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Abstract

In the present paper a kinetic model for vehicular traffic is pre-
sented and investigated in detail. For this model the stationary dis-
tributions can be determined explicitly. A derivation of associated
macroscopic traffic flow equations from the kinetic equation is given.
The coefficients appearing in these equations are identified from the
solutions of the underlying stationary kinetic equation and are given
explicitly. Moreover, numerical experiments and comparisons between
different macroscopic models are presented.
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1 Introduction

Macroscopic modeling of vehicular traffic started with the work of Lighthill
and Whitham [15]. They considered the continuity equation for the density
p closing the equation by an equilibrium assumption on the mean velocity u,
that means approximating u by the equilibrium value u¢(p):

Op + Oz(pu(p)) = 0.

u®(p) is the so called fundamental diagram. An additional momentum equa-
tion for u has been introduced by Payne and Whitham in [13, 15] in analogy
to fluid dynamics. They obtained the equation

0ip + Ou(pu) = 0 (1)

Ay (p) 1
Oyu + udyu + 2229, 0 = u®(p) — ul,
: g = oy o) =

where a,,(p) is the so called anticipation coefficient and T the relaxation
time. Often a simple ansatz is used for a,,, and T¢, for example, a,,(p) = cZ,
co a constant, see [9]. However, recently Daganzo [2] has pointed out some
severe drawbacks, like wrong way traffic, of models such as (1) in certain
situations. These inconsistencies of the Payne/Whitham model are resolved
by the introduction of a new macroscopic model by Aw and Rascle [1]:

Oup + O0x(pu) = 0 (2)

Oyt + u0,u — pO,(Uar(p))Opu = [ué(p) — u].

Kinetic equations for vehicular traffic can be found, for example, in [14, 12,
11, 6]. Procedures to derive macroscopic traffic equations from underlying
kinetic models have been performed in different ways by several authors,
see, for example, [4] and [6]. We note that the above mentioned inconsis-
tencies do not appear, for example, for the kinetic equations presented in
[6, 7]. Thus, one should be able to derive consistent macroscopic equations
like equation (2) from these kinetic equations describing all situations cor-
rectly. A general framework for the derivation of macroscopic traffic flow
equations including equations of the form (2) has been presented in [8]. The
procedure is developed in analogy to the transition from the kinetic theory
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of gases to continuum gas dynamics. In this way macroscopic equations have
been obtained based on the solution of an underlying kinetic equation. The
coefficients, in particular, u,,.(p) are identified on a kinetic basis.

In the present paper a much simpler explicitly solvable kinetic model is in-
vestigated and used to obtain explicit formulas for the coefficients of the
macroscopic equations. The paper is arranged in the following way: In sec-
tion 2 the kinetic model is presented, reduced to a cumulative description of
the highway. See [7] for a multilane approach. In section 3 the stationary
distributions of the kinetic model are explicitly given. Section 4 contains the
derivation of macroscopic models. In particular, the kinetic determination
of the coeflicients appearing in the Aw/Rascle model is presented. Finally,
in section 5 some numerical results are given and the different models are
compared numerically.

2 The Basic Kinetic Model

We present here a kinetic model describing highway traffic in a cumulative
way averaging over all lanes. The basic quantity in a kinetic approach is the
single car distribution f(z,v) describing the density of cars at x with velocity
v. Here and in the following we do not write explicitly the time dependence.
The total density p on the highway is defined by

o) = [ flav)av,

where w describes the maximal velocity. Let F'(z,v) denote the probability
distribution in v of cars at z, i.e. f(x,v) = p(z)F(z,v).

To state the kinetic equation we have to introduce several notations: We
introduce the following thresholds for braking (Hp) and acceleration (Hy):

Hx(U) = H0+UT)(, X:B,A

Tg < T4 are reaction times and Hy denotes the minimal distance between
the vehicles.

From a microscopic point of view drivers will brake, once the distance between
the driver and its leading car is becoming smaller than a threshold Hp and



will accelerate, once this distance is becoming larger than H 4. Otherwise the
cars will not change the velocities. Velocities are changed instantaneously
once acceleration or braking line are reached. The way how the velocities are
changed is important. Depending on the choice of the interaction rules the
homogeneous stationary kinetic equation can be treated analytically or not.
In this section we use interaction rules that lead to explicit formulas for the
stationary distributions. Compare [5] or [8] for other choices.

Finally, we introduce the correlation functions ¢g(p), ga(p) measuring the
probability of finding an interaction partner for braking or accelerating. Once
the braking line is reached there are two choices either braking or overtaking.
We define the probability for braking Pp = Pg(p). Moreover, the relaxation
frequency v = v(p) is introduced.

The kinetic equation for the distribution function is obtained from consid-
erations analogous to those in the kinetic theory of gases using a procedure
similar to the formal derivation of Boltzmanns equation, compare, for exam-
ple [8]. The kinetic model is given by the following evolution equation for
the distribution function f, compare [8]:

Of +vosf = C7(f) (3)
= Ppap(Gp — Lp)(f) +qa(GL — L)(f) + v(Gs — Ls)(f).

G}, Lj; denote the gain and loss terms due to braking and G, L} those due
to acceleration interactions. They are stated in the following:

Braking-Interaction.:

One obtains the gain term
i) = [ [ 1o = irlon(v,0,0,) (e, 0)F (x + Hu(0), . )dod,
>0

with

The loss term is

Lh(f) = [ lo= ol f (e, 0)Fla+ Hp(v),04)dos.

V4 <v



In other words, reaching the braking line the vehicle brakes, such that the
new velocity is equally distributed between the velocity of its leading vehicle
and its actual velocity.

Acceleration-Interaction:

The gain term is given by
iD= [ [ 0= 0loa(e,8,82) (0, 0)F (o + Ha(6), i) dodo,
<04

with

The loss term is

L5 = [ lo=o41f (o, 0) P + Ha(v), 0,)diy.

V4>V

Thus, again the new velocity is chosen from a range of velocities between the
actual velocity and the velocity of the leading vehicle.

Finally, a relaxation term is introduced, describing a random behaviour of
the drivers. It is given by

with
The loss term is

This approach resembles Enskog’s theory of a dense gas, see e.g., [3], rather
than a Boltzmann type treatment. The necessity to do such an Enskog type
approach is explained in detail in [6]. In particular, it is shown there that a
Boltzmann type treatment neglecting the dependence of F on z+Hx (v), X =
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A, B leads to completely wrong results even for simple inhomogeneous situ-
ations.

For very light traffic, i.e. p approximately 0 the probability of finding inter-
action partners for braking and accelerating is the same. For dense traffic
P = Pmaz the probability for finding a partner for braking is much larger than
finding a partner for acceleration. Thus, we have that (’f ranges from 1 to

00 as p tends from 0 to pye,- Thus % ranges from 0 to co. Using

Ppqp

Ppqp
P,
1+—L§AB qa + Ppgp

ranging from 0 to 1 and

v =(p) = = qa + Ppgp

and ¢ such that
ve=v

we rewrite the equation in the following way:

Of +vdef = CH(f) (4)
= v (K(GE = LEH) + (1= k)GE = LD)(f) +c(Gs — Ls)(f)) -

with k£ ranging from 0 to 1 as p tends from 0 to p,qs-

3 Stationary Distributions of the Kinetic Model

In this section we investigate the stationary homogeneous equations and de-
termine its unique solution. This can be done analytically in the present case
due to the form of the interaction rules. Usually, this is not the case, if other
interaction rules are used. For investigations considering different interaction
rules see for example [5].

We consider the spatially homogeneous interaction operator:
C(f) =7 (k(Gp = Lp)(f) + (1 = k)(Ga — La)(f) + c(Gs — Ls)(f)) . (5)

6



with f = pF. The gain and loss terms Gp, Lp, etc. are defined as G}, L},
etc. with x + Hx(v), X = A, B substituted by . We have, substituting the
explicit expression for ox, X = A, B:

La(f) = pF(v) f@F(ﬁ)d@—v/wF(ﬁ)d@}

where

Moreover,

The homogeneous stationary equation is

c(f)=0. (6)

To obtain a unique solution the density has to be fixed, i.e. we consider (6)

with w
/0 f(w)dv = p,
p fixed. The unique solution is denoted by f¢ = f¢(p) = pF*(p).

To simplify the following we introduce the distribution function F of the
probability density F', i.e.

Flv) = / F(5) do.

F is monotone increasing with



Therefore F is an invertible function F : [0, w] — [0, 1]. Denoting the inverse
function with v(p) and the derivation with respect to p with - we get

d

F(v(p) =p, d—pf(v(p)) = F(v(p))o(p) = 1. (7)

We rewrite the gain and loss terms using these expressions:

La(f) = | / vlg) dg — v(p) (1 )]

o(p)
Gs(f) = 5
_ P

Multiplying (6) with ©(p) and using the above representation of the gain and
loss terms we get

0 = p(1-n)itp)—kpo (o)~ | 0(0) da] 1) [ ol da- 1ot +£ 6000,

Derivation with respect to p and resorting leads to the ODE

3p+k—2

=0 —, v(0)=0, o(l)=w. 8
e O 1 )
Using
E—
h(p): 1y\g+r . 1 r
(@—=3)"(a+(p—73)?

with

c 1 2k —1

q= _+_7 r=
w 4q



the general solution of this ODE can be written as

with constants a and b. Note that as c is non-negative ¢ and r are well
defined. Now including the boundary conditions we get the final solution of

(8)

v) = R =h(oy o

In the end we get according to (7) a parameter representation of F' = F(v):

(v(p), F)) = (v(p)s —).

o(p)

We mention that £ and ¢ and thus ¢, 7 and therefore v(p) still depend on p
and write v(p,p), v(p,p). Assuming that k(p) is invertible we can also write
the above quantities dependent on k, i.e. ¢(k),v(k,p), 0(k,p).

Denoting the stationary distribution by f¢(p, v) we have obtained a param-
eter representation

(0(0s1), (0 0(0,2))) = (0(po1)s 50501 € [0, 1], plised.

Remark For other interaction rules there is usually no equivalent second
order ODE, which can be derived from the integral equation. In most cases
the integral equation can only be transformed to a third order ODE, which
is much more difficult to treat, see, e.g. [5]

4 Derivation of Macroscopic Models

In this section we concentrate on the derivation of macroscopic equations
for density and mean velocity. Other equations for higher moments may be
derived in a similar way. To derive the macroscopic equations we proceed as
follows:



4.1 Balance Equations

Multiplying the inhomogeneous kinetic equation (3) with ¢(v) = 1 and
#(v) = v and integrating it with respect to v one obtains the following set of
balance equations:

) /Ow $(v) fdv + B, /Ow (o) fdv = /Ow S(0)C* (f)(z, v, )dv.  (10)
With .
pz/o fdv
and w
pU :/0 vfdv

one obtains from (10) with ¢(v) = 1 the continuity equation
Op + 05 (pu) = 0.

To obtain the momentum equation the important point is to identify clearly
the flux and the source terms in the second equation with ¢(v) = v. In
particular, in addition to the usual kinetic flux, there is a second contribution
to the flux coming from the Enskog collision term due to the finite size of the
interaction thresholds. To obtain this flux we separate the Enskog interaction
term into a local interaction term and a deviation from the local term:

ct=C-(C-C),
where the local term C' is given by (5).

Rewriting (10) with ¢(v) = v and using the above decomposition of C* we
get

Oi(pu) + 0, (P + pu*) + E =S (11)
with the ’traffic pressure’
P = /Ow(v —u)?fdv,
the Enskog flux term

E= /Ow o[C(f) (@, 0, 8) — CFH(f)(x, v, 6)|dv, (12)
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and the source term
S = /w wC(f)(z, v, t)dv. (13)
0

An interesting feature of the above model is the fact that there is a relation
between S, P, p and u. This can be seen by the following considerations:

S = —%fyk/w/v(v—s)zf(v)F(s)dsdv

—i—%'y(l - k)o//(v — 8)2f(v)F(s) ds dv

v

As a simple computation shows this is equal to

w
——u

S = S(p,u, P) = 2((5 ~ KIP +epl’y — u). (14)

To obtain closed equations for p and u one has to specify the dependence of
P and E on p and w. In particular, the nonlocal properties of the collision
operator have to be analyzed carefully to approximate E in (12).

4.2 Closure Relations

There are a variety of possible closure relations, which could be borrowed
from gas dynamics. As usual, to find closure relations for the balance equa-
tions one has to use the stationary solution f¢(p,v) of the homogeneous
kinetic equation which has been determined explicitly in the last section.
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Knowing the stationary distribution the fundamental diagram, i.e. the equi-
librium mean velocity v, is given by
1

u%m:=;Awu#odeu (15)

In the following, we consider an approach to determine the coefficients of
the macroscopic equations developed in [8]. One uses a general ansatz for
the distribution function, an ’extended equilibrium function’ to approximate
the true distribution f instead of a simple approximation by the equilibrium
distribution f¢. Consider a function f¢ = f*(p,u) = f**(p, u,v) depending
on the macroscopic parameters p and u and not only on p. Special forms will
be considered later.

We require that f¢(p,u) fulfills two properties, namely, having density

p= [ £(p.u,v)av (16)
and mean value
ou = /Ufew(p,u,y)dy. (17)
Moreover, we require
F(p, uelp)) = F4(p)- (18)

Note that, in contrast, f¢(p) has a mean value pu®(p). Using this approach
one is able to include situations (p, ), where the distribution function can
not be properly approximated by the equilibrium distribution f¢(p) having
not even the correct mean value u. We introduce the function F** defined
by

fel’ — pFCJ}

in analogy to F'®. Equation (11) is now closed by the following procedure:
We approximate the traffic pressure P in (11) by

P = /Ow(v —u)? fdv ~ /Ow(v —u)2 f(p, u, v)dv = P*(p,u). (19)

The Enskog term E is approximated in the following way: We linearize
expression (12) for E in H and substitute the distributions f(p,u) for f.
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This yields a contribution from each of the terms appearing in the definition
of F/, which can be written as

E=FE,+FEp
with
Ey= vk(/ow o[Gy — G5)dv — /Ow o[Ly — LE]dv)
and F 4 analogously. The procedure is shown in detail for the term
/Ow o[Gy — GEldv.
The results for the other terms are stated without derivation. We have
[ vtestn) — i = [To [ [ o= oidoso.ne) x
[f(z,0)F(x,0v4) — f(x,0)F(x + Hp(0), 04 )]dodo dv.

Using
F(z+ Hp(v),04) ~ F(z,04) + Hp(v) 0, F (z,04)

we get for [;" v[Gp — G§|dv:
—/ v// o= i lop(v, b, 04) Hp(0)
0 V>U4
F(,0)0, F (z, 0 )dodd, do.

Introducing now f¢(p(x), u(x),v) for f(x,v) and F(p(x), u(x),v) for F(z,v)
yields the following approximation for [y’ v[Gg — GE]dv:

— [ [ e—iidonte 000 @) (20)
>0y
F(p, u, 0)[0,F*(p, u, 1) 0pp + O, F* (p, u, 04)0puldodi dv.

To simplify the presentation in the following we introduce the operator

[(f7g) = ]B(f7g) +[A(f>g)
with

Io(f9) = k[ [ lo—id]
HB(@)f(@)g(@+)[/0w vos(v, 8,0 )do — 8]do, dé
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and
Lifg) = v0=K [ [ 1ol
HA®)(8)9(5:)] [ v0a(v, 0,0, )dv = i]do..do.
This yields
E ~ b (p,u)0up + ¢ (p, u)0yu, (21)
where 0°®(p, u) is defined by
b = I(f6, ,F)
and ¢**(p, u) is defined by
¢ = _I(fe7,0,F°).

Finally, the source term S has to be approximated. Using f* to approximate
fin (14) we can write

S~ S () = (G~ K)P (o) + ol —

. ) @)

where P (p,u) is given in (19). We obtain macroscopic equations of the
form

Op+ 0s(pu) = 0
Oi(pu) + 0o (P (p,u) + pu®) + b (p, u)Dop + ¢ (p,w)Dpu = S**(p,u).

To obtain explicit macroscopic equations we have to fix the form of f**. This
will be considered in the next section.

4.3 An explicit closure

We choose the following ansatz for f¢* which fulfills conditions (16), (17) and
(18):

[ (p,u) = pF*(p®(u)), (23)
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where the ’equilibrium density’ p® = p®(u) associated to the mean velocity u
is determined in such a way that

ut(p*(u)) = u,

i.e., p(u) is the inverse function to u®(p). p° is well defined, if we assume that
u®(p) is strictly monotone decreasing in p. This is true for any reasonable
traffic flow model. For this definition of f(p,u) one obtains a positive
function for all values of v. Using this ansatz we will determine the coefficients
of the macroscopic equation explicitly. For the following we define

Vik.p) = [ o(k5)dp

with v(k, p) defined in (9). This integral can be computed exactly:
H(/{,p) — H(ka O) — ph(ka O)

Vkp) = w2 ) — (ks 0) 24
with
1\ i-r 1\ d4r
H(k,p) = @—@—§D @+@—§D
Computing u¢(p) we obtain
u%mzigwﬁ@mww:V@@»n. (25)

According to (14) we have for all f, [§” fdv = p:

St = (5~ K)PU) +en(s — u(f)).

2
Since S(f¢(p)) is equal to 0 for all p one has, choosing p = p¢ = p°(u):
S =1((5 — PO )+ (5 — (7)) =0,

where we have used



Since f¢(p¢(u)) = %E“)f‘””(p, u) we have

0= (5~ B) P () + enlCy — )
P = i) it (20

To compute S we use (22) and substitute P** found above. We obtain
w 3~ k(p)
S (p,u) = vp(= —u) | c(p) — ¢(u)2——= ] . 27

To determine the coefficients b¢* and ¢ we note that for F'** we obtain
F(p,u) = F*(u) = F*(p°(u)).

Thus, F° depends in this case only on u and not on p. In particular,
0,F°" =0 and b**(p,u) = 0.

To compute ¢ we use

Ou " (u) = 0, F*(p*(u)) = 0,1 (p"(u))Oup®(u) = 3pFe(pe(u))m.
This gives
L I(pF(E (), 9, ()
Hpu) = — d,ue(pe(u)) (28)
Alltogether we obtain the equations
Op+ 0y(pu) = 0 (29)

Oy (pu) + 0, (P (p,u) + pu®) + ¢ (p,u)0pu = S(p,u)
where the coefficients are given by (26), (27) and (28).

The above equations can be simplified using the following formal procedures
for the coefficients:
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We may approximate P°*(p, u) by

P (p,u) ~ P*(p) = P (p,u®(p)) = pc(p) (30)

S can also be simplified using P¢(p) instead of P**(p, u) in (22). This gives

S (p,u) ~ S°(p,u) = S(p,u, p°(p)) = vep(u’(p) — u). (31)

We approximate ¢**(p, u) substituting u®(p) instead of u, i.e.

¢ (p,u) ~ c“(p) = (p,u’(p)).
This yields

o) =~ ()
Since
0,u%(p) = OV (k, 1),k (p)
we obtain
) = g [ k) = otk ) el 2 dpp

b g T [t = ot )P eato) 28 dpa 3

The final equations are

Op+ 0y(pu) = 0 (34)
O(pu) + 0.(P%(p) + pu®) + c(p)0,u = S(p,u)

where the coefficients are computed explicitly above.
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4.4 Equilibrium closure

For completeness we discuss another choice for the distribution function
which has been used in [7]. As mentioned in the introduction, the closure
can be done using f¢(p) for f¢*(p, u) and F*(p) for F'**(u). We mention that,
in contrast to the above ways of proceeding, for this choice of f* condition
(17) is violated. Since in this case 0, F** = 0 we obtain the approximation

E ~ 5% (p, u)0up,
with 6% (p, u) = a®(p), where a®(p) is defined by
a*(p) = —1(*,0,F) = ¢“(p)pue(p). (35)

P is approximated by P¢(p). The resulting equations are the Payne/Whitham
type equations, see [7]:

dup+Dulpu) = 0 (36)
i(pu) + 0z (P*(p) + pu®) +a®(p)0ep = S°(p,u).

We note that ay, in the original Payne/Whitham equation (1) is identified
here with 0,P¢(p) + a®(p). To write the equations in conservative form we
simply use 0, A¢(p) with

A(p) = [ a“(p)dy (37)
instead of a®(p)0,p in (36).

As can be observed by the numerical approximations and has been investi-
gated by Aw and Rascle there are certain situations where the above equi-
librium closure is too simple and equations (34) have to be used. See the last
section for numerical examples.

5 Numerical Investigations

Rewriting the momentum equation in equations (34) one obtains

Oyt + udyu + 1&CPe(p) + 2 (v) deu = S%p,u) (38)
p p
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We define the function u,, as

Ugr — ua?"(p) = - /Op C(eff)ﬁg) dﬁ (39)

Equation (38) can then be written as
1
Oyu + u0yu + ;%Pe(p) — p0,(ugr(p))0pu = S(p,u). (40)

Thus, comparing these equations with the Aw/Rascle equation (2) we ob-
serve that we have obtained the same equations with an additional term
involving P¢. It will be observed numerically below that the influence of
this term is negligible compared to the term involving u,.. In particular, a
numerical comparison of the fluxes given by P¢ and those associated to the
term involving u,, is given. To compare the terms in a proper way, we write
as in [1] the equations in conservative form with the new variable y defined
by
Yy = pu+ pug(p).

This gives the following equations:

Opp + Oy(pu) = 0 (41)
Oy + 0:(P*(p) +uy) = S%p,u).

From this equation it can be observed that for a correct comparison of the
different fluxes one should compare P¢(p) and uy = pu(u + u,). Using
the equilibrium assumption u = u¢(p) we compare P¢(p), pu®(p)u(p) and
puc(p)tgr(p). This is done in the following and it will turn out that P¢(p) is
small compared to the other terms.

Remark: Equations (36) yields in many situations a satisfying description
of the physics as mentioned in the introduction. However, as noticed by
Daganzo [2] and Aw and Rascle [1], there are a variety of situations, in par-
ticular, nonequilibrium situations, where these equations lead to completely
wrong results. A thorough discussion of equations of the form (41) with
P¢ = 0 has been performed by Aw and Rascle [1]. In particular, they have
shown that the above mentioned inconsistencies of the Payne/Witham model
do not appear for such a model. As shown below the flux related to P¢ is
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small and we obtain equations of the same type as those found by Aw and
Rascle. Thus, these equations should also avoid the above mentioned incon-
sistencies. This is supported by the numerical solutions of the macroscopic
equations presented in the following.

We determine the macroscopic coefficients numerically using the explicit for-
mulas for the coefficients given in the last section. The Aw/Rascle type
and Payne/Witham type equations described above will be compared. Rie-
mann problems are used to focus on the differences between the models.
In particular, it is observed that the models (41) do not allow the physical
inconsistencies mentioned in the introduction. However, it should be noted
that for standard situations like the simulation of a backward traveling traffic
jam due to a lane drop as considered in [7] the simulation does not yield any
significant differences for the Payne/Whitham (36) or Aw/Rascle (41) type
models derived from the kinetic equation.

For the numerical simulations we choose w = 1 and Hy = 1. For the reaction
times the following values have been used: Tp = 5,74 = 10. ~(p) is chosen
equal to 1. u®(p) and ¢(k) are chosen according to measurements. Equation
(25) then yields p(k).

In the figures we plot the coefficients of the macroscopic equations. In Fig-
ure 1 u® is plotted. S'is plotted in Figure 2 for a fixed value of u using the two
possibilities (27) and (31). Moreover, u,, is plotted in Figure 3. P¢ is plotted
for comparison together with pu®(p)u¢(p) and puf(p)ue(p) in Figure 4. As
can be observed, P¢ is negligible compared to pu®(p)u®(p) and pu®(p)ua,(p).
Finally, A€ is plotted in Figure 5.

Moreover, numerical solutions of the macroscopic equations are computed.
Equations (41) with coefficient wu,.(p) are considered. Additionally, the ki-
netic derived Payne/Whitham-type equations (36) with anticipation coef-
ficient A¢(p) are considered. We discuss the solutions (p, pu) of Riemann
problems for the above equations without the relaxation term. Moreover, we
set P¢ = 0 concentrating on the influence of the anticipation. We refer to
[10] for the case of Payne/Whitham type fluid dynamic equations and to [1]
for the Aw/Rascle equations for the theoretical investigation of the Riemann
problems. We denote by (p_, p_u_) the state on the left of the discontinuity
and by (p, p+uy) the state on the right. We consider the following situation:
The discontinuity is located at the middle of the domain considered. The
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Figure 1: Kinetic fundamental diagram u®(p)
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S(p0.1)

Figure 2: Comparison of relaxation terms S with v = 0.1
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Figure 3: Aw-Rascle function ug,(p)
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Figure 4: pu®(p)u(p), pu‘(p)uar(p) and P¢(p)
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Figure 5: Enskog coefficient A¢(p)

initial values are p_ = 0.1,p_u_ = 0.01, u_ = 0.1 and py =1, pyus = 0.05,

The numerical values of pu for this situation at a fixed time are shown in
Figure 6.

We observe that the kinetic based Payne/Whitham-type equations yield neg-
ative velocities for the situation considered. In this case the Aw/Rascle-type
equations with coefficients derived as above yield reasonable results, espe-
cially no negative velocities, as was to be expected from the considerations
in [1].

Conclusions

e A kinetic model with an explicitly solvable stationary equation has
been considered. The stationary distributions are evaluated explicitly.

e Macroscopic traffic flow models has been derived from the kinetic equa-
tion with explicit expressions for the coefficients appearing in these
equations.

e These models avoid the inconsistencies, in particular the appearance of
negative velocities, observed for the original Payne/Whitham models.
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Figure 6: Flux pu at a fixed time for kinetic derived Payne/Whitham and
kinetic based Aw/Rascle equations for the above Riemann problem
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