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The purpose of this paper is to des
ribe the stru
ture of the abelian group of 
entral extensions of

an in�nite-dimensional Lie group in the sense of Milnor ([Mi83℄). These are Lie groups whi
h are

manifolds modeled over sequentially 
omplete lo
ally 
onvex spa
es. A serious diÆ
ulty one has

to fa
e in this 
ontext is that even Bana
h manifolds are in general not smoothly para
ompa
t,

whi
h means that every open 
over has a subordinated smooth partition of unity. Therefore de

Rham's Theorem is not available for these manifolds. Typi
al examples of Bana
h{Lie groups

whi
h are not smoothly para
ompa
t are the additive groups of the Bana
h spa
es C([0; 1℄;R)

and l

1

(N;R) .

In the Lie theoreti
 
ontext, the 
entral extensions Z ,!

b

G !! G of interest are those

whi
h are prin
ipal bundles. For G and Z �xed the equivalen
e 
lasses of su
h extensions 
an

be des
ribed by an abelian group Ext

Lie

(G;Z), so that the problem is to des
ribe this group as

expli
itly as possible. This means in parti
ular to relate it to the Lie algebra 
ohomology group

H

2




(g; z) whi
h 
lassi�es the 
entral extensions z ,!

b

g !! g of the topologi
al Lie algebra g by

the abelian Lie algebra z for whi
h there exists a 
ontinuous linear se
tion g !

b

g . Our 
entral

result is the following long exa
t sequen
e for a 
onne
ted Lie group G , its universal 
overing

group

e

G , the 
entral subgroup �

1

(G) �

e

G , and an abelian Lie group Z whi
h 
an be written

as Z = z=�, where � � z is a dis
rete subgroup (Theorem V.9):

Hom(G;Z) ,! Hom(

e

G;Z)! Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2




(g; z)

�

3

����!Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom




(g; z)

�

:(1)

Here �

1

assigns to 
:�

1

(G)! Z the quotient of

e

G�Z modulo the graph of 


�1

(here inversion

is meant pointwise in Z ) and �

2

assigns to a group extension the 
orresponding Lie algebra

extension. The de�nition of �

3

is more subtle. Let ! 2 Z

2




(g; z) be a smooth Lie algebra


o
y
le and 
 be the 
orresponding left invariant 
losed z-valued 2-form on G . The se
ond


omponent �

3;2

([!℄) is de�ned as follows. For ea
h X 2 g we write X

r

for the 
orresponding

right invariant ve
tor �eld on G . Then i(X

r

):
 is a 
losed z-valued 1-form to whi
h we asso
iate

a homomorphism �

1

(G) ! z via an embedding H

1

dR

(G; z) ,! Hom(�

1

(G); z). This embedding

is established dire
tly, even if G is not smoothly para
ompa
t (Theorem III.6). In terms of

symple
ti
 geometry the 
ondition �

3;2

([!℄) = 0 means that the a
tion of G on (G;
) has

a moment map, but we won't emphasize this point of view. To de�ne the �rst 
omponent

�

3;1

([!℄) , we use the Poin
ar�e Lemma to asso
iate with ! a z-valued lo
al 2-
o
y
le f on a

suÆ
iently small neighborhood of the identity in G . Now we asso
iate to f an Alexander{

Spanier 
o
y
le and further a singular 
o
y
le �(f) 2 H

2

sing

(G;Z). This 
orresponden
e yields

a map H

2




(g; z) ! H

2

sing

(G;Z), and by evaluating �(f) on elements of �

2

(G), interpreted as

singular 
y
les, we thus obtain a homomorphism per

!

:�

2

(G) ! z . Now �

3;1

([!℄) := q

Z

Æ per

!

,

where q

Z

: z! Z is the quotient map.

For a simply 
onne
ted Lie group G the sequen
e (1) redu
es to

(2) Ext

Lie

(G;Z) ,! H

2




(g; z)! Hom

�

�

2

(G); Z

�

;

showing that in this 
ase the group Ext

Lie

(G;Z) 
an be identi�ed with the subgroup of H

2




(g; z)


onsisting of those 
lasses [!℄ for whi
h the image of per

!

, the so-
alled period group, is 
ontained
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in �. In spite of the absen
e of a de Rham isomorphism, we show that if 
:S

2

! G is a smooth

map, then the 
orresponding period 
an simply be 
al
ulated as the integral per

!

([
℄) =

R





 2 z .

Similar 
onditions are well-known in the theory of geometri
 quantization of �nite-dimen-

sional symple
ti
 manifolds (M;
). Here the integrality of the 
ohomology 
lass [
℄ of the

symple
ti
 2-form 
 is equivalent to the existen
e of a so-
alled pre-quantum bundle, i.e., a

T-prin
ipal bundle T ,!




M !! M whose 
urvature 2-form is 
 (
f. [TW87℄). Based on these

observations, Tuynman and Wiegerin
k gave a proof of the exa
tness of (1) in H

2




(g;R) for �nite-

dimensional Lie algebras g ([TW87, Th. 5.4℄). As was observed in [Ne96℄, for �nite-dimensional

groups G the map �

3

is simpler be
ause the vanishing of �

2

(G) makes the �rst 
omponent of

�

3

super
uous. That the vanishing of �

2

(G), resp., H

2

dR

(G;R) for �nite-dimensional Lie groups

G permits to 
onstru
t arbitrary 
entral extensions for simply 
onne
ted groups is a quite old

observation of E. Cartan ([Ca52b℄). He used it to prove Lie's Third Theorem by 
onstru
ting a

Lie group asso
iated to a Lie algebra g as a 
entral extension of the simply 
onne
ted 
overing

group of the group Inn(g) = he

ad g

i of inner automorphisms (see also [Est88℄ for an elaboration

of Cartan's method). This method has been extended to Bana
h{Lie groups by van Est and

Korthagen who 
hara
terize the existen
e of a Bana
h{Lie group with a Lie algebra g by the

dis
reteness of the period group 
orresponding to the Lie algebra extension z(g) ,! g !! ad g

and the simply 
onne
ted 
overing of the group Inn(g) endowed with its intrinsi
 Bana
h{Lie

group stru
ture ([EK64℄). It is remarkable that their approa
h does not require the existen
e of

smooth lo
al se
tions, whi
h do not always exist for Bana
h{Lie groups. The reason for this is

that there is no regularity required for a fun
tion representing an Alexander{Spanier 
o
y
le. In

the 
ase of Bana
h{Lie groups the existen
e of lo
al groups 
orresponding to 
entral extensions

of Lie algebras 
an also be obtained by using the Baker{Campbell{Hausdor� series, but for

more general Lie algebras, this series need not 
onverge on a 0-neighborhood in g . We use

one of the results of van Est and Korthagen to show that for a simply 
onne
ted Lie group G

the vanishing of �

3

([!℄) implies the extendability of the lo
al 
o
y
le f to a global one, and

hen
e the existen
e of a 
orresponding global group extension (this is needed for the exa
tness

in H

2




(g; z)). For smooth loop groups 
entral extensions are dis
ussed in [PS86℄, but in this


ase many diÆ
ulties are absent be
ause smooth loop groups are modeled on nu
lear Fr�e
het

spa
es whi
h are smoothly regular ([KM97, Th. 16.10℄), hen
e they are smoothly para
ompa
t

be
ause this holds for every smoothly Hausdor� se
ond 
ountable manifolds modeled over a

smoothly regular spa
e ([KM97, 27.4℄). In [TL99℄ Toledano Laredo dis
usses 
entral extensions

of Lie groups obtained from proje
tive representations with a smooth ve
tor by 
onstru
tion a


orresponding lo
ally smooth 2-
o
y
le (Prop. 5.3.1). This is very mu
h in the spirit of our

approa
h in Se
tion IV. In Se
tion 5 of his paper Toledano Laredo applies results of Pressley and

Segal to general groups, whi
h, as explained above, is only justi�ed if these groups are smoothly

para
ompa
t. In Omori's book one also �nds some remarks on 
entral T-extensions in
luding

in parti
ular Cartan's 
onstru
tion for simply 
onne
ted regular Fr�e
het{Lie groups ([Omo97,

pp.252/254℄). If the singular 
ohomology 
lass asso
iated to ! does not vanish but is integral,

then Omori uses simple open 
overs (the Poin
ar�e Lemma applies to all �nite interse
tions) to


onstru
t the T-bundle from the 
orresponding integral

�

Ce
h 
o
y
le. Unfortunately it is not


lear whether all in�nite-dimensional Lie groups have su
h open 
overs.

It would be very interesting to extend the results and the methods of the present paper

to general smooth Lie group extensions. In this 
ontext the work of Ho
hs
hild ([Ho51℄) and

Eilenberg-Ma
Lan
e ([EML47℄) 
ontains results one might try to extend to in�nite-dimensional

Lie groups. Another interesting proje
t is to try to establish the 
orresponding results for

prequantization of manifolds M endowed with a 
losed 2-form 
. Here the question is under

whi
h 
onditions there exists a prequantization, i.e., a prin
ipal T-bundle T ,!




M

q

��!M with

a 
onne
tion 1-form � su
h that d� = q

�


, i.e., 
 is the 
urvature form of the bundle. In

[TW87℄ it is shown that for �nite-dimensional manifolds the 
ondition is the dis
reteness of the

group of periods of 
. Is this still true for in�nite-dimensional manifolds? Unfortunately our

methods rely on the group stru
ture of the underlying manifold, hen
e do not dire
tly apply to

this setting.

We approa
h the problem to des
ribe Ext

Lie

(G;Z) by �rst dis
ussing for abstra
t groups

the exa
t sequen
e in Eilenberg{Ma
Lane 
ohomology indu
ed by a 
entral extension A ,! B !
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! C (Theorem I.5, [Ma
L63℄):

(3) Hom(C;Z) ,! Hom(B;Z)! Hom(A;Z)! Ext(C;Z)! Ext

A

(B;Z)! Ext

ab

(A;Z);

where Ext

A

(B;Z) denotes the equivalen
e 
lasses of 
entral extensions q:

b

B ! B for whi
h

the subgroup

b

A := q

�1

(A) is 
entral, and Ext

ab

(A;Z) denotes the equivalen
e 
lasses of abelian

extensions of A by Z . This long exa
t sequen
e remains valid for 
entral extensions of topologi
al

groups and Lie groups as well, if we interprete the Hom- and Ext-groups in an appropriate sense.

In Se
tion V all pie
es are put together to obtain the exa
tness of (1). An interesting

byprodu
t is that the vanishing of �

3;2

:�

1

(G) ! Hom




(g; z) pre
isely des
ribes the 
ondition

under whi
h the adjoint a
tion of g on the 
entral extension

b

g integrates to a smooth represen-

tation of the group G . In this sense the adjoint and 
oadjoint a
tion on

b

g might exist even if

the group

b

G does not.

It is a well-known fa
t in �nite-dimensional Lie theory that extensions of simply 
onne
ted

Lie groups are topologi
ally trivial in the sense that they have a global smooth se
tion, hen
e 
an

be de�ned by a global 
o
y
le. For 
entral extensions of in�nite-dimensional simply 
onne
ted Lie

groups the existen
e of a global smooth se
tion is equivalent to the exa
tness of the 
orresponding

left invariant 
losed 2-form 
 (Proposition V.19). If G is not simply 
onne
ted, then positive

results on the existen
e of smooth se
tions 
an only be obtained with the use of smooth partitions

of unity.

Se
tion VI is a 
olle
tion of examples displaying various typi
al aspe
ts in the des
ription

of the group Ext

Lie

(G;Z) in the exa
t sequen
e (1).

Sin
e every 
entral extension Z ,!

b

G !! G is in parti
ular a prin
ipal bundle, the exa
t

homotopy sequen
e of su
h bundles yields a homomorphism Æ:�

2

(G) ! �

1

(Z)

�

=

�. In Se
tion

VII we show that this homomorphism is, up to sign, the same as the period homomorphism

�

2

(G) ! z provided by the long exa
t sequen
e for z instead of Z . Closely related to this fa
t

is another interpretation of the homomorphism �

2

(G)! Z as an obstru
tion to the existen
e of

b

G whi
h 
an be given as follows. Let 
(G) ,! P (G) !! G denote the path-loop �bration of a

simply 
onne
ted Fr�e
het{Lie group G . Then 
(G) and P (G) are Lie groups, and the path-loop

�bration is a smooth extension of G by the loop group 
(G). Now ea
h Lie algebra 
o
y
le in

H

2




(g; z) 
an be pulled ba
k to P (G), and sin
e P (G) is 
ontra
tible, all its homotopy groups

vanish, so that we obtain a 
entral extension Z ,!

b

P (G)!! P (G). By restri
tion, we get a 
entral

extension Z ,!

b


(G)!! 
(G) whi
h is de�ned by a homomorphism 
:�

1

(
(G))

�

=

�

2

(G)! Z .

It turns out that this homomorphism is trivial if and only if a suitable quotient of

b

P (G) yields

a 
entral extension

b

G of G .

I am grateful to H. Gl�o
kner for the ex
ellent proof reading of the arti
le.

I. The abstra
t setting for 
entral extensions of groups

In this se
tion we dis
uss several aspe
ts of 
entral extensions of groups on the level where no

topology or manifold stru
ture is involved. The fo
us of this se
tion is on a dis
ussion of the

Hom-Ext exa
t sequen
e for 
entral extensions of groups (Theorem I.5; see also [Ma
L63℄). This

result 
an also be obtained by more elaborate spe
tral sequen
e arguments whi
h basi
ally are

also suited for non-
entral extensions, but for 
entral extensions it 
an be obtained quite dire
tly.

Moreover, we shall later need expli
it information on the maps in this exa
t sequen
e to generalize

it to 
entral extensions of topologi
al and Lie groups, whi
h will be done by verifying that the


ru
ial steps generalize to the topologi
al and the Lie group 
ontext.

Throughout this se
tion G denotes a group and Z an abelian group.

De�nition I.1. We de�ne the group

Z

2

(G;Z) := ff :G�G! Z: (8x; y; z 2 G)

f(1; x) = f(x;1) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z)g
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of Z -valued 2-
o
y
les and the subgroup

B

2

(G;Z) := ff :G�G! Z: (9h:G! Z)h(1) = 1; (8x; y 2 G) f(x; y) = h(xy)h(x)

�1

h(y)

�1

g

of Z -valued 2-
oboundaries. In both 
ases the group stru
ture is given by pointwise multipli
a-

tion. Sin
e both groups are abelian, it makes sense to de�ne the Eilenberg{Ma
Lane 
ohomology

group

Ext(G;Z) := H

2

(G;Z) := Z

2

(G;Z)=B

2

(G;Z):

Remark I.2. (a) To ea
h f 2 Z

2

(G;Z) we asso
iate a 
entral extension of G by Z via

(1:1)

b

G := G�

f

Z; (g; z)(g

0

; z

0

) :=

�

gg

0

; zz

0

f(g; g

0

)

�

:

This multipli
ation turns

b

G into a group with neutral element (1;1) and inversion given by

(1:2) (g; z)

�1

=

�

g

�1

; z

�1

f(g; g

�1

)

�1

�

:

The proje
tion q:

b

G ! G; (g; z) 7! g is a homomorphism whose kernel is the 
entral subgroup

Z , hen
e de�nes a 
entral extension of G by Z .

For the veri�
ation one needs that f(g; g

�1

) = f(g

�1

; g) whi
h follows from

f(g

�1

; g) = f(g;1)f(g

�1

; g) = f(g; g

�1

g)f(g

�1

; g) = f(g; g

�1

)f(1; g) = f(g; g

�1

):

It is also useful to derive a formula for the 
onjugation in this group. We have

(g; z)(h;w)(g; z)

�1

=

�

gh; zwf(g; h)

��

g

�1

; z

�1

f(g; g

�1

)

�1

�

=

�

ghg

�1

; wf(g; h)f(g; g

�1

)

�1

f(gh; g

�1

)

�

=

�

ghg

�1

; wf(g; h)f(ghg

�1

; g)

�1

�

;(1:3)

be
ause

f(gh; g

�1

)f(ghg

�1

; g) = f(gh;1)f(g

�1

; g) = f(g; g

�1

):

If, 
onversely, q:

b

G ! G is a 
entral extension with ker q = Z , then any map �:G !

b

G

with �(1) = 1 and q Æ � = id

G

leads to a 2-
o
y
le

f(x; y) := �(x)�(y)�(xy)

�1

;

and then

':G�

f

Z !

b

G; (g; z) 7! �(g)z

is an isomorphism. This means that every 
entral extension of G by Z 
an be represented as

G�

f

Z for some f 2 Z

2

(G;Z).

(b) If the two 
o
y
les f

1

and f

2

satisfy

(1:4) f

2

(x; y) = f

1

(x; y)h(xy)h(x)

�1

h(y)

�1

for all x; y 2 G , then the map

':G�

f

1

Z ! G�

f

2

Z; '(g; z) = (g; h(g)z)

is a group isomorphism.

Let q

j

:

b

G

j

! G , j = 1; 2, be two 
entral Z -extensions of G . We identify Z with ker q

j

for j = 1; 2. A group homomorphism ':

b

G

1

!

b

G

2

is 
alled an equivalen
e of Z -extensions of G

if ' j

Z

= id

Z

(if we view Z as a subgroup of

b

G

1

and

b

G

2

), and q

2

Æ ' = q

1

. In parti
ular ea
h

equivalen
e

':G�

f

1

Z ! G�

f

2

Z
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is given by '(g; z) = (g; h(g)z), where h:G! Z is a map satisfying (1.4). We 
on
lude that two


entral extensions G�

f

1

Z and G�

f

2

Z are equivalent if and only if f

1

f

�1

2

2 B

2

(G;Z), hen
e

that the group H

2

(G;Z) parametrizes the isomorphy 
lasses of 
entral extensions of G by Z ,

justifying the notation Ext(G;Z) (
f. [Ma
L63, Th. IV.4.1℄). For a topologi
al interpretation of

these groups as singular 
ohomology groups we refer to the beautiful survey arti
le [Ma
L78℄.

A 
entral extension q:

b

G! G splits as a group extension if and only if there exists a group

homomorphism �:G!

b

G with � Æ � = id

G

. This means that �(g) = (g; h(g)) with

�

gg

0

; h(gg

0

)

�

= �(gg

0

) = �(g)�(g

0

) = (gg

0

; h(g)h(g

0

)f(g; g

0

)) for g; g

0

2 G;

i.e., f 2 B

2

(G;Z).

(
) Let H � G be a 
entral subgroup and �:

b

G ! G a 
entral extension as above. Then

b

H := �

�1

(H) is 
entral in

b

G if and only if the 
o
y
le f satis�es f(h; g) = f(g; h) for all g 2 G ,

h 2 H . We de�ne

Z

2

H

(G;Z) := ff 2 Z

2

(G;Z): (8g 2 G)(8h 2 H) f(g; h) = f(h; g)g:

Sin
e B

2

(G;Z) � Z

2

H

(G;Z), the group

Ext

H

(G;Z) := H

2

H

(G;Z) := Z

2

H

(G;Z)=B

2

(G;Z)

is a subgroup of Ext(G;Z).

Remark I.3. (The 
onne
ting homomorphism) Let

E: 1����!A

�

����!B

�

����!C����!1

be a 
entral extension of C by A . We write [f

E

℄ for the 
orresponding element of Ext(C;A),

where f

E

2 Z

2

(C;A) is a representing 
o
y
le. Let Z be an abelian group. We de�ne a

homomorphism

E

�

: Hom(A;Z)! Ext(C;Z); E

�

(
) := 


�

:[f

E

℄ := [
 Æ f

E

℄:

It is 
lear that E

�

is a well-de�ned group homomorphism. To des
ribe the 
entral extension of

C by Z 
orresponding to [
 Æ f

E

℄ , we 
onsider the 
entral subgroup

D := f(�(a); 
(a)

�1

) 2 B � Z: a 2 Ag and

b

C := (B � Z)=D;

whose elements we write as [b; z℄ := (b; z)D . This is the standard pushout 
onstru
tion. Then

we have a surje
tive homomorphism q:

b

C ! C; [b; z℄ 7! �(b) whose kernel is given by

ker q = f[�(a); z℄: a 2 A; z 2 Zg = f[1; 
(a)z℄: a 2 A; z 2 Zg

�

=

Z:

To see that this extension of C by Z 
an be des
ribed by the 
o
y
le 
 Æ f

E

, let �:C ! B be

a se
tion 
orresponding to the 
o
y
le f

E

in the sense that f

E

(
; 


0

) = �(
)�(


0

)�(



0

)

�1

: We


onsider the map b�:C !

b

C; 
 7! [�(
);1℄ and observe that q Æ b� = id

C

. The 
orresponding


o
y
le is given by

[�(
)�(


0

)�(



0

)

�1

;1℄ = [�(f

E

(
; 


0

));1℄ = [1; 
(f

E

(
; 


0

))℄;

hen
e 
orresponds to 
(f

E

(
; 


0

)) under the identi�
ation of Z with a subgroup of

b

C .
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Remark I.4. (a) If one is only interested in those 
entral extensions of abelian groups G whi
h

are abelian, then one requires the 
o
y
le f to satisfy f(a; b) = f(b; a) whi
h leads to the groups

Z

2

ab

(G;Z) for abelian groups G;Z . In view of B

2

ab

(G;Z) = B

2

(G;Z), we have an in
lusion

Ext

ab

(G;Z) := H

2

ab

(G;Z) := Z

2

ab

(G;Z)=B

2

ab

(G;Z) ,! Z

2

(G;Z)=B

2

(G;Z) = H

2

(G;Z):

(b) Even though Ext

ab

(G;R) = f0g holds for ea
h abelian group G be
ause R is divisible, we

might have Ext(G;R) 6= f0g for 
ertain abelian groups G . A typi
al example is given by G = R

2

and the 
entral extension

b

G of G given by

b

G = R

3

with the multipli
ation

(1:5) (x; y; z) � (x

0

; y

0

; z

0

) = (x+ x

0

; y + y

0

; z + z

0

+ xy

0

):

The group

b

G is 
alled the three-dimensional Heisenberg group.

(
) Sin
e G := Z

2

is a free abelian group, Ext

ab

(Z

2

; Z) = f0g holds for ea
h abelian group Z .

On the other hand, we have Ext(Z

2

;Z) 6= f0g . A typi
al example is given by the subgroup

b

G := Z

3

of the three-dimensional Heisenberg group (note that (1.5) implies that

b

G is indeed a

subgroup). Let e

j

, j = 1; 2; 3, denote the basis ve
tors. Then

e

1

� e

2

= e

1

+ e

2

+ e

3

= e

3

� e

2

� e

1

implies that

b

G is non-abelian, so that we obtain a non-trivial 
entral extension Z ,!

b

G!! G =

Z

2

.

The exa
t sequen
e dis
ussed below provides 
ru
ial information on how the group

Ext(C;Z) of a quotient C

�

=

B=A is related to the Ext-groups of A and B . Later we will

see that it generalizes in an appropriate sense to topologi
al groups and Lie groups. It is instru
-

tive to 
ompare Theorems I.5 and I.6 below with the 
orresponding results for abelian groups

(Theorem A.1.4) whi
h are sharper in the sense that the last map in the sequen
e is surje
tive.

Theorem I.5. Let E:A

�

��!B

�

��!C be a 
entral extension of C by A and Z an abelian

group. Then

Hom(C;Z) ,! Hom(B;Z)��!Hom(A;Z)

E

�

��!
Ext(C;Z)

�

�

��!
Ext

�(A)

(B;Z)

�

�

��!
Ext

ab

(A;Z)

is exa
t. Here �

�

:[f ℄: = [f Æ (� � �)℄ is the in
ation map and �

�

:[f ℄: = [f Æ (� � �)℄ is the

restri
tion map.

Proof. (1) Exa
tness at Hom(C;Z): If f Æ � = 1, then f = 1 be
ause � is surje
tive.

(2) Exa
tness at Hom(B;Z): For f 2 Hom(C;Z) we 
learly have f Æ � Æ � = 1. If, 
onversely,

f 2 Hom(B;Z) satis�es f Æ � = 1, then f vanishes on im� , hen
e fa
tors to a homomorphism

e

f :C ! Z with f =

e

f Æ � .

(3) Exa
tness at Hom(A;Z): First we show that for every 
 2 Hom(B;Z) the 
entral extension

E

�

:(
 Æ �) is trivial. Let

b

C := (B � Z)=D; D := f

�

�(a); 
(�(a))

�1

�

: a 2 Ag

be the 
entral extension de�ned by 
 Æ � (Remark I.3). Then �:C !

b

C; �(b) 7! [b; 
(b)

�1

℄

is a well-de�ned group homomorphism and q Æ � = id

C

holds for q([b; z℄) = �(b). Therefore

E

�

(
 Æ �) = 1.

Now we show that E

�


 = 1 for 
 2 Hom(A;Z) implies that 
 is in the range of

Hom(�;Z): f 7! f Æ � . In view of E

�


 = 1, there exists a homomorphi
 se
tion

�:C !

b

C

�

=

(B � Z)=D; D := f

�

�(a); 
(a)

�1

�

: a 2 Ag:

We write �(�(b)) = [b; Æ(b)℄ with a fun
tion Æ:B ! Z and note that Æ is well-de�ned be
ause

D \ (f1g � Z) = f1g . Now

[b

1

b

2

; Æ(b

1

b

2

)℄ = �(�(b

1

b

2

)) = �(�(b

1

))�(�(b

2

)) = [b

1

b

2

; Æ(b

1

)Æ(b

2

)℄
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implies that Æ is a group homomorphism. Moreover, Æ Æ � satis�es

[�(a); Æ(�(a))℄ = �(�(�(a))) = �(1) = [1; Æ(1)℄ = [1;1℄:

Hen
e Æ(�(a)) = 
(a)

�1

implies that 
 = Æ

�1

Æ � .

(4) Exa
tness at Ext(C;Z): It is 
lear that �

�

maps Ext(C;Z) into Ext

�(A)

(B;Z). First we

show that �

�

E

�

= 1. We have �

�

E

�

:
 = [
 Æ f

E

Æ (� � �)℄ = [f

E

Æ (� � �)℄

�

(
): An easy


al
ulation gives

B �

f

E

Æ(���)

A

�

=

(C �

f

E

A)�

f

E

Æ(���)Æ(���)

A

�

=

C �

(f

E

;f

E

)

(A�A);

where �:C �

f

E

A! B is the natural isomorphism. In this sense we de�ne a se
tion

�:B

�

=

(C �

f

E

A)! C �

(f

E

;f

E

)

(A�A); �(
; a) = (
; a; a):

Now

�

�

(


1

; a

1

); (


2

; a

2

)

�

=

�




1




2

; a

1

a

2

f(


1

; 


2

); a

1

a

2

f(


1

; 


2

)

�

= �(


1

; a

1

)�(


2

; a

2

)

shows that � is a group homomorphism, so that [f

E

Æ (� � �)℄ = 1, and hen
e �

�

E

�

= 1.

Next we assume that �

�

:[f ℄ = [f Æ (���)℄ = 1 for an f 2 Z

2

(C;Z). This means that there

exists a splitting homomorphism �:B ! B�

fÆ(���)

Z whi
h we write as �(b) = (b; 
(b)). Then

we have 
(b

1

b

2

) = 
(b

1

)
(b

2

)f(�(b

1

); �(b

2

)) for all b

1

; b

2

2 B whi
h implies that 
 Æ �:A ! Z

is a group homomorphism. Next we 
onsider the homomorphism

':B � Z ! B �

fÆ�

Z ! C �

f

Z; '(b; z) = �(b)z:

Then ' is a surje
tive homomorphism whose kernel is given by

ker' = f(�(a); z): 
(�(a))z = 1; a 2 Ag = f

�

�(a); 
(�(a))

�1

�

: a 2 Ag;

so that (B � Z)= ker'

�

=

C �

f

Z ! C and therefore [f ℄ = E

�

:(
 Æ �).

(5) Exa
tness at Ext

�(A)

(B;Z): In view of �

�

�

�

= (� Æ �)

�

= 1, it remains to see that

ker�

�

� im�

�

. Let f 2 Z

2

�(A)

(B;Z) and q

B

:

b

B := B �

f

Z ! B be the 
orresponding


entral extension. We assume that [f Æ (� � �)℄ = 1 and have to show that [f ℄ 2 im�

�

.

First we observe that there exists a homomorphism �:A!

b

B with q

B

Æ� = � . The assumption

f 2 Z

2

�(A)

(B;Z) implies that �(A) � q

�1

B

(�(A)) is 
entral in

b

B , so that we may form the

quotient group

b

C :=

b

B=�(A) whi
h is a 
entral extension of

b

C=

b

A

�

=

C=A

�

=

B by

b

A=�(A)

�

=

Z .

Let q

C

:

b

C ! C be the 
orresponding quotient map. Now it suÆ
es to show that

b

B

�

=

�

�

b

C := f(b;b
) 2 B �

b

C :�(b) = q

C

(b
)g:

We de�ne a homomorphism


:

b

B ! �

�

b

C; 
 := (q

B

;

b

�);

where

b

�:

b

B !

b

C is the quotient map. That im 
 � �

�

b

C follows from � Æ q

B

= q

C

Æ

b

� . We 
laim

that 
 is bije
tive. The inje
tivity follows from

ker 
 = ker q

B

\ ker

b

� = ker q

B

\ �(A) = f1g:

To see that 
 is surje
tive, let (b;b
) 2 �

�

b

C and pi
k

b

b 2

b

B with b = q

B

(

b

b). Then q

C

b

�(

b

b) =

�q

B

(

b

b) = �(b) = q

C

(b
) implies that there exists a z 2 Z with

b

�(

b

b)z = b
 . Now 
(

b

bz) = (b;b
).
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Theorem I.6. Let E:A

�

��!B

�

��!C be an extension of abelian groups and G be a group.

Then

Hom(G;A) ,! Hom(G;B)��!Hom(G;C)

E

�

��!Ext(G;A)

�

�

��!Ext(G;B)

�

�

��!Ext(G;C)

is exa
t. Here �

�

:[f ℄ = [� Æ f ℄ , �

�

:[f ℄ = [� Æ f ℄ , and E

�

:
 = 


�

E is the pullba
k of E to a


entral extension of G .

Proof. Exa
tness at Hom(G;A) and Hom(G;B) is trivial.

(1) Exa
tness at Hom(G;C): Let 
 2 Hom(G;C). Then E

�


 is the 
entral extension

b

G := f(g; b) 2 G�B:�(b) = 
(g)g with q:

b

G! G; (g; b) 7! g:

This 
entral extension is trivial if and only if there exists a homomorphi
 se
tion �:G!

b

G . Su
h

a se
tion 
an be written as �(g) = (g; f(g)) for a homomorphism f :G ! B with � Æ f = 
 .

Hen
e E

�


 is trivial if and only if there exists f 2 Hom(G;B) with � Æ f = 
 .

(2) Exa
tness at Ext(G;A): Let 
 2 Hom(G;C) and

b

G be as in (1). Then the 
entral extension

�

�

E

�


 is given by

H := (

b

G�B)=D � (G�B �B)=D; D := f(1; �(a); �(a)

�1

): a 2 Ag:

One dire
tly veri�es that �:G ! H; �(g) := [(g; b; b

�1

)℄ for �(b) = 
(g) is a well-de�ned

homomorphi
 se
tion of this 
entral extension.

Now we assume that F : A ,!

b

G

q

��!G is a 
entral extension for whi
h �

�

F is trivial.

This means that the 
entral extension

H := (

b

G�B)=f(a; �(a)

�1

): a 2 Ag; q

1

:H ! G; [g; b℄ 7! q(g)

has a homomorphi
 se
tion �:G! H . This se
tion 
an be written as �(q(g)) = [g; f(g)℄ , where

f :

b

G ! B is a homomorphism with f(ga) = f(g)�(a)

�1

for g 2

b

G , a 2 A . In parti
ular we

obtain � = f

�1

j

A

, and hen
e that f(A) = �(A) � B . Now 
:G ! C; q(g) 7! �(f(g)) is a

well-de�ned homomorphism. We 
laim that F

�

=

E

�


 . In view of ker f \ker q = ker f \A = f1g ,

the homomorphism ' := (q; f

�1

):

b

G! G�B is inje
tive, and 
 Æ q = � Æ f

�1

implies that

'(

b

G) � f(g; b) 2 G�B: 
(g) = �(b)g:

It remains to see that we have equality. Pi
k (g; b) 2 G� B with 
(g) = �(b). Let bg 2

b

G with

q(bg) = g . Then �(f(bg)) = 
(q(bg)) = 
(g) = �(b), so that there exists an a 2 A with f(bga) = b .

Now '(bga) = (g; b).

(3) Exa
tness at Ext(G;B): The relation �

�

�

�

= (��)

�

= 1 is trivial. If F :B ,!

b

G

q

��!G is a


entral extension with �

�

F = 1, then

H := (

b

G� C)=D; D := f(b; �(b)

�1

): b 2 Bg

has a homomorphi
 se
tion �:G! H; �(q(g)) := [g; f(g)℄ , where f :

b

G! C is a homomorphism

with f j

B

= �

�1

. In parti
ular we have f Æ � = 1. Let L := ker f �

b

G and q

L

:=

q j

L

:L! G . Then ker q

L

= ker q \ L = B \ ker� = �(A), so that we obtain a 
entral extension

A

�

��!L

q

L

��!G: One readily veri�es that the homomorphism L � B !

b

G; (l; b) 7! lb fa
tors

through an isomorphism ': (L�B)=�(�

�1

)!

b

G;'([l; b℄) = lb:
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II. Central extensions of topologi
al groups

For a topologi
al group G and an abelian topologi
al group Z we 
onsider only those 
entral

Z -extensions q:

b

G ! G whi
h are Z -prin
ipal bundles, i.e., for whi
h there exists an open 1-

neighborhood U � G and a 
ontinuous map �:U !

b

G with q Æ � = id

U

. As we will see below,

these are pre
isely those 
entral extensions that 
an be represented by a 
o
y
le f :G�G ! Z

whi
h is 
ontinuous in a neighborhood of 1� 1 , and this leads to a generalization of Theorems

I.5 and I.6 to 
entral extensions of topologi
al groups. Before we 
an derive these fa
ts, we


olle
t some general fa
ts on topologi
al groups. Throughout this paper, all topologi
al groups

are assumed to be Hausdor�.

Lemma II.1. Let G be a group and F a �lter basis of subsets with

T

F = f1g satisfying:

(U1) (8U 2 F)(9V 2 F)V V � U:

(U2) (8U 2 F)(9V 2 F)V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F)gV g

�1

� U:

Then there exists a unique group topology on G su
h that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F)gV � Ug:

Proof. [Bou88, Ch. III, x1.2, Prop. 1℄

Lemma II.2. We assume that G is a group and that K = K

�1

is a subset 
ontaining 1

and generating G . We further assume that K is a Hausdor� topologi
al spa
e su
h that the

inversion is 
ontinuous and that there exists an open subset V � K �K with xy 2 K for all

(x; y) 2 V , 
ontaining all pairs (x; x

�1

) , (x;1) , (1; x) , x 2 K , su
h that the group multipli
ation

m:V ! K is 
ontinuous. Then there exists a unique group topology on G for whi
h the in
lusion

map K ,! G is an open embedding.

Proof. (
f. [Ti83, p.62℄) We 
onsider the �lter basis F of neighborhoods of 1 in K and verify

that it satis�es the 
onditions in Lemma II.1.

(U1) follows from the fa
t that V is open and m is 
ontinuous.

(U2) follows from the 
ontinuity of the inversion on U .

(U3) Sin
e K generates G , one easily veri�es by indu
tion that it suÆ
es to show that

(8U 2 F)(8g 2 K)(9U

0

2 F)gU

0

g

�1

� U:

We �nd U

1

2 F and a neighborhood U

2

of g in K su
h that fgg�U

1

� V , U

2

�fg

�1

g � V and

gU

1

� U

2

. Then the 
onjugation map U

1

! K;x 7! (gx)g

�1

is 
ontinuous, and (U3) follows.

Therefore

� := fU � G: (8g 2 U)(9V 2 F)gV � Ug

de�nes a group topology on G .

It remains to verify that the in
lusion map �:K ,! G is an embedding. Let k 2 K and

U � G be a neighborhood of k . Then there exists an F 2 F with kF � U . Sin
e kF � K is a

neighborhood of k , we see that � is 
ontinuous. Sin
e, moreover, every neighborhood of k 2 K


ontains a set of the form kF , F 2 F , we see that � is an embedding.

Lemma II.3. Let G be a 
onne
ted simply 
onne
ted topologi
al group and T a group. Let U

be an open symmetri
 
onne
ted identity neighborhood in G and f :U ! T a fun
tion with

f(xy) = f(x)f(y) for x; y; xy 2 U:

Then there exists a unique group homomorphism extending f . If, in addition, T is a topologi
al

group and f is 
ontinuous, then its extension is also 
ontinuous.
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Proof. (
f. [HoMo98, Cor. A.2.26℄; see also [Bou88, Ch. III, x2, Ex.24℄) The idea is the

following. We 
onsider the group G� T and the subgroup H � G� T generated by the subset

K := f(x; f(x)):x 2 Ug . We endow K with the topology turning x 7! (x; f(x)); U ! K into a

homeomorphism. Using Lemma II.2, we obtain a topology on H for whi
h H is a topologi
al

group and the proje
tion p

G

:G� T ! G indu
es a 
overing homomorphism q:H ! G , so that

the 
onne
tedness of H and the simple 
onne
tedness of G imply that q is a homeomorphism.

Now F := p

T

Æ q

�1

:G ! T provides the required extension of f . In fa
t, for x 2 U we have

q

�1

(x) = (x; f(x)) and therefore F (x) = f(x).

Lemma II.3 
an be interpreted in the sense that the simple 
onne
tedness of G guarantees

that the lo
al 1-
o
y
le f :U ! T of the lo
al group U (
f. [Est62℄) 
an be extended to a global

1-
o
y
le f :G ! T . In Se
tion III below we will in parti
ular be 
on
erned with a version of

this result 
on
erning 2-
o
y
les instead of 1-
o
y
les.

Proposition II.4. Let G and Z be topologi
al groups, where G is 
onne
ted, and Z ,!

b

G!

G a 
entral extension of G by Z . Then

b

G 
arries the stru
ture of a topologi
al group su
h that

b

G! G is a Z -prin
ipal bundle if and only if the 
entral extension 
an be des
ribed by a 
o
y
le

f :G�G! Z whi
h is 
ontinuous in a neighborhood of (1;1) in G�G .

Proof. First we assume that

b

G is a Z -prin
ipal bundle over G . Then there exists a 1-

neighborhood U � G and a 
ontinuous se
tion �:U !

b

G of the map q:

b

G ! G . We extend �

to a global se
tion G !

b

G . Then f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-
o
y
le G �G ! Z

whi
h is 
ontinuous in a neighborhood of (1;1).

Conversely, we assume that

b

G

�

=

G �

f

Z holds for a 2-
o
y
le f :G � G ! Z whi
h

is 
ontinuous in a neighborhood of (1;1) in G � G . Let U � G be an open symmetri
 1-

neighborhood su
h that f is 
ontinuous on U � U , and 
onsider the subset

K := U � Z = q

�1

(U) �

b

G = G�

f

Z:

Then K = K

�1

. We endow K with the produ
t topology of U � Z . Sin
e the multipli
ation

m

G

j

U�U

:U � U ! G is 
ontinuous, the set

V := f

�

(x; z); (x

0

; z

0

)

�

2 K �K:xx

0

2 Ug

is an open subset of K �K su
h that the multipli
ation map

V ! K;

�

(x; z); (x

0

; z

0

)

�

! (xx

0

; zz

0

f(x; x

0

))

is 
ontinuous. In addition, the inversion K ! K; (x; z) 7!

�

x

�1

; z

�1

f(x; x

�1

)

�1

�

is 
ontinuous.

Sin
e G is 
onne
ted, it is generated by U , and therefore

b

G is generated by K = q

�1

(U).

Therefore Lemma II.2 applies and shows that

b

G 
arries a unique group topology for whi
h the

in
lusion map K = U � Z ,!

b

G is an open embedding. It is 
lear that with respe
t to this

topology, the map q:

b

G! G is a Z -prin
ipal bundle.

Remark II.5. To derive a generalization of Proposition II.4 to groups whi
h are not ne
essarily


onne
ted, one has to make the additional assumption that for ea
h g 2 G the 
orresponding


onjugation map I

g

:

b

G!

b

G is 
ontinuous in the identity. In view of (1.3), this follows from the


ontinuity of the fun
tions f(g; �) and f(�; g) in 1 . This 
ondition is automati
ally satis�ed for

all elements in the open subgroup generated by U , hen
e redundant if G is 
onne
ted.

De�nition II.6. Let G and Z be topologi
al groups, where G is 
onne
ted. We have

seen in Proposition II.4 that the 
entral extensions of G by Z whi
h are prin
ipal Z -bundles


an be represented by 2-
o
y
les f :G � G ! Z whi
h are 
ontinuous in a neighborhood of

(1;1) in G �G . We write Z

2




(G;Z) for the group of these 
o
y
les. Likewise we have a group

B

2




(G;Z) of 2-
oboundaries f(x; y) = h(xy)h(x)

�1

h(y)

�1

; where h:G ! Z is 
ontinuous in a

1-neighborhood. Then the group

Ext




(G;Z) := H

2




(G;Z) := Z

2




(G;Z)=B

2




(G;Z)


lassi�es the 
entral extensions of G by Z whi
h are prin
ipal bundles.
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A typi
al example of a 
entral extension of a 
ompa
t group whi
h has no 
ontinuous lo
al

se
tion is the sequen
e f1;�1g

N

,! T

N

q

��!T

N

, where q(x) = x

2

is the squaring map on the

in�nite-dimensional torus T

N

.

Remark II.7. (a) We 
onsider the setting of Remark I.3, where B is a prin
ipal A-bundle.

This means that there exists a lo
al se
tion �:U

C

! B whi
h 
an be used to obtain a lo
al

se
tion of

b

C ! C , so that E

�

maps 
ontinuous homomorphisms into 
entral extensions with


ontinuous lo
al se
tions. Therefore the maps in Theorem I.5 are 
ompatible with the topologi
al

situation, and we thus obtain for 
onne
ted groups A , B and C the sequen
e of maps

Hom(C;Z) ,! Hom(B;Z)! Hom(A;Z)

E

�

��!Ext




(C;Z)

�

�

�!Ext


;�(A)

(B;Z)

�

�

�!Ext


;ab

(A;Z);

where Hom denotes 
ontinuous homomorphisms.

It is easy to verify that the proof of Theorem I.5 remains valid in this topologi
al 
ontext

(
f. [Se70, Prop. 4.1℄):

(1) dire
tly 
arries over.

(2): Sin
e B ! C is a prin
ipal bundle, C 
arries the quotient topology of B=�(A). Hen
e every


ontinuous homomorphism 
:B ! Z with �(A) � ker 
 fa
tors to a 
ontinuous homomorphism

C ! Z .

(3), (4): Here one needs that a group homomorphism between topologi
al groups is 
ontinuous if

and only if it is 
ontinuous in the identity, resp., on a neighborhood of the identity. This remark

implies that all group homomorphisms showing up in (3) and (4) are 
ontinuous.

(5): Here one has to observe that

b

C ! C is a 
entral extension whi
h is a prin
ipal bundle, and

that �(A) is a 
losed subgroup of

b

A , resp.,

b

B .

(b) Similar arguments show that ea
h extension E:A

�

����!B

�

����!C of abelian topologi
al

groups whi
h is a prin
ipal A-bundle leads for ea
h 
onne
ted topologi
al group G to an exa
t

sequen
e

Hom(G;A) ,! Hom(G;B)��!Hom(G;C)

E

�

��!Ext




(G;A)

�

�

��!Ext




(G;B)

�

�

��!Ext




(G;C):

It is instru
tive to des
ribe the image of E

�


orresponding to a universal 
overing map

q

G

:

e

G! G for a topologi
al group G .

Proposition II.8. Let G be a 
onne
ted, lo
ally ar
wise 
onne
ted and semilo
ally simply


onne
ted topologi
al group and q

G

:

e

G ! G a universal 
overing homomorphism. We identify

�

1

(G) with ker q

G

. For a 
entral extension of topologi
al groups Z ,!

b

G

q

��!G the following are

equivalent:

(1) There exists a 
ontinuous lo
al se
tion �

U

:U !

b

G with �

U

(xy) = �

U

(x)�

U

(y) for x; y; xy 2

U .

(2)

b

G

�

=

G�

f

Z , where f 2 Z

2

(G;Z) takes the value 1 on a neighborhood of (1;1) in G�G .

(3) There exists a homomorphism 
:�

1

(G)! Z and an isomorphism �: (

e

G� Z)=�(


�1

)!

b

G

with q�([x;1℄) = q

G

(x) , x 2

e

G .

Proof. (1) , (2) follows dire
tly from the de�nitions.

(1) ) (3): We may w.l.o.g. assume that U is 
onne
ted, U = U

�1

, and that there exists a


ontinuous se
tion e�:U !

e

G of the universal 
overing map q

G

. Then

�

U

Æ q

G

j

e�(U)

: e�(U)!

b

G

extends uniquely to a 
ontinuous homomorphism f :

e

G !

b

G with f Æ e� = �

U

and q Æ f = q

G

.

We de�ne  :

e

G � Z !

b

G; (g; z) 7! f(g)z . Then  is a 
ontinuous group homomorphism whi
h

is a lo
al homeomorphism be
ause

 (e�(x); z) = f(e�(x))z = �

U

(x)z for x 2 U; z 2 Z:
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We 
on
lude that  is a 
overing homomorphism. Moreover,  is surje
tive be
ause its range is

a subgroup of

b

G 
ontaining Z and mapped surje
tively by q onto G . This proves that

b

G

�

=

(

e

G� Z)= ker ; ker = f(g; f(g)

�1

): g 2 f

�1

(Z)g:

On the other hand, f

�1

(Z) = ker(q Æ f) = ker q

G

= �

1

(G), so that

ker = f(d; 
(d)

�1

): d 2 �

1

(G)g; 
 := f j

�

1

(G)

:

(3) ) (1) follows dire
tly from the fa
t that the map

e

G� Z !

b

G is a 
overing morphism.

III. Topology of in�nite-dimensional manifolds

So far we have only dealt with abstra
t groups or topologi
al groups. In this se
tion we turn to

manifolds and spe
i�
ally to in�nite-dimensional ones. The manifolds we 
onsider will always

be modeled over a sequentially 
omplete lo
ally 
onvex spa
e (s.
.l.
. spa
e). This requirement

is essential for a reasonable di�erential 
al
ulus be
ause the sequential 
ompleteness ensures the

existen
e of Riemann integrals and hen
e the validity of the Fundamental Theorem of Cal
ulus.

For more details on this setting we refer to [Mi83℄ and [Ne97℄. As we will explain in some more

detail below, the approa
h of Kriegl and Mi
hor ([KM97℄) is slightly di�erent, but 
oin
ides

with the other one for Fr�e
het manifolds, i.e., manifolds modeled over Fr�e
het spa
es. An

unpleasant obsta
le one has to fa
e when dealing with in�nite-dimensional manifolds M is that

they need not be smoothly para
ompa
t, i.e., not every open 
over has a subordinate smooth

partition of unity (
f. [KM97℄). Hen
e there is no a priori reason for de Rham isomorphisms

H

n

dR

(M;R)

�

=

H

n

sing

(M;R) to hold be
ause the sheaf theoreti
 proofs break down. This is

a problem that already arises in the 
lassi
al setting of Bana
h manifolds be
ause there are

Bana
h spa
es M for whi
h there exists no smooth fun
tion supported by the unit ball, so that

M is in parti
ular not smoothly para
ompa
t. Simple examples are the spa
es C([0; 1℄) and

l

1

(N) (
f. [KM97, 14.11℄). On the topologi
al side, para
ompa
tness is a natural assumption

on manifolds. In view of Theorem 1 in [Pa66℄, a manifold is metrizable if and only if it is

�rst 
ountable and para
ompa
t whi
h implies in parti
ular that its model spa
e is Fr�e
het

(
f. [KM97, Lemma 27.8℄). Fr�e
het{Lie groups are always para
ompa
t be
ause they are �rst


ountable topologi
al groups, hen
e metrizable.

It is a 
entral idea in this paper that all those parts of the de Rham isomorphism that are

essential to study 
entral extensions of Lie groups still remain true to a suÆ
ient extent. Here

a key point is that the Poin
ar�e Lemma is still valid. In parti
ular we will see that we have an

inje
tion

H

1

dR

(M;R) ,! H

1

sing

(M;R)

�

=

Hom(�

1

(M);R);

where the isomorphism H

1

sing

(M;R)

�

=

Hom(�

1

(M);R) is a dire
t 
onsequen
e of the Hurewi
z

Theorem (Remark A.2.1).

De�nition III.1. (a) Let X and Y be topologi
al ve
tor spa
es, U � X open and f :U ! Y

a 
ontinuous map. Then the derivative of f at x in the dire
tion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever it exists. The fun
tion f is 
alled di�erentiable in x if df(x)(h) exists for all h 2 X .

It is 
alled 
ontinuously di�erentiable or C

1

if it is di�erentiable in all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a 
ontinuous map. It is 
alled a C

n

-map if df is a C

n�1

-map, and C

1

if it is C

n

for all

n 2 N . This is the notion of di�erentiability used in [Mi83℄, [Ha82℄ and [Ne97℄.
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(b) We brie
y re
all the basi
 de�nitions underlying the 
onvenient 
al
ulus in [KM97℄. Let E

be a lo
ally 
onvex spa
e. The 


1

-topology on E is the �nal topology with respe
t to the set

C

1

(R; E). We 
all E 
onvenient if for ea
h smooth 
urve 


1

:R ! E there exists a smooth


urve 


2

:R ! E with 


0

2

= 


1

(
f. [KM97, p.20℄).

Let U � E be an open subset and f :U ! F a fun
tion, where F is a lo
ally 
onvex spa
e.

Then we 
all f 
onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This 
on
ept quite dire
tly implies ni
e 
artesian 
losedness properties for smooth maps (
f.

[KM97, p.30℄).

Remark III.2. If E is an s.
.l.
. spa
e, then it is 
onvenient be
ause the sequential 
omplete-

ness implies the existen
e of Riemann integrals ([KM97, Th. 2.14℄). If E is a Fr�e
het spa
e, then

the 


1

-topology 
oin
ides with the original topology ([KM97, Th. 4.11℄).

Moreover, for an open subset U of a Fr�e
het spa
e, a map f :U ! F is 
onveniently

smooth if and only if it is smooth in the sense of [Mi83℄. This 
an be shown as follows. Sin
e

C

1

(R; E) is the same spa
e for both 
on
epts of di�erentiability, the 
hain rule shows that

smoothness in the sense of [Mi83℄ implies smoothness in the sense of 
onvenient 
al
ulus. Now

we assume that f :U ! F is 
onveniently smooth. Then the derivative df :U�E ! F exists and

de�nes a 
onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄). Hen
e

df :U �E ! F is also 
onveniently smooth, hen
e 
ontinuous with respe
t to the 


1

-topology.

As E �E is a Fr�e
het spa
e, it follows that df is 
ontinuous. Therefore f is C

1

in the sense of

[Mi83℄, and now one 
an iterate the argument.

If M is a di�erentiable manifold and z an s.
.l.
. spa
e, then a z-valued k -form ! on M

is a fun
tion ! whi
h asso
iates to ea
h p 2M is a k -linear alternating map T

p

(M)

k

! z su
h

that in lo
al 
oordinates the map

(p; v

1

; : : : ; v

k

) 7! !(p)(v

1

; : : : ; v

k

)

is smooth. We write 


k

(M; z) for the spa
e of smooth k -forms on M with values in z .

Lemma III.3. (Poin
ar�e Lemma) Let E and z be s.
.l.
. spa
es and U � E an open subset

whi
h is star-shaped with respe
t to 0 . Let ! 2 


k+1

(U; z) be a z-valued 
losed k+1-form. Then

! is exa
t. Moreover, ! = d' for ' 2 


k

(U; z) with '(0) = 0 given by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Proof. For the 
ase of Fr�e
het spa
es Remark III.2 implies that the assertion follows from

[KM97, Lemma 33.20℄. On the other hand, one 
an prove it dire
tly in the 
ontext of s.
.l.
.

spa
es by using the fa
t that one may di�erentiate under the integral for a fun
tion of the type

R

1

0

H(t; x) dt , where H is a smooth fun
tion ℄ � "; 1 + "[�U ! z (
f. [KM97, p.32℄). For the


al
ulations needed for the proof we refer to [La99, Th. V.4.1℄.

Proposition III.4. Let M be a 
onne
ted s.
.l.
. manifold and � 2 


1

(M; z) a 
losed 1-

form. Then there exists a 
onne
ted 
overing q:




M !M and a smooth fun
tion f :




M ! z with

df = q

�

� .

Proof. On M we 
onsider the pre-sheaf F given for an open subset U �M by

F(U) := ff 2 C

1

(U; z): df = � j

U

g:

It is easy to verify that F is in fa
t a sheaf on M (
f. [We80, Se
t. II.1℄).

To determine the stalks F

x

, x 2 M , of the sheaf F , we use the Poin
ar�e Lemma. Let

x 2M . Sin
e M is a manifold, there exists a neighborhood U of x whi
h is di�eomorphi
 to a
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onvex subset of an s.
.l.
. spa
e. Then the Poin
ar�e Lemma implies for ea
h y 2 z the existen
e

of a smooth fun
tion f

U

on U with df

U

= � j

U

and f

U

(x) = y . Sin
e U is 
onne
ted, the

fun
tion f

U

is uniquely determined by its value in x . Now let V be another open set 
ontaining

x , and f

V

2 F(V ) with [f

U

℄

x

= [f

V

℄

x

. Choosing an open neighborhood W � U \V of x whi
h

is di�eomorphi
 to a 
onvex domain, we 
on
lude from f

U

(x) = f

V

(x) = y that f

V

j

W

= f

U

j

W

.

Therefore the map F

x

! z; [f ℄

x

7! f(x) is a linear bije
tion.

Now let p:

e

F =

S

x2X

F

x

! M denote the �etale spa
e over M asso
iated to the sheaf

F . We 
laim that p is a 
overing map. Let x 2 X and U as above. Then F(U)

�

=

z ,

as we have seen above. Therefore �(U;

e

F)

�

=

F(U)

�

=

F

x

(
f. [We80, Th. II.2.2℄). For ea
h

z 2 z we write s

z

:U !

e

F for the 
ontinuous se
tion given by s

z

(y) = [f

z

℄

y

, where f

z

2 F(U)

satis�es f

z

(x) = z . Then the sets s

z

(U) are open subsets of

e

F by the de�nition of the topology

on

e

F ([We80, p. 42℄). Moreover, these sets are disjoint be
ause [f

z

℄

y

= [f

w

℄

u

�rst implies

u = y and further f

z

(y) = f

w

(u), so that f

z

= f

w

and therefore z = w . This proves that

p

�1

(U) =

_

[

z2z

s

z

(U) is a disjoint union of open sets, where s

z

:U ! s

z

(U) is a homeomorphism

for ea
h z by 
onstru
tion of

e

F . Thus p is a 
overing map.

Pi
k x

0

2 M and an inverse image y

0

2

e

F . Then the 
onne
ted 
omponent




M of

e

F 
ontaining y

0

is a manifold with a 
overing map q:




M ! M . Moreover, the fun
tion

f :




M ! z; [s℄

y

7! s(y) is a smooth fun
tion. It remains to show that q

�

� = df . So let

s:U !

e

F be a smooth se
tion of

e

F . Then f Æ s 2 C

1

(U; z) is a smooth fun
tion with

df(s(x))ds(x) = d(f Æ s)(x) = �(x) for all x 2 U . Sin
e ds(x) = (dq(s(x)))

�1

, it follows

that df(s(x)) = (q

�

�)(s(x)), and therefore that df = q

�

� .

Corollary III.5. Let M be a simply 
onne
ted s.
.l.
. manifold and z an s.
.l.
. spa
e. Then

H

1

dR

(M; z) = f0g .

Proof. Let � be a 
losed z-valued 1-form on M . Using Proposition III.5, we �nd a 
overing

q:




M !M and a smooth fun
tion f :




M ! z with df = q

�

� . Sin
e M is simply 
onne
ted, the


overing q is trivial, hen
e a di�eomorphism. Therefore � is exa
t.

Theorem III.6. Let M be a 
onne
ted s.
.l.
. manifold, z an s.
.l.
. spa
e, x

0

2 M , and

�

1

(M) := �

1

(M;x

0

) . Then we have an in
lusion

�:H

1

dR

(M; z) ,! Hom(�

1

(M); z)

whi
h is given on a pie
ewise di�erentiable loop 
: [0; 1℄!M in x

0

for � 2 Z

1

dR

(M; z) by

�(�)(
) := �([�℄)([
℄) =

Z




� :=

Z

1

0




�

�:

The homomorphism �([�℄) 
an also be 
al
ulated as follows: Let f

�

2 C

1

(

f

M; z) with df

�

= q

�

� ,

where q:

f

M !M is the universal 
overing map, and write

f

M ��

1

(M)!

f

M; (g; x) 7! �

g

(x) for

the right a
tion of �

1

(M) on

f

M . Then the fun
tion f

�

Æ�

g

� f

�

is 
onstant equal to �([�℄)(g) .

Proof. Let q:

f

M ! M be a simply 
onne
ted 
overing manifold and y

0

2 q

�1

(x

0

). In view

of Corollary III.5, for ea
h 
losed 1-form � on M , the 
losed 1-form q

�

� on

f

M is exa
t. Let

f

�

2 C

1

(

f

M; z) with

e

f

�

(y

0

) = 0 and d

e

f

�

= q

�

� .

Let

f

M � �

1

(M) !

f

M; (y; g) 7! �

g

(y) := y:g denote the a
tion of �

1

(M) on

f

M by de
k

transformations. We put

�(�)(g) := f

�

(y

0

:g):

Then �(�)(1) = 0 and

�(�)(g

1

g

2

) = f

�

(y

0

:g

1

g

2

) = f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + f

�

(y

0

:g

1

)

= f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + �(�)(g

1

):
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For ea
h g 2 �

1

(M) the fun
tion h := �

�

g

f

�

� f

�

satis�es h(y

0

) = �(�)(g) = f

�

(y

0

:g) and

dh = �

�

g

df

�

� df

�

= �

�

g

q

�

�� q

�

� = (q Æ �

g

)

�

�� q

�

� = q

�

�� q

�

� = 0:

Therefore h is 
onstant �(�)(g), and we obtain �(�)(g

1

g

2

) = �(�)(g

2

) + �(�)(g

1

): This proves

that �(�) 2 Hom(�

1

(M); z).

Suppose that �(�) = 0. Then �

�

g

f

�

� f

�

= 0 holds for ea
h g 2 �

1

(M), showing that the

fun
tion f

�

fa
tors through a smooth fun
tion f :M ! z with f Æq = f

�

. Now q

�

df = df

�

= q

�

�

implies df = � , so that � is exa
t. If, 
onversely, � is exa
t, then the fun
tion f

�

is invariant

under �

1

(M), and we see that �(�) = 0. Therefore �:Z

1

dR

(M; z) ! Hom(�

1

(M); z) fa
tors

through an in
lusion H

1

dR

(M; z) ,! Hom(�

1

(M); z).

Finally, let [
℄ 2 �

1

(M), where 
: [0; 1℄!M is pie
ewise smooth. Let e
: [0; 1℄!

f

M be a

lift of 
 with e
(0) = y

0

. Then

�([�℄)([
℄) = f

�

([
℄) = f

�

(e
(1)) = f

�

(e
(0)) +

Z

1

0

df

�

(e
(t))e


0

(t) dt

= f

�

(y

0

) +

Z

1

0

(q

�

�)(e
(t))e


0

(t) dt =

Z

1

0

�(
(t))


0

(t) dt =

Z

1

0




�

� =

Z




�:

The following lemma shows that exa
tness of a ve
tor-valued 1-form 
an be tested by

looking at the asso
iated s
alar-valued 1-forms.

Lemma III.7. Let � 2 


1

(M; z) be a 
losed 1-form. If for ea
h 
ontinuous linear fun
tional

� on z the 1-form � Æ � is exa
t, then � is exa
t.

Proof. If �Æ� is exa
t, then the group homomorphism �(�):�

1

(M)! z satis�es �Æ�(�) = 0

(Theorem III.6). If this holds for ea
h � 2 z

�

, then the fa
t that the 
ontinuous linear fun
tionals

on the lo
ally 
onvex spa
e z separate the points implies that �(�) = 0 and hen
e that � is

exa
t.

To see that the map � is surje
tive, one needs smooth para
ompa
tness whi
h is not always

available, note even for Bana
h manifolds. For an in�nite-dimensional version of de Rham's

Theorem for smoothly para
ompa
t manifolds we refer to [KM97, Thm. 34.7℄. The following

proposition is a parti
ular 
onsequen
e:

Proposition III.8. If M is a 
onne
ted smoothly para
ompa
t s.
.l.
. manifold, then the

in
lusion map �:H

1

dR

(M; z)! Hom(�

1

(M); z) is bije
tive.

Proof. In view of Theorem III.6, we only have to show that for ea
h homomorphism

�:�

1

(M)! z there exists a 
losed 1-form � with �(�) = � .

We view the universal 
overing manifold

f

M !M as a prin
ipal �

1

(M)-bundle and 
onsider

the asso
iated bundle

p:E :=

f

M �

�

1

(M)

z !M;

where �

1

(M) a
ts on z by d:x = x + �(d). This is an aÆne bundle over M . Using smooth

partitions of unity on M , we �nd a smooth se
tion �:M ! E . Let q:

f

M ! M denote the

universal 
overing map. We write the elements of E as [m; t℄ = [md; t � �(d)℄ for m 2

f

M ,

d 2 �

1

(M) and t 2 z . Then we obtain a fun
tion f :

f

M ! z with �(q(m)) = [m; f(m)℄

for all m 2

f

M . Now f(md) = f(m) � �(d) shows that df is a 1-form on

f

M whi
h is the

pull-ba
k of a 1-form � on M . In view of Theorem III.6, the assertion now follows from

�(�)(d) = f(md)� f(m) = ��(d).

Proposition III.9. Let M be a 
onne
ted s.
.l.
. manifold and � � z a dis
rete subgroup.

Then z=� 
arries a natural manifold stru
ture su
h that the tangent spa
e in every element of

z=� 
an be 
anoni
ally identi�ed with z . For a smooth fun
tion f :M ! z=� we thus 
an identify
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the di�erential df with a z-valued 1-form on M . For a 
losed z-valued 1-form � on M the

following 
onditions are equivalent:

(1) There exists a smooth fun
tion f :M ! z=� with df = � .

(2) �(�)

�

�

1

(M)

�

� � .

Proof. Let q:

f

M !M denote the universal 
overing map and �x a point x

0

2

f

M . Then the


losed 1-form q

�

� on

f

M is exa
t (Theorem III.6), so that there exists a unique smooth fun
tion

e

f :

f

M ! z with d

e

f = q

�

� and

e

f(x

0

) = 0. In Theorem III.6 we have seen that for ea
h g 2 �

1

(M)

we have

(3:1) �

�

g

e

f �

e

f = �(�)(g):

(1) ) (2): Let p: z ! z=� denote the quotient map. We may w.l.o.g. assume that f

�

q(x

0

)

�

=

p(0). The fun
tion pÆ

e

f :

f

M ! z=� satis�es d(pÆ

e

f) = q

�

� , and the same is true for fÆq:

f

M ! z=�.

Sin
e both have the same value in x

0

, we see that pÆ

e

f = f Æq . This proves that pÆ

e

f is invariant

under �

1

(M), and therefore (3.1) shows that �(�)

�

�

1

(M)

�

� �.

(2) ) (1): If (2) is satis�ed, then (3.1) implies that the fun
tion p Æ

e

f :

f

M ! z=� is �

1

(M)-

invariant, hen
e fa
tors through a fun
tion f :M ! z=� with f Æ q = p Æ

e

f . Then f is smooth

and satis�es q

�

df = d

e

f = q

�

� , whi
h implies that df = � .

Corollary III.10. Let M be a 
onne
ted s.
.l.
. manifold. For a 
losed z-valued 1-form �

on M the following 
onditions are equivalent:

(1) There exists a dis
rete subgroup � � z and a smooth fun
tion f :M ! z=� with df = � .

(2) �(�)

�

�

1

(M)

�

is a dis
rete subgroup of z .

Proof. This is a dire
t 
onsequen
e of Proposition III.9.

We have already seen in Theorem III.6 that a 
losed 1-form � on M is exa
t if and only

if �(�) vanishes. The pre
eding 
orollary sharpens this information in the sense that it shows

that, even if �(�) is non-zero, if its range is dis
rete, then � is exa
t in the weaker sense that it

is the di�erential of a fun
tion to a quotient group of z .

Corollary III.11. Let M be a 
onne
ted s.
.l.
. manifold. For a 
losed 1-form � on M the

following are equivalent:

(1) There exists a smooth fun
tion f :M ! T with df = � .

(2) �(�)

�

�

1

(M)

�

� Z.

Proof. We apply Proposition III.9 with z = R and � = Z .

Appli
ations to Lie groups

Next we apply the results of this se
tion to homomorphisms of Lie groups. A Lie group G

is a group and a manifold (always assumed to be modeled over an s.
.l.
. spa
e) for whi
h the

group multipli
ation and the inversion are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg

for the left, resp., right multipli
ation on G . Then ea
h X 2 T

1

(G) 
orresponds to a unique left

invariant ve
tor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G:

The spa
e of left invariant ve
tor �elds is 
losed under the Lie bra
ket of ve
tor �elds, hen
e

inherits a Lie algebra stru
ture. In this sense we obtain on g := T

1

(G) a 
ontinuous Lie bra
ket

whi
h is uniquely determined by [X;Y ℄

l

= [X

l

; Y

l

℄ . Similarly we obtain right invariant ve
tor

�elds X

r

(g) = d�

g

(1):X , and they satisfy [X

r

; Y

r

℄ = �[X;Y ℄

r

(
f. [Mi83℄, [Ne97℄, [KM97℄).
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Lemma III.12. Let G be a Lie group, z an s.
.l.
. spa
e and C

n




(g; z) the spa
e of alternating


ontinuous n-linear maps g

n

! z . Then the maps

L:C

n




(g; z)! 


n

(g; z); L(�)(g)(v

1

; : : : ; v

n

) := �

�

d�

g

�1
(g):v

1

; : : : ; d�

g

�1
(g):v

n

�

assigning to � 2 C




(g; z) the 
orresponding left invariant n-form L(�) 2 


n

(G; z) intertwine the

di�erentials on C

�




(g; z) and 


�

(G; z) . In parti
ular, L(Z

n




(g; z)) 
onsists of 
losed forms and

L(B

n




(g; z)) of exa
t forms.

Proof. It suÆ
es to evaluate L(�) on left invariant ve
tor �elds. Then the formula

dL(�)(X

1

; : : : ; X

n

) = L(d�)(X

1

; : : : ; X

n

)

follows dire
tly from the de�nition of the di�erentials on both sides.

Lemma III.13. Let G be a Lie group, z an s.
.l.
. spa
e, 
 2 


2

(G; z) a left invariant 
losed

2-form, and X 2 g . Then the z-valued 1-form i(X

r

):
 = 
(X

r

; �) on G is 
losed.

Proof. It suÆ
es to show that for Y; Z 2 g we have d(i(X

r

):
)(Y

r

; Z

r

) = 0. Before we


an 
al
ulate this, we re
all that for the map '

X

:G ! g with '

X

(g) = Ad(g

�1

):X we have

d'

X

(1)(Y ) = [X;Y ℄ (
f. [Mi83, p.1036℄), and therefore

(Y

r

:'

X

)(g) = d'

X

(g)(d�

g

(1):Y ) = Ad(g

�1

):[X;Y ℄:

Having this relation in mind, we obtain with


(X

r

; Z

r

)(g) = !(Ad(g

�1

):X;Ad(g

�1

):Z); ! = 


1

and [X

r

; Y

r

℄ = �[X;Y ℄

r

the relation

Y

r

:

�


(X

r

; Z

r

)

�

(g) = !(Ad(g

�1

):[X;Y ℄;Ad(g

�1

):Z) + !(Ad(g

�1

):X;Ad(g

�1

):[Z; Y ℄)

= 
([Y

r

; X

r

℄; Z

r

)(g) + 
(X

r

; [Y

r

; Z

r

℄)(g):

Therefore

d(i(X

r

):
)(Y

r

; Z

r

) = Y

r

:
(X

r

; Z

r

)� Z

r

:
(X

r

; Y

r

)�
(X

r

; [Y

r

; Z

r

℄)

= 
([Y

r

; X

r

℄; Z

r

) + 
(X

r

; [Y

r

; Z

r

℄)�
([Z

r

; X

r

℄; Y

r

)

�
(X

r

; [Z

r

; Y

r

℄)�
(X

r

; [Y

r

; Z

r

℄)

= 
([Y

r

; X

r

℄; Z

r

)�
([Z

r

; X

r

℄; Y

r

)�
(X

r

; [Z

r

; Y

r

℄) = 0;

be
ause at a point g 2 G this expression equals

d(Ad

�

(g):!)(X;Y; Z) = d!(Ad(g

�1

):X;Ad(g

�1

):Y;Ad(g

�1

):Z) = 0:

Remark III.14. One 
an give a shorter proof of Lemma III.13 using the Cartan formula

d

�

i(X

r

):


�

= L

X

r

:
� i(X

r

):d
 = L

X

r

:
:

Now one has to argue that the left invarian
e of 
 implies that the Lie derivatives L

X

r

:
 vanish.

For Lie groups with an exponential fun
tion this is no problem be
ause the Lie derivative 
an be


al
ulated by

L

X

r

:
 =

d

dt

t=0

�

�

exp tX

:
 = 0:

If G has no exponential fun
tion, then the 
on
lusion is still valid, but requires more work in

lo
al 
oordinates whi
h is not needed for the proof given above.
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De�nition III.15. A Lie group G is 
alled regular if for ea
h 
losed interval I � R , t

0

2 I ,

and X 2 C

1

(I; g) the ordinary di�erential equation


(t

0

) = 1; 


0

(t) = d�


(t)

(1):X(t)

has a solution 
 2 C

1

(I;G). Moreover, we require the evolution map

evol

G

:C

1

(R; g) ! G; X 7! 
(1)

to be smooth.

Remark III.16. If z is an s.
.l.
. ve
tor spa
e, then z is a regular Lie group be
ause the

Fundamental Theorem of Cal
ulus holds for 
urves in z . The smoothness of the evolution map

is trivial in this 
ase be
ause it is a 
ontinuous linear map. Regularity is trivially inherited by

all groups Z = z=�, where � � z is a dis
rete subgroup.

If, 
onversely, Z is a regular Fr�e
het{Lie group and Z

0

its identity 
omponent, then the

exponential fun
tion exp: z ! Z

0

is a universal 
overing homomorphism, so that Z

0

�

=

z=� holds

for � := ker exp

�

=

�

1

(Z) ([MT99℄). So far, no example of a Lie group whi
h is not regular is

known.

Lemma III.17. Let G and H be 
onne
ted Lie groups and '

1=2

:G ! H two Lie group

homomorphisms for whi
h the 
orresponding Lie algebra homomorphisms d'

1

(1) and d'

2

(1)


oin
ide. Then '

1

= '

2

.

Proof. (see [Mi83, Lemma 7.1℄) The idea is as follows. Sin
e '

1

is a group homomorphism,

we have '

1

Æ �

g

= �

'(g)

Æ '

1

for g 2 G and therefore

(3:2) d'

1

(g)d�

g

(1) = d�

'(g)

Æ d'

1

(1):

For a di�erentiable path 
: [0; 1℄! G with 
(0) = 1 we 
onsider its left logarithmi
 derivative

(3:3) 


0

l

(t) := d�


(t)

�1
(
(t))


0

(t) 2 g

�

=

T

1

(G):

Then (3.2) implies that

('

1

Æ 
)

0

l

(t) = d'

1

(1)


0

l

(t):

A similar formula holds for '

2

. Therefore the paths '

1=2

Æ 
 have the same left logarithmi


derivatives, and this implies that both are equal be
ause both start in 1 (
f. [Mi83, Lemma

7.4℄).

Corollary III.18. If G is a 
onne
ted Lie group, then kerAd = Z(G) .

Proof. In view of Lemma III.17, for g 2 G the 
onditions I

g

= id

G

(for I

g

(x) = gxg

�1

) and

dI

g

(1) = Ad(g) = id

g

are equivalent. This implies the assertion.

Theorem III.19. If H is a regular Lie group, G is a simply 
onne
ted Lie group, and

': g ! h is a 
ontinuous homomorphism of Lie algebras, then there exists a unique Lie group

homomorphism �:G! H with d�(1) = ' .

Proof. This is Theorem 8.1 in [Mi83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

does not require the regularity of H , it follows from Lemma III.17.

Corollary III.20. Let G be a simply 
onne
ted Lie group, z an s.
.l.
. spa
e, and �: g ! z a


ontinuous Lie algebra homomorphism. Then there exists a unique smooth group homomorphism

f :G! z with df(1) = � .

Proof. Sin
e every s.
.l.
. ve
tor spa
e z is a regular Lie group (Remark III.16), the assertion

follows from Theorem III.19.

In this spe
ial 
ase we 
an also give a more dire
t proof as follows. We 
onsider the left

invariant 1-form � 2 


1

(G; z) with �

1

= � . Then � 2 Z

1




(g; z) implies that � is 
losed, hen
e

exa
t (Corollary III.5). Let f :G ! z be a smooth fun
tion with f(1) = 0 and df = � . Then

for ea
h g 2 G the fun
tion �

�

g

f � f satis�es

d(�

�

g

f � f) = �

�

g

df � df = �

�

g

�� � = 0:

Therefore �

�

g

f � f is 
onstant, showing that f(gh)� f(h) = f(g)� f(1) = f(g) for all g; h 2 G .

Hen
e f is a group homomorphism.
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Corollary III.21. Let G be a 
onne
ted Lie group, z an s.
.l.
. spa
e, � � z a dis
rete

subgroup, and �: g ! z a 
ontinuous Lie algebra homomorphism. Then there exists a smooth

group homomorphism f :G ! Z := z=� with df(1) = � if and only if �(�)

�

�

1

(G)

�

� � holds

for the left invariant 
losed 1-form � on G with �

1

= � .

Proof. Let q:

e

G ! G denote the universal 
overing morphism and

e

f :

e

G ! z the unique Lie

group homomorphism with d

e

f(1) = � (Corollary III.20). Let q

Z

: z ! Z denote the quotient

map. Then f

Z

:= q

Z

Æ

e

f :

e

G ! Z is a Lie group homomorphism with df

Z

= � . Whenever a

homomorphism f as required exists, its di�erential df is a left invariant 1-form, hen
e 
oin
ides

with � . Therefore f Æ q = f

Z

.

This proves that f exists if and only if ker q � ker f

Z

whi
h in turn means that

e

f(ker q) �

�. On the other hand

e

f(ker q) = �(�)(�

1

(G)); and this 
on
ludes the proof.

IV. Lo
al and global 
o
y
les for 
entral extensions of Lie groups

In this paper Lie groups are always understood as manifolds modeled over s.
.l.
. spa
es. In

the setting of Lie groups, we 
onsider only those 
entral extensions

b

G ! G whi
h are smooth

prin
ipal bundles, i.e., have a smooth lo
al se
tion. We simply 
all them smooth 
entral extensions

(
f. [KM97, Se
t. 38.6℄). A typi
al example of an extension whi
h does not have this property is




0

(N) ,! l

1

(N) !! l

1

(N)=


0

(N)

whi
h does not have any smooth lo
al se
tion be
ause the 
losed subspa
e 


0

(N) of l

1

(N) is not


omplemented (
f. [We95, Satz IV.6.5℄).

In this se
tion we 
olle
t preliminary material for the global 
entral extension theory

des
ribed in Se
tion V. In the �rst part of this se
tion we dis
uss the representability of Lie group

extensions by 
o
y
les, and in the se
ond part we explain the step from in�nitesimal 
entral

extensions, i.e., 
entral extensions of Lie algebras to 
entral extensions of lo
al groups. This

prepares the appli
ation of the topologi
al material in Se
tion III to global Lie group extensions.

Central extensions and 
o
y
les

Lemma IV.1. Let G be a 
onne
ted topologi
al group and K = K

�1

be an open 1-neighborhood

in G . We further assume that K is a smooth manifold su
h that the inversion is smooth on K

and there exists an open 1-neighborhood V � K with V

2

� K su
h that the group multipli
ation

m:V � V ! K is smooth. Then there exists a unique stru
ture of a Lie group on G for whi
h

the in
lusion map K ,! G indu
es a di�eomorphism on open neighborhoods of 1 .

Proof. (
f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional 
ase) After shrinking

V and K , we may assume that there exists a di�eomorphism ':K ! '(K) � E , where E is a

s.
.l.
. spa
e, that V satis�es V = V

�1

, V

4

� K , and that m:V

2

� V

2

! K is smooth. For

g 2 G we 
onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whi
h are homeomorphisms of gV onto '(V ). We 
laim that ('

g

; gV )

g2G

is an atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))
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follows from the smoothness of the multipli
ation V

2

� V ! K . This proves that the 
harts

('

g

; gK)

g2G

form an atlas of G . Moreover, the 
onstru
tion implies that all left translations of

G are smooth maps.

The 
onstru
tion also shows that for ea
h g 2 V the 
onjugation I

g

:G ! G is smooth in

a neighborhood of 1 . Sin
e the set of all these g is a submonoid of G 
ontaining V , it 
ontains

V

n

for ea
h n 2 N , hen
e all of G be
ause G is 
onne
ted and thus 
onsequently generated by

V . Therefore all 
onjugations and also all right multipli
ations are smooth. The smoothness of

the inversion follows from its smoothness on V and the fa
t that left and right multipli
ations

are smooth. Finally the smoothness of the multipli
ation follows from the smoothness in 1� 1

be
ause of

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2

I

g

�1

2

(x)y = g

1

g

2

m

G

(I

g

�1

2

(x); y):

The uniqueness of the Lie group stru
ture is 
lear be
ause ea
h lo
ally di�eomorphi
 bije
tive

homomorphism between Lie groups is a di�eomorphism.

Proposition IV.2. Let G and Z be Lie groups, where G is 
onne
ted, and Z ,!

b

G ! G

a 
entral extension of G by Z . Then

b

G 
arries the stru
ture of a Lie group su
h that

b

G ! G

is a smooth 
entral extension if and only if the 
entral extension 
an be des
ribed by a 
o
y
le

f :G�G! Z whi
h is smooth in a neighborhood of (1;1) in G�G .

Proof. (see [TW87, Prop. 3.11℄ for the �nite-dimensional 
ase) First we assume that

b

G! G

is a smooth 
entral extension of G . Then there exists a 1-neighborhood U � G and a smooth

se
tion �:U !

b

G of the map q:

b

G ! G . We extend � to a global se
tion G !

b

G . Then

f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-
o
y
le G�G! Z whi
h is smooth in a neighborhood

of (1;1).

Conversely, we assume that

b

G

�

=

G �

f

Z holds for a 2-
o
y
le f :G � G ! Z whi
h is

smooth in a neighborhood of (1;1) in G � G . We endow

b

G with the unique group topology

su
h that

b

G! G is a topologi
al prin
ipal bundle (Proposition II.4). Then Lemma IV.1 implies

the existen
e of a unique Lie group stru
ture on

b

G 
ompatible with the topology and su
h that

there exists a 1-neighborhood of the produ
t type U

G

� U

Z

, where U

G

is a 1-neighborhood in

G , U

Z

is a 1-neighborhood in Z , and the produ
t map U

G

�U

Z

! U

G

U

Z

is a di�eomorphism.

Hen
e there exists a smooth lo
al se
tion �:U

G

!

b

G , showing that

b

G! G is a smooth 
entral

extension.

In [Va85, Th. 7.21℄ one �nds a version of Proposition IV.2 for �nite-dimensional Lie groups,

where Lie groups are 
onsidered as spe
ial lo
ally 
ompa
t groups. The existen
e of Borel 
ross

se
tions for lo
ally 
ompa
t groups implies that their 
entral extensions 
an be des
ribed by

measurable 
o
y
les whi
h, for Lie groups, 
an be repla
ed by equivalent 
o
y
les whi
h are

smooth near to the identity.

Remark IV.3. If the group G is not 
onne
ted, then one has to make the additional assump-

tion that for ea
h g 2 G the 
orresponding 
onjugation map I

g

:

b

G!

b

G is smooth in the identity,

but this is only relevant for the elements not 
ontained in the open subgroup generated by U

(
f. Remark II.5 for the 
ontinuous 
ase).

For Bana
h{Lie groups and in parti
ular for �nite-dimensional Lie groups every automor-

phism of the topologi
al stru
ture is automati
ally smooth, whi
h 
an be dedu
ed from the fa
t

that the exponential fun
tion is a lo
al di�eomorphism around 1 . Therefore Proposition IV.2

requires for Bana
h{Lie groups whi
h are not 
onne
ted no additional requirements, on
e we

have a group topology on

b

G with the required properties.

Remark IV.4. Let G and Z be Lie groups, where G is 
onne
ted. We have seen in Proposition

IV.2 that the 
entral extensions of G by Z whi
h are smooth prin
ipal Z -bundles 
an be

represented by 2-
o
y
les f :G�G! Z whi
h are smooth in a neighborhood of (1;1) in G�G .

We write Z

2

s

(G;Z) for the group of these 
o
y
les. Likewise we have a group B

2

s

(G;Z) of

2-
oboundaries

f(x; y) = h(xy)h(x)

�1

h(y)

�1

;
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where h:G! Z is smooth in a 1-neighborhood. Then the group

Ext

Lie

(G;Z) := Ext

s

(G;Z) := H

2

s

(G;Z) := Z

2

s

(G;Z)=B

2

s

(G;Z)


lassi�es the 
entral extensions of G by Z whi
h are smooth prin
ipal bundles.

Remark IV.5. We 
onsider the setting of Remark II.5, where A , B , C , G and Z are Lie

groups su
h that B ! C is a smooth 
entral, resp., abelian extension. In this 
ontext everything

in Remark II.5 
arries over to the smooth 
ontext. In parti
ular we obtain an exa
t sequen
e of

maps

f1g !Hom(C;Z)��!Hom(B;Z)��!Hom(A;Z)

E

�

��!Ext

Lie

(C;Z)

�

�

��!Ext

Lie;�(A)

(B;Z)

�

�

��!Ext

Lie;ab

(A;Z);

where Hom denotes smooth homomorphisms and the groups A , B and C are 
onne
ted.

Likewise we obtain for a 
onne
ted Lie group G an exa
t sequen
e

f1g !Hom(G;A)��!Hom(G;B)��!Hom(G;C)

E

�

��!Ext

Lie

(G;A)

�

�

��!Ext

Lie

(G;B)

�

�

��!Ext

Lie

(G;C):

Lo
al 
o
y
les

De�nition IV.6. (a) Let G be a topologi
al group and U � G an open symmetri
 1-

neighborhood. Further let Z be an abelian group written additively. A fun
tion f :U � U ! Z

satisfying

f(x;1) = f(1; x) = 0; f(x; y) + f(xy; z) = f(x; yz) + f(y; z) for x; y; z; xy; yz 2 U

is 
alled a lo
al Z -valued 2-
o
y
le on U .

(b) The set

W := f(x

0

; x

1

; x

2

) 2 G

3

:x

�1

0

x

1

; x

�1

1

x

2

2 Ug

is an open G-left invariant neighborhood of the diagonal in G

3

, and for ea
h lo
al 2-
o
y
le

f :U � U ! Z we obtain a fun
tion

F :W ! Z; F (x

0

; x

1

; x

2

) := f(x

�1

0

x

1

; x

�1

1

x

2

):

The 
o
y
le 
ondition for f implies that F de�nes an Alexander{Spanier 
o
y
le (
f. De�nition

A.2.4) be
ause for (x

0

; x

1

; x

2

; x

3

) 2 G

4

with all produ
ts x

�1

i

x

j

2 U we have for a := x

�1

0

x

1

,

b := x

�1

1

x

2

and 
 := x

�1

2

x

3

the relation

ÆF (x

0

; x

1

; x

2

; x

3

) = ÆF (1; x

�1

0

x

1

; x

�1

0

x

2

; x

�1

0

x

3

) = ÆF (1; a; ab; ab
)

= F (a; ab; ab
)� F (1; ab; ab
) + F (1; a; ab
)� F (1; a; ab)

= f(b; 
)� f(ab; 
) + f(a; b
)� f(a; b) = 0:

Using Remark A.2.5, we assign to f a singular 
ohomology 
lass �(f) := �([f ℄) 2 H

2

sing

(G;Z) by

evaluating F on W -small 2-dimensional singular simpli
es by '(F )(�) := F (�(d

0

); �(d

1

); �(d

2

)).

The following theorem is essentially Proposition 1.1 in [EK64℄. It des
ribes the obstru
tion

to the extendability of a lo
al 2-
o
y
le to a global one by a singular Z -valued 
ohomology 
lass.
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Theorem IV.7. (van Est{Korthagen) Let G be a topologi
al group, Z an abelian group,

V � G a symmetri
 1-neighborhood, f :V � V ! Z a lo
al Z -valued 2-
o
y
le, and �(f) 2

H

2

sing

(G;Z) the 
orresponding singular 
ohomology 
lass. If there exists an open symmetri
 1-

neighborhood W � V su
h that f j

W�W

extends to a Z -valued 2-
o
y
le on G � G , then

�(f) = 0 . The 
onverse holds if G is lo
ally 
ontra
tible, 
onne
ted and simply 
onne
ted.

Proof. The ingredients of the proof are explained in Appendix A.3.

For the following lemma we de�ne for a smooth map f :M �N ! z and (p; q) 2 M �N

the bilinear map

d

2

f(p; q):T

p

(M)� T

q

(N)! z; d

2

f(p; q)(v; w) :=

�

2

�s�t

j

t;s=0

f(
(t); �(s));

where 
: ℄�"; "[!M , resp., �: ℄�"; "[! N are 
urves with 
(0) = p , 


0

(0) = v , resp., �(0) = q ,

�

0

(0) = w . It is easy to see that the right hand side does not depend on the 
hoi
e of 
urves 


and � .

Lemma IV.8. Let G be a Lie group, z an s.
.l.
. spa
e and ! 2 Z

2




(g; z) . Let 
 denote

the 
losed left invariant z-valued 2-form on G with 


1

= ! . Then there exists an open 1-

neighborhood K � G and a smooth z-valued lo
al 2-
o
y
le f :K �K ! z satisfying

(4:1) d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = !(X;Y ); X; Y 2 g:

Moreover, the Lie bra
ket on

b

g := g � z 
orresponding to the lo
al group stru
ture on K � z

de�ned by

(x; z) � (x

0

; z

0

) := (xx

0

; z + z

0

+ f(x; x

0

)); x; x

0

; xx

0

2 K; z; z

0

2 Z

is

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; d

2

f(1;1)(X;X

0

)� d

2

f(1;1)(X

0

; X)

�

:

Proof. We start with an open 1-neighborhood U � G for whi
h there exists a 
hart

':V ! U , where V � g is an open 
onvex subset 
ontaining 0. Moreover, we assume that

'(0) = 1 and d'(0) = id

g

. We observe that Lemma III.12 implies that 
 is 
losed. Now we

apply the Poin
ar�e Lemma III.3 to �nd a smooth z-valued 1-form � on U with d� = 
 j

U

and

�

1

= 0. Next we 
hoose an open 1-neighborhood W � U su
h that '

�1

(W ) is also 
onvex and

(W [W

�1

)

2

� U . For g 2 W we then have �

g

(W ) � U , so that �

�

g

� j

W

is de�ned. The left

invarian
e of 
 implies that

d(�

�

g

� j

W

� � j

W

) = (�

�

g

d�) j

W

� (d�) j

W

= (�

�

g


) j

W

�
 j

W

= 0:

Therefore �

�

g

� j

W

� � j

W

is a 
losed 1-form, and we 
an use the Poin
ar�e Lemma again to �nd

smooth fun
tions f

g

:W ! z with f

g

(1) = 0 and df

g

= �

�

g

� j

W

� � j

W

:

We 
laim that the fun
tion

f :W �W ! z; f(x; y) := f

x

(y)

is smooth. In view of the Poin
ar�e Lemma III.3, we have

f('(x); '(y)) =

Z

1

0

'

�

(�

�

'(x)

� � �)(ty)(y) dt

=

Z

1

0

h�('(x)'(ty)); d�

'(x)

('(ty))d'(ty):yi � h�('(ty)); d'(ty):yi dt:

Sin
e the integrand is a smooth fun
tion of t , x and y , the integral is a smooth fun
tion of x

and y , whi
h 
an be shown by dire
t 
al
ulations (see also [KM97, Prop. 3.15℄ whi
h, in view of

Remark III.2, provides the result for the Fr�e
het 
ase).
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Now we show that f is a lo
al z-valued 2-
o
y
le on a suitable symmetri
 1-neighborhood.

Our 
onstru
tion shows that

f(1; x) = f(x;1) = 0 for x 2W:

Let K � W be an open, 
onne
ted symmetri
 1-neighborhood satisfying K

4

� W . Then for

g; h 2 K the fun
tions f

g

Æ �

h

and f

gh

are de�ned on K , where we have

d(f

g

Æ �

h

+ f

h

) = �

�

h

(�

�

g

� � �) + �

�

h

� � � = �

�

gh

� � � = df

gh

:

Therefore the 
onne
tedness of K implies

f

g

Æ �

h

+ f

h

= f

gh

+ f

g

(h)

be
ause both sides have the same di�erential and the same value in 1 . This leads to

f(g; hu) + f(h; u) = f(gh; u) + f(g; h) for g; h; u 2 K:

So f :K�K ! z is a lo
al z-valued 2-
o
y
le. On the set of pairs ((k; z); (k

0

; z

0

)) with kk

0

2 K

we now de�ne a lo
al multipli
ation by

(k; z) � (k

0

; z

0

) := (kk

0

; z + z

0

+ f(k; k

0

)):

It remains to prove (4.1). We 
onsider the lo
al 
hart

b':'

�1

(K)� z! K � z; b'(x; z) := ('(x); z)

and put

x � y := b'

�1

�

b'(x)b'(y))

for x; y 2

b

g = g � z 
lose to 0. As in [Mi83, p.1036℄, we 
onsider the Taylor expansion of the

�-produ
t whi
h has the stru
ture

x � y = (x+ y) + b(x; y) + � � � ;

where b:

b

g�

b

g!

b

g is a 
ontinuous bilinear fun
tion and � � � stands for terms of degree three and

more (
f. [Mi83, 3.9℄). Here the stru
ture of the �rst order term follows from 0 � x = x � 0 = x .

The inversion is given by

x

�1

= �x+ b(x; x) + � � �

and 
onjugation by

x � y � x

�1

= y +

�

b(x; y)� b(y; x)

�

+ � � � ;

whi
h, as explained in detail in [Mi83℄, leads to the Lie bra
ket

[x; y℄ = b(x; y)� b(y; x):

In our situation we have

(X; z) � (X

0

; z

0

) =

�

X �

g

X

0

; z + z

0

+ f('(X); '(X

0

))

�

=

�

X +X

0

+ b

g

(X;X

0

) + � � � ; z + z

0

+ f('(X); '(X

0

)) + � � �

�

:

In view of f(x;1) = f(1; x) = 0, the Taylor expansion of f Æ (' � ') in (0; 0) has no 
onstant

term and no terms of �rst order. The se
ond order term is given by

d

2

f(1;1)

�

d'(0)X; d'(0)X

0

�

= d

2

f(1;1)(X;X

0

):

Hen
e

b

�

(X; z); (X

0

; z

0

)

�

=

�

b

g

(X;X

0

); d

2

f(1;1)(X;X

0

)

�

:
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This proves that

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; d

2

f(1;1)(X;X

0

)� d

2

f(1;1)(X

0

; X)

�

:

Se
ond Proof: We also give a se
ond proof whi
h is more dire
t in that it does not make

heavy use of the Taylor expansion. The 
onjugation in the lo
al group

b

K is given by

I

(g;a)

(h; b) = (g; a)(h; b)(g; a)

�1

=

�

ghg

�1

; b+ f(g; h)� f(ghg

�1

; g)

�

for h suÆ
iently 
lose to 1 (
f. Remark I.2(a)). Taking derivatives, we now obtain

Ad(g; a)(X; z) := dI

(g;a)

(X; z) = (Ad(g):X; z + d

2

f(g;1)(X)� d

1

f(1; g)Ad(g):X

�

:

Taking the derivative in (g; a) = (1; 0) in the dire
tion of (X

0

; z

0

) now yields

[(X

0

; z

0

); (X; z)℄ =

�

dAd(1; 0)(X

0

; z

0

)

�

:(X; z)

= ([X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

1

f(1;1):[X

0

; X ℄� d

2

f(1;1)(X;X

0

)

�

be
ause d

�

Ad(�):(X; z)

�

(1) = ad(�):(X; z) ([Mi83, p.1036℄). To simplify this expression, we use

f(1; g) = f(g;1) = 0 to get d

1

f(1;1) = d

2

f(1;1) = 0, and hen
e the simpler formula

[(X

0

; z

0

); (X; z)℄ =

�

[X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

2

f(1;1)(X;X

0

)

�

:

Now we relate this formula to the Lie algebra 
o
y
le ! . The relation df

g

= �

�

g

�� � leads

to

d

2

f(g;1)(Y ) = (�

�

g

� � �)

1

(Y ) = h�; Y

l

i(g)� �

1

(Y ) = h�; Y

l

i(g);

where Y

l

denotes the left invariant ve
tor �eld with Y

l

(1) = Y . Taking se
ond derivatives, we

further obtain for X 2 g :

d

2

f(1;1)(X;Y ) = X

l

(h�; Y

l

i)(1) = d�(X

l

; Y

l

)(1) + Y

l

(h�;X

l

i)(1) + �([X

l

; Y

l

℄)(1)

= !(X;Y ) + Y

l

(h�;X

l

i)(1)

and therefore

d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = X

l

(h�; Y

l

i)(1)� Y

l

(h�;X

l

i)(1) = !(X;Y ):

Lemma IV.9. The 
onstru
tions in De�nition IV.6 and Lemma IV.8 indu
e a linear map


:H

2




(g; z)! H

2

A�S

(G; z)! H

2

sing

(G; z); [!℄ 7! [F ℄ 7! �(f):

Moreover, the smooth Alexander{Spanier 
o
y
le F is mapped by the map � de�ned in Remark

A.2.7 to the 
losed 2-form �(F ) = 
 2 Z

2

dR

(G; z) .

Proof. First we �x ! . If 
 j

U

= d�

0

holds for another z-valued 1-form �

0

on U , then

�� �

0

is 
losed, hen
e exa
t by the Poin
ar�e Lemma III.3. Let h 2 C

1

(U; z) with h(1) = 0 and

dh = �

0

� � . Then

d(f

0

g

� f

g

) = �

�

g

(�

0

� �)� (�

0

� �) = �

�

g

dh� dh = d(�

�

g

h� h)

implies that

f

0

g

� f

g

= �

�

g

h� h� h(g);

and therefore

f

0

(x; y)� f(x; y) = h(xy)� h(y)� h(x); x; y 2 W � U:
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For the 
orresponding Alexander{Spanier 
o
hains F , F

0

(De�nition IV.6), this leads to

F

0

(x; y; z)� F (x; y; z) = f

0

(x

�1

y; y

�1

z)� f(x

�1

y; y

�1

z)

= h(x

�1

z)� h(y

�1

z)� h(x

�1

y) = �(ÆH)(x; y; z):

Therefore F and F

0

de�ne the same Alexander{Spanier 
ohomology 
lass, showing that this 
lass

does not depend on the 
hoi
e of � . We therefore obtain a linear map Z

2




(g; z)! H

2

A�S

(G; z).

Now we show that it vanishes on B

2




(g; z). So let �: g! z be a 
ontinuous linear map and

!(x; y) := d�(x; y) = ��([x; y℄) . Let � 2 


1

(G; z) be the left invariant 1-form with �

1

= � . Then


 = d� holds on G , and sin
e � is left-invariant, the 
orresponding lo
al 
o
y
le f vanishes. In

view of the natural map H

2

A�S

(G; z) ! H

2

sing

(G; z), this 
ompletes the proof of the �rst part.

Now 
onsider

F :W ! z; F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

);

where W � G � G � G is a suÆ
iently small open neighborhood of the diagonal. Sin
e F is

a G-invariant fun
tion, the 2-form �(F ) is left invariant (Remark A.2.7), so that it suÆ
es to


al
ulate �(F )

1

. First we re
all that

F (1; x

1

; x

2

) = f(x

1

; x

�1

1

x

2

) = f(x

1

x

�1

1

; x

2

) + f(x

1

; x

�1

1

)� f(x

�1

1

; x

2

) = f(x

1

; x

�1

1

)� f(x

�1

1

; x

2

):

Therefore Lemma IV.8 yields

�(F )

1

(X;Y ) = �d

2

f(1;1)(�X;Y ) + d

2

f(1;1)(�Y;X) = d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X)

= !(X;Y )

for X;Y 2 g . We 
on
lude that �(F ) = 
.

De�nition IV.10. Let G be a 
onne
ted Lie group and ':�

2

(G) ! H

2

(G) be the natural

homomorphism. To ea
h 
ontinuous Lie algebra 
o
y
le ! 2 Z

2




(g; z) we asso
iate with Lemma

IV.9 the 
ohomology 
lass


(!) := 
([!℄) 2 H

2

sing

(G; z)

�

=

Hom(H

2

(G); z)

(
f. Remark A.1.2, z is divisible). The 
orresponding homomorphism

per

!

:= 
(!) Æ ':�

2

(G)! z

is 
alled the period homomorphism of the Lie algebra 
o
y
le ! and its image the group of

periods.

Remark IV.11. (a) If G is 
onne
ted and simply 
onne
ted, then Hurewi
z's Theorem (Re-

mark A.2.1) implies that the natural map ':�

2

(G) ! H

2

(G) is an isomorphism, so that

per

!


an be identi�ed with the singular 
ohomology 
lass 
(!). This shows that the 
lass




Z

(!) := q

Z

Æ 
(!), q

Z

: z ! Z the quotient map, is trivial if and only if the period group

im(per

!

) is 
ontained in �.

Conversely, there exists a dis
rete subgroup � � z su
h that 


Z

(!) = 0 holds for Z := z=�

if and only if the period group is a dis
rete subgroup of z .

(b) The period homomorphism per

!

is the same for all lo
ally isomorphi
 Lie groups G with

the Lie algebra g , be
ause all these groups have the same universal 
overing group (
f. Lemma

II.3).

In view of Theorem IV.7, the extendability of the lo
al 2-
o
y
le f to a global 2-
o
y
le

is 
hara
terized by im(per

!

) � �. Therefore it is desirable to have 
on
rete means to 
al
ulate

the period group. The following theorem often provides a method to 
al
ulate it in terms of de

Rham 
lasses.
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Theorem IV.12. Let g be the Lie algebra of the 
onne
ted Lie group G , ! 2 Z

2




(g; z) a


ontinuous Lie algebra 2-
o
y
le and 
 2 


2

(G; z) the 
orresponding left invariant 
losed 2-

form. For 
 2 C

1

(S

2

; G) we then have

per

!

([
℄) =

Z





:

Proof. We re
all from Lemma IV.8 and De�nition IV.6 that the 
ohomology 
lass 
(!) 2

H

2

sing

(G; z) 
an be represented by a smooth Alexander{Spanier 
o
y
le

F :W ! z; F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

);

where W � G�G�G is an open neighborhood of the diagonal. The natural homomorphism

H

2

A�S

(
):H

2

A�S

(G; z)! H

2

A�S

(S

2

; z)

maps [F ℄ onto the 
lass [F Æ (
 � 
 � 
)℄ whi
h is a smooth fun
tion on a neighborhood of the

diagonal in (S

2

)

3

. In view of Theorem A.2.6, the de Rham 
lass 
orresponding to [F Æ(
�
�
)℄

is

�([F Æ (
 � 
 � 
)℄) = �(F Æ (
 � 
 � 
)) = 


�

�(F );

so that de Rham's Theorem yields

per

!

([
℄) =

Z

S

2




�

�(F ) =

Z




�(F ):

Hen
e the assertion follows from �(F ) = 
 (Lemma IV.9).

The major problem with the pre
eding result is that a de Rham isomorphism is only

available for smoothly para
ompa
t manifolds (
f. [KM97℄). It leads in parti
ular to the following

non-vanishing test (see [EK64℄): If there exists a smooth map 
:S

2

! G with

R





 62 �, then




Z

([!℄) 6= 0, so that the 
orresponding lo
al 
o
y
le is not extendable to a 
o
y
le on G (Theorem

IV.7).

V. Central extensions of in�nite-dimensional Lie groups

In this se
tion we eventually turn to the global theory of 
entral extensions of Lie groups. Let G

be a 
onne
ted Lie group. We write Ext

Lie

(G;Z) for the group of equivalen
e 
lasses of smooth


entral extensions of G by the abelian Lie group Z . Throughout this se
tion G will denote a


onne
ted Lie group and Z will be of the form Z = z=�, where � � z is a dis
rete subgroup

in the s.
.l.
. spa
e z . We write q

Z

: z ! Z for the quotient map. The 
entral result of this

se
tion is the long exa
t sequen
e des
ribed in the introdu
tion. In parti
ular we will see that a

Lie algebra 
o
y
le ! integrates to a smooth 
entral extension of a simply 
onne
ted Lie group

if and only if the 
orresponding group of periods is dis
rete (Theorem V.7). We 
on
lude this

se
tion with a dis
ussion of 
onditions for the existen
e of a smooth 
ross se
tion for a 
entral

extension q:

b

G! G .

De�nition V.1. (a) Let 
 2 Hom

�

�

1

(G); Z

�

. We identify �

1

(G) with ker q

G

�

e

G , where

q

G

:

e

G! G is the universal 
overing homomorphism. Then

�(


�1

) := f(d; 
(d)

�1

) 2

e

G� Z: d 2 �

1

(G)g

is a dis
rete 
entral subgroup of

e

G � Z , so that

b

G := (

e

G � Z)=�(


�1

) 
arries a natural Lie

group stru
ture whi
h is a Z -prin
ipal bundle over G : the quotient map �:

b

G ! G is given by

�([g; t℄) := q(g), and its kernel 
oin
ides with (�

1

(G)� Z)=�(


�1

)

�

=

Z . We write

�

1

: Hom

�

�

1

(G); Z

�

! Ext

Lie

(G;Z)
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for the group homomorphism de�ned this way. If E stands for the 
entral extension �

1

(G) ,!

e

G!! G , this is the homomorphism E

�

from Remarks IV.5 and I.3.

(b) Let E:Z ,!

b

G

q

��!G be a 
entral Z -extension of G with a smooth lo
al se
tion. Then

the Lie algebra

b

g of

b

G is a 
entral extension of g by z be
ause the existen
e of a smooth lo
al

se
tion of q implies that the subspa
e z

�

=

ker dq(1) �

b

g has a 
omplement isomorphi
 to g , so

that

b

g

�

=

g� z as topologi
al ve
tor spa
es. Therefore

b

g 
an be written as

b

g

�

=

g�

!

z with the

bra
ket

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; !(X;X

0

)

�

;

where ! 2 Z

2




(g; z) is a 
ontinuous z-valued 2-
o
y
le on g . We put �

2

(E) := [!℄ 2 H

2




(g; z),

where H

2




(g; z) denotes the Lie algebra 
ohomology involving only 
ontinuous 
o
y
les. We thus

obtain a group homomorphism

�

2

: Ext

Lie

(G;Z)! H

2




(g; z):

The image of �

2

are those 
ohomology 
lasses [!℄ 2 H

2




(g; z) for whi
h there exists a Lie group

b

G whi
h is a Z -extension of G . If G is simply 
onne
ted, then we 
all the elements [!℄ 2 im �

2

and the 
orresponding Lie algebras

b

g integrable.

(
) Let [!℄ 2 H

2




(g; z) and write 
 for the z-valued left invariant 
losed 2-form on G with




1

= ! . Further let per

!

:�

2

(G) ! z be the period homomorphism (De�nition IV.10). We

de�ne

�

3;1

([!℄) := q

Z

Æ per

!

:�

2

(G)! Z:

Now let X 2 g and 
onsider the 
orresponding right invariant ve
tor �eld X

r

on G .

Then i(X

r

):
 is a 
losed z-valued 1-form (Lemma III.13). For ea
h pie
ewise di�erentiable loop


: [0; 1℄! G with 
(0) = 1 we now put

�

3;2

([!℄)([
℄)(X) :=

Z




i(X

r

):
 = �([i(X

r

):
℄)([
℄)

(Theorem III.6). It is 
lear that �

3;2

([!℄) 
an be viewed as a homomorphism �

1

(G)! Hom(g; z).

We 
laim that its range 
onsists of 
ontinuous linear maps. In fa
t, for ea
h pie
ewise di�eren-

tiable loop 
: [0; 1℄! G we have

�

3;2

([!℄)([
℄)(X) =

Z

1

0


(X

r

(
(t)); 


0

(t)) dt =

Z

1

0

!

�

Ad(
(t))

�1

:X; 


0

l

(t)

�

dt;

where 


0

l

(t) := d�

�1


(t)

(
(t)):


0

(t) 2 g

�

=

T

1

(G) denotes the left derivative of 
 in t . Sin
e the

integrand is a 
ontinuous map [0; 1℄�g! z , the integral is a 
ontinuous map g! z . We 
ombine

these two maps to

�

3

:H

2




(g; z)! Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom




(g; z)

�

:

First we take a 
loser look at the homomorphism �

1

.

Lemma V.2. Let G and

b

G be 
onne
ted Lie groups, q:

b

G ! G a 
overing homomorphism

with kernel D and Z

�

=

z=� . Then D is a dis
rete 
entral subgroup of

b

G and q indu
es an exa
t

sequen
e

f0g ! Hom(G;Z)! Hom(

b

G;Z)! Hom(D;Z)

�

1

��!Ext

Lie

(G;Z)! Ext

Lie;D

(

b

G;Z)! f0g:

Proof. The kernel D of q is a dis
rete normal subgroup of the 
onne
ted group

b

G , hen
e


entral. In view of Remark IV.5, the 
entral extension q:

b

G! G leads to the exa
t sequen
e

Hom(G;Z) ,! Hom(

b

G;Z)

res

��!Hom(D;Z)

�

1

�!Ext

Lie

(G;Z)

q

�

�!Ext

Lie;D

(

b

G;Z)! Ext

Lie;ab

(D;Z)

be
ause �

1


oin
ides with the map E

�

in Theorem I.5. This means in parti
ular that �

1

is a

group homomorphism and that the range of E

�


onsists entirely of Lie group extensions (Remark

IV.5).

Sin
e the abelian group Z

�

=

z=� is divisible, we have Ext

ab

(D;Z) = f0g . Therefore q

�

is

surje
tive, so that we obtain the asserted exa
t sequen
e.
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Remark V.3. If g is topologi
ally perfe
t and G is 
onne
ted, then we have Hom(G;Z) =

Hom(

b

G;Z) = f0g be
ause the 
orresponding Lie algebra homomorphisms df(1): g! z are trivial

(Lemma III.17). In the setting of Lemma V.2, we therefore obtain the short exa
t sequen
e

f0g ! Hom(D;Z) ,! Ext

Lie

(G;Z)!! Ext

Lie;D

(

b

G;Z)! f0g:

Theorem V.4. For every 
onne
ted Lie group G we have ker �

2

= im �

1

.

Proof. \�": Let f :�

1

(G)! Z and 
onsider the 
orresponding 
entral extension

b

G :=

e

G�

f

Z

�

=

(

e

G� Z)=�(f

�1

)! G; [g; t℄ 7! q(g):

The map

e

G � Z !

b

G is a 
overing with kernel �(f

�1

) isomorphi
 to �

1

(G). Hen
e

b

g , the Lie

algebra of

b

G , is isomorphi
 to g� z , showing that the 
orresponding Lie algebra extension

b

g! g

is trivial. Thus im �

1

� ker �

2

.

\�": Suppose that �

2

(E) = f0g holds for the 
entral extension E:Z ,!

b

G

q

��!G . Then the Lie

algebra extension

b

g! g splits, so that we have a 
ontinuous Lie algebra homomorphism �:

b

g! z

extending the identity on z �

b

g . Let q

b

G

:G

℄

!

b

G denote a universal 
overing of

b

G . In view of

Theorem III.19, there exists a unique Lie group homomorphism ':G

℄

! z with d'(1) = � . On

the other hand the embedding �

Z

:Z !

b

G lifts to a homomorphism �

z

: z! G

℄

with ' Æ �

z

= id

z

(
f. Lemma III.17). We �x a smooth lo
al se
tion �:U !

b

G , where U � G is an open symmetri


1-neighborhood. In addition, we assume that there exists a smooth lo
al se
tion b�:

b

U ! G

℄

,

where

b

U �

b

G is an open 1-neighborhood 
ontaining �(U). Then e�: = b�Æ�:U ! G

℄

is a smooth

map with

q Æ q

b

G

Æ e� = q Æ � = id

U

:

Let �

1

(x) := e�(x)�

z

�

'(e�(x))

�

�1

. Then �

1

:U ! G

℄

also is a smooth se
tion of q Æ q

b

G

, and,

in addition, im(�

1

) � ker' . Sin
e q

�1

(U) = �(U)Z

�

=

U � Z; the group G

℄


ontains a 1-

neighborhood of the form

e

U := �

1

(U)�

z

(U

z

);

where U

z

� z is an open 0-neighborhood. Then '

�

�

1

(x)�

z

(z)

�

= z implies that ker' \

e

U =

�

1

(U). Let x; y 2 U with xy 2 U and �

1

(x)�

1

(y) 2

e

U . Then �

1

(x)�

1

(y) 2 ker' \

e

U = �

1

(U)

and q Æ q

b

G

(�

1

(x)�

1

(y)) = xy leads to �

1

(xy) = �

1

(x)�

1

(y). Now Proposition II.8 implies that

b

G

�

=

(

e

G� Z)=�(


�1

) for some 
 2 Hom(�

1

(G); Z).

Remark V.5. In Theorem V.4 we have determined the kernel of �

2

as the image of �

1

. On

the other hand we have the exa
t sequen
e

Hom(

e

G;Z)! Hom(�

1

(G); Z)! Ext

Lie

(G;Z)

q

�

G

����!Ext

Lie

(

e

G;Z)

(Lemma V.2). Sin
e G and

e

G have the same Lie algebra, we also have a homomorphism

e

�

2

: Ext

Lie

(

e

G;Z)! H

2




(g; z)

whi
h is inje
tive be
ause �

1

(

e

G) is trivial (Theorem V.4). It is easy to see that

e

�

2

Æ q

�

G

= �

2

;

showing that ker �

2

= ker q

�

G

= im �

1

.

Lemma V.6. If there exists a Lie group extension Z ,!

b

G ! G 
orresponding to [!℄ 2

H

2




(g; z) , then �

3

([!℄) = 0 and the adjoint a
tion of

b

G on

b

g

�

=

g�

!

z fa
tors to an a
tion of G

whi
h is given by

g:(X; z) =

�

Ad

G

(g):X; z + �(g;X)

�

;

where �:G � g ! z is a smooth 
o
y
le su
h that the fun
tions f

X

(g) := �(g

�1

; X) , X 2 g ,

satisfy df

X

= i(X

r

):
; where 
 is the left invariant z-valued 2-form on G with 


1

= ! .
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Proof. First we 
onsider the homomorphism

�

3;1

([!℄) = q

Z

Æ per

!

:�

2

(G)! Z:

Let q

G

:

e

G ! G denote the universal 
overing group of G and H := q

�

b

G !

e

G the pullba
k of

the 
entral extension q:

b

G ! G to

e

G , and observe that it 
orresponds to the same Lie algebra


o
y
le. Therefore Theorem IV.7 implies that �([f ℄) = 0, so that im(per

!

) � �, and therefore

�

3;1

= 0.

Now we turn to �

3;2

:�

1

(G) ! Hom




(g; z): We write the Lie algebra of

b

G as

b

g with the

bra
ket

[(X; z); (X

0

; z

0

)℄ = ([X;X

0

℄; !(X;X

0

)):

Sin
e Z �

b

G is 
entral and

b

G ! G is a lo
ally trivial bundle, the 
oadjoint a
tion of

b

G on

b

g

fa
tors to an a
tion of G on

b

g whi
h 
an be written as

g:(X; z) = (Ad(g):X; z + �(g;X));

where �:G� g! z is a smooth fun
tion. Let X 2 g and 
onsider the fun
tion f

X

:G! z given

by f

X

(g) := �(g

�1

; X) = p

z

(g

�1

:X), where p

z

:

b

g ! z is the proje
tion onto z . With the same

argument as in the proof of Lemma III.13, we obtain

df

X

(g)d�

g

(1):Y = p

z

�

Ad(g

�1

):[X;Y ℄

�

= !

�

Ad(g

�1

):X;Ad(g

�1

):Y

�

= 
(X

r

; Y

r

)(g);

and therefore df

X

= i(X

r

):
. Hen
e the 1-forms i(X

r

):
 are all exa
t, and therefore �

3;2

is

trivial.

The following theorem des
ribes the bridge from the in�nitesimal 
entral extension 
orre-

sponding to a Lie algebra 
o
y
le to a global 
entral extension of a Lie group.

Theorem V.7. (Integrability Criterion) Let g be the Lie algebra of the simply 
onne
ted Lie

group G and [!℄ 2 H

2




(g; z) . Then there exists a 
orresponding smooth 
entral extension of G

by some group Z = z=� if and only if im(per

!

) is a dis
rete subgroup of z . If Z , resp., � is

given, then the 
entral extension exists if and only if im(per

!

) � � .

Proof. First we assume that the image of per

!

is dis
rete and 
ontained in the dis
rete

subgroup �. Using Theorem IV.7 and Remark IV.11, we obtain a global 
o
y
le f 2 Z

2

s

(G;Z).

In view of Proposition IV.2, the 
orresponding group

b

G := G �

f

Z 
arries a natural Lie group

stru
ture su
h that Z ,!

b

G! G is a smooth 
entral extension.

If, 
onversely, a smooth 
entral extension of G by Z = z=� exists, then Lemma V.6 implies

that im(per

!

) � �.

Lemma V.8. If �

3

([!℄) = 0 , then there exists a Lie group extension Z ,!

b

G ! G with Lie

algebra

b

g = g�

!

z .

Proof. Let q

G

:

e

G ! G be the universal 
overing group. Sin
e the 
anoni
al map �

2

(

e

G) !

�

2

(G) is an isomorphism, �

3;1

([!℄) = 0 implies that the 
ohomology 
lass 


Z

(!) 2 H

2

sing

(

e

G;Z)

vanishes (
f. Remark IV.11), so that Theorem V.7 implies the existen
e of a 
entral extension

Z ,! H

eq

����!

e

G:

The Lie algebra of H is

b

g = g�

!

z . It is 
lear that the 
entral subgroup Z � H a
ts trivially

on

b

g by the adjoint a
tion, so that we obtain an a
tion of

e

G on

b

g with

g:(X; z) = (Ad(g):X; z + �(g;X));

where �:

e

G�g! z is a smooth fun
tion. In view of Lemma V.6, the fun
tions f

X

(g) := �(g

�1

; X)

satisfy df

X

= i(X

r

):q

�

G


. Let 
: [0; 1℄ ! G be a pie
ewise di�erentiable loop in G and

d 2 �

1

(G) �

e

G the 
orresponding homotopy 
lass. Then

f

X

(d) =

Z




i(X

r

):
 = �

3;2

([!℄)([
℄)(X) = 0:
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Therefore the subgroup �

1

(G) �

e

G a
ts trivially on

b

g , and hen
e the group D

Z

:= eq

�1

(�

1

(G)) �

H is 
entral be
ause H is 
onne
ted (Corollary III.18). We therefore have an extension

Z ,! D

Z

!! �

1

(G)

of abelian groups, where Z is divisible. Hen
e there exists a group homomorphism �:�

1

(G) !

H

Z

� H with eq Æ� = id

�

1

(G)

. As the image of �(�

1

(G)) under eq is dis
rete, the same holds for

the group �(�

1

(G)), and we 
on
lude that D

Z

�

=

�(�

1

(G))� Z . Now

b

G := H=�(�

1

(G))


arries a natural Lie group stru
ture. The homomorphism q

G

Æ eq:H ! G has the kernel D

Z

,

hen
e fa
tors through a homomorphism q:

b

G ! G whi
h is a prin
ipal bundle with stru
ture

group D

Z

=�(�

1

(G))

�

=

Z .

Theorem V.9. (Long exa
t sequen
e for 
entral Lie group extensions) Let G be a 
onne
ted

Lie group, z an s.
.l.
. spa
e, � � z a dis
rete subgroup, and Z := z=� . Then the sequen
e

Hom(G;Z) ,! Hom(

e

G;Z)! Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2




(g; z)

�

3

����!Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom




(g; z)

�

is exa
t.

Proof. This follows from Lemma V.2, Theorem V.4, Lemma V.6, and Lemma V.8.

Corollary V.10. Let G be a 
onne
ted Lie group and Z

�

=

z=� for a dis
rete subgroup � � z .

Then the following assertions hold:

(i) If G is simply 
onne
ted, then the sequen
e

f0g ! Ext

Lie

(G;Z)

�

2

����!H

2




(g; z)

�

3;1

����!Hom

�

�

2

(G); Z

�

is exa
t.

(ii) The sequen
e

f0g !Hom(G; z)��!Hom(G;Z)

E

�

��!Ext

Lie

(G;�)

��!Ext

Lie

(G; z)

(q

Z

)

�

����!Ext

Lie

(G;Z)

�

��!Hom(�

2

(G);�)

is exa
t, where � assigns to a 
entral Z -extension of G the homomorphism per

!

:�

2

(G)! z

and ! 2 Z

2




(g; z) is a 
orresponding Lie algebra 
o
y
le.

Proof. (i) follows dire
tly from Theorem V.9.

(ii) Sin
e G is 
onne
ted, we have Hom(G;�) = f0g , so that, in view of the se
ond part of

Remark IV.5, it only remains to verify the exa
tness at Ext

Lie

(G;Z).

Let z ,!

b

G ! G be a 
entral z-extension of G and ! 2 Z

2




(g; z) a 
orresponding Lie

algebra 
o
y
le. Then per

!

= 0 (Theorem V.7), and this shows that � Æ(q

Z

)

�

= 0. If, 
onversely,

E:Z ,!

b

G !! G is a 
entral extension with �(E) = per

!

= 0, then Theorem V.9 implies that

E = (q

Z

)

�

e

E holds for a 
entral z-extension

e

E of G be
ause �

3;2

([!℄) = 0 follows from the

existen
e of the 
entral extension E .

Lemma V.11. For ea
h ! 2 Z

2




(g; z) we have

tor�

1

(G) � ker �

3;2

([!℄) and tor�

2

(G) � ker �

3;1

([!℄):

In parti
ular �

3;2

([!℄) , resp., �

3;1

([!℄) fa
tors through homomorphisms of the rational homotopy

groups

�

1

(G)
 Q ! Hom(g; z) and �

2

(G)
 Q ! Z:

Proof. The �rst assertion follows from the fa
t that the range of the homomorphism �

3;2

([!℄)

is a ve
tor spa
e. Similarly we see that tor�

2

(G) � ker per

!

, and this implies that tor�

2

(G) �

ker �

3;1

([!℄) . The se
ond assertion follows from the fa
t that for an abelian group the kernel of

the natural map A! A
 Q; a 7! a
 1 
oin
ides with tor(A).

The following proposition 
lari�es how 
entral extensions by non-
onne
ted groups 
an be

redu
ed to 
entral extensions by dis
rete and 
onne
ted groups. Here the long exa
t sequen
e

in Theorem V.9 only provides information about extensions by 
onne
ted groups, whereas the

extensions by dis
rete groups are quite simple to des
ribe. For �nite-dimensional groups the

following result 
an be found as Theorem 3.4 in [Ho51, II℄.
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Proposition V.12. Let � � z be a dis
rete subgroup and Z be an abelian Lie group with

Z

0

�

=

z=� . Further let G be a 
onne
ted Lie group. Then

Ext

Lie

(G;Z)

�

=

Ext

Lie

(G;Z

0

)�Hom(�

1

(G); Z=Z

0

):

Proof. The group Z is an extension of the dis
rete group Z=Z

0

by the divisible group Z

0

.

Sin
e this extension is trivial as an extension of abelian groups, it is also trivial as an extension

of Lie groups, showing that Z

�

=

Z

0

� (Z=Z

0

): Using this produ
t stru
ture, one easily veri�es

that

Ext

Lie

(G;Z)

�

=

Ext

Lie

(G;Z

0

)� Ext

Lie

(G;Z=Z

0

)

holds for every Lie group G . Every 
entral extension Z=Z

0

!

b

G! G is a 
overing of G , hen
e

a quotient of

e

G� (Z=Z

0

) de�ned by a homomorphism 
:�

1

(G)! Z=Z

0

. In terms of the exa
t

sequen
e in Remark IV.5, we have

Hom(

e

G;Z=Z

0

)! Hom(�

1

(G); Z=Z

0

)! Ext(G;Z=Z

0

)! Ext(

e

G;Z=Z

0

);

where Hom(

e

G;Z=Z

0

) and Ext(

e

G;Z=Z

0

) are trivial be
ause

e

G is 
onne
ted and simply 
onne
ted.

This proves that Hom(�

1

(G); Z=Z

0

)

�

=

Ext(G;Z=Z

0

):

Remark V.13. If Z ,!

b

G!! G is a 
entral extension of G by the 
onne
ted group Z

�

=

z=�

and Z ,!

b

e

G!!

e

G is the pullba
k to the universal 
overing group

e

G of G , then

b

e

G! G is still a


entral extension of G be
ause its kernel a
ts trivially on the Lie algebra

b

g . The kernel of this

a
tion is isomorphi
 to Z � �

1

(G) (see the proof of Lemma V.8). In terms of Proposition V.12,

this 
orresponds to repla
ing the extension E 2 Ext(G;Z) by the element

(E; id

�

1

(G)

) 2 Ext(G;Z)�Hom(�

1

(G); �

1

(G))

�

=

Ext(G;Z � �

1

(G)):

Example V.14. Suppose that dimG < 1 . Then �

2

(G) is trivial (
f. [God71℄), so that we

obtain a simpler exa
t sequen
e

Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2




(g; z)

�

3

����!Hom

�

�

1

(G);Hom(g; z)

�

(
f. [Ne96℄). If, in addition, G is simply 
onne
ted, then we obtain an isomorphism

(5:1) Ext

Lie

(G;Z)

�

=

H

2




(g; z)

(
f. [TW87, Cor. 5.7℄).

It is interesting to note that, even though not every left invariant 
losed 2-form 
 2 


2

(G; z)

on a simply 
onne
ted Lie group G de�nes a 
entral extension of G , we 
an always 
onstru
t

the adjoint a
tion of G on

b

g as follows (
f. Lemma V.6).

Proposition V.15. Let G be a 
onne
ted Lie group, z an s.
.l.
. spa
e, and ! 2 Z

2




(g; z) with

�

3;2

([!℄) = 0 . For ea
h X 2 g let f

X

2 C

1

(G; z) be the unique fun
tion with df

X

= i(X

r

):


and f

X

(1) = 0 . Then �(g;X) := f

X

(g

�1

) de�nes a smooth 1-
o
y
le G� g! z for the adjoint

a
tion of G on g .

Proof. The assumption �

3;2

([!℄) = 0 implies that for ea
h X 2 g the 
losed 1-form i(X

r

):


on G is exa
t, so that the fun
tions f

X

, X 2 g , exist. We have to show that for g

1

; g

2

2 G and

X 2 g we have

(5:2) �(g

1

g

2

; X) = �(g

2

; X) + �(g

1

; g

2

:X);

whi
h means that

f

X

(g

�1

2

g

�1

1

) = f

X

(g

�1

2

) + f

g

2

:X

(g

�1

1

)
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for all g

1

; g

2

2 G , and this is equivalent to f

X

(g

2

g

1

) = f

X

(g

2

) + f

g

�1

2

:X

(g

1

) for all g

1

; g

2

2 G ,

whi
h in turn means that f

X

Æ �

g

2

= f

X

(g

2

) + f

g

�1

2

:X

: In 1 both fun
tions have the same value

f

X

(g

2

). Hen
e it suÆ
es to show that both have the same di�erential. This follows from

d(f

X

Æ �

g

2

) = �

�

g

2

df

X

= �

�

g

2

�

i(X

r

):


�

= i((g

�1

2

:X)

r

):
;

where the last equality is a 
onsequen
e of

�

�

�

g

2

(i(X

r

):
)

�

g

(v) =

�

i(X

r

):


�

g

2

g

(d�

g

2

(g):v) = 


g

2

g

�

d�

g

2

g

(1)X; d�

g

2

(g):v

�

= 


g

�

d�

g

�1

2

(g

2

g)d�

g

2

g

(1)X; v

�

= 


g

�

(g

�1

2

:X)

r

(g); v

�

:

We further have

d(f

X

(g

2

) + f

g

�1

2

:X

) = df

g

�1

2

:X

= i((g

�1

2

:X)

r

):
:

This proves that � is a 1-
o
y
le.

Now we show that � is smooth. Sin
e � is linear in the se
ond argument and a 
o
y
le

(see (5.2)), it suÆ
es to verify this in a neighborhood of (1; 0) 2 G� g . Let U � G be an open

1-neighborhood for whi
h there exists a 
hart ':V ! U with '(0) = 1 , where V � g is a an

open star-shaped neighborhood of 0. Then for ea
h x 2 V and X 2 g we have

f

X

�

'(x)

�

=

Z

'([0;1℄x)

i(X

r

):
 =

Z

1

0

!

�

Ad('(tx))

�1

:X; d�

'(tx)

�1
('(tx))d'(tx):x

�

dt;

and this formula shows that the fun
tion V �g! g; (x;X) 7! f

X

('(x)) is smooth. We 
on
lude

that � is a smooth 
o
y
le.

Central extensions with global smooth se
tions

In this subse
tion we dis
uss the problem of the existen
e of a smooth 
ross se
tion for a


entral Lie group extension Z ,!

b

G!! G .

Proposition V.16. (Cartan's 
onstru
tion) Let G be a 
onne
ted Lie group, z an s.
.l.
.

spa
e, ! 2 Z

2




(g; z) a 
ontinuous 2-
o
y
le, and 
 2 


2

(G; z) the 
orresponding left invariant

2-form on G with 


1

= ! . We assume that

(1) 
 = d� for some � 2 


1

(G; z) , and that

(2) for ea
h g 2 G the 
losed 1-form �

�

g

� � � is exa
t.

Then the produ
t manifold

b

G := G� z 
arries a Lie group stru
ture whi
h is given by a smooth

2-
o
y
le f 2 Z

2

(G; z) via

(g; z)(g

0

; z

0

) := (gg

0

; z + z

0

+ f(g; g

0

)):

The Lie algebra of this group is isomorphi
 to g�

!

z .

Proof. First we observe that the 1-forms �

�

g

��� are 
losed be
ause d(�

�

g

���) = �

�

g


�
 = 0.

A

ording to our assumption, there exists for ea
h g 2 G a unique f

g

2 C

1

(G; z) with f

g

(1) = 0

and df

g

= �

�

g

�� � . As in the proof of Lemma IV.8, we see that f(g; h) := f

g

(h) de�nes z-valued

2-
o
y
le on G whi
h is smooth on a neighborhood of (1;1). The 
o
y
le 
ondition means that

f(g; hu) + f(h; u) = f(gh; u) + f(g; h) for g; h; u 2 G:

We write this as

f(gh; u) = f(h; u)� f(g; h) + f(g; hu):

For g �xed, this fun
tion is smooth as a fun
tion of the pair (h; u) in a neighborhood of (1;1).

This implies that f is smooth on a neighborhood of the points (g;1), g 2 G . Fixing g and
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u shows that there exists a 1-neighborhood V � G su
h that the fun
tions f(�; u), u 2 V ,

are smooth in a neighborhood of g . Sin
e g 2 G was arbitrary, we 
on
lude that the fun
tions

f(�; u), u 2 V , are smooth. Now

f(�; hu) = f(�h; u)� f(h; u) + f(�; h)

shows that the same holds for the fun
tions f(�; x), x 2 V

2

, and iterating this pro
ess, using

G =

S

n2N

V

n

, we derive that all fun
tions f(�; x), x 2 G , are smooth. Finally we 
on
lude that

the fun
tion

(g; h) 7! f(g; hu) = f(gh; u)� f(h; u) + f(g; h)

is smooth in a neighborhood of ea
h point (g

0

;1), hen
e that f is smooth in ea
h point (g

0

; u

0

),

and this proves that f is smooth on G�G .

We therefore obtain on the spa
e

b

G := G� z a Lie group stru
ture with the multipli
ation

given by

(g; z)(g

0

; z

0

) := (gg

0

; z + z

0

+ f(g; g

0

)):

As in the proof of Lemma IV.8, we obtain the formula

[(X

0

; z

0

); (X; z)℄ =

�

[X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

2

f(1;1)(X;X

0

)

�

for the 
orresponding Lie bra
ket, but sin
e we do not have �

1

= 0, the 
al
ulations in the proof

of Lemma IV.8 lead to

d

2

f(g;1)(Y ) = (�

�

g

� � �)

1

(Y ) = h�; Y

l

i(g)� �

1

(Y )

and further to

d

2

f(1;1)(X;Y ) = X

l

(h�; Y

l

i)(1) = d�(X

l

; Y

l

)(1) + Y

l

(h�;X

l

i)(1) + �([X

l

; Y

l

℄)(1)

= !(X;Y ) + Y

l

(h�;X

l

i)(1) + �

1

([X;Y ℄);

so that

d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = !(X;Y ) + �

1

([X;Y ℄):

Sin
e this 
o
y
le is equivalent to ! , the assertion follows.

Corollary V.17. If G is simply 
onne
ted and 
 is exa
t, then there exists a smooth 
o
y
le

f :G�G! z , so that

b

G := G�

f

z is a Lie group with Lie algebra

b

g = g�

!

z .

Remark V.18. The 
onstru
tion des
ribed in Proposition V.16 is a well-known 
onstru
tion

of a 
entral extension of a simply 
onne
ted �nite-dimensional Lie group G . Sin
e in this 
ase

H

2

dR

(G; z)

�

=

Hom(�

2

(G); z) = f0g and H

1

dR

(G; z)

�

=

Hom(�

1

(G); z) = f0g;

(
f. [God71℄), the requirements of the 
onstru
tion are satis�ed for every Lie algebra 
o
y
le

! 2 Z

2

(g; z).

The 
onstru
tion 
an in parti
ular be found in the survey arti
le of Tuynman and Wiege-

rin
k [TW87℄ (see also [Tu95℄, [Go86℄ and [Ca52b℄). A
tually E. Cartan gave three proofs for

Lie's Third Theorem ([Ca52a℄, [Ca52b℄ and [Ca52
℄), where [Ca52a/
℄ rely on splitting of a Levi

subalgebra and hen
e redu
ing the problem to the semisimple and the solvable 
ase, but the

se
ond one is geometri
 (in the spirit of the argument in Example V.14) and uses H

2

dR

(G) = f0g

for a simply 
onne
ted Lie group G (see also [Est88℄).
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Proposition V.19. (a) If a smooth 
entral extension Z !

b

G! G has a smooth se
tion, then

ea
h 
orresponding left-invariant 2-form 
 2 


2

(G; z) is exa
t.

(b) If, 
onversely, 
 is exa
t, then per

!

= 0 , and the simply 
onne
ted 
overing group has a

global smooth 
o
y
le f

Z

:

e

G�

e

G! Z de�ning a Z -extension

e

G�

f

Z

Z of

e

G 
orresponding to ! .

Proof. (see [TW87, Prop. 4.14℄ for the �n.-dim. 
ase) (a) Let � 2 


1

(g; z) be the left invariant

z-valued 1-form with �

1

= p

z

, the linear proje
tion

b

g

�

=

g�

!

z ! z . Then d� = �q

�


 follows

from

d�

1

((X; z); (X

0

; z

0

)) = �p

z

([(X; z); (X

0

; z

0

)℄) = �!(X;X

0

) = �(q

�


)

1

((X; z); (X

0

; z

0

))

and the left invarian
e.

If �:G!

b

G is a smooth se
tion, then �

�

� is a z-valued 1-form on G with

d�

�

� = �

�

d� = ��

�

q

�


 = �(q Æ �)

�


 = �
;

so that 
 is exa
t.

(b) Suppose that 
 is exa
t. Then the same holds for q

�

G


 on

e

G , so that Corollary V.17 implies

the existen
e of a 
entral extension of

e

G by z whi
h 
an be written as a produ
t. We 
on
lude

in parti
ular that per

!

= 0.

Sin
e

e

G has a z-extension with a smooth se
tion, by fa
toring the dis
rete 
entral subgroup

�, we obtain a 
entral extension Z ,!

e

G�

f

Z

Z !!

e

G with a global smooth 
o
y
le f

Z

:

e

G�

e

G! Z .

Re
all that we 
annot simply apply de Rham's Theorem to 
on
lude that the 
ohomology


lass �([f ℄) vanishes if 
 is exa
t. This would work with Theorem IV.12 if every element of �

2

(G)


ould be represented by a smooth map S

2

! G . Su
h results are available for �nite-dimensional

manifolds, where they heavily use the smooth para
ompa
tness and even embeddings into ve
tor

spa
es with tubular neighborhoods. One has to fa
e similar obstru
tions if one wants to represent

singular 
ohomology 
lasses in H

2

sing

(G) by smooth 
hains.

Lemma V.20. Suppose that

b

G is de�ned by a homomorphism 
:�

1

(G) ! Z

�

=

z=� . In

addition, we assume that G is smoothly para
ompa
t. Then

b

G! G has a smooth se
tion if and

only if there exists a homomorphism e
:�

1

(G) ! z with q

Z

Æ e
 = 
 , where q

Z

: z ! Z is the

quotient map.

Proof. Suppose �rst that

b

G! G has a smooth se
tion. The natural map

q

b

G

:

e

G� z!

e

G� Z !

b

G = (

e

G� Z)=�(


�1

); (g; z) 7! [g; q

Z

(z)℄

is the universal 
overing of

b

G , so that �

1

(

b

G) 
an be identi�ed with

ker q

b

G

= f(d; z) 2 �

1

(G) � z: 
(d)q

Z

(z) = 1g:

This des
ription dire
tly shows that we have a short exa
t sequen
e

� = �

1

(Z) ,! �

1

(

b

G)!! �

1

(G):

The triviality of the bundle

b

G implies the existen
e of a homomorphi
 se
tion �:�

1

(G)! �

1

(

b

G)

with �(d) = (d;�e
(d)) for a homomorphism e
:�

1

(G) ! z . Then 
(d)q

Z

�

� e
(d)

�

= 1 implies

that q

Z

Æ e
 = 
 .

Suppose, 
onversely, that there exists a homomorphism e
 with the required properties.

Then

G

1

:= (

e

G� z)=�(�e
)

is a 
entral extension of G by z and

b

G

�

=

G

1

=�: On the other hand, G

1

! G is a z-prin
ipal

bundle. This bundle has aÆne �bers, so that the smooth para
ompa
tness of G implies the

existen
e of smooth global se
tions, so that G

1

�

=

G �

f

z , where f :G � G ! z is a smooth

2-
o
y
le. Therefore

b

G

�

=

G�

f

Z

Z , where f

Z

:= q

Z

Æ f , is a trivial Z -bundle.
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Remark V.21. Assume that

b

G is de�ned by a homomorphism 
:�

1

(G) ! Z

�

=

z=�. Let �

be a left invariant z-valued 1-form on

b

G for whi
h �

1

:

b

g ! z is a linear proje
tion onto z . Let

q

b

G

:

e

G�z!

b

G denote the universal 
overing map. Then p

�

� = df for the proje
tion f :

e

G�z! z .

Hen
e the homomorphism

�([�℄):�

1

(

b

G)! z

is given by

�

1

(

b

G)

�

=

f(d; z) 2 �

1

(G)� z: 
(d)q

Z

(z) = 1g ! z; (d; z) 7! z:

It follows in parti
ular that im �([�℄) = q

�1

Z

(im 
): The range of �([�℄) is 
ontained in � if and

only if 
 is trivial, whi
h means that

b

G

�

=

G� Z is a trivial 
entral extension.

For � = f0g we obtain in parti
ular

�([�℄) = �
:�

1

(G)! z:

Now the existen
e of a smooth se
tion �:G ! z is equivalent to the existen
e of a smooth

fun
tion h:

e

G! z with

h(gd) = 
(d)

�1

h(g); g 2

e

G; d 2 �

1

(G):

Su
h fun
tions 
an be 
onstru
ted with a smooth partition of unity, but it is not 
lear how they

should be obtained if G is not smoothly para
ompa
t. The point is that the map

H

1

dR

(G; z) ,! Hom(�

1

(G); z)

need not be surje
tive (
f. Theorem III.6).

Remark V.22. It is interesting to 
ompare 
ondition (2) in the Cartan 
onstru
tion with the


ondition �

3;2

([!℄) = 0. In view of Proposition V.16 and Theorem V.9, 
ondition (2) implies

�

3;2

([!℄) = 0, i.e., the exa
tness of all 1-forms i(X

r

):
. If, 
onversely, this 
ondition is satis�ed,

then it is not at all 
lear why this should imply 
ondition (2). In the spe
ial 
ase where 
 = 0,

the 
ondition �

3;2

([!℄) = 0 is trivially satis�ed, but there might be a 
losed z-valued 1-form �

on G for whi
h �

�

g

� � � is not exa
t for some g 2 G . Geometri
ally this means that the 
hoi
e

of the smooth se
tion for the 
orresponding 
entral extension of

e

G might be su
h that it 
annot

be pushed down to a smooth se
tion for the 
entral extension of G .

VI. Examples

In this se
tion we dis
uss several important 
lasses of examples whi
h will demonstrate the

e�e
tiveness of the long exa
t sequen
e for the determination of the 
entral extensions of an

in�nite-dimensional Lie group G .

Remark VI.1. (Central extensions of abelian Lie groups)

(a) Suppose that G is an abelian Lie group with an exponential fun
tion exp: g! G whi
h is a

universal 
overing homomorphism (
f. Remark III.16). Sin
e the 
overing map exp indu
es an

isomorphism of the se
ond homotopy groups, �

2

(G)

�

=

�

2

(g) is trivial. Hen
e we have the exa
t

sequen
e

Hom(g; Z)

res

����!Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2




(g; z)

�

3

����!Hom

�

�

1

(G);Hom




(g; z)

�

:

For abelian Lie algebras the 
oboundary operator is trivial, so that H

2




(g; z) = Alt

2

(g; z)


oin
ides with the spa
e of 
ontinuous alternating bilinear forms g� g! z . Here the map �

3

is

quite simple:

�

3

: Alt

2

(g; z)! Hom

�

�

1

(G);Hom




(g; z)

�

; �

3

(!)(d;X) = !(X; d):
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Therefore the 
ondition for the existen
e of a Lie group extension

b

G! G by Z is that

�

1

(G) � rad(!) := fX 2 g:!(X; g) = f0gg:

If this 
ondition is satis�ed, then ! fa
tors through G�G to a smooth 2-
o
y
le

f :G�G! z; (expX; expY ) 7! !(X;Y ):

We thus obtain a group G�

f

z whi
h is a 
overing of the group G�

f

Z

Z .

(b) If span�

1

(G) is dense in g , then we 
all G a generalized torus. Then ker �

3

= f0g implies

that �

2

= 0, and therefore that �

1

is surje
tive, so that

Ext

Lie

(G;Z)

�

=

Hom

�

�

1

(G); Z

�

=

�

Hom(g; Z) j

�

1

(G)

�

:

If dimG <1 , then span�

1

(G) = g , and �

1

(G) is a latti
e in g . Therefore Hom

�

�

1

(G); Z

�

=

Hom(g; Z) j

�

1

(G)

leads to

Ext(T

n

; Z) = f0g for all n 2 N; Z = z=�:

(
) Let g be a lo
ally 
onvex spa
e g and D � g a dis
rete subgroup. Then there exists a


ontinuous seminorm p on g with D \ p

�1

([0; 1℄) = f0g , showing that the image in the normed

spa
e g

p

:= g=p

�1

(0) is a dis
rete subgroup isomorphi
 to D . This implies that every dis
rete

subgroup of a lo
ally 
onvex spa
e is isomorphi
 to a dis
rete subgroup of a Bana
h spa
e. As

has been shown by Sidney ([Si77, p.983℄), 
ountable dis
rete subgroups of Bana
h spa
es are free.

This implies in parti
ular that dis
rete subgroups of separable Bana
h spa
es are free.

Let E be a ve
tor spa
e and f :D ! E a homomorphism of additive groups. Sin
e

every �nitely generated subgroup of D is a dis
rete subgroup of the ve
tor spa
e it spans,

every linear relation

P

d

�

d

d = 0 implies that

P

d

�

d

f(d) = 0. Hen
e f extends to a linear

map f : spanD ! E . Su
h an extension need not be 
ontinuous if D is not �nitely generated.

Suppose that D is 
ountably in�nite and that g is a Bana
h spa
e. Let (e

n

)

n2N

be a basis of

D as an abelian group. We de�ne f(e

n

) := nke

n

k . Then f extends to a linear map on spanD

whi
h obviously is not 
ontinuous. We 
on
lude in parti
ular that if G is an in�nite-dimensional

separable generalized Bana
h torus, then

Ext

Lie

(G;R)

�

=

Hom

�

�

1

(G);R

�

=

�

Hom(g;R) j

�

1

(G)

�

6= f0g:

(d) If

b

G is a 
entral extension with abelian Lie algebra, then its universal 
overing group is the

ve
tor spa
e

b

g = g� z , and the fundamental group �

1

(

b

G) is de�ned by an exa
t sequen
e

� = �

1

(Z) ,! �

1

(

b

G)

p

g

����!�

1

(G);

where p

g

:

b

g! g is the proje
tion onto the �rst fa
tor. In this sense we have a natural map

�: Ext(G;Z)! Ext

�

�

1

(G); �

1

(Z)

�

:

If �

1

(G) is free, then the group on the right hand side is trivial, so that � vanishes, but if �

1

(G)

is not free, then there might be non-trivial 
lasses in Ext

�

�

1

(G); �

1

(Z)

�

, and therefore

b

G is

non-trivial.

The relation �(�

1

(
)) = 0 means that 
 
an be lifted to a homomorphism e
:�

1

(G) ! z

(
f. Lemma V.20), so that we have a z-extension of G 
overing the Z -extension

b

G . This

extension is trivial if and only if the homomorphism �

1

(G)! z extends 
ontinuously to g whi
h

might not be possible, as we have seen in (
).

(e) Let g be a Bana
h spa
e, D � g a dis
rete subgroup with Ext(D;Z) 6= f0g and G := g=D .

The exa
tness of the sequen
e

Hom(D;Z) ,! Hom(D;R) ! Hom(D;T)! Ext

ab

(D;Z)! Ext

ab

(D;R) = f0g

(Theorem A.1.4) shows that there exists a homomorphism 
:D! T whi
h 
annot be lifted to a

homomorphism e
:D ! R . In view of (d), this implies that the 
orresponding abelian extension

T ,!

b

G := (g� T)=�(


�1

)!! G

�

=

g=D

has no global 
ontinuous se
tion.

We do not know of any example of a dis
rete subgroup of a Bana
h spa
e whi
h is not

free.
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Example VI.2. We 
onsider the real Bana
h spa
e g = 


0

(N;R) of sequen
es 
onverging to 0

endowed with the sup-norm. Then Z

(N)

= Z

N

\ 


0

(N;R) is a dis
rete subgroup spanning a dense

subspa
e, so that G := g=Z

(N)

is a generalized torus with �

1

(G)

�

=

Z

(N)

. Now Remark VI.1(b)

implies that

Ext

Lie

(G;R)

�

=

R

N

=l

1

(N;R):

Remark VI.3. In [Se81, Prop. 7.4℄ G. Segal 
laims that for a 
onne
ted Lie group G the

sequen
e

Hom

�

�

1

(G);T

�

�

1

����!Ext(G;T)

�

2

����!H

2




(g;R)




T

����!H

2

sing

(G;T)

is exa
t (see Remark IV.11 for the de�nition of 


T

). This is false if G = T

2

is the two-dimensional

torus. As we have seen in Remark VI.1(b), we have Ext(G;T) = f0g , and Remark VI.1(a) shows

that H

2




(g;R)

�

=

R . Using a simpli
ial de
omposition of G , one easily obtains H

2

(G)

�

=

Z , where

the generator is the fundamental 
y
le (G is an orientable surfa
e). Hen
e H

2

sing

(G;T)

�

=

T . We


on
lude that the sequen
e above leads to a 
on
rete sequen
e

T

2

�

1

����!f0g

�

2

����!R

�

3

����!T:

On the other hand the de�nition of �

3

shows that it is 
ontinuous, and this 
ontradi
ts Segal's


laim.

Example VI.4. Let G := Di�

+

(T) be the group of orientation preserving di�eomorphisms of

the 
ir
le T . Then

e

G 
an be identi�ed with the group

e

G := ff 2 Di�(R): (8x 2 R) f(x + 2�) = f(x) + 2�g;

and the 
overing homomorphism q:

e

G ! G is given by q(f)([x℄) = [f(x)℄; where [x℄ = x + Z 2

T

�

=

R=Z . Then ker f 
onsists of all translations �

a

, a 2 Z . Moreover, the in
lusion map

�: PSL(2;R) ,! Di�

+

(T)

is a homotopy equivalen
e (
f. [Fu86, p. 302℄). Note also that

e

G is a 
onvex set of maps R ! R ,

so that this group is obviously 
ontra
tible (
f. [TL99, 6.1℄). In parti
ular we have

�

1

(G)

�

=

Z and �

k

(G) = f1g; k > 1:

As a 
onsequen
e, we obtain Hom(�

1

(G);T)

�

=

T: Moreover,

H

2

sing

(G;T)

�

=

H

2

sing

(T;T)

�

=

Hom(H

2

(T);T) = f0g:

Furthermore we have

H

2




(g;R)

�

=

R:

Therefore the long exa
t sequen
e in Theorem V.9 leads to an exa
t sequen
e

T ,! Ext(G;T)! R ! Hom(�

1

(G); g

�

):

Now one has to show that the standard generator [!℄ of H

2




(g;R) has trivial image in the spa
e

Hom(�

1

(G); g

�

) to get an exa
t sequen
e

T ,! Ext(G;T)!! R;

and hen
e

Ext(G;T)

�

=

T� R

�

=

(Z� R)b

(
f. [Se81, Cor. 7.5℄). Identifying g with V(T), with respe
t to the the basis L

n

, n 2 Z , the


o
y
le ! is given by

!(L

n

; L

�m

) = n(n� 1)(n+ 1)Æ

n;m

;
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hen
e trivial on spanfL

0

; L

1

; L

�1

g

�

=

sl(2;R). Therefore i(X

r

):
 j

PSL(2;R)

= 0 for all X 2

sl(2;R): In fa
t, for g 2 PSL(2;R), X 2 sl(2;R) and Y 2 g we have




g

(X

r

(g); d�

g

(1):Y ) = !(Ad(g)

�1

:X; Y ) 2 !(sl(2;R); g) = f0g:

This implies that the 
orresponding homomorphism �

1

(G) ! g

�

is trivial, so that the sequen
e

in [Se81℄ is exa
t (see Remark VI.3), even though it is not exa
t for all in�nite-dimensional Lie

groups.

For the simply 
onne
ted 
overing group we likewise have

Ext(

e

G;T)

�

=

H

2




(g;R)

�

=

R:

This implies in parti
ular that G has a universal 
entral extension Z ,!

b

G ! G with

Z

�

=

Z� R (
f. [Ne00℄). One 
an realize the group

b

G as a 
entral extension of

e

G by R . This is

the universal 
overing group of the Virasoro group.

Example VI.5. Let H be an in�nite-dimensional Hilbert spa
e, G := GL

2

(H), and g =

B

2

(H) its Lie algebra, i.e., the spa
e of Hilbert{S
hmidt operators on H . Then

�

1

(G)

�

=

�

1

�

indlim

n!1

GL(n; C )

�

�

=

Z; �

2

(G)

�

=

�

2

�

indlim

n!1

GL(n; C )

�

�

=

f1g

(
f. [Pa65℄ for the separable 
ase and Lemma III.5 in [Ne98℄ for the extension to the general


ase). Moreover, for ea
h ! 2 Z

2




(g;R) there exists an operator C 2 B(H) with

!(X;Y ) = tr([X;Y ℄C); X; Y 2 g

whi
h leads to

H

2




(g;R)

�

=

B(H)=(B

2

(H) + R1)

(
f. [dlH72, p.141℄).

We 
laim that �

3

vanishes. Sin
e �

2

(G) is trivial, this will follow from the exa
tness of the

1-forms i(X

r

):
 for every ! 2 Z

2

(g;R) (
f. Lemma III.7). So let ! 2 Z

2




(g;R) and C 2 B(H)

with !(X;Y ) = tr([X;Y ℄C) for X;Y 2 g . We 
onsider the fun
tion

f

X

:G! R; f

X

(g) := tr

�

(gCg

�1

� C)X

�

;

and observe that

gCg

�1

� C = (g � 1)Cg

�1

+ C(g

�1

� 1) 2 B

2

(H);

so that f

X

is a well-de�ned smooth fun
tion. We have for all Y 2 g :

df

X

(g)d�

g

(1):Y = tr(gY Cg

�1

X)� tr(gCY g

�1

X) = tr([g

�1

Xg; Y ℄C)

= !(Ad(g)

�1

:X; Y ) = (i(X

r

):
)(g):(d�

g

(1):Y ):

Hen
e df

X

= i(X

r

):
, showing that the 1-forms i(X

r

):
 are all exa
t, and therefore that �

3

vanishes.

Sin
e [g; g℄ = B

1

(H) is dense in g , we have Hom(

e

G;Z) = f0g for ea
h abelian Lie group

Z , so that the long exa
t sequen
e (Theorem V.9) leads to the short exa
t sequen
e

Hom(�

1

(G); Z)

�

=

Hom(Z; Z)

�

=

Z ,! Ext(G;Z)!! H

2




(g; z):

For the simply 
onne
ted 
overing group

e

G we obtain with �

2

(

e

G)

�

=

�

2

(G) = f1g that

Ext(

e

G;T)

�

=

H

2




(g;R)

�

=

B(H)=(C 1+B

2

(H)):

Example VI.6. (a) Let H be an in�nite-dimensional Hilbert spa
e. Then all homotopy groups

of U(H) vanish (see [Ku65℄ for the separable 
ase and [BW76℄ for the general 
ase). Let PU(H)
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denote the proje
tive unitary group. Then the surje
tive map q: U(H) ! PU(H) de�nes a

prin
ipal bundle, hen
e indu
es an exa
t sequen
e

�

2

(G) = f1g ! �

2

(PU(H)

�

! �

1

(T)! �

1

(U(H)

�

�

=

f1g:

Therefore

�

2

�

PU(H)

�

�

=

�

1

(T)

�

=

Z

is non-trivial. We likewise have

�

1

(PU(H)

�

�

=

�

0

(T) = f1g:

With Z := T , G := U(H) and G=Z

�

=

PU(H), we have �

1

(Z�(G=Z))

�

=

Z 6

�

=

�

1

(G) = f1g:

Therefore G is not homeomorphi
 to Z � (G=Z).

(b) (see [DL66, p.147℄) Let G := PU(H)�PU(H). Then G is simply 
onne
ted and �

2

(G)

�

=

Z

2

.

Let

b

g := (u(H)�u(H)

�

=iR(1;

p

2) whi
h is a 
entral extension of g = L(G). Then the Lie algebra

b

g is not enlargible: The Lie algebra

e

g := u(H) � u(H) is an enlargible 
entral extension. Let

e

G = U(H) � U(H) be the 
orresponding group. Then the subgroup

e

C �

e

G 
orresponding to

e

z := ker(

e

g !

b

g) is not 
losed. If there were a Bana
h{Lie group

b

G with Lie algebra

b

g , then

the Lie algebra homomorphism

e

g !!

b

g would imply the existen
e of a 
orresponding group

homomorphism q:

e

G!!

b

G . Then ker q 
ontains the dense subgroup exp(iR(1;

p

2)) of the torus

Z(

e

G)

�

=

T

2

. This 
ontradi
ts L(ker q) = kerdq(1) = iR(1;

p

2):

(
) A similar 
onstru
tion as in (b) works more generally as follows. Suppose that G is a

simply 
onne
ted Lie group and ! 2 Z

2




(g;R) with per

!

6= 0. If im(per!) is not dis
rete,

then we already have an example of a non-integrable 
entral extension. Suppose that im(per

!

)

is dis
rete, so that we may assume that im(per

!

) = Z . Let q:

b

G ! G be the 
orresponding

T-extension of G . We put g

1

:= g� g , G

1

:= G�G , and

!

1

((X;Y ); (X

0

; Y

0

)) := !(X;Y ) +

p

2!(X

0

; Y

0

):

Then im(per

!

1

) = im(per

!

)+

p

2 im(per

!

) is not dis
rete, so that there exists no smooth 
entral

extension of G

1


orresponding to !

1

(Theorem V.7).

This 
an also be proved more dire
tly as follows: The group

b

G

2

:=

b

G �

b

G is a 
entral

extension of G

1

by the two-dimensional torus T

2

with period group Z

2

� R

2

. If a 
entral exten-

sion

b

G

1

! G

1


orresponding to !

1

would exist, then we 
ould 
onstru
t a lo
al homomorphism

of some 1-neighborhood in

b

G

2

to

b

G

1

, and then use Lemma II.3 to extend it to a Lie group

homomorphism

b

G

2

!

b

G

1

with the 
orre
t di�erential. Then the 
entral torus T

2

in

b

G

2

would

be mapped onto the subgroup 
orresponding to z

1

�

=

R . So this subgroup would be a quotient

of T

2

modulo a dense wind, whi
h is absurd.

Example VI.7. Let (M;�) be a 
ompa
t 
onne
ted symple
ti
 manifold. Then the group

Sp(M;�) of all symple
tomorphisms of (M;�) 
arries a natural Lie group stru
ture su
h that

its Lie algebra is the spa
e

g := fX 2 V(M):L

X

:� = 0g

of all lo
ally Hamiltonian ve
tor �elds (
f. [Omo97℄). Endowing C

1

(M;R) with the Poisson

bra
ket, we get an exa
t sequen
e

R ,! C

1

(M;R) ! g!! H

1

dR

(M;R)

whi
h, on the level of di�erential forms 
orresponds to

R ,! C

1

(M;R)

d

����!Z

1

dR

(M;R) !! H

1

dR

(M;R):

Sin
e we have assumed that M is 
ompa
t, this Lie algebra extension is trivial. The spa
e

n

f 2 C

1

(M;R):

Z

M

f�

n

= 0

o

is a ve
tor spa
e 
omplement of R1 whi
h is a Lie subalgebra of C

1

(M;R) (
f. [Omo97, Th. 3.2℄).
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VII. Relations to 
onne
ting homomorphisms in homotopy

In our 
onstru
tion of smooth 
entral extensions from Lie algebra 
o
y
les we have used the

results of van Est and Korthagen to enlarge lo
al groups to global groups. That this is possible

was 
hara
terized for simply 
onne
ted groups by the 
ondition that all periods are 
ontained

in �, so that we obtain a homomorphism per

!

:�

2

(G) ! �

�

=

�

1

(Z). On the other hand the

exa
t homotopy sequen
e of the Z -prin
ipal bundle

b

G ! G leads dire
tly to a 
onne
ting

homomorphism Æ:�

2

(G) ! �

1

(Z). In Proposition VII.7 below we will see that both are

related by the formula per

!

= �Æ . On the other hand the loop group 
(G) of G satis�es

�

2

(G)

�

=

�

1

(
(G)), so that the period map 
an also be viewed as a homomorphism �

1

(
(G))! z .

In Remark VII.5 below we will explain how the 
ondition that the range of this map is 
ontained

in � implies the existen
e of a smooth extension of G .

The path-loop �bration

Remark VII.1. (a) If F is an s.
.l.
. spa
e and X a 
ompa
t spa
e, then C(X;F ) is an s.
.l.
.

spa
e with respe
t to the topology of uniform 
onvergen
e. For ea
h 
ontinuous seminorm p on

F the pres
ription

p

X

(f) := sup

x2X

p(f(x))

de�nes a 
ontinuous seminorm on C(X;F ), and the set of all these seminorms de�nes the

topology of 
ompa
t 
onvergen
e on C(X;F ). It is easy to verify that with respe
t to this

topology the spa
e C(X;F ) is sequentially 
omplete, i.e., an s.
.l.
. spa
e.

(b) If U � F is an open subset, then C(X;U) is an open subset of C(X;F ). Now let U

j

� F

j

,

j = 1; 2, be open subsets of s.
.l.
. spa
es and ':U

1

! U

2

a smooth map. We 
onsider the map

'

X

:C(X;U

1

)! C(X;U

2

); 
 7! ' Æ 
:

Then '

X

is smooth. The 
ontinuity follows from [Ne97, Lemma III.6℄. For ea
h x 2 X and


; � 2 C(X;F

1

) we have

lim

t!0

'(
(x) + t�(x)) � '(
(x))

t

= lim

t!0

Z

1

0

d'(
(x) + st�(x)):�(x) ds = d'(
(x)):�(x):

Sin
e the integrand is 
ontinuous in [0; 1℄

2

� X , the limit exists uniformly in X , hen
e in the

spa
e C(X;F

2

). Therefore d'

X

(
)(�) exists. Sin
e d':TU

1

�

=

U

1

� F

1

! F

2

is a 
ontinuous

map, the �rst part of the proof shows that

d'

X

:C(X;TU

1

)

�

=

C(X;U

1

)� C(X;F

1

)! C(X;F

2

)

is 
ontinuous, so that '

X

is C

1

. Iterating this argument shows that '

X

is C

1

.

Proposition VII.2. If G is a Lie group and X is a 
ompa
t spa
e, then C(X;G) , endowed

with the topology of uniform 
onvergen
e is a Lie group with Lie algebra C(X; g) .

Proof. We use Remark VII.1(b) to see that the inversion and multipli
ation in the 
anoni
al

lo
al 
harts are smooth. The remainder is a routine veri�
ation.

De�nition VII.3. Let G be a Lie group and

P (G) := ff 2 C([0; 1℄; G): f(0) = 1g
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the 
orresponding path group endowed with the topology of uniform 
onvergen
e, where the

multipli
ation is pointwise. This turns P (G) into a Lie group (Proposition VII.2), and the

evaluation map

ev:P (G)! G; 
 7! 
(1)

is a 
ontinuous group homomorphism whose kernel is the loop group


(G) := ker ev

�

=

ff 2 C(T; G): f(1) = 1g:

It is 
alled the path-loop �bration of G .

Lemma VII.4. For a Fr�e
het{Lie group G the path-loop �bration has a smooth lo
al se
tion.

Proof. Let U � G be a 1-neighborhood for whi
h UU is di�eomorphi
 to an open 
onvex set

in g . Then there exists a map h: [0; 1℄�U ! U whi
h is smooth in the sense that it extends to a

smooth map on a neighborhood of [0; 1℄�U in R �G . Furthermore we require that h(0; x) = 1

and h(1; x) = x for all x 2 U . Then

�

U

:U ! P (G); �

U

(x)(t) := h(t; x)

is a smooth se
tion of ev (see [Ne97, Th. III.4℄ whi
h requires the manifolds under 
onsideration

to be Fr�e
het).

Remark VII.5. (Identi�
ation of the period map via loops) Let G be a simply 
onne
ted

Fr�e
het{Lie group, z a Fr�e
het spa
e, � � z a dis
rete subgroup and Z := z=�. We re
all

from Lemma IV.8 that ea
h Lie algebra 
o
y
le ! 2 Z

2




(g; z) de�nes a lo
al extension of G by

Z := z=�, � � z a dis
rete subgroup. Below we explain how the path-loop �bration of G 
an

be used to see that the obstru
tion to the extendability of su
h a lo
al 
entral extension is a

homomorphism �

2

(G)

�

=

�

1

(
(G)) ! Z .

Let Z ,! N !! U be a lo
al 
entral extension, where U � G is a symmetri
 open 1-

neighborhood and let f :U � U ! Z be its lo
al 
o
y
le. We 
an pull ba
k f to a lo
al 
o
y
le

f

P

(�; �) := f(�(1); �(1))

on ev

�1

(U) = f
 2 P (G): 
(1) 2 Ug .

Sin
e the group P (G) is 
ontra
tible, its singular 
ohomology groups are all trivial. Hen
e

Theorem IV.7 implies that there exists an open symmetri
 1-neighborhood V � P (G) su
h that

the restri
tion of f

P

to V 
an be extended to a Z -valued 
o
y
le on the whole group P (G).

Let

Z ,!

b

P (G)

q

P

����!P (G)

denote the 
orresponding 
entral extension of P (G) by Z whi
h 
an be given the stru
ture of

a smooth extension (Proposition IV.2). Note that all these arguments do not require G to be

Fr�e
het. This assumption is only needed as soon as Lemma VII.4 is used. By restri
tion, we

obtain a 
entral extension

Z ,!

b


(G) := q

�1

P

(
(G))! 
(G):

Now we would like to �nd a se
tion of this extension �




: 
(G) !

b


(G) whose range is a 
losed

normal subgroup of

b

P (G). Then

b

P (G)=�




(
(G)) would be a natural 
andidate for a 
entral

extension

b

G of G .

The lo
al 
o
y
le f

P

is trivial on 
(G), showing that the groups

b


(G) and 
(G) � Z

are lo
ally isomorphi
. Therefore the pullba
k of this 
entral extension to the universal 
overing

group of 
(G) is trivial (Lemma II.3), and this implies that the 
entral extension

b


(G) is de�ned

by a homomorphism


:�

1

(
(G))

�

=

�

2

(G)! Z

as

�

e


(G) � Z

�

=�(


�1

). Here we use that G is simply 
onne
ted, so that 
(G) is 
onne
ted.
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If the lo
al extension of U extends to a global 
entral extension

b

G of G , then the pullba
k

of this extension of P (G) would be trivial on 
(G). Therefore the vanishing of 
 is a ne
essary


ondition. Suppose, 
onversely, that 
 is trivial. We 
laim that the adjoint a
tion of ea
h element

� 2 P (G) on

b

p = p�

!

P

z whi
h is given by the 
o
y
le �:P (G)� p! z satis�es �(�; �) = 0 for

� 2 
(g). Let � 2 
(g) and 
onsider i(�

r

):


P

whi
h satis�es

hi(�

r

):


P

; 


r

i(�) = 


P

(�

r

; 


r

)(�) = !

P

(Ad(�)

�1

:�; 
)

= !(Ad(�(1))

�1

:�(1); 
(1)) = !(Ad(�(1))

�1

:0; 
(1)) = 0:

We 
on
lude that the fun
tion �(�; �) vanishes (see Lemma V.6, Proposition V.15). This implies

that the lo
al group homomorphism of a 1-neighborhood in 
(G)�Z extends to a global group

homomorphism

e


(G)� z !

b


(G) �

b

P (G)

whi
h is equivariant with respe
t to the a
tion of P (G) on both sides (Lemma II.3). Clearly this

homomorphism fa
tors through a homomorphism

e


(G) � Z !

b


(G) �

b

P (G):

Let D �

e


(G)�Z be its kernel whi
h is the graph of the trivial homomorphism 
:�

1

(
(G)) ! Z .

Therefore D = �

1

(
(G)), so that the homomorphism fa
tors through the embedding


(G) � Z !

b


(G) �

b

P :

In view of the P -equivarian
e of this map, the 
orresponding homomorphism �




: 
(G) !

b

P is

P -equivariant and its image is a 
losed normal subgroup. Therefore

b

G :=

b

P=�




(
(G))

is a topologi
al group whi
h has a 
anoni
al homomorphism q:

b

G! G whose kernel is

ker q =

b


(G)=�




(
(G)) =

�

Z�




(
(G))

�

=�




(
(G));

hen
e 
entral and isomorphi
 to Z . Composing a smooth lo
al se
tion �

U

:U ! P (G) (here we

need that G is Fr�e
het) with a lo
al se
tion of the 
entral extension

b

P (G) ! P (G), we obtain

a 
ontinuous map

b�

U

:U !

b

P (G)!

b

G

satisfying q Æ b�

U

= id

U

. Moreover, we see that the 
entral extension

b

P (G) of P (G) has an open

1-neighborhood di�eomorphi
 to

U �

b


(G)

�

=

U � Z �
(G):

This proves that the lo
al 
o
y
le 
orresponding to the se
tion b�

U

is smooth, and therefore that

b

G 
arries a unique Lie group stru
ture for whi
h q is a smooth 
entral extension (Proposition

IV.2)

The pre
eding 
onstru
tion is parti
ularly interesting for Bana
h{Lie groups be
ause Swier-


zkowki has shown in [Sw70℄ that for every Bana
h{Lie algebra g the Bana
h{Lie algebra P (g)

is enlargible in the sense that it is the Lie algebra of a group. Hen
e g

�

=

P (g)=
(g) is a quotient

of an enlargible Lie algebra. This observation 
an also be used to 
onstru
t groups for a given


entral extension of Bana
h{Lie algebras.
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The 
onne
ting homomorphism in homotopy

De�nition VII.6. We re
all the de�nition of relative homotopy groups. Let I

n

:= [0; 1℄

n

denote the n-dimensional 
ube. Then the boundary �I

n

of I

n


an be written as I

n�1

[ J

n�1

,

where I

n�1

is 
alled the initial fa
e and J

n�1

is the union of all other fa
es.

Let X be a topologi
al spa
e, A � X a subspa
e, and x

0

2 A . A map

f : (I

n

; I

n�1

; J

n�1

)! (X;A; x

0

)

is a 
ontinuous map f : I

n

! X satisfying f(I

n�1

) � A and f(J

n�1

) = fx

0

g . We write

�

n

(X;A; x

0

) for the homotopy 
lasses of su
h maps (
f. [Ste51℄). Likewise we de�ne �

n

(X; x

0

).

We have a 
anoni
al map

�:�

n

(X;A; x

0

)! �

n�1

(A; x

0

); [f ℄ 7! [f j

I

n�1
℄:

Suppose that we have a 
entral extension of Lie groups q:

b

G ! G with kernel Z . Then

q de�nes in parti
ular the stru
ture of a Z -prin
ipal bundle on

b

G , so that we have a natural

homomorphism Æ:�

2

(G)! �

1

(Z) whi
h is de�ned as follows. We have an isomorphism

q

�

:�

2

(

b

G;Z) := �

2

(

b

G;Z;1)! �

2

(G); [f ℄ 7! [q Æ f ℄

([Ste51, Cor. 17.2℄), and therefore a map

Æ := � Æ (q

�

)

�1

:�

2

(G)! �

1

(Z):

Proposition VII.7. If per

!

is the period map of the Lie algebra 
o
y
le ! 2 Z

2




(g; z)


orresponding to the extension q:

b

G! G , then

Æ = � per

!

:�

2

(G)! �

1

(Z)

�

=

� � z:

Proof. Let �([f ℄) 2 H

2

sing

(G; z) be the 
ohomology 
lass de�ned by the lo
al z-valued 
o
yle

f :U � U ! z 
onstru
ted in Lemma IV.8. A 
orresponding G-invariant Alexander{Spanier


o
y
le is given by

F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

)

on the neighborhood of the diagonal in G

3

whi
h 
onsists of all 2-dimensional U -simpli
es

(De�nition IV.6).

Using a smooth lo
al 
ross se
tion �:V !

b

G , V � G a 1-neighborhood 
ontained in U ,

we �nd in

b

G a 1-neighborhood of the form

b

V := �(V ) � q

Z

(U

z

)

�

=

V � U

z

, where U

z

� z is a

0-neighborhood on whi
h q

Z

: z ! Z is a di�eomorphism, and for g; g

0

; gg

0

2 V , z; z

0

2 U

z

we

have

�(g)q

Z

(z)�(g

0

)q

Z

(z

0

) = �(gg

0

)q

Z

(z + z

0

+ f(g; g

0

)):

This leads to

(�(g)q

Z

(z))

�1

�(g

0

)q

Z

(z

0

) = �(g

�1

g

0

)q

Z

(z

0

� z � f(g; g

�1

) + f(g

�1

; g

0

)):

Let

p

z

:

b

V ! z; �(g)q

Z

(z) 7! z:

Then the fun
tion H(x

0

; x

1

) := p

z

(x

�1

0

x

1

) de�nes a G-invariant Alexander{Spanier 
o
hain with

ÆH

�

1; �(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

= H(�(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

�H(1; �(g

2

)q

Z

(z

2

)

�

+H(1; �(g

1

)q

Z

(z

1

)

�

= z

2

� z

1

� f(g

1

; g

�1

1

) + f(g

�1

1

; g

2

)� z

2

+ z

1

= �f(g

1

; g

�1

1

) + f(g

�1

1

; g

2

) = �f(g

1

; g

�1

1

g

2

)

= �(q

�

F )

�

1; �(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

:
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This proves that q

�

F is an Alexander{Spanier 
oboundary with q

�

F = �ÆH .

Now let 
: (I

2

; �I

2

)! (

b

G;Z) be a 
ontinuous map, representing an element of �

2

(

b

G;Z)

�

=

�

2

(G). Then

per

!

([q Æ 
℄) = hF; q Æ 
i = hq

�

F; 
i = �hÆH; 
i = �hH; �
i = �hH j

Z

; 
 j

�I

2

i;

where the pairing means the pairing between Alexander{Spanier 
o
hains and singular 
hains as

in Remark A.2.5. Therefore it remains to show that for ea
h 
ontinuous loop �: [0; 1℄! Z with

�(0) = �(1) = 1 we have

hH j

Z

; �i = [�℄ 2 �

�

=

�

1

(Z):

In view of ÆH j

Z

= �q

�

F j

Z

= 0, the 
o
hain H j

Z

is 
losed, hen
e a 
o
y
le, so that we may

assume that �(t) = q

Z

(tz) for some z 2 �. We 
hoose a partition

0 = t

0

< t

1

< : : : < t

n

= 1

of [0; 1℄ su
h that (t� s)z 2 U

z

for t; s 2 [t

j

; t

j+1

℄ , j = 0; : : : ; n� 1. Then we obtain

hH j

Z

; �i =

n�1

X

j=0

hH j

Z

; � j

[t

j

;t

j+1

℄

i =

n�1

X

j=0

H(�(t

j

); �(t

j+1

)) =

n�1

X

j=0

(t

j+1

� t

j

)z = z:

This 
ompletes the proof.

Remark VII.8. (a) Let Z ,!

b

G !! G be a 
entral extension of 
onne
ted Lie groups and

assume that Z is 
onne
ted. Then the long exa
t homotopy sequen
e of this bundle leads to an

exa
t sequen
e

�

2

(Z)! �

2

(

b

G)! �

2

(G)! �

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z) = f1g;

so that �

2

(Z)

�

=

�

2

(z) = f1g leads to

�

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)!! �

1

(G):

This implies that

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= 
okerper

!

:

These relations show how the period homomorphism 
ontrols how the �rst two homotopy groups

of G and

b

G are related. In parti
ular we see that �

2

(

b

G) is smaller than �

2

(G).

Suppose that we start with the spa
e z and the Lie algebra 
o
y
le ! 2 Z

2




(g; z). If

im(per

!

) � z is dis
rete, then we may put � := im(per

!

) and Z := z=�. We thus obtain a


entral Z -extension

b

G of G for whi
h the homomorphism �

1

(

b

G) ! �

1

(G) is an isomorphism.

In parti
ular

b

G is simply 
onne
ted if G has this property.

Remark VII.9. (a) We have just seen that every 
entral extension of G by T de�nes a

homomorphism �

2

(G) ! �

1

(T)

�

=

Z . Let BT be the 
lassifying spa
e of T . For topologi
al

spa
es X and Y we write [X;Y ℄ for the set of homotopy 
lasses of 
ontinuous maps f :X ! Y .

Sin
e T is an Eilenberg{Ma
Lane spa
e of type K(Z; 1), we have for ea
h para
ompa
t lo
ally


ontra
tible topologi
al group G natural isomorphisms

[G;BT℄ = [G;BK(Z; 1)℄

�

=

[G;K(Z; 2)℄

�

=

H

2

sing

(G;Z)

be
ause for su
h groups

�

Ce
h and singular 
ohomology are isomorphi
 (
f. [Hub61℄, [Br97,

p. 184℄). If G is simply 
onne
ted, we thus obtain an isomorphism

[G;BT℄! H

2

sing

(G;Z)

�

=

Hom(�

2

(G);Z);



Central extensions of in�nite-dimensional Lie groups 45

showing that ea
h homomorphism Æ:�

2

(G) ! Z

�

=

�

1

(T) is the 
onne
ting homomorphism of a

prin
ipal T-bundle T ,!

b

G!! G (Se
tion IV.4 in [tD91℄).

(b) Now let G := 
(SU(2)) be the loop group of SU(2). Then

�

2

(G)

�

=

�

3

(SU(2))

�

=

�

3

(S

3

)

�

=

Z and �

1

(G)

�

=

�

2

(SU(2)) = f1g:

On the Lie algebra g

1

:= 


1

(su(2)) of the group 


1

(SU(2)) of C

1

-loops one has the natural

2-
o
y
le

!(�; �) :=

Z

T

�(�(t); �

0

(t)) dt;

where � is the Cartan{Killing form of su(2). Of 
ourse, this 
o
y
le has no 
ontinuous extension

to 
(su(2)). It is quite plausible that H

2




(
(g

0

);R) = f0g for every semisimple 
ompa
t Lie

algebra g

0

(
ontrary to a statement in [Omo97, p.254℄). Assuming this, the long exa
t sequen
e

for 
entral extensions would lead to

Ext(
(SU(2));T) = f1g:

In 
ontrast to that, the in
lusion G

1

,! G is a homotopy equivalen
e, but presumably

H

2




(


1

(su(2));R)

�

=

R;

whi
h, in view of [EK64, p.28℄, would lead to

Ext(


1

(SU(2));T)

�

=

Z:

A. Appendix

A.1. Universal 
oeÆ
ients and abelian groups

Theorem A.1.1. (Universal CoeÆ
ient Theorem) Let K be a 
omplex of free abelian groups

K

n

and Z be any abelian group. Put H

�

(K;Z) := H

�

(Hom(K;Z)) . Then for ea
h dimension

there is an exa
t sequen
e

f0g ! Ext

ab

�

H

n�1

(K); Z

�

�

����!H

n

(K;Z)

�

����!Hom

�

H

n

(K); Z

�

! f0g

with homomorphisms � and � natural in Z and K . This sequen
e splits by a homomorphism

whi
h is natural in Z but not in K .

The se
ond map � is de�ned on a 
ohomology 
lass [f ℄ as follows. Ea
h n-
o
y
le of

Hom(K;Z) is a homomorphism f :K

n

! Z vanishing on �K

n+1

, so indu
es f

�

:H

n

(K) ! Z .

If f = Æg is a 
oboundary, it vanishes on 
y
les, so (Æg)

�

= 0 . Now de�ne �([f ℄) := f

�

.

Proof. This [Ma
L63, Th. III.4.1℄

Remark A.1.2. If the abelian group Z is divisible, then Ext

ab

(B;Z) = f0g for ea
h abelian

group B , so that Theorem A.1.1 leads to an isomorphism

H

n

(K;Z)

�

=

Hom

�

H

n

(K); Z

�

of abelian groups.
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Remark A.1.3. For ea
h topologi
al spa
e X we have the 
omplex C

�

(X) of singular 
hains.

The group C

n

(X) is the free abelian group over the set of all 
ontinuous maps �

n

! X , where

�

n

� R

n+1

is the n-dimensional standard simplex. To des
ribe the boundary operator on

C

n

(X), we write �

n

= hd

0

; : : : ; d

n

i to emphasize the verti
es d

0

; : : : ; d

n

of �

n

. Then the

boundary operator is given by

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

(
f. [Wa83℄).

We write H

�

(X) for the homology of this 
omplex and H

�

sing

(X;Z) for the 
ohomology

of the di�erential 
omplex C

�

sing

(X;Z) := Hom(C

�

(X); Z), where Z is an abelian group. We

apply Theorem A.1.1 to the 
omplex C

�

(X) and obtain for ea
h abelian group Z a short exa
t

sequen
e

f0g ! Ext

ab

�

H

n�1

(X); Z

�

! H

n

sing

(X;Z)! Hom

�

H

n

(X); Z

�

! f0g:

If Z is divisible, then we have

H

n

sing

(X;Z)

�

=

Hom

�

H

n

(X); Z

�

:

If n � 2 and X is (n � 1)-
onne
ted, then the Hurewi
z Theorem (Remark A.2.1) yields

H

n�1

(X) = f0g , so that the Universal CoeÆ
ient Theorem also shows in this 
ase that

H

n

sing

(X;Z)

�

=

Hom

�

H

n

(X); Z

�

�

=

Hom

�

�

n

(X); Z

�

for all abelian groups Z .

Theorem A.1.4. (Cartan{Eilenberg) Let E:A

�

��!B

�

��!C be an extension of abelian groups

and Z an abelian group. Then the sequen
e

f0g !Hom(C;Z)��!Hom(B;Z)��!Hom(A;Z)

E

�

����!Ext

ab

(C;Z)

�

�

��!Ext

ab

(B;Z)

�

�

��!Ext

ab

(A;Z)! f0g

is exa
t, where �

�

:[f ℄ = [f Æ (���)℄ and E

�

:
 = [
 Æ f

E

℄ , where E is represented by the 
o
y
le

f

E

. Moreover, for every abelian group G , we obtain the following exa
t sequen
e

f0g !Hom(G;A)��!Hom(G;B)��!Hom(G;C)

E

�

��!Ext

ab

(G;A)

�

�

��!Ext

ab

(G;B)

�

�

��!Ext

ab

(G;C)! f0g;

where �

�

:[f ℄ = [� Æ f ℄ and E

�

:
 = [f

E

Æ (
 � 
)℄ .

Proof. The proof 
an be found in [Fu70, Th. 51.3℄.

Theorems I.5 and I.6 are variants of this theorem for 
entral extensions of non-abelian

groups.

If A is an abelian group, then we write

b

A := Hom(A;T) for its 
hara
ter group.

Lemma A.1.5. If � is a �nitely generated abelian group, then

Ext

ab

(�;Z)

�

=

tor� and Hom(�;Z)

�

=

�= tor�:

Proof. The Stru
ture Theorem for Finitely Generated Abelian Groups yields �

�

=

F �Z

n

for

some n 2 N and a �nite group F . Therefore the exa
t sequen
e

f0g ! Hom(�;Z)! Hom(�;R) !

b

�! Ext

ab

(�;Z)! f0g

(Theorem A.1.4; R is divisible) 
an be written as

Z

n

,! R

n

!

b

�

�

=

b

F � T

n

!! Ext

ab

(�;Z):

Therefore

Ext

ab

(�;Z)

�

=

b

F

�

=

F

�

=

tor�:

The relation Hom(�;Z)

�

=

Hom(�= tor�;Z)

�

=

�= tor� follows from �= tor�

�

=

Z

n

.
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Remark A.1.6. (
f. Cor. 15.14.1 in [BT82℄) If the groups K

n

in the 
omplex K are �nitely

generated, then Lemma A.1.5 and Theorem A.1.1 
ombine for Z = Z to

f0g ! torH

n�1

(K)

�

����!H

n

(K;Z)

�

����!H

n

(K)= torH

n

(K)! f0g:

A.2. Topology of manifolds

Remark A.2.1. (a) The Hurewi
z-Theorem says that if n � 2 and X is ar
wise 
onne
ted

with �

i

(X) = f0g for 1 � i < n (X is (n� 1)-
onne
ted), then

�

n

(X)

�

=

H

n

(X)

(
f. [Br93, Cor. VII.10.8℄). For n = 1 we have the 
omplementary result that for any ar
wise


onne
ted topologi
al spa
e X ,

�

1

(X)=(�

1

(X); �

1

(X))

�

=

H

1

(X):

In both 
ases we obtain

Hom

�

H

n

(X); Z

�

�

=

Hom

�

�

n

(X); Z

�

for every abelian group Z .

(b) If, in addition, M is a smoothly para
ompa
t manifold (
f. [KM97, Th. 34.7℄), then

H

n

dR

(M;R)

�

=

H

n

(M;R)

�

=

Hom

�

H

n

(M);R

�

:

Remark A.2.2. Let M be a di�erentiable manifold (not ne
essarily �nite-dimensional). Then

the se
ond part of Theoren A.1.4 yields an exa
t sequen
e

f0g !Hom

�

H

n

(M);Z

�

����!Hom

�

H

n

(M);R

�

����!Hom

�

H

n

(M);T

�

����!Ext

ab

(H

n

(M);Z)����!Ext

ab

(H

n

(M);R)����!Ext

ab

(H

n

(M);T)! f0g:

Remark A.1.3 implies that

Hom

�

H

n

(M);R

�

�

=

H

n

(M;R) and Hom

�

H

n

(M);T

�

�

=

H

n

(M;T);

and this leads to the shorter exa
t sequen
e

f0g ! Hom

�

H

n

(M);Z

�

! H

n

(M;R) ! H

n

(M;T)! Ext

ab

(H

n

(M);Z)! f0g:

If, in addition, M is 
ompa
t, then M 
an be triangulated (Whitney's Theorem), showing

that the homology groups are �nitely generated. Therefore Lemma A.1.5 yields

Hom

�

H

n

(M);Z

�

�

=

H

n

(M)= torH

n

(M) and Ext

ab

(H

n

(M);Z)

�

=

torH

n

(M):

Lemma A.2.3. If M is an ar
wise 
onne
ted simply 
onne
ted spa
e, then H

1

sing

(M;Z) = f0g

for ea
h abelian group Z .

Proof. First we note that H

0

(M)

�

=

Z and H

1

(M) = f0g holds for the singular homology

groups by Hurewi
z's Theorem (Remark A.2.1), so that the Universal CoeÆ
ient Theorem A.1.1

leads to

H

1

sing

(M;Z)

�

=

Hom(H

1

(M); Z)� Ext

ab

(H

0

(M); Z) = f0g � f0g = f0g;

be
ause Z is free, so that Ext

ab

(Z; Z) = f0g .
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De�nition A.2.4. We re
all the de�nition of the Alexander{Spanier 
ohomology of a topolog-

i
al spa
e M . Let Z be an (additive) abelian group and A

n

(M;Z) := Z

M

n+1

be the set of all

fun
tions M

n+1

! Z 
onsidered as an abelian group with pointwise addition. Then we obtain

a di�erential 
omplex via

Æf(m

0

; : : : ;m

n+1

) :=

n+1

X

j=0

(�1)

j

f(m

0

; : : : ; 
m

j

; : : : ;m

n+1

):

Let A

n

0

(M;Z) � A

n

(M;Z) be the subgroup 
onsisting of all those fun
tions vanishing on a

neighborhood of the diagonal in M

n+1

. These subgroups form a sub
omplex, so that we 
an

form the quotient 
omplex. The 
ohomology of this 
omplex

H

n

A�S

(M;Z) := H

n

�

A

�

(M;Z)=A

�

0

(M;Z)

�

is 
alled the Alexander{Spanier 
ohomology of M with 
oeÆ
ients in Z .

Remark A.2.3. Below we explain that one has a natural homomorphism

H

n

A�S

(M;Z)! H

n

sing

(M;Z)

whi
h for lo
ally 
ontra
tible para
ompa
t Hausdor� spa
es M is an isomorphism (
f. [Br97,

xIII.2℄ or [Sp66, Cor. 6.9.7℄). Let U be an open 
overing of M . We say that a singular simplex

�: �

n

! M is U -small if there exists a U 2 U with �(�

n

) � U , and we write �

U

for the

sub
omplex of the singular 
omplex of M 
onsisting of U -small simpli
es. Now we 
onsider the

open neighborhood W :=

S

U2U

U

n+1

of the diagonal in M

n+1

. If f :W ! Z represents an

Alexander{Spanier 
o
y
le, then we 
an evaluate f on U -small singular simpli
es � via

'(f)(�) := f(�(d

0

); : : : ; �(d

n

));

where d

0

; : : : ; d

n

are the verti
es of the standard simplex �

n

� R

n+1

. One easily veri�es that

'(Æf) = Æ'(f) = '(f) Æ� , showing that for ea
h 
o
y
le f , the image '(f) is a singular 
o
y
le

and that if f is a 
oboundary, then '(f) vanishes on 
y
les. We thus obtain a homomorphism

['℄:H

n

A�S

(M;Z)! H

n

sing

(M;Z)

�

=

H

n

(�

W

; Z); [f ℄ 7! ['(f)℄

whi
h turns out to be an isomorphism if M is a lo
ally 
ontra
tible para
ompa
t spa
e.

Let M be a smooth manifold and z be an s.
.l.
. spa
e. For a ve
tor �eld X 2 V(M)

de�ned in an open neighborhood of the points x

0

; : : : ; x

n

, and a smooth z-valued fun
tion F on

an open subset of M

n+1

, we write

(�

i

(X):F )(x

0

; : : : ; x

n

) := dF (x

0

; : : : ; x

n

)(0; : : : ; 0; X(x

i

); 0; : : : ; 0); i 2 f0; : : : ; ng;

for the partial derivative of F in the i-th 
omponent in the dire
tion of X . We write �:M !

M

n+1

for the diagonal map and (x

0

; : : : ; x

n

) for the elements of M

n+1

. We asso
iate to ea
h

smooth fun
tion F :W ! z , where W is an open subset of M

n+1


ontaining the diagonal, the

di�erential n-form on M given by

(�:F )(X

1

; : : : ; X

n

)(p) :=

X

�2S

n

"(�) �

�

�

1

(X

�(1)

) � � � �

n

(X

�(n)

):F

�

(p; : : : ; p)

for ve
tor �elds X

1

; : : : ; X

n

on M de�ned in a neighborhood of p . On the other hand the

pres
ription

ÆF (x

0

; : : : ; x

n+1

) :=

n+1

X

j=0

(�1)

j

F (x

0

; : : : ; bx

j

; : : : ; x

n+1

)

de�nes a smooth fun
tion on an open neighborhood of the diagonal in M

n+2

. In fa
t, for

i = 0; : : : ; n+ 1 we write p

j

:M

n+2

! M

n+1

for the proje
tions obtained by omitting the j -th


omponent. Then

T

n+1

j=0

p

�1

j

(W ) is an open subset of M

n+2

on whi
h ÆF is de�ned. For small

n we have the formulas

n = 1: �(F )(X) = �

1

(X):F .

n = 2: �(F )(X;Y ) = �

1

(X)�

2

(Y ):F � �

1

(X)�

2

(Y ):F .
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Theorem A.2.6. (van Est-Korthagen) If M is a 
onne
ted �nite-dimensional manifold and

 :H

n

A�S

(M; z)! H

n

dR

(M; z)

the 
anoni
al isomorphism between Alexander{Spanier and de Rham 
ohomology, then for ea
h

smooth fun
tion f :W ! z , where W �M

n+1

is an open neighborhood of the diagonal, satisfying

Æf = 0 , we have

 ([f ℄) = [�(f)℄;

where [f ℄ 2 H

n

A�S

(M; z) is the Alexander{Spanier 
lass de�ned by f , and [�(f)℄ is the de Rham


lass of the di�erential form �(f) .

Proof. Composing z-valued di�erential forms and 
o
hains with 
ontinuous linear fun
tionals

on z (whi
h separate the points), it suÆ
es to prove the assertion for z = R . We verify that �

intertwines the di�erential d with the 
oboundary operator Æ in the sense that �(ÆF ) = d�(F )

holds for F 2 C

1

(W;R) (see the appendix of [EK64℄). First we observe that for a ve
tor �eld

Y on M we have

Y:

��

�

1

(X

1

) � � � �

n

(X

n

):f

�

Æ�

�

=

�

�

0

(Y )�

1

(X

1

) � � � �

n

(X

n

):f

�

Æ�

+

n

X

i=1

�

�

1

(X

1

) � � � �

i

(Y )�

i

(X

i

) � � � �

n

(X

n

):f

�

Æ�:(A2:1)

Now let

f

i

(x

0

; : : : ; x

n+1

) := f(x

0

; : : : ; bx

i

; : : : ; x

n+1

)

and write �

n

for the diagonal map M !M

n+1

. Then

(A2:2) f

i

Æ�

n+1

= f Æ�

n

and Æ:f =

P

n+1

i=0

(�1)

i

f

i

. Sin
e the fun
tion f

i

is independent of x

i

, we obtain

(A2:3) �

1

(X

1

) � � � �

n+1

(X

n+1

):f

i

= 0; i � 1:

Therefore

�

1

(X

1

) � � � �

n+1

(X

n+1

):(Æf) = �

1

(X

1

) � � � �

n+1

(X

n+1

):f

0

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):f

�

0

:

In view of (A2.2) and (A2.1), this leads to

�

�

1

(X

1

) � � ��

n+1

(X

n+1

):(Æf)

�

Æ�

n+1

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):f

�

Æ�

n

= X

1

:

��

�

1

(X

2

) � � � �

n

(X

n+1

):f

�

Æ�

n

�

n

X

i=1

�

�

1

(X

2

) � � � �

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

):f

�

Æ�

n

:

From this formula one easily derives that �(Æf) = d�(f).

Let A

n

1

(U;R) := C

1

(U

n+1

;R) denote the spa
e of smooth Alexander{Spanier 
o
hains on

an open subset U �M and A

n

(M;R) the 
orresponding sheaf of germs of smooth Alexander{

Spanier 
o
hains on M . Then the di�erential Æ:A

n

1

(U;R) ! A

n+1

1

(U;R) (De�nition A.2.4)

yields a torsionfree �ne resolution

0! R! A

0

(M;R)

Æ

����!A

1

(M;R)

Æ

����!A

2

(M;R)

Æ

����! : : :

of the 
onstant sheaf R = M � R . This follows with the same argument as for the standard

Alexander{Spanier 
ohomology be
ause M is smoothly para
ompa
t and all operations preserve

smoothness (
f. [Wa83, 5.26℄).

Likewise the de Rham 
omplex leads to a torsionfree �ne resolution

0! R! E

0

(M;R)

d

����!E

1

(M;R)

d

����!E

2

(M;R)

d

����! : : : ;

where E

n

(M;R) is the sheaf of germs of smooth n-forms on M . Sin
e the map � above

intertwines the di�erentials of these resolutions, we obtain a homomorphism of resolutions:

0 ! R ! A

0

(M;R)

Æ

����! A

1

(M;R)

Æ

����! A

2

(M;R)

Æ

����! : : :

?

?

y

=

?

?

y

�

?

?

y

�

?

?

y

�

0 ! R ! E

0

(M;R)

d

����! E

1

(M;R)

d

����! E

2

(M;R)

d

����! : : : ;

whi
h in turn indu
es an isomorphism in 
ohomology ([Wa83, Th. 5.25℄).
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Remark A.2.7. (a) Let M be a manifold whi
h might be in�nite-dimensional and even not

smoothly para
ompa
t, and z an s.
.l.
. spa
e. If W � V are open neighborhoods of the diagonal

in M

n+1

, then we have a natural restri
tion map

�

WV

:C

1

(V; z)! C

1

(W; z); f 7! f j

W

:

Let C

n

s

(M; z) = C

1

(M

n+1

; z)

�

denote the dire
t limit of these spa
es. We 
all its elements

the germs of smooth fun
tion on the diagonal in M

n+1

. The Alexander-Spanier 
oboundary

operator yields a 
oboundary operator

Æ:C

n

s

(M; z)! C

n+1

s

(M; z);

and we have also seen above that we have a natural map

� :C

n

s

(M; z)! 


n

(M; z); [f ℄ 7! �([f ℄)

satisfying

�(Æ[f ℄) = d�([f ℄):

Therefore ea
h element of

Z

n

s

(M; z) := f[f ℄ 2 C

n

s

(M; z): Æ[f ℄ = 0g

de�nes a 
losed z-valued n-form �(f) on M .

(b) Suppose, in addition, that M = G is a Lie group. Then ea
h open 1-neighborhood V � G

de�nes an open G-invariant neighborhood

W := f(x

0

; : : : ; x

n

) 2 G

n+1

:x

�1

i

x

j

2 V for 0 � i < j � ng:

To ea
h fun
tion f 2 C

1

(V

n

; z) we now asso
iate a smooth fun
tion F :W ! z by

F (x

0

; : : : ; x

n

) := f(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

);

and this assignment intertwines the Alexander{Spanier 
oboundary operator on C

1

(W; z) with

the 
oboundary operator given by

Æf(x

1

; : : : ; x

n+1

)

= f(x

2

; : : : ; x

n+1

) +

n

X

i=1

(�1)

i

f(x

1

; : : : ; x

i

x

i+1

; : : : ; x

n

) + (�1)

n+1

f(x

1

; : : : ; x

n

);

where we write the multipli
ation in Z additively.

Therefore ea
h smooth 
o
y
le f 2 C

1

(V

n

; z) de�nes a 
losed z-valued n-form on G via

�([F ℄) . In addition, the G-invarian
e of the fun
tion F on W and the G-equivarian
e of �

implies that the n-form �(F ) is left invariant.

A.3. Lo
al topologi
al group 
onstru
tions

In this appendix we explain the results of van Est and Korthagen leading to the proof of Theorem

IV.7. Most of the material is 
ontained in [Est62℄.

De�nition A.3.1. Let L be a set, D � L� L a subset, and m:D ! L; (x; y) 7! xy a map.

We say that the produ
t xy is de�ned if (x; y) 2 D . We 
all L , endowed with this stru
ture, a

lo
al group if the following 
onditions are satis�ed:

(1) Suppose that xy and yz are de�ned. If (xy)z or x(yz) is de�ned, then the other produ
t

is also de�ned and both are equal.

(2) There exists an element 1 2 L su
h that all produ
ts x1 and 1x are de�ned with x1 =

1x = x for all x 2 L .

(3) For ea
h x 2 L there exists a unique element x

�1

2 L su
h that xx

�1

and x

�1

x are de�ned

with xx

�1

= x

�1

x = 1 .

(4) If xy is de�ned, then y

�1

x

�1

is de�ned.

A (strong) homomorphism of lo
al groups is a map ':L ! L

0

for whi
h '(x)'(y) is

de�ned if and only if xy is de�ned, and in this 
ase we have '(xy) = '(x)'(y). Its kernel is

ker' := '

�1

(1). Then all produ
ts in ker' are de�ned, showing that ker' is a group.
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Example A.3.2. If G is a group and U � G a symmetri
 subset 
ontaining the identity

element 1 , then U is a lo
al group with

D := f(x; y) 2 U � U :xy 2 Ug:

In this se
tion we will dis
uss the following problem. Let G and Z be topologi
al groups,

where Z is abelian. Let U � G be a symmetri
 1-neighborhood and f :U � U ! Z a fun
tion

satisfying

f(x;1) = f(1; x) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z) for x; y; z; xy; yz 2 U:

We 
all f a lo
al Z -valued 2-
o
y
le on U . The 
o
y
le 
ondition for z = x and y = x

�1

yields

f(x; x

�1

) = f(x

�1

; x); x 2 U:

The set L := U � Z be
omes a lo
al group with respe
t to

D := f

�

(x; z); (x

0

; z

0

)

�

:xx

0

2 Ug and (x; z)(x

0

; z

0

) :=

�

xx

0

; zz

0

f(x; x

0

)

�

:

The inversion in L is given by

(x; z)

�1

:= (x

�1

; z

�1

f(x; x

�1

)

�1

) = (x

�1

; z

�1

f(x

�1

; x)

�1

):

The proje
tion map q

L

:L! U; (x; z) 7! x is a strong homomorphism of lo
al groups.

Now the natural question is whether there exists a 
entral extension

b

G! G extending the

lo
al 
entral extension L! U . This is equivalent to the existen
e of an extension of the 
o
y
le

f :U � U ! Z to a Z -valued 
o
y
le on G�G (
f. [Est62℄). To address this question, one has

to translate this group 
ohomologi
al problem into one in singular 
ohomology.

De�nition A.3.3. Let

V := fV � G: 1 2 V

0

; V = V

�1

g

be the 
olle
tion of all symmetri
 1-neighborhoods in G .

(a) We write �

n

= hd

0

; : : : ; d

n

i � R

n+1

for the standard n-simplex with the verti
es d

0

; : : : ; d

n

.

Then a 
ontinuous map �: �

n

! G is 
alled a V -simplex if

�(x)�(y)

�1

2 V for all x; y 2 �

n

:

We write �

G

for the singular 
omplex of G , i.e., the 
hain group C

n

(�

G

) is the free abelian

group on the set of all G-simpli
es. The 
orresponding boundary operator is given by

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

:

For ea
h V 2 V we then have a sub
omplex �

V

� �

G

whose elements are 
alled V -
hains. For

W � V in V the in
lusion map �

W

,! �

V

indu
es a homomorphism

�

WV

:H

�

(�

V

; Z)! H

�

(�

W

; Z);

so that we obtain a dire
ted system of groups. Using bary
entri
 subdivison, one obtains

isomorphisms

H

n

sing

(G;Z) = H

n

(�

G

; Z)

�

=

indlim

V 2V

H

n

(�

V

; Z)

(
f. [Est62, p.415℄).

(b) Let V 2 V . A V -lo
al n-tuple is an element (x

1

; : : : ; x

n

) 2 V

n

with

x

p+1

� � �x

q�1

x

q

2 V for 0 � p � q � n:
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The spa
e C

n

(V ) of V -lo
al n-
hains is the free group over the set of V -lo
al n-tuples. On this

spa
e we have a boundary operator given for n � 1 by

�(x

1

; : : : ; x

n

) = (x

2

; : : : ; x

n

)+

n�1

X

i=1

(�1)

i

(x

1

; : : : ; x

i�1

; x

i

x

i+1

; x

i+2

; : : : ; x

n

)+(�1)

n

(x

1

; : : : ; x

n�1

):

All summands on the right hand side are V -lo
al (n � 1)-tuples. On the spa
e C

n

(V; Z) :=

Hom(C

n

(V ); Z) of Z -valued V -lo
al n-
o
hains the 
orresponding 
oboundary operator is given

by

Æf(x

1

; : : : ; x

n+1

) = f(�(x

1

; : : : ; x

n+1

))

= f(x

2

; : : : ; x

n+1

) +

n

X

i=1

(�1)

i

f(x

1

; : : : ; x

i

x

i+1

; : : : ; x

n

) + (�1)

n+1

f(x

1

; : : : ; x

n

);

where we write the multipli
ation in Z additively. For low degrees the 
oboundary operator is

given by

n = 0: Æf(x) = f � f = 0.

n = 1: Æf(x; y) = f(y)� f(xy) + f(x).

n = 2: Æf(x; y; z) = f(y; z)� f(xy; z) + f(x; yz)� f(x; y).

This means that the 1-
o
y
les are the lo
al homomorphisms V ! Z and that the two 2-
o
y
les


orrespond to lo
al 
entral extensions of V by Z . It is readily veri�ed that Æ

2

= 0 ([Est62℄).

We write H

i

(V; Z) for the 
orresponding 
ohomology groups.

(
) The 
ohomology groups de�ned above rely heavily on the group stru
ture of G . To establish a

link with the topologi
al stru
ture of G , one relates them to the Alexander{Spanier 
ohomology

of G as follows.

An n-dimensional V -simplex on G is an element (x

0

; : : : ; x

n

) 2 G

n+1

with

x

�1

i

x

j

2 V for 0 � i < j � n:

The 
orresponding spa
e of n-dimensional V -
hains is denoted C

n

(�

V

). On this spa
e we have

a boundary operator given for n � 1 by

�(x

0

; : : : ; x

n

) =

n

X

i=0

(�1)

i

(x

0

; : : : ; bx

i

; : : : ; x

n

):

All summands on the right hand side are (n � 1)-dimensional V -simpli
es. On the spa
e

C

n

(�

V

; Z) := Hom(C

n

(�

V

); Z) of Z -valued V -
o
hains the 
orresponding 
oboundary operator

is given by

Æf(x

0

; : : : ; x

n+1

) = f(�(x

0

; : : : ; x

n+1

)) =

n+1

X

i=0

(�1)

i

f(x

0

; : : : ; bx

i

; : : : ; x

n+1

):

For low degrees the 
oboundary operator is given by

n = 0: Æf(x; y) = f(y)� f(x).

n = 1: Æf(x; y; z) = f(y; z)� f(x; z) + f(x; y).

n = 2: Æf(x; y; z; a) = f(y; z; a)� f(x; z; a) + f(x; y; a)� f(x; y; z).

The 
ohomology groups with values in Z of the 
orresponding 
omplex are denoted H

n

(�

V

; Z).

For W � V in V the in
lusion map �

W

,! �

V

indu
es a homomorphism

�

WV

:H

�

(�

V

; Z)! H

�

(�

W

; Z);

so that we obtain a dire
ted system of groups. For n 2 N

0

we de�ne the Vietoris 
ohomology

groups

H

n

(�

V

; Z) := indlim

V 2V

H

n

(�

V

; Z):
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Sin
e the set of n-dimensional V -simpli
es is a neighborhood of the diagonal in G

n+1

, ea
h


o
y
le f 2 Z

n

(�

V

; Z) de�nes 
anoni
ally an Alexander{Spanier 
o
y
le be
ause the 
oboundary

operators are given by the same formula (see De�nition A.2.4). Therefore we obtain a natural

map

H

n

(�

V

; Z)! H

n

A�S

(G;Z):

The group G a
ts on the spa
e of n-dimensional V -simpli
es by

g:(x

0

; : : : ; x

n

) := (g:x

0

; : : : ; g:x

n

):

We write [x

0

; : : : ; x

n

℄ for the G-orbit of (x

0

; : : : ; x

n

). The 
ohomology of the sub
omplex of

G-invariant 
o
hains is denoted H

n

eq

(�

V

; Z) and 
alled the equivariant Vietoris 
ohomology.

(d) For ea
h n 2 N

0

and V 2 V we put

C

n

(�

G

mod�

V

) := C

n

(�

G

)=C

n

(�

V

):

The 
orresponding 
o
hain groups

C

n

(�

G

mod�

V

; Z) := ff 2 C

n

(�

G

; Z):C

n

(�

V

) � ker fg � C

n

(�

G

; Z)


onsist of those 
o
hains vanishing on C

n

(�

V

). Then

C

n

(�

G

mod�

V

; Z) :=

[

V 2V

C

n

(�

G

mod�

V

; Z)

is the group of all those 
o
hains f for whi
h there exists a V 2 V su
h that f vanishes on all V -

simpli
es. The 
ohomology of this 
omplex is denoted H

n

(�

G

mod�

V

; Z), and sin
e 
ohomology


ommutes with dire
t limits, we have

H

n

(�

G

mod�

V

; Z) = indlim

V 2V

H

n

(�

G

mod�

V

; Z):

We similarly de�ne C

n

eq

(�

G

mod�

V

; Z) and H

n

eq

(�

G

mod�

V

; Z), and obtain

H

n

eq

(�

G

mod�

V

; Z) = indlim

V 2V

H

n

eq

(�

G

mod�

V

; Z):

Lemma A.3.4. The map �: [(x

0

; : : : ; x

n

)℄ ! (x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

) yields a bije
tion from the

set of G-orbits in the set of n-dimensional V -simpli
es on G onto the set of V -lo
al n-tuples.

The inverse of this map is given by

�(y

1

; : : : ; y

n

) := [(1; y

1

; y

1

y

2

; : : : ; y

1

� � � y

n

)℄:

The 
orresponding map �

�

:C

n

(V; Z)! C

n

eq

(�

V

; Z) 
ommutes with the 
oboundary operators on

both sides and indu
es an isomorphism

H

n

(�):H

n

(V; Z)! H

n

eq

(�

V

; Z):

Proof. That � intertwines the boundary operators follows from

��([(x

0

; : : : ; x

n

)℄) = �(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

)

= (x

�1

1

x

2

; : : : ; x

�1

n�1

x

n

)

+

n�1

X

i=1

(�1)

i

(x

�1

0

x

1

; : : : ; x

�1

i�1

x

i

x

�1

i

x

i+1

| {z }

x

�1

i�1

x

i+1

; : : : ; x

�1

n�1

x

n

) + (�1)

n

(x

�1

0

x

1

; : : : ; x

�1

n�2

x

n�1

)

= �([�(x

0

; : : : ; x

n

)℄):

On the other hand

�

�

(f)(x

0

; x

1

; : : : ; x

n

) = f(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

)

and

(�

�

)

�1

(F )(y

1

; : : : ; y

n

) := F (1; y

1

; : : : ; y

1

� � � y

n

):

Sin
e �

�

is an isomorphism of 
hain 
omplexes, for ea
h n 2 N

0

the map H

n

(�) is an

isomorphism H

n

(V; Z)! H

n

eq

(�

V

; Z).

The following theorem is the 
ru
ial link between group 
ohomology and singular 
ohomol-

ogy.
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Theorem A.3.5. (van Est) Let G be a 
onne
ted lo
ally 
ontra
tible topologi
al group. We

write d

0

; : : : ; d

n

for the verti
es of the standard simplex �

n

� R

n+1

. Then for ea
h V 2 V we

have a map � 7! '

V

(�) = (�(d

0

); : : : ; �(d

n

)) from singular V -simpli
es to V -simpli
es on G

whi
h extends to a homomorphism '

V

:C

n

(�

V

)! C

n

(�

V

) , indu
ing a homomorphism of 
hain


omplexes, hen
e a natural map

H

n

('

V

):H

n

(�

V

; Z)! H

n

(�

V

; Z):

Passing to the limit of the dire
ted systems further leads to a map

H

n

('

V

):H

n

(�

V

; Z)! indlim

V 2V

H

n

(�

V

; Z)

�

=

H

n

(�

G

; Z) = H

n

sing

(G;Z)

whi
h for ea
h n 2 N

0

is an isomorphism.

Proof. We write �

n

= hd

0

; : : : ; d

n

i to emphasize the verti
es. The boundary operator on

C

n

(�

V

) is given by

��

n

= �hd

0

; : : : ; d

n

i =

n

X

i=0

(�1)

i

�hd

0

; : : : ;

b

d

i

; : : : d

n

i

and a

ordingly

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

:

This formula immediately shows that '

V

intertwines the boundary operators on ea
h side, hen
e

yields a homomorphism of 
hain 
omplexes. For the remaining assertions we refer to the se
ond

part of [Est62℄.

Remark A.3.6. Let us assume that G is 
onne
ted, lo
ally 
ontra
tible and, in addition,

para
ompa
t. Sin
e the natural homomorphism H

n

(�

V

; Z)! H

n

A�S

(G;Z) (De�nition A.3.3(
))


omposed with the natural isomorphism H

n

A�S

(G;Z) ! H

n

sing

(G;Z) (Remark A.2.5) leads to

the isomorphism des
ribed in Theorem A.3.5, it follows that for a lo
ally 
ontra
tible topologi
al

group G we have a 
hain of isomorphisms

H

n

(�

V

; Z)! H

n

A�S

(G;Z)! H

n

sing

(G;Z):

Lemma A.3.7. We have

H

i

(�

G

; Z)

�

=

�

Z for i = 0

f0g for i > 0.

Proof. We de�ne a homomorphism

h:C

n

(�

G

)! C

n+1

(�

G

); h(x

0

; : : : ; x

n

) := (1; x

0

; : : : ; x

n

):

Then one veri�es that �h+ h� = id, and therefore that the dual operator

h

�

:C

n+1

(�

G

; Z)! C

n

(�

G

; Z)

satis�es Æh

�

+ h

�

Æ = id. This proves that H

i

(�

G

; Z) = f0g for i > 0. For i = 0 we have

H

0

(�

G

; Z) = Z

0

(�

G

; Z)

�

=

f 
onstant fun
tionsg

�

=

Z:

Remark A.3.8. For ea
h �xed V 2 W the short exa
t sequen
e

f0g ! C

�

(�

G

mod�

V

)! C

�

(�

G

)! C

�

(�

V

)! f0g

of 
hain 
omplexes indu
es a long exa
t sequen
e in 
ohomology

� � � ! H

n

(�

G

mod�

V

; Z)! H

n

(�

G

; Z)! H

n

(�

V

; Z)! H

n+1

(�

G

mod�

V

; Z)! : : : ;
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so that Lemma A.3.7 leads to

H

n

(�

V

; Z)

�

=

H

n+1

(�

G

mod�

V

; Z); n � 1:

Moreover, the fa
t that G is generated by ea
h V 2 V implies that H

0

(�

V

; Z) = Z , so that

H

0

(�

G

mod�

V

; Z) = f0g , and

H

1

(�

G

mod�

V

; Z) ,! H

1

(�

G

; Z) = f0g

yields H

1

(�

G

mod�

V

; Z) = f0g . Passing to the limit with respe
t to V 2 V , we obtain

H

n

(�

V

; Z)

�

=

H

n+1

(�

G

mod�

V

; Z); n � 1

and

H

0

(�

G

mod�

V

; Z) = H

1

(�

G

mod�

V

; Z) = f0g:

Now we explain the proof of Theorem IV.7:

Theorem IV.7. (van Est{Korthagen) Let G be a topologi
al group, Z an abelian group,

V � G a symmetri
 1-neighborhood, f :V � V ! Z a lo
al Z -valued 2-
o
y
le, and �(f) 2

H

2

sing

(G;Z) the 
orresponding singular 
ohomology 
lass. If there exists an open symmetri
 1-

neighborhood W � V su
h that f j

W�W

extends to a Z -valued 2-
o
y
le on G � G , then

�(f) = 0 . The 
onverse holds if G is lo
ally 
ontra
tible, 
onne
ted and simply 
onne
ted.

Proof. We write [f

Z

℄ 2 H

2

(V; Z) for the 
ohomology 
lass de�ned by f . In Lemma A.3.4 we

have explained the isomorphism H

2

(V; Z)

�

=

H

2

eq

(�

V

; Z), and we also have natural maps

H

2

eq

(�

V

; Z)! H

2

(�

V

; Z)! H

2

(�

V

; Z)

obtained dire
tly from the de�nitions.

We 
onsider the following 
ommutative diagram, where the verti
al arrows denote the

restri
tion maps and the horizontal lines are pie
es of the long exa
t 
ohomology sequen
e

(
f. Remark A.3.8):

H

2

eq

(�

G

; Z)

�

����! H

2

eq

(�

V

; Z)

Æ

1

����! H

3

eq

(�

G

mod�

V

; Z) ����! H

3

eq

(�

G

; Z)

?

?

y

?

?

y

�

1

?

?

y

�

2

?

?

y

H

2

(�

G

; Z) ����! H

2

(�

V

; Z)

Æ

2

����! H

3

(�

G

mod�

V

; Z) ����! H

3

(�

G

; Z):

In view of H

2

(�

G

; Z) = H

3

(�

G

; Z) = f0g (Lemma A.3.7), Æ

2

is an isomorphism.

That V 
ontains an open neighborhood W on whi
h f

Z

is extendable to G means that the

image [f

Z

℄ of the 
orresponding 
ohomology 
lass in H

2

(�

V

; Z) is 
ontained in the image of the

restri
tion map � . In view of the exa
tness of the upper row in the diagram, this is equivalent

to Æ

1

([f

Z

℄) = 0. We therefore get �

1

([f

Z

℄) = Æ

�1

2

�

2

Æ

1

([f

Z

℄) = 0; so that the image �(f

Z

) of

�

1

([f

Z

℄) in H

2

sing

(G;Z) vanishes.

Suppose, 
onversely, that �(f

Z

) = 0 and that G is lo
ally 
ontra
tible, 
onne
ted and

simply 
onne
ted. Then the inje
tivity of the map H

2

(�

V

; Z)! H

2

sing

(G;Z) in Theorem A.3.5

implies that �

1

([f

Z

℄) = 0. Sin
e G is 
onne
ted and lo
ally 
ontra
tible, it is ar
wise 
onne
ted.

Therefore Lemma A.2.3 implies that H

1

sing

(G;Z) = f0g . Then Remark 2 after Theorem 10.1 in

[Est62℄ yields an isomorphism

Æ

�1

2

Æ �

2

:H

3

eq

(�

G

mod�

V

; Z)! H

2

(�

V

; Z)

�

=

H

2

sing

(G;Z);

where we identify H

2

(�

V

; Z) and H

2

sing

(G;Z). It follows in parti
ular that �

2

is an isomorphism.

Now Æ

1

([f

Z

℄) = �

�1

2

Æ

2

�

1

([f

Z

℄) = 0, so that the exa
tness of the upper row in the diagram proves

the assertion.
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