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Abstra
t

Among all Frobenius Lie groups having a 
omplement isomorphi
 either to C

�

or

to H

�

and a kernel whi
h is a ve
tor group those are determined that admit a planar

partition into 
losed subgroups. Moreover, it is shown that for ea
h of these groups the

exponential fun
tion indu
es a bije
tion between the set of planar partitions of the group

and the set of planar partitions of the asso
iated Lie algebra.

Introdu
tion

One of the reasons for studying groups with partitions is in doing linear in
iden
e geometry,

in parti
ular, topologi
al in
iden
e geometry. If one takes a group G with a partition P,

and sets G := fgH j g 2 G;H 2 Pg, then the pair (G;G) is a linear spa
e. Su
h stru
tures

were �rst investigated by Andr�e in [1℄ and they are examples of point-regular geometries as


onsidered in [11℄. In dealing with stable planes (a spe
ial kind of topologi
al linear spa
es)

one is lead to take G to be a Lie group and P a partition of G into 
losed subgroups of half

dimension. Su
h partitions are 
alled planar partitions. In [7℄ the author shows that for a Lie

group G with a planar partition P the in
iden
e stru
ture (G;G) is a stable plane exa
tly if

the indu
ed partition LP := fLP jP 2 Pg of the Lie algebra LG is 
ompa
t in the respe
tive

Grassmann topology.

So one has a 
onstru
tion method for point-regular stable planes whi
h starts from a

Lie group with planar partition, and now it remains to �nd Lie groups whi
h admit su
h

partitions. Thanks to the famous work of Plaumann and Stramba
h (
f. [8℄ and [9℄) one

already knows that su
h a group is either exponential (that is, the exponential fun
tion is a

di�eomorphism) or is a Frobenius group whose kernel is a ve
tor group and whose 
omple-

ments are isomorphi
 to C

�

or to H

�

. In the present paper the author 
lassi�es those of the

aforementioned Frobenius groups whi
h admit planar partitions.

Throughout this note, all Lie groups are assumed to be real Lie groups of �nite dimension

and all ve
tor spa
es over skew�elds are assumed to be left ve
tor spa
es.

Partitions of Ve
tor Spa
es, Algebras, and Groups

1 De�nition. By a partition of a ve
tor spa
e we mean a set of non-trivial subspa
es

whi
h 
over the whole spa
e and whi
h pairwise interse
t trivially. Partitions of algebras

and groups are de�ned analogously. By a partition of a Lie group we mean a partition

into 
losed subgroups. A partition is 
alled trivial if it is a singleton.

2 Examples. (a) For any ve
tor spa
e the set of all 1-dimensional subspa
es is a partition,

and the same holds true for Lie algebras. So if one has a 
olle
tion of subalgebras of a Lie

algebra whi
h pairwise interse
t trivially one 
an extend this to a partition of the algebra by

adding a suitable set of 1-dimensional subalgebras.

(b) Let F be a skew�eld and V a left ve
tor spa
e over F . On the set F � V we de�ne a

bra
ket multipli
ation by

[(a; v); (b; w)℄ := a(b; w) � b(a; v):
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Endowed with this multipli
ation F � V be
omes a Lie algebra over the 
enter Z(F ) of F .

We denote it by dil(V ), or dil

n

F if V = F

n

. Algebras of this type are 
alled dilatation

algebras. As is easy to see from the de�nition, any F -subspa
e of dil(V ) is a Lie subalgebra

and hen
e, any partition of dil(V ) into ve
tor subspa
es is a Lie algebra partition.

(
) Let F and V be as in (b). On the set F

�

� V we de�ne a multipli
ation by

(a; v)(b; w) := (ab; aw + v):

Endowed with this multipli
ation F

�

� V be
omes a group whi
h we denote by Dil(V ), or

Dil

n

F if V = F

n

. Groups of this type are 
alled dilatation groups. It is easy to see that

for an F -subspa
e U of F � V the set

~

U := ((1; 0) + U) \ Dil(V ) is a subgroup of Dil(V )

(
f. proof of Proposition 12). That means that for any partition P of the Lie algebra dil(V )

into F -subspa
es the set P := f

~

p

�

�

p 2 Pg is a partition of the group Dil(V ).

(d) If we assume V in example (
) to be �nite dimensional over F and if we take F to be a

lo
ally 
ompa
t 
onne
ted skew�eld (that is, F is isomorphi
 to one of the skew�elds R, C ,

or H ), then the group Dil(V ) is a Lie group and for any partition P of the Lie algebra dil(V )

into F -subspa
es the set P := f

~

p

�

�

p 2 Pg is a partition of the Lie group Dil(V ).

Sin
e we are not interested in partitions of ve
tor spa
es, groups, or algebras in general

but in those whi
h give rise to geometri
 obje
ts su
h as translation planes and stable planes,

we now turn to so-
alled planar partitions. Before giving the de�nition we just note that any

partition P of a Lie group G indu
es a partition LP := fLP jP 2 Pg of the asso
iated Lie

algebra LG (as is easy to dedu
e from the fa
t that the exponential fun
tion exp : LG ! G

is a lo
al homeomorphism).

3 De�nition. A partition of a ve
tor spa
e or a Lie algebra is 
alled planar if it 
onsists

of subspa
es of half dimension. A partition of a Lie group is 
alled planar if the indu
ed

partition of the Lie algebra is planar.

Obviously, planar partitions of ve
tor spa
es or Lie groups 
an only exist in even dimen-

sion, but at the present point, it is not at all 
lear whether in any even dimension there

exists a Lie group or a ve
tor spa
e whi
h admits a planar partition. Indeed, there is a result

whi
h states that any even-dimensional ve
tor spa
e admits a planar partition (
f. [2℄), and


learly, this result 
overs the Lie group 
ase, sin
e any �nite-dimensional real ve
tor spa
e

is an abelian Lie group. So the question arises to 
lassify all Lie groups whi
h admit planar

partitions. In dealing with this problem one is lead to the following famous result due to

Plaumann and Stramba
h (
f. [9℄).

4 Theorem. (Plaumann{Stramba
h) Let G be a 
onne
ted Lie group that admits a partition

into subgroups of a �xed dimension d > 1. Then exa
tly one of the following holds:

(i) The exponential fun
tion is a di�eomorphism of LG onto G.

(ii) The group G is a Frobenius group whose kernel is a ve
tor group and whose 
omplement

is isomorphi
 to C

�

or to H

�

.

In the remaining part of this note we are 
on
erned with Frobenius groups mentioned in

part (ii) of Theorem 4. Among these groups we 
lassify exa
tly those whi
h admit planar

partitions. It turns out that, up to one ex
eptional 
lass, all of these groups are dilatation

groups over the quaternions or the 
omplex numbers. Moreover, it is shown that for any su
h
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group the planar partitions are exa
tly the exponential images of the planar partitions of the


orresponding Lie algebra.

A Result on Invariant Partitions

In the sequel we give an answer of the following question: Given a �nite dimensional ve
tor

spa
e V and an endomorphism ' of V . Under whi
h 
onditions to ' the ve
tor spa
e V

admits a partition into '-invariant subspa
es? The problem 
an also be formulated in terms

of modules whi
h will be done in the proof of the following theorem.

5 Theorem. Let K be a �eld, V a �nite dimensional K-ve
tor spa
e, and let ' be a non-zero

endomorphism of V . Then the ve
tor spa
e V admits a non-trivial partition into '-invariant

subspa
es if, and only if, the subring K['℄ of End

K

V is a �eld, and dim

K

K['℄ < dim

K

V .

Proof. We set R := K[x℄ and de�ne a K-algebra morphism ev

'

: R ! End

K

V by

sending x to '. With respe
t to this morphism the ve
tor spa
e V be
omes an R-module and

the '-invariant subspa
es are exa
tly the R-submodules of V .

Suppose �rst that K['℄ is a �eld and dim

K

K['℄ < dim

K

V . Then V is a K['℄-ve
tor

spa
e and be
ause of dim

K

K['℄ < dim

K

V the set of all 1-dimensional K['℄-subspa
es is a

non-trivial partition of V into R-submodules.

Now suppose that V admits a non-trivial partition P into R-submodules. As R is a

prin
ipal ideal domain and V is a �nitely generated R-module it is a dire
t sum of non-trivial


y
li
 submodules Rv

1

; : : : ; Rv

n

(
f. [5℄). We pi
k su
h a de
omposition

V = Rv

1

� � � � �Rv

n

whi
h is maximal with respe
t to the number of summands, and 
laim that all these summands

are isomorphi
 simple R-modules. If this is true, then ker ev

'

is a maximal ideal in R and

K['℄ is a �eld, sin
e it is isomorphi
 to R= ker ev

'

. So it remains to prove the 
laim. We do

this by indu
tion on n, starting with n = 2, sin
e a 
y
li
 R-module only admits the trivial

partition.

As P is a partition its elements 
over V . Therefore we �nd P

1

; P

2

2 P 
ontaining v

1

and v

2

, respe
tively, and thus obtain Rv

1

� P

1

and Rv

2

� P

2

, be
ause P

1

and P

2

are R-

submodules of V . Sin
e we have V = Rv

1

�Rv

2

and sin
e P was supposed to be non-trivial

this implies P

1

= Rv

1

and P

2

= Rv

2

. Denoting the annihilator of an element v 2 V by

Ann(v) the irredu
ibility of Rv

1

and Rv

2

implies that Ann(v

k

) =

�

p

n

k

k

�

holds for suitable

prime polynomials p

k

2 R and natural numbers n

k

. Now, we have to show n

1

= n

2

= 1 and

(p

1

) = (p

2

). Without loss we assume n

1

� n

2

. We distinguish three 
ases.

First 
ase: (p

1

) 6= (p

2

). In order to ex
lude this 
ase we set w

k

:= p

n

k

�1

k

v

k

and 
onsider the

submodule W := Rw

1

� Rw

2

of V . As Rw

1

and Rw

2

are simple non-isomorphi
 R-modules

W is a semisimple R-module and Rw

1

� Rw

2

represents its isotypi
 de
omposition. Hen
e,

we have P \W 2 ff0g; Rw

1

; Rw

2

;Wg for any P 2 P, and sin
e fP \W jP 2 Pg n f0g has

to be a partition of W , we even dedu
e P \W 2 ff0g;Wg for any P 2 P. So we obtain

P

1

\W =W = P

2

\W , sin
e w

k

2 P

k

, and thus P

1

= P

2

= V , 
ontradi
ting the fa
t that P

was supposed to be non-trivial.

Se
ond 
ase: (p

1

) = (p

2

) and n

2

> 1. Let w

1

be as above. Sin
e R(w

1

+ v

2

) is 
y
li
 it

is 
ontained in some P 2 P. Be
ause of f0g 6= Rpv

2

� R(w

1

+ v

2

) \ Rv

2

we obtain P = P

2

,

whi
h is impossible, sin
e w

1

+ v

2

=2 P

2

.
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The remaining third 
ase is the desired one. So we have Rv

1

�

=

R=(p

1

) = R=(p

2

)

�

=

Rv

2

and the 
laim is proved for n = 2.

Now let n > 2 and assume the 
laim holds true for n � 1. We write Rv

k

�

=

s

Rv

l

if Rv

k

and Rv

l

are isomorphi
 simple R-modules. Suppose there exist k; l su
h that Rv

k

6

�

=

s

Rv

l

.

Without loss let (k; l) = (1; 2). Then we have Rv

1

6

�

=

s

Rv

3

or Rv

2

6

�

=

s

Rv

3

and we 
an assume

that Rv

2

6

�

=

s

Rv

3

holds. Setting U := Rv

1

� : : : Rv

n�1

and W := Rv

2

� : : : Rv

n

the indu
tion

hypothesis yields that U and W only admit trivial partitions into R-modules and therefore

we �nd P;Q 2 P 
ontaining U and W , respe
tively. Sin
e we have Rv

2

� U \W this implies

P = Q and thus P = fPg, 
ontradi
ting the fa
t that P is non-trivial. 2

Using that an algebrai
ally 
losed �eld admits no proper �nite extension one immediately

gets the following 
onsequen
e of Theorem 5.

6 Corollary. Let K an algebrai
ally 
losed �eld, V a �nite dimensional K-ve
tor spa
e,

and let ' be a non-zero endomorphism of V . Then the ve
tor spa
e V admits a non-trivial

partition into '-invariant subspa
es if, and only if, the endomorphism ' is 
ontained in the


enter of End

K

V .

Appli
ation to Frobenius Lie Groups

7 De�nition. By a Frobenius group we understand a group G that admits a semidire
t

de
omposition G = KN where N is a normal subgroup of G, 
alled the kernel of G, and K is

a 
omplement of N su
h that the family fgKg

�1

j g 2 Ng together with N forms a partition

of G. This partition is also 
alled the natural partition of the group G. If G is supposed

to be a Lie group we require K and N to be 
losed subgroups.

8 Remark. The 
ondition in De�nition 7 that fgKg

�1

j g 2 Ng [ fNg is a partition of KN

implies that the a
tion of K on N by 
onjugation is free, i.e., for any n 2 N n f1g we have

fk 2 K j knk

�1

= ng = f1g. As we shall see in Example 9(b) this is sometimes suÆ
ient for

KN to be a Frobenius group. (Quite general, if a group G a
ts as a group of automorphisms

on a group H, then we 
all this a
tion free if for any Element h 2 H n f1g the stabilizer is

trivial.)

9 Examples. (a) Any dilatation group Dil(V ) is a Frobenius group with kernel f1g � V .

(b) Example (a) is a spe
ial 
ase of the following 
onstru
tion: Let V be a �nite dimensional

ve
tor spa
e over some skew�eld F and let G � GL(V ) be a non-trivial group that a
ts freely

on V . Then the semidire
t produ
t GnV is a Frobenius group with kernel f1g�V . In order

to see this, we have to show that for any element (g; v) 2 (G n f1g) � V there exists exa
tly

one element w 2 V su
h that

�

g; v + (1� g)w

�

= (1; w)(g; v)(1; w)

�1

2 G� f0g:

By freeness of the a
tion of G on V we obtain that 1 � g 2 End

F

V is inje
tive and thus

invertible. So w := �(1� g)

�1

v 2 V is the unique element with the desired property.

(
) There is a generalisation of dilatation groups whi
h one obtains by admitting F = (F;+; �)

in the de�nition of Dil

n

F to be a near�eld (that is, (F;+) is an abelian group, (F

�

; �) is a

group, a(x + y) = ax + ay and 0x = 0 hold for all a; x; y 2 F ). For any near�eld the set

K(F ) := fk 2 F j (8x; y 2 F ) (x + y)k = xk + ykg is a skew�eld and F is a left ve
tor spa
e
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over K(F ) (
f. [4℄). If F is �nite-dimensional over K(F ), then Dil

n

F is a Frobenius group

with kernel f1g � F

n

, whi
h immediately follows from the dis
ussion in Example (b).

(d) One 
an for ea
h positive real number b de�ne proper near�eld H

b

:= (H ; Æ

b

;+) by letting

x Æ

b

y := xjxj

ib

yjxj

�ib

for x; y 2 H . (A theorem due to Kals
heuer states that any lo
ally


ompa
t 
onne
ted near�eld whi
h is not a skew�eld is isomorphi
 to exa
tly one of the

near�elds H

b

(
f. [10℄ 64.20).) Now, for any su
h near�eld H

b

the group Dil

n

H

b

is a Frobenius

Lie group (
f. [6℄ 3.1).

We 
all a linear representation � : G! GL(V ) free if the asso
iated a
tion of G on V is

free in the sense of Remark 8. Throughout the remaining part of this note F stands for the

�eld of the 
omplex numbers or the quaternions, furthermore, we write S

F

for the subgroup


onsisting of all elements of modulus 1 in the multipli
ative group F

�

.

10 Proposition. Let G be a Frobenius Lie group whose kernel is a ve
tor group V and whose


omplements are isomorphi
 to S

F

. Then G is isomorphi
 to one of the groups S

F

nF

n

where

the a
tion of S

F

on F

n

is given by s
alar multipli
ation. In parti
ular, the kernel V is an

F-ve
tor spa
e and for any subgroup H of G that 
ontains a 
omplement of G the subgroup

H \ V is an F-subspa
e of V .

Proof. We have G

�

=

S

F

n

�

V with some representation � : S

F

! GL(V ). As S

F

is a


ompa
t group this representation is 
ompletely redu
ible when
e we have a de
omposition

V = V

1

� � � � � V

n

into irredu
ible S

F

-modules. Now the assumption on G to be a Frobe-

nius group implies that ea
h of the respe
tive subrepresentations is free. By looking at the

irredu
ible representations of S

C

�

=

SO

2

R one gets that the only ones that are free are those

whi
h are equivalent to the natural representation on C given by left multipli
ation.

The analogue result holds true for S

H

but it requires a little more work in order to prove

it. We fo
us on V

1

. By 
omplexi�
ation we get a representation S

H

! GL

C

(V

1


 C ), for

whi
h we have two possibilities: V

1


C is an irredu
ible 
omplex S

H

-module or it de
omposes

into two isomorphi
 irredu
ible 
omplex submodules. In both 
ases the asso
iated a
tion

of S

H

on V

1


 C is free if the a
tion of S

H

on V

1

is free. In the latter 
ase even V

1

has a


omplex stru
ture and the real representation S

H

! GL(V

1

) 
an be viewed as a 
omplex

representation with respe
t to this stru
ture. So we have to deal with irredu
ible 
omplex

representations of S

H

. Sin
e S

H

�

=

SU

2

C we are 
on
erned with irredu
ible representations

of SU

2

C , but these are well-known. Up to isomorphism they all 
an be obtained by the

following 
onstru
tion (see [3℄ II.5): let C [z

1

; z

2

℄ be the ve
tor spa
e of 
omplex polynomials

in two 
ommuting variables and let P

n

, n 2 N

0

, be the subspa
e of homogeneous polynomials

of degree n. Viewing the elements of C [z

1

; z

2

℄ as fun
tions on C

2

we 
an de�ne an a
tion of

SU

2

C on C [z

1

; z

2

℄ by letting gp(z) := p(g

�1

z) where g 2 SU

2

C , p 2 C [z

1

; z

2

℄, and z 2 C

2

.

Then P

n

is an (n + 1)-dimensional irredu
ible SU

2

C -submodule. In order to see that only

one of these irredu
ible submodules, namely P

1

, leads to a free a
tion, we argue as follows:


learly, the a
tion of SU

2

C on P

0

is not free. In order to see that this is likewise the 
ase for

P

n

if n > 1, take p := (z 7! z

n

1

) 2 P

n

and g = diag(a; �a) 2 SU

2

C where a 2 C n f1g is an n-th

root of unity. Then we have gp = p but g 6= 1.

Sin
e there is no 2-dimensional real representation of SU

2

C whose 
omplexi�
ation 
ould

yield the aforementioned representation on P

1

, we get that the a
tion of SU

2

C on P

1

is the

only free a
tion of SU

2

C on a real ve
tor spa
e. By uniqueness, this a
tion of SU

2

C on P

1

is equivalent to the a
tion of S

H

on H by left multipli
ation. So an irredu
ible H

�

-module
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de
omposes into irredu
ible S

H

-submodules whi
h we 
an identify with H and on whi
h S

H

a
ts via multipli
ation from the left. 2

11 Proposition. Let G be a Frobenius Lie group whose kernel is a ve
tor group V and whose


omplements are isomorphi
 to F

�

. Then V is an F-ve
tor spa
e and any planar partition of

G indu
es a partition of V into F-subspa
es.

Proof. Let G = F

�

n

�

V with some representation � : F

�

! GL(V ) and assume that G

admits a planar partition P. A

ording to Proposition 10 we know that V is an F-ve
tor spa
e

and the a
tion of S

F

on V is given by s
alar multipli
ation. Sin
e C

�

and H

�

only admit

the trivial partition any element of P whi
h is not 
ontained in V 
ontains a 
omplement of

G. Hen
e, for any Q 2 Q := fP 2 P jP 6� V g the subgroup Q \ V is an F-subspa
e of V .

So it remains to show that any P 2 P n Q is also an F-subspa
e of V , i.e., is invariant under

the a
tion of S

F

. Sin
e dimP + dimP

0

= dimG > dimV holds for all P; P

0

2 P the set

P n Q 
ontains at most one element and hen
e, the assertion now follows from the fa
t that

S

fQ \ V jQ 2 Qg is an S

F

-invariant subset of V . 2

If one views the group Dil

n

F as a group of matri
es by identifying the element (a; v) with

the matrix

�

a1

n

v

1

�

, and doing the analogue for the Lie algebra dil

n

F, one sees that dil

n

F

is the Lie algebra of Dil

n

F and that the exponential fun
tion is given by

exp(a; v) =

(
�

e

a

; (e

a

� 1)a

�1

v

�

if a 6= 0

(1; v) otherwise

:

Using this, easy 
al
ulations show that exp : dil

n

F ! Dil

n

F is surje
tive and that

exp Fx � (1; 0) + Fx

holds for ea
h x 2 dil

n

F (see [6℄ 3.1 for the details). Both fa
ts together imply that

exp Fx = ((1; 0) + Fx) \Dil

n

F (1)

holds for ea
h x 2 dil

n

F, sin
e the 1-dimensional F-subspa
es of dil

n

F form a partition of

dil

n

F.

12 Proposition. If U is an F-subspa
e of the Lie algebra dil

n

F, then we have expU =

((1; 0) + U) \ Dil

n

F and expU is a 
losed subgroup of Dil

n

F. In parti
ular, if P is any

partition of the Lie algebra dil

n

F into F-subspa
es, then the set expP := fexp p j p 2 Pg is a

partition of the Lie group Dil

n

F.

Proof. The fa
t that expU = ((1; 0)+U)\Dil

n

F holds for any F-subspa
e U of dil

n

F is

an immediate 
onsequen
e of equation (1), sin
e any F-subspa
e is 
over by its 1-dimensional

F-subspa
es. In order to see that expU is a group, we pi
k (1 + a; v); (1 + b; w) 2 expU and


ompute

(1 + a; v)(1 + b; w) =

�

(1 + a)(1 + b); (1 + a)v + u

�

= (1; 0) + (a; u) + (1 + a)(b; v);

and

(1 + a; v)

�1

=

�

(1 + a)

�1

;�(1 + a)

�1

v

�

= (1; 0) � (1 + a)

�1

(a; v):

Sin
e U is an F-subspa
e and a; b 6= �1 both results are 
ontained in expU . 2
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13 Theorem. Let F 2 fC ; H g and let G be a Frobenius Lie group whose kernel is a ve
tor

group and whose 
omplements are isomorphi
 to F

�

. If G admits a planar partition, then

exa
tly one of the following holds:

(i) The group G is isomorphi
 to one of the groups Dil

n

F.

(ii) The group G is isomorphi
 to one of the groups Dil

1

H

b

.

Moreover, the planar partitions of Dil

n

F are exa
tly the exponential images of the planar

partitions of dil

n

F, whi
h all 
onsist of F-subspa
es. The only planar partitions of the groups

Dil

1

H

b

are the natural ones.

Proof. Let G = F

�

n

�

V and assume that G admits a planar partition P. Then,

a

ording to Proposition 10 and Proposition 11, the kernel V is an F-ve
tor spa
e and the

set P

V

:= fP \ V jP 2 Pg is a partition of V into F-subspa
es. Identifying F

�

with R � S

F

via the map (t; s) 7! e

t

s we obtain that � := �j

R

: R ! GL(V ) is a one-parameter group

with im� � GL

F

V and �(t)P � P for any P 2 P

V

and any t 2 R. Hen
e, there exists some

X 2 End

F

V su
h that �(t) = exp(tX) for any t 2 R. We 
laim that P

V

is an X-invariant

partition, and in order to prove this, we pi
k a non-zero ve
tor v 2 V . As P

V

is a partition

of V there exists exa
tly one element P

v

2 P

V

that 
ontains v. Sin
e P

v

is invariant under

�(R) it 
ontains the image of the 
urve �

v

: R ! V : t 7! exp(tX)v and sin
e it is 
losed in V

it also 
ontains the tangent ve
tor Xv = _�

v

(0), as was to be shown. Now we set n := dim

F

V

and distinguish several 
ases.

Let �rst F = C . If n = 1 then we have End

C

V = C id

V

and thus X 2 C id

V

. If n > 1 then

Corollary 6 applies and yields that X is 
ontained in C id

V

. Consequently, � is of the form

t 7! e


t

id

V

for some 
 2 C . In fa
t, we even have 
 2 C n Ri, be
ause of the inje
tivity of

�. Now the map (t; s) 7! e


t

s indu
es an automorphism of C

�

, and this automorphism again

indu
es an isomorphism of G = C

�

n

�

V onto Dil

n

C .

Now let F = H and n > 1. As V is a H -ve
tor spa
e it is a ve
tor spa
e over any sub�eld

K of H . We regard C as a sub�eld of H and set K := fhC h

�1

jh 2 H

�

g. Obviously, we

have in
lusions GL

H

V � GL

K

V � GL(V ) for any K 2 K. As in 
ase F = C we obtain

�(R) � K

�

id

V

for any K 2 K, and hen
e

�(R) �

\

K2K

K

�

id

V

= R

�

id

V

sin
e

T

K = R. Consequently, � is of the form t 7! e

rt

id

V

for some r 2 R. Now, in analogy

with the pre
eding 
ase, we obtain that the map (t; s) 7! e

rt

s : R � S

H

! H

�

indu
es an

isomorphism of G = H

�

n

�

V onto Dil

n

H .

It remains to treat the 
ase where F = H and n = 1. Identifying V with H , we obtain

End

H

V = f�

h

jh 2 H g, where �

h

denotes multipli
ation from the right with h. Sin
e the

map h 7! �

�

h

: H ! End

H

V is an isomorphism of R-algebras the one-parameter group

� : R ! GL

H

V is determined by a 
ontinuous inje
tive homomorphism � : R ! H

�

. Su
h

a homomorphism is of the form t 7! e

ht

for some h 2 H . Be
ause of the inje
tivity of �, we

even have h 2 H nPu H , where Pu H denotes set of pure quaternions. As a 
ommutative real

subalgebra of H the algebra R[e

ht

℄ is isomorphi
 to R or to C and hen
e, after 
onjugation

with a suitable quaternion, we 
an assume R[e

ht

℄ � C . Thus we have h = a + bi 2 C n Ri

and by res
aling we 
an a
hieve a = 1. Furthermore, we 
an assume b � 0, if ne
essary

by repla
ing the representation � by the equivalent real representation �� : t 7! � Æ �(t) Æ �,

where � : H ! H : x 7! �x denotes 
onjugation in H . Now the a
tion of H

�

on H is given by

7



(a; v) 7! ajaj

�1

vjaj

h

= avjaj

�bi

. For b = 0 the group G is obviously isomorphi
 with Dil

1

H .

If b > 0 then the map (a; v) 7! (ajaj

�bi

; v) from H

�

� H onto itself gives an isomorphism of

the group G onto Dil

1

H

b

.

Let P be a planar Partition of dil

n

F. We show that P 
onsists of F-subspa
es. Be
ause

of the dimension formula there exists at most one element of P whi
h is 
ontained in the

subspa
e V := f0g � F

n

, and for any element p 2 P whi
h is not 
ontained in V we obtain

that the proje
tion of p onto F�f0g along V is surje
tive. Noting this and that [(a; 0); v℄ = av

holds for any a 2 F and any v 2 V one sees as in the proof of Proposition 11 that the set

P

V

:= fp \ V j p 2 Pg 
onsists of F-subspa
es of V . Let p 2 P be an element whi
h is not


ontained in V and let (1; v) 2 p n V . For any a 2 F we �nd w 2 F

n

su
h that (a;w) 2 p.

Now we 
ompute (0; w�av) = [(1; v); (a;w)℄ 2 p and obtain a(1; v) = (a;w)� (0; w�av) 2 p,

as desired. Sin
e P 
onsists of F-subspa
es of dil

n

F its exponential image expP is a planar

partition of Dil

n

F, a

ording to Proposition 12.

If P is a planar partition of Dil

n

F, then LP is a planar partition of dil

n

F, and thus 
onsists

of F-subspa
es. So we 
an apply Proposition 12 and obtain P = expLP.

The remainder follows from the fa
t that for any of the groups Dil

1

H

b

the 
omplements

only admit the trivial partition, sin
e they all are isomorphi
 with H

�

. 2
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