NUMERICAL METHODS FOR RADIATIVE HEAT
TRANSFER IN DIFFUSIVE REGIMES AND
APPLICATIONS TO GLASS MANUFACTURING*

AXEL KLAR ' AND GUIDO THOEMMES #

Abstract. In this paper, different approaches for the numerical solution of radia-
tive heat transfer problems in diffusive regimes are considered. We discuss asymptotic
preserving schemes, domain decomposition methods and the development of improved
diffusion approximations. Problems related to glass manufacturing processes are numer-
ically investigated.
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1. Introduction. Simulation of heat transfer in semitransparent ma-
terials such as glass are usually done on the basis of the radiative transfer
equations or, using a diffusion approximation, on the basis of a nonlinear
diffusion equation. We refer to [15], [18], [19], [22], [24], [25] for a detailed
description of the equations and further references.

The diffusion approximation of radiative transfer models is obtained
by an asymptotic analysis using the diffusion scaling and letting the scaled
mean free path tend to zero. If standard numerical methods are used
to solve the radiative transfer equations in regimes with small mean free
path, usually, a very fine and expensive discretization depending on the
mean free path is required due to the stiffness of the equations near the
diffusion limit. This makes these schemes extremely time consuming. To
deal with this problem different approaches have been used. Examples will
be surveyed in the following:

The first approach is to develop numerical schemes for the transport
equation working uniformly for different regimes. In particular, it should
be possible to chose the discretization size independent of the mean free
path. In recent years there has been a lot of work on numerical methods for
transport equations working uniformly for a large range of parameters,see
[4, 14, 13, 17, 2, 6, 5, 21, 20, 7, 8]. These schemes are usually based
an semiimplicit time discretizations. In section 3 such a scheme will be
presented for the radiative transfer equations, see [10].

The second approach is based on the following observation: In many
applications it is not necessary to model the whole computational region
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by the computationally expensive radiative transfer equation. Only in par-
ticularly sensitive regions, where the solution is far from equilibrium, as for
example in boundary layers, these equations have to be employed. In the
remaining regions of the domain the diffusion approximation is valid, and
will lead to sufficiently accurate results. Domain decomposition methods
are thus a natural design tool in this case leading to accurate numerical
codes with reasonable computation times. One major problem is to obtain
the correct coupling conditions at the interface between the two regions,
see [10]. This is discussed in section 4.

The third approach is to use improved diffusion approximations. As
mentioned above diffusion theory is not capable of describing boundary
layers, and the question arises whether some more sophisticated diffusion
type approximations can suitably model the boundary layer effects. Such
higher—order asymptotic corrections to diffusion theory exist: they are the
so—called simplified Py (SPy) theories, see [23, 1]. These SPx theories
are, in fact, diffusion in nature. That is, they employ diffusion equations,
or coupled systems of diffusion equations. They contain boundary layer ef-
fects and can be remarkably accurate — much more accurate than standard
diffusion theory. In practice, one views these equations as an extended
form of diffusion theory. No separate boundary—layer treatment is neces-
sary because the boundary layers are included in the SPy equations. For
other approximate theories for the above equations and applications, see for
example [3, 16]. In these papers approximations based on the Levermore
moment expansion and improved diffusion equations are derived.

2. The equations. In a domain D € R® we consider the radiative
transfer equations including conductive heat transfer but without photon
scattering. The space variable is dentoted by x € D, the direction by
the unit vector 2 € S, S the unit sphere, v € Rt denotes the frequency,
t € RT the time and M the number of spectral bands. For the absorp-
tion cross-section & = £&(v) we assume &(v) = k(k) = const,k =1,---, M
for v € [vg,vp41), where k(k) is the absorption cross-section for band k.
This assumption is justified in many cases, for example, in the case of
radiative heat transfer in glass. The interval [vq, 00) is called the transpar-
ent region and [0,v1) the opaque region of the frequency. We denote by
I =I(z,Q,1,k) the radiative intensities at z in the direction  in band k
and by T'(z,t) the temperature. We consider the transport equation for
the radiative intensity

21) Q-VI(x,Qtk) = k(k)[B(T(z,t), k) — I(z,Q,, k)],

where the spectral black body intensity for the k-th band is defined by

B0 = [ B )

k
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with the spectral black body intensity

. 2h, v | her
B(T,v) = T2 (e%s7 — 1)},
C

where hy,, ¢, kp are Planck’s constant, the speed of light and the Boltzmann
constant, respectively.
This equation is considered together with the temperature equation

(2.2) cmpmO T (x,t) =V - (kp VT (2, 1))
=3 k(k) / (B(T(x, ), k) — I(z, 0, ¢, k)]d2.
k S

Here ¢, pm, ki are the specific heat, the density and the thermal conduc-
tivity, respectively. Initial conditions have to be imposed on the tempera-
ture:

(2.3) T(x,0) =Ty(z),xz € D.

Boundary conditions for I can be of absorbing, reflecting or mixed type.
For example, for & € 0D, whose inward—pointing normal is n, one can use
the semi—transparent boundary condition

where Q- n > 0. Here ' is the reflection of 2 in the tangent plane to dD:
Q'=0-2n(n-Q),

and p is the reflectivity and R denotes the radiative intensity transmitted
into the medium from the outside. The reflectivity p is given by the Fresnel
and Snell law. This means for incident angle ©; with cos®; = n - Q we
have

1 tan2(®1 - @2) sin2(®1 - @2)
p== - + —
2 tan?(©1 + ©2)  sin?(01 + O9)

with
n2sinB®s = nisin®y,

if |sin(©1)] < 22 and p = 1 otherwise. Here n; is the refractive index
for the material and no the coefficient for the surroundings. We assume
ny > Na.

Boundary conditions for the heat transfer equation (2.2) are needed
as well. One can prescribe either the temperature or the heat flux at the

boundary. The heat flux is given by the total (convective plus radiative)
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heat input at the boundary. For example, the following conditions can be
imposed at & € 0D, see [25]:
(2.5) kpn -V, T(2,t) = —q(T(2,1))
with ¢ given by
a(T(&,t)) = MTeqr(&,t) — T(,1))

+ar [ B(Tur(a.0,) - B0l

where T,,; is a fixed exterior temperature. The last equation models the
heat transfer at the boundary resulting from a convective term due to
the temperature difference at the boundary and a term due to the surface
radiation of the body, h denoting the convective heat transfer coefficient
and «a the emissivity depending on the refractive indizes. The integration
is only over the opaque frequencies, v € [0,v1).

To simplify the notation we restrict in the following to the case of only
one frequency band & = & for v € [v,00). We use the notation

<f>:/5f(ﬂ)dﬂ.

We introduce the diffusion scaling, see [12, 15]. If l,ct,trer, biref, Khres
denote the reference scales for length, time, absorption and conduction,
the quantity

1

€= ———
Hreflref

is assumed to be small. Moreover we have the relations
tref = Cmmefrefl?«gf
khref”ref =1
This gives the nondimensionalized equations
(2.6) eQ-V,I=xr(B(T)-1)
(2.7) 0T = ¥V, - (kpV,T) —k < B(T) =1 > .

We investigate equations (2.6), (2.7) as € tends to 0 using an ansatz of the
form

I=1+el' +1° + ...
T=T"+T%+....
Collecting terms of the same order in € one obtains:
I° = B(T%)
1
I'=-=Q-V,I°
K



HEAT TRANSFER IN GLASS MANUFACTURING )

and the limiting diffusion equation for T°:

(2.8) OHT° =V, - [(kp + k. (T°)V,T],

k(1) = T 90,

Boundary conditions for (2.8) are given by (2.5).

3. Asymptotic preserving schemes. For small values of €, prob-
lem (2.6), (2.7) is stiff. In this section we are interested in developing a
numerical scheme which is suitable for simulations of the equations in the
small mean free path limit. The algorithm should work uniformly for all e
and tend to a suitable scheme for the diffusion equation as € tends to 0. In
particular, it should not be necessary to adapt the stepsize as € — 0. These
points are obviously not satisfied for a straightforward explicit discretiza-
tion of the equations. However, they can be achieved by a semi—implicit
discretization. For ¢ — 0 the discretization presented below tends to a
standard linear implicit method for the nonlinear diffusion equation (2.8).
To obtain a suitable discretization of (2.6), (2.7) we start by rewriting the
problem.

The asymptotic procedure suggests writing the radiative intensity in
the form I(x,Q,t) = B(T(x,t)) + el (x,Q,t)+€2Z(x,t), with (I) = 0. This
is a decomposition of I into its mean value (I) = 47 B(T)+€2Z with respect
to  and the remainder el. Instead of I , we use the new unknowns I and
Z.

Equations (2.6) are now rewritten as a system for I , Z and T deter-
mining an equation for the mean value of (2.6), and the deviation from the
mean value:

(31) V.- (Ql) = —4nkZ,

(32) Q-V.B(T)+eV, - (Qf - 4i<nf>) +E0-V,Z = —kl,
™

(3.3)  OT = kpA,T + 47wk Z .

The transformed system consists of the the kinetic equation (3.2) for I ,
and the parabolic equation (3.3) for T'. Therefore, boundary conditions for
I and T are needed. We refer to [10] for details.

In the following the problem in the form (3.1)—(3.3) will be discretized.
First the time discretization is discussed. We introduce a time step 7 >
0 and approximations of the solution at time t" = nr, denoted by the
superscript n. We use a semi-implicit discretization of (3.1)—(3.3) where
backward differences are used for the zeroth order terms (as ¢ — 0) and
forward differences for higher order terms:

(3.4) V. - ('Y = —4mznHt
1

(3.5) B (TMQ -V, T + €V, - (QI" - E(Qf”))
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+EV, - (AZ™) = —kI™H

1
(3.6) —(T"T — T = by AT + dnpZn T
T

Note that linearization about the old time step has been used to make
the problem at the new time step linear. From the equations (3.4), (3.5),
Z"+1 and I™! can be computed explicitly in terms of 7. Using the
expressions for Z"*! and I"*! in (3.6) we obtain

(3.7) kI = —B'(T™Q -V, T + G,
~ 1 N
with G = =V, - (" — —(QI")) — €V, - (227),

(3.8) KZ" =V, - (%B’(T")VzT”“) +eH",
K

1

4

3 + edrH™ .

T

(39) (" ~T") =V, - [(kh + B'(T")> v,

Thus, an elliptic equation for 77" remains to be solved. For € = 0, the
last equation becomes a stable, linear-implicit discretization of the diffusion
equation (2.8).

To state the spatial discretization we consider for simplicity a one-
dimensional problem z € [0,1] and denote the component of ) in this
direction by the one-dimensional variable p, u € [—1,1].

We discretize space using staggered grids with A = 1/imax:

x; = ih, 1 =0,...,imax
and
1'1_1/2:(1—1/2)]1, i:O,...,imax—l—l.

The variables T', and Z are discretized at the full grid points x;, and I is
discretized at the points z;_; /». The approximations at time " are denoted

by T}, Z', and IF" | ,,. Defining

(B"); = B(T}"), (B)i_1y2 = % (B'(T7") + B'(T}21))

the one-dimensional, space-discretized version of (3.7)—(3.9) reads

Tin—&-l _ it

(10) I = (B Gl
with

n Ko 2n n
(3.11) i—1/2 — _E(Ii —1i')

b (B -1y - Lzp - 21y
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(3.12) wZM =eH]

L (P Wl A et %
3hE i+1/2 A i—1/2 h
with
I /p
(3.13) H = - <E(G?+1/2 - G?—1/2)> ’

1 1
14 (@It ==
(3.14) T( i i) 5

ar TiTEl - Tinﬂ
(kh + E(B )?+1/2> - n

dr T -1t .
- <k}h + ﬁ(B’>i—l/2> % + 647THi

The free streaming operator in (3.11) is discretized by an upwinding pro-
cedure:

1 In

ITL: A~
/2 for p < 0.

N {jinl/27 for p >0,
For e =0, (3.14) becomes a standard linear-implicit discretization of (2.8).

For the discretization of the boundary conditions we refer to [10]. The
following algorithm needs to be carried out for each time step:

Step 1: Compute G?71/2’ i=1,...,imax, from (3.11).

Step 2: Compute H?, i =1,... imax—1, from (3.13).

Step 3: Compute T7""', i = 0,. .. imax, from (3.14) subject to boundary
conditions.

Step 4: Compute Zi"Jrl7 i=1,...,imax—1, from (3.12).

Step 5: Compute IAZ."fll/Q, i =1,...,imax, from (3.10) subject to boundary
conditions.

Note that only Step 3 is implicit. A tridiagonal system resulting from
the implicit discretization of a parabolic equation needs to be solved there.
finally, we mention that for the velocity discretization standard methods
are used.

4. Domain decomposition methods. By solving radiative transfer
and diffusion equations simultanously in different domains, a good approx-
imation of the full radiative transfer solution may be obtained. More-
over, the computational complexity is in general considerably below the
one needed for the full radiative transfer solution, in particular, if the dif-
fusion approximation is valid in the main part of the domain as it is the
case in diffusive regimes. We assume that the computational domain is
separated into a subdomain where the radiative transfer equation is solved
and another subdomain where the diffusion approximation is used. That
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means we consider the domain D divided into two non-overlapping sub-
domains D4 and Dy, D4 U Dg = D with boundaries 8D 4,0Dpg and the
interface F = 9D, NADpg.

The global radiative transfer solution is approximated by the solution
of the following coupling problem: in D4 the radiative transfer equation
(2.6) is solved and in Dp the diffusion equation (2.8). Providing these
equations with coupling conditions at the interface F will lead to a properly-
stated problem. This is solved by an iterative procedure solving in turn
the two equations, see [11]. In the following I4,T4 and Ip,Ts denote the
solution of (2.6) in D4 and Dpg, respectively. T denotes the solution of
the diffusion equation (2.8) in Dp.

These coupling conditions can be found by using an additional rescal-
ing of the normal component of the space variable in an interface layer
between the two domains. Equations for interface layer terms can be de-
rived. Coupling conditions can be found using an appropriate matching
of the radiative transfer domain, the layer and the diffusion domain, see
[11]. Here we state suitable approximations of these conditions. They are
based on equalizing fluxes and the fact that the intensity Ip in the diffusion
domain can be approximated by

(4.1) Ig(x,Q) ~ B(Ty(x)) — e%ﬂ “V.B(T3(x)) + O(e?).

Assuming T4 in the radiative transfer domain to be known a straightfor-
ward coupling condition for T, the diffusion solution, would be TH(z) =
Ta(£),# € F. TY is however only a first order approximation of Tg. A
much better condition can be found by the analysis of the interface layer.
An approximation is

(4.2) TY(3) — cal@)n - V,TH(#) = Ta(@),

where 1 is the normal to the interface pointing into Dp and « is determined
by

1 .
(4.3) < —/ p2dQ >=< / po(2)dQ >

K Ju>o0 >0
with g =n-Q. (4.3) is found by comparing the positive halfluxes of £ and
a.

The condition for the radiative transfer solution in D 4 assuming Tg to

be known are found using (4.1) as an approximation of the ingoing function.
ILe.

(4.4) I4(%,9Q) = B(Tg(2)) — e%ﬂ -V.B(T(%)),u < 0.

The condition for T4 is found by equalizing the total flux (radiative transfer
and heat flux) in the direction of the normal to the interface, i.e.

Ekpn -V, T(x) —e <n-QI(x,Q) > .
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We obtain the additional coupling condition by requiring the continuity of
these fluxes at the interface, i.e.

(4.5) eknn - VoTu(#)— < n- QLo(E,Q) >
= ekpn - Vo Tp(3)— < n- Qp(E,Q) > .
Using (4.1) and approximating Tg by T one obtains
(4.6) ekpn - VoTa(Z)— <n- Q4 (2,0Q) >
= ehpn - Vo TO() + € < %n Q0 -V, B(TY(3)) >
14nm

= ekpn - V. Th(2) + eE?B’(Tg(i))n V. To(Z)

= e[kn + kr(Tlg(i))]” ’ VzT](B)’('%)

Equation (4.6) gives a second straightforward coupling condition.

The coupled solution is now obtained by an iterative procedure solving
in turn radiative transfer and diffusion equations. A numerical example
using the above coupling conditions is found in the last section.

5. Approximate equations. In this section we derive improved dif-
fusion approximations, the SPy equations for radiative transfer see [9]. In
order to formally “solve” equation (2.6), we write it in the form

(1 +20. V)I = B(T).
K
and invert the operator on the left using Neumann’s series

-1
(5.1) I:(1~|—%Q-V) B
2 3
—h_ o veii. v (. v)¥34+...
_[1 QY4 (V) - (V) + ]B.

Integrating with respect to Q and using the result

27
<(Q-V)">=[14(-1)" — 1V”,
we get
p=<1I>
e o, € a0 e 8
(5.2) :47r[1+@v Vi ---]B+O(s ).
Hence

7B = [1+iv2+iv4+iv6]_l¢+0( )
= 3K?2 5kt 5k c
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o4
4
3&2 5/<;4 sy

+ /—/H
—
ot
e
<
>
| IE—

{—V + —V4 + —VG]

32" T Bet Y T 5o
[32 Vi 5—V4 + 5—V6] : '}¢+O(58)
[1 - 3E_;V2 - 4456,:4 vi- ;;15266 V6]¢ +0(e%),

SO
(53)  4nB=[1- ;_;v? _ 4‘;6:4 vt 945 6V6:|¢+ 01,

If we discard terms of O(g?),0(c%) or O(e®) we obtain the P;, SP, and
SP; approximations, respectively. The above approximation (5.2) for ¢ is
then used in the temperature equation (2.6). In the following we state the
different approximate equations and suitable boundary conditions, see [9]
for details. Let us define for m = 1, 3 integrals of the influx of radiation on
the boundary, & € 0D

In(@) = [ (L= pln- D) Palln- QDR(5,2) de

n-2>0

where P, and Ps are the Legendre polynomials of order 1 and 3, respec-
tively: Py(p) = p and Ps(p) = (5p® — 3p)/2. Furthermore, it will be
convenient for the statement of the boundary conditions below to have the
following integrals with respect to the weight p at hand:

no= 2 fyop olu) dp. rs = 2m [y Py(wpp) du,

ry = 27Tfo *p(k) du, re = 27Tf01 Py (p) Ps(p)p(p) dps,
ry = 27rf0 2p(1e) dp, rro= 2w [y Py(p)Ps(p)p(p) dp,
re o= 27 fy uP:s(u) () du,

The O(e?) or Py approzimation is given by the approximate flux equation

(5.4) —%v% + k¢ = k(47 B)

together with the energy equation

or x3
(5.5) o7 =V (V) + V2

and the flux boundary condition

(5.6) (1—2r)e(2) — (1 + 37“2)?2)—211 - Vé(2) = 414 (3).
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where n is the normal to the boundary pointing into the domain. The
boundary condition for the temperature is in all cases given by (2.5). Con-
dition (5.6) is found by equating half-fluxes and expanding the radiative
intensity similar to (4.1) in section 4. Introducing the variable

£=6+2(0—4nD)

the SP, approximation is

3e?_,
(57) —EV f—f' Iif = I<J(47TB),
and again
or 5 &
(5.8) 5 = V- (kxVT)+V o

with boundary condition

(5.9) @) -1+ 37“2);—2” - VE(#) = pdr B(Ty (%)) + 46(2),

where we use the short notation

5} 1
(651 25(1—2T1+§(1—4(3T3—T1)))
1 4
Qa9 = 5(1 —4(3T3 —7”1)) - gOél.

The SP; approximation is given by the following: Let

(5.10) Y =¢+ Vo2, n=12

where ¢, is given by

11 € 2¢2
— (1 - = g2yt
n=0-gaV) 5e?
and
5 ns/0
=3[ crif)
If we define constants
1 5
an—%<5¢3 6),71_1,2,
and
3 2 /6
2=Cdy/on=1,2
I’Ln 7 7 57” ) &y
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then the SP; approximation consists of the flux equations
(5.11) -2V - %w%wl + ktpy = k(47 B),
(5.12) —£2v . %wng + Koy = k(47 B),

together with the energy equation

or 211 + azt)s
5 = V- (kxVT)+ V —

The SP; boundary conditions for ¢ and ¢- are originally

(5.13)

(1- 2r1)i¢(w) . 8r3)15—6¢2(x) +(143r) on - V()
(T V) = L),
—(1+ 8r5)1i6¢>(x) +(1- SrG)%qﬁg (z) + 37»4;—&71 - Vo(z)
- (m n %(1 n m)) %n Vn(z) = I3().

or formally
A16(z) + Asdo(z) + A?,%n Vé(z) + A4%n Vs(z) = L(z)
Bi(x) + Baa(2) + By—n - V(x) + Bi=n- Vou(a) = Ly(w).

We have to derive boundary conditions for ¢; and . Using the formulae
in (5.10), we can transform the boundary conditions for ¢ and ¢, into
boundary conditions for ¥; and .. Defining wy = 1/(72 — 1) we have

¢ = woyeP1 — wWoy1Y2, ¢2 = —woth1 + woths,
such that the boundary equations above become
(A1y2wo — Aswo )iy + (—Ar1r1woe + Aswp) )2
€ €
+(A3’)/2U)0 — A4U)0)E’l7/ . le + (—A3’72’LUO + A2’LU0)ETL - V’l/JQ = Il
(B1y2wo — Bawp)yn + (—B1y1woe + Bawp)
€ €
+(B3’}/2’LUO — B4’LU0)ETL - V’l/Jl + (—B3’72’LUO + B2’LU0)ETL - V’l/JQ = Ig
or, again formally rewritten for writing convenience,
€ e
Ci1p + Carpy + 03?1 -V + C4En Vi =1

D14 + Doty +D3§n-w+D4§n Vi =I5,
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We eliminate the gradient term n - Vi) in the first equation and n - Vi, in
the second in order to get boundary conditions for the ¢; and 1> equations,
respectively, such that 11 and - are only weekly coupled. We find

(CLD4 = DiCy)ys + (CsDa = DsCi)=n - Viiy
= —(CaDy — D2Cy)p2 + (Dy I — C4 I3)
—(C2D3 — D2C3)p2 + (C3Dy — D3C4)%Tl - Vipy
= (C2D3 — D2Cs)¢y — (D3 Iy — C3 I3)
8o, if we set D = C3D4 — D3(Cy and define constants

a1 = (CiDs—DCh)/D, as = —(CyD3— DyC3)/D,
f1 = (C2D4— D2C4)/D B2 = —(CyD3 — D>C3)/D,

then we end up with SP; boundary conditions for (5.11) and (5.12) in the
following form:

(5.14) a1y (x) + %wl (x) = =B2tp2(x) + (D4 L (z) — C4 I3(2))/ D,
(5.15) aztp2(w) + sz(w) = =B (x) — (D3 Li(w) — C3 I3(z))/D.

6. Numerical Results. We investigated the approximation of the
radiative transfer solution by the coupling approach from section 4 and
the approximations using improved diffusion equations in section 5. In our
first example we consider domain decomposition, see [11]. 3D—multiband
equations were studied for a typical example in glass manufacturing. We
simulated the annealing of a cylindrical glass slab with radius lem and
height 2em. The number of frequency bands was M = 18 and the ab-
sorption coefficients (k) ranged in magnitude from 1m ™! to 10°m ! for
the different bands. We started with an initial temperature Ty = 873K of
the glass and used (2.5) as boundary condition for the heat transfer equa-
tion. We assumed room temperature T, = 293K in the exterior and the
outside radiation is accordingly assumed to be a Planckian i.e. isotropic
R(Q,v) = B(Tewt,v). In our case, the refractive coefficients n; and ns
were chosen for glass with surrounding air: we set n; = 1.46 and no = 1.
Therefore, the corresponding hemispheric emissivity was set a = 0.92. The
edge of of the opaque part of the spectrum was located at the wavelength
A1 = Tpm thus giving v = ¢/A; = 4.28 - 1013s7L. Furthermore, we used
the density p,, = 3000kg/m?3, the specific heat ¢, = 1000J/kgK, the ther-
mal heat conductivity k;, = 1.6W/mK and a vanishing convective heat
transfer coefficient h = 0W/m?K. Figure 1 shows a comparison of the
domain decomposition approach, the global radiative transfer solution and
the diffusion approximation for the above data. The temperature is plotted
at a fixed time considering a horizontal section in the middle of the cylin-
der. The radiative transfer solution and the coupled solution show good
agreement in contrast to the diffusion solution.
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Fic. 1. Domain decomposition approach. The classical diffusion (Rosseland) ap-
proximation used in the interior domain while the radiative transfer equations solved
in the boundary layer. Two decompositions with layers of size 0.1 and 0.3, respectively,
were investigated.

The investigation of the diffusion approximations was done for the 1D
model in so—called slab geometry. Temperature and radiation only depend
on the z—coordinate in space but not on y and 2z and, moreover, the radia-
tion is symmetric with respect to the z—axis. Simulations were done for the
single band case as described above. Standard finite differences were ap-
plied to discretize the diffusion equations and uniform space and time grids
were used. We chose a grid size 0.01 for the scaled interval [0, 1] and the
time step 0.0001. The initial temperature is Ty = 1000K while the exterior
temperature is T,y = 300K. We assume the scaled physical parameters
in the equations to have the values k = 1, k, = 1 and h = 1. The rest of
the parameters were the same as in the previous example. Different optical
regimes were considered corresponding to different values of the parameter
€. Figures 2 and 3 show the three improved SPy diffusion approximations
explained in section 5 in comparison with the radiative transfer solution
and the Rosseland approximation at time ¢ = 0.01. As can be observed,
the improved approximations, in particular the SP; approximation, give
better results than the conventional diffusion approximation. Furthermore,
owing to the asymptotic analysis leading to the classical diffusion approxi-
mation and the SPy approximations, one expects that all of them become
the more accurate the smaller ¢ is i.e. the more optically thick and diffu-
sive the regime is. The results confirm this asymptotic behaviour which
is particularly distinctive in the Rosseland approximation. We mention



1000

950

900

850

800

750

Temperature T

700

650

600

550

500

750

HEAT TRANSFER IN GLASS MANUFACTURING

Radiative Heat Transfer (e=1)

—— Transport
Pn/SPn
— - Diffusion

L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position x

F1a. 2. The SPn approzimations for large parameter € = 1.

Radiative Heat Transfer (e=0.01)
T

700

650

600 -

Temperature T
o
a
o

a
[=}
o

450

|
400

T
~ —— Transport
Pn/SPn

— - Diffusion [

clipping

diffusion

0.35 0.4 0.45 0.5

350
0

Fia. 3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position x

15

The SPy approximations in the optically thick, diffusive regime corre-
sponding to the small parameter € = 0.01.

that the Levermore moment method [3] for radiative transfer mentioned
in the introduction gives, in this simple case, the same result as the P,
approximation. However, this behaviour can change drastically for more
complicated problems with strong anisotropies, see [3].
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