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In this paper we dis
uss some of the basi
 general notions and results whi
h play

a key role in the representation theory of in�nite-dimensional Lie groups modeled

over sequentially 
omplete lo
ally 
onvex (s.
.l.
.) spa
es. In the following ea
h

lo
ally 
onvex spa
e will impli
itly be assumed to be Hausdor�.

In the �rst se
tion we review the basi
 fa
ts on 
al
ulus in s.
.l.
. spa
es.

We 
hoose the setup of s.
.l.
. spa
es to ensure the existen
e of integrals of ve
tor

valued 
ontinuous fun
tions on 
ompa
t intervals whi
h is the key to the Funda-

mental Theorem of Cal
ulus. For the setting of Fr�e
het spa
es these results 
an

be found in [Ha82℄, but one readily noti
es that as soon as one has a Fundamental

Theorem of Cal
ulus the other results go through with the same proofs. The s.
.l.
.

setting is also used in [Mi83℄. Moreover, the setting of s.
.l.
. spa
es is the natural

general setting for holomorphi
 mappings between in�nite-dimensional spa
es (
f.

[He89℄). In parti
ular we show that the usual notion of holomorphy is equivalent

to being smooth with 
omplex linear di�erential. In this se
tion we also dis
uss Lie

groups over s.
.l.
. spa
es and how to de�ne their Lie algebra. For the existen
e

of an exponential fun
tion no general result is known, nevertheless in all known

examples an exponential fun
tion seems to exist (
f. [Mi83, p. 1043℄). Moreover the

di�erential of the exponential fun
tion is given by the same formula as in the �nite

dimensional 
ase ([Gr97℄). A parti
ularly interesting 
lass of in�nite-dimensional

Lie groups are the dire
t limit Lie groups. For more details on su
h groups we refer

to [NRW91℄, [NRW93℄, [NRW94℄ and [Gl99℄. For more results on general s.
.l.
. Lie

groups we refer to [Mi83℄ where one �nds in parti
ular a dis
ussion of the 
lass of

\regular" Lie groups whi
h is 
hara
terized by ni
e properties of the exponential

fun
tion. A dis
ussion of regular Lie groups in the \
onvenient setting" of [KM97a℄


an be found in [KM97b℄.

Se
tion II 
onsists of a 
olle
tion of various results from fun
tional analysis,

in parti
ular on dual spa
es, whi
h play a role in dealing with representations of

in�nite-dimensional groups. Sin
e we are working with s.
.l.
. spa
es, one has to

make sure in many 
ir
umstan
es that the spa
es obtained are in fa
t sequentially


omplete. This is where one needs some re�ned tools from fun
tional analysis. In
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addition to 
ompleteness properties, we also dis
uss metrizability of dual spa
es

for 
ertain natural topologies.

In Se
tion III we show how the results from Se
tion II 
an be used to de�ne


onvenient spa
es of smooth and holomorphi
 fun
tions on in�nite-dimensional

manifolds in su
h a way that these spa
es be
ome s.
.l.
. spa
es. We also analyze

the natural a
tions of Fr�e
het Lie groups on these spa
es whi
h are naturally

asso
iated to smooth a
tions. In parti
ular we show that a smooth a
tion of a

Fr�e
het semigroup S on a Fr�e
het manifold M indu
es a smooth a
tion of S on

C

1

(M;V ) for every s.
.l.
. spa
e V . We also derive a 
omplex version of this result

for holomorphi
 a
tions of 
omplex semigroups on 
omplex manifolds.

In Se
tion IV these results are applied to de�ne a derived representation of

a representation (�; V ) of an s.
.l.
. Lie group G on the subspa
e V

1

of smooth

ve
tors and to endow this spa
e with a suitable 
omplete lo
ally 
onvex topology

inherited from C

1

(G; V ) on whi
h the a
tion of G is smooth.

In the last Se
tion V we then turn to a quite general setup for so 
alled


oherent state representations. Analyti
ally these representations are 
hara
terized

by the property that they 
an be realized in spa
es of holomorphi
 se
tions of a

homogeneous 
omplex line bundle. On the geometri
 side this means that the

a
tion of G on the proje
tive spa
e of the dual spa
e has a 
y
li
 
omplex orbit.

These 
on
epts are well studied in the setting of Hilbert spa
es and here we show

that if one 
arefully distinguishes between the spa
es and their duals, then one


an generalize this 
orresponden
e to general s.
.l.
. spa
es.

I. Cal
ulus in lo
ally 
onvex spa
es

In this se
tion we explain brie
y how 
al
ulus works in s.
.l.
. spa
es. The main

point is that one uses the appropriate notion of di�erentiability whi
h for the

spe
ial 
ase of Bana
h spa
es di�ers from Fr�e
het di�erentiability but whi
h is

more 
onvenient in the setup of s.
.l.
. spa
es. Our basi
 referen
e will be [Ha82℄,

where one �nds detailed proofs for the 
ase of Fr�e
het spa
es. One readily observes

that on
e one has the Fundamental Theorem of Cal
ulus, then the proofs of the

Fr�e
het 
ase 
arry over to a more general setup where one still requires smooth

maps to be 
ontinuous (
f. also [Mi83℄). A di�erent approa
h to di�erentiability

in in�nite-dimensional spa
es in the framework of the so 
alled 
onvenient setting


an be found in [FK88℄ and [KM97a℄. A 
entral feature of this approa
h is that

smooth maps are no longer required to be 
ontinuous, but for 
al
ulus over Fr�e
het

spa
es one �nds the same 
lass of smooth maps des
ribed by Hamilton and Milnor.

Another approa
h whi
h also gives up the 
ontinuity of smooth maps and requires

only 
ontinuity on 
ompa
t sets is dis
ussed by E. G. F. Thomas in [Th96℄.

It is also interesting to note that sin
e the Cau
hy Integral Formula plays a

similar role for holomorphi
 fun
tions as the Fundamental Theorem of Cal
ulus

does for di�erentiable fun
tions, the setting of s.
.l.
. spa
es also seems to be the
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appropriate one for holomorphi
 mappings between in�nite-dimensional spa
es.

We show in parti
ular that these two 
on
epts are related by the observation that

the usual notion of holomorphy is equivalent to smoothness with 
omplex linearity

of the di�erential.

Then we turn to manifolds modeled over s.
.l.
. spa
es. Due to the aforemen-

tioned relation between smooth and holomorphi
 fun
tions, 
omplex manifolds are

spe
ial 
ases of real manifolds in any reasonable setting. One of our main obje
-

tives in this se
tion is to dis
uss some of the most basi
 properties of Lie groups

modeled over s.
.l.
. spa
es. In parti
ular we explain how to de�ned their Lie al-

gebra and the adjoint representation. A major diÆ
ulty of the s.
.l.
. setup whi
h

does not arise for Bana
h Lie groups is that one 
annot guarantee a priori that

they have any exponential fun
tion. Thus one is for
ed in many pla
es to argue

without using an exponential fun
tions.

Di�erentiable fun
tions

De�nition I.1. (a) Let X and Y be topologi
al ve
tor spa
es, U � X open and

f :U ! Y a 
ontinuous map. Then the derivative of f at x in the dire
tion of h is

de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever it exists. The fun
tion f is 
alled di�erentiable in x if df(x)(h) exists for

all h 2 X . It is 
alled 
ontinuously di�erentiable or C

1

if it is di�erentiable in all

points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a 
ontinuous map.

(b) Higher derivatives are de�ned by

d

n

f(x)(h

1

; : : : ; h

n

)

:= lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

The fun
tion f is 
alled n-times 
ontinuously di�erentiable or C

n

if

d

n

f :U �X

n

! Y; (x; h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

)

is a 
ontinuous map. We say that f is smooth or C

1

if it is C

n

for all n 2 N.

(
) If X and Y are 
omplex ve
tor spa
es, then the map f is 
alled holomorphi


if it is C

1

and for all x 2 U the map df(x):X ! Y is 
omplex linear (
f. [Mi83, p.

1027℄)
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We note that if X and Y are Bana
h spa
es, then the strong notion of 
ontin-

uous di�erentiability is weaker than the usual notion of 
ontinuous di�erentiability

in Bana
h spa
es whi
h requires that the map x 7! df(x) is 
ontinuous with re-

spe
t to the operator norm. We will dis
uss this point below (Example I.6 and

Theorem I.7). We also note that the existen
e of linear maps whi
h are not 
on-

tinuous shows that the 
ontinuity of f does not follow from the di�erentiability

of f be
ause ea
h linear map f :X ! Y is di�erentiable in the sense of De�nition

I.1(a).

So far we did not use any spe
ial property of the topologi
al ve
tor spa
es

involved. To be able to develop a 
al
ulus on topologi
al ve
tor spa
es whi
h has

at least the most basi
 properties of 
al
ulus in �nite dimensions, we will have to

make the assumption that the ve
tor spa
es under 
onsideration are sequentially


omplete lo
ally 
onvex (s.
.l.
.) spa
es.

The main point in making this assumption is to be able to integrate 
on-

tinuous 
urves 
: [a; b℄ ! X in the sense that there exists a unique element

y :=

R

b

a


(t)dt 2 X with

!(y) =

Z

b

a

h!; 
(t)i dt

for all 
ontinuous linear fun
tionals ! on X (
f. [He89, Prop. 1.2.3℄).

We re
all that a lo
ally 
onvex spa
e X is 
alled quasi
omplete if ea
h 
losed

bounded subset of X is 
omplete as a uniform spa
e. Sin
e Cau
hy sequen
es form

bounded sets, it is 
lear that 
ompleteness implies quasi
ompleteness and that

quasi
ompleteness implies sequential 
ompleteness. For the existen
e of integrals of


ontinuous fun
tions 
:C ! X , where C is a 
ompa
t spa
e, the quasi
ompleteness

of X is the appropriate assumption (
f. [Bou59, x1, no. 2, Cor. de Prop. 5; no. 6℄).

Now we re
all the pre
ise statements of the most fundamental fa
ts.

Lemma I.2. The following assertions hold:

(i) If f is C

1

and x 2 U , then df(x):X ! Y is a linear map, f is 
ontinuous,

and if x+ th 2 U holds for all t 2 [0; 1℄, then

f(x+ h) = f(x) +

Z

1

0

df(x + uh)(h) du:

(ii) If f is C

n

, then the fun
tions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

), x 2 U , are

symmetri
 n-linear maps.

Proof. (i) The �rst part is [Ha82, Th. 3.2.5℄ and the integral representation is

[Ha82, Th. 3.2.2℄. To see that f is 
ontinuous, let p be a 
ontinuous seminorm on Y

and " > 0. Then there exists a balan
ed 0-neighborhood U

1

� X with x+U

1

� U

and p

�

df(x+ uh)(h)

�

< " for u 2 [0; 1℄ and h 2 U

1

. Hen
e

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ uh)(h)

�

du � ";

and thus f is 
ontinuous.

(ii) [Ha82, Th. 3.6.2℄
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Proposition I.3. (The 
hain rule) If X, Y and Z are s.
.l.
. spa
es, U � X

and V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is

C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x):

Proof. [Ha82, Th. 3.3.4℄

Proposition I.4. If X

1

, X

2

and Y are s.
.l.
. spa
es, X = X

1

�X

2

, U � X is

open, and f :U ! Y is 
ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�

and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are 
ontinuous if and only if df exists and is 
ontinuous. In that 
ase we

have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. [Ha82, Th. 3.4.3℄

Remark I.5. (a) If f :X ! Y is a 
ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition I.4 it follows that a 
ontinuous k-linear map m:X

1

�

: : :�X

k

! Y is 
ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indu
tively one obtains that m is smooth with d

k+1

m = 0.

(
) If f :U ! Y is C

n+1

, then Lemma I.2(ii) and Proposition I.4 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in parti
ular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f

is C

1

.

(d) If f :U ! Y is holomorphi
, then the �nite-dimensional theory shows that for

ea
h h 2 X the fun
tion U ! Y; x 7! df(x)(h) is holomorphi
. Hen
e d

2

f(x) is


omplex bilinear and therefore d(df) is 
omplex linear. Thus df :U � X ! Y is

also holomorphi
.
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Di�erentiable fun
tions on Bana
h spa
es

In this subse
tion we dis
uss the relation between the notion of di�erentiability

des
ribed in De�nition I.1 and the notion of Fr�e
het di�erentiability in Bana
h

spa
es. In Example I.6 we will see that for maps between Bana
h spa
es our C

1


on
ept di�ers from the 
on
ept of 
ontinuous Fr�e
het di�erentiability, and in

Theorem I.7 we will show that smooth fun
tions are also smooth in the Fr�e
het

sense (the 
onverse is obvious). For a more detailed dis
ussion of several 
on
epts

of di�erentiability in Fr�e
het and Bana
h spa
es we refer to [Ke74, p. 110℄.

Example I.6. Let E := ff 2 C(R): (8x 2 R)f(x + 1) = f(x)g denote the

Bana
h spa
e of 1-periodi
 
ontinuous fun
tions on R endowed with the norm

kfk

E

:= supfjf(x)j:x 2 Rg. Further let F := ff 2 E \ C

1

(R) : f

0

2 Eg be

endowed with the norm kfk

F

:= kfk

E

+ kf

0

k

E

. We 
onsider the map

m:X := R � F ! E; (x; f) 7! f(x+ �):

We 
laim that in the sense of De�nition I.1(a) this map is C

1

, but that

e

dm:X !

L(X;E); x 7!

�

h 7! dm(x; h)

�

, where L(X;E) denotes the Bana
h spa
e of all


ontinuous operators from X to E, is not 
ontinuous, i.e., m is not C

1

in the

Fr�e
het sense.

We �rst show that the di�erential of m is given by

dm(x; f)(y; h) = f

0

(x + �)y + h(x+ �):

In fa
t, for s 2 R and t 6= 0 we have

1

t

�

m(x+ ty; f + th)(s)�m(x; f)(s)

�

� f

0

(x+ s)y � h(x+ s)

=

1

t

�

f(x+ ty + s) + th(x+ ty + s)� f(x+ s)

�

� f

0

(x + s)y � h(x+ s)

=

1

t

�

f(x+ ty + s)� f(x+ s)

�

� f

0

(x+ s)y + h(x+ ty + s)� h(x+ s)

=

Z

1

0

f

0

(x+ s+ uty)y du� f

0

(x + s)y +

Z

1

0

h

0

(x+ s+ uty)ty du:

Now the fa
ts that f

0

is uniformly 
ontinuous and that h

0

is bounded imply that

this expression tends to 0 in E whenever t ! 0. This proves the formula for the

di�erential of m.

Next we show that dm:X �X ! E is 
ontinuous. In fa
t, the 
ontinuity of

R � F ! E; (x; h) 7! h(x+ �) follows from

kh(x+ �)� h

1

(x

1

+ �)k

E

� kh(x+ �)� h(x

1

+ �)k

E

+ kh(x

1

+ �)� h

1

(x

1

+ �)k

E

� kh

0

k

E

jx� x

1

j+ kh� h

1

k

E

:
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So it remains to see that (x; f) 7! f

0

(x+ �) is also 
ontinuous. We have

kf

0

(x+ �)� f

0

1

(x

1

+ �)k

E

� kf

0

(x+ �)� f

0

(x

1

+ �)k

E

+ kf

0

� f

0

1

k

E

;

so that the asserted 
ontinuity follows from the uniform 
ontinuity of f

0

.

To see that

e

dm:X ! L(X;E) is not 
ontinuous, we note that d

2

m(x; f)(h) =

h(x + �). If �

x

:f = f(x + �), then x 6= x

0

implies that k�

x

� �

x

0

k = 2. This shows

that (x; f) 7! d

2

m(x; f) = �

x

is not 
ontinuous.

Theorem I.7. Let X and Y be Bana
h spa
es, U � X open, and f :U ! Y a

map. Then the following assertions hold:

(i) If f is C

2

, then it is C

1

in the Fr�e
het sense.

(ii) f is C

1

if and only if it is C

1

in the Fr�e
het sense.

Proof. (i) Let us �x x 2 U and suppose that the open Æ-ball U

Æ

(x) about x is


ontained in U . We write d

2

f(x)(h) for the map h

1

7! d

2

f(x)(h; h

1

) in L(X;Y ).

We 
laim that there exists an " 2℄0; Æ[ su
h that the set

M

"

:=

n

1

p

khk

d

2

f(x+ h)(h): 0 < khk < "

o

is bounded. Suppose that this is not the 
ase. Then there exists a sequen
e h

n

! 0

su
h that kd

2

f(x+ h

n

)(h

n

)k � n

p

kh

n

k. For ea
h h

1

2 X we have

1

p

kh

n

k

d

2

f(x+ h

n

)(h

n

)(h

1

) = d

2

f(x+ h

n

)

�

h

n

p

kh

n

k

; h

1

�

! 0

be
ause d

2

f :U � X

2

! Y is 
ontinuous and

h

n

p

kh

n

k

! 0. This 
ontradi
ts the

Bana
h-Steinhaus Theorem, and therefore one of the sets M

"

is bounded.

Now assume that khk < " and that kd

2

f(x+ h)(h)k � C

p

khk for khk < ".

Then

k

e

df(x+ h)�

e

df(x)k = k

Z

1

0

d

2

f(x+ uh)(h) duk �

Z

1

0

kd

2

f(x+ uh)(uh)k

1

u

du

�

Z

1

0

C

p

kuhk

1

u

du = C

p

khk

Z

1

0

u

�

1

2

du = 2C

p

khk:

We 
on
lude that the map

e

df :U ! L(X;Y ) is 
ontinuous.

Furthermore we have

kf(x+ h)� f(x)�

e

df(x)(h)k = k

Z

1

0

e

df(x+ uh)(h)�

e

df(x)(h) duk

� supfk

e

df(x+ h

1

)�

e

df(x)k: kh

1

k < "gkhk;
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and, in view of the 
ontinuity of x 7!

e

df(x), the expression on the right hand side

is o(khk). This proves that f is C

1

in the Fr�e
het sense whenever it is C

2

in the

sense of De�nition I.1(a).

(ii) If f is C

1

in the Fr�e
het sense, then it is trivially C

1

in the sense of De�nition

I.1(a).

Suppose that f is C

1

. Then the map df :U �X ! Y is also C

1

, hen
e in

parti
ular C

2

. Therefore (i) shows that the map

e

d(df):U �X ! L(X

2

; Y )

is 
ontinuous, hen
e in parti
ular that d

2

f :U �X ! L(X;Y ) is 
ontinuous sin
e

d

2

f(x)(h

1

; h

2

) =

e

d(df)(x; h

1

)(h

2

; 0). Now

e

df(x+ h)�

e

df(x)� d

2

f(x)(h) =

Z

1

0

d

2

f(x+ uh)(h)� d

2

f(x)(h) du

implies that d

2

f 
an be viewed as d(

e

df). Iterating this argument, we 
on
lude that

the map

e

df :U ! L(X;Y ) is smooth in the sense of De�nition I.1. Now we we 
an

apply indu
tion and obtain for all n 2 N that the n

th

Fr�e
het derivative of f is

smooth, and therefore that f is smooth in the Fr�e
het sense.

Holomorphi
 fun
tions

In this subse
tion we 
larify the relation between several 
on
epts of holomorphy

for fun
tions between s.
.l.
. spa
es.

De�nition I.8. Let X be a 
omplex ve
tor spa
e.

(a) A subset U � X is 
alled �nitely open if for all �nite-dimensional aÆne sub-

spa
es F � X the set F \ U is open in F .

(b) Let V be a sequentially 
omplete lo
ally 
onvex spa
e. A fun
tion f on a

�nitely open subset U � X is 
alled Gateaux holomorphi
 ((G)-holomorphi
) if

for ea
h �nite-dimensional aÆne subspa
e F � X the fun
tion f j

F\U

is (weakly)

holomorphi
 on F\U (
f. [He89, Th. 2.1.3℄). We write G(U; V ) for the spa
e of (G)-

holomorphi
 V -valued fun
tions on U . Note that, in view of Hartog's Theorem, a

fun
tion is (G)-holomorphi
 if the above 
riterion is satis�ed for all aÆne 
omplex

lines F � X .

(
) Suppose that X is a lo
ally 
onvex spa
e. A (G)-holomorphi
 fun
tion f :U !

V is 
alled Fr�e
het holomorphi
 ((F)-holomorphi
) if for ea
h 
ontinuous seminorm

p on V the fun
tion p Æ f is lo
ally bounded. We re
all from [He89, Prop. 2.4.2(a)℄

that this property is equivalent to the 
ontinuity of the fun
tion f .

8



If X is of 
ountable dimension and we write X =

S

n2N

X

n

with X

n

� X

n+1

and dimX

n

<1, then X 
arries a natural LF spa
e stru
ture whi
h is the �nest

lo
ally 
onvex topology on X (
f. [Tr67, Ex. 13.1℄). The open sets in this topology

are exa
tly the �nitely open sets ([He89, Prop. 2.3.2℄). If dimX > �

0

, then the

topology de�ned by the �nitely open sets is no longer a ve
tor spa
es topology

and therefore does not 
oin
ide with the �nest lo
ally 
onvex topology (
f. [He89,

Rem. 2.3.3℄).

The notion of (G)-holomorphy is the weakest possible notion of holomorphy

in in�nite-dimensional spa
es. Unfortunately it has the drawba
k that in general it

even does not imply 
ontinuity. In this sense the \ni
e" holomorphi
 fun
tions are

the (F)-holomorphi
 fun
tions. Note that (F)-holomorphy is preserved by pass-

ing to lo
ally uniform limits. The relations between (F)-holomorphy and weak

holomorphy are 
lari�ed for \ni
e" spa
es in the following result.

Proposition I.9. For a fun
tion f :U ! V from an open subset U of a lo
ally


onvex spa
e X to the s.
.l.
. spa
e V the following assertions hold:

(i) If X is metrizable, then f is (F)-holomorphi
 if and only if it is weakly (F)-

holomorphi
.

(ii) If X is the indu
tive limit of lo
ally 
onvex spa
es (X

n

)

n2N

su
h that the

origin in X

n

has a neighborhood whi
h is relatively 
ompa
t in X

n+1

, then

(a) f is (F)-holomorphi
 if and only if it is weakly (F)-holomorphi
.

(b) f is 
ontinuous if and only if all the fun
tions f j

U\X

n

are 
ontinuous

for all n 2 N.

(iii) If X is Baire, f 2 G(U; V ), and there exists a sequen
e of 
ontinuous fun
-

tions f

n

:U ! V 
onverging pointwise to f , then f is 
ontinuous, i.e., (F)-

holomorphi
.

Proof. (i), (ii)(a) [He89, Prop. 3.1.2℄

(ii)(b) [He89, Prop. 1.5.1(b)℄

(iii) [He89, Th. 2.4.4℄

Proposition I.10. For a fun
tion f :U ! V the following are equivalent:

(i) f is holomorphi
 in the sense of De�nition I.1(
).

(ii) f is (F)-holomorphi
.

(iii) f is smooth with 
omplex linear di�erentials df(x), x 2 U .

Proof. (i) ) (ii): If f is 
omplex di�erentiable in the sense of De�nition I.1(
),

then f is (G)-holomorphi
 (di�erentiable fun
tions on open domains in the 
omplex

plane are holomorphi
), and 
ontinuous (Lemma I.2(i)), hen
e (F)-holomorphi
.

(ii)) (iii): Suppose that f is (F)-holomorphi
. We have to show that all its higher

derivatives

d

n

f :U �E

n

! V; (x; h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

)

are 
ontinuous maps. It is 
lear that the (G)-holomorphy implies the (G)-holo-

morphy of d

n

f be
ause a similar statement holds in �nite dimensions. Moreover,

9



the generalized Cau
hy inequalities (
f. [He89, Th. 2.3.5℄) imply that whenever f

is lo
ally bounded in the sense of De�nition I.8(
), the same property is inherited

by the fun
tions

(x; h) 7!

b

d

n

f(x; h) := d

n

f(x)(h; : : : ; h):

Next we use the formula

d

n

f(x)(h

1

; : : : ; h

n

) =

1

2

n

n!

X

"2f1;�1g

n

("

1

� � � "

n

)

b

d

n

f(x)("

1

h

1

+ : : :+ "

n

h

n

)

(
f. [Na69, p.7℄) to 
on
lude that the fun
tion d

n

f is also lo
ally bounded in the

sense of De�nition I.8(
), i.e., that d

n

f is (F)-holomorphi
. It follows in parti
ular

that the fun
tions d

n

f are 
ontinuous, hen
e that f is a smooth fun
tion.

(iii) ) (i): This is trivial sin
e C

1

implies C

1

.

The following result 
lari�es the 
on
ept of (F)-holomorphy in the Bana
h

setting.

Proposition I.11. If X and V are 
omplex Bana
h spa
es, U � X a domain,

and f :U ! V a fun
tion. Then the following assertions hold:

(i) If f is (F)-holomorphi
, then f is 
omplex Fr�e
het di�erentiable.

(ii) The fun
tion f is (F)-holomorphi
 if and only if it is Fr�e
het di�erentiable

at ea
h point x 2 U .

Proof. (i) ([HP57, Th. 3.17.1℄) If f is (F)-holomorphi
, then Proposition I.10

shows that f is smooth, hen
e f is Fr�e
het smooth (Theorem I.7).

(ii) [He89, Cor. 3.1.4℄

Di�erentiable manifolds

Sin
e we have a 
hain rule for di�erentiable maps between s.
.l.
. spa
es, we 
an

de�ne smooth manifolds as one de�nes them in the �nite-dimensional 
ase (
f.

[Ha82℄, [Mi83℄). The underlying topologi
al spa
e is always required to be Haus-

dor�. Sin
e lo
ally 
onvex spa
es (whi
h we always assume to be Hausdor�) are

regular in the sense that ea
h point has a neighborhood base 
onsisting of 
losed

sets, this property is inherited by manifolds modeled over these spa
es (
f. [Mi83℄).

One also de�nes ve
tor bundles and in parti
ular the tangent bundle TM ! M

as usual.

Note that it is far more subtle to de�ne a 
otangent bundle be
ause this

requires an s.
.l.
. topology on the dual spa
e of the underlying ve
tor spa
e and

therefore depends on this topology. We will dis
uss topologies on the dual in Se
-

tion II.

10



LetM andN be smooth manifolds modeled over s.
.l.
. spa
es and f :M ! N

a smooth map. We write Tf :TM ! TN for the 
orresponding map indu
ed on

the level of tangent ve
tors. Lo
ally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;

where df(p):T

p

(M) ! T

f(p)

(N) denotes the di�erential of f in p. In view of

Remark I.5(
), the tangent map Tf is also smooth if f is smooth. In the following

we will always identify M with the zero se
tion in TM . In this sense we have

Tf j

M

= f with Tf(M) � N � TN .

A ve
tor �eld on M is a smooth se
tion of the tangent bundle TM ! M .

We write V(M) for the spa
e of all ve
tor �elds on M . If f 2 C

1

(M) is a smooth

fun
tion on M and X 2 V(M), then we obtain a fun
tion on M via

(X:f)(p) := df(p)

�

X(p)

�

:

Sin
e lo
ally X(p) = (p;

e

X(p)

�

, where

e

X is a smooth fun
tion, we have X:f =

df Æ X . Therefore the smoothness of X:f follows from the smoothness of the

maps df :TM ! C and X :M ! TM .

Lemma I.12. If X;Y 2 V(M), then there exists a ve
tor �eld [X;Y ℄ 2 V(M)

whi
h is uniquely determined by the property that on ea
h open subset U �M we

have

(1:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U).

Proof. Lo
ally the ve
tor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and

Y (p) =

�

p;

e

Y (p)

�

. We de�ne a ve
tor �eld by

(1:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the 
hain rule. The

requirement that (1.1) holds on 
ontinuous linear fun
tionals determines [X;Y ℄e

uniquely. Sin
e an easy 
al
ulation shows that (1.2) de�nes in fa
t a smooth ve
tor

�eld on M (
f. Lemma I.14 below), the assertion follows be
ause lo
ally (1.1) is a


onsequen
e of the 
hain rule.

Proposition I.13. (V(M); [�; �℄) is a Lie algebra.

Proof. The 
ru
ial part is to 
he
k the Ja
obi identity. This follows from the

observation that if U � X is an open subset of an s.
.l.
. spa
e, then the mapping

�:V(U)! Der

�

C

1

(U)

�

; �(X)(f) = X:f

is inje
tive and satis�es �([X;Y ℄) = [�(X);�(Y )℄: Therefore the Ja
obi identity

in V(U) follows from the Ja
obi identity in the asso
iative algebra End

�

C

1

(U)

�

.

For the appli
ations to Lie groups we will need the following lemma.
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Lemma I.14. Let M and N be smooth manifolds and ':M ! N a smooth map.

Suppose that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) satisfy

X

N

�

'(p)

�

= d'(p):X

M

(p) and Y

N

�

'(p)

�

= d'(p):Y

M

(p)

for all p 2M , i.e., X

N

Æ' = T'ÆX

M

and Y

N

Æ' = T'ÆY

M

. Then [X

N

; Y

N

℄Æ' =

T' Æ [X

M

; Y

M

℄:

Proof. It suÆ
es to perform a lo
al 
al
ulation. Therefore we may w.l.o.g.

assume that M � F is open, where F is a s.
.l.
. spa
e and that N is an s.
.l.
.

spa
e. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ ' = d' Æ (id

F

�

e

Y

M

): Using

the 
hain rule we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whi
h, in view of Remark I.5(
), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the se
ond derivative (Lemma I.2(ii)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:

In�nite-dimensional Lie groups

In this subse
tion we 
onsider s.
.l.
. Lie groups, i.e., Lie groups modeled over

s.
.l.
. spa
es. Basi
ally we follow [Mi83℄. Throughout this subse
tion G denotes

su
h a Lie group, i.e., G is a smooth manifold whi
h is a group su
h that multipli
a-

tion and inversion are smooth maps. For g 2 G we write �

g

:G! G; x 7! gx for the

left-multipli
ation with g and �

g

:G! G; x 7! xg for the right-multipli
ation with

g. Both are di�eomorphisms of G. Moreover, we write m:G�G! G; (x; y) 7! xy

for the multipli
ation map and �:G! G; x 7! x

�1

for the Inversion.
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Lemma I.15. Let g := T

1

(G) denote the tangent spa
e in the identity. Then the

mapping

�:G� g! TG; (g;X) 7! d�

g

(1):X

is a di�eomorphism.

Proof. First we note that for a produ
t of two smooth manifolds M and N we

have a 
anoni
al di�eomorphism T (M�N)! TM�TN: Sin
e the multipli
ation

map m:G�G! G is smooth, the same holds for its tangent map

Tm:T (G�G)

�

=

TG� TG! TG:

In view of Proposition I.4, dm(g;1)(0; X) = d�

g

(1):X: Therefore the smoothness

of � follows from �(g;X) = Tm(g;X) for (g;X) 2 G�T

1

(G) � T (G)�T (G) and

the fa
t that the restri
tion of Tm to G� T

1

(G) � TG� TG is smooth.

To see that �

�1

is also smooth, let �:TG! G denote the 
anoni
al proje
-

tion. Then

�

�1

:TG! G� g; v 7!

�

�(v); d�

�(v)

�1

�

�(v)

�

:v

�

:

The maps

�:TG! TG� TG; v 7!

�

�(v); v

�

2 G� TG

and em:G�G! G; (g

1

; g

2

) 7! g

�1

1

g

2

are smooth by the 
hain rule. Now

T (em) Æ �(v) = T (em)

�

�(v); v

�

= d

2

em

�

�(v); �(v)

�

:v = d�

�(v)

�1

�

�(v)

�

:v

shows that �

�1

is smooth.

The essential 
onsequen
e of Lemma I.15 is that the tangent bundle of a Lie

group is trivial, so that we 
an identify V(G) with C

1

(G; g). We write V(G)

l

�

V(G) for the subspa
e of left invariant ve
tor �elds, i.e., of those satisfying

(1:3) X(g) = d�

g

(1):X(1)

for all g 2 G. These are the ve
tor �elds that 
orrespond to 
onstant fun
tions

G! g. We see in parti
ular that ea
h left invariant ve
tor �eld is smooth, so that

the mapping

V(G)

l

! g; X 7! X(1)

is a bije
tion. Moreover, Lemma I.14 implies that for X;Y 2 V(G)

l

we have

[X;Y ℄(g) = d�

g

(1):[X;Y ℄(1);

i.e., that [X;Y ℄ 2 V(G)

l

. Thus there exists a unique Lie bra
ket on g satisfying

[X;Y ℄(1) = [X(1); Y (1)℄

for all left invariant ve
tor �elds on G.
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De�nition I.16. The Lie algebra (g; [�; �℄) is 
alled the Lie algebra of G.

De�nition I.17. Let G be a Lie group. Then for ea
h g 2 G the map I

g

:G!

G; x 7! gxg

�1

; is a smooth automorphism, hen
e indu
es a 
ontinuous linear

automorphism

Ad(g) := dI

g

(1): g! g:

We thus obtain an a
tion G� g ! g; (g;X) 7! Ad(g):X 
alled the adjoint a
tion

of G on g.

Proposition I.18. For a Lie group G the following assertions hold:

(i) dm(g

1

; g

2

)(X

1

; X

2

) = d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

and in parti
ular we have

dm(1;1)(X

1

; X

2

) = X

1

+X

2

.

(ii) d�(1):X = �X.

(iii) The mapping Tm:TG�TG! TG de�nes a Lie group stru
ture on TG with

identity element �(1; 0) and inversion T�. More expli
itly multipli
ation and

inversion are given by

�(g

1

; X

1

) ��(g

2

; X

2

) = �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

and �(g;X)

�1

= �

�

g

�1

;�Ad(g):X

�

:

(iv) If X

l

:G! TG is a left invariant ve
tor �eld with X

l

(1) = X, then X

r

: g 7!

�X

l

(g)

�1

is a right-invariant ve
tor �eld with X

r

(1) = X. The assignment

g! V(G)

r

; X 7! X

r

is an antiisomorphism of Lie algebras.

(v) If �:G �M ! M is a smooth a
tion of G on the smooth manifold M , then

T�:TG� TM ! TM is a smooth a
tion of TG on TM . The assignment

_�: g! V(M); with _�(X)(p) := �d�(1; p)(X; 0)

de�nes a homomorphism of Lie algebras.

Proof. (i) In view of Proposition I.4, we have

dm(g

1

; g

2

)(X

1

; X

2

) = d

1

m(g

1

; g

2

)(X

1

) + d

2

m(g

1

; g

2

)(X

2

)

= d�

g

2

(g

1

):X

1

+ d�

g

1

(g

2

):X

2

:

(ii) From m Æ (id

G

��) = 1, we derive 0 = dm(1;1)

�

X; d�(1):X

�

= X + d�(1):X

and hen
e the assertion.

(iii) Let ":G! f1g denote the 
onstant map and u: f1g ! G the group morphism

representing the identity element. Then the group axioms for G are en
oded in the

relations mÆ (m� id) = mÆ (id�m) (asso
iativity), mÆ (�� id) = mÆ (id��) = "

(inversion), and mÆ(u� id) = mÆ(id�u) = id (unit element). Using the fun
torial

properties of T , we see that these properties 
arry over to the 
orresponding maps

on TG and show that TG is a Lie group with multipli
ation Tm, inversion T�,

and unit element �(1; 0).
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To derive an expli
it formula for the multipli
ation in terms of the trivializa-

tion des
ribed in Lemma I.15, using (i), we 
al
ulate

�(g

1

; X

1

) ��(g

2

; X

2

) = dm(g

1

; g

2

)

�

d�

g

1

(1):X

1

; d�

g

2

(1):X

2

�

= d�

g

2

(g

1

)d�

g

1

(1):X

1

+ d�

g

1

(g

2

)d�

g

2

(1):X

2

= d�

g

1

g

2

(1)

�

d�

�1

g

2

(g

2

)d�

g

2

(1):X

1

+X

2

�

= �

�

g

1

g

2

;Ad(g

2

)

�1

:X

1

+X

2

�

:

The formula for the inversion follows dire
tly from this formula.

(iv) In view of (ii) above, we have

X

r

(g)=� d�(g

�1

):X

l

(g

�1

)=� d�(g

�1

)d�

g

�1
(1):X=� d�

g

(1)d�(1):X=d�

g

(1):X

and this proves the �rst part. The se
ond part follows from Lemma I.14 whi
h

shows that

[X

r

; Y

r

℄(g) = d�(g

�1

):[X

l

; Y

l

℄(g

�1

) = d�(g

�1

):[X;Y ℄

l

(g

�1

) = �[X;Y ℄

r

(g):

(v) That T� de�nes an a
tion of TG on TM follows in the same way as in (iii)

above by applying T to the 
ommutative diagrams de�ning a group a
tion.

For the se
ond part we pi
k p 2 M and write '

p

:G ! M; g 7! g:p for the

smooth orbit map of p. Then the equivarian
e of '

p

means that '

p

Æ �

g

= '

g:p

.

From that we derive

�d'

p

(g):X

r

(g) = �d'

p

(g)d�

g

(1):X = �d'

g:p

(1):X = _�(X)(g:p):

Therefore Lemma I.14 and (iv) imply that

_�([X;Y ℄)(p) = �d'

p

(1)[X;Y ℄

r

(1) = d'

p

(1)[X

r

; Y

r

℄(1) = [ _�(X); _�(Y )℄(p):

Remark I.19. If S is an s.
.l.
. semigroup, i.e., a manifold modeled over an

s.
.l.
. spa
e whi
h is endowed with a smooth semigroup multipli
ation m:S�S !

S, then Proposition I.18(iii) and (v) also hold in the following sense. The mapping

Tm:TS � TS ! TS is an s.
.l.
. semigroup stru
ture on the tangent bundle TS,

and if �:M � S ! M is a smooth right a
tion of S on the manifold M , then

T�:TM �TS ! TM is a smooth right a
tion of TS on the tangent bundle TM .
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II. Dual spa
es of lo
ally 
onvex spa
es

In the next se
tion we will have to deal with topologies on fun
tion spa
es whi
h

play a 
ru
ial role in representation theory. In this se
tion we dis
uss the basi


properties of the relevant topologies on the dual spa
e of a lo
ally 
onvex spa
e.

In parti
ular we dis
uss 
ompleteness of the dual spa
e, metrizability, and the

properties of the 
orresponding evaluation map �:X ! X

00

given by �(x)(�) =

�(x).

Let X

0

denote the spa
e of 
ontinuous linear fun
tionals on the lo
ally 
onvex

spa
e X , the topologi
al dual. If X

�

denotes the set of all linear fun
tionals X ! C ,

then X

0

� X

�

is a subspa
e. There are several natural lo
ally 
onvex topologies on

the spa
e X

0

. We write X

0

�

(X

0




, X

0




, X

0

b

) for the spa
e X

0

endowed with the weak-

�-topology, i.e., the topology of pointwise 
onvergen
e (the topology of uniform


onvergen
e on 
ompa
t 
onvex, 
ompa
t, bounded subsets of X). The spa
e X

0

b

is 
alled the strong dual. Note that we have the following 
ontinuous bije
tions:

X

0

b

! X

0




! X

0




! X

0

�

:

Before we turn to a 
loser investigation of the various dual spa
es of lo
ally 
onvex

spa
es, we introdu
e an important 
lass of lo
ally 
onvex spa
es.

De�nition II.1. LetX be a ve
tor spa
e whi
h 
an be written asX =

S

1

n=1

X

n

,

where X

n

� X

n+1

are subspa
es of X whi
h are endowed with the stru
tures of

lo
ally 
onvex spa
es in su
h a way that the in
lusion mappings X

n

! X

n+1

are

topologi
al embeddings. Then we obtain a lo
ally 
onvex ve
tor topology on X by

de�ning a seminorm p on X to be 
ontinuous if and only if its restri
tion to all

the subspa
es X

n

is 
ontinuous. We 
all X the stri
t indu
tive limit of the spa
es

(X

n

)

n2N

. If, in addition, the spa
es X

n

are Fr�e
het spa
es, then X is 
alled an LF

spa
e.

A lo
ally 
onvex spa
e X is 
alled barreled if all lower semi
ontinuous semi-

norms on X are 
ontinuous. Geometri
ally this property 
an be interpreted as

follows. A 
losed 
onvex balan
ed subset of X is 
alled a barrel if it is absorbing.

Then X is barreled if and only if all barrels are 0-neighborhoods (
f. [He89, p.11℄).

Baire spa
es are always barreled ([He89, Prop. 1.4.1℄).

Proposition II.2. If X is a stri
t indu
tive limit of the spa
es (X

n

)

n2N

, then

the following assertions hold:

(i) X

n

,! X is an embedding.

(ii) A linear map f :X ! Y , where Y is a lo
ally 
onvex spa
e, is 
ontinuous if

and only if its restri
tion to ea
h X

n

is 
ontinuous.

If, in addition, all the spa
es X

n

are 
omplete, then:
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(iii) Ea
h X

n

is 
losed in X and X is quasi
omplete.

(iv) Any bounded subset of X is 
ontained in some X

n

.

(v) If the X

n

are Baire spa
es, then X is Baire if and only if X = X

n

holds for

some n 2 N.

(vi) If X is an LF spa
e, then X is 
omplete and barreled.

Proof. (i) [He89, Prop. 1.5.2℄

(ii) This follows dire
tly from the des
ription of the topology by 
ontinuous semi-

norms.

(iii),(iv) [He89, Prop. 1.5.3℄

(v) First we re
all from (iii) that the subspa
es X

n

are 
losed. If X 6= X

n

holds

for all n 2 N, then no X

n

has an interior point. Therefore X =

S

1

n=1

X

n

shows

that this 
annot happen if X is a Baire spa
e. If, 
onversely, X = X

n

for some

n 2 N, then (i) implies that X is a Baire spa
e.

(vi) For the 
ompleteness of X we refer to [Tr67, Th. 13.1℄. Let p be a lower semi-


ontinuous seminorm on X . Then the restri
tions p j

X

n

are lower semi
ontinuous,

hen
e 
ontinuous be
ause Fr�e
het spa
es are Baire spa
es and therefore barreled.

Thus p is 
ontinuous, and this shows that X is barreled.

Metrizability

It is well known that for a normed spa
e the strong dual spa
e X

0

b

is a Bana
h

spa
e, hen
e that the 
ategory of Bana
h spa
es is 
losed under taking dual spa
es.

This 
hanges drasti
ally for Fr�e
het spa
es as we will see in Corollary II.7 below.

De�nition II.3. Let X be a topologi
al ve
tor spa
e. A subset K � X is 
alled

pre
ompa
t if for ea
h 0-neighborhood U � X there exists a �nite subset F � K

withK � F+U . Note that if X denotes the 
ompletion ofX ([Tr67, Th. 5.2℄), then

the pre
ompa
tness of a subset K � X is equivalent to the relative 
ompa
tness

of K as a subset of X (
f. [Tr67, Prop. 6.9℄).

Lemma II.4. If V is a lo
ally 
onvex spa
e and K � V is a pre
ompa
t set,

then 
onv(K) is pre
ompa
t. If, in addition, V is quasi
omplete, then 
onv(K) is


ompa
t.

Proof. First we use [Tr67, Prop. 7.11℄ to see that 
onv(K) and hen
e also

C := 
onv(K) is pre
ompa
t (
f. [Tr67, Def. 6.3℄). Further ea
h pre
ompa
t set is

bounded. In fa
t, let U be a balan
ed 
onvex 0-neighborhood in X . Then there

exists a �nite set F � X with C � F + U and F � nU holds for some n 2 N,

hen
e C � nU + U � (n + 1)U . If V is quasi
omplete, then the fa
t that C is


losed and bounded implies that C is 
omplete and therefore 
ompa
t be
ause it

is pre
ompa
t.
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For a subset B of a lo
ally 
onvex spa
e we de�ne its polar

b

B := f� 2 X

0

: (8x 2 B)j�(x)j � 1g

and for C � X

0

we put

b

C := f� 2 X : (8� 2 C)j�(x)j � 1g:

We re
all the following basi
 properties of polar sets. They show in parti
ular that

the assignments B 7!

b

B and C 7!

b

C are mutually inverse bije
tions from the set of


losed 
onvex balan
ed subsets of X onto the set of weak-�-
losed 
onvex balan
ed

subsets of X

0

.

Lemma II.5. (a) B �

b

C if and only if C �

b

B.

(b) B �

b

b

B and

b

b

B is the balan
ed 
onvex 
losure of B.

(
) C �

b

b

C and

b

b

C is the balan
ed 
onvex weak-�-
losure of C.

(d) A 
losed 
onvex balan
ed subset B � X is a barrel if and only if

b

B is weak-�-

bounded.

(e) A subset B � X is bounded if and only if

b

B is absorbing.

(f) If B � X is 
ompa
t and 
onvex, then

b

b

B is 
ompa
t.

Proof. (a) is trivial and (b), (
) are 
onsequen
es of the Bipolar Theorem.

(d) B is a barrel if and only if it is absorbing. In view of B =

b

b

B this means that

the fun
tion

�(x):

b

B ! C ; � 7! �(x)

is bounded for ea
h x 2 X . This in turn means that

b

B is weak-�-bounded.

(e) A

ording to [He89, Prop. 1.4.2℄, a subset B � X is bounded if and only

if it is bounded for the weak topology on X whi
h in turn is equivalent to the

boundedness of all 
ontinuous linear fun
tionals on B, i.e., that

b

B is absorbing.

(f) If B � X is a 
ompa
t 
onvex set, then [Bou87, Ch. IV, x1, no. 1, Rem. 1℄

shows that

b

b

B is 
ompa
t. In fa
t, it is 
losed and 
ontained in the 
onvex hull of

the sets �2iB;�2B whi
h is 
ompa
t.

Proposition II.6. Let X be a lo
ally 
onvex Baire spa
e. Then the following

assertions hold:

(i) X

0

b

is metrizable if and only if X is normable.

(ii) X

0




and X

0

�

are metrizable if and only if dimX <1.

Proof. If X is �nite-dimensional, then X

0

�

= X

0




= X

0

b

is metrizable, and if X

is normable, then X

0

b

is a Bana
h spa
e and in parti
ular metrizable.

(a) Suppose that X

0

b

is metrizable. Then the there exists a 
ountable basis (U

n

)

n2N

of 0-neighborhoods in X

0

b

. The sets

b

B � X

0

b

for B � X bounded form a neighbor-

hood basis for 0. Hen
e there exist bounded sets B

n

� X with




B

n

� U

n

.
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Let C

n

:=







B

n

. Then




C

n

=




B

n

shows that C

n

is bounded be
ause




C

n

is

absorbing (Lemma II.5(e)). Let x 2 X . Then the evaluation fun
tional

�(x):X

0

b

! C ; f 7! f(x)

is 
ontinuous, i.e.,

d

fxg = ff 2 X

0

: jf(x)j � 1g is a 0-neighborhood in X

0

. Thus we

�nd n 2 N with




B

n

�

d

fxg. Now the Bipolar Theorem implies that x 2

d

d

fxg �







B

n

=

C

n

and therefore X =

S

n2N

C

n

. Sin
e the sets C

n

are 
losed, the fa
t that X is a

Baire spa
e implies that one of the sets C

n

has interior points. Hen
e C

n

� C

n

is

a bounded neighborhood of 0 in X , and therefore X is normable (
f. [He89, p.3℄).

(b) Assume that X

0




is metrizable. Then the same argument as above shows that

there exists a 
ompa
t subset K � X su
h that C :=

b

b

K has interior points. Sin
e

C 
oin
ides with the 
losed balan
ed 
onvex hull of K (Lemma II.5(b)), it is a pre-


ompa
t subset of X (Lemma II.4). Hen
e C�C is a pre
ompa
t 0-neighborhood.

Therefore X is normable in su
h a way that the balls are pre
ompa
t. Now the

balls in the 
ompletion X of X are 
ompa
t and therefore dimX � dimX <1.

(
) If X

0

�

is metrizable, then similar arguments as in (b) show that there exists a

�nite subset F � X su
h that

b

b

F has interior points. But sin
e spanF is 
losed, it

follows that

b

b

F � spanF , when
e dimX = dim span

b

b

F <1.

Corollary II.7. If X is a Fr�e
het spa
e, then X

0




is a Fr�e
het spa
e if and only

if dimX <1.

Semire
exivity

We re
all that for a lo
ally 
onvex spa
e X we have several natural topologies on

the dual spa
e leading to the following 
ontinuous bije
tions:

X

0

b

�

����!X

0




�

����!X

0







����!X

0

�

whi
h indu
e weak-�-
ontinuous inje
tive maps

(X

0

�

)

0




0

����!(X

0




)

0

�

0

����!(X

0




)

0

�

0

����!(X

0

b

)

0

:

We write �

�

:X ! (X

0

�

)

0

for the evaluation map, and �




:= 


0

Æ �

�

, �




:= �

0

Æ �




,

and �

b

:= �

0

Æ �




. The spa
e X is 
alled semire
exive if the map �

b

is surje
tive,

hen
e a bije
tion. Note that all these maps are inje
tive with a weak-�-dense range.

Theorem II.8. For a lo
ally 
onvex spa
e the following assertions hold:

(i) The maps �

�

and �




are bije
tions.

(ii) If X is quasi
omplete, then �




is a bije
tion.
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(iii) If X is semire
exive, then X is quasi
omplete for the original topology and

the weak topology.

Proof. (i) We show that �




is surje
tive. Then �

�

is also surje
tive be
ause 


0

is inje
tive.

If C � X is a 
ompa
t 
onvex set, then

b

b

C is 
ompa
t (Lemma II.5(f)).

Hen
e the topology on X

0





oin
ides with the topology of uniform 
onvergen
e

on balan
ed 
ompa
t 
onvex sets. If C is a balan
ed 
ompa
t 
onvex set, then

C is also weakly 
ompa
t and hen
e �




(C) � (X

0




)

0

is weak-�-
ompa
t. Ea
h

� 2 (X

0




)

0

is bounded on some set

b

C � X

0

, hen
e 
ontained in some set of the type

n

\

\

�




(C) = n�




(

b

b

C) � �




(X) (Bipolar Theorem). This proves that �




(X) = (X

0




)

0

.

(ii) IfX is quasi
omplete and C � X is 
ompa
t, then 
onv(C) is 
ompa
t (Lemma

II.4). Therefore the mapping �:X

0




! X

0




is a homeomorphism, i.e., X

0




= X

0




.

Sin
e �




is bije
tive a

ording to (i), the surje
tivity of �




= �

0

Æ �




follows.

(iii) (
f. [He89, Th. 1.1.2(e)℄) Let C � X be 
losed balan
ed 
onvex and bounded.

Then C is also weakly 
losed, and therefore �

b

(C) � �

b

(X) = (X

0

b

)

0

is a weak-�-


losed 
onvex balan
ed subset. Sin
e

\

�

b

(C) =

b

C � X

0

b

is a 0-neighborhood, the set

�

b

(C) is weak-�-
ompa
t (Bana
h-Alaoglu Theorem). Hen
e C is weakly 
ompa
t.

Now let B � X be 
losed and bounded. Then its 
losed balan
ed 
onvex

hull C is also bounded, hen
e weakly 
ompa
t and therefore in parti
ular weakly


omplete. Further ea
h Cau
hy net in B for the original topology is a weak Cau
hy

net, hen
e 
onverges weakly in B and therefore also in the strong topology be
ause

the 
losed 
onvex neighborhoods of a point in X are also weakly 
losed.

Proposition II.9. Let X be a lo
ally 
onvex spa
e.

(i) A subset K � X

0

is equi
ontinuous if and only if its polar

b

K � X is a

0-neighborhood in X.

(ii) If K is equi
ontinuous, then

(a) K is weak-�-relatively 
ompa
t.

(b) K is relatively 
ompa
t in X

0




.

(
) K is strongly bounded.

Furthermore (a), (b) or (
) implies that K is weak-�-bounded, i.e.,

b

K � X is a

barrel. These properties are all equivalent if and only if X is barreled.

(iii) If X is barrelled, then the following properties are equivalent for K � X

0

:

(a) K is equi
ontinuous.

(b) K is bounded for one of the topologies X

0

�

, X

0




, X

0




or X

0

b

.

(
) K is relatively 
ompa
t for one of the topologies X

0

�

, X

0




or X

0




.

Proof. (i) This is more or less the de�nition of equi
ontinuity (
f. [Tr67, Prop.

32.7℄).

(ii) ([He89, Th. 1.4.4℄) If K is equi
ontinuous, then its balan
ed 
onvex 
losure in

the weak-�-topology of K has the same polar set

b

K � X (Lemma II.5(
)). So we
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may w.l.o.g. assume that K =

b

b

K. Sin
e

b

K is a 0-neighborhood in X , the weak-

�-
ompa
tness of K =

b

b

K follows from the Bana
h-Alaoglu Theorem. Now the

topology of 
ompa
t 
onvergen
e and the weak-�-topology 
oin
ide on K ([Tr67,

Prop. 32.5℄), so that K is also 
ompa
t in X

0




. If B � X is bounded, then there

exists n 2 N with B � n

b

K, i.e., K � n

b

B. Hen
e K is strongly bounded. It is 
lear

that (a), (b) or (
) implies that K is weak-�-bounded.

The equivalen
e of the stated properties is equivalent to the assertion that

if K is weakly bounded then K is equi
ontinuous, i.e., that the barrel

b

K is a 0-

neighborhood (Lemma II.5(d)). This is true if X is barreled, and if, 
onversely,

X is not barreled and B � X is a barrel whi
h is not a 0-neighborhood, then its

polar

b

B � X

0

is weakly bounded but not equi
ontinuous.

(iii)(a) ) (b): If K is equi
ontinuous, then (ii) implies that K is bounded in X

0

b

,

hen
e also in the spa
es X

0

�

, X

0




and X

0




.

(b)) (
): If (b) holds, thenK is in parti
ular bounded inX

0

�

, i.e., weak-�-bounded.

Hen
e (ii) shows that it is also relatively 
ompa
t in X

0




. Thus it is also 
ompa
t

as a subset of X

0




and X

0

�

.

(
) ) (a): If K is relatively 
ompa
t for one of the topologies X

0

�

, X

0




or X

0




, then

it is in parti
ular weak-�-relatively 
ompa
t, hen
e weak-�-bounded. As we have

seen in the pre
eding argument, this implies that K is equi
ontinuous.

Lemma II.10. For a lo
ally 
onvex spa
e X the following assertions hold:

(i) The mapping �




:X ! (X

0




)

0




is an open map onto �




(X).

(ii) The mapping �

b

:X ! (X

0

b

)

0

b

is an open map onto �

b

(X).

(iii) If X is barreled, then the maps �




:X ! (X

0




)

0




and �

b

:X ! (X

0

b

)

0

b

are embed-

dings.

Proof. (i) If U � X is a 
losed 
onvex balan
ed 0-neighborhood, then

b

U � X

0




is


losed and equi
ontinuous, hen
e 
ompa
t in X

0




(Proposition II.9(ii)(b)). There-

fore

b

b

U � (X

0




)

0




is a 0-neighborhood with

b

b

U \ �




(X) = �




(U) (Bipolar Theorem).

Thus �




is open onto �




(X).

(ii) For a 
losed 
onvex balan
ed 0-neighborhood U � X the polar set

b

U � X

0

is equi
ontinuous and therefore strongly bounded (Proposition II.9(ii)(
)). Thus

b

b

U � (X

0

b

)

0

b

is a 0-neighborhood with

b

b

U \�

b

(X) = �

b

(U). Therefore �

b

is open onto

�

b

(X).

(iii) Suppose that X is barreled. If K � X

0




is 
ompa
t or K � X

0

b

, then it is

equi
ontinuous (Proposition II.9(iii)), and therefore

b

K � X is a 0-neighborhood.

Hen
e �




:X ! (X

0




)

0




and �

b

:X ! (X

0

b

)

0

b

are 
ontinuous maps. In view of (i) and

(ii), this means that both are embeddings.

Theorem II.11. (Re
exivity 
riterion for the 
-topologies) If X is a quasi
om-

plete barreled spa
e, then �




:X ! (X

0




)

0




is an isomorphism of topologi
al ve
tor

spa
es. This holds in parti
ular if X is an LF spa
e.
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Proof. Sin
e X is quasi
omplete, the surje
tivity of �




follows from Theorem

II.8(ii). If, in addition, X is barreled, then Lemma II.10(iii) shows that �




is an

isomorphism of topologi
al ve
tor spa
es.

To see that the assertion holds for LF spa
es, we re
all from Proposition

II.2(vi) that they are 
omplete and barreled.

Completeness properties of the dual spa
e

Now we turn to the question whether a dual spa
e X

0

is 
omplete with respe
t

to a given topology. The following lemma is the topologi
al ba
kground for the


ompleteness 
riteria.

Proposition II.12. (i) Let X be a topologi
al spa
e satisfying the �rst axiom of


ountability and V be a (sequentially) 
omplete lo
ally 
onvex spa
e. Then the spa
e

C(X;V )




of 
ontinuous maps X ! V is a (sequentially) 
omplete lo
ally 
onvex

spa
e with respe
t to the topology of uniform 
onvergen
e on 
ompa
t subsets of

X.

(ii) If X is an LF spa
e and V is a (sequentially) 
omplete lo
ally 
onvex spa
e,

then the spa
e L(X;V )




of 
ontinuous linear maps endowed with the topology of

uniform 
onvergen
e on 
ompa
t subsets of X is a (sequentially) 
omplete lo
ally


onvex spa
e.

(iii) If X is a Baire spa
e and V is an s.
.l.
. spa
e, then the spa
e L(X;V ) is

sequentially 
omplete with respe
t to any topology of uniform 
onvergen
e on a

system of subsets of X whose union is X.

Proof. (i) That C(X;V )




is a lo
ally 
onvex spa
e follows from the fa
t that

its topology is de�ned by the seminorms

p

K

(f) := supfp

�

f(x)

�

:x 2 Kg;

where K � X is a 
ompa
t subset and p:V ! R

+

is a 
ontinuous seminorm.

Let F be a Cau
hy-Filter in C(X;V )




. Sin
e V is 
omplete, F 
onverges

pointwise to a fun
tion f :X ! V . We 
laim that F 
onverges uniformly on ea
h


ompa
t subset K of X . In fa
t, let p be a 
ontinuous seminorm on V and " > 0.

Then there exists F 2 F with p

K

(g � h) � " for all g; h 2 F . Sin
e f(x) 2 F(x)

holds for all x 2 K, we 
on
lude that p

K

(g � f) � " for all g 2 F . Hen
e F ! f

holds uniformly on ea
h 
ompa
t subset K � X and thus f is 
ontinuous on ea
h


ompa
t subset of X .

If (x

n

)

n2N

with x

n

! x is a 
onvergent sequen
e in X , then the set fxg [

fx

n

:n 2 Ng is 
ompa
t. Sin
e f is 
ontinuous on this set, it is 
ontinuous by our

assumption on the spa
e X . This proves that C(X;V )




is 
omplete.

If V is sequentially 
omplete, then similar arguments show that ea
h Cau
hy

sequen
e in C(X;V )





onverges, hen
e that C(X;V )




is sequentially 
omplete.
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(ii) ([Tr67, Cor. 32.2.4, p.345℄) First we note that Fr�e
het spa
es satisfy the as-

sumption of (i). So let (X

n

)

n2N

be a de�ning sequen
e for the topology on X . That

L(X;V )




is lo
ally 
onvex follows as in (i). If F is a Cau
hy �lter in L(X;V )




,

then we see as in (i) that F 
onverges pointwise to some fun
tion f :X ! V . Then

f must be linear, and, in view of (i), f is 
ontinuous on ea
h of the subspa
es X

n

,

hen
e is 
ontinuous on X . This proves that L(X;V )




is 
omplete. If V is sequen-

tially 
omplete, then we see by a similar argument that L(X;V )




is sequentially


omplete.

(iii) If (f

n

)

n2N

is a Cau
hy sequen
e in L(X;V ) for the topology of uniform 
on-

vergen
e on a system S of subsets of X whose union is X , then the sequential 
om-

pleteness of V implies that f

n


onverges pointwise to a linear fun
tion f :X ! V .

It follows in parti
ular that f is (G)-holomorphi
. Therefore the 
ontinuity of f

follows from Proposition I.9(iii). Sin
e (f

n

) is a Cau
hy sequen
e for the topology

of uniform 
onvergen
e on the sets in S, we see that f

n

! f holds uniformly on

sets in S. This proves that L(X;V ) is sequentially 
omplete with respe
t to the

topology of uniform 
onvergen
e on sets in S.

Corollary II.13. (a) If X is an LF spa
e, then X

0




is a 
omplete lo
ally 
onvex

spa
e.

(b) If X is a Baire spa
e, then X

0

�

, X

0




, X

0




, and X

0

b

are sequentially 
omplete.

Note that in general one 
annot expe
t that the dual X

0

is 
omplete with

respe
t to the topology of pointwise 
onvergen
e. With respe
t to this topology

the embedding X

0

�

,! X

�

is a dense embedding if X

�


arries the topology of

pointwise 
onvergen
e. Therefore X

0

�

is not 
omplete unless X

0

= X

�

, i.e., ea
h

linear fun
tional on X is 
ontinuous. This holds in parti
ular for the �nest lo
ally


onvex topology on X , i.e., the topology for whi
h all seminorms are 
ontinuous,

and also for the weak topology de�ned by X

�

.

Lemma II.14. If X

0

�

is quasi
omplete, then the same holds for X

0




, X

0




and X

0

b

.

Proof. If B � X

0

is 
losed and bounded for one of the topologies X

0




, X

0




or X

0

b

,

then B is also weak-�-bounded. Let F be a Cau
hy �lter in B. Then F 
onverges

to some element � in the weak-�-
losure of B. Then F also 
onverges to � in the

original topology, and we see that � 2 B. This shows that B is 
omplete, i.e., that

X

0




, X

0




and X

0

b

are quasi
omplete.

Proposition II.15. If X is barreled or semire
exive, then the spa
es X

0

�

, X

0




,

X

0




, and X

0

b

are quasi
omplete.

Proof. First we assume that X is barreled. In view of Lemma II.14, it suÆ
es

to show that X

0

�

is quasi
omplete. Let B � X

0

�

be 
losed and bounded. Then

b

B

is a barrel (Lemma II.5(d)), hen
e a 0-neighborhood, and therefore Proposition

II.9(ii) shows that B is weak-�-
ompa
t, hen
e in parti
ular weak-�-
omplete.

If X is semire
exive, then X

0

b

is also semire
exive and therefore weakly qua-

si
omplete ([He89, Th. 1.1.2(d)(e)℄ and Theorem II.8). Further �

b

(X) = (X

0

b

)

0

, so
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that the weak topology on X

0

b


oin
ides with the weak-�-topology. Thus X

0

�

is

quasi
omplete.

To 
larify the relation between the assumptions in Proposition II.15, we note

that a barreled spa
e need not be semire
exive be
ause there exist Bana
h spa
es

whi
h are not re
exive. On the other hand one would not expe
t that the semire-


exivity has strong impli
ations for the topology on X be
ause it only means

that the map �

b

is surje
tive. Nevertheless the following lemma shows that it has


onsequen
es for the strong dual.

Lemma II.16. If X is semire
exive, then the strong dual X

0

b

is barreled. Fur-

thermore the maps

e�

b

:X

0

b

! ((X

0

b

)

0

b

)

0

b

and e�




:X

0

b

! ((X

0

b

)

0




)

0




are topologi
al isomorphisms.

Proof. Let C � X

0

b

be a barrel. Then C is 
onvex and 
losed in X

0

b

, hen
e also

weakly 
losed. Thus �

b

(X) = (X

0

b

)

0

shows that C is also weak-�-
losed, and the

Bipolar Theorem gives

b

b

C = C. But

b

C � X is weakly bounded (Lemma II.5(e)),

and so

b

C is bounded whi
h in turn implies that C =

b

b

C is a 0-neighborhood in X

0

b

.

This proves that X

0

b

is barreled.

Moreover X

0

b

is semire
exive and quasi
omplete ([He89, Th. 1.1.2(d)(e)℄), so

Theorem II.11 implies that e�




is an isomorphism. Sin
e X

0

b

is semire
exive and

barreled, the assertion about e�

b

follows from Lemma II.10(iii).

III. Topologies on fun
tion spa
es

To 
onstru
t and analyze representations of in�nite-dimensional Lie groups and

semigroups one often has to 
onsider representations in spa
es of smooth fun
tions

on G. So one has to endow these fun
tion spa
es with a suitable (sequentially)


omplete lo
ally 
onvex topology. The importan
e of these spa
es 
omes from the

fa
t that for smooth representations a dense subspa
e of the representation spa
e

V 
an be embedded in C

1

(G; V ).

First we dis
uss the spa
e C

1

(M;V ) of smooth fun
tions on M with values

in an s.
.l.
. spa
e V and show that this spa
e 
arries a natural s.
.l.
. topology

whi
h is, roughly stated, the topology of uniform 
onvergen
e of all derivatives on


ompa
t sets. The main point here is to use the appropriate interpretation of the

higher derivatives that permits indu
tive arguments. We also show that smooth

Lie group a
tions lead to smooth a
tions on the 
orresponding spa
es of smooth

fun
tions.

Next we show that smooth mappings between open subsets of s.
.l.
. spa
es

indu
e smooth mappings on the level of fun
tion spa
es. This result is 
ru
ial to
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show that groups of the type C

1

(M;G), M a 
ompa
t manifold and G a �nite

dimensional Lie group are in fa
t Lie groups modeled over Fr�e
het spa
es in the

sense spe
i�ed in Se
tion I (
f. [Ne99℄).

Finally we turn to the spa
e of holomorphi
 fun
tions on a 
omplex manifold

M over a Baire s.
.l.
. spa
e with values in a s.
.l.
. spa
e V and show that it

is sequentially 
omplete with respe
t to the topology of uniform 
onvergen
e on


ompa
t subsets and that holomorphi
 semigroup a
tions lead to holomorphi
 a
-

tions on the 
orresponding spa
es of holomorphi
 fun
tions. Here the assumption

that M is modeled on a Baire spa
e, an assumption whi
h is in parti
ular satis-

�ed for Fr�e
het spa
es, is 
ru
ial for the sequential 
ompleteness of the spa
e of

holomorphi
 fun
tions on M .

The spa
e C

1

(M;V )

Let V be a (sequentially) 
omplete lo
ally 
onvex spa
e. If M is a smooth Fr�e
het

manifold, then we write C

1

(M;V )




for the spa
e C

1

(M;V ) endowed with the

topology of 
ompa
t 
onvergen
e. This topology on C

1

(M;V ) need not be 
om-

plete. Nevertheless, the spa
e C(M;V )




is (sequentially) 
omplete by Proposition

II.12(i).

For f 2 C

1

(M;V ) we obtain a smooth fun
tion df :T (M) ! V , where

we identify T

v

(V ) with V in ea
h point v 2 V , and indu
tively we get smooth

fun
tions d

(n)

f :T

(n)

(M)! V . Thus we obtain an embedding

C

1

(M;V )!

1

Y

n=0

C

1

�

T

(n)

(M); V

�




:

We endow C

1

(M;V ) with the topology indu
ed by the produ
t topology via

this embedding (
f. [Th95℄). Note that if M = X is a ve
tor spa
e, then X

0




!

C

1

(X; C ) is a topologi
al embedding.

Proposition III.1. If M is a Fr�e
het manifold and V is a (sequentially) 
om-

plete lo
ally 
onvex spa
e, then the spa
e C

1

(M;V ) is a (sequentially) 
omplete

lo
ally 
onvex spa
e.

Proof. Let (f

i

)

i2I

be a Cau
hy net in C

1

(M;V ). Then Proposition II.12(i) im-

plies the existen
e of 
ontinuous fun
tions F

n

:T

(n)

(M)! V su
h that d

(n)

f

i

! F

n

holds uniformly on ea
h 
ompa
t subset of T

(n)

(M).

Next we show that f 2 C

1

(M;V ). To do this, we may w.l.o.g. assume thatM

is an open subset of a Fr�e
het spa
e X . Then the uniform 
onvergen
e of df

i

! F

1

on 
ompa
t sets implies for ea
h suÆ
iently small t 6= 0 that

1

t

�

f(x+ th)� f(x)

�

= lim

I

1

t

�

f

i

(x+ th)� f

i

(x)

�

= lim

I

Z

1

0

df

i

(x + uth)(h) du

=

Z

1

0

F

1

(x+ uth)(h) du:
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Now the 
ontinuity of F

1

leads to

lim

t!0

1

t

�

f(x+th)�f(x)

�

= lim

t!0

Z

1

0

F

1

(x+uth)(h) du =

Z

1

0

F

1

(x)(h) du = F

1

(x)(h):

This proves that f 2 C

1

(M;V ) with df = F

1

. By indu
tion we now obtain f 2

C

n

(M;V ) and d

(n)

f = F

n

. Thus f 2 C

1

(M;V ) and f

i

! f holds in C

1

(M;V ).

Before we pro
eed, we need a topologi
al lemma.

Lemma III.2. Let M and N be Hausdor� spa
es and V a lo
ally 
onvex spa
e.

Then the following assertions hold:

(i) For f 2 C(M �N; V ) the map

M ! C(N; V )




; x 7!

�

y 7! f(x; y)

�

is 
ontinuous.

(ii) If �:M ! N is 
ontinuous, then the map

�

�

:C(N; V )




! C(M;V )




; f 7! f Æ �

is 
ontinuous.

(iii) Let S be a metrizable topologi
al semigroup whi
h a
ts 
ontinuously on M

from the right. Then the a
tion

S � C(M;V )




! C(M;V )




; (s; ') 7!

�

x 7! '(x:s)

�

is 
ontinuous.

Proof. (i) First we re
all that the topology on C(N; V ) 
oin
ides with the


ompa
t open topology (
f. [Bou71, x3, no. 4, Th. 10℄). Let K � N be 
ompa
t

and U � V be open. We write W (K;U) := fh 2 C(N; V ):h(K) � Ug for the


orresponding fundamental open subset of C(N; Y )




. Suppose that f

x

: y 7! f(x; y)

is 
ontained inW (K;U), i.e., fxg�K � f

�1

(U). Sin
e f

�1

(U) is an open subset of

M�N and fxg�K �M�N is 
ompa
t, there exists an open neighborhoodO �M

of x su
h that O�K � f

�1

(U). This means that x 2 O � fp 2M : f

p

2W (K;U)g

whi
h proves the assertion.

(ii) Let K � M be 
ompa
t, p a 
ontinuous seminorm on V , and p

K

(f) :=

supfp

�

f(x)

�

:x 2 Kg the 
orresponding seminorm on C(M;V )




. These seminorms

de�ne the topology on this spa
e. Now the set �(K) is 
ompa
t and p

K

(�

�

f) �

p

�(K)

(f) shows that the seminorms p

K

Æ �

�

are 
ontinuous for ea
h 
hoi
e of p

and K, hen
e that �

�

is 
ontinuous.

(iii) Let s

n

! s, f

i

! f in C(M;V )




,K �M a 
ompa
t subset, and p a 
ontinuous

seminorm on V . Then the 
losure

e

K of the set

S

1

n=1

K:s

n

is 
ompa
t be
ause it is
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the image of the 
ompa
t set K�fs; s

n

:n 2 Ng under the a
tion map. For x 2 K

we have

p

�

(s

n

:f

i

)(x) � (s:f)(x)

�

= p

�

f

i

(x:s

n

)� f(x:s)

�

� p

�

f

i

(x:s

n

)� f(x:s

n

)

�

+ p

�

f(x:s

n

)� f(x:s)

�

� p

e

K

(f

i

� f) + p

�

f(x:s

n

)� f(x:s)

�

:

Therefore the uniform 
ontinuity of f on

e

K implies that p

K

(s

n

:f

i

� s:f) ! 0.

Hen
e s

n

:f

i

! s:f in C(M;V )




. Thus the a
tion of S on C(M;V )




is 
ontinuous.

In the following lemma the assumption that M is Fr�e
het is made to insure

that the spa
e C

1

(M;V ) is sequentially 
omplete (Proposition III.1), a property

needed to make 
al
ulus work (
f. Se
tion I).

Lemma III.3. (i) Let �:M ! N be a smooth map between Fr�e
het manifolds.

Then the linear map

�

�

:C

1

(N; V )! C

1

(M;V ); f 7! f Æ �

is 
ontinuous.

(ii) Let M be a Fr�e
het manifold and �

M

:TM ! M the 
anoni
al proje
tion.

Then the assignment

C

1

(M;V )! C

1

(TM; TV )

�

=

C

1

(TM; V )

2

; f 7! Tf = (f Æ �

M

; df)

is an embedding of lo
ally 
onvex spa
es.

Proof. (i) (
f. [Th95, Prop. 3℄) For f 2 C

1

(N; V ) we have d(f Æ �) = df Æ T�

and indu
tively d

(n)

(f Æ�) = d

(n)

f ÆT

(n)

�: Therefore the 
ontinuity of �

�

follows

from Lemma III.2(ii).

(ii) Sin
e d

(n)

df = d

(n+1)

f for n 2 N, it is 
lear that the map C

1

(M;V ) !

C

1

(TM; V ); f 7! df is 
ontinuous. Sin
e C

1

(M;V ) ! C

1

(TM; V ); f 7! f Æ �

M

is 
ontinuous a

ording to (i), we see that f 7! Tf is 
ontinuous.

If �:M ! TM is the natural embedding as the 0-se
tion, then (f Æ�

M

)Æ� =

f . Therefore (i) shows that the inverse Tf ! f is also 
ontinuous. This proves

that f 7! Tf is an embedding.

In many appli
ations the following theorem is a very eÆ
ient tool.

Theorem III.4. Let M and N be Fr�e
het manifolds, f 2 C

1

(M �N; V ), and

f

x

(y) := f(x; y). Then the map

�:M ! C

1

(N; V ); x 7! f

x

is smooth.
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Proof. We prove the theorem in several steps. First we note that w.l.o.g. we

may assume that M is an open subset of a Fr�e
het spa
e X .

Claim 1: � is 
ontinuous. We have (d

(n)

f

x

)(y) = d

(n)

f(x; y). Therefore

T

(n)

(M �N)

�

=

T

(n)

M � T

(n)

N

and Lemma III.2(i) show that

M ! C(T

(n)

N; V )




; x 7! d

(n)

f

x

is 
ontinuous. In view of the de�nition of the topology on C

1

(N; V ), this proves

that � is 
ontinuous.

Claim 2: The map

	:M �X ! C

1

(N; V ); (x; h) 7!

�

y 7! d

1

f(x; y)(h)

�

is 
ontinuous. This follows from Claim 1 and the fa
t that d

1

f 2 C

1

(M�X�N; V )

(
f. Lemma I.5(
)).

Claim 3: � is C

1

with d�(x)(h) = 	(x; h). First we note that for a suÆ
iently

small " > 0 the map

℄� "; "[�[0; 1℄�M �X ! C

1

(N; V ); (t; u; x; h) 7! 	(x+ uth; h)

is 
ontinuous by Claim 2. Therefore

℄� "; "[�M �X ! C

1

(N; V ); (t; x; h) 7!

Z

1

0

	(x+ uth; h) du

is 
ontinuous and so

lim

t!0

1

t

�

�(x+ th)��(x)

�

= lim

t!0

Z

1

0

	(x+ uth; h) du =

Z

1

0

	(x; h) du = 	(x; h):

Thus d�(x)(h) = 	(x; h), and the 
ontinuity of 	 implies that � is C

1

.

Claim 4: � is smooth. Sin
e 	(x; h)(y) = d

1

f(x; y)(h) and

d

1

f 2 C

1

(M � X � N; V );

Claim 3 implies that 	 2 C

1

, hen
e that � 2 C

2

. Pro
eeding indu
tively, we see

that � is C

1

.

In the following we 
all a Fr�e
het manifold S endowed with a smooth asso-


iative multipli
ation S � S ! S a Fr�e
het semigroup.
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Theorem III.5. If M is a Fr�e
het manifold and the Fr�e
het semigroup S a
ts

smoothly on M via �:M � S ! M , then the a
tion map e�:S � C

1

(M;V ) !

C

1

(M;V ) given by (s:f)(x) := f(x:s) is smooth.

Proof. The partial derivative d

2

e� with respe
t to the se
ond argument is given

by

d

2

e�(f; s)(h) = s:h = e�(s; h)

be
ause the linear mappings f 7! s:f are 
ontinuous (Lemma III.3). To see that

this maping is 
ontinuous means to show that the a
tion of S on C

1

(M;V ) is


ontinuous. We re
all that we have de�ned the topology on C

1

(M;V ) via the

embedding

C

1

(M;V )!

1

Y

n=0

C

1

�

T

(n)

(M); V

�




:

Therefore it suÆ
es to prove the 
ontinuity of the a
tion map for S on the spa
es

C

1

�

T

(n)

(M); V

�




:

This a
tion 
omes from the a
tion of S on the manifold T

(n)

(M). The natural

map

T

(n)

�:T

(n)

(M � S)! T

(n)

(M)

is smooth. Comparing with the inje
tion

T

(n)

(M)� S ,! T

(n)

(M)� T

(n)

(S)

�

=

T

(n)

(M � S);

we see that the a
tion of S on T

(n)

(M) is smooth and in parti
ular 
ontinuous.

So the 
ontinuity of the a
tion of S on C

1

�

T

(n)

(M); V

�




follows from Lemma

III.2(iii).

Now we turn to the �rst partial derivative d

1

e�. We write �

S

:TS ! S and

�

M

:TM ! M for the 
anoni
al proje
tions, '

x

:S ! M , s 7! x:s for the orbit

map of x 2M , and �

s

:M !M;x 7! x:s for the translation maps on M . For ea
h

f the smoothness of the map s 7! s:f follows from the smoothness of the fun
tion

(s; x) 7! f(x:s) = (f Æ �)(x; s) on S �M and Theorem III.4 whi
h also implies

that d

1

e�(s; f):v = d

2

(f Æ �)(x; s):v. To see that the partial derivative

d

1

e�:TS � C

1

(M;V )! C

1

(M;V )

is 
ontinuous, we will use the embedding C

1

(M;V ) ! C

1

(TM; TV ); f 7! Tf

from Lemma III.3(ii). A

ording to Remark I.19, the smooth a
tion �:M�S !M

indu
es a smooth right a
tion T�:TM � TS ! TM so that the �rst part of the

proof shows that the indu
ed a
tion map

TS � C

1

(TM; V )! C

1

(TM; V )
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is 
ontinuous. If �:M ! TM is the 0-se
tion, then we 
on
lude with Lemma

III.3(i) that the map

(v; f) 7! (v; T:f) 7! v:Tf = Tf Æ T�(�; v) = T (f Æ �)(�; v)

7! T (f Æ �)(�; v) Æ � 7! d(f Æ �)(�; v) Æ �

from TS � C

1

(M;V )! C

1

(M;V ) is 
ontinuous. Now

d(f Æ �)(�; v) Æ �(x) = d(f Æ �)(x; v) = d

2

(f Æ �)

�

x; �(v)

�

:v = d

1

e�

�

�(v); f

�

:v

shows that d

1

e� is 
ontinuous.

We have shown that d

1

e� and d

2

e� are 
ontinuous, so that Proposition I.4

implies that de� exists and is 
ontinuous, i.e., e� 2 C

1

with

de�(s; f)

�

v; h

�

= d

1

e�

�

�(v); f

�

:v + s:h:

The fa
t that e� is C

1

implies in parti
ular that d

2

e� is C

1

and sin
e d

1

e� 
omes

from the smooth a
tion of TS on C

1

(TM; V ), we 
on
lude that this a
tion is a

C

1

map. But then e� is C

2

. Pro
eeding indu
tively we see that e� is a smooth map.

Smooth mappings between fun
tion spa
es

In the pre
eding subse
tion we have seen how to topologise the spa
e C

1

(M;V )

of smooth fun
tions on a Fr�e
het manifold M with values in an s.
.l.
. spa
e. Let

X and Y be s.
.l.
. spa
es, U � X an open subset, and f :M � U ! Y a smooth

map. Then C

1

(M;U) is an open subset of the s.
.l.
. spa
e C

1

(M;X), and

f

�

:C

1

(M;U)! C

1

(M;Y ); 
 7! f Æ (id

M

; 
)

is a well de�ned map. We will show that this map is smooth. First we 
onsider a

purely topologi
al situation:

Lemma III.6. If M is a topologi
al spa
e and f :M � U ! Y 
ontinuous, then

the mapping

f

�

:C(M;U)




! C(M;Y )




; 
 7! f Æ (id

M

; 
)

is 
ontinuous.

Proof. First we re
all that the topology of uniform 
onvergen
e 
oin
ides with

the 
ompa
t open topology (
f. [Bou71, x3, no. 4, Th. 10℄). Let K �M be 
ompa
t

and V � Y be open. We write W (K;V ) := fh 2 C(M;Y ):h(K) � V g for the


orresponding fundamental open subset of C(M;Y )




. Then

f

�1

�

�

W (K;V )

�

= f
 2 C(M;U): (id

M

; 
)(K) � f

�1

(V )g:
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To see that this set is open in the 
ompa
t open topology, let 


0

be 
ontained in this

set and 
hoose for ea
h x 2 K a 
ompa
t neighborhood K

x

of x in K and an open

neighborhood U

x

� U of 


0

(x) su
h that 


0

(K

x

) � U

x

and K

x

� U

x

� f

�1

(V ).

Then we �nd �nitely many points x

1

; : : : ; x

n

2 K su
h that the K

x

j


over K.

Now ea
h 
 2 C(M;U) with 
(K

x

j

) � U

x

j

satis�es (id

M

; 
)(K

x

j

) � K

x

j

�U

x

j

�

f

�1

(V ). Hen
e

n

\

j=1

W (K

x

j

; U

x

j

) � (f

�

)

�1

�

W (K;V )

�

proves the 
ontinuity of f

�

.

Proposition III.7. The map

f

�

:C

1

(M;U)! C

1

(M;Y ); 
 7! f Æ (id

M

; 
)

is smooth.

Proof. First we show that f

�

is 
ontinuous. For 
 2 C

1

(M;X) the mapping

T
:T (M) ! T (X)

�

=

X � X 
an be split as T
(v

p

) =

�


(p); d
(p):v

p

�

, where

d
 2 C

1

(T (M); X). Indu
tively we obtain d

(n)


 2 C

1

(T

(n)

M;X). In this sense

C

1

(M;X) 
arries the topology indu
ed by the embedding

C

1

(M;X) ,!

1

Y

n=0

C

1

�

T

(n)

(M); X

�




;

where the spa
es on the right hand side 
arry the topology of uniform 
onvergen
e

on 
ompa
t sets. We have

T (f

�


) = T

�

f Æ (id

M

; 
)

�

= Tf Æ

�

id

TM

; T 


�

and thus d(f

�


) = df Æ

�

id

TM

; T 


�

. Indu
tively we obtain

(3:1) d

(n)

(f

�


) = d

(n)

f Æ

�

id

T

(n)

M

; T

(n)




�

:

In view of Lemma III.6, this shows that the maps 
 ! d

(n)

(f

�


) are 
ontinuous.

We 
on
lude that f

�

is 
ontinuous.

Next we 
al
ulate the derivative of f

�

. For ea
h x 2M we have

lim

h!0

1

h

�

f

�

x; (
 + h�)(x)

�

� f

�

x; 
(x)

�

�

= lim

h!0

Z

1

0

d

2

f

�

x; (
 + uh�)(x)

��

�(x)

�

dx = df

2

�

x; 
(x)

��

�(x)

�

;

where, in view of the 
ontinuity of the integrand, the limit on the left hand side

exists uniformly on 
ompa
t subsets of M . In view of (3.1), the same argument

applies to the higher derivatives d

(n)

f

�

. So we see that (df

�

)(
; �) exists and equals

d

2

f Æ (id

M

; 
; �) 2 C

1

(M;Y ). This means that d(f

�

) = (d

2

f)

�

:C

1

(M;TU) !

C

1

(M;Y ). Using the �rst part of our proof, we now see that d(f

�

) is 
ontinuous,

i.e., f

�

is C

1

. Sin
e the map d(f

�

) 
an be written as (d

2

f)

�

, it has the same

stru
ture as f

�

, and iteration of the argument shows that f

�

is smooth.
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Corollary III.8. If f :U ! Y is a smooth map, then

f

�

:C

1

(M;U)! C

1

(M;Y ); 
 7! f Æ 


is smooth.

Proof. Put

e

f(x; y) := f(y) and apply Proposition III.7.

Appli
ations to groups of 
ontinuous mappings

Remark III.9. (a) If F is an s.
.l.
. spa
e and X a 
ompa
t metri
 spa
e, then

C(X;F )




is an s.
.l.
. spa
e with respe
t to the topology of uniform 
onvergen
e

(Propositition II.12(a)).

(b) If U � F is an open subset, then C(X;U) is an open subset of C(X;F )




. Now

let U

j

� F

j

, j = 1; 2, be open subsets of s.
.l.
. spa
es and ':U

1

! U

2

a smooth

map. We 
onsider the map

'

X

:C(X;U

1

)! C(X;U

2

); 
 7! ' Æ 
:

Then '

X

is smooth. The 
ontinuity follows from Lemma III.6. For ea
h x 2 X

and 
; � 2 C(X;F

1

) we have

lim

t!0

'(
(x) + t�(x)) � '(
(x))

t

= lim

t!0

Z

1

0

d'(
(x) + st�(x)):�(x) ds

= d'(
(x)):�(x):

Sin
e the integrand is 
ontinuous in [0; 1℄

2

� X , the limit exists uniformly in X ,

hen
e in the spa
e C(X;F

2

). Therefore d'

X

(
)(�) exists. Sin
e d':TU

1

�

=

U

1

�

F

1

! F

2

is a 
ontinuous map, the �rst part of the proof shows that

d'

X

:C(X;TU

1

)

�

=

C(X;U

1

)� C(X;F

1

)! C(X;F

2

)

is 
ontinuous, so that '

X

is C

1

. Iterating this argument shows that '

X

is C

1

.

Proposition III.10. If G is a Lie group and X is a 
ompa
t metri
 spa
e, then

C(X;G)




is a Lie group with Lie algebra C(X; g)




.

Proof. We use Remark III.9(b) to see that the inversion and multipli
ation in

the 
anoni
al lo
al 
harts are smooth. The remainder is a routine veri�
ation.
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Spa
es of holomorphi
 fun
tions

In this subse
tion we turn to spa
es of holomorphi
 fun
tions. In parti
ular we

show that holomorphi
 a
tions of 
omplex Fr�e
het semigroups lead to holomorphi


a
tions on the 
orresponding spa
es of holomorphi
 fun
tions, and that the in
lu-

sion Hol(M;V )! C

1

(M;V ) is an embedding if Hol(M;V ) 
arries the topology of

uniform 
onvergen
e on 
ompa
t subsets. For re�ned investigations on topologies

on spa
es of holomorphi
 fun
tions between Bana
h spa
es we refer to [Na69℄.

In the following a Baire manifold is a manifold modeled over a s.
.l.
. Baire

spa
e.

Theorem III.11. For a 
omplex Baire manifold M the following assertions

hold:

(i) If V is an s.
.l.
. spa
e, then Hol(M;V ) is s.
.l.
. with respe
t to the topology

of uniform 
onvergen
e on 
ompa
t sets.

(ii) If, in addition, M is Fr�e
het and V is 
omplete, then Hol(M;V ) is 
omplete.

Proof. (i) Let (f

n

)

n2N

be a Cau
hy sequen
e in Hol(M;V ). Sin
e V is sequen-

tially 
omplete, this sequen
e 
onverges uniformly on 
ompa
t subsets of M to

a fun
tion f :M ! V (see the proof of Proposition II.12). It remains to show

that f is holomorphi
. For that we may w.l.o.g. assume that M is an open subset

of a Baire spa
e X . Sin
e (G)-holomorphy is equivalent to weak (G)-holomorphy

([He89, Th. 2.1.3℄), and for ea
h � 2 V

0

the fun
tion � Æ f :M ! C is holomor-

phi
 on the interse
tion with ea
h �nite dimensional aÆne subspa
e, we see that

f 2 G(M;V ). Now Proposition I.9(iii) implies that f is 
ontinuous, hen
e that f

is (F)-holomorphi
 and therefore holomorphi
 (Proposition I.10).

(ii) (
f. [He71, p.79℄) In view of Proposition II.12(i), it suÆ
es to show that

Hol(M;V ) is 
losed in C(M;V )




be
ause the latter spa
e is 
omplete. Suppose

that f

i

! f , where f is 
ontinuous and the fun
tions f

i

:M ! V are holomorphi
.

We have to show that f is holomorphi
 and, as in (i), we may w.l.o.g. assume

that M is an open subset of a Fr�e
het spa
e X . An argument similar to that in

(i) implies that f is (G)-holomorphi
, but then the 
ontinuity of f shows that

f 2 Hol(M;V ).

Corollary III.12. Let M and N be 
omplex manifolds, where M is Fr�e
het.

We write Hol(M;N)




for the set of holomorphi
 maps M ! N endowed with the


ompa
t open topology. Then the subspa
e Hol(M;N)




is 
losed in C(M;N)




.

Proof. Sin
e M is Fr�e
het, it is �rst 
ountable, and therefore C(M;N)




is a


omplete uniform spa
e. Now let f 2 C(M;N) and assume that f

i

! f holds

for f

i

2 Hol(M;N) uniformly on 
ompa
t subsets of M . We have to show that

f is holomorphi
. This is a lo
al property, so that we may assume that M is

an open subset of a Fr�e
het spa
e F . In view of the 
ontinuity of f , it suÆ
es
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to show that f is Gateaux-holomorphi
, so that we may even assume that M is

one-dimensional, hen
e lo
ally 
ompa
t (Proposition I.9). Let x

0

2 M and �x a


ompa
t neighborhood K of x

0

and an open neighborhood U � N of f(x

0

) whi
h

is di�eomorphi
 to an open subset of an s.
.l.
. spa
e V . Then we may w.l.o.g.

assume that f

i

(K) � U holds for all i, so that the same argument as in the proof

of Theorem III.11(i) shows that f is holomorphi
 in a neighborhood of x

0

.

In the following the assumption that the manifolds under 
onsideration are

Baire is made to ensure that the spa
es Hol(M;V ) are sequentially 
omplete (The-

orem III.11(i)).

Proposition III.13. Let M and N be 
omplex Baire manifolds, f :M�N ! V

holomorphi
, and f

x

(y) := f(x; y). Then the map

�:M ! Hol(N; V ); x 7! f

x

is holomorphi
.

Proof. First the 
ontinuity of the map � follows from Lemma III.2(i). Next we

note that we may w.l.o.g. assume that M is an open subset of a Baire spa
e X .

Claim 1: The map

	:M �X ! Hol(N; V ); (x; h) 7!

�

y 7! d

1

f(x; y)(h)

�

is 
ontinuous. This follows from Lemma III.2(i) and the fa
t that

d

1

f 2 Hol(M � X � N; V )

(Remark I.5(d)).

Claim 2: � is C

1

with d�(x)(h) = 	(x; h). This is proved exa
tly as the 
orre-

sponding assertion in the proof of Theorem III.4.

This shows that � is C

1

with 
omplex linear di�erentials, i.e., that � is

holomorphi
.

Theorem III.14. Let M be a 
omplex Baire manifold, S a 
omplex Fr�e
het

semigroup, and M � S !M a holomorphi
 right a
tion. Then the a
tion

S �Hol(M;V )! Hol(M;V )

with

�

�(s):f

�

(x) = f(x:s) is holomorphi
.

Proof. A

ording to Lemma III.2(iii), the a
tion of S on Hol(M;V ) � C(M;V )




is 
ontinuous.

For ea
h s 2 S the map Hol(M;V ) ! Hol(M;V ); f 7! s:f is 
ontinu-

ous linear, hen
e holomorphi
. Now let f 2 Hol(M;V ). Then the fun
tion de-

�ned by

e

f(s; x) 7! f(x:s) is in Hol(S �M;V ). Hen
e the holomorphy of S !

Hol(M;V ); s 7! s:f =

e

f

s

follows from Proposition III.13. This proves that the

a
tion map is partially holomorphi
 in ea
h argument. Now [He89, Prop. 2.3.8℄

implies that the a
tion map is (G)-holomorphi
, and �nally the 
ontinuity implies

that it is (F)-holomorphi
, i.e., holomorphi
 (Proposition I.10).
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We have already seen in Proposition I.10 that holomorphi
 fun
tions are

in parti
ular smooth, i.e., that Hol(M;V ) � C

1

(M;V ) holds for ea
h 
omplex

manifoldM . We have endowed the spa
e Hol(M;V ) with the topology of 
ompa
t


onvergen
e whi
h 
ould be 
oarser than the topology indu
ed from C

1

(M;V )

but it turns out that on Hol(M;V ) the latter topology 
oin
ides with the original

one.

Proposition III.15. If M is manifold modeled over a s.
.l.
. spa
e, then the

in
lusion Hol(M;V ) ,! C

1

(M;V ) is an embedding of lo
ally 
onvex spa
es.

Proof. It is 
lear that the topology Hol(M;V ) inherits from C

1

(M;V ) is �ner

than the original one. Therefore it suÆ
es to show that the in
lusion map is 
on-

tinuous. If f is holomorphi
, then df :TM ! V is also holomorphi
. Therefore it

suÆ
es to show that Hol(M;V )! Hol(TM; V ); f 7! df is a 
ontinuous map. Then

the assertion follows by indu
tion.

Sin
e ea
h 
ompa
t subset of TM is the union of �nitely many pie
es lying

in 
oordinate neighborhoods, we may w.l.o.g. assume that M is an open subset of

the s.
.l.
. spa
e X . Let x 2 M and h 2 X with x + zh 2 M whenever jzj � 1.

Then

df(x)(h) =

1

2�

Z

2�

0

e

�i�

f(x+ e

i�

h) d�:

For ea
h 
ontinuous seminorm p on V we therefore have

p

�

df(x)(h)

�

� sup

jzj=1

p

�

f(x+ zh)

�

:

Let K � TM

�

=

M � X be a 
ompa
t subset and w.l.o.g. K = K

1

� K

2

with K

1

� M and K

2

� X 
ompa
t and balan
ed. Then we �nd a balan
ed 0-

neighborhood V � X with K

1

+ V � M and n 2 N with K

2

� nV . This means

that for (x; h) 2 K we have x+ z

h

n

2M whenever jzj � 1. Hen
e

p

�

df(x)(h)

�

= np

�

df(x)(

h

n

)

�

� n sup

h2

1

n

K

2

p

�

f(x+ h)

�

;

i.e., p

K

(df) � np

K

1

+

1

n

K

2

(f). Sin
e the set K

1

+

1

n

K

2

is 
ompa
t, 
onvergen
e in

Hol(M;V ) implies uniform 
onvergen
e on this set, hen
e uniform 
onvergen
e of

df on K. This 
ompletes the proof.

One of the main features of the representation theory of �nite-dimensional Lie

groups is that they have an exponential fun
tion whi
h makes it possible to trans-

late analyti
 problems on a Lie group G to algebrai
 problems on g without loosing

too mu
h information. This works in parti
ular quite well for representations with

analyti
 or holomorphi
 orbit mappings. To obtain a suitable generalization to the

in�nite-dimensional setting, let us say that a smooth fun
tion exp: g! G is an ex-

ponential fun
tion for G if for ea
h X 2 g the 
urve 


X

: t 7! exp(tX) is an integral


urve of the 
orresponding left invariant ve
tor �eld

e

X 2 V(G). Further we say that
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a Lie groupGmodeled over the s.
.l.
. spa
e g has a good exponential fun
tion if the


losure exp(g) of the exponential image 
ontains a neighborhood of the identity.

If G is 
omplex, we require, in addition, that the exponential fun
tion exp: g! G

is a holomorphi
 map. For a dis
ussion of the exponential fun
tion for the 
lass

of regular Lie groups we refer to [KM97a℄. We write D

l

(G) � End

�

C

1

(G)

�

for

the unital algebra of all operators on C

1

(G) generated by the a
tion of the left

invariant ve
tor �elds. An element D 2 D

l

(G) is 
alled a left invariant di�erential

operator on G.

Lemma III.16. (a) (Identity Theorem for Holomorphi
 Fun
tions) If M is 
on-

ne
ted and two fun
tions f; f

0

2 Hol(M;V ) 
oin
ide on a non-empty open subset

of M , then f = f

0

.

(b) If G is a 
onne
ted 
omplex Lie group with a good exponential fun
tion and

f 2 Hol(G; V ) with (D:f)(1) = 0 for all D 2 D

l

(G), then f = 0.

Proof. (a) Sin
e V is lo
ally 
onvex, the linear fun
tionals on V separate the

points, and so we may w.l.o.g. assume that V = C . Let

D := fx 2M : f(x) = f

0

(x)g:

Then D is a 
losed subset of M whi
h 
ontains an open subset.

Sin
e M is 
onne
ted, it suÆ
es to show that the interior D

0

of D is 
losed,

i.e., that ea
h point x 2 D

0

belongs toD

0

. Choosing a lo
al 
hart around x, we may

w.l.o.g. assume thatM is an open 
onvex subset of the s.
.l.
. spa
eX . Pi
k y 2 D

0

and x 2M . Then we 
onsider the holomorphi
 map ': C ! X; z 7! x+z(y�x) and

note that f Æ ' and f

0

Æ ' are holomorphi
 fun
tions on '

�1

(M) whi
h 
oin
ide

on an open neighborhood of y, hen
e also in 0 be
ause [0; 1℄ � '

�1

(M). Thus

f(x) = f

0

(x), and therefore D =M whi
h 
ompletes the proof.

(b) For ea
h X 2 g we obtain a holomorphi
 fun
tion F : C ! V; z 7! f(exp zX).

Indu
tively our assumption implies that

0 = (

e

X

n

:f

�

(1) = F

(n)

(0):

Sin
e F is holomorphi
, we 
on
lude that F = 0 and hen
e that f j

expg

= 0. The

assumption that G has a good exponential fun
tion now implies that f vanishes

on a neighborhood of 1 and by (a) also on G.

IV. Representations of in�nite-dimensional groups

Let V be an s.
.l.
. spa
e and G a Lie group modeled over a s.
.l.
. spa
e. In this

se
tion we will apply the results of Se
tion III to de�ne a derived representation

of a representation (�; V ) of G on the subspa
e V

1

of smooth ve
tors and to

endow this spa
e with a suitable 
omplete lo
ally 
onvex topology inherited from

C

1

(G; V ) on whi
h the a
tion of G is smooth. For many purposes it is irrelevant

that G is a group and it will suÆ
e to assume that it is an s.
.l.
. semigroup, i.e.,

a manifold modeled over an s.
.l.
. spa
e with a smooth semigroup multipli
ation.
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De�nition IV.1. Let V be an s.
.l.
. spa
e and S an s.
.l.
. semigroup.

(a) A representation (V; �) of S is a 
ontinuous a
tion S � V ! V su
h that the

mappings �(s): v 7! s:v are linear and � denotes the 
orresponding homomorphism

�:S ! L(V ).

(b) If (V; �) is a representation of S, then a ve
tor v 2 V is 
alled smooth if the

orbit map S ! V; s 7! �(s):v is smooth. We write V

1

for the subspa
e of smooth

ve
tors.

The derived representation

Let (V; �) be a representation of the s.
.l.
. Lie group G, v 2 V

1

and '

v

:G !

V; g 7! �(g):v, denote the 
orresponding orbit map. Then d'

v

(1): g

�

=

T

1

(G) !

V

�

=

T

v

(V ) is a 
ontinuous linear map. We de�ne

d�(X):v := X:v := d'

v

(1):X:

Lemma IV.2. The pres
ription g�V

1

! V

1

de�nes a representation of g on

V

1

.

Proof. First we show that for X 2 g and v 2 V

1

the element X:v 2 V is in

fa
t 
ontained in V

1

.

For g 2 G we have �(g)Æ'

v

= '

v

Æ�

g

be
ause the orbit map '

v

is equivariant

with respe
t to left multipli
ations. Hen
e the 
hain rule implies

�(g)d'

v

(1):X = d'

v

(g)d�

g

(1):X:

Let X

l

2 V(G) denote the left invariant ve
tor �eld with X

l

(1) = X . Then the

pre
eding 
al
ulation shows that

(4:1) g 7! �(g)(X:v) = d'

v

(g):X

l

(g)

is smooth sin
e the map

T ('

v

) ÆX

l

:G! TV

�

=

V � V; g 7!

�

�(g):v; d'

v

(g):X

l

(g)

�

is smooth. This proves that X:v 2 V

1

.

It remains to show that d�: g! End(V

1

) is a homomorphism of Lie algebras.

For v 2 V

1

we obtain a map

�

v

:V

0

! C

1

(G); ! 7!

�

g 7! h!; �(g):vi

�

:

For X 2 g, the 
orresponding left invariant ve
tor �eld X

l

, and ! 2 V

0

the 
hain

rule and (4.1) show that

�

X

l

:�

v

(!)

�

(g) = h!; d'

v

(g):X

l

(g)i = h!; �(g):(X:v)i = �

X:v

(!)(g);

i.e., X

l

Æ�

v

= �

X:v

. Therefore

�

[X;Y ℄:v

=[X

l

; Y

l

℄Æ�

v

=X

l

Æ�

Y:v

� Y

l

Æ�

X:v

=�

X:(Y:v)

��

Y:(X:v)

=�

X:(Y:v)�Y:(X:v)

:

Evaluating this at g = 1 we obtain !([X;Y ℄:v) = !

�

X:(Y:v) � Y:(X:v)

�

for all

! 2 V

0

and, sin
e the 
ontinuous linear fun
tionals on V separate the points,

[X;Y ℄:v = X:(Y:v)� Y:(X:v).
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Remark IV.3. If G is �nite-dimensional, then G�arding's Theorem (
f. [Wa72,

Prop. 4.4.1.1℄) shows that V

1

is a dense subspa
e of V . Another important fa
t on

smooth ve
tors is Harish-Chandra's Theorem ([Wa72, Th. 4.4.2.1℄) saying that if G

is �nite-dimensional and 
ompa
t,

b

G is the set of equivalen
e 
lasses of irredu
ible

representations, and P (Æ):V ! V the proje
tion onto the isotypi
al 
omponent of

type Æ, then for ea
h v 2 V

1

the Fourier series

v =

X

Æ2

b

G

P (Æ):v


onverges in V .

Lemma IV.4. Let X be a topologi
al spa
e, S a metrizable topologi
al semigroup

a
ting 
ontinuously from the right on X, and V a (sequentially ) 
omplete lo
ally


onvex spa
e.

(i) If, in addition, X satis�es the �rst axiom of 
ountability, then C(X;V )




is

a (sequentially) 
omplete lo
ally 
onvex spa
e and we obtain a representation

of S on this spa
e by (s:f)(x) := f(x:s).

(ii) If (�; V ) is a representation of the s.
.l.
. group G, then the a
tion g:� :=

� Æ �(g

�1

) on the dual spa
e V

0




is 
ontinuous. If, in addition, V is an LF-

spa
e, then we obtain a representation of G on V

0




.

Proof. (i) The 
ompleteness follows from Proposition II.12(i), and the 
ontinu-

ity of the a
tion from Lemma III.2(iii).

(ii) Sin
e V

0




is endowed with the topology of uniform 
onvergen
e on 
ompa
t

subsets of V , Lemma III.2(iii) implies that the a
tion of G on the spa
e V

0




�

C(V; C )




is 
ontinuous. If, in addition, V is an LF-spa
e, then V

0




is 
omplete by

Corollary II.13, and we thus obtain a representation of G on this spa
e.

Next we dis
uss an appropriate topology on the spa
e V

1

of smooth ve
tors.

The key tool is Theorem III.5.

Proposition IV.5. Let (�; V ) be a 
ontinuous representation of the Fr�e
het

semigroup S with identity element 1 on V and V

1

� V the spa
e of smooth

ve
tors. Via the map v 7! '

v

: s 7! �(s):v we obtain a linear embedding V

1

,!

C

1

(S; V ) whi
h we use to de�ne a lo
ally 
onvex topology on V

1

. Then the natural

a
tion of S on V

1

de�nes a representation of S on V

1

for whi
h the a
tion map

S � V

1

! V

1

is smooth.

Proof. For v 2 V and s; t 2 S we have '

v

(st) = �(st):v = �(s):

�

�(t):v

�

=

�(s):'

v

(t), i.e., '

v

:S ! V is equivariant. If, 
onversely, ':S ! V is a smooth

equivariant map, then '(s) = s:'(1) shows that '(1) 2 V

1

. Thus

V

1

�

=

C

1

(S; V )

S

= ff 2 C

1

(S; V )): (8s; t 2 S)f(st) = �(s):f(t)g

is a 
losed subspa
e of C

1

(S; V ) be
ause the representation of S on V is 
ontinu-

ous, hen
e V

1

is a 
omplete lo
ally 
onvex spa
e be
ause S is Fr�e
het (Proposition

III.1).
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In view of Theorem III.5, the a
tion map

S � C

1

(S; V )! C

1

(S; V ); (s; f) 7! s:f

with (s:f)(x) = f(xs) is smooth. Sin
e

(s:'

v

)(x) = '

v

(xs) = �(xs):v = �(x):

�

�(s):v

�

= '

�(s):v

(x);

this implies that the a
tion of S on V

1

is also smooth.

Corollary IV.6. If G is a Fr�e
het Lie group and (�; V ) a 
ontinuous represen-

tation of G, then the a
tion map

g� V

1

! V

1

; (X; v) 7! d�(X):v

is 
ontinuous.

Proof. If �:G�V

1

!V

1

denotes the a
tion map, then d�(X):v=d

1

�(1; v)(X);

so that the asserted 
ontinuity follows from � 2 C

1

(Proposition IV.5).

Remark IV.7. (a) Note that Corollary IV.6 implies in parti
ular that the op-

erators

d�(X):V

1

! V

1

are 
ontinuous, hen
e that g a
ts naturally on the dual spa
e V

�1

:= (V

1

)

0

of


ontinuous linear fun
tionals on V

1

by (X:�)(v) = ��(X:v).

(b) With respe
t to the natural topology on V

1

the in
lusion map V

1

! V is


ontinuous be
ause the evaluation map C

1

(G; V )! V; f 7! f(1) is 
ontinuous.

Example IV.8. Let G be a Lie group and Ad:G ! Aut(g) the adjoint repre-

sentation. Then Ad is a representation of G on g with a smooth a
tion map.

In fa
t, sin
e the a
tion map 
an be written as Ad(g):X = dI

g

(1):X =

d�(g;1)(0; X); where �(g; x) = gxg

�1

, it is a restri
tion of the smooth map

T�:T (G � G) ! TG, hen
e a smooth map. Thus the adjoint a
tion of G is a

representation in the sense of De�nition IV.1 with g

1

= g. Using Taylor expan-

sions up to a 
ertain order, one 
an show that the derived a
tion dAd = ad is

given by ad(X):Y = [X;Y ℄. We refer to [Mi83, Se
t. 5℄ for the details.

We give a dire
t proof for the 
ase where G has enough smooth fun
tions

su
h that the representation g! Der

�

C

1

(G)

�

is inje
tive. It follows in parti
ular

from the results in [Th95℄ that this is true if g is a nu
lear LF spa
e.

Let f 2 C

1

(G), g 2 G, and X 2 g. We write � for the natural representation

of G on C

1

(G) given by

�

�(g):f

�

(x) = f(g

�1

:x). Passing to the derivative of the

smooth map

 :G! C

1

(G); h 7! �(g)�(h)�(g

�1

):f = �(ghg

�1

):f
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yields

�(g)d�(Y )�(g

�1

):f = d�

�

Ad(g):Y

�

:f:

In view of the smoothness of the map  , we see that we 
an take the derivative

with respe
t to g in 1, and sin
e f is arbitrary, we get

d�([X;Y ℄) = d�(X)d�(Y )� d�(Y )d�(X) = d�

�

dAd(X):Y

�

:

If d� is inje
tive, then dAd = ad follows.

The above argument 
an be generalized to the setting where one only 
on-

siders germs of smooth fun
tions in 1. Then one does not have to worry about the

existen
e of enough smooth fun
tion, and one 
an still show that the derivative of

the map G! g; g 7! Ad(g):X is ad(�):X for every X 2 g.

In the next proposition we re
ord an important appli
ation of the Identity

Theorem for Holomorphi
 Fun
tions (Lemma III.16(a)) to representation theory.

Proposition IV.9. Let G be a 
onne
ted 
omplex Lie group with a good expo-

nential fun
tion exp: g ! G and (�; V ) a representation of G su
h that all orbit

maps G! V; g 7! �(g):v are holomorphi
. Then the following assertions hold:

(i) If F � V is a subspa
e whi
h is invariant under g, then its 
losure is invariant

under G.

(ii) If v 2 V is annihilated by g, then v is �xed by G.

Proof. (i) Let � 2 F

?

� V

0

be a 
ontinuous linear fun
tional vanishing on F .

For v 2 F we 
onsider the fun
tion f

v

:G! C ; g 7! �(g:v), i.e., f

v

= �Æ'

v

, where

'

v

is the orbit map. Then the 
al
ulation in the proof of Lemma IV.2 shows that

for ea
h X 2 g and the asso
iated left invariant ve
tor �eld X

l

we have

(X

l

:f

v

)(g) = df

v

(g):X

l

(g) = h�; d'

v

(g):X

l

(g)i = h�; �(g)X:vi = f

X:v

(g);

i.e., X

l

:f

v

= f

X:v

.

For g = 1 we now obtain (X

l

:f

v

)(1) = �(X:v) = 0. In view of X:v 2 F ,

we 
an apply this argument indu
tively and thus obtain (D:f

v

)(1) = 0 for all

D 2 D

l

(G). Now Lemma III.16(b) implies that f

v

= 0, hen
e that �(G):v � ker�

for all � 2 F

?

. Next we use the Hahn-Bana
h Theorem to see that F = (F

?

)

?

from whi
h we obtain �(G):v � F . Sin
e G a
ts by 
ontinuous operators on V , we


on
lude that F is invariant under G.

(ii) As above, we 
onsider the fun
tion f

v

: g 7! �(g:v) � �(v) but now with an

arbitrary element � 2 V

0

. Taking derivatives, we see that X

l

:f

v

= f

X:v

= 0 for all

X 2 g and therefore

�

D

l

(G):f

v

�

(1) = 0 be
ause f

v

(1) = 0. So Lemma III.16(b)

implies that f

v

= 0, hen
e that �(g:v) = �(v) for all � 2 V

0

and g 2 G. Sin
e V

0

separates the points of V , the group G �xes v.
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V. Generalized 
oherent state representations

In this se
tion we des
ribe a general setup for so 
alled 
oherent state represen-

tations. Analyti
ally these representations are 
hara
terized by the property that

they 
an be realized in spa
es of holomorphi
 se
tions of a homogeneous 
omplex

line bundle. On the geometri
 side this means that the a
tion of G on the proje
-

tive spa
e of the dual spa
e has a 
y
li
 orbit whi
h is a 
omplex manifold. These


on
epts are well studied in the setting of Hilbert spa
es (
f. [Li95℄) and here we

show that if one 
arefully distinguishes between the spa
es and their duals, then

one 
an generalize this 
orresponden
e to general s.
.l.
. spa
es.

In the �rst subse
tion we des
ribe how to 
onstru
t a natural 
omplex line

bundle on the proje
tion spa
e P(V ) of an s.
.l.
. spa
e. In the se
ond subse
-

tion we then turn to group representations and show in parti
ular that for �nite-

dimensional Lie groups the representations of G in an LF spa
e whi
h are gener-

alized 
oherent state representations are pre
isely those on subspa
es of the spa
e

of holomorphi
 se
tions of a homogeneous 
omplex line bundle.

The line bundle over the proje
tive spa
e of a topologi
al ve
tor spa
e

In this se
tion V denotes an s.
.l.
. spa
e and P(V ) its proje
tive spa
e. We write

[v℄ for the element of P(V ) whi
h 
orresponds to the one-dimensional subspa
e gen-

erated by v 2 V n f0g. Furthermore we write GL(V ) for the group of 
ontinuously

invertible linear operators on V and V

0

for the topologi
al dual of V .

Lemma V.1. The group GL(V ) a
ts transitively on

(i) V n f0g,

(ii) P(V ),

(iii) V

0

n f0g, and

(iv) P(V

0

).

Proof. (i) Let v; w 2 V n f0g. If v and w are linearly dependent, then there

exists � 2 C

�

� GL(V ) with w = �v. We now assume that v and w are linearly

independent. Sin
e V is lo
ally 
onvex, there exists a 
ontinuous linear fun
tional

� 2 V

0

with �(v + w) = 0 and �(v � w) = 1, i.e., �(v) = ��(w) =

1

2

. Then

�(x) := x� 2�(x)(v � w)

is a 
ontinuous re
e
tion in the hyperplane ker� satisfying �(v) = w and �

�1

= �.

It follows in parti
ular that � 2 GL(V ).

(ii) This is an immediate 
onsequen
e of (i).
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(iii) We endow V

0

with the weak-�-topology. If �; � 2 V

0

nf0g are linearly indepen-

dent, then there exists x 2 V with (� + �)(x) = 0 and (� � �)(x) = 1. Therefore

the same argument as in (i) works in this 
ase.

(iv) This is a dire
t 
onsequen
e of (iii).

Proposition V.2. The spa
e P(V ) 
arries the stru
ture of a 
omplex manifold

modeled over 
losed hyperplanes of V . The 
harts are given by (U

�

; '

�

)

�2V

0

nf0g

,

where

(5:1) U

�

= f[v℄ 2 P(V ):�(v) 6= 0g and '

�

:U

�

! ker�; [v℄ 7!

v

�(v)

� v

�

;

where v

�

2 V is 
hosen with �(v

�

) = 1.

Proof. First we note that the 
ondition de�ning U

�

makes sense be
ause either

� vanishes on the one-dimensional spa
e C v or �(w) 6= 0 holds for all w 2 C vnf0g.

A

ording to Lemma V.1, for two di�erent non-zero 
ontinuous fun
tionals their

kernels are isomorphi
 as topologi
al ve
tor spa
es be
ause they are 
onjugate

under the group GL(V ). Sin
e these kernels are pre
isely the 
losed hyperplanes

of V , we also see that two su
h hyperplanes are isomorphi
.

Next we note that the inverse of '

�

is given by

'

�1

�

: ker�! U

�

; v 7! [v + v

�

℄:

For [v℄ 2 U

�

\ U

�

and w := '

�

([v℄) we have

'

�

Æ '

�1

�

(w) =

w + v

�

�(w + v

�

)

� v

�

whi
h is a holomorphi
 map of an open subset of ker� to ker�. Hen
e the atlas

given by the above 
harts de�nes on P(V ) the stru
ture of a 
omplex manifold.

We put U

��

:= U

�

\ U

�

for �; � 2 V

0

n f0g. We de�ne fun
tions

g

��

:U

��

! C

�

; [v℄ 7!

�(v)

�(v)

and note that these fun
tions satisfy g


�

([v℄) �g

��

([v℄) = g


�

([v℄) on U

�

\U

�

\U




,

i.e., the fun
tions g

��

form a system of transition fun
tions in the sense of [Hu94,

Def. 5.2.4℄. Next we 
onstru
t a holomorphi
 line bundle p:L

V

! P(V ) as follows.

On the disjoint union

e

L

V

:=

[

06=�2V

0

U

�

� C � f�g

we de�ne an equivalen
e relation by

([v℄; z; �) � ([v℄; g

��

([v℄)z; �) =

�

[v℄;

�(v)

�(v)

z; �

�

:
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Proposition V.3. The spa
e L

V

:=

e

L

V

= � 
arries the stru
ture of a 
omplex

line bundle over P(V ) with proje
tion

q:L

V

! P(V );

�

[v℄; z; �

�

7! [v℄:

Proof. It is 
lear that L

V

inherits the stru
ture of a 
omplex manifold be
ause

the transition fun
tions are holomorphi
 and the sets U

�

� C �f�g 
arry natural


omplex manifold stru
tures.

The subset q

�1

(U

�

) is biholomorphi
ally equivalent to ker� � C , where the


harts are given by

 

�

: q

�1

(U

�

)! ker�� C ;

�

[v℄; z; �

�

7!

�

'

�

([v℄); z

�

:

Note that for these 
oordinate 
harts we have

 

�

Æ  

�1

�

(v; z) =  

�

�

�

[v + v

�

℄; z; �

�

�

=  

�

�

�

[v + v

�

℄; g

��

([v + v

�

℄)z; �

�

�

=  

�

(

�

[v + v

�

℄;

z

�(v+v

�

)

; �

�

) =

�

'

�

Æ '

�1

�

(v);

z

�(v+v

�

)

�

:

Sin
e this map is holomorphi
, we obtain another proof for the fa
t that L

V

is

a 
omplex manifold. Moreover, the fa
t that this map is linear in the se
ond

argument shows that L

V

is a holomorphi
 ve
tor bundle with �ber C , i.e., a holo-

morphi
 line bundle.

Theorem V.4. The assignment

(5:2) s

�

([v℄) :=

�

[v℄;

�(v)

�(v)

; �

�

; [v℄ 2 U

�

yields a topologi
al isomorphism �:V

0




! �(L

V

)




; where �(L

V

)




denotes the spa
e

of holomorphi
 se
tions of L

V

endowed with the topology of uniform 
onvergen
e

on 
ompa
t subsets of P(V ).

Proof. First let � 2 V

0

. Then

�

[v℄;

�(v)

�(v)

; �

�

=

�

[v℄; g


�

([v℄)

�(v)

�(v)

; 


�

=

�

[v℄;

�(v)


(v)

; 


�

so that (5.2) de�nes in fa
t a se
tion �(�) of L

V

whi
h is holomorphi
. Now we

show that the so obtained map �:V

0

! �(L

V

) is a bije
tion. The subset

L

�

V

:= f

�

[v℄; z; �

�

: z 6= 0; [v℄ 2 P(V ); 0 6= � 2 V

0

g;

of L

V

is the 
omplement of the zero se
tion in L

V

. We have a natural map

j:V n f0g ! L

�

V

; v 7!

�

[v℄;

1

�(v)

; �

�
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for [v℄ 2 U

�

. For [v℄ 2 U

��

we have

�

[v℄;

1

�(v)

; �

�

=

�

[v℄; g

��

([v℄)

1

�(v)

; �

�

=

�

[v℄;

1

�(v)

; �

�

:

The inverse of this map is given by

j

�1

:L

�

V

! V;

�

[v℄; z; �

�

7!

v

z�(v)

;

for [v℄ 2 U

�

, where we have to note that the expression on the right hand side is

well de�ned be
ause

v

z�(v)

=

v

g

��

([v℄)z�(v)

:

Now let s 2 �(L

V

) be a holomorphi
 se
tion. Then we obtain a holomorphi


fun
tion es:L

�

V

! C with s

�

p(x)

�

= es(x) � x: Note that es(�x) =

1

�

es(x). Therefore

the fun
tion bs := es Æ j:V n f0g ! C is holomorphi
 and satis�es bs(�x) = �bs(x)

for all � 2 C

�

. We 
laim that bs is the restri
tion of a 
ontinuous linear fun
tional.

If V is one-dimensional, then P(V ) 
onsists of one point and there is nothing to

show. Let W � V be a two-dimensional subspa
e. Then the restri
tion f of bs to

W n f0g is a holomorphi
 fun
tion satisfying

(5:3) f(�v) = �f(v); 0 6= v 2W;� 2 C

�

:

Sin
e f0g is an isolated singularity of this fun
tion, Hartog's Theorem shows that

f extends holomorphi
ally to W . Now the Taylor expansion in the origin and

(5.3) imply that f is linear. Thus the extension of bs by bs(0) := 0 yields a linear

fun
tional bs on V . If bs 6= 0, then ker bs is a 
omplex hyperplane with the property

that (V n f0g)\ ker bs is 
losed. Hen
e ker bs is 
losed and therefore bs is 
ontinuous.

Thus for ea
h holomorphi
 se
tion s there exists a 
ontinuous linear fun
tional

� 2 V

0

su
h that

s([v℄) = es

��

[v℄; z; �

��

�

�

[v℄; z; �

�

= �

�

j

�1

(

�

[v℄; z; �

�

)

�

�

�

[v℄; z; �

�

=

�(v)

z�(v)

�

�

[v℄; z; �

�

=

�

[v℄;

�(v)

�(v)

; �

�

;

i.e., s = s

�

. This 
ompletes the proof of the bije
tivity of �.

Now we show that � also is a topologi
al isomorphism. We may w.l.o.g.

assume that V 6= f0g. First we observe that the topology on V

0





oin
ides with

the topology of uniform 
onvergen
e on all 
ompa
t subsets C � V for whi
h

there exists a linear fun
tional � 2 V

0

with inf Re�(C) � 1. In fa
t, if C � V is

a 
ompa
t subset, then we pi
k x 2 V with Re�(x) > max

�

1; 1 � inf Re�(C)

�

.

Then inf Re�(C + x) = inf Re�(C) + Re�(x) > 1, and the uniform 
onvergen
e

on C+x and x implies the uniform 
onvergen
e on C = (C+x)�x. On the other

hand, a 
overing argument using that the quotient map p:V nf0g ! P(V ); v 7! [v℄

is open and has lo
al se
tions shows that every 
ompa
t subset of P(V ) is a �nite

union of 
ompa
t subsets lying in some open subset U

�

, � 2 V

0

n f0g:
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Now let C � V be a 
ompa
t subset with inf Re�(C) > 1. Then p(C) � P(V )

is a 
ompa
t subset of p(fv 2 V :�(v) 6= 0g) = U

�

and we have �(�)([v℄) =

�

[v℄;

�(v)

�(v)

; �

�

for [v℄ 2 U

�

. In view of inf j�(C)j > 1, this formula implies that a net

(�

j

)

j2J

in V

0


onverges uniformly on C if and only if the net (�(�

j

))

j2J

of holo-

morphi
 se
tions of L

V


onverges uniformly on p(C). Therefore � is a topologi
al

isomorphism V

0




! �(L

V

)




.

Appli
ations to representation theory

De�nition V.5. A 
ontinuous representation (�; V ) of G on an s.
.l.
. spa
e V

is 
alled a generalized 
oherent state representation (GCS representation for short)

if there exists v 2 V n f0g su
h that

(1) v is 
y
li
,

(2) the homogeneous spa
e G=G

[v℄

, where G

[v℄

= fg 2 G: g:[v℄ = [v℄g 
arries the

stru
ture of a 
omplex homogeneous spa
e modeled over a Fr�e
het spa
e su
h

that the natural map �:G=G

[v℄

! P(V ); gG

[v℄

7! g:[v℄ is holomorphi
.

A ve
tor v 2 V n f0g satisfying (1) and (2) is 
alled a GCS ve
tor.

If p:L ! M is a holomorphi
 line bundle over a Fr�e
het manifold M , then

we endow the spa
e �(L) of holomorphi
 se
tions with the 
ompa
t open topology

whi
h turns it into a 
omplete lo
ally 
onvex spa
e (
f. Theorem III.11). If V is a

topologi
al ve
tor spa
e, then we write V

0




for the topologi
al dual of V endowed

with the topology of uniform 
onvergen
e on the 
ompa
t subsets of V (
f. Se
tion

II).

Proposition V.6. If (�; V ) is a generalized 
oherent state representation, then

the 
ontragredient representation (�

0

; V

0




) 
an be inje
ted 
ontinuously into the nat-

ural representation of G on the spa
e �(L) of holomorphi
 se
tions of a holomor-

phi
 line bundle p:L!M .

Proof. Let v 2 V be a GCS ve
tor and M := G=G

[v℄

. Then M 
arries the

stru
ture of a 
omplex manifold su
h that the in
lusion map

�:M ! P(V ); gG

[v℄

7! g:[v℄

is holomorphi
. Let L

V

! P(V ) denote the line bundle from Proposition V.3.

Then the pull ba
k L := �

�

L

V

is a holomorphi
 line bundle over M and thus we

obtain a natural map

 :V

0

�

=

�(L

V

)! �(L):

We 
laim that  is inje
tive. So let � 2 V

0

and suppose that  (s

�

) = 0. This

means that the se
tion s

�

vanishes on �(M) � P(V ). For � 2 V

0

n f0g and

[w℄ 2 U

�

� P(V ) we have

(5:4) s

�

([w℄) :=

�

[w℄;

�(w)

�(w)

; �

�

:
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Hen
e s

�

vanishes in [w℄ if and only if �(w) = 0. Therefore � vanishes on G:v, and

the fa
t that v is 
y
li
 implies that � = 0, i.e., that  is inje
tive.

To see that  is 
ontinuous, let K � M be a 
ompa
t subset. Then there

exists a 
ompa
t subset C � V n f0g with �(K) = [C℄. Now 
onvergen
e in

V

0




implies uniform 
onvergen
e on C, hen
e (5.4) shows that the 
orresponding

se
tions 
onverge uniformly on K �M . This proves that  is 
ontinuous.

Lemma V.7. Let p:L!M be a holomorphi
 line bundle, M a 
omplex Fr�e
het

manifold, and V � �(L) a 
losed subspa
e with the property that for ea
h x 2 M

the exists a holomorphi
 se
tion s 2 V with s(x) 6= 0. Then the following assertions

hold:

(i) The system U

s

:= fx 2 M : s(x) 6= 0g, s 2 V n f0g, and the transition

fun
tions

g

ts

:U

s

\ U

t

! C

�

; x 7!

s(x)

t(x)

de�ne a line bundle over M whi
h is isomorphi
 to L.

(ii) Assume that V is a Fr�e
het spa
e. For x 2 L

�

we de�ne a holomorphi
 map


:L

�

! V

0




by s

�

p(x)

�

= 
(x)(s) � x. Then 
(L

�

) � V

0




n f0g, and we obtain

a holomorphi
 map


:M ! P(V

0




); p(x) 7! [
(x)℄:

Furthermore the pull-ba
k line bundle 


�

L

V

0




is isomorphi
 to L.

Proof. (i) We 
onstru
t a holomorphi
 line bundle q:E !M as

e

E= �, where

e

E :=

[

06=s2V

U

s

� C � fsg

and

(x; z; s) �

�

x; g

ts

(x)z; t

�

=

�

x;

s(x)

t(x)

z; t

�

:

Then the proje
tion q:E !M is given by q([x; z; s℄) = x. To see that this bundle

is isomorphi
 to L, we de�ne a holomorphi
 mapping

�:E ! L; [x; z; s℄ 7! z � s(x) for x 2 U

s

:

To see that � is well de�ned, we note that for x 2 U

s

\ U

t

we have [x; z; s℄ =

�

x;

s(x)

t(x)

z; t

�

and

z � s(x) =

s(x)

t(x)

z � t(x):

Hen
e � is a well de�ned holomorphi
 bundle map with p Æ� = q.
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Moreover, if �([x; z; s℄) = �([x

0

; z

0

; s

0

℄), then x = p

�

�(x)

�

= x

0

2 U

s

\ U

s

0

,

and z � s(x) = z

0

� s

0

(x), i.e., z

0

=

s(x)

s

0

(x)

z. Hen
e � is bije
tive. Moreover, for

y 2 p

�1

(U

s

) we have

�

�1

(y) =

h

p(y);

y

s

�

p(y)

�

; s

i

;

whi
h shows that �

�1

:L! E is also holomorphi
.

(ii) First we note that V ! C ; s 7! 
(x)(s) is 
ontinuous, so that 
(V ) � V

0

. We


laim that 
 is holomorphi
. Sin
e by assumption V is a Fr�e
het spa
e, Corollary

II.13 shows that V

0




is a 
omplete lo
ally 
onvex spa
e, and that the natural map

�

V

:V ! (V

0




)

0




is surje
tive (Theorem II.8(ii)). Therefore ea
h 
ontinuous linear

fun
tional on V

0




is given by evaluation in an element s 2 V , and for ea
h su
h

s the mapping x 7! 
(x)(s) is a holomorphi
 fun
tion on L

�

. This proves that


 is weakly holomorphi
, hen
e that 
 is holomorphi
 be
ause V

0




is sequentially


omplete and M is Fr�e
het (Proposition I.9).

Sin
e, by assumption, for ea
h x 2 M there exists an s 2 V with s(x) 6= 0,

we have 
(L

�

) � V

0




n f0g. Moreover we have 
(�x) = �

�1


(x) for � 2 C

�

, so

that 
 fa
tors to a holomorphi
 map


:M ! P(V

0




); p(x) 7! [
(x)℄:

Let E := 


�

L

V

0




denote the pull-ba
k line bundle with proje
tion q:E !M .

Then 
Æq = p

V

0




Æ
, and sin
e the bundle L

V

0




is de�ned by the transition fun
tions

g

��

([v℄) =

�(v)

�(v)

for �(v); �(v) 6= 0; �; � 2 (V

0




)

0

;

the bundle E is de�ned by the transition fun
tions

g

��

�

p(x)

�

=

�

�


(x)

�

�

�


(x)

�

for �

�


(x)

�

; �

�


(x)

�

6= 0:

Using �




(V ) = (V

0




)

0




(Theorem II.8(ii)), we write � = �

V

(s) and � = �

V

(t) to

obtain

g

��

�

p(x)

�

=


(x)(s)


(x)(t)

=

s

�

p(x)

�

t

�

p(x)

�

= g

ts

�

p(x)

�

for p(x) 2 U

s

\ U

t

. Therefore (i) shows that the holomorphi
 line bundle E is

isomorphi
 to L.

For the remainder of this se
tion we will restri
t our attention to �nite-

dimensional Lie groups be
ause we will need the di�erential geometri
 ma
hinery

des
ribing 
omplex stru
tures and holomorphi
 se
tions in terms of the underlying

real stru
ture of the manifold.

47



Lemma V.8. Let G be a �nite-dimensional Lie group, H a 
losed subgroup, and

suppose that the homogeneous spa
e G=H is a 
omplex manifold in su
h a way

that G a
ts by holomorphi
 maps. Suppose further that M is a not ne
essarily

�nite-dimensional 
omplex manifold on whi
h G a
ts by holomorphi
 maps. If


:G=H ! M is a holomorphi
 equivariant map, x

0

:= 
(1H), and G

x

0

is the

stabilizer of x

0

, then H � G

x

0

and the homogeneous spa
e G=G

x

0


arries a unique


omplex stru
ture su
h the quotient map G=H ! G=G

x

0

; gH 7! gG

x

0

and the

indu
ed map 
:G=G

x

0

!M; gG

x

0

7! g:x

0

are holomorphi
.

Proof. Let �:G�M !M denote the a
tion of G on the 
omplex manifold M

and write V

hol

(M) � V(M) for the Lie algebra of holomorphi
 ve
tor �elds on M .

Then

_�: g! V

hol

(M); X 7!

�

p 7! �d�(1; p)(X; 0)

�

is a homomorphism of Lie algebras. In fa
t, this follows easily from a lo
al 
om-

putation in 
oordinate 
harts.

We 
on
lude that _� extends to a C -linear homomorphism g

C

! V

hol

(M)

whi
h we also denote by _�. As the formula for the Lie bra
ket in lo
al 
oordinates

shows, the subspa
e

a := fX 2 V

hol

(M):X (x

0

) = 0g

is a Lie subalgebra of V

hol

(M). Hen
e b := _�

�1

(a) is a 
omplex subalgebra of g

C

.

Moreover g

x

0

= b\g a

ording to the fa
t that the G-orbit is an equivariant image

of the �nite-dimensional homogeneous manifold G=H . This 
an also be written as

b \ b = (g

x

0

)

C

for the 
omplex 
onjugation X 7! X on g

C

. Further it is easy to

see that Ad(G

x

0

):b = b.

The holomorphy of 
 now implies that d
(1H)T

1H

(G=H) = _�(g)(x

0

) is a


omplex subspa
e of T

x

0

(M). This means that _�(g)(x

0

) = _�(g

C

)(x

0

) whi
h shows

that

g

C

= g+ b:

Thus we �nd for ea
h X 2 g

C

an element Y 2 g and Z 2 b with X = Y + Z.

Hen
e X �X = Z � Z 2 b+ b, and therefore ig � b+ b whi
h in turns gives

g

C

= g+ ig � i(b+ b) + b+ b = b+ b:

This 
ompletes the proof of

Ad(G

x

0

):b = b; b \ b = (g

x

0

)

C

; and b+ b = g

C

;

whi
h, a

ording to [Ki76, p. 203℄, is equivalent to the existen
e of a 
omplex

stru
ture on G=G

x

0

su
h that G a
ts by holomorphi
 mappings. More expli
-

itly, this 
omplex stru
ture 
an be des
ribed by identifying the tangent spa
e

T

1G

x

0

(G=G

x

0

)

�

=

g=g

x

0

with the 
omplex ve
tor spa
e g

C

=b. From this des
ription

of the 
omplex stru
ture it follows that the 
anoni
al maps G=H ! G=G

x

0

and

G=G

x

0

! M are holomorphi
 be
ause they are G-equivariant, smooth, and their

di�erentials are 
omplex linear in the base point. This 
ompletes the proof.
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Proposition V.9. Suppose that G is �nite-dimensional and L is a holomorphi


G-homogeneous line bundle. Then G a
ts on the Fr�e
het spa
e �(L) by (g:s)(x) :=

g:s(g

�1

:x): Let f0g 6= V � �(L) be a 
losed invariant subspa
e. Then the repre-

sentation of G on V

0




is a GCS representation.

Proof. First we note that V inherits the stru
ture of a Fr�e
het spa
e. We 
laim

that V satis�es the assumptions of Lemma V.7. Let x 2M . Sin
e V 6= f0g, there

exists s 2 V n f0g. Pi
k y 2 M with s(y) 6= 0. Then there exists g 2 G with

g:y = x, and we see that (g:s)(x) = g:s(y) 6= 0: This means that V satis�es the

assumptions of Lemma V.7, and thus L

�

=




�

L

V

0




holds for the natural holomorphi


map 
:M ! P(V

0




):

Moreover

�

g:
(x)

�

(s) � x = 
(x)(g

�1

:s) � x = (g

�1

:s)

�

p(x)

�

= g

�1

:s

�

g:p(x)

�

= g

�1

:


�

g:p(x)

�

(s) � (g:x) = 


�

g:p(x)

�

(s) � x;

shows that 
:L

�

! V

0




n f0g is G-equivariant and hen
e that 
 is G-equivariant.

Pi
k x

0

2M and let 
(x

0

) = [�

0

℄. Then the G-homogeneous spa
e G=G

[�

0

℄

�

=


(M) inherits the stru
ture of a 
omplex manifold be
ause 
 is holomorphi


(Lemma V.8). Moreover, the natural map G=G

[�

0

℄

! P(V

0




) is obtained by fa
tor-

ization of 
 and therefore holomorphi
. So, in view De�nition V.5, it remains to

prove that �

0

2 V

0




is a 
y
li
 ve
tor.

In fa
t, if �

0

is not 
y
li
, then V

�

=

(V

0




)

0

, and the Hahn-Bana
h Theorem

imply the existen
e of 0 6= s 2 V vanishing on G:�

0

. This means that the se
tion

s of �(L) vanishes on G:x

0

=M , 
ontradi
ting s 6= 0. This 
ompletes the proof.

Theorem V.10. If G is �nite-dimensional, then a non-zero 
ontinuous rep-

resentation (�; V ) of G, where V is an LF spa
e is a generalized 
oherent state

representation if and only if the 
ontragredient representation permits a 
ontinuous

equivariant inje
tion into �(L) for a homogeneous line bundle p:L!M .

Proof. If (�; V ) is a GCS representation, then Proposition V.6 shows that the


ontragredient representation permits a 
ontinuous equivariant inje
tion into �(L)

for a homogeneous line bundle L.

Suppose, 
onversely, that  :V

0




! �(L) is a 
ontinuous equivariant inje
tion.

In view of Proposition V.9, the representation of G on �(L)

0




is a GCS repre-

sentation be
ause this spa
e 
ontains  (V

0




), hen
e is non-zero. The adjoint map

 

0

: �(L)

0




! (V

0




)

0




�

=

V is 
ontinuous and G-equivariant. Let �

0

2 �(L)

0




be a GCS

ve
tor. We 
laim that  

0

(�

0

) is a GCS ve
tor in V .

First we show that it is 
y
li
. In fa
t, if it is not 
y
li
, then there exists a

non-zero � 2 V

0

vanishing on G: 

0

(�

0

) =  

0

(G:�

0

), i.e.,  (�) vanishes on G:�

0

,

and thus  (�) = f0g be
ause �

0

is 
y
li
, 
ontradi
ting the inje
tivity of  . Thus

 

0

(�

0

) is 
y
li
, and it follows in parti
ular that  

0

(�

0

) 6= 0.

Now the fa
t that the natural map

P

�

�(L)

0




�

n  (V

0




)

?

! P(V ); [�℄ 7! [ 

0

(�)℄
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is holomorphi
 and G-equivariant implies that G=G

[ 

0

(�

0

)℄

is a 
omplex homo-

geneous G-spa
e su
h that the natural map G=G

[ 

0

(�

0

)℄

! P(V ) is holomorphi


(Lemma V.8). This proves that (�; V ) is a GCS representation.
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