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Abstrat. In this paper, di�erent approahes for the numerial solution of radia-

tive heat transfer problems in di�usive regimes are onsidered. We disuss asymptoti

preserving shemes, domain deomposition methods and the development of improved

di�usion approximations. Problems related to glass manufaturing proesses are numer-

ially investigated.
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1. Introdution. Simulation of heat transfer in semitransparent ma-

terials suh as glass are usually done on the basis of the radiative transfer

equations or, using a di�usion approximation, on the basis of a nonlinear

di�usion equation. We refer to [15℄, [18℄, [19℄, [22℄, [24℄, [25℄ for a detailed

desription of the equations and further referenes.

The di�usion approximation of radiative transfer models is obtained

by an asymptoti analysis using the di�usion saling and letting the saled

mean free path tend to zero. If standard numerial methods are used

to solve the radiative transfer equations in regimes with small mean free

path, usually, a very �ne and expensive disretization depending on the

mean free path is required due to the sti�ness of the equations near the

di�usion limit. This makes these shemes extremely time onsuming. To

deal with this problem di�erent approahes have been used. Examples will

be surveyed in the following:

The �rst approah is to develop numerial shemes for the transport

equation working uniformly for di�erent regimes. In partiular, it should

be possible to hose the disretization size independent of the mean free

path. In reent years there has been a lot of work on numerial methods for

transport equations working uniformly for a large range of parameters,see

[4, 14, 13, 17, 2, 6, 5, 21, 20, 7, 8℄. These shemes are usually based

an semiimpliit time disretizations. In setion 3 suh a sheme will be

presented for the radiative transfer equations, see [10℄.

The seond approah is based on the following observation: In many

appliations it is not neessary to model the whole omputational region

�
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by the omputationally expensive radiative transfer equation. Only in par-

tiularly sensitive regions, where the solution is far from equilibrium, as for

example in boundary layers, these equations have to be employed. In the

remaining regions of the domain the di�usion approximation is valid, and

will lead to suÆiently aurate results. Domain deomposition methods

are thus a natural design tool in this ase leading to aurate numerial

odes with reasonable omputation times. One major problem is to obtain

the orret oupling onditions at the interfae between the two regions,

see [10℄. This is disussed in setion 4.

The third approah is to use improved di�usion approximations. As

mentioned above di�usion theory is not apable of desribing boundary

layers, and the question arises whether some more sophistiated di�usion

type approximations an suitably model the boundary layer e�ets. Suh

higher{order asymptoti orretions to di�usion theory exist: they are the

so{alled simpli�ed P

N

(SP

N

) theories, see [23, 1℄. These SP

N

theories

are, in fat, di�usion in nature. That is, they employ di�usion equations,

or oupled systems of di�usion equations. They ontain boundary layer ef-

fets and an be remarkably aurate { muh more aurate than standard

di�usion theory. In pratie, one views these equations as an extended

form of di�usion theory. No separate boundary{layer treatment is nees-

sary beause the boundary layers are inluded in the SP

N

equations. For

other approximate theories for the above equations and appliations, see for

example [3, 16℄. In these papers approximations based on the Levermore

moment expansion and improved di�usion equations are derived.

2. The equations. In a domain D 2 R

3

we onsider the radiative

transfer equations inluding ondutive heat transfer but without photon

sattering. The spae variable is dentoted by x 2 D, the diretion by

the unit vetor 
 2 S, S the unit sphere, � 2 R

+

denotes the frequeny,

t 2 R

+

the time and M the number of spetral bands. For the absorp-

tion ross-setion ~� = ~�(�) we assume ~�(�) = �(k) = onst; k = 1; � � � ;M

for � 2 [�

k

; �

k+1

), where �(k) is the absorption ross-setion for band k.

This assumption is justi�ed in many ases, for example, in the ase of

radiative heat transfer in glass. The interval [�

1

;1) is alled the transpar-

ent region and [0; �

1

) the opaque region of the frequeny. We denote by

I = I(x;
; t; k) the radiative intensities at x in the diretion 
 in band k

and by T (x; t) the temperature. We onsider the transport equation for

the radiative intensity


 � r

x

I(x;
; t; k) = �(k)[B(T (x; t); k)� I(x;
; t; k)℄;(2.1)

where the spetral blak body intensity for the k-th band is de�ned by

B(T (x; t); k) =

Z

�

k+1

�

k

~

B(T (x; t); �))d�
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with the spetral blak body intensity

~

B(T; �) =

2h

p

�

3



2

(e

h

p

�

k

B

T

� 1)

�1

;

where h

p

; ; k

B

are Plank's onstant, the speed of light and the Boltzmann

onstant, respetively.

This equation is onsidered together with the temperature equation



m

�

m

�

t

T (x; t) = r

x

� (k

h

r

x

T (x; t))(2.2)

�

X

k

�(k)

Z

S

[B(T (x; t); k)� I(x;
; t; k)℄d
:

Here 

m

; �

m

; k

h

are the spei� heat, the density and the thermal ondu-

tivity, respetively. Initial onditions have to be imposed on the tempera-

ture:

T (x; 0) = T

0

(x); x 2 D:(2.3)

Boundary onditions for I an be of absorbing, reeting or mixed type.

For example, for x̂ 2 �D, whose inward{pointing normal is n, one an use

the semi{transparent boundary ondition

I(x̂;
; t; k) = �(
)I(x̂;


0

; t; k) + [1� �(
)℄R(x̂;
; k);(2.4)

where 
 � n > 0. Here 


0

is the reetion of 
 in the tangent plane to �D:




0

= 
� 2n(n � 
);

and � is the reetivity and R denotes the radiative intensity transmitted

into the medium from the outside. The reetivity � is given by the Fresnel

and Snell law. This means for inident angle �

1

with os�

1

= n � 
 we

have

� =

1

2

[

tan

2

(�

1

��

2

)

tan

2

(�

1

+�

2

)

+

sin

2

(�

1

��

2

)

sin

2

(�

1

+�

2

)

℄

with

n

2

sin�

2

= n

1

sin�

1

;

if jsin(�

1

)j �

n

2

n

1

and � = 1 otherwise. Here n

1

is the refrative index

for the material and n

2

the oeÆient for the surroundings. We assume

n

1

� n

2

.

Boundary onditions for the heat transfer equation (2.2) are needed

as well. One an presribe either the temperature or the heat ux at the

boundary. The heat ux is given by the total (onvetive plus radiative)
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heat input at the boundary. For example, the following onditions an be

imposed at x̂ 2 �D, see [25℄:

k

h

n � r

x

T (x̂; t) = �q(T (x̂; t))(2.5)

with q given by

q(T (x̂; t)) = h(T

ext

(x̂; t)� T (x̂; t))

+ ��

Z

�

1

0

[

~

B(T

ext

(x̂; t); �)�

~

B(T (x̂; t); �)℄d�;

where T

ext

is a �xed exterior temperature. The last equation models the

heat transfer at the boundary resulting from a onvetive term due to

the temperature di�erene at the boundary and a term due to the surfae

radiation of the body, h denoting the onvetive heat transfer oeÆient

and � the emissivity depending on the refrative indizes. The integration

is only over the opaque frequenies, � 2 [0; �

1

).

To simplify the notation we restrit in the following to the ase of only

one frequeny band ~� = � for � 2 [�

1

;1). We use the notation

< f >=

Z

S

f(
)d
:

We introdue the di�usion saling, see [12, 15℄. If l

ref

; t

ref

; �

ref

; k

h

ref

denote the referene sales for length, time, absorption and ondution,

the quantity

� =

1

�

ref

l

ref

is assumed to be small. Moreover we have the relations

t

ref

= 

m

�

m

�

ref

l

2

ref

k

h

ref

�

ref

= 1

This gives the nondimensionalized equations

�
 � r

x

I = �(B(T )� I)(2.6)

�

2

�

t

T = �

2

r

x

� (k

h

r

x

T )� � < B(T )� I > :(2.7)

We investigate equations (2.6), (2.7) as � tends to 0 using an ansatz of the

form

I = I

0

+ �I

1

+ �

2

I

2

+ : : :

T = T

0

+ �

2

T

2

+ : : : :

Colleting terms of the same order in � one obtains:

I

0

= B(T

0

)

I

1

= �

1

�


 � r

x

I

0
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and the limiting di�usion equation for T

0

:

�

t

T

0

= r

x

� [(k

h

+ k

r

(T

0

))r

x

T

0

℄;(2.8)

k

r

(T ) =

4�

3

1

�

�B

�T

(T ):

Boundary onditions for (2.8) are given by (2.5).

3. Asymptoti preserving shemes. For small values of �, prob-

lem (2.6), (2.7) is sti�. In this setion we are interested in developing a

numerial sheme whih is suitable for simulations of the equations in the

small mean free path limit. The algorithm should work uniformly for all �

and tend to a suitable sheme for the di�usion equation as � tends to 0. In

partiular, it should not be neessary to adapt the stepsize as �! 0. These

points are obviously not satis�ed for a straightforward expliit disretiza-

tion of the equations. However, they an be ahieved by a semi{impliit

disretization. For � ! 0 the disretization presented below tends to a

standard linear impliit method for the nonlinear di�usion equation (2.8).

To obtain a suitable disretization of (2.6), (2.7) we start by rewriting the

problem.

The asymptoti proedure suggests writing the radiative intensity in

the form I(x;
; t) = B(T (x; t))+�

^

I(x;
; t)+�

2

Z(x; t) ; with h

^

Ii = 0. This

is a deomposition of I into its mean value hIi = 4�B(T )+�

2

Z with respet

to 
 and the remainder �

^

I . Instead of I , we use the new unknowns

^

I and

Z.

Equations (2.6) are now rewritten as a system for

^

I , Z and T deter-

mining an equation for the mean value of (2.6), and the deviation from the

mean value:

r

x

� h


^

Ii = �4��Z ;(3.1)


 � r

x

B(T ) + �r

x

� (


^

I �

1

4�

h


^

Ii) + �

2


 � r

x

Z = ��

^

I ;(3.2)

�

t

T = k

h

�

x

T + 4��Z :(3.3)

The transformed system onsists of the the kineti equation (3.2) for

^

I ,

and the paraboli equation (3.3) for T . Therefore, boundary onditions for

^

I and T are needed. We refer to [10℄ for details.

In the following the problem in the form (3.1){(3.3) will be disretized.

First the time disretization is disussed. We introdue a time step � >

0 and approximations of the solution at time t

n

= n� , denoted by the

supersript n. We use a semi-impliit disretization of (3.1){(3.3) where

bakward di�erenes are used for the zeroth order terms (as � ! 0) and

forward di�erenes for higher order terms:

r

x

� h


^

I

n+1

i = �4�Z

n+1

;(3.4)

B

0

(T

n

)
 � r

x

T

n+1

+ �r

x

� (


^

I

n

�

1

4�

h


^

I

n

i)(3.5)
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+�

2

r

x

� (
Z

n

) = ��

^

I

n+1

;

1

�

(T

n+1

� T

n

) = k

h

�

x

T

n+1

+ 4��Z

n+1

:(3.6)

Note that linearization about the old time step has been used to make

the problem at the new time step linear. From the equations (3.4), (3.5),

Z

n+1

and

^

I

n+1

an be omputed expliitly in terms of T

n+1

. Using the

expressions for Z

n+1

and

^

I

n+1

in (3.6) we obtain

�

^

I

n+1

= �B

0

(T

n

)
 � r

x

T

n+1

+ �G

n

;(3.7)

with G

n

= �r

x

� (


^

I

n

�

1

4�

h


^

I

n

i)� �r

x

� (
Z

n

) ;

�Z

n+1

= r

x

�

�

1

3�

B

0

(T

n

)r

x

T

n+1

�

+ �H

n

;(3.8)

with H

n

= �

1

4��

r

x

� h
G

n

i ;

1

�

(T

n+1

� T

n

) = r

x

�

��

k

h

+

4�

3�

B

0

(T

n

)

�

r

x

T

n+1

�

+ �4�H

n

:(3.9)

Thus, an ellipti equation for T

n+1

remains to be solved. For � = 0, the

last equation beomes a stable, linear-impliit disretization of the di�usion

equation (2.8).

To state the spatial disretization we onsider for simpliity a one-

dimensional problem x 2 [0; 1℄ and denote the omponent of 
 in this

diretion by the one-dimensional variable �, � 2 [�1; 1℄.

We disretize spae using staggered grids with h = 1=imax:

x

i

= ih; i = 0; : : : ; imax

and

x

i�1=2

= (i� 1=2)h; i = 0; : : : ; imax + 1:

The variables T , and Z are disretized at the full grid points x

i

, and

^

I is

disretized at the points x

i�1=2

. The approximations at time t

n

are denoted

by T

n

i

, Z

n

i

, and

^

I

n

i�1=2

. De�ning

(B

0

)

n

i

= B

0

(T

n

i

) ; (B

0

)

n

i�1=2

=

1

2

�

B

0

(T

n

i

) +B

0

(T

n

i�1

)

�

;

the one-dimensional, spae-disretized version of (3.7){(3.9) reads

�

^

I

n+1

i�1=2

= �(B

0

)

n

i�1=2

�

T

n+1

i

� T

n+1

i�1

h

+ �G

n

i�1=2

;(3.10)

with

G

n

i�1=2

= �

�

h

(

^

I

n

i

�

^

I

n

i�1

)(3.11)

+

1

4�

D

�

h

(

^

I

n

i

�

^

I

n

i�1

)

E

�

��

h

(Z

n

i

� Z

n

i�1

)
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�Z

n+1

i

= �H

n

i

(3.12)

+

1

3h�

 

(B

0

)

n

i+1=2

T

n+1

i+1

� T

n+1

i

h

� (B

0

)

n

i�1=2

T

n+1

i

� T

n+1

i�1

h

!

with

H

n

i

= �

1

4��

D

�

h

(G

n

i+1=2

�G

n

i�1=2

)

E

;(3.13)

1

�

(T

n+1

i

� T

n

i

) =

1

h

"

�

k

h

+

4�

3�

(B

0

)

n

i+1=2

�

T

n+1

i+1

� T

n+1

i

h

(3.14)

�

�

k

h

+

4�

3�

(B

0

)

n

i�1=2

�

T

n+1

i

� T

n+1

i�1

h

#

+ �4�H

n

i

The free streaming operator in (3.11) is disretized by an upwinding pro-

edure:

^

I

n

i

=

(

^

I

n

i�1=2

; for � > 0 ;

^

I

n

i+1=2

; for � < 0 :

For � = 0, (3.14) beomes a standard linear-impliit disretization of (2.8).

For the disretization of the boundary onditions we refer to [10℄. The

following algorithm needs to be arried out for eah time step:

Step 1: Compute G

n

i�1=2

, i = 1; : : : ;imax, from (3.11).

Step 2: Compute H

n

i

, i = 1; : : : ;imax�1, from (3.13).

Step 3: Compute T

n+1

i

, i = 0; : : : ;imax, from (3.14) subjet to boundary

onditions.

Step 4: Compute Z

n+1

i

, i = 1; : : : ;imax�1, from (3.12).

Step 5: Compute

^

I

n+1

i�1=2

, i = 1; : : : ;imax, from (3.10) subjet to boundary

onditions.

Note that only Step 3 is impliit. A tridiagonal system resulting from

the impliit disretization of a paraboli equation needs to be solved there.

�nally, we mention that for the veloity disretization standard methods

are used.

4. Domain deomposition methods. By solving radiative transfer

and di�usion equations simultanously in di�erent domains, a good approx-

imation of the full radiative transfer solution may be obtained. More-

over, the omputational omplexity is in general onsiderably below the

one needed for the full radiative transfer solution, in partiular, if the dif-

fusion approximation is valid in the main part of the domain as it is the

ase in di�usive regimes. We assume that the omputational domain is

separated into a subdomain where the radiative transfer equation is solved

and another subdomain where the di�usion approximation is used. That
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means we onsider the domain D divided into two non-overlapping sub-

domains D

A

and D

B

, D

A

[D

B

= D with boundaries �D

A

; �D

B

and the

interfae F = �D

A

\ �D

B

.

The global radiative transfer solution is approximated by the solution

of the following oupling problem: in D

A

the radiative transfer equation

(2.6) is solved and in D

B

the di�usion equation (2.8). Providing these

equations with oupling onditions at the interfae F will lead to a properly-

stated problem. This is solved by an iterative proedure solving in turn

the two equations, see [11℄. In the following I

A

; T

A

and I

B

; T

B

denote the

solution of (2.6) in D

A

and D

B

, respetively. T

0

B

denotes the solution of

the di�usion equation (2.8) in D

B

.

These oupling onditions an be found by using an additional resal-

ing of the normal omponent of the spae variable in an interfae layer

between the two domains. Equations for interfae layer terms an be de-

rived. Coupling onditions an be found using an appropriate mathing

of the radiative transfer domain, the layer and the di�usion domain, see

[11℄. Here we state suitable approximations of these onditions. They are

based on equalizing uxes and the fat that the intensity I

B

in the di�usion

domain an be approximated by

I

B

(x;
) � B(T

0

B

(x)) � �

1

�


 � r

x

B(T

0

B

(x)) + O(�

2

):(4.1)

Assuming T

A

in the radiative transfer domain to be known a straightfor-

ward oupling ondition for T

0

B

, the di�usion solution, would be T

0

B

(x̂) =

T

A

(x̂); x̂ 2 F . T

0

B

is however only a �rst order approximation of T

B

. A

muh better ondition an be found by the analysis of the interfae layer.

An approximation is

T

0

B

(x̂)� ��(x̂)n � r

x

T

0

B

(x̂) = T

A

(x̂);(4.2)

where n is the normal to the interfae pointing intoD

B

and � is determined

by

<

1

�

Z

�>0

�

2

d
 >=<

Z

�>0

��(x̂)d
 >(4.3)

with � = n �
. (4.3) is found by omparing the positive hal�uxes of

�

�

and

�.

The ondition for the radiative transfer solution in D

A

assuming T

0

B

to

be known are found using (4.1) as an approximation of the ingoing funtion.

I.e.

I

A

(x̂;
) = B(T

0

B

(x̂))� �

1

�


 � r

x

B(T

0

B

(x̂)); � < 0:(4.4)

The ondition for T

A

is found by equalizing the total ux (radiative transfer

and heat ux) in the diretion of the normal to the interfae, i.e.

�

2

k

h

n � r

x

T (x)� � < n � 
I(x;
) > :
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We obtain the additional oupling ondition by requiring the ontinuity of

these uxes at the interfae, i.e.

�k

h

n � r

x

T

A

(x̂)� < n � 
I

A

(x̂;
) >(4.5)

= �k

h

n � r

x

T

B

(x̂)� < n �
I

B

(x̂;
) > :

Using (4.1) and approximating T

B

by T

0

B

one obtains

�k

h

n � r

x

T

A

(x̂)� < n �
I

A

(x̂;
) >(4.6)

= �k

h

n � r

x

T

0

B

(x̂) + � <

1

�

n � 

 � r

x

B(T

0

B

(x̂)) >

= �k

h

n � r

x

T

0

B

(x̂) + �

1

�

4�

3

B

0

(T

0

B

(x̂))n � r

x

T

0

B

(x̂)

= �[k

h

+ k

r

(T

0

B

(x̂))℄n � r

x

T

0

B

(x̂):

Equation (4.6) gives a seond straightforward oupling ondition.

The oupled solution is now obtained by an iterative proedure solving

in turn radiative transfer and di�usion equations. A numerial example

using the above oupling onditions is found in the last setion.

5. Approximate equations. In this setion we derive improved dif-

fusion approximations, the SP

N

equations for radiative transfer see [9℄. In

order to formally \solve" equation (2.6), we write it in the form

�

1 +

"

�


 � r

�

I = B(T ):

and invert the operator on the left using Neumann's series

I =

�

1 +

"

�


 � r

�

�1

B(5.1)

=

h

1�

"

�


 � r+

"

2

�

2

(
 � r)

2

�

"

3

�

3

(
 � r)

3

+ � � �

i

B:

Integrating with respet to 
 and using the result

< (
 � r)

n

>= [1 + (�1)

n

℄

2�

n+ 1

r

n

;

we get

� = < I >

= 4�

h

1 +

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

7�

6

r

6

� � �

i

B +O("

8

):(5.2)

Hene

4�B =

h

1 +

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

�1

�+O("

8

)
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=

(

1�

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

+

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

2

�

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

3

� � �

�

�+O("

8

)

=

h

1�

"

2

3�

2

r

2

�

4"

4

45�

4

r

4

�

44"

6

945�

6

r

6

i

�+O("

8

);

so

4�B =

h

1�

"

2

3�

2

r

2

�

4"

4

45�

4

r

4

�

44"

6

945�

6

r

6

i

�+O("

8

):(5.3)

If we disard terms of O("

4

),O("

6

) or O("

8

) we obtain the P

1

; SP

2

and

SP

3

approximations, respetively. The above approximation (5.2) for � is

then used in the temperature equation (2.6). In the following we state the

di�erent approximate equations and suitable boundary onditions, see [9℄

for details. Let us de�ne for m = 1; 3 integrals of the inux of radiation on

the boundary, x̂ 2 �D

I

m

(x̂) =

Z

n�
>0

�

1� �(n �
)

�

P

m

(jn �
j)R(x̂;
) d


where P

1

and P

3

are the Legendre polynomials of order 1 and 3, respe-

tively: P

1

(�) = � and P

3

(�) = (5�

3

� 3�)=2. Furthermore, it will be

onvenient for the statement of the boundary onditions below to have the

following integrals with respet to the weight � at hand:

r

1

= 2�

R

1

0

��(�) d�;

r

2

= 2�

R

1

0

�

2

�(�) d�;

r

3

= 2�

R

1

0

�

2

�(�) d�;

r

4

= 2�

R

1

0

�P

3

(�)�(�) d�;

r

5

= 2�

R

1

0

P

3

(�)�(�) d�;

r

6

= 2�

R

1

0

P

2

(�)P

3

(�)�(�) d�;

r

7

= 2�

R

1

0

P

3

(�)P

3

(�)�(�) d�;

The O(�

2

) or P

1

approximation is given by the approximate ux equation

�

"

2

3�

2

r

2

�+ �� = �(4�B)(5.4)

together with the energy equation

�T

�t

= r � (k

h

rT ) +r

2

�

3�

(5.5)

and the ux boundary ondition

(1� 2r

1

)�(x̂)� (1 + 3r

2

)

2"

3�

n � r�(x̂) = 4I

1

(x̂):(5.6)
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where n is the normal to the boundary pointing into the domain. The

boundary ondition for the temperature is in all ases given by (2.5). Con-

dition (5.6) is found by equating half{uxes and expanding the radiative

intensity similar to (4.1) in setion 4. Introduing the variable

� = �+

4

5

(�� 4�B);

the SP

2

approximation is

�

3"

2

5�

r

2

� + �� = �(4�B);(5.7)

and again

�T

�t

= r � (k

h

rT ) +r

2

�

3�

;(5.8)

with boundary ondition

�

1

�(x̂)� (1 + 3r

2

)

2"

3�

n � r�(x̂) = �

2

4�B(T

b

(x̂)) + 4I

1

(x̂);(5.9)

where we use the short notation

�

1

=

5

9

�

1� 2r

1

+

1

2

(1� 4

�

3r

3

� r

1

)

�

�

�

2

=

1

2

�

1� 4(3r

3

� r

1

)

�

�

4

5

�

1

:

The SP

3

approximation is given by the following: Let

 

n

= �+ 

n

�

2

; n = 1; 2(5.10)

where �

2

is given by

�

2

= (1�

11

21

�

2

�

2

r

2

)

�1

2�

2

15�

2

�

and



n

=

5

7

h

1 + (�1)

n

3

r

6

5

i

:

If we de�ne onstants

a

n

=

1

30

�

5� 3

r

5

6

�

; n = 1; 2;

and

�

2

n

=

3

7

�

2

7

r

6

5

; n = 1; 2;
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then the SP

3

approximation onsists of the ux equations

�"

2

r �

1

�

r�

2

1

 

1

+ � 

1

= �(4�B);(5.11)

�"

2

r �

1

�

r�

2

2

 

2

+ � 

2

= �(4�B);(5.12)

together with the energy equation

�T

�t

= r � (k

h

rT ) +r

2

a

1

 

1

+ a

2

 

2

�

:(5.13)

The SP

3

boundary onditions for � and �

2

are originally

(1� 2r

1

)

1

4

�(x) + (1� 8r

3

)

5

16

�

2

(x) + (1 + 3r

2

)

"

6�

n � r�(x)

�

�

1 + 3r

2

3

+

3r

4

2

�

2"

3�

n � r�

2

(x) = I

1

(x);

�(1 + 8r

5

)

1

16

�(x) + (1� 8r

6

)

5

16

�

2

(x) + 3r

4

"

6�

n � r�(x)

�

�

r

4

+

3

14

(1 + 7r

7

)

�

"

�

n � r�

2

(x) = I

3

(x):

or formally

A

1

�(x) +A

2

�

2

(x) +A

3

"

�

n � r�(x) +A

4

"

�

n � r�

2

(x) = I

1

(x)

B

1

�(x) +B

2

�

2

(x) +B

3

"

�

n � r�(x) +B

4

"

�

n � r�

2

(x) = I

3

(x):

We have to derive boundary onditions for  

1

and  

2

. Using the formulae

in (5.10), we an transform the boundary onditions for � and �

2

into

boundary onditions for  

1

and  

2

. De�ning w

0

= 1=(

2

� 

1

) we have

� = w

0



2

 

1

� w

0



1

 

2

; �

2

= �w

0

 

1

+ w

0

 

2

;

suh that the boundary equations above beome

(A

1



2

w

0

�A

2

w

0

) 

1

+ (�A

1



1

w

0

+A

2

w

0

) 

2

+(A

3



2

w

0

� A

4

w

0

)

"

�

n � r 

1

+ (�A

3



2

w

0

+A

2

w

0

)

"

�

n � r 

2

= I

1

(B

1



2

w

0

�B

2

w

0

) 

1

+ (�B

1



1

w

0

+B

2

w

0

) 

2

+(B

3



2

w

0

�B

4

w

0

)

"

�

n � r 

1

+ (�B

3



2

w

0

+B

2

w

0

)

"

�

n � r 

2

= I

3

or, again formally rewritten for writing onveniene,

C

1

 + C

2

 

2

+ C

3

"

�

n � r + C

4

"

�

n � r 

2

= I

1

D

1

 +D

2

 

2

+D

3

"

�

n � r +D

4

"

�

n � r 

2

= I

3

:
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We eliminate the gradient term n �r 

2

in the �rst equation and n �r 

1

in

the seond in order to get boundary onditions for the  

1

and  

2

equations,

respetively, suh that  

1

and  

2

are only weekly oupled. We �nd

(C

1

D

4

�D

1

C

4

) 

1

+ (C

3

D

4

�D

3

C

4

)

"

�

n � r 

1

= �(C

2

D

4

�D

2

C

4

) 

2

+ (D

4

I

1

� C

4

I

3

)

�(C

2

D

3

�D

2

C

3

) 

2

+ (C

3

D

4

�D

3

C

4

)

"

�

n � r 

2

= (C

2

D

3

�D

2

C

3

) 

1

� (D

3

I

1

� C

3

I

3

)

so, if we set D = C

3

D

4

�D

3

C

4

and de�ne onstants

�

1

= (C

1

D

4

�D

1

C

4

)=D;

�

1

= (C

2

D

4

�D

2

C

4

)=D

�

2

= �(C

2

D

3

�D

2

C

3

)=D;

�

2

= �(C

2

D

3

�D

2

C

3

)=D;

then we end up with SP

3

boundary onditions for (5.11) and (5.12) in the

following form:

�

1

 

1

(x) +

"

�

 

1

(x) = ��

2

 

2

(x) + (D

4

I

1

(x) � C

4

I

3

(x))=D;(5.14)

�

2

 

2

(x) +

"

�

 

2

(x) = ��

1

 

1

(x)� (D

3

I

1

(x) � C

3

I

3

(x))=D:(5.15)

6. Numerial Results. We investigated the approximation of the

radiative transfer solution by the oupling approah from setion 4 and

the approximations using improved di�usion equations in setion 5. In our

�rst example we onsider domain deomposition, see [11℄. 3D{multiband

equations were studied for a typial example in glass manufaturing. We

simulated the annealing of a ylindrial glass slab with radius 1m and

height 2m. The number of frequeny bands was M = 18 and the ab-

sorption oeÆients �(k) ranged in magnitude from 1m

�1

to 10

5

m

�1

for

the di�erent bands. We started with an initial temperature T

0

= 873K of

the glass and used (2.5) as boundary ondition for the heat transfer equa-

tion. We assumed room temperature T

ext

= 293K in the exterior and the

outside radiation is aordingly assumed to be a Plankian i.e. isotropi

R(
; �) = B(T

ext

; �). In our ase, the refrative oeÆients n

1

and n

2

were hosen for glass with surrounding air: we set n

1

= 1:46 and n

2

= 1.

Therefore, the orresponding hemispheri emissivity was set � = 0:92. The

edge of of the opaque part of the spetrum was loated at the wavelength

�

1

= 7�m thus giving �

1

= =�

1

= 4:28 � 10

13

s

�1

. Furthermore, we used

the density �

m

= 3000kg=m

3

, the spei� heat 

m

= 1000J=kgK, the ther-

mal heat ondutivity k

h

= 1:6W=mK and a vanishing onvetive heat

transfer oeÆient h = 0W=m

2

K. Figure 1 shows a omparison of the

domain deomposition approah, the global radiative transfer solution and

the di�usion approximation for the above data. The temperature is plotted

at a �xed time onsidering a horizontal setion in the middle of the ylin-

der. The radiative transfer solution and the oupled solution show good

agreement in ontrast to the di�usion solution.
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858

860
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864

866

868

870

872

874

0 0.5 1 1.5 2
x

SEMITRANSPARENT MATERIALS

radiative
fluxes-0.3
fluxes-0.1

diffusion

Fig. 1. Domain deomposition approah. The lassial di�usion (Rosseland) ap-

proximation used in the interior domain while the radiative transfer equations solved

in the boundary layer. Two deompositions with layers of size 0:1 and 0:3, respetively,

were investigated.

The investigation of the di�usion approximations was done for the 1D

model in so{alled slab geometry. Temperature and radiation only depend

on the x{oordinate in spae but not on y and z and, moreover, the radia-

tion is symmetri with respet to the x{axis. Simulations were done for the

single band ase as desribed above. Standard �nite di�erenes were ap-

plied to disretize the di�usion equations and uniform spae and time grids

were used. We hose a grid size 0.01 for the saled interval [0; 1℄ and the

time step 0.0001. The initial temperature is T

0

= 1000K while the exterior

temperature is T

ext

= 300K. We assume the saled physial parameters

in the equations to have the values � = 1, k

h

= 1 and h = 1. The rest of

the parameters were the same as in the previous example. Di�erent optial

regimes were onsidered orresponding to di�erent values of the parameter

�. Figures 2 and 3 show the three improved SP

N

di�usion approximations

explained in setion 5 in omparison with the radiative transfer solution

and the Rosseland approximation at time t = 0:01. As an be observed,

the improved approximations, in partiular the SP

3

approximation, give

better results than the onventional di�usion approximation. Furthermore,

owing to the asymptoti analysis leading to the lassial di�usion approxi-

mation and the SP

N

approximations, one expets that all of them beome

the more aurate the smaller " is i.e. the more optially thik and di�u-

sive the regime is. The results on�rm this asymptoti behaviour whih

is partiularly distintive in the Rosseland approximation. We mention
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Fig. 2. The SP

N

approximations for large parameter " = 1.
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Fig. 3. The SP

N

approximations in the optially thik, di�usive regime orre-

sponding to the small parameter " = 0:01.

that the Levermore moment method [3℄ for radiative transfer mentioned

in the introdution gives, in this simple ase, the same result as the P

1

approximation. However, this behaviour an hange drastially for more

ompliated problems with strong anisotropies, see [3℄.
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