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ABSTRACT. We study weighted approximation and integration of Gaussian stochastic
processes X defined over Ry whose rth derivatives satisfy a Holder condition with
exponent 3 in the quadratic mean. We assume that the algorithms use samples of X
at a finite number of points. We study the average case (information) complexity,
i.e., the minimal number of samples that are sufficient to approximate/integrate X
with the expected error not exceeding €. We provide sufficient conditions in terms of
the weight and the parameters r and 3 for the weighted approximation and weighted
integration problems to have finite complexity. For approximation, these conditions
are necessary as well. We also provide sufficient conditions for these complexities to
be proportional to the complexities of the corresponding problems defined over [0, 1],
i.e., proportional to e ~1/® where o = r 4 f3 for the approximation and o = r+ 4 1/2
for the integration.

1. INTRODUCTION

Complexity of approximating or integrating a function defined over a bounded do-
main has already been a well established area. We mention only Traub, Wasilkowski,
and Wozniakowski (1988), Ritter (2000), and the references therein. Complexity re-
sults include various settings such as the worst case and the average case settings.
There are, however, very few results that address these problems for functions defined
over unbounded domains such as R?.

Some progress has recently been made in the worst case setting for the approxi-
mation and integration problems over R and RY; see, respectively, Wasilkowski and
Wozniakowski (2000a) and (2000b). See also Traub, Wasilkowski, and Wozniakowski
(1983), Curbera (1998), and Mathé (1998). In the present paper we study complexity
of approximating functions! f : R, — R and their integrals over R, = [0,00) in the
average case setting, assuming that the class of functions is equipped with a probability
measure. Equivalently, we assume that f is a trajectory of a stochastic process X on
R, , and we measure the errors by the quadratic mean. These problems seem not to
have been studied yet.

In contrast to processes defined on a compact interval, say [0, 1], the expected squared
Lo-norm of typical processes defined on Ry (including the fractional Brownian motion)
is infinite. Furthermore, the integral over R, does not exist with probability one. Hence
the complexity analysis of those problems is of interest only in a weighted sense.

More specifically, let p : R, — R, be a measurable weight function. For a given
zero mean Gaussian stochastic process X (t), t € Ry, we want to approximate X or its

Date: November 28, 2000.
'We consider R, instead of R as the domain of the functions f for simplicity only.
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(weighted) integral

(1) Int, X — /Oo X(1) - p(t) dt.

The error of an approximation AX of X is given as

A wy) = (E( [0 =420 0 at) )

and the error of a quadrature QX for Int, X is given as

1/2

¢(Q,Tnt,) = (E(Int, X — QX)2)"%.
Here and elsewhere E stands for expectation.

We assume that any method, i.e., any approximation A or quadrature Q, can use
only samples (or observations) of X at a finite number of points t; € R, . We call this
number the cardinality and denote it by card(A) or card(Q), respectively?.

We are interested in the (information) complezity of weighted approximation and
integration, which is the minimal number of samples needed to construct an approxi-
mation (algorithm) with error not exceeding a given £ > 0. That is, for the approxi-
mation,

comp(e, App,) = min{ card(A) : A s.t. e(A, App,) < e},

and for integration comp(e, Int,) is defined correspondingly.

We present results that do not depend on the particular process X but hold for classes
of processes. These classes are defined by quadratic mean properties, see Section 2 for
details and examples. In particular, we assume that for some r € Ny the derivative
X is Hslder continuous in quadratic mean with exponent 8 € [0, 1].

It is clear that for some weight functions p the complexity of approximation is infinite,
and the integration problem is not even well defined. Therefore, one of our first results
provides a necessary and sufficient condition for the complexity of approximation to
be finite for every € > 0. We also provide a necessary and sufficient condition for the
weighted integral to exist with probability one. This condition simultaneously gives
finite complexity for the integration problem.

Approximation over R, cannot have smaller complexity than the corresponding
problem restricted to a compact interval. The same usually (but not always) holds
for integration. Typically, the complexity on compact subintervals is ©(s~'/%) with
a = r+ [ for approximation and « = r + 5+ 1/2 for integration. We provide sufficient
conditions for the complexity of weighted problems on R, to be proportional to e~'/¢
as well.

To give a flavor of the results, let p(z) = ©(z~7). Then v > a + 1/2 implies the
complexity ©(z~/*) for both problems. On the other hand, if ¥ < a + 1/2 then the
complexity of approximation is infinite, and the integration problem may not be well
defined.

2We formally consider nonadaptive observations. Note that adaptive observations with varying
cardinality do not lead to essentially better approximations for problems considered in this paper, see
Wasilkowski (1986).
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Finally, we state that in cases where comp(s, p) = O(¢~/*), the upper bounds
are provided by the cost of specific algorithms. For the approximation problem, these
algorithms are deterministic and enjoy certain robustness properties. Indeed, they are
based on a simple piecewise polynomial interpolation, and they do not require any
specific information about X other than an upper bound for the parameter r + 5. For
the integration, similar deterministic algorithms are constructed only in special cases.
In general case, the upper bound is given by Monte Carlo arguments.

2. ASSUMPTIONS AND EXAMPLES

We consider a measurable Gaussian stochastic process X (¢), ¢t € Ry, with zero mean,
i.e., E(X(t)) = 0 for every t. The covariance kernel K of X is defined by

K(s,t) = E(X(s) - X (1))

for s,t € R;.

Let r € Ny and § € [0,1]. The process X satisfies Holder condition of order (r, 3) if
the derivatives XM, ..., X" exist and are continuous in quadratic mean and if
(2) E(XO(s) = XO(1)" < CF |5 — 1]

for all s, € R, with a constant C; > 0. This property can be equivalently stated
in terms of the covariance kernel. Namely, the partial derivatives K () exist and are
continuous on R? for 4,7 =0,...,r, and

(3) KT (s,8) — 2K (s,8) + KU (1) < CF - |s — ],
In fact, the left-hand sides in (2) and (3) coincide.

Example 1. The fractional Brownian motion with parameter 5 € (0,1) is the zero
mean Gaussian process with covariance kernel

K(s,t) =3 (s +1% — |s — t|*) .

This process satisfies the Holder condition of order (0, 3), since (3) holds with equality
for ¢4/ = 1 and r = 0. In particular, for g = % we get the Brownian motion with
covariance kernel

K(s,t) =5 (s+t—|s—t]) = min{s, t}.

Suppose that Y is zero mean GGaussian and satisfies the Holder condition of order
(0, 8). Take r > 1. By r-fold integration,

t r—1
X(1) = / U= ) du,
o (r—1)!

we obviously get a zero mean Gaussian process X that satisfies the Holder condition
of order (r, #). This construction yields, in particular, the r-fold integrated (fractional)
Brownian motion.

Now we consider a stationary process X with spectral density (. Such processes are
naturally defined on the whole real line. It is well known that the smoothness of X is
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closely related to decay properties of its spectral density. By definition, ¢ is symmetric,
nonnegative, and integrable, and the covariance kernel K of X satisfies

K(s,t) = /_OO exp(u(s — t)u) - p(u) du.

o0

Assume that
p(u) < c-ful™

with constants ¢ > 0 and v > £ for |u| sufficiently large. If v — ¢ N then X satisfies
the Holder condition with

(@) r=ly=4  ad Byt

see Ritter (2000, Lemma VI.5). We add that all major results in this paper hold for
v — % € N, as well, if r + 3 is replaced by v — %

The Sacks-Ylvisaker conditions?®, see Ritter, Wasilkowski, and WoZniakowski (1995),
define another class of processes that satisfy Holder conditions of order (r, 3).

We will use Holder conditions to derive upper bounds for the complexity. These
conditions do not imply nontrivial lower bounds neither for approximation nor for in-
tegration. To derive nontrivial lower bounds for approximation we require the following
additional property. N

For a < b and t € (a,b) let X,,(t) denote the conditional expectation of X (¢) given
X(s), s € [0,a] U [b,00). Thus X,,(¢) has minimal mean squared error among all
estimators for X (¢) that are based on complete knowledge of X outside of (a,b). We

assume that

o E(X() - %) >3 <<b —0): (- a>>2<’"+ﬂ>

for all t € (a,b) with a constant Cy > 0 that does not depend on a and b. This property
can be equivalently formulated by using the Hilbert space H(K) with reproducing
kernel K. Namely, for every ¢ € [a, b],

b—a

where B(K') denotes the unit ball in H(K). In fact, the left-hand sides in (5) and (6)
coincide, up to taking the square root.

. . _a r+08
(6) sup{rh@)\:heB(K),supphg[a,b]}zoz-(“ - (t >) ,

Example 2. Let t € (a,b). For the Brownian motion X we have
~ X(a)-(b—1t)+X(b)-(t—a)

Xap(t) = .
(1) —
Since X has independent increments, we get
~ 2 b—1t)-(t—a
E(X(t) - Xoplt)) = ( b)_(a )

3These conditions are usually defined in the compact case t € [0, 1]; they may be used for ¢t € Ry
in the same way.
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Thus (5) holds with equality for r = 0, 8 = 3, and Cy = 1. This is generalized to the
r-fold integrated Brownian motion in the following way. The conditional expectation
)N(a,b(t) is given by the polynomial of degree at most 2r 4+ 1 that interpolates the bound-
ary values X (a) and X®)(b) for k =0,...,r, and (5) holds with equality for 5 = 1
and C2 = 1/((2r 4+ 1)(r!)?), see Speckman (1979). Note that X,,(¢) only depends on
the boundary values of the r-fold integrated Brownian motion. This is due to the fact
that (X, ..., X™) is a Markov process in this case.

Using the results from Ritter, Wasilkowski, and Wozniakowski (1995), the lower
bound (6) with 5 = 5 can be verified under Sacks-Ylvisaker conditions of order r € Ny.

The fractional Brownian motion with g # % is non-Markovian. For the corresponding
reproducing kernel Hilbert space we have h € H(K) for every function h € C*(R,)
with compact support that does not include zero. Moreover, the norm of these functions
is given by

o = 2
Il = - [ fuP* i) du

o0

for some constant ¢, see Singer (1994). Here T denotes the Fourier transform of h. This
allows us to establish (6) in the following way. Take g € C*°(R) such that g(0) =1 and
g(s) =0if |s| > 1, and put

o -1
Co= (e [t a)
For t € (a,b) and § = min{t — a,b — t} define
h(s) = Cy- 6" g(2(s —1)/5)

for s € Ry. Then h € H(K) since t > §/2, and ||h||x = 1. Furthermore, h = 0 on
[0,a] U [b,o0) and

h(t) 202,55 > (O, - ((b—?;)_(;—a))ﬁ

In a similar way, one can verify (6) for the r-fold integrated fractional Brownian motion.
Consider a stationary process X on the real line, whose spectral density ¢ satisfies

plu) >c- (1+u?)™"

with constants ¢ > 0 and 7 > £ for every u € R. Then every function h € C*(R) with
compact support belongs to H(K) and

% < ¢ - h 14+ 42)" - [hw)|? du
Il < e+ [~ (1) )

o0

for some constant ¢ > 0, see Ritter (2000, Lemma VI.7). Therefore (6), with r and g
given by (4), can be verified as in the case of fractional Brownian motion with § =
min{t — a,b —t,1}.
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3. WEIGHTED APPROXIMATION ON R,

In this section we assume that X satisfies (2) and (5) with » + 8 > 0 and, for
simplicity, that

Cy =1

3.1. Preliminary Results. First, we study the error of piecewise polynomial inter-
polation of degree ry > r on compact intervals. Put

7o = max{rg, 1}.
Lemma 1. Fora < bandn € N, letU denote the operator of interpolation by piecewise
polynomials of degree at most ro at the knots
b—a

—_— )

nro

a+7- 7 =0,...,n7r.

There exists a constant Ay = Aq(ro,r, ) > 0, such that

_ g\ 2 th)
sup E(X(f) — UX (1)) < A2. (b ) |

t€(a,b] n

Proof. As previously, let B(K) denote the unit ball in the Hilbert space H(K) with
reproducing kernel K. We have

E(X(t) —UX(t)* = hes;g{) \h(t) — UA(t)|.

Moreover, the functions h € H(K) are r-times continuously differentiable with
| (s) — KO(8)] < |5 — 17,

see Ritter, Wasilkowski, and Wozniakowski (1993).
We give the proof of the lemma only in the case r > 1. Assume that n = 1, at first.
Write

for ¢ € [a, b], where

and

Pt —u)t .
ho(t) = / ﬁ (W) (u) — b (a)) du.
Observe that h — Uh = hy — Uhs. Define

F(a,b) = {h e C"([a,b]) : ¥ (a) =0 for k=0,...,7,
‘h(”(s) — h(r)(t)‘ <|s —t|” for s,t € [a,b]},
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so that hy € F(a,b). Moreover, let py,...,p, denote thfz Lagrange polynomials for
interpolation at the knots j/ro with j = 0,...,7. Define h(z) = ha(a + 2z - (b — a)) for

z € [0,1]. Then
a ZTON ] t—a
>_ h(j).pj< )7
—a : 70 b—a
J=0

ho() — Uhs(t) = T (Z -

and (b—a) "9 . h e F(0,1) if hy € F(a,b). Therefore
sup E(X(t) —UX (1) < sup sup |h(t) — UR(B) < (b— @)™ . 42,

t€(a,b] te(a,b] heF(a,b)
Jj=

This constant is finite since every function h € F(O, 1) is bounded by (b — a)™*¥.

For n > 2 the same arguments work on the respective subintervals of [a, b] of length
(b—a)/n. O

where

A = sup sup
t€[0,1] heF(0,1)

Next, we discuss the complexity in the classical case of unweighted Ly-approximation
on a compact interval.

Theorem 1. Let a < b and
P = Liau-
Then
comp(e, Appp) =0 (8_1/(T+6)) )
Proof. Consider the piecewise polynomial interpolation ¢ from Lemma 1. We get

b—a (r+8)
ez(U,Appp) < A2 (T) -(b—a),

and the number of knots used by U is of order n. Hereby the upper bound for the
complexity follows.

Consider an arbitrary method A that uses knots t; < --- < t,,. Assume without loss
of generality that a,b € {t1,...,t } say a = t; and b = t¢;. Using (5) we get

2(A, App,) = Z —AX(t))* d
k=i+1 Y tk—1
J tg (t —t) . (t—t ) 2(r+8)
2 k k—1
zwz/ ( ) .
k=it1" th—1 ko bkl
J
—c- Z (te _tk_1)2(r+6)+1
k=i+1

>c-(b— CL)2(r+6)+1 . 2(r+8)
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with a constant ¢ > 0 that only depends on r, 5, and Cs. Hence the lower bound for
the complexity follows. O

From Theorem 1 we conclude that comp(e, App,) is at least of order e~V +8) if p
is an arbitrary weight function on R, that is bounded away from zero on an interval
of positive length.

3.2. Finite Complexity. We give a necessary and sufficient condition for the com-
plexity of approximation of X to be finite for any ¢ > 0.
Define the function L : Ry — R} U {oo} by

00 1/2
L(R) = ( / pA(t) - 3 HP) dt> :
R
Lemma 2. We have
(7) Ve >0: comp(e, App,) < oo,
uff
(8) lim L(R) =0
R—00
and
(9) Vo<a<b<ooVe>0: Comp(e,Appp,lw]) < 00.

Proof. We claim that
(10) K(t,t) < AZ.¢20+h)

for t > 1, say, with a constant Ay, = Ay(K,r, ) > 0. To show this, define X; and X,
by

and X (t) = X;(t) + Xo(¢). Then

K(t,t) <2 (E(X (1) + E(X2(2)?)
with E(X;(¢))? = O (¢*"). If r > 1 then
E(X,(t))?

//i gif}wIEKKWW—XWm»mMWm—XW@»mMU

r—1 2
< ( / t=w w) < 049,
—\Jy (r—=1)! -

This upper bound is obviously valid in the case r = 0, too, and (10) is proven.

Suppose now that (8) and (9) hold. For a given € > 0, let R. > 1 be such that
L(R.) < &, with e, = e(1+ A2)~'/2, Let A, be a method such that e(A., APPpiy ) <
g1, and A, f is zero on [R.,00). Then (10) yields

o0

2
e(A:, App,)* = e (AE, Appp.l[O,RE]) +/ PAt) - K(tt)dt <&t (1+A2)" <&,

R
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which proves (7).

Suppose that (7) holds. Then, of course, (9) holds as well, and we only need to
show (8). For a given ¢ > 0, let A. be a method such that e(A., App,) < e. Let
t1. < --- < t,, denote the knots used by A., and put R, = ¢, .. Recall the definition
of )N(,I’b(t) from Section 2. For every b > R, we have

b

22 [ - ax@)? O @z [ (X0 - L) 20w

Using (5) we get

> b—t)-(t— R)\*"
e A Rl e e R

€

For b — oo the integrand converges monotonically towards p?(t) - (t — R.)2+#). Thus
2 2x+8) . [ 2 2(r+8) 22

L*(2R.) <2 : p=(t) - (t — R:) dt < o

2R. 2

which proves (8). O

.87

Lemma 3. Assume that
(11) / P2 (1) dt < co.
0

Then we have (9), i.e., finite complexity on compact subintervals. Moreover, we have
finite complexity (7) iff

(12) / (1) 20 gt < o,
0

Proof. We use Lemma 1 to conclude that (11) implies (9). Moreover, given (11), we
have equivalence of (8) and (12). It remains to apply Lemma 2. O

3.3. Upper Bounds. We already know that the complexity of approximating X is at
least of order =%/ (+#) if the weight p is bounded away from zero on a subinterval of
positive length. In the following, we provide a method which, under some assumptions
on p, has error ¢ and cardinality proportional to e~/("*+5) We also give a necessary
condition for the complexity to be of that order.

Let a; = 2' — 1 for i € Ny, and define

pi = esssup{p(t) : t € [a;1, a;]}

as well as
¢ = p;/(r+6+1/2) L 9i-1
for 7 € N. We assume that
x
(13) Az = As(r, B, p) == ZCZ' < 00

=1
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and
(14) L(a;) < Ay -7

with a constant Ay = A4(r, B, p). To exclude trivial cases, we also assume ¢; > 0 for all
1eN.

The upper bound comp(e, App,) = O (5 1/(r+6) ) for the complexity is obtained by
the following method A*. Let £ € N and ny,...,n; € N, and put I; = [a; 1, q;] for
t = 1,...,k. On each of these intervals, A*X is an interpolation of X by piecewise
polynomials of degree at most ry > r, as in Lemma 1. The interpolation points are
given by

; — Q-1

a’i—1+]' — ) j:07"'7nir_07
n;ro

for i < k. On Iy, = [ag, 00) we use A*X (t) = 0. Clearly,

card(A") Z n; + 1.
The particular choice of k,ny,...,n, depends on ¢, r, 3, and p in the following way.
For ¢ € N we define
g2 /2(r+8))
G(e,0) = (?2 : 2 ci>
with
A =max{A;, Ay- A4}
We take
k=k(e) =min{l € N:cy,-G(e,0) <1}

and

ni = lc-Ge, k).
Observe that & is well-defined for every € because of (13). Moreover, ng, = 1.
Theorem 2. Suppose that (13) and (14) hold. Then we have
e(A",App,) < ¢
and
comp(e, App,) < card(A")
< (2 U | AU | AT/ 1) 4l

Proof. We first show that the error of A* is at most . Lemma 1 yields upper bounds
for the error of A* on the subintervals I; for ¢ < k. We have

2(r+6+1/2)

9 @i % 2 92 2 ci
€; 1= /a,_lE<X(t> —AX(@) - p () dt < AT 5

n;
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Furthermore, by (10),

o0

%H:/WMMﬂ—NX@ﬁf@ﬁgAa/ (1) - 209) gy,

ag ag

Using (14) we get

2 42 T+5+1/2)
€k+1 < A3 AL Cr+1

The particular choice of n;, 1 <i < k, yields
€2 < A2 G2 (e k) e
The particular choice of £ yields
€i+1 < AJ AL G_Q(Hﬂ)(& k) - .

We therefore have
k41 k41

Ze < A2 G (e k) - Zcz—e

Now we derive the upper bound for the cardinality of Z/{. For that end, we need to
estimate the sum of n;. Clearly,
k

k
Zni <k+Glek)- Zci.
i=1 1=1

Fori=2,...,k we have 1 < ¢;-G(e,i — 1) < ¢; - G(e, k), and therefore
k
E<1+G(ek)- ) e

Finally
k
G(e, k) - Zci <14G(e k) Ay < e VH0) L AV 48) . A[rtBH1/2)/(r56)
i=1
We conclude that

card(A*) < 75 - (2.5 [r48) | AUC+8) | ATHB+1/2)/(46) +1) iy
which completes the proof of the theorem. O

Let us discuss assumptions (13) and (14). First, note that (13) implies boundedness
of p. It also implies integrability of p? and of p*/+5+1/2) over R, .
Suppose now that p is monotonically decreasing. Then

ZCz_/ [r+B+1/2)( dt<ZcZ,

so that (13) is equivalent to integrability of p'/("+#+1/2) gver R, . Furthermore, in this
case, (13) implies (12). Indeed, if [;° p!/+AH/2)(¢) dt = ¢ < oo then p"/THH+1/2) (1) <
¢/t, so that

/ () - £2049) g < (2r9) / PUEHBHI/2) gy < o
0

0
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Thus we already get finite complexity (7) from (13) by Lemma 3.
Verifying (14) may be more complicated. The following simple observation can ease
this task in some cases. Suppose

(15) L(l)<oo and  Va,y>1: pry) < As-p(x) - ply).
Then (14) holds with Ay, = L(1) - A5 as follows from

LZ(R) _ R27’+26+1/ p2($ . R) . x2(7’+,3) dx S (A5 N L(l))Z . p2(R) . R2T+2/B+1.
1

We now illustrate assumptions (13) and (14) by the following two examples.
Example 3. Consider the weight
p(t) = (t+1)""
Then p; = 2=(G-De and

Ay =Y 2il-elri/)

i=0
Thus (13) holds iff
(16) a>r+ 0+ %,
and in this case

1
Ay = ———
ST 12l

with 7 = a/ (r + 8+ 1) > 1. Note also that
LZ(R) = /OO ﬂ dt
r (t+1)2 7
so that (16) is necessary for finite complexity (7). Finally,
00 R+1 —2(a—r—0)+1
L*(R) g/R (t4 1)72r=8) gt = (2((1—)7"—6)—1 :
so that (16) yields (14) with

1
2@—r—0)—-1

42 =
Example 4. Consider the weight function

p(z) = exp (—ay - z)
for positive ay, ap. Of course, L(0) < oo and (13) holds. Note also that (15) holds with
As = exp(«y). Hence (14) holds with Ay = L(1) - e*2.

Remark 1. There are weight functions for which the complexity is finite and (13)
holds; however, (14) is not satisfied. In such cases Theorem 2 is not applicable. For
instance, consider

(17) p(t) = (t+ 1)U et 4 e).
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Then (7) is equivalent to o > 3, (13) is equivalent to o > 7+ 8+ 1/2, yet (14) does
not hold no matter how large « is.

In Plaskota, Ritter, and Wasilkowski (2000), we develop a different technique that
allows to find the complexity for weights like (17).

In many cases (13) is also a necessary condition for the complexity to be of the same
order as in the compact case.

Theorem 3. Suppose that the weight function p is continuous or monotonically de-
creasing. Then comp(e, App,) = O (6_1/(““5)) implies

o
0

Proof. Let A, be a method such that e(A., App,) < € and card(A.) = O (¢ V" +9)).
Let t; < --- < t,, denote the knots used by A., where n = card(A.). Put R =t, and
to = 0 as well as

ﬁi = Hlf{p(t) 1t e [tifl,ti]}.

Using (5) we obtain

n t; tz — 8- (t - ti— Q(T—‘,—ﬂ)
i—1 Yti-1 1 -1

>c- Z P2 (t; — ti_q )2 tAH
1=1

n 2(r+p)+1
Z C- n_Q(r""ﬂ) . (Z @1/(r+5+1/2) . (tz — ti—l))

i=1
with a constant ¢ > 0 that depends only on C5, r, and 3. Thus

n

Zﬁil/(r+6+1/2) ) (ti . ti—l)

1=1

is uniformly bounded in € and the corresponding step functions converge to p*/(+#+1/2)
at every point of continuity of p, i.e., at least almost everywhere. It remains to apply
Fatou’s Lemma. O

4. WEIGHTED INTEGRATION ON R,
In this section we assume that X satisfies (2) with 4/ > 0 and, for simplicity, that
Cy=1.

For the integration problem to be well defined in the Lebesgue sense, it is necessary
and sufficient that

(18) /OOO KY2(t,t) - p(t) dt < oo.
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Indeed, since X is Gaussian, we have

B( [T 101 p0a) = [TBXOD = TR [T R0 o)

which, together with (18), implies that the weighted integral Int, X is well defined for
almost every trajectory of X. Conversely, assume that the latter holds true. Then, by

Fernique’s inequality,
B( [T X0 o0t <.
0

which implies (18). We add that

(19) / o) - max{1, () dt < o

is a sufficient condition for (18) to hold, see (10). Moreover, for processes that satisfy
(5), the condition (19) is only slightly stronger than (18), since K (¢,t) > ¢ - 120+ for
t € R; in this case.

We use the general technique from Wasilkowski (1994) to derive upper bounds for
the complexity of the integration problem. In this approach one analyzes suitable ran-
domized (Monte Carlo) methods. By a mean value argument, a Monte Carlo method
with average error at most ¢ yields the existence of a deterministic method with the
same error bound and the same number of samples.

4.1. Preliminary Results. First, we consider the case of a bounded weight func-
tion with compact support. Of course, this includes the classical case of unweighted
integration on a compact interval.

Theorem 4. Let a < b be such that

supp p C [a, b] and esssup p(t) < oo.
t€(a,b]

Then
comp(e, Int,) = O (5*1/(T+6+1/2)) '

Proof. Consider the piecewise polynomial interpolation ¢ from Lemma 1, which uses
1 + nry knots. Define

b b—a <X
20 CX = X () - p(t)dt : X —UX)(t;) - p(t;
@) MEX = [ UN()ple) i+ > (X - UX)(6) 1)
where ty, ..., ¢, are independent and uniformly distributed in [a,b]. We use E; to

denote the expectation with respect to the joint distribution of the points ¢;. For every
fixed trajectory of X,

E, (MCX) = Int, X

and

b—a
E,(Int, X — MCX)? <
¢(Int, )_1+m“_o

- /b(x CUX)(H) - ) dt.
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Therefore

h—
E, (E(Int, X — MCX)?) = E (E(Int, X — MCX)?) < ———
1+ nro
Hence there exists a choice of deterministic points ¢; such that the quadrature formula Q
defined by the right-hand side of (20) satisfies

b—a
1+ nry

e (u7 Appp) .

1/2
e(Q,Int,) < ( > ~e(U, App,).

We apply Lemma 1 to obtain

e(Q, Intp) S A1 . (b — a)T+,3+1 - ess sup p(t) . n*(r+/3+1/2)
t€la,b]

Y

and the upper bound on the complexity follows, since card(Q) = 2(1+n7g) = O(n). O

Under Hélder conditions (2), we are able only to provide upper bounds since without
additional restrictions, the complexity of the integration problem could be 1 indepen-
dently of ¢. Indeed, this holds when, e.g., K(s,t) = g(s) - g(t) for a suitable nonzero
function g, since one sample determines a trajectory of X precisely.

However, the upper bound from Theorem 4 cannot be improved in general. Indeed,
for the processes of Example 2 we have

comp(e, Int,) = © (5—1/(r+5+1/2)) 7

and simple constructions of almost optimal quadrature formulas are known. More-
over, comp(e,Int,) is at least of order e~/ +#+1/2) for those processes and arbitrary
weight functions on R, that are bounded away from zero on a compact interval of
positive length. See Ritter, Wasilkowski, and Wozniakowski (1995), and Ritter (2000,
Sec. VI.1.2, VL.1.4).

We also mention that (18) implies finite complexity on compact intervals, i.e.,

VO<a<b<ooVe>0: comp(e,Int,,, ) < oo,
and finite complexity on R, , i.e.,

Ve>0: comp(e,Int,) < oo.

4.2. Upper Bounds. We present two different approaches that yield an upper bound
of order e~/ ("+A+1/2) for comp(e, Int,).

In the first approach, we apply randomization to compact subintervals of R,. To
this end, let a; = 2° — 1 and

pi = esssup p(t)
tE[ai_l,ai]
as in Section 3.3. Redefine
— pl/(r""ﬂ""l) . 2i—1

)

L(R) = (/:/: K(s,4) - pls) p(t) ds dt> ”

C;

and
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We assume that

(21) Az = As(r, B, p) == ZCZ' < 00
i=1

and

(22) L(a;) < Ay -7

with a constant Ay, = Ay4(r, 5, p).
Theorem 5. Suppose that (21) and (22) hold. Then we have

comp(z, Int,) < 75 - (3 eV HB+1/2) | AL/(r+5+1/2) 'Aé(lr+ﬂ+1)/(T+5+1/2) + 2) +1.
Proof. We study suitable linear combinations of the Monte Carlo methods from the
proof of Theorem 4. Given € > 0, let
o4t >1/(2r+25+1)

Gle,0) = (f—j-zq

=1

with
A = max{A;, As}.
We take
k=k(e) =min{l € N : ¢y -G(e,0) <1}
and
n; =ni(e) = [¢; - G(e, k)] .
For every interval [a,b] = I; = [a; 1,a;] and n = n; with ¢ = 1,...,k let U; be the

piecewise polynomial interpolation from Lemma 1 and let MC; be defined by the right-
hand side of (20). Assuming that all the Monte Carlo points are chosen independently,
MC X, ..., MC,X are independent random variables for every fixed trajectory of X.
We define

k

MCX =) MC;X.

i=1

Then

0 2 k
E (Int, X — MCX)? = (/ X(t) - p(t) dt> + > E (Intp.hi —MCZ-X>2,

i=1
and hereby
k 2i—1
2 2 2
E¢(E(Int, X — MCX)?) < L*(ay) + ; — e (Ui,Appp.lli).

The rest of the proof is very similar to the proof of Theorem 2, and we omit it. O
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Note that (21) is in general a stronger assumption than (13). For instance, p(t) =
(t + 1)~ satisfies (13) iff @« > r + 5 + 1/2, whereas o must be greater than r + § + 1
for (21) to hold. Hence, although the complexity of weighted integration is smaller
than the complexity of weighted approximation, we need a stronger assumption on the
weight for the complexity to be of minimal order.

In a second approach, we apply randomization directly to the half-line R, .

Theorem 6. Suppose there exists 6 € (0,2) such that

(23) / T @) dt < oo,

and ps = p*~°/% satisfies the assumptions (13) and (14), i.e.,

o
(24) Z 9i-1, p§1—6/2)/(r+5+1/2) < 50

i=1
and

o0 -
(25) / p27(5(t) . t2(7‘+5) dt S AZ 3 2Z(27’+25+1) . pi:{;
a;

Then

comp(e, Int,) = O (5—1/(r+5+1/2)) '

Proof. Given ¢, let A be the method from Theorem 2 for the weight function p replaced
by ps. Let n = n(e) be the cardinality of A*. Consider the following randomized method

n

o a
MEX = [ A0 - plt)de+ & I0(X = A0 518
0 i=1
where the points ¢; are chosen independently according to the probability distribution
whose density equals p’/a with a = [ p(t) dt. Note that the cardinality of MC,
equals 2n. It is easy to check that for every trajectory of X,

1 o o0

B, (1t (X) ~ MC,(X))* < - [T e dee [ (00— AL CON0) - pafe))
0 0

where [E; denotes the expectation with respect to the points ¢;. Finally we use Theorem 2

and proceed as in the proof of Theorem 4. O

We illustrate the assumptions of Theorem 6 for p(t) = (t+1)~¢ as before. For p° to be
integrable, we need dav > 1. For the other assumptions, we need a(1-9/2) > r++1/2.
Equivalently, we need 1/a < § < 2—2(r + +1/2)/a. This means that such a ¢ exists
iff @ > r+ 8+ 1 which is exactly the same condition as the condition for satisfying the
assumptions of Theorem 5.

For every monotone function p, (21) is equivalent to the existence of 6 € (0,2) with
(23) and (24). Furthermore, (25) is not needed in this case, see Plaskota, Ritter, and
Wasilkowski (2000). On the other hand, there exist nonmonotonic weight functions
such that Theorem 6 yields the upper bound, while Theorem 5 is not applicable.
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4.3. A Special Case: Sacks-Ylvisaker conditions. We now discuss a special case.
We assume that X satisfies the Sacks-Ylvisaker conditions of order r € Ny. As shown
in Ritter, Wasilkowski, and Wozniakowski (1995), the corresponding reproducing ker-
nel Hilbert space is, essentially, equal to the Sobolev space W3 TH(R, ). Tt is also well
known, see, e.g., Traub, Wasilkowski and Wozniakowski (1988), Ritter (2000), that
for integration the average case complexity is equal to the worst case complexity with
respect to the unit ball in the reproducing kernel Hilbert space. Moreover, (almost)
optimal methods in one of the setting are also (almost) optimal in the other. Thus, for
X satisfying Sacks-Ylvisaker conditions, the average complexity of the weighted inte-
gration reduces to the worst case complexity with respect to the unit ball in Wi (R,).
The latter problem, among others, was considered in Wasilkowski and Wozniakowski
(2000a).

If (21) and (22) hold with f = 1/2 also in the definition of ¢;, then there are
constructions of simple methods QF whose errors do not exceed € and cardinalities are
proportional to e~/"*1)_ Hence they are almost optimal since the complexity of the
problem also equals

comp(e, Int,) = © (5’1/(”1)) .

For specifics concerning these methods see Wasilkowski and Wozniakowski (2000a) and
Han and Wasilkowski (2000).
We sketch a possible construction. With the choice of £ and n; from Theorem 5 take

QX = / " U; X (t) - p(t) dt,

where U; is the piecewise linear interpolation from Lemma 1 on [a; 1,a;] with 1 4 n,;7g
knots. Then Q = Zle Q, is an almost optimal method. A proof can be based on the

following facts. Let X — X denote the Taylor polynomial of degree r at a;_;. Since
To 2T,

/X t)dt — ;X = / X(t)-p(t)dt — QX

Moreover, note that these random variables are independent for: =1,...k, if X is the
r-fold integrated Brownian motion.

5. CONCLUDING REMARKS

We discuss possible improvements to the proposed methods. We will do this only for
the approximation problem; however, the same comments pertain to the integration
problem. Due to the lower bounds the improvements can only lead to better constants
in the estimates for the error or the cardinality.

Remark 2. The method A* is based on piecewise polynomial interpolation. Instead
one could use error-optimal algorithms. The latter are given by the means of the cor-
responding conditional process, or, equivalently, by interpolating K-splines. In view of
the lower bounds we have decided to work with piecewise polynomials, since they are
easy to implement and do not depend on specific type of the process X.
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Recall that A*X (¢) vanishes for ¢ > a;. Alternatively, we could define A*X|,, o) by
extrapolation, using a few values X in a neighbourhood of ay.

Remark 3. In the definition of A*, the parameters k& and n; are chosen based on an
upper bound on error of an interpolating piecewise polynomial. Specifically, we use the
following inequality

e =FE (/ l X (1) — A* X (1)]*- p*(t) dt) < p?e (a;—a;_1) ~mtaXE(X(t) — A*X ()%
aj—1
This could be improved by using

2 = (/ X(t) — AT X (D) - p2(8) dt)

if the above expectation are easy to compute, or by using
a;
&< E (/ X(t) A*X(t)\zdt>
aj—1

that in many cases is not difficult to compute. Any such improvement would require a
new definition of ¢;; the rest of the method would remain unchanged.

Remark 4. The method A* uses the values of the suprema p;. This could result in a
very high combinatorial cost for a number of weights p. Of course, this does not concern
monotonic weights p since then the numbers p; are given explicitly by p; = p(a;_1).

Remark 5. The sample points used by A* are equally spaced in each subinterval
la;_1,a;]. Instead, one could use the sampling similar to the one proposed in Han and
Wasilkowski (2000), a paper that deals with the worst case setting.

Remark 6. Suppose we only know an upper bound o for the Holder smoothness r+ /3
of X. Then we can also achieve an error of order & at cost of order e=%/("+8) by the
following modification of the method A*. Take piecewise polynomial interpolation of
degree ry = [o]. Redefine

¢ = p;/(0+1/2) . 9i-1

and assume that A; := 221 ¢; < 00. Moreover, assume that

[ A<z
Q.

i

with a constant A4 > 0. Finally, redefine

1 1/(20)
G(S,ﬁ): (gZQ) )

=1

and take k£ and n; as previously.
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