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Abstrat

We prove existene of solutions for quasi-stati initial-boundary value problems

to a lass of onstitutive equations with internal variables. This lass onsists of

onstitutive equations of monotone type with positive de�nite free energy. They

model the deformation behavior of metalli bodies. The existene theorem is

proved by redution of the initial-boundary value problem to an abstrat evolution

equation with a time dependent maximal monotone evolution operator, and by

appliation of known existene results for suh evolution equations. The proofs

are skethed. At the end an example is given for a onstitutive equation satisfying

the hypotheses of the existene theorem.

1 Introdution

Let 
 � R

3

be the set of material points of a solid body. History dependent deformation

behavior of this body at small strains an be modeled by the equations

�div

x

T (x; t) = b(x; t); (1.1)

T (x; t) = D("(r

x

u(x; t))� Bz(x; t)); (1.2)

�

�t

z(x; t) 2 f("(r

x

u(x; t)); z(x; t)); (1.3)

whih must hold for (x; t) 2 
� [0;1). The solution must satisfy the initial ondition

z(x; 0) = z

(0)

(x); x 2 
; (1.4)

and either the Dirihlet boundary ondition

u(x; t) = 

D

(x; t); (x; t) 2 �
 � (0;1); (1.5)

or the Neumann boundary ondition

T (x; t)n(x) = 

N

(x; t); (x; t) 2 �
 � (0;1): (1.6)

Here u(x; t) : 
� [0;1) ! R

3

denotes the displaement of the material point labeled x

at time t. With the 3�3{matrix r

x

u(x; t) of �rst order derivatives of u with respet to

the omponents x

1

; x

2

; x

3

of x and with the transposed matrix (r

x

u(x; t))

T

the strain

tensor is de�ned by

"(r

x

u(x; t)) =

1

2

�

r

x

u(x; t) + (r

x

u(x; t))

T

�

:
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It belongs to S

3

, the set of symmetri 3 � 3{matries. T : 
 � [0;1) ! S

3

is the

Cauhy stress tensor, and z 2 
 � [0;1) ! R

N

is the vetor of internal variables.

With z 7! Bz = "

p

: R

N

! S

3

we denote a linear mapping, whih yields the plasti

strain tensor "

p

(x; t) 2 S

3

as a funtion of the vetor z(x; t). If we identify S

3

with R

6

,

we an onsider the six omponents of "

p

to be internal variables. Then "

p

is a part of

z, and B is the projetion to those omponents of z whih form "

p

.

D : S

3

! S

3

is a linear, symmetri, positive de�nite mapping, the elastiity tensor,

b : 
 � [0;1) ! R

3

is a given volume fore, 

D

: �
 � [0;1) ! R

3

is a given

boundary displaement, 

N

: �
 � [0;1) ! R

3

is a given tration at the boundary,

and f : S

3

� R

N

! 2

R

N

is a given nonlinear funtion. Finally, n(x) in the Neumann

boundary ondition denotes the exterior unit normal to �
 at x.

The inelasti behavior modeled by the onstitutive equations (1.2) and (1.3) is de-

termined by the funtion f . These onstitutive equations must be taken from a lass,

whih is restritive enough to preserve all the harateristi properties of the inelasti

behavior of metalls, but is large enough to inlude the variants of this behavior shown

by di�erent metals and alloys. A lass with interesting mathematial and thermo-

dynamial properties is formed by the onstitutive equations of generalized standard

materials de�ned by B. Halphen and Nguyen Quo Son in [6℄. This lass inludes im-

portant onstitutive equations like the Prandtl-Reuss law, but it is too small to allow

the modelling of the inelasti behavior of most metals. This is shown in [1℄ by studying

a number of onstitutive equations used in engineering. Therefore in [1℄ the larger lass

of onstitutive equations of monotone type is introdued. From it, a still larger lass is

onstruted using the method of transformation of interior variables.

The onstitutive equation (1.2) and (1.3) are of monotone type if (1.3) is of the form

z

t

(x; t) 2 g

�

� �r

z

 ("(r

x

u(x; t)); z(x; t))

�

(1.7)

with a monotone vetor �eld g : R

N

! 2

R

N

satisfying 0 2 g(0), with the onstant

mass density � > 0, and with the free energy  being a positive de�nite or positive

semi-de�nite quadrati form

� ("; z) =

1

2

[D("� Bz)℄ � ("�Bz) +

1

2

(Lz) � z : (1.8)

L is a symmetri, positive de�nite or positive semi-de�nite N �N{matrix. We remark

that for the majority of onstitutive equations developed in engineering, inluding the

Prandtl-Reuss law,  is only positive semi-de�nite, f. [1℄.

For the existene theory of initial-boundary value problems to onstitutive equations

of monotone type it is a fundamental di�erene, whether  is positive de�nite or only

positive semi-de�nite. In [1℄ it is proved that if  is positive de�nite and the vetor �eld

g in (1.7) is maximal monotone, then the dynami problem, where (1.1) is replaed by

�u

tt

(x; t)� div

x

T (x; t) = b(x; t);

has to every b 2

T

T

e

>0

L

2

(
� (0; T

e

)) a unique solution existing for all time. To prove

this, it is shown that the initial-boundary value problem an be written as an evolution

equation w

t

+Aw = F to a maximal monotone operator A in the Hilbert spae L

2

(
).

The existene result is immediately obtained from the lassial theory of these evolution

equations.

For the dynami initial-boundary value problem to positive semi-de�nite  suh a

omplete theory does not exist. The solution must be sought in other Banah spaes
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and has less regularity. For reent results we refer to [3℄. Sine the Prandtl-Reuss model

and also the Norton-Ho� model are onstitutive models with positive semi-de�nite free

energy, the results proved in [2, 8℄ yield examples of existene theorems for quasi-stati

initial-boundary value problems to positive semi-de�nite  .

The aim of this artile is to prove existene of solutions for the quasi-stati problem

in the ase of positive de�nite free energy  . To this end it is shown that the initial-

boundary value problem an be written as an evolution equation

z

t

+ A(t)z = 0; z(0) = z

(0)

(1.9)

in the Hilbert spae L

2

(
;R

N

). Di�erent from the dynami problem, the evolution

equation is homogeneous even if the right hand side b in (1.1) di�ers from zero, but

this right hand side introdues a time dependene of the evolution operator A(t). The

theory for suh non-autonomous evolution equations developed in [7, 4, 5℄, for example,

yields existene of a solution if A(t) is maximal monotone for every t and if the time

dependene of A(t) is restrited by a ertain ondition. Several suh onditions have

been found. One of these is the ondition C stated below, whih is well adapted to our

situation and an easily be veri�ed. In [5℄ it is proved that if the operators A(t) satisfy

this ondition, then there is a solution of the evolution equation (1.9) on a time interval

[0; T

e

). It turns out that for this ondition to be satis�ed restritions must be imposed

on the right hand side b of (1.1), on the boundary data 

D

or 

N

(save load onditions),

and on the monotone vetor �eld g:

Condition C: Let T

e

> 0, let X be a real Banah spae with norm k � k, and let

A(t) : X ! X be an m-aretive operator with domain �(A(t)) � �; independently of

t. For � > 0 let

J

�

(t) = (I + �A(t))

�1

;

and assume that there are y

0

2 X and �

0

> 0 suh that

sup

0<�<�

0

0�t<T

e

kJ

�

(t)y

0

k <1: (1.10)

Moreover, assume that there exist a measurable funtion h : [0; T

e

) ! X, of bounded

variation, and a nondereasing ontinuous funtion � : [0;1) ! [0;1) suh that

kA(t)y � A(s)yk � kh(t)� h(s)k�(kyk) (1 + kA(t)yk) (1.11)

for all y 2 � and all 0 � s; t < T

e

.

Statement of the main result. To state the existene theorem obtained in this

way we need two de�nitions, whih we give �rst. We assume in the following that


 � R

3

is a bounded open set with Lipshitz boundary. T

e

is a positive onstant, the

time of existene. H

1

(
;R

3

) denotes the Hilbert spae of funtions in L

2

(
;R

3

) with

quadratially integrable �rst derivatives.

De�nition 1.1 Let C

D

or C

N

, respetively, be the lass of all funtions (b; ) : [0; T

e

) !

L

2

(
;R

3

)�L

2

(�
;R

3

) suh that for all t 2 [0; T

e

) there is a weak solution (û(t);

^

T (t)) 2

H

1

(
;R

3

)� L

2

(
;S

3

) of the boundary value problem

�div

x

^

T (x; t) = b(x; t); x 2 
; (1.12)

^

T (x; t) = D"(r

x

û(x; t)); x 2 
; (1.13)
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with the Dirihlet or Neumann boundary ondition, respetively,

û(x; t) = (x; t); or

^

T (x; t)n(x) = (x; t); x 2 �
; (1.14)

for whih "(r

x

û(t)) belongs to L

1

(
;S

3

) and for whih the funtion

t 7! "(r

x

û(t)) : [0; T

e

) ! L

1

(
;S

3

)

is of bounded variation.

We note that the Neumann problem is solvable only if the funtions b and  satisfy the

identity

Z




b(x; t) � (a+ ! � x)dx +

Z

�


(x; t) � (a + ! � x)dS

x

= 0

for all a; ! 2 R

3

and all t 2 [0; T

e

). The funtion a + ! � x is an in�nitesimal rigid

motion. The solution of the Dirihlet problem is unique. The solution of the Neumann

problem is unique only up to in�nitesimal rigid motions, but sine "(r

x

(a+!�x)) = 0,

to given b and  the funtion t 7! "(r

x

û(t)) is unique also for the Neumann problem.

From the regularity theory for ellipti systems it follows that if �
 is suÆiently

smooth, then C

D

ontains the lass of all funtions (b; ) : [0; T

e

) ! H

1

(
)�H

5=2

(�
) of

bounded variation, and C

N

ontains the lass of all funtions (b; ) : [0; T

e

) ! H

1

(
)�

H

3=2

(�
) of bounded variation, for example.

De�nition 1.2 A funtion

(u; T; z) 2 C([0; T

e

); H

1

(
;R

3

)� L

2

(
;S

3

)� L

2

(
;R

N

))

is alled mild solution of the initial-boundary value problem onsisting of the equations

�div

x

T = b (1.15)

T = D("(r

x

u)� Bz); (1.16)

z

t

= g(��r

z

 ("(r

x

u); z)) (1.17)

on 
� [0; T

e

), of the initial ondition

z(x; 0) = z

(0)

(x); x 2 
; (1.18)

and either of the Dirihlet boundary ondition

u(x; t) = (x; t); (x; t) 2 �
 � (0; T

e

); (1.19)

or of the Neumann boundary ondition

T (x; t)n(x) = (x; t); (x; t) 2 �
 � (0; T

e

); (1.20)

if (u; T; z) an be approximated in the following sense:

To every T < T

e

there is a sequene of partitions P

n

= f0 = t

n

0

< : : : < t

n

k(n)

g and a

sequene of funtions (u

n

; T

n

; z

n

) : [0; t

n

k(n)

℄ ! H

1

(
;R

3

) � L

2

(
;S

3

) � L

2

(
;R

3

) suh

that

(i) T � t

n

k(n)

< T

e

;
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(ii) lim

n!1

max

1�k�k(n)

(t

n

k

� t

n

k�1

) = 0,

(iii) z

n

is onstant on (t

n

k�1

; t

n

k

℄;

(iv) (u

n

; T

n

; z

n

)(t) is a weak solution of the boundary value problems (1.15), (1.16),

(1.19) or (1.15),(1.16), (1.20) for every t and satis�es

z

n

(t

n

k

)� z

n

(t

n

k�1

)

t

n

k

� t

n

k�1

= g

�

� �r

z

 ("(r

x

u

n

(t

n

k

)); z

n

(t

n

k

))

�

;

k = 1; : : : ; k(n); n = 1; 2; 3 : : : ;

(v) z

n

(0) = z

(0)

,

(vi) if k � k denotes the norm of H

1

(
;R

3

)� L

2

(
;S

3

)� L

2

(
;R

N

), then

lim

n!1

sup

0�t�T

k(u

n

(t); T

n

(t); z

n

(t))� (u(t); T (t); z(t))k = 0:

Let �

D

and �

N

, respetively, denote the sets of all z 2 L

2

(
;R

N

) with

g(��r

z

 ("(ru); z)) 2 L

2

(
;R

N

) :

Here u 2 H

1

(
;R

3

) is determined as weak solution of the Dirihlet boundary value

problem (1.15), (1.16), (1.19), or Neumann boundary value problem (1.15), (1.16),

(1.20), respetively, with this z and with b �  � 0 inserted.

� = �

D

or � = �

N

is the t{independent domain of the operator A(t) from (1.9).

In the following we write C and � if a statement holds for the Dirihlet and Neumann

boundary ondition. C; � an be replaed by C

D

; �

D

or C

N

; �

N

.

Now we formulate the main

Theorem 1.3 Let g : R

N

! R

N

be a maximal monotone vetor �eld with g(0) = 0.

Assume that to every C

1

> 0 there is C

2

> 0 suh that

jg(z +B

T

�) � g(z)j � C

2

(jg(z)j+ 1)j� j (1.21)

for all z 2 R

N

and all � 2 S

3

with j� j � C

1

: Assume moreover, that the symmetri

matrix L in (1.8) is positive de�nite.

Then to all (b; ) 2 C and z

(0)

2 � there is a mild solution (u; T; z) of the initial-

boundary value problem (1.15){(1.19) with Dirihlet boundary ondition or (1.15){

(1.18), (1.20) with Neumann boundary ondition. The omponent z of this solution

satis�es z(t) 2 � for t a.e.

The solution of the Dirihlet problem is unique. If (u

0

; T; z) is a mild solution of

the Neumann problem, then all mild solutions are obtained in the form (u; T; z) =

(u

0

; T; z) + (w; 0; 0), where w(x; t) = a(t) + !(t) � x with a; ! 2 C([0; T

e

);R

3

). For

every t the funtion x 7! w(x; t) is an in�nitesimal rigid motion.

We remark that L is positive de�nite if and only if the free energy  is positive de�nite,

f. [1, p. 48℄. A lass of funtions satisfying the ondition (1.21) is given in the following

Lemma 1.4 Assume that the funtion � 7! g(z + B

T

�) : S

3

! R

N

is di�erentiable

and that there is a onstant C with

jr

�

g(z +B

T

�)j � C(jg(z +B

T

�)j+ 1) (1.22)

for all z 2 R

N

and � 2 S

3

. Then (1.21) is satis�ed.
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In the remainder we proeed as follows: The proof of Theorem 1.3 is skethed in

Setions 2 and 3. For simpliity, we only onsider the ase of Dirihlet boundary

onditions. In Setion 2 we disuss the redution of the initial-boundary value problem

to an evolution equation, and in Setion 3 we sketh the veri�ation of ondition C.

In partiular, we give the detailed proof of the inequality (1.11). In Setion 4 we

present an example for onstitutive laws satisfying the assumptions of Theorem 1.3. The

bibliography ontains only a small number of artiles and books. For other referenes

we must refer to the literature ited in these artiles and books.

2 Redution to an evolution equation

We denote the salar produt of two matries �; � 2 S

3

by

� � � =

3

X

i;j=1

�

ij

�

ij

:

With this notation, the salar produts and norms on L

2

(
;R

n

) and on L

2

(
;S

3

) are

given by

(�; �)




=

Z




�(x) � �(x) dx; k�k




= k�k

0;


= (�; �)

1=2




:

Sine D : S

3

! S

3

is symmetri and positive de�nite, a seond salar produt on

L

2

(
;S

3

) is de�ned by

[�; � ℄




= (D�; �)




:

The assoiated norm [�; �℄

1=2




= (

R




(D�(x)) ��(x)dx)

1=2

is equivalent to the norm k�k




.

By

Æ

H

1

(
;R

3

) we denote the losure in H

1

(
;R

3

) of the set of in�nitely di�erentiable

funtions with ompat support ontained in 
 .

As preparation for the redution of the initial-boundary value problem to an evolu-

tion equation we must study the Dirihlet boundary value problem

�div T (x) = 0; x 2 
; (2.1)

T (x) = D("(ru(x))� Bz(x)); x 2 
; (2.2)

u(x) = 0; x 2 �
: (2.3)

Let the linear subspae D of L

2

(
;S

3

) be de�ned by

D = f"(ru) j u 2

Æ

H

1

(
;R

3

)g : (2.4)

It follows from Korn's inequality (f. [9, pp. 278℄) that D is a losed subspae of

L

2

(
;S

3

). Therefore there is a projetion operator P : L

2

(
;S

3

) ! L

2

(
;S

3

) onto D ,

whih is orthogonal with respet to the salar produt [�; � ℄




.

Lemma 2.1 (i) Let 
 be open and bounded and let z 2 L

2

(
;R

N

). Let u 2

Æ

H

1

(
;R

3

)

be the unique weak solution of the boundary value problem (2.1){(2.3). Then " = "(ru)

satis�es

" = PBz :

(ii) The mapping B

T

DPB : L

2

(
;R

N

) ! L

2

(
;R

N

) is symmetri with respet to the

salar produt (z; ẑ)




:
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With this lemma we an redue the initial-boundary value problem (1.15){(1.19) to an

evolution equation. Note �rst that (1.8) yields

��r

z

 ("; z) = B

T

D("� Bz) � Lz = B

T

D"�Mz;

with the symmetri N �N{matrix M = B

T

DB + L. Therefore (1.17) an be written

as

z

t

= g(B

T

D"(r

x

u)�Mz) : (2.5)

Now assume that the pair of funtions (b; ) with b from (1.15) and  from (1.19) belongs

to C. Assume moreover that (u; T; z) is a mild solution of the initial-boundary value

problem. As a onsequene of onditions (iv) and (vi) of De�nition 1.2, this implies

that (u; T; z)(t) 2

Æ

H

1

(
;R

3

) � L

2

(
;S

3

) � L

2

(
;R

N

) for all t 2 [0; T

e

) and that u(t)

is a weak solution of the Dirihlet boundary value problem formed by the equations

(1.15), (1.16) and (1.19), where z(t) from the mild solution is onsidered to be given.

Let û(t) 2

Æ

H

1

(
;R

3

) be the unique weak solution of the Dirihlet boundary value

problem (1.12){(1.14) with b(t) from (1.15) and (t) from (1.19) inserted, and let ~u(t)

be the weak solution of the Dirihlet boundary value problem (2.1){(2.3) with z(t) from

the given solution inserted. Then ~u(t) + û(t) is also a solution of the boundary value

problem (1.15), (1.16), (1.19). Whene, u(t) = ~u(t) + û(t), sine the solution is unique.

Lemma 2.1 thus implies that the funtion "(r

x

u) in (2.5) satis�es

"(r

x

u(t)) = PBz(t) + "(r

x

û(t)) :

Insertion of this equality into (2.5) yields the evolution equation

z

t

(t) = g

�

(B

T

DPB �M)z(t) +

^

b(t)

�

= �A(t)z(t) ; (2.6)

where

�

x 7! [

^

b(t)℄(x) = B

T

D"(r

x

û(x; t))

�

2 L

2

(
;R

N

) : (2.7)

(2.6) is an evolution equation for z on the Hilbert spae L

2

(
;R

N

). The evolution

operator A(t) : �(A(t)) � L

2

(
;R

N

) ! L

2

(
;R

N

) is de�ned by

A(t)z = �g

�

(B

T

DPB �M)z +

^

b(t)

�

; (2.8)

with the domain

�(A(t)) =

n

z 2 L

2

(
;R

N

)

�

�

�

g((B

T

DPB �M)z +

^

b(t)) 2 L

2

(
;R

N

)

o

: (2.9)

3 Proof of the existene theorem

In this setion we sketh the veri�ation of ondition C. Note �rst that by Lemma 2.1

(ii) the linear mapping

M � B

T

DPB = L +B

T

DB � B

T

DPB : L

2

(
;R

N

) ! L

2

(
;R

N

)

is symmetri with respet to the salar produt (z; ẑ)




: It is also positive de�nite, sine

((M � B

T

DPB)z; z)




= (Lz; z)




+ (D(I � P )Bz;Bz)




= (Lz; z)




+ [(I � P )Bz;Bz℄




= (Lz; z)




+ [(I � P )Bz; (I � P )Bz℄




� (Lz; z)




� �kzk

2
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with � > 0. Here we used that the projetor I � P is orthogonal with respet to the

salar produt [�; � ℄




, and we used the assumption that L is positive de�nite. Hene,

hz; ẑi




= ((M � B

T

DPB)z; ẑ)




is a salar produt on L

2

(
;R

N

). Some well known onsiderations show that

kM � B

T

DPBk

�1

hz; zi




� kzk

2




� k(M � B

T

DPB)

�1

khz; zi




:

Whene, the assoiated norm

z




= hz; zi

1=2




is equivalent to kzk




.

Theorem 3.1 Let (b; ) 2 C be a given funtion and let g : R

N

! R

N

be a maximal

monotone vetor �eld with g(0) = 0. Then for all t 2 [0; T

e

) the following assertions

hold:

(i) The operator A(t) de�ned in (2.8) is monotone with respet to the salar produt

hz; ẑi




.

(ii) For all � > 0 the operator I + �A(t) : �(A(t)) ! L

2

(
;R

N

) is surjetive. Hene,

A(t) is maximal monotone.

(iii) For all � > 0

(I + �A(t))

�1

0




� k(M � B

T

DPB)

�1

k

1=2

k

^

b(t)k




;

with

^

b de�ned in (2.7). Here 0 2 L

2

(
;R

N

) is the null funtion.

Proof of Theorem 1.3: To prove this theorem it must be shown that for (b; ) 2 C the

operator family A(t) satis�es ondition C. In this ondition we take for X the Hilbert

spae L

2

(
;R

N

). From Theorem 3.1(ii) it follows that A(t) is maximal monotone, hene

m-aretive.

Next, the assertion (iii) of Theorem 3.1 immediately shows that for (b; ) 2 C the

inequality (1.10) from ondition C an be satis�ed with the hoie y

0

= 0.

Further, some omputations show that as a onsequene of (1.21), for funtions

(b; ) 2 C the domain of A(t) is independent of t and satis�es �(A(t)) = � for all

t 2 [0; T

e

), with the set � from Theorem 1.3.

Finally, to verify (1.11) for the operator family A(t), note that for (b; ) 2 C the

funtion t 7! D"(r

x

û(t)) : [0; T

e

) ! L

1

(
;S

3

) is of bounded variation. Thus, there

exists C

1

with

kD"(r

x

û(t))k

1;


� C

1

(3.1)

for all t. Sine

^

b(s) �

^

b(t) = B

T

(D"(r

x

û(s)) � D"(r

x

û(t))), and sine (3.1) implies

kD"(r

x

û(s))�D"(r

x

û(t))k

1;


� 2C

1

; we infer from (1.21) that for a suitable onstant

C

3

, for all 0 � s; t < T

e

and all z 2 �

kA(t)z � A(s)zk




= kg((B

T

DPB �M)z +

^

b(t))� g((B

T

DPB �M)z +

^

b(s))k




(3.2)

� kC

3

(jg((B

T

DPB �M)z +

^

b(t))j+ 1) jD"(r

x

û(s))�D"(r

x

û(t))j k




� C

3

(kA(t)zk




+ k1k




) kDk k"(r

x

û(s))� "(r

x

û(t))k

1;


:
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Setting �(r) = var

0�t�r

(t 7! "(r

x

û(t))) and h(x; r) = �(r)w(x) with a funtion w 2

L

2

(
;R

N

) satisfying kwk




= 1, we obtain

k"(r

x

û(s))� "(r

x

û(t))k

1;


� j�(s)� �(t)j = kh(t)� h(s)k




:

This inequality and (3.2) together yield (1.11) with � � C

3

kDkmaxf1; k1k




g: There-

fore A(t) satis�es ondition C on [0; T

e

).

Now we an use the result proved in [5℄: If ondition C is satis�ed, then to every

z

(0)

2 � there exists a unique mild solution z 2 C([0; T

e

); L

2

(
;R

N

)) of the initial value

problem

z

t

(t) + A(t)z(t) = 0; z(0) = z

(0)

;

where this mild solution is haraterized as follows:

To every T < T

e

there is a sequene of partitions P

n

= f0 = t

n

0

< : : : < t

n

k(n)

g and a

sequene of step funtions z

n

[0; t

n

k(n)

℄ ! L

2

(
;R

N

) suh that

T � t

n

k(n)

< T

e

; (3.3)

lim

n!1

max

1�k�k(n)

(t

n

k

� t

n

k�1

) = 0; (3.4)

z

n

is onstant on (t

n

k�1

; t

n

k

℄; (3.5)

z

n

(t

n

k

)� z

n

(t

n

k�1

)

t

n

k

� t

n

k�1

+ A(t

n

k

)z

n

(t

n

k

) = 0 ; (3.6)

z

n

(0) = z

(0)

: (3.7)

lim

n!1

sup

0�t�T

kz

n

(t) � z(t)k




= 0: (3.8)

In [5℄ it is also shown that this mild solution satis�es z(t) 2 � for t a.e.

We insert this mild solution z(t) into (1.16). Then for every t 2 [0; T

e

) the equations

(1.15), (1.16), (1.19) de�ne a Dirihlet boundary value problem on 
. Let (u(t); T (t)) be

the weak solution of this boundary value problem. The funtion (u; T; z) thus de�ned on

[0; T

e

) is a mild solution of the initial-boundary value problem (1.15){(1.19) in the sense

of De�nition 1.2. Sequenes of partitions P

n

and of funtions (u

n

; T

n

; z

n

) satisfying

onditions (i){(vi) of this de�nition are obtained by hoosing sequenes fP

n

g

1

n=1

and

fz

n

g

1

n=1

satisfying (3.3){(3.8), and by hoosing for (u

n

(t); T

n

(t)) a weak solution of

the boundary value problem (1.15), (1.16), (1.19) obtained after insertion of z

n

(t) into

(1.16). The proof of Theorem 1.3 is omplete.

4 Example

We present a simple example for a onstitutive law satisfying the onditions of Theo-

rem 1.3. We annot give all the omputations neessary to verify that these onditions

are ful�lled, but must refer to [1℄ for detailed onsiderations and other, more ompli-

ated examples.

Let � : [0;1) ! [0;1) be a ontinuously di�erentiable funtion with �(0) = 0 and

with �

0

(r) > 0 for all r > 0. We onsider the initial-boundary value problem to the

equations

�div

x

T = b; (4.1)

9



T = D("(r

x

u)� "

p

); (4.2)

�

�t

"

p

= �(jP

0

(T � k"

p

)j)

P

0

(T � k"

p

)

jP

0

(T � k"

p

)j

; (4.3)

where "

p

: 
 � [0;1) ! S

3

is the plasti strain tensor, where k is a positive onstant,

and where P

0

: S

3

! S

3

is the orthogonal projetor onto the subspae f� 2 S

3

j

trae(�) = 0g. If T is the stress, then P

0

T is the stress deviator. For � 2 S

3

we set

j� j

2

=

P

3

i;j=1

�

2

ij

.

By some omputations the following assertions an be proved: (4.1){(4.3) an be

written in the form (1.15){(1.17) if we identify S

3

with R

6

and set z = "

p

, hene B = I,

and if we de�ne g and the positive de�nite free energy  by

g(�) = �(jP

0

� j)

P

0

�

jP

0

� j

;

� ("; "

p

) =

1

2

[D("� "

p

)℄ � ("� "

p

) +

1

2

kjzj

2

:

The ontinuous funtion g : R

6

! R

6

is the gradient of a onvex funtion. Hene, g is

a maximal monotone vetor �eld. Moreover, g satis�es the inequality (1.22) if

�

0

(r) � (�(r) + 1)

holds with a onstant . In this ase all onditions of Theorem 1.3 are satis�ed. One

an for example hoose �(r) = C(exp(�r) � 1), or �(r) = Cr

n

, where C; � > 0; n > 1

are positive onstants. With the last hoie (4.3) beomes the Melan-Prager model, a

modi�ation of the Norton-Ho� law.
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