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Loally �nite Lie algebras with unitary highest weight representations

Karl-Hermann Neeb

Unitary highest weight representations play a entral role in many ontexts suh as harmoni

analysis, number theory and geometry, and in partiular in mathematial physis (see for example

[KR87℄, [Pa90a,b℄, [Ka90℄, [N�98℄, [Ne98℄). Therefore it is a natural question whih Lie algebras

possess a faithful unitary highest weight representation. Sine there is no general struture theory

of in�nite-dimensional Lie algebras whih omes lose to the powerful mahinery available in the

�nite-dimensional ase, one has to study ertain lasses of in�nite-dimensional Lie algebras for

whih a more spei� struture theory an be developed. A spei� lass of Lie algebras for whih

this has been done are Ka{Moody algebras (f. [Ka90℄, [MP95℄). Beause of its onnetions to

many other branhes of mathematis, we think that the lass of Lie algebras with faithful unitary

highest weight representations deserves to be studied as a whole. So far this goal still seems to

be out of reah beause this lass ontains suh di�erent types of Lie algebras as the Virasoro

algebra, the symmetrizable Ka{Moody algebras and ertain other speial lasses. A major point

is to larify the ommon strutural features of these Lie algebras. The purpose of this paper is

to do this for the lass of split loally �nite Lie algebras.

For �nite-dimensional Lie algebras this an be done with the additional help of well

developed struture theoreti tools, and the outome is a desription of a very interesting lass

of omplex Lie algebras with a root deomposition and an involution � whih we all admissible

and whih have several haraterizations (f. [Ne99, Chs. VII{IX℄ for details):

� by representation theoreti properties: the existene of a point separating set of unitary highest

weight representations for some positive system of roots.

� by onvex geometri properties: the real form g

R

:= fx 2 g:x

�

= �xg ontains a losed onvex

subset invariant under all inner automorphisms and not ontaining any aÆne line.

� by diret strutural properties of the root deomposition and the involution.

An additional link to K�ahler geometry is provided by the fat that for �nite-dimensional

groups with ompatly embedded Cartan subgroups unitary highest weight representations are

preisely those whih an be realized in holomorphi setions of omplex line bundles over K�ahler

oadjoint orbits (f. [Ne99, Ch. XV℄, [Li91℄, [Li95℄).

In the light of these onditions, our objetive an also be viewed as an attempt to desribe a

lass of loally �nite Lie algebras generalizing the �nite-dimensional admissible Lie algebras. It is

lear that many of its haraterizations do not make sense for larger lasses of in�nite-dimensional

Lie algebras beause of the lak of a global piture on the group level. Here onepts like inner

automorphisms and oadjoint orbits are quite subtle notions whih an only be made preise by

a good ontrol over orresponding groups.

In this paper we fous on the diret strutural properties of the root deomposition whih

haraterize those loally �nite split Lie algebras having a faithful unitary highest weight module.

In Setion I we ollet some strutural information on split loally �nite Lie algebras, in partiular

the appropriate version of the Levi deomposition and the di�erent type of roots that ome

along with a ompatible involution. In Setion II we onsider faithful unitary highest weight

representations of loally �nite Lie algebras and derive several onsequenes for the struture

of these algebras. This is made possible by the rough information provided by the results in

Setion I. The main result of this setion is Theorem II.8, where we ollet most of the neessary
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onditions for the existene of a faithful unitary highest weight module. One of the most striking

onditions is that the maximal loally nilpotent ideal u is already a Heisenberg algebra, hene

two step nilpotent, and that the module u , onsidered as a module of the Levi omplement, is

quite small in a sense whih is made preise. The struture of this module has been exploited

in detail in [Ne00b℄. In Setion III we show essentially that the neessary onditions derived in

Setion II are already suÆient for the existene of a faithful unitary highest weight module.

Moreover, we explain in Theorem III.5 how the lassi�ation of these modules an be redued

to the ase of simple Lie algebras, whih has been overed in [Ne98℄ and [N�98℄. We onlude

the paper with a short disussion of the weaker ondition that for some positive system �

+

the

orresponding unitary highest weight modules separate the points.

Throughout this paper, all Lie algebras g , s et. are omplex, and real forms are denoted

by g

R

, s

R

et.

I. The struture of split involutive loally �nite Lie algebras

In this �rst setion we ollet some strutural results on loally �nite Lie algebras with a root

deomposition and a ompatible involution. The main point is that the root system � ontains

four distinguished subsets �

n

(the non-integrable roots), �

i

(the integrable roots) and �

k

(the

ompat roots) whih all orrespond to ertain subalgebras of g : the maximal loally nilpotent

ideal u , the semisimple \Levi omplement" s , and the \maximal ompat" subalgebra k . As

we will see later, in our ontext only the so alled adapted positive systems are of interest. For

semisimple algebras adapted positive systems orrespond to 3-gradings with zero part given by

�

k

. Most of this setion is a reolletion of the struture and lassi�ation results from [St99℄,

[NeSt99℄ and [Neh90℄.

De�nition I.1. (a) We all an abelian subalgebra h of a Lie algebra g a splitting Cartan

subalgebra if h is maximal abelian and the derivations adh , h 2 h , are simultaneously diago-

nalizable. If g ontains a splitting Cartan subalgebra h , then g respetively the pair (g; h) is

alled a split Lie algebra and h a splitting Cartan subalgebra. This means that we have a root

deomposition

g = h+

X

�2�

g

�

where g

�

= fx 2 g : (8h 2 h) [h; x℄ = �(h)xg for a linear funtional � 2 h

�

, and

� := �(g; h) := f� 2 h

�

nf0g : g

�

6= f0gg

is the orresponding root system. The subspaes g

�

for � 2 � are alled root spaes and its

elements are alled root vetors.

(b) A root � 2 � is alled integrable if g(�) := g

�

+ g

��

+[g

�

; g

��

℄

�

=

sl(2; C ) and g is a loally

�nite g(�)-module. We write �

i

for the set of integrable roots. For � 2 �

i

there exists a unique

element �� 2 [g

�

; g

��

℄ with �(��) = 2 whih is alled the assoiated oroot. To eah oroot we

assoiate the reetion r

�

2 GL(h

�

) given by r

�

(�) = � � �(��)� and write W � GL(h

�

) for

the subgroup generated by these reetions. It is alled the Weyl group of g .

De�nition I.2. (a) An involutive Lie algebra is a omplex Lie algebra g endowed with an

involutive antilinear antiautomorphism z 7! z

�

. Note that the involution determines a real form

g

R

:= fx 2 g : x

�

= �xg of g . If, onversely, g

R

is a real form of g , then there exists a unique

involution � de�ning g

R

.

(b) Let (g; h) be a omplex split Lie algebra and g = h +

P

�2�

g

�

the orresponding root

deomposition. An involution � of g is said to be ompatible with the root deomposition if

x

�

2 g

��

for x 2 g

�

and � 2 �[f0g . In this ase the triple (g; h; �) is alled an involutive split

Lie algebra.

() Let (g; h; �) be an involutive split Lie algebra and � the orresponding root system. For

� 2 �

i

the spae g(�)

R

:= g(�) \ g

R

is a real form of the test algebra g(�)

�

=

sl(2; C ), so
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that g(�)

R

�

=

sl(2;R) or g(�)

R

�

=

su(2). We all � ompat if g(�)

R

�

=

su(2) and write �

k

for the set of ompat roots. The roots in �

p

:= � n�

k

are alled non-ompat. We also put

�

p;i

:= �

p

\�

i

. We write W

k

for the subgroup of W generated by the reetions r

�

, � 2 �

k

.

De�nition I.3. We all a Lie algebra g almost redutive if [g; g℄ is semisimple, i.e., a diret

sum of simple ideals. It is alled redutive if g

�

=

z(g) � [g; g℄ . A typial example of an almost

redutive Lie algebra whih is not redutive is the Lie algebra gl(J; C ) of �nite J � J -matries,

where J is an in�nite set. The enter of this Lie algebra is trivial beause the identity matrix is

not �nite, but the ommutator algebra sl(J; C ), onsisting of all �nite matries of trae 0, is a

proper ideal.

It is remarkable that the integrable roots of a loally �nite split Lie algebra behave very

muh like those in a �nite-dimensional Lie algebra, where we have a semisimple Levi omplement

s for the largest solvable ideal r = rad(g) of g , so that g

�

=

ro s .

Theorem I.4. (Levi deomposition of loally �nite split Lie algebras) Let g be a loally �nite

Lie algebra with root deomposition g = h+

P

�2�

g

�

.

(1) The subspae s = span

C

�

�

i

+

P

�2�

i

g

�

is a semisimple subalgebra of g .

(2) Let �

n

:= � n�

i

. Then the subspae r := z

h

(s) +

P

�2�

n

g

�

is the unique maximal loally

solvable ideal of g , and u := z(g) +

P

�2�

n

g

�

is the unique maximal loally nilpotent ideal of g .

(3) For a vetor spae omplement a of z(g) + span

C

�

�

i

in h , we have g

�

=

u o (s o a) , where

l := so a is almost redutive.

In partiular, we have

(1:1) (�

i

+�

i

) \� � �

i

and (� +�

n

) \� � �

n

:

Moreover, the subspae p

n

:= [h; u℄ � u is l-invariant.

Proof. An important point in the proof is that for �nite-dimensional split Lie algebras there

exists a unique h-invariant Levi omplement s whih is de�ned as above. The theorem is a

ombination of Theorems III.12, 14 and 16 in [St99℄.

Lemma I.5. (a) If g is a loally �nite split Lie algebra, then eah �nite subset of g is ontained

in a �nite-dimensional h-invariant subalgebra g

0

with the following properties:

(1) h

0

:= h \ g

0

is a splitting Cartan subalgebra of g

0

,

(2) h

0

separates the points of the subspae of h

�

spanned by the �nite root system of g

0

whih

is given by �

g

0

:= f� 2 �: g

�

\ g

0

6= f0gg ,

(3) �

i

\�

g

0

= �

g

0

;i

.

(b) If, in addition, g is almost redutive, then we may assume that �

g

0

= �\ span�

g

0

, and in

this ase g

0

is redutive.

() If, in addition, g arries a ompatible involution � , then we may assume that g

0

is �-

invariant.

Proof. We use the notation of Theorem I.4. Let g = u o l be the deomposition desribed

in Theorem I.4 and let p: g ! l denote the homomorphism with ker p = u . Aording to [St99,

Prop. III.9℄, every �nite subset of l is ontained in a �nite-dimensional redutive subalgebra l

0

with the required properties. Replaing l by l

0

, we therefore may assume that the set �

i

of roots

of l is �nite and that we only onsider subalgebras ontaining the �nite-dimensional semisimple

subalgebra s := [l; l℄ .

(a) (f. [St99, Lemma III.5℄) Let E � g be �nite. Writing eah element of E as a sum of

h-eigenvetors, we may assume that E onsists of suh vetors. In addition, we may assume

that spanE is s-invariant. Then the Lie algebra g

1

generated by E is (s + h)-invariant and

�nite-dimensional. In partiular �

g

1

:= f� 2 �: g

�

\ g

1

6= f0gg is �nite. Now we pik a

�nite-dimensional subspae h

1

� h separating the points of span(�

g

1

[ �

i

) � h

�

and put

g

0

:= g

1

+ h

1

+ s . Then �

g

0

= �

g

1

[�

i

implies that g

1

satis�es (1){(3).

(b) [St99, Prop. V.5℄

() is a trivial extension of (a).
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De�nition I.6. Let g be a loally �nite split Lie algebra. We all an h-invariant subalgebra

g

0

� g separated if it satis�es the onditions (1) and (2) from Lemma I.5 (f. [St99, Def. III.4℄).

We all it well separated if (3) is also satis�ed.

In the same way as the integrable roots of a loally �nite Lie algebra determine a maximal

semisimple subalgebra (Theorem I.4(1)), the ompat roots of a loally �nite involutive Lie

algebra determine a \maximally ompat" subalgebra.

Lemma I.7. If g is an involutive split loally �nite Lie algebra, then k := h+

P

�2�

k

g

�

is an

almost redutive subalgebra,

(1:2) (�

k

+�

p

) \� � �

p

; (�

k

+�

p;i

) \� � �

p;i

and (�

p;i

+�

p;i

) \� � �

k

:

Proof. In view of �

k

� �

i

, Theorem I.4(3), and (1.1), we may assume that � = �

i

by

passing to the subalgebra h+ s .

Let �; � 2 �

i

with � + � 2 � and onsider �

0

:= spanf�; �g \ �. Then g

0

:=

spanf��;

�

�g+

P

2�

0

g



is a �nite-dimensional separated split involutive subalgebra of l (f. [St99,

Props. III.9, V.4℄). It is lear that �

0;k

= �

k

\�

0

and �

0;p

= �

p

\�

0

. Sine g

0;R

:= g

0

\ g

R

is a real semisimple Lie algebra and k

0;R

:= k

0

\ g

R

is a ompat real form of g

0;R

, the subspae

k

0

� g

0

is a subalgebra satisfying [k

0

; p

0

℄ � p

0

and [p

0

; p

0

℄ � k

0

for p

0

:=

P

2�

0;p

g



(f. [Ne99,

Prop. VII.2.5℄). We onlude that if �; � 2 �

k

then � + � 2 �

k

, if � 2 �

k

and � 2 �

p

, then

�+ � 2 �

p

, and if �; � 2 �

p

, then �+ � 2 �

k

.

De�nition I.8. Let g be an involutive split loally �nite Lie algebra.

(1) g is alled ompat if � = �

k

. In this ase we all g

R

a ompat real form of g .

(2) g is said to be quasihermitian if there exists a positive system �

+

suh that the deompo-

sition

g = p

+

+ k+ p

�

with k = h+

X

�2�

k

g

�

; p

�

=

X

�2�

�

p

g

�

and �

p

= �

+

p

_

[�

�

p

satis�es [k; p

+

℄ � p

+

. Every positive system �

+

for whih the subset �

+

p

:= �

+

\ �

p

satis�es the ondition above is alled adapted. The involutive Lie algebra g is alled

hermitian if it is simple, non-ompat and quasihermitian.

(3) g is said to have one potential if [x

�

; x

�

�

℄ 6= 0 holds for eah non-zero element x

�

2 g

�

,

� 2 �

n

. Sine for eah integrable root we have �� 2 C y[x

�

; x

�

�

℄ , we found �nd the same

ondition by asking [x

�

; x

�

�

℄ to be non-zero for all roots � 2 �.

The following proposition is a tool to prove that a given involutive Lie algebra is quasiher-

mitian.

Proposition I.9. Let g be loally �nite. For a positive system �

+

� � the following are

equivalent:

(1) �

+

is adapted.

(2) �

+

p

is W

k

-invariant.

(3) (�

k

+�

+

p

) \� � �

+

p

.

Proof. (f. [Ne99, Prop. VII.2.12℄ for the �nite-dimensional ase)

(1) ) (2): If �

+

is adapted, then [k; p

+

℄ � p

+

implies that p

+

is a k-module with respet to

the adjoint ation. Hene the weight system �

+

p

of this k-module is invariant under W

k

beause

eah element of k ats by a loally �nite endomorphism on p

+

(f. [Ne99, Lemma IX.3.7℄).

(2) ) (3): Let � 2 �

k

and � 2 �

+

p

suh that � + � 2 �. Then � + � 2 �

p

follows from

Lemma I.7. Suppose that � + � 2 �

�

p

. Then � 2 �

�

k

, so that

�

+

p

\ (� +Z�)� � � N

0

�

follows from onv(�

+

) \� = �

+

. Now one end of the � -string through � is ontained in �

+

p

and the other end in �

�

p

. Sine the ends of the string are exhanged by the reetion r

�

whih,

aording to (2), preserves �

+

p

, we arrive at a ontradition if � + � 2 �

�

p

. This proves (3).

(3) ) (1): Condition (3) implies that [k; p

+

℄ � p

+

whih means that �

+

is adapted.
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Lemma I.10. If l is a quasihermitian almost redutive Lie algebra, then l = [l; l℄ o a , where

a � h is abelian and [l; l℄ is semisimple and ontains only ompat and hermitian simple ideals.

Proof. It is easy to see that eah simple ideal of g inherits the property of being quasihermi-

tian. If suh an ideal is not ompat, then it is hermitian by de�nition.

In view of the preeding lemma, the struture of almost redutive quasihermitian Lie

algebras is essentially known, one the simple ideals are known. Below we briey disuss the

struture and the lassi�ation of these Lie algebras.

Examples I.11. (a) Let J be a set and C

(J)

the vetor spae with the basis (e

j

)

j2J

. We

write g := gl(J; C ) � End(C

(J)

) for the Lie algebra onsisting of all those endomorphisms whose

orresponding J � J -matries have only �nitely many non-zero entries. Then the elementary

matries E

ij

with a single non-zero entry in (i; j) form a basis of the vetor spae g . Let h � g

be the subalgebra of diagonal matries and de�ne "

j

2 h

�

by "

j

(diag(x

ii

)) := x

jj

. Then the set

of of roots of g with respet to h is given by

� := f"

j

� "

k

: j 6= k; j; k 2 Jg; where g

"

j

�"

k

= C E

jk

and ("

j

� "

k

)�= E

jj

�E

kk

:

For every pair i 6= j the subalgebra g("

i

� "

j

) spanned by h := E

ii

�E

jj

, e = E

ij

and f := E

ji

is isomorphi to sl(2; C ). Sine (adE

ij

)

2

= 0, every root is integrable. We write

sl(J; C ) :=

n

X 2 gl(J; C ): trX =

X

j2J

x

jj

= 0

o

and note that this subalgebra also has a root deomposition with respet to the Cartan subalgebra

h \ sl(J; C ).

(b) Let J be a set and onsider the disjoint union 2J + 1 := f0g

_

[J

_

[ � J . On the vetor

spae V := C

(2J+1)

�

=

C

(J)

� C � C

(�J)

with the basis (e

j

) we onsider the symmetri (3� 3)

blok-matrix

Q :=

0

�

0 0 1

0 1 0

1 0 0

1

A

;

where 1 stands for the matrix (Æ

j;�k

)

j;k2J

. We de�ne

o(2J + 1; C ) := fX 2 gl(2J + 1; C ):X

>

Q+QX = 0g:

Then g := o(2J + 1; C ) is a Lie algebra and one easily heks that

h := spanfE

jj

�E

�j;�j

: j 2 Jg

is a maximal abelian subalgebra for whih we have a root deomposition

g = h�

M

�2�

g

�

; where � = f�"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg

is the orresponding root system, where "

j

2 h

�

is de�ned by "

j

�

diag(x

ii

)

�

:= x

jj

for j 2 J .

() We similarly de�ne 2J := J

_

[ � J and obtain with Q :=

�

0 1

1 0

�

the Lie algebra

o(2J; C ) := fX 2 gl(2J; C ):X

>

Q+QX = 0g:

The subspae h := spanfE

jj

�E

�j;�j

: j 2 Jg is a maximal abelian subalgebra, and we obtain a

root deomposition with

� = f�("

j

� "

k

): j 6= k; j; k 2 Jg:

It is lear that o(2J; C ) is isomorphi to a subalgebra of o(2J + 1; C ).
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(d) We de�ne 2J as in (). For I :=

�

0 1

�1 0

�

we de�ne

sp(J; C ) = fX 2 gl(2J; C ):X

>

I + IX = 0g:

The subspae h := spanfE

jj

�E

�j;�j

: j 2 Jg � g is a maximal abelian subalgebra for whih we

have a root deomposition with

� = f�2"

j

;�("

j

� "

k

): j 6= k; j; k 2 Jg

Remark I.12. It an be shown that for eah in�nite set J the Lie algebras

sl(J; C ); o(2J; C ); o(2J + 1; C ) and sp(J; C )

are simple and that there exists an isomorphism o(2J; C )

�

=

o(2J + 1; C ); although the orre-

sponding root systems are not isomorphi. In the following we will denote their root systems

by

A

J

:= f"

j

� "

k

: j; k 2 J; j 6= kg for sl(J; C ); gl(J; C );

B

J

:= f�"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J + 1; C )

C

J

:= f�2"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg for sp(J; C ); and

D

J

:= f�"

j

� "

k

: j; k 2 J; j 6= kg for o(2J; C ):

Among the in�nite-dimensional omplex simple Lie algebras, the Lie algebras above are

haraterized by the ondition that they are split and loally �nite, i.e., every �nite subset

generates a �nite-dimensional subalgebra. For more details on this lassi�ation we refer to

[NeSt99℄.

Remark I.13. If g

R

is a hermitian real form of the loally �nite split simple Lie algebra g ,

then the deomposition of the root system � = �

�

p

[�

k

[�

+

p

is a 3-grading in the sense that

it is a deomposition

� = �

�1

[�

0

[�

1

with

(�

0

+�

�1

) \� � �

�1

; (�

0

+�

0

) \� � �

0

[ f0g; and (�

1

+�

�1

) \� � �

0

[ f0g:

The lassi�ation of the 3-gradings of the irreduible root systems (f. [NeSt99℄, [Neh90℄)

is related to the hermitian real forms of the orresponding omplex Lie algebras g . For details we

refer to [NeSt99℄. The idea behind this onnetion is as follows. If a 3-grading � = �

�1

[�

0

[�

1

is given, then there exists a ompatible involution � on g suh that �

k

= �

0

.

In [NeSt99, Prop. VII.2℄ we have seen that the sets �

1

orresponding to 3-gradings of the

root systems � = A

J

; B

J

; C

J

; D

J

are given by

(A

J

) A

J

(M)

1

= f"

j

� "

k

: j 2M;k 62Mg , where M � J is a subset.

(B

J

) B

J

(m)

1

= f"

m

g [ f"

m

� "

j

: j 6= mg , where m 2 J .

(C

J

) C

J

(M)

1

= f"

j

� "

k

: j 2 M;k 62 Mg [ f"

j

+ "

k

: j; k 2 Mg [ f�"

j

� "

k

: j; k 62 Mg , where

M � J is a subset.

(D

J

) D

J

(m)

1

= f"

m

�"

j

: j 6= mg = B

J

(m)

1

\D

J

, where m 2 J , or by D

J

(M)

1

= C

J

(M)

1

\D

J

.

The orresponding hermitian forms only depend on the 3-grading and an be desribed as follows

(see [NeSt99℄ for the desription of the orresponding Lie algebras whih will not be needed here):

(A

J

) A

J

(M)

1

leads to g

R

= su(M;M



).

(B

J

) B

J

(m)

1

orresponds to g

R

= o(2J � 1; 2;R).

(C

J

) C

J

(J)

1

orresponds to g

R

= sp(J;R).

(D

J

) D

J

(m)

1

orresponds to g

R

= o(2J � 2; 2;R) and D

J

(J)

1

to g

R

= o

�

(2J).
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II. Unitary highest weight representations{neessary onditions

In this setion we derive a set of neesarry onditions for the existene of a faithful unitary

highest weight representation. The main result is Theorem II.8 where we ollet these onditions.

In partiular we will see that u has to be a Heisenberg algebra. Using the results of [Ne00b℄, we

also give a desription of the module struture of u with respet to the hermitian simple ideals

of l .

De�nition II.1. Let g be a split Lie algebra.

(a) For a g-module V and � 2 h

�

we write

V

�

:= fv 2 V : (8X 2 h)X:v = �(X)vg

for the weight spae of weight � and

P

V

:= f� 2 h

�

:V

�

6= f0gg

for the set of h-weights of V .

(b) A non-zero element v 2 V

�

, � 2 P

V

, is alled primitive (with respet to the positive system

�

+

) if g

�

:v = f0g holds for all � 2 �

+

. A g-module V is alled a highest weight module with

highest weight � (with respet to �

+

) if it is generated by a primitive element of weight � .

() Suppose, in addition, that g is an involutive Lie algebra. Then we all a hermitian form h�; �i

on a g-module V ontravariant if

hX:v; wi = hv;X

�

:wi for all v; w 2 V;X 2 g:

A g-module V is said to be unitary if it arries a ontravariant positive de�nite hermitian form.

Proposition II.2. Let g be an involutive split omplex Lie algebra and �

+

a positive system.

Then the following assertions hold:

(i) Eah module V of highest weight � has a unique maximal submodule and satis�es

End

g

(V ) = C 1 .

(ii) For eah � 2 h

�

there exists a unique irreduible highest weight module L(�;�

+

) .

(iii) Eah unitary highest weight module is irreduible.

(iv) If L(�;�

+

) is unitary, then � = �

�

.

(v) If � = �

�

and v

�

2 L(�;�

+

) is a primitive element, then L(�;�

+

) arries a unique

ontravariant hermitian form h�; �i with hv

�

; v

�

i = 1: This form is non-degenerate.

Proof. [Ne99, Props. IX.1.13/14℄

The following result an be used as a transfer tool to obtain information on highest weight

modules of g from information on highest weight modules of ertain subalgebras g

j

.

Proposition II.3. Let g be a direted union of the family (g

j

)

j2J

of involutive subalgebras

of g whih are invariant under h suh that h

j

:= h \ g

j

is a splitting Cartan subalgebra of g

j

.

For a positive system �

+

� � we put �

+

g

j

:= �

+

j

h

j

n f0g and assume that this is a positive

system in �

g

j

. Then the highest weight module L(�;�

+

) of g is unitary if and only if all the

highest weight modules L(� j

h

j

;�

+

g

j

) for the subalgebras g

j

, j 2 J , are unitary.

Proof. The simple proof is given in [Ne98, Lemma I.4 and Prop. I.5℄.

In this setion g denotes a loally �nite involutive split Lie algebra with root deomposition

g = h +

P

�2�

g

�

. If V is a g-module, then we write �

V

for the orresponding representation

of g on V and if, in partiular, V = L(�;�

+

) is an irreduible highest weight module, then we

put �

�

:= �

L(�;�

+

)

.

Lemma II.4 and Proposition II.5 hold for general involutive split Lie algebras whih are

not neessarily loally �nite.
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Lemma II.4. Let L(�;�

+

) be unitary, �

�

the orresponding representation of g , � 2 �

+

,

and x

�

2 g

�

. Then the following assertions hold:

(i) �

�

(x

�

) is loally nilpotent.

(ii) �([x; x

�

℄) � 0 for x 2 g

�

, � 2 �

+

.

Proof. (i) Sine the loal �niteness of g implies that the operator adx

�

is loally nilpotent,

the generalized nilspae of �

�

(x

�

) is a g-submodule, hene oinides with L(�;�

+

) beause it

ontains the yli element v

�

. Therefore �

�

(x

�

) is loally nilpotent.

(ii) If h�; �i denotes the hermitian form on L(�;�

+

) and v

�

is a primitive element, then we have

for x 2 g

�

and � 2 �

+

:

�([x; x

�

℄) = h[x; x

�

℄:v

�

; v

�

i = hxx

�

:v

�

; v

�

i = kx

�

:v

�

k

2

� 0:

Proposition II.5. Let L(�;�

+

) be unitary, � 2 �

+

, x

�

2 g

�

,

g(x

�

) := spanfx

�

; x

�

�

; [x

�

; x

�

�

℄g;

and suppose that �

�

(x

�

) is loally nilpotent. Then the following assertions hold:

(i) If �([x

�

; x

�

�

℄) � 0 , then we have:

(a) �

�

([x

�

; x

�

�

℄) � 0 in the sense that it is diagonalizable with non-negative eigenvalues.

(b) If [x

�

; x

�

�

℄ = 0 , then �

�

(x

�

) = �

�

(x

�

�

) = 0 .

() If g is a loally �nite g(x

�

)-module, then g(x

�

) 6� ker �

�

implies �([x

�

; x

�

�

℄) > 0 .

(d) If � 2 �

+

p;i

and g(�) 6� ker �

�

, then �(��) < 0 .

(ii) If �([x

�

; x

�

�

℄) > 0 , then �

�

(x

�

�

) is also loally nilpotent and L(�;�

+

) is a loally �nite

g(x

�

)-module.

Proof. (i) (a) If w 2 L(�;�

+

)

�

6= f0g , then we pik k 2 N

0

maximal with �

�

(x

�

)

k

:w 6= f0g

(Lemma II.4). Then w generates a unitary highest weight module of g(x

�

), and therefore

�([x

�

; x

�

�

℄) � (� + k�)([x

�

; x

�

�

℄) � 0

(Lemma II.4(ii)). This proves that �

�

([x

�

; x

�

�

℄) � 0.

(b) Let v 2 L(�;�

+

). Then there exists an N 2 N with �

�

(x

�

)

N

:v = 0, so that

�

�

(x

�

�

x

�

)

N

:v = �

�

(x

�

�

)

N

�

�

(x

�

)

N

:v = 0:

Now [Ne99, Lemma II.3.8(iv)℄ implies that �

�

(x

�

�

x

�

):v = 0, and hene that �

�

(x

�

):v = 0. This

proves that �

�

(x

�

) = 0, and �

�

(x

�

�

) = 0 follows.

() In view of (a), the unitarity of L(�;�

+

) implies �([x

�

; x

�

�

℄) � 0. Suppose that �([x

�

; x

�

�

℄) =

0. Then the primitive element v

�

is annihilated by g(x

�

), hene a g(x

�

)-�nite vetor. In

view of the fat that g is a loally �nite g(x

�

)-module, the subspae of g(x

�

)-�nite vetors is

a g-submodule of L(�;�

+

), hene oinides with L(�;�

+

). This means that L(�;�

+

) is a

loally �nite unitary g(x

�

)-module, whih implies that �

�

(g(x

�

)

R

) is a ompat Lie algebra.

We onlude in partiular that �

�

([x

�

; x

�

�

℄) = 0. Applying (b) to the Lie algebra g= ker�

�

, we

obtain g(x

�

) � ker �

�

, ontraditing our assumption.

(d) Sine �� 2 R

+

[x

�

�

; x

�

℄ , this is an immediate onsequene of ().

(ii) We normalize x

�

in suh a way that h := [x

�

; x

�

�

℄ satis�es �(h) = 2. We put e := x

�

.

Let w 2 L(�;�

+

)

�

be as above and put W := spanf�

�

(e)

n

:w:n 2 N

0

g . Then W is a �nite

dimensional subspae whih is invariant under e and h beause it is spanned by h-eigenvetors.

If N 2 N

0

is maximal with �

�

(e)

N

:w 6= 0, then we write

W

j

:= spanf�

�

(e)

n

:w:n = N � j; : : : ; Ng; j = 0; : : : ; N:

We prove by indution over j that W

j

generates a �nite dimensional g(x

�

)-module

f

W

j

. For

j = 0 this follows from the fat that �

�

(e)

N

:w is an h-eigenvetor annihilated by �

�

(e) and the

orresponding eigenvalue is non-negative integral beause L(�;�

+

) is unitary (f. [Ne99, Th.

IX.3.8℄).
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Now we assume that the assertion holds for W

k

with k < N . Let

f

W

k

denote the �nite

dimensional g(x

�

)-module generated by W

k

. Then

L(�;�

+

) =

f

W

k

�

f

W

?

k

;

where

f

W

?

k

is also g(x

�

)-invariant. We write �

�

(e)

N�k�1

:w = w

1

+ w

2

with w

1

2

f

W

k

and

w

2

2

f

W

?

k

. Then

�

�

(e):w

1

+ �

�

(e):w

2

= �

�

(e):(w

1

+ w

2

) 2

f

W

k

and �

�

(e):w

1

2

f

W

k

implies that �

�

(e):w

2

2

f

W

k

\

f

W

?

k

= f0g . Hene the g(x

�

)-submodule

generated by w

2

is �nite dimensional. Now �

�

(e)

N�k�1

:w is ontained in the sum of this module

and

f

W

k

, so that

f

W

k�1

is �nite dimensional. Repeating this proedure until k = 1 shows that

f

W

N

is �nite dimensional and therefore that w generates a �nite dimensional g(x

�

)-module.

Corollary II.6. If the loally �nite split involutive Lie algebra g has a faithful unitary highest

weight module

�

�

�

; L(�;�

+

)

�

, then

�([x

�

; x

�

�

℄) > 0 for 0 6= x

�

2 g

�

; � 2 �

+

p

;

and �(��) 2 N

0

for � 2 �

+

k

. Moreover, this implies that g has one potential.

Proof. Sine g is loally �nite, it is a loally �nite module of g(x

�

), so that Proposition

II.5(i)() implies that �([x

�

; x

�

�

℄) > 0. On the other hand Proposition II.5(ii) entails that for

eah positive ompat root � we have �(��) 2 N

0

(f. [Ne99, Prop. IX.1.22℄). In view of the �rst

part, we have in partiular [x

�

; x

�

�

℄ 6= 0 for 0 6= x

�

2 g

�

, � 2 �

+

n

, and this implies that g has

one potential (f. De�nition I.8(3)).

In the following we all a Lie algebra u with [u; u℄ � z(u) a generalized Heisenberg algebra.

We all it a Heisenberg algebra if, in addition, dim z(u) = 1.

Lemma II.7. If g has one potential, then [u; u℄ � z(g) . In partiular u is a generalized

Heisenberg algebra.

Proof. Consider a well separated involutive subalgebra g

1

� g . Then g

1

= u

1

o l

1

as

in Theorem I.4, and the Lie algebra g

1

has one potential beause for eah non-ompat root

� 2 �

+

p

and 0 6= x

�

2 g

�

we have [x

�

; x

�

�

℄ 6= 0. Now [Ne99, Prop. VII.2.23℄ implies that

[u

1

; u

1

℄ � z(g

1

) � h and therefore that [u

1

; u

1

℄ � h\ [u; u℄ = z(g) (Theorem I.4). Sine g

0

an be

hosen arbitrarily large, we onlude that [u; u℄ � z(g).

The following theorem ontains the essential neessary onditions on the struture of g .

In view of Corollary II.6, the assumption of this theorem is satis�ed if g has a faithful unitary

highest weight representation.

Theorem II.8. Suppose that there exists a funtional � = �

�

2 h

�

with

�([x

�

; x

�

�

℄) > 0 for 0 6= x

�

2 g

�

; � 2 �

+

p

;

and �(��) 2 N

0

for � 2 �

+

k

. Then the following assertions hold:

(U1) l is quasihermitian, l = p

�

i

� (k\ l)�p

+

i

with p

�

i

:=

P

�2�

�

p;i

g

�

, and �

i

= �

+

p;i

[�

k

[�

�

p;i

is a 3-grading.

(U2) [u; u℄ � z(g) . If, in addition, � j

z(g)

is injetive and u 6= f0g , then u is a Heisenberg algebra.

(U3)�

+

is an adapted positive system.

(U4) p

n

:= [h; u℄ is a 2-graded l-module with p

�

n

=

P

�2�

�

n

g

�

, i.e.,

[k; p

�

n

℄ � p

�

n

and [p

�

i

; p

�

n

℄ � p

�

n

; [p

�

i

; p

�

n

℄ = f0g:

Proof. (U1) follows if we show that �

+

i

is an adapted positive system of roots of l (f.

De�nition I.8). We do this by showing that (�

k

+�

+

p;i

) \� � �

+

p;i

(Proposition I.9).
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Let � 2 �

k

and � 2 �

+

p;i

with � + � 2 �. Then � + � 2 �

p;i

(Lemma I.7), so that

the assertion holds trivially if � 2 �

+

k

. Hene we may assume that � 2 ��

+

k

. Then �(��) � 0

and �(

�

�) < 0 by assumption. Aording to [Ne00a, Lemma I.5℄, we have for �� = [x

�

; x

��

℄ ,

x

��

2 g

��

, and

�

� = [x

�

; x

��

℄ , x

��

2 g

��

, the relation

�

[x

�

; x

�

℄; [x

��

; x

��

℄

�

= n

1

��+ n

2

�

�

with n

1

; n

2

2 N . In view of � 2 �

k

and � 2 �

p

, we may assume that x

��

= x

�

�

and

x

��

= �x

�

�

. Then

�

[x

�

; x

�

℄; [x

��

; x

��

℄

�

= �

�

[x

�

; x

�

℄; [x

�

; x

�

℄

�

�

is a non-negative multiple of (�+ �)�, �+ � 2 �

p

, so that

(�+ �)�= m

1

��+m

2

�

� with m

1

;m

2

2℄0;1[:

This proves that �

�

(�+ �)�

�

< 0 and hene that �+ � 2 �

+

p;i

(Proposition II.5).

That this information already implies that �

+

p;i

= �

1

de�nes a 3-grading of l follows from

Proposition I.9.

(U2) The relation [u; u℄ � z(g) follows by ombining Corollary II.6 with Lemma II.7.

Now we assume that u 6= f0g and that � j

z(g)

is injetive. If �

n

= �, then it follows that

u = z(g) is one-dimensional. If �

n

6= �, then f0g 6= [u; u℄ � z(g) and, as above, dim z(g) = 1.

Hene it suÆes to show that z(u) = z(g). Sine z(u) is a harateristi ideal of u , it is adapted

to the root deomposition and �-invariant. If x

�

2 z(u), then [x

�

; x

�

�

℄ = 0 ontradits the one

potential of g (Corollary II.6). This proves that z(u) = z(g).

(U3) We show that �

+

n

is invariant under W

k

(f. Proposition I.9). Let � 2 �

n

and 0 6=

x

�

2 g

�

. Sine �([x

�

; x

�

�

℄) > 0 for � 2 �

+

n

and �([x

�

; x

�

�

℄) < 0 otherwise, the hermitian form

h

�

(z; w) := �([z; w

�

℄) on p

n

:= p

+

n

� p

�

n

=

P

�2�

n

g

�

is positive de�nite on p

+

n

and negative

de�nite on p

�

n

. Moreover, (U2) implies that [l; [u; u℄

�

= f0g , so that h

�

is ontravariant with

respet to the ation of l on p

n

(f. [Ne99, Prop. VII.1.9(4)℄).

If �

+

n

is not W

k

-invariant, then there exist � 2 �

+

n

and � 2 �

k

suh that Æ := r

�

:� =

� � �(��)� 2 ��

+

n

. Let g

1

:= g

�

+ g

��

+ h and V � p

n

a minimal non-zero g

1

-submodule.

Then V =

P

2�

n

V



, where V



= V \g



and, sine g

�

6= f0g , we may assume that V

�

6= f0g .

Then we also have V

Æ

6= f0g beause the set of weights of the g

1

-module V is invariant

under the reetion r

�

(f. [Ne99, Lemma IX.3.7℄). Therefore the restrition of h

�

to V is

a g

1

-ontravariant inde�nite hermitian form. In view of [Ne99, Prop. IX.1.22℄, there exists

a positive de�nite g

1

-ontravariant hermitian form on V , so that the uniqueness of this form

(Proposition II.2) yields a ontradition. We onlude that �

+

n

is W

k

-invariant. In view of (U1),

�

+

p

= �

+

n

_

[�

+

p;i

is W

k

-invariant, so that �

+

is an adapted positive system (f. Proposition I.9).

(U4) We reall the non-degenerate form h

�

on the l-module p

n

whih is positive de�nite on

p

+

n

and negative de�nite on p

�

n

. We will show that this implies that p

n

= p

+

n

� p

�

n

de�nes a

2-grading of the module p

n

of the 3-graded Lie algebra l = p

+

i

+ (k \ l) + p

�

i

.

For 0 6= x

�

2 g

�

, � 2 �

+

p;i

, we onsider the Lie algebra g(x

�

) := spanfx

�

; x

�

�

; [x

�

; x

�

�

℄g

�

=

sl(2; C ) and observe that p

n

is a semisimple g(x

�

)-module (Weyl's Theorem) and for eah

h-weight � of p

n

the subspae

P

m2Z

p

�+m�

n

is g(x

�

)-invariant. Let V � p

n

be a simple g(x

�

)-

submodule. Then the �� -eigenspae deomposition of V shows that V is adapted to the weight

deomposition, and hene that the restrition of h

�

to V is a non-degenerate ontravariant

hermitian form. Let v

0

2 V be a highest weight vetor, i.e., x

�

:v

0

= 0 and ��:v

0

= kv

0

for some

k 2 N

0

. Aording to [Ne99, Lemma IX.1.20℄, we have for eah m 2 N :

x

m

�

(x

�

�

)

m

:v

0

= (�1)

m

�

m!

m�1

Y

j=0

(k � j)

�

v

0

and therefore

h

�

((x

�

�

)

m

:v

0

; (x

�

�

)

m

:v

0

) = (�1)

m

�

m!

m�1

Y

j=0

(k � j)

�

h

�

(v

0

; v

0

):
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For m > k , this expression vanishes, and for 0 � m � k its signs are alternating. Hene

x

�

�

:p

�

n

� p

�

n

implies that if k > 0, then v

0

2 p

+

n

, x

�

�

:v

�

2 p

�

n

, and further (x

�

�

)

2

:v

0

= 0. We

onlude that k � 1, and that for g(x

�

):V 6= f0g we have V = (V \ p

+

n

)� (V \ p

�

n

) with

x

�

:(V \ p

+

n

) = f0g and x

�

:(V \ p

�

n

) � V \ p

+

n

:

Now the fat that p

n

is a semisimple g(x

�

)-module implies that x

�

:p

+

n

= f0g and x

�

:p

�

n

� p

+

n

.

Theorem II.9. Suppose that (�

�

; L(�;�

+

)

�

is a faithful unitary highest weight module of the

loally �nite split involutive Lie algebra g . In addition to (U1)-(U4), g satis�es:

(U5)The elements of l

a

, the ideal generated by p

+

i

, at as �nite rank operators on p

n

.

(U6)The ideal l

u

:= z

[l;l℄

(u) of g has a faithful unitary highest weight module.

Proof. (U2) Sine ker� \ z(g) � ker �

�

, the restrition of � to z(g) is injetive, so that u is

a Heisenberg algebra if non-zero (Theorem II.8).

(U5) Sine l

a

is the ideal of l generated by the oroots �� , � 2 �

+

p;i

, it suÆes to show that

for eah suh oroot the subspae [��; p

n

℄ is �nite-dimensional. We may w.l.o.g. assume that

� 2 �

+

. Then

[��; p

n

℄ =

X

�2�

n

;�(��)6=0

g

�

:

Let g

0

� u o g(�) be a �nite-dimensional separated subalgebra ontaining g(�), and

�

0

:= � j

h

0

. Then the highest weight module L(�

0

;�

+

g

0

) is unitary, so that [Ne99, Th. IX.4.8℄

implies that

�

0

+

1

2

tr

�

ad

g

0

\p

+

n

(�)

�

de�nes a unitary highest weight module of g(�), whih means that

�

0

(��) +

1

2

dim[��; g

0

\ p

+

n

℄ � 0

beause for � 2 �

+

n

and � 2 �

+

p;i

we have �(��) 2 f0; 1g (see (U4), Proposition II.5(ii)). We

onlude that

dim[��; g

0

\ p

n

℄ � �2�(��):

Sine p

+

n

is the union of all the subspaes g

0

\ p

+

n

, we obtain dim[��; p

n

℄ � �2�(��) <1:

(U6) Let l

u

:= z

[l;l℄

(u) E l and put �

u

:= � j

h

u

, where h

u

= h \ l

u

. Let l

0

u

E [l; l℄ be an ideal

omplementing l

u

. Then [g; g℄ � (u o l

0

u

) � l

u

implies that U(l

u

):v

�

� L(�;�

+

) is a unitary

highest weight module of l

u

isomorphi to L(�

u

;�

+

u

), and that L(�;�

+

) is a semisimple module

of l

u

whih is isotypi of type L(�

u

;�

+

u

). Therefore L(�

u

;�

+

u

) is a faithful l

u

-module.

Aording to the preeding theorem, the struture of a Lie algebra with a faithful unitary

highest weight representation is essentially enoded in three piees of data:

(1) the quasihermitian almost redutive Lie algebra l ,

(2) the Heisenberg algebra u , and

(3) the l-module p

n

.

The struture behind (1) and (2) is quite transparent beause the simple ompat and

hermitian Lie algebras an be lassi�ed (f. [NeSt99℄). Therefore the ruial part of information

is enoded in part (3).

Remark II.10. In [Twa99℄ R. Twarok studies a lass of split loally �nite loally solvable Lie

algebras assoiated to quasirystals. Aording to Theorem II.8, for every unitary highest weight

representation � of suh a Lie algebra

e

g the quotient g :=

e

g= ker� has the form g = u o h

l

,

where u is a Heisenberg algebra. For the Lie algebra

e

g this requirement always means that ker �

will be a very large ideal.
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De�nition II.11. (f. [DiPe99℄) (a) Let g be an almost redutive split Lie algebra. A g-

module V is alled a weight module if it is the sum of the h-weight spaes, where h � g is a

splitting Cartan subalgebra.

(b) A weight module V is said to be

(1) small if for eah � 2 P

V

and � 2 � we have j�(��)j � 1.

(2) �nite if for eah � 2 P

V

and eah � 2 � the set fn 2 Z:�+ n� 2 P

V

g is �nite.

(3) integrable if for eah � 2 � and x

�

2 g

�

the operator �

V

(x

�

) on V is loally nilpotent.

() If V is a weight module and V

�

� V a weight spae, then we identify its dual spae (V

�

)

�

with the subspae of V

�

onsisting of all those linear funtional vanishing on

P

�2P

V

nf�g

V

�

.

Now the subspae

V

℄

:=

M

�2P

V

(V

�

)

�

� V

�

is invariant under the natural ation of g on the algebrai dual spae V

�

given by �

V

�

(x):� :=

�� Æ �

V

. It is alled the dual weight module beause it is a weight module and maximal with

this property in V

�

.

Remark II.12. Assume that g has a faithful unitary highest weight representation. We have

seen in Theorem II.8 that V := p

n

is a 2-graded hermitian l-module, where the ontravariant

hermitian form on V is given by h(v; w) := �([v; w

�

℄) . Let l

a

:= p

+

i

+ p

�

i

+ [p

+

i

; p

�

i

℄ denote

the ideal of l ontaining all simple hermitian ideals and l

b

� [l; l℄ the omplementary ideal

(f. [Ne00b, Lemma II.2℄). Then V is a small weight module of l

a

, hene semisimple, and

therefore it deomposes into isotypi omponents ([Ne00b, Cor. II.2℄). Moreover, the desription

of the isotypi deomposition in [Ne00b, Cor. II.5℄ shows that this deomposition is h-orthogonal

beause the h-weight deomposition is orthogonal. If W � V is an isotypi submodule, then

W

�

=

L(�)
W

b

, where L(�) is a 2-graded highest weight module of l

a

on whih only one simple

ideal of l

a

ats non-trivially, and W

b

is an l

b

-module. Sine h is positive on W

+

and negative

on W

�

, the l

b

-module W

b

is unitary and �nite-dimensional if � 6= 0 beause the operators

oming from l

a

have �nite rank (f. Theorem II.9(U5)).

Remark II.13. We now desribe all those simple modules V of a simple hermitian ideal a E l

a

whih may our in p

n

, i.e., whih are 2-graded suh that all operators �

V

(x), x 2 a , are of

�nite rank (f. Theorem IV.11, Remark III.4 in [Ne00b℄).

(A

J

) For a

R

�

=

su(M;M



), M � J a subset, the module V = C

(J)

and its dual weight module,

and for jJ j <1 and jM



j = 1 we obtain, in addition, the modules V = �

k

(C

(J)

).

(B

J

) For a

R

�

=

o(2n� 1; 2;R) the module V = �(C

n

), the spin representation.

(C

J

) For a

R

�

=

sp(J;R) the idential representation on V = C

(2J)

.

(D

J

) For a

R

= o(2n� 2; 2;R) the two simple omponents �

odd

(C

n

) and �

even

(C

n

) of the spin

representation on �(C

n

), for a

R

= o

�

(2J) the idential representation on V = C

(2J)

, and

for jJ j = 4, in addition, we have the module V = �

odd

(C

4

).

As a onsequene of this desription, we see that the simple hermitian algebras whih do

not have 2-graded modules on whih they at by �nite rank operators are:

o(2J � 1; 2;R) and o(2J � 2; 2;R)

and the hermitian real forms of E

6

and E

7

. We onlude that if a E l is an ideal of that type,

then a E g is an ideal of the whole Lie algebra g beause it ats trivially on u . Moreover, in

[N�98℄ we have shown that the hermitian Lie algebras o(2J � 1; 2;R) and o(2J � 2; 2;R) do not

have any non-trivial unitary highest weight representation. Therefore these Lie algebras do not

show up at all in l whenever g has a faithful unitary highest weight representation (Theorem

II.9(U6)).
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III. Constrution of a faithful unitary highest weight module

In this setion we will show that essentially the neessary onditions derived in Setion II

are already suÆient for the existene of a faithful unitary highest weight module. In the proof

we will use the orresponding results on the �nite-dimensional ase ontained in [Ne99, Ch. IX℄.

First we deal with almost redutive Lie algebras.

Theorem III.1. If g is an almost redutive loally �nite involutive split Lie algebra with

dim z(g) � 1 , then g has a faithful unitary highest weight representation if and only if all simple

ideals of g

R

are ompat or hermitian, but 6

�

=

o(J; 2;R) for every in�nite set J .

Proof. If g has a faithful unitary highest weight representation, then (U1) in Theorem II.8

implies that the Lie algebra g is quasihermitian, so that all simple ideals of g

R

either are ompat

or hermitian. Moreover, we have seen in [N�98℄ that in�nite-dimensional ideals of the type

o(J; 2;R) are exluded.

Let [g; g℄ =

L

j2J

g

j

with simple ideals g

j

. In view of Remark I.13, the existene of a non-

trivial unitary highest weight module L(�

j

;�

+

g

j

) for eah g

j

follows from [N�98℄ and [Ne99,

Th. IX.5.7℄. We de�ne a linear funtional � on h \ [g; g℄ ! C by � j

h\g

j

= �

j

and extend it

to a linear funtional on h with � = �

�

whih does not vanish on z(g) if this spae (whih is

omplementary to [g; g℄) is non-trivial. We further de�ne �

+

by �

+

\�

g

j

= �

+

g

j

for all j 2 J .

Then we apply Proposition III.3 to the direted set of all those subalgebra whih are sums of

�nitely many simple ideals to see that the highest weight module L(�;�

+

) is unitary (f. also

[Ne99, Cor. IX.1.16℄ for the unitarity of in�nite tensor produts).

The ideal ker �

�

of the orresponding representation intersets eah ideal g

j

trivially, hene

intersets the semisimple ideal [g; g℄ trivially. This implies that ker �

�

� z(g). On the other hand

ker �

�

\ z(g) = ker� \ z(g) = f0g by onstrution of � beause dim z(g) � 1. Therefore �

�

is

faithful.

After these preparations on the almost redutive ase, we now turn to the general ase.

Theorem III.2. (Charaterization Theorem) An involutive split loally �nite Lie algebra g

has a faithful unitary highest weight representation with respet to the positive system �

+

if and

only if:

(V1)�

+

is adapted.

(V2)There exists an injetive involutive linear map �

Z

: z(g) ,! C with �

Z

([x

�

; x

�

�

℄) > 0 for

0 6= x

�

2 g

�

, � 2 �

+

n

.

(V3) l

R

is quasihermitian and no simple ideals are isomorphi to o(J; 2;R) for some in�nite set

J .

(V4)The elements of the ideal l

a

E l generated by p

+

i

at by �nite rank operators on u .

Proof. Neessity of the onditions: The neessity of (V1) follows from (U3) in Theorem II.9.

Suppose that �

�

is a faithful unitary highest weight module. Let �

Z

:= � j

z(g)

. Then �

Z

is

faithful and involutive, and (V2) follows from Proposition II.5(ii). Further (V4) follows from

(U5) in Theorem II.9. Assertion (U1) in Theorem II.8 implies that l is quasihermitian. Suppose

that l

1

E l is a simple ideal with l

1

R

�

=

o(J; 2;R) for some in�nite set J . In view of Theorem III.1

and (U5),(U6) in Theorem II.9, the ideal l

1

ats on u by �nite rank operators, so that Remark

II.13 implies that this ation is trivial, showing that l

1

is an ideal of g . On the other hand,

Theorem III.1 entails that l

1

annihilates the primitive element v

�

, showing that

L(�;�

+

)

l

1

:= fv 2 L(�;�

+

): l

1

:v = f0gg

is a non-zero g-submodule, hene all of L(�;�

+

). We onlude that l

1

� ker �

�

= f0g whih

implies (V3).
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SuÆieny of the onditions: If �

n

= �, then g is almost redutive, so that the assertion

follows from (V3) and Theorem III.1. We now assume that �

n

6= �. Then (V2) implies that

z(g) 6= f0g and hene that dim z(g) = 1. We write

[l; l℄ = l

a

� l

b

and h

l

:= h \ [l; l℄ = span

�

�

i

;

where l

a

is the sum of all hermitian simple ideals and l

b

the sum of all the ompat ideals. In

view of (V4), there exists a linear funtional Æ: h

l

! C with

Æ(x) :=

�

1

2

tr

�

ad

p

+

n

(x)

�

for x 2 h \ l

a

0 for x 2 h \ l

b

.

We extend Æ to an element of h

�

vanishing on z(g) and view �

Z

(hosen aording to (V2)) as

an element of h

�

vanishing on h

l

. Now we onsider the linear funtional �

1

:= �

Z

� Æ:

Using Proposition II.3(), we derive from the �nite-dimensional situation ([Ne99,

Th. IX.4.4℄) that the highest weight module L(�

1

;�

+

) is unitary. In fat, every �nite sub-

set of g is ontained in a well adapted �nite-dimensional subalgebra g

0

satisfying in addition:

(1) l

0

= l

0;a

� l

0;b

= (l

0

\ l

a

)� (l

0

\ l

b

) (if not, enlarge l

0;a

).

(2) [l

0;a

; u℄ � u

0

(if not, enlarge u

0

; (V4) is used).

Condition (2) implies in partiular that

Æ(x) =

1

2

tr

�

ad

p

+

n

(x)

�

for x 2 h

0

\ l

0;a

. Now [Ne99, Th. IX.4.4℄ implies that L(�

1

j

h

0

;�

+

g

0

; g

0

) is a unitary highest

weight module. Sine the union of all well separated subalgebras g

0

satisfying (1) and (2) is g ,

Proposition II.3 implies that L(�

1

;�

+

) is unitary. Now a := ker �

�

1

is an ideal of g interseting

u trivially, so that a � z

g

(u).

Let L(�

2

;�

+

i

) denote a faithful unitary highest weight module of [a; a℄ � [l; l℄ � l (Theorem

III.1) and extend it to a representation of l and further to g in suh a way that it is trivial on

u and the omplementary ideal to [a; a℄ in [l; l℄ . We put � := �

1

+ �

2

. Then

L(�;�

+

)

�

=

L(�

1

;�

+

)
 L(�

2

;�

+

)

([Ne99, Cor. IX.1.18℄), and ker �

�

does not interset any root spae, hene is ontained in h and

therefore entral. Now

z(g) \ ker�

�

= z(g) \ ker�

�

1

= f0g

shows that �

�

is faithful.

Corollary III.3. A �nite-dimensional involutive split loally �nite Lie algebra g has a faithful

unitary highest weight representation with respet to the positive system �

+

if and only if:

(V1)�

+

is adapted.

(V2)There exists an injetive involutive linear map �

Z

: z(g) ,! C with �

Z

([x

�

; x

�

�

℄) > 0 for

0 6= x

�

2 g

�

, � 2 �

+

n

.

Proof. In view of Theorem III.2, it only remains to see that l

R

is quasihermitian, but this

follows from the existene of an adapted positive system �

+

.

The following fatorization theorem is the ruial tool for the redution of the lassi�ation

problem to the almost redutive, and hene to the ase of simple Lie algebras.

Theorem III.4. (Metapleti Fatorization of unitary highest weight modules) Let g = uo l

be a split involutive Lie algebra, z := z(g) , �

+

an adapted positive system, and � = �

�

2 h

�

suh that L(�;�

+

) is unitary. Let rad(h

�

) denote the radial of the hermitian form h

�

: (v; w) 7!

�([v; w

�

℄) on p

+

n

, and let Æ

�

2 h

�

\ z(g)

?

with

Æ

�

(x) :=

�

1

2

tr ad

p

+

n

= rad(h

�

)

for x 2 h \ l

a

0 for x 2 h \ l

b

.
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Then

L(�;�

+

)

�

=

L(�

Z

� Æ

�

;�

+

)
 L(�� �

Z

+ Æ

�

;�

+

);

where L(���

Z

+Æ

�

;�

+

)

�

=

L(���

Z

+Æ

�

;�

+

i

) as l-modules, whih makes sense beause u ats

trivially on this spae.

Proof. Passing to a representation of the quotient algebra g= ker�

�

, we may assume that �

�

is faithful. In view of Proposition II.5(ii), we have

rad(h

�

) \ p

+

n

= ker �

�

\ p

+

n

;

so that we now have

Æ

�

(x) =

�

1

2

tr ad

p

+

n

for x 2 h \ l

a

0 for x 2 h \ l

b

,

and we also see that the de�nition of Æ

�

makes sense beause of (V3) in Theorem III.2. We may

also assume that Æ

�

6= 0 beause otherwise �

n

= f0g , and the assertion is trivial.

We onstrut �nite-dimensional subalgebras g

0

as in the proof of Theorem III.2. That

these subalgebras are admissible an be seen as follows. If �

g

0

;n

= �, then g

0

is redutive and

quasihermitian beause �

+

0

:= �

0

\ �

+

is adapted. Hene g

0

is admissible. Now we assume

that �

g

0

;n

6= �. Then f0g 6= [u

0

; u

0

℄ � [u; u℄ � z(g), so that we an write z(g

0

) as z(g)� z , and

g

0

= g

1

� z follows from z \ [g

0

; g

0

℄ = f0g . Now Corollary III.3 implies that g

1

is admissible

([Ne99, Th. IX.2.17℄), and therefore that g

0

is admissible.

As a onsequene, we an apply [Ne99, Th. IX.4.8℄ to all subalgebras g

0

, so that we obtain

with Proposition II.3 that L(�

Z

� Æ

�

;�

+

) and L(�� �

Z

+ Æ

�

;�

+

) are unitary. Now Corollary

IX.1.18 in [Ne99℄ implies that

L(�;�

+

)

�

=

L(�

Z

� Æ

�

;�

+

)
 L(�� �

Z

+ Æ

�

;�

+

);

where u ats trivially on L(�� �

Z

+ Æ

�

;�

+

).

In the following we onsider the ones

C(�

+

) := one(f[x

�

; x

�

�

℄:x

�

2 g

�

; � 2 �

+

g)

and

C(�

+

n

) := one(f[x

�

; x

�

�

℄:x

�

2 g

�

; � 2 �

+

n

g) � iz(g):

Theorem III.5. (Classi�ation Theorem) Let g = u o l be an involutive Lie algebra with

root deomposition g = h +

P

�2�

g

�

, �

+

an adapted positive system, and assume that u is

a generalized Heisenberg algebra and that for eah x 2 h \ l

a

the operator ad

p

+

n

= rad(h

�

)

(x) has

�nite rank. Then for � = �

�

2 h

�

the highest weight module L(�;�

+

) is unitary if and only if

(1) �

Z

2 C(�

+

n

)

?

and

(2) For Æ

�

2 h

�

\ z(g)

?

with

Æ

�

(x) :=

�

1

2

tr

�

ad

p

+

n

= rad(h

�

)

(x)

�

for x 2 h \ l

a

0 for x 2 h \ l

b

the highest weight module L(�� �

Z

+ Æ

�

;�

+

i

) of l is unitary.

Proof. Neessity: Proposition II.5, Theorem III.2 and Theorem III.4.

SuÆieny: As in the proof of Theorem III.2, it follows that L(�

Z

� Æ

�

;�

+

) is unitary.

Therefore L(�;�

+

)

�

=

L(�

Z

� Æ

�

;�

+

)
 L(�� �

Z

+ Æ

�

;�

+

) is unitary.

Remark III.6. The preeding theorem redues the lassi�ation of the unitary highest weight

modules of loally �nite Lie algebras to the ase of almost redutive Lie algebras whih in turn

diretly redues to the ase of simple Lie algebras. For ompat loally �nite simple Lie algebras

the lassi�ation is most simple beause L(�;�

+

) is unitary if and only if � is dominant integral

with respet to �

+

, i.e., �(��) 2 N

0

for all � 2 �

+

(f. [Ne98℄). For hermitian simple Lie algebras

the situation is muh more ompliated. For the preise results in this ase we refer to [N�98℄,

where the lassi�ation in the loally �nite hermitian ase is derived from the orresponding

lassi�ation in the �nite-dimensional hermitian ase whih has been done independently by

Enright, Howe and Wallah ([EHW83℄) and Jakobsen ([Jak83℄).
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IV. Lie algebras with many unitary highest weight modules

In this short onluding setion we go slightly beyond the setting of Lie algebras with a faithful

unitary highest weight representation by onsidering the larger lass of those Lie algebras whih

possess a positive system �

+

for whih the orresponding unitary highest weight modules

separate the points of g . In the �nite-dimensional ontext this ondition haraterizes the

admissible Lie algebras ([Ne99, Th. IX.5.13℄). As Theorem IV.1 shows, this weaker ondition

still implies most of the strutural features that we �nd in the Lie algebras disussed in Setion

II.

In the following we all a onvex one C in a real vetor spae V pointed if for eah

x 2 C n f0g there exists a linear funtional � 2 C

?

:= f� 2 V

�

:�(C) � R

+

g with �(x) > 0.

Theorem IV.1. Let g be a split involutive loally �nite Lie algebra and �

+

an adapted

positive system for whih the unitary highest weight representations L(�;�

+

) separate the points.

Then g has the following properties:

(i) l is quasihermitian and l = p

�

i

�(k\l)�p

+

i

with p

�

i

:=

P

�2�

�

p;i

g

�

and �

i

= �

+

p;i

[�

k

[�

�

p;i

is a 3-grading.

(ii) [u; u℄ � z(g) and u is a generalized Heisenberg algebra.

(iii) �

+

is an adapted positive system.

(iv) p

n

:= [h; u℄ is a 2-graded l-module with p

�

n

=

P

�2�

�

n

g

�

.

(v) The one C(�

+

n

) � z(g) is pointed.

(vi) No simple ideal a E l

R

is isomorphi to o(J; 2;R) for some in�nite set J .

Proof. (i) follows from the orresponding assertion in Theorem II.8.

(ii) Let �; � 2 �

n

and x

�

2 g

�

and x

�

2 g

�

. If �+ � 6= 0, then Theorem II.8(U2) implies that

�

�

([x

�

; x

�

℄) = 0 for every unitary highest weight representation �

�

with respet to �

+

, and

therefore [x

�

; x

�

℄ = 0. Suppose that � = �� . For eah x 2 g we then have �

�

([x; [x

�

; x

�

℄℄) = 0

for every unitary highest weight representation �

�

with respet to �

+

, hene [x

�

; x

�

℄ 2 z(g).

This proves that [u; u℄ � z(g). In partiular u is a generalized Heisenberg algebra.

(iii) Let � 2 �

+

n

and � 2 �

+

i;p

. To see that [g

�

; g

�

℄ = f0g , we use Theorem II.8(U3) to see that

[g

�

; g

�

℄ � ker �

�

for every unitary highest weight representation �

�

with respet to �

+

, and

hene that [g

�

; g

�

℄ = f0g . The remaining assertions follow similarly.

(iv) follows similarly from Theorem II.8.

(v) Let C := C(�

+

n

) and x 2 C with �(x) = 0 for all � 2 C

?

. Then x 2 ker� \ z(g) � ker �

�

holds whenever L(�;�

+

) is unitary. Sine these representations separate the points of g , we

onlude that x = 0.

(ii) Let a E l

R

be a simple ideal and (�

�

; L(�;�

+

)) a unitary highest weight module of g with

a 6� ker �

�

. Then we apply Theorem III.2(V3) to the involutive split quotient algebra g= ker�

�

to obtain (vi).
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