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Abstract

We prove existence of solutions for quasi-static initial-boundary value problems
to a class of constitutive equations with internal variables. This class consists of
constitutive equations of monotone type with positive definite free energy. They
model the deformation behavior of metallic bodies. The existence theorem is
proved by reduction of the initial-boundary value problem to an abstract evolution
equation with a time dependent maximal monotone evolution operator, and by
application of known existence results for such evolution equations. The proofs
are sketched. At the end an example is given for a constitutive equation satisfying
the hypotheses of the existence theorem:.

1 Introduction

Let Q C R? be the set of material points of a solid body. History dependent deformation
behavior of this body at small strains can be modeled by the equations

—div, T'(z,t) = b(z,t), (1.1)
T(x,t) = D(e(Vyu(z,t)) — Bz(x,t)), (1.2)
%z(aj,t) € f(e(Veu(z, 1)), z(x, 1)), (1.3)

which must hold for (z,t) € 2 x [0,00). The solution must satisfy the initial condition
2(2,0) = 2O(), ze€Q, (1.4)
and either the Dirichlet boundary condition
w(z,t) =yp(z,t), (x,t) € dQ x (0,00), (1.5)
or the Neumann boundary condition
T(x,t)n(x) =yn(x,t), (z,t) € 0Q x (0,00). (1.6)

Here u(z,t) : QX [0,00) — R? denotes the displacement of the material point labeled z
at time t. With the 3 x 3-matrix V,u(z, t) of first order derivatives of u with respect to
the components z1, z9, 73 of z and with the transposed matrix (V,u(z,t))? the strain
tensor is defined by

e(Vyu(z,t)) = %(un(x,t) + (Vyu(z, t))T>.
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It belongs to 83, the set of symmetric 3 x 3—matrices. T : Q x [0,00) — S® is the
Cauchy stress tensor, and z € © x [0,00) — R is the vector of internal variables.
With z — Bz = ¢, : RV — 8% we denote a linear mapping, which yields the plastic
strain tensor £,(z,t) € §* as a function of the vector z(z,t). If we identify S* with R%,
we can consider the six components of €, to be internal variables. Then ¢, is a part of
z, and B is the projection to those components of z which form ¢, .

D : 8 — 83 is a linear, symmetric, positive definite mapping, the elasticity tensor,
b: Qx[0,00) = R is a given volume force, vp : 92 x [0,00) — R® is a given
boundary displacement, vy : 92 x [0,00) — R® is a given traction at the boundary,
and f: 8 x RV — 28" is a given nonlinear function. Finally, n(z) in the Neumann
boundary condition denotes the exterior unit normal to OS2 at x.

The inelastic behavior modeled by the constitutive equations (1.2) and (1.3) is de-
termined by the function f. These constitutive equations must be taken from a class,
which is restrictive enough to preserve all the characteristic properties of the inelastic
behavior of metalls, but is large enough to include the variants of this behavior shown
by different metals and alloys. A class with interesting mathematical and thermo-
dynamical properties is formed by the constitutive equations of generalized standard
materials defined by B. Halphen and Nguyen Quoc Son in [6]. This class includes im-
portant constitutive equations like the Prandtl-Reuss law, but it is too small to allow
the modelling of the inelastic behavior of most metals. This is shown in [1] by studying
a number of constitutive equations used in engineering. Therefore in [1] the larger class
of constitutive equations of monotone type is introduced. From it, a still larger class is
constructed using the method of transformation of interior variables.

The constitutive equation (1.2) and (1.3) are of monotone type if (1.3) is of the form

alw,t) € g( = PV V(E(Vo (e, 1)), 2(2, 1)) (17)

with a monotone vector field ¢ : RY — 28" satisfying 0 € ¢(0), with the constant
mass density p > 0, and with the free energy ¢ being a positive definite or positive
semi-definite quadratic form

p(e, z) = %[D(s — Bz)]- (¢ — Bz) + %(Lz) Z. (1.8)

L is a symmetric, positive definite or positive semi-definite N x N-matrix. We remark
that for the majority of constitutive equations developed in engineering, including the
Prandtl-Reuss law, v is only positive semi-definite, cf. [1].

For the existence theory of initial-boundary value problems to constitutive equations
of monotone type it is a fundamental difference, whether v is positive definite or only
positive semi-definite. In [1] it is proved that if ¢ is positive definite and the vector field
¢ in (1.7) is maximal monotone, then the dynamic problem, where (1.1) is replaced by

pug(x,t) — div, T(x,t) = b(z, ),

has to every b € [, 5o L*(€2 x (0,7¢)) a unique solution existing for all time. To prove
this, it is shown that the initial-boundary value problem can be written as an evolution
equation w; + Aw = F to a maximal monotone operator A in the Hilbert space L?(€).
The existence result is immediately obtained from the classical theory of these evolution
equations.

For the dynamic initial-boundary value problem to positive semi-definite 1) such a
complete theory does not exist. The solution must be sought in other Banach spaces



and has less regularity. For recent results we refer to [3]. Since the Prandtl-Reuss model
and also the Norton-Hoff model are constitutive models with positive semi-definite free
energy, the results proved in [2, 8] yield examples of existence theorems for quasi-static
initial-boundary value problems to positive semi-definite 1.

The aim of this article is to prove existence of solutions for the quasi-static problem
in the case of positive definite free energy . To this end it is shown that the initial-
boundary value problem can be written as an evolution equation

2w+ Alt)z =0, 2(0) =20 (1.9)

in the Hilbert space L?(Q,RY). Different from the dynamic problem, the evolution
equation is homogeneous even if the right hand side b in (1.1) differs from zero, but
this right hand side introduces a time dependence of the evolution operator A(t). The
theory for such non-autonomous evolution equations developed in [7, 4, 5], for example,
yields existence of a solution if A(¢) is maximal monotone for every ¢ and if the time
dependence of A(t) is restricted by a certain condition. Several such conditions have
been found. One of these is the condition C stated below, which is well adapted to our
situation and can easily be verified. In [5] it is proved that if the operators A(t) satisfy
this condition, then there is a solution of the evolution equation (1.9) on a time interval
[0,T,). It turns out that for this condition to be satisfied restrictions must be imposed
on the right hand side b of (1.1), on the boundary data -y, or vy (save load conditions),
and on the monotone vector field g:

Condition C: Let 7, > 0, let X be a real Banach space with norm || - ||, and let
A(t) : X — X be an m-accretive operator with domain A(A(t)) = A, independently of
t. For A > 0 let

Ia(t) = (1 +AA(1) 7,

and assume that there are yy € X and )y > 0 such that

sup ||Jx(t)yoll < oo. (1.10)
0<A<Xp
0<t<T,

Moreover, assume that there exist a measurable function & : [0,7,) — X, of bounded
variation, and a nondecreasing continuous function © : [0, 00) — [0, 00) such that

1Ay — Als)yll < [|n(t) = h(s)l ©(ly[)) (1 + 1A@)y]) (1.11)

forally € Aand all 0 < s,t <T,.

Statement of the main result. To state the existence theorem obtained in this
way we need two definitions, which we give first. We assume in the following that
) C R? is a bounded open set with Lipschitz boundary. T, is a positive constant, the
time of existence. H;(€,R?) denotes the Hilbert space of functions in L?(§2, R*) with
quadratically integrable first derivatives.

Definition 1.1 Let Cp or Cy, respectively, be the class of all functions (b,7) : [0, T,) —
L2(Q,R3) x L*(09Q, R?) such that for allt € [0,T,) there is a weak solution (a(t),T(t)) €
Hi(Q,R?) x L*(Q,8?) of the boundary value problem

—div, T(z,t) = b(z,1), x €, (1.12)
T(z,t) = De(Vpa(z,t), z€Q, (1.13)
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with the Dirichlet or Neumann boundary condition, respectively,
a(x,t) = y(x,t), or T(x,t)n(z)=(z,t), zecdQ, (1.14)
for which e(V,0(t)) belongs to L>°(Q, 8*) and for which the function
t s e(Vgal(t) : [0,T,) — L®(Q,S?)
15 of bounded variation.

We note that the Neumann problem is solvable only if the functions b and v satisfy the
identity

/Qb(x,t)~(a+wXx)dx+[997(x,t)~(a+w><x)d5x:0

for all a,w € R® and all ¢ € [0,7,). The function @ + w X z is an infinitesimal rigid
motion. The solution of the Dirichlet problem is unique. The solution of the Neumann
problem is unique only up to infinitesimal rigid motions, but since £(V (a+w xx)) = 0,
to given b and 7 the function ¢ — &(V,u(t)) is unique also for the Neumann problem.

From the regularity theory for elliptic systems it follows that if 0€) is sufficiently
smooth, then Cp contains the class of all functions (b,7) : [0, T,) — H,(2) x Hj/5(0) of
bounded variation, and Cy contains the class of all functions (b, ) : [0, 1) — H(2) X
Hj/5(092) of bounded variation, for example.

Definition 1.2 A function
(U,T, Z) < O([07Te)7H1(QJR3) X LQ(Q783) X LQ(QJRN))

15 called mild solution of the initial-boundary value problem consisting of the equations

—div, T = b (1.15)
T = D(e(Vyu)— Bz), (1.16)
2 = g(=pV.¥(E(Vyu),2)) (1.17)

on Q x [0,1,), of the initial condition
2(2,0) = 20(z), ze€Q, (1.18)
and either of the Dirichlet boundary condition
u(x,t) =vy(z,t), (z,t) € 0Q x (0,T¢), (1.19)
or of the Neumann boundary condition
T(x,t)n(z) = v(x,t), (z,t) € 9Q x (0,T), (1.20)

if (u,T,z) can be approzimated in the following sense:

To every T < T, there is a sequence of partitions P* = {0 =ty < ... < tz(n)} and a
sequence of functions (u", 1™, 2") : [0, 2, )] — Hi(Q,R?) x L*(Q,8%) x L*(Q,R?) such
that

i) T<tp, <L,



S Wy
(i) lim max (f—#) =0,

(iii) 2" is constant on (tf_|,t}],
(iv) (u™,T™ 2")(t) is a weak solution of the boundary value problems (1.15), (1.16),
(1.19) or (1.15),(1.16), (1.20) for every t and satisfies
2(ty) — 2" (i)
e — e

k=1,... k(n), n=123...,

= g(— PV (VL (). ().

(v) 2"(0) =21,
vi) if || - || denotes the norm of Hy (2, R®) x L?(Q2,S8%) x L*(Q2,RY), then

lim “sup |[(u"(#), T"(1), 2"(t)) — (u(?), T(t), 2())|| = 0.

TL—}OOOStST

—~

Let Ap and Ay, respectively, denote the sets of all z € L?(2, RY) with
g(_pvz 7/)(5(VU): Z)) S L’ (Qa RN) :

Here u € H;(Q,R?) is determined as weak solution of the Dirichlet boundary value
problem (1.15), (1.16), (1.19), or Neumann boundary value problem (1.15), (1.16),
(1.20), respectively, with this z and with b = v = 0 inserted.

A = Ap or A = Ay is the t-independent domain of the operator A(¢) from (1.9).
In the following we write C and A if a statement holds for the Dirichlet and Neumann
boundary condition. C, A can be replaced by Cp, Ap or Cy, Ay .

Now we formulate the main

Theorem 1.3 Let g : RY — RN be a mazimal monotone vector field with g(0) = 0.
Assume that to every Cy > 0 there is Cy > 0 such that

l9(z + B'7) — g(2)] < Ca(lg(2)| + 1)]7] (1.21)

for all z € RY and all 7 € 8 with |7] < Cy. Assume moreover, that the symmetric
matriz L in (1.8) is positive definite.

Then to all (b,y) € C and 20 € A there is a mild solution (u,T,z) of the initial-
boundary wvalue problem (1.15)—(1.19) with Dirichlet boundary condition or (1.15)—
(1.18), (1.20) with Neumann boundary condition. The component z of this solution
satisfies z(t) € A fort a.e.

The solution of the Dirichlet problem is unique. If (ug,T,2) is a mild solution of
the Neumann problem, then all mild solutions are obtained in the form (u,T,z) =
(ug, T, z) + (w,0,0), where w(z,t) = a(t) + w(t) X x with a,w € C([0,T.),R*). For
every t the function x — w(z,t) is an infinitesimal rigid motion.

We remark that L is positive definite if and only if the free energy 1 is positive definite,
cf. [1, p. 48]. A class of functions satisfying the condition (1.21) is given in the following

Lemma 1.4 Assume that the function 7 +— g(z + B'7) : 8 — RN s differentiable
and that there is a constant C' with

V. g(z+ B'7)| < C(lg(z+ B'7)| + 1) (1.22)
for all z € RN and 7 € 83. Then (1.21) is satisfied.
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In the remainder we proceed as follows: The proof of Theorem 1.3 is sketched in
Sections 2 and 3. For simplicity, we only consider the case of Dirichlet boundary
conditions. In Section 2 we discuss the reduction of the initial-boundary value problem
to an evolution equation, and in Section 3 we sketch the verification of condition C.
In particular, we give the detailed proof of the inequality (1.11). In Section 4 we
present an example for constitutive laws satisfying the assumptions of Theorem 1.3. The
bibliography contains only a small number of articles and books. For other references
we must refer to the literature cited in these articles and books.

2 Reduction to an evolution equation

We denote the scalar product of two matrices o, 7 € S* by

3
- -T = E OijTij-

ij=1

With this notation, the scalar products and norms on L*(Q, R*) and on L*(9, S?) are
given by

(0,7)0 = /Qo@c) @) dr, olla = ol = (0,0)4

Since D : 8 — &3 is symmetric and positive definite, a second scalar product on
L*(Q, 8?%) is defined by
lo,T]q = (Do, T)q .

The associated norm [0, o] * = ([ (Do(z))-o(x)dx)'/? is equivalent to the norm [|o|q .

By ;[1((2, R?) we denote the closure in H, (€2, R®) of the set of infinitely differentiable
functions with compact support contained in €.

As preparation for the reduction of the initial-boundary value problem to an evolu-
tion equation we must study the Dirichlet boundary value problem

—divT'(z) = 0, x €€, (2.1)
T(x) = D(e(Vu(x)) — Bz(z)), z€, (2.2)
u(z) = 0, x € 0N0. (2.3)

Let the linear subspace D of L?(Q, 8*) be defined by

D = {e(Vu)|ue Hi(QR)}. (2.4)

It follows from Korn’s inequality (cf. [9, pp. 278]) that D is a closed subspace of
L*(2,83). Therefore there is a projection operator P : L?(Q,S8*) — L?(Q,S?) onto D,
which is orthogonal with respect to the scalar product [o, 7]q .

Lemma 2.1 (i) Let Q be open and bounded and let z € L*(Q,RY). Let u € I(—)Il(Q,]R‘g)
be the unique weak solution of the boundary value problem (2.1)~(2.3). Then e = &(Vu)
satisfies

e=PFPBxz.

(i) The mapping B'DPB : L*(Q,RY) — L?(Q,RY) is symmetric with respect to the
scalar product (z,2)q .



With this lemma we can reduce the initial-boundary value problem (1.15)—(1.19) to an
evolution equation. Note first that (1.8) yields

—pV.1(e,2) = BTD(e — Bz) — Lz = B"De — Mz,

with the symmetric N x N-matrix M = BT DB + L. Therefore (1.17) can be written
as
z = g(B'De(V,u) — M2). (2.5)

Now assume that the pair of functions (b, ) with b from (1.15) and ~ from (1.19) belongs
to C. Assume moreover that (u, 7, z) is a mild solution of the initial-boundary value
problem. As a consequence of conditions (iv) and (vi) of Definition 1.2, this implies

that (u,T),2)(t) € Hi(QRY) x L2(Q,8%) x L2(Q,RY) for all ¢ € [0,7,) and that u(t)
is a weak solution of the Dirichlet boundary value problem formed by the equations
(1.15), (1.16) and (1.19), where z(¢) from the mild solution is considered to be given.

Let u(t) € ;[1(9, R?) be the unique weak solution of the Dirichlet boundary value
problem (1.12)—(1.14) with b(¢) from (1.15) and 7(¢) from (1.19) inserted, and let @(t)
be the weak solution of the Dirichlet boundary value problem (2.1)—(2.3) with z(¢) from
the given solution inserted. Then u(t) + @(t) is also a solution of the boundary value
problem (1.15), (1.16), (1.19). Whence, u(t) = @(t) + a(t), since the solution is unique.
Lemma 2.1 thus implies that the function (V,u) in (2.5) satisfies

e(Vyu(t)) = PBz(t) + e(V,a(t)) .
Insertion of this equality into (2.5) yields the evolution equation
2(t) = g((BTDPB — M)z(t) + za(t)) = —A(t)2(t), (2.6)

where

(;c — [b(t)](x) = BY De(Va(x, t))) e LA(O,RY). (2.7)

(2.6) is an evolution equation for z on the Hilbert space L*(Q,RY). The evolution
operator A(t) : A(A(t)) C L*(Q,RY) — L*(Q,RY) is defined by

A(t)z = —g((BTDPB — M)z + (1)) (2.8)

with the domain

A(A(D)) = {z € L*(Q,RY) ‘ g((B'DPB — M)z + b(t)) € LZ(Q,RN)} . (29

3 Proof of the existence theorem

In this section we sketch the verification of condition C. Note first that by Lemma 2.1
(ii) the linear mapping

M —-B"'DPB=L+B"DB - B'DPB: I>(Q,R") — L*(Q,R")

is symmetric with respect to the scalar product (z, 2)q . It is also positive definite, since
(M — B"DPB)z,2)q = (Lz,2)q + (D(I — P)Bz, Bz)q
= (Lz,2)q +[({ — P)Bz, Bz|q = (Lz,2)q + [(I — P)Bz,(I — P)Bz]g

> (Lz,2)a 2 pll2l5



with p > 0. Here we used that the projector I — P is orthogonal with respect to the
scalar product [0, T]q, and we used the assumption that L is positive definite. Hence,

(z,8)0 = (M — B'DPB)z,2)q
is a scalar product on L?(Q, R"). Some well known considerations show that
IM — B"DPB| (2, 2)a < |I2ll§ < (M — B"DPB)[[{z, 2)a.

Whence, the associated norm
1/2
1zla = (2, 2)¢

is equivalent to ||z]|q .

Theorem 3.1 Let (b,) € C be a given function and let g : RN — RY be a mazimal
monotone vector field with g(0) = 0. Then for all t € [0,T,) the following assertions
hold:

(i)  The operator A(t) defined in (2.8) is monotone with respect to the scalar product
<Z> 2)9 .

(i)  For all A > 0 the operator I + MA(t) : A(A(t)) — L*(2,RY) is surjective. Hence,
A(t) is mazimal monotone.

(iii) For all A >0
|+ AA() 0l < [I(M — BTDPB) | (0o
with b defined in (2.7). Here 0 € L*(Q,RN) is the null function.

Proof of Theorem 1.3: To prove this theorem it must be shown that for (b,v) € C the
operator family A(¢) satisfies condition C. In this condition we take for X the Hilbert
space L*(Q2, RY). From Theorem 3.1(ii) it follows that A(¢) is maximal monotone, hence
m-accretive.

Next, the assertion (iii) of Theorem 3.1 immediately shows that for (b,7) € C the
inequality (1.10) from condition C can be satisfied with the choice yy = 0.

Further, some computations show that as a consequence of (1.21), for functions
(b,7) € C the domain of A(t) is independent of ¢ and satisfies A(A(¢)) = A for all
t € [0,T,), with the set A from Theorem 1.3.

Finally, to verify (1.11) for the operator family A(¢), note that for (b,~v) € C the
function ¢ — De(V,ia(t)) : [0,1,) — L®(Q,8?) is of bounded variation. Thus, there
exists C] with

[1De(Vai(t))[loo0 < C (3.1)

for all ¢. Since b(s) — b(t) = BT (De(V,i(s)) — De(V4a(t))), and since (3.1) implies
|De(V,u(s)) —De(V,0(t))]| oo < 2C , we infer from (1.21) that for a suitable constant
Cs,forall0 <s,t<T,andall z € A

[A(8)z = A(s)z[|o

= lg((B"DPB — M)z +b(t)) — g((B"DPB — M)z +b(s)) o (3:2)
< |Cs(lg((BTDPB — M)z +b(t))| + 1) | De(Vi(s)) — De(Vaa(t))] [la

< G3([lA@)2lle + [[1le) [ DI le(Vai(s)) = e(Vair(t))llooo -
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Setting p(r) = varg<i<,(t — €(Vu(t))) and h(z,r) = p(r)w(z) with a function w €
L2(Q, RY) satisfying [|w]|q = 1, we obtain

le(Vat(s)) = e(Vati(t))[loog < [p(s) = p(8)] = [|A(E) = h(s)lla-

This inequality and (3.2) together yield (1.11) with © = Cs||D|| max{1, ||1||o}. There-
fore A(t) satisfies condition C on [0,T%).

Now we can use the result proved in [5]: If condition C is satisfied, then to every
2(9 € A there exists a unique mild solution z € C([0,7,), L?(Q2, RY)) of the initial value
problem

2(t) + A()z(t) =0,  2(0) = 2@,

where this mild solution is characterized as follows:
To every 1" < T, there is a sequence of partitions P" = {0 =t§ < ... <t} } and a
sequence of step functions 2"[0, ¢, ] — L*(Q,RY) such that

T <ty < Te, (3.3)
li w—tr )= 4
M max (tp = i) =0, (34)
2" is constant on (t_,,t}], (3.5)
LM () — pT (40

D=2y i =o. (3.6)

by =tk

2"(0) = 20, (3.7)
lim sup ||2"(t) — 2(t)||o = 0. (3.8)
n—o0 OStST

In [5] it is also shown that this mild solution satisfies z(t) € A for ¢ a.e.

We insert this mild solution z(t) into (1.16). Then for every ¢ € [0,7,) the equations
(1.15), (1.16), (1.19) define a Dirichlet boundary value problem on 2. Let (u(t),T'(t)) be
the weak solution of this boundary value problem. The function (u, T, 2) thus defined on
[0,T,) is a mild solution of the initial-boundary value problem (1.15)—(1.19) in the sense
of Definition 1.2. Sequences of partitions P" and of functions (u", 7™, 2") satisfying
conditions (i)—(vi) of this definition are obtained by choosing sequences {P"}2° , and
{z"}>2, satisfying (3.3)—(3.8), and by choosing for (u™(t),7™(t)) a weak solution of
the boundary value problem (1.15), (1.16), (1.19) obtained after insertion of 2" (t) into
(1.16). The proof of Theorem 1.3 is complete.

4 Example

We present a simple example for a constitutive law satisfying the conditions of Theo-
rem 1.3. We cannot give all the computations necessary to verify that these conditions
are fulfilled, but must refer to [1] for detailed considerations and other, more compli-
cated examples.

Let I': [0, 00) — [0, 00) be a continuously differentiable function with I'(0) = 0 and
with I(r) > 0 for all » > 0. We consider the initial-boundary value problem to the
equations

—div,T = b, (4.1)



T = D(e(Vyu) —¢p), (4.2)

0 Py(T — ke
Gier = TURT = ke = (4.3
where £, : © x [0,00) — 8? is the plastic strain tensor, where k is a positive constant,
and where Py : 8 — 8% is the orthogonal projector onto the subspace {0 € S* |
trace(o) = 0}. If T is the stress, then PyT is the stress deviator. For 7 € §* we set
|T|2 = Z?j:l Tz2j :

By some computations the following assertions can be proved: (4.1)—(4.3) can be
written in the form (1.15)—(1.17) if we identify S* with R® and set z = ¢, hence B = I,
and if we define g and the positive definite free energy ¢ by

P()T
g(r) = F(|POT|)W7
poleey) = 51D )] (e~ o) + Shlal

The continuous function ¢ : R® — R® is the gradient of a convex function. Hence, g is
a maximal monotone vector field. Moreover, g satisfies the inequality (1.22) if

'(r) < c(T(r)+1)

holds with a constant c. In this case all conditions of Theorem 1.3 are satisfied. One
can for example choose I'(r) = C'(exp(kr) — 1), or I'(r) = Cr™, where C,x > 0, n > 1
are positive constants. With the last choice (4.3) becomes the Melan-Prager model, a
modification of the Norton-Hoff law.
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