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Abstract

In this article we present two FORTRAN-codes DOPRI8S and GRK4AS

based on FORTRAN-subroutines for the solution of initial value prob-

lems for ordinary di�erential equations which calculate the sensitivity of

the solution with respect to the initial values and the parameters. These

subroutines compute the sensitivity by internal di�erence approximations.

Compared to the classical external di�erence approximations we obtain

higher accuracies and a better reliability due to error control. Moreover

we can save execution time especially for implicit integration subroutines.

These advantages are demonstrated by some examples.

AMS Subject Classi�cation: 65 D25, 65 L05, 65 L07

1 Introduction

Let us consider an initial value problem (IVP) for a semi-implicit di�erential

algebraic equation (DAE) of index one with consistent initial values

_y(t) = f(t; y(t); z(t); p) (1)
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For a theoretical analysis it is useful to treat the parameters p as state variables

by formulating the trivial ODE _p = 0 and substituting w := (y; p; z). Then we
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get a DAE without parameters, where the parameters are initial values:
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The sensitivity matrix of this problem contains all the information of the sensi-

tivity matrix of the problem (1):
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If we di�erentiate the DAE (3) with respect to w

0

we obtain a DAE

_
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for the sensitivity matrix S(t; t

0

; w

0

). Because of the algebraic or more exactly

the linear equation of this DAE the columns of S(t; t

0

; w

0

) have to be in the kernel

of G

w

(t; w), i. e. to be consistent. Especially the initial value S(t

0

) has to be

consistent.

Ordinary di�erential equations (ODE) are only a special case of DAE's with no

algebraic equations. So everything also applies to ODE's, but for ODE's there

are no consistency conditions for S(t

0

).

In the following sections we will explain how the sensitivity matrix can be com-

puted e�ciently using nearly arbitrary existing numerical integration routines for

ODE's and DAE's.
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2 Numerical Sensivity Analysis and Implemen-

tation

The sensitivity is a derivative of the solution of a DAE or ODE. One way to calcu-

late derivatives numerically is to use di�erence approximations. We will describe

this in the next section. Then we explain some details of the implementation.

2.1 Internal Di�erence Approximations

We consider the problem
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For this problemwe calculate a numerical solution �(t; t

0

; y

0
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the step size sequence (h

i

)

k

i=1

used to calculate �. As an approximation of the

sensitivity in direction r we use the following di�erence approximation:
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We get the best results if we use the same step size sequences [h]

1

= [h]

2

in (7).

For �xed step size sequences, the numerical approximation is a di�erentiable

function of the initial values. Otherwise it has a stochastic component due to

non-di�erentiable decisions in the step size control and the solutions have to be

computed with high accuracy. This is very time consuming and can be avoided

when using [h]

1

= [h]

2

. The exact theoretical background for this better behav-

iour can be read in [2], [3], [4], [6] and [11].

The result of the error analysis (compare [6]) for this �xed step sizes is that the

error of the di�erence approximation is of the following order:
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with

�

h = max

i

jh

i

j, "

mach

the machine precision and p the order of the numerical

integration scheme. This means that the error of the di�erence approximation

of S is of the same order as the error of the numerical solution. Note, that the

step size need not to be �xed a priori. It is su�cient to use the same sequences

[h]

1

= [h]

2

where the elements of [h]

1

can still be chosen during runtime of the

integration.

The �xing of the step sizes will be realized in the following way. If a numerical

approximation �

i

of the solution y(t

i

; t

0

; y

0

) and a numerical approximation �

j;i

of the sensitivities in directions r

j

; j = 1; : : : ; n

s

at point t

i

are computed we

calculate approximations at the next point t

i+1

= t

i

+ h by

�
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= �(t

i+1

; t

i

; �

i

; h) (9)
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i

; �

i

+ "�
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; h); j = 1; : : : ; n

s

(10)

The new numerical approximation of the sensitivity at t

i+1

is then given by

�

j;i+1

=

�̂

j;i+1

� �

i+1

"

; j = 1; : : : ; n

s

(11)

Thereby we obtain the numerical solution and the numerical sensitivity at the

new point.

2.2 Rescaling of the Perturbations

A decisive topic when using di�erence approximations is the proper choice of

the increment. In case of the di�erence approximations for the sensitivities the

increment is the perturbation of the initial values "�

j;i

. In our implementation

it is possible to change the scaling factor " after every step and to adapt it to

the new size of the solution and the sensitivity at the current time point. This is

sensible, because too small perturbations can lead to cancellation and too large

perturbations to a dominant error term of order O(").

If we choose " = O(

p

"

mach

) the two parts of the error of the sensitivity O(") +

O

�

"

mach

"

�

in equation (8) are of the same size. In this case we obtain very good

results as shown in [11] and [6].

Let us now consider the situation at point t with a given numerical solution �

and a sensitivity � in direction r. We want to calculate an appropriate scaling

factor ". We compute the vector v

v

k

=

j�

k

j

j�

k

j+ 1

(12)
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a mixture of relative and absolute perturbations. Then a proper scaling factor is

" =

1

jjvjj+

p

"

mach

p

"

mach

(13)

If we have more information on the expected errors of the di�erent components

a more subtle scaling is possible (compare with [12]).

2.3 Error Control and Step Size Choice

A further advantage of the method is that the implemented error control of most

integration methods can easily be extended to an error control of the computed

sensitivity.

We take a look at the i-th step from t

i

to t

i+1

= t

i
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and �̂
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i+1

and
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approximation for the error of the sensitivity is given by
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Thus �

j;i+1

is an approximation of the error of �� which usually is much bigger

than the error of �.

If all error approximations jjd

i+1

jj; jj

^

d

j;i+1

jj and jj�

j;i+1

jj are smaller than a given

tolerance we accept the step, otherwise it is repeated with a smaller step size. For

a repeated as well as for a next step, this new step size is chosen by a heuristic

approach, in order to ful�ll the tolerance requirements in the next step.

The formula for the new step size takes into account the error of the last step, the

required tolerance and the approximation order p. According to (14) the error

of � has the same order p as the error of � so we can use the same step size

formula with jj�

j;i+1

jj instead of jjd

i+1

jj, the tolerance �

S

for the sensitivity and
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the order p. Because of (8) it is not possible to obtain higher accuracies than of

order O(

p

"

mach

). So the user can only require a tolerance �

S

>

p

"

mach

for the

sensitivity. Otherwise instead of (7) higher order approximations like symmetric

di�erence approximations have to be used.

In each step we obtain di�erent step size guesses for the next step, based on the

errors jjd

i+1

jj; jj

^

d

j;i+1

jj and jj�

j;i+1

jj. To make sure that all these errors will also

ful�ll our tolerance requirements in the next step, we take the minimum of these

step size guesses. The error control of the sensitivity then leads to more reliable

results and usually also to savings in computing time.

2.4 Calculation of the Solution with Higher Accuracy

In many applications the required accuracy � of the solution and the accuracy

�

S

of the sensitivity are di�erent (compare [4], [11], [13]). One possibility would

be to calculate the solution and the sensitivity independently with di�erent ac-

curacies. But the global error of the computed sensitivity can pro�t from the

higher accuracy of the solution if the solution and the sensitivity are calculated

simultaneously.

We consider the situation at point t

i

as in section 2.1 where the numerical approx-

imation �

i

of y(t

i

; t
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; y

0

) and sensitivities �

j;i

in directions r
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; j = 1; : : : ; n

s
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all computed with low accuracy �
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0
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.

With these solutions we calculate also approximations �
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of the sensitivities

(compare equation (11)). Let us analyse the error of �

j;i+1

using equation (8).
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))) � �
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+ O(

p

"

mach

) +O(h

p

)

The error of �

j;i+1

gets the smaller the better ~�

i

approximates y(t

i

; t

0

; y

0

). So if

we use ~�

i

instead of �

i

this decreases the error of the sensitivity.

But for the next step we now need an approximation of y(t

i+1

; t

0

; y

0

) with accu-

racy �, if we want to get the same situation as at t

i

. �

i+1

is only of accuracy �

S

.

So we have to calculate a further solution ~�

i+1

with smaller step sizes starting

with ~�

i

at time point t

i

.

Because ~�

i+1

cannot be used in the nominator of �

j;i+1

because of equation (8), we

have to calculate two di�erent approximations of y(t

i+1

; t

0

; y

0

). This disadvantage

is neglectable for high dimensional problems.

Remark: for a method of order p the computation of ~� requires k steps for each

step of the computation of � with k �

p

s

�

S

�

.

2.5 Reuse of Jacobians and Matrix Decompositions

For sti� ODE's implicit integration routines are used. In the most widely used

algorithms for sti� problems the most time consuming part is to solve linear

equations with matrices of the form

I

n

� h
f

y

(�; �) (15)

(
 a coe�cient of the integration method) or with similar matrices. Thereby

sometimes f

y

has to be the exact jacobian at (�; �), sometimes an approximation

is su�cient.

If we use similar methods for semi-implicit DAE's the matrices in the linear

equations have the form

0

@

I

n

� h
f

y

(�; �; �) h
f

z

(�; �; �)

g

y

(�; �; �) g

z

(�; �; �)

1

A

(16)

By linearization and neglection of small nonlinear contributions we �nd that the

solution to the perturbed initial values can be calculated using the same matrices

as for the solution to the unperturbed initial values.

This leads to great savings in computing time as we do not need to compute

jacobians and matrix decompositions for the sensitivity calculation. This leads

to savings of about factor n in setting up f

y

resp. f

y

and g

y

and decomposing

matrices of the form (15) or (16).
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2.6 Sensitivity of Parameters

Up to now we did not make di�erences between the variables y and z in the

DAE (or ODE) and the parameters p. Normally parameters do not appear in

the subroutines for the integration of DAE's or ODE's. They are constant and

only appear in the right-hand side of the equation. If we want to compute the

sensitivity with respect to parameters we have to add the parameters and their

dimension to the calling sequence. Then we have to change the calling sequence

of the function calls for the right-hand side of the equation, too.

Unlike the other variables the parameters remain unchanged during the integra-

tion. So we need not calculate the increments for the parameters. The parameters

will not have or gain errors during the integration. Therefore we do not need to

consider the parameters in the error control.

Furthermore we can calculate the vector of relative perturbations for the para-

meters once at the beginning of the integration. If a parameter �

k

is zero we have

no information about the size of this parameter and we choose

v

k

=

8

<

:

�

k

�

k

if �

k

6= 0

1 if �

k

= 0

(17)

Thus even small (badly scaled) parameters are perturbed relatively and we obtain

better results for the sensitivity with respect to parameters. Especially we do not

get rounding errors in the constant parts of the sensitivity and the variables.

3 Examples of Implementation

Here we present two FORTRAN-77-subroutines which allow to compute the nu-

merical solution of an ODE for nonsti� or sti� problems together with the sensi-

tivity of the problem. This subroutines are extensions of well known subroutines

which calculate only the solution of the ODE with one step methods. We added

a sensitivity analysis option to this subroutines using the ideas and methods

presented in this paper.

3.1 DOPRI8S

DOPRI8S is based on DOPRI8. It is an explicit Runge-Kutta method with 13

steps of order (7)8 using coe�cients calculated by Dormand and Prince (for

9



the coe�cients compare [7]). It is used for nonsti� IVP's with ODE's _y =

f(t; y; p); y(t

0

) = y

0

to calculate the solution y(t

f

) and the sensitivity S(t

f

) �R

in directions of the columns of R. The calling sequence of DOPRI8S for such an

IVP is:

CALL DOPRI8S (N,NP,NS,FCN,T,TEND,Y,P,SENS,TOL,TOLS,HMAX,H).

The parameters are

N, NP, NS dimension of y, p and number of sensitivity directions

(= number of columns of S)

FCN name of the subroutine for the calculation of f(t; y; p)

T input: initial time t

0

; output: current value of t,

(after successful integration t

f

)

TEND end point t

f

of integration

Y vector of dimension N; input: initial value y

0

;

output: current value y(t); (after successful integration y(t

f

))

P vector of dimension NP; constant parameter vector p

SENS matrix of dimension (N+NP)�NS; input: initial sensitivity

directions R; output: current value S(t) �R

TOL, TOLS tolerance for the solution and for the sensitivity

HMAX maximal step size

H input: initial step size guess;

output: last step size before stop of integration

To compute only the solution of the ODE choose NS=0 and provide a dummy

matrix SENS and a dummy variable EPSS. If the complete sensitivity matrix is

required choose NS = N+NP and initialize SENS = I.

The user has to provide two subroutines FCN and OUTSENS which are called

by DOPRI8S. The calling sequence of FCN is CALL FCN (N,NP,T,Y,P,F). The

parameters of this routine have to remain unchanged except for F which is a

vector of dimension N and has to contain the value f(t; y; p) as output.

OUTSENS is called by CALL OUTSENS (N,NP,NS,T,Y,P,SENS). This subrou-

tine can be used for output of the solution and the sensitivity at intermediate

points. The user has to provide at least a dummy subroutine. The parameters

have to remain unchanged during the call.

For statistical information about the integration the subroutine DOPRI8S uses

the COMMON-block COMMON /STAT/ NFCN,NSTEP,NACCPT,NREJCT.

The variables are the number of calls of the subroutine FCN, of computed steps

10



from t

0

to current t, of accepted steps and of rejected steps.

3.2 GRK4AS

GRK4AS is based on GRK4A. It is a Rosenbrock-Wanner-method with four steps

of order (3)4 using coe�cients calculated by Kaps and Rentrop (for the coe�-

cients compare [8]). It is used for sti� IVP's with ODE's. Therefore it has almost

the same calling sequence as DOPRI8S: CALL

GRK4AS (N,NP,NS,FCN,T,TEND,Y,P,JAC,IJAC,SENS,TOL,TOLS,HMAX,H).

It contains following additional parameters:

IJAC switch: IJAC=0 numerical approximation of the jacobian f

y

(t; y; p)

IJAC=1 analytical calculation of the jacobian f

y

(t; y; p)

by call of subroutine JAC

JAC name of the subroutine for the calculation of f

y

(t; y; p)

As DOPRI8S the subroutine also calls the subroutines FCN and OUTSENS with

the same calling sequences. Additionally the user has to provide the subroutine

JAC. The calling sequence is CALL JAC(N,NP,T,Y,P,DFY). If the user wants to

use numerical approximations of the jacobian f

y

(t; y; p) it is su�cient to provide

a dummy subroutine. Otherwise the user has to program the jacobian f

y

(t; y; p)

which will be the output of JAC. The output is saved in the matrix DFY of

dimension N�N. The other parameters have to remain unchanged.

As in DOPRI8S the user can get some statistical information about the integra-

tion by the COMMON-block

COMMON /STAT/ NFCN,NSTEP,NACCPT,NREJCT,NDECOMP,NJAC.

The additional variables NDECOMP and NJAC are the number of decomposi-

tions of matrices and the number of calls of the subroutine JAC or of computa-

tions of numerical approximations of the jacobian f

y

(t; y; p).

4 Test Examples

In this section we present some examples we used to test our implementations.

The results were compared to the results using the original integration subroutines

with unperturbed and perturbed initial values to compute external di�erence

approximations of the sensitivity by (7), which is the usual way to compute

S(t) � R. These integrations use di�erent step size sequences for the di�erent

solutions.
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As tolerances we choose � = �

2

S

. In case of external di�erence approximations the

tolerance � has to be used for all approximations �(t; t

0

; y

0

+ �

S

r

j

; [h]

i

) leading to

increasing computing time but still less reliability.

For each computation we present the error of the sensitivity and the computing

time for the computation of the solution and the sensitivity. More test examples

can be found in [6].

4.1 Nonsti� ODE's

For nonsti� ODE's we used DOPRI8S and the examples from the testset DE-

TEST [10].

The example C1 of this testset is linear of dimension 10:
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In all plots the x-axis represents the tolerances. The �rst plot shows if the error

is lower than the required tolerance. This demonstrates the reliability of the

program. The markers 'x' are the results of DOPRI8S and the markers 'o' that of

the external di�erence approximations with DOPRI8. The second plot compares

the computing times of the two calculation possibilities at given tolerances; the

ratio of DOPRI8 to DOPRI8S is plotted.
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The accuracy of DOPRI8S is much better and complies with the tolerance re-

quirements very precise. At the same time for smaller tolerances the saving in

computing time is about one half.

The second example is the �ve body motion (example C5 in DETEST). This is

a highly nonlinear problem of dimension 30 if it is transformed into a system of

�rst order.

We present the same plots as for the �rst example:
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For this nonlinear example the errors are larger than the required tolerance both

for DOPRI8S and DOPRI8. But we can see that by the local error control in

the subroutine DOPRI8S we can control the global error of the sensitivity and

get better results for small tolerances. The saving in computing time is up to a

factor three.

The other examples of the testset show similar results. For almost all examples

DOPRI8S is more reliable. Sometimes DOPRI8 is more accurate and often DO-

PRI8 is less accurate than DOPRI8S and the required tolerance. In the lower

dimensional examples the overhead is not neglectable. So there are no large sav-

ings in computing time with DOPRI8S. But for the high dimensional examples

as the two presented here we observe savings up to an factor three for small

tolerances in addition to higher accuracy.

4.2 Sti� ODE's

For sti� ODE's we used GRK4AS and the testset STIFFDETEST [5].
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The example E3 of this testset is:

y

0

1

= �(55 + y

3

)y

1

+ 65y

2

y

1

(0) = 1

y

0

2

= 0:0785(y

1

� y

2

) y

2

(0) = 1

y

0

3

= 0:1y

1

y

3

(0) = 0

x

f

= 500 h

0

= 0:02

The main savings in computing time depend on the dimension of the linear equa-

tions in GRK4AS. So we do not obtain big savings for this low dimensional

problem. Therefore we copied the example ten times obtaining dimension 30.

But still the matrices are structured. If we do not use this structure we obtain

larger savings in computing time. We cannot use any structure if the matrices

are full.

The ratios of computing time are marked for the simple example with 'o', for

the example copied 10 times with 'x' and for the same example not using the

structure of the matrices with '*'.
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The error for all examples stay the same. In the second plot we see the dependence

of the savings in computing time of the dimension of the linear equations and the

structure of the matrices. The savings are the largest for high dimensional linear

equations with full matrices.

For the other examples in STIFFDETEST we obtain similar or even better re-

sults. The reliability is better and we obtain savings in computing especially for

high dimensional problems.

We have presented example E3 because it is one of the very few examples of the

testset, where GRK4A can compute S(t) � R with reliable accuracy. In all the
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other examples external di�erence approximations are not reliable enough or too

accurate which makes it di�cult to compare the computing times.

4.3 Conclusion

The method presented is more reliable with respect to the accuracy of the calcu-

lated sensitivity. In addition big savings in computing time are possible, especially

for high dimensions if the matrix f

y

is full.

A great advantage of this method is the possibility to apply this extension to

many integration subroutines and also to methods for DAE's.

Availability of Software

All the presented subroutines are freely available. If interested in further details

on the implementation or the source code please contact Stephan Franz at fol-

lowing adress or email:

Stephan Franz Technische Universit�at Darmstadt

Fachbereich Mathematik AG 8

Schlo�gartenstra�e 7

D-64289 Darmstadt

email: franz@mathematik.tu-darmstadt.de
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