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Abstra
t. We study weighted approximation and integration of Gaussian sto
hasti


pro
esses X de�ned over R

+

whose rth derivatives satisfy a H�older 
ondition with

exponent � in the quadrati
 mean. We assume that the algorithms use samples of X

at a �nite number of points. We study the average 
ase (information) 
omplexity,

i.e., the minimal number of samples that are suÆ
ient to approximate/integrate X

with the expe
ted error not ex
eeding ". We provide suÆ
ient 
onditions in terms of

the weight and the parameters r and � for the weighted approximation and weighted

integration problems to have �nite 
omplexity. For approximation, these 
onditions

are ne
essary as well. We also provide suÆ
ient 
onditions for these 
omplexities to

be proportional to the 
omplexities of the 
orresponding problems de�ned over [0; 1℄,

i.e., proportional to "

�1=�

where � = r+� for the approximation and � = r+�+1=2

for the integration.

1. Introdu
tion

Complexity of approximating or integrating a fun
tion de�ned over a bounded do-

main has already been a well established area. We mention only Traub, Wasilkowski,

and Wo�zniakowski (1988), Ritter (2000), and the referen
es therein. Complexity re-

sults in
lude various settings su
h as the worst 
ase and the average 
ase settings.

There are, however, very few results that address these problems for fun
tions de�ned

over unbounded domains su
h as R

d

.

Some progress has re
ently been made in the worst 
ase setting for the approxi-

mation and integration problems over R and R

d

; see, respe
tively, Wasilkowski and

Wo�zniakowski (2000a) and (2000b). See also Traub, Wasilkowski, and Wo�zniakowski

(1983), Curbera (1998), and Math�e (1998). In the present paper we study 
omplexity

of approximating fun
tions

1

f : R

+

! R and their integrals over R

+

= [0;1) in the

average 
ase setting, assuming that the 
lass of fun
tions is equipped with a probability

measure. Equivalently, we assume that f is a traje
tory of a sto
hasti
 pro
ess X on

R

+

, and we measure the errors by the quadrati
 mean. These problems seem not to

have been studied yet.

In 
ontrast to pro
esses de�ned on a 
ompa
t interval, say [0; 1℄, the expe
ted squared

L

2

-norm of typi
al pro
esses de�ned on R

+

(in
luding the fra
tional Brownian motion)

is in�nite. Furthermore, the integral over R

+

does not exist with probability one. Hen
e

the 
omplexity analysis of those problems is of interest only in a weighted sense.

More spe
i�
ally, let � : R

+

! R

+

be a measurable weight fun
tion. For a given

zero mean Gaussian sto
hasti
 pro
ess X(t), t 2 R

+

, we want to approximate X or its
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1

We 
onsider R

+

instead of R as the domain of the fun
tions f for simpli
ity only.

1
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(weighted) integral

Int

�

X =

Z

1

0

X(t) � �(t) dt:(1)

The error of an approximation AX of X is given as

e(A;App

�

) =

�

E

�

Z

1

0

(X �AX)

2

(t) � �

2

(t) dt

��

1=2

and the error of a quadrature QX for Int

�

X is given as

e(Q; Int

�

) =

�

E (Int

�

X �QX)

2

�

1=2

:

Here and elsewhere E stands for expe
tation.

We assume that any method, i.e., any approximation A or quadrature Q, 
an use

only samples (or observations) of X at a �nite number of points t

i

2 R

+

. We 
all this

number the 
ardinality and denote it by 
ard(A) or 
ard(Q), respe
tively

2

.

We are interested in the (information) 
omplexity of weighted approximation and

integration, whi
h is the minimal number of samples needed to 
onstru
t an approxi-

mation (algorithm) with error not ex
eeding a given " > 0. That is, for the approxi-

mation,


omp(";App

�

) = minf 
ard(A) : A s.t. e(A;App

�

) � " g;

and for integration 
omp("; Int

�

) is de�ned 
orrespondingly.

We present results that do not depend on the parti
ular pro
essX but hold for 
lasses

of pro
esses. These 
lasses are de�ned by quadrati
 mean properties, see Se
tion 2 for

details and examples. In parti
ular, we assume that for some r 2 N

0

the derivative

X

(r)

is H�older 
ontinuous in quadrati
 mean with exponent � 2 [0; 1℄.

It is 
lear that for some weight fun
tions � the 
omplexity of approximation is in�nite,

and the integration problem is not even well de�ned. Therefore, one of our �rst results

provides a ne
essary and suÆ
ient 
ondition for the 
omplexity of approximation to

be �nite for every " > 0. We also provide a ne
essary and suÆ
ient 
ondition for the

weighted integral to exist with probability one. This 
ondition simultaneously gives

�nite 
omplexity for the integration problem.

Approximation over R

+


annot have smaller 
omplexity than the 
orresponding

problem restri
ted to a 
ompa
t interval. The same usually (but not always) holds

for integration. Typi
ally, the 
omplexity on 
ompa
t subintervals is �("

�1=�

) with

� = r+� for approximation and � = r+�+1=2 for integration. We provide suÆ
ient


onditions for the 
omplexity of weighted problems on R

+

to be proportional to "

�1=�

as well.

To give a 
avor of the results, let �(x) = �(x

�


). Then 
 � � + 1=2 implies the


omplexity �("

�1=�

) for both problems. On the other hand, if 
 < � + 1=2 then the


omplexity of approximation is in�nite, and the integration problem may not be well

de�ned.

2

We formally 
onsider nonadaptive observations. Note that adaptive observations with varying


ardinality do not lead to essentially better approximations for problems 
onsidered in this paper, see

Wasilkowski (1986).
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Finally, we state that in 
ases where 
omp("; �) = �("

�1=�

), the upper bounds

are provided by the 
ost of spe
i�
 algorithms. For the approximation problem, these

algorithms are deterministi
 and enjoy 
ertain robustness properties. Indeed, they are

based on a simple pie
ewise polynomial interpolation, and they do not require any

spe
i�
 information about X other than an upper bound for the parameter r + �. For

the integration, similar deterministi
 algorithms are 
onstru
ted only in spe
ial 
ases.

In general 
ase, the upper bound is given by Monte Carlo arguments.

2. Assumptions and Examples

We 
onsider a measurable Gaussian sto
hasti
 pro
ess X(t), t 2 R

+

, with zero mean,

i.e., E (X(t)) = 0 for every t. The 
ovarian
e kernel K of X is de�ned by

K(s; t) = E (X(s) �X(t))

for s; t 2 R

+

.

Let r 2 N

0

and � 2 [0; 1℄. The pro
ess X satis�es H�older 
ondition of order (r; �) if

the derivatives X

(1)

; : : : ; X

(r)

exist and are 
ontinuous in quadrati
 mean and if

E

�

X

(r)

(s)�X

(r)

(t)

�

2

� C

2

1

� js� tj

2�

(2)

for all s; t 2 R

+

with a 
onstant C

1

> 0. This property 
an be equivalently stated

in terms of the 
ovarian
e kernel. Namely, the partial derivatives K

(i;j)

exist and are


ontinuous on R

2

+

for i; j = 0; : : : ; r, and

K

(r;r)

(s; s)� 2K

(r;r)

(s; t) +K

(r;r)

(t; t) � C

2

1

� js� tj

2�

:(3)

In fa
t, the left-hand sides in (2) and (3) 
oin
ide.

Example 1. The fra
tional Brownian motion with parameter � 2 (0; 1) is the zero

mean Gaussian pro
ess with 
ovarian
e kernel

K(s; t) =

1

2

�

s

2�

+ t

2�

� js� tj

2�

�

:

This pro
ess satis�es the H�older 
ondition of order (0; �), sin
e (3) holds with equality

for C

1

= 1 and r = 0. In parti
ular, for � =

1

2

we get the Brownian motion with


ovarian
e kernel

K(s; t) =

1

2

(s+ t� js� tj) = minfs; tg:

Suppose that Y is zero mean Gaussian and satis�es the H�older 
ondition of order

(0; �). Take r � 1. By r-fold integration,

X(t) =

Z

t

0

(t� u)

r�1

(r � 1)!

Y (u) du;

we obviously get a zero mean Gaussian pro
ess X that satis�es the H�older 
ondition

of order (r; �). This 
onstru
tion yields, in parti
ular, the r-fold integrated (fra
tional)

Brownian motion.

Now we 
onsider a stationary pro
ess X with spe
tral density '. Su
h pro
esses are

naturally de�ned on the whole real line. It is well known that the smoothness of X is
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losely related to de
ay properties of its spe
tral density. By de�nition, ' is symmetri
,

nonnegative, and integrable, and the 
ovarian
e kernel K of X satis�es

K(s; t) =

Z

1

�1

exp({(s� t)u) � '(u) du:

Assume that

'(u) � 
 � juj

�2


with 
onstants 
 > 0 and 
 >

1

2

for juj suÆ
iently large. If 
 �

1

2

62 N then X satis�es

the H�older 
ondition with

r = b
 �

1

2


 and � = 
 �

1

2

� r;(4)

see Ritter (2000, Lemma VI.5). We add that all major results in this paper hold for


 �

1

2

2 N , as well, if r + � is repla
ed by 
 �

1

2

.

The Sa
ks-Ylvisaker 
onditions

3

, see Ritter, Wasilkowski, and Wo�zniakowski (1995),

de�ne another 
lass of pro
esses that satisfy H�older 
onditions of order (r;

1

2

).

We will use H�older 
onditions to derive upper bounds for the 
omplexity. These


onditions do not imply nontrivial lower bounds neither for approximation nor for in-

tegration. To derive nontrivial lower bounds for approximation we require the following

additional property.

For a < b and t 2 (a; b) let

e

X

a;b

(t) denote the 
onditional expe
tation of X(t) given

X(s), s 2 [0; a℄ [ [b;1). Thus

e

X

a;b

(t) has minimal mean squared error among all

estimators for X(t) that are based on 
omplete knowledge of X outside of (a; b). We

assume that

E

�

X(t)�

e

X

a;b

(t)

�

2

� C

2

2

�

�

(b� t) � (t� a)

b� a

�

2(r+�)

(5)

for all t 2 (a; b) with a 
onstant C

2

> 0 that does not depend on a and b. This property


an be equivalently formulated by using the Hilbert spa
e H(K) with reprodu
ing

kernel K. Namely, for every t 2 [a; b℄,

supfjh(t)j : h 2 B(K); supp h � [a; b℄g � C

2

�

�

(b� t) � (t� a)

b� a

�

r+�

;(6)

where B(K) denotes the unit ball in H(K). In fa
t, the left-hand sides in (5) and (6)


oin
ide, up to taking the square root.

Example 2. Let t 2 (a; b). For the Brownian motion X we have

e

X

a;b

(t) =

X(a) � (b� t) +X(b) � (t� a)

b� a

:

Sin
e X has independent in
rements, we get

E

�

X(t)�

e

X

a;b

(t)

�

2

=

(b� t) � (t� a)

b� a

:

3

These 
onditions are usually de�ned in the 
ompa
t 
ase t 2 [0; 1℄; they may be used for t 2 R

+

in the same way.
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Thus (5) holds with equality for r = 0, � =

1

2

, and C

2

= 1. This is generalized to the

r-fold integrated Brownian motion in the following way. The 
onditional expe
tation

e

X

a;b

(t) is given by the polynomial of degree at most 2r+1 that interpolates the bound-

ary values X

(k)

(a) and X

(k)

(b) for k = 0; : : : ; r, and (5) holds with equality for � =

1

2

and C

2

2

= 1=((2r + 1)(r!)

2

), see Spe
kman (1979). Note that

e

X

a;b

(t) only depends on

the boundary values of the r-fold integrated Brownian motion. This is due to the fa
t

that (X

(0)

; : : : ; X

(r)

) is a Markov pro
ess in this 
ase.

Using the results from Ritter, Wasilkowski, and Wo�zniakowski (1995), the lower

bound (6) with � =

1

2


an be veri�ed under Sa
ks-Ylvisaker 
onditions of order r 2 N

0

.

The fra
tional Brownian motion with � 6=

1

2

is non-Markovian. For the 
orresponding

reprodu
ing kernel Hilbert spa
e we have h 2 H(K) for every fun
tion h 2 C

1

(R

+

)

with 
ompa
t support that does not in
lude zero. Moreover, the norm of these fun
tions

is given by

khk

2

K

= 
 �

Z

1

�1

juj

2�+1

�

�

�
b

h(u)

�

�

2

du

for some 
onstant 
, see Singer (1994). Here

b

h denotes the Fourier transform of h. This

allows us to establish (6) in the following way. Take g 2 C

1

(R) su
h that g(0) = 1 and

g(s) = 0 if jsj � 1, and put

C

2

=

�

2

�




1=2

�

Z

1

�1

juj

2�+1

� jbg(u)j

2

du

�

�1

:

For t 2 (a; b) and Æ = minft� a; b� tg de�ne

h(s) = C

2

� Æ

�

� g (2(s� t)=Æ)

for s 2 R

+

. Then h 2 H(K) sin
e t > Æ=2, and khk

K

= 1. Furthermore, h = 0 on

[0; a℄ [ [b;1) and

h(t) = C

2

� Æ

�

� C

2

�

�

(b� t) � (t� a)

b� a

�

�

:

In a similar way, one 
an verify (6) for the r-fold integrated fra
tional Brownian motion.

Consider a stationary pro
ess X on the real line, whose spe
tral density ' satis�es

'(u) � 
 �

�

1 + u

2

�

�


with 
onstants 
 > 0 and 
 >

1

2

for every u 2 R. Then every fun
tion h 2 C

1

(R) with


ompa
t support belongs to H(K) and

khk

2

K

� 


0

�

Z

1

�1

�

1 + u

2

�




�

�

�
b

h(u)

�

�

2

du

for some 
onstant 


0

> 0, see Ritter (2000, Lemma VI.7). Therefore (6), with r and �

given by (4), 
an be veri�ed as in the 
ase of fra
tional Brownian motion with Æ =

minft� a; b� t; 1g.
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3. Weighted Approximation on R

+

In this se
tion we assume that X satis�es (2) and (5) with r + � > 0 and, for

simpli
ity, that

C

1

= 1:

3.1. Preliminary Results. First, we study the error of pie
ewise polynomial inter-

polation of degree r

0

� r on 
ompa
t intervals. Put

r

0

= maxfr

0

; 1g:

Lemma 1. For a < b and n 2 N, let U denote the operator of interpolation by pie
ewise

polynomials of degree at most r

0

at the knots

a + j �

b� a

nr

0

; j = 0; : : : ; nr

0

:

There exists a 
onstant A

1

= A

1

(r

0

; r; �) > 0, su
h that

sup

t2[a;b℄

E (X(t)� UX(t))

2

� A

2

1

�

�

b� a

n

�

2(r+�)

:

Proof. As previously, let B(K) denote the unit ball in the Hilbert spa
e H(K) with

reprodu
ing kernel K. We have

E (X(t) � UX(t))

2

= sup

h2B(K)

jh(t)� Uh(t)j

2

:

Moreover, the fun
tions h 2 H(K) are r-times 
ontinuously di�erentiable with

�

�

h

(r)

(s)� h

(r)

(t)

�

�

� js� tj

�

;

see Ritter, Wasilkowski, and Wo�zniakowski (1993).

We give the proof of the lemma only in the 
ase r � 1. Assume that n = 1, at �rst.

Write

h(t) = h

1

(t) + h

2

(t)

for t 2 [a; b℄, where

h

1

(t) =

r

X

k=0

h

(k)

(a)

k!

(t� a)

k

and

h

2

(t) =

Z

t

a

(t� u)

r�1

(r � 1)!

�

h

(r)

(u)� h

(r)

(a)

�

du:

Observe that h� Uh = h

2

� Uh

2

. De�ne

F (a; b) = fh 2 C

r

([a; b℄) : h

(k)

(a) = 0 for k = 0; : : : ; r;

�

�

h

(r)

(s)� h

(r)

(t)

�

�

� js� tj

�

for s; t 2 [a; b℄g;
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so that h

2

2 F (a; b). Moreover, let p

0

; : : : ; p

r

0

denote the Lagrange polynomials for

interpolation at the knots j=r

0

with j = 0; : : : ; r

0

. De�ne

e

h(z) = h

2

(a+ z � (b� a)) for

z 2 [0; 1℄. Then

h

2

(t)� Uh

2

(t) =

e

h

�

t� a

b� a

�

�

r

0

X

j=0

e

h

�

j

r

0

�

� p

j

�

t� a

b� a

�

;

and (b� a)

�(r+�)

�

e

h 2 F (0; 1) if h

2

2 F (a; b). Therefore

sup

t2[a;b℄

E (X(t) � UX(t))

2

� sup

t2[a;b℄

sup

h2F (a;b)

jh(t)� Uh(t)j

2

� (b� a)

2(r+�)

� A

2

1

;

where

A

1

= sup

t2[0;1℄

sup

h2F (0;1)

�

�

�

�

�

h(t)�

r

0

X

j=0

h

�

j

r

0

�

� p

j

(t)

�

�

�

�

�

:

This 
onstant is �nite sin
e every fun
tion h 2 F (0; 1) is bounded by (b� a)

r+�

.

For n � 2 the same arguments work on the respe
tive subintervals of [a; b℄ of length

(b� a)=n.

Next, we dis
uss the 
omplexity in the 
lassi
al 
ase of unweighted L

2

-approximation

on a 
ompa
t interval.

Theorem 1. Let a < b and

� = 1

[a;b℄

:

Then


omp(";App

�

) = �

�

"

�1=(r+�)

�

:

Proof. Consider the pie
ewise polynomial interpolation U from Lemma 1. We get

e

2

(U ;App

�

) � A

2

1

�

�

b� a

n

�

2(r+�)

� (b� a);

and the number of knots used by U is of order n. Hereby the upper bound for the


omplexity follows.

Consider an arbitrary method A that uses knots t

1

< � � � < t

n

. Assume without loss

of generality that a; b 2 ft

1

; : : : ; t

n

g, say a = t

i

and b = t

j

. Using (5) we get

e

2

(A;App

�

) =

j

X

k=i+1

Z

t

k

t

k�1

E (X(t)�AX(t))

2

dt

� C

2

2

�

j

X

k=i+1

Z

t

k

t

k�1

�

(t

k

� t) � (t� t

k�1

)

t

k

� t

k�1

�

2(r+�)

dt

= 
 �

j

X

k=i+1

(t

k

� t

k�1

)

2(r+�)+1

� 
 � (b� a)

2(r+�)+1

� n

�2(r+�)
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with a 
onstant 
 > 0 that only depends on r, �, and C

2

. Hen
e the lower bound for

the 
omplexity follows.

From Theorem 1 we 
on
lude that 
omp(";App

�

) is at least of order "

�1=(r+�)

, if �

is an arbitrary weight fun
tion on R

+

that is bounded away from zero on an interval

of positive length.

3.2. Finite Complexity. We give a ne
essary and suÆ
ient 
ondition for the 
om-

plexity of approximation of X to be �nite for any " > 0.

De�ne the fun
tion L : R

+

! R

+

[ f1g by

L(R) =

�

Z

1

R

�

2

(t) � t

2(r+�)

dt

�

1=2

:

Lemma 2. We have

8 " > 0 : 
omp(";App

�

) <1;(7)

i�

lim

R!1

L(R) = 0(8)

and

8 0 � a < b <1 8 " > 0 : 
omp(";App

��1

[a;b℄

) <1:(9)

Proof. We 
laim that

K(t; t) � A

2

2

� t

2(r+�)

(10)

for t � 1, say, with a 
onstant A

2

= A

2

(K; r; �) > 0. To show this, de�ne X

1

and X

2

by

X

1

(t) =

r

X

k=0

X

(k)

(0)

k!

t

k

and X(t) = X

1

(t) +X

2

(t). Then

K(t; t) � 2

�

E (X

1

(t))

2

+ E (X

2

(t))

2

�

with E (X

1

(t))

2

= O (t

2r

). If r � 1 then

E (X

2

(t))

2

=

Z

t

0

Z

t

0

(t� u)

r�1

(t� v)

r�1

((r � 1)!)

2

E

��

X

(r)

(u)�X

(r)

(0)

�

�

�

X

(r)

(v)�X

(r)

(0)

��

du dv

�

�

Z

t

0

(t� u)

r�1

(r � 1)!

� u

�

du

�

2

� t

2(r+�)

:

This upper bound is obviously valid in the 
ase r = 0, too, and (10) is proven.

Suppose now that (8) and (9) hold. For a given " > 0, let R

"

� 1 be su
h that

L(R

"

) � "

1

with "

1

= "(1+A

2

2

)

�1=2

. Let A

"

be a method su
h that e(A

"

;App

��1

[0;R

"

℄

) �

"

1

, and A

"

f is zero on [R

"

;1). Then (10) yields

e(A

"

;App

�

)

2

= e

�

A

"

;App

��1

[0;R

"

℄

�

2

+

Z

1

R

"

�

2

(t) �K(t; t) dt � "

2

1

�

�

1 + A

2

2

�

2

� "

2

;
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whi
h proves (7).

Suppose that (7) holds. Then, of 
ourse, (9) holds as well, and we only need to

show (8). For a given " > 0, let A

"

be a method su
h that e(A

"

;App

�

) � ". Let

t

1;"

< � � � < t

n;"

denote the knots used by A

"

, and put R

"

= t

n;"

. Re
all the de�nition

of

e

X

a;b

(t) from Se
tion 2. For every b > R

"

we have

"

2

�

Z

b

R

"

E (X(t)�A

"

X(t))

2

� �

2

(t) dt �

Z

b

R

"

E

�

X(t)�

e

X

R

"

;b

(t)

�

2

� �

2

(t) dt:

Using (5) we get

"

2

� C

2

2

�

Z

1

R

"

�

2

(t) � 1

[R

"

;b℄

(t) �

�

(b� t) � (t� R

"

)

b� R

"

�

2(r+�)

dt:

For b!1 the integrand 
onverges monotoni
ally towards �

2

(t) � (t�R

"

)

2(r+�)

. Thus

L

2

(2R

"

) � 2

2(r+�)

�

Z

1

2R

"

�

2

(t) � (t� R

"

)

2(r+�)

dt �

2

2(r+�)

C

2

2

� "

2

;

whi
h proves (8).

Lemma 3. Assume that

Z

1

0

�

2

(t) dt <1:(11)

Then we have (9), i.e., �nite 
omplexity on 
ompa
t subintervals. Moreover, we have

�nite 
omplexity (7) i�

Z

1

0

�

2

(t) � t

2(r+�)

dt <1:(12)

Proof. We use Lemma 1 to 
on
lude that (11) implies (9). Moreover, given (11), we

have equivalen
e of (8) and (12). It remains to apply Lemma 2.

3.3. Upper Bounds. We already know that the 
omplexity of approximating X is at

least of order "

�1=(r+�)

if the weight � is bounded away from zero on a subinterval of

positive length. In the following, we provide a method whi
h, under some assumptions

on �, has error " and 
ardinality proportional to "

�1=(r+�)

. We also give a ne
essary


ondition for the 
omplexity to be of that order.

Let a

i

= 2

i

� 1 for i 2 N

0

, and de�ne

�

i

= ess supf�(t) : t 2 [a

i�1

; a

i

℄g

as well as




i

= �

1=(r+�+1=2)

i

� 2

i�1

for i 2 N . We assume that

A

3

:= A

3

(r; �; �) :=

1

X

i=1




i

<1(13)
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and

L(a

i

) � A

4

� 


r+�+1=2

i+1

(14)

with a 
onstant A

4

= A

4

(r; �; �). To ex
lude trivial 
ases, we also assume 


i

> 0 for all

i 2 N .

The upper bound 
omp(";App

�

) = O

�

"

�1=(r+�)

�

for the 
omplexity is obtained by

the following method A

�

. Let k 2 N and n

1

; : : : ; n

k

2 N , and put I

i

= [a

i�1

; a

i

℄ for

i = 1; : : : ; k. On ea
h of these intervals, A

�

X is an interpolation of X by pie
ewise

polynomials of degree at most r

0

� r, as in Lemma 1. The interpolation points are

given by

a

i�1

+ j �

a

i

� a

i�1

n

i

r

0

; j = 0; : : : ; n

i

r

0

;

for i � k. On I

k+1

= [a

k

;1) we use A

�

X(t) = 0. Clearly,


ard(A

�

) = r

0

�

k

X

i=1

n

i

+ 1:

The parti
ular 
hoi
e of k; n

1

; : : : ; n

k

depends on ", r, �, and � in the following way.

For ` 2 N we de�ne

G("; `) =

 

A

2

"

2

�

`+1

X

i=1




i

!

1=(2(r+�))

with

A = maxfA

1

; A

2

� A

4

g:

We take

k = k(") = minf` 2 N : 


`+1

�G("; `) � 1g

and

n

i

= d


i

�G("; k)e :

Observe that k is well-de�ned for every " be
ause of (13). Moreover, n

k+1

= 1.

Theorem 2. Suppose that (13) and (14) hold. Then we have

e(A

�

;App

�

) � "

and


omp(";App

�

) � 
ard(A

�

)

� r

0

�

�

2 � "

�1=(r+�)

� A

1=(r+�)

� A

(r+�+1=2)=(r+�)

3

+ 1

�

+ 1:

Proof. We �rst show that the error of A

�

is at most ". Lemma 1 yields upper bounds

for the error of A

�

on the subintervals I

i

for i � k. We have

e

2

i

:=

Z

a

i

a

i�1

E (X(t) �A

�

X(t))

2

� �

2

(t) dt � A

2

1

�




2(r+�+1=2)

i

n

2(r+�)

i

:
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Furthermore, by (10),

e

2

k+1

:=

Z

1

a

k

E (X(t) �A

�

X(t))

2

� �

2

(t) dt � A

2

2

�

Z

1

a

k

�

2

(t) � t

2(r+�)

dt:

Using (14) we get

e

2

k+1

� A

2

2

A

2

4

� 


2(r+�+1=2)

k+1

:

The parti
ular 
hoi
e of n

i

, 1 � i � k, yields

e

2

i

� A

2

1

�G

�2(r+�)

("; k) � 


i

:

The parti
ular 
hoi
e of k yields

e

2

k+1

� A

2

2

A

2

4

�G

�2(r+�)

("; k) � 


k+1

:

We therefore have

e

2

(A

�

; �) =

k+1

X

i=1

e

2

i

� A

2

�G

�2(r+�)

("; k) �

k+1

X

i=1




i

= "

2

:

Now we derive the upper bound for the 
ardinality of U . For that end, we need to

estimate the sum of n

i

. Clearly,

k

X

i=1

n

i

� k +G("; k) �

k

X

i=1




i

:

For i = 2; : : : ; k we have 1 < 


i

�G("; i� 1) � 


i

�G("; k), and therefore

k � 1 +G("; k) �

k

X

i=1




i

:

Finally

G("; k) �

k

X

i=1




i

� 1 +G("; k) � A

3

� "

�1=(r+�)

� A

1=(r+�)

�A

(r+�+1=2)=(r+�)

3

:

We 
on
lude that


ard(A

�

) � r

0

�

�

2 � "

�1=(r+�)

� A

1=(r+�)

�A

(r+�+1=2)=(r+�)

3

+ 1

�

+ 1;

whi
h 
ompletes the proof of the theorem.

Let us dis
uss assumptions (13) and (14). First, note that (13) implies boundedness

of �. It also implies integrability of �

2

and of �

1=(r+�+1=2)

over R

+

.

Suppose now that � is monotoni
ally de
reasing. Then

1

2

�

1

X

i=2




i

�

Z

1

0

�

1=(r+�+1=2)

(t) dt �

1

X

i=1




i

;

so that (13) is equivalent to integrability of �

1=(r+�+1=2)

over R

+

. Furthermore, in this


ase, (13) implies (12). Indeed, if

R

1

0

�

1=(r+�+1=2)

(t) dt = 
 < 1 then �

1=(r+�+1=2)

(t) �


=t, so that

Z

1

0

�

2

(t) � t

2(r+�)

dt � 


2(r+�)

�

Z

1

0

�

1=(r+�+1=2)

dt <1:
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Thus we already get �nite 
omplexity (7) from (13) by Lemma 3.

Verifying (14) may be more 
ompli
ated. The following simple observation 
an ease

this task in some 
ases. Suppose

L(1) <1 and 8 x; y � 1 : �(xy) � A

5

� �(x) � �(y):(15)

Then (14) holds with A

4

= L(1) � A

5

as follows from

L

2

(R) = R

2r+2�+1

Z

1

1

�

2

(x �R) � x

2(r+�)

dx � (A

5

� L(1))

2

� �

2

(R) �R

2r+2�+1

:

We now illustrate assumptions (13) and (14) by the following two examples.

Example 3. Consider the weight

�(t) = (t+ 1)

��

:

Then �

i

= 2

�(i�1)�

and

A

3

=

1

X

i=0

2

i (1��=(r+�+1=2))

:

Thus (13) holds i�

� > r + � +

1

2

;(16)

and in this 
ase

A

3

=

1

1� 2

1��

with � = �=

�

r + � +

1

2

�

> 1. Note also that

L

2

(R) =

Z

1

R

t

2(r+�)

(t + 1)

2�

dt;

so that (16) is ne
essary for �nite 
omplexity (7). Finally,

L

2

(R) �

Z

1

R

(t+ 1)

�2 (��r��)

dt =

(R + 1)

�2 (��r��)+1

2 (�� r � �)� 1

;

so that (16) yields (14) with

A

2

4

=

1

2(�� r � �)� 1

:

Example 4. Consider the weight fun
tion

�(x) = exp (��

1

� x

�

2

)

for positive �

1

; �

2

. Of 
ourse, L(0) <1 and (13) holds. Note also that (15) holds with

A

5

= exp(�

1

). Hen
e (14) holds with A

4

= L(1) � e

�

2

.

Remark 1. There are weight fun
tions for whi
h the 
omplexity is �nite and (13)

holds; however, (14) is not satis�ed. In su
h 
ases Theorem 2 is not appli
able. For

instan
e, 
onsider

�(t) = (t+ 1)

�(r+�+1=2)

� ln

��

(t+ e):(17)
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Then (7) is equivalent to � >

1

2

, (13) is equivalent to � > r + � + 1=2, yet (14) does

not hold no matter how large � is.

In Plaskota, Ritter, and Wasilkowski (2000), we develop a di�erent te
hnique that

allows to �nd the 
omplexity for weights like (17).

In many 
ases (13) is also a ne
essary 
ondition for the 
omplexity to be of the same

order as in the 
ompa
t 
ase.

Theorem 3. Suppose that the weight fun
tion � is 
ontinuous or monotoni
ally de-


reasing. Then 
omp(";App

�

) = O

�

"

�1=(r+�)

�

implies

Z

1

0

�

1=(r+�+1=2)

(t) dt <1:

Proof. Let A

"

be a method su
h that e(A

"

;App

�

) � " and 
ard(A

"

) = O

�

"

�1=(r+�)

�

.

Let t

1

< � � � < t

n

denote the knots used by A

"

, where n = 
ard(A

"

). Put R = t

n

and

t

0

= 0 as well as

e�

i

= inff�(t) : t 2 [t

i�1

; t

i

℄g:

Using (5) we obtain

"

2

� C

2

2

�

n

X

i=1

Z

t

i

t

i�1

�

2

(t) �

�

(t

i

� t) � (t� t

i�1

)

t

i

� t

i�1

�

2(r+�)

dt

� 
 �

n

X

i=1

e�

2

i

� (t

i

� t

i�1

)

2(r+�)+1

� 
 � n

�2(r+�)

�

 

n

X

i=1

e�

1=(r+�+1=2)

i

� (t

i

� t

i�1

)

!

2(r+�)+1

with a 
onstant 
 > 0 that depends only on C

2

, r, and �. Thus

n

X

i=1

e�

1=(r+�+1=2)

i

� (t

i

� t

i�1

)

is uniformly bounded in " and the 
orresponding step fun
tions 
onverge to �

1=(r+�+1=2)

at every point of 
ontinuity of �, i.e., at least almost everywhere. It remains to apply

Fatou's Lemma.

4. Weighted Integration on R

+

In this se
tion we assume that X satis�es (2) with r+� > 0 and, for simpli
ity, that

C

1

= 1:

For the integration problem to be well de�ned in the Lebesgue sense, it is ne
essary

and suÆ
ient that

Z

1

0

K

1=2

(t; t) � �(t) dt <1:(18)
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Indeed, sin
e X is Gaussian, we have

E

�

Z

1

0

jX(t)j � �(t) dt

�

=

Z

1

0

E (jX(t)j) � �(t) dt =

p

2=� �

Z

1

0

K

1=2

(t; t) � �(t) dt;

whi
h, together with (18), implies that the weighted integral Int

�

X is well de�ned for

almost every traje
tory of X. Conversely, assume that the latter holds true. Then, by

Fernique's inequality,

E

�

Z

1

0

jX(t)j � �(t) dt

�

<1;

whi
h implies (18). We add that

Z

1

0

�(t) �maxf1; tg

r+�

dt <1(19)

is a suÆ
ient 
ondition for (18) to hold, see (10). Moreover, for pro
esses that satisfy

(5), the 
ondition (19) is only slightly stronger than (18), sin
e K(t; t) � 
 � t

2(r+�)

for

t 2 R

+

in this 
ase.

We use the general te
hnique from Wasilkowski (1994) to derive upper bounds for

the 
omplexity of the integration problem. In this approa
h one analyzes suitable ran-

domized (Monte Carlo) methods. By a mean value argument, a Monte Carlo method

with average error at most " yields the existen
e of a deterministi
 method with the

same error bound and the same number of samples.

4.1. Preliminary Results. First, we 
onsider the 
ase of a bounded weight fun
-

tion with 
ompa
t support. Of 
ourse, this in
ludes the 
lassi
al 
ase of unweighted

integration on a 
ompa
t interval.

Theorem 4. Let a < b be su
h that

supp � � [a; b℄ and ess sup

t2[a;b℄

�(t) <1:

Then


omp("; Int

�

) = O

�

"

�1=(r+�+1=2)

�

:

Proof. Consider the pie
ewise polynomial interpolation U from Lemma 1, whi
h uses

1 + nr

0

knots. De�ne

MCX =

Z

b

a

UX(t) � �(t) dt+

b� a

1 + nr

0

�

nr

0

X

j=0

(X � UX)(t

j

) � �(t

j

);(20)

where t

0

; : : : ; t

nr

0

are independent and uniformly distributed in [a; b℄. We use E

t

to

denote the expe
tation with respe
t to the joint distribution of the points t

j

. For every

�xed traje
tory of X,

E

t

(MCX) = Int

�

X

and

E

t

(Int

�

X �MCX)

2

�

b� a

1 + nr

0

�

Z

b

a

(X � UX)

2

(t) � �

2

(t) dt:
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Therefore

E

t

�

E (Int

�

X �MCX)

2

�

= E

�

E

t

(Int

�

X �MCX)

2

�

�

b� a

1 + nr

0

� e

2

(U ;App

�

):

Hen
e there exists a 
hoi
e of deterministi
 points t

i

su
h that the quadrature formulaQ

de�ned by the right-hand side of (20) satis�es

e(Q; Int

�

) �

�

b� a

1 + nr

0

�

1=2

� e(U ;App

�

):

We apply Lemma 1 to obtain

e(Q; Int

�

) � A

1

� (b� a)

r+�+1

� ess sup

t2[a;b℄

�(t) � n

�(r+�+1=2)

;

and the upper bound on the 
omplexity follows, sin
e 
ard(Q) = 2(1+nr

0

) = O(n).

Under H�older 
onditions (2), we are able only to provide upper bounds sin
e without

additional restri
tions, the 
omplexity of the integration problem 
ould be 1 indepen-

dently of ". Indeed, this holds when, e.g., K(s; t) = g(s) � g(t) for a suitable nonzero

fun
tion g, sin
e one sample determines a traje
tory of X pre
isely.

However, the upper bound from Theorem 4 
annot be improved in general. Indeed,

for the pro
esses of Example 2 we have


omp("; Int

�

) = �

�

"

�1=(r+�+1=2)

�

;

and simple 
onstru
tions of almost optimal quadrature formulas are known. More-

over, 
omp("; Int

�

) is at least of order "

�1=(r+�+1=2)

for those pro
esses and arbitrary

weight fun
tions on R

+

that are bounded away from zero on a 
ompa
t interval of

positive length. See Ritter, Wasilkowski, and Wo�zniakowski (1995), and Ritter (2000,

Se
. VI.1.2, VI.1.4).

We also mention that (18) implies �nite 
omplexity on 
ompa
t intervals, i.e.,

8 0 � a < b <1 8 " > 0 : 
omp("; Int

��1

[a;b℄

) <1;

and �nite 
omplexity on R

+

, i.e.,

8 " > 0 : 
omp("; Int

�

) <1:

4.2. Upper Bounds. We present two di�erent approa
hes that yield an upper bound

of order "

�1=(r+�+1=2)

for 
omp("; Int

�

).

In the �rst approa
h, we apply randomization to 
ompa
t subintervals of R

+

. To

this end, let a

i

= 2

i

� 1 and

�

i

= ess sup

t2[a

i�1

;a

i

℄

�(t)

as in Se
tion 3.3. Rede�ne




i

= �

1=(r+�+1)

i

� 2

i�1

and

L(R) =

�

Z

1

R

Z

1

R

K(s; t) � �(s) �(t) ds dt

�

1=2

:
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We assume that

A

3

:= A

3

(r; �; �) :=

1

X

i=1




i

<1(21)

and

L(a

i

) � A

4

� 


r+�+1

i+1

(22)

with a 
onstant A

4

= A

4

(r; �; �).

Theorem 5. Suppose that (21) and (22) hold. Then we have


omp("; Int

�

) � r

0

�

�

3 � "

�1=(r+�+1=2)

� A

1=(r+�+1=2)

�A

(r+�+1)=(r+�+1=2)

4

+ 2

�

+ 1:

Proof. We study suitable linear 
ombinations of the Monte Carlo methods from the

proof of Theorem 4. Given " > 0, let

G("; `) =

 

A

2

"

2

�

`+1

X

i=1




i

!

1=(2r+2�+1)

with

A = maxfA

1

; A

4

g:

We take

k = k(") = minf` 2 N : 


`+1

�G("; `) � 1g

and

n

i

= n

i

(") = d


i

�G("; k)e :

For every interval [a; b℄ = I

i

= [a

i�1

; a

i

℄ and n = n

i

with i = 1; : : : ; k let U

i

be the

pie
ewise polynomial interpolation from Lemma 1 and letMC

i

be de�ned by the right-

hand side of (20). Assuming that all the Monte Carlo points are 
hosen independently,

MC

1

X; : : : ;MC

k

X are independent random variables for every �xed traje
tory of X.

We de�ne

MCX =

k

X

i=1

MC

i

X:

Then

E

t

(Int

�

X �MCX)

2

=

�

Z

1

a

k

X(t) � �(t) dt

�

2

+

k

X

i=1

E

t

�

Int

��1

I

i

�MC

i

X

�

2

;

and hereby

E

t

(E (Int

�

X �MCX)

2

) � L

2

(a

k

) +

k

X

i=1

2

i�1

1� n

i

r

0

� e

2

(U

i

;App

��1

I

i

):

The rest of the proof is very similar to the proof of Theorem 2, and we omit it.
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Note that (21) is in general a stronger assumption than (13). For instan
e, �(t) =

(t + 1)

��

satis�es (13) i� � > r + � + 1=2, whereas � must be greater than r + � + 1

for (21) to hold. Hen
e, although the 
omplexity of weighted integration is smaller

than the 
omplexity of weighted approximation, we need a stronger assumption on the

weight for the 
omplexity to be of minimal order.

In a se
ond approa
h, we apply randomization dire
tly to the half-line R

+

.

Theorem 6. Suppose there exists Æ 2 (0; 2) su
h that

Z

1

0

�

Æ

(t) dt <1;(23)

and �

Æ

= �

1�Æ=2

satis�es the assumptions (13) and (14), i.e.,

1

X

i=1

2

i�1

� �

(1�Æ=2)=(r+�+1=2)

i

<1(24)

and

Z

1

a

i

�

2�Æ

(t) � t

2(r+�)

dt � A

2

4

� 2

i(2r+2�+1)

� �

2�Æ

i+1

:(25)

Then


omp("; Int

�

) = O

�

"

�1=(r+�+1=2)

�

:

Proof. Given ", letA

�

"

be the method from Theorem 2 for the weight fun
tion � repla
ed

by �

Æ

. Let n = n(") be the 
ardinality ofA

�

"

. Consider the following randomized method

MC

n

X =

Z

1

0

A

�

"

(X)(t) � �(t) dt+

a

n

n

X

i=1

(X �A

�

"

(X))(t

i

) � �

1�Æ

(t

i

)

where the points t

i

are 
hosen independently a

ording to the probability distribution

whose density equals �

Æ

=a with a =

R

1

0

�

Æ

(t) dt. Note that the 
ardinality of MC

n

equals 2n. It is easy to 
he
k that for every traje
tory of X,

E

t

(Int

�

(X)�MC

n

(X))

2

�

1

n

�

Z

1

0

�

Æ

(t) dt �

Z

1

0

((X �A

"

�

(X))(t) � �

Æ

(t))

2

dt;

where E

t

denotes the expe
tation with respe
t to the points t

i

. Finally we use Theorem 2

and pro
eed as in the proof of Theorem 4.

We illustrate the assumptions of Theorem 6 for �(t) = (t+1)

��

as before. For �

Æ

to be

integrable, we need Æ� > 1. For the other assumptions, we need �(1�Æ=2) > r+�+1=2.

Equivalently, we need 1=� < Æ < 2� 2(r+�+1=2)=�. This means that su
h a Æ exists

i� � > r+�+1 whi
h is exa
tly the same 
ondition as the 
ondition for satisfying the

assumptions of Theorem 5.

For every monotone fun
tion �, (21) is equivalent to the existen
e of Æ 2 (0; 2) with

(23) and (24). Furthermore, (25) is not needed in this 
ase, see Plaskota, Ritter, and

Wasilkowski (2000). On the other hand, there exist nonmonotoni
 weight fun
tions

su
h that Theorem 6 yields the upper bound, while Theorem 5 is not appli
able.
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4.3. A Spe
ial Case: Sa
ks-Ylvisaker 
onditions. We now dis
uss a spe
ial 
ase.

We assume that X satis�es the Sa
ks-Ylvisaker 
onditions of order r 2 N

0

. As shown

in Ritter, Wasilkowski, and Wo�zniakowski (1995), the 
orresponding reprodu
ing ker-

nel Hilbert spa
e is, essentially, equal to the Sobolev spa
e W

r+1

2

(R

+

). It is also well

known, see, e.g., Traub, Wasilkowski and Wo�zniakowski (1988), Ritter (2000), that

for integration the average 
ase 
omplexity is equal to the worst 
ase 
omplexity with

respe
t to the unit ball in the reprodu
ing kernel Hilbert spa
e. Moreover, (almost)

optimal methods in one of the setting are also (almost) optimal in the other. Thus, for

X satisfying Sa
ks-Ylvisaker 
onditions, the average 
omplexity of the weighted inte-

gration redu
es to the worst 
ase 
omplexity with respe
t to the unit ball inW

r+1

2

(R

+

).

The latter problem, among others, was 
onsidered in Wasilkowski and Wo�zniakowski

(2000a).

If (21) and (22) hold with � = 1=2 also in the de�nition of 


i

, then there are


onstru
tions of simple methods Q

�

"

whose errors do not ex
eed " and 
ardinalities are

proportional to "

�1=(r+1)

. Hen
e they are almost optimal sin
e the 
omplexity of the

problem also equals


omp("; Int

�

) = �

�

"

�1=(r+1)

�

:

For spe
i�
s 
on
erning these methods see Wasilkowski and Wo�zniakowski (2000a) and

Han and Wasilkowski (2000).

We sket
h a possible 
onstru
tion. With the 
hoi
e of k and n

i

from Theorem 5 take

Q

i

X =

Z

a

i

a

i�1

U

i

X(t) � �(t) dt;

where U

i

is the pie
ewise linear interpolation from Lemma 1 on [a

i�1

; a

i

℄ with 1 + n

i

r

0

knots. Then Q =

P

k

i=1

Q

i

is an almost optimal method. A proof 
an be based on the

following fa
ts. Let X �

b

X denote the Taylor polynomial of degree r at a

i�1

. Sin
e

r

0

� r,

Z

a

i

a

i�1

X(t) � �(t) dt�Q

i

X =

Z

a

i

a

i�1

b

X(t) � �(t) dt�Q

i

b

X:

Moreover, note that these random variables are independent for i = 1; : : : k, if X is the

r-fold integrated Brownian motion.

5. Con
luding Remarks

We dis
uss possible improvements to the proposed methods. We will do this only for

the approximation problem; however, the same 
omments pertain to the integration

problem. Due to the lower bounds the improvements 
an only lead to better 
onstants

in the estimates for the error or the 
ardinality.

Remark 2. The method A

�

is based on pie
ewise polynomial interpolation. Instead

one 
ould use error-optimal algorithms. The latter are given by the means of the 
or-

responding 
onditional pro
ess, or, equivalently, by interpolating K-splines. In view of

the lower bounds we have de
ided to work with pie
ewise polynomials, sin
e they are

easy to implement and do not depend on spe
i�
 type of the pro
ess X.
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Re
all that A

�

X(t) vanishes for t > a

k

. Alternatively, we 
ould de�ne A

�

Xj

[a

k

;1)

by

extrapolation, using a few values X in a neighbourhood of a

k

.

Remark 3. In the de�nition of A

�

, the parameters k and n

i

are 
hosen based on an

upper bound on error of an interpolating pie
ewise polynomial. Spe
i�
ally, we use the

following inequality

e

2

i

= E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

� �

2

(t) dt

�

� �

2

i

� (a

i

� a

i�1

) �max

t

E (X(t) �A

�

X(t))

2

:

This 
ould be improved by using

e

2

i

= E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

� �

2

(t) dt

�

if the above expe
tation are easy to 
ompute, or by using

e

2

i

� �

2

i

� E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

dt

�

that in many 
ases is not diÆ
ult to 
ompute. Any su
h improvement would require a

new de�nition of 


i

; the rest of the method would remain un
hanged.

Remark 4. The method A

�

uses the values of the suprema �

i

. This 
ould result in a

very high 
ombinatorial 
ost for a number of weights �. Of 
ourse, this does not 
on
ern

monotoni
 weights � sin
e then the numbers �

i

are given expli
itly by �

i

= �(a

i�1

).

Remark 5. The sample points used by A

�

are equally spa
ed in ea
h subinterval

[a

i�1

; a

i

℄. Instead, one 
ould use the sampling similar to the one proposed in Han and

Wasilkowski (2000), a paper that deals with the worst 
ase setting.

Remark 6. Suppose we only know an upper bound � for the H�older smoothness r+�

of X. Then we 
an also a
hieve an error of order " at 
ost of order "

�1=(r+�)

by the

following modi�
ation of the method A

�

. Take pie
ewise polynomial interpolation of

degree r

0

= d�e. Rede�ne




i

= �

1=(�+1=2)

i

� 2

i�1

and assume that A

3

:=

P

1

i=1




i

<1. Moreover, assume that

Z

1

a

i

�

2

(t) � t

2�

dt � A

2

4

� 


2�+1

i+1

with a 
onstant A

4

> 0. Finally, rede�ne

G("; `) =

 

1

"

2

�

`+1

X

i=1




i

!

1=(2�)

;

and take k and n

i

as previously.
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