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Abstract

Among all Frobenius Lie groups having a complement isomorphic either to C* or
to H* and a kernel which is a vector group those are determined that admit a planar
partition into closed subgroups. Moreover, it is shown that for each of these groups the
exponential function induces a bijection between the set of planar partitions of the group
and the set of planar partitions of the associated Lie algebra.

Introduction

One of the reasons for studying groups with partitions is in doing linear incidence geometry,
in particular, topological incidence geometry. If one takes a group G with a partition P,
and sets G := {gH |g € G,H € P}, then the pair (G,G) is a linear space. Such structures
were first investigated by André in [1] and they are examples of point-regular geometries as
considered in [11]. In dealing with stable planes (a special kind of topological linear spaces)
one is lead to take G to be a Lie group and P a partition of G into closed subgroups of half
dimension. Such partitions are called planar partitions. In [7] the author shows that for a Lie
group G with a planar partition P the incidence structure (G, G) is a stable plane exactly if
the induced partition LP := {LP | P € P} of the Lie algebra LG is compact in the respective
Grassmann topology.

So one has a construction method for point-regular stable planes which starts from a
Lie group with planar partition, and now it remains to find Lie groups which admit such
partitions. Thanks to the famous work of Plaumann and Strambach (cf. [8] and [9]) one
already knows that such a group is either exponential (that is, the exponential function is a
diffeomorphism) or is a Frobenius group whose kernel is a vector group and whose comple-
ments are isomorphic to C* or to H*. In the present paper the author classifies those of the
aforementioned Frobenius groups which admit planar partitions.

Throughout this note, all Lie groups are assumed to be real Lie groups of finite dimension
and all vector spaces over skewfields are assumed to be left vector spaces.

Partitions of Vector Spaces, Algebras, and Groups

1 Definition. By a partition of a vector space we mean a set of non-trivial subspaces
which cover the whole space and which pairwise intersect trivially. Partitions of algebras
and groups are defined analogously. By a partition of a Lie group we mean a partition
into closed subgroups. A partition is called trivial if it is a singleton.

2 Examples. (a) For any vector space the set of all 1-dimensional subspaces is a partition,
and the same holds true for Lie algebras. So if one has a collection of subalgebras of a Lie
algebra which pairwise intersect trivially one can extend this to a partition of the algebra by
adding a suitable set of 1-dimensional subalgebras.

(b) Let F' be a skewfield and V a left vector space over F. On the set F' x V we define a
bracket multiplication by

[(a,v), (b,w)] := a(b,w) — b(a,v).



Endowed with this multiplication ' x V' becomes a Lie algebra over the center Z(F') of F.
We denote it by dil(V), or dil,F' if V = F™. Algebras of this type are called dilatation
algebras. As is easy to see from the definition, any F-subspace of dil(V') is a Lie subalgebra
and hence, any partition of dil(V') into vector subspaces is a Lie algebra partition.

(c) Let F and V be as in (b). On the set F* x V we define a multiplication by
(a,v)(b,w) := (ab, aw + v).

Endowed with this multiplication F* x V' becomes a group which we denote by Dil(V), or
Dil, F if V = F™. Groups of this type are called dilatation groups. It is easy to see that
for an F-subspace U of F x V the set U := ((1,0) 4+ U) N Dil(V) is a subgroup of Dil(V)
(cf. proof of Proposition 12). That means that for any partition 8 of the Lie algebra dil(V')
into F-subspaces the set P := {p ‘ p € P} is a partition of the group Dil(V').

(d) If we assume V' in example (c) to be finite dimensional over F' and if we take F' to be a
locally compact connected skewfield (that is, F' is isomorphic to one of the skewfields R, C,
or H), then the group Dil(V') is a Lie group and for any partition 8 of the Lie algebra dil(V)
into F-subspaces the set P := {p ‘ p € P} is a partition of the Lie group Dil(V).

Since we are not interested in partitions of vector spaces, groups, or algebras in general
but in those which give rise to geometric objects such as translation planes and stable planes,
we now turn to so-called planar partitions. Before giving the definition we just note that any
partition P of a Lie group G induces a partition LP := {LP| P € P} of the associated Lie
algebra LG (as is easy to deduce from the fact that the exponential function exp : LG — G
is a local homeomorphism).

3 Definition. A partition of a vector space or a Lie algebra is called planar if it consists
of subspaces of half dimension. A partition of a Lie group is called planar if the induced
partition of the Lie algebra is planar.

Obviously, planar partitions of vector spaces or Lie groups can only exist in even dimen-
sion, but at the present point, it is not at all clear whether in any even dimension there
exists a Lie group or a vector space which admits a planar partition. Indeed, there is a result
which states that any even-dimensional vector space admits a planar partition (cf. [2]), and
clearly, this result covers the Lie group case, since any finite-dimensional real vector space
is an abelian Lie group. So the question arises to classify all Lie groups which admit planar
partitions. In dealing with this problem one is lead to the following famous result due to
Plaumann and Strambach (cf. [9]).

4 Theorem. (Plaumann-Strambach) Let G be a connected Lie group that admits a partition
into subgroups of a fized dimension d > 1. Then exactly one of the following holds:

(i) The exponential function is a diffeomorphism of LG onto G.

(ii) The group G is a Frobenius group whose kernel is a vector group and whose complement
is isomorphic to C* or to H*.

In the remaining part of this note we are concerned with Frobenius groups mentioned in
part (ii) of Theorem 4. Among these groups we classify exactly those which admit planar
partitions. It turns out that, up to one exceptional class, all of these groups are dilatation
groups over the quaternions or the complex numbers. Moreover, it is shown that for any such



group the planar partitions are exactly the exponential images of the planar partitions of the
corresponding Lie algebra.

A Result on Invariant Partitions

In the sequel we give an answer of the following question: Given a finite dimensional vector
space V and an endomorphism ¢ of V. Under which conditions to ¢ the vector space V'
admits a partition into @-invariant subspaces? The problem can also be formulated in terms
of modules which will be done in the proof of the following theorem.

5 Theorem. Let K be a field, V a finite dimensional K-vector space, and let ¢ be a non-zero
endomorphism of V.. Then the vector space V admits a non-trivial partition into p-invariant
subspaces if, and only if, the subring K[p] of EndgV is a field, and dimg K[yp| < dimg V.

Proor. We set R := K[z] and define a K-algebra morphism ev, : R — EndgV by
sending x to ¢. With respect to this morphism the vector space V' becomes an R-module and
the p-invariant subspaces are exactly the R-submodules of V.

Suppose first that KJg] is a field and dimg K[p] < dimg V. Then V is a K|p]-vector
space and because of dimg K[p] < dimg V' the set of all 1-dimensional K[p|-subspaces is a
non-trivial partition of V' into R-submodules.

Now suppose that V admits a non-trivial partition P into R-submodules. As R is a
principal ideal domain and V' is a finitely generated R-module it is a direct sum of non-trivial
cyclic submodules Ruy, ..., Ruy, (cf. [5]). We pick such a decomposition

V=Rvi®- - ® Ru,

which is maximal with respect to the number of summands, and claim that all these summands
are isomorphic simple R-modules. If this is true, then kerev, is a maximal ideal in R and
KJy] is a field, since it is isomorphic to R/ kerev,. So it remains to prove the claim. We do
this by induction on n, starting with n = 2, since a cyclic R-module only admits the trivial
partition.

As P is a partition its elements cover V. Therefore we find P, P, € P containing vy
and vy, respectively, and thus obtain Rv; C P; and Rvy C Ps, because P; and P, are R-
submodules of V. Since we have V = Rv; & Rvs and since P was supposed to be non-trivial
this implies P, = Rv; and P» = Rwvs. Denoting the annihilator of an element v € V by
Ann(v) the irreducibility of Rvy and Rvy implies that Ann(vg) = (pp*) holds for suitable
prime polynomials p;, € R and natural numbers n;. Now, we have to show n; = ny =1 and
(p1) = (p2). Without loss we assume n; < ny. We distinguish three cases.

First case: (p1) # (p2). In order to exclude this case we set wy, := pzkflvk and consider the
submodule W := Rw; @& Rws of V. As Rw; and Rws are simple non-isomorphic R-modules
W is a semisimple R-module and Rw; @ Rws represents its isotypic decomposition. Hence,
we have PNW € {{0}, Rwy, Rwy, W} for any P € P, and since {P N W | P € P} \ {0} has
to be a partition of W, we even deduce P N W € {{0}, W} for any P € P. So we obtain
PNW =W =P,NW, since wy € P, and thus P, = P, =V, contradicting the fact that P
was supposed to be non-trivial.

Second case: (p1) = (p2) and no > 1. Let wy be as above. Since R(wy + v3) is cyclic it
is contained in some P € P. Because of {0} # Rpvy C R(w; + vy) N Ruy we obtain P = Py,
which is impossible, since w; + vo ¢ Ps.



The remaining third case is the desired one. So we have Rv; = R/(p1) = R/(p2) = Rvs
and the claim is proved for n = 2.

Now let n > 2 and assume the claim holds true for n — 1. We write Rvy, =, Ry, if Ruy
and Ruv; are isomorphic simple R-modules. Suppose there exist k,[ such that Rvy s Ru;.
Without loss let (k,1) = (1,2). Then we have Rv; %5 Rvs or Rvs %5 Rvs and we can assume
that Rve 2, Rvs holds. Setting U := Rv1 & ... Rv, 1 and W := Rvs @ ... Rv,, the induction
hypothesis yields that U and W only admit trivial partitions into R-modules and therefore
we find P, Q) € P containing U and W, respectively. Since we have Rvs C U N'W this implies
P = @ and thus P = {P}, contradicting the fact that P is non-trivial. a

Using that an algebraically closed field admits no proper finite extension one immediately
gets the following consequence of Theorem 5.

6 Corollary. Let K an algebraically closed field, V a finite dimensional K-vector space,
and let ¢ be a non-zero endomorphism of V. Then the vector space V' admits a non-trivial
partition into @-invariant subspaces if, and only if, the endomorphism ¢ is contained in the
center of EndgV .

Application to Frobenius Lie Groups

7 Definition. By a Frobenius group we understand a group G that admits a semidirect
decomposition G = KN where N is a normal subgroup of G, called the kernel of G, and K is
a complement of N such that the family {gKg ! |g € N} together with N forms a partition
of G. This partition is also called the natural partition of the group G. If G is supposed
to be a Lie group we require K and N to be closed subgroups.

8 Remark. The condition in Definition 7 that {gKg ' |g € N} U{N} is a partition of KN
implies that the action of K on N by conjugation is free, i.e., for any n € N \ {1} we have
{k € K|knk™! =n} = {1}. As we shall see in Example 9(b) this is sometimes sufficient for
KN to be a Frobenius group. (Quite general, if a group G acts as a group of automorphisms
on a group H, then we call this action free if for any Element h € H \ {1} the stabilizer is
trivial.)

9 Examples. (a) Any dilatation group Dil(V') is a Frobenius group with kernel {1} x V.

(b) Example (a) is a special case of the following construction: Let V' be a finite dimensional
vector space over some skewfield F' and let G C GL(V') be a non-trivial group that acts freely
on V. Then the semidirect product G x V' is a Frobenius group with kernel {1} x V. In order
to see this, we have to show that for any element (g,v) € (G \ {1}) x V there exists exactly
one element w € V such that

(g,v +(1- g)w) = (1,111)(9,1))(1,111)71 € G x{0}.

By freeness of the action of G on V we obtain that 1 — g € EndpV is injective and thus
invertible. So w := —(1 — ¢g)~'v € V is the unique element with the desired property.

(c) There is a generalisation of dilatation groups which one obtains by admitting F' = (F, +, -)
in the definition of Dil, F' to be a nearfield (that is, (#,+) is an abelian group, (F'*,-) is a

group, a(z +y) = ax + ay and 0z = 0 hold for all a,z,y € F). For any nearfield the set
K(F):={ke F|(Vz,y € F)(z +y)k = vk + yk} is a skewfield and F' is a left vector space



over K(F) (cf. [4]). If F is finite-dimensional over K (F), then Dil,F is a Frobenius group
with kernel {1} x F™ which immediately follows from the discussion in Example (b).

(d) One can for each positive real number b define proper nearfield H, := (H, oy, +) by letting
x oy y = z|z|Py|lz|™® for x,y € H (A theorem due to Kalscheuer states that any locally
compact connected nearfield which is not a skewfield is isomorphic to exactly one of the
nearfields Hj (cf. [10] 64.20).) Now, for any such nearfield Hj, the group Dil,H, is a Frobenius
Lie group (cf. [6] 3.1).

We call a linear representation A : G — GL(V) free if the associated action of G on V is
free in the sense of Remark 8. Throughout the remaining part of this note F stands for the
field of the complex numbers or the quaternions, furthermore, we write Sy for the subgroup
consisting of all elements of modulus 1 in the multiplicative group F*.

10 Proposition. Let G be a Frobenius Lie group whose kernel is a vector group V and whose
complements are isomorphic to Sp. Then G is isomorphic to one of the groups Sy X " where
the action of Sy on " is given by scalar multiplication. In particular, the kernel V is an
F-vector space and for any subgroup H of G that contains a complement of G the subgroup
HNYV is an F-subspace of V.

PROOF. We have G = Sy x, V with some representation A : Sp — GL(V). As Sy is a
compact group this representation is completely reducible whence we have a decomposition
V=Vi&- &YV, into irreducible Sp-modules. Now the assumption on G to be a Frobe-
nius group implies that each of the respective subrepresentations is free. By looking at the
irreducible representations of S¢ = SO2R one gets that the only ones that are free are those
which are equivalent to the natural representation on C given by left multiplication.

The analogue result holds true for Sy but it requires a little more work in order to prove
it. We focus on V;. By complexification we get a representation Sgp — GL¢ (V) ® C), for
which we have two possibilities: V7 ® C is an irreducible complex Sg-module or it decomposes
into two isomorphic irreducible complex submodules. In both cases the associated action
of Sy on Vi ® C is free if the action of Sy on V] is free. In the latter case even Vi has a
complex structure and the real representation Sy — GL(V}) can be viewed as a complex
representation with respect to this structure. So we have to deal with irreducible complex
representations of Sy. Since Sy = SU,C we are concerned with irreducible representations
of SU,C, but these are well-known. Up to isomorphism they all can be obtained by the
following construction (see [3] I1.5): let C[z;, z2] be the vector space of complex polynomials
in two commuting variables and let F,,, n € Ny, be the subspace of homogeneous polynomials
of degree n. Viewing the elements of C[z;, z2] as functions on C? we can define an action of
SU3C on Clz1, 2] by letting gp(z) := p(9~'2) where g € SUsC, p € Clzy, 2], and z € C2.
Then P, is an (n + 1)-dimensional irreducible SUsC-submodule. In order to see that only
one of these irreducible submodules, namely P;, leads to a free action, we argue as follows:
clearly, the action of SUC on Py is not free. In order to see that this is likewise the case for
P, ifn > 1, take p := (z — 2]) € P, and g = diag(a,a) € SU3C where a € C\ {1} is an n-th
root of unity. Then we have gp = p but g # 1.

Since there is no 2-dimensional real representation of SU2C whose complexification could
yield the aforementioned representation on Pj, we get that the action of SUsC on P; is the
only free action of SU>C on a real vector space. By uniqueness, this action of SUsC on P,
is equivalent to the action of Sy on H by left multiplication. So an irreducible H* -module



decomposes into irreducible Sy-submodules which we can identify with H and on which Sy
acts via multiplication from the left. O

11 Proposition. Let G be a Frobenius Lie group whose kernel is a vector group V and whose
complements are isomorphic to F<. Then V is an F-vector space and any planar partition of
G induces a partition of V into F-subspaces.

PROOF. Let G = F* x, V with some representation A : F* — GL(V') and assume that G
admits a planar partition P. According to Proposition 10 we know that V is an F-vector space
and the action of Sy on V is given by scalar multiplication. Since C* and H* only admit
the trivial partition any element of P which is not contained in V' contains a complement of
G. Hence, for any Q € Q := {P € P|P ¢ V} the subgroup @ NV is an F-subspace of V.
So it remains to show that any P € P\ Q is also an F-subspace of V, i.e., is invariant under
the action of Sp. Since dim P + dim P’ = dim G > dimV holds for all P,P’ € P the set
P\ Q contains at most one element and hence, the assertion now follows from the fact that
U{@ NV |Q € Q} is an Sp-invariant subset of V. 0

If one views the group Dil,,F as a group of matrices by identifying the element (a,v) with

al,

the matrix v ), and doing the analogue for the Lie algebra dil,F, one sees that dil,F

1
is the Lie algebra of Dil,[F and that the exponential function is given by

exp(a, v) = { (e“, (e® — 1)a_1v) ifa#0
(1,v) otherwise
Using this, easy calculations show that exp : dil,FF — Dil,[F is surjective and that
expFz C (1,0) + Fz
holds for each z € dil,[F (see [6] 3.1 for the details). Both facts together imply that
expFz = ((1,0) + Fz) N Dil,F (1)
holds for each z € dil,F, since the 1-dimensional F-subspaces of dil,F form a partition of

dil, IF.

12 Proposition. If U is an F-subspace of the Lie algebra dil,FF, then we have expU =
((1,0) + U) N Dil,F and expU is a closed subgroup of Dil,F. In particular, if B is any
partition of the Lie algebra dil,F into F-subspaces, then the set expP := {expp|p € P} is a
partition of the Lie group Dil,F.

PROOF. The fact that expU = ((1,0) + U) N Dil,,F holds for any F-subspace U of dil,,F is
an immediate consequence of equation (1), since any F-subspace is cover by its 1-dimensional
F-subspaces. In order to see that exp U is a group, we pick (1 4+ a,v), (1l + b,w) € exp U and
compute

(I+a,v)(L+bw) = ((L+a)l+0b), (1+a)+u)
= (1,0) + (a,u) + (1 + a)(b,v),
and
(I+a,v) ' =((1+a)™, —(1+a) ) =(1,0) — (1 +a)"(a,v).
Since U is an F-subspace and a,b # —1 both results are contained in exp U. O



13 Theorem. Let F € {C,H} and let G be a Frobenius Lie group whose kernel is a vector
group and whose complements are isomorphic to F*. If G admits a planar partition, then
exactly one of the following holds:

(i) The group G is isomorphic to one of the groups Dil,F.
(ii) The group G is isomorphic to one of the groups Dil;Hy.
Moreover, the planar partitions of Dil,F are exactly the exponential images of the planar

partitions of dil,F, which all consist of F-subspaces. The only planar partitions of the groups
DiliHp are the natural ones.

PROOF. Let G = F* x, V and assume that G admits a planar partition P. Then,
according to Proposition 10 and Proposition 11, the kernel V' is an F-vector space and the
set Py :={P NV |P € P} is a partition of V into F-subspaces. Identifying * with R x Sp
via the map (¢,s) — els we obtain that a := Mg : R — GL(V) is a one-parameter group
with ima C GLyV and «(t)P C P for any P € Py and any ¢ € R. Hence, there exists some
X € EndgV such that a(t) = exp(tX) for any t € R. We claim that Py is an X-invariant
partition, and in order to prove this, we pick a non-zero vector v € V. As Py is a partition
of V there exists exactly one element P, € Py that contains v. Since P, is invariant under
a(R) it contains the image of the curve a,, : R — V : ¢ — exp(tX)v and since it is closed in V'
it also contains the tangent vector Xv = &,(0), as was to be shown. Now we set n := dimyp V'
and distinguish several cases.

Let first F = C. If n = 1 then we have End¢cV = Cidy and thus X € Cidy. If n > 1 then
Corollary 6 applies and yields that X is contained in Cidy. Consequently, « is of the form
t — eidy for some ¢ € C. In fact, we even have ¢ € C \ Ri, because of the injectivity of
a. Now the map (¢, s) — es induces an automorphism of C*, and this automorphism again
induces an isomorphism of G = C* x, V onto Dil,C.

Now let F =H and n > 1. As V is a H-vector space it is a vector space over any subfield
K of H. We regard C as a subfield of H and set K := {hCh ! |h € H*}. Obviously, we
have inclusions GLgV C GLgV C GL(V) for any K € K. As in case ' = C we obtain
a(R) € K*idy for any K € K, and hence

a(R) C ﬂ K*idy = R*idy
KeK

since (K = R. Consequently, « is of the form ¢ — e’tidy for some r € R. Now, in analogy
with the preceding case, we obtain that the map (t,s) — €"'s : R x Sg — H* induces an
isomorphism of G = H* x, V onto Dil,H.

It remains to treat the case where F = H and n = 1. Identifying V' with H, we obtain
EndgV = {pn|h € H}, where p; denotes multiplication from the right with A. Since the
map h — p; : H — EndgV is an isomorphism of R-algebras the one-parameter group
a: R — GLgV is determined by a continuous injective homomorphism £ : R — H*. Such
a homomorphism is of the form ¢ — e”* for some h € H. Because of the injectivity of 3, we
even have h € H\ Pul, where PuH denotes set of pure quaternions. As a commutative real
subalgebra of H the algebra R[e!] is isomorphic to R or to C and hence, after conjugation
with a suitable quaternion, we can assume R[e"'] C C. Thus we have h = a + bi € C\ R
and by rescaling we can achieve ¢« = 1. Furthermore, we can assume b > 0, if necessary
by replacing the representation a by the equivalent real representation @ : ¢ — k o «(t) o &,
where k : H — H : x — = denotes conjugation in H. Now the action of H* on H is given by



(a,v) — ala|"tv]a|® = av|a|™%. For b = 0 the group G is obviously isomorphic with Dil;H.
If b > 0 then the map (a,v) — (ala|~%,v) from H* x H onto itself gives an isomorphism of
the group G onto Dil;Hj,.

Let ‘B be a planar Partition of dil,F. We show that 3 consists of F-subspaces. Because
of the dimension formula there exists at most one element of 8 which is contained in the
subspace V' := {0} x ", and for any element p € P which is not contained in V' we obtain
that the projection of p onto Fx {0} along V' is surjective. Noting this and that [(a,0),v] = av
holds for any ¢ € F and any v € V one sees as in the proof of Proposition 11 that the set
Py :={pNV|p € P} consists of F-subspaces of V. Let p € P be an element which is not
contained in V and let (1,v) € p\ V. For any a € F we find w € F" such that (a,w) € p.
Now we compute (0, w —av) = [(1,v), (a,w)] € p and obtain a(1,v) = (a,w) — (0, w —av) € p,
as desired. Since B consists of F-subspaces of dil,[F its exponential image exp P is a planar
partition of Dil,F, according to Proposition 12.

If P is a planar partition of Dil,[F, then L'P is a planar partition of dil,IF, and thus consists
of F-subspaces. So we can apply Proposition 12 and obtain P = exp L'P.

The remainder follows from the fact that for any of the groups DiliH, the complements
only admit the trivial partition, since they all are isomorphic with H*. O
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