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In the present paper a kineti
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ular traÆ
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an be determined expli
itly. A derivation of asso
iated

ma
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opi
 traÆ
 
ow equations from the kineti
 equation is given.

The 
oeÆ
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ros
opi
 models are presented.

keywords traÆ
 
ow, ma
ros
opi
 equations, kineti
 derivation

AMS 76P05, 90B20, 60K15

�

Institut f�ur Te
hno- und Wirts
haftsmathematik (ITWM), 67663 Kaiserslautern, Ger-

many, (guenther�itwm.uni-kl.de).

y

FB Mathematik, TU Darmstadt, 64289 Darmstadt, Germany,

(klar�mathematik.tu-darmstadt.de).

z

FB Mathematik, TU Darmstadt, 64289 Darmstadt, Germany,

(materne�mathematik.tu-darmstadt.de).

x

Institut f�ur Te
hno- und Wirts
haftsmathematik (ITWM), 67663 Kaiserslautern, Ger-

many, (wegener�itwm.uni-kl.de).

1



1 Introdu
tion

Ma
ros
opi
 modeling of vehi
ular traÆ
 started with the work of Lighthill

and Whitham [15℄. They 
onsidered the 
ontinuity equation for the density

� 
losing the equation by an equilibrium assumption on the mean velo
ity u,

that means approximating u by the equilibrium value u

e

(�):

�

t

� + �

x

(�u

e

(�)) = 0:

u

e

(�) is the so 
alled fundamental diagram. An additional momentum equa-

tion for u has been introdu
ed by Payne and Whitham in [13, 15℄ in analogy

to 
uid dynami
s. They obtained the equation

�

t

� + �

x

(�u) = 0 (1)

�

t

u+ u�

x

u+

a

pw

(�)

�

�

x

� =

1

T

e

(�)

[u

e

(�)� u℄ ;

where a

pw

(�) is the so 
alled anti
ipation 
oeÆ
ient and T

e

the relaxation

time. Often a simple ansatz is used for a

pw

and T

e

, for example, a

pw

(�) = 


2

0

,




0

a 
onstant, see [9℄. However, re
ently Daganzo [2℄ has pointed out some

severe drawba
ks, like wrong way traÆ
, of models su
h as (1) in 
ertain

situations. These in
onsisten
ies of the Payne/Whitham model are resolved

by the introdu
tion of a new ma
ros
opi
 model by Aw and Ras
le [1℄:

�

t

�+ �

x

(�u) = 0 (2)

�

t

u+ u�

x

u� ��

�

(u

ar

(�))�

x

u =

1

T

e

(�)

[u

e

(�)� u℄ :

Kineti
 equations for vehi
ular traÆ
 
an be found, for example, in [14, 12,

11, 6℄. Pro
edures to derive ma
ros
opi
 traÆ
 equations from underlying

kineti
 models have been performed in di�erent ways by several authors,

see, for example, [4℄ and [6℄. We note that the above mentioned in
onsis-

ten
ies do not appear, for example, for the kineti
 equations presented in

[6, 7℄. Thus, one should be able to derive 
onsistent ma
ros
opi
 equations

like equation (2) from these kineti
 equations des
ribing all situations 
or-

re
tly. A general framework for the derivation of ma
ros
opi
 traÆ
 
ow

equations in
luding equations of the form (2) has been presented in [8℄. The

pro
edure is developed in analogy to the transition from the kineti
 theory
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of gases to 
ontinuum gas dynami
s. In this way ma
ros
opi
 equations have

been obtained based on the solution of an underlying kineti
 equation. The


oeÆ
ients, in parti
ular, u

ar

(�) are identi�ed on a kineti
 basis.

In the present paper a mu
h simpler expli
itly solvable kineti
 model is in-

vestigated and used to obtain expli
it formulas for the 
oeÆ
ients of the

ma
ros
opi
 equations. The paper is arranged in the following way: In se
-

tion 2 the kineti
 model is presented, redu
ed to a 
umulative des
ription of

the highway. See [7℄ for a multilane approa
h. In se
tion 3 the stationary

distributions of the kineti
 model are expli
itly given. Se
tion 4 
ontains the

derivation of ma
ros
opi
 models. In parti
ular, the kineti
 determination

of the 
oeÆ
ients appearing in the Aw/Ras
le model is presented. Finally,

in se
tion 5 some numeri
al results are given and the di�erent models are


ompared numeri
ally.

2 The Basi
 Kineti
 Model

We present here a kineti
 model des
ribing highway traÆ
 in a 
umulative

way averaging over all lanes. The basi
 quantity in a kineti
 approa
h is the

single 
ar distribution f(x; v) des
ribing the density of 
ars at x with velo
ity

v. Here and in the following we do not write expli
itly the time dependen
e.

The total density � on the highway is de�ned by

�(x) =

Z

w

0

f(x; v)dv;

where w des
ribes the maximal velo
ity. Let F (x; v) denote the probability

distribution in v of 
ars at x, i.e. f(x; v) = �(x)F (x; v).

To state the kineti
 equation we have to introdu
e several notations: We

introdu
e the following thresholds for braking (H

B

) and a

eleration (H

A

):

H

X

(v) = H

0

+ vT

X

; X = B;A:

T

B

< T

A

are rea
tion times and H

0

denotes the minimal distan
e between

the vehi
les.

From a mi
ros
opi
 point of view drivers will brake, on
e the distan
e between

the driver and its leading 
ar is be
oming smaller than a threshold H

B

and
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will a

elerate, on
e this distan
e is be
oming larger than H

A

. Otherwise the


ars will not 
hange the velo
ities. Velo
ities are 
hanged instantaneously

on
e a

eleration or braking line are rea
hed. The way how the velo
ities are


hanged is important. Depending on the 
hoi
e of the intera
tion rules the

homogeneous stationary kineti
 equation 
an be treated analyti
ally or not.

In this se
tion we use intera
tion rules that lead to expli
it formulas for the

stationary distributions. Compare [5℄ or [8℄ for other 
hoi
es.

Finally, we introdu
e the 
orrelation fun
tions q

B

(�); q

A

(�) measuring the

probability of �nding an intera
tion partner for braking or a

elerating. On
e

the braking line is rea
hed there are two 
hoi
es either braking or overtaking.

We de�ne the probability for braking P

B

= P

B

(�). Moreover, the relaxation

frequen
y � = �(�) is introdu
ed.

The kineti
 equation for the distribution fun
tion is obtained from 
onsid-

erations analogous to those in the kineti
 theory of gases using a pro
edure

similar to the formal derivation of Boltzmanns equation, 
ompare, for exam-

ple [8℄. The kineti
 model is given by the following evolution equation for

the distribution fun
tion f , 
ompare [8℄:

�

t

f + v�

x

f = C

+

(f) (3)

= P

B

q

B

(G

+

B

� L

+

B

)(f) + q

A

(G

+

A

� L

+

A

)(f) + �(G

S

� L

S

)(f):

G

+

B

; L

+

B

denote the gain and loss terms due to braking and G

+

A

; L

+

A

those due

to a

eleration intera
tions. They are stated in the following:

Braking-Intera
tion:

One obtains the gain term

G

+

B

(f) =

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)f(x; v̂)F (x+H

B

(v̂); v̂

+

)dv̂dv̂

+

with

�

B

(v; v̂; v̂

+

) =

1

v̂ � v̂

+

�

[v̂

+

;v̂℄

(v):

The loss term is

L

+

B

(f) =

Z

v̂

+

<v

jv � v̂

+

jf(x; v)F (x+H

B

(v); v̂

+

)dv̂

+

:
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In other words, rea
hing the braking line the vehi
le brakes, su
h that the

new velo
ity is equally distributed between the velo
ity of its leading vehi
le

and its a
tual velo
ity.

A

eleration-Intera
tion:

The gain term is given by

G

+

A

(f) =

Z Z

v̂<v̂

+

jv̂ � v̂

+

j�

A

(v; v̂; v̂

+

)f(x; v̂)F (x+H

A

(v̂); v̂

+

)dv̂dv̂

+

with

�

A

(v; v̂; v̂

+

) =

1

v̂

+

� v̂

�

[v̂;v̂

+

℄

(v):

The loss term is

L

+

A

(f) =

Z

v̂

+

>v

jv � v̂

+

jf(x; v)F (x+H

A

(v); v̂

+

)dv̂

+

:

Thus, again the new velo
ity is 
hosen from a range of velo
ities between the

a
tual velo
ity and the velo
ity of the leading vehi
le.

Finally, a relaxation term is introdu
ed, des
ribing a random behaviour of

the drivers. It is given by

G

S

(f) =

Z

w

0

�

S

(v; v̂)f(x; v̂)dv̂

with

�

S

(v; v̂) =

1

w

:

The loss term is

L

S

(f) = f(v):

This approa
h resembles Enskog's theory of a dense gas, see e.g., [3℄, rather

than a Boltzmann type treatment. The ne
essity to do su
h an Enskog type

approa
h is explained in detail in [6℄. In parti
ular, it is shown there that a

Boltzmann type treatment negle
ting the dependen
e of F on x+H

X

(v); X =
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A;B leads to 
ompletely wrong results even for simple inhomogeneous situ-

ations.

For very light traÆ
, i.e. � approximately 0 the probability of �nding inter-

a
tion partners for braking and a

elerating is the same. For dense traÆ


� = �

max

the probability for �nding a partner for braking is mu
h larger than

�nding a partner for a

eleration. Thus, we have that

q

B

q

A

ranges from 1 to

1 as � tends from 0 to �

max

. Thus

P

B

q

B

q

A

ranges from 0 to 1. Using

k = k(�) =

P

B

q

B

q

A

1 +

P

B

q

B

q

A

=

P

B

q

B

q

A

+ P

B

q

B

ranging from 0 to 1 and


 = 
(�) =

q

A

1� k

= q

A

+ P

B

q

B

and 
 su
h that



 = �

we rewrite the equation in the following way:

�

t

f + v�

x

f = C

+

(f) (4)

= 


�

k(G

+

B

� L

+

B

)(f) + (1� k)(G

+

A

� L

+

A

)(f) + 
(G

S

� L

S

)(f)

�

:

with k ranging from 0 to 1 as � tends from 0 to �

max

.

3 Stationary Distributions of the Kineti
 Model

In this se
tion we investigate the stationary homogeneous equations and de-

termine its unique solution. This 
an be done analyti
ally in the present 
ase

due to the form of the intera
tion rules. Usually, this is not the 
ase, if other

intera
tion rules are used. For investigations 
onsidering di�erent intera
tion

rules see for example [5℄.

We 
onsider the spatially homogeneous intera
tion operator:

C(f) = 
 (k(G

B

� L

B

)(f) + (1� k)(G

A

� L

A

)(f) + 
(G

S

� L

S

)(f)) : (5)
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with f = �F . The gain and loss terms G

B

; L

B

, et
. are de�ned as G

+

B

; L

+

B

,

et
. with x +H

X

(v); X = A;B substituted by x. We have, substituting the

expli
it expression for �

X

; X = A;B:

G

B

(f) = G

A

(f) = �

v

Z

0

F (v̂) dv̂

w

Z

v

F (v̂) dv̂

L

B

(f) = �F (v)

�

v

v

Z

0

F (v̂) dv̂ �

v

Z

0

v̂F (v̂) dv̂

�

L

A

(f) = �F (v)

�

w

Z

v

v̂F (v̂) dv̂ � v

w

Z

v

F (v̂) dv̂

�

= L

B

(f)� (v � u)f

where

u =

w

Z

0

vF (v) dv:

Moreover,

G

S

(f) =

�

w

and L

S

(f) = f:

The homogeneous stationary equation is

C(f) = 0: (6)

To obtain a unique solution the density has to be �xed, i.e. we 
onsider (6)

with

Z

w

0

f(v)dv = �;

� �xed. The unique solution is denoted by f

e

= f

e

(�) = �F

e

(�).

To simplify the following we introdu
e the distribution fun
tion F of the

probability density F , i.e.

F(v) =

v

Z

0

F (v̂) dv̂:

F is monotone in
reasing with

F(0) = 0 ; F(w) = 1:
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Therefore F is an invertible fun
tion F : [0; w℄! [0; 1℄. Denoting the inverse

fun
tion with v(p) and the derivation with respe
t to p with � we get

F(v(p)) = p ;

d

dp

F(v(p)) = F (v(p)) _v(p) = 1: (7)

We rewrite the gain and loss terms using these expressions:

G

B

(f) = G

A

(f) = �p(1� p)

L

B

(f) =

�

_v(p)

�

pv(p)�

p

Z

0

v(q) dq

�

L

A

(f) =

�

_v(p)

�

1

Z

p

v(q) dq � v(p)(1� p)

�

G

S

(f) =

�

w

L

S

(f) =

�

_v(p)

:

Multiplying (6) with _v(p) and using the above representation of the gain and

loss terms we get

0 = p(1�p) _v(p)�k

�

pv(p)�

p

Z

0

v(q) dq

�

�(1�k)

�

1

Z

p

v(q) dq�(1�p)v(p)

�

+




w

( _v(p)�w):

Derivation with respe
t to p and resorting leads to the ODE

::

v

= _v

3p+ k � 2

p(1� p) +




w

; v(0) = 0 ; v(1) = w: (8)

Using

h(p) =

k � p

(q � (p�

1

2

))

1

2

+r

(q + (p�

1

2

))

1

2

�r

with

q =

s




w

+

1

4

; r =

2k � 1

4q

8



the general solution of this ODE 
an be written as

v(p) = ah(p) + b

with 
onstants a and b. Note that as 
 is non-negative q and r are well

de�ned. Now in
luding the boundary 
onditions we get the �nal solution of

(8)

v(p) = w

h(p)� h(0)

h(1)� h(0)

: (9)

In the end we get a

ording to (7) a parameter representation of F = F (v):

�

v(p); F (v(p))

�

=

�

v(p);

1

_v(p)

�

:

We mention that k and 
 and thus q, r and therefore v(p) still depend on �

and write v(�; p); _v(�; p). Assuming that k(�) is invertible we 
an also write

the above quantities dependent on k, i.e. 
(k); v(k; p); _v(k; p).

Denoting the stationary distribution by f

e

(�; v) we have obtained a param-

eter representation

(v(�; p); f

e

(�; v(�; p))) = (v(�; p);

�

_v(�; p)

); p 2 [0; 1℄; � �xed:

Remark For other intera
tion rules there is usually no equivalent se
ond

order ODE, whi
h 
an be derived from the integral equation. In most 
ases

the integral equation 
an only be transformed to a third order ODE, whi
h

is mu
h more diÆ
ult to treat, see, e.g. [5℄

4 Derivation of Ma
ros
opi
 Models

In this se
tion we 
on
entrate on the derivation of ma
ros
opi
 equations

for density and mean velo
ity. Other equations for higher moments may be

derived in a similar way. To derive the ma
ros
opi
 equations we pro
eed as

follows:

9



4.1 Balan
e Equations

Multiplying the inhomogeneous kineti
 equation (3) with �(v) = 1 and

�(v) = v and integrating it with respe
t to v one obtains the following set of

balan
e equations:

�

t

Z

w

0

�(v)fdv + �

x

Z

w

0

v�(v)fdv =

Z

w

0

�(v)C

+

(f)(x; v; t)dv: (10)

With

� =

Z

w

0

fdv

and

�u =

Z

w

0

vfdv

one obtains from (10) with �(v) = 1 the 
ontinuity equation

�

t

�+ �

x

(�u) = 0:

To obtain the momentum equation the important point is to identify 
learly

the 
ux and the sour
e terms in the se
ond equation with �(v) = v. In

parti
ular, in addition to the usual kineti
 
ux, there is a se
ond 
ontribution

to the 
ux 
oming from the Enskog 
ollision term due to the �nite size of the

intera
tion thresholds. To obtain this 
ux we separate the Enskog intera
tion

term into a lo
al intera
tion term and a deviation from the lo
al term:

C

+

= C � (C � C

+

);

where the lo
al term C is given by (5).

Rewriting (10) with �(v) = v and using the above de
omposition of C

+

we

get

�

t

(�u) + �

x

(P + �u

2

) + E = S (11)

with the 'traÆ
 pressure'

P =

Z

w

0

(v � u)

2

fdv;

the Enskog 
ux term

E =

Z

w

0

v[C(f)(x; v; t)� C

+

(f)(x; v; t)℄dv; (12)

10



and the sour
e term

S =

Z

w

0

vC(f)(x; v; t)dv: (13)

An interesting feature of the above model is the fa
t that there is a relation

between S; P; � and u. This 
an be seen by the following 
onsiderations:

S = �

1

2


k

w

Z

0

v

Z

0

(v � s)

2

f(v)F (s) ds dv

+

1

2


(1� k)

w

Z

0

w

Z

v

(v � s)

2

f(v)F (s) ds dv

+



w

Z

0

v

�

�

w

� f(v)

�

dv:

We 
ombine the �rst and the se
ond term leading to

S =

�

1

2

� k

�


�

w

Z

0

v

Z

0

(v � s)

2

F (v)F (s) ds dv

+

�

�

w

2

� u

�

:

As a simple 
omputation shows this is equal to

S = S(�; u; P ) = 
((

1

2

� k)P + 
�(

w

2

� u)): (14)

To obtain 
losed equations for � and u one has to spe
ify the dependen
e of

P and E on � and u. In parti
ular, the nonlo
al properties of the 
ollision

operator have to be analyzed 
arefully to approximate E in (12).

4.2 Closure Relations

There are a variety of possible 
losure relations, whi
h 
ould be borrowed

from gas dynami
s. As usual, to �nd 
losure relations for the balan
e equa-

tions one has to use the stationary solution f

e

(�; v) of the homogeneous

kineti
 equation whi
h has been determined expli
itly in the last se
tion.

11



Knowing the stationary distribution the fundamental diagram, i.e. the equi-

librium mean velo
ity u

e

, is given by

u

e

(�) =

1

�

Z

w

0

vf

e

(�; v)dv: (15)

In the following, we 
onsider an approa
h to determine the 
oeÆ
ients of

the ma
ros
opi
 equations developed in [8℄. One uses a general ansatz for

the distribution fun
tion, an 'extended equilibrium fun
tion' to approximate

the true distribution f instead of a simple approximation by the equilibrium

distribution f

e

. Consider a fun
tion f

ex

= f

ex

(�; u) = f

ex

(�; u; v) depending

on the ma
ros
opi
 parameters � and u and not only on �. Spe
ial forms will

be 
onsidered later.

We require that f

ex

(�; u) ful�lls two properties, namely, having density

� =

Z

f

ex

(�; u; v)dv (16)

and mean value

�u =

Z

vf

ex

(�; u; v)dv: (17)

Moreover, we require

f

ex

(�; u

e

(�)) = f

e

(�): (18)

Note that, in 
ontrast, f

e

(�) has a mean value �u

e

(�). Using this approa
h

one is able to in
lude situations (�; u), where the distribution fun
tion 
an

not be properly approximated by the equilibrium distribution f

e

(�) having

not even the 
orre
t mean value u. We introdu
e the fun
tion F

ex

de�ned

by

f

ex

= �F

ex

in analogy to F

e

. Equation (11) is now 
losed by the following pro
edure:

We approximate the traÆ
 pressure P in (11) by

P =

Z

w

0

(v � u)

2

fdv �

Z

w

0

(v � u)

2

f

ex

(�; u; v)dv = P

ex

(�; u): (19)

The Enskog term E is approximated in the following way: We linearize

expression (12) for E in H and substitute the distributions f

ex

(�; u) for f .

12



This yields a 
ontribution from ea
h of the terms appearing in the de�nition

of E, whi
h 
an be written as

E = E

A

+ E

B

with

E

B

= 
k(

Z

w

0

v[G

B

�G

+

B

℄dv �

Z

w

0

v[L

B

� L

+

B

℄dv)

and E

A

analogously. The pro
edure is shown in detail for the term

Z

w

0

v[G

B

�G

+

B

℄dv:

The results for the other terms are stated without derivation. We have

Z

w

0

v[G

B

(f)�G

+

B

(f)℄dv =

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)�

[f(x; v̂)F (x; v̂

+

)� f(x; v̂)F (x+H

B

(v̂); v̂

+

)℄dv̂dv̂

+

dv:

Using

F (x+H

B

(v); v̂

+

) � F (x; v̂

+

) +H

B

(v)�

x

F (x; v̂

+

)

we get for

R

w

0

v[G

B

�G

+

B

℄dv:

�

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)H

B

(v̂)

f(x; v̂)�

x

F (x; v̂

+

)dv̂dv̂

+

dv:

Introdu
ing now f

ex

(�(x); u(x); v) for f(x; v) and F

ex

(�(x); u(x); v) for F (x; v)

yields the following approximation for

R

w

0

v[G

B

�G

+

B

℄dv:

�

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)H

B

(v̂) (20)

f

ex

(�; u; v̂)[�

�

F

ex

(�; u; v̂

+

)�

x

�+ �

u

F

ex

(�; u; v̂

+

)�

x

u℄dv̂dv̂

+

dv:

To simplify the presentation in the following we introdu
e the operator

I(f; g) = I

B

(f; g) + I

A

(f; g)

with

I

B

(f; g) = 
k

Z Z

v̂>v̂

+

jv̂ � v̂

+

j

H

B

(v̂)f(v̂)g(v̂

+

)[

Z

w

0

v�

B

(v; v̂; v̂

+

)dv � v̂℄dv̂

+

dv̂
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and

I

A

(f; g) = 
(1� k)

Z Z

v̂<v̂

+

jv̂ � v̂

+

j

H

A

(v̂)f(v̂)g(v̂

+

)[

Z

w

0

v�

A

(v; v̂; v̂

+

)dv � v̂℄dv̂

+

dv̂:

This yields

E � b

ex

(�; u)�

x

� + 


ex

(�; u)�

x

u; (21)

where b

ex

(�; u) is de�ned by

b

ex

= �I(f

ex

; �

�

F

ex

)

and 


ex

(�; u) is de�ned by




ex

= �I(f

ex

; �

u

F

ex

):

Finally, the sour
e term S has to be approximated. Using f

ex

to approximate

f in (14) we 
an write

S � S

ex

(�; u) = 
((

1

2

� k)P

ex

(�; u) + 
�(

w

2

� u)) (22)

where P

ex

(�; u) is given in (19). We obtain ma
ros
opi
 equations of the

form

�

t

�+ �

x

(�u) = 0

�

t

(�u) + �

x

(P

ex

(�; u) + �u

2

) + b

ex

(�; u)�

x

� + 


ex

(�; u)�

x

u = S

ex

(�; u):

To obtain expli
it ma
ros
opi
 equations we have to �x the form of f

ex

. This

will be 
onsidered in the next se
tion.

4.3 An expli
it 
losure

We 
hoose the following ansatz for f

ex

whi
h ful�lls 
onditions (16), (17) and

(18):

f

ex

(�; u) = �F

e

(�

e

(u)); (23)
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where the 'equilibrium density' �

e

= �

e

(u) asso
iated to the mean velo
ity u

is determined in su
h a way that

u

e

(�

e

(u)) = u;

i.e., �

e

(u) is the inverse fun
tion to u

e

(�). �

e

is well de�ned, if we assume that

u

e

(�) is stri
tly monotone de
reasing in �. This is true for any reasonable

traÆ
 
ow model. For this de�nition of f

ex

(�; u) one obtains a positive

fun
tion for all values of v. Using this ansatz we will determine the 
oeÆ
ients

of the ma
ros
opi
 equation expli
itly. For the following we de�ne

V (k; p) =

p

Z

0

v(k; ~p) d~p

with v(k; p) de�ned in (9). This integral 
an be 
omputed exa
tly:

V (k; p) = w

H(k; p)�H(k; 0)� p h(k; 0)

h(k; 1)� h(k; 0)

(24)

with

H(k; p) =

�

q � (p�

1

2

)

�

1

2

�r

�

q + (p�

1

2

)

�

1

2

+r

:

Computing u

e

(�) we obtain

u

e

(�) =

1

�

w

Z

0

vf

e

(�; v) dv = V (k(�); 1): (25)

A

ording to (14) we have for all f;

R

w

0

fdv = �:

S(f) = 


��

1

2

� k

�

P (f) + 
�

�

w

2

� u(f)

��

:

Sin
e S(f

e

(~�)) is equal to 0 for all ~� one has, 
hoosing ~� = �

e

= �

e

(u):

S(f

e

(�

e

)) = 


��

1

2

�

~

k

�

P (f

e

(�

e

)) + ~
�

e

�

w

2

� u(f

e

(�

e

))

��

= 0;

where we have used

~
 = ~
(u) = 
(�

e

(u))

~

k =

~

k(u) = k(�

e

(u)):
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Sin
e f

e

(�

e

(u)) =

�

e

(u)

�

f

ex

(�; u) we have

0 =

�

1

2

�

~

k)

�

P

ex

(�; u) + ~
�(

w

2

� u)

or

P

ex

(�; u) = �~
(u)

w

2

� u

~

k(u)�

1

2

: (26)

To 
ompute S

ex

we use (22) and substitute P

ex

found above. We obtain

S

ex

(�; u) = 
�(

w

2

� u)

0

�


(�)� ~
(u)

1

2

� k(�)

1

2

�

~

k(u)

1

A

: (27)

To determine the 
oeÆ
ients b

ex

and 


ex

we note that for F

ex

we obtain

F

ex

(�; u) = F

ex

(u) = F

e

(�

e

(u)):

Thus, F

ex

depends in this 
ase only on u and not on �. In parti
ular,

�

�

F

ex

= 0 and b

ex

(�; u) = 0.

To 
ompute 


ex

we use

�

u

F

ex

(u) = �

u

F

e

(�

e

(u)) = �

�

F

e

(�

e

(u))�

u

�

e

(u) = �

�

F

e

(�

e

(u))

1

�

�

u

e

(�

e

(u))

:

This gives




ex

(�; u) = �

I

�

�F

e

(�

e

(u)); �

�

F

e

(�

e

(u))

�

�

�

u

e

(�

e

(u))

: (28)

Alltogether we obtain the equations

�

t

�+ �

x

(�u) = 0 (29)

�

t

(�u) + �

x

(P

ex

(�; u) + �u

2

) + 


ex

(�; u)�

x

u = S

ex

(�; u)

where the 
oeÆ
ients are given by (26), (27) and (28).

The above equations 
an be simpli�ed using the following formal pro
edures

for the 
oeÆ
ients:
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We may approximate P

ex

(�; u) by

P

ex

(�; u) � P

e

(�) = P

ex

(�; u

e

(�)) = �
(�)

w

2

� u

e

(�)

k(�)�

1

2

: (30)

S

ex


an also be simpli�ed using P

e

(�) instead of P

ex

(�; u) in (22). This gives

S

ex

(�; u) � S

e

(�; u) = S(�; u; p

e

(�)) = 

�(u

e

(�)� u): (31)

We approximate 


ex

(�; u) substituting u

e

(�) instead of u, i.e.




ex

(�; u) � 


e

(�) = 


ex

(�; u

e

(�)):

This yields




e

(�) = �

I(f

e

; �

�

F

e

)

�

�

u

e

(�)

: (32)

Sin
e

�

�

u

e

(�) = �

k

V (k; 1)�

�

k(�);

we obtain




e

(�) = �


�k

2�

k

V (k; 1)

Z

1

0

p

Z

0

(v(k; p)� v(k; ~p))

2

H

B

(v(p))

�

k

_v(k; ~p)

_v(k; ~p)

d~p dp

+


�(1� k)

2�

k

V (k; 1)

1

Z

0

1

Z

p

(v(k; p)� v(k; ~p))

2

H

A

(v(p))

�

k

_v(k; ~p)

_v(k; ~p)

d~p dp: (33)

The �nal equations are

�

t

�+ �

x

(�u) = 0 (34)

�

t

(�u) + �

x

(P

e

(�) + �u

2

) + 


e

(�)�

x

u = S

e

(�; u)

where the 
oeÆ
ients are 
omputed expli
itly above.
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4.4 Equilibrium 
losure

For 
ompleteness we dis
uss another 
hoi
e for the distribution fun
tion

whi
h has been used in [7℄. As mentioned in the introdu
tion, the 
losure


an be done using f

e

(�) for f

ex

(�; u) and F

e

(�) for F

ex

(u). We mention that,

in 
ontrast to the above ways of pro
eeding, for this 
hoi
e of f

ex


ondition

(17) is violated. Sin
e in this 
ase �

u

F

ex

= 0 we obtain the approximation

E � b

ex

(�; u)�

x

�;

with b

ex

(�; u) = a

e

(�), where a

e

(�) is de�ned by

a

e

(�) = �I(f

e

; �

�

F

e

) = 


e

(�)�

�

u

e

(�): (35)

P is approximated by P

e

(�). The resulting equations are the Payne/Whitham

type equations, see [7℄:

�

t

� + �

x

(�u) = 0 (36)

�

t

(�u) + �

x

(P

e

(�) + �u

2

) + a

e

(�)�

x

� = S

e

(�; u):

We note that a

pw

in the original Payne/Whitham equation (1) is identi�ed

here with �

�

P

e

(�) + a

e

(�). To write the equations in 
onservative form we

simply use �

x

A

e

(�) with

A

e

(�) =

Z

�

0

a

e

(~�)d~� (37)

instead of a

e

(�)�

x

� in (36).

As 
an be observed by the numeri
al approximations and has been investi-

gated by Aw and Ras
le there are 
ertain situations where the above equi-

librium 
losure is too simple and equations (34) have to be used. See the last

se
tion for numeri
al examples.

5 Numeri
al Investigations

Rewriting the momentum equation in equations (34) one obtains

�

t

u+ u�

x

u+

1

�

�

x

P

e

(�) +




e

(�)

�

�

x

u = S

e

(�; u) (38)
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We de�ne the fun
tion u

ar

as

u

ar

= u

ar

(�) = �

Z

�

0




e

(~�)

(~�)

2

d~�: (39)

Equation (38) 
an then be written as

�

t

u+ u�

x

u+

1

�

�

x

P

e

(�)� ��

�

(u

ar

(�))�

x

u = S

e

(�; u): (40)

Thus, 
omparing these equations with the Aw/Ras
le equation (2) we ob-

serve that we have obtained the same equations with an additional term

involving P

e

. It will be observed numeri
ally below that the in
uen
e of

this term is negligible 
ompared to the term involving u

ar

. In parti
ular, a

numeri
al 
omparison of the 
uxes given by P

e

and those asso
iated to the

term involving u

ar

is given. To 
ompare the terms in a proper way, we write

as in [1℄ the equations in 
onservative form with the new variable y de�ned

by

y = �u+ �u

ar

(�):

This gives the following equations:

�

t

�+ �

x

(�u) = 0 (41)

�

t

y + �

x

(P

e

(�) + uy) = S

e

(�; u):

From this equation it 
an be observed that for a 
orre
t 
omparison of the

di�erent 
uxes one should 
ompare P

e

(�) and uy = �u(u + u

ar

). Using

the equilibrium assumption u = u

e

(�) we 
ompare P

e

(�), �u

e

(�)u

e

(�) and

�u

e

(�)u

ar

(�). This is done in the following and it will turn out that P

e

(�) is

small 
ompared to the other terms.

Remark: Equations (36) yields in many situations a satisfying des
ription

of the physi
s as mentioned in the introdu
tion. However, as noti
ed by

Daganzo [2℄ and Aw and Ras
le [1℄, there are a variety of situations, in par-

ti
ular, nonequilibrium situations, where these equations lead to 
ompletely

wrong results. A thorough dis
ussion of equations of the form (41) with

P

e

= 0 has been performed by Aw and Ras
le [1℄. In parti
ular, they have

shown that the above mentioned in
onsisten
ies of the Payne/Witham model

do not appear for su
h a model. As shown below the 
ux related to P

e

is
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small and we obtain equations of the same type as those found by Aw and

Ras
le. Thus, these equations should also avoid the above mentioned in
on-

sisten
ies. This is supported by the numeri
al solutions of the ma
ros
opi


equations presented in the following.

We determine the ma
ros
opi
 
oeÆ
ients numeri
ally using the expli
it for-

mulas for the 
oeÆ
ients given in the last se
tion. The Aw/Ras
le type

and Payne/Witham type equations des
ribed above will be 
ompared. Rie-

mann problems are used to fo
us on the di�eren
es between the models.

In parti
ular, it is observed that the models (41) do not allow the physi
al

in
onsisten
ies mentioned in the introdu
tion. However, it should be noted

that for standard situations like the simulation of a ba
kward traveling traÆ


jam due to a lane drop as 
onsidered in [7℄ the simulation does not yield any

signi�
ant di�eren
es for the Payne/Whitham (36) or Aw/Ras
le (41) type

models derived from the kineti
 equation.

For the numeri
al simulations we 
hoose w = 1 and H

0

= 1. For the rea
tion

times the following values have been used: T

B

= 5; T

A

= 10. 
(�) is 
hosen

equal to 1. u

e

(�) and 
(k) are 
hosen a

ording to measurements. Equation

(25) then yields �(k).

In the �gures we plot the 
oeÆ
ients of the ma
ros
opi
 equations. In Fig-

ure 1 u

e

is plotted. S is plotted in Figure 2 for a �xed value of u using the two

possibilities (27) and (31). Moreover, u

ar

is plotted in Figure 3. P

e

is plotted

for 
omparison together with �u

e

(�)u

e

(�) and �u

e

(�)u

ar

(�) in Figure 4. As


an be observed, P

e

is negligible 
ompared to �u

e

(�)u

e

(�) and �u

e

(�)u

ar

(�).

Finally, A

e

is plotted in Figure 5.

Moreover, numeri
al solutions of the ma
ros
opi
 equations are 
omputed.

Equations (41) with 
oeÆ
ient u

ar

(�) are 
onsidered. Additionally, the ki-

neti
 derived Payne/Whitham-type equations (36) with anti
ipation 
oef-

�
ient A

e

(�) are 
onsidered. We dis
uss the solutions (�; �u) of Riemann

problems for the above equations without the relaxation term. Moreover, we

set P

e

= 0 
on
entrating on the in
uen
e of the anti
ipation. We refer to

[10℄ for the 
ase of Payne/Whitham type 
uid dynami
 equations and to [1℄

for the Aw/Ras
le equations for the theoreti
al investigation of the Riemann

problems. We denote by (�

�

; �

�

u

�

) the state on the left of the dis
ontinuity

and by (�

+

; �

+

u

+

) the state on the right. We 
onsider the following situation:

The dis
ontinuity is lo
ated at the middle of the domain 
onsidered. The
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initial values are �

�

= 0:1; �

�

u

�

= 0:01, u

�

= 0:1 and �

+

= 1; �

+

u

+

= 0:05,

u

+

= 0:05.

The numeri
al values of �u for this situation at a �xed time are shown in

Figure 6.

We observe that the kineti
 based Payne/Whitham-type equations yield neg-

ative velo
ities for the situation 
onsidered. In this 
ase the Aw/Ras
le-type

equations with 
oeÆ
ients derived as above yield reasonable results, espe-


ially no negative velo
ities, as was to be expe
ted from the 
onsiderations

in [1℄.

Con
lusions

� A kineti
 model with an expli
itly solvable stationary equation has

been 
onsidered. The stationary distributions are evaluated expli
itly.

� Ma
ros
opi
 traÆ
 
ow models has been derived from the kineti
 equa-

tion with expli
it expressions for the 
oeÆ
ients appearing in these

equations.

� These models avoid the in
onsisten
ies, in parti
ular the appearan
e of

negative velo
ities, observed for the original Payne/Whitham models.
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