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Abstract

An asymptotic preserving numerical scheme (with respect to diffusion
scalings) for a linear transport equation is investigated. The scheme
is adopted from a class of schemes developped in [6, 8]. Stability is
proven uniformly in the mean free path under a CFL type condition
turning into a parabolic CFL condition in the diffusion limit.

1 Introduction

Transport equations and kinetic equations are used for a variety of applica-
tions, for example, to simulate radiative heat transfer processes or rarefied
gas flows. Near to the continuum regimes the equations are approximated by
macroscopic equations like diffusion equations or fluid dynamic equations. In
recent years asymptotic preserving schemes for kinetic equations and trans-
port equations have gained considerable attention in the literature. These
schemes are used to treat singularly perturbed transport equations in situ-
ations with small mean free paths, i.e. in the above mentioned macroscopic
limits. Schemes for in-stationary transport equations in the diffusion limit
can be found, for example, in [7], [6],[8], [13], see also the references therein.
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Schemes for different other transport equations with diffusive macroscopic
limits have been developped in [5], [4], [1], [10], [9], [12], [11].

Concerning the numerical analysis of these schemes proofs of uniform con-
sistency with respect to small mean free path e can be found in [6], [1], [8].
Furthermore, using homogenization theory for transport equations, a proof
of uniform convergence (as ¢ — 0) for equations discretized spatially and in
velocity is given in [3, 2].

In the present paper a numerical scheme for transport equations as developed
in [6, 8] is considered. Numerical investigations of this scheme and proofs of
uniform consistency can be found in [6, 8]. The aim of the paper is to prove
a uniform stability result for the method. The linear transport equation is
introduced together with a time and space discretization. Linear stability is
proven uniformly in € using a careful direct analysis of the iterative scheme.
The problem is tackled by a von Neumann analysis of the discrete system.
This gives explicit and accurate estimates.

Under a e-dependent CFL type restriction the iterations are proven to be
uniformly bounded. As € tends to 0 the CFL type condition turns into a
parabolic CFL condition as expected for the discretization of the limiting
diffusion equation. For large mean free path, the CFL condition is the one
adapted to the transport equation.

The paper is organized as follows. In Section 2 equations and schemes are
introduced. Section 3 contains some definitions and the statement of the
main result. In section 4 several preliminary results are established and,
finally, section 5 contains the proof of the main result.

2 Equations and Numerical Scheme

Our model problem is the one dimensional linear transport equation with
isotropic scattering,

1 /!
EQatF+€Ua$F:§/ Fdv—-F (1)
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with density F' = F(z,v,t), z € R, v € [-1,1] and t € [0, 00).
We pass to the even-odd parity formulation by introducing for v > 0 the
even and odd functions

F(0) = 5(F () + F(~0))
o(0) = 5 (F(v) — F(~v),



l.e.

Fv) = f(v)+egv),v>0
Fw) = f(-v)—eg(—v),v <0,

such that (1) becomes for v > 0,

1
af+00g = UN-1. 1= gan 2)
00+ 0.0 = —g0 3

Remark 1. Concerning the limit e — 0 in (2), (3) we obtain from a formal
asymptotic expansion,

f=p=1fl, 9=-vof,

where p = p(x,t) fulfills the diffusion equation
1
op = gamp. (4)

We describe a scheme which is taken from a general class of schemes devel-
oped in [8], [7]. For the time discretization we use the time step At € RY.
The spatial step size is Az. The time iterations approximating f(x, v, nAt)
and g(z,v,nAt) are denoted by f"(x,v), ¢"(x,v) for n € N or n =0. Given
f™, g™ we calculate f*T1 ¢g"*! as follows.

Algorithm. The discretization in time is obtained using a fractional step
scheme. The spatial discretization is a simple first order discretization. For
more complicated approaches, see for example [7].

Step 1: Approximate the solution of the system

&gf + v@wg =
Org

o o : 1 1.
by an explicit discretization, i.e. determine f™*2, ¢""2 via

frE = "= Atv D, g" (5)

1
n+s _ .n
g =g,

where D, denotes the forward difference with step size Ax.



Step 2: Approximate the solution of the system
1
of = (f1-1)
1
09 = S(-vd:f—9)

by a semi-implicit discretization to treat the stiffness of the equations
1 1
correctly, i.e. determine f"*1 ¢g"*! from f"*2,¢""2 via

1 A 1
frt = e S - )
At

gt =gt 4 — v D_frtt — gt

where D_ denotes the backward difference with step size Ax.

Remark 2. We do not consider the velocity discretization. Usually a Gaus-
stan quadrature 1S used.

We rewrite the recursion formula of Step 2 as

fn+1 — AfnJr%_'_B[fnJr%] (6)
gn+1 — Agn+% - BUD,fTHJ,

-1
A = <1+ A—;)
€

At €2 -1
b (G

with

For the numerical analysis it is convenient to combine both steps in a single
step,

frt = A(f" = Atv Dyg") + B[f" — Atv D, g"] )
gn+1 — Agn _ UABD_fn+1 —v B2 D_[fn+1]
or

gt = Ag" —vABD_(f"— AtvDyg") —vB*D_[f" — Atv D, g"].

Scheme (7) will be investigated in the following. Uniform consistency of
similiar schemes has been considered in [8] and [6]. Here we will prove a
uniform (in €) stability result.



Remark 3. Keeping At fized and considering the limit e — 0 of (7) we have
A—0,B—1 ase— 0 and we obtain the scheme

o= T = - AtuDygh
gn+1 — —UD,[fnJrl],

i.e. in terms of p" = [f"],
1
P = g §At D.D p"

which is a straightforward explicit discretization of the diffusion equation (4).

3 The main result

In this section we state a theorem on uniform stability for (7). The proof is
settled on a von Neumann stability analysis.

The recursion scheme (7) involves two positive discretization parameters At,
Az (which enters via D) and the scaled mean free path € € (0,00). In the
sequel it is assumed that At, Az, e satisfy the following condition.

Definition 1. At, Ax and € fulfill the “transport CFL condition” iff
At At 1

— e < . 8
(Az)2ez + At 2 (8)
Remark 4. Condition (8) is equivalent to
At €4 At
9
(B2~ 2A¢ (9)
or
At e + At
— . 10
Az < 2 (10)
For €2 < At condition (9) reduces to a “parabolic CFL condition”,
At 1
< = 11

related to the diffusion equation and in case € > At, condition (10) reduces
to

At €

at 12

A5 (12)
which is for fired € a “hyperbolic CFL condition” related to the transport
equation.



Remark 5. Introducing

At
pi=—, e At= pe?,
€

the transport CFL condition (8) holds if and only if

2]—+6.€2.
1+p

IS eR: (Ax)* =2p

Here, p < 1 corresponds to the fine resolved case At < €2 and 1 < p
corresponds to the under-resolved case €2 < At.

Now we shall give the recursion (7) a well-defined meaning by introducing
sets of functions on which the recursion operator of (7) acts.
We put

M :={¢:Rx(0,1) - C: ¢ is measurable},

M = {¢ €M : (VU €(0,1): / |p(z,v)|? dz < oo)}
R
We are heading towards a von Neumann stability analysis of (7). This re-

quires for a notation for the Fourier transform of ¢ € M%? with respect to
x. We put

D&, v) = %/Rd)(x,v) exp(—iz€) dx, (§,v) € R x (0,1).
For later reference we introduce the space
MY = {gf) € M : (Vv € (0,1): /(1 +1€1%) |p(€, v)|? dE < oo> } :
R

Remark 6. Due to the standard theory of Sobolev spaces we have ¢(.,v) €
HY(R) for all ¢ € M and for all v € (0,1) and

60,0 ey < K [ (14 16 Iol6, )P de,
R

where K is independent of ¢ € M2,

Applying the Fourier transform (with respect to x) on (7) we obtain the
recursion scheme



frt = A(fr+vagr) + B +avgr],

. A (13)
o= A Q"—l—vﬁf"—@?;zg”) +Bup [f”+ozv§"] ,
where
a=al,At,Az) = i—; (1 — e 27) = ¢AtH (EAm), (14)
B, Al
B=BEAL AL = 1o (7 1) =~ ST (eAn), (15)
At At

© =0 At Az, e) = —af = (2 — 2cos(€Ax)), (16)

(Az)? €2 + At
and the holomorphic function H is given by

1 — exp(iz)
H:C—C, H(z)= z ’ Z#O,

—1 , 2=0
is bounded on R with |H(o)| < 1 for all 0 € R with ¢ # 0, and |H(0)| = 1.

Remark 7. For all positive At, Ax, e we have

ANt At
— inf At, A At, A = TANZ I LA
0 égﬂg@(f, t,Ax,€) < Sélellg@(fa t, Az, ) (Az)2 € + At’

which highlights the importance of the value of ©: The transport CFL condi-
tion is equivalent to

sup ©(&, At, Az, €) < 2.
EeER

It is convenient to introduce for f,g € M and f, g € M the notations
f=(f9), 1=(f.9).
We rewrite recursion (13) as

f*tl = (AT + BTy) i (17)



with A, B € (0,1),A+ B =1 as above and n € N. The linear operators T’
and Ty depend on the parameters «, 5. We have for f = (f,g) € M x M and
for (§,v) € R x (0,1),

~

T()(Ev) = (f(&0) + avi(6v), B fE0) + (1 - 003 4(& ), (18)

and

~

L7 (€ 0) = ([f+avd] €80 [f+avi]©). (19)

Remark 8. We obviously have T, Ty : M — M and - due to the linear
dependence of v on & - we have: T'(f), Ty(f) € M2 for all f € M2, Later on

~

we will actually show T"(f), Ty (f) € M for all f € M*? and for all n € N.

Our aim is to prove uniform boundedness in suitable norms of the iterations
f* = (f",¢") for all n € N and ¢ > 0.

The results will depend on point-wise estimates of ;‘" Let us highlight the
argumentation at hand of the formal limiting problem when ¢ is set to zero.
In this situation recursion (17) reduces to f** = (/71 g"+1) = Ty, this
means

fret = [+ avg
§n+1 — Uﬂ[fn+avgn]zvﬁ[fn+l]

with
B =B At Az, e = 0) = —£ H(EAT).

This yields

. . )
= el = (1-5) 17
where
At
O =0 At, Az, e =0) = (A0)? (1 — cos(EAT)).
Thus, we have the point-wise estimates
. o .
s = 1= 1o,

o" .
e < wllel -S| e,

8



in particular, whenever

sup O(§, At, Az, e =0) <6,
£ER

which is the case if and only if the usual parabolic CFL condition for the
diffusion equation (4)

At 3
(A7 =7 (20
holds, then for all n € N,
g0 < ). (21)
19"1(&v) < JENLFOI(E)- (22)

From (21), (22) we obtain under the assumption that all involved integrals
are finite for all n € N and for all v € (0, 1) the estimates

/ FRE ) dE < / PP(E ) d(E ) (23)
R Rx(0,1)

[reod < [ eiPrewden. e
R Rx(0,1)
thus for all n € N and for all v € (0, 1),
[(FEcae) o des [ arpIPPEw den. @)
R Rx(0,1)
This motivates the introduction of the anisotropic semi-norms

H‘Hl%l : ]\4-1’2 X M172 — Rg U {OO},

1,9l = \/ / o 1Ry (17 191) (6 die ),

|-llowo = M2 x M*? — RE U {o0},

o 2
107l 2= s> \// (712 + |9f?) (€. v) de

and to define the anisotropic spaces of Sobolev type,

W= £2((0,1) : HI(R) x H'(R)) = {(f,9) € M"* x M- [|(f, 9)lla < o0},

9



WO = L£22(0,1) « LXR) x L (R)) = {(f, 9) € M x M** : [|(f, 9)llozo0 < 00}

Assuming the validity of (20) (here no further condition on the parameters
At, Az, e are required) we can re-write (25) in the more convenient form

1" looo < 1’1, m €N, (26)

where we made use of the fact that the Fourier transform maps L?(R) iso-
metrically into itself.
For the general case we introduce additionally

W? .= L* R x (0,1)) x L*(R x (0,1))

—{rearsar [ (Pl o) < o

Rx(0,1)

equipped with the canonical semi-norm

1(f> 9)ll2 = \//MO 1)(\f!z +19[2) (&, v) d(&,v).

Our main result is the following theorem:

Theorem 1. Let Az, At,e € R". Let {° € W5t and let the sequence
(F)nen = ((f™, 9"))nen be defined by (7) (with initial value §°).

Assume At, Ax, € satisfy (8). Then:

a) f* € W2 for alln € N and

, V2¢?
157012 < 2 (42\/62+At+15+7)3/2 1711

(€2 + At

b) If§0 € WEE QW% then §* € W% for alln € N and

— V2¢?
15" [lo;00 < V2 <2+2 e+ At + 7)3/2 HfOHO;OO

(€2 + At
+2 (15 +uUE T At) 1711

Theorem 1 allows for the derivation of several stability results for (7) inde-
pendently of €. As examples, we deduce

10



Corollary 1. Let M, ey be positive constants. Then there is a positive con-
stant Cy = Cy(M, €y) such that for all Ax,At,e € R":

If At, Az, e satisfy (8), if At+e€ < M and if € < eyAt, then the following
estimates hold for any sequence (f*)nen = ((f™, 9™))nen defined by (7) with
initial value f° € WhHL:

CL) fn € W2 fO’/’ alln € N and ||fn||2 < O()||f0||1;1.
b) If§0 € WEE QW% then §* € W% for alln € N and

17" oz < ColllF® llosoo + 1177 [l1;0)-

Corollary 2. Let M, e, be positive constants. Then there is a positive con-
stant C, = C1(M, €1) such that for all Az, At,e € R":

If At,Ax, e satisfy (8), if At +e€ < M and if ¢, < €, then the following

estimates hold for any sequence (§")neny = ((f™, 9"))nen defined by (7) with
initial value f° € WhL:

a) f* € W2 for alln € N and ||§*|l2 < C1||§°]]1.1-
b) If f* € WHL N W% then §* € W% for alln € N and

17" oo < CLUIP oo + 117°[1150)-

Remark 9. We notice that although the scheme s developed based on con-
sideration of the diffusive limit € tending to 0, the transport CFL condition
(8) is sufficient to guarantee stability also for large €. In particular, for large
mean free paths the time step is not any more restricted by a parabolic CFL
condition related to the limiting diffusion equation (4), but by the hyperbolic
CFL condition (12) related to the transport equation (1).

Remark 10. The transport CFL condition (8) is seemingly not optimal. For
example for € tending to 0 we have

At 1

(Do) =2

Howewver, as the direct analysis for € = 0 shows, actually, the correct restric-
tion is the parabolic CFL (20)

At
(Az)?

Remark 11. The conditions eg < € < M ore < e, At, cover the fine resolved
and under-resolved cases.

<

DO | W



4 Preliminaries

The main ingredients of the proof of Theorem 1 are investigations of recursion
formulae. These investigations require several preliminary estimates.

Lemma 2. Let 0 € (0,2). We put

¥ (0,1) = (0,1), () = arccos (1 - "7“2> .

Then for all n € N,

[ (costmon —sintmwn D) 4,

Proof. Introducing ¢ := cos(¢)(v)) as new variable we obtain

[ (costm) —sintapn D)

1 arccos((2—0)/2)
= \/?/ (\/ 1 + cos(t). cos(nt) — /1 — cos(t). sin(mf)) dt
o Jo

1 arccos((2—0)/2)
= ﬁ/@ (cos(t/2).cos(nt) — sin(t/2).sin(nt)) dt
1 sin((n + (1/2) arccos((2 — 0)/2)) sin((n + (1/2))y)

<1

R n+(1/2) (n+ (1/2))/2(1 — cos(1))
_sin((n+ (1/2)0) /2
(n+ (1/2)¢  sin(4/2)

€ [-1,+1].

O

Lemma 3. Let (¢;)nen and (Vn)nen be complex sequences. Define a complex
sequence (Kn)nen by recursion via

Kg = C & (C, Kn+1l = Cp + (Ho-’}/n—l + K1 Yp—2+ ...+ Hn_l.’)/[)) .

Assume

o0 o0
Slal <o Sl <t
k=0 k=0

Then the sequence (Ky)nen i bounded, more precisely,

Vn e N: ’/’in‘ S ‘Ho“{'(’Co‘—F...—{—ycn,l‘). (27)

12



Proof. We prove (27) by induction. There is nothing to do in case n = 0. To
pass from n to n + 1, we calculate

n—1 n—1
[fnst] = |en + D Kamo1g| < leal + D Ik5]-no1y]
j=0 Jj=0
n—1
< |en| + max{|rol, . - , |nn_1|}z 17| < lenl + |Ko| + |col + .. - + |enza]-
=0

O
Furthermore, we require the following result about the recursion scheme (7)
when A is set to 1 (or equivalently, when B is set to 0).

Lemma 4. Let § € R and let At, Az, € be positive real numbers. Let ., 3,0
be as in (14), (15), (16), respectively. For (fo, go) € M x M let T as in (18),
i.e. for (§,v) € R x (0,1) in vector notation,

r( 0 )= tee) (e

Forn € N let
(4)n(4)
dn Jo

Assume At, Ax, € satisfy the transport CFL condition (8).
Then for all n € N and for all (£,v) € R x (0, 1),

L 1fl(6,v) < (21fol + VAE+ A o] ) (€ 0).

2. 16a(60) < (725 1ol + 214 (€ 0).

3. Javgal(€v) < (2fol + 4V FBEIGl) (€,v).
4. If fo =1 and if Go(&,v) = B, then

1 ~
FlE0) <2, 1416 v) < 3€]. A(ﬁ@@+ﬂ$%@ﬁnm3§1

Proof. We recall: If At, Az, e satisfy (8), then sup.cp O(§, At, Az, e) < 2.
We shall use this estimate frequently.

13



We keep (£,v) € R x (0,1) fixed and introduce the 2 x 2 matrix

R:= R(q, 8,0,v) := ( ﬁlv 1_O‘(gv2 )

Then we have for all n € N or n =0,

n fO ) ) ( fO(S U) )
T A Eu)=R"-| 02 .
( 9o &) Go(&,v)
If © =0, then ¢ = 0 and therefore &« = 5 = 0 as well. In this case R is the
identity matrix and the proof of the lemma is straight-forward.

Let us assume © > 0 henceforth.
The eigenvalues of R are

oty = (1-22) 4 (92) o

Since a := ©v?/2 < 1, we have 2a — a* > 0 such that
M2=(1l—a)E£iV2a—a?
i.e. R has two distinct, non-real, complex conjugate eigenvalues

M=A=(1—a)+iV2a—a% M=\

Hence

n __ )\no -1
eon (00) 5

Since |A| = 1 we have \ := €'’ for some 0 € (0,27). Since cos(f) =1—a > 0
and sin(f) = v2a — a? > 0, we have 6 € (0,7/2). Furthermore,

2 .
v = %8111(9/2). (28)

14



Hence for all n € N,

" i —av  —au en? 0 1—e® au
R" = S—0 i0 —i0 —nif i0
2ausin(f) \ 1 —¢€” 1—e 0 e —14+€Y —av
B i —av —av eniH - e(nfl)ie v eni@
- 200 sm(9) 1— 61'0 1— 67719 _efm'e 4 ef(nfl)iﬁ _avefmo
in(n@)—sin((n—1)0) in(nd)
B ) VG 0)
N _2sin(nf)—sin((n—1)0)—sin((n+1)0) _ sin(nd)— 1n((n+1) )
aw sin(0) sin(0)
sin(nf)—sin((n—1)80) 2a sin(0/2) sin(nd)
B sin(6) NZY sin(0)
o /6 2sin(nf)—sin((n—1)0)—sin((n+1)0)  sin(nd)—sin((n+1)0)
sin(6/2) sin(6) sin(@)
[4 . in(0
cos(nf) + sin(nf)* 1‘;10(59() ) 2—\/% sin(nf) %
. —cos(f . —cos(0
—‘/76 sin(n#) Féo /(;(;Sgnz(o) cos(n@) — sin(nd) 15;(259() )
Rn;ll Rn;l? )
Rn;Ql Rn;22
Since 6§ = 6 € (0,7/2) we have
| Run] s [ Rigo| < 2. (29)
Furthermore, we have for all n € N,
2 in(@/2 in(nd in(né
R0 = % sin(nf) sm((g)) = owSlTl((ne)) = Qv sin(nf)
sin sin Ov?
VOu, /1 — 5
sm(n9) (EAtH(fo))(Ax\/ €2 + At) sin(nd)
\/_ v At\/2(1 — cos(EAT)) 1 — @
4

EAxH(EAX) sin(nf)
V2(1 — cos(£Ax)) \/1 Sy

H(fo) sin(nh)

o)l \/7

=Vve2+ At

62+A

15



and in analogy,

Ry01 = — , 31
;21 /7€2+At H(fAI) 1_@_122 ( )
1
hence
|Rn;12| S 2(62 + At)
(32)
V2
’Rn;Zl‘ < VEe+AL
Since for all n € N,
fn(fy U) - Rn;ll fO (57 U) + Rn;12 gAO(Sa U) (33)
gAn (57 U) = Rn;Ql fO (57 U) + Rn;22 gAU (57 U)7
statements 1. and 2. of the lemma follow from (29), (32), (33).
Now we calculate for all n € N,
, 1 — cos(8) , 1 — cos(6)
Yy = — 0 _ 9 g). = Y)
av Ry vV/© sin(nf) 5in(6/2) sin(0) sin(nfd) sn(0)
and
) Q
avRy00 =2 SIH(Q/Q)ﬁRn;zza
Hence for all n € N,
|OéURn;21| S 2, (34)
and
|OéURn;22| S 4 V €2 + At. (35)

Statement 3. of the lemma follows from (33), (34) and (35).
Let us finally turn our attention to fy = 1 and go(&,v) = Bv. We set

and easily verify

~

fn:ngAn:ﬁva TLENOI‘TL:O,

16



where for n € Norn =0,

Py 1 —0v? P,
Qi) \11-0w) \o. )

from which we obtain after some elementary manipulations for all n € N (we
recall © < 2),

P, = Re<((1—a)—i.\/M>n. (1—M>>,

V2a — a?
, n i.(2 — 2a)>>
» = Re l—a)—iV2a—ad*) . ([1+ ——= | |,
Q ((( )—iV2a—a?) ( —s
where a = 22 is as above. Then we have for all n € N,

(o) (2] =[an (7 )| = lr-er Q] = inal
(36)
Writing as above
(1 —a)+iv2a —a? = e

we have 0 € (0,7/2), cos(f) = (1 — a), sin(f) = v/2a — a®. Hence for all
n €N,

= cos(nf) — sin(n LOS(Q)
B , 1 — cos(#)
Qn = COS(TLQ) + 2 Sln(ne)m

such that for all n € N,

[fal (€, 0) = |Pal(€,0) <2, 14al (€, 0) = 18] [0] 1Qul (€, v) < 315] < 3[¢].
and due to lemma 2 and due to (36) for all n € N,

/01(17048). ( A ) ds = [P11](€)

Gn(§, 8)
= 1 cos((n s)) —sin((n s Ls(&(s)) s € |-
= [ (costto-+ 9069 s+ 10060 * SO ) s 1,1

(37)

where cos(6(s)) =1 - 22 s (0,1). O



5 Proof of theorem 1

For n € N let f7, " be as in (13). In the sequel let (£,v) € R x (0,1) be
fixed.
We introduce for n € N or n = 0 the complex number

kn = B [f” +owg”} (). (38)

Then it is easy to see that for all n € N,

~ - n—1
( J;n ) = A" T" ( gfj ) + ) Rk AT ( 511; ) - (39)

j=0

We derive from (39) a recursion formula for (k,)nen,

ko= B[ +avg’] ()

o = 8 [wan (1))
— A"B. {(Lav)' (Tn ( ch‘(j >>}

+n§ijBA”1j {(170“})' (Tnlj ( Blv )ﬂ

j=0
= ¢y + (KoYn—1+ -+ Kn10)5

L
e (A ) G

By part 4. of lemma 4 we have for all n € N

where for n € N,

h’n’ < BA",

hence

Sl < 1. (40)
n=0

18



Furthermore, we have due to part 1. and part 3. of lemma 4 for all n € N,

[ (m(3))]
< 217°+ V2( + A1) [3°[1(6) + [21F°) + 4V + At g°1)(€)
< 4[| fO1() + 6ve2 + At [|g°1(€),

hence for all n € N,
eal < A"B (417°01(6) + 6V + AL )(E) ), (41)

in particular (¢, )pey is in £1(C).
We can therefore apply lemma 3 to deduce for all n € N the estimate

[in] < o + (o] + -+ |ena])

< [BU + @) + (070 + oV T BEO) - 4B

< [1FN(€) +2ve + At[|°)(€) + 4 F°)(€) + 6v/e + At[|3°[}(€)
= 5[ FN(©) +8ve2 + At[|g°]](6), (42)

where we made use of the estimate
lav| <2Ve? + At,

see (28).
Now we deduce from (39) via part 1. of lemma 4, via part 4. of lemma 4 and
via (42) for all n € N the estimate

1 1(& v)
< (2 O]+ V2 (2 + At) \fﬂ) (€, v) + 10[| F°1](€) + 16 Ve2 + AL [|§°])(£).

In a similiar way we deduce from (39) via part 2. of lemma 4, via part 4. of
lemma 4 and via (42) for all n € N the estimate

19"1(&; v)

Vi

=4 (\/62 + At 1/
V2¢é

= (W

+2 rg“w) (& 0) + 1&] (151770 + 24V + At [1g°)]) (€)

71+2 rg“r) (& 0)+lel (15017°) + 249/ + AL [15°]]) (©)
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We deduce

1512 = I§"ll2 < [/l c2®x0,1)) + 118" c2®x(0,1))

<201l ez @iy + V2(e2 + A8)[18°]] 2o
+ 10012 0,1)) + 16V€2 + Atl]§°|| 2 0,1))
V2¢2

+ m”foﬂﬁmx(o,m +2(18° | c2zx0,1)

+15\/ L JEPIFRE ) dle, 020V \/ [, JERP e a0

< (15 " W) (||f°||cz<Rx<o,m + \/ Lo JEPRE D) d(g,z)))

+ (2 + 42ve? + At) (HQOH[,Z(RX(O,I)) + \// o) €2[g°* (€, v) d(f,v))
Rx (0,1

(2 + AL)?

(\// o LT EPIRE ) diEv) \// o LT ERIPRE ) (e >)

(mm T 154 %)

<f(42m+15+L>

X \// ( + |€|2)(|f)|2 |A0|2)(€7U) d(fﬂ))
RX(OJ) §
= 62 2

This establishes part a) of theorem 1. On the other hand, we have for each
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€ (0,1),

\//Rﬂfnm 197]2) (&, v) dE = \//Ruf"!u 19712) (€, v) d€
< \/ / |7 [2(€, v) d5+\/ / 197[2(&,v) d€ = | (., v) |2y + 119" 0) |l 2y

<2000 0)] ez + V/2(e2 + A1)[13°(, v)]l 2y + 1010l c2x 0.0y

. V2¢? A
+16\/62+N\!90H£2(ﬂ%x(o,1)>+ml|f°( 2@ + 208°C ) 2@

+15\// [€[210[2(¢, v) d(€,v)+24V e + At\// €121G°12(€, v) d(&,v)
Rx(0,1) Rx(0,1)

V2¢? A )
- (m' FEA g ) (FC0lee + 15 loe)

+15 <||f°||L2(RX(0,1)) +\//]R - €12 fO12(€, v) d(&@)

+24Ve2 4+ At (||9 |2 (0,1)) \//R [€1219°* (€, v) d(f,v))

x(0,1)

g\/§(2+2\/e2+m+ +At3/2>\// (1f7 2 + 197 12) (€, v) dE

+2(15 + 24Ve? + At) \//R (L+ER)(|FO2 + 18°[2) (€, v) d(€, v)

% (0,1)

=2 (2 + 2V + At + m> \//R(\f"!2 + 9" ) (& v) d
+2(15 + 24ve2 + At) |11

2
< V3 (2 L oVET AT (fﬁ) Il -+ 200524/ 5 301

Taking the supremum with respect to v € (0, 1) on the left hand side of this
inequality establishes b) of theorem 1. O
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6

Conclusions

We have proved uniform stability of the iterative scheme under two restric-
tions:

e Uniform boundedness of the iterative scheme could be proven for under-

resolved numerical computations € < ey At or bounded mean free path
6 <e< M.

e The necessary CFL restriction is in the diffusive limit a parabolic CFL

condition as was to be expected. However, for finite values of € the
parabolic restriction can be relaxed. One obtains a CFL condition
adapted to the hyperbolic part of the original kinetic equation.
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