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Abstract. In this paper, we discuss Conceptual Knowledge Discovery in
Databases (CKDD) in its connection with Data Analysis. Our approach
is based on Formal Concept Analysis, a mathematical theory which has
been developed and proven useful during the last 20 years. Formal Con-
cept Analysis has led to a theory of conceptual information systems which
has been applied by using the management system TOSCANA in a wide
range of domains. In this paper, we use such an application in database
marketing to demonstrate how methods and procedures of CKDD can
be applied in Data Analysis. In particular, we show the interplay and
integration of data mining and data analysis techniques based on For-
mal Concept Analysis. The main concern of this paper is to explain how
the transition from data to knowledge can be supported by a TOSCANA
system. To clarify the transition steps we discuss their correspondence to
the five levels of knowledge representation established by R. Brachman
and to the steps of empirically grounded theory building proposed by
A. Strauss and J. Corbin.
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1 Conceptual Knowledge Discovery in Databases

Conceptual Knowledge Discovery in Databases (CKDD) has been developed in
the field of Conceptual Knowledge Processing. Based on the mathematical theory
of Formal Concept Analysis, CKDD aims to support a human-centered process of
discovering knowledge from data by visualizing and analyzing the formal concep-
tual structure of the data. Implementing the basic methods of Formal Concept



Analysis, the management system TOSCANA has been used as a knowledge dis-
covery tool in various research and commercial projects (cf. [35]). The general
approach of CKDD and the qualities of TOSCANA as a KDD support tool have
previously been discussed in [27] with respect to Brachman and Anand’s fun-
damental requirements for knowledge discovery support environments (cf. [4]).
Therefore, the basic notions and the philosophical background of CKDD are only
briefly summarized in this paper. For a comprehensive presentation of the math-
ematical foundations of Formal Concept Analysis see [10]; basics of Conceptual
Knowledge Processing are explained in [31],[32],[33],[35].

The overall theme and contribution of the volume “Advances in Knowledge
Discovery and Data Mining” [7] is a process-centered view of KDD considering
KDD as an interactive and iterative process between a human and a database
that may strongly involve background knowledge of the analyzing domain expert.
In particular, R. S. Brachman and T. Anand [4] argue in favor of a more human-
centered approach to knowledge discovery support referring to the constitutive
character of human interpretation for the discovery of knowledge and stressing
the complex, interactive process of KDD as being led by human thought.

Following Brachman and Anand, CKDD pursues a human-centered approach
to KDD based on a comprehensive notion of knowledge as a part of human
thought and argumentation. The landscape paradigm of knowledge underlying
CKDD is based on the pragmatic philosophy of Ch. S. Peirce [16] where knowl-
edge is understood as always being incomplete, formed and continuously as-
sured by human discourse within an intersubjective community of communica-
tion (cf. [35]). Emphasizing the intersubjective character of knowledge, CKDD
considers knowledge communication as an important part of the overall discov-
ery process with respect to both the dialog between user and system, and also as
a part of human communication and argumentation. Therefore, a major focus of
CKDD is to provide knowledge discovery support that guarantees a high trans-
parency of the discovery process and a representation of its (interim) findings
to support human argumentation and establishment of intersubjectively assured
knowledge. CKDD especially supports a wide-ranging and unpredictable interac-
tive exploration of the data (“data archaeology”, cf. [5]) where the software tools
TOSCANA and Chianti serve as a knowledge discovery support environment
in which CKDD applications can be efficiently implemented (see [27]).

2 Conceptual Data Analysis

CKDD is based on methods and procedures of Conceptual Data Analysis that
allow the analysis of given data by examination and visualization of their con-
ceptual structure. The derived graphical representations have proven to be useful
for making the data communicable in addition to identifying conceptual relation-
ships in the data. Knowledge is discovered in interaction with the data during
an iterative process which activates techniques of Conceptual Data Analysis and
is guided by theoretical preconceptions and declared purposes of the domain
expert. In the following paragraphs, we briefly introduce the basic notions and



procedures of Conceptual Data Analysis using an application in database mar-
keting.

Based on a philosophically grounded formalization of concept (see [34]), Con-
ceptual Data Analysis allows data to be mathematically treated and processed.
Formal Concept Analysis, the mathematical theory underlying Conceptual Data
Analysis, formalizes concept and conceptual hierarchy to reflect the philosophi-
cal understanding of a concept as a unit of thought constituted by its extension
and its intension. The extension comprises all objects belonging to the concept
while the intension consists of all attributes valid for those objects. To allow a
mathematical description of extension and intension, Formal Concept Analysis
always starts with a formal context:

Definition 1. A formal context is a set structure K := (G, M, I) where G and
M are sets and I is a binary relation between G and M (i. e. I ⊆ G× M). The
elements of G and M are called (formal) objects and attributes, respectively,
and gIm (⇔ (g, m) ∈ I) is read: “the object g has the attribute m”. Derivations
are defined by X′ := {m ∈ M | ∀g ∈ X : gIm} for X ⊆ G and Y ′ := {g ∈
G | ∀m ∈ Y : gIm} for Y ⊆ M . A formal concept of the formal context K is a
pair (A, B) with A ⊆ G, B ⊆ M , A = B′, and B = A′; the sets A and B are
called the extent and the intent of the formal concept (A, B). The subconcept-
superconcept-relation is formalized by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2).

The set of all formal concepts of K together with the order relation ≤ is always
a complete lattice, called the concept lattice of K and denoted by B(K).

The concept lattices can be graphically represented by line diagrams which
have been proven to be useful representations for the understanding of conceptual
relationships in data. Before we illustrate this by examples, we introduce the
notion of a many-valued context as a formalization of data tables that reports,
for objects under consideration, specific values with respect to given attributes.
In order to obtain a concept lattice of a many-valued context, the context has to
be formally transformed to a formal context (also called a one-valued context).
This transformation is performed by using conceptual scales which reflect specific
interpretations of the data.

Definition 2. A many-valued context is a set structure K := (G, M, W, I) where
G, M , and W are sets and I is a ternary relation between G, M , and W (i.e.
I ⊆ G × M × W ) such that (g, m, w1) ∈ I and (g, m, w2) ∈ I always imply
w1 = w2. The elements of G, M , and W are called objects, attributes, and
attribute values, respectively, and (g, m, w) ∈ I is read: “the object g has the
attribute value w for the attribute m”. An attribute m may be considered as a
(partial) mapping from G to W ; therefore, m(g) = w is often written instead of
(g, m, w) ∈ I. A conceptual scale for an attribute m ∈ M is a one-valued context
Sm := (Gm, Mm, Im) with m(G) ⊆ Gm. The context Rm := (G, Mm, Jm) with
gJmn : ⇐⇒ m(g)Imn is called the realized scale for the attribute m ∈ M . The
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Fig. 1. Line diagrams showing the cross-selling between travel accessories, perfumery,
and ladies’ accessories

derived context of K with respect to the conceptual scales Sm := (Gm, Mm, Im)
(m ∈ M)is the formal context (G,

⋃
m∈M {m} × Mm, J) with gJ(m, n) : ⇐⇒

m(g)Imn; its concept lattice is considered as the concept lattice of the many-
valued context K scaled by the conceptual scales Sm := (Gm, Mm, Im) (m ∈
M). A many-valued context together with a collection of appertaining conceptual
scales with line diagrams of their concept lattices is called a conceptual data
system.

Conceptual data systems can be implemented with the management system
TOSCANA (see [29]). For a chosen conceptual scale, TOSCANA presents a line
diagram of the corresponding concept lattice indicating all objects stored in
the database in their relationships to the attributes of the scale, thus allowing
users to navigate through the data and to analyze specific sets of objects by
activating scales that interpret relevant aspects of the given data. Conceptual
data systems stored in a database and implemented with a management system
such as TOSCANA are called conceptual information systems.

In the following paragraphs, we illustrate how conceptual data analysis may
be performed with a TOSCANA information system implemented to support the
database marketing of a Swiss department store. The conceptual scales together
with line diagrams of their concept lattices are derived from a database record-
ing the activity of individual customers with respect to the various departments
of the store. The analysis was undertaken to reveal potentials for cross-selling
activities. For instance, to select the target group of a direct mail for promot-
ing the ladies’ wear department, one may start with unfolding the cross-selling
behavior between departments where women typically buy.

The line diagram on the left side in Figure 1 shows the cross-selling behavior
between travel accessories, perfumery, and ladies’ accessories. The line diagram
represents the concept lattice of the realized scale having as formal objects all
customers with purchases in at least one of the three departments and having
the three formal attributes ‘purchased in travel accessories’, ‘purchased in per-
fumery’, and ‘purchased in ladies’ accessories’ while the binary relation records
who bought in which department. The formal concepts of the realized scale are
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Fig. 2. Line diagram showing sales in women’s clothing accrued by perfume and ladies’
accessories customers

represented in the diagram by the little circles. The name of a formal object
g is always attached to the circle representing the smallest concept with g in
its extent (denoted by γg); dually, the name of a formal attribute m is always
attached to the little circle representing the largest concept with m in its intent
(denoted by µm). This labelling allows to read the context relation from the
diagram because of gIm ⇐⇒ γg ≤ µm, in words:

The object g has the attribute m if and only if there is an ascending path
of line segments from the circle labelled with the name of g to the circle
labelled with the name of m.

The extent and intent of each concept (A, B) can also be recognized because
A = {g ∈ G | γg ≤ (A, B)} and B = {m ∈ M | (A, B) ≤ µm}. The line diagrams
in this paper show instead of the object names only the number of those names
attached to the appertaining circle. Therefore, the diagram shows that there
were 1075 customers who bought travel accessories only, 8182 perfumes only, and
3964 ladies’ accessories only, but nothing in either of the other two departments.
Furthermore, there were 967 customers who purchased travel accessories and
something from perfumery but no ladies’ accessories, and 1849 customers who
were active in all three departments. From the diagram questions naturally arise,
for example, why do 8182 customers buy perfumery goods but no travel or ladies’
accessories even though both departments are right next to each other?

For the forementioned mailing select to promote sales in ladies’ clothing,
interesting are the 6474 + 1849 = 8323 customers because, in general, it is
easier to develop active customers into better customers. The diagram on the
right hand side in Figure 1 represents the same facts as the left one, but the
number of customers are summed from the bottom up. To study the group of
perfume and ladies’ accessory buyers in further detail, TOSCANA allows users to
”zoom into” the circle in the right diagram representing the 8323 customers who
bought perfumery goods, ladies’ accessories and, in some cases, travel accessories.
Figure 2 shows a segmentation of those customers with respect to their previous



>= 2
<= 12

>= 5

>= 9

<= 8

>= 13

<= 4

<= 1

Interior6546

3819 2991

2201 6546

3819 2991

2201

6379

3660 2835

2052 4887

3491 2775

2150 1555

1402 1204

1097

4991

2417 1787

1104

6379

3660 2835

2052 4720

3332 2619

2001 167

159 156

149

1659

328 216

51

4991

2417 1787

1104 1388

1243 1048

948

3332

2089 1571

1053

1659

328 216

51

Housewares

Fig. 3. Nested line diagram combining numbers of visited departments with the cross-
selling between Housewares and Interior

activity in the ladies’ wear department (formal, business, and casual wear). In
this diagram, the number of customers are again summed from the bottom up;
for instance, there are 1777 customers in the group of 8323 who spent more than
400 SFr for women’s clothing, 639 who spent more than 1000 SFr, and 1138
who spent between 400 and 1000 SFr. The customers with low or no activity in
ladies’ wear were chosen as the targets of the mailing select, as the rest of the
customers were identified as already being good ladies’ wear customers.

In Figure 3 the activity of the 6546 customers with 400 or less sFr sales
of women’s clothing is shown. The nested line diagram presents two aspects of
the activity of the 6546 customers: the line diagram representing the number
of departments in which customers shopped (outer part) is combined with the
cross-selling line diagram between housewares and interior (inner part). The
circles of the first line diagram have been enlarged so that a copy of the second
line diagram could be drawn in each enlarged circle. The nested line diagram
can be read like an ordinary one if we replace the lines beween the large circles
by parallel lines between the correspondeng circles of the inner diagrams. For
instance, we can read from the diagram that there are 4720 customers who
shopped in 5 or more but less than 13 departments of the store, and that 2001
of those bought housewares as well as interiors which seems to be a good target
group for a direct mailing.

The examples should have made it clear that a TOSCANA information sys-
tem enables an interactive and iterative process of conceptual data analysis lead-



ing to useful knowledge. The experiences with many TOSCANA systems have
shown that domain experts are mostly stimulated by navigating through the
graphical representations because they have a rich background knowledge about
the appertaining domain and special interests for activating substantial ques-
tions. The process of knowledge discovery with TOSCANA systems is always
accompanied by a learning process which increases the ability of the user to bet-
ter understand the goals and possibilities of the specific exploration procedure.
All these are reasons for viewing TOSCANA information systems as human-
centered support of knowledge discovery, as Brachman and Anand advocated
in [4].

3 From Data to Knowledge

In the previous section it is demonstrated through examples of conceptual data
analysis how a conceptual information system may function as a knowledge dis-
covery support environment that promotes human-centered discovery processes.
In this section we want to explain in general the transition from data to knowl-
edge for the discovery processes supported by a TOSCANA system. To clarify
the transition steps from data (understood as symbolic representation of reali-
ties) to human knowledge, we call upon an analysis of knowledge representations
in semantic networks performed by R. Brachman [3] who identified the following
five representation levels (cf. [14]):

– Implementational Level: The primitives are nodes and links where links are
merely pointers and nodes are simply destinations for links. On this level,
there are only data structures from which logical forms can be build.

– Logical Level: The primitives are logical predicates, operators, and proposi-
tions together with a structured index over those primitives. On this level,
logical adequacy is responsible for meaningfully prestructuring knowledge.

– Epistemological Level: The primitives are conceptual units, conceptual sub-
pieces, inheritance and structuring relations. On this level, conceptual units
are determined by their inherent structure and their interrelationships.

– Conceptual Level: The primitives are word senses and case relations, object-
and action-types. On this level, small sets of language-independent concep-
tual elements and relationships are fixed and from which all expressible con-
cepts can be constructed.

– Linguistic Level: The primitives are arbitrary concepts, words, and expres-
sions. On this level, the primitives are language-dependent, and are expected
to change in meaning as the network grows.

The grading of the levels, from implementational to linguistic, orders the
representations from simple and abstract to complex and concrete; hence the
grading should not misunderstood as a chronological ordering, although there
are connections between the grading and the course of the transition from data
to knowledge. In the following, the representation levels shall be characterized



according to their functionalities for supporting the process from data to knowl-
edge as performed by a TOSCANA information system.

On the implementational level, the basic data structures are defined as one-
and many-valued contexts. Already on this elementary level, there are instances
for establishing connections to human knowledge, namely the formal objects, at-
tributes, and attribute values of the contexts and the incidence relations between
those elements. On this level, data contexts are merely considered as formal set
structures without any content. Implementational issues for TOSCANA systems
are discussed in [28] in detail.

On the logical level, names for the formal objects, attributes, attribute values,
and incidence relations are formally taken as logical predicates which allow the
composition of further predicates by logical connectives and quantifiers. Syntax
and formal contextual semantics of those predicates have been elaborated to
the so-called Terminological Attribute Logic (see [18],[11]) and Terminological
Concept Logic (see [2]) which are both related to description logics. Both termi-
nological logics may assist the formation of abstract scales for the methods of
conceptual, relational, and logical scaling (see [17],[19]). The management sys-
tem TOSCANA allows the activation of used logical expressions by representing
them as SQL-queries. The combination of abstract scales to larger contexts is
also performed on the logical level, namely by various context constructions; the
mostly used context construction is the semiproduct which is basic for ‘plain
conceptual scaling’ (see [9]), and the apposition which underlies the nested line
diagrams used by TOSCANA as exemplified in Section 2 (see [29]).

The epistemological level addresses “the possibility of organizations of con-
ceptual knowledge into units more structured than simple nodes and links or
predicates and propositions” [3]. Formal concepts are indeed more internally
structured than just a node or a predicate: they unify an object set (the extent)
and an attribute set (the intent) so that each of these parts determines the other.
Furthermore, the internal structure of the formal concepts gives rise to a con-
ceptual hierarchy which mathematically forms a complete lattice if the formal
concepts are those of a given formal context. Thus, the rich mathematical theory
of Formal Concept Analysis (see [10]) yields a substantial contribution to Brach-
man’s epistemological level. As Formal Concept Analysis is founded on lattice
theory, lattice constructions and decompositions can be activated for establish-
ing more complex concept hierarchies out of simpler ones, and, vice versa, for
reducing complex concept hierarchies to simpler ones. Constructions like (sub-)
direct products and tensor products of concept lattices and decompositions like
subdirect and atlas decompositions have been successfully applied in data analy-
sis and knowledge processing. For supporting the process of knowledge discovery,
the visualization of concept lattices and their constructions and decompositions
by specific line diagrams are of great importance. Those visualizations (also be-
longing to the epistomological level) are able to stabilize knowledge acquisition
and communication (cf. [32]).

On the conceptual level, word senses are represented by the context attributes
which lead to a contextual representation of concept intensions. As primitive case



relations, there are defined four basic relations: an object has an attribute, an
object belongs to a concept, a concept abstracts to an attribute, and a concept is
a subconcept of another concept (cf. [12]). These four relations are basic for the
knowledge representation in conceptual information systems because, together
with the word senses, they can represent a large amount of language-independent
knowledge structures. Such structures are the concrete scales of TOSCANA sys-
tems which are used to capture the intensional content of an application domain
(the extensional side of those scales are still abstract).

On the linguistic level, TOSCANA systems work with realized scales which
are obtained by actualizing the abstract objects of their concrete scales accord-
ing to real data. This realization particularly allows to deduce concept graphs
representing verbal texts (see [20]). On this level, the knowledge representation
is language-dependent so that users of the conceptual information system can
best activate their background knowledge and common sense. The navigation
through the conceptual landscape of the system, visualized by labelled line di-
agrams, can be performed successfully because the interplay between formal
and material thinking stimulated by the diagrams gives purposeful orientations
(cf. [35]).

The given characterization of the five representation levels for TOSCANA
information systems shall now be used for explaining the discovery process from
data to knowledge. This process can be seen in correspondence with the process
of empirically grounded theory building proposed by A. Strauss and J. Corbin in
[22] (see also [21]). According to Strauss and Corbin (p.57), empirically grounded
theory building starts from data which are broken down, conceptualized, and put
back together in new ways to generate a rich, tightly woven, explanatory theory
that closely approximates the reality it represents. Although Strauss and Corbin
are concentrating on theory building as the most systematic way of forming,
synthesizing, and integrating scientific knowledge, their methodology may also
apply to structuring and explaining the discovery process from data to knowledge
in the more general case. This shall be outlined by means of the TOSCANA
system discussed in the previous section.

The first step of breaking down the data is performed to establish the imple-
mentational level: the raw data are shaped to obtain elementary data structures
which allow further formal treatments. In the case of our example, the raw data
are coded in a relational database as a list of purchase transactions, each de-
scribed by the ID number of the customer, the date, the department, and the
purchase amount. From these data, suitable many-valued contexts are derived
and represented in a data-warehouse as, for example, a many-valued context
with the customers as formal objects structured by the many-valued attributes
‘department’, ‘date’, and ‘purchase amount’. Establishing one- and many-valued
contexts is a first move toward a conceptualization of the data.

The next step of conceptualization is, according to Strauss and Corbin, con-
cerned with categorization. For TOSCANA systems, categorization is performed
by methods of conceptual, relational, and logical scaling which, on the logical
level, are only understood formally. In Figure 2, an example of a conceptual scale



is shown having formal attributes described by formal expressions which can be
represented by SQL-queries in the management system TOSCANA. The appo-
sition construction yielding the nested line diagram in Figure 3, which enlarges
the attribute categorization, also belongs to the logical level.

The formal conceptualization is fully elaborated on the epistemological level.
The concept lattices and the line diagrams as abstract structures are located
on this level such as the formal procedures which make those lattices and dia-
grams to a successful support of knowledge acquisition and communication. The
categorization leading to attributes of an abstract conceptual scale are now em-
bedded into the significantly richer structure of the concept lattice of the scale
which becomes human readable by a suitable line diagram. The richness of in-
formation given by such graphical representation may be seen in Figure 3; the
nested structure shown in this figure reflects a subdirect product construction
of the two combined concept lattices.

On the conceptual level the formal structures of the first three levels receive
intensional meaning. For instance, the attribute names in Figure 1 are (on this
level) understood by their literal meaning; thereby, the intensions of a repre-
sented concept can be described by combining all those meanings which belong
to the attribute names attached to its superconcepts. Since the numbers in Fig-
ure 1 come from actual customers, they obtain their full meaning, discussed in
Section 2, only on the linguistic level. On the conceptual level the concept lattices
in Figure 1 represent a concrete scale which, according to Strauss and Corbin,
may be understood as a intensionally determined dimension for the data to be
analysed.

The full support for knowledge discovery is given on the linguistic level where
the formal objects also carry meaning and, therefore, the formal concepts can
unify intensional and extensional meaning. Of course, if further customers are
considered in the presented example then the extensional meaning may change
(although the intensional meaning of the concrete scales keeps the same). On
this level, we can produce substantial interpretations of the data by suitable
comparisions using nested line diagrams as in Figure 3; these diagrams corre-
spond to the axial coding of Strauss and Corbin. Clearly, the rich, tightly woven,
suggestive landscape of concept lattices that closely approximates the reality it
represents, can serve through its representation by a TOSCANA information
system, as a stimulating knowledge discovery support environment.

4 Procedures of Conceptual Knowledge Discovery

In most applications, classical data analysis and decision support facilities (for in-
stance Online Analytical Processing (OLAP) or statistical packages) are already
present when data mining tools are added to the knowledge discovery support
environment. For supporting the analyst in the overall process of human-centered
knowledge discovery, both decision support and data mining tools should pro-
vide a homogeneous environment. In particular, this shows the need of a unified
knowledge representation. In conceptual information systems, concept lattices



are used as such a unified knowledge representation. TOSCANA information
systems have shown their use for data analysis in over 30 implementations. The
relationship between conceptual information systems and Online Analytical Pro-
cessing is discussed in [23].

In the first part of this section, we show how data analysis and data mining
techniques based on Formal Concept Analysis may support each other. In the
second part, we go one step further: there, we present Chianti, a new tool
that integrates data mining and data analysis in the framework of Conceptual
Knowledge Discovery (CKDD).

4.1 Interplay of Data Analysis and Knowledge Discovery:

Association Rules and Frequent Concept Lattices

In this subsection, we discuss how Formal Concept Analysis may support the
mining of association rules, and how, vice versa, results of association rules min-
ing may be used for decreasing the complexity of the visualization of traditional
data analysis within conceptual information systems. Association rules are state-
ments of the type ‘37 % of the customers buying coffee also buy milk’. The task
of mining association rules is to determine all rules that have a certain confi-
dence (37 % in the example) and a certain support (the percentage of customers
buying coffee and milk). Mining association rules can nowadays be considered
as one of the core tasks of KDD. Algorithmic aspects of mining association rules
within the framework of Formal Concept Analysis are discussed in more detail
in [15] and [30].

Improving the mining of association rules by using Formal Concept

Analysis techniques. In terms of Formal Concept Analysis, the problem is the
following: Let K := (G, M, I) be a formal context (for instance, G could be the set
of transactions registered during a certain time period in the department store,
M the set of products (or items) sold by the store, and (g, m) ∈ I means that item
m was purchased in transaction g). Each subset X of M is called an itemset. The

support of X is defined by supp(X) := |X′|
|G| . An association rule X → Y consists

of two subsets X and Y of M . We say that the rule X → Y holds with support

supp(X → Y ) := |(X∪Y )′|
|G| and with confidence conf(X → Y ) := supp(X∪Y )

supp(X)

(in short: X
s,c
−→ Y with s := supp(X → Y ) and c := conf(X → Y )). The

task is now to compute, for given minsupp, minconf ∈ [0, 1], all association rules

X
s,c
−→ Y with s ≥ minsupp and c ≥ minconf.
The notion of association rules and their application to large databases was

introduced by R. Agrawal, T. Imielinski, and A. Swami in [1]. They stated the
problem and provided a first algorithm. Now there are several algorithms for
mining association rules in the literature, see for instance [15] for details.

Rules that hold only with a certain confidence have been investigated be-
fore by many researchers. For instance, in the framework of Formal Concept
Analysis, M. Luxenburger [13] has called them partial implications. They are a



generalization of implications which play an important role in Conceptual Data
Analysis based on Formal Concept Analysis. Implications are association rules
which hold for all objects but have no restriction on the support, i. e., they are
exactly the association rules with minconf = 1 and minsupp = 0.

One problem in presenting the mined association rules to the user is that
they usually form a long list, from which only very few are of interest to the
domain expert. Using the following theorem ([15, 26]) one can reduce the list
without losing any information:

Theorem. Let X, Y ⊆ M . Then X
s1,c1

−→ Y and X′′ s2,c2

−→ Y ′′ have the same
support and the same confidence.

It is based on the fact that, for any frequent itemset Y , the smallest con-
cept intent which contains Y (i. e., Y ′′) has the same support and hence is also
frequent. For the development of algorithms, this property permits the consider-
ation of only concept intents (instead of all itemsets) for determining the set F of
frequent itemsets [15, 30]. Especially in strongly correlated data, the algorithm
can thereby skip many itemsets.

Using the theorem, one can present a significantly shorter list of association
rules without loosing any information. The list is composed of the so-called
Duquenne-Guigues basis for exact association rules and the Luxenburger basis
for approximate association rules. Both bases are introduced in [30], together
with algorithms for their computation.

Reducing the complexity of data visualization in conceptual informa-

tion systems by using results from association rule mining. For exam-
ining cross-selling (cf. Section 2), the concepts having many attributes – and
hence only relatively few objects! – are of special importance. In those cases, one
needs the whole line diagram for an analysis of how well cross-selling works. But
there are many applications where concepts which differentiate the population
too much are not interesting – at least not for a first overview. In that situa-
tion, frequent concepts, as defined above, can be utilized. By fixing a threshold
minsupp, all infrequent concepts of the conceptual scale can be pruned. Then,
only the frequent concepts are displayed. For instance, if we want to have a first
glance at the distribution of the age of the customers, then the conceptual scale
‘Age’ may be too detailed. By fixing minsupp := 25%, we prune 18 of the 30 con-
cepts of the scale ‘Year of Birth’. The remainder is shown in Figure 4. Two facts
can be easily seen a) the birthyear of more than half the credit card customers is
unknown, and b) 4690 of all credit card customers were born before 1973. Hence,
there are very few customers with a known birthyear who are younger than 25
and have paid with a credit card.

4.2 Integration of Data Analysis and Knowledge Discovery: Guided

Learning

In the expression supervised learning (as a task of Machine Learning), ‘learning’
is used in a metaphorical way. One expects the software to find an intensional
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Fig. 4. Conceptual Scale ‘Year of Birth’ restricted to frequent concepts with minsupp =
25%

description of some subpopulation, based on a training set. As CKDD is seen as
a human-centered knowledge discovery process, our aim is to support the learn-
ing process (in its literal meaning) of a human expert. Human knowledge always
relies on background knowledge which is formed by intersubjective argumenta-
tion, and only part of this knowledge can be expressed explicitly. Knowledge
which can be made explicit may be treated by procedures of Machine Learning.
But if one considers all aspects of knowledge, then it becomes clear that learning
can only be supported by a knowledge discovery environment, but can never be
completely automated.

In this setting, we understand guided learning as a technical support for the
learning process of the human expert.1 Guided learning shall automatically lead
the user to conceptual scales (or combinations of conceptual scales) which are
expected to provide interesting information, combined with the freedom of nav-
igating around. As in supervised learning, the problem we tackle is to gain more
knowledge about a given subpopulation. The difference is that we do not neces-
sarily require an explicit description of the behavior. For instance, we might want
to learn (in its literal meaning) more about the differences in buying behavior
between high- and low-spending credit card customers.

For this purpose, we have developed the new tool Chianti, based on [24]
and [25]. Chianti takes as input two subpopulations which are defined by SQL
queries. In the following example, we have divided the population in two parts:
those customers who spent more than 1000 SFr and those who spent less. This
tool compares the distribution of the two subpopulations in all scales of the con-
ceptual information system and returns a ranking of all scales. In the ranking,
the scales which appear at the top are those where the distribution differs the
most. The current implementation of Chianti provides two measures for the
distribution: The χ2-measure (hence the name of the program) and the max-
imum norm. While the first measure takes the differences in all concepts into

1 The expression ‘guided learning’ is also used for education and training software,
but here we use it to show the analogy to supervised learning.
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Fig. 5. Ranking of conceptual scales related to cross-selling

account (the larger ones over proportionally), the second measure only regards
the concept with the largest difference. This approach is useful when an easy
interpretation of the ranking is desired. At the moment, Chianti only works on
the contingents (this means that, for the measure, the cardinality of the concept
extents is not used, only the number of objects which generate the concept). As
the difference of the distributions of the two populations may be more significant
in more general concepts (which are not necessarily generated by single objects),
the next version of Chianti will also analyze concept extents.

Figure 5 shows the ranking of all scales related to cross-selling for the two
subpopulations mentioned above with the χ2-measure. The scale at the top is
the scale ‘Cross-selling houseware/interieur’ which we have already seen as inner
scale in Figure 3. This means that among all cross-selling scales, this scale differ-
entiates the two groups the most. The scale ‘Cross-selling Housewares/Interior’
also appears as topmost scale in the ranking according to the maximum norm.

By combining the topmost scales with the scale ‘Money spent ≤ / > 1000
SFr’ we can analyze the distribution of the two groups in more detail. The com-
bination of this scale together with the scale ‘Cross-selling Housewares/Interior’
is shown in Figure 6. In the diagram, we have set the top element of each inner
scale to 100% in order to facilitate comparison. We see that the high-spending
customers buy over-proportionally in the departments Housewares (265% more
often) and Interior (322% more often). Furthermore, for this customer group,
the cross-selling between both departments is much higher than for the rest:
The percentage of high-spending customers who were active in both interior
and housewares (36.98%) is much greater than that of low-spending customers
(5.56%).

We emphasize that — unlike many other statistical techniques — the ranking
of the scales is not the final result, but a suggestion to the analyst of certain
combination of scales for analyzing the situation in more detail. The ranking
alone does not indicate that the buying behavior in the housewares department
determines the value of the customer. In particular, it is not possible to decide
automatically if a prominent position in the ranking indicates a cause for or a
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Fig. 6. Customers of the Housewares department differentiated by the amount of
money spent

consequence of the different distribution, as is clearly demonstrated by studying
the ranking of all the scales. The topmost scales are then all scales related to the
amount of money spent. In those scales, one will hardly discover new insights.
The next scale is then ‘Active Time (in days)’. This scale does not provide an
interesting insight either, since it is intuitively clear that a typical customer
usually spends less than 1000 SFr in a single transaction; hence to spend more
money, he has to visit the department store more than once. The next scale then
is the scale ‘Cross-selling Housewares/Interior’.

The insight that the scale about the active time is not useful for this kind of
analysis can only be gained by referring to the implicit background knowledge of
the domain expert. A repository which stores such information explicitly cannot
overcome the general problem. There is an almost boundless number of possible
combinations of conceptual scales in a conceptual information system which
cannot be conceived of in advance. However, it is promising for further research
to consider such a repository which ‘learns’ (in the metaphorical meaning) from
the behavior of the analyst which combinations are of interest and which are
not.
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K. E. Wolff (eds.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag,
Mannheim 1987, 241–254.

9. B. Ganter, R. Wille: Conceptual scaling. In: F. Roberts (ed.): Applications of com-

binatorics and graph theory to the biological and social sciences. Springer, Berlin-
Heidelberg-New York 1989, 139–167.

10. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin-Heidelberg 1999 (Translation of: Formale Begriffsanalyse: Mathe-

matische Grundlagen. Springer, Berlin-Heidelberg, 1996).
11. B. Ganter, R. Wille: Contextual Attribute Logic. Proc. ICCS ’99, LNAI 1640,

Springer, Heidelberg 1999, 377–388
12. P. Luksch, R. Wille: A mathematical model for conceptual knowledge systems. In:

H.-H. Bock, P. Ihm (eds.): Classification, data analysis, and knowledge organiza-

tion. Springer, Berlin-Heidelberg 1991, 156–162.
13. M. Luxenburger: Implications partielles dans un contexte. Mathématiques, infor-
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Principles of Data Mining and Knowledge Discovery. Proc. of the 2nd European
Symposium on PKDD ’98, Lecture Notes in Artificial Intelligence 1510, Springer,
Heidelberg 1998, 450–458.

28. F. Vogt: Formale Begriffsanalyse mit C++: Datenstrukturen und Algorithmen.
Springer, Berlin–Heidelberg–New York 1996.

29. F. Vogt, R. Wille: TOSCANA – a graphical tool for analyzing and exploring data.
In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94. Lecture Notes in Computer
Science 894. Springer, Berlin-Heidelberg-New York 1995, 226-233.

30. R. Taouil, Y. Bastide, N. Pasquier, G. Stumme, L. Lakhal: Mining bases for asso-
ciation rules based on Formal Concept Analysis. Proc. ECAI 2000 (submitted)

31. R. Wille: Concept Lattices and Conceptual Knowledge Systems. Computers &

Mathematics with Applications, 23, 1992, 493-515.
32. R. Wille: Begriffliche Datensysteme als Werkzeug der Wissenskommunikation. In

H.H. Zimmermann, H.-D. Luckhardt, A. Schulz (eds.): Mensch und Maschine – In-

formationelle Schnittstellen der Kommunikation. Univ.-Verl. Konstanz, 1992, 63–
73.
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