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The purpose of this paper is to describe the structure of the abelian group of central extensions of
an infinite-dimensional Lie group in the sense of Milnor ([Mi83]). These are Lie groups which are
manifolds modeled over sequentially complete locally convex spaces. A serious difficulty one has
to face in this context is that even Banach manifolds are in general not smoothly paracompact,
which means that every open cover has a subordinated smooth partition of unity. Therefore de
Rham’s Theorem is not available for these manifolds. Typical examples of Banach—Lie groups
which are not smoothly paracompact are the additive groups of the Banach spaces C([0, 1], R)
and [1(N,R).

In the Lie theoretic context, the central extensions Z — G —» G of interest are those
which are principal bundles. For G and Z fixed the equivalence classes of such extensions can
be described by an abelian group Extpi(G, Z), so that the problem is to describe this group as
explicitly as possible. This means in particular to relate it to the Lie algebra cohomology group
H?(g,3) which classifies the central extensions 3 < g — g of the topological Lie algebra g by
the abelian Lie algebra 3 for which there exists a continuous linear section g — g. Our central
result is the following long exact sequence for a connected Lie group G, its universal covering
group G, the central subgroup 7 (G) C G, and an abelian Lie group Z which can be written
as Z =3/, where T C 3 is a discrete subgroup (Theorem V.9):

Hom(G, Z) — Hom(G, Z) — Hom (m(G), Z)L Extrie(G, Z)L)Hf(g,g)
(1) —& , Hom (m2(G), Z) x Hom (1 (G), Hom,(g,3))-

Here & assigns to y: 11 (G) — Z the quotient of G x Z modulo the graph of v~ (here inversion
is meant pointwise in Z) and & assigns to a group extension the corresponding Lie algebra
extension. The definition of & is more subtle. Let w € Z2(g,3) be a smooth Lie algebra
cocycle and € be the corresponding left invariant closed j-valued 2-form on G. The second
component &3 2([w]) is defined as follows. For each X € g we write X, for the corresponding
right invariant vector field on G. Then i(X;).Q is a closed 3-valued 1-form to which we associate
a homomorphism m (G) — 3 via an embedding H}g(G,3) < Hom(m (G),3). This embedding
is established directly, even if G is not smoothly paracompact (Theorem II1.6). In terms of
symplectic geometry the condition &32([w]) = 0 means that the action of G on (G,Q) has
a moment map, but we won’t emphasize this point of view. To define the first component
&.1([w]), we use the Poincaré Lemma to associate with w a j-valued local 2-cocycle f on a
sufficiently small neighborhood of the identity in G. Now we associate to f an Alexander—
Spanier cocycle and further a singular cocycle n(f) € Hfing (G, Z). This correspondence yields
amap HZ(g,3) — H3,,(G,Z), and by evaluating 7n(f) on elements of m»(G), interpreted as
singular cycles, we thus obtain a homomorphism per:m(G) — 3. Now &1 ([w]) := gz o per,,,
where qz:3 — Z is the quotient map.
For a simply connected Lie group G the sequence (1) reduces to

(2) Extrie(G, Z) <= HZ(g,3) — Hom (Wz(G): Z)7

showing that in this case the group Extrie(G, Z) can be identified with the subgroup of HZ(g,3)
consisting of those classes [w] for which the image of per,, , the so-called period group, is contained
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in T'. In spite of the absence of a de Rham isomorphism, we show that if :S? — G is a smooth
map, then the corresponding period can simply be calculated as the integral per,([7]) = fv Qej.

Similar conditions are well-known in the theory of geometric quantization of finite-dimen-
sional symplectic manifolds (M,). Here the integrality of the cohomology class [Q] of the
symplectic 2-form () is equivalent to the existence of a so-called pre-quantum bundle, i.e., a
T-principal bundle T — M —» M whose curvature 2-form is  (cf. [TW87]). Based on these
observations, Tuynman and Wiegerinck gave a proof of the exactness of (1) in H2 (g, R) for finite-
dimensional Lie algebras g ([TW87, Th. 5.4]). As was observed in [Ne96], for finite-dimensional
groups GG the map s is simpler because the vanishing of 79 (G) makes the first component of
&; superfluous. That the vanishing of m(G), resp., Hiz (G, R) for finite-dimensional Lie groups
G permits to construct arbitrary central extensions for simply connected groups is a quite old
observation of E. Cartan ([Cab2b]). He used it to prove Lie’s Third Theorem by constructing a
Lie group associated to a Lie algebra g as a central extension of the simply connected covering
group of the group Inn(g) = (¢*49) of inner automorphisms (see also [Est88] for an elaboration
of Cartan’s method). This method has been extended to Banach-Lie groups by van Est and
Korthagen who characterize the existence of a Banach—Lie group with a Lie algebra g by the
discreteness of the period group corresponding to the Lie algebra extension 3(g) — g —» adg
and the simply connected covering of the group Inn(g) endowed with its intrinsic Banach-Lie
group structure ([EK64]). It is remarkable that their approach does not require the existence of
smooth local sections, which do not always exist for Banach-Lie groups. The reason for this is
that there is no regularity required for a function representing an Alexander—Spanier cocycle. In
the case of Banach—Lie groups the existence of local groups corresponding to central extensions
of Lie algebras can also be obtained by using the Baker—Campbell-Hausdorff series, but for
more general Lie algebras, this series need not converge on a 0-neighborhood in g. We use
one of the results of van Est and Korthagen to show that for a simply connected Lie group G
the vanishing of &([w]) implies the extendability of the local cocycle f to a global one, and
hence the existence of a corresponding global group extension (this is needed for the exactness
in H2(g,3)). For smooth loop groups central extensions are discussed in [PS86], but in this
case many difficulties are absent because smooth loop groups are modeled on nuclear Fréchet
spaces which are smoothly regular ([KM97, Th. 16.10]), hence they are smoothly paracompact
because this holds for every smoothly Hausdorff second countable manifolds modeled over a
smoothly regular space ([KM97, 27.4]). In [TL99] Toledano Laredo discusses central extensions
of Lie groups obtained from projective representations with a smooth vector by construction a
corresponding locally smooth 2-cocycle (Prop. 5.3.1). This is very much in the spirit of our
approach in Section IV. In Section 5 of his paper Toledano Laredo applies results of Pressley and
Segal to general groups, which, as explained above, is only justified if these groups are smoothly
paracompact. In Omori’s book one also finds some remarks on central T-extensions including
in particular Cartan’s construction for simply connected regular Fréchet-Lie groups ([Omo97,
pp.252/254]). If the singular cohomology class associated to w does not vanish but is integral,
then Omori uses simple open covers (the Poincaré Lemma applies to all finite intersections) to
construct the T-bundle from the corresponding integral Cech cocycle. Unfortunately it is not
clear whether all infinite-dimensional Lie groups have such open covers.

It would be very interesting to extend the results and the methods of the present paper
to general smooth Lie group extensions. In this context the work of Hochschild ([Ho51]) and
Eilenberg-MacLance ([EML47]) contains results one might try to extend to infinite-dimensional
Lie groups. Another interesting project is to try to establish the corresponding results for
prequantization of manifolds M endowed with a closed 2-form 2. Here the question is under
which conditions there exists a prequantization, i.e., a principal T-bundle T < M —*+M with
a connection 1-form a such that da = ¢*Q, i.e.,  is the curvature form of the bundle. In
[TW8T] it is shown that for finite-dimensional manifolds the condition is the discreteness of the
group of periods of €. Is this still true for infinite-dimensional manifolds? Unfortunately our
methods rely on the group structure of the underlying manifold, hence do not directly apply to
this setting.

We approach the problem to describe Extri(G, Z) by first discussing for abstract groups
the exact sequence in Eilenberg—MacLane cohomology induced by a central extension A — B —
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— C (Theorem 1.5, [MacL63]):
(3) Hom(C,Z) — Hom(B,Z) — Hom(A, Z) = Ext(C,Z) — Exta(B, Z) = Extar(4, 2),

where Ext4(B,Z) denotes the equivalence classes of central extensions q:§ — B for which
the subgroup A= q 1(A) is central, and Extap(A, Z) denotes the equivalence classes of abelian
extensions of A by Z. This long exact sequence remains valid for central extensions of topological
groups and Lie groups as well, if we interprete the Hom- and Ext-groups in an appropriate sense.

In Section V all pieces are put together to obtain the exactness of (1). An interesting
byproduct is that the vanishing of £3.:m(G) — Hom(g,3) precisely describes the condition
under which the adjoint action of g on the central extension g integrates to a smooth represen-
tation of the group G. In this sense the adjoint and coadjoint action on ¢ might exist even if
the group G' does not.

It is a well-known fact in finite-dimensional Lie theory that extensions of simply connected
Lie groups are topologically trivial in the sense that they have a global smooth section, hence can
be defined by a global cocycle. For central extensions of infinite-dimensional simply connected Lie
groups the existence of a global smooth section is equivalent to the exactness of the corresponding
left invariant closed 2-form € (Proposition V.19). If G is not simply connected, then positive
results on the existence of smooth sections can only be obtained with the use of smooth partitions
of unity.

Section VI is a collection of examples displaying various typical aspects in the description
of the group Extri.(G, Z) in the exact sequence (1).

Since every central extension Z — G — G is in particular a principal bundle, the exact
homotopy sequence of such bundles yields a homomorphism ¢: 72 (G) — 71 (Z) = I'. In Section
VII we show that this homomorphism is, up to sign, the same as the period homomorphism
m2(G) — 3 provided by the long exact sequence for 3 instead of Z. Closely related to this fact
is another interpretation of the homomorphism 72 (G) — Z as an obstruction to the existence of
G which can be given as follows. Let Q(G) = P(G) —» G denote the path-loop fibration of a
simply connected Fréchet-Lie group G. Then Q(G) and P(G) are Lie groups, and the path-loop
fibration is a smooth extension of G by the loop group Q(G). Now each Lie algebra cocycle in
H2(g,3) can be pulled back to P(G), and since P(G) is contractible, all its homotopy groups
vanish, so that we obtain a central extension Z < P(G) —» P(G). By restriction, we get a central
extension Z < Q(G) —» Q(G) which is defined by a homomorphism v: 7, (Q(G)) = 7 (G) — Z.
It turns out that this homomorphism is trivial if and only if a suitable quotient of P(G) yields
a central extension G of G.

I am grateful to H. Glockner for the excellent proof reading of the article.

I. The abstract setting for central extensions of groups

In this section we discuss several aspects of central extensions of groups on the level where no
topology or manifold structure is involved. The focus of this section is on a discussion of the
Hom-Ext exact sequence for central extensions of groups (Theorem L.5; see also [MacL63]). This
result can also be obtained by more elaborate spectral sequence arguments which basically are
also suited for non-central extensions, but for central extensions it can be obtained quite directly.
Moreover, we shall later need explicit information on the maps in this exact sequence to generalize
it to central extensions of topological and Lie groups, which will be done by verifying that the
crucial steps generalize to the topological and the Lie group context.
Throughout this section G' denotes a group and Z an abelian group.

Definition I.1. We define the group

Z2G,Z) = {f:G x G = Z:(Vr,y,2 € G)
f(Le) = f2,1) =1, f(z,y)f(xy,2) = f(z,y2)f(y,2)}
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of Z -valued 2-cocycles and the subgroup
B*(G,Z) ={f:GxG — Z:(3h:G — Z)h(1) = 1,(Vz,y € G) f(z,y) = h(zy)h(z) " h(y) ™}

of Z -valued 2-coboundaries. In both cases the group structure is given by pointwise multiplica-
tion. Since both groups are abelian, it makes sense to define the Eilenberg—MacLane cohomology

o Ext(G,Z) = H*(G,Z) = Z*(G, Z)| B*(G, Z). n

Remark 1.2. (a) To each f € Z%(G, Z) we associate a central extension of G by Z via
(1.1) G:=Gx; 2, (9,292 = (99,221 (9.9").

This multiplication turns G into a group with neutral element (1,1) and inversion given by
(1.2) (9,2)7 = (97" 27 flg.971) 7).

The projection ¢:G — G, (g,2) — g is a homomorphism whose kernel is the central subgroup
Z , hence defines a central extension of G by Z.
For the verification one needs that f(g,g ') = f(g~*,g) which follows from

flo™h9) =Flo. V(g7 9) = fla.97'9) g7 . 9) = Flg.g7 ) f(L,9) = flg,97").

It is also useful to derive a formula for the conjugation in this group. We have

(9,2)(h,w)(g,2) " = (gh, 2wf(g,h)) (g7 2 flg,g D))
= (ghg " wf(g,0)f(g,97 ") flgh,g™h))
(1.3) = (ghg ", wf(g,h)f(ghg™ " 9) "),
because
flgh,g™ ") f(ghg™",9) = flgh,1)f(g7",9) = f(g,97").

If, conversely, q:CA}' — (G is a central extension with kerq = Z, then any map o:G — G
with 0(1) =1 and g oo =idg leads to a 2-cocycle

f@,y) = o(@)o(y)o(zy) ",

and then R
p:G@xyZ =G, (g9,2)—0(g9)z
is an isomorphism. This means that every central extension of G by Z can be represented as
G xy Z for some f € Z*(G,Z).
(b) If the two cocycles fi and fo satisfy

(1.4) Fa(z,y) = fi(@, y)hzy)h(z) " h(y) ™

for all x,y € G, then the map

0:Gxp Z— G xyp, Z, (g,2) = (g,h(g)2)

is a group isomorphism.
Let qj:@j — G, j = 1,2, be two central Z-extensions of G. We identify Z with kerg;
for j =1,2. A group homomorphism ¢: él —)§2 is called an equivalence of Z -extensions of G
if |z =idy (if we view Z as a subgroup of G; and G2), and g2 0 ¢ = ¢;. In particular each
equivalence
(p:GXh Z—)GXfQZ
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is given by ¢(g,2) = (g,h(g)z), where h: G — Z is a map satisfying (1.4). We conclude that two
central extensions G xy, Z and G Xy, Z are equivalent if and only if flfgl € B*(G,Z), hence
that the group H?(G,Z) parametrizes the isomorphy classes of central extensions of G by Z,

justifying the notation Ext(G, Z) (cf. [MacL63, Th. IV.4.1]). For a topological interpretation of
these groups as singular cohomology groups we refer to the beautiful survey article [MacL78].

A central extension g: G->a splits as a group extension if and only if there exists a group
homomorphism ¢:G — G with 7 oo =idg. This means that o(g) = (g, h(g)) with

(99", h(gg") = algg') = o(9)alg’) = (99", h(9)h(g") f(g,9")) for g.g'€G,

ie., f € B*G,2).

(¢c) Let H C G be a central subgroup and 7:G — G a central extension as above. Then
H := 7 Y(H) is central in G if and only if the cocycle f satisfies f(h,g) = f(g,h) for all g € G,
h € H. We define

Z5(G,Z) = {f € Z*(G,2): (Vg € G)(Vh € H) f(g,h) = f(h,9)}.
Since B%(G,Z) C Z%(G, Z), the group
Exty(G,Z) = Hy{(G, Z) = Z3(G, Z2) | B*(G, Z)

is a subgroup of Ext(G, Z). =

Remark 1.3. (The connecting homomorphism) Let

E: 1 A—> B P ¢ 51

be a central extension of C' by A. We write [fg] for the corresponding element of Ext(C, A),
where fp € Z2(C,A) is a representing cocycle. Let Z be an abelian group. We define a
homomorphism

E*:Hom(A, Z) — Ext(C,2), E*(v):="«[fg] =[yo fe]

It is clear that E* is a well-defined group homomorphism. To describe the central extension of
C by Z corresponding to [y o fg], we consider the central subgroup

D :={(a(a),y(a)"") € Bx Z:a€ A} and C:=(Bx Z)/D,

whose elements we write as [b,z] := (b, z)D. This is the standard pushout construction. Then
we have a surjective homomorphism ¢: C — C, [b, z] — B(b) whose kernel is given by

kerqg = {[a(a),zl:a € A,z € Z} ={[1,v(a)z]:a € A,z € Z} = Z.
To see that this extension of C' by Z can be described by the cocycle vo fg, let :C — B be
a section corresponding to the cocycle fg in the sense that fg(c,c) = o(c)o(c')o(cc’)™t. We

consider the map o:C — a,c — [o(c),1] and observe that g o ¢ = id¢. The corresponding
cocycle is given by

[o(c)a()o(ec) ™1 1] = [a(fE(c,¢)), 1] = [1,7(fe(c )],

hence corresponds to v(fe(c, ¢')) under the identification of Z with a subgroup of C. =
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Remark I.4. (a) If one is only interested in those central extensions of abelian groups G which
are abelian, then one requires the cocycle f to satisfy f(a,b) = f(b,a) which leads to the groups
22, (G, Z) for abelian groups G, Z. In view of B2 (G, Z) = B*(G, Z), we have an inclusion

Extan (G, 2) = H;, (G, 2) = Z5,(G, 2)/ B}, (G, Z) — Z*(G, 2)/B*(G, Z) = H*(G, Z).

(b) Even though Ext,,(G,R) = {0} holds for each abelian group G because R is divisible, we
might have Ext(G,R) # {0} for certain abelian groups G. A typical example is given by G = R?
and the central extension G of G given by G =R® with the multiplication

(1.5) (x,y,2)* (@',y,2") = (w+ 2",y +y, 2+ 2 +xy').

The group @G is called the three-dimensional Heisenberg group.
(c) Since G := Z? is a free abelian group, Extap,(Z?, Z) = {0} holds for each abelian group Z.
On the other hand, we have Ext(Z? Z) # {0}. A typical example is given by the subgroup

G := Z* of the three-dimensional Heisenberg group (note that (1.5) implies that G is indeed a
subgroup). Let ¢;, j = 1,2,3, denote the basis vectors. Then

€1 x€ey = €] + €3+ 63 =e3*en xe;

implies that G is non-abelian, so that we obtain a non-trivial central extension Z —» G—»G=
72, [

The exact sequence discussed below provides crucial information on how the group
Ext(C,Z) of a quotient C' = B/A is related to the Ext-groups of A and B. Later we will
see that it generalizes in an appropriate sense to topological groups and Lie groups. It is instruc-
tive to compare Theorems 1.5 and 1.6 below with the corresponding results for abelian groups
(Theorem A.1.4) which are sharper in the sense that the last map in the sequence is surjective.

Theorem L.5. Let E: A—"3B-25C be a central extension of C by A and Z an abelian
group. Then

Hom(C, Z) < Hom(B, Z)— Hom(A, Z)-2 Ext(C, Z)—2— Ext o) (B, Z) - Extan(A, Z)

is exact. Here B*.[f]l:= [f o (B x B)] is the inflation map and o*.[f]:= [f o (o X «)] is the
restriction map.
Proof. (1) Exactness at Hom(C,Z): If fof =1, then f =1 because f is surjective.

(2) Exactness at Hom(B, Z): For f € Hom(C, Z) we clearly have fofgoa = 1. If, conversely,
f € Hom(B, Z) satisfies foca =1, then f vanishes on im «, hence factors to a homomorphism

f:C = Z with f=fop.

(3) Exactness at Hom(A, Z): First we show that for every v € Hom(B, Z) the central extension
E*.(y o) is trivial. Let

C := (B x 2)/D, D :={(afa),y(a(a))"):a € A}

be the central extension defined by v o a (Remark 1.3). Then ¢:C — C, B(b) — [b,v(b)7!]
is a well-defined group homomorphism and ¢ o 0 = id¢ holds for ¢([b,z]) = B(b). Therefore
E*(yoa)=1.

Now we show that E*y = 1 for v € Hom(A,Z) implies that v is in the range of
Hom(a, Z): f = foa. In view of E*y =1, there exists a homomorphic section

0:C - C=(BxZ)/D, D:={(ala),y(a)""):ac A}.

We write o(8(b)) = [b,d(b)] with a function 6: B — Z and note that § is well-defined because
Dn ({1} x Z) ={1}. Now

[b1b2,0(b1b2)] = o(B(b1b2)) = a(B(b1))o(B(b2)) = [biba, 6(b1)d(b2)]
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implies that ¢ is a group homomorphism. Moreover, § o « satisfies

Hence d(a(a)) = v(a)~! implies that v =§ L oa.

(4) Exactness at Ext(C, Z): It is clear that 8* maps Ext(C, Z) into Extya)(B,Z). First we
show that S*E* = 1. We have 8*E*.y = [yo fro (8 x )] = [fe o (8 x B)]*(7). An easy
calculation gives

B X uox8) A = (C X gy A) X puo(8xpyo(nxn) A = C Xty 15) (A X A),
where k:C' Xy, A — B is the natural isomorphism. In this sense we define a section
0:B=(C xyp, A) = C X(yg,15) (A X A), o(c,a) = (c,a,a).

Now

o ((c1,a1), (ca,a2)) = (cre2,araa f(c1, ¢2),a1aa f(c1,¢2)) = (e, a1)o(c2, az)

shows that ¢ is a group homomorphism, so that [fg o (§ x §)] =1, and hence f*E* = 1.

Next we assume that 8*.[f] = [fo(8x8)] =1 foran f € Z?(C,Z). This means that there
exists a splitting homomorphism o: B — B X yo(3x3) £ which we write as o(b) = (b,7(b)). Then
we have y(b1bz) = v(by)v(b2) f(B(b1), B(b2)) for all by,bs € B which implies that yoa: A — Z
is a group homomorphism. Next we consider the homomorphism

(p:BXZ—)BXfO[aZ—)CXfZ, (p(b,Z)ZB(b)Z
Then ¢ is a surjective homomorphism whose kernel is given by

kerp = {(a(a), 2):Y(a(@)z = 1,a € A} = {(ala), y(a(@))~):a € A},

so that (B x Z)/keryp = C xy Z — C and therefore [f] = E*.(yo ).

(5) Exactness at Extq(4)(B,Z): In view of a*f* = (8o a)" = 1, it remains to see that
kera* C img8*. Let f € ZZ(A)(B,Z) and qp:B = B Xy Z — B be the corresponding
central extension. We assume that [f o (« x «)] = 1 and have to show that [f] € im(*.
First we observe that there exists a homomorphism 0: A — B with gp oo = «. The assumption
fe Zi(A) (B, Z) implies that o(A4) C ¢p'(a(A)) is central in B, so that we may form the
quotient group C := B/o(A) which is a central extension of C/A = C/A= B by A/o(A) = Z.
Let go: C' — C be the corresponding quotient map. Now it suffices to show that

B=p*C :={(b,d) € B x C:(b) = qc(0)}.

We define a homomorphism

-~

v:B = 5°C, ~:=(¢s,h),

where Bz B — C is the quotient map. That im~y C 6*6’ follows from Bogp = qc o B We claim
that ~ is bijective. The injectivity follows from

kery = ker g Mker 3 = ker gz N o(A) ={1}.

To see that ~ is surjective, let (b,¢) € 6*6’ and pick be B with b = qB(Z), Then ch@) =
Baqs(b) = B(b) = gc(¢) implies that there exists a z € Z with g(b)z =¢. Now ~(bz) = (b,c). =
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Theorem 1.6.  Let E: A—23B-L5C be an estension of abelian groups and G be a group.
Then

Hom(G, A) < Hom(G, B)— Hom(G, C) 2% Ext(G, A) -2 Ext(G, B)—2 Ext(G, C)

is ezact. Here an.[f] = [ao f], Bi.[f] = [Bo f], and E..y = v*E is the pullback of E to a
central extension of G.

Proof. Exactness at Hom(G, A) and Hom(G, B) is trivial.

(1) Exactness at Hom(G,C): Let v € Hom(G,C). Then E.7 is the central extension

G:={(g,0) € G x B:B(b) =7(9)} with ¢G—G, (g,0) g

This central extension is trivial if and only if there exists a homomorphic section o: G — G. Such
a section can be written as o(g) = (g, f(g)) for a homomorphism f:G — B with So f = ~.
Hence E,7 is trivial if and only if there exists f € Hom(G, B) with So f = .

(2) Exactness at Ext(G, A): Let v € Hom(G, C) and G be as in (1). Then the central extension
aE.y is given by

H:=(GxB)/DC(GxBxB)/D, D:={(1,ala),ala) ):ac Al.

One directly verifies that o:G — H,o(g) = [(g,b,b71)] for B(b) = v(g) is a well-defined
homomorphic section of this central extension.

Now we assume that F : 4 — G—25G is a central extension for which a,F is trivial.
This means that the central extension

H = (é x B)/{(a,a(a)™'):a € A}, q:H—G, |[g,b] = q(g)

has a homomorphic section o: G — H . This section can be written as o(q(g)) = [g, f(g)], where
f:G = B is a homomorphism with f(ga) = f(g)a(a)~" for g € G, a € A. In particular we
obtain a = f~1]4, and hence that f(4) = a(4) C B. Now 1:G — C,q(g) — B(f(g)) is a
well-defined homomorphism. We claim that F' = E,~. In view of ker fNkerg =ker fNA = {1},
the homomorphism ¢ := (g, f1): G- GxBis injective, and yo g = S o f~! implies that

¢(G) C {(9,b) € G x B:7(g) = B(b)}.

It remains to see that we have equality. Pick (g,b) € G x B with y(g) = 5(b). Let g € G with
q(g) = g. Then 5(f(9)) = v(q(g)) = v(g) = B(b), so that there exists an a € A with f(ga) = b.
Now () = (9.6)- i

(3) Exactness at Ext(G,B): The relation f.a, = (8a), = 1 is trivial. If F: B — G——G is a
central extension with S.F =1, then

H:=(GxC)/D, D:={(bA0b)"):be B}

has a homomorphic section o: G — H,0(q(g)) := [g, f(g9)], where f: G- Cisa homomorphism
with f |p = B7!. In particular we have foa = 1. Let L := kerf C G and qr =
qlz: L — G. Then kerqr = kergN L = BNker = a(A), so that we obtain a central extension
A5 L-24@. One readily verifies that the homomorphism L x B — G, (I,b) ~— b factors
through an isomorphism : (L x B)/T'(a=) = G, ¢([l,b]) = Ib. n
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II. Central extensions of topological groups

For a topological group G' and an abelian topological group Z we consider only those central
Z-extensions ¢:G — G which are Z-principal bundles, i.e., for which there exists an open 1-
neighborhood U C G and a continuous map o:U — G with goo =idy. As we will see below,
these are precisely those central extensions that can be represented by a cocycle f:G x G — Z
which is continuous in a neighborhood of 1 x 1, and this leads to a generalization of Theorems
1.5 and 1.6 to central extensions of topological groups. Before we can derive these facts, we
collect some general facts on topological groups. Throughout this paper, all topological groups
are assumed to be Hausdorff.

Lemma II.1. Let G be a group and F a filter basis of subsets with (\F = {1} satisfying:
(Ul) (YU € F)(IV e F)VV CU.

(U2) (VU € F)AV e F)V L CU.

(U3) (VU € F)(Vg € G)(AV € F)gVg=t CU.

Then there exists a unique group topology on G such that F is a basis of 1-neighborhoods in G .
This topology is given by {U C G: (Vg € U)(IV € F)gV C U}.

Proof. [Bou88, Ch. III, §1.2, Prop. 1] u

Lemma II1.2. We assume that G is a group and that K = K~ ' is a subset containing 1
and generating G. We further assume that K is a Hausdorff topological space such that the
inversion is continuous and that there exists an open subset V C K x K with zy € K for all
(x,y) € V, containing all pairs (z,z~ '), (x,1), (1,z), x € K, such that the group multiplication
m:V — K s continuous. Then there exists a unique group topology on G for which the inclusion
map K — G is an open embedding.

Proof. (cf. [Ti83, p.62]) We consider the filter basis F of neighborhoods of 1 in K and verify
that it satisfies the conditions in Lemma II.1.

(U1) follows from the fact that V' is open and m is continuous.
(U2) follows from the continuity of the inversion on U.
(U3) Since K generates GG, one easily verifies by induction that it suffices to show that

(VU € F)(Vg € K)(3U' € F)gU'g~' CU.

We find U; € F and a neighborhood Us of g in K such that {g} xU; CV, Usx{g™'} CV and
gUy C Us. Then the conjugation map U; — K,z — (gx)g ! is continuous, and (U3) follows.
Therefore

T:={UCG:(VgeU)3VeF)gV CU}

defines a group topology on G.

It remains to verify that the inclusion map 7n: K — G is an embedding. Let k¥ € K and
U C G be a neighborhood of k. Then there exists an F' € F with kF C U. Since kF C K is a
neighborhood of k, we see that 7 is continuous. Since, moreover, every neighborhood of k € K
contains a set of the form kF', F' € F, we see that n is an embedding. u

Lemma I1.3. Let G be a connected simply connected topological group and T a group. Let U
be an open symmetric connected identity neighborhood in G and f:U — T a function with

fley) = f(@)f(y)  for w,y,ayel.

Then there exists a unique group homomorphism extending f. If, in addition, T is a topological
group and [ is continuous, then its extension is also continuous.
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Proof. (cf. [HoMo98, Cor. A.2.26]; see also [Bou88, Ch. III, §2, Ex.24]) The idea is the
following. We consider the group G x T and the subgroup H C G x T generated by the subset
K = {(z, f(x)):z € U}. We endow K with the topology turning z — (z, f(z)),U — K into a
homeomorphism. Using Lemma I1.2, we obtain a topology on H for which H is a topological
group and the projection pg:G x T — G induces a covering homomorphism ¢: H — G, so that
the connectedness of H and the simple connectedness of G imply that ¢ is a homeomorphism.
Now F := proq ':G — T provides the required extension of f. In fact, for x € U we have
q '(z) = (x, f(z)) and therefore F(z) = f(z). n

Lemma II.3 can be interpreted in the sense that the simple connectedness of G guarantees
that the local 1-cocycle f:U — T of the local group U (cf. [Est62]) can be extended to a global
1-cocycle f:G — T. In Section III below we will in particular be concerned with a version of
this result concerning 2-cocycles instead of 1-cocycles.

Proposition I1.4.  Let G and Z be topological groups, where G is connected, and Z — G-
G a central extension of G by Z. Then G carries the structure of a topological group such that
G — G is a Z -principal bundle if and only if the central extension can be described by a cocycle
f:G x G — Z which is continuous in a neighborhood of (1,1) in G x G.

Proof. First we assume that G is a Z- principal bundle over . Then there exists a 1-
neighborhood U C G and a continuous section o:U — G of the map q: G — G. We extend o
to a global section G — G. Then f(z,y) = o(z)o(y)o(zy) ™! defines a 2-cocycle G x G — Z
which is continuous in a neighborhood of (1,1).

Conversely, we assume that G=~aG x¢ Z holds for a 2-cocycle f:G x G — Z which
is continuous in a neighborhood of (1,1) in G x G. Let U C G be an open symmetric 1-
neighborhood such that f is continuous on U x U, and consider the subset

K=UxZ=q¢'(U)CG=Gx;Z.

Then K = K~'. We endow K with the product topology of U x Z. Since the multiplication
ma|uxv:U x U — G is continuous, the set

Vi={((z,2),(2',7")) € K x K:aa' € U}
is an open subset of K x K such that the multiplication map
VoK, ((&,2),(@,2) > (x2,22' f(z,2"))

is continuous. In addition, the inversion K — K, (2,2) — (2!, 27  f(z,27*)~") is continuous.
Since G is connected, it is generated by U, and therefore G is generated by K = ¢ *(U).
Therefore Lemma I1.2 applies and shows that G carries a unique group topology for which the
inclusion map K = U X Z < G is an open embedding. It is clear that with respect to this
topology, the map ¢:G — G is a Z-principal bundle. ]

Remark I1.5. To derive a generalization of Proposition I1.4 to groups which are not necessarily
connected, one has to make the additional assumption that for each g € G the corresponding
conjugation map I,: G — @ is continuous in the identity. In view of (1.3), this follows from the
continuity of the functlons f(g,-) and f(-,¢) in 1. This condition is automatically satisfied for
all elements in the open subgroup generated by U, hence redundant if G is connected. ]

Definition II.6. Let G and Z be topological groups, where G is connected. We have
seen in Proposition I1.4 that the central extensions of G' by Z which are principal Z-bundles
can be represented by 2-cocycles f:G x G — Z which are continuous in a neighborhood of
(1,1) in G x G. We write Z2(G, Z) for the group of these cocycles. Likewise we have a group
B2(G, Z) of 2-coboundaries f(x,y) = h(zy)h(z)~th(y)~!, where h:G — Z is continuous in a
1-neighborhood. Then the group

Ext.(G,Z) := HX(G, Z) := Z2(G, Z)/ B(G, Z)

classifies the central extensions of G by Z which are principal bundles. ]



Central extensions of infinite-dimensional Lie groups 11

A typical example of a central extension of a compact group which has no continuous local
section is the sequence {1,—-1}" — TN—25TN, where q(r) = x? is the squaring map on the
infinite-dimensional torus TV.

Remark I1.7. (a) We consider the setting of Remark 1.3, where B is a principal A-bundle.
This means that there exists a local section o:Uc — B which can be used to obtain a local
section of C' — C, so that E* maps continuous homomorphisms into central extensions with
continuous local sections. Therefore the maps in Theorem 1.5 are compatible with the topological
situation, and we thus obtain for connected groups A, B and C the sequence of maps

Hom(C, Z) — Hom(B, Z) — Hom(A4, Z)-2 Ext.(C, 2)25 Ext, o (a) (B, 2) Exte (4, 2),

where Hom denotes continuous homomorphisms.

It is easy to verify that the proof of Theorem 1.5 remains valid in this topological context
(cf. [Se70, Prop. 4.1]):
(1) directly carries over.
(2): Since B — C' is a principal bundle, C' carries the quotient topology of B/a(A). Hence every
continuous homomorphism 7v: B — Z with a(A4) C ker+y factors to a continuous homomorphism
C—7Z.
(3), (4): Here one needs that a group homomorphism between topological groups is continuous if
and only if it is continuous in the identity, resp., on a neighborhood of the identity. This remark
implies that all group homomorphisms showing up in (3) and (4) are continuous.
(5): Here one has to observe that C — C is a central extension which is a principal bundle, and
that o(A) is a closed subgroup of 2, resp., B.
(b) Similar arguments show that each extension E: A—"—B —2 ¢ of abelian topological
groups which is a principal A-bundle leads for each connected topological group G to an exact
sequence

Hom(G, A) < Hom(G, B)— Hom(G, C) -2 Ext.(G, A) -2 Ext(G, B)-2 Ext (G, C). =

_It is instructive to describe the image of E* corresponding to a universal covering map
qga: G — G for a topological group G.

Proposition II.8. Let G be a connected, locally arcwise connected and semilocally simply

connected topological group and qc:G — G a universal covering homomorphism. We identify

71 (G) with kerqe . For a central extension of topological groups Z — G—5G the following are

equivalent:

(1) There exists a continuous local section oy:U — G with oy (xy) = ou(x)oy(y) for x,y,zy €
U.

2 G=@ X Z, where f € Z*(G,Z) takes the value 1 on a neighborhood of (1,1) in G x G.

(3) There ezists a homomorphism ~v: w1 (G) — Z and an isomorphism ®: (G x Z)/T'(y 1) — G
with ¢®([z,1]) = qa(z), © € G.

Proof. (1) & (2) follows directly from the definitions.

(1) = (3): We may w.lo.g. assume that U is connected, U = U~!, and that there exists a

continuous section o:U — G of the universal covering map ¢¢ . Then

oU © qg |};(U): o(U) — G

extends uniquely to a continuous homomorphism f: G — G with foo =0y and go f = qq -
We define :G x Z — G,(g,2z) — f(g)z. Then v is a continuous group homomorphism which
is a local homeomorphism because

P(o(x),2z) = f(0(x)z =op(x)z for zelUz€Z.
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We conclude that 4 is a covering homomorphism. Moreover, 1 is surjective because its range is
a subgroup of G containing Z and mapped surjectively by ¢ onto G. This proves that

G=(Gx2Z)/keryp, keryp={(g,f(9) g e f U2}

On the other hand, f~1(Z) = ker(q o f) = kerqg = m1(G), so that
keriy = {(da’Y(d)_l)d € 7T1(G>}7 Y= f|7r1(G)~

(3) = (1) follows directly from the fact that the map G x Z — G is a covering morphism. ®

II1. Topology of infinite-dimensional manifolds

So far we have only dealt with abstract groups or topological groups. In this section we turn to
manifolds and specifically to infinite-dimensional ones. The manifolds we consider will always
be modeled over a sequentially complete locally convex space (s.c.l.c. space). This requirement
is essential for a reasonable differential calculus because the sequential completeness ensures the
existence of Riemann integrals and hence the validity of the Fundamental Theorem of Calculus.
For more details on this setting we refer to [Mi83] and [Ne97]. As we will explain in some more
detail below, the approach of Kriegl and Michor ([KM97]) is slightly different, but coincides
with the other one for Fréchet manifolds, i.e., manifolds modeled over Fréchet spaces. An
unpleasant obstacle one has to face when dealing with infinite-dimensional manifolds M is that
they need not be smoothly paracompact, i.e., not every open cover has a subordinate smooth
partition of unity (cf. [KM97]). Hence there is no a priori reason for de Rham isomorphisms
Hiy(M,R) = Hg, (M,R) to hold because the sheaf theoretic proofs break down. This is
a problem that already arises in the classical setting of Banach manifolds because there are
Banach spaces M for which there exists no smooth function supported by the unit ball, so that
M is in particular not smoothly paracompact. Simple examples are the spaces C([0,1]) and
I*(N) (cf. [KM97, 14.11]). On the topological side, paracompactness is a natural assumption
on manifolds. In view of Theorem 1 in [Pa66], a manifold is metrizable if and only if it is
first countable and paracompact which implies in particular that its model space is Fréchet
(cf. [KM97, Lemma 27.8]). Fréchet-Lie groups are always paracompact because they are first
countable topological groups, hence metrizable.

It is a central idea in this paper that all those parts of the de Rham isomorphism that are
essential to study central extensions of Lie groups still remain true to a sufficient extent. Here
a key point is that the Poincaré Lemma is still valid. In particular we will see that we have an
injection

Hip(M,R) — H}

sing

(M,R) = Hom(m (M), R),

where the isomorphism H:

sing (M, R) = Hom(m (M), R) is a direct consequence of the Hurewicz
Theorem (Remark A.2.1).

Definition ITI.1. (a) Let X and Y be topological vector spaces, U C X open and f:U =Y
a continuous map. Then the derivative of f at x in the direction of h is defined as

& () (h) = lim > (Fo -+ th) — F(x)

whenever it exists. The function f is called differentiable in x if df (z)(h) exists for all h € X .
It is called continuously differentiable or C' if it is differentiable in all points of U and

df-UxX =Y, (2,h) df(z)(h)

is a continuous map. It is called a C™-map if df is a C* '-map, and C™ if it is C™ for all
n € N. This is the notion of differentiability used in [Mi83], [Ha82] and [Ne97].
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(b) We briefly recall the basic definitions underlying the convenient calculus in [KM97]. Let E
be a locally convex space. The ¢*-topology on E is the final topology with respect to the set
C*®(R,E). We call E convenient if for each smooth curve ¢;: R — E there exists a smooth
curve c2: R — E with ¢, = ¢1 (cf. [KM97, p.20]).

Let U C E be an open subset and f:U — F a function, where F' is a locally convex space.
Then we call f conveniently smooth if

foC®(R,U) C C*(R, F).

This concept quite directly implies nice cartesian closedness properties for smooth maps (cf.
[KM97, p.30]). ]

Remark II1.2. If E is an s.c.l.c. space, then it is convenient because the sequential complete-
ness implies the existence of Riemann integrals ([KM97, Th. 2.14]). If E is a Fréchet space, then
the ¢™ -topology coincides with the original topology ([KM97, Th. 4.11]).

Moreover, for an open subset U of a Fréchet space, a map f:U — F' is conveniently
smooth if and only if it is smooth in the sense of [Mi83]. This can be shown as follows. Since
C*(R, E) is the same space for both concepts of differentiability, the chain rule shows that
smoothness in the sense of [Mi83] implies smoothness in the sense of convenient calculus. Now
we assume that f:U — F' is conveniently smooth. Then the derivative df: U x E — F exists and
defines a conveniently smooth map df:U — L(E,F) C C*(E,F) ([KM97, Th. 3.18]). Hence
df:U x E — F is also conveniently smooth, hence continuous with respect to the ¢* -topology.
As E x E is a Fréchet space, it follows that df is continuous. Therefore f is C' in the sense of
[Mi83], and now one can iterate the argument. u

If M is a differentiable manifold and 3 an s.cl.c. space, then a 3-valued k-form w on M
is a function w which associates to each p € M is a k-linear alternating map T,(M)* — 3 such
that in local coordinates the map

(p,v1,---,08) = w(p)(v1,...,vx)

is smooth. We write Q%(M,3) for the space of smooth k-forms on M with values in 3.

Lemma ITL.3. (Poincaré Lemma) Let E and 3 be s.c.l.c. spaces and U C E an open subset
which is star-shaped with respect to 0. Let w € QT (U,3) be a j-valued closed k+1-form. Then
w is eract. Moreover, w = dy for ¢ € QF(U,3) with p(0) =0 given by

<P($)(U1,---,Uk)=/0 thw(tz)(z, v, ..., v) dt.

Proof.  For the case of Fréchet spaces Remark II[.2 implies that the assertion follows from
[KM97, Lemma 33.20]. On the other hand, one can prove it directly in the context of s.c.l.c.
spaces by using the fact that one may differentiate under the integral for a function of the type
fl H(t,z)dt, where H is a smooth function | —¢,1 + ¢[xU — 3 (cf. [KM97, p.32]). For the

0
calculations needed for the proof we refer to [La99, Th. V.4.1]. m

Proposition II1.4.  Let M be a connected s.c.l.c. manifold and o € Q*(M,3) a closed 1-

form. Then there exists a connected covering q:M\ — M and a smooth function f:M\ — 3 with
df = q*a.
Proof. On M we consider the pre-sheaf F given for an open subset U C M by

FU):={f € C%(U,3):df = alu}-

It is easy to verify that F is in fact a sheaf on M (cf. [We80, Sect. IL.1]).
To determine the stalks F,, x € M, of the sheaf F, we use the Poincaré Lemma. Let
x € M. Since M is a manifold, there exists a neighborhood U of = which is diffeomorphic to a
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convex subset of an s.c.l.c. space. Then the Poincaré Lemma implies for each y € 3 the existence
of a smooth function fy on U with dfy = a|y and fy(z) = y. Since U is connected, the
function fr7 is uniquely determined by its value in . Now let V' be another open set containing
x,and fy € F(V) with [fu]e = [fv]s- Choosing an open neighborhood W C U NV of x which
is diffeomorphic to a convex domain, we conclude from fi(x) = fy(z) =y that fylw = fulw-
Therefore the map F, — 3,[f]. — f(z) is a linear bijection.

Now let p:F = Uzex Fo — M denote the étale space over M associated to the sheaf
F. We claim that p is a covering map. Let # € X and U as above. Then F(U) = 3,
as we have seen above. Therefore D(U,F) = F(U) = F, (cf. [We80, Th. 11.2.2]). For each
z € 3 we write s.:U — F for the continuous section given by s.(y) = [f:]y, where f, € F(U)
satisfies f.(z) = z. Then the sets s,(U) are open subsets of F by the definition of the topology
on F ([We80, p. 42]). Moreover, these sets are disjoint because [f:ly = [fwle first implies
uw = y and further f,(y) = fu(u), so that f, = f, and therefore z = w. This proves that
pHU) =Use;s:(U) is a disjoint union of open sets, where s.:U — s,(U) is a homeomorphism
for each z by constructlon of 7. Thus p is a covering map.

Pick zp € M and an inverse image yo € F. Then the connected component M of
F _containing yo is a manifold with a covering map g¢: M = M. Moreover, the function
fiM =3, [s]y — s(y) is a smooth function. It remains to show that ¢*a = df. So let

s:U — F be a smooth section of F. Then fos € C®(U,;3) is a smooth function with
df (s(z))ds(z) = d(f o s)(z) = a(z) for all z € U. Since ds(z) = (dgq(s(z)))™!, it follows
that df (s(z)) = (¢*a)(s(z)), and therefore that df = ¢*a. u

Corollary IIL.5. Let M be a simply connected s.c.l.c. manifold and 3 an s.c.l.c. space. Then
Hip(M,3) = {0}.

Proof. Let a be a closed j-valued 1-form on M. Using Proposition IIL.5, we find a covering
q¢: M — M and a smooth function f: M — 3 with df = ¢*a. Since M is simply connected, the
covering ¢ is trivial, hence a diffeomorphism. Therefore « is exact. u

Theorem II1.6. Let M be a connected s.c.l.c. manifold, 3 an s.c.l.c. space, o € M, and
m (M) :=7m(M,x0). Then we have an inclusion

¢: Hip(M,3) — Hom(my (M), 3)

which is given on a piecewise differentiable loop v:[0,1] = M in zo for a € Z};(M,3) by
1
@) = (b = [as= [ e
2

The homomorphism (([c]) can also be calculated as follows: Let f, € 000(1\7,5) with df, = ¢*a,
where ¢: M — M is the universal covering map, and write M x m (M) = M, (g,x) — py(x) for
the right action of m (M) on M. Then the function fq o pg — fo is constant equal to (([a])(g).

Proof. Let ¢: M — M be a simply connected covering manifold and yo € q_l(wo) In view
of Corollary II11.5, for each closed 1-form « on M, the closed 1-form ¢*a on M is exact. Let
fa € C°°(M,3) with fa(yO) =0 and df, = ¢*o.

Let M x m (M) — M,( Y,9) — kg(y) := y.g denote the action of m (M) on M by deck
transformations. We put

C(@)(9) := fa(yo-9)-
Then ((a)(1) =0 and

C(@)(9192) = fa(¥0-9192) = fa(y0-9192) — fa(¥0-g1) + fa(¥o-91)
f

f
= fa(¥0.9192) — fa(yo-91) + C()(g1).
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For each g € (M) the function h := py fo — fo satisfies h(yo) = ((@)(9) = fa(y0-g) and
dh = pydfo —dfa = pyq"a — ¢"a = (go py)*a — ¢*a = ¢"a — ¢*a = 0.

Therefore h is constant ((«a)(g), and we obtain ((«)(g192) = ((a)(g2) + (()(g1). This proves
that ((«) € Hom(m (M),3).

Suppose that ((a) = 0. Then pjfo — fo = 0 holds for each g € m (M), showing that the
function f, factors through a smooth function f: M — 3 with foq = f,. Now ¢*df = df, = ¢*«
implies df = «, so that « is exact. If, conversely, « is exact, then the function f, is invariant
under (M), and we see that ((a) = 0. Therefore ¢:Zl;(M,3) — Hom(m (M),;) factors
through an inclusion H}y (M, 3) — Hom(m (M),3).

Finally, let [y] € m1 (M), where 7:[0,1] = M is piecewise smooth. Let 7:[0,1] — M be a
lift of v with F(0) = yo. Then

e (D) = fo(D]) = fa(7(1)) = fo(3(0)) + /0 dfo (Y(1)Y'(2) dt

= falo) + | ()G dt = / ol (O) (0 dt = / = / .

The following lemma shows that exactness of a vector-valued 1-form can be tested by
looking at the associated scalar-valued 1-forms.

Lemma IIL.7. Let a € QY(M,3) be a closed 1-form. If for each continuous linear functional
A on 3 the 1-form Ao« is exact, then « is exact.

Proof. If Aoa is exact, then the group homomorphism ((o): 7 (M) — 3 satisfies Ao((a) =0
(Theorem II1.6). If this holds for each A € 3*, then the fact that the continuous linear functionals
on the locally convex space 3 separate the points implies that ((«) = 0 and hence that « is
exact. u

To see that the map ( is surjective, one needs smooth paracompactness which is not always
available, note even for Banach manifolds. For an infinite-dimensional version of de Rham’s
Theorem for smoothly paracompact manifolds we refer to [KM97, Thm. 34.7]. The following
proposition is a particular consequence:

Proposition IIL.8. If M is a connected smoothly paracompact s.c.l.c. manifold, then the
inclusion map C: Hig(M,3) — Hom(m (M),3) is bijective.
Proof. In view of Theorem IIL.6, we only have to show that for each homomorphism
w7 (M) — 3 there exists a closed 1-form « with ((«) = p.
We view the universal covering manifold M — M asa principal m (M)-bundle and consider
the associated bundle .
pE =M Xo 3 — M,

where w1 (M) acts on 3 by d.x = x + p(d). This is an affine bundle over M. Using smooth
partitions of unity on M, we find a smooth section o:M — E. Let q:M — M denote the
universal covering map. We write the elements of E as [m,t] = [md,t — p(d)] for m € M,
d € m(M) and t € 3. Then we obtain a function f:M — 3 with o(g(m)) = [m, f(m)]
for all m € M. Now f(md) = f(m) — p(d) shows that df is a 1-form on M which is the
pull-back of a 1-form a on M. In view of Theorem IIL.6, the assertion now follows from

((a)(d) = f(md) = f(m) = —p(d). .

Proposition IT1.9. Let M be a connected s.c.l.c. manifold and T' C 3 a discrete subgroup.
Then 3/T° carries o natural manifold structure such that the tangent space in every element of
3/T can be canonically identified with 3. For a smooth function f: M — 3/T we thus can identify
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the differential df with a j-valued 1-form on M. For a closed j-valued 1-form o on M the
following conditions are equivalent:
(1) There ezists a smooth function f: M — 3/T" with df = «.

2) ¢(a)(m(M)) CT.

Proof. Let ¢: M — M denote the universal covering map and fix a point z¢ € M. Then the
closed 1-form g*a on M is exact (Theorem IIL.6), so that there exists a unique smooth function
fiM — 3 with df = ¢*a and f(zp) = 0. In Theorem III.6 we have seen that for each g € 7 (M)
we have

(3.1) pgf = =) (g)-

(1) = (2): Let p:3 — 3/I denote the quotient map. We may w.l.o.g. assume that f(q(zo)) =
p(0). The function pof: M — 3/T satisfies d(pOf) = ¢*a, and the same is true for foq: M — 3/T.
Since both have the same value in xy, we see that pOfv: fogq. This proves that pOf is invariant
under (M), and therefore (3.1) shows that ((a)(m(M)) CT.

(2) = (1): If (2) is satisfied, then (3.1) implies that the function po f: M — 3/T is m (M)-
invariant, hence factors through a function f: M — 3/I' with fog=po fv Then f is smooth
and satisfies ¢*df = df: ¢*a, which implies that df = «. [ ]

Corollary II1.10. Let M be a connected s.c.l.c. manifold. For a closed j-valued 1-form «
on M the following conditions are equivalent:

(1) There ezists a discrete subgroup T’ C 3 and a smooth function f: M — 3/T" with df = «.
2) ((a)(m(M)) is a discrete subgroup of 3.

Proof. This is a direct consequence of Proposition II1.9. [

We have already seen in Theorem IIL.6 that a closed 1-form « on M is exact if and only
if {(a) vanishes. The preceding corollary sharpens this information in the sense that it shows
that, even if {(«) is non-zero, if its range is discrete, then « is exact in the weaker sense that it
is the differential of a function to a quotient group of 3.

Corollary II1.11. Let M be a connected s.c.l.c. manifold. For a closed 1-form o on M the
following are equivalent:
(1) There exists a smooth function f: M — T with df = «.

() ((@)(m(M)) CZ.
Proof. We apply Proposition I11.9 with 3 =R and I' =Z. ]

Applications to Lie groups

Next, we apply the results of this section to homomorphisms of Lie groups. A Lie group G
is a group and a manifold (always assumed to be modeled over an s.c.l.c. space) for which the
group multiplication and the inversion are smooth maps. We write A;(x) = gz, resp., py(x) = xg
for the left, resp., right multiplication on G. Then each X € T1(G) corresponds to a unique left
invariant vector field X; with

Xi(g) :=d\,(1).X, g€G.

The space of left invariant vector fields is closed under the Lie bracket of vector fields, hence
inherits a Lie algebra structure. In this sense we obtain on g := T1(G) a continuous Lie bracket
which is uniquely determined by [X,Y]; = [X;,Y;]. Similarly we obtain right invariant vector
fields X, (g) = dpy(1).X , and they satisfy [X,,Y;] = —[X,Y], (cf. [Mi83], [Ne97], [KM97]).
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Lemma II1.12. Let G be a Lie group, 3 an s.c.l.c. space and C7(g,3) the space of alternating
continuous n-linear maps g" — 3. Then the maps

L:CMg,3) — 2(g,3), L(a)(g)(vr,...,v,) = a(d)\g—1 (9)-vi,...,dAg—1 (g).vn)

assigning to a € C.(g,3) the corresponding left invariant n-form L(a) € Q"(G,3) intertwine the
differentials on C¥(g,3) and Q*(G,3). In particular, L(Z"(g,3)) consists of closed forms and
L(B%(g,3)) of exact forms.

Proof. Tt suffices to evaluate L(a) on left invariant vector fields. Then the formula
dL(a)(Xy,..., Xp) = L(da) (X1, ..., Xp)
follows directly from the definition of the differentials on both sides. u

Lemma II1.13. Let G be a Lie group, 3 an s.c.l.c. space, Q € Q*(G,3) a left invariant closed
2-form, and X € g. Then the 3-valued 1-form i(X,).Q = Q(X,,-) on G is closed.

Proof. It suffices to show that for Y,Z € g we have d(i(X,).Q)(Y;,Z,) = 0. Before we
can calculate this, we recall that for the map px:G — g with ¢x(g) = Ad(¢g~!).X we have
dex(1)(Y) = [X,Y] (cf. [Mi83, p.1036]), and therefore

(Yrpx)(9) = dipx (9)(dpy(1).Y) = Ad(g™").[X, Y.
Having this relation in mind, we obtain with

AUXr, Zy)(g) = w(Ad(g™)-X,Ad(g71).Z), w=
and [X,,Y;] = —[X,Y], the relation

(Ad(g ").[X,Y],Ad(g1).2) + w(Ad(g ). X, Ad(g1).[Z,Y])

Y, (X, Z0)) (g) = w
=Y, Xo], Z,)(9) + QX [V, Z])(g).

Therefore

AG(X,) Q) (Y, Z,) = Y, Xy, Z,) — 2, 05, Y,) — QX [V, Z,)
= [V, X, Z,) + QX [V, 2) — (2, X, V)
- Q(Xra [ZT7 Yr]) - Q(Xra [Yra ZT])
= QY X;], Z:) = Q[ Zr, X,], V) = QXL [Z,Y2]) =0,

because at a point g € G this expression equals
d(Ad*(g).w)(X,Y,Z) = dw(Ad(¢g~").X,Ad(g71).Y,Ad(¢g7").Z2) = 0. n
Remark IT1.14. One can give a shorter proof of Lemma II1.13 using the Cartan formula
d(i(X,).Q) = Lx, .0 —i(X,).dQ = Lx, .Q.

Now one has to argue that the left invariance of € implies that the Lie derivatives Lx, .2 vanish.
For Lie groups with an exponential function this is no problem because the Lie derivative can be

calculated by

d .
Lx, Q= 71| o Aexptx -2 =0.
If G has no exponential function, then the conclusion is still valid, but requires more work in
local coordinates which is not needed for the proof given above. ]
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Definition II1.15. A Lie group G is called regular if for each closed interval I C R, tg € I,
and X € C*°(I,g) the ordinary differential equation

Y(to) =1, '(t) = dpy(r)(1)-X(t)
has a solution v € C*°(I,d). Moreover, we require the evolution map
evolg:C* (R, g) = G, X — (1)

to be smooth. [ ]

Remark II1.16. If 3 is an s.c.l.c. vector space, then 3 is a regular Lie group because the
Fundamental Theorem of Calculus holds for curves in 3. The smoothness of the evolution map
is trivial in this case because it is a continuous linear map. Regularity is trivially inherited by
all groups Z = 3/I", where I' C 3 is a discrete subgroup.

If, conversely, Z is a regular Fréchet—Lie group and Zj its identity component, then the
exponential function exp:3 — Zp is a universal covering homomorphism, so that Zy = 3/T" holds
for T' := kerexp = 71 (Z) ([MT99]). So far, no example of a Lie group which is not regular is
known. ]

Lemma II1.17. Let G and H be connected Lie groups and ¢ ,:G — H two Lie group
homomorphisms for which the corresponding Lie algebra homomorphisms dpi(1) and dps(1)
coincide. Then o1 = .

Proof. (see [Mi83, Lemma 7.1]) The idea is as follows. Since ¢ is a group homomorphism,
we have @1 0 A\; = A,y 01 for g € G and therefore

(3.2) dp1(g)dAg (1) = dAy(g) © dipr (1).
For a differentiable path ~:[0,1] = G with v(0) =1 we consider its left logarithmic derivative
(3.3) (8 = Ay ()7 (1) € 9 = T4 (G).

Then (3.2) implies that
(p1 0 )i(t) = depr (1) (1)
A similar formula holds for . Therefore the paths ¢;/, oy have the same left logarithmic

derivatives, and this implies that both are equal because both start in 1 (cf. [Mi83, Lemma
7.4]). ]

Corollary II1.18. If G is a connected Lie group, then ker Ad = Z(G).

Proof. In view of Lemma II[.17, for g € G the conditions I, =idg (for I (z) = gzg~') and
dl;(1) = Ad(g) = idy are equivalent. This implies the assertion. u

Theorem III.19. If H is a regular Lie group, G is a simply connected Lie group, and
w:g = b is a continuous homomorphism of Lie algebras, then there exists a unique Lie group
homomorphism o:G — H with da(l) = ¢.

Proof.  This is Theorem 8.1 in [Mi83] (see also [KM97, Th. 40.3]). The uniqueness assertion
does not require the regularity of H, it follows from Lemma III.17. ]

Corollary II1.20. Let G be a simply connected Lie group, 3 an s.c.l.c. space, and c:g — 3 a
continuous Lie algebra homomorphism. Then there exists a unique smooth group homomorphism
f:G — 3 with df(1) = .

Proof. Since every s.c.l.c. vector space 3 is a regular Lie group (Remark II1.16), the assertion
follows from Theorem III.19.

In this special case we can also give a more direct proof as follows. We consider the left
invariant 1-form 8 € Q'(G,3) with 8, = a. Then a € Z!(g,3) implies that 3 is closed, hence
exact (Corollary II1.5). Let f:G — 3 be a smooth function with f(1) = 0 and df = «. Then
for each g € G the function Ajf — f satisfies

dAyf = f) = Aydf —df = A\ja—a=0.
Therefore A} f — f is constant, showing that f(gh) — f(h) = f(g) — f(1) = f(g) for all g,h € G.
Hence f is a group homomorphism. ]
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Corollary III.21. Let G be a connected Lie group, 3 an s.c.l.c. space, I' C 3 a discrete
subgroup, and \:g — 3 a continuous Lie algebra homomorphism. Then there exists a smooth
group homomorphism f:G — Z := 3/T with df(1) = X if and only if {(a)(m1(G)) C T holds
for the left invariant closed 1-form o on G with ay = X.

Proof. Let ¢: G—da denote the universal covering morphism and f G- 3 the unique Lie

group homomorphism with df(1) = A (Corollary II1.20). Let gz:3 — Z denote the quotient

map. Then fz := gz o fvé — Z is a Lie group homomorphism with df; = a. Whenever a

homomorphism f as required exists, its differential df is a left invariant 1-form, hence coincides
with a. Therefore foq= fz. N

This proves that f exists if and only if ker ¢ C ker fz which in turn means that f(kerq) C

[

I'. On the other hand f(kerq) = ((a)(m1(G)), and this concludes the proof.

IV. Local and global cocycles for central extensions of Lie groups

In this paper Lie groups are always understood as manifolds modeled over s.c.l.c. spaces. In
the setting of Lie groups, we consider only those central extensions G — G which are smooth
principal bundles, i.e., have a smooth local section. We simply call them smooth central extensions
(cf. [KM97, Sect. 38.6]). A typical example of an extension which does not have this property is

co(N) = I*°(N) —» I°(N)/co (N)

which does not have any smooth local section because the closed subspace ¢o(N) of {*°(N) is not
complemented (cf. [We95, Satz IV.6.5]).

In this section we collect preliminary material for the global central extension theory
described in Section V. In the first part of this section we discuss the representability of Lie group
extensions by cocycles, and in the second part we explain the step from infinitesimal central
extensions, i.e., central extensions of Lie algebras to central extensions of local groups. This
prepares the application of the topological material in Section III to global Lie group extensions.

Central extensions and cocycles

LemmaIV.1. Let G be a connected topological group and K = K~ be an open 1 -neighborhood
in G. We further assume that K is a smooth manifold such that the inversion is smooth on K
and there exists an open 1-neighborhood V. C K with V2 C K such that the group multiplication
m:V xV — K is smooth. Then there ezists a unique structure of a Lie group on G for which
the inclusion map K — G induces a diffeomorphism on open neighborhoods of 1.

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite-dimensional case) After shrinking
V and K, we may assume that there exists a diffeomorphism ¢: K — p(K) C E, where E is a
s.c.l.c. space, that V satisfies V = V~!, V* C K, and that m:V? x V2 — K is smooth. For
g € G we consider the maps

g9V = E, @4(x) = (g ')

which are homeomorphisms of gV onto (V). We claim that (¢4, gV )4eq is an atlas of G.
Let g1,90 € G and put W := gtV NgV. If W # @, then g;lgl € VV-t =V2, The
smoothness of the map

b =g, 0 0yt o, (W) 0g (W) = @g, (W)

given by
(@) = @g, (05, (1)) = Qg (G197 () = ©(g5 G107 ()
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follows from the smoothness of the multiplication V? x V — K. This proves that the charts
(pg,9K)gec form an atlas of G. Moreover, the construction implies that all left translations of
G are smooth maps.

The construction also shows that for each g € V' the conjugation I,:G — G is smooth in
a neighborhood of 1. Since the set of all these ¢ is a submonoid of G containing V', it contains
V™ for each n € N, hence all of G because G is connected and thus consequently generated by
V. Therefore all conjugations and also all right multiplications are smooth. The smoothness of
the inversion follows from its smoothness on V' and the fact that left and right multiplications
are smooth. Finally the smoothness of the multiplication follows from the smoothness in 1 x 1
because of

ma (912, 92y) = 1792y = 91921951 (z)y = glgsz(Iggl (@), y)-

The uniqueness of the Lie group structure is clear because each locally diffeomorphic bijective
homomorphism between Lie groups is a diffeomorphism. u

Proposition IV.2.  Let G and Z be Lie groups, where G is connected, and Z — G - G
a central extension of G by Z. Then G carries the structure of a Lie group such that G- G
is o smooth central extension if and only if the central extension can be described by a cocycle
f:G x G — Z which is smooth in a neighborhood of (1,1) in G x G.

Proof. (see [TW87, Prop. 3.11] for the finite-dimensional case) First we assume that G- G
is a smooth central extension of GG. Then there exists a 1-neighborhood U C G and a smooth
section o:U — G of the map q: G = G. We extend o to a global section G — G. Then
f(x,y) := o(z)o(y)o(zy)~! defines a 2-cocycle G x G — Z which is smooth in a neighborhood
of (1,1).

Conversely, we assume that G~ax ¢ Z holds for a 2-cocycle f:G x G — Z which is
smooth in a neighborhood of (1,1) in G x G. We endow G with the unique group topology
such that G — G is a topological principal bundle (Proposition I11.4). Then Lemma IV.1 implies
the existence of a unique Lie group structure on G compatible with the topology and such that
there exists a 1-neighborhood of the product type Ug - Uz, where Ug is a 1-neighborhood in
G, Uz is a 1-neighborhood in Z, and the product map Ug X Uz — UgUy is a diffeomorphism.
Hence there exists a smooth local section ¢:Ug — G, showing that G — @ is a smooth central
extension. -

In [Va85, Th. 7.21] one finds a version of Proposition IV.2 for finite-dimensional Lie groups,
where Lie groups are considered as special locally compact groups. The existence of Borel cross
sections for locally compact groups implies that their central extensions can be described by
measurable cocycles which, for Lie groups, can be replaced by equivalent cocycles which are
smooth near to the identity.

Remark IV.3. If the group G is not connected, then one has to make the additional assump-
tion that for each g € G the corresponding conjugation map I;: G — G is smooth in the identity,
but this is only relevant for the elements not contained in the open subgroup generated by U
(cf. Remark IL.5 for the continuous case).

For Banach-Lie groups and in particular for finite-dimensional Lie groups every automor-
phism of the topological structure is automatically smooth, which can be deduced from the fact
that the exponential function is a local diffeomorphism around 1. Therefore Proposition IV.2
requires for Banach-Lie groups which are not connected no additional requirements, once we
have a group topology on G with the required properties. ]

Remark IV.4. Let G and Z be Lie groups, where GG is connected. We have seen in Proposition
IV.2 that the central extensions of G by Z which are smooth principal Z-bundles can be
represented by 2-cocycles f: G x G — Z which are smooth in a neighborhood of (1,1) in GxG.
We write Z2(G,Z) for the group of these cocycles. Likewise we have a group B%(G,Z) of
2-coboundaries

fla,y) = h(zy)h(z) " hiy) ™"
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where h: G — Z is smooth in a 1-neighborhood. Then the group
Extrie(G, Z) := Exts (G, Z) .= H2(G, Z) := Z3(G, Z) | B(G, Z)
classifies the central extensions of G' by Z which are smooth principal bundles. ]

Remark IV.5. We consider the setting of Remark I1.5, where A, B, C'; G and Z are Lie
groups such that B — C is a smooth central, resp., abelian extension. In this context everything
in Remark IL.5 carries over to the smooth context. In particular we obtain an exact sequence of
maps

{1} —>Hom(C Z)— Hom(B,Z)— Hom(A Z)

s Bxctiie(C, 2) 2 Exctiie a(a) (B, Z)— Bxtrie an(A, Z),

where Hom denotes smooth homomorphisms and the groups A, B and C are connected.
Likewise we obtain for a connected Lie group G an exact sequence

{1} - Hom(G, A)— Hom(G, B)— Hom(G, C)
A Extrie (G, A)i) EXtLie(G, B)& EXtLie(G, C)

Local cocycles

Definition IV.6. (a) Let G be a topological group and U C G an open symmetric 1-
neighborhood. Further let Z be an abelian group written additively. A function f:U x U — Z
satisfying

f, 1) =f(1,2) =0, f(z,y)+ f(zy,2) = f(z,y2) + f(y,2) for =z,y,2,2y,y2€U

is called a local Z -valued 2-cocycle on U .
(b) The set
W= {(xo,x1,22) € G3:w51x1,w1—1x2 eU}

is an open G-left invariant neighborhood of the diagonal in G2, and for each local 2-cocycle
f:U x U — Z we obtain a function

F:W — Z, F(xg,z1,x2) = f(wglwl,:vflwg).

The cocycle condition for f implies that F' defines an Alexander—Spanier cocycle (cf. Definition
A.2.4) because for (xg,r1,72,23) € G* with all products w;le € U we have for a := x, 'z,
b:=x; xy and c:= x; 'x3 the relation

§F(zo, 21,20, 23) = 0F (1,25 1,25 " w2, 5 '3) = 0F (1, a, ab, abc)
= F(a,ab,abc) — F(1,ab,abc) + F(1,a,abc) — F(1,a,ab)
:f(b7c) _f(ab7c)+f(a7bc) _f(a7b) =0.

Using Remark A.2.5, we assign to f a singular cohomology class n(f) := n([f]) € Hszmg(G, Z) by
evaluating F' on W -small 2-dimensional singular simplices by ¢(F)(c) := F(o(d®),o(d"), o(d?)).
(]

The following theorem is essentially Proposition 1.1 in [EK64]. It describes the obstruction
to the extendability of a local 2-cocycle to a global one by a singular Z-valued cohomology class.
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Theorem IV.7. (van Est-Korthagen) Let G be a topological group, Z an abelian group,
V C G a symmetric 1-neighborhood, f:V xV — Z a local Z -valued 2-cocycle, and n(f) €
Hszing(G,Z) the corresponding singular cohomology class. If there exists an open symmetric 1-
neighborhood W C V' such that f |wxw extends to a Z -valued 2-cocycle on G x G, then
n(f) =0. The converse holds if G is locally contractible, connected and simply connected.

Proof. The ingredients of the proof are explained in Appendix A.3. [

For the following lemma we define for a smooth map f: M x N — 3 and (p,q) € M x N
the bilinear map

P 0,0) Ty (M) < Ty(N) =3, &, 0)(0,) = o= oo F(1(0) 1(5),

where y:]—¢,e[— M, resp., n:]—¢,e[— N are curves with v(0) = p, 7v'(0) = v, resp., n(0) = ¢,
7'(0) = w. It is easy to see that the right hand side does not depend on the choice of curves =
and 7.

Lemma IV.8. Let G be a Lie group, 3 an s.c.l.c. space and w € Z>(g,3). Let Q denote
the closed left invariant j-valued 2-form on G with Q11 = w. Then there exists an open 1-
neighborhood K C G and a smooth j-valued local 2-cocycle f: K x K — § satisfying

(4.1) EfL,1)(X,Y) - f1,1)(Y,X)=w(X,Y), X,Yeg

Moreover, the Lie bracket on g := g x 3 corresponding to the local group structure on K X
defined by

(,2) % (2',2") := (2’ , 2 + 2’ + f(x,2)), z,2' 02’ € K,2,2' €Z
18

[(X7 Z): (XI7ZI>] = ([X7 Xl]adzf(17 1)(X7 XI) - dzf(]w 1>(X,7X))
Proof. We start with an open 1-neighborhood U C G for which there exists a chart
p:V — U, where V C g is an open convex subset containing 0. Moreover, we assume that
©(0) =1 and dp(0) = idy. We observe that Lemma III.12 implies that € is closed. Now we
apply the Poincaré Lemma IIL.3 to find a smooth 3-valued 1-form 6 on U with df = Q|y and
61 = 0. Next we choose an open 1-neighborhood W C U such that ¢ ~1(W) is also convex and

(WUW™1)?> CU. For g € W we then have A\j(W) C U, so that A6 |w is defined. The left
invariance of 2 implies that

A0 — 0lw) = (ALd8) w — (d9) lw = (\20) [w — Qw = 0.
Therefore A70 |w — 0 |w is a closed 1-form, and we can use the Poincaré Lemma again to find

smooth functions fg: W — 3 with f,(1) = 0 and df, = A\;0 |w — 0w
We claim that the function

FTW W =3, flo,y) = fo(y)
is smooth. In view of the Poincaré Lemma III.3, we have
fle@).pl) = [ & (N = 0)(t)0)
= /0 (0(p(z)p(ty)), dAy () (p(ty))dp(ty).y) — (0(p(ty)), de(ty).y) dt.

Since the integrand is a smooth function of ¢, z and y, the integral is a smooth function of z
and y, which can be shown by direct calculations (see also [KM97, Prop. 3.15] which, in view of
Remark IIL.2, provides the result for the Fréchet case).
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Now we show that f is alocal 3-valued 2-cocycle on a suitable symmetric 1-neighborhood.
Our construction shows that

f(l,z) = f(z,1) =0 for zeW.

Let K C W be an open, connected symmetric 1-neighborhood satisfying K* C W . Then for
g,h € K the functions f; o Ay and fgn are defined on K, where we have

d(fgodn + fr) = Ap(Ag0 = 0) + AR0 — 0 = X\},0 — 0 = df .
Therefore the connectedness of K implies

fg o An+ fn = fon + fo(h)

because both sides have the same differential and the same value in 1. This leads to
f(g,hu) + f(h,u) = f(gh,u) + f(g9,h) for g,h,u€ K.

So f: K x K — 3 is a local 3-valued 2-cocycle. On the set of pairs ((k, 2), (k¥', z')) with kk' € K
we now define a local multiplication by

(kyz) - (K',2") .= (kK', 2 + 2" + f(k, K)).
It remains to prove (4.1). We consider the local chart
Gro HE) x5 = K x5, @(x,2) = (p(2),2)
and put

zxy = (P@)@(y))
for z,y € g = g x 3 close to 0. As in [Mi83, p.1036], we consider the Taylor expansion of the
x-product which has the structure

where b:g x g — @ is a continuous bilinear function and - - - stands for terms of degree three and
more (cf. [Mi83, 3.9]). Here the structure of the first order term follows from Oxx =z %0 =z.

The inversion is given by

a7 = —z 4+ bz, x) + -

and conjugation by
m*y*m_l =y+ (b(ib’,y)—b(y,lb')) Ty,

which, as explained in detail in [Mi83], leads to the Lie bracket
[z, y] = bz, y) — by, z).
In our situation we have

(X, 2) (X', 2') = (X g X', 2 + 2" + f(0(X), 0(X")))
= (X 4+ X +0(X, X+, 242"+ fle(X), o(X) +--).

In view of f(x,1) = f(1,2) = 0, the Taylor expansion of f o (¢ x ¢) in (0,0) has no constant
term and no terms of first order. The second order term is given by

d f(1,1)(de(0)X,dp(0)X') = d® f(1,1)(X, X').

Hence
b((X,2), (X',2") = (be(X, X"), d®f(1,1)(X, X")).



24 frecen.tex October 5, 2000

This proves that

[(X,2), (X", 2)] = ([X,X'],d* (1, 1)(X, X') - d* f(1,1)(X', X)).

Second Proof: We also give a second proof which is more direct in that it does not make
heavy use of the Taylor expansion. The conjugation in the local group K is given by

I(g,0)(h,b) = (g,a)(h,b)(g,a) " = (ghg~",b+ f(g,h) — flghg™",9))
for h sufficiently close to 1 (cf. Remark I.2(a)). Taking derivatives, we now obtain
Ad(g,a)(X, 2) = dlg 1) (X, 2) = (Ad(9).X, 2 + do (g, 1)(X) — d f(1,9) Ad(g).X).
Taking the derivative in (g,a) = (1,0) in the direction of (X', 2') now yields
[(X',2"),(X,2)] = (dAd(1,0)(X", 2")).(X, 2)
= (X', X],df(1,1)(X', X) - di f(1,1).[X", X] - &’ f(1,1)(X, X))

because d( Ad(-).(X,2))(1) = ad(-).(X,z) ([Mi83, p.1036]). To simplify this expression, we use
f(1,9) = f(g,1) =0 to get d1 f(1,1) =d2f(1,1) = 0, and hence the simpler formula

(X721, (X, 2)] = ([X', X],d* f(1, 1)(X", X) = d* f(1,1)(X, X)).

Now we relate this formula to the Lie algebra cocycle w. The relation df, = Aj60 — 6 leads
to

dy f(g, DY) = (A50 = 0)1(Y) = (8, Y1) (9) — 62(Y) = (0, Y1)(9),

where Y} denotes the left invariant vector field with Y;(1) = Y. Taking second derivatives, we
further obtain for X € g:

F(1,1)(X,Y) = Xi((6, Y1) (1) = dB(X0, Y1) (1) + Vi((6, X)) (1) + 61, Yi)) (1)
=w(X,Y) +Y;((6, X;))(1)

and therefore
d*f(1,1)(X,Y) = d? f(1,1)(Y, X) = X;((8, Y1) (1) — Yi ({8, X0))(1) = w(X,Y). u
Lemma IV.9. The constructions in Definition IV.6 and Lemma IV.8 induce a linear map
c: HZ(8,3) = Hi_5(G,3) = Hing(G3),  [w] = [F] = n(f).

Moreover, the smooth Alexander—Spanier cocycle F' is mapped by the map T defined in Remark
A.2.7 to the closed 2-form T(F) = Q € Ziz(G,3).

Proof.  First we fix w. If Q |y = df' holds for another 3-valued 1-form 6 on U, then
6 — ¢’ is closed, hence exact by the Poincaré Lemma II1.3. Let h € C*°(U,3) with h(1) = 0 and
dh =6 — 6. Then

d(fy — fg) = A5(0' —0) — (6" — 0) = Asdh — dh = d(A\;h — h)

implies that
fg = fg =Ah—h—h(g),

and therefore
f'(w,y)—f(w,y):h(xy)—h(y)—h(x), x,yEWQU
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For the corresponding Alexander—Spanier cochains F', F' (Definition IV.6), this leads to

F'(z,y,2) — F(z,y,2) = f'(z'y,y~"'2) — f= " y,y"2)
=h(z7'2) = h(y~"z) — h(z"'y) = —(0H)(x,y, 2).

Therefore F' and F' define the same Alexander—Spanier cohomology class, showing that this class

does not depend on the choice of §. We therefore obtain a linear map Z2(g,3) = H3_s(G,3).
Now we show that it vanishes on B?(g,3). So let A\:g — 3 be a continuous linear map and

w(z,y) = d\(z,y) = —A([z,y]). Let 6 € Q' (G, 3) be the left invariant 1-form with 6; = A. Then

2 = df holds on G, and since 6 is left-invariant, the corresponding local cocycle f vanishes. In

view of the natural map H3 ¢(G,3) — H3,,(G,3), this completes the proof of the first part.
Now consider

F:W =3, F(go,91,92) == f(go 'g1,91 '92),

where W C G x G x G is a sufficiently small open neighborhood of the diagonal. Since F' is
a G-invariant function, the 2-form 7(F') is left invariant (Remark A.2.7), so that it suffices to
calculate 7(F');. First we recall that

F(l,my,20) = f(z1,27 ' 22) = flmay', 22) + flz1,27") — flaTh 22) = flz,27") — fla7h, 22).
Therefore Lemma IV.8 yields

T(F)I(X7 Y) = _d2f(17 1)(_X7 Y) + d2f(17 1)(_Y7X> = d2f(17 1)(X7 Y) - d2f(17 1>(Y7X>
=w(X,Y)

for X,Y € g. We conclude that 7(F) = 2. ]

Definition IV.10. Let G be a connected Lie group and ¢:my(G) — H(G) be the natural
homomorphism. To each continuous Lie algebra cocycle w € Z2(g,3) we associate with Lemma
1V.9 the cohomology class

c(w) = c([w]) € Hyy(G,3) = Hom(Hy(G),3)
(cf. Remark A.1.2, 3 is divisible). The corresponding homomorphism
per, = c(w) o p:m2(G) =

is called the period homomorphism of the Lie algebra cocycle w and its image the group of
periods. [ ]

Remark IV.11. (a) If G is connected and simply connected, then Hurewicz’s Theorem (Re-
mark A.2.1) implies that the natural map @:7m(G) — Hz(G) is an isomorphism, so that
per, can be identified with the singular cohomology class ¢(w). This shows that the class
cz(w) = qz o c(w), qz:3 — Z the quotient map, is trivial if and only if the period group
im(per,) is contained in T'.

Conversely, there exists a discrete subgroup I' C 3 such that ¢z(w) = 0 holds for Z :=3/T’
if and only if the period group is a discrete subgroup of 3.
(b) The period homomorphism per,, is the same for all locally isomorphic Lie groups G with
the Lie algebra g, because all these groups have the same universal covering group (cf. Lemma
I1.3). ]

In view of Theorem IV.7, the extendability of the local 2-cocycle f to a global 2-cocycle
is characterized by im(per,) C I'. Therefore it is desirable to have concrete means to calculate
the period group. The following theorem often provides a method to calculate it in terms of de
Rham classes.
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Theorem IV.12.  Let g be the Lie algebra of the connected Lie group G, w € Z%(g,3) a
continuous Lie algebra 2-cocycle and ) € Q?(G,3) the corresponding left invariant closed 2-
form. For v € C*°(S2,G) we then have

mm@bzﬂn

Proof.  We recall from Lemma IV.8 and Definition IV.6 that the cohomology class c(w) €
Hging(G,g) can be represented by a smooth Alexander—Spanier cocycle

W — 3, F(907gl792) = f(g()_lgl7gl_192)7

where W C G x G x G is an open neighborhood of the diagonal. The natural homomorphism
Hi s(7):Hi_s(G,3) = H3_s(S%3)

maps [F] onto the class [F o (y x v x )] which is a smooth function on a neighborhood of the
diagonal in (S?)3. In view of Theorem A.2.6, the de Rham class corresponding to [F o (y Xy x )]
is

T([Fo(yxyxy)]) = 7(Fo(yxyx7y)) =~"(F),
so that de Rham’s Theorem yields

mu@ba/fﬂmzﬁﬂm.

S2
Hence the assertion follows from 7(F) = Q (Lemma IV.9). =

The major problem with the preceding result is that a de Rham isomorphism is only
available for smoothly paracompact manifolds (cf. [KM97]). It leads in particular to the following
non-vanishing test (see [EK64]): If there exists a smooth map v:S? = G with fv Q ¢7T, then
cz([w]) # 0, so that the corresponding local cocycle is not extendable to a cocycle on G (Theorem
IV.7).

V. Central extensions of infinite-dimensional Lie groups

In this section we eventually turn to the global theory of central extensions of Lie groups. Let G
be a connected Lie group. We write Exty;(G, Z) for the group of equivalence classes of smooth
central extensions of G' by the abelian Lie group Z. Throughout this section G will denote a
connected Lie group and Z will be of the form Z = ;/T', where I' C 3 is a discrete subgroup
in the s.c.l.c. space 3. We write gz:3 — Z for the quotient map. The central result of this
section is the long exact sequence described in the introduction. In particular we will see that a
Lie algebra cocycle w integrates to a smooth central extension of a simply connected Lie group
if and only if the corresponding group of periods is discrete (Theorem V.7). We conclude this
section with a discussion of conditions for the existence of a smooth cross section for a central
extension ¢:G — G.

Definition V.1.  (a) Let v € Hom (7 (G), Z). We identify m(G) with kergg C G, where
qG: G — G is the universal covering homomorphism. Then

T(y™Y) = {(d,v(d) ") € G x Z:d € m(G)}

is a discrete central subgroup of G x Z, so that G := (G x Z)/T(y~1) carries a natural Lie

group structure which is a Z-principal bundle over G: the quotient map 7: G — G is given by
7([g,]) := q(g), and its kernel coincides with (w1 (G) x Z)/T'(y~1) = Z. We write

&1:Hom (771 (@), Z) — Extrie(G, Z)
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for the group homomorphism defined this way. If E stands for the central extension 1 (G) —
G —» G, this is the homomorphism E* from Remarks IV.5 and I.3.
(b) Let E:Z — G—1@G be a central Z-extension of G with a smooth local section. Then
the Lie algebra g of G is a central extension of g by 3 because the existence of a smooth local
section of ¢ implies that the subspace 3 = kerdg(1) C g has a complement isomorphic to g, so
that g = g x 3 as topological vector spaces. Therefore g can be written as g = g ®,, 3 with the
bracket

[(X,2), (X", 2")] = ([X, X'],w(X, X)),
where w € Z%(g,3) is a continuous 3-valued 2-cocycle on g. We put &(E) := [w] € H2(g,3),
where H?(g,3) denotes the Lie algebra cohomology involving only continuous cocycles. We thus
obtain a group homomorphism

52: EXtLie(Ga Z) — ch(gaﬁ)

The image of & are those cohomology classes [w] € H2(g,3) for which there exists a Lie group
G which is a Z-extension of G. If G is simply connected, then we call the elements [w] € im &
and the corresponding Lie algebras g integrable.
(c) Let [w] € H%(g,3) and write Q for the 3-valued left invariant closed 2-form on G with
1 = w. Further let per :m(G) — 3 be the period homomorphism (Definition IV.10). We
define
&,1([w]) := gz o per,:m2(G) = Z.

Now let X € g and consider the corresponding right invariant vector field X, on G.
Then i(X,).Q is a closed 3-valued 1-form (Lemma II1.13). For each piecewise differentiable loop
v:[0,1] = G with v(0) =1 we now put

& 2([WD (DX = /i(Xr)-Q = C([i(X7)- 2D (D)

(Theorem II1.6). It is clear that &3 2([w]) can be viewed as a homomorphism 71 (G) — Hom(g, 3).
We claim that its range consists of continuous linear maps. In fact, for each piecewise differen-
tiable loop 7:[0,1] = G we have

5.2 (D) (X) = / (X, (4(1)), 7/ (1)) dt = / w( Ad(y(8) "L X, (1)) dt,

where /(t) := d/\;(lt) (v()A'(t) € g = T1(G) denotes the left derivative of v in ¢. Since the
integrand is a continuous map [0, 1] x g — 3, the integral is a continuous map g — 3. We combine
these two maps to

¢3:H2(g,3) — Hom (7T2(G),Z) x Hom (Wl(G),Homc(g,g)). [ ]

First we take a closer look at the homomorphism & .

Lemma V.2. Let G and G be connected Lie groups, q:@ — G a_covering homomorphism
with kernel D and Z = 3/T". Then D is a discrete central subgroup of G and q induces an exact
sequence

{0} = Hom(G, Z) — Hom(G, Z) — Hom(D, Z)—*% Extpie(G, Z) — Extrie.n(G, Z) — {0}.

Proof.  The kernel D of g is a discrete normal subgroup of the connected group @, hence
central. In view of Remark IV.5, the central extension ¢q: G — G leads to the exact sequence

Hom(G, Z) — Hom(G, Z)~% Hom(D, Z) <% Extrie(G, Z) -5 Extrie.p(G, Z) — Extrie.an(D, Z)

because &; coincides with the map E* in Theorem L[.5. This means in particular that & is a
group homomorphism and that the range of E* consists entirely of Lie group extensions (Remark
IV.5).

Since the abelian group Z = ;/T" is divisible, we have Ext,p(D, Z) = {0}. Therefore ¢* is
surjective, so that we obtain the asserted exact sequence. [ ]
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Remark V.3. If g is topologically perfect and G is connected, then we have Hom(G, Z) =
Hom(G, Z) = {0} because the corresponding Lie algebra homomorphisms df (1): g — 3 are trivial
(Lemma III.17). In the setting of Lemma V.2, we therefore obtain the short exact sequence

{0} = Hom(D, Z) < Extrio(G, Z) = Extrie.n(G, Z) — {0}. u

Theorem V.4.  For every connected Lie group G we have ker & =im&; .

Proof. “D”: Let f:m(G) — Z and consider the corresponding central extension
Gi=Gx; Z=(Gx2)T(f 1) =G, gt alg).

The map G x Z — G is a covering with kernel I'(f~1) isomorphic to 71 (G). Hence g, the Lie
algebra of G , is isomorphic to g x 3, showing that the corresponding Lie algebra extension g — g
is trivial. Thus im & C ker&s.

“C”: Suppose that &(E) = {0} holds for the central extension E:Z —» G—15G. Then the Lie
algebra extension g — g splits, so that we have a continuous Lie algebra homomorphism A: g — 3
extending the identity on 3 C g. Let ag G! — G denote a universal covering of G. In view of
Theorem III.19, there exists a unique Lie group homomorphism ¢: G* — 3 with dp(1) = A. On
the other hand the embedding nz:Z — @ lifts to a homomorphism n;:3 — G* with @o n; = id,
(cf. Lemma IT1.17). We fix a smooth local section o:U — CA}', where U C @ is an open symmetric
1-neighborhood. In addition, we assume that there exists a smooth local section o: U— G*,
where U C G is an open 1-neighborhood containing o(U). Then 5:=6o00:U — G* is a smooth
map with

qoqao&:(ZOUZidU.

Let o1(z) := o(x)n; (@(E(w)))fl. Then o1:U — G* also is a smooth section of ¢ o qg, and,
in addition, im(o;) C kerg. Since ¢ '(U) = o(U)Z = U x Z, the group G* contains a 1-
neighborhood of the form B

U= a1 (U)n(Uy),

where U, C 3 is an open O-neighborhood. Then ¢(o1(z)n;(2)) = 2 implies that kerp N U =
o1(U). Let o,y € U with zy € U and o1 (2)o1(y) € U. Then oy ()0 (y) € keroNU = o1 (U)
and ¢ o qz(o1(z)o1(y)) = wy leads to o1(xy) = 01(x)o1(y). Now Proposition I1.8 implies that
G = (G x Z)/T(y™1) for some v € Hom(m (G), Z). .

Remark V.5. In Theorem V.4 we have determined the kernel of & as the image of & . On
the other hand we have the exact sequence

Hom(G, Z) — Hom(m (G), Z) — Extrie(G, Z)—% Extrie(G, Z)
(Lemma V.2). Since G and G have the same Lie algebra, we also have a homomorphism
&: Extrie(G, Z) = H(8,3)

which is injective because w1 (G) is trivial (Theorem V.4). It is easy to see that & o gt = &,
showing that ker& = kergf, =im¢; . ]

Lemma V.6. If there exists a Lie group extension Z — G - G corresponding to [w] €
H2(g,3), then &([w]) = 0 and the adjoint action of G on §=gd, 3 factors to an action of G
which is given by

g'(XaZ) = (Adg(g).X,Z+9(g,X)),

where 6:G x g — 3 is a smooth cocycle such that the functions fx(g) := 0(¢g~*, X), X € g,
satisfy dfx = i(X,).Q, where Q is the left invariant 3-valued 2-form on G with Q1 = w.
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Proof. First we consider the homomorphism
&1 ([w]) = gz o per,: m(G) — Z.

Let gq: G — G denote the universal covering group of G' and H := q*é — G the pullback of
the central extension ¢:G — G to G, and observe that it corresponds to the same Lie algebra
cocycle. Therefore Theorem IV.7 implies that n([f]) = 0, so that im(per,) C I', and therefore
&,1=0.
Now we turn to &s0:m (G) — Home(g,3). We write the Lie algebra of G as § with the
bracket
[(X,2), (X', 2")] = ([X, X']w(X, X")).

Since Z C G is central and G — @ is a locally trivial bundle, the coadjoint action of G on g
factors to an action of G on g which can be written as

9-(X,2) = (Ad(g).X, z + 0(g, X)),

where 6: G x g — 3 is a smooth function. Let X € g and consider the function fx:G — 3 given
by fx(g) :=0(9g7* X)=p;(g~*.X), where p;:g — 3 is the projection onto 3. With the same
argument as in the proof of Lemma II1.13, we obtain

dfx (9)dpy(1).Y = p;(Ad(g~1).[X,Y]) =w(Ad(g~").X,Ad(g 1).Y) = Q(X,, Y,)(9),

and therefore dfx = i(X,).Q. Hence the 1-forms i(X,).Q are all exact, and therefore &35 is
trivial. [

The following theorem describes the bridge from the infinitesimal central extension corre-
sponding to a Lie algebra cocycle to a global central extension of a Lie group.

Theorem V.7. (Integrability Criterion) Let g be the Lie algebra of the simply connected Lie
group G and [w] € H%(g,3). Then there exists a corresponding smooth central extension of G
by some group Z = 3/T if and only if im(per,) is a discrete subgroup of 3. If Z, resp., T' is
given, then the central extension exists if and only if im(per,,) CT'.
Proof. First we assume that the image of per, is discrete and contained in the discrete
subgroup I'. Using Theorem IV.7 and Remark IV.11, we obtain a global cocycle f € Z2(G, Z).
In view of Proposition IV.2, the corresponding group G =G x ¢ Z carries a natural Lie group
structure such that Z < G — G is a smooth central extension.

If, conversely, a smooth central extension of G by Z = 3/T" exists, then Lemma V.6 implies
that im(per,) CT. u

Lemma V.8. If &(Jw]) = 0, then there exists a Lie group extension Z —» G — G with Lie
algebra g = g ®y 3.

Proof. Let gg: G — G be the universal covering group. Since the canonical map o (CNT’) —
my(G) is an isomorphism, &1 ([w]) = 0 implies that the cohomology class cz(w) € HE (G, Z)
vanishes (cf. Remark IV.11), so that Theorem V.7 implies the existence of a central extension

Z < H—15@.
The Lie algebra of H is g = g @, 3. It is clear that the central subgroup Z C H acts trivially
on g by the adjoint action, so that we obtain an action of G on g with

g-(X,2) = (Ad(9). X, 2 + 0(g, X)),

where 6: G xg — 3 is a smooth function. In view of Lemma V.6, the functions fx(g) := 6(g~*, X)
satisfy dfx = i(X,).¢Q. Let 7:[0,1] — G be a piecewise differentiable loop in G and
d € m(G) C G the corresponding homotopy class. Then

fx(d) = /i(Xr)-Q = &2 (W) (D (X) = 0.
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Therefore the subgroup 71 (G) C G acts trivially on §, and hence the group Dy := §*(m, (G)) C
H is central because H is connected (Corollary IIT.18). We therefore have an extension

Z =Dz —»m (G)
of abelian groups, where Z is divisible. Hence there exists a group homomorphism o: 7 (G) —
Hz C H with goo =id; (). As the image of o(m(G)) under g is discrete, the same holds for
the group o(m (G)), and we conclude that Dy = o(m (G)) x Z. Now

G := H/o(m(G))
carries a natural Lie group structure. The homomorphism ¢g o ¢: H — G has the kernel Dy,

hence factors through a homomorphism ¢:G — G which is a principal bundle with structure
group Dz/o(m(G)) = Z. [

Theorem V.9. (Long exact sequence for central Lie group extensions) Let G be a connected
Lie group, 3 an s.c.l.c. space, I' C 3 a discrete subgroup, and Z :=3/T. Then the sequence

Hom(G, Z) < Hom(G, Z) — Hom (m1(G), Z) —— Extpie(G, 2)—2—H2(g,3)
%, Hom (m2(G), Z) x Hom (1 (G), Hom,(g, 3))
s exact.
Proof. This follows from Lemma V.2, Theorem V.4, Lemma V.6, and Lemma V.8. ]

Corollary V.10. Let G be a connected Lie group and Z = 3/T for a discrete subgroup T' C 3.
Then the following assertions hold:
(i) If G is simply connected, then the sequence
{0} = Extyie(G, 2)—E H2(g, 5)— 2 Hom (m2(G), 2)
15 exact.
(i) The sequence
{0} = Hom(G, 3)— Hom(G, Z) -2 Extrie(G, T)
s Bxtyio (G 5)—25 Bty (G, Z)— Hom(ma (G), T)
is exact, where ( assigns to a central Z -extension of G the homomorphism per,,:m2(G) — 3
and w € Z2(g,3) is a corresponding Lie algebra cocycle.
Proof. (i) follows directly from Theorem V.9.
(ii) Since G is connected, we have Hom(G,T') = {0}, so that, in view of the second part of
Remark IV.5, it only remains to verify the exactness at Extyio(G, Z).
Let 3 < G — G be a central j-extension of G and w € Z2(g,3) a corresponding Lie
algebra cocycle. Then per,, =0 (Theorem V.7), and this shows that (o(gz). = 0. If, conversely,
E:Z < G —» G is a central extension with ¢ ( ) = per,, = 0, then Theorem V.9 implies that

E = (gz).E holds for a central j-extension E of G because &([w]) = 0 follows from the
existence of the central extension E. =

Lemma V.11. For each w € Z%(g,3) we have
torm (G) Ckeréso(w]) and  torme(G) C ker&s ;1 ([w]).

In particular &3 2([w]), resp., &1([w]) factors through homomorphisms of the rational homotopy
groups

m(G) ® Q —» Hom(g,3) and m(G)®Q— Z.
Proof. The first assertion follows from the fact that the range of the homomorphism & 2 ([w])
is a vector space. Similarly we see that torma(G) C ker per,,, and this implies that torm2(G) C
ker & 1 ([w]). The second assertion follows from the fact that for an abelian group the kernel of
the natural map A > A® Q,a = a® 1 coincides with tor(A). [ ]

The following proposition clarifies how central extensions by non-connected groups can be
reduced to central extensions by discrete and connected groups. Here the long exact sequence
in Theorem V.9 only provides information about extensions by connected groups, whereas the
extensions by discrete groups are quite simple to describe. For finite-dimensional groups the
following result can be found as Theorem 3.4 in [Ho51, II].
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Proposition V.12. Let ' C 3 be a discrete subgroup and Z be an abelian Lie group with
Zy = 3/T. Further let G be a connected Lie group. Then

EXtLie(G, Z) = EXtLie(G, Zo) X HOHl(7T1 (G), Z/Zo)

Proof. The group Z is an extension of the discrete group Z/Z; by the divisible group Zo.
Since this extension is trivial as an extension of abelian groups, it is also trivial as an extension
of Lie groups, showing that Z = Zy x (Z/Zy). Using this product structure, one easily verifies
that

EXtLie(G, Z) = EXtLie(G, Zo) X EXtLie(G, Z/Zo)

holds for every Lie group G. Every central extension Z/Zy — G- Gisa covering of G, hence

a quotient of G x (Z/Zy) defined by a homomorphism +: 7 (G) = Z/Z,. In terms of the exact
sequence in Remark IV.5, we have

Hom(G, Z/Zy) — Hom(ry(G), Z/Zo) — Ext(G, Z/Zo) — Ext(G, Z/Zy),

where Hom(G, Z/Z,) and Ext(G, Z/Zo) are trivial because G is connected and simply connected.
This proves that Hom(m (G), Z/Zy) = Ext(G, Z/Zy). [

Remark V 13. If Z < G —» G is a central extension of G by the connected group Z >=;/T

and Z — G —» G is the pullback to the universal covering group G of G, then G > G isstilla
central extension of G because its kernel acts trivially on the Lie algebra g. The kernel of this
action is isomorphic to Z x 71 (G) (see the proof of Lemma V.8). In terms of Proposition V.12,
this corresponds to replacing the extension E € Ext(G, Z) by the element

(E,idy, () € Bxt(G, Z) x Hom(m (G), 71 (G)) = Ext(G, Z x m(G)). n

Example V.14. Suppose that dimG < oo. Then m3(G) is trivial (cf. [God71]), so that we
obtain a simpler exact sequence

Hom (m (G), Z)L Extrie(G, Z)—2—HZ(g, 3)—=— Hom (m1(G), Hom(g, 3))
(cf. [Ne96]). If, in addition, G is simply connected, then we obtain an isomorphism
(5.1) Extrie(G, Z) = HZ(g,3)

(cf. [TW8T7, Cor. 5.7]). ]

It is interesting to note that, even though not every left invariant closed 2-form Q2 € Q?(G, 3)
on a simply connected Lie group GG defines a central extension of G, we can always construct
the adjoint action of G on g as follows (cf. Lemma V.6).

Proposition V.15.  Let G be a connected Lie group, 3 an s.c.l.c. space, and w € Z*(g,3) with
&a([w]) = 0. For each X € g let fx € C®(G,3) be the unique function with dfx = i(X,).Q
and fx(1) =0. Then 6(g,X) := fx(g97") defines a smooth 1-cocycle G x g — 3 for the adjoint
action of G on g.

Proof. The assumption &3 2(jw]) = 0 implies that for each X € g the closed 1-form (X, ).Q
on G is exact, so that the functions fx, X € g, exist. We have to show that for g;,¢2 € G and
X € g we have

(52) 9(91927X> = 9(927X> + 9(91792'X>7

which means that

Fx(ortor!) = fx(93) + foox (g7 )
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for all g1,92 € G, and this is equivalent to fx(g291) = fx(g2) + fgz—l.X(gl) for all ¢1,92 € G,
which in turn means that fx o Ay, = fx(g2) + fggl,x- In 1 both functions have the same value
fx(g2). Hence it suffices to show that both have the same differential. This follows from

d(fx o Agy) = Aoydfx = A, (i(X,).0Q) =i((g5 1. X)) 0,
where the last equality is a consequence of

(/\Zg(l(XT)Q))g(U) = (i(XT)'Q)gzg(d/\gz ngg (dl)gzg X d/\gz( ) )
=y (d/\g2—1 (g2g)dpgzy (1) 7U) 9( 'X)r(g)a U) -

We further have
d(fx(g2) + fg2—1,x> = dfgz—l,x = Z((92_1X>T)Q

This proves that 6 is a 1-cocycle.

Now we show that 6 is smooth. Since # is linear in the second argument and a cocycle
(see (5.2)), it suffices to verify this in a neighborhood of (1,0) € G x g. Let U C G be an open
1-neighborhood for which there exists a chart ¢:V — U with ¢(0) = 1, where V' C g is a an
open star-shaped neighborhood of 0. Then for each z € V and X € g we have

frlota) = [ oy 0= | (Ado(t) X @)1 (ol dp(t) )

and this formula shows that the function V xg — g, (z,X) — fx(¢(x)) is smooth. We conclude
that 6 is a smooth cocycle. ]

Central extensions with global smooth sections

In this subsection we discuss the problem of the existence of a smooth cross section for a
central Lie group extension Z — G — G

Proposition V.16. (Cartan’s construction) Let G be a connected Lie group, 3 an s.c.l.c.
space, w € Z2(g,3) a continuous 2-cocycle, and Q € Q*(G,3) the corresponding left invariant
2-form on G with Q1 = w. We assume that

(1) Q=db for some 6 € Q(G,3), and that

(2) for each g € G the closed 1-form X760 — 6 is exact.

Then the product manifold G:=G x 3 carries a Lie group structure which is given by a smooth
2-cocycle f € Z*(G,3) via

(9,2)(g",2") == (99", 2+ 2" + f(9,9)).

The Lie algebra of this group is isomorphic to g ®,, 3.

Proof.  First we observe that the 1-forms A\;f—6 are closed because d(A\;60—6) = A\;Q1—Q = 0.
According to our assumption, there exists for each g € G a unique f, € C*(G,3) with f,(1) =0
and df; = A760 —60. As in the proof of Lemma IV.8, we see that f(g,h) := fy(h) defines j-valued

2-cocycle on G which is smooth on a neighborhood of (1,1). The cocycle condition means that

flg,hu) + f(h,u) = f(gh,u) + f(g,h) for g,h,u€Qq.
We write this as
f(ghau) = f(hau) - f(gvh) + f(gahu)'

For g fixed, this function is smooth as a function of the pair (h,u) in a neighborhood of (1,1).
This implies that f is smooth on a neighborhood of the points (g,1), g € G. Fixing ¢ and
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u shows that there exists a 1-neighborhood V' C G such that the functions f(-,u), u € V,
are smooth in a neighborhood of ¢g. Since g € G was arbitrary, we conclude that the functions
f(,u), u €V, are smooth. Now

f(vhu) = f(hvu) - f(hvu) +f(ah)

x), © € V2, and iterating this process, using

shows that the same holds for the functions f(-,
x), ¢ € G, are smooth. Finally we conclude that

G = U,en V", we derive that all functions f(-,
the function

is smooth in a neighborhood of each point (go, 1), hence that f is smooth in each point (go,uo),
and this proves that f is smooth on G x G.

We therefore obtain on the space G := G x 3 a Lie group structure with the multiplication
given by

(9,2)(9",2") := (99", 2+ 2"+ f(9,9").

As in the proof of Lemma IV.8, we obtain the formula
[(X',2"),(X,2)] = (X', X],®f(1,1)(X', X) —d®F(1,1)(X, X))

for the corresponding Lie bracket, but since we do not have 67 = 0, the calculations in the proof
of Lemma IV.8 lead to

d2f(g, 1)(Y) = (A;0 = 0)1(Y) = (8,Y1)(g) — 61 (Y)
and further to

d*f(1,1)(X,Y) = Xi((0, Y1) (1) = db(X;, Y2)(1) + Y1 ({0, X1)) (1) + 0([, Yi])(1)
=w(X,Y) +Y((0, X)) (1) + 0. ([X, Y]),

so that
dEF(1,1)(X,Y) = d?f(1,1)(Y, X) =w(X,Y) + 61 ([X,Y]).

Since this cocycle is equivalent to w, the assertion follows. ]

Corollary V.17.  If G is simply connected and Q) is exact, then there exists a smooth cocycle
[:G x G — 3, so that G :=G x5} is a Lie group with Lie algebra § =g @, 3. ]

Remark V.18. The construction described in Proposition V.16 is a well-known construction
of a central extension of a simply connected finite-dimensional Lie group G. Since in this case

Hip(G,5) = Hom(m(G),3) = {0} and  Hig(G,3) = Hom(m (G),5) = {0},

(cf. [God71]), the requirements of the construction are satisfied for every Lie algebra cocycle
w € Z°(9,3)-

The construction can in particular be found in the survey article of Tuynman and Wiege-
rinck [TW87] (see also [Tu95], [Go86] and [Ca52b]). Actually E. Cartan gave three proofs for
Lie’s Third Theorem ([Ca52a], [Ca52b] and [Cab2c]), where [Ca52a/c] rely on splitting of a Levi
subalgebra and hence reducing the problem to the semisimple and the solvable case, but the
second one is geometric (in the spirit of the argument in Example V.14) and uses H3z (G) = {0}
for a simply connected Lie group G (see also [Est88]). =



34 frecen.tex October 5, 2000

Proposition V.19. (a) If a smooth central extension Z — G = G has a smooth section, then
each corresponding left-invariant 2-form Q € Q*(G,3) is ezact.

(b) If, conversely, Q} is exact, then per, = 0, and the simply connected covering group has a
global smooth cocycle fz: GxG— Z defining a Z -extension G X¢, Z of G corresponding to w.
Proof. (see [TW87, Prop. 4.14] for the fin.-dim. case) (a) Let a € Q!(g,3) be the left invariant
3-valued 1-form with ay = p;, the linear projection g = g ®, 3 — 3. Then da = —¢*Q follows
from

dal((Xa Z)a (lezl)) = _pz([(Xa Z)a (lezl)]) = _W(XvXI) = _(q*Q)l((sz)v (XI,Z,))

and the left invariance.
If 0:G — G is a smooth section, then o*« is a 3-valued 1-form on G with

do*a=oc"da = —0*¢*Qd = —(qo0)*Q = —-Q,

so that  is exact.
(b) Suppose that 2 is exact. Then the same holds for ¢ on G, so that Corollary V.17 implies
the existence of a central extension of G by 3 which can be written as a product. We conclude
in particular that per, = 0.

Since G has a 3-extension with a smooth section, by factoring the discrete central subgroup

I', we obtain a central extension Z — G x, Z — G with a global smooth cocycle fz: GxG — Z.
]

Recall that we cannot simply apply de Rham’s Theorem to conclude that the cohomology
class n([f]) vanishes if € is exact. This would work with Theorem I'V.12 if every element of w2 (G)
could be represented by a smooth map S? — G. Such results are available for finite-dimensional
manifolds, where they heavily use the smooth paracompactness and even embeddings into vector
spaces with tubular neighborhoods. One has to face similar obstructions if one wants to represent
singular cohomology classes in Hging(G) by smooth chains.
Lemma V.20. Suppose that G is defined by a homomorphism ~v:m(G) — Z = 3/T'. In
addition, we assume that G is smoothly paracompact. Then G — G has a smooth section if and
only if there exists a homomorphism J:m(G) — 3 with qz o = v, where qz:3 — Z s the
quotient map.

Proof. Suppose first that G — G has a smooth section. The natural map
15:Gx3>GxZ>G=(Gx2)/T(vY), (9.2) [9,02(2)]
is the universal covering of G, so that 71 (G) can be identified with
ker gz = {(d, 2) € m(G) x 3:7(d)qz(z) = 1}.

This description directly shows that we have a short exact sequence

~

I'= 7T1(Z) — Wl(G) —» 7T1(G).

The triviality of the bundle G implies the existence of a homomorphic section o: 7 (G) = 71 (G)
with o(d) = (d, —7(d)) for a homomorphism 7:7;(G) — 3. Then v(d)qz( — ¥(d)) = 1 implies
that gz oy =1~.
Suppose, conversely, that there exists a homomorphism 5 with the required properties.
Then _
G1 = (G x 3)/T(-7)

is a central extension of G by 3 and G~ G1/T. On the other hand, G; — G is a 3-principal
bundle. This bundle has affine fibers, so that the smooth paracompactness of G implies the
existence of smooth global sections, so that G; = G X 3, where f:G x G — 3 is a smooth

2-cocycle. Therefore G=~@ Xy, Z, where fz :=qzo f,is a trivial Z-bundle. u
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Remark V.21. Assume that G is defined by a homomorphism : 7y (G) > Z =3/T. Let a
be a left invariant j-valued 1-form on G for which ay: g — 3 is a linear projection onto 3. Let
qz G X3 — G denote the universal covering map. Then p*a = df for the projection f: G X3 3.
Hence the homomorphism

(([a]):m(G) — 3

is given by R
m(G) ={(d,2) € m(G) x 3:v(d)qz(z) =1} =35, (d,2) =

It follows in particular that im ¢([a]) = ¢,,* (im~). The range of (([a]) is contained in T' if and
only if ~ is trivial, which means that G =2 G x Z is a trivial central extension.
For I = {0} we obtain in particular

(([a]) = =y:m(G) = 3.

Now the existence of a smooth section o:G — 3 is equivalent to the existence of a smooth
function h:G — 3 with B
h(gd) = v(d)"*h(g), g€ G,dem(G).

Such functions can be constructed with a smooth partition of unity, but it is not clear how they
should be obtained if G is not smoothly paracompact. The point is that the map

Hgg(G,3) = Hom(m (G),3)
need not be surjective (cf. Theorem II1.6). [

Remark V.22. It is interesting to compare condition (2) in the Cartan construction with the
condition &3 2(Jw]) = 0. In view of Proposition V.16 and Theorem V.9, condition (2) implies
&.2(Jw]) =0, i.e., the exactness of all 1-forms i(X,).Q. If, conversely, this condition is satisfied,
then it is not at all clear why this should imply condition (2). In the special case where = 0,
the condition &3 2(Jw]) = 0 is trivially satisfied, but there might be a closed 3-valued 1-form 6
on G for which A\76 — 6 is not exact for some g € G. Geometrically this means that the choice

of the smooth section for the corresponding central extension of € might be such that it cannot
be pushed down to a smooth section for the central extension of G. ]

V1. Examples

In this section we discuss several important classes of examples which will demonstrate the
effectiveness of the long exact sequence for the determination of the central extensions of an
infinite-dimensional Lie group G.

Remark VI.1. (Central extensions of abelian Lie groups)

(a) Suppose that G is an abelian Lie group with an exponential function exp: g — G which is a
universal covering homomorphism (cf. Remark II1.16). Since the covering map exp induces an
isomorphism of the second homotopy groups, m2(G) = w2 (g) is trivial. Hence we have the exact

Sequence
Hom(g, Z)—<~ Hom (1 (G), Z) —— Extyie(G, 2)

—2 12 (g,3)—=— Hom (m,(G), Hom, (g, 3)).

For abelian Lie algebras the coboundary operator is trivial, so that H?(g,3) = Alt*(g, 3)
coincides with the space of continuous alternating bilinear forms g x g — 3. Here the map &3 is
quite simple:

&: Alt*(g,3) — Hom (m1(G), Hom,(g,3)), &(w)(d, X) = w(X,d).
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Therefore the condition for the existence of a Lie group extension G-da by Z is that
m1(G) Crad(w) :={X € g:w(X,g) = {0}}.

If this condition is satisfied, then w factors through G x G to a smooth 2-cocycle
[fGxG =3 (expX,expY)—w(X,Y).

We thus obtain a group G x; 3 which is a covering of the group G xr, Z.
(b) If spanm (G) is dense in g, then we call G a generalized torus. Then ker & = {0} implies
that & = 0, and therefore that & is surjective, so that

Extrie (G7 Z) = Hom (7T1 (G)7 Z) / ( Hom(ga Z) |7r1(G))~

If dim G < oo, then spanm (G) = g, and 7(G) is a lattice in g. Therefore Hom (m(G), Z) =
Hom(g, Z) |, (@) leads to

Ext(T",Z) ={0} forall neNZ=3/T.

(c) Let g be a locally convex space g and D C g a discrete subgroup. Then there exists a
continuous seminorm p on g with D Np~1([0,1]) = {0}, showing that the image in the normed
space g, := g/p~'(0) is a discrete subgroup isomorphic to D. This implies that every discrete
subgroup of a locally convex space is isomorphic to a discrete subgroup of a Banach space. As
has been shown by Sidney ([Si77, p.983]), countable discrete subgroups of Banach spaces are free.
This implies in particular that discrete subgroups of separable Banach spaces are free.

Let E be a vector space and f:D — E a homomorphism of additive groups. Since
every finitely generated subgroup of D is a discrete subgroup of the vector space it spans,
every linear relation ), A¢d = 0 implies that >, A¢f(d) = 0. Hence f extends to a linear
map f:spanD — E. Such an extension need not be continuous if D is not finitely generated.
Suppose that D is countably infinite and that g is a Banach space. Let (e,)nen be a basis of
D as an abelian group. We define f(ey,) := nlle,||. Then f extends to a linear map on span D
which obviously is not continuous. We conclude in particular that if G is an infinite-dimensional
separable generalized Banach torus, then

Extrie (G, R) = Hom (7T1 (G), ]R) /( Hom(g, ]R) |71.1 (G)) # {0}

(d) If G is a central extension with abelian Lie algebra, then its universal covering group is the
vector space g = g X 3, and the fundamental group 7 (G) is defined by an exact sequence

[ =m(2) = m(G) - (G),
where pg:g — g is the projection onto the first factor. In this sense we have a natural map
n:Ext(G, Z) = Ext (m (G), m1(2)).

If 71(G) is free, then the group on the right hand side is trivial, so that n vanishes, but if 71 (G)
is not free, then there might be non-trivial classes in Ext (m1(G),71(Z)), and therefore G is
non-trivial.

The relation 7(& (y)) = 0 means that v can be lifted to a homomorphism 7: 7 (G) — 3
(cf. Lemma V.20), so that we have a j-extension of G covering the Z-extension G. This
extension is trivial if and only if the homomorphism 71 (G) — 3 extends continuously to g which
might not be possible, as we have seen in (c).
(e) Let g be a Banach space, D C g a discrete subgroup with Ext(D,Z) # {0} and G :=g/D.
The exactness of the sequence

Hom(D,Z) < Hom(D, R) — Hom(D, T) = Extap (D, Z) — Extay(D,R) = {0}
(Theorem A.1.4) shows that there exists a homomorphism ~: D — T which cannot be lifted to a
homomorphism 5: D — R. In view of (d), this implies that the corresponding abelian extension

T G:=(gxT)/T(y') = G=g/D

has no global continuous section.
We do not know of any example of a discrete subgroup of a Banach space which is not
free. ]



Central extensions of infinite-dimensional Lie groups 37

Example VI.2. We consider the real Banach space g = ¢o(N,R) of sequences converging to 0
endowed with the sup-norm. Then Z®™ = ZNn¢, (N,R) is a discrete subgroup spanning a dense
subspace, so that G := g/Z™ is a generalized torus with 7, (G) = Z®. Now Remark VI.1(b)
implies that

Extrio(G,R) = RY/I'(N, R). n

Remark VI.3. In [Se81, Prop. 7.4] G. Segal claims that for a connected Lie group G the
sequence
Hom (m(G), T) —— Ext(G, T)—=2— H2 (g, R)—=— HZ, (G, T)

is exact (see Remark IV.11 for the definition of ey ). This is false if G = T? is the two-dimensional
torus. As we have seen in Remark VI.1(b), we have Ext(G,T) = {0}, and Remark VI.1(a) shows
that H2(g,R) = R. Using a simplicial decomposition of G, one easily obtains Hs(G) = Z , where
the generator is the fundamental cycle (G is an orientable surface). Hence Hfing(G, T)=T. We
conclude that the sequence above leads to a concrete sequence

T2 {0} —2 s R—52 4T

On the other hand the definition of & shows that it is continuous, and this contradicts Segal’s
claim. .

Example VI.4. Let G := Diff { (T) be the group of orientation preserving diffeomorphisms of
the circle T. Then G can be identified with the group

G := {f € Diff(R): (Vz € R) f(x + 27) = f(z) + 27},

and the covering homomorphism ¢: G — G is given by ¢(f)([#]) = [f(z)], where [z] =z + Z €
T = R/Z. Then ker f consists of all translations 7,, a € Z. Moreover, the inclusion map

n: PSL(2, R) < Diff . (T)

is a homotopy equivalence (cf. [Fu86, p. 302]). Note also that G is a convex set of maps R — R,
so that this group is obviously contractible (cf. [TL99, 6.1]). In particular we have

m(G)=7Z and m(G)={1}, k>1.
As a consequence, we obtain Hom(w(G), T) = T. Moreover,

H: (G,T)=HZ (T,T)= Hom(Hy(T),T) = {0}.

sing sing

Furthermore we have
HZ(g,R) =R

Therefore the long exact sequence in Theorem V.9 leads to an exact sequence
T — Ext(G,T) - R — Hom(m (G), g%).

Now one has to show that the standard generator [w] of H2(g,R) has trivial image in the space
Hom(m (G), g*) to get an exact sequence

T — Ext(G,T) - R,
and hence
Ext(G,T)ZTxR=(ZxR)"

(cf. [Se81, Cor. 7.5]). Identifying g with V(T), with respect to the the basis L,,, n € Z, the
cocycle w is given by
w(Lp,L_pm) =n(n—1)(n+ 1)dp m,
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hence trivial on span{Lo,L1,L 1} = sl(2,R). Therefore i(X,).Q |psrier) = 0 for all X €
sl(2,R): In fact, for ¢ € PSL(2,R), X €5((2,R) and Y € g we have

Qy(X1(9),dXg(1).Y) = w(Ad(g) "X, Y) € w(sl(2, R), g) = {0}.

This implies that the corresponding homomorphism 1 (G) — g* is trivial, so that the sequence
in [Se81] is exact (see Remark VI.3), even though it is not exact for all infinite-dimensional Lie
groups.

For the simply connected covering group we likewise have

Ext(G,T) = H2(g,R) = R.

This implies in particular that G has a universal central extension Z < G — G with
Z =7 xR (cf. [Ne00]). One can realize the group G as a central extension of G by R. This is
the universal covering group of the Virasoro group. ]

Example VLI.5. Let H be an infinite-dimensional Hilbert space, G := GLy(H), and g =
B, (H) its Lie algebra, i.e., the space of Hilbert—Schmidt operators on H. Then

m1(G) = m (indlim,—,. GL(n,C)) 2 Z, T2(G) = w2 (indlim, o GL(n,C)) = {1}

(cf. [Pa65] for the separable case and Lemma IIL.5 in [Ne98] for the extension to the general
case). Moreover, for each w € Z2(g,R) there exists an operator C' € B(H) with

w(X,Y)=tr([X,Y]C), X,Yeg

which leads to
HZ(g,R) = B(H)/(By(H) + R1)

(cf. [dIH72, p.141]).

We claim that £; vanishes. Since w2 (G) is trivial, this will follow from the exactness of the
1-forms i(X,).Q for every w € Z%(g,R) (cf. Lemma II1.7). So let w € Z2(g,R) and C € B(H)
with w(X,Y) =tr([X,Y]C) for X,Y € g. We consider the function

fx:G—= R, fx(g):=tr((gCg~" - C)X),

and observe that
gCg~' —C=(g—1)Cg~' +Clg~" — 1) € By(H),

so that fx is a well-defined smooth function. We have for all Y € g:

dfx (9)dXg(1).Y = tr(gY Cg™'X) — tr(9CY g7 ' X) = tr(lg™ X g,Y]C)
— W(Ad(g) X, Y) = (1(X,).2)(9).(dAg (1).Y).

Hence dfx = i(X,).Q, showing that the 1-forms i(X,).Q are all exact, and therefore that &5
vanishes.

Since [g,g] = Bi(H) is dense in g, we have Hom(G, Z) = {0} for each abelian Lie group
Z , so that the long exact sequence (Theorem V.9) leads to the short exact sequence

Hom(m(G), Z) = Hom(Z, Z) = Z — Ext(G,Z) —» H>(g,3).
For the simply connected covering group G we obtain with m(G) = my(G) = {1} that
Ext(G,T) = H2(g,R) = B(H)/(C1 + By(H)). n

Example V1.6. (a) Let H be an infinite-dimensional Hilbert space. Then all homotopy groups
of U(H) vanish (see [Ku65] for the separable case and [BW76] for the general case). Let PU(H)
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denote the projective unitary group. Then the surjective map ¢:U(H) — PU(H) defines a
principal bundle, hence induces an exact sequence

m(G) = {1} = m(PU(H)) = m (T) - m (U(H)) = {1}.

Therefore

14

T (PU(H)) 2 m(T) 2 Z

is non-trivial. We likewise have
Wl(PU(H)) = 7o(T) = {1}.

With Z:=T, G:=U(H) and G/Z = PU(H), we have m (Zx(G/Z)) = Z % 1 (G) = {1}.
Therefore G is not homeomorphic to Z x (G/Z).
(b) (see [DL66, p.147]) Let G := PU(H)xPU(H). Then G is simply connected and 72 (G) = Z2.
Let g := (u(H)®u(H))/iR(1,v/2) which is a central extension of g = L(G). Then the Lie algebra
g is not enlargible: The Lie algebra g := u(H) ® u(H) is an enlargible central extension. Let
G = U(H) x U(H) be the corresponding group. Then the subgroup CCcqG corresponding to
3 := ker(§ — §) is not closed. If there were a Banach-Lie group G with Lie algebra g, then
the Lie algebra homomorphism g —» g would imply the existence of a corresponding group
homomorphism ¢: G —» G. Then ker ¢ contains the dense subgroup exp(iR(1,v/2)) of the torus
Z(G) = T2. This contradicts L(ker ¢) = kerdg(1) = iR(1, v/2).
(¢) A similar construction as in (b) works more generally as follows. Suppose that G is a
simply connected Lie group and w € Z2?(g,R) with per, # 0. If im(perw) is not discrete,
then we already have an example of a non-integrable central extension. Suppose that im(per,)
is discrete, so that we may assume that im(per,) = Z. Let q:é — G be the corresponding
T-extension of G. We put g1 :=gd g, G1 :=G x G, and

wi((X,Y), (X, V") := w(X,Y) + V2w (X', Y).

Then im(per,, ) = im(per,,) +v2im(per,,) is not discrete, so that there exists no smooth central
extension of (1 corresponding to w; (Theorem V.7).

This can also be proved more directly as follows: The group 62 := G x G is a central
extension of G1 by the two-dimensional torus T? with period group Z? C R?. If a central exten-
sion G1 — G correspondlng to w1 would exist, then we could construct a local homomorphism
of some 1-neighborhood in G- 2 to Gl, and then use Lemma IL.3 to extend it to a Lie group
homomorphism G- 5 — G1 with the correct differential. Then the central torus T2 in G 5> would
be mapped onto the subgroup corresponding to 3; = R. So this subgroup would be a quotient
of T? modulo a dense wind, which is absurd. u

Example VI.7. Let (M,3) be a compact connected symplectic manifold. Then the group
Sp(M, B) of all symplectomorphisms of (M, ) carries a natural Lie group structure such that
its Lie algebra is the space

g:={XeV(M):Lx.p=0}

of all locally Hamiltonian vector fields (cf. [Omo97]). Endowing C°°(M,R) with the Poisson
bracket, we get an exact sequence

R < C®(M,R) — g —» Hjp(M,R)
which, on the level of differential forms corresponds to
R < C°° (M, R)—2— Z}x (M, R) = Hlz(M,R).

Since we have assumed that M is compact, this Lie algebra extension is trivial. The space
{f € COO(M,]R):/ 8" = o}
M

is a vector space complement of R1 which is a Lie subalgebra of C*°(M,R) (cf. [Omo97, Th. 3.2]).
(]
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VII. Relations to connecting homomorphisms in homotopy

In our construction of smooth central extensions from Lie algebra cocycles we have used the
results of van Est and Korthagen to enlarge local groups to global groups. That this is possible
was characterized for simply connected groups by the condition that all periods are contained
in T', so that we obtain a homomorphism per:m(G) — I' = m1(Z). On the other hand the
exact homotopy sequence of the Z-principal bundle G — G leads directly to a connecting
homomorphism §:73(G) — m(Z). In Proposition VIL7 below we will see that both are
related by the formula per, = —d. On the other hand the loop group Q(G) of G satisfies
m2(G) =2 71 (Q(G)), so that the period map can also be viewed as a homomorphism 1 (Q2(G)) — 3.
In Remark VII.5 below we will explain how the condition that the range of this map is contained
in T' implies the existence of a smooth extension of G.

The path-loop fibration

Remark VIL.1. (a)If F isans.c.l.c. space and X a compact space, then C (X, F) is an s.c.l.c.
space with respect to the topology of uniform convergence. For each continuous seminorm p on
F' the prescription

px (f) = sup,cx p(f(x))

defines a continuous seminorm on C(X,F), and the set of all these seminorms defines the
topology of compact convergence on C(X,F). It is easy to verify that with respect to this
topology the space C(X, F) is sequentially complete, i.e., an s.c.l.c. space.

(b) If U C F is an open subset, then C(X,U) is an open subset of C'(X,F). Now let U; C Fj,
j = 1,2, be open subsets of s.c.l.c. spaces and ¢:U; — Us a smooth map. We consider the map

ox:C(X,Uy) = C(X,Uz), v+ pon.

Then x is smooth. The continuity follows from [Ne97, Lemma III.6]. For each z € X and
v,n € C(X, F1) we have

fim PO D) = 2O _ / ' dp(y(2) + stn(a)) (e) ds = dol () (e).
—0 t—0 0

Since the integrand is continuous in [0,1]> x X, the limit exists uniformly in X, hence in the
space C(X, Fy). Therefore dpx (v)(n) exists. Since dp:TU; = Uy x F; — F, is a continuous
map, the first part of the proof shows that

d(pXE C(X, TUl) = C(X, Ul) X C(X, Fl) — C(X, Fz)

is continuous, so that ¢x is C'. Iterating this argument shows that px is C*. ]

Proposition VIL.2. If G is a Lie group and X is a compact space, then C(X,q), endowed
with the topology of uniform convergence is a Lie group with Lie algebra C(X,g).

Proof. We use Remark VIL.1(b) to see that the inversion and multiplication in the canonical
local charts are smooth. The remainder is a routine verification. |

Definition VII.3. Let G be a Lie group and

P(G) ={f € C([0,1],G): f(0) = 1}
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the corresponding path group endowed with the topology of uniform convergence, where the
multiplication is pointwise. This turns P(G) into a Lie group (Proposition VII.2), and the
evaluation map

ev: P(G) = G, v~ ~(1)

is a continuous group homomorphism whose kernel is the loop group
QG) :=kerev =2 {f € C(T,G): f(1) =1}.
It is called the path-loop fibration of G. ]

Lemma VII.4. For a Fréchet—Lie group G the path-loop fibration has a smooth local section.

Proof. Let U C G be a 1-neighborhood for which UU is diffeomorphic to an open convex set
in g. Then there exists a map h:[0,1] x U — U which is smooth in the sense that it extends to a
smooth map on a neighborhood of [0,1] x U in R x G. Furthermore we require that h(0,z) =1
and h(1,z) =z for all x € U. Then

ou:U — P(G), ouy(x)(t):= h(t,x)

is a smooth section of ev (see [Ne97, Th. III1.4] which requires the manifolds under consideration
to be Fréchet). [

Remark VIL5. (Identification of the period map via loops) Let G be a simply connected
Fréchet-Lie group, 3 a Fréchet space, I' C 3 a discrete subgroup and Z := 3/I". We recall
from Lemma IV.8 that each Lie algebra cocycle w € Z2(g,3) defines a local extension of G by
Z :=3/T', T C; a discrete subgroup. Below we explain how the path-loop fibration of G can
be used to see that the obstruction to the extendability of such a local central extension is a
homomorphism m(G) = m (Q(G)) — Z.

Let Z < N —» U be a local central extension, where U C G is a symmetric open 1-
neighborhood and let f:U x U — Z be its local cocycle. We can pull back f to a local cocycle

fr(a, B) := fla(1),5(1))

on ev 1(U) = {y € P(G):v(1) e U}.

Since the group P(G) is contractible, its singular cohomology groups are all trivial. Hence
Theorem IV.7 implies that there exists an open symmetric 1-neighborhood V' C P(G) such that
the restriction of fp to V can be extended to a Z-valued cocycle on the whole group P(G).
Let

Z < P(Q)—2—P(G)

denote the corresponding central extension of P(G) by Z which can be given the structure of
a smooth extension (Proposition IV.2). Note that all these arguments do not require G to be
Fréchet. This assumption is only needed as soon as Lemma VIIL.4 is used. By restriction, we
obtain a central extension R

Z < QG) = ¢p* (UG)) = QAUG).

Now we would like to find a section of this extension oq: Q(G) — ﬁ(G) whose range is a closed
normal subgroup of 13((}') Then ﬁ(G)/O’Q (Q(G)) would be a natural candidate for a central
extension G of G.

The local cocycle fp is trivial on (G), showing that the groups ﬁ(G) and Q(G) x Z
are locally isomorphic. Therefore the pullback of this central extension to the universal covering
group of Q@) is trivial (Lemma I1.3), and this implies that the central extension (G) is defined
by a homomorphism

v (QUG)) Zm(G) —» Z

as (QG) x Z)/T(y™!). Here we use that G is simply connected, so that Q(G) is connected.
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If the local extension of U extends to a global central extension G of G , then the pullback
of this extension of P(G) would be trivial on Q(G). Therefore the vanishing of ~ is a necessary
condition. Suppose, conversely, that «y is trivial. We claim that the adjoint action of each element
a € P(G) on p =p @, 3 which is given by the cocycle 8: P(G) x p — 3 satisfies 6(c, 3) = 0 for
B € Q(g). Let 5 € Q(g) and consider i(8,).Qp which satisfies

(i(Br) Qp, 1) (@) = Qp(Br, 1) (@) = wp(Ad(a)™.5,7)
= w(Ad(a(1))~".8(1),7(1)) = w(Ad(x(1))7".0,~(1)) = 0.

We conclude that the function (-, 5) vanishes (see Lemma V.6, Proposition V.15). This implies
that the local group homomorphism of a 1-neighborhood in Q(G) x Z extends to a global group
homomorphism

QG) x 3 = QG) C P(G)

which is equivariant with respect to the action of P(G) on both sides (Lemma II.3). Clearly this
homomorphism factors through a homomorphism

Q(G) x Z - Q(G) C P(Q).

Let D C Q(G)x Z be its kernel which is the graph of the trivial homomorphism ~: m (Q(G)) — Z.
Therefore D = 71 (2(G)), so that the homomorphism factors through the embedding

Q(G) x Z - Q(G) C P.

In view of the P-equivariance of this map, the corresponding homomorphism og: Q(G) — Pis
P-equivariant and its image is a closed normal subgroup. Therefore

G := P/oa(Q@))
is a topological group which has a canonical homomorphism g¢: G — G whose kernel is
kerq = (@) /00(Q(Q)) = (Z00(G))) /oo (UG)),

hence central and isomorphic to Z. Composing a smooth local section oy:U — P(G) (here we
need that G is Fréchet) with a local section of the central extension P(G) — P(G), we obtain
a continuous map

6u:U = P(G) » G

satisfying qo oy = idy . Moreover, we see that the central extension P(G) of P(G) has an open
1-neighborhood diffeomorphic to

UxQG)=U x Z x QG).

This proves that the local cocycle corresponding to the section oy is smooth, and therefore that
G carries a unique Lie group structure for which ¢ is a smooth central extension (Proposition
Iv.2) ]

The preceding construction is particularly interesting for Banach—Lie groups because Swier-
czkowki has shown in [Sw70] that for every Banach-Lie algebra g the Banach-Lie algebra P(g)
is enlargible in the sense that it is the Lie algebra of a group. Hence g = P(g)/Q(g) is a quotient
of an enlargible Lie algebra. This observation can also be used to construct groups for a given
central extension of Banach-Lie algebras.
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The connecting homomorphism in homotopy

Definition VII.6.  We recall the definition of relative homotopy groups. Let I™ := [0,1]"
denote the n-dimensional cube. Then the boundary 0I"™ of I™ can be written as I" ' U J" 1,
where I" ! is called the 4nitial face and J™ ! is the union of all other faces.

Let X be a topological space, A C X a subspace, and z¢g € A. A map

f: (Invln_lv‘]n_l) - (XvAa'TO)

is a continuous map f:I" — X satisfying f(I"7!) C A and f(J* ') = {xo}. We write
(X, A, xo) for the homotopy classes of such maps (cf. [Ste51]). Likewise we define 7, (X, zo).
We have a canonical map

9:ma(X, A,20) = a1 (A, o), [f] = [f e ]: .

Suppose that we have a central extension of Lie groups ¢: @A — G with kernel Z. Then
g defines in particular the structure of a Z-principal bundle on G, so that we have a natural
homomorphism 0:73(G) — 71 (Z) which is defined as follows. We have an isomorphism

¢:m2(G, 2) = (G, 2,1) 5 m(G), [f]= g0 f]
([Sted1, Cor. 17.2]), and therefore a map
§:=00 (q.) Lim(G) = m(2).

Proposition VIL.7. If per,, is the period map of the Lie algebra cocycle w € Z2(g,3)
corresponding to the extension q¢:G — G, then

§d = —per,:m(G) - m(Z) =T Cj;.

Proof. Let n([f]) € H2,,(G,3) be the cohomology class defined by the local 3-valued cocyle

sing
f:U x U — 3 constructed in Lemma IV.8. A corresponding G-invariant Alexander—Spanier

cocycle is given by
F(go,91,92) := f(90 ‘91,91 '92)

on the neighborhood of the diagonal in G® which consists of all 2-dimensional U-simplices
(Definition IV.6).

Using a smooth local cross section o:V — é, V C G a 1-neighborhood contained in U,
we find in G a 1-neighborhood of the form V := o(V) x ¢z(U;) 2 V x Uy, where U; C 3 is a
0-neighborhood on which gz:3 — Z is a diffeomorphism, and for g,¢',9¢' € V, 2,2 € U; we
have

0(9)qz(2)0(9")qz(2") = 0(99")az(z + 2" + f(g,9")).
This leads to

(0(9)az(2)) to(g)az(2') =o(g7 g Vaz(z' — 2 — fg,97 ") + flg",9").

Let R
PV =3, o(g9)az(z) = 2.

Then the function H(zg,z;) := p;(z, ‘1) defines a G-invariant Alexander—Spanier cochain with

0H (1,0(91)qz(21),0(92)qz(22))
= H(o(g1)az(21),0(92)qz(22)) — H(1,0(g2)qz(22)) + H(1,0(91)az(21))
=z -z - flgLo )+ Flgr' 02) =2+ 20 = = (91,97 ") + 97", 92) = —f (91,97 ' 92)
= —(¢"F)(1,0(91)qz(21), 0(92)qz(22)).
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This proves that ¢*F' is an Alexander—Spanier coboundary with ¢*F = —§H .
Now let v: (I%,0I%) — (G, Z) be a continuous map, representing an element of m2(G, Z) =
m2(G). Then

per,([go]) = (Fiqoy) =(¢"F,v) = —=(0H,v) = —(H,0v) = —(H|z,7|or2),

where the pairing means the pairing between Alexander—Spanier cochains and singular chains as
in Remark A.2.5. Therefore it remains to show that for each continuous loop «:[0,1] = Z with
a(0) = a(l) =1 we have

(H|z,a) =[a] €T =2 m(2).

In view of 6H |z
assume that «(t)

—q*F |z = 0, the cochain H |z is closed, hence a cocycle, so that we may
qz(tz) for some z € I'. We choose a partition

O=ty<ti<...<t, =1

of [0,1] such that (t —s)z € U; for t,s € [tj,tj41], j =0,...,n — 1. Then we obtain

n—1 n—1 n—1
(Hlz,a) =Y (Hlz,aly ) = D Hlal),altipn) =Y (tip1 —tj)z =z
=0 =0 =0
This completes the proof. u

Remark VIL.8. (a) Let Z — G —» G be a central extension of connected Lie groups and
assume that Z is connected. Then the long exact homotopy sequence of this bundle leads to an
exact sequence

12(Z) = (@) = m(G) = m(Z) = 1 (G) = 1 (Q) = m0(Z) = {1},
so that m(Z) = ma(3) = {1} leads to
12(G) = 1 (Q) 22 m (Z) = m(G) = m(G).
This implies that
72(G) = kerper, C m(G) and  m(G) = m (G)/ coker per,, .

These relations show how the period homomorphism controls how the first two homotopy groups
of G and @ are related. In particular we see that WQ(G) is smaller than w5 (G).

Suppose that we start with the space 3 and the Lie algebra cocycle w € Z2(g,3). If
im(per,) C 3 is discrete, then we may put I' := im(per,) and Z := 3/I". We thus obtain a
central Z-extension G of G for which the homomorphism 71 (G) — 71 (@) is an isomorphism.
In particular G is simply connected if G has this property. [ ]

Remark VIL.9. (a) We have just seen that every central extension of G by T defines a
homomorphism m2(G) — 7 (T) = Z. Let BT be the classifying space of T. For topological
spaces X and Y we write [X, Y] for the set of homotopy classes of continuous maps f: X — Y.
Since T is an Eilenberg—MacLane space of type K(Z, 1), we have for each paracompact locally
contractible topological group G natural isomorphisms

[G,BT] = [G, BK(%,1)] = [G, K (Z,2)] = H2, (G, Z)

smg

because for such groups Cech and singular cohomology are isomorphic (cf. [Hub61], [Br97,
p. 184]). If G is simply connected, we thus obtain an isomorphism

[G,BT] — HZ _(G,7) = Hom(m(G),7),

sing
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showing that each homomorphism §:73(G) — Z = 71 (T) is the connecting homomorphism of a
principal T-bundle T — G — G (Section IV.4 in [tD91]).
(b) Now let G := Q(SU(2)) be the loop group of SU(2). Then

m(G) 2 m3(SUR)) 2 m3(SY) 2Z  and  m(G) = m(SU2)) = {1}.

On the Lie algebra g' := Q!(su(2)) of the group Q'(SU(2)) of C'-loops one has the natural
2-cocycle

w(,B) = [ wla(o), 7'(0) .
where & is the Cartan—Killing form of su(2). Of course, this cocycle has no continuous extension
to Q(su(2)). It is quite plausible that H2(Q(go), R) = {0} for every semisimple compact Lie

algebra gy (contrary to a statement in [Omo97, p.254]). Assuming this, the long exact sequence
for central extensions would lead to

Ext(Q(SU(2)),T) = {1}.
In contrast to that, the inclusion G' < G is a homotopy equivalence, but presumably
H2(Q'(su(2)),R) = R,
which, in view of [EK64, p.28], would lead to

Ext(Q'(SU(2)),T) = Z. n

A. Appendix

A.1. Universal coefficients and abelian groups

Theorem A.1.1. (Universal Coefficient Theorem) Let K be a complex of free abelian groups
K, and Z be any abelian group. Put H*(K,Z) := H*(Hom(K, Z)). Then for each dimension
there is an exact sequence

{0} = Exctay, (Hn_1(K), Z)—2—H"(K, Z)—2— Hom (H,(K), Z) — {0}

with homomorphisms B and a natural in Z and K. This sequence splits by a homomorphism
which is natural in Z but not in K.

The second map « is defined on a cohomology class [f] as follows. Each n-cocycle of
Hom(K, Z) is a homomorphism f: K, — Z vanishing on 0K, .1, so induces f.:H,(K) — Z.
If f =4dg is a coboundary, it vanishes on cycles, so (dg)x = 0. Now define a([f]) := f«.

Proof. This [MacL63, Th. I11.4.1] ]

Remark A.1.2. If the abelian group Z is divisible, then Ext,, (B, Z) = {0} for each abelian
group B, so that Theorem A.1.1 leads to an isomorphism

H™(K,Z) = Hom (H,(K), Z)

of abelian groups. ]
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Remark A.1.3. For each topological space X we have the complex C,(X) of singular chains.
The group C,,(X) is the free abelian group over the set of all continuous maps A,, — X, where
A, C R is the n-dimensional standard simplex. To describe the boundary operator on
Cn(X), we write A, = (d°,...,d") to emphasize the vertices d°,...,d" of A,. Then the
boundary operator is given by

(cf. [Wa83)).
We write H.(X) for the homology of this complex and H,,(X,Z) for the cohomology
of the differential complex C% (X, Z) := Hom(C.(X),Z), where Z is an abelian group. We

sing
apply Theorem A.1.1 to the complex C.(X) and obtain for each abelian group Z a short exact
sequence

{0} = Extap (Hn—1(X),Z) - H},,(X,Z) — Hom (H,(X), Z) — {0}.

sing
If Z is divisible, then we have

HTL

sing

(X, Z) = Hom (H,(X), Z).

2 and X is (n — 1)-connected, then the Hurewicz Theorem (Remark A.2.1) yields
)

If n>
H,_1(X) = {0}, so that the Universal Coefficient Theorem also shows in this case that

gng(X, Z) = Hom (Hn(X), Z) =~ Hom (wn(X), Z)
for all abelian groups Z. ]

Theorem A.1.4. (Cartan—Eilenberg) Let E: A-23B-2,C be an extension of abelian groups
and Z an abelian group. Then the sequence

{0} = Hom(C, Z)— Hom(B, Z)— Hom(4, Z)
s Bxtan (C, 2)2 Extan(B, Z)-2— Extan(4, Z) — {0}

is exact, where B*.[f] = [fo (8 x B)] and E*.y = [yo fg], where E is represented by the cocycle
fE. Moreover, for every abelian group G, we obtain the following exact sequence

{0} — Hom(G, A)— Hom(G, B)—s Hom(G, C)
By Extan (G, A) 2 Bxtan (G, B)-25 Extan (G, C) — {0},

where B..f] = (3o f] and Evy = [fi 0 (v x 7).
Proof. The proof can be found in [Fu70, Th. 51.3]. (]

Theorems 1.5 and 1.6 are variants of this theorem for central extensions of non-abelian
groups.

If A is an abelian group, then we write A := Hom(A, T) for its character group.
Lemma A.1.5. If T is a finitely generated abelian group, then

Extap(D,Z) = torI'  and Hom(I',Z)=T/torT.
Proof. The Structure Theorem for Finitely Generated Abelian Groups yields I' 2 F' x Z" for
some n € N and a finite group F'. Therefore the exact sequence
{0} = Hom(T', Z) — Hom(T', R) — I' — Ext,,(I', Z) — {0}
(Theorem A.1.4; R is divisible) can be written as
7" R" - T = F x T" = Extap(T,Z).

Therefore R
Extan ([, Z)= F = F = tor[.

The relation Hom(I',Z) = Hom(I'/ torI',Z) = T'/ torI" follows from I'/ torI" = Z™. u
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Remark A.1.6. (cf. Cor. 15.14.1 in [BT82]) If the groups K, in the complex K are finitely
generated, then Lemma A.1.5 and Theorem A.1.1 combine for Z = Z to

{0} = tor Hy_y (K)—2—H™(K, Z)—2— H,(K)/ tor Hn(K) — {0}. n

A.2, Topology of manifolds

Remark A.2.1. (a) The Hurewicz-Theorem says that if n > 2 and X is arcwise connected
with 7;(X) = {0} for 1 <i<n (X is (n —1)-connected), then

T (X) = Hp(X)

(cf. [Br93, Cor. VIL.10.8]). For n = 1 we have the complementary result that for any arcwise
connected topological space X,

1 (X)/(m(X), 7 (X)) = Hy (X).

In both cases we obtain
Hom (H,(X), Z) = Hom (1, (X), Z)

for every abelian group Z.
(b) If, in addition, M is a smoothly paracompact manifold (cf. [KM97, Th. 34.7]), then

Hjp(M,R) = H™(M,R) = Hom (H,(M),R). n

Remark A.2.2. Let M be a differentiable manifold (not necessarily finite-dimensional). Then
the second part of Theoren A.1.4 yields an exact sequence

{0} — Hom (H,, (M), Z)—— Hom (H, (M), R) —— Hom (H,(M),T)
5 Exttap (Hp (M), Z) —— Exttap (Hp (M), R)— Extap, (H, (M), T) — {0}

Remark A.1.3 implies that
Hom (H,(M),R) =2 H*(M,R) and Hom (H,(M),T) = H"(M,T),
and this leads to the shorter exact sequence
{0} — Hom (H,,(M),Z) - H*(M,R) — H"(M,T) — Extan(H,(M),Z) — {0}.

If, in addition, M is compact, then M can be triangulated (Whitney’s Theorem), showing
that the homology groups are finitely generated. Therefore Lemma A.1.5 yields

Hom (H,(M),Z) = Hy(M)/tor Hy(M) and  Extay(H,(M),Z) = tor H,(M). u

Lemma A.2.3. If M is an arcwise connected simply connected space, then HL (M,Z) = {0}

sing
for each abelian group Z .

Proof.  First we note that Ho(M) = Z and Hy(M) = {0} holds for the singular homology
groups by Hurewicz’s Theorem (Remark A.2.1), so that the Universal Coefficient Theorem A.1.1
leads to

Hl (Mv Z) = Hom(Hl(M),Z) 69EXtab(I_IO(]\/[)aZ) = {0} D {0} = {O}v

sing

because Z is free, so that Extay(Z, Z) = {0}. n
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Definition A.2.4. We recall the definition of the Alexander—Spanier cohomology of a topolog-
ical space M. Let Z be an (additive) abelian group and A™(M, Z) = ZM™™" be the set of all
functions M"™t! — Z considered as an abelian group with pointwise addition. Then we obtain
a differential complex via

n+1
df(mo,...,mpy1) := Z(_l)]f(mm e 7T/n\j7 ey Mipg).
=0
Let Ay(M,Z) C A™(M,Z) be the subgroup consisting of all those functions vanishing on a
neighborhood of the diagonal in M™*!. These subgroups form a subcomplex, so that we can
form the quotient complex. The cohomology of this complex

Hj_s(M,Z) = H"(A"(M, Z2)/A5(M, Z))
is called the Alexander—Spanier cohomology of M with coefficients in Z. ]

Remark A.2.3. Below we explain that one has a natural homomorphism

Hng(M7Z>_> i (M7Z)

sing
which for locally contractible paracompact Hausdorfl spaces M is an isomorphism (cf. [Br97,
§IIL.2] or [Sp66, Cor. 6.9.7]). Let U be an open covering of M. We say that a singular simplex
o: A, = M is U-small if there exists a U € U with o(A,) C U, and we write Xy for the
subcomplex of the singular complex of M consisting of U -small simplices. Now we consider the
open neighborhood W := [Jy ¢, Untl of the diagonal in M™+ . If f:W — Z represents an
Alexander—Spanier cocycle, then we can evaluate f on U -small singular simplices o via

e()(0) = flo(d),...,o(d")),

where d°,...,d" are the vertices of the standard simplex A,, C R**!. One easily verifies that
o(6f) = 0p(f) = w(f) o0, showing that for each cocycle f, the image ¢(f) is a singular cocycle
and that if f is a coboundary, then ¢(f) vanishes on cycles. We thus obtain a homomorphism

[pl: Hi_s(M, Z) = Hg,o (M, Z) = H"(Sw, Z),  [f] = [p(f)]

sing

which turns out to be an isomorphism if M is a locally contractible paracompact space. ]

Let M be a smooth manifold and 3 be an s.c.l.c. space. For a vector field X € V(M)
defined in an open neighborhood of the points xg, ..., z,, and a smooth 3-valued function F on
an open subset of M™!, we write

(0:(X).F)(xo,...,Tpn) :=dF(xg,...,2n)(0,...,0,X(x;),0,...,0), i€{0,...,n},

for the partial derivative of F' in the i-th component in the direction of X . We write A: M —
M"™*! for the diagonal map and (zo,...,z,) for the elements of M™T1. We associate to each
smooth function F:W — 3, where W is an open subset of M"™*! containing the diagonal, the
differential n-form on M given by

(T'F>(X17 s 7Xn)(p) = Z E(U) ’ (81 (Xa(1)> T 8”1(X0(n))F) (p7 s 7p>
ocES,
for vector fields Xi,...,X,, on M defined in a neighborhood of p. On the other hand the

prescription
n+1

0F (20, .., @nt1) = Y (=1 F(wo, ..., &5, Tns1)
§=0

defines a smooth function on an open neighborhood of the diagonal in M"™*+2. In fact, for
i=0,...,n+1 we write p;: M"*? — M"T! for the projections obtained by omitting the j-th
component. Then ﬂ;jol pj_l(W) is an open subset of M™% on which §F is defined. For small
n we have the formulas
n=1: 7(F)(X)=0(X).F.
n=2: 7(F)(X,Y)=0,(X)0(Y).F —0,(X)5(Y).F.
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Theorem A.2.6. (van Est-Korthagen) If M is a connected finite-dimensional manifold and
(U8 HZ—S(M73> - H(?R(M73>
the canonical isomorphism between Alerander—Spanier and de Rham cohomology, then for each
smooth function f:W — 3, where W C M"™*! is an open neighborhood of the diagonal, satisfying
0f =0, we have
(D) = [r(H);

where [f] € HY (M, 3) is the Alezander—Spanier class defined by f, and [7(f)] is the de Rham
class of the differential form 7(f).

Proof. Composing 3-valued differential forms and cochains with continuous linear functionals
on 3 (which separate the points), it suffices to prove the assertion for 3 = R. We verify that 7
intertwines the differential d with the coboundary operator § in the sense that 7(0F) = dr(F)

holds for F' € C*°(W,R) (see the appendix of [EK64]). First we observe that for a vector field
Y on M we have

(A2.1) + ) (00(X1) - 0i(V)0:(Xy) - -+ On(Xn).f) © A.
i=1
Now let
fi(lb'o, e ,.T}n+1> = f(ll?'o, e ,.’,i'\i, e ,.fL’nJrl)
and write A, for the diagonal map M — M"*+!. Then
(A2.2) fioApr1=foA,
and 4.f = Z?:Jrol(—l)ifi. Since the function f; is independent of z;, we obtain
(A2.3) O (X1) - Ony1(Xng1).fi =0, i>1
Therefore

N (X1) - Ont1 (Xng1)-(6) = 01 (X1) -+ - On1 (K1) -Jo = (0(X1) -+ On(Xn1)-f) -
In view of (A2.2) and (A2.1), this leads to
(01(X1) -+ Ot (Xn1)-(6)) 0 Apr = (8o(X1) + -+ On(Xng1)-f) © An

n
= Xl-((al (X2> T 3n(Xn+1)~f) oA, — Z (31 (Xz) Tt 8i(X1>8i(Xi+l> T 3n(Xn+1)-f) o A,.
i=1
From this formula one easily derives that 7(5f) = d7(f).

Let A" (U,R) := C>°(U""! R) denote the space of smooth Alexander—Spanier cochains on
an open subset U C M and A"(M,R) the corresponding sheaf of germs of smooth Alexander—
Spanier cochains on M. Then the differential §: A% (U,R) — AT (U,R) (Definition A.2.4)
yields a torsionfree fine resolution

0= R — AO(M, R)—— A (M, R) — 5 A2(M, R)—— ..

of the constant sheaf R = M x R. This follows with the same argument as for the standard
Alexander—Spanier cohomology because M is smoothly paracompact and all operations preserve
smoothness (cf. [Wa83, 5.26]).

Likewise the de Rham complex leads to a torsionfree fine resolution
0o R = E(M,R)—E s (M, R)— L& (M,R)—2— ..,

where £"(M,R) is the sheaf of germs of smooth n-forms on M. Since the map 7 above

intertwines the differentials of these resolutions, we obtain a homomorphism of resolutions:

0 - R — AMBR —25 AMR —1 5 A2MR —2

S S
0 - R = MR —— (MR — E*(MER — ...,

which in turn induces an isomorphism in cohomology ([Wa83, Th. 5.25]). =
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Remark A.2.7. (a) Let M be a manifold which might be infinite-dimensional and even not
smoothly paracompact, and 3 an s.cl.c. space. If W C V' are open neighborhoods of the diagonal
in M™*!, then we have a natural restriction map

pWV:COO(Vvﬁ) _>COO(Wa3)7 fo|W
Let C*(M,3) = C®°(M"™! 3)a denote the direct limit of these spaces. We call its elements
the germs of smooth function on the diagonal in M"™t!. The Alexander-Spanier coboundary
operator yields a coboundary operator

§:C7 (M, 3) = C7HH(M,5),
and we have also seen above that we have a natural map
T:Cf(M,3) = Q"(M,35), [f] = 7([f])
satisfying
T(0[f]) = dr([f])-

Therefore each element of

Z{(M,3) = {[f] € C{(M,3):6[f] = 0}
defines a closed 3-valued n-form 7(f) on M.
(b) Suppose, in addition, that M = G is a Lie group. Then each open 1-neighborhood V C G
defines an open G-invariant neighborhood

W= {(zg,...,2,) €EG" iz tz; € Vior 0<i<j<n}
To each function f € C*(V",3) we now associate a smooth function F: W — 3 by
F(xo,...,xy) = f(xglxl, ... ,x;ilwn),
and this assignment intertwines the Alexander—Spanier coboundary operator on C*°(W,3) with
the coboundary operator given by
6f(.1‘1, . ,.Tn_H)
= (@2, Tn) + D (D (@1, @i, wn) + (D) (2, w),
i=1

where we write the multiplication in Z additively.

Therefore each smooth cocycle f € C®(V™,3) defines a closed j-valued n-form on G via

7([F]). In addition, the G-invariance of the function F' on W and the G-equivariance of 7
implies that the n-form 7(F) is left invariant. u

A.3. Local topological group constructions

In this appendix we explain the results of van Est and Korthagen leading to the proof of Theorem
IV.7. Most of the material is contained in [Est62].

Definition A.3.1. Let L beaset, D C L x L asubset, and m:D — L,(x,y) — zy a map.
We say that the product zy is defined if (z,y) € D. We call L, endowed with this structure, a
local group if the following conditions are satisfied:
(1) Suppose that zy and yz are defined. If (zy)z or z(yz) is defined, then the other product
is also defined and both are equal.
(2) There exists an element 1 € L such that all products 1 and 1z are defined with z1 =
1z =z forall x € L.
(3) For each x € L there exists a unique element = € L such that za~
with zz7 ! =z la = 1.
(4) If zy is defined, then y—'z~! is defined.
A (strong) homomorphism of local groups is a map ¢:L — L' for which ¢(x)p(y) is
defined if and only if zy is defined, and in this case we have p(zy) = @(x)¢(y). Its kernel is
ker ¢ := ¢~ 1(1). Then all products in ker ¢ are defined, showing that ker¢ is a group. ]

I and 'z are defined
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Example A.3.2. If G is a group and U C G a symmetric subset containing the identity
element 1, then U is a local group with

D :={(z,y) e U xU:azy € U}. m

In this section we will discuss the following problem. Let G and Z be topological groups,
where Z is abelian. Let U C G be a symmetric 1-neighborhood and f:U x U — Z a function
satisfying

flz,1)=f(1,2) =1, f(z,y)f(zy,2) = f(z,y2)f(y,z) for =z,y,z,zy,yz e U.
We call f a local Z -valued 2-cocycle on U. The cocycle condition for z = 2 and y = 2! yields
flz,z™) = f(z~Y2), ze€U.
The set L := U x Z becomes a local group with respect to
D :={((z,2),(",7")):za’ €U} and (z,2)(2',2") = (z2’, 22" f(z,2")).
The inversion in L is given by
(2,2)7 = (@ 2 f e, e™) T = (@7 2T e )T,

The projection map qr: L — U, (x,z) — x is a strong homomorphism of local groups.

Now the natural question is whether there exists a central extension G-d extending the
local central extension L — U. This is equivalent to the existence of an extension of the cocycle
fiU XU — Z toa Z-valued cocycle on G x G (cf. [Est62]). To address this question, one has
to translate this group cohomological problem into one in singular cohomology.

Definition A.3.3. Let
Vi={VCcGl1eV' Vv=v—1

be the collection of all symmetric 1-neighborhoods in G'.
(a) We write A, = (d°,...,d") C R**! for the standard n-simplex with the vertices d°,..., d".
Then a continuous map o: A, — G is called a V -simplex if

olx)o(y) ™ €V  forall x,y€A,.

We write Y¢ for the singular complex of G, i.e., the chain group C,(X¢) is the free abelian
group on the set of all G-simplices. The corresponding boundary operator is given by

n

do = Z(_l)ia|<d07...7$7...dn>'

=0

For each V € V we then have a subcomplex Yy C ¥ whose elements are called V -chains. For
W CV in V the inclusion map ¥w — Xy induces a homomorphism

pwle*(Ev,Z) — H*(Ew,Z),

so that we obtain a directed system of groups. Using barycentric subdivison, one obtains
isomorphisms
Hgng(G’ Z) = H”(Eg, Z) = indlimVey H"(EV, Z)

(cf. [Est62, p.415]).
(b) Let V € V. A V-local n-tuple is an element (z1,...,z,) € V" with

Tp1 - Tg18g €V for 0<p<g<n.
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The space C,, (V) of V -local n-chains is the free group over the set of V' -local n-tuples. On this
space we have a boundary operator given for n > 1 by

n—1

Oy, xn) = (T2,... ,:Un)—l—Z(—l)i(wl, e X1, T, Tig2y e L)+ (= 1) (21, 1)
i=1

All summands on the right hand side are V-local (n — 1)-tuples. On the space C™(V,Z) :=
Hom(C,(V), Z) of Z-valued V -local n-cochains the corresponding coboundary operator is given
by
6f(@1,. .oy Tng1) = f(O(21,- .-, Tpgr))
n
= f(x27 B 7wn+1) + Z(_l)lf(xla s Tilit1, - - ,1'”) + (_1)Tl+1f(x1, s 7'T71)7
i=1
where we write the multiplication in Z additively. For low degrees the coboundary operator is
given by
n=0: 0f(x)=f—-f=0.
n=1: 0f(z,y) = fy) — flay) + f(z).
n=2: (Sf(.fL',y,Z) = f(y7z) - f(.fL'y,Z) +f(£L’,yZ> - f(may)
This means that the 1-cocycles are the local homomorphisms V' — Z and that the two 2-cocycles
correspond to local central extensions of V by Z. It is readily verified that 6% = 0 ([Est62]).
We write H!(V,Z) for the corresponding cohomology groups.
(¢) The cohomology groups defined above rely heavily on the group structure of G. To establish a
link with the topological structure of G, one relates them to the Alexander—Spanier cohomology
of G as follows.
An n-dimensional V -simplex on G is an element (zo,...,7,) € G with

m;leEV for 0<i<j<n.

The corresponding space of n -dimensional V -chains is denoted C,,(I'yv). On this space we have
a boundary operator given for n > 1 by

0o, .., wn) = Y _(=1) (20, .-, Ty -, Tn)-

=0

All summands on the right hand side are (n — 1)-dimensional V -simplices. On the space
C™"(T'y,Z) := Hom(C,(I'v), Z) of Z-valued V -cochains the corresponding coboundary operator
is given by

n+1

6f($07 s 7xn+1) = f(a(m07 . '7$n+1)) = Z(—].)lf(.%'o, s 7@7 . '7$’ﬂ+1)'

=0

For low degrees the coboundary operator is given by

n=20:0f(x,y)=fly) - f(z).

n=1: 0f(z,y,2) = f(y,2) — f(2,2) + f(2,9).

n=2: 5f(:z:,y,z,a) = f(y,z,a) - f(:z:,z,a) +f($7y7a’) - f(w,y,z).

The cohomology groups with values in Z of the corresponding complex are denoted H"(I'y, Z).
For W C V in V the inclusion map I'iy — I'yy induces a homomorphism

pwth*(Fv,Z) — H*(Fw,Z),
so that we obtain a directed system of groups. For n € Ny we define the Vietoris cohomology

groups
H"(FV, Z) = indlimvEV H”(FV, Z)
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Since the set of n-dimensional V -simplices is a neighborhood of the diagonal in G™*!, each
cocycle f € Z™(T'y, Z) defines canonically an Alexander—Spanier cocycle because the coboundary
operators are given by the same formula (see Definition A.2.4). Therefore we obtain a natural
map

H"(Ty, Z) — HY_ (G, 7).

The group G acts on the space of n-dimensional V -simplices by
g.(l'o, v 71/'71) = (g..fL'(), v 791"71)

We write [zg,...,z,] for the G-orbit of (zg,...,z,). The cohomology of the subcomplex of
G-invariant cochains is denoted Hg (I'v, Z) and called the equivariant Vietoris cohomology.
(d) For each n € Ny and V € V we put

Cr(TgmodT'y) := Cp(Tg)/Cr(Ty).
The corresponding cochain groups
C"TgmodTly,Z) ={feC"(T¢,Z2):Cp(Ty) Cker f} CC"(T'g, Z)
consist of those cochains vanishing on Cy (T'y). Then
C"(TgmodTy, 2) := | J C"(FgmodTy, %)
vey

is the group of all those cochains f for which there exists a V' € V such that f vanishes on all V -
simplices. The cohomology of this complex is denoted H"(['¢ mod 'y, Z), and since cohomology
commutes with direct limits, we have

H"(I'gmodI'y, Z) = indlimyey H*(Cgmod Ty, Z).
We similarly define CF,(I'¢ mod 'y, Z) and Hg (I'¢ modl'y, Z), and obtain
Hg (TgmodTy, Z) = indlimyey He (Tg mod Ty, Z). u

Lemma A.3.4. The map a:[(zo,-..,2n)] — (x5 21,..., 2,  2,) yields a bijection from the
set of G -orbits in the set of n-dimensional V -simplices on G onto the set of V -local n-tuples.
The inverse of this map is given by

U(yh s 7yn) = [(17y17y1y27 ceey Y1 yn)]

The corresponding map o*:C™(V,Z) — C& (U'v, Z) commutes with the coboundary operators on
both sides and induces an isomorphism

H"(a): H"(V,Z) — Hg (T'y, Z).

Proof. That « intertwines the boundary operators follows from

Oa([(zo,...,xn)]) = 8(:17515171, ... ,w;ﬁlwn)
= (z; 2o, .. .,x;ilxn)
n—1
+ Z(—l)l(xglwl, v m N e, et ) + (=D (g e, w )
i=1 \_\’_/
@ wig

= of[0(zg, ..., xn)])-
On the other hand
@ (F)(wo, 21y .-y xp) = flag ey, ...,xt 2n)
and
(@) E) Y1, yn) = F(Lyn, 91 Yn)-
Since «* is an isomorphism of chain complexes, for each n € Ny the map H"(a) is an
isomorphism H"(V,Z) — HZ, (I'y, Z). ]

The following theorem is the crucial link between group cohomology and singular cohomol-
ogy.



54 frecen.tex October 5, 2000

Theorem A.3.5. (van Est) Let G be a connected locally contractible topological group. We
write d°,...,d" for the vertices of the standard simplex A,, C R**1. Then for each V € V we
have a map o — @y (o) = (o(d®),...,a(d")) from singular V -simplices to V -simplices on G
which extends to a homomorphism @y :Cp(Zy) = Cr(Ty), inducing a homomorphism of chain
complexes, hence a natural map

Hn((pv)l H"(FV, Z) — Hn(Ev, Z)
Passing to the limit of the directed systems further leads to a map

H"(py): H"(I'y, Z) = indlimy ey H"(2v, Z) = H" (X, Z) = Hng (G, Z)

sing

which for each n € Ny is an isomorphism.

Proof. We write A, = (d°,...,d") to emphasize the vertices. The boundary operator on
Cpn(Xy) is given by

0N, = 0(d,....d") =) _(-1)'d’,...,di,...d")

and accordingly

do = Z(_l)ia|<d07...7$7...dn>'

=0
This formula immediately shows that ¢y intertwines the boundary operators on each side, hence

yields a homomorphism of chain complexes. For the remaining assertions we refer to the second
part of [Est62]. u

Remark A.3.6. Let us assume that G is connected, locally contractible and, in addition,
paracompact. Since the natural homomorphism H"(T'y, Z) = H}_4(G, Z) (Definition A.3.3(c))
composed with the natural isomorphism H%_¢(G,Z) — H} ,(G,Z) (Remark A.2.5) leads to

sing
the isomorphism described in Theorem A.3.5, it follows that for a locally contractible topological
group GG we have a chain of isomorphisms

H"(Ty,Z) - Hy_¢(G,Z) - H},, (G, Z). ]

sing

Lemma A.3.7. We have
Z  fori=0

H'(Ta, 2) = { {0} fori>O0.

Proof. We define a homomorphism
h:C,(Tg) = Crn41(La), h(zo,...,zn) = (1,20,...,2p)-
Then one verifies that Oh + hd = id, and therefore that the dual operator
h*: 0" (T, Z) - C"(Tg, Z)

satisfies 6h* + h*6 = id. This proves that H'(['g, Z) = {0} for i > 0. For i = 0 we have

H°(Tg,Z) = Z°Tq, Z) = { constant functions} = Z. [
Remark A.3.8. For each fixed V € W the short exact sequence

{0} - C*TgmodT'y) —» C*(T'g) - C*(T'v) — {0}
of chain complexes induces a long exact sequence in cohomology

R 4 H”(FgmodFV,Z) — Hn(Fg,Z) — Hn(Fv,Z) — H”“(FgmodFV,Z) > ey,
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so that Lemma A.3.7 leads to
H"Ty,Z) = H”“(FG modT'y,Z), n>1.

Moreover, the fact that G is generated by each V € V implies that H°(I'y,Z) = Z, so that
H°(TgmodTy, Z) = {0}, and

H'(TgmodTy,Z) — H'(I'g, Z) = {0}
yields H'(I'¢mod 'y, Z) = {0}. Passing to the limit with respect to V € V', we obtain
H"(I'y,Z) = H" ' (TgmodTy, Z), n>1

and
H°(TgmodTy, Z) = H'(Tg mod Ty, Z) = {0}. =

Now we explain the proof of Theorem IV.7:

Theorem IV.7. (van Est-Korthagen) Let G be a topological group, Z an abelian group,
V C G a symmetric 1-neighborhood, f:V XV — Z a local Z -valued 2-cocycle, and n(f) €
Hging(G,Z) the corresponding singular cohomology class. If there exists an open symmetric 1-
neighborhood W C V' such that f |wxw extends to a Z-valued 2-cocycle on G x G, then
1n(f) = 0. The converse holds if G is locally contractible, connected and simply connected.

Proof. We write [f] € H?(V, Z) for the cohomology class defined by f. In Lemma A.3.4 we
have explained the isomorphism H?(V, Z) = HZ (I'v, Z), and we also have natural maps

ng(Fv, Z)— H*(Ty,Z) - H*(T'y, Z)

obtained directly from the definitions.
We consider the following commutative diagram, where the vertical arrows denote the

restriction maps and the horizontal lines are pieces of the long exact cohomology sequence
(cf. Remark A.3.8):

H:(Tg,Z) —*— HZ(y,Z2) LI H3(Tgmodly,Z) —— HZ(Ta,Z)

l - L

H*(Tg,Z) —— H2(Typ,Z) —2— H3(Tgmodly,Z) —— H3(Tg,Z2).

In view of H*(I'g,Z) = H*(L'g, Z) = {0} (Lemma A.3.7), J> is an isomorphism.

That V' contains an open neighborhood W on which fz is extendable to G means that the
image [f#] of the corresponding cohomology class in H?(T'y, Z) is contained in the image of the
restriction map «. In view of the exactness of the upper row in the diagram, this is equivalent
to 61([fz]) = 0. We therefore get n,([fz]) = 05 '1m201([fz]) = 0, so that the image n(fz) of
m([fz]) in Hszing(G,Z) vanishes.

Suppose, conversely, that n(fz) = 0 and that G is locally contractible, connected and
simply connected. Then the injectivity of the map H*(T'y, Z) — HZ,,(G,Z) in Theorem A.3.5
implies that 71 ([fz]) = 0. Since G is connected and locally contractible, it is arcwise connected.
Therefore Lemma A.2.3 implies that Hsling(G, Z) = {0}. Then Remark 2 after Theorem 10.1 in
[Est62] yields an isomorphism

65 omp: HY (Tgmod Ty, Z) - H*(Ty, Z) = H3,, (G, Z),

sing

where we identify H2(I'y, Z) and Hfing (G, Z). Tt follows in particular that 72 is an isomorphism.

Now 61([fz]) = n;légnl([fz]) = 0, so that the exactness of the upper row in the diagram proves
the assertion. -



56

[Ba91]

[Bou88]
(BTS2

[Bro3]
[Br97]
[BW76]
[Cab2a]
[Cab2b)
[Cab2c]

[Ch6]
[tD91]
[DL66]

[EMLA47]

[Est62]

[Est88]

[EK64]

[EL8S]

[Fu70]
[Fu86]

[GodT71]
[Go86)

[Ha82]

[dIHT72]

frecen.tex October 5, 2000

References

Banaszczyk, W., “Additive Subgroups of Topological Vector Spaces,” Lecture
Notes in Math. 1466, Springer-Verlag, 1991.

Bourbaki, N., “General Topology,” Chaps. I-IV, Springer Verlag, 1988.

Bott, R., and L. W. Tu, “Differential Forms in Algebraic Topology,” Graduate
Texts in Mathematics 82, Springer-Verlag, Berlin, Heidelberg, 1982.

Bredon, G. E., “Topology and Geometry,” Graduate Texts in Mathematics 139,
Springer-Verlag, Berlin, 1993.

—, “Sheaf Theory,” Graduate Texts in Mathematics 170, Springer-Verlag,
Berlin, 1997.

Briining, J., and W. Willgerodt, FEine Verallgemeinerung eines Satzes von
N. Kuiper, Math. Ann. 220 (1976), 47-58.

Cartan, E., Le troisiéme théoréme fondamental de Lie, Oeuvres I, Gauthier—
Villars, Paris, 2 (1952), 1143-1148.

—, La topologie des espaces représentifs de groupes de Lie, Oeuvres I, Gauthier—
Villars, Paris, 2 (1952), 1307-1330.

—, Les représentations linéaires des groupes de Lie, Oeuvres I, Gauthier—Villars,
Paris, 2 (1952), 1339-1350.

Chevalley, C., “Theory of Lie Groups 1,” Princeton Univ. Press, 1946.
tom Dieck, T., “Topologie,” de Gruyter, Berlin, New York, 1991.

Douady, A., and M. Lazard, Espaces fibrés en algébres de Lie et en groupes,
Invent. math. 1 (1966), 133-151.

Eilenberg, S., and S. MacLane, Cohomology theory in abstract groups. II, Annals
of Math. 48:2 (1947), 326-341.

van Est, W. T., Local and global groups, Indag. math. 24 (1962), 391-425; Proc.
Kon. Ned. Akad. v. Wet. Series A 65.

—, Une démonstration de E. Cartan du troisiéme théoréme de Lie, in P. Dazord
et al eds., “Seminaire Sud-Rhodanien de Geometrie VIII: Actions Hamiltoni-
ennes de Groupes; Troisieme Théoreme de Lie,” Hermann, Paris, 1988.

van Est, W. T., and Th. J. Korthagen, Non enlargible Lie algebras, Proc. Kon.
Ned. Acad. v. Wet. A 67 (1964), 15-31.

van Est, W. T., and M. A. M. van der Lee, Enlargeability of local groups
according to Malcev and Cartan-Smith, in P. Dazord et al eds., “Seminaire Sud-
Rhodanien de Geometrie VIII: Actions Hamiltoniennes de Groupes; Troisieme
Théoreme de Lie,” Hermann, Paris, 1988.

Fuchs, L., “Infinite Abelian Groups, 1,” Acad. Press, New York, 1970.

Fuks, D.B., “Cohomology of Infinite Dimensional Lie Algebras,” Contemp. Sov.
Math., Consultants Bureau, New York, London, 1986.
Godbillon, C., “Eléments de Topologie Algébrique,” Hermann, Paris, 1971.

Gorbatsevich, V. V., The construction of a simply connected Lie group with a
given Lie algebra, Russian Math. Surveys 41 (1986), 207-208.

Hamilton, R., The inverse function theorem of Nash and Moser, Bull. Amer.
Math. Soc. 7 (1982), 65-222.
de la Harpe, P., “Classical Banach Lie Algebras and Banach-Lie Groups of

Operators in Hilbert Space,” Lecture Notes in Math. 285, Springer-Verlag,
Berlin, 1972.



[HeT3]
[Ho51]
[HoMo98]
[Hub61]
[KM97]
[Ku65]
[La99]

[MacL63|
[MacL78]

[MT99]
[Mi83]
[Ne96]
[Ne97]
[Ne98]

[Ne00]

[Omo97]
[Pa65]

[Pa66]
[PS86]

[Se70]
[Se75]

[Se81]
[Sh49]
[Si77]
[Sp66]

[St78]

Central extensions of infinite-dimensional Lie groups 57

Heller, A., Principal bundles and groups extensions with applications to Hopf
algebras, J. Pure and Appl. Algebra 3 (1973), 219-250.

Hochschild, G., Group extensions of Lie groups I, II, Annals of Math. 54:1
(1951), 96-109 and 54:3 (1951), 537-551.

Hofmann, K. H., and S. A. Morris, “The Structure of Compact Groups,” Studies
in Math., de Gruyter, Berlin, 1998.

Huber, P. J., Homotopical Cohomology and Cech Cohomology, Math. Annalen
144 (1961), 73-76.

Kriegl, A., and P. Michor, “The Convenient Setting of Global Analysis,” Math.
Surveys and Monographs 53, Amer. Math. Soc., 1997.

Kuiper, N. H., The homotopy type of the unitary group of Hilbert spacs, Topol-
ogy 3 (1965), 19-30.

Lang, S., “Fundamentals of Differential Geometry,” Graduate Texts in Math.
191, Springer-Verlag, 1999.

MacLane, S., “Homological Algebra,” Springer-Verlag, 1963.

—, Origins of the cohomology of groups, Enseignement Math., IT. Ser. 24 (1978),
1-29.

Michor, P., and J. Teichmann, Description of infinite dimensional abelian reg-
ular Lie groups, J. Lie Theory 9:2 (1999), 487-489.

Milnor, J., Remarks on infinite-dimensional Lie groups, Proc. Summer School
on Quantum Gravity, B. DeWitt ed., Les Houches, 1983.

Neeb, K.-H., A note on central extensions, J. Lie Theory 6:2 (1996), 207-213.

—, Representations of infinite dimensional groups, DMV-Seminar “Infinite Di-
mensional Kahler Manifolds”, Oberwolfach, November, 1995, Birkh&user, to
appear.

—, Holomorphic highest weight representations of infinite dimensional complex
classical groups, J. reine angew. Math. 497 (1998), 171-222.

—, Universal central extensions of infinite-dimensional Lie groups, in prepara-
tion.

Omori, H., Infinite-Dimensional Lie Groups, Translations of Math. Monographs
158, Amer. Math. Soc., 1997.

Palais, R. S.; On the homotopy type of certain groups of operators, Topology 3
(1965), 271-279.

—, Homotopy theory of infinite dimensional manifolds, Topology 5 (1965), 1-
16.

Pressley, A., and G. Segal, “Loop Groups,” Oxford University Press, Oxford,
1986.

Segal, G., Cohomology of topological groups, Symposia Math. 4 (1970), 377-387.

—, Classifying space of a topological group in the Gel’fand-Fuks sense, Funkt.
Anal. Prilozhen 9:2 (1975), 131-133.

—, Unitary representations of some infinite-dimensional groups, Comm. Math.
Phys. 80 (1981), 301-342.

Shapiro, A., Groups extensions of compact Lie groups, Annals of Math. 50:3
(1949), 581-586.

Sidney, S. J., Weakly dense subgroups of Banach spaces, Indiana Univ. Math.
Journal 26:6 (1977), 981-986.

Spanier, E. H., “Algebraic Topology,” McGraw-Hill Book Company, New York,
1966.

Stasheff, J. D., Continuous cohomology of groups and classifying spaces, Bull.
of the Amer. Math. Soc. 84:4 (1978), 513-530.



58

[Ste51]
[Sw77]
[Ti83]
[TL99]
[Tu95)
[TW87]
[Va85]
[Wa83]
[WeS0]

[We95]

frecen.tex October 5, 2000

Steenrod, N., “The topology of fibre bundles,” Princeton University Press,
Princeton, New Jersey, 1951.

Swierczkowski, S., The path-functor on Banach Lie algebras, Proc. Kon. Ned.
Akad. v. Wetensch., Amsterdam 74 (1977), 235-239.

Tits, J., “Liesche Gruppen und Algebren”, Springer, New York, Heidelberg,
1983.

Toledano Laredo, V., Integrating unitary representations of infinite-dimensional
Lie groups, Journal of Funct. Anal. 161 (1999), 478-508.

Tuynman, G. M., An elementary proof of Lie’s Third Theorem, unpublished
note, 1995.

Tuynman, G. M. and W. A. J. J. Wiegerinck, Central extensions and physics,
J. Geom. Physics 4:2(1987), 207-258.

Varadarajan, V. S., “Geometry of Quantum Theory,” Second Edition, Springer-
Verlag, 1985.

Warner, F. W., “Foundations of Differentiable Manifolds and Lie Groups,”
Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1983.

Wells, R. O., “Differential Analysis on Complex Manifolds,” Graduate Texts in
Mathematics, Springer-Verlag, 1980.

Werner, D., “Funktionalanalysis,” Springer-Verlag, Berlin, Heidelberg, 1995.

Karl-Hermann Neeb

Technische Universitit Darmstadt
Schlossgartenstrasse 7

D-64289 Darmstadt

Deutschland

neeb@mathematik.tu-darmstadt.de



