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Abstra
t. In this paper, di�erent approa
hes for the numeri
al solution of radia-

tive heat transfer problems in di�usive regimes are 
onsidered. We dis
uss asymptoti


preserving s
hemes, domain de
omposition methods and the development of improved

di�usion approximations. Problems related to glass manufa
turing pro
esses are numer-

i
ally investigated.
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1. Introdu
tion. Simulation of heat transfer in semitransparent ma-

terials su
h as glass are usually done on the basis of the radiative transfer

equations or, using a di�usion approximation, on the basis of a nonlinear

di�usion equation. We refer to [15℄, [18℄, [19℄, [22℄, [24℄, [25℄ for a detailed

des
ription of the equations and further referen
es.

The di�usion approximation of radiative transfer models is obtained

by an asymptoti
 analysis using the di�usion s
aling and letting the s
aled

mean free path tend to zero. If standard numeri
al methods are used

to solve the radiative transfer equations in regimes with small mean free

path, usually, a very �ne and expensive dis
retization depending on the

mean free path is required due to the sti�ness of the equations near the

di�usion limit. This makes these s
hemes extremely time 
onsuming. To

deal with this problem di�erent approa
hes have been used. Examples will

be surveyed in the following:

The �rst approa
h is to develop numeri
al s
hemes for the transport

equation working uniformly for di�erent regimes. In parti
ular, it should

be possible to 
hose the dis
retization size independent of the mean free

path. In re
ent years there has been a lot of work on numeri
al methods for

transport equations working uniformly for a large range of parameters,see

[4, 14, 13, 17, 2, 6, 5, 21, 20, 7, 8℄. These s
hemes are usually based

an semiimpli
it time dis
retizations. In se
tion 3 su
h a s
heme will be

presented for the radiative transfer equations, see [10℄.

The se
ond approa
h is based on the following observation: In many

appli
ations it is not ne
essary to model the whole 
omputational region

�
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by the 
omputationally expensive radiative transfer equation. Only in par-

ti
ularly sensitive regions, where the solution is far from equilibrium, as for

example in boundary layers, these equations have to be employed. In the

remaining regions of the domain the di�usion approximation is valid, and

will lead to suÆ
iently a

urate results. Domain de
omposition methods

are thus a natural design tool in this 
ase leading to a

urate numeri
al


odes with reasonable 
omputation times. One major problem is to obtain

the 
orre
t 
oupling 
onditions at the interfa
e between the two regions,

see [10℄. This is dis
ussed in se
tion 4.

The third approa
h is to use improved di�usion approximations. As

mentioned above di�usion theory is not 
apable of des
ribing boundary

layers, and the question arises whether some more sophisti
ated di�usion

type approximations 
an suitably model the boundary layer e�e
ts. Su
h

higher{order asymptoti
 
orre
tions to di�usion theory exist: they are the

so{
alled simpli�ed P

N

(SP

N

) theories, see [23, 1℄. These SP

N

theories

are, in fa
t, di�usion in nature. That is, they employ di�usion equations,

or 
oupled systems of di�usion equations. They 
ontain boundary layer ef-

fe
ts and 
an be remarkably a

urate { mu
h more a

urate than standard

di�usion theory. In pra
ti
e, one views these equations as an extended

form of di�usion theory. No separate boundary{layer treatment is ne
es-

sary be
ause the boundary layers are in
luded in the SP

N

equations. For

other approximate theories for the above equations and appli
ations, see for

example [3, 16℄. In these papers approximations based on the Levermore

moment expansion and improved di�usion equations are derived.

2. The equations. In a domain D 2 R

3

we 
onsider the radiative

transfer equations in
luding 
ondu
tive heat transfer but without photon

s
attering. The spa
e variable is dentoted by x 2 D, the dire
tion by

the unit ve
tor 
 2 S, S the unit sphere, � 2 R

+

denotes the frequen
y,

t 2 R

+

the time and M the number of spe
tral bands. For the absorp-

tion 
ross-se
tion ~� = ~�(�) we assume ~�(�) = �(k) = 
onst; k = 1; � � � ;M

for � 2 [�

k

; �

k+1

), where �(k) is the absorption 
ross-se
tion for band k.

This assumption is justi�ed in many 
ases, for example, in the 
ase of

radiative heat transfer in glass. The interval [�

1

;1) is 
alled the transpar-

ent region and [0; �

1

) the opaque region of the frequen
y. We denote by

I = I(x;
; t; k) the radiative intensities at x in the dire
tion 
 in band k

and by T (x; t) the temperature. We 
onsider the transport equation for

the radiative intensity


 � r

x

I(x;
; t; k) = �(k)[B(T (x; t); k)� I(x;
; t; k)℄;(2.1)

where the spe
tral bla
k body intensity for the k-th band is de�ned by

B(T (x; t); k) =

Z

�

k+1

�

k

~

B(T (x; t); �))d�
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with the spe
tral bla
k body intensity

~

B(T; �) =

2h

p

�

3




2

(e

h

p

�

k

B

T

� 1)

�1

;

where h

p

; 
; k

B

are Plan
k's 
onstant, the speed of light and the Boltzmann


onstant, respe
tively.

This equation is 
onsidered together with the temperature equation




m

�

m

�

t

T (x; t) = r

x

� (k

h

r

x

T (x; t))(2.2)

�

X

k

�(k)

Z

S

[B(T (x; t); k)� I(x;
; t; k)℄d
:

Here 


m

; �

m

; k

h

are the spe
i�
 heat, the density and the thermal 
ondu
-

tivity, respe
tively. Initial 
onditions have to be imposed on the tempera-

ture:

T (x; 0) = T

0

(x); x 2 D:(2.3)

Boundary 
onditions for I 
an be of absorbing, re
e
ting or mixed type.

For example, for x̂ 2 �D, whose inward{pointing normal is n, one 
an use

the semi{transparent boundary 
ondition

I(x̂;
; t; k) = �(
)I(x̂;


0

; t; k) + [1� �(
)℄R(x̂;
; k);(2.4)

where 
 � n > 0. Here 


0

is the re
e
tion of 
 in the tangent plane to �D:




0

= 
� 2n(n � 
);

and � is the re
e
tivity and R denotes the radiative intensity transmitted

into the medium from the outside. The re
e
tivity � is given by the Fresnel

and Snell law. This means for in
ident angle �

1

with 
os�

1

= n � 
 we

have

� =

1

2

[

tan

2

(�

1

��

2

)

tan

2

(�

1

+�

2

)

+

sin

2

(�

1

��

2

)

sin

2

(�

1

+�

2

)

℄

with

n

2

sin�

2

= n

1

sin�

1

;

if jsin(�

1

)j �

n

2

n

1

and � = 1 otherwise. Here n

1

is the refra
tive index

for the material and n

2

the 
oeÆ
ient for the surroundings. We assume

n

1

� n

2

.

Boundary 
onditions for the heat transfer equation (2.2) are needed

as well. One 
an pres
ribe either the temperature or the heat 
ux at the

boundary. The heat 
ux is given by the total (
onve
tive plus radiative)
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heat input at the boundary. For example, the following 
onditions 
an be

imposed at x̂ 2 �D, see [25℄:

k

h

n � r

x

T (x̂; t) = �q(T (x̂; t))(2.5)

with q given by

q(T (x̂; t)) = h(T

ext

(x̂; t)� T (x̂; t))

+ ��

Z

�

1

0

[

~

B(T

ext

(x̂; t); �)�

~

B(T (x̂; t); �)℄d�;

where T

ext

is a �xed exterior temperature. The last equation models the

heat transfer at the boundary resulting from a 
onve
tive term due to

the temperature di�eren
e at the boundary and a term due to the surfa
e

radiation of the body, h denoting the 
onve
tive heat transfer 
oeÆ
ient

and � the emissivity depending on the refra
tive indizes. The integration

is only over the opaque frequen
ies, � 2 [0; �

1

).

To simplify the notation we restri
t in the following to the 
ase of only

one frequen
y band ~� = � for � 2 [�

1

;1). We use the notation

< f >=

Z

S

f(
)d
:

We introdu
e the di�usion s
aling, see [12, 15℄. If l

ref

; t

ref

; �

ref

; k

h

ref

denote the referen
e s
ales for length, time, absorption and 
ondu
tion,

the quantity

� =

1

�

ref

l

ref

is assumed to be small. Moreover we have the relations

t

ref

= 


m

�

m

�

ref

l

2

ref

k

h

ref

�

ref

= 1

This gives the nondimensionalized equations

�
 � r

x

I = �(B(T )� I)(2.6)

�

2

�

t

T = �

2

r

x

� (k

h

r

x

T )� � < B(T )� I > :(2.7)

We investigate equations (2.6), (2.7) as � tends to 0 using an ansatz of the

form

I = I

0

+ �I

1

+ �

2

I

2

+ : : :

T = T

0

+ �

2

T

2

+ : : : :

Colle
ting terms of the same order in � one obtains:

I

0

= B(T

0

)

I

1

= �

1

�


 � r

x

I

0
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and the limiting di�usion equation for T

0

:

�

t

T

0

= r

x

� [(k

h

+ k

r

(T

0

))r

x

T

0

℄;(2.8)

k

r

(T ) =

4�

3

1

�

�B

�T

(T ):

Boundary 
onditions for (2.8) are given by (2.5).

3. Asymptoti
 preserving s
hemes. For small values of �, prob-

lem (2.6), (2.7) is sti�. In this se
tion we are interested in developing a

numeri
al s
heme whi
h is suitable for simulations of the equations in the

small mean free path limit. The algorithm should work uniformly for all �

and tend to a suitable s
heme for the di�usion equation as � tends to 0. In

parti
ular, it should not be ne
essary to adapt the stepsize as �! 0. These

points are obviously not satis�ed for a straightforward expli
it dis
retiza-

tion of the equations. However, they 
an be a
hieved by a semi{impli
it

dis
retization. For � ! 0 the dis
retization presented below tends to a

standard linear impli
it method for the nonlinear di�usion equation (2.8).

To obtain a suitable dis
retization of (2.6), (2.7) we start by rewriting the

problem.

The asymptoti
 pro
edure suggests writing the radiative intensity in

the form I(x;
; t) = B(T (x; t))+�

^

I(x;
; t)+�

2

Z(x; t) ; with h

^

Ii = 0. This

is a de
omposition of I into its mean value hIi = 4�B(T )+�

2

Z with respe
t

to 
 and the remainder �

^

I . Instead of I , we use the new unknowns

^

I and

Z.

Equations (2.6) are now rewritten as a system for

^

I , Z and T deter-

mining an equation for the mean value of (2.6), and the deviation from the

mean value:

r

x

� h


^

Ii = �4��Z ;(3.1)


 � r

x

B(T ) + �r

x

� (


^

I �

1

4�

h


^

Ii) + �

2


 � r

x

Z = ��

^

I ;(3.2)

�

t

T = k

h

�

x

T + 4��Z :(3.3)

The transformed system 
onsists of the the kineti
 equation (3.2) for

^

I ,

and the paraboli
 equation (3.3) for T . Therefore, boundary 
onditions for

^

I and T are needed. We refer to [10℄ for details.

In the following the problem in the form (3.1){(3.3) will be dis
retized.

First the time dis
retization is dis
ussed. We introdu
e a time step � >

0 and approximations of the solution at time t

n

= n� , denoted by the

supers
ript n. We use a semi-impli
it dis
retization of (3.1){(3.3) where

ba
kward di�eren
es are used for the zeroth order terms (as � ! 0) and

forward di�eren
es for higher order terms:

r

x

� h


^

I

n+1

i = �4�Z

n+1

;(3.4)

B

0

(T

n

)
 � r

x

T

n+1

+ �r

x

� (


^

I

n

�

1

4�

h


^

I

n

i)(3.5)
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+�

2

r

x

� (
Z

n

) = ��

^

I

n+1

;

1

�

(T

n+1

� T

n

) = k

h

�

x

T

n+1

+ 4��Z

n+1

:(3.6)

Note that linearization about the old time step has been used to make

the problem at the new time step linear. From the equations (3.4), (3.5),

Z

n+1

and

^

I

n+1


an be 
omputed expli
itly in terms of T

n+1

. Using the

expressions for Z

n+1

and

^

I

n+1

in (3.6) we obtain

�

^

I

n+1

= �B

0

(T

n

)
 � r

x

T

n+1

+ �G

n

;(3.7)

with G

n

= �r

x

� (


^

I

n

�

1

4�

h


^

I

n

i)� �r

x

� (
Z

n

) ;

�Z

n+1

= r

x

�

�

1

3�

B

0

(T

n

)r

x

T

n+1

�

+ �H

n

;(3.8)

with H

n

= �

1

4��

r

x

� h
G

n

i ;

1

�

(T

n+1

� T

n

) = r

x

�

��

k

h

+

4�

3�

B

0

(T

n

)

�

r

x

T

n+1

�

+ �4�H

n

:(3.9)

Thus, an ellipti
 equation for T

n+1

remains to be solved. For � = 0, the

last equation be
omes a stable, linear-impli
it dis
retization of the di�usion

equation (2.8).

To state the spatial dis
retization we 
onsider for simpli
ity a one-

dimensional problem x 2 [0; 1℄ and denote the 
omponent of 
 in this

dire
tion by the one-dimensional variable �, � 2 [�1; 1℄.

We dis
retize spa
e using staggered grids with h = 1=imax:

x

i

= ih; i = 0; : : : ; imax

and

x

i�1=2

= (i� 1=2)h; i = 0; : : : ; imax + 1:

The variables T , and Z are dis
retized at the full grid points x

i

, and

^

I is

dis
retized at the points x

i�1=2

. The approximations at time t

n

are denoted

by T

n

i

, Z

n

i

, and

^

I

n

i�1=2

. De�ning

(B

0

)

n

i

= B

0

(T

n

i

) ; (B

0

)

n

i�1=2

=

1

2

�

B

0

(T

n

i

) +B

0

(T

n

i�1

)

�

;

the one-dimensional, spa
e-dis
retized version of (3.7){(3.9) reads

�

^

I

n+1

i�1=2

= �(B

0

)

n

i�1=2

�

T

n+1

i

� T

n+1

i�1

h

+ �G

n

i�1=2

;(3.10)

with

G

n

i�1=2

= �

�

h

(

^

I

n

i

�

^

I

n

i�1

)(3.11)

+

1

4�

D

�

h

(

^

I

n

i

�

^

I

n

i�1

)

E

�

��

h

(Z

n

i

� Z

n

i�1

)
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�Z

n+1

i

= �H

n

i

(3.12)

+

1

3h�

 

(B

0

)

n

i+1=2

T

n+1

i+1

� T

n+1

i

h

� (B

0

)

n

i�1=2

T

n+1

i

� T

n+1

i�1

h

!

with

H

n

i

= �

1

4��

D

�

h

(G

n

i+1=2

�G

n

i�1=2

)

E

;(3.13)

1

�

(T

n+1

i

� T

n

i

) =

1

h

"

�

k

h

+

4�

3�

(B

0

)

n

i+1=2

�

T

n+1

i+1

� T

n+1

i

h

(3.14)

�

�

k

h

+

4�

3�

(B

0

)

n

i�1=2

�

T

n+1

i

� T

n+1

i�1

h

#

+ �4�H

n

i

The free streaming operator in (3.11) is dis
retized by an upwinding pro-


edure:

^

I

n

i

=

(

^

I

n

i�1=2

; for � > 0 ;

^

I

n

i+1=2

; for � < 0 :

For � = 0, (3.14) be
omes a standard linear-impli
it dis
retization of (2.8).

For the dis
retization of the boundary 
onditions we refer to [10℄. The

following algorithm needs to be 
arried out for ea
h time step:

Step 1: Compute G

n

i�1=2

, i = 1; : : : ;imax, from (3.11).

Step 2: Compute H

n

i

, i = 1; : : : ;imax�1, from (3.13).

Step 3: Compute T

n+1

i

, i = 0; : : : ;imax, from (3.14) subje
t to boundary


onditions.

Step 4: Compute Z

n+1

i

, i = 1; : : : ;imax�1, from (3.12).

Step 5: Compute

^

I

n+1

i�1=2

, i = 1; : : : ;imax, from (3.10) subje
t to boundary


onditions.

Note that only Step 3 is impli
it. A tridiagonal system resulting from

the impli
it dis
retization of a paraboli
 equation needs to be solved there.

�nally, we mention that for the velo
ity dis
retization standard methods

are used.

4. Domain de
omposition methods. By solving radiative transfer

and di�usion equations simultanously in di�erent domains, a good approx-

imation of the full radiative transfer solution may be obtained. More-

over, the 
omputational 
omplexity is in general 
onsiderably below the

one needed for the full radiative transfer solution, in parti
ular, if the dif-

fusion approximation is valid in the main part of the domain as it is the


ase in di�usive regimes. We assume that the 
omputational domain is

separated into a subdomain where the radiative transfer equation is solved

and another subdomain where the di�usion approximation is used. That
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means we 
onsider the domain D divided into two non-overlapping sub-

domains D

A

and D

B

, D

A

[D

B

= D with boundaries �D

A

; �D

B

and the

interfa
e F = �D

A

\ �D

B

.

The global radiative transfer solution is approximated by the solution

of the following 
oupling problem: in D

A

the radiative transfer equation

(2.6) is solved and in D

B

the di�usion equation (2.8). Providing these

equations with 
oupling 
onditions at the interfa
e F will lead to a properly-

stated problem. This is solved by an iterative pro
edure solving in turn

the two equations, see [11℄. In the following I

A

; T

A

and I

B

; T

B

denote the

solution of (2.6) in D

A

and D

B

, respe
tively. T

0

B

denotes the solution of

the di�usion equation (2.8) in D

B

.

These 
oupling 
onditions 
an be found by using an additional res
al-

ing of the normal 
omponent of the spa
e variable in an interfa
e layer

between the two domains. Equations for interfa
e layer terms 
an be de-

rived. Coupling 
onditions 
an be found using an appropriate mat
hing

of the radiative transfer domain, the layer and the di�usion domain, see

[11℄. Here we state suitable approximations of these 
onditions. They are

based on equalizing 
uxes and the fa
t that the intensity I

B

in the di�usion

domain 
an be approximated by

I

B

(x;
) � B(T

0

B

(x)) � �

1

�


 � r

x

B(T

0

B

(x)) + O(�

2

):(4.1)

Assuming T

A

in the radiative transfer domain to be known a straightfor-

ward 
oupling 
ondition for T

0

B

, the di�usion solution, would be T

0

B

(x̂) =

T

A

(x̂); x̂ 2 F . T

0

B

is however only a �rst order approximation of T

B

. A

mu
h better 
ondition 
an be found by the analysis of the interfa
e layer.

An approximation is

T

0

B

(x̂)� ��(x̂)n � r

x

T

0

B

(x̂) = T

A

(x̂);(4.2)

where n is the normal to the interfa
e pointing intoD

B

and � is determined

by

<

1

�

Z

�>0

�

2

d
 >=<

Z

�>0

��(x̂)d
 >(4.3)

with � = n �
. (4.3) is found by 
omparing the positive hal�uxes of

�

�

and

�.

The 
ondition for the radiative transfer solution in D

A

assuming T

0

B

to

be known are found using (4.1) as an approximation of the ingoing fun
tion.

I.e.

I

A

(x̂;
) = B(T

0

B

(x̂))� �

1

�


 � r

x

B(T

0

B

(x̂)); � < 0:(4.4)

The 
ondition for T

A

is found by equalizing the total 
ux (radiative transfer

and heat 
ux) in the dire
tion of the normal to the interfa
e, i.e.

�

2

k

h

n � r

x

T (x)� � < n � 
I(x;
) > :
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We obtain the additional 
oupling 
ondition by requiring the 
ontinuity of

these 
uxes at the interfa
e, i.e.

�k

h

n � r

x

T

A

(x̂)� < n � 
I

A

(x̂;
) >(4.5)

= �k

h

n � r

x

T

B

(x̂)� < n �
I

B

(x̂;
) > :

Using (4.1) and approximating T

B

by T

0

B

one obtains

�k

h

n � r

x

T

A

(x̂)� < n �
I

A

(x̂;
) >(4.6)

= �k

h

n � r

x

T

0

B

(x̂) + � <

1

�

n � 

 � r

x

B(T

0

B

(x̂)) >

= �k

h

n � r

x

T

0

B

(x̂) + �

1

�

4�

3

B

0

(T

0

B

(x̂))n � r

x

T

0

B

(x̂)

= �[k

h

+ k

r

(T

0

B

(x̂))℄n � r

x

T

0

B

(x̂):

Equation (4.6) gives a se
ond straightforward 
oupling 
ondition.

The 
oupled solution is now obtained by an iterative pro
edure solving

in turn radiative transfer and di�usion equations. A numeri
al example

using the above 
oupling 
onditions is found in the last se
tion.

5. Approximate equations. In this se
tion we derive improved dif-

fusion approximations, the SP

N

equations for radiative transfer see [9℄. In

order to formally \solve" equation (2.6), we write it in the form

�

1 +

"

�


 � r

�

I = B(T ):

and invert the operator on the left using Neumann's series

I =

�

1 +

"

�


 � r

�

�1

B(5.1)

=

h

1�

"

�


 � r+

"

2

�

2

(
 � r)

2

�

"

3

�

3

(
 � r)

3

+ � � �

i

B:

Integrating with respe
t to 
 and using the result

< (
 � r)

n

>= [1 + (�1)

n

℄

2�

n+ 1

r

n

;

we get

� = < I >

= 4�

h

1 +

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

7�

6

r

6

� � �

i

B +O("

8

):(5.2)

Hen
e

4�B =

h

1 +

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

�1

�+O("

8

)
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=

(

1�

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

+

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

2

�

h

"

2

3�

2

r

2

+

"

4

5�

4

r

4

+

"

6

5�

6

r

6

i

3

� � �

�

�+O("

8

)

=

h

1�

"

2

3�

2

r

2

�

4"

4

45�

4

r

4

�

44"

6

945�

6

r

6

i

�+O("

8

);

so

4�B =

h

1�

"

2

3�

2

r

2

�

4"

4

45�

4

r

4

�

44"

6

945�

6

r

6

i

�+O("

8

):(5.3)

If we dis
ard terms of O("

4

),O("

6

) or O("

8

) we obtain the P

1

; SP

2

and

SP

3

approximations, respe
tively. The above approximation (5.2) for � is

then used in the temperature equation (2.6). In the following we state the

di�erent approximate equations and suitable boundary 
onditions, see [9℄

for details. Let us de�ne for m = 1; 3 integrals of the in
ux of radiation on

the boundary, x̂ 2 �D

I

m

(x̂) =

Z

n�
>0

�

1� �(n �
)

�

P

m

(jn �
j)R(x̂;
) d


where P

1

and P

3

are the Legendre polynomials of order 1 and 3, respe
-

tively: P

1

(�) = � and P

3

(�) = (5�

3

� 3�)=2. Furthermore, it will be


onvenient for the statement of the boundary 
onditions below to have the

following integrals with respe
t to the weight � at hand:

r

1

= 2�

R

1

0

��(�) d�;

r

2

= 2�

R

1

0

�

2

�(�) d�;

r

3

= 2�

R

1

0

�

2

�(�) d�;

r

4

= 2�

R

1

0

�P

3

(�)�(�) d�;

r

5

= 2�

R

1

0

P

3

(�)�(�) d�;

r

6

= 2�

R

1

0

P

2

(�)P

3

(�)�(�) d�;

r

7

= 2�

R

1

0

P

3

(�)P

3

(�)�(�) d�;

The O(�

2

) or P

1

approximation is given by the approximate 
ux equation

�

"

2

3�

2

r

2

�+ �� = �(4�B)(5.4)

together with the energy equation

�T

�t

= r � (k

h

rT ) +r

2

�

3�

(5.5)

and the 
ux boundary 
ondition

(1� 2r

1

)�(x̂)� (1 + 3r

2

)

2"

3�

n � r�(x̂) = 4I

1

(x̂):(5.6)
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where n is the normal to the boundary pointing into the domain. The

boundary 
ondition for the temperature is in all 
ases given by (2.5). Con-

dition (5.6) is found by equating half{
uxes and expanding the radiative

intensity similar to (4.1) in se
tion 4. Introdu
ing the variable

� = �+

4

5

(�� 4�B);

the SP

2

approximation is

�

3"

2

5�

r

2

� + �� = �(4�B);(5.7)

and again

�T

�t

= r � (k

h

rT ) +r

2

�

3�

;(5.8)

with boundary 
ondition

�

1

�(x̂)� (1 + 3r

2

)

2"

3�

n � r�(x̂) = �

2

4�B(T

b

(x̂)) + 4I

1

(x̂);(5.9)

where we use the short notation

�

1

=

5

9

�

1� 2r

1

+

1

2

(1� 4

�

3r

3

� r

1

)

�

�

�

2

=

1

2

�

1� 4(3r

3

� r

1

)

�

�

4

5

�

1

:

The SP

3

approximation is given by the following: Let

 

n

= �+ 


n

�

2

; n = 1; 2(5.10)

where �

2

is given by

�

2

= (1�

11

21

�

2

�

2

r

2

)

�1

2�

2

15�

2

�

and




n

=

5

7

h

1 + (�1)

n

3

r

6

5

i

:

If we de�ne 
onstants

a

n

=

1

30

�

5� 3

r

5

6

�

; n = 1; 2;

and

�

2

n

=

3

7

�

2

7

r

6

5

; n = 1; 2;
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then the SP

3

approximation 
onsists of the 
ux equations

�"

2

r �

1

�

r�

2

1

 

1

+ � 

1

= �(4�B);(5.11)

�"

2

r �

1

�

r�

2

2

 

2

+ � 

2

= �(4�B);(5.12)

together with the energy equation

�T

�t

= r � (k

h

rT ) +r

2

a

1

 

1

+ a

2

 

2

�

:(5.13)

The SP

3

boundary 
onditions for � and �

2

are originally

(1� 2r

1

)

1

4

�(x) + (1� 8r

3

)

5

16

�

2

(x) + (1 + 3r

2

)

"

6�

n � r�(x)

�

�

1 + 3r

2

3

+

3r

4

2

�

2"

3�

n � r�

2

(x) = I

1

(x);

�(1 + 8r

5

)

1

16

�(x) + (1� 8r

6

)

5

16

�

2

(x) + 3r

4

"

6�

n � r�(x)

�

�

r

4

+

3

14

(1 + 7r

7

)

�

"

�

n � r�

2

(x) = I

3

(x):

or formally

A

1

�(x) +A

2

�

2

(x) +A

3

"

�

n � r�(x) +A

4

"

�

n � r�

2

(x) = I

1

(x)

B

1

�(x) +B

2

�

2

(x) +B

3

"

�

n � r�(x) +B

4

"

�

n � r�

2

(x) = I

3

(x):

We have to derive boundary 
onditions for  

1

and  

2

. Using the formulae

in (5.10), we 
an transform the boundary 
onditions for � and �

2

into

boundary 
onditions for  

1

and  

2

. De�ning w

0

= 1=(


2

� 


1

) we have

� = w

0




2

 

1

� w

0




1

 

2

; �

2

= �w

0

 

1

+ w

0

 

2

;

su
h that the boundary equations above be
ome

(A

1




2

w

0

�A

2

w

0

) 

1

+ (�A

1




1

w

0

+A

2

w

0

) 

2

+(A

3




2

w

0

� A

4

w

0

)

"

�

n � r 

1

+ (�A

3




2

w

0

+A

2

w

0

)

"

�

n � r 

2

= I

1

(B

1




2

w

0

�B

2

w

0

) 

1

+ (�B

1




1

w

0

+B

2

w

0

) 

2

+(B

3




2

w

0

�B

4

w

0

)

"

�

n � r 

1

+ (�B

3




2

w

0

+B

2

w

0

)

"

�

n � r 

2

= I

3

or, again formally rewritten for writing 
onvenien
e,

C

1

 + C

2

 

2

+ C

3

"

�

n � r + C

4

"

�

n � r 

2

= I

1

D

1

 +D

2

 

2

+D

3

"

�

n � r +D

4

"

�

n � r 

2

= I

3

:
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We eliminate the gradient term n �r 

2

in the �rst equation and n �r 

1

in

the se
ond in order to get boundary 
onditions for the  

1

and  

2

equations,

respe
tively, su
h that  

1

and  

2

are only weekly 
oupled. We �nd

(C

1

D

4

�D

1

C

4

) 

1

+ (C

3

D

4

�D

3

C

4

)

"

�

n � r 

1

= �(C

2

D

4

�D

2

C

4

) 

2

+ (D

4

I

1

� C

4

I

3

)

�(C

2

D

3

�D

2

C

3

) 

2

+ (C

3

D

4

�D

3

C

4

)

"

�

n � r 

2

= (C

2

D

3

�D

2

C

3

) 

1

� (D

3

I

1

� C

3

I

3

)

so, if we set D = C

3

D

4

�D

3

C

4

and de�ne 
onstants

�

1

= (C

1

D

4

�D

1

C

4

)=D;

�

1

= (C

2

D

4

�D

2

C

4

)=D

�

2

= �(C

2

D

3

�D

2

C

3

)=D;

�

2

= �(C

2

D

3

�D

2

C

3

)=D;

then we end up with SP

3

boundary 
onditions for (5.11) and (5.12) in the

following form:

�

1

 

1

(x) +

"

�

 

1

(x) = ��

2

 

2

(x) + (D

4

I

1

(x) � C

4

I

3

(x))=D;(5.14)

�

2

 

2

(x) +

"

�

 

2

(x) = ��

1

 

1

(x)� (D

3

I

1

(x) � C

3

I

3

(x))=D:(5.15)

6. Numeri
al Results. We investigated the approximation of the

radiative transfer solution by the 
oupling approa
h from se
tion 4 and

the approximations using improved di�usion equations in se
tion 5. In our

�rst example we 
onsider domain de
omposition, see [11℄. 3D{multiband

equations were studied for a typi
al example in glass manufa
turing. We

simulated the annealing of a 
ylindri
al glass slab with radius 1
m and

height 2
m. The number of frequen
y bands was M = 18 and the ab-

sorption 
oeÆ
ients �(k) ranged in magnitude from 1m

�1

to 10

5

m

�1

for

the di�erent bands. We started with an initial temperature T

0

= 873K of

the glass and used (2.5) as boundary 
ondition for the heat transfer equa-

tion. We assumed room temperature T

ext

= 293K in the exterior and the

outside radiation is a

ordingly assumed to be a Plan
kian i.e. isotropi


R(
; �) = B(T

ext

; �). In our 
ase, the refra
tive 
oeÆ
ients n

1

and n

2

were 
hosen for glass with surrounding air: we set n

1

= 1:46 and n

2

= 1.

Therefore, the 
orresponding hemispheri
 emissivity was set � = 0:92. The

edge of of the opaque part of the spe
trum was lo
ated at the wavelength

�

1

= 7�m thus giving �

1

= 
=�

1

= 4:28 � 10

13

s

�1

. Furthermore, we used

the density �

m

= 3000kg=m

3

, the spe
i�
 heat 


m

= 1000J=kgK, the ther-

mal heat 
ondu
tivity k

h

= 1:6W=mK and a vanishing 
onve
tive heat

transfer 
oeÆ
ient h = 0W=m

2

K. Figure 1 shows a 
omparison of the

domain de
omposition approa
h, the global radiative transfer solution and

the di�usion approximation for the above data. The temperature is plotted

at a �xed time 
onsidering a horizontal se
tion in the middle of the 
ylin-

der. The radiative transfer solution and the 
oupled solution show good

agreement in 
ontrast to the di�usion solution.
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858

860

862

864

866

868

870

872

874

0 0.5 1 1.5 2
x

SEMITRANSPARENT MATERIALS

radiative
fluxes-0.3
fluxes-0.1

diffusion

Fig. 1. Domain de
omposition approa
h. The 
lassi
al di�usion (Rosseland) ap-

proximation used in the interior domain while the radiative transfer equations solved

in the boundary layer. Two de
ompositions with layers of size 0:1 and 0:3, respe
tively,

were investigated.

The investigation of the di�usion approximations was done for the 1D

model in so{
alled slab geometry. Temperature and radiation only depend

on the x{
oordinate in spa
e but not on y and z and, moreover, the radia-

tion is symmetri
 with respe
t to the x{axis. Simulations were done for the

single band 
ase as des
ribed above. Standard �nite di�eren
es were ap-

plied to dis
retize the di�usion equations and uniform spa
e and time grids

were used. We 
hose a grid size 0.01 for the s
aled interval [0; 1℄ and the

time step 0.0001. The initial temperature is T

0

= 1000K while the exterior

temperature is T

ext

= 300K. We assume the s
aled physi
al parameters

in the equations to have the values � = 1, k

h

= 1 and h = 1. The rest of

the parameters were the same as in the previous example. Di�erent opti
al

regimes were 
onsidered 
orresponding to di�erent values of the parameter

�. Figures 2 and 3 show the three improved SP

N

di�usion approximations

explained in se
tion 5 in 
omparison with the radiative transfer solution

and the Rosseland approximation at time t = 0:01. As 
an be observed,

the improved approximations, in parti
ular the SP

3

approximation, give

better results than the 
onventional di�usion approximation. Furthermore,

owing to the asymptoti
 analysis leading to the 
lassi
al di�usion approxi-

mation and the SP

N

approximations, one expe
ts that all of them be
ome

the more a

urate the smaller " is i.e. the more opti
ally thi
k and di�u-

sive the regime is. The results 
on�rm this asymptoti
 behaviour whi
h

is parti
ularly distin
tive in the Rosseland approximation. We mention
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Fig. 2. The SP

N

approximations for large parameter " = 1.
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clipping

diffusion 

P1 

SP3 
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Fig. 3. The SP

N

approximations in the opti
ally thi
k, di�usive regime 
orre-

sponding to the small parameter " = 0:01.

that the Levermore moment method [3℄ for radiative transfer mentioned

in the introdu
tion gives, in this simple 
ase, the same result as the P

1

approximation. However, this behaviour 
an 
hange drasti
ally for more


ompli
ated problems with strong anisotropies, see [3℄.
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