
In�nite-dimensional groups and their representations

Karl-Hermann Neeb

In this paper we disuss some of the basi general notions and results whih play

a key role in the representation theory of in�nite-dimensional Lie groups modeled

over sequentially omplete loally onvex (s..l..) spaes. In the following eah

loally onvex spae will impliitly be assumed to be Hausdor�.

In the �rst setion we review the basi fats on alulus in s..l.. spaes.

We hoose the setup of s..l.. spaes to ensure the existene of integrals of vetor

valued ontinuous funtions on ompat intervals whih is the key to the Funda-

mental Theorem of Calulus. For the setting of Fr�ehet spaes these results an

be found in [Ha82℄, but one readily noties that as soon as one has a Fundamental

Theorem of Calulus the other results go through with the same proofs. The s..l..

setting is also used in [Mi83℄. Moreover, the setting of s..l.. spaes is the natural

general setting for holomorphi mappings between in�nite-dimensional spaes (f.

[He89℄). In partiular we show that the usual notion of holomorphy is equivalent

to being smooth with omplex linear di�erential. In this setion we also disuss Lie

groups over s..l.. spaes and how to de�ne their Lie algebra. For the existene

of an exponential funtion no general result is known, nevertheless in all known

examples an exponential funtion seems to exist (f. [Mi83, p. 1043℄). Moreover the

di�erential of the exponential funtion is given by the same formula as in the �nite

dimensional ase ([Gr97℄). A partiularly interesting lass of in�nite-dimensional

Lie groups are the diret limit Lie groups. For more details on suh groups we refer

to [NRW91℄, [NRW93℄, [NRW94℄ and [Gl99℄. For more results on general s..l.. Lie

groups we refer to [Mi83℄ where one �nds in partiular a disussion of the lass of

\regular" Lie groups whih is haraterized by nie properties of the exponential

funtion. A disussion of regular Lie groups in the \onvenient setting" of [KM97a℄

an be found in [KM97b℄.

Setion II onsists of a olletion of various results from funtional analysis,

in partiular on dual spaes, whih play a role in dealing with representations of

in�nite-dimensional groups. Sine we are working with s..l.. spaes, one has to

make sure in many irumstanes that the spaes obtained are in fat sequentially

omplete. This is where one needs some re�ned tools from funtional analysis. In
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addition to ompleteness properties, we also disuss metrizability of dual spaes

for ertain natural topologies.

In Setion III we show how the results from Setion II an be used to de�ne

onvenient spaes of smooth and holomorphi funtions on in�nite-dimensional

manifolds in suh a way that these spaes beome s..l.. spaes. We also analyze

the natural ations of Fr�ehet Lie groups on these spaes whih are naturally

assoiated to smooth ations. In partiular we show that a smooth ation of a

Fr�ehet semigroup S on a Fr�ehet manifold M indues a smooth ation of S on

C

1

(M;V ) for every s..l.. spae V . We also derive a omplex version of this result

for holomorphi ations of omplex semigroups on omplex manifolds.

In Setion IV these results are applied to de�ne a derived representation of

a representation (�; V ) of an s..l.. Lie group G on the subspae V

1

of smooth

vetors and to endow this spae with a suitable omplete loally onvex topology

inherited from C

1

(G; V ) on whih the ation of G is smooth.

In the last Setion V we then turn to a quite general setup for so alled

oherent state representations. Analytially these representations are haraterized

by the property that they an be realized in spaes of holomorphi setions of a

homogeneous omplex line bundle. On the geometri side this means that the

ation of G on the projetive spae of the dual spae has a yli omplex orbit.

These onepts are well studied in the setting of Hilbert spaes and here we show

that if one arefully distinguishes between the spaes and their duals, then one

an generalize this orrespondene to general s..l.. spaes.

I. Calulus in loally onvex spaes

In this setion we explain briey how alulus works in s..l.. spaes. The main

point is that one uses the appropriate notion of di�erentiability whih for the

speial ase of Banah spaes di�ers from Fr�ehet di�erentiability but whih is

more onvenient in the setup of s..l.. spaes. Our basi referene will be [Ha82℄,

where one �nds detailed proofs for the ase of Fr�ehet spaes. One readily observes

that one one has the Fundamental Theorem of Calulus, then the proofs of the

Fr�ehet ase arry over to a more general setup where one still requires smooth

maps to be ontinuous (f. also [Mi83℄). A di�erent approah to di�erentiability

in in�nite-dimensional spaes in the framework of the so alled onvenient setting

an be found in [FK88℄ and [KM97a℄. A entral feature of this approah is that

smooth maps are no longer required to be ontinuous, but for alulus over Fr�ehet

spaes one �nds the same lass of smooth maps desribed by Hamilton and Milnor.

Another approah whih also gives up the ontinuity of smooth maps and requires

only ontinuity on ompat sets is disussed by E. G. F. Thomas in [Th96℄.

It is also interesting to note that sine the Cauhy Integral Formula plays a

similar role for holomorphi funtions as the Fundamental Theorem of Calulus

does for di�erentiable funtions, the setting of s..l.. spaes also seems to be the
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appropriate one for holomorphi mappings between in�nite-dimensional spaes.

We show in partiular that these two onepts are related by the observation that

the usual notion of holomorphy is equivalent to smoothness with omplex linearity

of the di�erential.

Then we turn to manifolds modeled over s..l.. spaes. Due to the aforemen-

tioned relation between smooth and holomorphi funtions, omplex manifolds are

speial ases of real manifolds in any reasonable setting. One of our main obje-

tives in this setion is to disuss some of the most basi properties of Lie groups

modeled over s..l.. spaes. In partiular we explain how to de�ned their Lie al-

gebra and the adjoint representation. A major diÆulty of the s..l.. setup whih

does not arise for Banah Lie groups is that one annot guarantee a priori that

they have any exponential funtion. Thus one is fored in many plaes to argue

without using an exponential funtions.

Di�erentiable funtions

De�nition I.1. (a) Let X and Y be topologial vetor spaes, U � X open and

f :U ! Y a ontinuous map. Then the derivative of f at x in the diretion of h is

de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever it exists. The funtion f is alled di�erentiable in x if df(x)(h) exists for

all h 2 X . It is alled ontinuously di�erentiable or C

1

if it is di�erentiable in all

points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a ontinuous map.

(b) Higher derivatives are de�ned by

d

n

f(x)(h

1

; : : : ; h

n

)

:= lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

The funtion f is alled n-times ontinuously di�erentiable or C

n

if

d

n

f :U �X

n

! Y; (x; h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

)

is a ontinuous map. We say that f is smooth or C

1

if it is C

n

for all n 2 N.

() If X and Y are omplex vetor spaes, then the map f is alled holomorphi

if it is C

1

and for all x 2 U the map df(x):X ! Y is omplex linear (f. [Mi83, p.

1027℄)
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We note that if X and Y are Banah spaes, then the strong notion of ontin-

uous di�erentiability is weaker than the usual notion of ontinuous di�erentiability

in Banah spaes whih requires that the map x 7! df(x) is ontinuous with re-

spet to the operator norm. We will disuss this point below (Example I.6 and

Theorem I.7). We also note that the existene of linear maps whih are not on-

tinuous shows that the ontinuity of f does not follow from the di�erentiability

of f beause eah linear map f :X ! Y is di�erentiable in the sense of De�nition

I.1(a).

So far we did not use any speial property of the topologial vetor spaes

involved. To be able to develop a alulus on topologial vetor spaes whih has

at least the most basi properties of alulus in �nite dimensions, we will have to

make the assumption that the vetor spaes under onsideration are sequentially

omplete loally onvex (s..l..) spaes.

The main point in making this assumption is to be able to integrate on-

tinuous urves : [a; b℄ ! X in the sense that there exists a unique element

y :=

R

b

a

(t)dt 2 X with

!(y) =

Z

b

a

h!; (t)i dt

for all ontinuous linear funtionals ! on X (f. [He89, Prop. 1.2.3℄).

We reall that a loally onvex spae X is alled quasiomplete if eah losed

bounded subset of X is omplete as a uniform spae. Sine Cauhy sequenes form

bounded sets, it is lear that ompleteness implies quasiompleteness and that

quasiompleteness implies sequential ompleteness. For the existene of integrals of

ontinuous funtions :C ! X , where C is a ompat spae, the quasiompleteness

of X is the appropriate assumption (f. [Bou59, x1, no. 2, Cor. de Prop. 5; no. 6℄).

Now we reall the preise statements of the most fundamental fats.

Lemma I.2. The following assertions hold:

(i) If f is C

1

and x 2 U , then df(x):X ! Y is a linear map, f is ontinuous,

and if x+ th 2 U holds for all t 2 [0; 1℄, then

f(x+ h) = f(x) +

Z

1

0

df(x + uh)(h) du:

(ii) If f is C

n

, then the funtions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

), x 2 U , are

symmetri n-linear maps.

Proof. (i) The �rst part is [Ha82, Th. 3.2.5℄ and the integral representation is

[Ha82, Th. 3.2.2℄. To see that f is ontinuous, let p be a ontinuous seminorm on Y

and " > 0. Then there exists a balaned 0-neighborhood U

1

� X with x+U

1

� U

and p

�

df(x+ uh)(h)

�

< " for u 2 [0; 1℄ and h 2 U

1

. Hene

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ uh)(h)

�

du � ";

and thus f is ontinuous.

(ii) [Ha82, Th. 3.6.2℄
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Proposition I.3. (The hain rule) If X, Y and Z are s..l.. spaes, U � X

and V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is

C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x):

Proof. [Ha82, Th. 3.3.4℄

Proposition I.4. If X

1

, X

2

and Y are s..l.. spaes, X = X

1

�X

2

, U � X is

open, and f :U ! Y is ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�

and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are ontinuous if and only if df exists and is ontinuous. In that ase we

have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. [Ha82, Th. 3.4.3℄

Remark I.5. (a) If f :X ! Y is a ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition I.4 it follows that a ontinuous k-linear map m:X

1

�

: : :�X

k

! Y is ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indutively one obtains that m is smooth with d

k+1

m = 0.

() If f :U ! Y is C

n+1

, then Lemma I.2(ii) and Proposition I.4 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in partiular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f

is C

1

.

(d) If f :U ! Y is holomorphi, then the �nite-dimensional theory shows that for

eah h 2 X the funtion U ! Y; x 7! df(x)(h) is holomorphi. Hene d

2

f(x) is

omplex bilinear and therefore d(df) is omplex linear. Thus df :U � X ! Y is

also holomorphi.
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Di�erentiable funtions on Banah spaes

In this subsetion we disuss the relation between the notion of di�erentiability

desribed in De�nition I.1 and the notion of Fr�ehet di�erentiability in Banah

spaes. In Example I.6 we will see that for maps between Banah spaes our C

1

onept di�ers from the onept of ontinuous Fr�ehet di�erentiability, and in

Theorem I.7 we will show that smooth funtions are also smooth in the Fr�ehet

sense (the onverse is obvious). For a more detailed disussion of several onepts

of di�erentiability in Fr�ehet and Banah spaes we refer to [Ke74, p. 110℄.

Example I.6. Let E := ff 2 C(R): (8x 2 R)f(x + 1) = f(x)g denote the

Banah spae of 1-periodi ontinuous funtions on R endowed with the norm

kfk

E

:= supfjf(x)j:x 2 Rg. Further let F := ff 2 E \ C

1

(R) : f

0

2 Eg be

endowed with the norm kfk

F

:= kfk

E

+ kf

0

k

E

. We onsider the map

m:X := R � F ! E; (x; f) 7! f(x+ �):

We laim that in the sense of De�nition I.1(a) this map is C

1

, but that

e

dm:X !

L(X;E); x 7!

�

h 7! dm(x; h)

�

, where L(X;E) denotes the Banah spae of all

ontinuous operators from X to E, is not ontinuous, i.e., m is not C

1

in the

Fr�ehet sense.

We �rst show that the di�erential of m is given by

dm(x; f)(y; h) = f

0

(x + �)y + h(x+ �):

In fat, for s 2 R and t 6= 0 we have

1

t

�

m(x+ ty; f + th)(s)�m(x; f)(s)

�

� f

0

(x+ s)y � h(x+ s)

=

1

t

�

f(x+ ty + s) + th(x+ ty + s)� f(x+ s)

�

� f

0

(x + s)y � h(x+ s)

=

1

t

�

f(x+ ty + s)� f(x+ s)

�

� f

0

(x+ s)y + h(x+ ty + s)� h(x+ s)

=

Z

1

0

f

0

(x+ s+ uty)y du� f

0

(x + s)y +

Z

1

0

h

0

(x+ s+ uty)ty du:

Now the fats that f

0

is uniformly ontinuous and that h

0

is bounded imply that

this expression tends to 0 in E whenever t ! 0. This proves the formula for the

di�erential of m.

Next we show that dm:X �X ! E is ontinuous. In fat, the ontinuity of

R � F ! E; (x; h) 7! h(x+ �) follows from

kh(x+ �)� h

1

(x

1

+ �)k

E

� kh(x+ �)� h(x

1

+ �)k

E

+ kh(x

1

+ �)� h

1

(x

1

+ �)k

E

� kh

0

k

E

jx� x

1

j+ kh� h

1

k

E

:
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So it remains to see that (x; f) 7! f

0

(x+ �) is also ontinuous. We have

kf

0

(x+ �)� f

0

1

(x

1

+ �)k

E

� kf

0

(x+ �)� f

0

(x

1

+ �)k

E

+ kf

0

� f

0

1

k

E

;

so that the asserted ontinuity follows from the uniform ontinuity of f

0

.

To see that

e

dm:X ! L(X;E) is not ontinuous, we note that d

2

m(x; f)(h) =

h(x + �). If �

x

:f = f(x + �), then x 6= x

0

implies that k�

x

� �

x

0

k = 2. This shows

that (x; f) 7! d

2

m(x; f) = �

x

is not ontinuous.

Theorem I.7. Let X and Y be Banah spaes, U � X open, and f :U ! Y a

map. Then the following assertions hold:

(i) If f is C

2

, then it is C

1

in the Fr�ehet sense.

(ii) f is C

1

if and only if it is C

1

in the Fr�ehet sense.

Proof. (i) Let us �x x 2 U and suppose that the open Æ-ball U

Æ

(x) about x is

ontained in U . We write d

2

f(x)(h) for the map h

1

7! d

2

f(x)(h; h

1

) in L(X;Y ).

We laim that there exists an " 2℄0; Æ[ suh that the set

M

"

:=

n

1

p

khk

d

2

f(x+ h)(h): 0 < khk < "

o

is bounded. Suppose that this is not the ase. Then there exists a sequene h

n

! 0

suh that kd

2

f(x+ h

n

)(h

n

)k � n

p

kh

n

k. For eah h

1

2 X we have

1

p

kh

n

k

d

2

f(x+ h

n

)(h

n

)(h

1

) = d

2

f(x+ h

n

)

�

h

n

p

kh

n

k

; h

1

�

! 0

beause d

2

f :U � X

2

! Y is ontinuous and

h

n

p

kh

n

k

! 0. This ontradits the

Banah-Steinhaus Theorem, and therefore one of the sets M

"

is bounded.

Now assume that khk < " and that kd

2

f(x+ h)(h)k � C

p

khk for khk < ".

Then

k

e

df(x+ h)�

e

df(x)k = k

Z

1

0

d

2

f(x+ uh)(h) duk �

Z

1

0

kd

2

f(x+ uh)(uh)k

1

u

du

�

Z

1

0

C

p

kuhk

1

u

du = C

p

khk

Z

1

0

u

�

1

2

du = 2C

p

khk:

We onlude that the map

e

df :U ! L(X;Y ) is ontinuous.

Furthermore we have

kf(x+ h)� f(x)�

e

df(x)(h)k = k

Z

1

0

e

df(x+ uh)(h)�

e

df(x)(h) duk

� supfk

e

df(x+ h

1

)�

e

df(x)k: kh

1

k < "gkhk;

7



and, in view of the ontinuity of x 7!

e

df(x), the expression on the right hand side

is o(khk). This proves that f is C

1

in the Fr�ehet sense whenever it is C

2

in the

sense of De�nition I.1(a).

(ii) If f is C

1

in the Fr�ehet sense, then it is trivially C

1

in the sense of De�nition

I.1(a).

Suppose that f is C

1

. Then the map df :U �X ! Y is also C

1

, hene in

partiular C

2

. Therefore (i) shows that the map

e

d(df):U �X ! L(X

2

; Y )

is ontinuous, hene in partiular that d

2

f :U �X ! L(X;Y ) is ontinuous sine

d

2

f(x)(h

1

; h

2

) =

e

d(df)(x; h

1

)(h

2

; 0). Now

e

df(x+ h)�

e

df(x)� d

2

f(x)(h) =

Z

1

0

d

2

f(x+ uh)(h)� d

2

f(x)(h) du

implies that d

2

f an be viewed as d(

e

df). Iterating this argument, we onlude that

the map

e

df :U ! L(X;Y ) is smooth in the sense of De�nition I.1. Now we we an

apply indution and obtain for all n 2 N that the n

th

Fr�ehet derivative of f is

smooth, and therefore that f is smooth in the Fr�ehet sense.

Holomorphi funtions

In this subsetion we larify the relation between several onepts of holomorphy

for funtions between s..l.. spaes.

De�nition I.8. Let X be a omplex vetor spae.

(a) A subset U � X is alled �nitely open if for all �nite-dimensional aÆne sub-

spaes F � X the set F \ U is open in F .

(b) Let V be a sequentially omplete loally onvex spae. A funtion f on a

�nitely open subset U � X is alled Gateaux holomorphi ((G)-holomorphi) if

for eah �nite-dimensional aÆne subspae F � X the funtion f j

F\U

is (weakly)

holomorphi on F\U (f. [He89, Th. 2.1.3℄). We write G(U; V ) for the spae of (G)-

holomorphi V -valued funtions on U . Note that, in view of Hartog's Theorem, a

funtion is (G)-holomorphi if the above riterion is satis�ed for all aÆne omplex

lines F � X .

() Suppose that X is a loally onvex spae. A (G)-holomorphi funtion f :U !

V is alled Fr�ehet holomorphi ((F)-holomorphi) if for eah ontinuous seminorm

p on V the funtion p Æ f is loally bounded. We reall from [He89, Prop. 2.4.2(a)℄

that this property is equivalent to the ontinuity of the funtion f .
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If X is of ountable dimension and we write X =

S

n2N

X

n

with X

n

� X

n+1

and dimX

n

<1, then X arries a natural LF spae struture whih is the �nest

loally onvex topology on X (f. [Tr67, Ex. 13.1℄). The open sets in this topology

are exatly the �nitely open sets ([He89, Prop. 2.3.2℄). If dimX > �

0

, then the

topology de�ned by the �nitely open sets is no longer a vetor spaes topology

and therefore does not oinide with the �nest loally onvex topology (f. [He89,

Rem. 2.3.3℄).

The notion of (G)-holomorphy is the weakest possible notion of holomorphy

in in�nite-dimensional spaes. Unfortunately it has the drawbak that in general it

even does not imply ontinuity. In this sense the \nie" holomorphi funtions are

the (F)-holomorphi funtions. Note that (F)-holomorphy is preserved by pass-

ing to loally uniform limits. The relations between (F)-holomorphy and weak

holomorphy are lari�ed for \nie" spaes in the following result.

Proposition I.9. For a funtion f :U ! V from an open subset U of a loally

onvex spae X to the s..l.. spae V the following assertions hold:

(i) If X is metrizable, then f is (F)-holomorphi if and only if it is weakly (F)-

holomorphi.

(ii) If X is the indutive limit of loally onvex spaes (X

n

)

n2N

suh that the

origin in X

n

has a neighborhood whih is relatively ompat in X

n+1

, then

(a) f is (F)-holomorphi if and only if it is weakly (F)-holomorphi.

(b) f is ontinuous if and only if all the funtions f j

U\X

n

are ontinuous

for all n 2 N.

(iii) If X is Baire, f 2 G(U; V ), and there exists a sequene of ontinuous fun-

tions f

n

:U ! V onverging pointwise to f , then f is ontinuous, i.e., (F)-

holomorphi.

Proof. (i), (ii)(a) [He89, Prop. 3.1.2℄

(ii)(b) [He89, Prop. 1.5.1(b)℄

(iii) [He89, Th. 2.4.4℄

Proposition I.10. For a funtion f :U ! V the following are equivalent:

(i) f is holomorphi in the sense of De�nition I.1().

(ii) f is (F)-holomorphi.

(iii) f is smooth with omplex linear di�erentials df(x), x 2 U .

Proof. (i) ) (ii): If f is omplex di�erentiable in the sense of De�nition I.1(),

then f is (G)-holomorphi (di�erentiable funtions on open domains in the omplex

plane are holomorphi), and ontinuous (Lemma I.2(i)), hene (F)-holomorphi.

(ii)) (iii): Suppose that f is (F)-holomorphi. We have to show that all its higher

derivatives

d

n

f :U �E

n

! V; (x; h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

)

are ontinuous maps. It is lear that the (G)-holomorphy implies the (G)-holo-

morphy of d

n

f beause a similar statement holds in �nite dimensions. Moreover,

9



the generalized Cauhy inequalities (f. [He89, Th. 2.3.5℄) imply that whenever f

is loally bounded in the sense of De�nition I.8(), the same property is inherited

by the funtions

(x; h) 7!

b

d

n

f(x; h) := d

n

f(x)(h; : : : ; h):

Next we use the formula

d

n

f(x)(h

1

; : : : ; h

n

) =

1

2

n

n!

X

"2f1;�1g

n

("

1

� � � "

n

)

b

d

n

f(x)("

1

h

1

+ : : :+ "

n

h

n

)

(f. [Na69, p.7℄) to onlude that the funtion d

n

f is also loally bounded in the

sense of De�nition I.8(), i.e., that d

n

f is (F)-holomorphi. It follows in partiular

that the funtions d

n

f are ontinuous, hene that f is a smooth funtion.

(iii) ) (i): This is trivial sine C

1

implies C

1

.

The following result lari�es the onept of (F)-holomorphy in the Banah

setting.

Proposition I.11. If X and V are omplex Banah spaes, U � X a domain,

and f :U ! V a funtion. Then the following assertions hold:

(i) If f is (F)-holomorphi, then f is omplex Fr�ehet di�erentiable.

(ii) The funtion f is (F)-holomorphi if and only if it is Fr�ehet di�erentiable

at eah point x 2 U .

Proof. (i) ([HP57, Th. 3.17.1℄) If f is (F)-holomorphi, then Proposition I.10

shows that f is smooth, hene f is Fr�ehet smooth (Theorem I.7).

(ii) [He89, Cor. 3.1.4℄

Di�erentiable manifolds

Sine we have a hain rule for di�erentiable maps between s..l.. spaes, we an

de�ne smooth manifolds as one de�nes them in the �nite-dimensional ase (f.

[Ha82℄, [Mi83℄). The underlying topologial spae is always required to be Haus-

dor�. Sine loally onvex spaes (whih we always assume to be Hausdor�) are

regular in the sense that eah point has a neighborhood base onsisting of losed

sets, this property is inherited by manifolds modeled over these spaes (f. [Mi83℄).

One also de�nes vetor bundles and in partiular the tangent bundle TM ! M

as usual.

Note that it is far more subtle to de�ne a otangent bundle beause this

requires an s..l.. topology on the dual spae of the underlying vetor spae and

therefore depends on this topology. We will disuss topologies on the dual in Se-

tion II.

10



LetM andN be smooth manifolds modeled over s..l.. spaes and f :M ! N

a smooth map. We write Tf :TM ! TN for the orresponding map indued on

the level of tangent vetors. Loally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;

where df(p):T

p

(M) ! T

f(p)

(N) denotes the di�erential of f in p. In view of

Remark I.5(), the tangent map Tf is also smooth if f is smooth. In the following

we will always identify M with the zero setion in TM . In this sense we have

Tf j

M

= f with Tf(M) � N � TN .

A vetor �eld on M is a smooth setion of the tangent bundle TM ! M .

We write V(M) for the spae of all vetor �elds on M . If f 2 C

1

(M) is a smooth

funtion on M and X 2 V(M), then we obtain a funtion on M via

(X:f)(p) := df(p)

�

X(p)

�

:

Sine loally X(p) = (p;

e

X(p)

�

, where

e

X is a smooth funtion, we have X:f =

df Æ X . Therefore the smoothness of X:f follows from the smoothness of the

maps df :TM ! C and X :M ! TM .

Lemma I.12. If X;Y 2 V(M), then there exists a vetor �eld [X;Y ℄ 2 V(M)

whih is uniquely determined by the property that on eah open subset U �M we

have

(1:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U).

Proof. Loally the vetor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and

Y (p) =

�

p;

e

Y (p)

�

. We de�ne a vetor �eld by

(1:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the hain rule. The

requirement that (1.1) holds on ontinuous linear funtionals determines [X;Y ℄e

uniquely. Sine an easy alulation shows that (1.2) de�nes in fat a smooth vetor

�eld on M (f. Lemma I.14 below), the assertion follows beause loally (1.1) is a

onsequene of the hain rule.

Proposition I.13. (V(M); [�; �℄) is a Lie algebra.

Proof. The ruial part is to hek the Jaobi identity. This follows from the

observation that if U � X is an open subset of an s..l.. spae, then the mapping

�:V(U)! Der

�

C

1

(U)

�

; �(X)(f) = X:f

is injetive and satis�es �([X;Y ℄) = [�(X);�(Y )℄: Therefore the Jaobi identity

in V(U) follows from the Jaobi identity in the assoiative algebra End

�

C

1

(U)

�

.

For the appliations to Lie groups we will need the following lemma.
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Lemma I.14. Let M and N be smooth manifolds and ':M ! N a smooth map.

Suppose that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) satisfy

X

N

�

'(p)

�

= d'(p):X

M

(p) and Y

N

�

'(p)

�

= d'(p):Y

M

(p)

for all p 2M , i.e., X

N

Æ' = T'ÆX

M

and Y

N

Æ' = T'ÆY

M

. Then [X

N

; Y

N

℄Æ' =

T' Æ [X

M

; Y

M

℄:

Proof. It suÆes to perform a loal alulation. Therefore we may w.l.o.g.

assume that M � F is open, where F is a s..l.. spae and that N is an s..l..

spae. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ ' = d' Æ (id

F

�

e

Y

M

): Using

the hain rule we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whih, in view of Remark I.5(), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the seond derivative (Lemma I.2(ii)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:

In�nite-dimensional Lie groups

In this subsetion we onsider s..l.. Lie groups, i.e., Lie groups modeled over

s..l.. spaes. Basially we follow [Mi83℄. Throughout this subsetion G denotes

suh a Lie group, i.e., G is a smooth manifold whih is a group suh that multiplia-

tion and inversion are smooth maps. For g 2 G we write �

g

:G! G; x 7! gx for the

left-multipliation with g and �

g

:G! G; x 7! xg for the right-multipliation with

g. Both are di�eomorphisms of G. Moreover, we write m:G�G! G; (x; y) 7! xy

for the multipliation map and �:G! G; x 7! x

�1

for the Inversion.
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Lemma I.15. Let g := T

1

(G) denote the tangent spae in the identity. Then the

mapping

�:G� g! TG; (g;X) 7! d�

g

(1):X

is a di�eomorphism.

Proof. First we note that for a produt of two smooth manifolds M and N we

have a anonial di�eomorphism T (M�N)! TM�TN: Sine the multipliation

map m:G�G! G is smooth, the same holds for its tangent map

Tm:T (G�G)

�

=

TG� TG! TG:

In view of Proposition I.4, dm(g;1)(0; X) = d�

g

(1):X: Therefore the smoothness

of � follows from �(g;X) = Tm(g;X) for (g;X) 2 G�T

1

(G) � T (G)�T (G) and

the fat that the restrition of Tm to G� T

1

(G) � TG� TG is smooth.

To see that �

�1

is also smooth, let �:TG! G denote the anonial proje-

tion. Then

�

�1

:TG! G� g; v 7!

�

�(v); d�

�(v)

�1

�

�(v)

�

:v

�

:

The maps

�:TG! TG� TG; v 7!

�

�(v); v

�

2 G� TG

and em:G�G! G; (g

1

; g

2

) 7! g

�1

1

g

2

are smooth by the hain rule. Now

T (em) Æ �(v) = T (em)

�

�(v); v

�

= d

2

em

�

�(v); �(v)

�

:v = d�

�(v)

�1

�

�(v)

�

:v

shows that �

�1

is smooth.

The essential onsequene of Lemma I.15 is that the tangent bundle of a Lie

group is trivial, so that we an identify V(G) with C

1

(G; g). We write V(G)

l

�

V(G) for the subspae of left invariant vetor �elds, i.e., of those satisfying

(1:3) X(g) = d�

g

(1):X(1)

for all g 2 G. These are the vetor �elds that orrespond to onstant funtions

G! g. We see in partiular that eah left invariant vetor �eld is smooth, so that

the mapping

V(G)

l

! g; X 7! X(1)

is a bijetion. Moreover, Lemma I.14 implies that for X;Y 2 V(G)

l

we have

[X;Y ℄(g) = d�

g

(1):[X;Y ℄(1);

i.e., that [X;Y ℄ 2 V(G)

l

. Thus there exists a unique Lie braket on g satisfying

[X;Y ℄(1) = [X(1); Y (1)℄

for all left invariant vetor �elds on G.
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De�nition I.16. The Lie algebra (g; [�; �℄) is alled the Lie algebra of G.

De�nition I.17. Let G be a Lie group. Then for eah g 2 G the map I

g

:G!

G; x 7! gxg

�1

; is a smooth automorphism, hene indues a ontinuous linear

automorphism

Ad(g) := dI

g

(1): g! g:

We thus obtain an ation G� g ! g; (g;X) 7! Ad(g):X alled the adjoint ation

of G on g.

Proposition I.18. For a Lie group G the following assertions hold:

(i) dm(g

1

; g

2

)(X

1

; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

and in partiular we have

dm(1;1)(X

1

; X

2

) = X

1

+X

2

.

(ii) d�(1):X = �X.

(iii) The mapping Tm:TG�TG! TG de�nes a Lie group struture on TG with

identity element �(1; 0) and inversion T�. More expliitly multipliation and

inversion are given by

�(g

1

; X

1

) ��(g

2

; X

2

) = �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

and �(g;X)

�1

= �

�

g

�1

;�Ad(g):X

�

:

(iv) If X

l

:G! TG is a left invariant vetor �eld with X

l

(1) = X, then X

r

: g 7!

�X

l

(g)

�1

is a right-invariant vetor �eld with X

r

(1) = X. The assignment

g! V(G)

r

; X 7! X

r

is an antiisomorphism of Lie algebras.

(v) If �:G �M ! M is a smooth ation of G on the smooth manifold M , then

T�:TG� TM ! TM is a smooth ation of TG on TM . The assignment

_�: g! V(M); with _�(X)(p) := �d�(1; p)(X; 0)

de�nes a homomorphism of Lie algebras.

Proof. (i) In view of Proposition I.4, we have

dm(g

1

; g

2

)(X

1

; X

2

) = d

1

m(g

1

; g

2

)(X

1

) + d

2

m(g

1

; g

2

)(X

2

)

= d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

:

(ii) From m Æ (id

G

��) = 1, we derive 0 = dm(1;1)

�

X; d�(1):X

�

= X + d�(1):X

and hene the assertion.

(iii) Let ":G! f1g denote the onstant map and u: f1g ! G the group morphism

representing the identity element. Then the group axioms for G are enoded in the

relations mÆ (m� id) = mÆ (id�m) (assoiativity), mÆ (�� id) = mÆ (id��) = "

(inversion), and mÆ(u� id) = mÆ(id�u) = id (unit element). Using the funtorial

properties of T , we see that these properties arry over to the orresponding maps

on TG and show that TG is a Lie group with multipliation Tm, inversion T�,

and unit element �(1; 0).
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To derive an expliit formula for the multipliation in terms of the trivializa-

tion desribed in Lemma I.15, using (i), we alulate

�(g

1

; X

1

) ��(g

2

; X

2

) = dm(g

1

; g

2

)

�

d�

g

1

(1):X

1

; d�

g

2

(1):X

2

�

= d�

g

2

(g

1

)d�

g

1

(1):X

1

+ d�

g

1

(g

2

)d�

g

2

(1):X

2

= d�

g

1

g

2

(1)

�

d�

�1

g

2

(g

2

)d�

g

2

(1):X

1

+X

2

�

= �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

:

The formula for the inversion follows diretly from this formula.

(iv) In view of (ii) above, we have

X

r

(g)=� d�(g

�1

):X

l

(g

�1

)=� d�(g

�1

)d�

g

�1
(1):X=� d�

g

(1)d�(1):X=d�

g

(1):X

and this proves the �rst part. The seond part follows from Lemma I.14 whih

shows that

[X

r

; Y

r

℄(g) = d�(g

�1

):[X

l

; Y

l

℄(g

�1

) = d�(g

�1

):[X;Y ℄

l

(g

�1

) = �[X;Y ℄

r

(g):

(v) That T� de�nes an ation of TG on TM follows in the same way as in (iii)

above by applying T to the ommutative diagrams de�ning a group ation.

For the seond part we pik p 2 M and write '

p

:G ! M; g 7! g:p for the

smooth orbit map of p. Then the equivariane of '

p

means that '

p

Æ �

g

= '

g:p

.

From that we derive

�d'

p

(g):X

r

(g) = �d'

p

(g)d�

g

(1):X = �d'

g:p

(1):X = _�(X)(g:p):

Therefore Lemma I.14 and (iv) imply that

_�([X;Y ℄)(p) = �d'

p

(1)[X;Y ℄

r

(1) = d'

p

(1)[X

r

; Y

r

℄(1) = [ _�(X); _�(Y )℄(p):

Remark I.19. If S is an s..l.. semigroup, i.e., a manifold modeled over an

s..l.. spae whih is endowed with a smooth semigroup multipliation m:S�S !

S, then Proposition I.18(iii) and (v) also hold in the following sense. The mapping

Tm:TS � TS ! TS is an s..l.. semigroup struture on the tangent bundle TS,

and if �:M � S ! M is a smooth right ation of S on the manifold M , then

T�:TM �TS ! TM is a smooth right ation of TS on the tangent bundle TM .
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II. Dual spaes of loally onvex spaes

In the next setion we will have to deal with topologies on funtion spaes whih

play a ruial role in representation theory. In this setion we disuss the basi

properties of the relevant topologies on the dual spae of a loally onvex spae.

In partiular we disuss ompleteness of the dual spae, metrizability, and the

properties of the orresponding evaluation map �:X ! X

00

given by �(x)(�) =

�(x).

Let X

0

denote the spae of ontinuous linear funtionals on the loally onvex

spae X , the topologial dual. If X

�

denotes the set of all linear funtionals X ! C ,

then X

0

� X

�

is a subspae. There are several natural loally onvex topologies on

the spae X

0

. We write X

0

�

(X

0



, X

0



, X

0

b

) for the spae X

0

endowed with the weak-

�-topology, i.e., the topology of pointwise onvergene (the topology of uniform

onvergene on ompat onvex, ompat, bounded subsets of X). The spae X

0

b

is alled the strong dual. Note that we have the following ontinuous bijetions:

X

0

b

! X

0



! X

0



! X

0

�

:

Before we turn to a loser investigation of the various dual spaes of loally onvex

spaes, we introdue an important lass of loally onvex spaes.

De�nition II.1. LetX be a vetor spae whih an be written asX =

S

1

n=1

X

n

,

where X

n

� X

n+1

are subspaes of X whih are endowed with the strutures of

loally onvex spaes in suh a way that the inlusion mappings X

n

! X

n+1

are

topologial embeddings. Then we obtain a loally onvex vetor topology on X by

de�ning a seminorm p on X to be ontinuous if and only if its restrition to all

the subspaes X

n

is ontinuous. We all X the strit indutive limit of the spaes

(X

n

)

n2N

. If, in addition, the spaes X

n

are Fr�ehet spaes, then X is alled an LF

spae.

A loally onvex spae X is alled barreled if all lower semiontinuous semi-

norms on X are ontinuous. Geometrially this property an be interpreted as

follows. A losed onvex balaned subset of X is alled a barrel if it is absorbing.

Then X is barreled if and only if all barrels are 0-neighborhoods (f. [He89, p.11℄).

Baire spaes are always barreled ([He89, Prop. 1.4.1℄).

Proposition II.2. If X is a strit indutive limit of the spaes (X

n

)

n2N

, then

the following assertions hold:

(i) X

n

,! X is an embedding.

(ii) A linear map f :X ! Y , where Y is a loally onvex spae, is ontinuous if

and only if its restrition to eah X

n

is ontinuous.

If, in addition, all the spaes X

n

are omplete, then:
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(iii) Eah X

n

is losed in X and X is quasiomplete.

(iv) Any bounded subset of X is ontained in some X

n

.

(v) If the X

n

are Baire spaes, then X is Baire if and only if X = X

n

holds for

some n 2 N.

(vi) If X is an LF spae, then X is omplete and barreled.

Proof. (i) [He89, Prop. 1.5.2℄

(ii) This follows diretly from the desription of the topology by ontinuous semi-

norms.

(iii),(iv) [He89, Prop. 1.5.3℄

(v) First we reall from (iii) that the subspaes X

n

are losed. If X 6= X

n

holds

for all n 2 N, then no X

n

has an interior point. Therefore X =

S

1

n=1

X

n

shows

that this annot happen if X is a Baire spae. If, onversely, X = X

n

for some

n 2 N, then (i) implies that X is a Baire spae.

(vi) For the ompleteness of X we refer to [Tr67, Th. 13.1℄. Let p be a lower semi-

ontinuous seminorm on X . Then the restritions p j

X

n

are lower semiontinuous,

hene ontinuous beause Fr�ehet spaes are Baire spaes and therefore barreled.

Thus p is ontinuous, and this shows that X is barreled.

Metrizability

It is well known that for a normed spae the strong dual spae X

0

b

is a Banah

spae, hene that the ategory of Banah spaes is losed under taking dual spaes.

This hanges drastially for Fr�ehet spaes as we will see in Corollary II.7 below.

De�nition II.3. Let X be a topologial vetor spae. A subset K � X is alled

preompat if for eah 0-neighborhood U � X there exists a �nite subset F � K

withK � F+U . Note that if X denotes the ompletion ofX ([Tr67, Th. 5.2℄), then

the preompatness of a subset K � X is equivalent to the relative ompatness

of K as a subset of X (f. [Tr67, Prop. 6.9℄).

Lemma II.4. If V is a loally onvex spae and K � V is a preompat set,

then onv(K) is preompat. If, in addition, V is quasiomplete, then onv(K) is

ompat.

Proof. First we use [Tr67, Prop. 7.11℄ to see that onv(K) and hene also

C := onv(K) is preompat (f. [Tr67, Def. 6.3℄). Further eah preompat set is

bounded. In fat, let U be a balaned onvex 0-neighborhood in X . Then there

exists a �nite set F � X with C � F + U and F � nU holds for some n 2 N,

hene C � nU + U � (n + 1)U . If V is quasiomplete, then the fat that C is

losed and bounded implies that C is omplete and therefore ompat beause it

is preompat.
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For a subset B of a loally onvex spae we de�ne its polar

b

B := f� 2 X

0

: (8x 2 B)j�(x)j � 1g

and for C � X

0

we put

b

C := f� 2 X : (8� 2 C)j�(x)j � 1g:

We reall the following basi properties of polar sets. They show in partiular that

the assignments B 7!

b

B and C 7!

b

C are mutually inverse bijetions from the set of

losed onvex balaned subsets of X onto the set of weak-�-losed onvex balaned

subsets of X

0

.

Lemma II.5. (a) B �

b

C if and only if C �

b

B.

(b) B �

b

b

B and

b

b

B is the balaned onvex losure of B.

() C �

b

b

C and

b

b

C is the balaned onvex weak-�-losure of C.

(d) A losed onvex balaned subset B � X is a barrel if and only if

b

B is weak-�-

bounded.

(e) A subset B � X is bounded if and only if

b

B is absorbing.

(f) If B � X is ompat and onvex, then

b

b

B is ompat.

Proof. (a) is trivial and (b), () are onsequenes of the Bipolar Theorem.

(d) B is a barrel if and only if it is absorbing. In view of B =

b

b

B this means that

the funtion

�(x):

b

B ! C ; � 7! �(x)

is bounded for eah x 2 X . This in turn means that

b

B is weak-�-bounded.

(e) Aording to [He89, Prop. 1.4.2℄, a subset B � X is bounded if and only

if it is bounded for the weak topology on X whih in turn is equivalent to the

boundedness of all ontinuous linear funtionals on B, i.e., that

b

B is absorbing.

(f) If B � X is a ompat onvex set, then [Bou87, Ch. IV, x1, no. 1, Rem. 1℄

shows that

b

b

B is ompat. In fat, it is losed and ontained in the onvex hull of

the sets �2iB;�2B whih is ompat.

Proposition II.6. Let X be a loally onvex Baire spae. Then the following

assertions hold:

(i) X

0

b

is metrizable if and only if X is normable.

(ii) X

0



and X

0

�

are metrizable if and only if dimX <1.

Proof. If X is �nite-dimensional, then X

0

�

= X

0



= X

0

b

is metrizable, and if X

is normable, then X

0

b

is a Banah spae and in partiular metrizable.

(a) Suppose that X

0

b

is metrizable. Then the there exists a ountable basis (U

n

)

n2N

of 0-neighborhoods in X

0

b

. The sets

b

B � X

0

b

for B � X bounded form a neighbor-

hood basis for 0. Hene there exist bounded sets B

n

� X with



B

n

� U

n

.
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Let C

n

:=





B

n

. Then



C

n

=



B

n

shows that C

n

is bounded beause



C

n

is

absorbing (Lemma II.5(e)). Let x 2 X . Then the evaluation funtional

�(x):X

0

b

! C ; f 7! f(x)

is ontinuous, i.e.,

d

fxg = ff 2 X

0

: jf(x)j � 1g is a 0-neighborhood in X

0

. Thus we

�nd n 2 N with



B

n

�

d

fxg. Now the Bipolar Theorem implies that x 2

d

d

fxg �





B

n

=

C

n

and therefore X =

S

n2N

C

n

. Sine the sets C

n

are losed, the fat that X is a

Baire spae implies that one of the sets C

n

has interior points. Hene C

n

� C

n

is

a bounded neighborhood of 0 in X , and therefore X is normable (f. [He89, p.3℄).

(b) Assume that X

0



is metrizable. Then the same argument as above shows that

there exists a ompat subset K � X suh that C :=

b

b

K has interior points. Sine

C oinides with the losed balaned onvex hull of K (Lemma II.5(b)), it is a pre-

ompat subset of X (Lemma II.4). Hene C�C is a preompat 0-neighborhood.

Therefore X is normable in suh a way that the balls are preompat. Now the

balls in the ompletion X of X are ompat and therefore dimX � dimX <1.

() If X

0

�

is metrizable, then similar arguments as in (b) show that there exists a

�nite subset F � X suh that

b

b

F has interior points. But sine spanF is losed, it

follows that

b

b

F � spanF , whene dimX = dim span

b

b

F <1.

Corollary II.7. If X is a Fr�ehet spae, then X

0



is a Fr�ehet spae if and only

if dimX <1.

Semireexivity

We reall that for a loally onvex spae X we have several natural topologies on

the dual spae leading to the following ontinuous bijetions:

X

0

b

�

����!X

0



�

����!X

0





����!X

0

�

whih indue weak-�-ontinuous injetive maps

(X

0

�

)

0



0

����!(X

0



)

0

�

0

����!(X

0



)

0

�

0

����!(X

0

b

)

0

:

We write �

�

:X ! (X

0

�

)

0

for the evaluation map, and �



:= 

0

Æ �

�

, �



:= �

0

Æ �



,

and �

b

:= �

0

Æ �



. The spae X is alled semireexive if the map �

b

is surjetive,

hene a bijetion. Note that all these maps are injetive with a weak-�-dense range.

Theorem II.8. For a loally onvex spae the following assertions hold:

(i) The maps �

�

and �



are bijetions.

(ii) If X is quasiomplete, then �



is a bijetion.
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(iii) If X is semireexive, then X is quasiomplete for the original topology and

the weak topology.

Proof. (i) We show that �



is surjetive. Then �

�

is also surjetive beause 

0

is injetive.

If C � X is a ompat onvex set, then

b

b

C is ompat (Lemma II.5(f)).

Hene the topology on X

0



oinides with the topology of uniform onvergene

on balaned ompat onvex sets. If C is a balaned ompat onvex set, then

C is also weakly ompat and hene �



(C) � (X

0



)

0

is weak-�-ompat. Eah

� 2 (X

0



)

0

is bounded on some set

b

C � X

0

, hene ontained in some set of the type

n

\

\

�



(C) = n�



(

b

b

C) � �



(X) (Bipolar Theorem). This proves that �



(X) = (X

0



)

0

.

(ii) IfX is quasiomplete and C � X is ompat, then onv(C) is ompat (Lemma

II.4). Therefore the mapping �:X

0



! X

0



is a homeomorphism, i.e., X

0



= X

0



.

Sine �



is bijetive aording to (i), the surjetivity of �



= �

0

Æ �



follows.

(iii) (f. [He89, Th. 1.1.2(e)℄) Let C � X be losed balaned onvex and bounded.

Then C is also weakly losed, and therefore �

b

(C) � �

b

(X) = (X

0

b

)

0

is a weak-�-

losed onvex balaned subset. Sine

\

�

b

(C) =

b

C � X

0

b

is a 0-neighborhood, the set

�

b

(C) is weak-�-ompat (Banah-Alaoglu Theorem). Hene C is weakly ompat.

Now let B � X be losed and bounded. Then its losed balaned onvex

hull C is also bounded, hene weakly ompat and therefore in partiular weakly

omplete. Further eah Cauhy net in B for the original topology is a weak Cauhy

net, hene onverges weakly in B and therefore also in the strong topology beause

the losed onvex neighborhoods of a point in X are also weakly losed.

Proposition II.9. Let X be a loally onvex spae.

(i) A subset K � X

0

is equiontinuous if and only if its polar

b

K � X is a

0-neighborhood in X.

(ii) If K is equiontinuous, then

(a) K is weak-�-relatively ompat.

(b) K is relatively ompat in X

0



.

() K is strongly bounded.

Furthermore (a), (b) or () implies that K is weak-�-bounded, i.e.,

b

K � X is a

barrel. These properties are all equivalent if and only if X is barreled.

(iii) If X is barrelled, then the following properties are equivalent for K � X

0

:

(a) K is equiontinuous.

(b) K is bounded for one of the topologies X

0

�

, X

0



, X

0



or X

0

b

.

() K is relatively ompat for one of the topologies X

0

�

, X

0



or X

0



.

Proof. (i) This is more or less the de�nition of equiontinuity (f. [Tr67, Prop.

32.7℄).

(ii) ([He89, Th. 1.4.4℄) If K is equiontinuous, then its balaned onvex losure in

the weak-�-topology of K has the same polar set

b

K � X (Lemma II.5()). So we
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may w.l.o.g. assume that K =

b

b

K. Sine

b

K is a 0-neighborhood in X , the weak-

�-ompatness of K =

b

b

K follows from the Banah-Alaoglu Theorem. Now the

topology of ompat onvergene and the weak-�-topology oinide on K ([Tr67,

Prop. 32.5℄), so that K is also ompat in X

0



. If B � X is bounded, then there

exists n 2 N with B � n

b

K, i.e., K � n

b

B. Hene K is strongly bounded. It is lear

that (a), (b) or () implies that K is weak-�-bounded.

The equivalene of the stated properties is equivalent to the assertion that

if K is weakly bounded then K is equiontinuous, i.e., that the barrel

b

K is a 0-

neighborhood (Lemma II.5(d)). This is true if X is barreled, and if, onversely,

X is not barreled and B � X is a barrel whih is not a 0-neighborhood, then its

polar

b

B � X

0

is weakly bounded but not equiontinuous.

(iii)(a) ) (b): If K is equiontinuous, then (ii) implies that K is bounded in X

0

b

,

hene also in the spaes X

0

�

, X

0



and X

0



.

(b)) (): If (b) holds, thenK is in partiular bounded inX

0

�

, i.e., weak-�-bounded.

Hene (ii) shows that it is also relatively ompat in X

0



. Thus it is also ompat

as a subset of X

0



and X

0

�

.

() ) (a): If K is relatively ompat for one of the topologies X

0

�

, X

0



or X

0



, then

it is in partiular weak-�-relatively ompat, hene weak-�-bounded. As we have

seen in the preeding argument, this implies that K is equiontinuous.

Lemma II.10. For a loally onvex spae X the following assertions hold:

(i) The mapping �



:X ! (X

0



)

0



is an open map onto �



(X).

(ii) The mapping �

b

:X ! (X

0

b

)

0

b

is an open map onto �

b

(X).

(iii) If X is barreled, then the maps �



:X ! (X

0



)

0



and �

b

:X ! (X

0

b

)

0

b

are embed-

dings.

Proof. (i) If U � X is a losed onvex balaned 0-neighborhood, then

b

U � X

0



is

losed and equiontinuous, hene ompat in X

0



(Proposition II.9(ii)(b)). There-

fore

b

b

U � (X

0



)

0



is a 0-neighborhood with

b

b

U \ �



(X) = �



(U) (Bipolar Theorem).

Thus �



is open onto �



(X).

(ii) For a losed onvex balaned 0-neighborhood U � X the polar set

b

U � X

0

is equiontinuous and therefore strongly bounded (Proposition II.9(ii)()). Thus

b

b

U � (X

0

b

)

0

b

is a 0-neighborhood with

b

b

U \�

b

(X) = �

b

(U). Therefore �

b

is open onto

�

b

(X).

(iii) Suppose that X is barreled. If K � X

0



is ompat or K � X

0

b

, then it is

equiontinuous (Proposition II.9(iii)), and therefore

b

K � X is a 0-neighborhood.

Hene �



:X ! (X

0



)

0



and �

b

:X ! (X

0

b

)

0

b

are ontinuous maps. In view of (i) and

(ii), this means that both are embeddings.

Theorem II.11. (Reexivity riterion for the -topologies) If X is a quasiom-

plete barreled spae, then �



:X ! (X

0



)

0



is an isomorphism of topologial vetor

spaes. This holds in partiular if X is an LF spae.
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Proof. Sine X is quasiomplete, the surjetivity of �



follows from Theorem

II.8(ii). If, in addition, X is barreled, then Lemma II.10(iii) shows that �



is an

isomorphism of topologial vetor spaes.

To see that the assertion holds for LF spaes, we reall from Proposition

II.2(vi) that they are omplete and barreled.

Completeness properties of the dual spae

Now we turn to the question whether a dual spae X

0

is omplete with respet

to a given topology. The following lemma is the topologial bakground for the

ompleteness riteria.

Proposition II.12. (i) Let X be a topologial spae satisfying the �rst axiom of

ountability and V be a (sequentially) omplete loally onvex spae. Then the spae

C(X;V )



of ontinuous maps X ! V is a (sequentially) omplete loally onvex

spae with respet to the topology of uniform onvergene on ompat subsets of

X.

(ii) If X is an LF spae and V is a (sequentially) omplete loally onvex spae,

then the spae L(X;V )



of ontinuous linear maps endowed with the topology of

uniform onvergene on ompat subsets of X is a (sequentially) omplete loally

onvex spae.

(iii) If X is a Baire spae and V is an s..l.. spae, then the spae L(X;V ) is

sequentially omplete with respet to any topology of uniform onvergene on a

system of subsets of X whose union is X.

Proof. (i) That C(X;V )



is a loally onvex spae follows from the fat that

its topology is de�ned by the seminorms

p

K

(f) := supfp

�

f(x)

�

:x 2 Kg;

where K � X is a ompat subset and p:V ! R

+

is a ontinuous seminorm.

Let F be a Cauhy-Filter in C(X;V )



. Sine V is omplete, F onverges

pointwise to a funtion f :X ! V . We laim that F onverges uniformly on eah

ompat subset K of X . In fat, let p be a ontinuous seminorm on V and " > 0.

Then there exists F 2 F with p

K

(g � h) � " for all g; h 2 F . Sine f(x) 2 F(x)

holds for all x 2 K, we onlude that p

K

(g � f) � " for all g 2 F . Hene F ! f

holds uniformly on eah ompat subset K � X and thus f is ontinuous on eah

ompat subset of X .

If (x

n

)

n2N

with x

n

! x is a onvergent sequene in X , then the set fxg [

fx

n

:n 2 Ng is ompat. Sine f is ontinuous on this set, it is ontinuous by our

assumption on the spae X . This proves that C(X;V )



is omplete.

If V is sequentially omplete, then similar arguments show that eah Cauhy

sequene in C(X;V )



onverges, hene that C(X;V )



is sequentially omplete.
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(ii) ([Tr67, Cor. 32.2.4, p.345℄) First we note that Fr�ehet spaes satisfy the as-

sumption of (i). So let (X

n

)

n2N

be a de�ning sequene for the topology on X . That

L(X;V )



is loally onvex follows as in (i). If F is a Cauhy �lter in L(X;V )



,

then we see as in (i) that F onverges pointwise to some funtion f :X ! V . Then

f must be linear, and, in view of (i), f is ontinuous on eah of the subspaes X

n

,

hene is ontinuous on X . This proves that L(X;V )



is omplete. If V is sequen-

tially omplete, then we see by a similar argument that L(X;V )



is sequentially

omplete.

(iii) If (f

n

)

n2N

is a Cauhy sequene in L(X;V ) for the topology of uniform on-

vergene on a system S of subsets of X whose union is X , then the sequential om-

pleteness of V implies that f

n

onverges pointwise to a linear funtion f :X ! V .

It follows in partiular that f is (G)-holomorphi. Therefore the ontinuity of f

follows from Proposition I.9(iii). Sine (f

n

) is a Cauhy sequene for the topology

of uniform onvergene on the sets in S, we see that f

n

! f holds uniformly on

sets in S. This proves that L(X;V ) is sequentially omplete with respet to the

topology of uniform onvergene on sets in S.

Corollary II.13. (a) If X is an LF spae, then X

0



is a omplete loally onvex

spae.

(b) If X is a Baire spae, then X

0

�

, X

0



, X

0



, and X

0

b

are sequentially omplete.

Note that in general one annot expet that the dual X

0

is omplete with

respet to the topology of pointwise onvergene. With respet to this topology

the embedding X

0

�

,! X

�

is a dense embedding if X

�

arries the topology of

pointwise onvergene. Therefore X

0

�

is not omplete unless X

0

= X

�

, i.e., eah

linear funtional on X is ontinuous. This holds in partiular for the �nest loally

onvex topology on X , i.e., the topology for whih all seminorms are ontinuous,

and also for the weak topology de�ned by X

�

.

Lemma II.14. If X

0

�

is quasiomplete, then the same holds for X

0



, X

0



and X

0

b

.

Proof. If B � X

0

is losed and bounded for one of the topologies X

0



, X

0



or X

0

b

,

then B is also weak-�-bounded. Let F be a Cauhy �lter in B. Then F onverges

to some element � in the weak-�-losure of B. Then F also onverges to � in the

original topology, and we see that � 2 B. This shows that B is omplete, i.e., that

X

0



, X

0



and X

0

b

are quasiomplete.

Proposition II.15. If X is barreled or semireexive, then the spaes X

0

�

, X

0



,

X

0



, and X

0

b

are quasiomplete.

Proof. First we assume that X is barreled. In view of Lemma II.14, it suÆes

to show that X

0

�

is quasiomplete. Let B � X

0

�

be losed and bounded. Then

b

B

is a barrel (Lemma II.5(d)), hene a 0-neighborhood, and therefore Proposition

II.9(ii) shows that B is weak-�-ompat, hene in partiular weak-�-omplete.

If X is semireexive, then X

0

b

is also semireexive and therefore weakly qua-

siomplete ([He89, Th. 1.1.2(d)(e)℄ and Theorem II.8). Further �

b

(X) = (X

0

b

)

0

, so
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that the weak topology on X

0

b

oinides with the weak-�-topology. Thus X

0

�

is

quasiomplete.

To larify the relation between the assumptions in Proposition II.15, we note

that a barreled spae need not be semireexive beause there exist Banah spaes

whih are not reexive. On the other hand one would not expet that the semire-

exivity has strong impliations for the topology on X beause it only means

that the map �

b

is surjetive. Nevertheless the following lemma shows that it has

onsequenes for the strong dual.

Lemma II.16. If X is semireexive, then the strong dual X

0

b

is barreled. Fur-

thermore the maps

e�

b

:X

0

b

! ((X

0

b

)

0

b

)

0

b

and e�



:X

0

b

! ((X

0

b

)

0



)

0



are topologial isomorphisms.

Proof. Let C � X

0

b

be a barrel. Then C is onvex and losed in X

0

b

, hene also

weakly losed. Thus �

b

(X) = (X

0

b

)

0

shows that C is also weak-�-losed, and the

Bipolar Theorem gives

b

b

C = C. But

b

C � X is weakly bounded (Lemma II.5(e)),

and so

b

C is bounded whih in turn implies that C =

b

b

C is a 0-neighborhood in X

0

b

.

This proves that X

0

b

is barreled.

Moreover X

0

b

is semireexive and quasiomplete ([He89, Th. 1.1.2(d)(e)℄), so

Theorem II.11 implies that e�



is an isomorphism. Sine X

0

b

is semireexive and

barreled, the assertion about e�

b

follows from Lemma II.10(iii).

III. Topologies on funtion spaes

To onstrut and analyze representations of in�nite-dimensional Lie groups and

semigroups one often has to onsider representations in spaes of smooth funtions

on G. So one has to endow these funtion spaes with a suitable (sequentially)

omplete loally onvex topology. The importane of these spaes omes from the

fat that for smooth representations a dense subspae of the representation spae

V an be embedded in C

1

(G; V ).

First we disuss the spae C

1

(M;V ) of smooth funtions on M with values

in an s..l.. spae V and show that this spae arries a natural s..l.. topology

whih is, roughly stated, the topology of uniform onvergene of all derivatives on

ompat sets. The main point here is to use the appropriate interpretation of the

higher derivatives that permits indutive arguments. We also show that smooth

Lie group ations lead to smooth ations on the orresponding spaes of smooth

funtions.

Next we show that smooth mappings between open subsets of s..l.. spaes

indue smooth mappings on the level of funtion spaes. This result is ruial to
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show that groups of the type C

1

(M;G), M a ompat manifold and G a �nite

dimensional Lie group are in fat Lie groups modeled over Fr�ehet spaes in the

sense spei�ed in Setion I (f. [Ne99℄).

Finally we turn to the spae of holomorphi funtions on a omplex manifold

M over a Baire s..l.. spae with values in a s..l.. spae V and show that it

is sequentially omplete with respet to the topology of uniform onvergene on

ompat subsets and that holomorphi semigroup ations lead to holomorphi a-

tions on the orresponding spaes of holomorphi funtions. Here the assumption

that M is modeled on a Baire spae, an assumption whih is in partiular satis-

�ed for Fr�ehet spaes, is ruial for the sequential ompleteness of the spae of

holomorphi funtions on M .

The spae C

1

(M;V )

Let V be a (sequentially) omplete loally onvex spae. If M is a smooth Fr�ehet

manifold, then we write C

1

(M;V )



for the spae C

1

(M;V ) endowed with the

topology of ompat onvergene. This topology on C

1

(M;V ) need not be om-

plete. Nevertheless, the spae C(M;V )



is (sequentially) omplete by Proposition

II.12(i).

For f 2 C

1

(M;V ) we obtain a smooth funtion df :T (M) ! V , where

we identify T

v

(V ) with V in eah point v 2 V , and indutively we get smooth

funtions d

(n)

f :T

(n)

(M)! V . Thus we obtain an embedding

C

1

(M;V )!

1

Y

n=0

C

1

�

T

(n)

(M); V

�



:

We endow C

1

(M;V ) with the topology indued by the produt topology via

this embedding (f. [Th95℄). Note that if M = X is a vetor spae, then X

0



!

C

1

(X; C ) is a topologial embedding.

Proposition III.1. If M is a Fr�ehet manifold and V is a (sequentially) om-

plete loally onvex spae, then the spae C

1

(M;V ) is a (sequentially) omplete

loally onvex spae.

Proof. Let (f

i

)

i2I

be a Cauhy net in C

1

(M;V ). Then Proposition II.12(i) im-

plies the existene of ontinuous funtions F

n

:T

(n)

(M)! V suh that d

(n)

f

i

! F

n

holds uniformly on eah ompat subset of T

(n)

(M).

Next we show that f 2 C

1

(M;V ). To do this, we may w.l.o.g. assume thatM

is an open subset of a Fr�ehet spae X . Then the uniform onvergene of df

i

! F

1

on ompat sets implies for eah suÆiently small t 6= 0 that

1

t

�

f(x+ th)� f(x)

�

= lim

I

1

t

�

f

i

(x+ th)� f

i

(x)

�

= lim

I

Z

1

0

df

i

(x + uth)(h) du

=

Z

1

0

F

1

(x+ uth)(h) du:
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Now the ontinuity of F

1

leads to

lim

t!0

1

t

�

f(x+th)�f(x)

�

= lim

t!0

Z

1

0

F

1

(x+uth)(h) du =

Z

1

0

F

1

(x)(h) du = F

1

(x)(h):

This proves that f 2 C

1

(M;V ) with df = F

1

. By indution we now obtain f 2

C

n

(M;V ) and d

(n)

f = F

n

. Thus f 2 C

1

(M;V ) and f

i

! f holds in C

1

(M;V ).

Before we proeed, we need a topologial lemma.

Lemma III.2. Let M and N be Hausdor� spaes and V a loally onvex spae.

Then the following assertions hold:

(i) For f 2 C(M �N; V ) the map

M ! C(N; V )



; x 7!

�

y 7! f(x; y)

�

is ontinuous.

(ii) If �:M ! N is ontinuous, then the map

�

�

:C(N; V )



! C(M;V )



; f 7! f Æ �

is ontinuous.

(iii) Let S be a metrizable topologial semigroup whih ats ontinuously on M

from the right. Then the ation

S � C(M;V )



! C(M;V )



; (s; ') 7!

�

x 7! '(x:s)

�

is ontinuous.

Proof. (i) First we reall that the topology on C(N; V ) oinides with the

ompat open topology (f. [Bou71, x3, no. 4, Th. 10℄). Let K � N be ompat

and U � V be open. We write W (K;U) := fh 2 C(N; V ):h(K) � Ug for the

orresponding fundamental open subset of C(N; Y )



. Suppose that f

x

: y 7! f(x; y)

is ontained inW (K;U), i.e., fxg�K � f

�1

(U). Sine f

�1

(U) is an open subset of

M�N and fxg�K �M�N is ompat, there exists an open neighborhoodO �M

of x suh that O�K � f

�1

(U). This means that x 2 O � fp 2M : f

p

2W (K;U)g

whih proves the assertion.

(ii) Let K � M be ompat, p a ontinuous seminorm on V , and p

K

(f) :=

supfp

�

f(x)

�

:x 2 Kg the orresponding seminorm on C(M;V )



. These seminorms

de�ne the topology on this spae. Now the set �(K) is ompat and p

K

(�

�

f) �

p

�(K)

(f) shows that the seminorms p

K

Æ �

�

are ontinuous for eah hoie of p

and K, hene that �

�

is ontinuous.

(iii) Let s

n

! s, f

i

! f in C(M;V )



,K �M a ompat subset, and p a ontinuous

seminorm on V . Then the losure

e

K of the set

S

1

n=1

K:s

n

is ompat beause it is
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the image of the ompat set K�fs; s

n

:n 2 Ng under the ation map. For x 2 K

we have

p

�

(s

n

:f

i

)(x) � (s:f)(x)

�

= p

�

f

i

(x:s

n

)� f(x:s)

�

� p

�

f

i

(x:s

n

)� f(x:s

n

)

�

+ p

�

f(x:s

n

)� f(x:s)

�

� p

e

K

(f

i

� f) + p

�

f(x:s

n

)� f(x:s)

�

:

Therefore the uniform ontinuity of f on

e

K implies that p

K

(s

n

:f

i

� s:f) ! 0.

Hene s

n

:f

i

! s:f in C(M;V )



. Thus the ation of S on C(M;V )



is ontinuous.

In the following lemma the assumption that M is Fr�ehet is made to insure

that the spae C

1

(M;V ) is sequentially omplete (Proposition III.1), a property

needed to make alulus work (f. Setion I).

Lemma III.3. (i) Let �:M ! N be a smooth map between Fr�ehet manifolds.

Then the linear map

�

�

:C

1

(N; V )! C

1

(M;V ); f 7! f Æ �

is ontinuous.

(ii) Let M be a Fr�ehet manifold and �

M

:TM ! M the anonial projetion.

Then the assignment

C

1

(M;V )! C

1

(TM; TV )

�

=

C

1

(TM; V )

2

; f 7! Tf = (f Æ �

M

; df)

is an embedding of loally onvex spaes.

Proof. (i) (f. [Th95, Prop. 3℄) For f 2 C

1

(N; V ) we have d(f Æ �) = df Æ T�

and indutively d

(n)

(f Æ�) = d

(n)

f ÆT

(n)

�: Therefore the ontinuity of �

�

follows

from Lemma III.2(ii).

(ii) Sine d

(n)

df = d

(n+1)

f for n 2 N, it is lear that the map C

1

(M;V ) !

C

1

(TM; V ); f 7! df is ontinuous. Sine C

1

(M;V ) ! C

1

(TM; V ); f 7! f Æ �

M

is ontinuous aording to (i), we see that f 7! Tf is ontinuous.

If �:M ! TM is the natural embedding as the 0-setion, then (f Æ�

M

)Æ� =

f . Therefore (i) shows that the inverse Tf ! f is also ontinuous. This proves

that f 7! Tf is an embedding.

In many appliations the following theorem is a very eÆient tool.

Theorem III.4. Let M and N be Fr�ehet manifolds, f 2 C

1

(M �N; V ), and

f

x

(y) := f(x; y). Then the map

�:M ! C

1

(N; V ); x 7! f

x

is smooth.
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Proof. We prove the theorem in several steps. First we note that w.l.o.g. we

may assume that M is an open subset of a Fr�ehet spae X .

Claim 1: � is ontinuous. We have (d

(n)

f

x

)(y) = d

(n)

f(x; y). Therefore

T

(n)

(M �N)

�

=

T

(n)

M � T

(n)

N

and Lemma III.2(i) show that

M ! C(T

(n)

N; V )



; x 7! d

(n)

f

x

is ontinuous. In view of the de�nition of the topology on C

1

(N; V ), this proves

that � is ontinuous.

Claim 2: The map

	:M �X ! C

1

(N; V ); (x; h) 7!

�

y 7! d

1

f(x; y)(h)

�

is ontinuous. This follows from Claim 1 and the fat that d

1

f 2 C

1

(M�X�N; V )

(f. Lemma I.5()).

Claim 3: � is C

1

with d�(x)(h) = 	(x; h). First we note that for a suÆiently

small " > 0 the map

℄� "; "[�[0; 1℄�M �X ! C

1

(N; V ); (t; u; x; h) 7! 	(x+ uth; h)

is ontinuous by Claim 2. Therefore

℄� "; "[�M �X ! C

1

(N; V ); (t; x; h) 7!

Z

1

0

	(x+ uth; h) du

is ontinuous and so

lim

t!0

1

t

�

�(x+ th)��(x)

�

= lim

t!0

Z

1

0

	(x+ uth; h) du =

Z

1

0

	(x; h) du = 	(x; h):

Thus d�(x)(h) = 	(x; h), and the ontinuity of 	 implies that � is C

1

.

Claim 4: � is smooth. Sine 	(x; h)(y) = d

1

f(x; y)(h) and

d

1

f 2 C

1

(M � X � N; V );

Claim 3 implies that 	 2 C

1

, hene that � 2 C

2

. Proeeding indutively, we see

that � is C

1

.

In the following we all a Fr�ehet manifold S endowed with a smooth asso-

iative multipliation S � S ! S a Fr�ehet semigroup.
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Theorem III.5. If M is a Fr�ehet manifold and the Fr�ehet semigroup S ats

smoothly on M via �:M � S ! M , then the ation map e�:S � C

1

(M;V ) !

C

1

(M;V ) given by (s:f)(x) := f(x:s) is smooth.

Proof. The partial derivative d

2

e� with respet to the seond argument is given

by

d

2

e�(f; s)(h) = s:h = e�(s; h)

beause the linear mappings f 7! s:f are ontinuous (Lemma III.3). To see that

this maping is ontinuous means to show that the ation of S on C

1

(M;V ) is

ontinuous. We reall that we have de�ned the topology on C

1

(M;V ) via the

embedding

C

1

(M;V )!

1

Y

n=0

C

1

�

T

(n)

(M); V

�



:

Therefore it suÆes to prove the ontinuity of the ation map for S on the spaes

C

1

�

T

(n)

(M); V

�



:

This ation omes from the ation of S on the manifold T

(n)

(M). The natural

map

T

(n)

�:T

(n)

(M � S)! T

(n)

(M)

is smooth. Comparing with the injetion

T

(n)

(M)� S ,! T

(n)

(M)� T

(n)

(S)

�

=

T

(n)

(M � S);

we see that the ation of S on T

(n)

(M) is smooth and in partiular ontinuous.

So the ontinuity of the ation of S on C

1

�

T

(n)

(M); V

�



follows from Lemma

III.2(iii).

Now we turn to the �rst partial derivative d

1

e�. We write �

S

:TS ! S and

�

M

:TM ! M for the anonial projetions, '

x

:S ! M , s 7! x:s for the orbit

map of x 2M , and �

s

:M !M;x 7! x:s for the translation maps on M . For eah

f the smoothness of the map s 7! s:f follows from the smoothness of the funtion

(s; x) 7! f(x:s) = (f Æ �)(x; s) on S �M and Theorem III.4 whih also implies

that d

1

e�(s; f):v = d

2

(f Æ �)(x; s):v. To see that the partial derivative

d

1

e�:TS � C

1

(M;V )! C

1

(M;V )

is ontinuous, we will use the embedding C

1

(M;V ) ! C

1

(TM; TV ); f 7! Tf

from Lemma III.3(ii). Aording to Remark I.19, the smooth ation �:M�S !M

indues a smooth right ation T�:TM � TS ! TM so that the �rst part of the

proof shows that the indued ation map

TS � C

1

(TM; V )! C

1

(TM; V )
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is ontinuous. If �:M ! TM is the 0-setion, then we onlude with Lemma

III.3(i) that the map

(v; f) 7! (v; T:f) 7! v:Tf = Tf Æ T�(�; v) = T (f Æ �)(�; v)

7! T (f Æ �)(�; v) Æ � 7! d(f Æ �)(�; v) Æ �

from TS � C

1

(M;V )! C

1

(M;V ) is ontinuous. Now

d(f Æ �)(�; v) Æ �(x) = d(f Æ �)(x; v) = d

2

(f Æ �)

�

x; �(v)

�

:v = d

1

e�

�

�(v); f

�

:v

shows that d

1

e� is ontinuous.

We have shown that d

1

e� and d

2

e� are ontinuous, so that Proposition I.4

implies that de� exists and is ontinuous, i.e., e� 2 C

1

with

de�(s; f)

�

v; h

�

= d

1

e�

�

�(v); f

�

:v + s:h:

The fat that e� is C

1

implies in partiular that d

2

e� is C

1

and sine d

1

e� omes

from the smooth ation of TS on C

1

(TM; V ), we onlude that this ation is a

C

1

map. But then e� is C

2

. Proeeding indutively we see that e� is a smooth map.

Smooth mappings between funtion spaes

In the preeding subsetion we have seen how to topologise the spae C

1

(M;V )

of smooth funtions on a Fr�ehet manifold M with values in an s..l.. spae. Let

X and Y be s..l.. spaes, U � X an open subset, and f :M � U ! Y a smooth

map. Then C

1

(M;U) is an open subset of the s..l.. spae C

1

(M;X), and

f

�

:C

1

(M;U)! C

1

(M;Y );  7! f Æ (id

M

; )

is a well de�ned map. We will show that this map is smooth. First we onsider a

purely topologial situation:

Lemma III.6. If M is a topologial spae and f :M � U ! Y ontinuous, then

the mapping

f

�

:C(M;U)



! C(M;Y )



;  7! f Æ (id

M

; )

is ontinuous.

Proof. First we reall that the topology of uniform onvergene oinides with

the ompat open topology (f. [Bou71, x3, no. 4, Th. 10℄). Let K �M be ompat

and V � Y be open. We write W (K;V ) := fh 2 C(M;Y ):h(K) � V g for the

orresponding fundamental open subset of C(M;Y )



. Then

f

�1

�

�

W (K;V )

�

= f 2 C(M;U): (id

M

; )(K) � f

�1

(V )g:
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To see that this set is open in the ompat open topology, let 

0

be ontained in this

set and hoose for eah x 2 K a ompat neighborhood K

x

of x in K and an open

neighborhood U

x

� U of 

0

(x) suh that 

0

(K

x

) � U

x

and K

x

� U

x

� f

�1

(V ).

Then we �nd �nitely many points x

1

; : : : ; x

n

2 K suh that the K

x

j

over K.

Now eah  2 C(M;U) with (K

x

j

) � U

x

j

satis�es (id

M

; )(K

x

j

) � K

x

j

�U

x

j

�

f

�1

(V ). Hene

n

\

j=1

W (K

x

j

; U

x

j

) � (f

�

)

�1

�

W (K;V )

�

proves the ontinuity of f

�

.

Proposition III.7. The map

f

�

:C

1

(M;U)! C

1

(M;Y );  7! f Æ (id

M

; )

is smooth.

Proof. First we show that f

�

is ontinuous. For  2 C

1

(M;X) the mapping

T:T (M) ! T (X)

�

=

X � X an be split as T(v

p

) =

�

(p); d(p):v

p

�

, where

d 2 C

1

(T (M); X). Indutively we obtain d

(n)

 2 C

1

(T

(n)

M;X). In this sense

C

1

(M;X) arries the topology indued by the embedding

C

1

(M;X) ,!

1

Y

n=0

C

1

�

T

(n)

(M); X

�



;

where the spaes on the right hand side arry the topology of uniform onvergene

on ompat sets. We have

T (f

�

) = T

�

f Æ (id

M

; )

�

= Tf Æ

�

id

TM

; T 

�

and thus d(f

�

) = df Æ

�

id

TM

; T 

�

. Indutively we obtain

(3:1) d

(n)

(f

�

) = d

(n)

f Æ

�

id

T

(n)

M

; T

(n)



�

:

In view of Lemma III.6, this shows that the maps  ! d

(n)

(f

�

) are ontinuous.

We onlude that f

�

is ontinuous.

Next we alulate the derivative of f

�

. For eah x 2M we have

lim

h!0

1

h

�

f

�

x; ( + h�)(x)

�

� f

�

x; (x)

�

�

= lim

h!0

Z

1

0

d

2

f

�

x; ( + uh�)(x)

��

�(x)

�

dx = df

2

�

x; (x)

��

�(x)

�

;

where, in view of the ontinuity of the integrand, the limit on the left hand side

exists uniformly on ompat subsets of M . In view of (3.1), the same argument

applies to the higher derivatives d

(n)

f

�

. So we see that (df

�

)(; �) exists and equals

d

2

f Æ (id

M

; ; �) 2 C

1

(M;Y ). This means that d(f

�

) = (d

2

f)

�

:C

1

(M;TU) !

C

1

(M;Y ). Using the �rst part of our proof, we now see that d(f

�

) is ontinuous,

i.e., f

�

is C

1

. Sine the map d(f

�

) an be written as (d

2

f)

�

, it has the same

struture as f

�

, and iteration of the argument shows that f

�

is smooth.
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Corollary III.8. If f :U ! Y is a smooth map, then

f

�

:C

1

(M;U)! C

1

(M;Y );  7! f Æ 

is smooth.

Proof. Put

e

f(x; y) := f(y) and apply Proposition III.7.

Appliations to groups of ontinuous mappings

Remark III.9. (a) If F is an s..l.. spae and X a ompat metri spae, then

C(X;F )



is an s..l.. spae with respet to the topology of uniform onvergene

(Propositition II.12(a)).

(b) If U � F is an open subset, then C(X;U) is an open subset of C(X;F )



. Now

let U

j

� F

j

, j = 1; 2, be open subsets of s..l.. spaes and ':U

1

! U

2

a smooth

map. We onsider the map

'

X

:C(X;U

1

)! C(X;U

2

);  7! ' Æ :

Then '

X

is smooth. The ontinuity follows from Lemma III.6. For eah x 2 X

and ; � 2 C(X;F

1

) we have

lim

t!0

'((x) + t�(x)) � '((x))

t

= lim

t!0

Z

1

0

d'((x) + st�(x)):�(x) ds

= d'((x)):�(x):

Sine the integrand is ontinuous in [0; 1℄

2

� X , the limit exists uniformly in X ,

hene in the spae C(X;F

2

). Therefore d'

X

()(�) exists. Sine d':TU

1

�

=

U

1

�

F

1

! F

2

is a ontinuous map, the �rst part of the proof shows that

d'

X

:C(X;TU

1

)

�

=

C(X;U

1

)� C(X;F

1

)! C(X;F

2

)

is ontinuous, so that '

X

is C

1

. Iterating this argument shows that '

X

is C

1

.

Proposition III.10. If G is a Lie group and X is a ompat metri spae, then

C(X;G)



is a Lie group with Lie algebra C(X; g)



.

Proof. We use Remark III.9(b) to see that the inversion and multipliation in

the anonial loal harts are smooth. The remainder is a routine veri�ation.
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Spaes of holomorphi funtions

In this subsetion we turn to spaes of holomorphi funtions. In partiular we

show that holomorphi ations of omplex Fr�ehet semigroups lead to holomorphi

ations on the orresponding spaes of holomorphi funtions, and that the inlu-

sion Hol(M;V )! C

1

(M;V ) is an embedding if Hol(M;V ) arries the topology of

uniform onvergene on ompat subsets. For re�ned investigations on topologies

on spaes of holomorphi funtions between Banah spaes we refer to [Na69℄.

In the following a Baire manifold is a manifold modeled over a s..l.. Baire

spae.

Theorem III.11. For a omplex Baire manifold M the following assertions

hold:

(i) If V is an s..l.. spae, then Hol(M;V ) is s..l.. with respet to the topology

of uniform onvergene on ompat sets.

(ii) If, in addition, M is Fr�ehet and V is omplete, then Hol(M;V ) is omplete.

Proof. (i) Let (f

n

)

n2N

be a Cauhy sequene in Hol(M;V ). Sine V is sequen-

tially omplete, this sequene onverges uniformly on ompat subsets of M to

a funtion f :M ! V (see the proof of Proposition II.12). It remains to show

that f is holomorphi. For that we may w.l.o.g. assume that M is an open subset

of a Baire spae X . Sine (G)-holomorphy is equivalent to weak (G)-holomorphy

([He89, Th. 2.1.3℄), and for eah � 2 V

0

the funtion � Æ f :M ! C is holomor-

phi on the intersetion with eah �nite dimensional aÆne subspae, we see that

f 2 G(M;V ). Now Proposition I.9(iii) implies that f is ontinuous, hene that f

is (F)-holomorphi and therefore holomorphi (Proposition I.10).

(ii) (f. [He71, p.79℄) In view of Proposition II.12(i), it suÆes to show that

Hol(M;V ) is losed in C(M;V )



beause the latter spae is omplete. Suppose

that f

i

! f , where f is ontinuous and the funtions f

i

:M ! V are holomorphi.

We have to show that f is holomorphi and, as in (i), we may w.l.o.g. assume

that M is an open subset of a Fr�ehet spae X . An argument similar to that in

(i) implies that f is (G)-holomorphi, but then the ontinuity of f shows that

f 2 Hol(M;V ).

Corollary III.12. Let M and N be omplex manifolds, where M is Fr�ehet.

We write Hol(M;N)



for the set of holomorphi maps M ! N endowed with the

ompat open topology. Then the subspae Hol(M;N)



is losed in C(M;N)



.

Proof. Sine M is Fr�ehet, it is �rst ountable, and therefore C(M;N)



is a

omplete uniform spae. Now let f 2 C(M;N) and assume that f

i

! f holds

for f

i

2 Hol(M;N) uniformly on ompat subsets of M . We have to show that

f is holomorphi. This is a loal property, so that we may assume that M is

an open subset of a Fr�ehet spae F . In view of the ontinuity of f , it suÆes
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to show that f is Gateaux-holomorphi, so that we may even assume that M is

one-dimensional, hene loally ompat (Proposition I.9). Let x

0

2 M and �x a

ompat neighborhood K of x

0

and an open neighborhood U � N of f(x

0

) whih

is di�eomorphi to an open subset of an s..l.. spae V . Then we may w.l.o.g.

assume that f

i

(K) � U holds for all i, so that the same argument as in the proof

of Theorem III.11(i) shows that f is holomorphi in a neighborhood of x

0

.

In the following the assumption that the manifolds under onsideration are

Baire is made to ensure that the spaes Hol(M;V ) are sequentially omplete (The-

orem III.11(i)).

Proposition III.13. Let M and N be omplex Baire manifolds, f :M�N ! V

holomorphi, and f

x

(y) := f(x; y). Then the map

�:M ! Hol(N; V ); x 7! f

x

is holomorphi.

Proof. First the ontinuity of the map � follows from Lemma III.2(i). Next we

note that we may w.l.o.g. assume that M is an open subset of a Baire spae X .

Claim 1: The map

	:M �X ! Hol(N; V ); (x; h) 7!

�

y 7! d

1

f(x; y)(h)

�

is ontinuous. This follows from Lemma III.2(i) and the fat that

d

1

f 2 Hol(M � X � N; V )

(Remark I.5(d)).

Claim 2: � is C

1

with d�(x)(h) = 	(x; h). This is proved exatly as the orre-

sponding assertion in the proof of Theorem III.4.

This shows that � is C

1

with omplex linear di�erentials, i.e., that � is

holomorphi.

Theorem III.14. Let M be a omplex Baire manifold, S a omplex Fr�ehet

semigroup, and M � S !M a holomorphi right ation. Then the ation

S �Hol(M;V )! Hol(M;V )

with

�

�(s):f

�

(x) = f(x:s) is holomorphi.

Proof. Aording to Lemma III.2(iii), the ation of S on Hol(M;V ) � C(M;V )



is ontinuous.

For eah s 2 S the map Hol(M;V ) ! Hol(M;V ); f 7! s:f is ontinu-

ous linear, hene holomorphi. Now let f 2 Hol(M;V ). Then the funtion de-

�ned by

e

f(s; x) 7! f(x:s) is in Hol(S �M;V ). Hene the holomorphy of S !

Hol(M;V ); s 7! s:f =

e

f

s

follows from Proposition III.13. This proves that the

ation map is partially holomorphi in eah argument. Now [He89, Prop. 2.3.8℄

implies that the ation map is (G)-holomorphi, and �nally the ontinuity implies

that it is (F)-holomorphi, i.e., holomorphi (Proposition I.10).
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We have already seen in Proposition I.10 that holomorphi funtions are

in partiular smooth, i.e., that Hol(M;V ) � C

1

(M;V ) holds for eah omplex

manifoldM . We have endowed the spae Hol(M;V ) with the topology of ompat

onvergene whih ould be oarser than the topology indued from C

1

(M;V )

but it turns out that on Hol(M;V ) the latter topology oinides with the original

one.

Proposition III.15. If M is manifold modeled over a s..l.. spae, then the

inlusion Hol(M;V ) ,! C

1

(M;V ) is an embedding of loally onvex spaes.

Proof. It is lear that the topology Hol(M;V ) inherits from C

1

(M;V ) is �ner

than the original one. Therefore it suÆes to show that the inlusion map is on-

tinuous. If f is holomorphi, then df :TM ! V is also holomorphi. Therefore it

suÆes to show that Hol(M;V )! Hol(TM; V ); f 7! df is a ontinuous map. Then

the assertion follows by indution.

Sine eah ompat subset of TM is the union of �nitely many piees lying

in oordinate neighborhoods, we may w.l.o.g. assume that M is an open subset of

the s..l.. spae X . Let x 2 M and h 2 X with x + zh 2 M whenever jzj � 1.

Then

df(x)(h) =

1

2�

Z

2�

0

e

�i�

f(x+ e

i�

h) d�:

For eah ontinuous seminorm p on V we therefore have

p

�

df(x)(h)

�

� sup

jzj=1

p

�

f(x+ zh)

�

:

Let K � TM

�

=

M � X be a ompat subset and w.l.o.g. K = K

1

� K

2

with K

1

� M and K

2

� X ompat and balaned. Then we �nd a balaned 0-

neighborhood V � X with K

1

+ V � M and n 2 N with K

2

� nV . This means

that for (x; h) 2 K we have x+ z

h

n

2M whenever jzj � 1. Hene

p

�

df(x)(h)

�

= np

�

df(x)(

h

n

)

�

� n sup

h2

1

n

K

2

p

�

f(x+ h)

�

;

i.e., p

K

(df) � np

K

1

+

1

n

K

2

(f). Sine the set K

1

+

1

n

K

2

is ompat, onvergene in

Hol(M;V ) implies uniform onvergene on this set, hene uniform onvergene of

df on K. This ompletes the proof.

One of the main features of the representation theory of �nite-dimensional Lie

groups is that they have an exponential funtion whih makes it possible to trans-

late analyti problems on a Lie group G to algebrai problems on g without loosing

too muh information. This works in partiular quite well for representations with

analyti or holomorphi orbit mappings. To obtain a suitable generalization to the

in�nite-dimensional setting, let us say that a smooth funtion exp: g! G is an ex-

ponential funtion for G if for eah X 2 g the urve 

X

: t 7! exp(tX) is an integral

urve of the orresponding left invariant vetor �eld

e

X 2 V(G). Further we say that
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a Lie groupGmodeled over the s..l.. spae g has a good exponential funtion if the

losure exp(g) of the exponential image ontains a neighborhood of the identity.

If G is omplex, we require, in addition, that the exponential funtion exp: g! G

is a holomorphi map. For a disussion of the exponential funtion for the lass

of regular Lie groups we refer to [KM97a℄. We write D

l

(G) � End

�

C

1

(G)

�

for

the unital algebra of all operators on C

1

(G) generated by the ation of the left

invariant vetor �elds. An element D 2 D

l

(G) is alled a left invariant di�erential

operator on G.

Lemma III.16. (a) (Identity Theorem for Holomorphi Funtions) If M is on-

neted and two funtions f; f

0

2 Hol(M;V ) oinide on a non-empty open subset

of M , then f = f

0

.

(b) If G is a onneted omplex Lie group with a good exponential funtion and

f 2 Hol(G; V ) with (D:f)(1) = 0 for all D 2 D

l

(G), then f = 0.

Proof. (a) Sine V is loally onvex, the linear funtionals on V separate the

points, and so we may w.l.o.g. assume that V = C . Let

D := fx 2M : f(x) = f

0

(x)g:

Then D is a losed subset of M whih ontains an open subset.

Sine M is onneted, it suÆes to show that the interior D

0

of D is losed,

i.e., that eah point x 2 D

0

belongs toD

0

. Choosing a loal hart around x, we may

w.l.o.g. assume thatM is an open onvex subset of the s..l.. spaeX . Pik y 2 D

0

and x 2M . Then we onsider the holomorphi map ': C ! X; z 7! x+z(y�x) and

note that f Æ ' and f

0

Æ ' are holomorphi funtions on '

�1

(M) whih oinide

on an open neighborhood of y, hene also in 0 beause [0; 1℄ � '

�1

(M). Thus

f(x) = f

0

(x), and therefore D =M whih ompletes the proof.

(b) For eah X 2 g we obtain a holomorphi funtion F : C ! V; z 7! f(exp zX).

Indutively our assumption implies that

0 = (

e

X

n

:f

�

(1) = F

(n)

(0):

Sine F is holomorphi, we onlude that F = 0 and hene that f j

expg

= 0. The

assumption that G has a good exponential funtion now implies that f vanishes

on a neighborhood of 1 and by (a) also on G.

IV. Representations of in�nite-dimensional groups

Let V be an s..l.. spae and G a Lie group modeled over a s..l.. spae. In this

setion we will apply the results of Setion III to de�ne a derived representation

of a representation (�; V ) of G on the subspae V

1

of smooth vetors and to

endow this spae with a suitable omplete loally onvex topology inherited from

C

1

(G; V ) on whih the ation of G is smooth. For many purposes it is irrelevant

that G is a group and it will suÆe to assume that it is an s..l.. semigroup, i.e.,

a manifold modeled over an s..l.. spae with a smooth semigroup multipliation.
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De�nition IV.1. Let V be an s..l.. spae and S an s..l.. semigroup.

(a) A representation (V; �) of S is a ontinuous ation S � V ! V suh that the

mappings �(s): v 7! s:v are linear and � denotes the orresponding homomorphism

�:S ! L(V ).

(b) If (V; �) is a representation of S, then a vetor v 2 V is alled smooth if the

orbit map S ! V; s 7! �(s):v is smooth. We write V

1

for the subspae of smooth

vetors.

The derived representation

Let (V; �) be a representation of the s..l.. Lie group G, v 2 V

1

and '

v

:G !

V; g 7! �(g):v, denote the orresponding orbit map. Then d'

v

(1): g

�

=

T

1

(G) !

V

�

=

T

v

(V ) is a ontinuous linear map. We de�ne

d�(X):v := X:v := d'

v

(1):X:

Lemma IV.2. The presription g�V

1

! V

1

de�nes a representation of g on

V

1

.

Proof. First we show that for X 2 g and v 2 V

1

the element X:v 2 V is in

fat ontained in V

1

.

For g 2 G we have �(g)Æ'

v

= '

v

Æ�

g

beause the orbit map '

v

is equivariant

with respet to left multipliations. Hene the hain rule implies

�(g)d'

v

(1):X = d'

v

(g)d�

g

(1):X:

Let X

l

2 V(G) denote the left invariant vetor �eld with X

l

(1) = X . Then the

preeding alulation shows that

(4:1) g 7! �(g)(X:v) = d'

v

(g):X

l

(g)

is smooth sine the map

T ('

v

) ÆX

l

:G! TV

�

=

V � V; g 7!

�

�(g):v; d'

v

(g):X

l

(g)

�

is smooth. This proves that X:v 2 V

1

.

It remains to show that d�: g! End(V

1

) is a homomorphism of Lie algebras.

For v 2 V

1

we obtain a map

�

v

:V

0

! C

1

(G); ! 7!

�

g 7! h!; �(g):vi

�

:

For X 2 g, the orresponding left invariant vetor �eld X

l

, and ! 2 V

0

the hain

rule and (4.1) show that

�

X

l

:�

v

(!)

�

(g) = h!; d'

v

(g):X

l

(g)i = h!; �(g):(X:v)i = �

X:v

(!)(g);

i.e., X

l

Æ�

v

= �

X:v

. Therefore

�

[X;Y ℄:v

=[X

l

; Y

l

℄Æ�

v

=X

l

Æ�

Y:v

� Y

l

Æ�

X:v

=�

X:(Y:v)

��

Y:(X:v)

=�

X:(Y:v)�Y:(X:v)

:

Evaluating this at g = 1 we obtain !([X;Y ℄:v) = !

�

X:(Y:v) � Y:(X:v)

�

for all

! 2 V

0

and, sine the ontinuous linear funtionals on V separate the points,

[X;Y ℄:v = X:(Y:v)� Y:(X:v).
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Remark IV.3. If G is �nite-dimensional, then G�arding's Theorem (f. [Wa72,

Prop. 4.4.1.1℄) shows that V

1

is a dense subspae of V . Another important fat on

smooth vetors is Harish-Chandra's Theorem ([Wa72, Th. 4.4.2.1℄) saying that if G

is �nite-dimensional and ompat,

b

G is the set of equivalene lasses of irreduible

representations, and P (Æ):V ! V the projetion onto the isotypial omponent of

type Æ, then for eah v 2 V

1

the Fourier series

v =

X

Æ2

b

G

P (Æ):v

onverges in V .

Lemma IV.4. Let X be a topologial spae, S a metrizable topologial semigroup

ating ontinuously from the right on X, and V a (sequentially ) omplete loally

onvex spae.

(i) If, in addition, X satis�es the �rst axiom of ountability, then C(X;V )



is

a (sequentially) omplete loally onvex spae and we obtain a representation

of S on this spae by (s:f)(x) := f(x:s).

(ii) If (�; V ) is a representation of the s..l.. group G, then the ation g:� :=

� Æ �(g

�1

) on the dual spae V

0



is ontinuous. If, in addition, V is an LF-

spae, then we obtain a representation of G on V

0



.

Proof. (i) The ompleteness follows from Proposition II.12(i), and the ontinu-

ity of the ation from Lemma III.2(iii).

(ii) Sine V

0



is endowed with the topology of uniform onvergene on ompat

subsets of V , Lemma III.2(iii) implies that the ation of G on the spae V

0



�

C(V; C )



is ontinuous. If, in addition, V is an LF-spae, then V

0



is omplete by

Corollary II.13, and we thus obtain a representation of G on this spae.

Next we disuss an appropriate topology on the spae V

1

of smooth vetors.

The key tool is Theorem III.5.

Proposition IV.5. Let (�; V ) be a ontinuous representation of the Fr�ehet

semigroup S with identity element 1 on V and V

1

� V the spae of smooth

vetors. Via the map v 7! '

v

: s 7! �(s):v we obtain a linear embedding V

1

,!

C

1

(S; V ) whih we use to de�ne a loally onvex topology on V

1

. Then the natural

ation of S on V

1

de�nes a representation of S on V

1

for whih the ation map

S � V

1

! V

1

is smooth.

Proof. For v 2 V and s; t 2 S we have '

v

(st) = �(st):v = �(s):

�

�(t):v

�

=

�(s):'

v

(t), i.e., '

v

:S ! V is equivariant. If, onversely, ':S ! V is a smooth

equivariant map, then '(s) = s:'(1) shows that '(1) 2 V

1

. Thus

V

1

�

=

C

1

(S; V )

S

= ff 2 C

1

(S; V )): (8s; t 2 S)f(st) = �(s):f(t)g

is a losed subspae of C

1

(S; V ) beause the representation of S on V is ontinu-

ous, hene V

1

is a omplete loally onvex spae beause S is Fr�ehet (Proposition

III.1).
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In view of Theorem III.5, the ation map

S � C

1

(S; V )! C

1

(S; V ); (s; f) 7! s:f

with (s:f)(x) = f(xs) is smooth. Sine

(s:'

v

)(x) = '

v

(xs) = �(xs):v = �(x):

�

�(s):v

�

= '

�(s):v

(x);

this implies that the ation of S on V

1

is also smooth.

Corollary IV.6. If G is a Fr�ehet Lie group and (�; V ) a ontinuous represen-

tation of G, then the ation map

g� V

1

! V

1

; (X; v) 7! d�(X):v

is ontinuous.

Proof. If �:G�V

1

!V

1

denotes the ation map, then d�(X):v=d

1

�(1; v)(X);

so that the asserted ontinuity follows from � 2 C

1

(Proposition IV.5).

Remark IV.7. (a) Note that Corollary IV.6 implies in partiular that the op-

erators

d�(X):V

1

! V

1

are ontinuous, hene that g ats naturally on the dual spae V

�1

:= (V

1

)

0

of

ontinuous linear funtionals on V

1

by (X:�)(v) = ��(X:v).

(b) With respet to the natural topology on V

1

the inlusion map V

1

! V is

ontinuous beause the evaluation map C

1

(G; V )! V; f 7! f(1) is ontinuous.

Example IV.8. Let G be a Lie group and Ad:G ! Aut(g) the adjoint repre-

sentation. Then Ad is a representation of G on g with a smooth ation map.

In fat, sine the ation map an be written as Ad(g):X = dI

g

(1):X =

d�(g;1)(0; X); where �(g; x) = gxg

�1

, it is a restrition of the smooth map

T�:T (G � G) ! TG, hene a smooth map. Thus the adjoint ation of G is a

representation in the sense of De�nition IV.1 with g

1

= g. Using Taylor expan-

sions up to a ertain order, one an show that the derived ation dAd = ad is

given by ad(X):Y = [X;Y ℄. We refer to [Mi83, Set. 5℄ for the details.

We give a diret proof for the ase where G has enough smooth funtions

suh that the representation g! Der

�

C

1

(G)

�

is injetive. It follows in partiular

from the results in [Th95℄ that this is true if g is a nulear LF spae.

Let f 2 C

1

(G), g 2 G, and X 2 g. We write � for the natural representation

of G on C

1

(G) given by

�

�(g):f

�

(x) = f(g

�1

:x). Passing to the derivative of the

smooth map

 :G! C

1

(G); h 7! �(g)�(h)�(g

�1

):f = �(ghg

�1

):f
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yields

�(g)d�(Y )�(g

�1

):f = d�

�

Ad(g):Y

�

:f:

In view of the smoothness of the map  , we see that we an take the derivative

with respet to g in 1, and sine f is arbitrary, we get

d�([X;Y ℄) = d�(X)d�(Y )� d�(Y )d�(X) = d�

�

dAd(X):Y

�

:

If d� is injetive, then dAd = ad follows.

The above argument an be generalized to the setting where one only on-

siders germs of smooth funtions in 1. Then one does not have to worry about the

existene of enough smooth funtion, and one an still show that the derivative of

the map G! g; g 7! Ad(g):X is ad(�):X for every X 2 g.

In the next proposition we reord an important appliation of the Identity

Theorem for Holomorphi Funtions (Lemma III.16(a)) to representation theory.

Proposition IV.9. Let G be a onneted omplex Lie group with a good expo-

nential funtion exp: g ! G and (�; V ) a representation of G suh that all orbit

maps G! V; g 7! �(g):v are holomorphi. Then the following assertions hold:

(i) If F � V is a subspae whih is invariant under g, then its losure is invariant

under G.

(ii) If v 2 V is annihilated by g, then v is �xed by G.

Proof. (i) Let � 2 F

?

� V

0

be a ontinuous linear funtional vanishing on F .

For v 2 F we onsider the funtion f

v

:G! C ; g 7! �(g:v), i.e., f

v

= �Æ'

v

, where

'

v

is the orbit map. Then the alulation in the proof of Lemma IV.2 shows that

for eah X 2 g and the assoiated left invariant vetor �eld X

l

we have

(X

l

:f

v

)(g) = df

v

(g):X

l

(g) = h�; d'

v

(g):X

l

(g)i = h�; �(g)X:vi = f

X:v

(g);

i.e., X

l

:f

v

= f

X:v

.

For g = 1 we now obtain (X

l

:f

v

)(1) = �(X:v) = 0. In view of X:v 2 F ,

we an apply this argument indutively and thus obtain (D:f

v

)(1) = 0 for all

D 2 D

l

(G). Now Lemma III.16(b) implies that f

v

= 0, hene that �(G):v � ker�

for all � 2 F

?

. Next we use the Hahn-Banah Theorem to see that F = (F

?

)

?

from whih we obtain �(G):v � F . Sine G ats by ontinuous operators on V , we

onlude that F is invariant under G.

(ii) As above, we onsider the funtion f

v

: g 7! �(g:v) � �(v) but now with an

arbitrary element � 2 V

0

. Taking derivatives, we see that X

l

:f

v

= f

X:v

= 0 for all

X 2 g and therefore

�

D

l

(G):f

v

�

(1) = 0 beause f

v

(1) = 0. So Lemma III.16(b)

implies that f

v

= 0, hene that �(g:v) = �(v) for all � 2 V

0

and g 2 G. Sine V

0

separates the points of V , the group G �xes v.
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V. Generalized oherent state representations

In this setion we desribe a general setup for so alled oherent state represen-

tations. Analytially these representations are haraterized by the property that

they an be realized in spaes of holomorphi setions of a homogeneous omplex

line bundle. On the geometri side this means that the ation of G on the proje-

tive spae of the dual spae has a yli orbit whih is a omplex manifold. These

onepts are well studied in the setting of Hilbert spaes (f. [Li95℄) and here we

show that if one arefully distinguishes between the spaes and their duals, then

one an generalize this orrespondene to general s..l.. spaes.

In the �rst subsetion we desribe how to onstrut a natural omplex line

bundle on the projetion spae P(V ) of an s..l.. spae. In the seond subse-

tion we then turn to group representations and show in partiular that for �nite-

dimensional Lie groups the representations of G in an LF spae whih are gener-

alized oherent state representations are preisely those on subspaes of the spae

of holomorphi setions of a homogeneous omplex line bundle.

The line bundle over the projetive spae of a topologial vetor spae

In this setion V denotes an s..l.. spae and P(V ) its projetive spae. We write

[v℄ for the element of P(V ) whih orresponds to the one-dimensional subspae gen-

erated by v 2 V n f0g. Furthermore we write GL(V ) for the group of ontinuously

invertible linear operators on V and V

0

for the topologial dual of V .

Lemma V.1. The group GL(V ) ats transitively on

(i) V n f0g,

(ii) P(V ),

(iii) V

0

n f0g, and

(iv) P(V

0

).

Proof. (i) Let v; w 2 V n f0g. If v and w are linearly dependent, then there

exists � 2 C

�

� GL(V ) with w = �v. We now assume that v and w are linearly

independent. Sine V is loally onvex, there exists a ontinuous linear funtional

� 2 V

0

with �(v + w) = 0 and �(v � w) = 1, i.e., �(v) = ��(w) =

1

2

. Then

�(x) := x� 2�(x)(v � w)

is a ontinuous reetion in the hyperplane ker� satisfying �(v) = w and �

�1

= �.

It follows in partiular that � 2 GL(V ).

(ii) This is an immediate onsequene of (i).
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(iii) We endow V

0

with the weak-�-topology. If �; � 2 V

0

nf0g are linearly indepen-

dent, then there exists x 2 V with (� + �)(x) = 0 and (� � �)(x) = 1. Therefore

the same argument as in (i) works in this ase.

(iv) This is a diret onsequene of (iii).

Proposition V.2. The spae P(V ) arries the struture of a omplex manifold

modeled over losed hyperplanes of V . The harts are given by (U

�

; '

�

)

�2V

0

nf0g

,

where

(5:1) U

�

= f[v℄ 2 P(V ):�(v) 6= 0g and '

�

:U

�

! ker�; [v℄ 7!

v

�(v)

� v

�

;

where v

�

2 V is hosen with �(v

�

) = 1.

Proof. First we note that the ondition de�ning U

�

makes sense beause either

� vanishes on the one-dimensional spae C v or �(w) 6= 0 holds for all w 2 C vnf0g.

Aording to Lemma V.1, for two di�erent non-zero ontinuous funtionals their

kernels are isomorphi as topologial vetor spaes beause they are onjugate

under the group GL(V ). Sine these kernels are preisely the losed hyperplanes

of V , we also see that two suh hyperplanes are isomorphi.

Next we note that the inverse of '

�

is given by

'

�1

�

: ker�! U

�

; v 7! [v + v

�

℄:

For [v℄ 2 U

�

\ U

�

and w := '

�

([v℄) we have

'

�

Æ '

�1

�

(w) =

w + v

�

�(w + v

�

)

� v

�

whih is a holomorphi map of an open subset of ker� to ker�. Hene the atlas

given by the above harts de�nes on P(V ) the struture of a omplex manifold.

We put U

��

:= U

�

\ U

�

for �; � 2 V

0

n f0g. We de�ne funtions

g

��

:U

��

! C

�

; [v℄ 7!

�(v)

�(v)

and note that these funtions satisfy g

�

([v℄) �g

��

([v℄) = g

�

([v℄) on U

�

\U

�

\U



,

i.e., the funtions g

��

form a system of transition funtions in the sense of [Hu94,

Def. 5.2.4℄. Next we onstrut a holomorphi line bundle p:L

V

! P(V ) as follows.

On the disjoint union

e

L

V

:=

[

06=�2V

0

U

�

� C � f�g

we de�ne an equivalene relation by

([v℄; z; �) � ([v℄; g

��

([v℄)z; �) =

�

[v℄;

�(v)

�(v)

z; �

�

:
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Proposition V.3. The spae L

V

:=

e

L

V

= � arries the struture of a omplex

line bundle over P(V ) with projetion

q:L

V

! P(V );

�

[v℄; z; �

�

7! [v℄:

Proof. It is lear that L

V

inherits the struture of a omplex manifold beause

the transition funtions are holomorphi and the sets U

�

� C �f�g arry natural

omplex manifold strutures.

The subset q

�1

(U

�

) is biholomorphially equivalent to ker� � C , where the

harts are given by

 

�

: q

�1

(U

�

)! ker�� C ;

�

[v℄; z; �

�

7!

�

'

�

([v℄); z

�

:

Note that for these oordinate harts we have

 

�

Æ  

�1

�

(v; z) =  

�

�

�

[v + v

�

℄; z; �

�

�

=  

�

�

�

[v + v

�

℄; g

��

([v + v

�

℄)z; �

�

�

=  

�

(

�

[v + v

�

℄;

z

�(v+v

�

)

; �

�

) =

�

'

�

Æ '

�1

�

(v);

z

�(v+v

�

)

�

:

Sine this map is holomorphi, we obtain another proof for the fat that L

V

is

a omplex manifold. Moreover, the fat that this map is linear in the seond

argument shows that L

V

is a holomorphi vetor bundle with �ber C , i.e., a holo-

morphi line bundle.

Theorem V.4. The assignment

(5:2) s

�

([v℄) :=

�

[v℄;

�(v)

�(v)

; �

�

; [v℄ 2 U

�

yields a topologial isomorphism �:V

0



! �(L

V

)



; where �(L

V

)



denotes the spae

of holomorphi setions of L

V

endowed with the topology of uniform onvergene

on ompat subsets of P(V ).

Proof. First let � 2 V

0

. Then

�

[v℄;

�(v)

�(v)

; �

�

=

�

[v℄; g

�

([v℄)

�(v)

�(v)

; 

�

=

�

[v℄;

�(v)

(v)

; 

�

so that (5.2) de�nes in fat a setion �(�) of L

V

whih is holomorphi. Now we

show that the so obtained map �:V

0

! �(L

V

) is a bijetion. The subset

L

�

V

:= f

�

[v℄; z; �

�

: z 6= 0; [v℄ 2 P(V ); 0 6= � 2 V

0

g;

of L

V

is the omplement of the zero setion in L

V

. We have a natural map

j:V n f0g ! L

�

V

; v 7!

�

[v℄;

1

�(v)

; �

�
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for [v℄ 2 U

�

. For [v℄ 2 U

��

we have

�

[v℄;

1

�(v)

; �

�

=

�

[v℄; g

��

([v℄)

1

�(v)

; �

�

=

�

[v℄;

1

�(v)

; �

�

:

The inverse of this map is given by

j

�1

:L

�

V

! V;

�

[v℄; z; �

�

7!

v

z�(v)

;

for [v℄ 2 U

�

, where we have to note that the expression on the right hand side is

well de�ned beause

v

z�(v)

=

v

g

��

([v℄)z�(v)

:

Now let s 2 �(L

V

) be a holomorphi setion. Then we obtain a holomorphi

funtion es:L

�

V

! C with s

�

p(x)

�

= es(x) � x: Note that es(�x) =

1

�

es(x). Therefore

the funtion bs := es Æ j:V n f0g ! C is holomorphi and satis�es bs(�x) = �bs(x)

for all � 2 C

�

. We laim that bs is the restrition of a ontinuous linear funtional.

If V is one-dimensional, then P(V ) onsists of one point and there is nothing to

show. Let W � V be a two-dimensional subspae. Then the restrition f of bs to

W n f0g is a holomorphi funtion satisfying

(5:3) f(�v) = �f(v); 0 6= v 2W;� 2 C

�

:

Sine f0g is an isolated singularity of this funtion, Hartog's Theorem shows that

f extends holomorphially to W . Now the Taylor expansion in the origin and

(5.3) imply that f is linear. Thus the extension of bs by bs(0) := 0 yields a linear

funtional bs on V . If bs 6= 0, then ker bs is a omplex hyperplane with the property

that (V n f0g)\ ker bs is losed. Hene ker bs is losed and therefore bs is ontinuous.

Thus for eah holomorphi setion s there exists a ontinuous linear funtional

� 2 V

0

suh that

s([v℄) = es

��

[v℄; z; �

��

�

�

[v℄; z; �

�

= �

�

j

�1

(

�

[v℄; z; �

�

)

�

�

�

[v℄; z; �

�

=

�(v)

z�(v)

�

�

[v℄; z; �

�

=

�

[v℄;

�(v)

�(v)

; �

�

;

i.e., s = s

�

. This ompletes the proof of the bijetivity of �.

Now we show that � also is a topologial isomorphism. We may w.l.o.g.

assume that V 6= f0g. First we observe that the topology on V

0



oinides with

the topology of uniform onvergene on all ompat subsets C � V for whih

there exists a linear funtional � 2 V

0

with inf Re�(C) � 1. In fat, if C � V is

a ompat subset, then we pik x 2 V with Re�(x) > max

�

1; 1 � inf Re�(C)

�

.

Then inf Re�(C + x) = inf Re�(C) + Re�(x) > 1, and the uniform onvergene

on C+x and x implies the uniform onvergene on C = (C+x)�x. On the other

hand, a overing argument using that the quotient map p:V nf0g ! P(V ); v 7! [v℄

is open and has loal setions shows that every ompat subset of P(V ) is a �nite

union of ompat subsets lying in some open subset U

�

, � 2 V

0

n f0g:
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Now let C � V be a ompat subset with inf Re�(C) > 1. Then p(C) � P(V )

is a ompat subset of p(fv 2 V :�(v) 6= 0g) = U

�

and we have �(�)([v℄) =

�

[v℄;

�(v)

�(v)

; �

�

for [v℄ 2 U

�

. In view of inf j�(C)j > 1, this formula implies that a net

(�

j

)

j2J

in V

0

onverges uniformly on C if and only if the net (�(�

j

))

j2J

of holo-

morphi setions of L

V

onverges uniformly on p(C). Therefore � is a topologial

isomorphism V

0



! �(L

V

)



.

Appliations to representation theory

De�nition V.5. A ontinuous representation (�; V ) of G on an s..l.. spae V

is alled a generalized oherent state representation (GCS representation for short)

if there exists v 2 V n f0g suh that

(1) v is yli,

(2) the homogeneous spae G=G

[v℄

, where G

[v℄

= fg 2 G: g:[v℄ = [v℄g arries the

struture of a omplex homogeneous spae modeled over a Fr�ehet spae suh

that the natural map �:G=G

[v℄

! P(V ); gG

[v℄

7! g:[v℄ is holomorphi.

A vetor v 2 V n f0g satisfying (1) and (2) is alled a GCS vetor.

If p:L ! M is a holomorphi line bundle over a Fr�ehet manifold M , then

we endow the spae �(L) of holomorphi setions with the ompat open topology

whih turns it into a omplete loally onvex spae (f. Theorem III.11). If V is a

topologial vetor spae, then we write V

0



for the topologial dual of V endowed

with the topology of uniform onvergene on the ompat subsets of V (f. Setion

II).

Proposition V.6. If (�; V ) is a generalized oherent state representation, then

the ontragredient representation (�

0

; V

0



) an be injeted ontinuously into the nat-

ural representation of G on the spae �(L) of holomorphi setions of a holomor-

phi line bundle p:L!M .

Proof. Let v 2 V be a GCS vetor and M := G=G

[v℄

. Then M arries the

struture of a omplex manifold suh that the inlusion map

�:M ! P(V ); gG

[v℄

7! g:[v℄

is holomorphi. Let L

V

! P(V ) denote the line bundle from Proposition V.3.

Then the pull bak L := �

�

L

V

is a holomorphi line bundle over M and thus we

obtain a natural map

 :V

0

�

=

�(L

V

)! �(L):

We laim that  is injetive. So let � 2 V

0

and suppose that  (s

�

) = 0. This

means that the setion s

�

vanishes on �(M) � P(V ). For � 2 V

0

n f0g and

[w℄ 2 U

�

� P(V ) we have

(5:4) s

�

([w℄) :=

�

[w℄;

�(w)

�(w)

; �

�

:
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Hene s

�

vanishes in [w℄ if and only if �(w) = 0. Therefore � vanishes on G:v, and

the fat that v is yli implies that � = 0, i.e., that  is injetive.

To see that  is ontinuous, let K � M be a ompat subset. Then there

exists a ompat subset C � V n f0g with �(K) = [C℄. Now onvergene in

V

0



implies uniform onvergene on C, hene (5.4) shows that the orresponding

setions onverge uniformly on K �M . This proves that  is ontinuous.

Lemma V.7. Let p:L!M be a holomorphi line bundle, M a omplex Fr�ehet

manifold, and V � �(L) a losed subspae with the property that for eah x 2 M

the exists a holomorphi setion s 2 V with s(x) 6= 0. Then the following assertions

hold:

(i) The system U

s

:= fx 2 M : s(x) 6= 0g, s 2 V n f0g, and the transition

funtions

g

ts

:U

s

\ U

t

! C

�

; x 7!

s(x)

t(x)

de�ne a line bundle over M whih is isomorphi to L.

(ii) Assume that V is a Fr�ehet spae. For x 2 L

�

we de�ne a holomorphi map

:L

�

! V

0



by s

�

p(x)

�

= (x)(s) � x. Then (L

�

) � V

0



n f0g, and we obtain

a holomorphi map

:M ! P(V

0



); p(x) 7! [(x)℄:

Furthermore the pull-bak line bundle 

�

L

V

0



is isomorphi to L.

Proof. (i) We onstrut a holomorphi line bundle q:E !M as

e

E= �, where

e

E :=

[

06=s2V

U

s

� C � fsg

and

(x; z; s) �

�

x; g

ts

(x)z; t

�

=

�

x;

s(x)

t(x)

z; t

�

:

Then the projetion q:E !M is given by q([x; z; s℄) = x. To see that this bundle

is isomorphi to L, we de�ne a holomorphi mapping

�:E ! L; [x; z; s℄ 7! z � s(x) for x 2 U

s

:

To see that � is well de�ned, we note that for x 2 U

s

\ U

t

we have [x; z; s℄ =

�

x;

s(x)

t(x)

z; t

�

and

z � s(x) =

s(x)

t(x)

z � t(x):

Hene � is a well de�ned holomorphi bundle map with p Æ� = q.
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Moreover, if �([x; z; s℄) = �([x

0

; z

0

; s

0

℄), then x = p

�

�(x)

�

= x

0

2 U

s

\ U

s

0

,

and z � s(x) = z

0

� s

0

(x), i.e., z

0

=

s(x)

s

0

(x)

z. Hene � is bijetive. Moreover, for

y 2 p

�1

(U

s

) we have

�

�1

(y) =

h

p(y);

y

s

�

p(y)

�

; s

i

;

whih shows that �

�1

:L! E is also holomorphi.

(ii) First we note that V ! C ; s 7! (x)(s) is ontinuous, so that (V ) � V

0

. We

laim that  is holomorphi. Sine by assumption V is a Fr�ehet spae, Corollary

II.13 shows that V

0



is a omplete loally onvex spae, and that the natural map

�

V

:V ! (V

0



)

0



is surjetive (Theorem II.8(ii)). Therefore eah ontinuous linear

funtional on V

0



is given by evaluation in an element s 2 V , and for eah suh

s the mapping x 7! (x)(s) is a holomorphi funtion on L

�

. This proves that

 is weakly holomorphi, hene that  is holomorphi beause V

0



is sequentially

omplete and M is Fr�ehet (Proposition I.9).

Sine, by assumption, for eah x 2 M there exists an s 2 V with s(x) 6= 0,

we have (L

�

) � V

0



n f0g. Moreover we have (�x) = �

�1

(x) for � 2 C

�

, so

that  fators to a holomorphi map

:M ! P(V

0



); p(x) 7! [(x)℄:

Let E := 

�

L

V

0



denote the pull-bak line bundle with projetion q:E !M .

Then Æq = p

V

0



Æ, and sine the bundle L

V

0



is de�ned by the transition funtions

g

��

([v℄) =

�(v)

�(v)

for �(v); �(v) 6= 0; �; � 2 (V

0



)

0

;

the bundle E is de�ned by the transition funtions

g

��

�

p(x)

�

=

�

�

(x)

�

�

�

(x)

�

for �

�

(x)

�

; �

�

(x)

�

6= 0:

Using �



(V ) = (V

0



)

0



(Theorem II.8(ii)), we write � = �

V

(s) and � = �

V

(t) to

obtain

g

��

�

p(x)

�

=

(x)(s)

(x)(t)

=

s

�

p(x)

�

t

�

p(x)

�

= g

ts

�

p(x)

�

for p(x) 2 U

s

\ U

t

. Therefore (i) shows that the holomorphi line bundle E is

isomorphi to L.

For the remainder of this setion we will restrit our attention to �nite-

dimensional Lie groups beause we will need the di�erential geometri mahinery

desribing omplex strutures and holomorphi setions in terms of the underlying

real struture of the manifold.
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Lemma V.8. Let G be a �nite-dimensional Lie group, H a losed subgroup, and

suppose that the homogeneous spae G=H is a omplex manifold in suh a way

that G ats by holomorphi maps. Suppose further that M is a not neessarily

�nite-dimensional omplex manifold on whih G ats by holomorphi maps. If

:G=H ! M is a holomorphi equivariant map, x

0

:= (1H), and G

x

0

is the

stabilizer of x

0

, then H � G

x

0

and the homogeneous spae G=G

x

0

arries a unique

omplex struture suh the quotient map G=H ! G=G

x

0

; gH 7! gG

x

0

and the

indued map :G=G

x

0

!M; gG

x

0

7! g:x

0

are holomorphi.

Proof. Let �:G�M !M denote the ation of G on the omplex manifold M

and write V

hol

(M) � V(M) for the Lie algebra of holomorphi vetor �elds on M .

Then

_�: g! V

hol

(M); X 7!

�

p 7! �d�(1; p)(X; 0)

�

is a homomorphism of Lie algebras. In fat, this follows easily from a loal om-

putation in oordinate harts.

We onlude that _� extends to a C -linear homomorphism g

C

! V

hol

(M)

whih we also denote by _�. As the formula for the Lie braket in loal oordinates

shows, the subspae

a := fX 2 V

hol

(M):X (x

0

) = 0g

is a Lie subalgebra of V

hol

(M). Hene b := _�

�1

(a) is a omplex subalgebra of g

C

.

Moreover g

x

0

= b\g aording to the fat that the G-orbit is an equivariant image

of the �nite-dimensional homogeneous manifold G=H . This an also be written as

b \ b = (g

x

0

)

C

for the omplex onjugation X 7! X on g

C

. Further it is easy to

see that Ad(G

x

0

):b = b.

The holomorphy of  now implies that d(1H)T

1H

(G=H) = _�(g)(x

0

) is a

omplex subspae of T

x

0

(M). This means that _�(g)(x

0

) = _�(g

C

)(x

0

) whih shows

that

g

C

= g+ b:

Thus we �nd for eah X 2 g

C

an element Y 2 g and Z 2 b with X = Y + Z.

Hene X �X = Z � Z 2 b+ b, and therefore ig � b+ b whih in turns gives

g

C

= g+ ig � i(b+ b) + b+ b = b+ b:

This ompletes the proof of

Ad(G

x

0

):b = b; b \ b = (g

x

0

)

C

; and b+ b = g

C

;

whih, aording to [Ki76, p. 203℄, is equivalent to the existene of a omplex

struture on G=G

x

0

suh that G ats by holomorphi mappings. More expli-

itly, this omplex struture an be desribed by identifying the tangent spae

T

1G

x

0

(G=G

x

0

)

�

=

g=g

x

0

with the omplex vetor spae g

C

=b. From this desription

of the omplex struture it follows that the anonial maps G=H ! G=G

x

0

and

G=G

x

0

! M are holomorphi beause they are G-equivariant, smooth, and their

di�erentials are omplex linear in the base point. This ompletes the proof.
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Proposition V.9. Suppose that G is �nite-dimensional and L is a holomorphi

G-homogeneous line bundle. Then G ats on the Fr�ehet spae �(L) by (g:s)(x) :=

g:s(g

�1

:x): Let f0g 6= V � �(L) be a losed invariant subspae. Then the repre-

sentation of G on V

0



is a GCS representation.

Proof. First we note that V inherits the struture of a Fr�ehet spae. We laim

that V satis�es the assumptions of Lemma V.7. Let x 2M . Sine V 6= f0g, there

exists s 2 V n f0g. Pik y 2 M with s(y) 6= 0. Then there exists g 2 G with

g:y = x, and we see that (g:s)(x) = g:s(y) 6= 0: This means that V satis�es the

assumptions of Lemma V.7, and thus L

�

=



�

L

V

0



holds for the natural holomorphi

map :M ! P(V

0



):

Moreover

�

g:(x)

�

(s) � x = (x)(g

�1

:s) � x = (g

�1

:s)

�

p(x)

�

= g

�1

:s

�

g:p(x)

�

= g

�1

:

�

g:p(x)

�

(s) � (g:x) = 

�

g:p(x)

�

(s) � x;

shows that :L

�

! V

0



n f0g is G-equivariant and hene that  is G-equivariant.

Pik x

0

2M and let (x

0

) = [�

0

℄. Then the G-homogeneous spae G=G

[�

0

℄

�

=

(M) inherits the struture of a omplex manifold beause  is holomorphi

(Lemma V.8). Moreover, the natural map G=G

[�

0

℄

! P(V

0



) is obtained by fator-

ization of  and therefore holomorphi. So, in view De�nition V.5, it remains to

prove that �

0

2 V

0



is a yli vetor.

In fat, if �

0

is not yli, then V

�

=

(V

0



)

0

, and the Hahn-Banah Theorem

imply the existene of 0 6= s 2 V vanishing on G:�

0

. This means that the setion

s of �(L) vanishes on G:x

0

=M , ontraditing s 6= 0. This ompletes the proof.

Theorem V.10. If G is �nite-dimensional, then a non-zero ontinuous rep-

resentation (�; V ) of G, where V is an LF spae is a generalized oherent state

representation if and only if the ontragredient representation permits a ontinuous

equivariant injetion into �(L) for a homogeneous line bundle p:L!M .

Proof. If (�; V ) is a GCS representation, then Proposition V.6 shows that the

ontragredient representation permits a ontinuous equivariant injetion into �(L)

for a homogeneous line bundle L.

Suppose, onversely, that  :V

0



! �(L) is a ontinuous equivariant injetion.

In view of Proposition V.9, the representation of G on �(L)

0



is a GCS repre-

sentation beause this spae ontains  (V

0



), hene is non-zero. The adjoint map

 

0

: �(L)

0



! (V

0



)

0



�

=

V is ontinuous and G-equivariant. Let �

0

2 �(L)

0



be a GCS

vetor. We laim that  

0

(�

0

) is a GCS vetor in V .

First we show that it is yli. In fat, if it is not yli, then there exists a

non-zero � 2 V

0

vanishing on G: 

0

(�

0

) =  

0

(G:�

0

), i.e.,  (�) vanishes on G:�

0

,

and thus  (�) = f0g beause �

0

is yli, ontraditing the injetivity of  . Thus

 

0

(�

0

) is yli, and it follows in partiular that  

0

(�

0

) 6= 0.

Now the fat that the natural map

P

�

�(L)

0



�

n  (V

0



)

?

! P(V ); [�℄ 7! [ 

0

(�)℄
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is holomorphi and G-equivariant implies that G=G

[ 

0

(�

0

)℄

is a omplex homo-

geneous G-spae suh that the natural map G=G

[ 

0

(�

0

)℄

! P(V ) is holomorphi

(Lemma V.8). This proves that (�; V ) is a GCS representation.
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