Infinite-dimensional groups and their representations

Karl-Hermann Neeb

In this paper we discuss some of the basic general notions and results which play
a key role in the representation theory of infinite-dimensional Lie groups modeled
over sequentially complete locally convex (s.c.l.c.) spaces. In the following each
locally convex space will implicitly be assumed to be Hausdorff.

In the first section we review the basic facts on calculus in s.c.l.c. spaces.
We choose the setup of s.c.l.c. spaces to ensure the existence of integrals of vector
valued continuous functions on compact intervals which is the key to the Funda-
mental Theorem of Calculus. For the setting of Fréchet spaces these results can
be found in [Ha82], but one readily notices that as soon as one has a Fundamental
Theorem of Calculus the other results go through with the same proofs. The s.c.l.c.
setting is also used in [Mi83]. Moreover, the setting of s.c.l.c. spaces is the natural
general setting for holomorphic mappings between infinite-dimensional spaces (cf.
[He89]). In particular we show that the usual notion of holomorphy is equivalent
to being smooth with complex linear differential. In this section we also discuss Lie
groups over s.c.l.c. spaces and how to define their Lie algebra. For the existence
of an exponential function no general result is known, nevertheless in all known
examples an exponential function seems to exist (cf. [Mi83, p. 1043]). Moreover the
differential of the exponential function is given by the same formula as in the finite
dimensional case ([Gr97]). A particularly interesting class of infinite-dimensional
Lie groups are the direct limit Lie groups. For more details on such groups we refer
to [NRW91], INRW93], [NRW94] and [G199]. For more results on general s.c.l.c. Lie
groups we refer to [Mi83] where one finds in particular a discussion of the class of
“regular” Lie groups which is characterized by nice properties of the exponential
function. A discussion of regular Lie groups in the “convenient setting” of [KM97a]
can be found in [KM97b].

Section II consists of a collection of various results from functional analysis,
in particular on dual spaces, which play a role in dealing with representations of
infinite-dimensional groups. Since we are working with s.c.l.c. spaces, one has to
make sure in many circumstances that the spaces obtained are in fact sequentially
complete. This is where one needs some refined tools from functional analysis. In
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addition to completeness properties, we also discuss metrizability of dual spaces
for certain natural topologies.

In Section III we show how the results from Section II can be used to define
convenient spaces of smooth and holomorphic functions on infinite-dimensional
manifolds in such a way that these spaces become s.c.l.c. spaces. We also analyze
the natural actions of Fréchet Lie groups on these spaces which are naturally
associated to smooth actions. In particular we show that a smooth action of a
Fréchet semigroup S on a Fréchet manifold M induces a smooth action of S on
C> (M, V) for every s.c.l.c. space V. We also derive a complex version of this result
for holomorphic actions of complex semigroups on complex manifolds.

In Section IV these results are applied to define a derived representation of
a representation (m, V) of an s.c.l.c. Lie group G on the subspace V' of smooth
vectors and to endow this space with a suitable complete locally convex topology
inherited from C*°(G, V) on which the action of G is smooth.

In the last Section V we then turn to a quite general setup for so called
coherent state representations. Analytically these representations are characterized
by the property that they can be realized in spaces of holomorphic sections of a
homogeneous complex line bundle. On the geometric side this means that the
action of G on the projective space of the dual space has a cyclic complex orbit.
These concepts are well studied in the setting of Hilbert spaces and here we show
that if one carefully distinguishes between the spaces and their duals, then one
can generalize this correspondence to general s.c.l.c. spaces.

I. Calculus in locally convex spaces

In this section we explain briefly how calculus works in s.c.l.c. spaces. The main
point is that one uses the appropriate notion of differentiability which for the
special case of Banach spaces differs from Fréchet differentiability but which is
more convenient in the setup of s.c.l.c. spaces. Our basic reference will be [Ha82],
where one finds detailed proofs for the case of Fréchet spaces. One readily observes
that once one has the Fundamental Theorem of Calculus, then the proofs of the
Fréchet case carry over to a more general setup where one still requires smooth
maps to be continuous (cf. also [Mi83]). A different approach to differentiability
in infinite-dimensional spaces in the framework of the so called convenient setting
can be found in [FK88] and [KM97a]. A central feature of this approach is that
smooth maps are no longer required to be continuous, but for calculus over Fréchet
spaces one finds the same class of smooth maps described by Hamilton and Milnor.
Another approach which also gives up the continuity of smooth maps and requires
only continuity on compact sets is discussed by E. G. F. Thomas in [Th96].

It is also interesting to note that since the Cauchy Integral Formula plays a
similar role for holomorphic functions as the Fundamental Theorem of Calculus
does for differentiable functions, the setting of s.c.l.c. spaces also seems to be the
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appropriate one for holomorphic mappings between infinite-dimensional spaces.
We show in particular that these two concepts are related by the observation that
the usual notion of holomorphy is equivalent to smoothness with complex linearity
of the differential.

Then we turn to manifolds modeled over s.c.l.c. spaces. Due to the aforemen-
tioned relation between smooth and holomorphic functions, complex manifolds are
special cases of real manifolds in any reasonable setting. One of our main objec-
tives in this section is to discuss some of the most basic properties of Lie groups
modeled over s.c.l.c. spaces. In particular we explain how to defined their Lie al-
gebra and the adjoint representation. A major difficulty of the s.c.l.c. setup which
does not arise for Banach Lie groups is that one cannot guarantee a priori that
they have any exponential function. Thus one is forced in many places to argue
without using an exponential functions.

Differentiable functions

Definition I.1. (a) Let X and Y be topological vector spaces, U C X open and
f:U = Y a continuous map. Then the derivative of f at = in the direction of h is
defined as

t—0

#@Wﬂ:hm%ﬁ@+ﬂn—ﬂ@)

whenever it exists. The function f is called differentiable in x if df (x)(h) exists for
all h € X. It is called continuously differentiable or C* if it is differentiable in all
points of U and

df-Ux X =Y, (z,h) df(z)(h)

is a continuous map.
(b) Higher derivatives are defined by

dnf(l’>(h17 RS hn)
1
;= lim ; (dnilf(l' + thn)(hl, caey hnfl) — dnilf(.%')(hl, ceey hn,1>) .
The function f is called n-times continuously differentiable or C™ if
d"fUx X" =Y, (z,h1,....,h,) = d"f(z)(ha,..., hy)
is a continuous map. We say that f is smooth or C* if it is C" for all n € N.
(¢) If X and Y are complex vector spaces, then the map f is called holomorphic

if it is C! and for all z € U the map df (z): X — Y is complex linear (cf. [Mi8&3, p.
1027]) (]



We note that if X and Y are Banach spaces, then the strong notion of contin-
uous differentiability is weaker than the usual notion of continuous differentiability
in Banach spaces which requires that the map = — df(x) is continuous with re-
spect to the operator norm. We will discuss this point below (Example 1.6 and
Theorem 1.7). We also note that the existence of linear maps which are not con-
tinuous shows that the continuity of f does not follow from the differentiability
of f because each linear map f: X — Y is differentiable in the sense of Definition
I.1(a).

So far we did not use any special property of the topological vector spaces
involved. To be able to develop a calculus on topological vector spaces which has
at least the most basic properties of calculus in finite dimensions, we will have to
make the assumption that the vector spaces under consideration are sequentially
complete locally convex (s.c.l.c.) spaces.

The main point in making this assumption is to be able to integrate con-
tinuous curves v:[a,b] — X in the sense that there exists a unique element

Y= fab ~v(t)dt € X with
b
wly) = / (w, (1)) dt

for all continuous linear functionals w on X (cf. [He89, Prop. 1.2.3]).

We recall that a locally convex space X is called quasicomplete if each closed
bounded subset of X is complete as a uniform space. Since Cauchy sequences form
bounded sets, it is clear that completeness implies quasicompleteness and that
quasicompleteness implies sequential completeness. For the existence of integrals of
continuous functions v: C' — X, where C'is a compact space, the quasicompleteness
of X is the appropriate assumption (cf. [Bou59, §1, no. 2, Cor. de Prop. 5; no. 6]).

Now we recall the precise statements of the most fundamental facts.

Lemma 1.2. The following assertions hold:
() If f is C* and x € U, then df (z): X — Y is a linear map, f is continuous,
and if x + th € U holds for all t € [0,1], then

flx+h) = f(x) +/0 df (x + uh)(h) du.

(ii) If f is C™, then the functions (hy,..., hy) = d"f(x)(h1,...,hy), z € U, are
symmetric n-linear maps.
Proof. (i) The first part is [Ha82, Th. 3.2.5] and the integral representation is
[Ha82, Th. 3.2.2]. To see that f is continuous, let p be a continuous seminorm on ¥
and € > 0. Then there exists a balanced 0-neighborhood U; C X withz+U; C U
and p(df (z 4+ uh)(h)) < e for u € [0,1] and h € U;. Hence

p(f(x+h) - f(2) < / p(df (z + uh)(h)) du <,

and thus f is continuous.
(ii) [Ha82, Th. 3.6.2] ]



Proposition I.3.  (The chain rule) If X, Y and Z are s.c.l.c. spaces, U C X
and V CY are open, and f1:U =V, f2:V — Z are C1, then foo fi:U — Z is
Ct with

d(f2o fi)(z) = dfz(fl(m)) o dfy(z).
Proof. [Ha82, Th. 3.3.4] =

Proposition I.4. If X;, Xy and Y are s.c.l.c. spaces, X = X1 x Xy, U C X is
open, and f:U — Y is continuous, then the partial derivatives

duf(, 2) () o= T = (Fan + th,22) = (1, 2))

and .
dz f(w1,22)(h) := lim = (f(zr, 22 +th) = f(21,22))

exist and are continuous if and only if df exists and is continuous. In that case we
have

df (z1,22)(h1, h2) = di f(z1,22)(h1) + da f (1, 72) (h2).
Proof. [Ha82, Th. 3.4.3] ]

Remark I.5. (a) If f: X — Y is a continuous linear map, then f is smooth with

for all z,h € X, and d"f =0 for n > 2.
(b) From (a) and Proposition I.4 it follows that a continuous k-linear map m: Xy x
... X X} =Y is continuously differentiable with

dm(z)(hy, ... hi) = m(hy, @2, @k) + -+ m(@, . e, ).

Inductively one obtains that m is smooth with d**'m = 0.
(c) If f:U — Y is C™!, then Lemma I.2(ii) and Proposition I.4 imply that

d(dnf>($7hl7 .. '7hn)(y7k17' . 7kn) = dn+1f(£l,’>(h1,_ . '7hn7y>
A @)k hay e ) e+ dPF (@) (B B o).

It follows in particular that, whenever f is C?, then f is C™*! if and only if d" f
is CL.

(d) If f:U — Y is holomorphic, then the finite-dimensional theory shows that for
each h € X the function U — Y,z — df (x)(h) is holomorphic. Hence d?f(x) is
complex bilinear and therefore d(df) is complex linear. Thus df: U x X — Y is
also holomorphic. u



Differentiable functions on Banach spaces

In this subsection we discuss the relation between the notion of differentiability
described in Definition I.1 and the notion of Fréchet differentiability in Banach
spaces. In Example 1.6 we will see that for maps between Banach spaces our C!
concept differs from the concept of continuous Fréchet differentiability, and in
Theorem 1.7 we will show that smooth functions are also smooth in the Fréchet
sense (the converse is obvious). For a more detailed discussion of several concepts
of differentiability in Fréchet and Banach spaces we refer to [Ke74, p. 110].

Example I.6. Let £ := {f € C(R):(Vz € R)f(x +1) = f(z)} denote the
Banach space of 1-periodic continuous functions on R endowed with the norm
Ifllg := sup{|f(x)|:# € R}. Further let F := {f € ENCYR) : f' € E} be
endowed with the norm || f||F := ||f||g + || f'l|z- We consider the map

mX =RxF—>E, (z,f/yr fzx+").

We claim that in the sense of Definition I.1(a) this map is C*, but that dm: X —
L(X,E),z — (h ~ dm(z,h)), where L£(X, E) denotes the Banach space of all
continuous operators from X to E, is not continuous, i.e., m is not C' in the
Fréchet sense.
We first show that the differential of m is given by
dm(z, f)(y,h) = f'(z + )y + h(z + ).

In fact, for s € R and ¢t # 0 we have
(mle + ty, £ +th)(s) — m(z, £)(s)) — /(= + 5)y — bz +3)

(flz+ty+s)+th(z+ty+s) = f(z+5)) = 'z +s)y — bz +s)

= = k| =

:?(f(x—l—ty—l—s)—f(x—l—s)) —fllx+8)y+h(x+ty+s)—hlz+s)

1 1
:/ fl(z+ s+ uty)y du—f’(w—f—s)y—i—/ B (z + s + uty)ty du.
0 0

Now the facts that f’ is uniformly continuous and that A’ is bounded imply that
this expression tends to 0 in £ whenever ¢ — 0. This proves the formula for the
differential of m.

Next we show that dm: X x X — E is continuous. In fact, the continuity of
Rx F — E,(xz,h) = h(z + -) follows from

1z +-) = ha(zr +)lle < W@ + ) = bz + )| + [[h(er + ) = b (21 + ) l|e
< Wllele — il + 1k = bl
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So it remains to see that (z, f) — f'(z + -) is also continuous. We have

1f'(x+) = filer + e <1 (@ + ) = fa+)le + I = fille,

so that the asserted continuity follows from the uniform continuity of f'.

To see that dm: X — L£(X, E) is not continuous, we note that dom(x, f)(h) =
hz+-). If \p.f = f(z + ), then z # 2’ implies that |[A\; — Azr|| = 2. This shows
that (z, f) — dom(z, f) = A, is not continuous. u

Theorem 1.7. Let X and Y be Banach spaces, U C X open, and f:U =Y a
map. Then the following assertions hold:

(i) If f is C?, then it is C in the Fréchet sense.

(ii) f is C* if and only if it is C* in the Fréchet sense.
Proof. (i) Let us fix € U and suppose that the open d-ball Us(z) about x is
contained in U. We write d?f(z)(h) for the map hy — d*f(z)(h,h1) in L(X,Y).
We claim that there exists an € €]0, §[ such that the set

]' 2 .
M. = {Wd Fla + h)(h):0 < ||n]| < 5}

is bounded. Suppose that this is not the case. Then there exists a sequence h,, — 0
such that ||d®f(z + hy)(hyn)|| > n+/||ha]|. For each hy € X we have

P
172

& f (@ + hn) (hn)(hy) :d2f(w+hn)( ,hl) -0

172

because d?f:U x X? — Y is continuous and ﬁ; T — 0. This contradicts the

Banach-Steinhaus Theorem, and therefore one of the sets M. is bounded.
Now assume that ||h]| < ¢ and that ||d2f(z + h)(R)|| < C+/||h]] for ||h]] < e.
Then

- ~ 1 Lo 1
ldf(z +h) —df(z)|| = ||/0 d* f (2 + uh)(h) dul| < /O |d? f (x + Uh)(Uh)HEdU
1 1
g/ c/luh] %du - C\/||h||/ w=hdu = 20/,
0 0

We conclude that the map df: U — £(X,Y) is continuous.
Furthermore we have

1f(z +h) — f(z) — df ()(h)]| = ||/0 df (x + uh)(h) — df (z)(h) dul

< sup{||df (& + ha) — df (@)|: ||| < e} IRl
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and, in view of the continuity of z — d. f(zx), the expression on the right hand side
is o(||h||). This proves that f is C! in the Fréchet sense whenever it is C? in the
sense of Definition I.1(a).
(ii) If f is C* in the Fréchet sense, then it is trivially C'* in the sense of Definition
I.1(a).

Suppose that f is C*°. Then the map df:U x X — Y is also C°°, hence in
particular C?. Therefore (i) shows that the map

d(df):U x X = L(X2)Y)

is continuous, hence in particular that d?f:U x X — £(X,Y) is continuous since

dzf(l‘)(hl,hz) = (df)(w,hl)(hg,()) Now
df (@ + 1) — df (x) — d*f(z)(h) = /0 d* f(x + uh)(h) — d* f(2)(h) du

implies that d? f can be viewed as d(c? f). Tterating this argument, we conclude that
the map Jf: U — L(X,Y) is smooth in the sense of Definition I.1. Now we we can
apply induction and obtain for all n € N that the n!* Fréchet derivative of f is
smooth, and therefore that f is smooth in the Fréchet sense. ]

Holomorphic functions

In this subsection we clarify the relation between several concepts of holomorphy
for functions between s.c.l.c. spaces.

Definition I.8. Let X be a complex vector space.

(a) A subset U C X is called finitely open if for all finite-dimensional affine sub-
spaces F' C X the set FNU is open in F'.

(b) Let V' be a sequentially complete locally convex space. A function f on a
finitely open subset U C X is called Gateauz holomorphic ((G)-holomorphic) if
for each finite-dimensional affine subspace F' C X the function f|pny is (weakly)
holomorphic on FNU (cf. [He89, Th. 2.1.3]). We write G(U, V') for the space of (G)-
holomorphic V-valued functions on U. Note that, in view of Hartog’s Theorem, a
function is (G)-holomorphic if the above criterion is satisfied for all affine complex
lines FF C X.

(c) Suppose that X is a locally convex space. A (G)-holomorphic function f: U —
V is called Fréchet holomorphic ((F)-holomorphic) if for each continuous seminorm
pon V the function po f is locally bounded. We recall from [He89, Prop. 2.4.2(a)]
that this property is equivalent to the continuity of the function f. ]
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If X is of countable dimension and we write X = UneN X, with X,, C X,, 11
and dim X,, < oo, then X carries a natural LF space structure which is the finest
locally convex topology on X (cf. [Tr67, Ex. 13.1]). The open sets in this topology
are exactly the finitely open sets ([He89, Prop. 2.3.2]). If dim X > Ry, then the
topology defined by the finitely open sets is no longer a vector spaces topology
and therefore does not coincide with the finest locally convex topology (cf. [He89,
Rem. 2.3.3]).

The notion of (G)-holomorphy is the weakest possible notion of holomorphy
in infinite-dimensional spaces. Unfortunately it has the drawback that in general it
even does not imply continuity. In this sense the “nice” holomorphic functions are
the (F)-holomorphic functions. Note that (F)-holomorphy is preserved by pass-
ing to locally uniform limits. The relations between (F)-holomorphy and weak
holomorphy are clarified for “nice” spaces in the following result.

Proposition 1.9.  For a function f:U — V from an open subset U of a locally

conver space X to the s.c.l.c. space V the following assertions hold:

(i) If X is metrizable, then f is (F)-holomorphic if and only if it is weakly (F)-
holomorphic.

(ii) If X is the inductive limit of locally convex spaces (X, )nen such that the
origin in X,, has a neighborhood which is relatively compact in X, 1., then

(a) f is (F)-holomorphic if and only if it is weakly (F)-holomorphic.
(b) f is continuous if and only if all the functions f|ynx, are continuous
for alln € N.

(iii) If X is Baire, f € G(U,V), and there exists a sequence of continuous func-
tions fn,:U — V converging pointwise to f, then f is continuous, i.e., (F)-
holomorphic.

Proof. (i), (ii)(a) [He89, Prop. 3.1.2]

(ii) (b) [He89, Prop. 1.5.1(b)]

(iii) [He89, Th. 2.4.4] n

Proposition 1.10.  For a function f:U — V the following are equivalent:

(i) f is holomorphic in the sense of Definition 1.1(c).

(ii) f is (F)-holomorphic.

(i) f is smooth with complex linear differentials df (z), x € U.
Proof. (i) = (ii): If f is complex differentiable in the sense of Definition I.1(c),
then f is (G)-holomorphic (differentiable functions on open domains in the complex
plane are holomorphic), and continuous (Lemma I1.2(i)), hence (F)-holomorphic.
(i) = (iii): Suppose that f is (F)-holomorphic. We have to show that all its higher
derivatives

& f:UXE" =V, (2,h,... )~ d"f(@)(h,. .. ")

are continuous maps. It is clear that the (G)-holomorphy implies the (G)-holo-
morphy of d” f because a similar statement holds in finite dimensions. Moreover,
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the generalized Cauchy inequalities (cf. [He89, Th. 2.3.5]) imply that whenever f
is locally bounded in the sense of Definition 1.8(c), the same property is inherited
by the functions

(z,h) — d"f(z,h) = d"f(z)(h,..., h).
Next we use the formula

EF@ s ) = e S () F@) e+t )

nn!
56{17_1}n

(cf. [Na69, p.7]) to conclude that the function d"f is also locally bounded in the
sense of Definition 1.8(c), i.e., that d" f is (F)-holomorphic. It follows in particular
that the functions d™ f are continuous, hence that f is a smooth function.

(iii) = (i): This is trivial since C* implies C*. ]

The following result clarifies the concept of (F)-holomorphy in the Banach
setting.

Proposition 1.11. If X and V are complex Banach spaces, U C X a domain,
and f:U — V a function. Then the following assertions hold:

(i) If f is (F)-holomorphic, then f is complex Fréchet differentiable.
(ii) The function f is (F)-holomorphic if and only if it is Fréchet differentiable
at each point x € U.

Proof. (i) ([HP57, Th. 3.17.1]) If f is (F)-holomorphic, then Proposition 1.10
shows that f is smooth, hence f is Fréchet smooth (Theorem 1.7).
(ii) [He89, Cor. 3.1.4] ]

Differentiable manifolds

Since we have a chain rule for differentiable maps between s.c.l.c. spaces, we can
define smooth manifolds as one defines them in the finite-dimensional case (cf.
[Ha82], [Mi83]). The underlying topological space is always required to be Haus-
dorff. Since locally convex spaces (which we always assume to be Hausdorff) are
reqular in the sense that each point has a neighborhood base consisting of closed
sets, this property is inherited by manifolds modeled over these spaces (cf. [Mi83]).
One also defines vector bundles and in particular the tangent bundle TM — M
as usual.

Note that it is far more subtle to define a cotangent bundle because this
requires an s.c.l.c. topology on the dual space of the underlying vector space and
therefore depends on this topology. We will discuss topologies on the dual in Sec-
tion II.
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Let M and N be smooth manifolds modeled over s.c.l.c. spaces and f: M — N
a smooth map. We write T'f:TM — TN for the corresponding map induced on
the level of tangent vectors. Locally this map is given by

where df (p): T(M) — Ty (N) denotes the differential of f in p. In view of
Remark 1.5(c), the tangent map T'f is also smooth if f is smooth. In the following
we will always identify M with the zero section in T'M. In this sense we have
T#|u = f with Tf(M)C N C TN.

A wvector field on M is a smooth section of the tangent bundle TM — M.
We write V(M) for the space of all vector fields on M. If f € C*°(M) is a smooth
function on M and X € V(M), then we obtain a function on M via

(X./)(p) = df (p) (X (p))-

Since locally X (p) = (p,)N((p)), where X is a smooth function, we have X.f =
df o X. Therefore the smoothness of X.f follows from the smoothness of the
maps df:TM — Cand X: M —TM.

Lemma I1.12. If X,Y € V(M), then there exists a vector field [X,Y] € V(M)
which is uniquely determined by the property that on each open subset U C M we
have

(1.1) [X,Y].f = X.(Y.f) - Y.(X.f)

for all f € C=(U).
Proof. Locally the vector fields X and Y are given as X (p) = (p,)?(p)) and
Y(p) = (p,Y (p)). We define a vector field by

(1.2) [X,YT(p) = dY (p)(X(p)) — dX (»)(Y (p)).-

Then the smoothness of the right hand side follows from the chain rule. The
requirement that (1.1) holds on continuous linear functionals determines [X, Y]
uniquely. Since an easy calculation shows that (1.2) defines in fact a smooth vector
field on M (cf. Lemma I1.14 below), the assertion follows because locally (1.1) is a
consequence of the chain rule. [ ]

Proposition I.13. (V(M),[,-]) is a Lie algebra.

Proof. The crucial part is to check the Jacobi identity. This follows from the
observation that if U C X is an open subset of an s.c.l.c. space, then the mapping

®:V(U) = Der (C®(U)), @(X)(f) = X.f

is injective and satisfies ®([X,Y]) = [®(X), ®(Y)]. Therefore the Jacobi identity
in V(U) follows from the Jacobi identity in the associative algebra End (C>(U)).m

For the applications to Lie groups we will need the following lemma.
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Lemma 1.14. Let M and N be smooth manifolds and o: M — N a smooth map.
Suppose that Xn,Yn € V(N) and Xy, Yy € V(M) satisfy

Xn(p(p) =de(p). Xn(p) and  Yn(p(p)) = de(p). Y (p)

forallpe M, i.e., Xyop =TpoXp and Ynop =TeoYy. Then [Xn,Yn]op =
T(pO[XM,YM].

Proof. It suffices to perform a local calculation. Therefore we may w.l.o.g.
assume that M C F' is open, where F' is a s.c.l.c. space and that N is an s.c.l.c.
space. Then

[Xn, YaT(o(p)) = d¥n (9()). Xn (0(p)) — dXn (9(0))-Yiv (0(p))-

Next we note that our assumption implies that Y o ¢ = dy o (idp xY3). Using
the chain rule we obtain

Y (p(p))de(p) = d(de) (p, Yar (p)) o (idp, d¥as (p))

which, in view of Remark 1.5(c), leads to

dYn (p(p)).- X (p(p)) = d¥; (@(p) (p)- X (p)
d(dep) (pv )) o (ldF,dYM( ))-XM(I))
d*p(p)

0(0) (Yar (p), X1 (p)) + do(p) (dVas (p). X1 (D))

Now the symmetry of the second derivative (Lemma I.2(ii)) implies that

(X, YaT(e(p) =de(p) (dYar (). X nr (p) — dX 01 (p).Yar (p)) =deo(p) ([ Xz, Yar[(0))-
| |

Infinite-dimensional Lie groups

In this subsection we consider s.c.l.c. Lie groups, i.e., Lie groups modeled over
s.c.l.c. spaces. Basically we follow [Mi83]. Throughout this subsection G denotes
such a Lie group, i.e., G is a smooth manifold which is a group such that multiplica-
tion and inversion are smooth maps. For g € G we write A\;:G — G,z — gz for the
left-multiplication with g and p,: G — G, — zg for the right-multiplication with
g. Both are diffeomorphisms of G. Moreover, we write m: G x G — G, (x,y) — zy
for the multiplication map and n: G — G,z — z ! for the Inversion.
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Lemma I.15. Let g :=T1(G) denote the tangent space in the identity. Then the

mapping
®:Gxg—-TE, (9,X)—dr\1).X

s a diffeomorphism.

Proof. First we note that for a product of two smooth manifolds M and N we
have a canonical diffeomorphism T'(M x N) — TM xT'N. Since the multiplication
map m:G x G — G is smooth, the same holds for its tangent map

Tm:T(GxG)=2TExTG - TG.

In view of Proposition 1.4, dm(g,1)(0,X) = dA;(1).X. Therefore the smoothness
of @ follows from ®(g, X) = Tm(g, X) for (9, X) € GxT1(G) C T(G) x T(G) and
the fact that the restriction of Tm to G x T1(G) C TG x TG is smooth.
To see that ® ! is also smooth, let 7: TG — G denote the canonical projec-
tion. Then
LTG - Gxg, ve (7(0), dAz(p)-2 (7(v)).v).

The maps
TG —-TGxTG, v (r(v),v) € GxTG

and m:G x G — G, (g1, g2) = g7 g2 are smooth by the chain rule. Now
T(m) o alv) =T(m) (7‘((’[)),’[)) = dgﬁl(w(v),w(v)).v = d) s ()1 (w(v)).v

shows that &1 is smooth. [

The essential consequence of Lemma I.15 is that the tangent bundle of a Lie
group is trivial, so that we can identify V(G) with C*(G, g). We write V(G)! C
V(G) for the subspace of left invariant vector fields, i.e., of those satisfying

(1.3) X(g) = dA,(1).X(1)

for all ¢ € G. These are the vector fields that correspond to constant functions
G — g. We see in particular that each left invariant vector field is smooth, so that
the mapping

V@) —-g, X X(1)

is a bijection. Moreover, Lemma I.14 implies that for X,Y € V(G)! we have
[X,Y](g) = dAy(1).[X, Y](D),
i.e., that [X,Y] € V(G)'. Thus there exists a unique Lie bracket on g satisfying
[X,Y](1) = [X(1), Y (1)]
for all left invariant vector fields on G.
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Definition I.16. The Lie algebra (g,[,-]) is called the Lie algebra of G. u

Definition I.17. Let G be a Lie group. Then for each g € G the map I,:G —
G,z — gxg~' is a smooth automorphism, hence induces a continuous linear
automorphism

Ad(g) :==dI,(1):g — g.

We thus obtain an action G x g — g, (g, X) — Ad(g).X called the adjoint action
of G on g. ]

Proposition 1.18.  For a Lie group G the following assertions hold:
(i) dm(g1,92)(X1,X2) = dpg,(91). X1 + dAg, (92).X> and in particular we have
dm(l, 1)(X1,X2) = X1 + Xz.
(i) dn(1).X = -X.
(iii) The mapping Tm: TG x TG — TG defines a Lie group structure on TG with
identity element ®(1,0) and inversion Tn. More explicitly multiplication and
inversion are given by

®(g1,X1) - ®(g2, X2) = (9192, Ad(g2) . X1 + X2)

and (g, X)"t =®(g !, — Ad(g).X).

(iv) If X;:G — TG is a left invariant vector field with X;(1) = X, then X,:g —
—X;(g9)~! is a right-invariant vector field with X, (1) = X. The assignment
g = V(G)", X — X, is an antiisomorphism of Lie algebras.

(v) If 0:G x M — M is a smooth action of G on the smooth manifold M, then
To: TG xTM — TM is a smooth action of TG on TM. The assignment

o:g—> VM), with &(X)(p):=—do(1,p)(X,0)

defines a homomorphism of Lie algebras.

Proof. (i) In view of Proposition 1.4, we have

dm(g1,92)( X1, X2) = dim(g1, g2)(X1) + dam(g1, 92) (X2)
= dpg,(g1)- X1 + dAg, (g2)-Xa.

(ii) From m o (idg xn) = 1, we derive 0 = dm(1,1)(X,dn(1).X) = X + dn(1).X
and hence the assertion.

(iii) Let e: G — {1} denote the constant map and u: {1} — G the group morphism
representing the identity element. Then the group axioms for GG are encoded in the
relations mo (m x id) = mo (id xm) (associativity), mo (n xid) = mo (id xn) =¢
(inversion), and mo (u x id) = mo (id xu) = id (unit element). Using the functorial
properties of T'; we see that these properties carry over to the corresponding maps
on TG and show that TG is a Lie group with multiplication T'm, inversion 1T'n,
and unit element ®(1,0).
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To derive an explicit formula for the multiplication in terms of the trivializa-
tion described in Lemma I.15, using (i), we calculate

D(g1,X1) - ®(go, X2) = dm(gl,gz)(d/\g1 (1).X4, d/\gQ(l).Xz)
= dpg, (91)dAg, (1).X1 + dAg, (92)dAg, (1).X>
= dAgyg, (1) (dAG, (92)dpy, (1).X1 + X>)
= @(9192,Ad(gz)71.X1 + Xz).

The formula for the inversion follows directly from this formula.
(iv) In view of (ii) above, we have

Xo(g)=—dn(g™").Xi(g " )= —dn(g")dr;-1 (1). X = — dp,(1)dn(1). X =dp,(1). X

and this proves the first part. The second part follows from Lemma 1.14 which
shows that

(X0, Y2)(g) = dn(g™)-[X0, Yil(g™") = dn(g™").[X, Y]i(g™") = —[X, Y] (g).

(v) That To defines an action of TG on T'M follows in the same way as in (iii)
above by applying T" to the commutative diagrams defining a group action.

For the second part we pick p € M and write ¢,:G — M, g — g.p for the
smooth orbit map of p. Then the equivariance of ¢, means that ¢, o p; = @g.p.
From that we derive

—dpp(9)-X:(9) = —dpp(g)dpy(1).X = —dp, p(1).X = 6(X)(g-p).

Therefore Lemma 1.14 and (iv) imply that

o([X,Y])(p) = —dpp(1)[X, Y], (1) = dpp(1[X,, V2 ](1) = [0(X),0(Y)](p). =

Remark I.19. If S is an s.c.l.c. semigroup, i.e., a manifold modeled over an
s.c.l.c. space which is endowed with a smooth semigroup multiplication m: S xS —
S, then Proposition 1.18(iii) and (v) also hold in the following sense. The mapping
Tm:TS xTS — TS is an s.c.l.c. semigroup structure on the tangent bundle T'S,
and if 0: M x S — M is a smooth right action of S on the manifold M, then
To:TM xTS — TM is a smooth right action of T'S on the tangent bundle TM .=
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II. Dual spaces of locally convex spaces

In the next section we will have to deal with topologies on function spaces which
play a crucial role in representation theory. In this section we discuss the basic
properties of the relevant topologies on the dual space of a locally convex space.
In particular we discuss completeness of the dual space, metrizability, and the
properties of the corresponding evaluation map n7: X — X" given by n(z)(a) =
a(z).

Let X' denote the space of continuous linear functionals on the locally convex
space X, the topological dual. If X* denotes the set of all linear functionals X — C,
then X' C X* is a subspace. There are several natural locally convex topologies on
the space X'. We write X/ (X!, X[, X;) for the space X' endowed with the weak-
x-topology, i.e., the topology of pointwise convergence (the topology of uniform
convergence on compact convex, compact, bounded subsets of X). The space X}
is called the strong dual. Note that we have the following continuous bijections:

Xy = X=X, — X,

Before we turn to a closer investigation of the various dual spaces of locally convex
spaces, we introduce an important class of locally convex spaces.

Definition IT.1. Let X be a vector space which can be written as X = J;~, X,
where X, C X,,;1 are subspaces of X which are endowed with the structures of
locally convex spaces in such a way that the inclusion mappings X, — X, 41 are
topological embeddings. Then we obtain a locally convex vector topology on X by
defining a seminorm p on X to be continuous if and only if its restriction to all
the subspaces X, is continuous. We call X the strict inductive limit of the spaces
(Xn)nen- If, in addition, the spaces X,, are Fréchet spaces, then X is called an LF
space. ]

A locally convex space X is called barreled if all lower semicontinuous semi-
norms on X are continuous. Geometrically this property can be interpreted as
follows. A closed convex balanced subset of X is called a barrel if it is absorbing.
Then X is barreled if and only if all barrels are 0-neighborhoods (cf. [He89, p.11]).
Baire spaces are always barreled ([He89, Prop. 1.4.1]).

Proposition I1.2.  If X is a strict inductive limit of the spaces (X,,)nen, then
the following assertions hold:
(i) Xp = X is an embedding.
(ii) A linear map f: X — Y, where Y is a locally convex space, is continuous if
and only if its restriction to each X, is continuous.
If, in addition, all the spaces X,, are complete, then:
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(iii) Fach X,, is closed in X and X is quasicomplete.
(iv) Any bounded subset of X is contained in some X,,.

(v) If the X, are Baire spaces, then X is Baire if and only if X = X,, holds for
some n € N.

(vi) If X is an LF space, then X is complete and barreled.

Proof. (i) [He89, Prop. 1.5.2]

(i) This follows directly from the description of the topology by continuous semi-
norms.

(iii),(iv) [He89, Prop. 1.5.3]

(v) First we recall from (iii) that the subspaces X, are closed. If X # X,, holds
for all n € N, then no X,, has an interior point. Therefore X = Uff:l X,, shows
that this cannot happen if X is a Baire space. If, conversely, X = X, for some
n € N, then (i) implies that X is a Baire space.

(vi) For the completeness of X we refer to [Tr67, Th. 13.1]. Let p be a lower semi-
continuous seminorm on X. Then the restrictions p|x, are lower semicontinuous,
hence continuous because Fréchet spaces are Baire spaces and therefore barreled.
Thus p is continuous, and this shows that X is barreled. ]

Metrizability

It is well known that for a normed space the strong dual space X is a Banach
space, hence that the category of Banach spaces is closed under taking dual spaces.
This changes drastically for Fréchet spaces as we will see in Corollary 11.7 below.

Definition I1.3. Let X be a topological vector space. A subset K C X is called
precompact if for each 0-neighborhood U C X there exists a finite subset F' C K
with K C F+U. Note that if X denotes the completion of X ([Tr67, Th. 5.2]), then
the precompactness of a subset K C X is equivalent to the relative compactness
of K as a subset of X (cf. [Tr67, Prop. 6.9]). [

Lemma I1.4. IfV is a locally conver space and K C V is a precompact set,
then conv(K) is precompact. If, in addition, V is quasicomnplete, then conv(K) is
compact.

Proof. First we use [Tr67, Prop. 7.11] to see that conv(K) and hence also
C := conv(K) is precompact (cf. [Tr67, Def. 6.3]). Further each precompact set is
bounded. In fact, let U be a balanced convex 0-neighborhood in X. Then there
exists a finite set FF C X with C C F 4+ U and F' C nU holds for some n € N,
hence C C nU + U C (n+ 1)U. If V is quasicomplete, then the fact that C is
closed and bounded implies that C' is complete and therefore compact because it
is precompact. [
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For a subset B of a locally convex space we define its polar
B:={a€ X" (Vz € B)a(z) < 1}
and for C C X' we put
C:={aeX:(Vae C)afz)| <1}.

We recall the following basic properties of polar sets. They show in particular that
the assignments B — B and C' — (' are mutually inverse bijections from the set of
closed convex balanced subsets of X onto the set of weak-x-closed convex balanced
subsets of X',

Lemma IL.5. (a) B C C if and only if C C B.
(b) B C B and B is the balanced convex closure of B.

(c) C C C and C is the balanced conver weak-*-closure of C.

(d) A closed convezx balanced subset B C X is a barrel if and only if B is weak--
bounded. R
(e) A subset B C X is bounded if and only if B is absorbing.

(f) If B C X is compact and convez, then B is compact.
Proof. (a) is trivial and (b), (c) are consequences of the Bipolar Theorem.
(d) B is a barrel if and ouly if it is absorbing. In view of B = B this means that

the function R
nx):B—=-C, aw a(zr)

is bounded for each z € X. This in turn means that B is weak-*-bounded.

(e) According to [He89, Prop. 1.4.2], a subset B C X is bounded if and only
if it is bounded for the weak topology on X which in turn is equivalent to the
boundedness of all continuous linear functionals on B, i.e., that B is absorbing.
(f) If B C X is a compact convex set, then [Bou87, Ch. IV, §1, no. 1, Rem. 1]

shows that B is compact. In fact, it is closed and contained in the convex hull of
the sets £2¢B,+2B which is compact. ]

Proposition I1.6. Let X be a locally convex Baire space. Then the following
assertions hold:

(i) X is metrizable if and only if X is normable.

(ii) X! and X are metrizable if and only if dim X < oo.
Proof. If X is finite-dimensional, then X/ = X] = X| is metrizable, and if X
is normable, then X is a Banach space and in particular metrizable.
(a) Suppose that X is metrizable. Then the there exists a countable basis (Uy, )nen
of 0-neighborhoods in X;. The sets B C Xj for B C X bounded form a neighbor-
hood basis for 0. Hence there exist bounded sets B, C X with 1/3; C U,.
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Let C,, := 1/3; Then 6’7\1 = F; shows that C,, is bounded because 6’; is
absorbing (Lemma II.5(e)). Let € X. Then the evaluation functional

n(@): X, = Cf f(z)

is continuous, i.e., {/ac\} ={f € X":|f(x)| <1} is a O-neighborhood in X'. Thus we

find n € Nwith B,, C {z}. Now the Bipolar Theorem implies that € {z} C B, =
C}, and therefore X = UneN C,. Since the sets C), are closed, the fact that X is a
Baire space implies that one of the sets C,, has interior points. Hence C,, — C,, is
a bounded neighborhood of 0 in X, and therefore X is normable (cf. [He89, p.3]).
(b) Assume that X/ is metrizable. Then the same argument as above shows that

there exists a compact subset K C X such that C' := K has interior points. Since
C coincides with the closed balanced convex hull of K (Lemma I1.5(b)), it is a pre-
compact subset of X (Lemma I1.4). Hence C — C' is a precompact 0-neighborhood.
Therefore X is normable in such a way that the balls are precompact. Now the
balls in the completion X of X are compact and therefore dim X < dim X < oo.

(¢) If X! is metrizable, then similar arguments as in (b) show that there exists a

finite subset F C X such that F has interior points. But since span F' is closed, it
follows that F C span F', whence dim X = dim spanF < 0. ]

Corollary I1.7. If X is a Fréchet space, then X is a Fréchet space if and only
if dim X < oo. ]

Semireflexivity

We recall that for a locally convex space X we have several natural topologies on
the dual space leading to the following continuous bijections:

B

«

X ,X!

~
WX LX)
which induce weak-*-continuous injective maps

7 B/ al
(X)) ——(X1)' (X0 (X))

c

We write n,: X — (X!)' for the evaluation map, and 7y := ' on,, 5. := ' on,,
and 7 := o' on.. The space X is called semireflexive if the map n, is surjective,
hence a bijection. Note that all these maps are injective with a weak-*-dense range.

Theorem II.8.  For a locally convex space the following assertions hold:
(i) The maps n, and 1, are bijections.
(il) If X is quasicomplete, then n. is a bijection.
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(iil) If X is semireflexive, then X is quasicomplete for the original topology and
the weak topology.

Proof. (i) We show that n, is surjective. Then 7, is also surjective because v

is injective.

If C C X is a compact convex set, then C is compact (Lemma IL5(f)).
Hence the topology on X! coincides with the topology of uniform convergence
on balanced compact convex sets. If C is a balanced compact convex set, then
C is also weakly compact and hence n,(C) C (X!)" is weak-+-compact. Each

a € (X)) is bounded on some set C C X' hence contained in some set of the type

——
~
-~

nm =nn,(C) C n,(X) (Bipolar Theorem). This proves that n,(X) = (X;)’.
(ii) If X is quasicomplete and C' C X is compact, then conv(C) is compact (Lemma
I1.4). Therefore the mapping 8: X, — X! is a homeomorphism, i.e., X; = X_.
Since n, is bijective according to (i), the surjectivity of n. = ' o 1, follows.
(iii) (cf. [He89, Th. 1.1.2(e)]) Let C' C X be closed balanced convex and bounded.
Then C is also weakly closed, and therefore 7, (C) C my(X) = (X))’ is a weak-*-
closed convex balanced subset. Since 777(6) =C C X} is a 0-neighborhood, the set
1 (C') is weak-*-compact (Banach-Alaoglu Theorem). Hence C' is weakly compact.
Now let B C X be closed and bounded. Then its closed balanced convex
hull C is also bounded, hence weakly compact and therefore in particular weakly
complete. Further each Cauchy net in B for the original topology is a weak Cauchy
net, hence converges weakly in B and therefore also in the strong topology because
the closed convex neighborhoods of a point in X are also weakly closed. |

Proposition I1.9. Let X be a locally convex space.
(i) A subset K C X' is equicontinuous if and only if its polar K C X isa
0-neighborhood in X .
(il) If K is equicontinuous, then

(a) K is weak-x-relatively compact.

(b) K is relatively compact in X/.

(¢) K is strongly bounded.

Furthermore (a), (b) or (c) implies that K is weak--bounded, i.e., K C X is a
barrel. These properties are all equivalent if and only if X is barreled.
(iii) If X is barrelled, then the following properties are equivalent for K C X':

(a) K is equicontinuous.

(b) K is bounded for one of the topologies X, , X_, X or Xy.

(c) K is relatively compact for one of the topologies X, X! or X|.
Proof. (i) This is more or less the definition of equicontinuity (cf. [Tr67, Prop.
32.7).

(ii) ([He89, Th. 1.4.4]) If K is equicontinuous, then its balanced convex closure in
the weak-#-topology of K has the same polar set K C X (Lemma IL5(c)). So we
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may w.l.o.g. assume that K = K. Since K is a 0-neighborhood in X, the weak-

x-compactness of K = K follows from the Banach-Alaoglu Theorem. Now the
topology of compact convergence and the weak-#-topology coincide on K ([Tr67,
Prop. 32.5]), so that K is also compact in X{. If B C X is bounded, then there
exists n € N with B C nK ie, K C nB. Hence K is strongly bounded. It is clear
that (a), (b) or (c) implies that K is weak-*-bounded.

The equivalence of the stated properties is equivalent to the assertion that
if K is weakly bounded then K is equicontinuous, i.e., that the barrel K is a 0-
neighborhood (Lemma II.5(d)). This is true if X is barreled, and if, conversely,
X is not barreled and B C X is a barrel which is not a O-neighborhood, then its
polar B C X' is weakly bounded but not equicontinuous.
(iii)(a) = (b): If K is equicontinuous, then (ii) implies that K is bounded in X},
hence also in the spaces X, X! and X|.
(b) = (c): If (b) holds, then K is in particular bounded in X/, i.e., weak-*-bounded.
Hence (ii) shows that it is also relatively compact in X/. Thus it is also compact
as a subset of X! and X[ .
(c) = (a): If K is relatively compact for one of the topologies X, X! or X/, then
it is in particular weak-*-relatively compact, hence weak-x-bounded. As we have
seen in the preceding argument, this implies that K is equicontinuous. ]

Lemma I1.10. For a locally convex space X the following assertions hold:

(i) The mapping n.: X — (X!). is an open map onto n.(X).

(ii) The mapping ny: X — (X}); s an open map onto ny(X).

(iii) If X is barreled, then the maps n.: X — (X]). and my: X — (X})} are embed-

dings.

Proof. (i) If U C X is a closed convex balanced 0-neighborhood, then UcC Xl is
closed and equicontinuous, hence compact in X (Proposition IL.9(ii)(b)). There-
fore U C (X!), is a 0-neighborhood with U N 75¢(X) = n.(U) (Bipolar Theorem).
Thus 7, is open onto 7.(X).
(ii) For a closed convex balanced 0-neighborhood U C X the polar set U C X'
is equicontinuous and therefore strongly bounded (Proposition I1.9(ii)(c)). Thus
UcC (X})} is a O-neighborhood with ﬁﬂnb(X) = (U). Therefore n is open onto
1 (X).
(iii) Suppose that X is barreled. If K C X/ is compact or K C Xj, then it is

equicontinuous (Proposition II1.9(iii)), and therefore K C X is a O-neighborhood.
Hence n.: X — (X]). and n3: X — (X})} are continuous maps. In view of (i) and
(ii), this means that both are embeddings. u

Theorem II.11. (Reflexivity criterion for the c-topologies) If X is a quasicom-
plete barreled space, then n.: X — (X1). is an isomorphism of topological vector

c/c

spaces. This holds in particular if X is an LF space.
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Proof. Since X is quasicomplete, the surjectivity of 7. follows from Theorem
I1.8(ii). If, in addition, X is barreled, then Lemma II.10(iii) shows that 7. is an
isomorphism of topological vector spaces.

To see that the assertion holds for LF spaces, we recall from Proposition
I1.2(vi) that they are complete and barreled. =

Completeness properties of the dual space

Now we turn to the question whether a dual space X' is complete with respect
to a given topology. The following lemma is the topological background for the
completeness criteria.

Proposition I1.12. (i) Let X be a topological space satisfying the first aziom of
countability and V' be a (sequentially) complete locally convex space. Then the space
C(X,V). of continuous maps X — V is a (sequentially) complete locally convex
space with respect to the topology of uniform convergence on compact subsets of
X.

(ii) If X is an LF space and V is a (sequentially) complete locally convex space,
then the space L(X,V). of continuous linear maps endowed with the topology of
uniform convergence on compact subsets of X is a (sequentially) complete locally
Conver space.

(iii) If X is a Baire space and V is an s.c.l.c. space, then the space L(X,V) is
sequentially complete with respect to any topology of uniform convergence on a
system of subsets of X whose union is X.

Proof. (i) That C(X,V). is a locally convex space follows from the fact that
its topology is defined by the seminorms

p(f) = sup{p(f()):x € K},

where K C X is a compact subset and p: V — R" is a continuous seminorm.

Let F be a Cauchy-Filter in C(X,V).. Since V is complete, F converges
pointwise to a function f: X — V. We claim that F converges uniformly on each
compact subset K of X. In fact, let p be a continuous seminorm on V and £ > 0.
Then there exists F € F with px(g — h) < e for all g,h € F. Since f(z) € F(z)
holds for all x € K, we conclude that px(g — f) < e for all g € F. Hence F — f
holds uniformly on each compact subset K C X and thus f is continuous on each
compact subset of X.

If (p)nen with 2, — z is a convergent sequence in X, then the set {z} U
{z,,;n € N} is compact. Since f is continuous on this set, it is continuous by our
assumption on the space X. This proves that C(X, V). is complete.

If V is sequentially complete, then similar arguments show that each Cauchy
sequence in C'(X, V), converges, hence that C(X, V). is sequentially complete.
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(ii) ([Tx67, Cor. 32.2.4, p.345]) First we note that Fréchet spaces satisfy the as-
sumption of (i). So let (X,,)nen be a defining sequence for the topology on X . That
L(X,V). is locally convex follows as in (i). If F is a Cauchy filter in £(X,V),,
then we see as in (i) that F converges pointwise to some function f: X — V. Then
f must be linear, and, in view of (i), f is continuous on each of the subspaces X,
hence is continuous on X. This proves that £(X, V). is complete. If V' is sequen-
tially complete, then we see by a similar argument that £(X, V). is sequentially
complete.

(iii) If (fn)nen is a Cauchy sequence in L(X, V) for the topology of uniform con-
vergence on a system S of subsets of X whose union is X, then the sequential com-
pleteness of V' implies that f,, converges pointwise to a linear function f: X — V.
It follows in particular that f is (G)-holomorphic. Therefore the continuity of f
follows from Proposition 1.9(iii). Since (f,,) is a Cauchy sequence for the topology
of uniform convergence on the sets in S, we see that f, — f holds uniformly on
sets in S. This proves that £(X,V) is sequentially complete with respect to the
topology of uniform convergence on sets in S. ]

Corollary I1.13. (a) If X is an LF space, then X! is a complete locally convex
space.
(b) If X is a Baire space, then X;, X', X/, and X} are sequentially complete. ®

Note that in general one cannot expect that the dual X' is complete with
respect to the topology of pointwise convergence. With respect to this topology
the embedding X! — X* is a dense embedding if X* carries the topology of
pointwise convergence. Therefore X/ is not complete unless X' = X* i.e., each
linear functional on X is continuous. This holds in particular for the finest locally
convex topology on X, i.e., the topology for which all seminorms are continuous,
and also for the weak topology defined by X*.

Lemma I1.14. If X[ is quasicomplete, then the same holds for X!, X and X;.

Proof. If B C X'is closed and bounded for one of the topologies X', X; or Xj,
then B is also weak-*-bounded. Let F be a Cauchy filter in B. Then F converges
to some element « in the weak-*-closure of B. Then F also converges to « in the
original topology, and we see that o« € B. This shows that B is complete, i.e., that
X!, X. and X; are quasicomplete. (]

Proposition I1.15.  If X is barreled or semireflexive, then the spaces X[, X!,

X!, and X are quasicomplete.

Proof. First we assume that X is barreled. In view of Lemma 11.14, it suffices
to show that X! is quasicomplete. Let B C X! be closed and bounded. Then B
is a barrel (Lemma II.5(d)), hence a 0-neighborhood, and therefore Proposition
I1.9(ii) shows that B is weak-*-compact, hence in particular weak-*-complete.

If X is semireflexive, then X} is also semireflexive and therefore weakly qua-
sicomplete ([He89, Th. 1.1.2(d)(e)] and Theorem IL.8). Further n,(X) = (X;)', so
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that the weak topology on X coincides with the weak-*-topology. Thus X is
quasicomplete. u

To clarify the relation between the assumptions in Proposition I1.15, we note
that a barreled space need not be semireflexive because there exist Banach spaces
which are not reflexive. On the other hand one would not expect that the semire-
flexivity has strong implications for the topology on X because it only means
that the map 7, is surjective. Nevertheless the following lemma shows that it has
consequences for the strong dual.

Lemma II.16. If X is semireflexive, then the strong dual X| is barreled. Fur-
thermore the maps

mo: Xy = (Xp)p)y  and  7je: Xy = (Xp)o)e

are topological isomorphisms.

Proof. Let C C X be a barrel. Then C' is convex and closed in X}, hence also
weakly closed. Thus 7, (X) = (X))’ shows that C is also weak-*-closed, and the

~

Bipolar Theorem gives C = C. But C' C X is weakly bounded (Lemma IL.5(e)),

and so C is bounded which in turn implies that C' = C is a 0-neighborhood in X I
This proves that X; is barreled.

Moreover X is semireflexive and quasicomplete ([He89, Th. 1.1.2(d)(e)]), so
Theorem II.11 implies that 7. is an isomorphism. Since X; is semireflexive and
barreled, the assertion about 7 follows from Lemma IT1.10(iii). ]

III. Topologies on function spaces

To construct and analyze representations of infinite-dimensional Lie groups and
semigroups one often has to consider representations in spaces of smooth functions
on G. So one has to endow these function spaces with a suitable (sequentially)
complete locally convex topology. The importance of these spaces comes from the
fact that for smooth representations a dense subspace of the representation space
V' can be embedded in C*(G, V).

First we discuss the space C*°(M, V) of smooth functions on M with values
in an s.cl.c. space V and show that this space carries a natural s.c.l.c. topology
which is, roughly stated, the topology of uniform convergence of all derivatives on
compact sets. The main point here is to use the appropriate interpretation of the
higher derivatives that permits inductive arguments. We also show that smooth
Lie group actions lead to smooth actions on the corresponding spaces of smooth
functions.

Next we show that smooth mappings between open subsets of s.c.l.c. spaces
induce smooth mappings on the level of function spaces. This result is crucial to
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show that groups of the type C*°(M,G), M a compact manifold and G a finite
dimensional Lie group are in fact Lie groups modeled over Fréchet spaces in the
sense specified in Section I (cf. [Ne99]).

Finally we turn to the space of holomorphic functions on a complex manifold
M over a Baire s.c.l.c. space with values in a s.c.l.c. space V and show that it
is sequentially complete with respect to the topology of uniform convergence on
compact subsets and that holomorphic semigroup actions lead to holomorphic ac-
tions on the corresponding spaces of holomorphic functions. Here the assumption
that M is modeled on a Baire space, an assumption which is in particular satis-
fied for Fréchet spaces, is crucial for the sequential completeness of the space of
holomorphic functions on M.

The space C®(M,V)

Let V be a (sequentially) complete locally convex space. If M is a smooth Fréchet
manifold, then we write C*° (M, V). for the space C*>°(M,V) endowed with the
topology of compact convergence. This topology on C*° (M, V) need not be com-
plete. Nevertheless, the space C(M, V). is (sequentially) complete by Proposition
I1.12(i).

For f € C*(M,V) we obtain a smooth function df:T(M) — V, where
we identify T, (V) with V in each point v € V, and inductively we get smooth
functions d™ f: T (M) — V. Thus we obtain an embedding

o0
Cc=(M, V) = [[ c= (@™ (M), V).
n=0
We endow C°°(M,V) with the topology induced by the product topology via
this embedding (cf. [Th95]). Note that if M = X is a vector space, then X, —

C>(X,C) is a topological embedding.

Proposition III.1. If M is a Fréchet manifold and V is a (sequentially) com-
plete locally convex space, then the space C°(M,V) is a (sequentially) complete
locally conver space.
Proof. Let (f;)icr be a Cauchy net in C°*°(M, V). Then Proposition I1.12(i) im-
plies the existence of continuous functions Fj,: 7" (M) — V such that d® f; — F),
holds uniformly on each compact subset of 7 (M).

Next we show that f € C'(M, V). To do this, we may w.l.o.g. assume that M
is an open subset of a Fréchet space X. Then the uniform convergence of df; — Fy
on compact sets implies for each sufficiently small ¢ # 0 that

%(f(:z: +th) — f(z)) = h}n%(fl(x +th) — fi(z)) = li}n/o dfi(x + uth)(h) du
= /1 Fi(z + uth)(h) du.
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Now the continuity of F; leads to

lim 1(f(:L'—l—th)—f(:z:)) =lim [ Fi(z+uth)(h)du = /0 Fi(z)(h) du = Fy(z)(h).

t—0 t t—0 /o

This proves that f € C'(M,V) with df = F;. By induction we now obtain f €
C™(M,V) and d™ f = F,,. Thus f € C°°(M,V) and f; — f holds in C*°(M,V).m

Before we proceed, we need a topological lemma.

Lemma II1.2. Let M and N be Hausdorff spaces and V a locally convex space.
Then the following assertions hold:

(i) For f € C(M x N,V) the map
M= C(N,V)e, zw (y= flz,y))

18 continuous.
(ii) If a: M — N s continuous, then the map

a*:C(N,V). = C(M,V)., fr foa

1S continuous.

(iii) Let S be a metrizable topological semigroup which acts continuously on M
from the right. Then the action

Sx C(M,V)e = C(M,V)e, (5,0) = (x> p(2.5))

18 continuous.

Proof. (i) First we recall that the topology on C(N,V) coincides with the
compact open topology (cf. [Bou71, §3, no. 4, Th. 10]). Let K C N be compact
and U C V be open. We write W(K,U) := {h € C(N,V):h(K) C U} for the
corresponding fundamental open subset of C(N,Y).. Suppose that f,:y — f(x,y)
is contained in W (K, U), i.e., {z}x K C f~1(U). Since f~1(U) is an open subset of
MxN and {z}xK C M xN is compact, there exists an open neighborhood O C M
of z such that O x K C f~1(U). This means that x € O C {p € M: f, € W(K,U)}
which proves the assertion.

(ii) Let K C M be compact, p a continuous seminorm on V, and pg(f) :=
sup{p(f(x)):« € K} the corresponding seminorm on C (M, V').. These seminorms
define the topology on this space. Now the set a(K) is compact and pg(a*f) <
Pa(k)(f) shows that the seminorms p o a* are continuous for each choice of p
and K, hence that a* is continuous.

(iii) Let s, = s, f; = fin C(M, V)., K C M a compact subset, and p a continuous

seminorm on V. Then the closure K of the set | J,—, K.s, is compact because it is
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the image of the compact set K x {s, s,,:n € N} under the action map. For x € K
we have

P((sn-fi)(@) = (s.-1)(@)) = p(fi(a-50) — f(2.5))
< p( z.5n) — f(. sn)) —I—p(f(x.sn) — f(xs))
<pp(fi—f)+p(f(z.5,) — f(z.5)).

Therefore the uniform continuity of f on K implies that pg(sn.fi — s.f) — 0
Hence s,.f; = s.f in C(M,V).. Thus the action of S on C(M, V). is continuous.m

In the following lemma the assumption that M is Fréchet is made to insure
that the space C*°(M,V) is sequentially complete (Proposition III.1), a property
needed to make calculus work (cf. Section I).

Lemma II1.3. (i) Let a: M — N be a smooth map between Fréchet manifolds.
Then the linear map

a*:C*®(N, V)= C®(M,V), fe foa

18 continuous.
(il) Let M be a Fréchet manifold and wpr:TM — M the canonical projection.
Then the assignment

C®(M,V) — C®(TM,TV) = C®(TM,V)*, f=Tf=(fonu,df)

is an embedding of locally convex spaces.
Proof. (i) (cf. [Th95 Prop. 3]) For f € C®(N,V) we have d(f o) = df o T
and inductively d" (f o a) = d™ f o T™ . Therefore the continuity of a* follows
from Lemma ITI.2(ii).
(ii) Since dWdf = d"*tVf for n € N, it is clear that the map C®°(M,V) —
C>®(TM,V), f — df is continuous. Since C®(M,V) - C®(TM,V),f — fonmy
is continuous according to (i), we see that f — T'f is continuous.

If a: M — TM is the natural embedding as the 0-section, then (fomy)oa =
f. Therefore (i) shows that the inverse T'f — f is also continuous. This proves
that f +— T f is an embedding. ]

In many applications the following theorem is a very efficient tool.

Theorem I11.4. Let M and N be Fréchet manifolds, f € C*(M x N,V), and
fz(y) == f(z,y). Then the map

O:M — C®(N,V), z—f,
is smooth.
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Proof. We prove the theorem in several steps. First we note that w.l.o.g. we
may assume that M is an open subset of a Fréchet space X.
Claim 1: @ is continuous. We have (d™ f,)(y) = d™ f(z,y). Therefore

T (M x N)=T"™WM x T™WN
and Lemma ITL.2(i) show that
M — C(T"™N, V), z~d™f,
is continuous. In view of the definition of the topology on C*°(N, V), this proves

that ® is continuous.
Claim 2: The map

UM x X = C¥(N,V), (2,h)— (y— df(z,y)(h))

is continuous. This follows from Claim 1 and the fact that d; f € C*°(M xX xN,V)
(cf. Lemma 1.5(c)).

Claim 3: ® is C! with d®(z)(h) = ¥(z,h). First we note that for a sufficiently
small € > 0 the map

] —e,e[x][0,1] x M x X — C®(N,V), (t,u,z,h)— U(x+ uth,h)

is continuous by Claim 2. Therefore
1
|—e,e[xM x X = C*(N,V), (t,z,h)— / U(z + uth, h) du
0

is continuous and so
1 1 1
lim —(®(z + th) — ®(z)) = lim [ ¥(z + uth,h) du = / U(x,h) du=9(x,h).
0

t—0 t =0 Jq

Thus d®(z)(h) = ¥(x,h), and the continuity of ¥ implies that ® is C*.
Claim 4: @ is smooth. Since ¥(x, h)(y) = d1 f(z,y)(h) and

dif €eC®(M x X x N,V),

Claim 3 implies that ¥ € C!, hence that ® € C?. Proceeding inductively, we see
that ® is C*°. ]

In the following we call a Fréchet manifold S endowed with a smooth asso-
ciative multiplication S x S — S a Fréchet semigroup.
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Theorem IIL.5. If M is a Fréchet manifold and the Fréchet semigroup S acts
smoothly on M wvia o: M x S — M, then the action map 6:S x C*°(M,V) —
C>®(M,V) given by (s.f)(x) := f(x.s) is smooth.
Proof. The partial derivative dag with respect to the second argument is given
by

dao(f,s)(h) =s.h =3c(s,h)

because the linear mappings f — s.f are continuous (Lemma II1.3). To see that
this maping is continuous means to show that the action of S on C®(M,V) is
continuous. We recall that we have defined the topology on C*°(M,V) via the
embedding
o0
Cc=(M, V) = [[ e (@™ (M), V).

c
n=0

Therefore it suffices to prove the continuity of the action map for S on the spaces

C(T™(M),V)..
This action comes from the action of S on the manifold 7 (M). The natural

map
TWe: TM(M x S) — T™ (M)

is smooth. Comparing with the injection
T (M) x S — T (M) x TM(S) = TM (M x S),

we see that the action of S on 7™ (M) is smooth and in particular continuous.
So the continuity of the action of S on C'*™ (T(”) (M),V)C follows from Lemma
TIL.2(ii).

Now we turn to the first partial derivative dio. We write 7s: TS — S and
war: T M — M for the canonical projections, ¢,:S — M, s — z.s for the orbit
map of z € M, and ps: M — M, x — z.s for the translation maps on M. For each
f the smoothness of the map s — s.f follows from the smoothness of the function
(s,z) = f(x.s) = (foo)(x,s) on S x M and Theorem III.4 which also implies
that dio (s, f).v = da(f o o)(x,s).v. To see that the partial derivative

di5:TS x C®°(M,V) = C*(M,V)
is continuous, we will use the embedding C*°(M,V) — C®(TM,TV),f — Tf
from Lemma IT1.3(ii). According to Remark I.19, the smooth action o: M xS — M
induces a smooth right action To: TM x T'S — T M so that the first part of the
proof shows that the induced action map

TS x C®(TM,V) — C®(TM,V)
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is continuous. If a: M — TM is the 0-section, then we conclude with Lemma
IT1.3(i) that the map

(Uaf) = (vaf) = ’UTf = T.f OTU('?”) = T(f 0 U)('?”)
= T(foo)(,v)ocard(foo)(,v)oa

from T'S x C*(M,V) — C*(M,V) is continuous. Now

d(f o 0)(-,v) o a(x) = d(f 0 0)(z,v) = da(f 0 0) (2, 7(v)) v = di5 (m(v), f).v

shows that d;o is continuous.
We have shown that dyo and d26 are continuous, so that Proposition 1.4
implies that do exists and is continuous, i.e., & € C! with

do (s, f)(v, h) = dlﬁ(w(v), f) 2+ s.h.

The fact that & is C! implies in particular that d»& is C' and since d1& comes
from the smooth action of T'S on C*°(T'M,V), we conclude that this action is a
C! map. But then & is C?. Proceeding inductively we see that & is a smooth map.m

Smooth mappings between function spaces

In the preceding subsection we have seen how to topologise the space C*°(M,V)
of smooth functions on a Fréchet manifold M with values in an s.c.l.c. space. Let
X and Y be s.c.l.c. spaces, U C X an open subset, and f: M x U — Y a smooth
map. Then C*°(M,U) is an open subset of the s.c.l.c. space C*(M, X), and

f*OOO(M7U)_>COO(M7Y>7 ’)/l—)fO(idM,’}Q

is a well defined map. We will show that this map is smooth. First we consider a
purely topological situation:

Lemma IIL.6. If M is a topological space and f: M x U — Y continuous, then
the mapping

f*:C(MvU)C%C(ny)Cv ’V’—)fo(ldefy)
18 continuous.

Proof. First we recall that the topology of uniform convergence coincides with
the compact open topology (cf. [Bou71, §3, no. 4, Th. 10]). Let K C M be compact
and V C Y be open. We write W(K,V) := {h € C(M,Y):h(K) C V} for the
corresponding fundamental open subset of C(M,Y).. Then

FTHW(E, V) = {y € C(M,U): (idar, 7)(K) C f7H(V)}-
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To see that this set is open in the compact open topology, let vy be contained in this
set and choose for each z € K a compact neighborhood K, of z in K and an open
neighborhood U, C U of yo(x) such that v(K,) C U, and K, x U, C f~4(V).
Then we find finitely many points x1,...,7, € K such that the K,; cover K.
Now each v € C(M,U) with y(K,) C Uy, satisfies (idar,v)(Ky;) C K,; x Uy, C
f1(V). Hence

(WK, Usy) € () H(W(K,V))
j=1
proves the continuity of f,. ]

Proposition IIL.7. The map

f*COO(M7U>_>COO(M7Y>7 VHfo(idMaly)
is smooth.
Proof. First we show that f. is continuous. For v € C*(M, X)) the mapping
Ty:T(M) — T(X) = X x X can be split as Ty(v,) = (v(p),dy(p).vp), where
dy € C®(T (M), X). Inductively we obtain d(™y € C>(T(™ M, X). In this sense
C>(M, X) carries the topology induced by the embedding

C®(M,X) < ﬁ C>(T™ (M), X)

n=0

C’

where the spaces on the right hand side carry the topology of uniform convergence
on compact sets. We have

T(fey) = T(f o (idar,v)) =T f o (idrm, T)
and thus d(f.y) =df o (idTM, T'y). Inductively we obtain

(3.1) d™ (fuy) = d™ f o (idge ar, TT).
In view of Lemma IIL6, this shows that the maps v — d"™(f,7) are continuous.
We conclude that f, is continuous.

Next we calculate the derivative of f,. For each x € M we have

lim %(f(w, (v + hn)(z)) — f("””77(5”>)>

h—0
1

=Jim | dao f (z, (v + ubn) (@) (n(2)) da = dfz(z,v(2)) (n()),

where, in view of the continuity of the integrand, the limit on the left hand side
exists uniformly on compact subsets of M. In view of (3.1), the same argument
applies to the higher derivatives d(™ f.. So we see that (df.)(v,n) exists and equals
daf o (idas,v,m) € C(M,Y). This means that d(f.) = (daf)«:C*(M,TU) —
C>®(M,Y). Using the first part of our proof, we now see that d(f,) is continuous,
i.e., f. is C'. Since the map d(f.) can be written as (d2f)., it has the same
structure as f., and iteration of the argument shows that f. is smooth. ]
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Corollary II1.8. If f:U — Y is a smooth map, then
[ CF(MU) = CF(M,Y), v~ fory

is smooth.

Proof. Put f(x,y) := f(y) and apply Proposition IIL.7. ]

Applications to groups of continuous mappings

Remark II1.9. (a) If F is an s.c.l.c. space and X a compact metric space, then
C(X,F). is an s.c.l.c. space with respect to the topology of uniform convergence
(Propositition II.12(a)).

(b) If U C F is an open subset, then C(X,U) is an open subset of C(X, F').. Now
let U; C F}, j = 1,2, be open subsets of s.c.l.c. spaces and ¢:U; — Uy a smooth
map. We consider the map

ox:C(X,U;) = C(X,Uz), v+ pon.

Then @x is smooth. The continuity follows from Lemma III.6. For each z € X
and v,n € C(X, F1) we have

1

i PO (@) +tn(2)) = o(v(2))
t—0 4 t—=0 Jo

Since the integrand is continuous in [0,1]* x X, the limit exists uniformly in X,
hence in the space C(X, Fz). Therefore dox (v)(n) exists. Since dp: TU; =2 U; X
F, — F5 is a continuous map, the first part of the proof shows that

d(pxi C(X, TU1> = C(X, U1> X C(X, F1> — C(X, Fz)
is continuous, so that ¢x is C'. Iterating this argument shows that px is C>°. =
Proposition IT1.10. If G is a Lie group and X is a compact metric space, then

C(X,G). is a Lie group with Lie algebra C(X,g)..

Proof. We use Remark II1.9(b) to see that the inversion and multiplication in
the canonical local charts are smooth. The remainder is a routine verification. m
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Spaces of holomorphic functions

In this subsection we turn to spaces of holomorphic functions. In particular we
show that holomorphic actions of complex Fréchet semigroups lead to holomorphic
actions on the corresponding spaces of holomorphic functions, and that the inclu-
sion Hol(M, V) — C*°(M,V) is an embedding if Hol(M, V') carries the topology of
uniform convergence on compact subsets. For refined investigations on topologies
on spaces of holomorphic functions between Banach spaces we refer to [Na69].

In the following a Baire manifold is a manifold modeled over a s.c.l.c. Baire
space.

Theorem III.11. For a complexr Baire manifold M the following assertions
hold:
(i) IfV is an s.c.l.c. space, then Hol(M, V) is s.c.l.c. with respect to the topology
of uniform convergence on compact sets.
(i) If, in addition, M is Fréchet and V is complete, then Hol(M,V') is complete.

Proof. (i) Let (f,)nen be a Cauchy sequence in Hol(M, V). Since V' is sequen-
tially complete, this sequence converges uniformly on compact subsets of M to
a function f: M — V (see the proof of Proposition I1.12). It remains to show
that f is holomorphic. For that we may w.l.o.g. assume that M is an open subset
of a Baire space X. Since (G)-holomorphy is equivalent to weak (G)-holomorphy
([He89, Th. 2.1.3]), and for each o € V' the function «a o f: M — C is holomor-
phic on the intersection with each finite dimensional affine subspace, we see that
f € G(M,V). Now Proposition 1.9(iii) implies that f is continuous, hence that f
is (F)-holomorphic and therefore holomorphic (Proposition 1.10).

(ii) (cf. [He7l, p.79]) In view of Proposition II.12(i), it suffices to show that
Hol(M,V) is closed in C(M,V). because the latter space is complete. Suppose
that f; — f, where f is continuous and the functions f;: M — V are holomorphic.
We have to show that f is holomorphic and, as in (i), we may w.l.o.g. assume
that M is an open subset of a Fréchet space X. An argument similar to that in
(i) implies that f is (G)-holomorphic, but then the continuity of f shows that
f € Hol(M,V). [

Corollary II1.12. Let M and N be complex manifolds, where M 1is Fréchet.
We write Hol(M, N). for the set of holomorphic maps M — N endowed with the
compact open topology. Then the subspace Hol(M,N). is closed in C(M,N)..

Proof. Since M is Fréchet, it is first countable, and therefore C'(M,N). is a
complete uniform space. Now let f € C(M,N) and assume that f; — f holds
for f; € Hol(M,N) uniformly on compact subsets of M. We have to show that
f is holomorphic. This is a local property, so that we may assume that M is
an open subset of a Fréchet space F. In view of the continuity of f, it suffices
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to show that f is Gateaux-holomorphic, so that we may even assume that M is
one-dimensional, hence locally compact (Proposition 1.9). Let zp € M and fix a
compact neighborhood K of x¢ and an open neighborhood U C N of f(xg) which
is diffeomorphic to an open subset of an s.c.l.c. space V. Then we may w.l.o.g.
assume that f;(K) C U holds for all 4, so that the same argument as in the proof
of Theorem II1.11(i) shows that f is holomorphic in a neighborhood of zg. u

In the following the assumption that the manifolds under consideration are
Baire is made to ensure that the spaces Hol(M, V') are sequentially complete (The-
orem II1.11(i)).

Proposition II1.13. Let M and N be complex Baire manifolds, f: M x N —V
holomorphic, and f.(y) := f(x,y). Then the map

&: M — Hol(N,V), =z fu

is holomorphic.

Proof. First the continuity of the map ® follows from Lemma III.2(i). Next we
note that we may w.l.o.g. assume that M is an open subset of a Baire space X.
Claim 1: The map

U: M x X = Hol(N,V), (z,h) = (y— dif(z,y)(h))
is continuous. This follows from Lemma III.2(i) and the fact that
dif € Hol(M x X x N,V)

(Remark 1.5(d)).
Claim 2: ® is C! with d®(z)(h) = ¥(x,h). This is proved exactly as the corre-
sponding assertion in the proof of Theorem III.4.

This shows that @ is C! with complex linear differentials, i.e., that & is
holomorphic. u

Theorem I1I1.14. Let M be a complexr Baire manifold, S a complexr Fréchet
semigroup, and M x S — M a holomorphic right action. Then the action

S x Hol(M,V) — Hol(M,V)

with (m(s).f)(z) = f(x.s) is holomorphic.
Proof. According to Lemma ITI.2(iii), the action of S on Hol(M,V) C C(M,V),
is continuous.

For each s € S the map Hol(M,V) — Hol(M,V),f — s.f is continu-
ous linear, hence holomorphic. Now let f € Hol(M,V). Then the function de-

fined by f(s,z) — f(x.s) is in Hol(S x M,V). Hence the holomorphy of S —
Hol(M,V),s — s.f = ]?s follows from Proposition III.13. This proves that the
action map is partially holomorphic in each argument. Now [He89, Prop. 2.3.8]
implies that the action map is (G)-holomorphic, and finally the continuity implies

that it is (F)-holomorphic, i.e., holomorphic (Proposition I.10). ]
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We have already seen in Proposition [.10 that holomorphic functions are
in particular smooth, i.e., that Hol(M,V) C C*°(M,V) holds for each complex
manifold M. We have endowed the space Hol(M, V') with the topology of compact
convergence which could be coarser than the topology induced from C*°(M,V)
but it turns out that on Hol(M, V') the latter topology coincides with the original
one.

Proposition IIL.15. If M is manifold modeled over a s.c.l.c. space, then the
inclusion Hol(M,V) < C*®(M,V) is an embedding of locally convex spaces.

Proof. It is clear that the topology Hol(M, V') inherits from C'* (M, V) is finer
than the original one. Therefore it suffices to show that the inclusion map is con-
tinuous. If f is holomorphic, then df: T M — V is also holomorphic. Therefore it
suffices to show that Hol(M,V) — Hol(T'M,V), f — df is a continuous map. Then
the assertion follows by induction.

Since each compact subset of T'M is the union of finitely many pieces lying
in coordinate neighborhoods, we may w.l.o.g. assume that M is an open subset of
the s.cl.c. space X. Let x € M and h € X with & + zh € M whenever |z| < 1.
Then

1

T o

df (z)(h) /0 ) e W flx+e?h) db.

For each continuous seminorm p on V' we therefore have

p(df (x)(h)) < supy, )=, p(f(z + zh)).

Let K CTM =2 M x X be a compact subset and w.lo.g. K = K; x K>
with K37 € M and K, C X compact and balanced. Then we find a balanced 0-
neighborhood V' C X with K1 +V C M and n € N with Ky C nV. This means
that for (z,h) € K we have z 4+ 2% € M whenever |z| < 1. Hence

p(dF(2) (1)) = np(df () () < msuppe e, plFe o+ 1),

ie., pr(df) < npg 1, (f). Since the set K + %Kg is compact, convergence in
Hol(M, V') implies uniform convergence on this set, hence uniform convergence of
df on K. This completes the proof. ]

One of the main features of the representation theory of finite-dimensional Lie
groups is that they have an exponential function which makes it possible to trans-
late analytic problems on a Lie group G to algebraic problems on g without loosing
too much information. This works in particular quite well for representations with
analytic or holomorphic orbit mappings. To obtain a suitable generalization to the
infinite-dimensional setting, let us say that a smooth function exp: g — G is an ex-
ponential function for G if for each X € g the curve yx:t — exp(tX) is an integral
curve of the corresponding left invariant vector field Xe V(G). Further we say that
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a Lie group G modeled over the s.c.l.c. space g has a good exponential function if the
closure exp(g) of the exponential image contains a neighborhood of the identity.
If G is complex, we require, in addition, that the exponential function exp:g —» G
is a holomorphic map. For a discussion of the exponential function for the class
of regular Lie groups we refer to [KM97a]. We write D;(G) C End (C*(@G)) for
the unital algebra of all operators on C*°(G) generated by the action of the left
invariant vector fields. An element D € D;(G) is called a left invariant differential
operator on (.

Lemma IT1.16. (a) (Identity Theorem for Holomorphic Functions) If M is con-
nected and two functions f, f' € Hol(M, V') coincide on a non-empty open subset
of M, then f = f'.
(b) If G is a connected complex Lie group with a good exponential function and
f € Hol(G, V) with (D.f)(1) =0 for all D € D|(G), then f =0.
Proof. (a) Since V is locally convex, the linear functionals on V' separate the
points, and so we may w.l.o.g. assume that V' = C. Let
D:={zxeM: f(z)= f'(z)}.

Then D is a closed subset of M which contains an open subset.

Since M is connected, it suffices to show that the interior D° of D is closed,
i.e., that each point € DO belongs to D°. Choosing a local chart around x, we may
w.l.o.g. assume that M is an open convex subset of the s.c.l.c. space X. Picky € D
and ¢ € M. Then we consider the holomorphic map ¢: C — X, z — z+2(y—=z) and
note that f o ¢ and f’ o ¢ are holomorphic functions on ¢~!(M) which coincide
on an open neighborhood of y, hence also in 0 because [0,1] C ¢~ (M). Thus
f(x) = f'(x), and therefore D = M which completes the proof.
(b) For each X € g we obtain a holomorphic function F:C — V,z — f(expzX).
Inductively our assumption implies that

0= (X"f)(1) = F™(0).

Since F' is holomorphic, we conclude that F' = 0 and hence that f|expg = 0. The
assumption that G has a good exponential function now implies that f vanishes
on a neighborhood of 1 and by (a) also on G. n

IV. Representations of infinite-dimensional groups

Let V be an s.c.l.c. space and G a Lie group modeled over a s.c.l.c. space. In this
section we will apply the results of Section III to define a derived representation
of a representation (7,V) of G on the subspace V> of smooth vectors and to
endow this space with a suitable complete locally convex topology inherited from
C>(@E,V) on which the action of G is smooth. For many purposes it is irrelevant
that G is a group and it will suffice to assume that it is an s.c.l.c. semigroup, i.e.,
a manifold modeled over an s.c.l.c. space with a smooth semigroup multiplication.
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Definition IV.1. Let V be an s.c.l.c. space and S an s.c.l.c. semigroup.

(a) A representation (V,m) of S is a continuous action S x V' — V such that the
mappings 7 (s): v — s.v are linear and 7 denotes the corresponding homomorphism
w8 — L(V).

(b) If (V, ) is a representation of S, then a vector v € V is called smooth if the
orbit map S — V, s +— w(s).v is smooth. We write V°° for the subspace of smooth
vectors. u

The derived representation
Let (V,7) be a representation of the s.c.l.c. Lie group G, v € V*° and ¢,:G —
V,g — w(g).v, denote the corresponding orbit map. Then dy,(1):g = T1(G) —
V = T,(V) is a continuous linear map. We define

dr(X).v:= X :=dp,(1).X.
Lemma IV.2. The prescription g x V° — V° defines a representation of g on
Ve,
Proof. First we show that for X € g and v € V*° the element X.v € V is in
fact contained in V'*°.

For g € G we have 7(g) o, = ¢, 0\, because the orbit map ¢, is equivariant
with respect to left multiplications. Hence the chain rule implies
m(9)dipy(1).X = dp,(g)dAry(1).X.

Let X; € V(G) denote the left invariant vector field with X;(1) = X. Then the
preceding calculation shows that

(4.1) g+ m(g)(X.v) = dpy(9)-Xi(g)
is smooth since the map
T(py) o Xp:G =TV =V XV, g (r(g)-v,dp.(9)-Xi(g))

is smooth. This proves that X.v € V',
It remains to show that dr: g — End(V°°) is a homomorphism of Lie algebras.
For v € V°° we obtain a map

P, V' = C®(G), we (g (w,m(g).v)).

For X € g, the corresponding left invariant vector field X;, and w € V' the chain
rule and (4.1) show that

(X1.®,(w)) (9) = (w,dpy(9)-X1(9)) = {w,7(9).(X0)) = Ex.4(w)(9),
i.e., Xjo0®, = ®&x ,. Therefore
Prx,y).w=[X1, Yi]o®,=X10®y ., — Y0P x o =Px (v.0) = Py.(x.0)=Px.(vov) - V.(X.0)-

Evaluating this at ¢ = 1 we obtain w([X,Y].v) = w(X.(Yw) — Y.(X.v)) for all
w € V' and, since the continuous linear functionals on V separate the points,
[X,Y]v=X.(Yv) -Y.(Xw). u
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Remark IV.3. If G is finite-dimensional, then Garding’s Theorem (cf. [WaT72,
Prop. 4.4.1.1]) shows that V'*° is a dense subspace of V. Another important fact on
smooth vectors is Harish-Chandra’s Theorem ([Wa72, Th. 4.4.2.1]) saying that if G
is finite-dimensional and compact, G is the set of equivalence classes of irreducible
representations, and P(§): V — V the projection onto the isotypical component of
type 4, then for each v € V'*° the Fourier series

v= Z P(d).v

6c@

converges in V. ]

Lemma IV.4. Let X be a topological space, S a metrizable topological semigroup
acting continuously from the right on X, and V' a (sequentially ) complete locally
Convex space.
(i) If, in addition, X satisfies the first axiom of countability, then C(X,V). is
a (sequentially) complete locally convex space and we obtain a representation
of S on this space by (s.f)(z) = f(z.s).
(ii) If (mw, V) is a representation of the s.c.l.c. group G, then the action g.o :=
aow(g~t) on the dual space V! is continuous. If, in addition, V is an LF-
space, then we obtain a representation of G on V.

Proof. (i) The completeness follows from Proposition I1.12(i), and the continu-
ity of the action from Lemma ITT.2(iii).

(ii) Since V is endowed with the topology of uniform convergence on compact
subsets of V, Lemma II1.2(iii) implies that the action of G on the space V! C
C(V,C). is continuous. If, in addition, V' is an LF-space, then V! is complete by
Corollary I1.13, and we thus obtain a representation of G on this space. ]

Next we discuss an appropriate topology on the space V°° of smooth vectors.
The key tool is Theorem IIL.5.

Proposition IV.5. Let (m,V) be a continuous representation of the Fréchet
semigroup S with identity element 1 on V and V°° C V the space of smooth
vectors. Via the map v — @,:s — w(s).v we obtain a linear embedding V° —
C>(S,V) which we use to define a locally convex topology on V°°. Then the natural
action of S on V°° defines a representation of S on V°° for which the action map
S X V™ = V= is smooth.

Proof. For v € V and s,¢t € S we have ¢,(st) = n(st).v = w(s).(7(t).v) =
w(s).pu(t), Le., p,: S — V is equivariant. If, conversely, ¢:S — V is a smooth
equivariant map, then ¢(s) = s.p(1) shows that ¢(1) € V°°. Thus

V= 0%(8, V) = {f € C%(S,V)): (Vs,t € S)f(st) = m(s).f(£)}

is a closed subspace of C*°(S, V') because the representation of S on V' is continu-
ous, hence V'™ is a complete locally convex space because S is Fréchet (Proposition
IIL.1).
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In view of Theorem IIL.5, the action map
Sx C®(8,V)—=C>®(S, V), (s,f)—s.f
with (s.f)(z) = f(xs) is smooth. Since

(s.00) () = pu(ws) = m(zs).v = 7(2).(7(5).v) = Pr(s).0(2),
this implies that the action of S on V°° is also smooth. ]

Corollary IV.6. If G is a Fréchet Lie group and (w,V) a continuous represen-
tation of G, then the action map

gxV® Ve (X,v)—dr(X)wv

18 continuous.

Proof. If o: GXxV>®—=V> denotes the action map, then dn(X).v=d10(1,v)(X),
so that the asserted continuity follows from o € C! (Proposition IV.5). |

Remark IV.7. (a) Note that Corollary IV.6 implies in particular that the op-
erators
dr(X): Ve -5 V™

are continuous, hence that g acts naturally on the dual space V=°° := (V) of
continuous linear functionals on V> by (X.a)(v) = —a(X.v).

(b) With respect to the natural topology on V*° the inclusion map V> — V is
continuous because the evaluation map C®(G,V) = V, f — f(1) is continuous.m

Example IV.8. Let G be a Lie group and Ad: G — Aut(g) the adjoint repre-
sentation. Then Ad is a representation of G on g with a smooth action map.

In fact, since the action map can be written as Ad(g).X = dI;(1).X =
d®(g,1)(0, X), where ®(g,z) = grg™!, it is a restriction of the smooth map
T®:T(G x G) - TG, hence a smooth map. Thus the adjoint action of G is a
representation in the sense of Definition IV.1 with g> = g. Using Taylor expan-
sions up to a certain order, one can show that the derived action d Ad = ad is
given by ad(X).Y = [X,Y]. We refer to [Mi83, Sect. 5] for the details.

We give a direct proof for the case where G has enough smooth functions
such that the representation g — Der (COO(G)) is injective. It follows in particular
from the results in [Th95] that this is true if g is a nuclear LF space.

Let f € C*(G), g € G, and X € g. We write 7 for the natural representation
of G on C*°(@) given by (m(g).f)(z) = f(g~'.z). Passing to the derivative of the
smooth map

G = CX(G), hwa(g)n(h)n(g™).f =n(ghg™).f
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yields
m(g)dr(Y)m(g™").f = dr(Ad(g).Y).f.

In view of the smoothness of the map 1, we see that we can take the derivative
with respect to g in 1, and since f is arbitrary, we get

dr([X,Y]) = dr(X)dn(Y) — dr(Y)dn(X) = dr (d Ad(X).Y).

If dr is injective, then d Ad = ad follows.

The above argument can be generalized to the setting where one only con-
siders germs of smooth functions in 1. Then one does not have to worry about the
existence of enough smooth function, and one can still show that the derivative of
the map G — ¢,9 — Ad(g).X is ad(-).X for every X € g. |

In the next proposition we record an important application of the Identity
Theorem for Holomorphic Functions (Lemma II1.16(a)) to representation theory.

Proposition IV.9. Let G be a connected complex Lie group with a good expo-
nential function exp:g — G and (mw, V) a representation of G such that all orbit
maps G — V,g — 7n(g).v are holomorphic. Then the following assertions hold:

(i) IfF CV is a subspace which is invariant under g, then its closure is invariant
under G.

(ii) If v € V is annihilated by g, then v is fized by G.

Proof. (i) Let « € F+ C V' be a continuous linear functional vanishing on F.
For v € F we consider the function f,:G — C, g — a(g.v), i.e., f, = aop,, where
y is the orbit map. Then the calculation in the proof of Lemma IV.2 shows that
for each X € g and the associated left invariant vector field X; we have

(Xi-fo)(g) = dfv(9)-Xi(g) = (o, dpu(9)-Xi(g)) = {a, 7(9) X .v) = fx.u(9),

e, Xi-fo = fxo-

For ¢ = 1 we now obtain (X;.f,)(1) = a(X.v) = 0. In view of X.v € F,
we can apply this argument inductively and thus obtain (D.f,)(1) = 0 for all
D € D;(G). Now Lemma II1.16(b) implies that f, = 0, hence that #(G).v C kera
for all « € F+. Next we use the Hahn-Banach Theorem to see that F = (F1)+
from which we obtain 7(G).v C F. Since G acts by continuous operators on V, we
conclude that F is invariant under G.

(ii) As above, we consider the function f,:g — a(g.v) — a(v) but now with an
arbitrary element o € V'. Taking derivatives, we see that X;.f, = fx.» = 0 for all
X € g and therefore (D;(G).f,)(1) = 0 because f,(1) = 0. So Lemma IIL.16(b)
implies that f, = 0, hence that a(g.v) = a(v) for all @« € V' and g € G. Since V'
separates the points of V', the group G fixes v. [ ]
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V. Generalized coherent state representations

In this section we describe a general setup for so called coherent state represen-
tations. Analytically these representations are characterized by the property that
they can be realized in spaces of holomorphic sections of a homogeneous complex
line bundle. On the geometric side this means that the action of G on the projec-
tive space of the dual space has a cyclic orbit which is a complex manifold. These
concepts are well studied in the setting of Hilbert spaces (cf. [Li95]) and here we
show that if one carefully distinguishes between the spaces and their duals, then
one can generalize this correspondence to general s.c.l.c. spaces.

In the first subsection we describe how to construct a natural complex line
bundle on the projection space P(V) of an s.c.l.c. space. In the second subsec-
tion we then turn to group representations and show in particular that for finite-
dimensional Lie groups the representations of G in an LF space which are gener-
alized coherent state representations are precisely those on subspaces of the space
of holomorphic sections of a homogeneous complex line bundle.

The line bundle over the projective space of a topological vector space

In this section V' denotes an s.c.l.c. space and P(V) its projective space. We write
[v] for the element of P(V') which corresponds to the one-dimensional subspace gen-
erated by v € V' \ {0}. Furthermore we write GL(V') for the group of continuously
invertible linear operators on V and V' for the topological dual of V.

Lemma V.1. The group GL(V) acts transitively on

(i) V\ {0},

(i) P(V),

(iii) V'\ {0}, and

(iv) P(V").
Proof. (i) Let v,w € V \ {0}. If v and w are linearly dependent, then there
exists A € C* C GL(V) with w = Av. We now assume that v and w are linearly
independent. Since V is locally convex, there exists a continuous linear functional
a € V' with a(v+w) =0 and a(v —w) =1, ie., a(v) = —a(w) = 3. Then

O(x) :=x — 2a(x) (v — w)
is a continuous reflection in the hyperplane ker « satisfying ®(v) = w and @1 = &.
It follows in particular that ® € GL(V).

(ii) This is an immediate consequence of (i).
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(iii) We endow V' with the weak-*-topology. If a, 5 € V'\ {0} are linearly indepen-
dent, then there exists € V with (o + 8)(x) = 0 and (o — 8)(z) = 1. Therefore
the same argument as in (i) works in this case.

(iv) This is a direct consequence of (iii). [

Proposition V.2.  The space P(V) carries the structure of a complex manifold
modeled over closed hyperplanes of V.. The charts are given by (U, Pa)acv\{0},
where

(5.1) Uy ={[v] eP(V):a(v) #0} and @u:U, — kera, [v]—

— Vo,

v
a(v)
where vy, € V is chosen with a(v,) = 1.

Proof. First we note that the condition defining U, makes sense because either
« vanishes on the one-dimensional space Cv or a(w) # 0 holds for all w € Cv\ {0}.
According to Lemma V.1, for two different non-zero continuous functionals their
kernels are isomorphic as topological vector spaces because they are conjugate
under the group GL(V'). Since these kernels are precisely the closed hyperplanes
of V', we also see that two such hyperplanes are isomorphic.

Next we note that the inverse of ¢, is given by

o ikera — Uy, v+ [v4vg].

For [v] € Uy NUs and w := pg([v]) we have

_ w+v
Paopy (W) =~ 5

Ty,
(w + vg)

which is a holomorphic map of an open subset of ker § to ker a. Hence the atlas
given by the above charts defines on P(V') the structure of a complex manifold. =

We put Uyg := Uy NUg for a, 8 € V' \ {0}. We define functions

a(v)
pv)

and note that these functions satisty g,z([v]) - 98a([v]) = gya([v]) on U NUNU,,
i.e., the functions g.p form a system of transition functions in the sense of [Hu94,
Def. 5.2.4]. Next we construct a holomorphic line bundle p: Ly — P(V) as follows.
On the disjoint union

98a:Uap = C*, [v] —

Ly := U Ua x C x {a}

0Z£acV’

we define an equivalence relation by

(0] 2 @) ~ (o], gsa([0]) 2 B) = ([0], 55 2, 8).
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Proposition V.3. The space Ly := Ev/ ~ carries the structure of a complex
line bundle over P(V') with projection

q: Ly — P(V), [[v],z,a] — [v].

Proof. It is clear that Ly inherits the structure of a complex manifold because
the transition functions are holomorphic and the sets Uy x C x {a} carry natural
complex manifold structures.

The subset ¢~ *(U,) is biholomorphically equivalent to ker & x C, where the
charts are given by

Yarq ' (Us) m> kera x C,  [[v],2,a] = (pa([v]),2).
Note that for these coordinate charts we have
s 097 (v,2) = ¥a ([lv +val, 2,0] ) = ¥ ([0 + val: gaa([v + va)z, 8])
= 5 ([[o + val, gy B]) = (95 © 02" (), 52y)-
Since this map is holomorphic, we obtain another proof for the fact that Ly is
a complex manifold. Moreover, the fact that this map is linear in the second

argument shows that Ly is a holomorphic vector bundle with fiber C, i.e., a holo-
morphic line bundle. u

Theorem V.4. The assignment

(5.2) salo]) = [[v], 52, 8], [o] € Us

yields a topological isomorphism n: V! — I'(Ly )., where I'(Ly). denotes the space
of holomorphic sections of Ly endowed with the topology of uniform convergence
on compact subsets of P(V).

Proof. Firstlet « € V'. Then

[[’U], ggzgaﬂ] = [[v]ugvﬁ([v])%v’ﬂ = [[’U], 3&:37’7]

so that (5.2) defines in fact a section n(a) of Ly which is holomorphic. Now we
show that the so obtained map 7: V' — T'(Ly ) is a bijection. The subset

L = {[[v],z,a]:2 #0,[v] e P(V),0 £ € V'},
of Ly is the complement of the zero section in Ly . We have a natural map

F:VA\{0} = Ly, v [[v], =15, ¢




for [v] € Uy,. For [v] € Uyg we have

[[U]’ a(lv)’a] = [[v]’gﬁo‘([v])a(lv)’ﬁ] = [[1}], ,6(11;)’6]'

The inverse of this map is given by

JTHLE =V, ],z a] & o]
for [v] € Uy, where we have to note that the expression on the right hand side is

well defined because
v v

2a(v)  gpalv])2B0)

Now let s € I'(Ly) be a holomorphic section. Then we obtain a holomorphic
function 3: Ly — C with s(p(z)) = 5(x) - z. Note that 5(Az) = 15(z). Therefore
the function §:= 50 5:V \ {0} — C is holomorphic and satisfies s(Az) = As(z)
for all A € C*. We claim that §'is the restriction of a continuous linear functional.
If V is one-dimensional, then P(V') consists of one point and there is nothing to
show. Let W C V be a two-dimensional subspace. Then the restriction f of s to
W\ {0} is a holomorphic function satisfying

(5.3) FOw) = Af(v), 0#£veW,\eCx.

Since {0} is an isolated singularity of this function, Hartog’s Theorem shows that
f extends holomorphically to W. Now the Taylor expansion in the origin and
(5.3) imply that f is linear. Thus the extension of 5 by §(0) := 0 yields a linear
functional 5 on V. If § # 0, then kers is a complex hyperplane with the property
that (V' \ {0}) Nker5sis closed. Hence kers is closed and therefore § is continuous.
Thus for each holomorphic section s there exists a continuous linear functional
a € V' such that

S([v]) = g([[v]vzvﬁ]) ’ [[U],Z,B] = a(j_l([[v],z,ﬂ])) ’ [[U]’Z’B]

v (v
= ZB((TB) : [[U], Zvﬂ] = [[’U], 5&0375]7
i.e., s = so. This completes the proof of the bijectivity of .

Now we show that n also is a topological isomorphism. We may w.l.o.g.
assume that V' # {0}. First we observe that the topology on V. coincides with
the topology of uniform convergence on all compact subsets C' C V for which
there exists a linear functional 8 € V' with inf Re 8(C) > 1. In fact, if C C V is
a compact subset, then we pick € V with Re 8(z) > max (1,1 — inf Re 3(C)).
Then inf Re 3(C + z) = inf Re 5(C) + Re f(z) > 1, and the uniform convergence
on C'+ z and z implies the uniform convergence on C = (C' 4+ ) — z. On the other
hand, a covering argument using that the quotient map p: V\ {0} = P(V),v — [v]
is open and has local sections shows that every compact subset of P(V) is a finite
union of compact subsets lying in some open subset Ug, f € V' \ {0}.
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Now let C C V be a compact subset with inf Re 8(C) > 1. Then p(C) C P(V)
is a compact subset of p({v € V:B(v) # 0}) = Uz and we have n(a)([v]) =
[[v], %)l, B] for [v] € Us. In view of inf |3(C')| > 1, this formula implies that a net
(aj)jes in V' converges uniformly on C if and only if the net (n(a;));jes of holo-
morphic sections of Ly converges uniformly on p(C). Therefore 7 is a topological
isomorphism V! — I'(Ly ). [ ]

Applications to representation theory

Definition V.5. A continuous representation (7, V') of G on an s.c.l.c. space V
is called a generalized coherent state representation (GCS representation for short)
if there exists v € V'\ {0} such that

(1) v is cyclic,

(2) the homogeneous space G/G|,], where G|, = {g € G:g.[v] = [v]} carries the
structure of a complex homogeneous space modeled over a Fréchet space such
that the natural map 7: G /G, = P(V), G, = g.[v] is holomorphic.

A vector v € V'\ {0} satistying (1) and (2) is called a GCS vector. ]

If p: L - M is a holomorphic line bundle over a Fréchet manifold M, then
we endow the space I'(L) of holomorphic sections with the compact open topology
which turns it into a complete locally convex space (cf. Theorem III.11). If V' is a
topological vector space, then we write V/ for the topological dual of V' endowed

with the topology of uniform convergence on the compact subsets of V' (cf. Section
ID).

Proposition V.6. If (7,V) is a generalized coherent state representation, then
the contragredient representation (7', V) can be injected continuously into the nat-
ural representation of G on the space I'(L) of holomorphic sections of a holomor-

phic line bundle p: L — M.

Proof. Let v € V be a GCS vector and M := G/G[,. Then M carries the
structure of a complex manifold such that the inclusion map

n:M — P(V), G = g.[v]

is holomorphic. Let Ly — P(V) denote the line bundle from Proposition V.3.
Then the pull back L := n*Ly is a holomorphic line bundle over M and thus we
obtain a natural map

V' 2 T(Ly) = [(L).

We claim that 9 is injective. So let @ € V' and suppose that 1(s,) = 0. This
means that the section s, vanishes on n(M) C P(V). For 8 € V' \ {0} and
[w] € Ug CP(V) we have

(5.4) sal([w]) = [[w], 54, 5].



Hence s, vanishes in [w] if and only if a(w) = 0. Therefore o vanishes on G.v, and
the fact that v is cyclic implies that a = 0, i.e., that v is injective.

To see that v is continuous, let K C M be a compact subset. Then there
exists a compact subset C C V \ {0} with n(K) = [C]. Now convergence in
V! implies uniform convergence on C, hence (5.4) shows that the corresponding
sections converge uniformly on K C M. This proves that 1 is continuous. ]

Lemma V.7. Let p: L — M be a holomorphic line bundle, M a complex Fréchet
manifold, and V C I'(L) a closed subspace with the property that for each x € M
the exists a holomorphic section s € V with s(z) # 0. Then the following assertions
hold:

(i) The system Us := {& € M:s(x) # 0}, s € V \ {0}, and the transition
functions
s(z)

gis: Us NUy = C°, 2 ——=

t(x)
define a line bundle over M which is isomorphic to L.

(ii) Assume that V is a Fréchet space. For x € L™ we define a holomorphic map
y:L* = V! by s(p(x)) = v(z)(s) - @. Then v(L*) C V/\ {0}, and we obtain
a holomorphic map

VM = P(V)), p) = [v(2)].

Furthermore the pull-back line bundle 5* Ly is isomorphic to L.

Proof. (i) We construct a holomorphic line bundle ¢: E — M as E/ ~, where

E:= U Us x C x {s}

0#£seV

and

(z,2,8) ~ (z, gts(x)2, 1) = <:U, ;é;;z,t)

Then the projection ¢: E — M is given by ¢([z, z, s]) = x. To see that this bundle
is isomorphic to L, we define a holomorphic mapping

O:FE—~ L, [z,z,8]—z-s(x) for xe€U,.

To see that ® is well defined, we note that for x € Us N Uy we have [z, z,s] =
[SL’, ii(%z,t] and

Hence @ is a well defined holomorphic bundle map with po ® = q.
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Moreover, if ®([z,z,s]) = ®([2',2',5]), then = p(®(z)) =2’ € U;N Uy,
and z - s(z) = 2' - §'(x), ie., 2/ = s,(w)z. Hence @ is bijective. Moreover, for

y € p~1(Us) we have
) = [ 9]

which shows that ®~!: L — E is also holomorphic.
(ii) First we note that V' — C, s — ~(z)(s) is continuous, so that v(V) C V'. We
claim that - is holomorphic. Since by assumption V is a Fréchet space, Corollary
I1.13 shows that V is a complete locally convex space, and that the natural map
ny:V — (V). is surjective (Theorem II.8(ii)). Therefore each continuous linear
functional on V/ is given by evaluation in an element s € V, and for each such
s the mapping = — ~(x)(s) is a holomorphic function on L*. This proves that
« is weakly holomorphic, hence that v is holomorphic because V is sequentially
complete and M is Fréchet (Proposition 1.9).

Since, by assumption, for each x € M there exists an s € V with s(z) # 0,
we have v(L*) C V! \ {0}. Moreover we have y(Az) = A~ 1y(z) for A € C¥, so
that ~ factors to a holomorphic map

¥:M = P(V), pla) = [y(2)].

Let E :=7%*Ly: denote the pull-back line bundle with projection ¢: E — M.
Then yoq = py: o7, and since the bundle Ly is defined by the transition functions

_ o) or av v a "y
gﬁﬂé([v]) - 6(1)) f ( )7&( ) # 07 7B € (Vc> )

the bundle E is defined by the transition functions

gﬁa(p(m» = 6(7(1‘)) for O‘(VC”)):B(’Y(:U)) #0.

Using n.(V) = (V). (Theorem IL.8(ii)), we write o = 1y (s) and f = nv(¢) to

obtain
@) _sb@) _

for p(x) € Us N U;. Therefore (i) shows that the holomorphic line bundle E is
isomorphic to L. ]

For the remainder of this section we will restrict our attention to finite-
dimensional Lie groups because we will need the differential geometric machinery
describing complex structures and holomorphic sections in terms of the underlying
real structure of the manifold.
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Lemma V.8. Let G be a finite-dimensional Lie group, H a closed subgroup, and
suppose that the homogeneous space G/H is a complex manifold in such a way
that G acts by holomorphic maps. Suppose further that M is a not necessarily
finite-dimensional complex manifold on which G acts by holomorphic maps. If
v:G/H — M is a holomorphic equivariant map, xo = v(1H), and G, is the
stabilizer of xo, then H C G, and the homogeneous space G/G,, carries a unique
complex structure such the quotient map G/H — G/G,,,9H — gG., and the
induced map 7: G |Gy, = M, gGy, — g.20 are holomorphic.

Proof. Let o:G x M — M denote the action of G on the complex manifold M
and write Vo1 (M) C V(M) for the Lie algebra of holomorphic vector fields on M.
Then

G:9 = Vhot(M), X (p— —do(1,p)(X,0))

is a homomorphism of Lie algebras. In fact, this follows easily from a local com-
putation in coordinate charts.

We conclude that ¢ extends to a C-linear homomorphism gc — Vho (M)
which we also denote by ¢. As the formula for the Lie bracket in local coordinates

shows, the subspace
a:= {X € Vhol(M): X(J)o) = O}

is a Lie subalgebra of Vo (M). Hence b := 6 !(a) is a complex subalgebra of gc.
Moreover g,, = bNg according to the fact that the G-orbit is an equivariant image
of the finite-dimensional homogeneous manifold G/H. This can also be written as
6 Nb = (gg)c for the complex conjugation X +— X on gc. Further it is easy to
see that Ad(G,).b =b.

The holomorphy of v now implies that dy(1H)Twa(G/H) = 6(g)(xo) is a
complex subspace of T, (M). This means that 6(g)(zo) = d(gc)(xo) which shows
that

gc=g+b.

Thus we find for each X € gc an element YV € g and Z € b with X =V + Z.
Hence X — X =7 — Z € b+ b, and therefore ig C b + b which in turns gives

gc=g+igCi(b+b)+b+b=Db+b.
This completes the proof of
Ad(Gy,).b=b, bNb=(gs)c, and b+b=gc,

which, according to [Ki76, p. 203], is equivalent to the existence of a complex
structure on G/G,, such that G acts by holomorphic mappings. More explic-
itly, this complex structure can be described by identifying the tangent space
Tha,,(G/Gy,) = 9/9z, with the complex vector space gc/b. From this description
of the complex structure it follows that the canonical maps G/H — G/G;, and
G /Gy, = M are holomorphic because they are G-equivariant, smooth, and their
differentials are complex linear in the base point. This completes the proof. ]
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Proposition V.9. Suppose that G is finite-dimensional and L is a holomorphic
G-homogeneous line bundle. Then G acts on the Fréchet space I'(L) by (g.s)(x) :=
g.s(g71.x). Let {0} #V C I'(L) be a closed invariant subspace. Then the repre-
sentation of G on V! is a GCS representation.

Proof. First we note that V inherits the structure of a Fréchet space. We claim
that V satisfies the assumptions of Lemma V.7. Let & € M. Since V' # {0}, there
exists s € V \ {0}. Pick y € M with s(y) # 0. Then there exists g € G with
g.y = x, and we see that (g.s)(z) = g.s(y) # 0. This means that V satisfies the
assumptions of Lemma V.7, and thus L = 5* Ly holds for the natural holomorphic
map 7: M — P(V)).

Moreover

(97(@))(s) -z =~(x)(g7"5) @ = (g7 .5) (p(x)) = g~ "-5(g-p(x))
=g " y(g-p(x))(s) - (g.2) = v(g-p(x)) (s) - =

shows that v: L* — V! \ {0} is G-equivariant and hence that 7 is G-equivariant.

Pick zp € M and let 7(x¢) = [ap]. Then the G-homogeneous space G /G, =
F(M) inherits the structure of a complex manifold because 7 is holomorphic
(Lemma V.8). Moreover, the natural map G/G|q,) — IP(V/!) is obtained by factor-
ization of 7 and therefore holomorphic. So, in view Definition V.5, it remains to
prove that ag € V/ is a cyclic vector.

In fact, if o is not cyclic, then V' = (V/)’, and the Hahn-Banach Theorem
imply the existence of 0 # s € V vanishing on G.ap. This means that the section
s of I'(L) vanishes on G.xg = M, contradicting s # 0. This completes the proof.m

Theorem V.10. If G is finite-dimensional, then a non-zero continuous rep-
resentation (m,V) of G, where V is an LF space is a generalized coherent state
representation if and only if the contragredient representation permits a continuous
equivariant injection into I'(L) for a homogeneous line bundle p: L — M.

Proof. 1If (w,V) is a GCS representation, then Proposition V.6 shows that the
contragredient representation permits a continuous equivariant injection into I'(L)
for a homogeneous line bundle L.

Suppose, conversely, that ¢: V! — I'(L) is a continuous equivariant injection.
In view of Proposition V.9, the representation of G on I'(L), is a GCS repre-
sentation because this space contains (1), hence is non-zero. The adjoint map
" T(L), — (V]), = V is continuous and G-equivariant. Let ag € I'(L)!, be a GCS
vector. We claim that ¢'(ag) is a GCS vector in V.

First we show that it is cyclic. In fact, if it is not cyclic, then there exists a
non-zero € V' vanishing on G.¢'(ag) = ¢'(G.ap), i.e., ¥(F) vanishes on G.ay,
and thus ¥(8) = {0} because ayq is cyclic, contradicting the injectivity of ¢. Thus
' (ap) is cyclic, and it follows in particular that ' (ag) # 0.

Now the fact that the natural map

P(D(L)) \ (V) = B(V),  [a] = [¢'(a)]
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is holomorphic and G-equivariant implies that G/G[yr(a)) is a complex homo-
geneous G-space such that the natural map G/Gy(ag)) = P(V) is holomorphic

(Lemma V.8). This proves that (7, V) is a GCS representation. ]
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