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Abstra
t

We prove existen
e of solutions for quasi-stati
 initial-boundary value problems

to a 
lass of 
onstitutive equations with internal variables. This 
lass 
onsists of


onstitutive equations of monotone type with positive de�nite free energy. They

model the deformation behavior of metalli
 bodies. The existen
e theorem is

proved by redu
tion of the initial-boundary value problem to an abstra
t evolution

equation with a time dependent maximal monotone evolution operator, and by

appli
ation of known existen
e results for su
h evolution equations. The proofs

are sket
hed. At the end an example is given for a 
onstitutive equation satisfying

the hypotheses of the existen
e theorem.

1 Introdu
tion

Let 
 � R

3

be the set of material points of a solid body. History dependent deformation

behavior of this body at small strains 
an be modeled by the equations

�div

x

T (x; t) = b(x; t); (1.1)

T (x; t) = D("(r

x

u(x; t))� Bz(x; t)); (1.2)

�

�t

z(x; t) 2 f("(r

x

u(x; t)); z(x; t)); (1.3)

whi
h must hold for (x; t) 2 
� [0;1). The solution must satisfy the initial 
ondition

z(x; 0) = z

(0)

(x); x 2 
; (1.4)

and either the Diri
hlet boundary 
ondition

u(x; t) = 


D

(x; t); (x; t) 2 �
 � (0;1); (1.5)

or the Neumann boundary 
ondition

T (x; t)n(x) = 


N

(x; t); (x; t) 2 �
 � (0;1): (1.6)

Here u(x; t) : 
� [0;1) ! R

3

denotes the displa
ement of the material point labeled x

at time t. With the 3�3{matrix r

x

u(x; t) of �rst order derivatives of u with respe
t to

the 
omponents x

1

; x

2

; x

3

of x and with the transposed matrix (r

x

u(x; t))

T

the strain

tensor is de�ned by

"(r

x

u(x; t)) =

1

2

�

r

x

u(x; t) + (r

x

u(x; t))

T

�

:
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It belongs to S

3

, the set of symmetri
 3 � 3{matri
es. T : 
 � [0;1) ! S

3

is the

Cau
hy stress tensor, and z 2 
 � [0;1) ! R

N

is the ve
tor of internal variables.

With z 7! Bz = "

p

: R

N

! S

3

we denote a linear mapping, whi
h yields the plasti


strain tensor "

p

(x; t) 2 S

3

as a fun
tion of the ve
tor z(x; t). If we identify S

3

with R

6

,

we 
an 
onsider the six 
omponents of "

p

to be internal variables. Then "

p

is a part of

z, and B is the proje
tion to those 
omponents of z whi
h form "

p

.

D : S

3

! S

3

is a linear, symmetri
, positive de�nite mapping, the elasti
ity tensor,

b : 
 � [0;1) ! R

3

is a given volume for
e, 


D

: �
 � [0;1) ! R

3

is a given

boundary displa
ement, 


N

: �
 � [0;1) ! R

3

is a given tra
tion at the boundary,

and f : S

3

� R

N

! 2

R

N

is a given nonlinear fun
tion. Finally, n(x) in the Neumann

boundary 
ondition denotes the exterior unit normal to �
 at x.

The inelasti
 behavior modeled by the 
onstitutive equations (1.2) and (1.3) is de-

termined by the fun
tion f . These 
onstitutive equations must be taken from a 
lass,

whi
h is restri
tive enough to preserve all the 
hara
teristi
 properties of the inelasti


behavior of metalls, but is large enough to in
lude the variants of this behavior shown

by di�erent metals and alloys. A 
lass with interesting mathemati
al and thermo-

dynami
al properties is formed by the 
onstitutive equations of generalized standard

materials de�ned by B. Halphen and Nguyen Quo
 Son in [6℄. This 
lass in
ludes im-

portant 
onstitutive equations like the Prandtl-Reuss law, but it is too small to allow

the modelling of the inelasti
 behavior of most metals. This is shown in [1℄ by studying

a number of 
onstitutive equations used in engineering. Therefore in [1℄ the larger 
lass

of 
onstitutive equations of monotone type is introdu
ed. From it, a still larger 
lass is


onstru
ted using the method of transformation of interior variables.

The 
onstitutive equation (1.2) and (1.3) are of monotone type if (1.3) is of the form

z

t

(x; t) 2 g

�

� �r

z

 ("(r

x

u(x; t)); z(x; t))

�

(1.7)

with a monotone ve
tor �eld g : R

N

! 2

R

N

satisfying 0 2 g(0), with the 
onstant

mass density � > 0, and with the free energy  being a positive de�nite or positive

semi-de�nite quadrati
 form

� ("; z) =

1

2

[D("� Bz)℄ � ("�Bz) +

1

2

(Lz) � z : (1.8)

L is a symmetri
, positive de�nite or positive semi-de�nite N �N{matrix. We remark

that for the majority of 
onstitutive equations developed in engineering, in
luding the

Prandtl-Reuss law,  is only positive semi-de�nite, 
f. [1℄.

For the existen
e theory of initial-boundary value problems to 
onstitutive equations

of monotone type it is a fundamental di�eren
e, whether  is positive de�nite or only

positive semi-de�nite. In [1℄ it is proved that if  is positive de�nite and the ve
tor �eld

g in (1.7) is maximal monotone, then the dynami
 problem, where (1.1) is repla
ed by

�u

tt

(x; t)� div

x

T (x; t) = b(x; t);

has to every b 2

T

T

e

>0

L

2

(
� (0; T

e

)) a unique solution existing for all time. To prove

this, it is shown that the initial-boundary value problem 
an be written as an evolution

equation w

t

+Aw = F to a maximal monotone operator A in the Hilbert spa
e L

2

(
).

The existen
e result is immediately obtained from the 
lassi
al theory of these evolution

equations.

For the dynami
 initial-boundary value problem to positive semi-de�nite  su
h a


omplete theory does not exist. The solution must be sought in other Bana
h spa
es
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and has less regularity. For re
ent results we refer to [3℄. Sin
e the Prandtl-Reuss model

and also the Norton-Ho� model are 
onstitutive models with positive semi-de�nite free

energy, the results proved in [2, 8℄ yield examples of existen
e theorems for quasi-stati


initial-boundary value problems to positive semi-de�nite  .

The aim of this arti
le is to prove existen
e of solutions for the quasi-stati
 problem

in the 
ase of positive de�nite free energy  . To this end it is shown that the initial-

boundary value problem 
an be written as an evolution equation

z

t

+ A(t)z = 0; z(0) = z

(0)

(1.9)

in the Hilbert spa
e L

2

(
;R

N

). Di�erent from the dynami
 problem, the evolution

equation is homogeneous even if the right hand side b in (1.1) di�ers from zero, but

this right hand side introdu
es a time dependen
e of the evolution operator A(t). The

theory for su
h non-autonomous evolution equations developed in [7, 4, 5℄, for example,

yields existen
e of a solution if A(t) is maximal monotone for every t and if the time

dependen
e of A(t) is restri
ted by a 
ertain 
ondition. Several su
h 
onditions have

been found. One of these is the 
ondition C stated below, whi
h is well adapted to our

situation and 
an easily be veri�ed. In [5℄ it is proved that if the operators A(t) satisfy

this 
ondition, then there is a solution of the evolution equation (1.9) on a time interval

[0; T

e

). It turns out that for this 
ondition to be satis�ed restri
tions must be imposed

on the right hand side b of (1.1), on the boundary data 


D

or 


N

(save load 
onditions),

and on the monotone ve
tor �eld g:

Condition C: Let T

e

> 0, let X be a real Bana
h spa
e with norm k � k, and let

A(t) : X ! X be an m-a

retive operator with domain �(A(t)) � �; independently of

t. For � > 0 let

J

�

(t) = (I + �A(t))

�1

;

and assume that there are y

0

2 X and �

0

> 0 su
h that

sup

0<�<�

0

0�t<T

e

kJ

�

(t)y

0

k <1: (1.10)

Moreover, assume that there exist a measurable fun
tion h : [0; T

e

) ! X, of bounded

variation, and a nonde
reasing 
ontinuous fun
tion � : [0;1) ! [0;1) su
h that

kA(t)y � A(s)yk � kh(t)� h(s)k�(kyk) (1 + kA(t)yk) (1.11)

for all y 2 � and all 0 � s; t < T

e

.

Statement of the main result. To state the existen
e theorem obtained in this

way we need two de�nitions, whi
h we give �rst. We assume in the following that


 � R

3

is a bounded open set with Lips
hitz boundary. T

e

is a positive 
onstant, the

time of existen
e. H

1

(
;R

3

) denotes the Hilbert spa
e of fun
tions in L

2

(
;R

3

) with

quadrati
ally integrable �rst derivatives.

De�nition 1.1 Let C

D

or C

N

, respe
tively, be the 
lass of all fun
tions (b; 
) : [0; T

e

) !

L

2

(
;R

3

)�L

2

(�
;R

3

) su
h that for all t 2 [0; T

e

) there is a weak solution (û(t);

^

T (t)) 2

H

1

(
;R

3

)� L

2

(
;S

3

) of the boundary value problem

�div

x

^

T (x; t) = b(x; t); x 2 
; (1.12)

^

T (x; t) = D"(r

x

û(x; t)); x 2 
; (1.13)
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with the Diri
hlet or Neumann boundary 
ondition, respe
tively,

û(x; t) = 
(x; t); or

^

T (x; t)n(x) = 
(x; t); x 2 �
; (1.14)

for whi
h "(r

x

û(t)) belongs to L

1

(
;S

3

) and for whi
h the fun
tion

t 7! "(r

x

û(t)) : [0; T

e

) ! L

1

(
;S

3

)

is of bounded variation.

We note that the Neumann problem is solvable only if the fun
tions b and 
 satisfy the

identity

Z




b(x; t) � (a+ ! � x)dx +

Z

�



(x; t) � (a + ! � x)dS

x

= 0

for all a; ! 2 R

3

and all t 2 [0; T

e

). The fun
tion a + ! � x is an in�nitesimal rigid

motion. The solution of the Diri
hlet problem is unique. The solution of the Neumann

problem is unique only up to in�nitesimal rigid motions, but sin
e "(r

x

(a+!�x)) = 0,

to given b and 
 the fun
tion t 7! "(r

x

û(t)) is unique also for the Neumann problem.

From the regularity theory for ellipti
 systems it follows that if �
 is suÆ
iently

smooth, then C

D


ontains the 
lass of all fun
tions (b; 
) : [0; T

e

) ! H

1

(
)�H

5=2

(�
) of

bounded variation, and C

N


ontains the 
lass of all fun
tions (b; 
) : [0; T

e

) ! H

1

(
)�

H

3=2

(�
) of bounded variation, for example.

De�nition 1.2 A fun
tion

(u; T; z) 2 C([0; T

e

); H

1

(
;R

3

)� L

2

(
;S

3

)� L

2

(
;R

N

))

is 
alled mild solution of the initial-boundary value problem 
onsisting of the equations

�div

x

T = b (1.15)

T = D("(r

x

u)� Bz); (1.16)

z

t

= g(��r

z

 ("(r

x

u); z)) (1.17)

on 
� [0; T

e

), of the initial 
ondition

z(x; 0) = z

(0)

(x); x 2 
; (1.18)

and either of the Diri
hlet boundary 
ondition

u(x; t) = 
(x; t); (x; t) 2 �
 � (0; T

e

); (1.19)

or of the Neumann boundary 
ondition

T (x; t)n(x) = 
(x; t); (x; t) 2 �
 � (0; T

e

); (1.20)

if (u; T; z) 
an be approximated in the following sense:

To every T < T

e

there is a sequen
e of partitions P

n

= f0 = t

n

0

< : : : < t

n

k(n)

g and a

sequen
e of fun
tions (u

n

; T

n

; z

n

) : [0; t

n

k(n)

℄ ! H

1

(
;R

3

) � L

2

(
;S

3

) � L

2

(
;R

3

) su
h

that

(i) T � t

n

k(n)

< T

e

;
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(ii) lim

n!1

max

1�k�k(n)

(t

n

k

� t

n

k�1

) = 0,

(iii) z

n

is 
onstant on (t

n

k�1

; t

n

k

℄;

(iv) (u

n

; T

n

; z

n

)(t) is a weak solution of the boundary value problems (1.15), (1.16),

(1.19) or (1.15),(1.16), (1.20) for every t and satis�es

z

n

(t

n

k

)� z

n

(t

n

k�1

)

t

n

k

� t

n

k�1

= g

�

� �r

z

 ("(r

x

u

n

(t

n

k

)); z

n

(t

n

k

))

�

;

k = 1; : : : ; k(n); n = 1; 2; 3 : : : ;

(v) z

n

(0) = z

(0)

,

(vi) if k � k denotes the norm of H

1

(
;R

3

)� L

2

(
;S

3

)� L

2

(
;R

N

), then

lim

n!1

sup

0�t�T

k(u

n

(t); T

n

(t); z

n

(t))� (u(t); T (t); z(t))k = 0:

Let �

D

and �

N

, respe
tively, denote the sets of all z 2 L

2

(
;R

N

) with

g(��r

z

 ("(ru); z)) 2 L

2

(
;R

N

) :

Here u 2 H

1

(
;R

3

) is determined as weak solution of the Diri
hlet boundary value

problem (1.15), (1.16), (1.19), or Neumann boundary value problem (1.15), (1.16),

(1.20), respe
tively, with this z and with b � 
 � 0 inserted.

� = �

D

or � = �

N

is the t{independent domain of the operator A(t) from (1.9).

In the following we write C and � if a statement holds for the Diri
hlet and Neumann

boundary 
ondition. C; � 
an be repla
ed by C

D

; �

D

or C

N

; �

N

.

Now we formulate the main

Theorem 1.3 Let g : R

N

! R

N

be a maximal monotone ve
tor �eld with g(0) = 0.

Assume that to every C

1

> 0 there is C

2

> 0 su
h that

jg(z +B

T

�) � g(z)j � C

2

(jg(z)j+ 1)j� j (1.21)

for all z 2 R

N

and all � 2 S

3

with j� j � C

1

: Assume moreover, that the symmetri


matrix L in (1.8) is positive de�nite.

Then to all (b; 
) 2 C and z

(0)

2 � there is a mild solution (u; T; z) of the initial-

boundary value problem (1.15){(1.19) with Diri
hlet boundary 
ondition or (1.15){

(1.18), (1.20) with Neumann boundary 
ondition. The 
omponent z of this solution

satis�es z(t) 2 � for t a.e.

The solution of the Diri
hlet problem is unique. If (u

0

; T; z) is a mild solution of

the Neumann problem, then all mild solutions are obtained in the form (u; T; z) =

(u

0

; T; z) + (w; 0; 0), where w(x; t) = a(t) + !(t) � x with a; ! 2 C([0; T

e

);R

3

). For

every t the fun
tion x 7! w(x; t) is an in�nitesimal rigid motion.

We remark that L is positive de�nite if and only if the free energy  is positive de�nite,


f. [1, p. 48℄. A 
lass of fun
tions satisfying the 
ondition (1.21) is given in the following

Lemma 1.4 Assume that the fun
tion � 7! g(z + B

T

�) : S

3

! R

N

is di�erentiable

and that there is a 
onstant C with

jr

�

g(z +B

T

�)j � C(jg(z +B

T

�)j+ 1) (1.22)

for all z 2 R

N

and � 2 S

3

. Then (1.21) is satis�ed.
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In the remainder we pro
eed as follows: The proof of Theorem 1.3 is sket
hed in

Se
tions 2 and 3. For simpli
ity, we only 
onsider the 
ase of Diri
hlet boundary


onditions. In Se
tion 2 we dis
uss the redu
tion of the initial-boundary value problem

to an evolution equation, and in Se
tion 3 we sket
h the veri�
ation of 
ondition C.

In parti
ular, we give the detailed proof of the inequality (1.11). In Se
tion 4 we

present an example for 
onstitutive laws satisfying the assumptions of Theorem 1.3. The

bibliography 
ontains only a small number of arti
les and books. For other referen
es

we must refer to the literature 
ited in these arti
les and books.

2 Redu
tion to an evolution equation

We denote the s
alar produ
t of two matri
es �; � 2 S

3

by

� � � =

3

X

i;j=1

�

ij

�

ij

:

With this notation, the s
alar produ
ts and norms on L

2

(
;R

n

) and on L

2

(
;S

3

) are

given by

(�; �)




=

Z




�(x) � �(x) dx; k�k




= k�k

0;


= (�; �)

1=2




:

Sin
e D : S

3

! S

3

is symmetri
 and positive de�nite, a se
ond s
alar produ
t on

L

2

(
;S

3

) is de�ned by

[�; � ℄




= (D�; �)




:

The asso
iated norm [�; �℄

1=2




= (

R




(D�(x)) ��(x)dx)

1=2

is equivalent to the norm k�k




.

By

Æ

H

1

(
;R

3

) we denote the 
losure in H

1

(
;R

3

) of the set of in�nitely di�erentiable

fun
tions with 
ompa
t support 
ontained in 
 .

As preparation for the redu
tion of the initial-boundary value problem to an evolu-

tion equation we must study the Diri
hlet boundary value problem

�div T (x) = 0; x 2 
; (2.1)

T (x) = D("(ru(x))� Bz(x)); x 2 
; (2.2)

u(x) = 0; x 2 �
: (2.3)

Let the linear subspa
e D of L

2

(
;S

3

) be de�ned by

D = f"(ru) j u 2

Æ

H

1

(
;R

3

)g : (2.4)

It follows from Korn's inequality (
f. [9, pp. 278℄) that D is a 
losed subspa
e of

L

2

(
;S

3

). Therefore there is a proje
tion operator P : L

2

(
;S

3

) ! L

2

(
;S

3

) onto D ,

whi
h is orthogonal with respe
t to the s
alar produ
t [�; � ℄




.

Lemma 2.1 (i) Let 
 be open and bounded and let z 2 L

2

(
;R

N

). Let u 2

Æ

H

1

(
;R

3

)

be the unique weak solution of the boundary value problem (2.1){(2.3). Then " = "(ru)

satis�es

" = PBz :

(ii) The mapping B

T

DPB : L

2

(
;R

N

) ! L

2

(
;R

N

) is symmetri
 with respe
t to the

s
alar produ
t (z; ẑ)




:
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With this lemma we 
an redu
e the initial-boundary value problem (1.15){(1.19) to an

evolution equation. Note �rst that (1.8) yields

��r

z

 ("; z) = B

T

D("� Bz) � Lz = B

T

D"�Mz;

with the symmetri
 N �N{matrix M = B

T

DB + L. Therefore (1.17) 
an be written

as

z

t

= g(B

T

D"(r

x

u)�Mz) : (2.5)

Now assume that the pair of fun
tions (b; 
) with b from (1.15) and 
 from (1.19) belongs

to C. Assume moreover that (u; T; z) is a mild solution of the initial-boundary value

problem. As a 
onsequen
e of 
onditions (iv) and (vi) of De�nition 1.2, this implies

that (u; T; z)(t) 2

Æ

H

1

(
;R

3

) � L

2

(
;S

3

) � L

2

(
;R

N

) for all t 2 [0; T

e

) and that u(t)

is a weak solution of the Diri
hlet boundary value problem formed by the equations

(1.15), (1.16) and (1.19), where z(t) from the mild solution is 
onsidered to be given.

Let û(t) 2

Æ

H

1

(
;R

3

) be the unique weak solution of the Diri
hlet boundary value

problem (1.12){(1.14) with b(t) from (1.15) and 
(t) from (1.19) inserted, and let ~u(t)

be the weak solution of the Diri
hlet boundary value problem (2.1){(2.3) with z(t) from

the given solution inserted. Then ~u(t) + û(t) is also a solution of the boundary value

problem (1.15), (1.16), (1.19). When
e, u(t) = ~u(t) + û(t), sin
e the solution is unique.

Lemma 2.1 thus implies that the fun
tion "(r

x

u) in (2.5) satis�es

"(r

x

u(t)) = PBz(t) + "(r

x

û(t)) :

Insertion of this equality into (2.5) yields the evolution equation

z

t

(t) = g

�

(B

T

DPB �M)z(t) +

^

b(t)

�

= �A(t)z(t) ; (2.6)

where

�

x 7! [

^

b(t)℄(x) = B

T

D"(r

x

û(x; t))

�

2 L

2

(
;R

N

) : (2.7)

(2.6) is an evolution equation for z on the Hilbert spa
e L

2

(
;R

N

). The evolution

operator A(t) : �(A(t)) � L

2

(
;R

N

) ! L

2

(
;R

N

) is de�ned by

A(t)z = �g

�

(B

T

DPB �M)z +

^

b(t)

�

; (2.8)

with the domain

�(A(t)) =

n

z 2 L

2

(
;R

N

)

�

�

�

g((B

T

DPB �M)z +

^

b(t)) 2 L

2

(
;R

N

)

o

: (2.9)

3 Proof of the existen
e theorem

In this se
tion we sket
h the veri�
ation of 
ondition C. Note �rst that by Lemma 2.1

(ii) the linear mapping

M � B

T

DPB = L +B

T

DB � B

T

DPB : L

2

(
;R

N

) ! L

2

(
;R

N

)

is symmetri
 with respe
t to the s
alar produ
t (z; ẑ)




: It is also positive de�nite, sin
e

((M � B

T

DPB)z; z)




= (Lz; z)




+ (D(I � P )Bz;Bz)




= (Lz; z)




+ [(I � P )Bz;Bz℄




= (Lz; z)




+ [(I � P )Bz; (I � P )Bz℄




� (Lz; z)




� �kzk

2




7



with � > 0. Here we used that the proje
tor I � P is orthogonal with respe
t to the

s
alar produ
t [�; � ℄




, and we used the assumption that L is positive de�nite. Hen
e,

hz; ẑi




= ((M � B

T

DPB)z; ẑ)




is a s
alar produ
t on L

2

(
;R

N

). Some well known 
onsiderations show that

kM � B

T

DPBk

�1

hz; zi




� kzk

2




� k(M � B

T

DPB)

�1

khz; zi




:

When
e, the asso
iated norm

z




= hz; zi

1=2




is equivalent to kzk




.

Theorem 3.1 Let (b; 
) 2 C be a given fun
tion and let g : R

N

! R

N

be a maximal

monotone ve
tor �eld with g(0) = 0. Then for all t 2 [0; T

e

) the following assertions

hold:

(i) The operator A(t) de�ned in (2.8) is monotone with respe
t to the s
alar produ
t

hz; ẑi




.

(ii) For all � > 0 the operator I + �A(t) : �(A(t)) ! L

2

(
;R

N

) is surje
tive. Hen
e,

A(t) is maximal monotone.

(iii) For all � > 0

(I + �A(t))

�1

0




� k(M � B

T

DPB)

�1

k

1=2

k

^

b(t)k




;

with

^

b de�ned in (2.7). Here 0 2 L

2

(
;R

N

) is the null fun
tion.

Proof of Theorem 1.3: To prove this theorem it must be shown that for (b; 
) 2 C the

operator family A(t) satis�es 
ondition C. In this 
ondition we take for X the Hilbert

spa
e L

2

(
;R

N

). From Theorem 3.1(ii) it follows that A(t) is maximal monotone, hen
e

m-a

retive.

Next, the assertion (iii) of Theorem 3.1 immediately shows that for (b; 
) 2 C the

inequality (1.10) from 
ondition C 
an be satis�ed with the 
hoi
e y

0

= 0.

Further, some 
omputations show that as a 
onsequen
e of (1.21), for fun
tions

(b; 
) 2 C the domain of A(t) is independent of t and satis�es �(A(t)) = � for all

t 2 [0; T

e

), with the set � from Theorem 1.3.

Finally, to verify (1.11) for the operator family A(t), note that for (b; 
) 2 C the

fun
tion t 7! D"(r

x

û(t)) : [0; T

e

) ! L

1

(
;S

3

) is of bounded variation. Thus, there

exists C

1

with

kD"(r

x

û(t))k

1;


� C

1

(3.1)

for all t. Sin
e

^

b(s) �

^

b(t) = B

T

(D"(r

x

û(s)) � D"(r

x

û(t))), and sin
e (3.1) implies

kD"(r

x

û(s))�D"(r

x

û(t))k

1;


� 2C

1

; we infer from (1.21) that for a suitable 
onstant

C

3

, for all 0 � s; t < T

e

and all z 2 �

kA(t)z � A(s)zk




= kg((B

T

DPB �M)z +

^

b(t))� g((B

T

DPB �M)z +

^

b(s))k




(3.2)

� kC

3

(jg((B

T

DPB �M)z +

^

b(t))j+ 1) jD"(r

x

û(s))�D"(r

x

û(t))j k




� C

3

(kA(t)zk




+ k1k




) kDk k"(r

x

û(s))� "(r

x

û(t))k

1;


:
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Setting �(r) = var

0�t�r

(t 7! "(r

x

û(t))) and h(x; r) = �(r)w(x) with a fun
tion w 2

L

2

(
;R

N

) satisfying kwk




= 1, we obtain

k"(r

x

û(s))� "(r

x

û(t))k

1;


� j�(s)� �(t)j = kh(t)� h(s)k




:

This inequality and (3.2) together yield (1.11) with � � C

3

kDkmaxf1; k1k




g: There-

fore A(t) satis�es 
ondition C on [0; T

e

).

Now we 
an use the result proved in [5℄: If 
ondition C is satis�ed, then to every

z

(0)

2 � there exists a unique mild solution z 2 C([0; T

e

); L

2

(
;R

N

)) of the initial value

problem

z

t

(t) + A(t)z(t) = 0; z(0) = z

(0)

;

where this mild solution is 
hara
terized as follows:

To every T < T

e

there is a sequen
e of partitions P

n

= f0 = t

n

0

< : : : < t

n

k(n)

g and a

sequen
e of step fun
tions z

n

[0; t

n

k(n)

℄ ! L

2

(
;R

N

) su
h that

T � t

n

k(n)

< T

e

; (3.3)

lim

n!1

max

1�k�k(n)

(t

n

k

� t

n

k�1

) = 0; (3.4)

z

n

is 
onstant on (t

n

k�1

; t

n

k

℄; (3.5)

z

n

(t

n

k

)� z

n

(t

n

k�1

)

t

n

k

� t

n

k�1

+ A(t

n

k

)z

n

(t

n

k

) = 0 ; (3.6)

z

n

(0) = z

(0)

: (3.7)

lim

n!1

sup

0�t�T

kz

n

(t) � z(t)k




= 0: (3.8)

In [5℄ it is also shown that this mild solution satis�es z(t) 2 � for t a.e.

We insert this mild solution z(t) into (1.16). Then for every t 2 [0; T

e

) the equations

(1.15), (1.16), (1.19) de�ne a Diri
hlet boundary value problem on 
. Let (u(t); T (t)) be

the weak solution of this boundary value problem. The fun
tion (u; T; z) thus de�ned on

[0; T

e

) is a mild solution of the initial-boundary value problem (1.15){(1.19) in the sense

of De�nition 1.2. Sequen
es of partitions P

n

and of fun
tions (u

n

; T

n

; z

n

) satisfying


onditions (i){(vi) of this de�nition are obtained by 
hoosing sequen
es fP

n

g

1

n=1

and

fz

n

g

1

n=1

satisfying (3.3){(3.8), and by 
hoosing for (u

n

(t); T

n

(t)) a weak solution of

the boundary value problem (1.15), (1.16), (1.19) obtained after insertion of z

n

(t) into

(1.16). The proof of Theorem 1.3 is 
omplete.

4 Example

We present a simple example for a 
onstitutive law satisfying the 
onditions of Theo-

rem 1.3. We 
annot give all the 
omputations ne
essary to verify that these 
onditions

are ful�lled, but must refer to [1℄ for detailed 
onsiderations and other, more 
ompli-


ated examples.

Let � : [0;1) ! [0;1) be a 
ontinuously di�erentiable fun
tion with �(0) = 0 and

with �

0

(r) > 0 for all r > 0. We 
onsider the initial-boundary value problem to the

equations

�div

x

T = b; (4.1)

9



T = D("(r

x

u)� "

p

); (4.2)

�

�t

"

p

= �(jP

0

(T � k"

p

)j)

P

0

(T � k"

p

)

jP

0

(T � k"

p

)j

; (4.3)

where "

p

: 
 � [0;1) ! S

3

is the plasti
 strain tensor, where k is a positive 
onstant,

and where P

0

: S

3

! S

3

is the orthogonal proje
tor onto the subspa
e f� 2 S

3

j

tra
e(�) = 0g. If T is the stress, then P

0

T is the stress deviator. For � 2 S

3

we set

j� j

2

=

P

3

i;j=1

�

2

ij

.

By some 
omputations the following assertions 
an be proved: (4.1){(4.3) 
an be

written in the form (1.15){(1.17) if we identify S

3

with R

6

and set z = "

p

, hen
e B = I,

and if we de�ne g and the positive de�nite free energy  by

g(�) = �(jP

0

� j)

P

0

�

jP

0

� j

;

� ("; "

p

) =

1

2

[D("� "

p

)℄ � ("� "

p

) +

1

2

kjzj

2

:

The 
ontinuous fun
tion g : R

6

! R

6

is the gradient of a 
onvex fun
tion. Hen
e, g is

a maximal monotone ve
tor �eld. Moreover, g satis�es the inequality (1.22) if

�

0

(r) � 
(�(r) + 1)

holds with a 
onstant 
. In this 
ase all 
onditions of Theorem 1.3 are satis�ed. One


an for example 
hoose �(r) = C(exp(�r) � 1), or �(r) = Cr

n

, where C; � > 0; n > 1

are positive 
onstants. With the last 
hoi
e (4.3) be
omes the Melan-Prager model, a

modi�
ation of the Norton-Ho� law.
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