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Abstrat. We study weighted approximation and integration of Gaussian stohasti

proesses X de�ned over R

+

whose rth derivatives satisfy a H�older ondition with

exponent � in the quadrati mean. We assume that the algorithms use samples of X

at a �nite number of points. We study the average ase (information) omplexity,

i.e., the minimal number of samples that are suÆient to approximate/integrate X

with the expeted error not exeeding ". We provide suÆient onditions in terms of

the weight and the parameters r and � for the weighted approximation and weighted

integration problems to have �nite omplexity. For approximation, these onditions

are neessary as well. We also provide suÆient onditions for these omplexities to

be proportional to the omplexities of the orresponding problems de�ned over [0; 1℄,

i.e., proportional to "

�1=�

where � = r+� for the approximation and � = r+�+1=2

for the integration.

1. Introdution

Complexity of approximating or integrating a funtion de�ned over a bounded do-

main has already been a well established area. We mention only Traub, Wasilkowski,

and Wo�zniakowski (1988), Ritter (2000), and the referenes therein. Complexity re-

sults inlude various settings suh as the worst ase and the average ase settings.

There are, however, very few results that address these problems for funtions de�ned

over unbounded domains suh as R

d

.

Some progress has reently been made in the worst ase setting for the approxi-

mation and integration problems over R and R

d

; see, respetively, Wasilkowski and

Wo�zniakowski (2000a) and (2000b). See also Traub, Wasilkowski, and Wo�zniakowski

(1983), Curbera (1998), and Math�e (1998). In the present paper we study omplexity

of approximating funtions

1

f : R

+

! R and their integrals over R

+

= [0;1) in the

average ase setting, assuming that the lass of funtions is equipped with a probability

measure. Equivalently, we assume that f is a trajetory of a stohasti proess X on

R

+

, and we measure the errors by the quadrati mean. These problems seem not to

have been studied yet.

In ontrast to proesses de�ned on a ompat interval, say [0; 1℄, the expeted squared

L

2

-norm of typial proesses de�ned on R

+

(inluding the frational Brownian motion)

is in�nite. Furthermore, the integral over R

+

does not exist with probability one. Hene

the omplexity analysis of those problems is of interest only in a weighted sense.

More spei�ally, let � : R

+

! R

+

be a measurable weight funtion. For a given

zero mean Gaussian stohasti proess X(t), t 2 R

+

, we want to approximate X or its
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We onsider R

+

instead of R as the domain of the funtions f for simpliity only.

1
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(weighted) integral

Int

�

X =

Z

1

0

X(t) � �(t) dt:(1)

The error of an approximation AX of X is given as

e(A;App

�

) =

�

E

�

Z

1

0

(X �AX)

2

(t) � �

2

(t) dt

��

1=2

and the error of a quadrature QX for Int

�

X is given as

e(Q; Int

�

) =

�

E (Int

�

X �QX)

2

�

1=2

:

Here and elsewhere E stands for expetation.

We assume that any method, i.e., any approximation A or quadrature Q, an use

only samples (or observations) of X at a �nite number of points t

i

2 R

+

. We all this

number the ardinality and denote it by ard(A) or ard(Q), respetively

2

.

We are interested in the (information) omplexity of weighted approximation and

integration, whih is the minimal number of samples needed to onstrut an approxi-

mation (algorithm) with error not exeeding a given " > 0. That is, for the approxi-

mation,

omp(";App

�

) = minf ard(A) : A s.t. e(A;App

�

) � " g;

and for integration omp("; Int

�

) is de�ned orrespondingly.

We present results that do not depend on the partiular proessX but hold for lasses

of proesses. These lasses are de�ned by quadrati mean properties, see Setion 2 for

details and examples. In partiular, we assume that for some r 2 N

0

the derivative

X

(r)

is H�older ontinuous in quadrati mean with exponent � 2 [0; 1℄.

It is lear that for some weight funtions � the omplexity of approximation is in�nite,

and the integration problem is not even well de�ned. Therefore, one of our �rst results

provides a neessary and suÆient ondition for the omplexity of approximation to

be �nite for every " > 0. We also provide a neessary and suÆient ondition for the

weighted integral to exist with probability one. This ondition simultaneously gives

�nite omplexity for the integration problem.

Approximation over R

+

annot have smaller omplexity than the orresponding

problem restrited to a ompat interval. The same usually (but not always) holds

for integration. Typially, the omplexity on ompat subintervals is �("

�1=�

) with

� = r+� for approximation and � = r+�+1=2 for integration. We provide suÆient

onditions for the omplexity of weighted problems on R

+

to be proportional to "

�1=�

as well.

To give a avor of the results, let �(x) = �(x

�

). Then  � � + 1=2 implies the

omplexity �("

�1=�

) for both problems. On the other hand, if  < � + 1=2 then the

omplexity of approximation is in�nite, and the integration problem may not be well

de�ned.

2

We formally onsider nonadaptive observations. Note that adaptive observations with varying

ardinality do not lead to essentially better approximations for problems onsidered in this paper, see

Wasilkowski (1986).
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Finally, we state that in ases where omp("; �) = �("

�1=�

), the upper bounds

are provided by the ost of spei� algorithms. For the approximation problem, these

algorithms are deterministi and enjoy ertain robustness properties. Indeed, they are

based on a simple pieewise polynomial interpolation, and they do not require any

spei� information about X other than an upper bound for the parameter r + �. For

the integration, similar deterministi algorithms are onstruted only in speial ases.

In general ase, the upper bound is given by Monte Carlo arguments.

2. Assumptions and Examples

We onsider a measurable Gaussian stohasti proess X(t), t 2 R

+

, with zero mean,

i.e., E (X(t)) = 0 for every t. The ovariane kernel K of X is de�ned by

K(s; t) = E (X(s) �X(t))

for s; t 2 R

+

.

Let r 2 N

0

and � 2 [0; 1℄. The proess X satis�es H�older ondition of order (r; �) if

the derivatives X

(1)

; : : : ; X

(r)

exist and are ontinuous in quadrati mean and if

E

�

X

(r)

(s)�X

(r)

(t)

�

2

� C

2

1

� js� tj

2�

(2)

for all s; t 2 R

+

with a onstant C

1

> 0. This property an be equivalently stated

in terms of the ovariane kernel. Namely, the partial derivatives K

(i;j)

exist and are

ontinuous on R

2

+

for i; j = 0; : : : ; r, and

K

(r;r)

(s; s)� 2K

(r;r)

(s; t) +K

(r;r)

(t; t) � C

2

1

� js� tj

2�

:(3)

In fat, the left-hand sides in (2) and (3) oinide.

Example 1. The frational Brownian motion with parameter � 2 (0; 1) is the zero

mean Gaussian proess with ovariane kernel

K(s; t) =

1

2

�

s

2�

+ t

2�

� js� tj

2�

�

:

This proess satis�es the H�older ondition of order (0; �), sine (3) holds with equality

for C

1

= 1 and r = 0. In partiular, for � =

1

2

we get the Brownian motion with

ovariane kernel

K(s; t) =

1

2

(s+ t� js� tj) = minfs; tg:

Suppose that Y is zero mean Gaussian and satis�es the H�older ondition of order

(0; �). Take r � 1. By r-fold integration,

X(t) =

Z

t

0

(t� u)

r�1

(r � 1)!

Y (u) du;

we obviously get a zero mean Gaussian proess X that satis�es the H�older ondition

of order (r; �). This onstrution yields, in partiular, the r-fold integrated (frational)

Brownian motion.

Now we onsider a stationary proess X with spetral density '. Suh proesses are

naturally de�ned on the whole real line. It is well known that the smoothness of X is
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losely related to deay properties of its spetral density. By de�nition, ' is symmetri,

nonnegative, and integrable, and the ovariane kernel K of X satis�es

K(s; t) =

Z

1

�1

exp({(s� t)u) � '(u) du:

Assume that

'(u) �  � juj

�2

with onstants  > 0 and  >

1

2

for juj suÆiently large. If  �

1

2

62 N then X satis�es

the H�older ondition with

r = b �

1

2

 and � =  �

1

2

� r;(4)

see Ritter (2000, Lemma VI.5). We add that all major results in this paper hold for

 �

1

2

2 N , as well, if r + � is replaed by  �

1

2

.

The Saks-Ylvisaker onditions

3

, see Ritter, Wasilkowski, and Wo�zniakowski (1995),

de�ne another lass of proesses that satisfy H�older onditions of order (r;

1

2

).

We will use H�older onditions to derive upper bounds for the omplexity. These

onditions do not imply nontrivial lower bounds neither for approximation nor for in-

tegration. To derive nontrivial lower bounds for approximation we require the following

additional property.

For a < b and t 2 (a; b) let

e

X

a;b

(t) denote the onditional expetation of X(t) given

X(s), s 2 [0; a℄ [ [b;1). Thus

e

X

a;b

(t) has minimal mean squared error among all

estimators for X(t) that are based on omplete knowledge of X outside of (a; b). We

assume that

E

�

X(t)�

e

X

a;b

(t)

�

2

� C

2

2

�

�

(b� t) � (t� a)

b� a

�

2(r+�)

(5)

for all t 2 (a; b) with a onstant C

2

> 0 that does not depend on a and b. This property

an be equivalently formulated by using the Hilbert spae H(K) with reproduing

kernel K. Namely, for every t 2 [a; b℄,

supfjh(t)j : h 2 B(K); supp h � [a; b℄g � C

2

�

�

(b� t) � (t� a)

b� a

�

r+�

;(6)

where B(K) denotes the unit ball in H(K). In fat, the left-hand sides in (5) and (6)

oinide, up to taking the square root.

Example 2. Let t 2 (a; b). For the Brownian motion X we have

e

X

a;b

(t) =

X(a) � (b� t) +X(b) � (t� a)

b� a

:

Sine X has independent inrements, we get

E

�

X(t)�

e

X

a;b

(t)

�

2

=

(b� t) � (t� a)

b� a

:

3

These onditions are usually de�ned in the ompat ase t 2 [0; 1℄; they may be used for t 2 R

+

in the same way.
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Thus (5) holds with equality for r = 0, � =

1

2

, and C

2

= 1. This is generalized to the

r-fold integrated Brownian motion in the following way. The onditional expetation

e

X

a;b

(t) is given by the polynomial of degree at most 2r+1 that interpolates the bound-

ary values X

(k)

(a) and X

(k)

(b) for k = 0; : : : ; r, and (5) holds with equality for � =

1

2

and C

2

2

= 1=((2r + 1)(r!)

2

), see Spekman (1979). Note that

e

X

a;b

(t) only depends on

the boundary values of the r-fold integrated Brownian motion. This is due to the fat

that (X

(0)

; : : : ; X

(r)

) is a Markov proess in this ase.

Using the results from Ritter, Wasilkowski, and Wo�zniakowski (1995), the lower

bound (6) with � =

1

2

an be veri�ed under Saks-Ylvisaker onditions of order r 2 N

0

.

The frational Brownian motion with � 6=

1

2

is non-Markovian. For the orresponding

reproduing kernel Hilbert spae we have h 2 H(K) for every funtion h 2 C

1

(R

+

)

with ompat support that does not inlude zero. Moreover, the norm of these funtions

is given by

khk

2

K

=  �

Z

1

�1

juj

2�+1

�

�

�
b

h(u)

�

�

2

du

for some onstant , see Singer (1994). Here

b

h denotes the Fourier transform of h. This

allows us to establish (6) in the following way. Take g 2 C

1

(R) suh that g(0) = 1 and

g(s) = 0 if jsj � 1, and put

C

2

=

�

2

�



1=2

�

Z

1

�1

juj

2�+1

� jbg(u)j

2

du

�

�1

:

For t 2 (a; b) and Æ = minft� a; b� tg de�ne

h(s) = C

2

� Æ

�

� g (2(s� t)=Æ)

for s 2 R

+

. Then h 2 H(K) sine t > Æ=2, and khk

K

= 1. Furthermore, h = 0 on

[0; a℄ [ [b;1) and

h(t) = C

2

� Æ

�

� C

2

�

�

(b� t) � (t� a)

b� a

�

�

:

In a similar way, one an verify (6) for the r-fold integrated frational Brownian motion.

Consider a stationary proess X on the real line, whose spetral density ' satis�es

'(u) �  �

�

1 + u

2

�

�

with onstants  > 0 and  >

1

2

for every u 2 R. Then every funtion h 2 C

1

(R) with

ompat support belongs to H(K) and

khk

2

K

� 

0

�

Z

1

�1

�

1 + u

2

�



�

�

�
b

h(u)

�

�

2

du

for some onstant 

0

> 0, see Ritter (2000, Lemma VI.7). Therefore (6), with r and �

given by (4), an be veri�ed as in the ase of frational Brownian motion with Æ =

minft� a; b� t; 1g.
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3. Weighted Approximation on R

+

In this setion we assume that X satis�es (2) and (5) with r + � > 0 and, for

simpliity, that

C

1

= 1:

3.1. Preliminary Results. First, we study the error of pieewise polynomial inter-

polation of degree r

0

� r on ompat intervals. Put

r

0

= maxfr

0

; 1g:

Lemma 1. For a < b and n 2 N, let U denote the operator of interpolation by pieewise

polynomials of degree at most r

0

at the knots

a + j �

b� a

nr

0

; j = 0; : : : ; nr

0

:

There exists a onstant A

1

= A

1

(r

0

; r; �) > 0, suh that

sup

t2[a;b℄

E (X(t)� UX(t))

2

� A

2

1

�

�

b� a

n

�

2(r+�)

:

Proof. As previously, let B(K) denote the unit ball in the Hilbert spae H(K) with

reproduing kernel K. We have

E (X(t) � UX(t))

2

= sup

h2B(K)

jh(t)� Uh(t)j

2

:

Moreover, the funtions h 2 H(K) are r-times ontinuously di�erentiable with

�

�

h

(r)

(s)� h

(r)

(t)

�

�

� js� tj

�

;

see Ritter, Wasilkowski, and Wo�zniakowski (1993).

We give the proof of the lemma only in the ase r � 1. Assume that n = 1, at �rst.

Write

h(t) = h

1

(t) + h

2

(t)

for t 2 [a; b℄, where

h

1

(t) =

r

X

k=0

h

(k)

(a)

k!

(t� a)

k

and

h

2

(t) =

Z

t

a

(t� u)

r�1

(r � 1)!

�

h

(r)

(u)� h

(r)

(a)

�

du:

Observe that h� Uh = h

2

� Uh

2

. De�ne

F (a; b) = fh 2 C

r

([a; b℄) : h

(k)

(a) = 0 for k = 0; : : : ; r;

�

�

h

(r)

(s)� h

(r)

(t)

�

�

� js� tj

�

for s; t 2 [a; b℄g;
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so that h

2

2 F (a; b). Moreover, let p

0

; : : : ; p

r

0

denote the Lagrange polynomials for

interpolation at the knots j=r

0

with j = 0; : : : ; r

0

. De�ne

e

h(z) = h

2

(a+ z � (b� a)) for

z 2 [0; 1℄. Then

h

2

(t)� Uh

2

(t) =

e

h

�

t� a

b� a

�

�

r

0

X

j=0

e

h

�

j

r

0

�

� p

j

�

t� a

b� a

�

;

and (b� a)

�(r+�)

�

e

h 2 F (0; 1) if h

2

2 F (a; b). Therefore

sup

t2[a;b℄

E (X(t) � UX(t))

2

� sup

t2[a;b℄

sup

h2F (a;b)

jh(t)� Uh(t)j

2

� (b� a)

2(r+�)

� A

2

1

;

where

A

1

= sup

t2[0;1℄

sup

h2F (0;1)

�

�

�

�

�

h(t)�

r

0

X

j=0

h

�

j

r

0

�

� p

j

(t)

�

�

�

�

�

:

This onstant is �nite sine every funtion h 2 F (0; 1) is bounded by (b� a)

r+�

.

For n � 2 the same arguments work on the respetive subintervals of [a; b℄ of length

(b� a)=n.

Next, we disuss the omplexity in the lassial ase of unweighted L

2

-approximation

on a ompat interval.

Theorem 1. Let a < b and

� = 1

[a;b℄

:

Then

omp(";App

�

) = �

�

"

�1=(r+�)

�

:

Proof. Consider the pieewise polynomial interpolation U from Lemma 1. We get

e

2

(U ;App

�

) � A

2

1

�

�

b� a

n

�

2(r+�)

� (b� a);

and the number of knots used by U is of order n. Hereby the upper bound for the

omplexity follows.

Consider an arbitrary method A that uses knots t

1

< � � � < t

n

. Assume without loss

of generality that a; b 2 ft

1

; : : : ; t

n

g, say a = t

i

and b = t

j

. Using (5) we get

e

2

(A;App

�

) =

j

X

k=i+1

Z

t

k

t

k�1

E (X(t)�AX(t))

2

dt

� C

2

2

�

j

X

k=i+1

Z

t

k

t

k�1

�

(t

k

� t) � (t� t

k�1

)

t

k

� t

k�1

�

2(r+�)

dt

=  �

j

X

k=i+1

(t

k

� t

k�1

)

2(r+�)+1

�  � (b� a)

2(r+�)+1

� n

�2(r+�)
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with a onstant  > 0 that only depends on r, �, and C

2

. Hene the lower bound for

the omplexity follows.

From Theorem 1 we onlude that omp(";App

�

) is at least of order "

�1=(r+�)

, if �

is an arbitrary weight funtion on R

+

that is bounded away from zero on an interval

of positive length.

3.2. Finite Complexity. We give a neessary and suÆient ondition for the om-

plexity of approximation of X to be �nite for any " > 0.

De�ne the funtion L : R

+

! R

+

[ f1g by

L(R) =

�

Z

1

R

�

2

(t) � t

2(r+�)

dt

�

1=2

:

Lemma 2. We have

8 " > 0 : omp(";App

�

) <1;(7)

i�

lim

R!1

L(R) = 0(8)

and

8 0 � a < b <1 8 " > 0 : omp(";App

��1

[a;b℄

) <1:(9)

Proof. We laim that

K(t; t) � A

2

2

� t

2(r+�)

(10)

for t � 1, say, with a onstant A

2

= A

2

(K; r; �) > 0. To show this, de�ne X

1

and X

2

by

X

1

(t) =

r

X

k=0

X

(k)

(0)

k!

t

k

and X(t) = X

1

(t) +X

2

(t). Then

K(t; t) � 2

�

E (X

1

(t))

2

+ E (X

2

(t))

2

�

with E (X

1

(t))

2

= O (t

2r

). If r � 1 then

E (X

2

(t))

2

=

Z

t

0

Z

t

0

(t� u)

r�1

(t� v)

r�1

((r � 1)!)

2

E

��

X

(r)

(u)�X

(r)

(0)

�

�

�

X

(r)

(v)�X

(r)

(0)

��

du dv

�

�

Z

t

0

(t� u)

r�1

(r � 1)!

� u

�

du

�

2

� t

2(r+�)

:

This upper bound is obviously valid in the ase r = 0, too, and (10) is proven.

Suppose now that (8) and (9) hold. For a given " > 0, let R

"

� 1 be suh that

L(R

"

) � "

1

with "

1

= "(1+A

2

2

)

�1=2

. Let A

"

be a method suh that e(A

"

;App

��1

[0;R

"

℄

) �

"

1

, and A

"

f is zero on [R

"

;1). Then (10) yields

e(A

"

;App

�

)

2

= e

�

A

"

;App

��1

[0;R

"

℄

�

2

+

Z

1

R

"

�

2

(t) �K(t; t) dt � "

2

1

�

�

1 + A

2

2

�

2

� "

2

;
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whih proves (7).

Suppose that (7) holds. Then, of ourse, (9) holds as well, and we only need to

show (8). For a given " > 0, let A

"

be a method suh that e(A

"

;App

�

) � ". Let

t

1;"

< � � � < t

n;"

denote the knots used by A

"

, and put R

"

= t

n;"

. Reall the de�nition

of

e

X

a;b

(t) from Setion 2. For every b > R

"

we have

"

2

�

Z

b

R

"

E (X(t)�A

"

X(t))

2

� �

2

(t) dt �

Z

b

R

"

E

�

X(t)�

e

X

R

"

;b

(t)

�

2

� �

2

(t) dt:

Using (5) we get

"

2

� C

2

2

�

Z

1

R

"

�

2

(t) � 1

[R

"

;b℄

(t) �

�

(b� t) � (t� R

"

)

b� R

"

�

2(r+�)

dt:

For b!1 the integrand onverges monotonially towards �

2

(t) � (t�R

"

)

2(r+�)

. Thus

L

2

(2R

"

) � 2

2(r+�)

�

Z

1

2R

"

�

2

(t) � (t� R

"

)

2(r+�)

dt �

2

2(r+�)

C

2

2

� "

2

;

whih proves (8).

Lemma 3. Assume that

Z

1

0

�

2

(t) dt <1:(11)

Then we have (9), i.e., �nite omplexity on ompat subintervals. Moreover, we have

�nite omplexity (7) i�

Z

1

0

�

2

(t) � t

2(r+�)

dt <1:(12)

Proof. We use Lemma 1 to onlude that (11) implies (9). Moreover, given (11), we

have equivalene of (8) and (12). It remains to apply Lemma 2.

3.3. Upper Bounds. We already know that the omplexity of approximating X is at

least of order "

�1=(r+�)

if the weight � is bounded away from zero on a subinterval of

positive length. In the following, we provide a method whih, under some assumptions

on �, has error " and ardinality proportional to "

�1=(r+�)

. We also give a neessary

ondition for the omplexity to be of that order.

Let a

i

= 2

i

� 1 for i 2 N

0

, and de�ne

�

i

= ess supf�(t) : t 2 [a

i�1

; a

i

℄g

as well as



i

= �

1=(r+�+1=2)

i

� 2

i�1

for i 2 N . We assume that

A

3

:= A

3

(r; �; �) :=

1

X

i=1



i

<1(13)
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and

L(a

i

) � A

4

� 

r+�+1=2

i+1

(14)

with a onstant A

4

= A

4

(r; �; �). To exlude trivial ases, we also assume 

i

> 0 for all

i 2 N .

The upper bound omp(";App

�

) = O

�

"

�1=(r+�)

�

for the omplexity is obtained by

the following method A

�

. Let k 2 N and n

1

; : : : ; n

k

2 N , and put I

i

= [a

i�1

; a

i

℄ for

i = 1; : : : ; k. On eah of these intervals, A

�

X is an interpolation of X by pieewise

polynomials of degree at most r

0

� r, as in Lemma 1. The interpolation points are

given by

a

i�1

+ j �

a

i

� a

i�1

n

i

r

0

; j = 0; : : : ; n

i

r

0

;

for i � k. On I

k+1

= [a

k

;1) we use A

�

X(t) = 0. Clearly,

ard(A

�

) = r

0

�

k

X

i=1

n

i

+ 1:

The partiular hoie of k; n

1

; : : : ; n

k

depends on ", r, �, and � in the following way.

For ` 2 N we de�ne

G("; `) =

 

A

2

"

2

�

`+1

X

i=1



i

!

1=(2(r+�))

with

A = maxfA

1

; A

2

� A

4

g:

We take

k = k(") = minf` 2 N : 

`+1

�G("; `) � 1g

and

n

i

= d

i

�G("; k)e :

Observe that k is well-de�ned for every " beause of (13). Moreover, n

k+1

= 1.

Theorem 2. Suppose that (13) and (14) hold. Then we have

e(A

�

;App

�

) � "

and

omp(";App

�

) � ard(A

�

)

� r

0

�

�

2 � "

�1=(r+�)

� A

1=(r+�)

� A

(r+�+1=2)=(r+�)

3

+ 1

�

+ 1:

Proof. We �rst show that the error of A

�

is at most ". Lemma 1 yields upper bounds

for the error of A

�

on the subintervals I

i

for i � k. We have

e

2

i

:=

Z

a

i

a

i�1

E (X(t) �A

�

X(t))

2

� �

2

(t) dt � A

2

1

�



2(r+�+1=2)

i

n

2(r+�)

i

:
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Furthermore, by (10),

e

2

k+1

:=

Z

1

a

k

E (X(t) �A

�

X(t))

2

� �

2

(t) dt � A

2

2

�

Z

1

a

k

�

2

(t) � t

2(r+�)

dt:

Using (14) we get

e

2

k+1

� A

2

2

A

2

4

� 

2(r+�+1=2)

k+1

:

The partiular hoie of n

i

, 1 � i � k, yields

e

2

i

� A

2

1

�G

�2(r+�)

("; k) � 

i

:

The partiular hoie of k yields

e

2

k+1

� A

2

2

A

2

4

�G

�2(r+�)

("; k) � 

k+1

:

We therefore have

e

2

(A

�

; �) =

k+1

X

i=1

e

2

i

� A

2

�G

�2(r+�)

("; k) �

k+1

X

i=1



i

= "

2

:

Now we derive the upper bound for the ardinality of U . For that end, we need to

estimate the sum of n

i

. Clearly,

k

X

i=1

n

i

� k +G("; k) �

k

X

i=1



i

:

For i = 2; : : : ; k we have 1 < 

i

�G("; i� 1) � 

i

�G("; k), and therefore

k � 1 +G("; k) �

k

X

i=1



i

:

Finally

G("; k) �

k

X

i=1



i

� 1 +G("; k) � A

3

� "

�1=(r+�)

� A

1=(r+�)

�A

(r+�+1=2)=(r+�)

3

:

We onlude that

ard(A

�

) � r

0

�

�

2 � "

�1=(r+�)

� A

1=(r+�)

�A

(r+�+1=2)=(r+�)

3

+ 1

�

+ 1;

whih ompletes the proof of the theorem.

Let us disuss assumptions (13) and (14). First, note that (13) implies boundedness

of �. It also implies integrability of �

2

and of �

1=(r+�+1=2)

over R

+

.

Suppose now that � is monotonially dereasing. Then

1

2

�

1

X

i=2



i

�

Z

1

0

�

1=(r+�+1=2)

(t) dt �

1

X

i=1



i

;

so that (13) is equivalent to integrability of �

1=(r+�+1=2)

over R

+

. Furthermore, in this

ase, (13) implies (12). Indeed, if

R

1

0

�

1=(r+�+1=2)

(t) dt =  < 1 then �

1=(r+�+1=2)

(t) �

=t, so that

Z

1

0

�

2

(t) � t

2(r+�)

dt � 

2(r+�)

�

Z

1

0

�

1=(r+�+1=2)

dt <1:
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Thus we already get �nite omplexity (7) from (13) by Lemma 3.

Verifying (14) may be more ompliated. The following simple observation an ease

this task in some ases. Suppose

L(1) <1 and 8 x; y � 1 : �(xy) � A

5

� �(x) � �(y):(15)

Then (14) holds with A

4

= L(1) � A

5

as follows from

L

2

(R) = R

2r+2�+1

Z

1

1

�

2

(x �R) � x

2(r+�)

dx � (A

5

� L(1))

2

� �

2

(R) �R

2r+2�+1

:

We now illustrate assumptions (13) and (14) by the following two examples.

Example 3. Consider the weight

�(t) = (t+ 1)

��

:

Then �

i

= 2

�(i�1)�

and

A

3

=

1

X

i=0

2

i (1��=(r+�+1=2))

:

Thus (13) holds i�

� > r + � +

1

2

;(16)

and in this ase

A

3

=

1

1� 2

1��

with � = �=

�

r + � +

1

2

�

> 1. Note also that

L

2

(R) =

Z

1

R

t

2(r+�)

(t + 1)

2�

dt;

so that (16) is neessary for �nite omplexity (7). Finally,

L

2

(R) �

Z

1

R

(t+ 1)

�2 (��r��)

dt =

(R + 1)

�2 (��r��)+1

2 (�� r � �)� 1

;

so that (16) yields (14) with

A

2

4

=

1

2(�� r � �)� 1

:

Example 4. Consider the weight funtion

�(x) = exp (��

1

� x

�

2

)

for positive �

1

; �

2

. Of ourse, L(0) <1 and (13) holds. Note also that (15) holds with

A

5

= exp(�

1

). Hene (14) holds with A

4

= L(1) � e

�

2

.

Remark 1. There are weight funtions for whih the omplexity is �nite and (13)

holds; however, (14) is not satis�ed. In suh ases Theorem 2 is not appliable. For

instane, onsider

�(t) = (t+ 1)

�(r+�+1=2)

� ln

��

(t+ e):(17)
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Then (7) is equivalent to � >

1

2

, (13) is equivalent to � > r + � + 1=2, yet (14) does

not hold no matter how large � is.

In Plaskota, Ritter, and Wasilkowski (2000), we develop a di�erent tehnique that

allows to �nd the omplexity for weights like (17).

In many ases (13) is also a neessary ondition for the omplexity to be of the same

order as in the ompat ase.

Theorem 3. Suppose that the weight funtion � is ontinuous or monotonially de-

reasing. Then omp(";App

�

) = O

�

"

�1=(r+�)

�

implies

Z

1

0

�

1=(r+�+1=2)

(t) dt <1:

Proof. Let A

"

be a method suh that e(A

"

;App

�

) � " and ard(A

"

) = O

�

"

�1=(r+�)

�

.

Let t

1

< � � � < t

n

denote the knots used by A

"

, where n = ard(A

"

). Put R = t

n

and

t

0

= 0 as well as

e�

i

= inff�(t) : t 2 [t

i�1

; t

i

℄g:

Using (5) we obtain

"

2

� C

2

2

�

n

X

i=1

Z

t

i

t

i�1

�

2

(t) �

�

(t

i

� t) � (t� t

i�1

)

t

i

� t

i�1

�

2(r+�)

dt

�  �

n

X

i=1

e�

2

i

� (t

i

� t

i�1

)

2(r+�)+1

�  � n

�2(r+�)

�

 

n

X

i=1

e�

1=(r+�+1=2)

i

� (t

i

� t

i�1

)

!

2(r+�)+1

with a onstant  > 0 that depends only on C

2

, r, and �. Thus

n

X

i=1

e�

1=(r+�+1=2)

i

� (t

i

� t

i�1

)

is uniformly bounded in " and the orresponding step funtions onverge to �

1=(r+�+1=2)

at every point of ontinuity of �, i.e., at least almost everywhere. It remains to apply

Fatou's Lemma.

4. Weighted Integration on R

+

In this setion we assume that X satis�es (2) with r+� > 0 and, for simpliity, that

C

1

= 1:

For the integration problem to be well de�ned in the Lebesgue sense, it is neessary

and suÆient that

Z

1

0

K

1=2

(t; t) � �(t) dt <1:(18)
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Indeed, sine X is Gaussian, we have

E

�

Z

1

0

jX(t)j � �(t) dt

�

=

Z

1

0

E (jX(t)j) � �(t) dt =

p

2=� �

Z

1

0

K

1=2

(t; t) � �(t) dt;

whih, together with (18), implies that the weighted integral Int

�

X is well de�ned for

almost every trajetory of X. Conversely, assume that the latter holds true. Then, by

Fernique's inequality,

E

�

Z

1

0

jX(t)j � �(t) dt

�

<1;

whih implies (18). We add that

Z

1

0

�(t) �maxf1; tg

r+�

dt <1(19)

is a suÆient ondition for (18) to hold, see (10). Moreover, for proesses that satisfy

(5), the ondition (19) is only slightly stronger than (18), sine K(t; t) �  � t

2(r+�)

for

t 2 R

+

in this ase.

We use the general tehnique from Wasilkowski (1994) to derive upper bounds for

the omplexity of the integration problem. In this approah one analyzes suitable ran-

domized (Monte Carlo) methods. By a mean value argument, a Monte Carlo method

with average error at most " yields the existene of a deterministi method with the

same error bound and the same number of samples.

4.1. Preliminary Results. First, we onsider the ase of a bounded weight fun-

tion with ompat support. Of ourse, this inludes the lassial ase of unweighted

integration on a ompat interval.

Theorem 4. Let a < b be suh that

supp � � [a; b℄ and ess sup

t2[a;b℄

�(t) <1:

Then

omp("; Int

�

) = O

�

"

�1=(r+�+1=2)

�

:

Proof. Consider the pieewise polynomial interpolation U from Lemma 1, whih uses

1 + nr

0

knots. De�ne

MCX =

Z

b

a

UX(t) � �(t) dt+

b� a

1 + nr

0

�

nr

0

X

j=0

(X � UX)(t

j

) � �(t

j

);(20)

where t

0

; : : : ; t

nr

0

are independent and uniformly distributed in [a; b℄. We use E

t

to

denote the expetation with respet to the joint distribution of the points t

j

. For every

�xed trajetory of X,

E

t

(MCX) = Int

�

X

and

E

t

(Int

�

X �MCX)

2

�

b� a

1 + nr

0

�

Z

b

a

(X � UX)

2

(t) � �

2

(t) dt:
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Therefore

E

t

�

E (Int

�

X �MCX)

2

�

= E

�

E

t

(Int

�

X �MCX)

2

�

�

b� a

1 + nr

0

� e

2

(U ;App

�

):

Hene there exists a hoie of deterministi points t

i

suh that the quadrature formulaQ

de�ned by the right-hand side of (20) satis�es

e(Q; Int

�

) �

�

b� a

1 + nr

0

�

1=2

� e(U ;App

�

):

We apply Lemma 1 to obtain

e(Q; Int

�

) � A

1

� (b� a)

r+�+1

� ess sup

t2[a;b℄

�(t) � n

�(r+�+1=2)

;

and the upper bound on the omplexity follows, sine ard(Q) = 2(1+nr

0

) = O(n).

Under H�older onditions (2), we are able only to provide upper bounds sine without

additional restritions, the omplexity of the integration problem ould be 1 indepen-

dently of ". Indeed, this holds when, e.g., K(s; t) = g(s) � g(t) for a suitable nonzero

funtion g, sine one sample determines a trajetory of X preisely.

However, the upper bound from Theorem 4 annot be improved in general. Indeed,

for the proesses of Example 2 we have

omp("; Int

�

) = �

�

"

�1=(r+�+1=2)

�

;

and simple onstrutions of almost optimal quadrature formulas are known. More-

over, omp("; Int

�

) is at least of order "

�1=(r+�+1=2)

for those proesses and arbitrary

weight funtions on R

+

that are bounded away from zero on a ompat interval of

positive length. See Ritter, Wasilkowski, and Wo�zniakowski (1995), and Ritter (2000,

Se. VI.1.2, VI.1.4).

We also mention that (18) implies �nite omplexity on ompat intervals, i.e.,

8 0 � a < b <1 8 " > 0 : omp("; Int

��1

[a;b℄

) <1;

and �nite omplexity on R

+

, i.e.,

8 " > 0 : omp("; Int

�

) <1:

4.2. Upper Bounds. We present two di�erent approahes that yield an upper bound

of order "

�1=(r+�+1=2)

for omp("; Int

�

).

In the �rst approah, we apply randomization to ompat subintervals of R

+

. To

this end, let a

i

= 2

i

� 1 and

�

i

= ess sup

t2[a

i�1

;a

i

℄

�(t)

as in Setion 3.3. Rede�ne



i

= �

1=(r+�+1)

i

� 2

i�1

and

L(R) =

�

Z

1

R

Z

1

R

K(s; t) � �(s) �(t) ds dt

�

1=2

:
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We assume that

A

3

:= A

3

(r; �; �) :=

1

X

i=1



i

<1(21)

and

L(a

i

) � A

4

� 

r+�+1

i+1

(22)

with a onstant A

4

= A

4

(r; �; �).

Theorem 5. Suppose that (21) and (22) hold. Then we have

omp("; Int

�

) � r

0

�

�

3 � "

�1=(r+�+1=2)

� A

1=(r+�+1=2)

�A

(r+�+1)=(r+�+1=2)

4

+ 2

�

+ 1:

Proof. We study suitable linear ombinations of the Monte Carlo methods from the

proof of Theorem 4. Given " > 0, let

G("; `) =

 

A

2

"

2

�

`+1

X

i=1



i

!

1=(2r+2�+1)

with

A = maxfA

1

; A

4

g:

We take

k = k(") = minf` 2 N : 

`+1

�G("; `) � 1g

and

n

i

= n

i

(") = d

i

�G("; k)e :

For every interval [a; b℄ = I

i

= [a

i�1

; a

i

℄ and n = n

i

with i = 1; : : : ; k let U

i

be the

pieewise polynomial interpolation from Lemma 1 and letMC

i

be de�ned by the right-

hand side of (20). Assuming that all the Monte Carlo points are hosen independently,

MC

1

X; : : : ;MC

k

X are independent random variables for every �xed trajetory of X.

We de�ne

MCX =

k

X

i=1

MC

i

X:

Then

E

t

(Int

�

X �MCX)

2

=

�

Z

1

a

k

X(t) � �(t) dt

�

2

+

k

X

i=1

E

t

�

Int

��1

I

i

�MC

i

X

�

2

;

and hereby

E

t

(E (Int

�

X �MCX)

2

) � L

2

(a

k

) +

k

X

i=1

2

i�1

1� n

i

r

0

� e

2

(U

i

;App

��1

I

i

):

The rest of the proof is very similar to the proof of Theorem 2, and we omit it.
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Note that (21) is in general a stronger assumption than (13). For instane, �(t) =

(t + 1)

��

satis�es (13) i� � > r + � + 1=2, whereas � must be greater than r + � + 1

for (21) to hold. Hene, although the omplexity of weighted integration is smaller

than the omplexity of weighted approximation, we need a stronger assumption on the

weight for the omplexity to be of minimal order.

In a seond approah, we apply randomization diretly to the half-line R

+

.

Theorem 6. Suppose there exists Æ 2 (0; 2) suh that

Z

1

0

�

Æ

(t) dt <1;(23)

and �

Æ

= �

1�Æ=2

satis�es the assumptions (13) and (14), i.e.,

1

X

i=1

2

i�1

� �

(1�Æ=2)=(r+�+1=2)

i

<1(24)

and

Z

1

a

i

�

2�Æ

(t) � t

2(r+�)

dt � A

2

4

� 2

i(2r+2�+1)

� �

2�Æ

i+1

:(25)

Then

omp("; Int

�

) = O

�

"

�1=(r+�+1=2)

�

:

Proof. Given ", letA

�

"

be the method from Theorem 2 for the weight funtion � replaed

by �

Æ

. Let n = n(") be the ardinality ofA

�

"

. Consider the following randomized method

MC

n

X =

Z

1

0

A

�

"

(X)(t) � �(t) dt+

a

n

n

X

i=1

(X �A

�

"

(X))(t

i

) � �

1�Æ

(t

i

)

where the points t

i

are hosen independently aording to the probability distribution

whose density equals �

Æ

=a with a =

R

1

0

�

Æ

(t) dt. Note that the ardinality of MC

n

equals 2n. It is easy to hek that for every trajetory of X,

E

t

(Int

�

(X)�MC

n

(X))

2

�

1

n

�

Z

1

0

�

Æ

(t) dt �

Z

1

0

((X �A

"

�

(X))(t) � �

Æ

(t))

2

dt;

where E

t

denotes the expetation with respet to the points t

i

. Finally we use Theorem 2

and proeed as in the proof of Theorem 4.

We illustrate the assumptions of Theorem 6 for �(t) = (t+1)

��

as before. For �

Æ

to be

integrable, we need Æ� > 1. For the other assumptions, we need �(1�Æ=2) > r+�+1=2.

Equivalently, we need 1=� < Æ < 2� 2(r+�+1=2)=�. This means that suh a Æ exists

i� � > r+�+1 whih is exatly the same ondition as the ondition for satisfying the

assumptions of Theorem 5.

For every monotone funtion �, (21) is equivalent to the existene of Æ 2 (0; 2) with

(23) and (24). Furthermore, (25) is not needed in this ase, see Plaskota, Ritter, and

Wasilkowski (2000). On the other hand, there exist nonmonotoni weight funtions

suh that Theorem 6 yields the upper bound, while Theorem 5 is not appliable.
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4.3. A Speial Case: Saks-Ylvisaker onditions. We now disuss a speial ase.

We assume that X satis�es the Saks-Ylvisaker onditions of order r 2 N

0

. As shown

in Ritter, Wasilkowski, and Wo�zniakowski (1995), the orresponding reproduing ker-

nel Hilbert spae is, essentially, equal to the Sobolev spae W

r+1

2

(R

+

). It is also well

known, see, e.g., Traub, Wasilkowski and Wo�zniakowski (1988), Ritter (2000), that

for integration the average ase omplexity is equal to the worst ase omplexity with

respet to the unit ball in the reproduing kernel Hilbert spae. Moreover, (almost)

optimal methods in one of the setting are also (almost) optimal in the other. Thus, for

X satisfying Saks-Ylvisaker onditions, the average omplexity of the weighted inte-

gration redues to the worst ase omplexity with respet to the unit ball inW

r+1

2

(R

+

).

The latter problem, among others, was onsidered in Wasilkowski and Wo�zniakowski

(2000a).

If (21) and (22) hold with � = 1=2 also in the de�nition of 

i

, then there are

onstrutions of simple methods Q

�

"

whose errors do not exeed " and ardinalities are

proportional to "

�1=(r+1)

. Hene they are almost optimal sine the omplexity of the

problem also equals

omp("; Int

�

) = �

�

"

�1=(r+1)

�

:

For spei�s onerning these methods see Wasilkowski and Wo�zniakowski (2000a) and

Han and Wasilkowski (2000).

We sketh a possible onstrution. With the hoie of k and n

i

from Theorem 5 take

Q

i

X =

Z

a

i

a

i�1

U

i

X(t) � �(t) dt;

where U

i

is the pieewise linear interpolation from Lemma 1 on [a

i�1

; a

i

℄ with 1 + n

i

r

0

knots. Then Q =

P

k

i=1

Q

i

is an almost optimal method. A proof an be based on the

following fats. Let X �

b

X denote the Taylor polynomial of degree r at a

i�1

. Sine

r

0

� r,

Z

a

i

a

i�1

X(t) � �(t) dt�Q

i

X =

Z

a

i

a

i�1

b

X(t) � �(t) dt�Q

i

b

X:

Moreover, note that these random variables are independent for i = 1; : : : k, if X is the

r-fold integrated Brownian motion.

5. Conluding Remarks

We disuss possible improvements to the proposed methods. We will do this only for

the approximation problem; however, the same omments pertain to the integration

problem. Due to the lower bounds the improvements an only lead to better onstants

in the estimates for the error or the ardinality.

Remark 2. The method A

�

is based on pieewise polynomial interpolation. Instead

one ould use error-optimal algorithms. The latter are given by the means of the or-

responding onditional proess, or, equivalently, by interpolating K-splines. In view of

the lower bounds we have deided to work with pieewise polynomials, sine they are

easy to implement and do not depend on spei� type of the proess X.
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Reall that A

�

X(t) vanishes for t > a

k

. Alternatively, we ould de�ne A

�

Xj

[a

k

;1)

by

extrapolation, using a few values X in a neighbourhood of a

k

.

Remark 3. In the de�nition of A

�

, the parameters k and n

i

are hosen based on an

upper bound on error of an interpolating pieewise polynomial. Spei�ally, we use the

following inequality

e

2

i

= E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

� �

2

(t) dt

�

� �

2

i

� (a

i

� a

i�1

) �max

t

E (X(t) �A

�

X(t))

2

:

This ould be improved by using

e

2

i

= E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

� �

2

(t) dt

�

if the above expetation are easy to ompute, or by using

e

2

i

� �

2

i

� E

�

Z

a

i

a

i�1

jX(t)�A

�

X(t)j

2

dt

�

that in many ases is not diÆult to ompute. Any suh improvement would require a

new de�nition of 

i

; the rest of the method would remain unhanged.

Remark 4. The method A

�

uses the values of the suprema �

i

. This ould result in a

very high ombinatorial ost for a number of weights �. Of ourse, this does not onern

monotoni weights � sine then the numbers �

i

are given expliitly by �

i

= �(a

i�1

).

Remark 5. The sample points used by A

�

are equally spaed in eah subinterval

[a

i�1

; a

i

℄. Instead, one ould use the sampling similar to the one proposed in Han and

Wasilkowski (2000), a paper that deals with the worst ase setting.

Remark 6. Suppose we only know an upper bound � for the H�older smoothness r+�

of X. Then we an also ahieve an error of order " at ost of order "

�1=(r+�)

by the

following modi�ation of the method A

�

. Take pieewise polynomial interpolation of

degree r

0

= d�e. Rede�ne



i

= �

1=(�+1=2)

i

� 2

i�1

and assume that A

3

:=

P

1

i=1



i

<1. Moreover, assume that

Z

1

a

i

�

2

(t) � t

2�

dt � A

2

4

� 

2�+1

i+1

with a onstant A

4

> 0. Finally, rede�ne

G("; `) =

 

1

"

2

�

`+1

X

i=1



i

!

1=(2�)

;

and take k and n

i

as previously.
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