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Abstrat

In the present paper a kineti model for vehiular traÆ is pre-

sented and investigated in detail. For this model the stationary dis-

tributions an be determined expliitly. A derivation of assoiated

marosopi traÆ ow equations from the kineti equation is given.

The oeÆients appearing in these equations are identi�ed from the

solutions of the underlying stationary kineti equation and are given

expliitly. Moreover, numerial experiments and omparisons between

di�erent marosopi models are presented.
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1 Introdution

Marosopi modeling of vehiular traÆ started with the work of Lighthill

and Whitham [15℄. They onsidered the ontinuity equation for the density

� losing the equation by an equilibrium assumption on the mean veloity u,

that means approximating u by the equilibrium value u

e

(�):

�

t

� + �

x

(�u

e

(�)) = 0:

u

e

(�) is the so alled fundamental diagram. An additional momentum equa-

tion for u has been introdued by Payne and Whitham in [13, 15℄ in analogy

to uid dynamis. They obtained the equation

�

t

� + �

x

(�u) = 0 (1)

�

t

u+ u�

x

u+

a

pw

(�)

�

�

x

� =

1

T

e

(�)

[u

e

(�)� u℄ ;

where a

pw

(�) is the so alled antiipation oeÆient and T

e

the relaxation

time. Often a simple ansatz is used for a

pw

and T

e

, for example, a

pw

(�) = 

2

0

,



0

a onstant, see [9℄. However, reently Daganzo [2℄ has pointed out some

severe drawbaks, like wrong way traÆ, of models suh as (1) in ertain

situations. These inonsistenies of the Payne/Whitham model are resolved

by the introdution of a new marosopi model by Aw and Rasle [1℄:

�

t

�+ �

x

(�u) = 0 (2)

�

t

u+ u�

x

u� ��

�

(u

ar

(�))�

x

u =

1

T

e

(�)

[u

e

(�)� u℄ :

Kineti equations for vehiular traÆ an be found, for example, in [14, 12,

11, 6℄. Proedures to derive marosopi traÆ equations from underlying

kineti models have been performed in di�erent ways by several authors,

see, for example, [4℄ and [6℄. We note that the above mentioned inonsis-

tenies do not appear, for example, for the kineti equations presented in

[6, 7℄. Thus, one should be able to derive onsistent marosopi equations

like equation (2) from these kineti equations desribing all situations or-

retly. A general framework for the derivation of marosopi traÆ ow

equations inluding equations of the form (2) has been presented in [8℄. The

proedure is developed in analogy to the transition from the kineti theory
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of gases to ontinuum gas dynamis. In this way marosopi equations have

been obtained based on the solution of an underlying kineti equation. The

oeÆients, in partiular, u

ar

(�) are identi�ed on a kineti basis.

In the present paper a muh simpler expliitly solvable kineti model is in-

vestigated and used to obtain expliit formulas for the oeÆients of the

marosopi equations. The paper is arranged in the following way: In se-

tion 2 the kineti model is presented, redued to a umulative desription of

the highway. See [7℄ for a multilane approah. In setion 3 the stationary

distributions of the kineti model are expliitly given. Setion 4 ontains the

derivation of marosopi models. In partiular, the kineti determination

of the oeÆients appearing in the Aw/Rasle model is presented. Finally,

in setion 5 some numerial results are given and the di�erent models are

ompared numerially.

2 The Basi Kineti Model

We present here a kineti model desribing highway traÆ in a umulative

way averaging over all lanes. The basi quantity in a kineti approah is the

single ar distribution f(x; v) desribing the density of ars at x with veloity

v. Here and in the following we do not write expliitly the time dependene.

The total density � on the highway is de�ned by

�(x) =

Z

w

0

f(x; v)dv;

where w desribes the maximal veloity. Let F (x; v) denote the probability

distribution in v of ars at x, i.e. f(x; v) = �(x)F (x; v).

To state the kineti equation we have to introdue several notations: We

introdue the following thresholds for braking (H

B

) and aeleration (H

A

):

H

X

(v) = H

0

+ vT

X

; X = B;A:

T

B

< T

A

are reation times and H

0

denotes the minimal distane between

the vehiles.

From a mirosopi point of view drivers will brake, one the distane between

the driver and its leading ar is beoming smaller than a threshold H

B

and
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will aelerate, one this distane is beoming larger than H

A

. Otherwise the

ars will not hange the veloities. Veloities are hanged instantaneously

one aeleration or braking line are reahed. The way how the veloities are

hanged is important. Depending on the hoie of the interation rules the

homogeneous stationary kineti equation an be treated analytially or not.

In this setion we use interation rules that lead to expliit formulas for the

stationary distributions. Compare [5℄ or [8℄ for other hoies.

Finally, we introdue the orrelation funtions q

B

(�); q

A

(�) measuring the

probability of �nding an interation partner for braking or aelerating. One

the braking line is reahed there are two hoies either braking or overtaking.

We de�ne the probability for braking P

B

= P

B

(�). Moreover, the relaxation

frequeny � = �(�) is introdued.

The kineti equation for the distribution funtion is obtained from onsid-

erations analogous to those in the kineti theory of gases using a proedure

similar to the formal derivation of Boltzmanns equation, ompare, for exam-

ple [8℄. The kineti model is given by the following evolution equation for

the distribution funtion f , ompare [8℄:

�

t

f + v�

x

f = C

+

(f) (3)

= P

B

q

B

(G

+

B

� L

+

B

)(f) + q

A

(G

+

A

� L

+

A

)(f) + �(G

S

� L

S

)(f):

G

+

B

; L

+

B

denote the gain and loss terms due to braking and G

+

A

; L

+

A

those due

to aeleration interations. They are stated in the following:

Braking-Interation:

One obtains the gain term

G

+

B

(f) =

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)f(x; v̂)F (x+H

B

(v̂); v̂

+

)dv̂dv̂

+

with

�

B

(v; v̂; v̂

+

) =

1

v̂ � v̂

+

�

[v̂

+

;v̂℄

(v):

The loss term is

L

+

B

(f) =

Z

v̂

+

<v

jv � v̂

+

jf(x; v)F (x+H

B

(v); v̂

+

)dv̂

+

:
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In other words, reahing the braking line the vehile brakes, suh that the

new veloity is equally distributed between the veloity of its leading vehile

and its atual veloity.

Aeleration-Interation:

The gain term is given by

G

+

A

(f) =

Z Z

v̂<v̂

+

jv̂ � v̂

+

j�

A

(v; v̂; v̂

+

)f(x; v̂)F (x+H

A

(v̂); v̂

+

)dv̂dv̂

+

with

�

A

(v; v̂; v̂

+

) =

1

v̂

+

� v̂

�

[v̂;v̂

+

℄

(v):

The loss term is

L

+

A

(f) =

Z

v̂

+

>v

jv � v̂

+

jf(x; v)F (x+H

A

(v); v̂

+

)dv̂

+

:

Thus, again the new veloity is hosen from a range of veloities between the

atual veloity and the veloity of the leading vehile.

Finally, a relaxation term is introdued, desribing a random behaviour of

the drivers. It is given by

G

S

(f) =

Z

w

0

�

S

(v; v̂)f(x; v̂)dv̂

with

�

S

(v; v̂) =

1

w

:

The loss term is

L

S

(f) = f(v):

This approah resembles Enskog's theory of a dense gas, see e.g., [3℄, rather

than a Boltzmann type treatment. The neessity to do suh an Enskog type

approah is explained in detail in [6℄. In partiular, it is shown there that a

Boltzmann type treatment negleting the dependene of F on x+H

X

(v); X =
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A;B leads to ompletely wrong results even for simple inhomogeneous situ-

ations.

For very light traÆ, i.e. � approximately 0 the probability of �nding inter-

ation partners for braking and aelerating is the same. For dense traÆ

� = �

max

the probability for �nding a partner for braking is muh larger than

�nding a partner for aeleration. Thus, we have that

q

B

q

A

ranges from 1 to

1 as � tends from 0 to �

max

. Thus

P

B

q

B

q

A

ranges from 0 to 1. Using

k = k(�) =

P

B

q

B

q

A

1 +

P

B

q

B

q

A

=

P

B

q

B

q

A

+ P

B

q

B

ranging from 0 to 1 and

 = (�) =

q

A

1� k

= q

A

+ P

B

q

B

and  suh that

 = �

we rewrite the equation in the following way:

�

t

f + v�

x

f = C

+

(f) (4)

= 

�

k(G

+

B

� L

+

B

)(f) + (1� k)(G

+

A

� L

+

A

)(f) + (G

S

� L

S

)(f)

�

:

with k ranging from 0 to 1 as � tends from 0 to �

max

.

3 Stationary Distributions of the Kineti Model

In this setion we investigate the stationary homogeneous equations and de-

termine its unique solution. This an be done analytially in the present ase

due to the form of the interation rules. Usually, this is not the ase, if other

interation rules are used. For investigations onsidering di�erent interation

rules see for example [5℄.

We onsider the spatially homogeneous interation operator:

C(f) =  (k(G

B

� L

B

)(f) + (1� k)(G

A

� L

A

)(f) + (G

S

� L

S

)(f)) : (5)
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with f = �F . The gain and loss terms G

B

; L

B

, et. are de�ned as G

+

B

; L

+

B

,

et. with x +H

X

(v); X = A;B substituted by x. We have, substituting the

expliit expression for �

X

; X = A;B:

G

B

(f) = G

A

(f) = �

v

Z

0

F (v̂) dv̂

w

Z

v

F (v̂) dv̂

L

B

(f) = �F (v)

�

v

v

Z

0

F (v̂) dv̂ �

v

Z

0

v̂F (v̂) dv̂

�

L

A

(f) = �F (v)

�

w

Z

v

v̂F (v̂) dv̂ � v

w

Z

v

F (v̂) dv̂

�

= L

B

(f)� (v � u)f

where

u =

w

Z

0

vF (v) dv:

Moreover,

G

S

(f) =

�

w

and L

S

(f) = f:

The homogeneous stationary equation is

C(f) = 0: (6)

To obtain a unique solution the density has to be �xed, i.e. we onsider (6)

with

Z

w

0

f(v)dv = �;

� �xed. The unique solution is denoted by f

e

= f

e

(�) = �F

e

(�).

To simplify the following we introdue the distribution funtion F of the

probability density F , i.e.

F(v) =

v

Z

0

F (v̂) dv̂:

F is monotone inreasing with

F(0) = 0 ; F(w) = 1:
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Therefore F is an invertible funtion F : [0; w℄! [0; 1℄. Denoting the inverse

funtion with v(p) and the derivation with respet to p with � we get

F(v(p)) = p ;

d

dp

F(v(p)) = F (v(p)) _v(p) = 1: (7)

We rewrite the gain and loss terms using these expressions:

G

B

(f) = G

A

(f) = �p(1� p)

L

B

(f) =

�

_v(p)

�

pv(p)�

p

Z

0

v(q) dq

�

L

A

(f) =

�

_v(p)

�

1

Z

p

v(q) dq � v(p)(1� p)

�

G

S

(f) =

�

w

L

S

(f) =

�

_v(p)

:

Multiplying (6) with _v(p) and using the above representation of the gain and

loss terms we get

0 = p(1�p) _v(p)�k

�

pv(p)�

p

Z

0

v(q) dq

�

�(1�k)

�

1

Z

p

v(q) dq�(1�p)v(p)

�

+



w

( _v(p)�w):

Derivation with respet to p and resorting leads to the ODE

::

v

= _v

3p+ k � 2

p(1� p) +



w

; v(0) = 0 ; v(1) = w: (8)

Using

h(p) =

k � p

(q � (p�

1

2

))

1

2

+r

(q + (p�

1

2

))

1

2

�r

with

q =

s



w

+

1

4

; r =

2k � 1

4q
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the general solution of this ODE an be written as

v(p) = ah(p) + b

with onstants a and b. Note that as  is non-negative q and r are well

de�ned. Now inluding the boundary onditions we get the �nal solution of

(8)

v(p) = w

h(p)� h(0)

h(1)� h(0)

: (9)

In the end we get aording to (7) a parameter representation of F = F (v):

�

v(p); F (v(p))

�

=

�

v(p);

1

_v(p)

�

:

We mention that k and  and thus q, r and therefore v(p) still depend on �

and write v(�; p); _v(�; p). Assuming that k(�) is invertible we an also write

the above quantities dependent on k, i.e. (k); v(k; p); _v(k; p).

Denoting the stationary distribution by f

e

(�; v) we have obtained a param-

eter representation

(v(�; p); f

e

(�; v(�; p))) = (v(�; p);

�

_v(�; p)

); p 2 [0; 1℄; � �xed:

Remark For other interation rules there is usually no equivalent seond

order ODE, whih an be derived from the integral equation. In most ases

the integral equation an only be transformed to a third order ODE, whih

is muh more diÆult to treat, see, e.g. [5℄

4 Derivation of Marosopi Models

In this setion we onentrate on the derivation of marosopi equations

for density and mean veloity. Other equations for higher moments may be

derived in a similar way. To derive the marosopi equations we proeed as

follows:
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4.1 Balane Equations

Multiplying the inhomogeneous kineti equation (3) with �(v) = 1 and

�(v) = v and integrating it with respet to v one obtains the following set of

balane equations:

�

t

Z

w

0

�(v)fdv + �

x

Z

w

0

v�(v)fdv =

Z

w

0

�(v)C

+

(f)(x; v; t)dv: (10)

With

� =

Z

w

0

fdv

and

�u =

Z

w

0

vfdv

one obtains from (10) with �(v) = 1 the ontinuity equation

�

t

�+ �

x

(�u) = 0:

To obtain the momentum equation the important point is to identify learly

the ux and the soure terms in the seond equation with �(v) = v. In

partiular, in addition to the usual kineti ux, there is a seond ontribution

to the ux oming from the Enskog ollision term due to the �nite size of the

interation thresholds. To obtain this ux we separate the Enskog interation

term into a loal interation term and a deviation from the loal term:

C

+

= C � (C � C

+

);

where the loal term C is given by (5).

Rewriting (10) with �(v) = v and using the above deomposition of C

+

we

get

�

t

(�u) + �

x

(P + �u

2

) + E = S (11)

with the 'traÆ pressure'

P =

Z

w

0

(v � u)

2

fdv;

the Enskog ux term

E =

Z

w

0

v[C(f)(x; v; t)� C

+

(f)(x; v; t)℄dv; (12)
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and the soure term

S =

Z

w

0

vC(f)(x; v; t)dv: (13)

An interesting feature of the above model is the fat that there is a relation

between S; P; � and u. This an be seen by the following onsiderations:

S = �

1

2

k

w

Z

0

v

Z

0

(v � s)

2

f(v)F (s) ds dv

+

1

2

(1� k)

w

Z

0

w

Z

v

(v � s)

2

f(v)F (s) ds dv

+

w

Z

0

v

�

�

w

� f(v)

�

dv:

We ombine the �rst and the seond term leading to

S =

�

1

2

� k

�

�

w

Z

0

v

Z

0

(v � s)

2

F (v)F (s) ds dv

+�

�

w

2

� u

�

:

As a simple omputation shows this is equal to

S = S(�; u; P ) = ((

1

2

� k)P + �(

w

2

� u)): (14)

To obtain losed equations for � and u one has to speify the dependene of

P and E on � and u. In partiular, the nonloal properties of the ollision

operator have to be analyzed arefully to approximate E in (12).

4.2 Closure Relations

There are a variety of possible losure relations, whih ould be borrowed

from gas dynamis. As usual, to �nd losure relations for the balane equa-

tions one has to use the stationary solution f

e

(�; v) of the homogeneous

kineti equation whih has been determined expliitly in the last setion.
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Knowing the stationary distribution the fundamental diagram, i.e. the equi-

librium mean veloity u

e

, is given by

u

e

(�) =

1

�

Z

w

0

vf

e

(�; v)dv: (15)

In the following, we onsider an approah to determine the oeÆients of

the marosopi equations developed in [8℄. One uses a general ansatz for

the distribution funtion, an 'extended equilibrium funtion' to approximate

the true distribution f instead of a simple approximation by the equilibrium

distribution f

e

. Consider a funtion f

ex

= f

ex

(�; u) = f

ex

(�; u; v) depending

on the marosopi parameters � and u and not only on �. Speial forms will

be onsidered later.

We require that f

ex

(�; u) ful�lls two properties, namely, having density

� =

Z

f

ex

(�; u; v)dv (16)

and mean value

�u =

Z

vf

ex

(�; u; v)dv: (17)

Moreover, we require

f

ex

(�; u

e

(�)) = f

e

(�): (18)

Note that, in ontrast, f

e

(�) has a mean value �u

e

(�). Using this approah

one is able to inlude situations (�; u), where the distribution funtion an

not be properly approximated by the equilibrium distribution f

e

(�) having

not even the orret mean value u. We introdue the funtion F

ex

de�ned

by

f

ex

= �F

ex

in analogy to F

e

. Equation (11) is now losed by the following proedure:

We approximate the traÆ pressure P in (11) by

P =

Z

w

0

(v � u)

2

fdv �

Z

w

0

(v � u)

2

f

ex

(�; u; v)dv = P

ex

(�; u): (19)

The Enskog term E is approximated in the following way: We linearize

expression (12) for E in H and substitute the distributions f

ex

(�; u) for f .
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This yields a ontribution from eah of the terms appearing in the de�nition

of E, whih an be written as

E = E

A

+ E

B

with

E

B

= k(

Z

w

0

v[G

B

�G

+

B

℄dv �

Z

w

0

v[L

B

� L

+

B

℄dv)

and E

A

analogously. The proedure is shown in detail for the term

Z

w

0

v[G

B

�G

+

B

℄dv:

The results for the other terms are stated without derivation. We have

Z

w

0

v[G

B

(f)�G

+

B

(f)℄dv =

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)�

[f(x; v̂)F (x; v̂

+

)� f(x; v̂)F (x+H

B

(v̂); v̂

+

)℄dv̂dv̂

+

dv:

Using

F (x+H

B

(v); v̂

+

) � F (x; v̂

+

) +H

B

(v)�

x

F (x; v̂

+

)

we get for

R

w

0

v[G

B

�G

+

B

℄dv:

�

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)H

B

(v̂)

f(x; v̂)�

x

F (x; v̂

+

)dv̂dv̂

+

dv:

Introduing now f

ex

(�(x); u(x); v) for f(x; v) and F

ex

(�(x); u(x); v) for F (x; v)

yields the following approximation for

R

w

0

v[G

B

�G

+

B

℄dv:

�

Z

w

0

v

Z Z

v̂>v̂

+

jv̂ � v̂

+

j�

B

(v; v̂; v̂

+

)H

B

(v̂) (20)

f

ex

(�; u; v̂)[�

�

F

ex

(�; u; v̂

+

)�

x

�+ �

u

F

ex

(�; u; v̂

+

)�

x

u℄dv̂dv̂

+

dv:

To simplify the presentation in the following we introdue the operator

I(f; g) = I

B

(f; g) + I

A

(f; g)

with

I

B

(f; g) = k

Z Z

v̂>v̂

+

jv̂ � v̂

+

j

H

B

(v̂)f(v̂)g(v̂

+

)[

Z

w

0

v�

B

(v; v̂; v̂

+

)dv � v̂℄dv̂

+

dv̂
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and

I

A

(f; g) = (1� k)

Z Z

v̂<v̂

+

jv̂ � v̂

+

j

H

A

(v̂)f(v̂)g(v̂

+

)[

Z

w

0

v�

A

(v; v̂; v̂

+

)dv � v̂℄dv̂

+

dv̂:

This yields

E � b

ex

(�; u)�

x

� + 

ex

(�; u)�

x

u; (21)

where b

ex

(�; u) is de�ned by

b

ex

= �I(f

ex

; �

�

F

ex

)

and 

ex

(�; u) is de�ned by



ex

= �I(f

ex

; �

u

F

ex

):

Finally, the soure term S has to be approximated. Using f

ex

to approximate

f in (14) we an write

S � S

ex

(�; u) = ((

1

2

� k)P

ex

(�; u) + �(

w

2

� u)) (22)

where P

ex

(�; u) is given in (19). We obtain marosopi equations of the

form

�

t

�+ �

x

(�u) = 0

�

t

(�u) + �

x

(P

ex

(�; u) + �u

2

) + b

ex

(�; u)�

x

� + 

ex

(�; u)�

x

u = S

ex

(�; u):

To obtain expliit marosopi equations we have to �x the form of f

ex

. This

will be onsidered in the next setion.

4.3 An expliit losure

We hoose the following ansatz for f

ex

whih ful�lls onditions (16), (17) and

(18):

f

ex

(�; u) = �F

e

(�

e

(u)); (23)
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where the 'equilibrium density' �

e

= �

e

(u) assoiated to the mean veloity u

is determined in suh a way that

u

e

(�

e

(u)) = u;

i.e., �

e

(u) is the inverse funtion to u

e

(�). �

e

is well de�ned, if we assume that

u

e

(�) is stritly monotone dereasing in �. This is true for any reasonable

traÆ ow model. For this de�nition of f

ex

(�; u) one obtains a positive

funtion for all values of v. Using this ansatz we will determine the oeÆients

of the marosopi equation expliitly. For the following we de�ne

V (k; p) =

p

Z

0

v(k; ~p) d~p

with v(k; p) de�ned in (9). This integral an be omputed exatly:

V (k; p) = w

H(k; p)�H(k; 0)� p h(k; 0)

h(k; 1)� h(k; 0)

(24)

with

H(k; p) =

�

q � (p�

1

2

)

�

1

2

�r

�

q + (p�

1

2

)

�

1

2

+r

:

Computing u

e

(�) we obtain

u

e

(�) =

1

�

w

Z

0

vf

e

(�; v) dv = V (k(�); 1): (25)

Aording to (14) we have for all f;

R

w

0

fdv = �:

S(f) = 

��

1

2

� k

�

P (f) + �

�

w

2

� u(f)

��

:

Sine S(f

e

(~�)) is equal to 0 for all ~� one has, hoosing ~� = �

e

= �

e

(u):

S(f

e

(�

e

)) = 

��

1

2

�

~

k

�

P (f

e

(�

e

)) + ~�

e

�

w

2

� u(f

e

(�

e

))

��

= 0;

where we have used

~ = ~(u) = (�

e

(u))

~

k =

~

k(u) = k(�

e

(u)):
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Sine f

e

(�

e

(u)) =

�

e

(u)

�

f

ex

(�; u) we have

0 =

�

1

2

�

~

k)

�

P

ex

(�; u) + ~�(

w

2

� u)

or

P

ex

(�; u) = �~(u)

w

2

� u

~

k(u)�

1

2

: (26)

To ompute S

ex

we use (22) and substitute P

ex

found above. We obtain

S

ex

(�; u) = �(

w

2

� u)

0

�

(�)� ~(u)

1

2

� k(�)

1

2

�

~

k(u)

1

A

: (27)

To determine the oeÆients b

ex

and 

ex

we note that for F

ex

we obtain

F

ex

(�; u) = F

ex

(u) = F

e

(�

e

(u)):

Thus, F

ex

depends in this ase only on u and not on �. In partiular,

�

�

F

ex

= 0 and b

ex

(�; u) = 0.

To ompute 

ex

we use

�

u

F

ex

(u) = �

u

F

e

(�

e

(u)) = �

�

F

e

(�

e

(u))�

u

�

e

(u) = �

�

F

e

(�

e

(u))

1

�

�

u

e

(�

e

(u))

:

This gives



ex

(�; u) = �

I

�

�F

e

(�

e

(u)); �

�

F

e

(�

e

(u))

�

�

�

u

e

(�

e

(u))

: (28)

Alltogether we obtain the equations

�

t

�+ �

x

(�u) = 0 (29)

�

t

(�u) + �

x

(P

ex

(�; u) + �u

2

) + 

ex

(�; u)�

x

u = S

ex

(�; u)

where the oeÆients are given by (26), (27) and (28).

The above equations an be simpli�ed using the following formal proedures

for the oeÆients:
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We may approximate P

ex

(�; u) by

P

ex

(�; u) � P

e

(�) = P

ex

(�; u

e

(�)) = �(�)

w

2

� u

e

(�)

k(�)�

1

2

: (30)

S

ex

an also be simpli�ed using P

e

(�) instead of P

ex

(�; u) in (22). This gives

S

ex

(�; u) � S

e

(�; u) = S(�; u; p

e

(�)) = �(u

e

(�)� u): (31)

We approximate 

ex

(�; u) substituting u

e

(�) instead of u, i.e.



ex

(�; u) � 

e

(�) = 

ex

(�; u

e

(�)):

This yields



e

(�) = �

I(f

e

; �

�

F

e

)

�

�

u

e

(�)

: (32)

Sine

�

�

u

e

(�) = �

k

V (k; 1)�

�

k(�);

we obtain



e

(�) = �

�k

2�

k

V (k; 1)

Z

1

0

p

Z

0

(v(k; p)� v(k; ~p))

2

H

B

(v(p))

�

k

_v(k; ~p)

_v(k; ~p)

d~p dp

+

�(1� k)

2�

k

V (k; 1)

1

Z

0

1

Z

p

(v(k; p)� v(k; ~p))

2

H

A

(v(p))

�

k

_v(k; ~p)

_v(k; ~p)

d~p dp: (33)

The �nal equations are

�

t

�+ �

x

(�u) = 0 (34)

�

t

(�u) + �

x

(P

e

(�) + �u

2

) + 

e

(�)�

x

u = S

e

(�; u)

where the oeÆients are omputed expliitly above.
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4.4 Equilibrium losure

For ompleteness we disuss another hoie for the distribution funtion

whih has been used in [7℄. As mentioned in the introdution, the losure

an be done using f

e

(�) for f

ex

(�; u) and F

e

(�) for F

ex

(u). We mention that,

in ontrast to the above ways of proeeding, for this hoie of f

ex

ondition

(17) is violated. Sine in this ase �

u

F

ex

= 0 we obtain the approximation

E � b

ex

(�; u)�

x

�;

with b

ex

(�; u) = a

e

(�), where a

e

(�) is de�ned by

a

e

(�) = �I(f

e

; �

�

F

e

) = 

e

(�)�

�

u

e

(�): (35)

P is approximated by P

e

(�). The resulting equations are the Payne/Whitham

type equations, see [7℄:

�

t

� + �

x

(�u) = 0 (36)

�

t

(�u) + �

x

(P

e

(�) + �u

2

) + a

e

(�)�

x

� = S

e

(�; u):

We note that a

pw

in the original Payne/Whitham equation (1) is identi�ed

here with �

�

P

e

(�) + a

e

(�). To write the equations in onservative form we

simply use �

x

A

e

(�) with

A

e

(�) =

Z

�

0

a

e

(~�)d~� (37)

instead of a

e

(�)�

x

� in (36).

As an be observed by the numerial approximations and has been investi-

gated by Aw and Rasle there are ertain situations where the above equi-

librium losure is too simple and equations (34) have to be used. See the last

setion for numerial examples.

5 Numerial Investigations

Rewriting the momentum equation in equations (34) one obtains

�

t

u+ u�

x

u+

1

�

�

x

P

e

(�) +



e

(�)

�

�

x

u = S

e

(�; u) (38)
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We de�ne the funtion u

ar

as

u

ar

= u

ar

(�) = �

Z

�

0



e

(~�)

(~�)

2

d~�: (39)

Equation (38) an then be written as

�

t

u+ u�

x

u+

1

�

�

x

P

e

(�)� ��

�

(u

ar

(�))�

x

u = S

e

(�; u): (40)

Thus, omparing these equations with the Aw/Rasle equation (2) we ob-

serve that we have obtained the same equations with an additional term

involving P

e

. It will be observed numerially below that the inuene of

this term is negligible ompared to the term involving u

ar

. In partiular, a

numerial omparison of the uxes given by P

e

and those assoiated to the

term involving u

ar

is given. To ompare the terms in a proper way, we write

as in [1℄ the equations in onservative form with the new variable y de�ned

by

y = �u+ �u

ar

(�):

This gives the following equations:

�

t

�+ �

x

(�u) = 0 (41)

�

t

y + �

x

(P

e

(�) + uy) = S

e

(�; u):

From this equation it an be observed that for a orret omparison of the

di�erent uxes one should ompare P

e

(�) and uy = �u(u + u

ar

). Using

the equilibrium assumption u = u

e

(�) we ompare P

e

(�), �u

e

(�)u

e

(�) and

�u

e

(�)u

ar

(�). This is done in the following and it will turn out that P

e

(�) is

small ompared to the other terms.

Remark: Equations (36) yields in many situations a satisfying desription

of the physis as mentioned in the introdution. However, as notied by

Daganzo [2℄ and Aw and Rasle [1℄, there are a variety of situations, in par-

tiular, nonequilibrium situations, where these equations lead to ompletely

wrong results. A thorough disussion of equations of the form (41) with

P

e

= 0 has been performed by Aw and Rasle [1℄. In partiular, they have

shown that the above mentioned inonsistenies of the Payne/Witham model

do not appear for suh a model. As shown below the ux related to P

e

is
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small and we obtain equations of the same type as those found by Aw and

Rasle. Thus, these equations should also avoid the above mentioned inon-

sistenies. This is supported by the numerial solutions of the marosopi

equations presented in the following.

We determine the marosopi oeÆients numerially using the expliit for-

mulas for the oeÆients given in the last setion. The Aw/Rasle type

and Payne/Witham type equations desribed above will be ompared. Rie-

mann problems are used to fous on the di�erenes between the models.

In partiular, it is observed that the models (41) do not allow the physial

inonsistenies mentioned in the introdution. However, it should be noted

that for standard situations like the simulation of a bakward traveling traÆ

jam due to a lane drop as onsidered in [7℄ the simulation does not yield any

signi�ant di�erenes for the Payne/Whitham (36) or Aw/Rasle (41) type

models derived from the kineti equation.

For the numerial simulations we hoose w = 1 and H

0

= 1. For the reation

times the following values have been used: T

B

= 5; T

A

= 10. (�) is hosen

equal to 1. u

e

(�) and (k) are hosen aording to measurements. Equation

(25) then yields �(k).

In the �gures we plot the oeÆients of the marosopi equations. In Fig-

ure 1 u

e

is plotted. S is plotted in Figure 2 for a �xed value of u using the two

possibilities (27) and (31). Moreover, u

ar

is plotted in Figure 3. P

e

is plotted

for omparison together with �u

e

(�)u

e

(�) and �u

e

(�)u

ar

(�) in Figure 4. As

an be observed, P

e

is negligible ompared to �u

e

(�)u

e

(�) and �u

e

(�)u

ar

(�).

Finally, A

e

is plotted in Figure 5.

Moreover, numerial solutions of the marosopi equations are omputed.

Equations (41) with oeÆient u

ar

(�) are onsidered. Additionally, the ki-

neti derived Payne/Whitham-type equations (36) with antiipation oef-

�ient A

e

(�) are onsidered. We disuss the solutions (�; �u) of Riemann

problems for the above equations without the relaxation term. Moreover, we

set P

e

= 0 onentrating on the inuene of the antiipation. We refer to

[10℄ for the ase of Payne/Whitham type uid dynami equations and to [1℄

for the Aw/Rasle equations for the theoretial investigation of the Riemann

problems. We denote by (�

�

; �

�

u

�

) the state on the left of the disontinuity

and by (�

+

; �

+

u

+

) the state on the right. We onsider the following situation:

The disontinuity is loated at the middle of the domain onsidered. The
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initial values are �

�

= 0:1; �

�

u

�

= 0:01, u

�

= 0:1 and �

+

= 1; �

+

u

+

= 0:05,

u

+

= 0:05.

The numerial values of �u for this situation at a �xed time are shown in

Figure 6.

We observe that the kineti based Payne/Whitham-type equations yield neg-

ative veloities for the situation onsidered. In this ase the Aw/Rasle-type

equations with oeÆients derived as above yield reasonable results, espe-

ially no negative veloities, as was to be expeted from the onsiderations

in [1℄.

Conlusions

� A kineti model with an expliitly solvable stationary equation has

been onsidered. The stationary distributions are evaluated expliitly.

� Marosopi traÆ ow models has been derived from the kineti equa-

tion with expliit expressions for the oeÆients appearing in these

equations.

� These models avoid the inonsistenies, in partiular the appearane of

negative veloities, observed for the original Payne/Whitham models.
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kineti based Aw/Rasle equations for the above Riemann problem
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