed in

[9]. Up to now this has not been proved for aperture domains. Nevertheless,

the nonlinear term can still be estimated, yielding a slightly weaker result.

For these reasons, fractional powers of positive operators and complex

interpolation theory are needed. In order to fix notations a short summary

is given, cf. [13]:

Interpolation theory: Let X
0

, X
1

be complex Banach spaces, both con-

tinuously embedded in a complex linear Hausdorff space X ; then fX
0

;X

1

g

is said to be an interpolation couple. For such an interpolation couple the

spaces X
0

\X

1

and X
0

+X

1

, equipped with their natural norms, are also

Banach spaces.

Let S = fz 2 C : 0 < Re z < 1g. Then F(X

0

;X

1

) denotes the space

of analytic functions f : S ! X

0

+ X

1

such that f(j + it) : R ! X

j

,

j = 0, 1 is continuous and bounded. Provided with the norm

kfk

F(X

0

;X

1

)

= max

j=0;1

�

sup

t2R





f(j + it)





X

j

�
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F(X

0

;X

1

) is a Banach space.

For 0 < � < 1 the interpolation space X
�

=

�

X

0

;X

1

�

�

is defined by

X

�

=

n

x = f(�) : f 2 F(X

0

;X

1

)

o

:

Endowed with the norm

kxk

�

= inf

n

kfk

F(X

0

;X

1

)

: f(�) = x

o

it becomes a Banach space.

Let fY
0

; Y

1

g be another interpolation couple and let T : X

0

+ X

1

!

Y

0

+ Y

1

be a linear operator such that T : X

j

! Y

j

, j = 0, 1 is bounded.

Then X
�

, Y
�

have the interpolation property, i.e. T : X

�

! Y

�

is bounded.

It is well known that the Bessel potential spaces Hs

q

(R

n

) for s > 0,

1 < q <1 are interpolation spaces with

�

H

s

0

q

0

(R

n

);H

s

1

q

1

(R

n

)

�

�

= H

s

q

(R

n

);

where

s = (1� �)s

0

+ �s

1

;

1

q

= (1� �)

1

q

0

+ �

1

q

1

:

This applies to Hs

q

(
) whenever 
 � R

n has the extension property, i.e.

whenever there is a linear bounded operator E : H

s

q

(
) ! H

s

q

(R

n

), s > 0,

1 < q < 1 such that Eu
�

�




= u. If 
 is an aperture domain with d > 0,

the extension property holds, see [1].

Fractional powers: Let X be a Banach space and A : D(A) � X ! X

a densely defined positive operator, i.e.





(A+ �)

�1





�

K

1 + �

; � � 0:

Then for z 2 C , 0 < Re z < 1 the fractional power A�z is defined by

A

�z

=

sin�z

�

Z

1

0

�

�z

(A+ �)

�1

d� :

This operator is continuous and its norm can be estimated by





A

�z





�

�

�

�

�

sin�z

sin�Re z

�

�

�

�

: (33)

Furthermore, it can be shown that A�z extends to an analytic semigroup

for Re z > 0.

Since A�z is injective, one can define the closed operators

A

z

= (A

�z

)

�1

: D(A

z

) � X ! X;
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with dense domain D(A

z

) = fx = A

�z

y : y 2 Xg.

Suppose A allows the definition of bounded imaginary powers Ait,

t 2 R , where kAit

k � Ce

jtj for some constants C,  > 0. Then for

m 2 N and 0 < � < 1

�

X;D(A

m

)

�

�

= D(A

�m

)

with respect to the graph norm. Without the boundedness of the imaginary

powers, only the following can be shown:

Theorem 8 Let A be a densely defined postive Operator on X , m 2 N and

0 < � < 1. Then for �
�

< �m < �

+

D(A

�

+

) ,!

�

X;D(A

m

)

�

�

,! D(A

�

�

): (34)

Proof . For x 2 D(A

m

) let

f(z) = e

(z��)

2

A

�(z��)m

x:

By (33) and the boundedness of A�1

kA

�z

k � C

"

e

�jIm zj

;

for 0 < " < Re z < m. Consequently,





f(it)





X

=





e

(it��)

2

A

�("+itm)

A

�m+"

x





X

� C

"





A

�m+"

x





X

;





f(1 + it)





D(A

m

)

=





e

(1+it��)

2

A

�m

A

�("+itm)

A

�m+"

x





D(A

m

)

� C

"





A

�m+"

x





X

:

Choosing " small enough yields f 2 F
�

X;D(A

m

)

�

. Because f(�) = x





x





[X;D(A

m

)℄

�

�





f





F (X;D(A))

� C

"





A

�m+"

x





X

:

This applies to x 2 D(A

�m+"

) by density. Since " can be chosen arbitrarily

small,

D(A

�

+

) ,!

�

X;D(A

m

)

�

�

:

To show the reverse embedding let x 2 D(A

m

) and f 2 F

�

X;D(A)

�

with f(�) = x. Moreover, let J
k

= k(A + k)

�1, k 2 N be the Yosida

approximation and " > 0. Then

g(z) = e

(z��)

2

A

zm�"

J

m

k

f(z)
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is analytic on S with g(�) = A

�m�"

J

m

k

x. Hence, by the theorem of the

three lines,





A

�m�"

J

m

k

x





� C

"





J

m

k

f





F (X;D(A

m

))

:

Letting k !1 and taking the infimum over all f with f(�) = x yields





A

�m�"

x





� C

"





f





[X;D(A

m

)℄

�

;

because Jm
k

x! x. This estimate applies to x 2
�

X;D(A

m

)

�

�

by density.

As " can be chosen arbitrarily small,

�

X;D(A

m

)

�

�

,! D(A

�

�

):

ut

The above results are used to prove the following Sobolev type embed-

dings: Since (A

q

+ I), n0 < q < n is positive, the fractional powers of

the Stokes operator are well defined. By the previous theorem, (26) and

complex interpolation

kuk

H

2s

q

(
)

� Ck(A

q

+ I)

�

uk

q

; (35)

where u 2 D(A

�

q

) and 0 < s < � � 1. Applying the Sobolev embedding

theorem yields

kuk

r

� Ck(A

q

+ I)

�

uk

q

;

1

q

�

1

r

>

1

q

�

2�

n

: (36)

By iteration this estimate applies to all � > 0. Similary follows

kruk

r

� Ck(A

q

+ I)

�+1=2

uk

q

;

1

q

�

1

r

>

1

q

�

2�

n

; (37)

for all � > 0. The corresponding estimates for A
q

, 1 < q < 1 are valid,

too.

For n0 < q < n and � > 0 one defines

D

�

A

��

q

�

= D

�

A

�

q

0

�

0

:

Since
�

A

�

q

�

0

= A

�

q

0

it follows that D(A

��

q

) is the completion of J
q

(
)

with respect to the norm




�

A

q

+ I

�

��

�





q

. Hence, the operators A
q

and

e

�tA

q can be uniquely extended to D
�

A

��

q

�

. For 1 < q < 1 the spaces

D

�

A

��

q

�

enjoy the same properties.

After these preparations the following estimate of the nonlinear term

can be shown:
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Theorem 9 Let 
 � R

n , n � 3 be an aperture domain with �
 2 C

1;1

and d > 0. Furthermore, let n0 < q < n and 0 � Æ <

1

2

+

n

2

�

1�

1

q

�

. Then





(A

q

+ I)

�Æ

P

q

(u � rv)





q

� C





(A

q

+ I)

�

u





q





(A

q

+ I)

�





q

(38)

with a constant C = C(Æ; �; �; q), provided that �, � � 0, Æ + � >

1

2

and

Æ + � + � >

n

2q

+

1

2

. If n � 2 and 1 < q <1, then A
q

can be substituted

by A
q

.

Proof . For Æ = 0 the Hölder inequality yields





P

q

(u � rv)





q

� C





u





r





rv





s

;

1

q

=

1

r

+

1

s

;

where by assumption r, s can be chosen to satisfy

1

r

>

1

q

�

2�

n

;

1

s

>

1

q

�

2�� 1

n

:

Hence, (36) and (37) show that




P

q

(u � rv)





q

� C





(A

q

+ I)

�

u





q





(A

q

+ I)

�

v





q

:

Now let 1

2

< Æ <

1

2

+

n

2

�

1 �

1

q

�

. Choose m 2 N large enough such

that r(vw) 2 G

q

0

(
) for v 2 D(A

m

q

) and w 2 D(A

m

q

0

). Hence, for u 2

D(A

�

q

) \ J

1

q

(
) Theorem 3 implies

0 =

Z




u � r

�

vw

�

dx =

Z




�

u � rv

�

w dx +

Z




�

u � rw

�

v dx :

The Hölder inequality yields

�

�




P

q

(u � rv); w

�

�

�

� C





u





r





v





s





rw





�

;

1

r

+

1

s

+

1

�

= 1;

where by assumption r, s, � can be chosen to satisfy

1

r

>

1

q

�

2�

n

;

1

s

>

1

q

�

2�

n

;

1

�

>

1

q

0

�

2Æ � 1

n

> 0:

By (36) and (37) follows that
�

�




P

q

(u � rv); w

�

�

�

� C





(A

q

+ I)

�

u





q





(A

q

+ I)

�

v





q





(A

q

0

+ I)

Æ

w





q

0

:

This estimate applies to u 2 D(A

�

q

), v 2 D(A

�

q

) and w 2 D(A

Æ

q

0

) by

density, proving (38) for Æ > 1

2

.

For 0 < Æ �

1

2

the theorem follows by interpolation: Choose 0 <

~

Æ < Æ

and 0 < ~� < � such that ~Æ, ~�, � fulfil the above assumptions. Then choose

�

0

= ~�+

~

Æ, Æ
0

= 0 and 1

2

< Æ

1

<

1

2

+

n

2

�

1�

1

q

�

, �
1

� 0 with �
1

+Æ

1

= ~�+

~

Æ.
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Due to the previous results, v 7! P

q

(u � rv) can be regarded as a linear

bounded operator T : D(A

�

0

q

) ! J

q

(
) and T : D(A

�

1

q

) ! D(A

�Æ

1

q

).

By complex interpolation

T :

�

D(A

�

0

q

);D(A

�

1

q

)

�

�

�!

�

J

q

(
);D(A

�Æ

1

q

)

�

�

is bounded.

Choose � =

~

Æ=Æ

1

. Since Æ > ~

Æ = �Æ

1

and � > ~� = (1 � �)�

0

+ ��

1

,

Theorem 8 shows that

D(A

�

q

) ,!

�

D(A

�

0

q

);D(A

�

1

q

)

�

�

;

�

J

q

(
);D(A

�Æ

1

q

)

�

�

,! D(A

�Æ

q

):

Therefore

T : D(A

�

q

) �! D(A

�Æ

q

)

is bounded, proving the assertion for 0 < Æ �

1

2

. The proof for A
q

, where

n � 2, 1 < q <1 is analogous. ut

Now similar to [9] the following existence and uniqueness theorem can

be proven:

Theorem 10 Let 
 � R

n , n � 3 be an aperture domain with �
 2 C

1;1

and d > 0.

i) (Existence) Fix  and choose n0 < q < n, Æ � 0 such that

n

2q

�

1

2

<  < 1; � < Æ < 1� jj:

Assume that u
0

2 D(A



q

) and that k(A + I)

�Æ

P

q

gk

q

is continuous on

(0; T ) and satisfies

k(A

q

+ I)

�Æ

P

q

g(t)k

q

= o(t

+Æ�1

) as t! 0:

Then there is a local solution u(t) of (32) such that

(a) u 2 C
�

[0; T

�

℄;D(A



q

)

�

, u(0) = u

0

,

(b) u 2 C
�

(0; T

�

℄;D(A

�

q

)

�

for some T
�

> 0,

(c) kA�

u(t)k

q

= o(t

��

) as t! 0 for all  < � < 1� Æ,

ii) (Uniqueness) Any solution of (32) satisfying (a) and

(b’) u 2 C
�

(0; T

�

℄;D(A

�

q

)

�

,

(c’) kA�

u(t)k

q

= o(t

��

) for some jj < �

is unique.

iii) If n � 2 and 1 < q <1, then the Theorem applies to A
q

as well.
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If the given data are sufficiently smooth, the solutions of the preceding

theorem are solutions of the Navier-Stokes equations:

Theorem 11 Let 
 � R

n be an aperture domain with �
 2 C

1;1 and

d > 0. Moreover, let u
0

2 J

q

(
) and f 2 L

1

�

0; T ;L

q

(
)

n

�

be locally

Hölder continuous.

i) For n � 2 and 1 < q � n

0 there is a solution of the Navier Stokes

equations (1) on (0; T

�

).

ii) Let n � 2 and n0 < q <1. Then for every � 2 W 1

1

(0; T ) such that �
t

is locally Hölder continuous and �(u
0

) = �, there is a solution of the

Navier Stokes equations (1) on (0; T

�

) with �(u) = �.

iii) Let n � 3 and n0 < q < n. Then for every � 2 L

1

(0; T ) being locally

Hölder continuous, there is a solution of the Navier-Stokes equations

(1) on (0; T

�

) with [p℄ = �.

Proof . To prove i) let u be the solution of the Navier-Stokes equations

constructed in Theorem 10.i). Then u 2 C�

�

0; T

�

;D(A

�

q

)

�

for �+ � < 1

by [9], Proposition 2.4. Hence, P
q

(u �ru) is locally Hölder continuous and

by the well-known theory of analytic semigroups, u is a solution of (1).

The proof of ii) and iii) is analogous.
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3. R. Farwig, H. Sohr, Generalized resolvent estimates for the Stokes system in bounded

and unbounded domains, J. Math. Soc. Japan 46, (1994) 607-643.
4. R. Farwig, Note on the Flux Condition and Pressure Drop in the Resolvent Problem of

the Stokes System, Manuscripta Math. 89, (1996) 139-158.
5. R. Farwig, H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture

domains in Lq-spaces, Analysis 16,(1996) 1-26.
6. R. Farwig, H. Sohr, On the Stokes and Navier-Stokes System for Domains with Non-

compact Boundary in Lq-spaces, Math. Nachr. 170, (1994) 53-77.
7. M. Franzke, Strong Solutions of the Navier-Stokes Equations in Aperture Domains, to

appear in Ann. Univ. Ferrara, Sez. VII, Sc. Mat. Vol. XLVI, (2000).
8. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,

Vol. 1,2, (Springer, 1994).
9. Y. Giga, T. Miyakawa, Solutions in L

r

of the Navier-Stokes Initial Value Problem, Arch.

Rational Mech. Anal. 89, (1985) 267-281.
10. J. G. Heywood, On Uniqueness Questions in the Theory of Viscous Fluids, Acta

Math. 136, (1976) 61-102.
11. J. G. Heywood, Auxiliary Flux and Pressure Conditions for Navier-Stokes Problems,

Lecture Notes in Mathematics 771, (1980) 223-234.
12. C. Simader, H. Sohr, A new approach to the Helmholtz decomposition inL

q

-spaces for

bounded and exterior domains, Series on Advances in Mathematics for Applied Science,

Vol. 11, (World Scientific, 1992).
13. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-

Holland, 1978).


