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Abstrat

Among all Frobenius Lie groups having a omplement isomorphi either to C

�

or

to H

�

and a kernel whih is a vetor group those are determined that admit a planar

partition into losed subgroups. Moreover, it is shown that for eah of these groups the

exponential funtion indues a bijetion between the set of planar partitions of the group

and the set of planar partitions of the assoiated Lie algebra.

Introdution

One of the reasons for studying groups with partitions is in doing linear inidene geometry,

in partiular, topologial inidene geometry. If one takes a group G with a partition P,

and sets G := fgH j g 2 G;H 2 Pg, then the pair (G;G) is a linear spae. Suh strutures

were �rst investigated by Andr�e in [1℄ and they are examples of point-regular geometries as

onsidered in [11℄. In dealing with stable planes (a speial kind of topologial linear spaes)

one is lead to take G to be a Lie group and P a partition of G into losed subgroups of half

dimension. Suh partitions are alled planar partitions. In [7℄ the author shows that for a Lie

group G with a planar partition P the inidene struture (G;G) is a stable plane exatly if

the indued partition LP := fLP jP 2 Pg of the Lie algebra LG is ompat in the respetive

Grassmann topology.

So one has a onstrution method for point-regular stable planes whih starts from a

Lie group with planar partition, and now it remains to �nd Lie groups whih admit suh

partitions. Thanks to the famous work of Plaumann and Strambah (f. [8℄ and [9℄) one

already knows that suh a group is either exponential (that is, the exponential funtion is a

di�eomorphism) or is a Frobenius group whose kernel is a vetor group and whose omple-

ments are isomorphi to C

�

or to H

�

. In the present paper the author lassi�es those of the

aforementioned Frobenius groups whih admit planar partitions.

Throughout this note, all Lie groups are assumed to be real Lie groups of �nite dimension

and all vetor spaes over skew�elds are assumed to be left vetor spaes.

Partitions of Vetor Spaes, Algebras, and Groups

1 De�nition. By a partition of a vetor spae we mean a set of non-trivial subspaes

whih over the whole spae and whih pairwise interset trivially. Partitions of algebras

and groups are de�ned analogously. By a partition of a Lie group we mean a partition

into losed subgroups. A partition is alled trivial if it is a singleton.

2 Examples. (a) For any vetor spae the set of all 1-dimensional subspaes is a partition,

and the same holds true for Lie algebras. So if one has a olletion of subalgebras of a Lie

algebra whih pairwise interset trivially one an extend this to a partition of the algebra by

adding a suitable set of 1-dimensional subalgebras.

(b) Let F be a skew�eld and V a left vetor spae over F . On the set F � V we de�ne a

braket multipliation by

[(a; v); (b; w)℄ := a(b; w) � b(a; v):
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Endowed with this multipliation F � V beomes a Lie algebra over the enter Z(F ) of F .

We denote it by dil(V ), or dil

n

F if V = F

n

. Algebras of this type are alled dilatation

algebras. As is easy to see from the de�nition, any F -subspae of dil(V ) is a Lie subalgebra

and hene, any partition of dil(V ) into vetor subspaes is a Lie algebra partition.

() Let F and V be as in (b). On the set F

�

� V we de�ne a multipliation by

(a; v)(b; w) := (ab; aw + v):

Endowed with this multipliation F

�

� V beomes a group whih we denote by Dil(V ), or

Dil

n

F if V = F

n

. Groups of this type are alled dilatation groups. It is easy to see that

for an F -subspae U of F � V the set

~

U := ((1; 0) + U) \ Dil(V ) is a subgroup of Dil(V )

(f. proof of Proposition 12). That means that for any partition P of the Lie algebra dil(V )

into F -subspaes the set P := f

~

p

�

�

p 2 Pg is a partition of the group Dil(V ).

(d) If we assume V in example () to be �nite dimensional over F and if we take F to be a

loally ompat onneted skew�eld (that is, F is isomorphi to one of the skew�elds R, C ,

or H ), then the group Dil(V ) is a Lie group and for any partition P of the Lie algebra dil(V )

into F -subspaes the set P := f

~

p

�

�

p 2 Pg is a partition of the Lie group Dil(V ).

Sine we are not interested in partitions of vetor spaes, groups, or algebras in general

but in those whih give rise to geometri objets suh as translation planes and stable planes,

we now turn to so-alled planar partitions. Before giving the de�nition we just note that any

partition P of a Lie group G indues a partition LP := fLP jP 2 Pg of the assoiated Lie

algebra LG (as is easy to dedue from the fat that the exponential funtion exp : LG ! G

is a loal homeomorphism).

3 De�nition. A partition of a vetor spae or a Lie algebra is alled planar if it onsists

of subspaes of half dimension. A partition of a Lie group is alled planar if the indued

partition of the Lie algebra is planar.

Obviously, planar partitions of vetor spaes or Lie groups an only exist in even dimen-

sion, but at the present point, it is not at all lear whether in any even dimension there

exists a Lie group or a vetor spae whih admits a planar partition. Indeed, there is a result

whih states that any even-dimensional vetor spae admits a planar partition (f. [2℄), and

learly, this result overs the Lie group ase, sine any �nite-dimensional real vetor spae

is an abelian Lie group. So the question arises to lassify all Lie groups whih admit planar

partitions. In dealing with this problem one is lead to the following famous result due to

Plaumann and Strambah (f. [9℄).

4 Theorem. (Plaumann{Strambah) Let G be a onneted Lie group that admits a partition

into subgroups of a �xed dimension d > 1. Then exatly one of the following holds:

(i) The exponential funtion is a di�eomorphism of LG onto G.

(ii) The group G is a Frobenius group whose kernel is a vetor group and whose omplement

is isomorphi to C

�

or to H

�

.

In the remaining part of this note we are onerned with Frobenius groups mentioned in

part (ii) of Theorem 4. Among these groups we lassify exatly those whih admit planar

partitions. It turns out that, up to one exeptional lass, all of these groups are dilatation

groups over the quaternions or the omplex numbers. Moreover, it is shown that for any suh
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group the planar partitions are exatly the exponential images of the planar partitions of the

orresponding Lie algebra.

A Result on Invariant Partitions

In the sequel we give an answer of the following question: Given a �nite dimensional vetor

spae V and an endomorphism ' of V . Under whih onditions to ' the vetor spae V

admits a partition into '-invariant subspaes? The problem an also be formulated in terms

of modules whih will be done in the proof of the following theorem.

5 Theorem. Let K be a �eld, V a �nite dimensional K-vetor spae, and let ' be a non-zero

endomorphism of V . Then the vetor spae V admits a non-trivial partition into '-invariant

subspaes if, and only if, the subring K['℄ of End

K

V is a �eld, and dim

K

K['℄ < dim

K

V .

Proof. We set R := K[x℄ and de�ne a K-algebra morphism ev

'

: R ! End

K

V by

sending x to '. With respet to this morphism the vetor spae V beomes an R-module and

the '-invariant subspaes are exatly the R-submodules of V .

Suppose �rst that K['℄ is a �eld and dim

K

K['℄ < dim

K

V . Then V is a K['℄-vetor

spae and beause of dim

K

K['℄ < dim

K

V the set of all 1-dimensional K['℄-subspaes is a

non-trivial partition of V into R-submodules.

Now suppose that V admits a non-trivial partition P into R-submodules. As R is a

prinipal ideal domain and V is a �nitely generated R-module it is a diret sum of non-trivial

yli submodules Rv

1

; : : : ; Rv

n

(f. [5℄). We pik suh a deomposition

V = Rv

1

� � � � �Rv

n

whih is maximal with respet to the number of summands, and laim that all these summands

are isomorphi simple R-modules. If this is true, then ker ev

'

is a maximal ideal in R and

K['℄ is a �eld, sine it is isomorphi to R= ker ev

'

. So it remains to prove the laim. We do

this by indution on n, starting with n = 2, sine a yli R-module only admits the trivial

partition.

As P is a partition its elements over V . Therefore we �nd P

1

; P

2

2 P ontaining v

1

and v

2

, respetively, and thus obtain Rv

1

� P

1

and Rv

2

� P

2

, beause P

1

and P

2

are R-

submodules of V . Sine we have V = Rv

1

�Rv

2

and sine P was supposed to be non-trivial

this implies P

1

= Rv

1

and P

2

= Rv

2

. Denoting the annihilator of an element v 2 V by

Ann(v) the irreduibility of Rv

1

and Rv

2

implies that Ann(v

k

) =

�

p

n

k

k

�

holds for suitable

prime polynomials p

k

2 R and natural numbers n

k

. Now, we have to show n

1

= n

2

= 1 and

(p

1

) = (p

2

). Without loss we assume n

1

� n

2

. We distinguish three ases.

First ase: (p

1

) 6= (p

2

). In order to exlude this ase we set w

k

:= p

n

k

�1

k

v

k

and onsider the

submodule W := Rw

1

� Rw

2

of V . As Rw

1

and Rw

2

are simple non-isomorphi R-modules

W is a semisimple R-module and Rw

1

� Rw

2

represents its isotypi deomposition. Hene,

we have P \W 2 ff0g; Rw

1

; Rw

2

;Wg for any P 2 P, and sine fP \W jP 2 Pg n f0g has

to be a partition of W , we even dedue P \W 2 ff0g;Wg for any P 2 P. So we obtain

P

1

\W =W = P

2

\W , sine w

k

2 P

k

, and thus P

1

= P

2

= V , ontraditing the fat that P

was supposed to be non-trivial.

Seond ase: (p

1

) = (p

2

) and n

2

> 1. Let w

1

be as above. Sine R(w

1

+ v

2

) is yli it

is ontained in some P 2 P. Beause of f0g 6= Rpv

2

� R(w

1

+ v

2

) \ Rv

2

we obtain P = P

2

,

whih is impossible, sine w

1

+ v

2

=2 P

2

.
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The remaining third ase is the desired one. So we have Rv

1

�

=

R=(p

1

) = R=(p

2

)

�

=

Rv

2

and the laim is proved for n = 2.

Now let n > 2 and assume the laim holds true for n � 1. We write Rv

k

�

=

s

Rv

l

if Rv

k

and Rv

l

are isomorphi simple R-modules. Suppose there exist k; l suh that Rv

k

6

�

=

s

Rv

l

.

Without loss let (k; l) = (1; 2). Then we have Rv

1

6

�

=

s

Rv

3

or Rv

2

6

�

=

s

Rv

3

and we an assume

that Rv

2

6

�

=

s

Rv

3

holds. Setting U := Rv

1

� : : : Rv

n�1

and W := Rv

2

� : : : Rv

n

the indution

hypothesis yields that U and W only admit trivial partitions into R-modules and therefore

we �nd P;Q 2 P ontaining U and W , respetively. Sine we have Rv

2

� U \W this implies

P = Q and thus P = fPg, ontraditing the fat that P is non-trivial. 2

Using that an algebraially losed �eld admits no proper �nite extension one immediately

gets the following onsequene of Theorem 5.

6 Corollary. Let K an algebraially losed �eld, V a �nite dimensional K-vetor spae,

and let ' be a non-zero endomorphism of V . Then the vetor spae V admits a non-trivial

partition into '-invariant subspaes if, and only if, the endomorphism ' is ontained in the

enter of End

K

V .

Appliation to Frobenius Lie Groups

7 De�nition. By a Frobenius group we understand a group G that admits a semidiret

deomposition G = KN where N is a normal subgroup of G, alled the kernel of G, and K is

a omplement of N suh that the family fgKg

�1

j g 2 Ng together with N forms a partition

of G. This partition is also alled the natural partition of the group G. If G is supposed

to be a Lie group we require K and N to be losed subgroups.

8 Remark. The ondition in De�nition 7 that fgKg

�1

j g 2 Ng [ fNg is a partition of KN

implies that the ation of K on N by onjugation is free, i.e., for any n 2 N n f1g we have

fk 2 K j knk

�1

= ng = f1g. As we shall see in Example 9(b) this is sometimes suÆient for

KN to be a Frobenius group. (Quite general, if a group G ats as a group of automorphisms

on a group H, then we all this ation free if for any Element h 2 H n f1g the stabilizer is

trivial.)

9 Examples. (a) Any dilatation group Dil(V ) is a Frobenius group with kernel f1g � V .

(b) Example (a) is a speial ase of the following onstrution: Let V be a �nite dimensional

vetor spae over some skew�eld F and let G � GL(V ) be a non-trivial group that ats freely

on V . Then the semidiret produt GnV is a Frobenius group with kernel f1g�V . In order

to see this, we have to show that for any element (g; v) 2 (G n f1g) � V there exists exatly

one element w 2 V suh that

�

g; v + (1� g)w

�

= (1; w)(g; v)(1; w)

�1

2 G� f0g:

By freeness of the ation of G on V we obtain that 1 � g 2 End

F

V is injetive and thus

invertible. So w := �(1� g)

�1

v 2 V is the unique element with the desired property.

() There is a generalisation of dilatation groups whih one obtains by admitting F = (F;+; �)

in the de�nition of Dil

n

F to be a near�eld (that is, (F;+) is an abelian group, (F

�

; �) is a

group, a(x + y) = ax + ay and 0x = 0 hold for all a; x; y 2 F ). For any near�eld the set

K(F ) := fk 2 F j (8x; y 2 F ) (x + y)k = xk + ykg is a skew�eld and F is a left vetor spae
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over K(F ) (f. [4℄). If F is �nite-dimensional over K(F ), then Dil

n

F is a Frobenius group

with kernel f1g � F

n

, whih immediately follows from the disussion in Example (b).

(d) One an for eah positive real number b de�ne proper near�eld H

b

:= (H ; Æ

b

;+) by letting

x Æ

b

y := xjxj

ib

yjxj

�ib

for x; y 2 H . (A theorem due to Kalsheuer states that any loally

ompat onneted near�eld whih is not a skew�eld is isomorphi to exatly one of the

near�elds H

b

(f. [10℄ 64.20).) Now, for any suh near�eld H

b

the group Dil

n

H

b

is a Frobenius

Lie group (f. [6℄ 3.1).

We all a linear representation � : G! GL(V ) free if the assoiated ation of G on V is

free in the sense of Remark 8. Throughout the remaining part of this note F stands for the

�eld of the omplex numbers or the quaternions, furthermore, we write S

F

for the subgroup

onsisting of all elements of modulus 1 in the multipliative group F

�

.

10 Proposition. Let G be a Frobenius Lie group whose kernel is a vetor group V and whose

omplements are isomorphi to S

F

. Then G is isomorphi to one of the groups S

F

nF

n

where

the ation of S

F

on F

n

is given by salar multipliation. In partiular, the kernel V is an

F-vetor spae and for any subgroup H of G that ontains a omplement of G the subgroup

H \ V is an F-subspae of V .

Proof. We have G

�

=

S

F

n

�

V with some representation � : S

F

! GL(V ). As S

F

is a

ompat group this representation is ompletely reduible whene we have a deomposition

V = V

1

� � � � � V

n

into irreduible S

F

-modules. Now the assumption on G to be a Frobe-

nius group implies that eah of the respetive subrepresentations is free. By looking at the

irreduible representations of S

C

�

=

SO

2

R one gets that the only ones that are free are those

whih are equivalent to the natural representation on C given by left multipliation.

The analogue result holds true for S

H

but it requires a little more work in order to prove

it. We fous on V

1

. By omplexi�ation we get a representation S

H

! GL

C

(V

1


 C ), for

whih we have two possibilities: V

1


C is an irreduible omplex S

H

-module or it deomposes

into two isomorphi irreduible omplex submodules. In both ases the assoiated ation

of S

H

on V

1


 C is free if the ation of S

H

on V

1

is free. In the latter ase even V

1

has a

omplex struture and the real representation S

H

! GL(V

1

) an be viewed as a omplex

representation with respet to this struture. So we have to deal with irreduible omplex

representations of S

H

. Sine S

H

�

=

SU

2

C we are onerned with irreduible representations

of SU

2

C , but these are well-known. Up to isomorphism they all an be obtained by the

following onstrution (see [3℄ II.5): let C [z

1

; z

2

℄ be the vetor spae of omplex polynomials

in two ommuting variables and let P

n

, n 2 N

0

, be the subspae of homogeneous polynomials

of degree n. Viewing the elements of C [z

1

; z

2

℄ as funtions on C

2

we an de�ne an ation of

SU

2

C on C [z

1

; z

2

℄ by letting gp(z) := p(g

�1

z) where g 2 SU

2

C , p 2 C [z

1

; z

2

℄, and z 2 C

2

.

Then P

n

is an (n + 1)-dimensional irreduible SU

2

C -submodule. In order to see that only

one of these irreduible submodules, namely P

1

, leads to a free ation, we argue as follows:

learly, the ation of SU

2

C on P

0

is not free. In order to see that this is likewise the ase for

P

n

if n > 1, take p := (z 7! z

n

1

) 2 P

n

and g = diag(a; �a) 2 SU

2

C where a 2 C n f1g is an n-th

root of unity. Then we have gp = p but g 6= 1.

Sine there is no 2-dimensional real representation of SU

2

C whose omplexi�ation ould

yield the aforementioned representation on P

1

, we get that the ation of SU

2

C on P

1

is the

only free ation of SU

2

C on a real vetor spae. By uniqueness, this ation of SU

2

C on P

1

is equivalent to the ation of S

H

on H by left multipliation. So an irreduible H

�

-module
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deomposes into irreduible S

H

-submodules whih we an identify with H and on whih S

H

ats via multipliation from the left. 2

11 Proposition. Let G be a Frobenius Lie group whose kernel is a vetor group V and whose

omplements are isomorphi to F

�

. Then V is an F-vetor spae and any planar partition of

G indues a partition of V into F-subspaes.

Proof. Let G = F

�

n

�

V with some representation � : F

�

! GL(V ) and assume that G

admits a planar partition P. Aording to Proposition 10 we know that V is an F-vetor spae

and the ation of S

F

on V is given by salar multipliation. Sine C

�

and H

�

only admit

the trivial partition any element of P whih is not ontained in V ontains a omplement of

G. Hene, for any Q 2 Q := fP 2 P jP 6� V g the subgroup Q \ V is an F-subspae of V .

So it remains to show that any P 2 P n Q is also an F-subspae of V , i.e., is invariant under

the ation of S

F

. Sine dimP + dimP

0

= dimG > dimV holds for all P; P

0

2 P the set

P n Q ontains at most one element and hene, the assertion now follows from the fat that

S

fQ \ V jQ 2 Qg is an S

F

-invariant subset of V . 2

If one views the group Dil

n

F as a group of matries by identifying the element (a; v) with

the matrix

�

a1

n

v

1

�

, and doing the analogue for the Lie algebra dil

n

F, one sees that dil

n

F

is the Lie algebra of Dil

n

F and that the exponential funtion is given by

exp(a; v) =

(
�

e

a

; (e

a

� 1)a

�1

v

�

if a 6= 0

(1; v) otherwise

:

Using this, easy alulations show that exp : dil

n

F ! Dil

n

F is surjetive and that

exp Fx � (1; 0) + Fx

holds for eah x 2 dil

n

F (see [6℄ 3.1 for the details). Both fats together imply that

exp Fx = ((1; 0) + Fx) \Dil

n

F (1)

holds for eah x 2 dil

n

F, sine the 1-dimensional F-subspaes of dil

n

F form a partition of

dil

n

F.

12 Proposition. If U is an F-subspae of the Lie algebra dil

n

F, then we have expU =

((1; 0) + U) \ Dil

n

F and expU is a losed subgroup of Dil

n

F. In partiular, if P is any

partition of the Lie algebra dil

n

F into F-subspaes, then the set expP := fexp p j p 2 Pg is a

partition of the Lie group Dil

n

F.

Proof. The fat that expU = ((1; 0)+U)\Dil

n

F holds for any F-subspae U of dil

n

F is

an immediate onsequene of equation (1), sine any F-subspae is over by its 1-dimensional

F-subspaes. In order to see that expU is a group, we pik (1 + a; v); (1 + b; w) 2 expU and

ompute

(1 + a; v)(1 + b; w) =

�

(1 + a)(1 + b); (1 + a)v + u

�

= (1; 0) + (a; u) + (1 + a)(b; v);

and

(1 + a; v)

�1

=

�

(1 + a)

�1

;�(1 + a)

�1

v

�

= (1; 0) � (1 + a)

�1

(a; v):

Sine U is an F-subspae and a; b 6= �1 both results are ontained in expU . 2
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13 Theorem. Let F 2 fC ; H g and let G be a Frobenius Lie group whose kernel is a vetor

group and whose omplements are isomorphi to F

�

. If G admits a planar partition, then

exatly one of the following holds:

(i) The group G is isomorphi to one of the groups Dil

n

F.

(ii) The group G is isomorphi to one of the groups Dil

1

H

b

.

Moreover, the planar partitions of Dil

n

F are exatly the exponential images of the planar

partitions of dil

n

F, whih all onsist of F-subspaes. The only planar partitions of the groups

Dil

1

H

b

are the natural ones.

Proof. Let G = F

�

n

�

V and assume that G admits a planar partition P. Then,

aording to Proposition 10 and Proposition 11, the kernel V is an F-vetor spae and the

set P

V

:= fP \ V jP 2 Pg is a partition of V into F-subspaes. Identifying F

�

with R � S

F

via the map (t; s) 7! e

t

s we obtain that � := �j

R

: R ! GL(V ) is a one-parameter group

with im� � GL

F

V and �(t)P � P for any P 2 P

V

and any t 2 R. Hene, there exists some

X 2 End

F

V suh that �(t) = exp(tX) for any t 2 R. We laim that P

V

is an X-invariant

partition, and in order to prove this, we pik a non-zero vetor v 2 V . As P

V

is a partition

of V there exists exatly one element P

v

2 P

V

that ontains v. Sine P

v

is invariant under

�(R) it ontains the image of the urve �

v

: R ! V : t 7! exp(tX)v and sine it is losed in V

it also ontains the tangent vetor Xv = _�

v

(0), as was to be shown. Now we set n := dim

F

V

and distinguish several ases.

Let �rst F = C . If n = 1 then we have End

C

V = C id

V

and thus X 2 C id

V

. If n > 1 then

Corollary 6 applies and yields that X is ontained in C id

V

. Consequently, � is of the form

t 7! e

t

id

V

for some  2 C . In fat, we even have  2 C n Ri, beause of the injetivity of

�. Now the map (t; s) 7! e

t

s indues an automorphism of C

�

, and this automorphism again

indues an isomorphism of G = C

�

n

�

V onto Dil

n

C .

Now let F = H and n > 1. As V is a H -vetor spae it is a vetor spae over any sub�eld

K of H . We regard C as a sub�eld of H and set K := fhC h

�1

jh 2 H

�

g. Obviously, we

have inlusions GL

H

V � GL

K

V � GL(V ) for any K 2 K. As in ase F = C we obtain

�(R) � K

�

id

V

for any K 2 K, and hene

�(R) �

\

K2K

K

�

id

V

= R

�

id

V

sine

T

K = R. Consequently, � is of the form t 7! e

rt

id

V

for some r 2 R. Now, in analogy

with the preeding ase, we obtain that the map (t; s) 7! e

rt

s : R � S

H

! H

�

indues an

isomorphism of G = H

�

n

�

V onto Dil

n

H .

It remains to treat the ase where F = H and n = 1. Identifying V with H , we obtain

End

H

V = f�

h

jh 2 H g, where �

h

denotes multipliation from the right with h. Sine the

map h 7! �

�

h

: H ! End

H

V is an isomorphism of R-algebras the one-parameter group

� : R ! GL

H

V is determined by a ontinuous injetive homomorphism � : R ! H

�

. Suh

a homomorphism is of the form t 7! e

ht

for some h 2 H . Beause of the injetivity of �, we

even have h 2 H nPu H , where Pu H denotes set of pure quaternions. As a ommutative real

subalgebra of H the algebra R[e

ht

℄ is isomorphi to R or to C and hene, after onjugation

with a suitable quaternion, we an assume R[e

ht

℄ � C . Thus we have h = a + bi 2 C n Ri

and by resaling we an ahieve a = 1. Furthermore, we an assume b � 0, if neessary

by replaing the representation � by the equivalent real representation �� : t 7! � Æ �(t) Æ �,

where � : H ! H : x 7! �x denotes onjugation in H . Now the ation of H

�

on H is given by

7



(a; v) 7! ajaj

�1

vjaj

h

= avjaj

�bi

. For b = 0 the group G is obviously isomorphi with Dil

1

H .

If b > 0 then the map (a; v) 7! (ajaj

�bi

; v) from H

�

� H onto itself gives an isomorphism of

the group G onto Dil

1

H

b

.

Let P be a planar Partition of dil

n

F. We show that P onsists of F-subspaes. Beause

of the dimension formula there exists at most one element of P whih is ontained in the

subspae V := f0g � F

n

, and for any element p 2 P whih is not ontained in V we obtain

that the projetion of p onto F�f0g along V is surjetive. Noting this and that [(a; 0); v℄ = av

holds for any a 2 F and any v 2 V one sees as in the proof of Proposition 11 that the set

P

V

:= fp \ V j p 2 Pg onsists of F-subspaes of V . Let p 2 P be an element whih is not

ontained in V and let (1; v) 2 p n V . For any a 2 F we �nd w 2 F

n

suh that (a;w) 2 p.

Now we ompute (0; w�av) = [(1; v); (a;w)℄ 2 p and obtain a(1; v) = (a;w)� (0; w�av) 2 p,

as desired. Sine P onsists of F-subspaes of dil

n

F its exponential image expP is a planar

partition of Dil

n

F, aording to Proposition 12.

If P is a planar partition of Dil

n

F, then LP is a planar partition of dil

n

F, and thus onsists

of F-subspaes. So we an apply Proposition 12 and obtain P = expLP.

The remainder follows from the fat that for any of the groups Dil

1

H

b

the omplements

only admit the trivial partition, sine they all are isomorphi with H

�

. 2
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