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Karl-Hermann Neeb

The purpose of this paper is to desribe the struture of the abelian group of entral extensions of

an in�nite-dimensional Lie group in the sense of Milnor ([Mi83℄). These are Lie groups whih are

manifolds modeled over sequentially omplete loally onvex spaes. A serious diÆulty one has

to fae in this ontext is that even Banah manifolds are in general not smoothly paraompat,

whih means that every open over has a subordinated smooth partition of unity. Therefore de

Rham's Theorem is not available for these manifolds. Typial examples of Banah{Lie groups

whih are not smoothly paraompat are the additive groups of the Banah spaes C([0; 1℄;R)

and l

1

(N;R) .

In the Lie theoreti ontext, the entral extensions Z ,!

b

G !! G of interest are those

whih are prinipal bundles. For G and Z �xed the equivalene lasses of suh extensions an

be desribed by an abelian group Ext

Lie

(G;Z), so that the problem is to desribe this group as

expliitly as possible. This means in partiular to relate it to the Lie algebra ohomology group

H

2



(g; z) whih lassi�es the entral extensions z ,!

b

g !! g of the topologial Lie algebra g by

the abelian Lie algebra z for whih there exists a ontinuous linear setion g !

b

g . Our entral

result is the following long exat sequene for a onneted Lie group G , its universal overing

group

e

G , the entral subgroup �

1

(G) �

e

G , and an abelian Lie group Z whih an be written

as Z = z=�, where � � z is a disrete subgroup (Theorem V.9):

Hom(G;Z) ,! Hom(

e

G;Z)! Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2



(g; z)

�

3

����!Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom



(g; z)

�

:(1)

Here �

1

assigns to :�

1

(G)! Z the quotient of

e

G�Z modulo the graph of 

�1

(here inversion

is meant pointwise in Z ) and �

2

assigns to a group extension the orresponding Lie algebra

extension. The de�nition of �

3

is more subtle. Let ! 2 Z

2



(g; z) be a smooth Lie algebra

oyle and 
 be the orresponding left invariant losed z-valued 2-form on G . The seond

omponent �

3;2

([!℄) is de�ned as follows. For eah X 2 g we write X

r

for the orresponding

right invariant vetor �eld on G . Then i(X

r

):
 is a losed z-valued 1-form to whih we assoiate

a homomorphism �

1

(G) ! z via an embedding H

1

dR

(G; z) ,! Hom(�

1

(G); z). This embedding

is established diretly, even if G is not smoothly paraompat (Theorem III.6). In terms of

sympleti geometry the ondition �

3;2

([!℄) = 0 means that the ation of G on (G;
) has

a moment map, but we won't emphasize this point of view. To de�ne the �rst omponent

�

3;1

([!℄) , we use the Poinar�e Lemma to assoiate with ! a z-valued loal 2-oyle f on a

suÆiently small neighborhood of the identity in G . Now we assoiate to f an Alexander{

Spanier oyle and further a singular oyle �(f) 2 H

2

sing

(G;Z). This orrespondene yields

a map H

2



(g; z) ! H

2

sing

(G;Z), and by evaluating �(f) on elements of �

2

(G), interpreted as

singular yles, we thus obtain a homomorphism per

!

:�

2

(G) ! z . Now �

3;1

([!℄) := q

Z

Æ per

!

,

where q

Z

: z! Z is the quotient map.

For a simply onneted Lie group G the sequene (1) redues to

(2) Ext

Lie

(G;Z) ,! H

2



(g; z)! Hom

�

�

2

(G); Z

�

;

showing that in this ase the group Ext

Lie

(G;Z) an be identi�ed with the subgroup of H

2



(g; z)

onsisting of those lasses [!℄ for whih the image of per

!

, the so-alled period group, is ontained
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in �. In spite of the absene of a de Rham isomorphism, we show that if :S

2

! G is a smooth

map, then the orresponding period an simply be alulated as the integral per

!

([℄) =

R




 2 z .

Similar onditions are well-known in the theory of geometri quantization of �nite-dimen-

sional sympleti manifolds (M;
). Here the integrality of the ohomology lass [
℄ of the

sympleti 2-form 
 is equivalent to the existene of a so-alled pre-quantum bundle, i.e., a

T-prinipal bundle T ,!



M !! M whose urvature 2-form is 
 (f. [TW87℄). Based on these

observations, Tuynman and Wiegerink gave a proof of the exatness of (1) in H

2



(g;R) for �nite-

dimensional Lie algebras g ([TW87, Th. 5.4℄). As was observed in [Ne96℄, for �nite-dimensional

groups G the map �

3

is simpler beause the vanishing of �

2

(G) makes the �rst omponent of

�

3

superuous. That the vanishing of �

2

(G), resp., H

2

dR

(G;R) for �nite-dimensional Lie groups

G permits to onstrut arbitrary entral extensions for simply onneted groups is a quite old

observation of E. Cartan ([Ca52b℄). He used it to prove Lie's Third Theorem by onstruting a

Lie group assoiated to a Lie algebra g as a entral extension of the simply onneted overing

group of the group Inn(g) = he

ad g

i of inner automorphisms (see also [Est88℄ for an elaboration

of Cartan's method). This method has been extended to Banah{Lie groups by van Est and

Korthagen who haraterize the existene of a Banah{Lie group with a Lie algebra g by the

disreteness of the period group orresponding to the Lie algebra extension z(g) ,! g !! ad g

and the simply onneted overing of the group Inn(g) endowed with its intrinsi Banah{Lie

group struture ([EK64℄). It is remarkable that their approah does not require the existene of

smooth loal setions, whih do not always exist for Banah{Lie groups. The reason for this is

that there is no regularity required for a funtion representing an Alexander{Spanier oyle. In

the ase of Banah{Lie groups the existene of loal groups orresponding to entral extensions

of Lie algebras an also be obtained by using the Baker{Campbell{Hausdor� series, but for

more general Lie algebras, this series need not onverge on a 0-neighborhood in g . We use

one of the results of van Est and Korthagen to show that for a simply onneted Lie group G

the vanishing of �

3

([!℄) implies the extendability of the loal oyle f to a global one, and

hene the existene of a orresponding global group extension (this is needed for the exatness

in H

2



(g; z)). For smooth loop groups entral extensions are disussed in [PS86℄, but in this

ase many diÆulties are absent beause smooth loop groups are modeled on nulear Fr�ehet

spaes whih are smoothly regular ([KM97, Th. 16.10℄), hene they are smoothly paraompat

beause this holds for every smoothly Hausdor� seond ountable manifolds modeled over a

smoothly regular spae ([KM97, 27.4℄). In [TL99℄ Toledano Laredo disusses entral extensions

of Lie groups obtained from projetive representations with a smooth vetor by onstrution a

orresponding loally smooth 2-oyle (Prop. 5.3.1). This is very muh in the spirit of our

approah in Setion IV. In Setion 5 of his paper Toledano Laredo applies results of Pressley and

Segal to general groups, whih, as explained above, is only justi�ed if these groups are smoothly

paraompat. In Omori's book one also �nds some remarks on entral T-extensions inluding

in partiular Cartan's onstrution for simply onneted regular Fr�ehet{Lie groups ([Omo97,

pp.252/254℄). If the singular ohomology lass assoiated to ! does not vanish but is integral,

then Omori uses simple open overs (the Poinar�e Lemma applies to all �nite intersetions) to

onstrut the T-bundle from the orresponding integral

�

Ceh oyle. Unfortunately it is not

lear whether all in�nite-dimensional Lie groups have suh open overs.

It would be very interesting to extend the results and the methods of the present paper

to general smooth Lie group extensions. In this ontext the work of Hohshild ([Ho51℄) and

Eilenberg-MaLane ([EML47℄) ontains results one might try to extend to in�nite-dimensional

Lie groups. Another interesting projet is to try to establish the orresponding results for

prequantization of manifolds M endowed with a losed 2-form 
. Here the question is under

whih onditions there exists a prequantization, i.e., a prinipal T-bundle T ,!



M

q

��!M with

a onnetion 1-form � suh that d� = q

�


, i.e., 
 is the urvature form of the bundle. In

[TW87℄ it is shown that for �nite-dimensional manifolds the ondition is the disreteness of the

group of periods of 
. Is this still true for in�nite-dimensional manifolds? Unfortunately our

methods rely on the group struture of the underlying manifold, hene do not diretly apply to

this setting.

We approah the problem to desribe Ext

Lie

(G;Z) by �rst disussing for abstrat groups

the exat sequene in Eilenberg{MaLane ohomology indued by a entral extension A ,! B !
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! C (Theorem I.5, [MaL63℄):

(3) Hom(C;Z) ,! Hom(B;Z)! Hom(A;Z)! Ext(C;Z)! Ext

A

(B;Z)! Ext

ab

(A;Z);

where Ext

A

(B;Z) denotes the equivalene lasses of entral extensions q:

b

B ! B for whih

the subgroup

b

A := q

�1

(A) is entral, and Ext

ab

(A;Z) denotes the equivalene lasses of abelian

extensions of A by Z . This long exat sequene remains valid for entral extensions of topologial

groups and Lie groups as well, if we interprete the Hom- and Ext-groups in an appropriate sense.

In Setion V all piees are put together to obtain the exatness of (1). An interesting

byprodut is that the vanishing of �

3;2

:�

1

(G) ! Hom



(g; z) preisely desribes the ondition

under whih the adjoint ation of g on the entral extension

b

g integrates to a smooth represen-

tation of the group G . In this sense the adjoint and oadjoint ation on

b

g might exist even if

the group

b

G does not.

It is a well-known fat in �nite-dimensional Lie theory that extensions of simply onneted

Lie groups are topologially trivial in the sense that they have a global smooth setion, hene an

be de�ned by a global oyle. For entral extensions of in�nite-dimensional simply onneted Lie

groups the existene of a global smooth setion is equivalent to the exatness of the orresponding

left invariant losed 2-form 
 (Proposition V.19). If G is not simply onneted, then positive

results on the existene of smooth setions an only be obtained with the use of smooth partitions

of unity.

Setion VI is a olletion of examples displaying various typial aspets in the desription

of the group Ext

Lie

(G;Z) in the exat sequene (1).

Sine every entral extension Z ,!

b

G !! G is in partiular a prinipal bundle, the exat

homotopy sequene of suh bundles yields a homomorphism Æ:�

2

(G) ! �

1

(Z)

�

=

�. In Setion

VII we show that this homomorphism is, up to sign, the same as the period homomorphism

�

2

(G) ! z provided by the long exat sequene for z instead of Z . Closely related to this fat

is another interpretation of the homomorphism �

2

(G)! Z as an obstrution to the existene of

b

G whih an be given as follows. Let 
(G) ,! P (G) !! G denote the path-loop �bration of a

simply onneted Fr�ehet{Lie group G . Then 
(G) and P (G) are Lie groups, and the path-loop

�bration is a smooth extension of G by the loop group 
(G). Now eah Lie algebra oyle in

H

2



(g; z) an be pulled bak to P (G), and sine P (G) is ontratible, all its homotopy groups

vanish, so that we obtain a entral extension Z ,!

b

P (G)!! P (G). By restrition, we get a entral

extension Z ,!

b


(G)!! 
(G) whih is de�ned by a homomorphism :�

1

(
(G))

�

=

�

2

(G)! Z .

It turns out that this homomorphism is trivial if and only if a suitable quotient of

b

P (G) yields

a entral extension

b

G of G .

I am grateful to H. Gl�okner for the exellent proof reading of the artile.

I. The abstrat setting for entral extensions of groups

In this setion we disuss several aspets of entral extensions of groups on the level where no

topology or manifold struture is involved. The fous of this setion is on a disussion of the

Hom-Ext exat sequene for entral extensions of groups (Theorem I.5; see also [MaL63℄). This

result an also be obtained by more elaborate spetral sequene arguments whih basially are

also suited for non-entral extensions, but for entral extensions it an be obtained quite diretly.

Moreover, we shall later need expliit information on the maps in this exat sequene to generalize

it to entral extensions of topologial and Lie groups, whih will be done by verifying that the

ruial steps generalize to the topologial and the Lie group ontext.

Throughout this setion G denotes a group and Z an abelian group.

De�nition I.1. We de�ne the group

Z

2

(G;Z) := ff :G�G! Z: (8x; y; z 2 G)

f(1; x) = f(x;1) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z)g
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of Z -valued 2-oyles and the subgroup

B

2

(G;Z) := ff :G�G! Z: (9h:G! Z)h(1) = 1; (8x; y 2 G) f(x; y) = h(xy)h(x)

�1

h(y)

�1

g

of Z -valued 2-oboundaries. In both ases the group struture is given by pointwise multiplia-

tion. Sine both groups are abelian, it makes sense to de�ne the Eilenberg{MaLane ohomology

group

Ext(G;Z) := H

2

(G;Z) := Z

2

(G;Z)=B

2

(G;Z):

Remark I.2. (a) To eah f 2 Z

2

(G;Z) we assoiate a entral extension of G by Z via

(1:1)

b

G := G�

f

Z; (g; z)(g

0

; z

0

) :=

�

gg

0

; zz

0

f(g; g

0

)

�

:

This multipliation turns

b

G into a group with neutral element (1;1) and inversion given by

(1:2) (g; z)

�1

=

�

g

�1

; z

�1

f(g; g

�1

)

�1

�

:

The projetion q:

b

G ! G; (g; z) 7! g is a homomorphism whose kernel is the entral subgroup

Z , hene de�nes a entral extension of G by Z .

For the veri�ation one needs that f(g; g

�1

) = f(g

�1

; g) whih follows from

f(g

�1

; g) = f(g;1)f(g

�1

; g) = f(g; g

�1

g)f(g

�1

; g) = f(g; g

�1

)f(1; g) = f(g; g

�1

):

It is also useful to derive a formula for the onjugation in this group. We have

(g; z)(h;w)(g; z)

�1

=

�

gh; zwf(g; h)

��

g

�1

; z

�1

f(g; g

�1

)

�1

�

=

�

ghg

�1

; wf(g; h)f(g; g

�1

)

�1

f(gh; g

�1

)

�

=

�

ghg

�1

; wf(g; h)f(ghg

�1

; g)

�1

�

;(1:3)

beause

f(gh; g

�1

)f(ghg

�1

; g) = f(gh;1)f(g

�1

; g) = f(g; g

�1

):

If, onversely, q:

b

G ! G is a entral extension with ker q = Z , then any map �:G !

b

G

with �(1) = 1 and q Æ � = id

G

leads to a 2-oyle

f(x; y) := �(x)�(y)�(xy)

�1

;

and then

':G�

f

Z !

b

G; (g; z) 7! �(g)z

is an isomorphism. This means that every entral extension of G by Z an be represented as

G�

f

Z for some f 2 Z

2

(G;Z).

(b) If the two oyles f

1

and f

2

satisfy

(1:4) f

2

(x; y) = f

1

(x; y)h(xy)h(x)

�1

h(y)

�1

for all x; y 2 G , then the map

':G�

f

1

Z ! G�

f

2

Z; '(g; z) = (g; h(g)z)

is a group isomorphism.

Let q

j

:

b

G

j

! G , j = 1; 2, be two entral Z -extensions of G . We identify Z with ker q

j

for j = 1; 2. A group homomorphism ':

b

G

1

!

b

G

2

is alled an equivalene of Z -extensions of G

if ' j

Z

= id

Z

(if we view Z as a subgroup of

b

G

1

and

b

G

2

), and q

2

Æ ' = q

1

. In partiular eah

equivalene

':G�

f

1

Z ! G�

f

2

Z
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is given by '(g; z) = (g; h(g)z), where h:G! Z is a map satisfying (1.4). We onlude that two

entral extensions G�

f

1

Z and G�

f

2

Z are equivalent if and only if f

1

f

�1

2

2 B

2

(G;Z), hene

that the group H

2

(G;Z) parametrizes the isomorphy lasses of entral extensions of G by Z ,

justifying the notation Ext(G;Z) (f. [MaL63, Th. IV.4.1℄). For a topologial interpretation of

these groups as singular ohomology groups we refer to the beautiful survey artile [MaL78℄.

A entral extension q:

b

G! G splits as a group extension if and only if there exists a group

homomorphism �:G!

b

G with � Æ � = id

G

. This means that �(g) = (g; h(g)) with

�

gg

0

; h(gg

0

)

�

= �(gg

0

) = �(g)�(g

0

) = (gg

0

; h(g)h(g

0

)f(g; g

0

)) for g; g

0

2 G;

i.e., f 2 B

2

(G;Z).

() Let H � G be a entral subgroup and �:

b

G ! G a entral extension as above. Then

b

H := �

�1

(H) is entral in

b

G if and only if the oyle f satis�es f(h; g) = f(g; h) for all g 2 G ,

h 2 H . We de�ne

Z

2

H

(G;Z) := ff 2 Z

2

(G;Z): (8g 2 G)(8h 2 H) f(g; h) = f(h; g)g:

Sine B

2

(G;Z) � Z

2

H

(G;Z), the group

Ext

H

(G;Z) := H

2

H

(G;Z) := Z

2

H

(G;Z)=B

2

(G;Z)

is a subgroup of Ext(G;Z).

Remark I.3. (The onneting homomorphism) Let

E: 1����!A

�

����!B

�

����!C����!1

be a entral extension of C by A . We write [f

E

℄ for the orresponding element of Ext(C;A),

where f

E

2 Z

2

(C;A) is a representing oyle. Let Z be an abelian group. We de�ne a

homomorphism

E

�

: Hom(A;Z)! Ext(C;Z); E

�

() := 

�

:[f

E

℄ := [ Æ f

E

℄:

It is lear that E

�

is a well-de�ned group homomorphism. To desribe the entral extension of

C by Z orresponding to [ Æ f

E

℄ , we onsider the entral subgroup

D := f(�(a); (a)

�1

) 2 B � Z: a 2 Ag and

b

C := (B � Z)=D;

whose elements we write as [b; z℄ := (b; z)D . This is the standard pushout onstrution. Then

we have a surjetive homomorphism q:

b

C ! C; [b; z℄ 7! �(b) whose kernel is given by

ker q = f[�(a); z℄: a 2 A; z 2 Zg = f[1; (a)z℄: a 2 A; z 2 Zg

�

=

Z:

To see that this extension of C by Z an be desribed by the oyle  Æ f

E

, let �:C ! B be

a setion orresponding to the oyle f

E

in the sense that f

E

(; 

0

) = �()�(

0

)�(

0

)

�1

: We

onsider the map b�:C !

b

C;  7! [�();1℄ and observe that q Æ b� = id

C

. The orresponding

oyle is given by

[�()�(

0

)�(

0

)

�1

;1℄ = [�(f

E

(; 

0

));1℄ = [1; (f

E

(; 

0

))℄;

hene orresponds to (f

E

(; 

0

)) under the identi�ation of Z with a subgroup of

b

C .
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Remark I.4. (a) If one is only interested in those entral extensions of abelian groups G whih

are abelian, then one requires the oyle f to satisfy f(a; b) = f(b; a) whih leads to the groups

Z

2

ab

(G;Z) for abelian groups G;Z . In view of B

2

ab

(G;Z) = B

2

(G;Z), we have an inlusion

Ext

ab

(G;Z) := H

2

ab

(G;Z) := Z

2

ab

(G;Z)=B

2

ab

(G;Z) ,! Z

2

(G;Z)=B

2

(G;Z) = H

2

(G;Z):

(b) Even though Ext

ab

(G;R) = f0g holds for eah abelian group G beause R is divisible, we

might have Ext(G;R) 6= f0g for ertain abelian groups G . A typial example is given by G = R

2

and the entral extension

b

G of G given by

b

G = R

3

with the multipliation

(1:5) (x; y; z) � (x

0

; y

0

; z

0

) = (x+ x

0

; y + y

0

; z + z

0

+ xy

0

):

The group

b

G is alled the three-dimensional Heisenberg group.

() Sine G := Z

2

is a free abelian group, Ext

ab

(Z

2

; Z) = f0g holds for eah abelian group Z .

On the other hand, we have Ext(Z

2

;Z) 6= f0g . A typial example is given by the subgroup

b

G := Z

3

of the three-dimensional Heisenberg group (note that (1.5) implies that

b

G is indeed a

subgroup). Let e

j

, j = 1; 2; 3, denote the basis vetors. Then

e

1

� e

2

= e

1

+ e

2

+ e

3

= e

3

� e

2

� e

1

implies that

b

G is non-abelian, so that we obtain a non-trivial entral extension Z ,!

b

G!! G =

Z

2

.

The exat sequene disussed below provides ruial information on how the group

Ext(C;Z) of a quotient C

�

=

B=A is related to the Ext-groups of A and B . Later we will

see that it generalizes in an appropriate sense to topologial groups and Lie groups. It is instru-

tive to ompare Theorems I.5 and I.6 below with the orresponding results for abelian groups

(Theorem A.1.4) whih are sharper in the sense that the last map in the sequene is surjetive.

Theorem I.5. Let E:A

�

��!B

�

��!C be a entral extension of C by A and Z an abelian

group. Then

Hom(C;Z) ,! Hom(B;Z)��!Hom(A;Z)

E

�

��!
Ext(C;Z)

�

�

��!
Ext

�(A)

(B;Z)

�

�

��!
Ext

ab

(A;Z)

is exat. Here �

�

:[f ℄: = [f Æ (� � �)℄ is the ination map and �

�

:[f ℄: = [f Æ (� � �)℄ is the

restrition map.

Proof. (1) Exatness at Hom(C;Z): If f Æ � = 1, then f = 1 beause � is surjetive.

(2) Exatness at Hom(B;Z): For f 2 Hom(C;Z) we learly have f Æ � Æ � = 1. If, onversely,

f 2 Hom(B;Z) satis�es f Æ � = 1, then f vanishes on im� , hene fators to a homomorphism

e

f :C ! Z with f =

e

f Æ � .

(3) Exatness at Hom(A;Z): First we show that for every  2 Hom(B;Z) the entral extension

E

�

:( Æ �) is trivial. Let

b

C := (B � Z)=D; D := f

�

�(a); (�(a))

�1

�

: a 2 Ag

be the entral extension de�ned by  Æ � (Remark I.3). Then �:C !

b

C; �(b) 7! [b; (b)

�1

℄

is a well-de�ned group homomorphism and q Æ � = id

C

holds for q([b; z℄) = �(b). Therefore

E

�

( Æ �) = 1.

Now we show that E

�

 = 1 for  2 Hom(A;Z) implies that  is in the range of

Hom(�;Z): f 7! f Æ � . In view of E

�

 = 1, there exists a homomorphi setion

�:C !

b

C

�

=

(B � Z)=D; D := f

�

�(a); (a)

�1

�

: a 2 Ag:

We write �(�(b)) = [b; Æ(b)℄ with a funtion Æ:B ! Z and note that Æ is well-de�ned beause

D \ (f1g � Z) = f1g . Now

[b

1

b

2

; Æ(b

1

b

2

)℄ = �(�(b

1

b

2

)) = �(�(b

1

))�(�(b

2

)) = [b

1

b

2

; Æ(b

1

)Æ(b

2

)℄
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implies that Æ is a group homomorphism. Moreover, Æ Æ � satis�es

[�(a); Æ(�(a))℄ = �(�(�(a))) = �(1) = [1; Æ(1)℄ = [1;1℄:

Hene Æ(�(a)) = (a)

�1

implies that  = Æ

�1

Æ � .

(4) Exatness at Ext(C;Z): It is lear that �

�

maps Ext(C;Z) into Ext

�(A)

(B;Z). First we

show that �

�

E

�

= 1. We have �

�

E

�

: = [ Æ f

E

Æ (� � �)℄ = [f

E

Æ (� � �)℄

�

(): An easy

alulation gives

B �

f

E

Æ(���)

A

�

=

(C �

f

E

A)�

f

E

Æ(���)Æ(���)

A

�

=

C �

(f

E

;f

E

)

(A�A);

where �:C �

f

E

A! B is the natural isomorphism. In this sense we de�ne a setion

�:B

�

=

(C �

f

E

A)! C �

(f

E

;f

E

)

(A�A); �(; a) = (; a; a):

Now

�

�

(

1

; a

1

); (

2

; a

2

)

�

=

�



1



2

; a

1

a

2

f(

1

; 

2

); a

1

a

2

f(

1

; 

2

)

�

= �(

1

; a

1

)�(

2

; a

2

)

shows that � is a group homomorphism, so that [f

E

Æ (� � �)℄ = 1, and hene �

�

E

�

= 1.

Next we assume that �

�

:[f ℄ = [f Æ (���)℄ = 1 for an f 2 Z

2

(C;Z). This means that there

exists a splitting homomorphism �:B ! B�

fÆ(���)

Z whih we write as �(b) = (b; (b)). Then

we have (b

1

b

2

) = (b

1

)(b

2

)f(�(b

1

); �(b

2

)) for all b

1

; b

2

2 B whih implies that  Æ �:A ! Z

is a group homomorphism. Next we onsider the homomorphism

':B � Z ! B �

fÆ�

Z ! C �

f

Z; '(b; z) = �(b)z:

Then ' is a surjetive homomorphism whose kernel is given by

ker' = f(�(a); z): (�(a))z = 1; a 2 Ag = f

�

�(a); (�(a))

�1

�

: a 2 Ag;

so that (B � Z)= ker'

�

=

C �

f

Z ! C and therefore [f ℄ = E

�

:( Æ �).

(5) Exatness at Ext

�(A)

(B;Z): In view of �

�

�

�

= (� Æ �)

�

= 1, it remains to see that

ker�

�

� im�

�

. Let f 2 Z

2

�(A)

(B;Z) and q

B

:

b

B := B �

f

Z ! B be the orresponding

entral extension. We assume that [f Æ (� � �)℄ = 1 and have to show that [f ℄ 2 im�

�

.

First we observe that there exists a homomorphism �:A!

b

B with q

B

Æ� = � . The assumption

f 2 Z

2

�(A)

(B;Z) implies that �(A) � q

�1

B

(�(A)) is entral in

b

B , so that we may form the

quotient group

b

C :=

b

B=�(A) whih is a entral extension of

b

C=

b

A

�

=

C=A

�

=

B by

b

A=�(A)

�

=

Z .

Let q

C

:

b

C ! C be the orresponding quotient map. Now it suÆes to show that

b

B

�

=

�

�

b

C := f(b;b) 2 B �

b

C :�(b) = q

C

(b)g:

We de�ne a homomorphism

:

b

B ! �

�

b

C;  := (q

B

;

b

�);

where

b

�:

b

B !

b

C is the quotient map. That im  � �

�

b

C follows from � Æ q

B

= q

C

Æ

b

� . We laim

that  is bijetive. The injetivity follows from

ker  = ker q

B

\ ker

b

� = ker q

B

\ �(A) = f1g:

To see that  is surjetive, let (b;b) 2 �

�

b

C and pik

b

b 2

b

B with b = q

B

(

b

b). Then q

C

b

�(

b

b) =

�q

B

(

b

b) = �(b) = q

C

(b) implies that there exists a z 2 Z with

b

�(

b

b)z = b . Now (

b

bz) = (b;b).
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Theorem I.6. Let E:A

�

��!B

�

��!C be an extension of abelian groups and G be a group.

Then

Hom(G;A) ,! Hom(G;B)��!Hom(G;C)

E

�

��!Ext(G;A)

�

�

��!Ext(G;B)

�

�

��!Ext(G;C)

is exat. Here �

�

:[f ℄ = [� Æ f ℄ , �

�

:[f ℄ = [� Æ f ℄ , and E

�

: = 

�

E is the pullbak of E to a

entral extension of G .

Proof. Exatness at Hom(G;A) and Hom(G;B) is trivial.

(1) Exatness at Hom(G;C): Let  2 Hom(G;C). Then E

�

 is the entral extension

b

G := f(g; b) 2 G�B:�(b) = (g)g with q:

b

G! G; (g; b) 7! g:

This entral extension is trivial if and only if there exists a homomorphi setion �:G!

b

G . Suh

a setion an be written as �(g) = (g; f(g)) for a homomorphism f :G ! B with � Æ f =  .

Hene E

�

 is trivial if and only if there exists f 2 Hom(G;B) with � Æ f =  .

(2) Exatness at Ext(G;A): Let  2 Hom(G;C) and

b

G be as in (1). Then the entral extension

�

�

E

�

 is given by

H := (

b

G�B)=D � (G�B �B)=D; D := f(1; �(a); �(a)

�1

): a 2 Ag:

One diretly veri�es that �:G ! H; �(g) := [(g; b; b

�1

)℄ for �(b) = (g) is a well-de�ned

homomorphi setion of this entral extension.

Now we assume that F : A ,!

b

G

q

��!G is a entral extension for whih �

�

F is trivial.

This means that the entral extension

H := (

b

G�B)=f(a; �(a)

�1

): a 2 Ag; q

1

:H ! G; [g; b℄ 7! q(g)

has a homomorphi setion �:G! H . This setion an be written as �(q(g)) = [g; f(g)℄ , where

f :

b

G ! B is a homomorphism with f(ga) = f(g)�(a)

�1

for g 2

b

G , a 2 A . In partiular we

obtain � = f

�1

j

A

, and hene that f(A) = �(A) � B . Now :G ! C; q(g) 7! �(f(g)) is a

well-de�ned homomorphism. We laim that F

�

=

E

�

 . In view of ker f \ker q = ker f \A = f1g ,

the homomorphism ' := (q; f

�1

):

b

G! G�B is injetive, and  Æ q = � Æ f

�1

implies that

'(

b

G) � f(g; b) 2 G�B: (g) = �(b)g:

It remains to see that we have equality. Pik (g; b) 2 G� B with (g) = �(b). Let bg 2

b

G with

q(bg) = g . Then �(f(bg)) = (q(bg)) = (g) = �(b), so that there exists an a 2 A with f(bga) = b .

Now '(bga) = (g; b).

(3) Exatness at Ext(G;B): The relation �

�

�

�

= (��)

�

= 1 is trivial. If F :B ,!

b

G

q

��!G is a

entral extension with �

�

F = 1, then

H := (

b

G� C)=D; D := f(b; �(b)

�1

): b 2 Bg

has a homomorphi setion �:G! H; �(q(g)) := [g; f(g)℄ , where f :

b

G! C is a homomorphism

with f j

B

= �

�1

. In partiular we have f Æ � = 1. Let L := ker f �

b

G and q

L

:=

q j

L

:L! G . Then ker q

L

= ker q \ L = B \ ker� = �(A), so that we obtain a entral extension

A

�

��!L

q

L

��!G: One readily veri�es that the homomorphism L � B !

b

G; (l; b) 7! lb fators

through an isomorphism ': (L�B)=�(�

�1

)!

b

G;'([l; b℄) = lb:
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II. Central extensions of topologial groups

For a topologial group G and an abelian topologial group Z we onsider only those entral

Z -extensions q:

b

G ! G whih are Z -prinipal bundles, i.e., for whih there exists an open 1-

neighborhood U � G and a ontinuous map �:U !

b

G with q Æ � = id

U

. As we will see below,

these are preisely those entral extensions that an be represented by a oyle f :G�G ! Z

whih is ontinuous in a neighborhood of 1� 1 , and this leads to a generalization of Theorems

I.5 and I.6 to entral extensions of topologial groups. Before we an derive these fats, we

ollet some general fats on topologial groups. Throughout this paper, all topologial groups

are assumed to be Hausdor�.

Lemma II.1. Let G be a group and F a �lter basis of subsets with

T

F = f1g satisfying:

(U1) (8U 2 F)(9V 2 F)V V � U:

(U2) (8U 2 F)(9V 2 F)V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F)gV g

�1

� U:

Then there exists a unique group topology on G suh that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F)gV � Ug:

Proof. [Bou88, Ch. III, x1.2, Prop. 1℄

Lemma II.2. We assume that G is a group and that K = K

�1

is a subset ontaining 1

and generating G . We further assume that K is a Hausdor� topologial spae suh that the

inversion is ontinuous and that there exists an open subset V � K �K with xy 2 K for all

(x; y) 2 V , ontaining all pairs (x; x

�1

) , (x;1) , (1; x) , x 2 K , suh that the group multipliation

m:V ! K is ontinuous. Then there exists a unique group topology on G for whih the inlusion

map K ,! G is an open embedding.

Proof. (f. [Ti83, p.62℄) We onsider the �lter basis F of neighborhoods of 1 in K and verify

that it satis�es the onditions in Lemma II.1.

(U1) follows from the fat that V is open and m is ontinuous.

(U2) follows from the ontinuity of the inversion on U .

(U3) Sine K generates G , one easily veri�es by indution that it suÆes to show that

(8U 2 F)(8g 2 K)(9U

0

2 F)gU

0

g

�1

� U:

We �nd U

1

2 F and a neighborhood U

2

of g in K suh that fgg�U

1

� V , U

2

�fg

�1

g � V and

gU

1

� U

2

. Then the onjugation map U

1

! K;x 7! (gx)g

�1

is ontinuous, and (U3) follows.

Therefore

� := fU � G: (8g 2 U)(9V 2 F)gV � Ug

de�nes a group topology on G .

It remains to verify that the inlusion map �:K ,! G is an embedding. Let k 2 K and

U � G be a neighborhood of k . Then there exists an F 2 F with kF � U . Sine kF � K is a

neighborhood of k , we see that � is ontinuous. Sine, moreover, every neighborhood of k 2 K

ontains a set of the form kF , F 2 F , we see that � is an embedding.

Lemma II.3. Let G be a onneted simply onneted topologial group and T a group. Let U

be an open symmetri onneted identity neighborhood in G and f :U ! T a funtion with

f(xy) = f(x)f(y) for x; y; xy 2 U:

Then there exists a unique group homomorphism extending f . If, in addition, T is a topologial

group and f is ontinuous, then its extension is also ontinuous.
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Proof. (f. [HoMo98, Cor. A.2.26℄; see also [Bou88, Ch. III, x2, Ex.24℄) The idea is the

following. We onsider the group G� T and the subgroup H � G� T generated by the subset

K := f(x; f(x)):x 2 Ug . We endow K with the topology turning x 7! (x; f(x)); U ! K into a

homeomorphism. Using Lemma II.2, we obtain a topology on H for whih H is a topologial

group and the projetion p

G

:G� T ! G indues a overing homomorphism q:H ! G , so that

the onnetedness of H and the simple onnetedness of G imply that q is a homeomorphism.

Now F := p

T

Æ q

�1

:G ! T provides the required extension of f . In fat, for x 2 U we have

q

�1

(x) = (x; f(x)) and therefore F (x) = f(x).

Lemma II.3 an be interpreted in the sense that the simple onnetedness of G guarantees

that the loal 1-oyle f :U ! T of the loal group U (f. [Est62℄) an be extended to a global

1-oyle f :G ! T . In Setion III below we will in partiular be onerned with a version of

this result onerning 2-oyles instead of 1-oyles.

Proposition II.4. Let G and Z be topologial groups, where G is onneted, and Z ,!

b

G!

G a entral extension of G by Z . Then

b

G arries the struture of a topologial group suh that

b

G! G is a Z -prinipal bundle if and only if the entral extension an be desribed by a oyle

f :G�G! Z whih is ontinuous in a neighborhood of (1;1) in G�G .

Proof. First we assume that

b

G is a Z -prinipal bundle over G . Then there exists a 1-

neighborhood U � G and a ontinuous setion �:U !

b

G of the map q:

b

G ! G . We extend �

to a global setion G !

b

G . Then f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-oyle G �G ! Z

whih is ontinuous in a neighborhood of (1;1).

Conversely, we assume that

b

G

�

=

G �

f

Z holds for a 2-oyle f :G � G ! Z whih

is ontinuous in a neighborhood of (1;1) in G � G . Let U � G be an open symmetri 1-

neighborhood suh that f is ontinuous on U � U , and onsider the subset

K := U � Z = q

�1

(U) �

b

G = G�

f

Z:

Then K = K

�1

. We endow K with the produt topology of U � Z . Sine the multipliation

m

G

j

U�U

:U � U ! G is ontinuous, the set

V := f

�

(x; z); (x

0

; z

0

)

�

2 K �K:xx

0

2 Ug

is an open subset of K �K suh that the multipliation map

V ! K;

�

(x; z); (x

0

; z

0

)

�

! (xx

0

; zz

0

f(x; x

0

))

is ontinuous. In addition, the inversion K ! K; (x; z) 7!

�

x

�1

; z

�1

f(x; x

�1

)

�1

�

is ontinuous.

Sine G is onneted, it is generated by U , and therefore

b

G is generated by K = q

�1

(U).

Therefore Lemma II.2 applies and shows that

b

G arries a unique group topology for whih the

inlusion map K = U � Z ,!

b

G is an open embedding. It is lear that with respet to this

topology, the map q:

b

G! G is a Z -prinipal bundle.

Remark II.5. To derive a generalization of Proposition II.4 to groups whih are not neessarily

onneted, one has to make the additional assumption that for eah g 2 G the orresponding

onjugation map I

g

:

b

G!

b

G is ontinuous in the identity. In view of (1.3), this follows from the

ontinuity of the funtions f(g; �) and f(�; g) in 1 . This ondition is automatially satis�ed for

all elements in the open subgroup generated by U , hene redundant if G is onneted.

De�nition II.6. Let G and Z be topologial groups, where G is onneted. We have

seen in Proposition II.4 that the entral extensions of G by Z whih are prinipal Z -bundles

an be represented by 2-oyles f :G � G ! Z whih are ontinuous in a neighborhood of

(1;1) in G �G . We write Z

2



(G;Z) for the group of these oyles. Likewise we have a group

B

2



(G;Z) of 2-oboundaries f(x; y) = h(xy)h(x)

�1

h(y)

�1

; where h:G ! Z is ontinuous in a

1-neighborhood. Then the group

Ext



(G;Z) := H

2



(G;Z) := Z

2



(G;Z)=B

2



(G;Z)

lassi�es the entral extensions of G by Z whih are prinipal bundles.
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A typial example of a entral extension of a ompat group whih has no ontinuous loal

setion is the sequene f1;�1g

N

,! T

N

q

��!T

N

, where q(x) = x

2

is the squaring map on the

in�nite-dimensional torus T

N

.

Remark II.7. (a) We onsider the setting of Remark I.3, where B is a prinipal A-bundle.

This means that there exists a loal setion �:U

C

! B whih an be used to obtain a loal

setion of

b

C ! C , so that E

�

maps ontinuous homomorphisms into entral extensions with

ontinuous loal setions. Therefore the maps in Theorem I.5 are ompatible with the topologial

situation, and we thus obtain for onneted groups A , B and C the sequene of maps

Hom(C;Z) ,! Hom(B;Z)! Hom(A;Z)

E

�

��!Ext



(C;Z)

�

�

�!Ext

;�(A)

(B;Z)

�

�

�!Ext

;ab

(A;Z);

where Hom denotes ontinuous homomorphisms.

It is easy to verify that the proof of Theorem I.5 remains valid in this topologial ontext

(f. [Se70, Prop. 4.1℄):

(1) diretly arries over.

(2): Sine B ! C is a prinipal bundle, C arries the quotient topology of B=�(A). Hene every

ontinuous homomorphism :B ! Z with �(A) � ker  fators to a ontinuous homomorphism

C ! Z .

(3), (4): Here one needs that a group homomorphism between topologial groups is ontinuous if

and only if it is ontinuous in the identity, resp., on a neighborhood of the identity. This remark

implies that all group homomorphisms showing up in (3) and (4) are ontinuous.

(5): Here one has to observe that

b

C ! C is a entral extension whih is a prinipal bundle, and

that �(A) is a losed subgroup of

b

A , resp.,

b

B .

(b) Similar arguments show that eah extension E:A

�

����!B

�

����!C of abelian topologial

groups whih is a prinipal A-bundle leads for eah onneted topologial group G to an exat

sequene

Hom(G;A) ,! Hom(G;B)��!Hom(G;C)

E

�

��!Ext



(G;A)

�

�

��!Ext



(G;B)

�

�

��!Ext



(G;C):

It is instrutive to desribe the image of E

�

orresponding to a universal overing map

q

G

:

e

G! G for a topologial group G .

Proposition II.8. Let G be a onneted, loally arwise onneted and semiloally simply

onneted topologial group and q

G

:

e

G ! G a universal overing homomorphism. We identify

�

1

(G) with ker q

G

. For a entral extension of topologial groups Z ,!

b

G

q

��!G the following are

equivalent:

(1) There exists a ontinuous loal setion �

U

:U !

b

G with �

U

(xy) = �

U

(x)�

U

(y) for x; y; xy 2

U .

(2)

b

G

�

=

G�

f

Z , where f 2 Z

2

(G;Z) takes the value 1 on a neighborhood of (1;1) in G�G .

(3) There exists a homomorphism :�

1

(G)! Z and an isomorphism �: (

e

G� Z)=�(

�1

)!

b

G

with q�([x;1℄) = q

G

(x) , x 2

e

G .

Proof. (1) , (2) follows diretly from the de�nitions.

(1) ) (3): We may w.l.o.g. assume that U is onneted, U = U

�1

, and that there exists a

ontinuous setion e�:U !

e

G of the universal overing map q

G

. Then

�

U

Æ q

G

j

e�(U)

: e�(U)!

b

G

extends uniquely to a ontinuous homomorphism f :

e

G !

b

G with f Æ e� = �

U

and q Æ f = q

G

.

We de�ne  :

e

G � Z !

b

G; (g; z) 7! f(g)z . Then  is a ontinuous group homomorphism whih

is a loal homeomorphism beause

 (e�(x); z) = f(e�(x))z = �

U

(x)z for x 2 U; z 2 Z:
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We onlude that  is a overing homomorphism. Moreover,  is surjetive beause its range is

a subgroup of

b

G ontaining Z and mapped surjetively by q onto G . This proves that

b

G

�

=

(

e

G� Z)= ker ; ker = f(g; f(g)

�1

): g 2 f

�1

(Z)g:

On the other hand, f

�1

(Z) = ker(q Æ f) = ker q

G

= �

1

(G), so that

ker = f(d; (d)

�1

): d 2 �

1

(G)g;  := f j

�

1

(G)

:

(3) ) (1) follows diretly from the fat that the map

e

G� Z !

b

G is a overing morphism.

III. Topology of in�nite-dimensional manifolds

So far we have only dealt with abstrat groups or topologial groups. In this setion we turn to

manifolds and spei�ally to in�nite-dimensional ones. The manifolds we onsider will always

be modeled over a sequentially omplete loally onvex spae (s..l.. spae). This requirement

is essential for a reasonable di�erential alulus beause the sequential ompleteness ensures the

existene of Riemann integrals and hene the validity of the Fundamental Theorem of Calulus.

For more details on this setting we refer to [Mi83℄ and [Ne97℄. As we will explain in some more

detail below, the approah of Kriegl and Mihor ([KM97℄) is slightly di�erent, but oinides

with the other one for Fr�ehet manifolds, i.e., manifolds modeled over Fr�ehet spaes. An

unpleasant obstale one has to fae when dealing with in�nite-dimensional manifolds M is that

they need not be smoothly paraompat, i.e., not every open over has a subordinate smooth

partition of unity (f. [KM97℄). Hene there is no a priori reason for de Rham isomorphisms

H

n

dR

(M;R)

�

=

H

n

sing

(M;R) to hold beause the sheaf theoreti proofs break down. This is

a problem that already arises in the lassial setting of Banah manifolds beause there are

Banah spaes M for whih there exists no smooth funtion supported by the unit ball, so that

M is in partiular not smoothly paraompat. Simple examples are the spaes C([0; 1℄) and

l

1

(N) (f. [KM97, 14.11℄). On the topologial side, paraompatness is a natural assumption

on manifolds. In view of Theorem 1 in [Pa66℄, a manifold is metrizable if and only if it is

�rst ountable and paraompat whih implies in partiular that its model spae is Fr�ehet

(f. [KM97, Lemma 27.8℄). Fr�ehet{Lie groups are always paraompat beause they are �rst

ountable topologial groups, hene metrizable.

It is a entral idea in this paper that all those parts of the de Rham isomorphism that are

essential to study entral extensions of Lie groups still remain true to a suÆient extent. Here

a key point is that the Poinar�e Lemma is still valid. In partiular we will see that we have an

injetion

H

1

dR

(M;R) ,! H

1

sing

(M;R)

�

=

Hom(�

1

(M);R);

where the isomorphism H

1

sing

(M;R)

�

=

Hom(�

1

(M);R) is a diret onsequene of the Hurewiz

Theorem (Remark A.2.1).

De�nition III.1. (a) Let X and Y be topologial vetor spaes, U � X open and f :U ! Y

a ontinuous map. Then the derivative of f at x in the diretion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever it exists. The funtion f is alled di�erentiable in x if df(x)(h) exists for all h 2 X .

It is alled ontinuously di�erentiable or C

1

if it is di�erentiable in all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a ontinuous map. It is alled a C

n

-map if df is a C

n�1

-map, and C

1

if it is C

n

for all

n 2 N . This is the notion of di�erentiability used in [Mi83℄, [Ha82℄ and [Ne97℄.



Central extensions of in�nite-dimensional Lie groups 13

(b) We briey reall the basi de�nitions underlying the onvenient alulus in [KM97℄. Let E

be a loally onvex spae. The 

1

-topology on E is the �nal topology with respet to the set

C

1

(R; E). We all E onvenient if for eah smooth urve 

1

:R ! E there exists a smooth

urve 

2

:R ! E with 

0

2

= 

1

(f. [KM97, p.20℄).

Let U � E be an open subset and f :U ! F a funtion, where F is a loally onvex spae.

Then we all f onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This onept quite diretly implies nie artesian losedness properties for smooth maps (f.

[KM97, p.30℄).

Remark III.2. If E is an s..l.. spae, then it is onvenient beause the sequential omplete-

ness implies the existene of Riemann integrals ([KM97, Th. 2.14℄). If E is a Fr�ehet spae, then

the 

1

-topology oinides with the original topology ([KM97, Th. 4.11℄).

Moreover, for an open subset U of a Fr�ehet spae, a map f :U ! F is onveniently

smooth if and only if it is smooth in the sense of [Mi83℄. This an be shown as follows. Sine

C

1

(R; E) is the same spae for both onepts of di�erentiability, the hain rule shows that

smoothness in the sense of [Mi83℄ implies smoothness in the sense of onvenient alulus. Now

we assume that f :U ! F is onveniently smooth. Then the derivative df :U�E ! F exists and

de�nes a onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄). Hene

df :U �E ! F is also onveniently smooth, hene ontinuous with respet to the 

1

-topology.

As E �E is a Fr�ehet spae, it follows that df is ontinuous. Therefore f is C

1

in the sense of

[Mi83℄, and now one an iterate the argument.

If M is a di�erentiable manifold and z an s..l.. spae, then a z-valued k -form ! on M

is a funtion ! whih assoiates to eah p 2M is a k -linear alternating map T

p

(M)

k

! z suh

that in loal oordinates the map

(p; v

1

; : : : ; v

k

) 7! !(p)(v

1

; : : : ; v

k

)

is smooth. We write 


k

(M; z) for the spae of smooth k -forms on M with values in z .

Lemma III.3. (Poinar�e Lemma) Let E and z be s..l.. spaes and U � E an open subset

whih is star-shaped with respet to 0 . Let ! 2 


k+1

(U; z) be a z-valued losed k+1-form. Then

! is exat. Moreover, ! = d' for ' 2 


k

(U; z) with '(0) = 0 given by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Proof. For the ase of Fr�ehet spaes Remark III.2 implies that the assertion follows from

[KM97, Lemma 33.20℄. On the other hand, one an prove it diretly in the ontext of s..l..

spaes by using the fat that one may di�erentiate under the integral for a funtion of the type

R

1

0

H(t; x) dt , where H is a smooth funtion ℄ � "; 1 + "[�U ! z (f. [KM97, p.32℄). For the

alulations needed for the proof we refer to [La99, Th. V.4.1℄.

Proposition III.4. Let M be a onneted s..l.. manifold and � 2 


1

(M; z) a losed 1-

form. Then there exists a onneted overing q:



M !M and a smooth funtion f :



M ! z with

df = q

�

� .

Proof. On M we onsider the pre-sheaf F given for an open subset U �M by

F(U) := ff 2 C

1

(U; z): df = � j

U

g:

It is easy to verify that F is in fat a sheaf on M (f. [We80, Set. II.1℄).

To determine the stalks F

x

, x 2 M , of the sheaf F , we use the Poinar�e Lemma. Let

x 2M . Sine M is a manifold, there exists a neighborhood U of x whih is di�eomorphi to a
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onvex subset of an s..l.. spae. Then the Poinar�e Lemma implies for eah y 2 z the existene

of a smooth funtion f

U

on U with df

U

= � j

U

and f

U

(x) = y . Sine U is onneted, the

funtion f

U

is uniquely determined by its value in x . Now let V be another open set ontaining

x , and f

V

2 F(V ) with [f

U

℄

x

= [f

V

℄

x

. Choosing an open neighborhood W � U \V of x whih

is di�eomorphi to a onvex domain, we onlude from f

U

(x) = f

V

(x) = y that f

V

j

W

= f

U

j

W

.

Therefore the map F

x

! z; [f ℄

x

7! f(x) is a linear bijetion.

Now let p:

e

F =

S

x2X

F

x

! M denote the �etale spae over M assoiated to the sheaf

F . We laim that p is a overing map. Let x 2 X and U as above. Then F(U)

�

=

z ,

as we have seen above. Therefore �(U;

e

F)

�

=

F(U)

�

=

F

x

(f. [We80, Th. II.2.2℄). For eah

z 2 z we write s

z

:U !

e

F for the ontinuous setion given by s

z

(y) = [f

z

℄

y

, where f

z

2 F(U)

satis�es f

z

(x) = z . Then the sets s

z

(U) are open subsets of

e

F by the de�nition of the topology

on

e

F ([We80, p. 42℄). Moreover, these sets are disjoint beause [f

z

℄

y

= [f

w

℄

u

�rst implies

u = y and further f

z

(y) = f

w

(u), so that f

z

= f

w

and therefore z = w . This proves that

p

�1

(U) =

_

[

z2z

s

z

(U) is a disjoint union of open sets, where s

z

:U ! s

z

(U) is a homeomorphism

for eah z by onstrution of

e

F . Thus p is a overing map.

Pik x

0

2 M and an inverse image y

0

2

e

F . Then the onneted omponent



M of

e

F ontaining y

0

is a manifold with a overing map q:



M ! M . Moreover, the funtion

f :



M ! z; [s℄

y

7! s(y) is a smooth funtion. It remains to show that q

�

� = df . So let

s:U !

e

F be a smooth setion of

e

F . Then f Æ s 2 C

1

(U; z) is a smooth funtion with

df(s(x))ds(x) = d(f Æ s)(x) = �(x) for all x 2 U . Sine ds(x) = (dq(s(x)))

�1

, it follows

that df(s(x)) = (q

�

�)(s(x)), and therefore that df = q

�

� .

Corollary III.5. Let M be a simply onneted s..l.. manifold and z an s..l.. spae. Then

H

1

dR

(M; z) = f0g .

Proof. Let � be a losed z-valued 1-form on M . Using Proposition III.5, we �nd a overing

q:



M !M and a smooth funtion f :



M ! z with df = q

�

� . Sine M is simply onneted, the

overing q is trivial, hene a di�eomorphism. Therefore � is exat.

Theorem III.6. Let M be a onneted s..l.. manifold, z an s..l.. spae, x

0

2 M , and

�

1

(M) := �

1

(M;x

0

) . Then we have an inlusion

�:H

1

dR

(M; z) ,! Hom(�

1

(M); z)

whih is given on a pieewise di�erentiable loop : [0; 1℄!M in x

0

for � 2 Z

1

dR

(M; z) by

�(�)() := �([�℄)([℄) =

Z



� :=

Z

1

0



�

�:

The homomorphism �([�℄) an also be alulated as follows: Let f

�

2 C

1

(

f

M; z) with df

�

= q

�

� ,

where q:

f

M !M is the universal overing map, and write

f

M ��

1

(M)!

f

M; (g; x) 7! �

g

(x) for

the right ation of �

1

(M) on

f

M . Then the funtion f

�

Æ�

g

� f

�

is onstant equal to �([�℄)(g) .

Proof. Let q:

f

M ! M be a simply onneted overing manifold and y

0

2 q

�1

(x

0

). In view

of Corollary III.5, for eah losed 1-form � on M , the losed 1-form q

�

� on

f

M is exat. Let

f

�

2 C

1

(

f

M; z) with

e

f

�

(y

0

) = 0 and d

e

f

�

= q

�

� .

Let

f

M � �

1

(M) !

f

M; (y; g) 7! �

g

(y) := y:g denote the ation of �

1

(M) on

f

M by dek

transformations. We put

�(�)(g) := f

�

(y

0

:g):

Then �(�)(1) = 0 and

�(�)(g

1

g

2

) = f

�

(y

0

:g

1

g

2

) = f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + f

�

(y

0

:g

1

)

= f

�

(y

0

:g

1

g

2

)� f

�

(y

0

:g

1

) + �(�)(g

1

):
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For eah g 2 �

1

(M) the funtion h := �

�

g

f

�

� f

�

satis�es h(y

0

) = �(�)(g) = f

�

(y

0

:g) and

dh = �

�

g

df

�

� df

�

= �

�

g

q

�

�� q

�

� = (q Æ �

g

)

�

�� q

�

� = q

�

�� q

�

� = 0:

Therefore h is onstant �(�)(g), and we obtain �(�)(g

1

g

2

) = �(�)(g

2

) + �(�)(g

1

): This proves

that �(�) 2 Hom(�

1

(M); z).

Suppose that �(�) = 0. Then �

�

g

f

�

� f

�

= 0 holds for eah g 2 �

1

(M), showing that the

funtion f

�

fators through a smooth funtion f :M ! z with f Æq = f

�

. Now q

�

df = df

�

= q

�

�

implies df = � , so that � is exat. If, onversely, � is exat, then the funtion f

�

is invariant

under �

1

(M), and we see that �(�) = 0. Therefore �:Z

1

dR

(M; z) ! Hom(�

1

(M); z) fators

through an inlusion H

1

dR

(M; z) ,! Hom(�

1

(M); z).

Finally, let [℄ 2 �

1

(M), where : [0; 1℄!M is pieewise smooth. Let e: [0; 1℄!

f

M be a

lift of  with e(0) = y

0

. Then

�([�℄)([℄) = f

�

([℄) = f

�

(e(1)) = f

�

(e(0)) +

Z

1

0

df

�

(e(t))e

0

(t) dt

= f

�

(y

0

) +

Z

1

0

(q

�

�)(e(t))e

0

(t) dt =

Z

1

0

�((t))

0

(t) dt =

Z

1

0



�

� =

Z



�:

The following lemma shows that exatness of a vetor-valued 1-form an be tested by

looking at the assoiated salar-valued 1-forms.

Lemma III.7. Let � 2 


1

(M; z) be a losed 1-form. If for eah ontinuous linear funtional

� on z the 1-form � Æ � is exat, then � is exat.

Proof. If �Æ� is exat, then the group homomorphism �(�):�

1

(M)! z satis�es �Æ�(�) = 0

(Theorem III.6). If this holds for eah � 2 z

�

, then the fat that the ontinuous linear funtionals

on the loally onvex spae z separate the points implies that �(�) = 0 and hene that � is

exat.

To see that the map � is surjetive, one needs smooth paraompatness whih is not always

available, note even for Banah manifolds. For an in�nite-dimensional version of de Rham's

Theorem for smoothly paraompat manifolds we refer to [KM97, Thm. 34.7℄. The following

proposition is a partiular onsequene:

Proposition III.8. If M is a onneted smoothly paraompat s..l.. manifold, then the

inlusion map �:H

1

dR

(M; z)! Hom(�

1

(M); z) is bijetive.

Proof. In view of Theorem III.6, we only have to show that for eah homomorphism

�:�

1

(M)! z there exists a losed 1-form � with �(�) = � .

We view the universal overing manifold

f

M !M as a prinipal �

1

(M)-bundle and onsider

the assoiated bundle

p:E :=

f

M �

�

1

(M)

z !M;

where �

1

(M) ats on z by d:x = x + �(d). This is an aÆne bundle over M . Using smooth

partitions of unity on M , we �nd a smooth setion �:M ! E . Let q:

f

M ! M denote the

universal overing map. We write the elements of E as [m; t℄ = [md; t � �(d)℄ for m 2

f

M ,

d 2 �

1

(M) and t 2 z . Then we obtain a funtion f :

f

M ! z with �(q(m)) = [m; f(m)℄

for all m 2

f

M . Now f(md) = f(m) � �(d) shows that df is a 1-form on

f

M whih is the

pull-bak of a 1-form � on M . In view of Theorem III.6, the assertion now follows from

�(�)(d) = f(md)� f(m) = ��(d).

Proposition III.9. Let M be a onneted s..l.. manifold and � � z a disrete subgroup.

Then z=� arries a natural manifold struture suh that the tangent spae in every element of

z=� an be anonially identi�ed with z . For a smooth funtion f :M ! z=� we thus an identify
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the di�erential df with a z-valued 1-form on M . For a losed z-valued 1-form � on M the

following onditions are equivalent:

(1) There exists a smooth funtion f :M ! z=� with df = � .

(2) �(�)

�

�

1

(M)

�

� � .

Proof. Let q:

f

M !M denote the universal overing map and �x a point x

0

2

f

M . Then the

losed 1-form q

�

� on

f

M is exat (Theorem III.6), so that there exists a unique smooth funtion

e

f :

f

M ! z with d

e

f = q

�

� and

e

f(x

0

) = 0. In Theorem III.6 we have seen that for eah g 2 �

1

(M)

we have

(3:1) �

�

g

e

f �

e

f = �(�)(g):

(1) ) (2): Let p: z ! z=� denote the quotient map. We may w.l.o.g. assume that f

�

q(x

0

)

�

=

p(0). The funtion pÆ

e

f :

f

M ! z=� satis�es d(pÆ

e

f) = q

�

� , and the same is true for fÆq:

f

M ! z=�.

Sine both have the same value in x

0

, we see that pÆ

e

f = f Æq . This proves that pÆ

e

f is invariant

under �

1

(M), and therefore (3.1) shows that �(�)

�

�

1

(M)

�

� �.

(2) ) (1): If (2) is satis�ed, then (3.1) implies that the funtion p Æ

e

f :

f

M ! z=� is �

1

(M)-

invariant, hene fators through a funtion f :M ! z=� with f Æ q = p Æ

e

f . Then f is smooth

and satis�es q

�

df = d

e

f = q

�

� , whih implies that df = � .

Corollary III.10. Let M be a onneted s..l.. manifold. For a losed z-valued 1-form �

on M the following onditions are equivalent:

(1) There exists a disrete subgroup � � z and a smooth funtion f :M ! z=� with df = � .

(2) �(�)

�

�

1

(M)

�

is a disrete subgroup of z .

Proof. This is a diret onsequene of Proposition III.9.

We have already seen in Theorem III.6 that a losed 1-form � on M is exat if and only

if �(�) vanishes. The preeding orollary sharpens this information in the sense that it shows

that, even if �(�) is non-zero, if its range is disrete, then � is exat in the weaker sense that it

is the di�erential of a funtion to a quotient group of z .

Corollary III.11. Let M be a onneted s..l.. manifold. For a losed 1-form � on M the

following are equivalent:

(1) There exists a smooth funtion f :M ! T with df = � .

(2) �(�)

�

�

1

(M)

�

� Z.

Proof. We apply Proposition III.9 with z = R and � = Z .

Appliations to Lie groups

Next we apply the results of this setion to homomorphisms of Lie groups. A Lie group G

is a group and a manifold (always assumed to be modeled over an s..l.. spae) for whih the

group multipliation and the inversion are smooth maps. We write �

g

(x) = gx , resp., �

g

(x) = xg

for the left, resp., right multipliation on G . Then eah X 2 T

1

(G) orresponds to a unique left

invariant vetor �eld X

l

with

X

l

(g) := d�

g

(1):X; g 2 G:

The spae of left invariant vetor �elds is losed under the Lie braket of vetor �elds, hene

inherits a Lie algebra struture. In this sense we obtain on g := T

1

(G) a ontinuous Lie braket

whih is uniquely determined by [X;Y ℄

l

= [X

l

; Y

l

℄ . Similarly we obtain right invariant vetor

�elds X

r

(g) = d�

g

(1):X , and they satisfy [X

r

; Y

r

℄ = �[X;Y ℄

r

(f. [Mi83℄, [Ne97℄, [KM97℄).
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Lemma III.12. Let G be a Lie group, z an s..l.. spae and C

n



(g; z) the spae of alternating

ontinuous n-linear maps g

n

! z . Then the maps

L:C

n



(g; z)! 


n

(g; z); L(�)(g)(v

1

; : : : ; v

n

) := �

�

d�

g

�1
(g):v

1

; : : : ; d�

g

�1
(g):v

n

�

assigning to � 2 C



(g; z) the orresponding left invariant n-form L(�) 2 


n

(G; z) intertwine the

di�erentials on C

�



(g; z) and 


�

(G; z) . In partiular, L(Z

n



(g; z)) onsists of losed forms and

L(B

n



(g; z)) of exat forms.

Proof. It suÆes to evaluate L(�) on left invariant vetor �elds. Then the formula

dL(�)(X

1

; : : : ; X

n

) = L(d�)(X

1

; : : : ; X

n

)

follows diretly from the de�nition of the di�erentials on both sides.

Lemma III.13. Let G be a Lie group, z an s..l.. spae, 
 2 


2

(G; z) a left invariant losed

2-form, and X 2 g . Then the z-valued 1-form i(X

r

):
 = 
(X

r

; �) on G is losed.

Proof. It suÆes to show that for Y; Z 2 g we have d(i(X

r

):
)(Y

r

; Z

r

) = 0. Before we

an alulate this, we reall that for the map '

X

:G ! g with '

X

(g) = Ad(g

�1

):X we have

d'

X

(1)(Y ) = [X;Y ℄ (f. [Mi83, p.1036℄), and therefore

(Y

r

:'

X

)(g) = d'

X

(g)(d�

g

(1):Y ) = Ad(g

�1

):[X;Y ℄:

Having this relation in mind, we obtain with


(X

r

; Z

r

)(g) = !(Ad(g

�1

):X;Ad(g

�1

):Z); ! = 


1

and [X

r

; Y

r

℄ = �[X;Y ℄

r

the relation

Y

r

:

�


(X

r

; Z

r

)

�

(g) = !(Ad(g

�1

):[X;Y ℄;Ad(g

�1

):Z) + !(Ad(g

�1

):X;Ad(g

�1

):[Z; Y ℄)

= 
([Y

r

; X

r

℄; Z

r

)(g) + 
(X

r

; [Y

r

; Z

r

℄)(g):

Therefore

d(i(X

r

):
)(Y

r

; Z

r

) = Y

r

:
(X

r

; Z

r

)� Z

r

:
(X

r

; Y

r

)�
(X

r

; [Y

r

; Z

r

℄)

= 
([Y

r

; X

r

℄; Z

r

) + 
(X

r

; [Y

r

; Z

r

℄)�
([Z

r

; X

r

℄; Y

r

)

�
(X

r

; [Z

r

; Y

r

℄)�
(X

r

; [Y

r

; Z

r

℄)

= 
([Y

r

; X

r

℄; Z

r

)�
([Z

r

; X

r

℄; Y

r

)�
(X

r

; [Z

r

; Y

r

℄) = 0;

beause at a point g 2 G this expression equals

d(Ad

�

(g):!)(X;Y; Z) = d!(Ad(g

�1

):X;Ad(g

�1

):Y;Ad(g

�1

):Z) = 0:

Remark III.14. One an give a shorter proof of Lemma III.13 using the Cartan formula

d

�

i(X

r

):


�

= L

X

r

:
� i(X

r

):d
 = L

X

r

:
:

Now one has to argue that the left invariane of 
 implies that the Lie derivatives L

X

r

:
 vanish.

For Lie groups with an exponential funtion this is no problem beause the Lie derivative an be

alulated by

L

X

r

:
 =

d

dt

t=0

�

�

exp tX

:
 = 0:

If G has no exponential funtion, then the onlusion is still valid, but requires more work in

loal oordinates whih is not needed for the proof given above.
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De�nition III.15. A Lie group G is alled regular if for eah losed interval I � R , t

0

2 I ,

and X 2 C

1

(I; g) the ordinary di�erential equation

(t

0

) = 1; 

0

(t) = d�

(t)

(1):X(t)

has a solution  2 C

1

(I;G). Moreover, we require the evolution map

evol

G

:C

1

(R; g) ! G; X 7! (1)

to be smooth.

Remark III.16. If z is an s..l.. vetor spae, then z is a regular Lie group beause the

Fundamental Theorem of Calulus holds for urves in z . The smoothness of the evolution map

is trivial in this ase beause it is a ontinuous linear map. Regularity is trivially inherited by

all groups Z = z=�, where � � z is a disrete subgroup.

If, onversely, Z is a regular Fr�ehet{Lie group and Z

0

its identity omponent, then the

exponential funtion exp: z ! Z

0

is a universal overing homomorphism, so that Z

0

�

=

z=� holds

for � := ker exp

�

=

�

1

(Z) ([MT99℄). So far, no example of a Lie group whih is not regular is

known.

Lemma III.17. Let G and H be onneted Lie groups and '

1=2

:G ! H two Lie group

homomorphisms for whih the orresponding Lie algebra homomorphisms d'

1

(1) and d'

2

(1)

oinide. Then '

1

= '

2

.

Proof. (see [Mi83, Lemma 7.1℄) The idea is as follows. Sine '

1

is a group homomorphism,

we have '

1

Æ �

g

= �

'(g)

Æ '

1

for g 2 G and therefore

(3:2) d'

1

(g)d�

g

(1) = d�

'(g)

Æ d'

1

(1):

For a di�erentiable path : [0; 1℄! G with (0) = 1 we onsider its left logarithmi derivative

(3:3) 

0

l

(t) := d�

(t)

�1
((t))

0

(t) 2 g

�

=

T

1

(G):

Then (3.2) implies that

('

1

Æ )

0

l

(t) = d'

1

(1)

0

l

(t):

A similar formula holds for '

2

. Therefore the paths '

1=2

Æ  have the same left logarithmi

derivatives, and this implies that both are equal beause both start in 1 (f. [Mi83, Lemma

7.4℄).

Corollary III.18. If G is a onneted Lie group, then kerAd = Z(G) .

Proof. In view of Lemma III.17, for g 2 G the onditions I

g

= id

G

(for I

g

(x) = gxg

�1

) and

dI

g

(1) = Ad(g) = id

g

are equivalent. This implies the assertion.

Theorem III.19. If H is a regular Lie group, G is a simply onneted Lie group, and

': g ! h is a ontinuous homomorphism of Lie algebras, then there exists a unique Lie group

homomorphism �:G! H with d�(1) = ' .

Proof. This is Theorem 8.1 in [Mi83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

does not require the regularity of H , it follows from Lemma III.17.

Corollary III.20. Let G be a simply onneted Lie group, z an s..l.. spae, and �: g ! z a

ontinuous Lie algebra homomorphism. Then there exists a unique smooth group homomorphism

f :G! z with df(1) = � .

Proof. Sine every s..l.. vetor spae z is a regular Lie group (Remark III.16), the assertion

follows from Theorem III.19.

In this speial ase we an also give a more diret proof as follows. We onsider the left

invariant 1-form � 2 


1

(G; z) with �

1

= � . Then � 2 Z

1



(g; z) implies that � is losed, hene

exat (Corollary III.5). Let f :G ! z be a smooth funtion with f(1) = 0 and df = � . Then

for eah g 2 G the funtion �

�

g

f � f satis�es

d(�

�

g

f � f) = �

�

g

df � df = �

�

g

�� � = 0:

Therefore �

�

g

f � f is onstant, showing that f(gh)� f(h) = f(g)� f(1) = f(g) for all g; h 2 G .

Hene f is a group homomorphism.
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Corollary III.21. Let G be a onneted Lie group, z an s..l.. spae, � � z a disrete

subgroup, and �: g ! z a ontinuous Lie algebra homomorphism. Then there exists a smooth

group homomorphism f :G ! Z := z=� with df(1) = � if and only if �(�)

�

�

1

(G)

�

� � holds

for the left invariant losed 1-form � on G with �

1

= � .

Proof. Let q:

e

G ! G denote the universal overing morphism and

e

f :

e

G ! z the unique Lie

group homomorphism with d

e

f(1) = � (Corollary III.20). Let q

Z

: z ! Z denote the quotient

map. Then f

Z

:= q

Z

Æ

e

f :

e

G ! Z is a Lie group homomorphism with df

Z

= � . Whenever a

homomorphism f as required exists, its di�erential df is a left invariant 1-form, hene oinides

with � . Therefore f Æ q = f

Z

.

This proves that f exists if and only if ker q � ker f

Z

whih in turn means that

e

f(ker q) �

�. On the other hand

e

f(ker q) = �(�)(�

1

(G)); and this onludes the proof.

IV. Loal and global oyles for entral extensions of Lie groups

In this paper Lie groups are always understood as manifolds modeled over s..l.. spaes. In

the setting of Lie groups, we onsider only those entral extensions

b

G ! G whih are smooth

prinipal bundles, i.e., have a smooth loal setion. We simply all them smooth entral extensions

(f. [KM97, Set. 38.6℄). A typial example of an extension whih does not have this property is



0

(N) ,! l

1

(N) !! l

1

(N)=

0

(N)

whih does not have any smooth loal setion beause the losed subspae 

0

(N) of l

1

(N) is not

omplemented (f. [We95, Satz IV.6.5℄).

In this setion we ollet preliminary material for the global entral extension theory

desribed in Setion V. In the �rst part of this setion we disuss the representability of Lie group

extensions by oyles, and in the seond part we explain the step from in�nitesimal entral

extensions, i.e., entral extensions of Lie algebras to entral extensions of loal groups. This

prepares the appliation of the topologial material in Setion III to global Lie group extensions.

Central extensions and oyles

Lemma IV.1. Let G be a onneted topologial group and K = K

�1

be an open 1-neighborhood

in G . We further assume that K is a smooth manifold suh that the inversion is smooth on K

and there exists an open 1-neighborhood V � K with V

2

� K suh that the group multipliation

m:V � V ! K is smooth. Then there exists a unique struture of a Lie group on G for whih

the inlusion map K ,! G indues a di�eomorphism on open neighborhoods of 1 .

Proof. (f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional ase) After shrinking

V and K , we may assume that there exists a di�eomorphism ':K ! '(K) � E , where E is a

s..l.. spae, that V satis�es V = V

�1

, V

4

� K , and that m:V

2

� V

2

! K is smooth. For

g 2 G we onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whih are homeomorphisms of gV onto '(V ). We laim that ('

g

; gV )

g2G

is an atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))
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follows from the smoothness of the multipliation V

2

� V ! K . This proves that the harts

('

g

; gK)

g2G

form an atlas of G . Moreover, the onstrution implies that all left translations of

G are smooth maps.

The onstrution also shows that for eah g 2 V the onjugation I

g

:G ! G is smooth in

a neighborhood of 1 . Sine the set of all these g is a submonoid of G ontaining V , it ontains

V

n

for eah n 2 N , hene all of G beause G is onneted and thus onsequently generated by

V . Therefore all onjugations and also all right multipliations are smooth. The smoothness of

the inversion follows from its smoothness on V and the fat that left and right multipliations

are smooth. Finally the smoothness of the multipliation follows from the smoothness in 1� 1

beause of

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2

I

g

�1

2

(x)y = g

1

g

2

m

G

(I

g

�1

2

(x); y):

The uniqueness of the Lie group struture is lear beause eah loally di�eomorphi bijetive

homomorphism between Lie groups is a di�eomorphism.

Proposition IV.2. Let G and Z be Lie groups, where G is onneted, and Z ,!

b

G ! G

a entral extension of G by Z . Then

b

G arries the struture of a Lie group suh that

b

G ! G

is a smooth entral extension if and only if the entral extension an be desribed by a oyle

f :G�G! Z whih is smooth in a neighborhood of (1;1) in G�G .

Proof. (see [TW87, Prop. 3.11℄ for the �nite-dimensional ase) First we assume that

b

G! G

is a smooth entral extension of G . Then there exists a 1-neighborhood U � G and a smooth

setion �:U !

b

G of the map q:

b

G ! G . We extend � to a global setion G !

b

G . Then

f(x; y) := �(x)�(y)�(xy)

�1

de�nes a 2-oyle G�G! Z whih is smooth in a neighborhood

of (1;1).

Conversely, we assume that

b

G

�

=

G �

f

Z holds for a 2-oyle f :G � G ! Z whih is

smooth in a neighborhood of (1;1) in G � G . We endow

b

G with the unique group topology

suh that

b

G! G is a topologial prinipal bundle (Proposition II.4). Then Lemma IV.1 implies

the existene of a unique Lie group struture on

b

G ompatible with the topology and suh that

there exists a 1-neighborhood of the produt type U

G

� U

Z

, where U

G

is a 1-neighborhood in

G , U

Z

is a 1-neighborhood in Z , and the produt map U

G

�U

Z

! U

G

U

Z

is a di�eomorphism.

Hene there exists a smooth loal setion �:U

G

!

b

G , showing that

b

G! G is a smooth entral

extension.

In [Va85, Th. 7.21℄ one �nds a version of Proposition IV.2 for �nite-dimensional Lie groups,

where Lie groups are onsidered as speial loally ompat groups. The existene of Borel ross

setions for loally ompat groups implies that their entral extensions an be desribed by

measurable oyles whih, for Lie groups, an be replaed by equivalent oyles whih are

smooth near to the identity.

Remark IV.3. If the group G is not onneted, then one has to make the additional assump-

tion that for eah g 2 G the orresponding onjugation map I

g

:

b

G!

b

G is smooth in the identity,

but this is only relevant for the elements not ontained in the open subgroup generated by U

(f. Remark II.5 for the ontinuous ase).

For Banah{Lie groups and in partiular for �nite-dimensional Lie groups every automor-

phism of the topologial struture is automatially smooth, whih an be dedued from the fat

that the exponential funtion is a loal di�eomorphism around 1 . Therefore Proposition IV.2

requires for Banah{Lie groups whih are not onneted no additional requirements, one we

have a group topology on

b

G with the required properties.

Remark IV.4. Let G and Z be Lie groups, where G is onneted. We have seen in Proposition

IV.2 that the entral extensions of G by Z whih are smooth prinipal Z -bundles an be

represented by 2-oyles f :G�G! Z whih are smooth in a neighborhood of (1;1) in G�G .

We write Z

2

s

(G;Z) for the group of these oyles. Likewise we have a group B

2

s

(G;Z) of

2-oboundaries

f(x; y) = h(xy)h(x)

�1

h(y)

�1

;
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where h:G! Z is smooth in a 1-neighborhood. Then the group

Ext

Lie

(G;Z) := Ext

s

(G;Z) := H

2

s

(G;Z) := Z

2

s

(G;Z)=B

2

s

(G;Z)

lassi�es the entral extensions of G by Z whih are smooth prinipal bundles.

Remark IV.5. We onsider the setting of Remark II.5, where A , B , C , G and Z are Lie

groups suh that B ! C is a smooth entral, resp., abelian extension. In this ontext everything

in Remark II.5 arries over to the smooth ontext. In partiular we obtain an exat sequene of

maps

f1g !Hom(C;Z)��!Hom(B;Z)��!Hom(A;Z)

E

�

��!Ext

Lie

(C;Z)

�

�

��!Ext

Lie;�(A)

(B;Z)

�

�

��!Ext

Lie;ab

(A;Z);

where Hom denotes smooth homomorphisms and the groups A , B and C are onneted.

Likewise we obtain for a onneted Lie group G an exat sequene

f1g !Hom(G;A)��!Hom(G;B)��!Hom(G;C)

E

�

��!Ext

Lie

(G;A)

�

�

��!Ext

Lie

(G;B)

�

�

��!Ext

Lie

(G;C):

Loal oyles

De�nition IV.6. (a) Let G be a topologial group and U � G an open symmetri 1-

neighborhood. Further let Z be an abelian group written additively. A funtion f :U � U ! Z

satisfying

f(x;1) = f(1; x) = 0; f(x; y) + f(xy; z) = f(x; yz) + f(y; z) for x; y; z; xy; yz 2 U

is alled a loal Z -valued 2-oyle on U .

(b) The set

W := f(x

0

; x

1

; x

2

) 2 G

3

:x

�1

0

x

1

; x

�1

1

x

2

2 Ug

is an open G-left invariant neighborhood of the diagonal in G

3

, and for eah loal 2-oyle

f :U � U ! Z we obtain a funtion

F :W ! Z; F (x

0

; x

1

; x

2

) := f(x

�1

0

x

1

; x

�1

1

x

2

):

The oyle ondition for f implies that F de�nes an Alexander{Spanier oyle (f. De�nition

A.2.4) beause for (x

0

; x

1

; x

2

; x

3

) 2 G

4

with all produts x

�1

i

x

j

2 U we have for a := x

�1

0

x

1

,

b := x

�1

1

x

2

and  := x

�1

2

x

3

the relation

ÆF (x

0

; x

1

; x

2

; x

3

) = ÆF (1; x

�1

0

x

1

; x

�1

0

x

2

; x

�1

0

x

3

) = ÆF (1; a; ab; ab)

= F (a; ab; ab)� F (1; ab; ab) + F (1; a; ab)� F (1; a; ab)

= f(b; )� f(ab; ) + f(a; b)� f(a; b) = 0:

Using Remark A.2.5, we assign to f a singular ohomology lass �(f) := �([f ℄) 2 H

2

sing

(G;Z) by

evaluating F on W -small 2-dimensional singular simplies by '(F )(�) := F (�(d

0

); �(d

1

); �(d

2

)).

The following theorem is essentially Proposition 1.1 in [EK64℄. It desribes the obstrution

to the extendability of a loal 2-oyle to a global one by a singular Z -valued ohomology lass.
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Theorem IV.7. (van Est{Korthagen) Let G be a topologial group, Z an abelian group,

V � G a symmetri 1-neighborhood, f :V � V ! Z a loal Z -valued 2-oyle, and �(f) 2

H

2

sing

(G;Z) the orresponding singular ohomology lass. If there exists an open symmetri 1-

neighborhood W � V suh that f j

W�W

extends to a Z -valued 2-oyle on G � G , then

�(f) = 0 . The onverse holds if G is loally ontratible, onneted and simply onneted.

Proof. The ingredients of the proof are explained in Appendix A.3.

For the following lemma we de�ne for a smooth map f :M �N ! z and (p; q) 2 M �N

the bilinear map

d

2

f(p; q):T

p

(M)� T

q

(N)! z; d

2

f(p; q)(v; w) :=

�

2

�s�t

j

t;s=0

f((t); �(s));

where : ℄�"; "[!M , resp., �: ℄�"; "[! N are urves with (0) = p , 

0

(0) = v , resp., �(0) = q ,

�

0

(0) = w . It is easy to see that the right hand side does not depend on the hoie of urves 

and � .

Lemma IV.8. Let G be a Lie group, z an s..l.. spae and ! 2 Z

2



(g; z) . Let 
 denote

the losed left invariant z-valued 2-form on G with 


1

= ! . Then there exists an open 1-

neighborhood K � G and a smooth z-valued loal 2-oyle f :K �K ! z satisfying

(4:1) d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = !(X;Y ); X; Y 2 g:

Moreover, the Lie braket on

b

g := g � z orresponding to the loal group struture on K � z

de�ned by

(x; z) � (x

0

; z

0

) := (xx

0

; z + z

0

+ f(x; x

0

)); x; x

0

; xx

0

2 K; z; z

0

2 Z

is

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; d

2

f(1;1)(X;X

0

)� d

2

f(1;1)(X

0

; X)

�

:

Proof. We start with an open 1-neighborhood U � G for whih there exists a hart

':V ! U , where V � g is an open onvex subset ontaining 0. Moreover, we assume that

'(0) = 1 and d'(0) = id

g

. We observe that Lemma III.12 implies that 
 is losed. Now we

apply the Poinar�e Lemma III.3 to �nd a smooth z-valued 1-form � on U with d� = 
 j

U

and

�

1

= 0. Next we hoose an open 1-neighborhood W � U suh that '

�1

(W ) is also onvex and

(W [W

�1

)

2

� U . For g 2 W we then have �

g

(W ) � U , so that �

�

g

� j

W

is de�ned. The left

invariane of 
 implies that

d(�

�

g

� j

W

� � j

W

) = (�

�

g

d�) j

W

� (d�) j

W

= (�

�

g


) j

W

�
 j

W

= 0:

Therefore �

�

g

� j

W

� � j

W

is a losed 1-form, and we an use the Poinar�e Lemma again to �nd

smooth funtions f

g

:W ! z with f

g

(1) = 0 and df

g

= �

�

g

� j

W

� � j

W

:

We laim that the funtion

f :W �W ! z; f(x; y) := f

x

(y)

is smooth. In view of the Poinar�e Lemma III.3, we have

f('(x); '(y)) =

Z

1

0

'

�

(�

�

'(x)

� � �)(ty)(y) dt

=

Z

1

0

h�('(x)'(ty)); d�

'(x)

('(ty))d'(ty):yi � h�('(ty)); d'(ty):yi dt:

Sine the integrand is a smooth funtion of t , x and y , the integral is a smooth funtion of x

and y , whih an be shown by diret alulations (see also [KM97, Prop. 3.15℄ whih, in view of

Remark III.2, provides the result for the Fr�ehet ase).



Central extensions of in�nite-dimensional Lie groups 23

Now we show that f is a loal z-valued 2-oyle on a suitable symmetri 1-neighborhood.

Our onstrution shows that

f(1; x) = f(x;1) = 0 for x 2W:

Let K � W be an open, onneted symmetri 1-neighborhood satisfying K

4

� W . Then for

g; h 2 K the funtions f

g

Æ �

h

and f

gh

are de�ned on K , where we have

d(f

g

Æ �

h

+ f

h

) = �

�

h

(�

�

g

� � �) + �

�

h

� � � = �

�

gh

� � � = df

gh

:

Therefore the onnetedness of K implies

f

g

Æ �

h

+ f

h

= f

gh

+ f

g

(h)

beause both sides have the same di�erential and the same value in 1 . This leads to

f(g; hu) + f(h; u) = f(gh; u) + f(g; h) for g; h; u 2 K:

So f :K�K ! z is a loal z-valued 2-oyle. On the set of pairs ((k; z); (k

0

; z

0

)) with kk

0

2 K

we now de�ne a loal multipliation by

(k; z) � (k

0

; z

0

) := (kk

0

; z + z

0

+ f(k; k

0

)):

It remains to prove (4.1). We onsider the loal hart

b':'

�1

(K)� z! K � z; b'(x; z) := ('(x); z)

and put

x � y := b'

�1

�

b'(x)b'(y))

for x; y 2

b

g = g � z lose to 0. As in [Mi83, p.1036℄, we onsider the Taylor expansion of the

�-produt whih has the struture

x � y = (x+ y) + b(x; y) + � � � ;

where b:

b

g�

b

g!

b

g is a ontinuous bilinear funtion and � � � stands for terms of degree three and

more (f. [Mi83, 3.9℄). Here the struture of the �rst order term follows from 0 � x = x � 0 = x .

The inversion is given by

x

�1

= �x+ b(x; x) + � � �

and onjugation by

x � y � x

�1

= y +

�

b(x; y)� b(y; x)

�

+ � � � ;

whih, as explained in detail in [Mi83℄, leads to the Lie braket

[x; y℄ = b(x; y)� b(y; x):

In our situation we have

(X; z) � (X

0

; z

0

) =

�

X �

g

X

0

; z + z

0

+ f('(X); '(X

0

))

�

=

�

X +X

0

+ b

g

(X;X

0

) + � � � ; z + z

0

+ f('(X); '(X

0

)) + � � �

�

:

In view of f(x;1) = f(1; x) = 0, the Taylor expansion of f Æ (' � ') in (0; 0) has no onstant

term and no terms of �rst order. The seond order term is given by

d

2

f(1;1)

�

d'(0)X; d'(0)X

0

�

= d

2

f(1;1)(X;X

0

):

Hene

b

�

(X; z); (X

0

; z

0

)

�

=

�

b

g

(X;X

0

); d

2

f(1;1)(X;X

0

)

�

:
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This proves that

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; d

2

f(1;1)(X;X

0

)� d

2

f(1;1)(X

0

; X)

�

:

Seond Proof: We also give a seond proof whih is more diret in that it does not make

heavy use of the Taylor expansion. The onjugation in the loal group

b

K is given by

I

(g;a)

(h; b) = (g; a)(h; b)(g; a)

�1

=

�

ghg

�1

; b+ f(g; h)� f(ghg

�1

; g)

�

for h suÆiently lose to 1 (f. Remark I.2(a)). Taking derivatives, we now obtain

Ad(g; a)(X; z) := dI

(g;a)

(X; z) = (Ad(g):X; z + d

2

f(g;1)(X)� d

1

f(1; g)Ad(g):X

�

:

Taking the derivative in (g; a) = (1; 0) in the diretion of (X

0

; z

0

) now yields

[(X

0

; z

0

); (X; z)℄ =

�

dAd(1; 0)(X

0

; z

0

)

�

:(X; z)

= ([X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

1

f(1;1):[X

0

; X ℄� d

2

f(1;1)(X;X

0

)

�

beause d

�

Ad(�):(X; z)

�

(1) = ad(�):(X; z) ([Mi83, p.1036℄). To simplify this expression, we use

f(1; g) = f(g;1) = 0 to get d

1

f(1;1) = d

2

f(1;1) = 0, and hene the simpler formula

[(X

0

; z

0

); (X; z)℄ =

�

[X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

2

f(1;1)(X;X

0

)

�

:

Now we relate this formula to the Lie algebra oyle ! . The relation df

g

= �

�

g

�� � leads

to

d

2

f(g;1)(Y ) = (�

�

g

� � �)

1

(Y ) = h�; Y

l

i(g)� �

1

(Y ) = h�; Y

l

i(g);

where Y

l

denotes the left invariant vetor �eld with Y

l

(1) = Y . Taking seond derivatives, we

further obtain for X 2 g :

d

2

f(1;1)(X;Y ) = X

l

(h�; Y

l

i)(1) = d�(X

l

; Y

l

)(1) + Y

l

(h�;X

l

i)(1) + �([X

l

; Y

l

℄)(1)

= !(X;Y ) + Y

l

(h�;X

l

i)(1)

and therefore

d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = X

l

(h�; Y

l

i)(1)� Y

l

(h�;X

l

i)(1) = !(X;Y ):

Lemma IV.9. The onstrutions in De�nition IV.6 and Lemma IV.8 indue a linear map

:H

2



(g; z)! H

2

A�S

(G; z)! H

2

sing

(G; z); [!℄ 7! [F ℄ 7! �(f):

Moreover, the smooth Alexander{Spanier oyle F is mapped by the map � de�ned in Remark

A.2.7 to the losed 2-form �(F ) = 
 2 Z

2

dR

(G; z) .

Proof. First we �x ! . If 
 j

U

= d�

0

holds for another z-valued 1-form �

0

on U , then

�� �

0

is losed, hene exat by the Poinar�e Lemma III.3. Let h 2 C

1

(U; z) with h(1) = 0 and

dh = �

0

� � . Then

d(f

0

g

� f

g

) = �

�

g

(�

0

� �)� (�

0

� �) = �

�

g

dh� dh = d(�

�

g

h� h)

implies that

f

0

g

� f

g

= �

�

g

h� h� h(g);

and therefore

f

0

(x; y)� f(x; y) = h(xy)� h(y)� h(x); x; y 2 W � U:
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For the orresponding Alexander{Spanier ohains F , F

0

(De�nition IV.6), this leads to

F

0

(x; y; z)� F (x; y; z) = f

0

(x

�1

y; y

�1

z)� f(x

�1

y; y

�1

z)

= h(x

�1

z)� h(y

�1

z)� h(x

�1

y) = �(ÆH)(x; y; z):

Therefore F and F

0

de�ne the same Alexander{Spanier ohomology lass, showing that this lass

does not depend on the hoie of � . We therefore obtain a linear map Z

2



(g; z)! H

2

A�S

(G; z).

Now we show that it vanishes on B

2



(g; z). So let �: g! z be a ontinuous linear map and

!(x; y) := d�(x; y) = ��([x; y℄) . Let � 2 


1

(G; z) be the left invariant 1-form with �

1

= � . Then


 = d� holds on G , and sine � is left-invariant, the orresponding loal oyle f vanishes. In

view of the natural map H

2

A�S

(G; z) ! H

2

sing

(G; z), this ompletes the proof of the �rst part.

Now onsider

F :W ! z; F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

);

where W � G � G � G is a suÆiently small open neighborhood of the diagonal. Sine F is

a G-invariant funtion, the 2-form �(F ) is left invariant (Remark A.2.7), so that it suÆes to

alulate �(F )

1

. First we reall that

F (1; x

1

; x

2

) = f(x

1

; x

�1

1

x

2

) = f(x

1

x

�1

1

; x

2

) + f(x

1

; x

�1

1

)� f(x

�1

1

; x

2

) = f(x

1

; x

�1

1

)� f(x

�1

1

; x

2

):

Therefore Lemma IV.8 yields

�(F )

1

(X;Y ) = �d

2

f(1;1)(�X;Y ) + d

2

f(1;1)(�Y;X) = d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X)

= !(X;Y )

for X;Y 2 g . We onlude that �(F ) = 
.

De�nition IV.10. Let G be a onneted Lie group and ':�

2

(G) ! H

2

(G) be the natural

homomorphism. To eah ontinuous Lie algebra oyle ! 2 Z

2



(g; z) we assoiate with Lemma

IV.9 the ohomology lass

(!) := ([!℄) 2 H

2

sing

(G; z)

�

=

Hom(H

2

(G); z)

(f. Remark A.1.2, z is divisible). The orresponding homomorphism

per

!

:= (!) Æ ':�

2

(G)! z

is alled the period homomorphism of the Lie algebra oyle ! and its image the group of

periods.

Remark IV.11. (a) If G is onneted and simply onneted, then Hurewiz's Theorem (Re-

mark A.2.1) implies that the natural map ':�

2

(G) ! H

2

(G) is an isomorphism, so that

per

!

an be identi�ed with the singular ohomology lass (!). This shows that the lass



Z

(!) := q

Z

Æ (!), q

Z

: z ! Z the quotient map, is trivial if and only if the period group

im(per

!

) is ontained in �.

Conversely, there exists a disrete subgroup � � z suh that 

Z

(!) = 0 holds for Z := z=�

if and only if the period group is a disrete subgroup of z .

(b) The period homomorphism per

!

is the same for all loally isomorphi Lie groups G with

the Lie algebra g , beause all these groups have the same universal overing group (f. Lemma

II.3).

In view of Theorem IV.7, the extendability of the loal 2-oyle f to a global 2-oyle

is haraterized by im(per

!

) � �. Therefore it is desirable to have onrete means to alulate

the period group. The following theorem often provides a method to alulate it in terms of de

Rham lasses.
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Theorem IV.12. Let g be the Lie algebra of the onneted Lie group G , ! 2 Z

2



(g; z) a

ontinuous Lie algebra 2-oyle and 
 2 


2

(G; z) the orresponding left invariant losed 2-

form. For  2 C

1

(S

2

; G) we then have

per

!

([℄) =

Z




:

Proof. We reall from Lemma IV.8 and De�nition IV.6 that the ohomology lass (!) 2

H

2

sing

(G; z) an be represented by a smooth Alexander{Spanier oyle

F :W ! z; F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

);

where W � G�G�G is an open neighborhood of the diagonal. The natural homomorphism

H

2

A�S

():H

2

A�S

(G; z)! H

2

A�S

(S

2

; z)

maps [F ℄ onto the lass [F Æ ( �  � )℄ whih is a smooth funtion on a neighborhood of the

diagonal in (S

2

)

3

. In view of Theorem A.2.6, the de Rham lass orresponding to [F Æ(��)℄

is

�([F Æ ( �  � )℄) = �(F Æ ( �  � )) = 

�

�(F );

so that de Rham's Theorem yields

per

!

([℄) =

Z

S

2



�

�(F ) =

Z



�(F ):

Hene the assertion follows from �(F ) = 
 (Lemma IV.9).

The major problem with the preeding result is that a de Rham isomorphism is only

available for smoothly paraompat manifolds (f. [KM97℄). It leads in partiular to the following

non-vanishing test (see [EK64℄): If there exists a smooth map :S

2

! G with

R




 62 �, then



Z

([!℄) 6= 0, so that the orresponding loal oyle is not extendable to a oyle on G (Theorem

IV.7).

V. Central extensions of in�nite-dimensional Lie groups

In this setion we eventually turn to the global theory of entral extensions of Lie groups. Let G

be a onneted Lie group. We write Ext

Lie

(G;Z) for the group of equivalene lasses of smooth

entral extensions of G by the abelian Lie group Z . Throughout this setion G will denote a

onneted Lie group and Z will be of the form Z = z=�, where � � z is a disrete subgroup

in the s..l.. spae z . We write q

Z

: z ! Z for the quotient map. The entral result of this

setion is the long exat sequene desribed in the introdution. In partiular we will see that a

Lie algebra oyle ! integrates to a smooth entral extension of a simply onneted Lie group

if and only if the orresponding group of periods is disrete (Theorem V.7). We onlude this

setion with a disussion of onditions for the existene of a smooth ross setion for a entral

extension q:

b

G! G .

De�nition V.1. (a) Let  2 Hom

�

�

1

(G); Z

�

. We identify �

1

(G) with ker q

G

�

e

G , where

q

G

:

e

G! G is the universal overing homomorphism. Then

�(

�1

) := f(d; (d)

�1

) 2

e

G� Z: d 2 �

1

(G)g

is a disrete entral subgroup of

e

G � Z , so that

b

G := (

e

G � Z)=�(

�1

) arries a natural Lie

group struture whih is a Z -prinipal bundle over G : the quotient map �:

b

G ! G is given by

�([g; t℄) := q(g), and its kernel oinides with (�

1

(G)� Z)=�(

�1

)

�

=

Z . We write

�

1

: Hom

�

�

1

(G); Z

�

! Ext

Lie

(G;Z)
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for the group homomorphism de�ned this way. If E stands for the entral extension �

1

(G) ,!

e

G!! G , this is the homomorphism E

�

from Remarks IV.5 and I.3.

(b) Let E:Z ,!

b

G

q

��!G be a entral Z -extension of G with a smooth loal setion. Then

the Lie algebra

b

g of

b

G is a entral extension of g by z beause the existene of a smooth loal

setion of q implies that the subspae z

�

=

ker dq(1) �

b

g has a omplement isomorphi to g , so

that

b

g

�

=

g� z as topologial vetor spaes. Therefore

b

g an be written as

b

g

�

=

g�

!

z with the

braket

[(X; z); (X

0

; z

0

)℄ =

�

[X;X

0

℄; !(X;X

0

)

�

;

where ! 2 Z

2



(g; z) is a ontinuous z-valued 2-oyle on g . We put �

2

(E) := [!℄ 2 H

2



(g; z),

where H

2



(g; z) denotes the Lie algebra ohomology involving only ontinuous oyles. We thus

obtain a group homomorphism

�

2

: Ext

Lie

(G;Z)! H

2



(g; z):

The image of �

2

are those ohomology lasses [!℄ 2 H

2



(g; z) for whih there exists a Lie group

b

G whih is a Z -extension of G . If G is simply onneted, then we all the elements [!℄ 2 im �

2

and the orresponding Lie algebras

b

g integrable.

() Let [!℄ 2 H

2



(g; z) and write 
 for the z-valued left invariant losed 2-form on G with




1

= ! . Further let per

!

:�

2

(G) ! z be the period homomorphism (De�nition IV.10). We

de�ne

�

3;1

([!℄) := q

Z

Æ per

!

:�

2

(G)! Z:

Now let X 2 g and onsider the orresponding right invariant vetor �eld X

r

on G .

Then i(X

r

):
 is a losed z-valued 1-form (Lemma III.13). For eah pieewise di�erentiable loop

: [0; 1℄! G with (0) = 1 we now put

�

3;2

([!℄)([℄)(X) :=

Z



i(X

r

):
 = �([i(X

r

):
℄)([℄)

(Theorem III.6). It is lear that �

3;2

([!℄) an be viewed as a homomorphism �

1

(G)! Hom(g; z).

We laim that its range onsists of ontinuous linear maps. In fat, for eah pieewise di�eren-

tiable loop : [0; 1℄! G we have

�

3;2

([!℄)([℄)(X) =

Z

1

0


(X

r

((t)); 

0

(t)) dt =

Z

1

0

!

�

Ad((t))

�1

:X; 

0

l

(t)

�

dt;

where 

0

l

(t) := d�

�1

(t)

((t)):

0

(t) 2 g

�

=

T

1

(G) denotes the left derivative of  in t . Sine the

integrand is a ontinuous map [0; 1℄�g! z , the integral is a ontinuous map g! z . We ombine

these two maps to

�

3

:H

2



(g; z)! Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom



(g; z)

�

:

First we take a loser look at the homomorphism �

1

.

Lemma V.2. Let G and

b

G be onneted Lie groups, q:

b

G ! G a overing homomorphism

with kernel D and Z

�

=

z=� . Then D is a disrete entral subgroup of

b

G and q indues an exat

sequene

f0g ! Hom(G;Z)! Hom(

b

G;Z)! Hom(D;Z)

�

1

��!Ext

Lie

(G;Z)! Ext

Lie;D

(

b

G;Z)! f0g:

Proof. The kernel D of q is a disrete normal subgroup of the onneted group

b

G , hene

entral. In view of Remark IV.5, the entral extension q:

b

G! G leads to the exat sequene

Hom(G;Z) ,! Hom(

b

G;Z)

res

��!Hom(D;Z)

�

1

�!Ext

Lie

(G;Z)

q

�

�!Ext

Lie;D

(

b

G;Z)! Ext

Lie;ab

(D;Z)

beause �

1

oinides with the map E

�

in Theorem I.5. This means in partiular that �

1

is a

group homomorphism and that the range of E

�

onsists entirely of Lie group extensions (Remark

IV.5).

Sine the abelian group Z

�

=

z=� is divisible, we have Ext

ab

(D;Z) = f0g . Therefore q

�

is

surjetive, so that we obtain the asserted exat sequene.
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Remark V.3. If g is topologially perfet and G is onneted, then we have Hom(G;Z) =

Hom(

b

G;Z) = f0g beause the orresponding Lie algebra homomorphisms df(1): g! z are trivial

(Lemma III.17). In the setting of Lemma V.2, we therefore obtain the short exat sequene

f0g ! Hom(D;Z) ,! Ext

Lie

(G;Z)!! Ext

Lie;D

(

b

G;Z)! f0g:

Theorem V.4. For every onneted Lie group G we have ker �

2

= im �

1

.

Proof. \�": Let f :�

1

(G)! Z and onsider the orresponding entral extension

b

G :=

e

G�

f

Z

�

=

(

e

G� Z)=�(f

�1

)! G; [g; t℄ 7! q(g):

The map

e

G � Z !

b

G is a overing with kernel �(f

�1

) isomorphi to �

1

(G). Hene

b

g , the Lie

algebra of

b

G , is isomorphi to g� z , showing that the orresponding Lie algebra extension

b

g! g

is trivial. Thus im �

1

� ker �

2

.

\�": Suppose that �

2

(E) = f0g holds for the entral extension E:Z ,!

b

G

q

��!G . Then the Lie

algebra extension

b

g! g splits, so that we have a ontinuous Lie algebra homomorphism �:

b

g! z

extending the identity on z �

b

g . Let q

b

G

:G

℄

!

b

G denote a universal overing of

b

G . In view of

Theorem III.19, there exists a unique Lie group homomorphism ':G

℄

! z with d'(1) = � . On

the other hand the embedding �

Z

:Z !

b

G lifts to a homomorphism �

z

: z! G

℄

with ' Æ �

z

= id

z

(f. Lemma III.17). We �x a smooth loal setion �:U !

b

G , where U � G is an open symmetri

1-neighborhood. In addition, we assume that there exists a smooth loal setion b�:

b

U ! G

℄

,

where

b

U �

b

G is an open 1-neighborhood ontaining �(U). Then e�: = b�Æ�:U ! G

℄

is a smooth

map with

q Æ q

b

G

Æ e� = q Æ � = id

U

:

Let �

1

(x) := e�(x)�

z

�

'(e�(x))

�

�1

. Then �

1

:U ! G

℄

also is a smooth setion of q Æ q

b

G

, and,

in addition, im(�

1

) � ker' . Sine q

�1

(U) = �(U)Z

�

=

U � Z; the group G

℄

ontains a 1-

neighborhood of the form

e

U := �

1

(U)�

z

(U

z

);

where U

z

� z is an open 0-neighborhood. Then '

�

�

1

(x)�

z

(z)

�

= z implies that ker' \

e

U =

�

1

(U). Let x; y 2 U with xy 2 U and �

1

(x)�

1

(y) 2

e

U . Then �

1

(x)�

1

(y) 2 ker' \

e

U = �

1

(U)

and q Æ q

b

G

(�

1

(x)�

1

(y)) = xy leads to �

1

(xy) = �

1

(x)�

1

(y). Now Proposition II.8 implies that

b

G

�

=

(

e

G� Z)=�(

�1

) for some  2 Hom(�

1

(G); Z).

Remark V.5. In Theorem V.4 we have determined the kernel of �

2

as the image of �

1

. On

the other hand we have the exat sequene

Hom(

e

G;Z)! Hom(�

1

(G); Z)! Ext

Lie

(G;Z)

q

�

G

����!Ext

Lie

(

e

G;Z)

(Lemma V.2). Sine G and

e

G have the same Lie algebra, we also have a homomorphism

e

�

2

: Ext

Lie

(

e

G;Z)! H

2



(g; z)

whih is injetive beause �

1

(

e

G) is trivial (Theorem V.4). It is easy to see that

e

�

2

Æ q

�

G

= �

2

;

showing that ker �

2

= ker q

�

G

= im �

1

.

Lemma V.6. If there exists a Lie group extension Z ,!

b

G ! G orresponding to [!℄ 2

H

2



(g; z) , then �

3

([!℄) = 0 and the adjoint ation of

b

G on

b

g

�

=

g�

!

z fators to an ation of G

whih is given by

g:(X; z) =

�

Ad

G

(g):X; z + �(g;X)

�

;

where �:G � g ! z is a smooth oyle suh that the funtions f

X

(g) := �(g

�1

; X) , X 2 g ,

satisfy df

X

= i(X

r

):
; where 
 is the left invariant z-valued 2-form on G with 


1

= ! .
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Proof. First we onsider the homomorphism

�

3;1

([!℄) = q

Z

Æ per

!

:�

2

(G)! Z:

Let q

G

:

e

G ! G denote the universal overing group of G and H := q

�

b

G !

e

G the pullbak of

the entral extension q:

b

G ! G to

e

G , and observe that it orresponds to the same Lie algebra

oyle. Therefore Theorem IV.7 implies that �([f ℄) = 0, so that im(per

!

) � �, and therefore

�

3;1

= 0.

Now we turn to �

3;2

:�

1

(G) ! Hom



(g; z): We write the Lie algebra of

b

G as

b

g with the

braket

[(X; z); (X

0

; z

0

)℄ = ([X;X

0

℄; !(X;X

0

)):

Sine Z �

b

G is entral and

b

G ! G is a loally trivial bundle, the oadjoint ation of

b

G on

b

g

fators to an ation of G on

b

g whih an be written as

g:(X; z) = (Ad(g):X; z + �(g;X));

where �:G� g! z is a smooth funtion. Let X 2 g and onsider the funtion f

X

:G! z given

by f

X

(g) := �(g

�1

; X) = p

z

(g

�1

:X), where p

z

:

b

g ! z is the projetion onto z . With the same

argument as in the proof of Lemma III.13, we obtain

df

X

(g)d�

g

(1):Y = p

z

�

Ad(g

�1

):[X;Y ℄

�

= !

�

Ad(g

�1

):X;Ad(g

�1

):Y

�

= 
(X

r

; Y

r

)(g);

and therefore df

X

= i(X

r

):
. Hene the 1-forms i(X

r

):
 are all exat, and therefore �

3;2

is

trivial.

The following theorem desribes the bridge from the in�nitesimal entral extension orre-

sponding to a Lie algebra oyle to a global entral extension of a Lie group.

Theorem V.7. (Integrability Criterion) Let g be the Lie algebra of the simply onneted Lie

group G and [!℄ 2 H

2



(g; z) . Then there exists a orresponding smooth entral extension of G

by some group Z = z=� if and only if im(per

!

) is a disrete subgroup of z . If Z , resp., � is

given, then the entral extension exists if and only if im(per

!

) � � .

Proof. First we assume that the image of per

!

is disrete and ontained in the disrete

subgroup �. Using Theorem IV.7 and Remark IV.11, we obtain a global oyle f 2 Z

2

s

(G;Z).

In view of Proposition IV.2, the orresponding group

b

G := G �

f

Z arries a natural Lie group

struture suh that Z ,!

b

G! G is a smooth entral extension.

If, onversely, a smooth entral extension of G by Z = z=� exists, then Lemma V.6 implies

that im(per

!

) � �.

Lemma V.8. If �

3

([!℄) = 0 , then there exists a Lie group extension Z ,!

b

G ! G with Lie

algebra

b

g = g�

!

z .

Proof. Let q

G

:

e

G ! G be the universal overing group. Sine the anonial map �

2

(

e

G) !

�

2

(G) is an isomorphism, �

3;1

([!℄) = 0 implies that the ohomology lass 

Z

(!) 2 H

2

sing

(

e

G;Z)

vanishes (f. Remark IV.11), so that Theorem V.7 implies the existene of a entral extension

Z ,! H

eq

����!

e

G:

The Lie algebra of H is

b

g = g�

!

z . It is lear that the entral subgroup Z � H ats trivially

on

b

g by the adjoint ation, so that we obtain an ation of

e

G on

b

g with

g:(X; z) = (Ad(g):X; z + �(g;X));

where �:

e

G�g! z is a smooth funtion. In view of Lemma V.6, the funtions f

X

(g) := �(g

�1

; X)

satisfy df

X

= i(X

r

):q

�

G


. Let : [0; 1℄ ! G be a pieewise di�erentiable loop in G and

d 2 �

1

(G) �

e

G the orresponding homotopy lass. Then

f

X

(d) =

Z



i(X

r

):
 = �

3;2

([!℄)([℄)(X) = 0:
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Therefore the subgroup �

1

(G) �

e

G ats trivially on

b

g , and hene the group D

Z

:= eq

�1

(�

1

(G)) �

H is entral beause H is onneted (Corollary III.18). We therefore have an extension

Z ,! D

Z

!! �

1

(G)

of abelian groups, where Z is divisible. Hene there exists a group homomorphism �:�

1

(G) !

H

Z

� H with eq Æ� = id

�

1

(G)

. As the image of �(�

1

(G)) under eq is disrete, the same holds for

the group �(�

1

(G)), and we onlude that D

Z

�

=

�(�

1

(G))� Z . Now

b

G := H=�(�

1

(G))

arries a natural Lie group struture. The homomorphism q

G

Æ eq:H ! G has the kernel D

Z

,

hene fators through a homomorphism q:

b

G ! G whih is a prinipal bundle with struture

group D

Z

=�(�

1

(G))

�

=

Z .

Theorem V.9. (Long exat sequene for entral Lie group extensions) Let G be a onneted

Lie group, z an s..l.. spae, � � z a disrete subgroup, and Z := z=� . Then the sequene

Hom(G;Z) ,! Hom(

e

G;Z)! Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2



(g; z)

�

3

����!Hom

�

�

2

(G); Z

�

�Hom

�

�

1

(G);Hom



(g; z)

�

is exat.

Proof. This follows from Lemma V.2, Theorem V.4, Lemma V.6, and Lemma V.8.

Corollary V.10. Let G be a onneted Lie group and Z

�

=

z=� for a disrete subgroup � � z .

Then the following assertions hold:

(i) If G is simply onneted, then the sequene

f0g ! Ext

Lie

(G;Z)

�

2

����!H

2



(g; z)

�

3;1

����!Hom

�

�

2

(G); Z

�

is exat.

(ii) The sequene

f0g !Hom(G; z)��!Hom(G;Z)

E

�

��!Ext

Lie

(G;�)

��!Ext

Lie

(G; z)

(q

Z

)

�

����!Ext

Lie

(G;Z)

�

��!Hom(�

2

(G);�)

is exat, where � assigns to a entral Z -extension of G the homomorphism per

!

:�

2

(G)! z

and ! 2 Z

2



(g; z) is a orresponding Lie algebra oyle.

Proof. (i) follows diretly from Theorem V.9.

(ii) Sine G is onneted, we have Hom(G;�) = f0g , so that, in view of the seond part of

Remark IV.5, it only remains to verify the exatness at Ext

Lie

(G;Z).

Let z ,!

b

G ! G be a entral z-extension of G and ! 2 Z

2



(g; z) a orresponding Lie

algebra oyle. Then per

!

= 0 (Theorem V.7), and this shows that � Æ(q

Z

)

�

= 0. If, onversely,

E:Z ,!

b

G !! G is a entral extension with �(E) = per

!

= 0, then Theorem V.9 implies that

E = (q

Z

)

�

e

E holds for a entral z-extension

e

E of G beause �

3;2

([!℄) = 0 follows from the

existene of the entral extension E .

Lemma V.11. For eah ! 2 Z

2



(g; z) we have

tor�

1

(G) � ker �

3;2

([!℄) and tor�

2

(G) � ker �

3;1

([!℄):

In partiular �

3;2

([!℄) , resp., �

3;1

([!℄) fators through homomorphisms of the rational homotopy

groups

�

1

(G)
 Q ! Hom(g; z) and �

2

(G)
 Q ! Z:

Proof. The �rst assertion follows from the fat that the range of the homomorphism �

3;2

([!℄)

is a vetor spae. Similarly we see that tor�

2

(G) � ker per

!

, and this implies that tor�

2

(G) �

ker �

3;1

([!℄) . The seond assertion follows from the fat that for an abelian group the kernel of

the natural map A! A
 Q; a 7! a
 1 oinides with tor(A).

The following proposition lari�es how entral extensions by non-onneted groups an be

redued to entral extensions by disrete and onneted groups. Here the long exat sequene

in Theorem V.9 only provides information about extensions by onneted groups, whereas the

extensions by disrete groups are quite simple to desribe. For �nite-dimensional groups the

following result an be found as Theorem 3.4 in [Ho51, II℄.
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Proposition V.12. Let � � z be a disrete subgroup and Z be an abelian Lie group with

Z

0

�

=

z=� . Further let G be a onneted Lie group. Then

Ext

Lie

(G;Z)

�

=

Ext

Lie

(G;Z

0

)�Hom(�

1

(G); Z=Z

0

):

Proof. The group Z is an extension of the disrete group Z=Z

0

by the divisible group Z

0

.

Sine this extension is trivial as an extension of abelian groups, it is also trivial as an extension

of Lie groups, showing that Z

�

=

Z

0

� (Z=Z

0

): Using this produt struture, one easily veri�es

that

Ext

Lie

(G;Z)

�

=

Ext

Lie

(G;Z

0

)� Ext

Lie

(G;Z=Z

0

)

holds for every Lie group G . Every entral extension Z=Z

0

!

b

G! G is a overing of G , hene

a quotient of

e

G� (Z=Z

0

) de�ned by a homomorphism :�

1

(G)! Z=Z

0

. In terms of the exat

sequene in Remark IV.5, we have

Hom(

e

G;Z=Z

0

)! Hom(�

1

(G); Z=Z

0

)! Ext(G;Z=Z

0

)! Ext(

e

G;Z=Z

0

);

where Hom(

e

G;Z=Z

0

) and Ext(

e

G;Z=Z

0

) are trivial beause

e

G is onneted and simply onneted.

This proves that Hom(�

1

(G); Z=Z

0

)

�

=

Ext(G;Z=Z

0

):

Remark V.13. If Z ,!

b

G!! G is a entral extension of G by the onneted group Z

�

=

z=�

and Z ,!

b

e

G!!

e

G is the pullbak to the universal overing group

e

G of G , then

b

e

G! G is still a

entral extension of G beause its kernel ats trivially on the Lie algebra

b

g . The kernel of this

ation is isomorphi to Z � �

1

(G) (see the proof of Lemma V.8). In terms of Proposition V.12,

this orresponds to replaing the extension E 2 Ext(G;Z) by the element

(E; id

�

1

(G)

) 2 Ext(G;Z)�Hom(�

1

(G); �

1

(G))

�

=

Ext(G;Z � �

1

(G)):

Example V.14. Suppose that dimG < 1 . Then �

2

(G) is trivial (f. [God71℄), so that we

obtain a simpler exat sequene

Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2



(g; z)

�

3

����!Hom

�

�

1

(G);Hom(g; z)

�

(f. [Ne96℄). If, in addition, G is simply onneted, then we obtain an isomorphism

(5:1) Ext

Lie

(G;Z)

�

=

H

2



(g; z)

(f. [TW87, Cor. 5.7℄).

It is interesting to note that, even though not every left invariant losed 2-form 
 2 


2

(G; z)

on a simply onneted Lie group G de�nes a entral extension of G , we an always onstrut

the adjoint ation of G on

b

g as follows (f. Lemma V.6).

Proposition V.15. Let G be a onneted Lie group, z an s..l.. spae, and ! 2 Z

2



(g; z) with

�

3;2

([!℄) = 0 . For eah X 2 g let f

X

2 C

1

(G; z) be the unique funtion with df

X

= i(X

r

):


and f

X

(1) = 0 . Then �(g;X) := f

X

(g

�1

) de�nes a smooth 1-oyle G� g! z for the adjoint

ation of G on g .

Proof. The assumption �

3;2

([!℄) = 0 implies that for eah X 2 g the losed 1-form i(X

r

):


on G is exat, so that the funtions f

X

, X 2 g , exist. We have to show that for g

1

; g

2

2 G and

X 2 g we have

(5:2) �(g

1

g

2

; X) = �(g

2

; X) + �(g

1

; g

2

:X);

whih means that

f

X

(g

�1

2

g

�1

1

) = f

X

(g

�1

2

) + f

g

2

:X

(g

�1

1

)
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for all g

1

; g

2

2 G , and this is equivalent to f

X

(g

2

g

1

) = f

X

(g

2

) + f

g

�1

2

:X

(g

1

) for all g

1

; g

2

2 G ,

whih in turn means that f

X

Æ �

g

2

= f

X

(g

2

) + f

g

�1

2

:X

: In 1 both funtions have the same value

f

X

(g

2

). Hene it suÆes to show that both have the same di�erential. This follows from

d(f

X

Æ �

g

2

) = �

�

g

2

df

X

= �

�

g

2

�

i(X

r

):


�

= i((g

�1

2

:X)

r

):
;

where the last equality is a onsequene of

�

�

�

g

2

(i(X

r

):
)

�

g

(v) =

�

i(X

r

):


�

g

2

g

(d�

g

2

(g):v) = 


g

2

g

�

d�

g

2

g

(1)X; d�

g

2

(g):v

�

= 


g

�

d�

g

�1

2

(g

2

g)d�

g

2

g

(1)X; v

�

= 


g

�

(g

�1

2

:X)

r

(g); v

�

:

We further have

d(f

X

(g

2

) + f

g

�1

2

:X

) = df

g

�1

2

:X

= i((g

�1

2

:X)

r

):
:

This proves that � is a 1-oyle.

Now we show that � is smooth. Sine � is linear in the seond argument and a oyle

(see (5.2)), it suÆes to verify this in a neighborhood of (1; 0) 2 G� g . Let U � G be an open

1-neighborhood for whih there exists a hart ':V ! U with '(0) = 1 , where V � g is a an

open star-shaped neighborhood of 0. Then for eah x 2 V and X 2 g we have

f

X

�

'(x)

�

=

Z

'([0;1℄x)

i(X

r

):
 =

Z

1

0

!

�

Ad('(tx))

�1

:X; d�

'(tx)

�1
('(tx))d'(tx):x

�

dt;

and this formula shows that the funtion V �g! g; (x;X) 7! f

X

('(x)) is smooth. We onlude

that � is a smooth oyle.

Central extensions with global smooth setions

In this subsetion we disuss the problem of the existene of a smooth ross setion for a

entral Lie group extension Z ,!

b

G!! G .

Proposition V.16. (Cartan's onstrution) Let G be a onneted Lie group, z an s..l..

spae, ! 2 Z

2



(g; z) a ontinuous 2-oyle, and 
 2 


2

(G; z) the orresponding left invariant

2-form on G with 


1

= ! . We assume that

(1) 
 = d� for some � 2 


1

(G; z) , and that

(2) for eah g 2 G the losed 1-form �

�

g

� � � is exat.

Then the produt manifold

b

G := G� z arries a Lie group struture whih is given by a smooth

2-oyle f 2 Z

2

(G; z) via

(g; z)(g

0

; z

0

) := (gg

0

; z + z

0

+ f(g; g

0

)):

The Lie algebra of this group is isomorphi to g�

!

z .

Proof. First we observe that the 1-forms �

�

g

��� are losed beause d(�

�

g

���) = �

�

g


�
 = 0.

Aording to our assumption, there exists for eah g 2 G a unique f

g

2 C

1

(G; z) with f

g

(1) = 0

and df

g

= �

�

g

�� � . As in the proof of Lemma IV.8, we see that f(g; h) := f

g

(h) de�nes z-valued

2-oyle on G whih is smooth on a neighborhood of (1;1). The oyle ondition means that

f(g; hu) + f(h; u) = f(gh; u) + f(g; h) for g; h; u 2 G:

We write this as

f(gh; u) = f(h; u)� f(g; h) + f(g; hu):

For g �xed, this funtion is smooth as a funtion of the pair (h; u) in a neighborhood of (1;1).

This implies that f is smooth on a neighborhood of the points (g;1), g 2 G . Fixing g and
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u shows that there exists a 1-neighborhood V � G suh that the funtions f(�; u), u 2 V ,

are smooth in a neighborhood of g . Sine g 2 G was arbitrary, we onlude that the funtions

f(�; u), u 2 V , are smooth. Now

f(�; hu) = f(�h; u)� f(h; u) + f(�; h)

shows that the same holds for the funtions f(�; x), x 2 V

2

, and iterating this proess, using

G =

S

n2N

V

n

, we derive that all funtions f(�; x), x 2 G , are smooth. Finally we onlude that

the funtion

(g; h) 7! f(g; hu) = f(gh; u)� f(h; u) + f(g; h)

is smooth in a neighborhood of eah point (g

0

;1), hene that f is smooth in eah point (g

0

; u

0

),

and this proves that f is smooth on G�G .

We therefore obtain on the spae

b

G := G� z a Lie group struture with the multipliation

given by

(g; z)(g

0

; z

0

) := (gg

0

; z + z

0

+ f(g; g

0

)):

As in the proof of Lemma IV.8, we obtain the formula

[(X

0

; z

0

); (X; z)℄ =

�

[X

0

; X ℄; d

2

f(1;1)(X

0

; X)� d

2

f(1;1)(X;X

0

)

�

for the orresponding Lie braket, but sine we do not have �

1

= 0, the alulations in the proof

of Lemma IV.8 lead to

d

2

f(g;1)(Y ) = (�

�

g

� � �)

1

(Y ) = h�; Y

l

i(g)� �

1

(Y )

and further to

d

2

f(1;1)(X;Y ) = X

l

(h�; Y

l

i)(1) = d�(X

l

; Y

l

)(1) + Y

l

(h�;X

l

i)(1) + �([X

l

; Y

l

℄)(1)

= !(X;Y ) + Y

l

(h�;X

l

i)(1) + �

1

([X;Y ℄);

so that

d

2

f(1;1)(X;Y )� d

2

f(1;1)(Y;X) = !(X;Y ) + �

1

([X;Y ℄):

Sine this oyle is equivalent to ! , the assertion follows.

Corollary V.17. If G is simply onneted and 
 is exat, then there exists a smooth oyle

f :G�G! z , so that

b

G := G�

f

z is a Lie group with Lie algebra

b

g = g�

!

z .

Remark V.18. The onstrution desribed in Proposition V.16 is a well-known onstrution

of a entral extension of a simply onneted �nite-dimensional Lie group G . Sine in this ase

H

2

dR

(G; z)

�

=

Hom(�

2

(G); z) = f0g and H

1

dR

(G; z)

�

=

Hom(�

1

(G); z) = f0g;

(f. [God71℄), the requirements of the onstrution are satis�ed for every Lie algebra oyle

! 2 Z

2

(g; z).

The onstrution an in partiular be found in the survey artile of Tuynman and Wiege-

rink [TW87℄ (see also [Tu95℄, [Go86℄ and [Ca52b℄). Atually E. Cartan gave three proofs for

Lie's Third Theorem ([Ca52a℄, [Ca52b℄ and [Ca52℄), where [Ca52a/℄ rely on splitting of a Levi

subalgebra and hene reduing the problem to the semisimple and the solvable ase, but the

seond one is geometri (in the spirit of the argument in Example V.14) and uses H

2

dR

(G) = f0g

for a simply onneted Lie group G (see also [Est88℄).
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Proposition V.19. (a) If a smooth entral extension Z !

b

G! G has a smooth setion, then

eah orresponding left-invariant 2-form 
 2 


2

(G; z) is exat.

(b) If, onversely, 
 is exat, then per

!

= 0 , and the simply onneted overing group has a

global smooth oyle f

Z

:

e

G�

e

G! Z de�ning a Z -extension

e

G�

f

Z

Z of

e

G orresponding to ! .

Proof. (see [TW87, Prop. 4.14℄ for the �n.-dim. ase) (a) Let � 2 


1

(g; z) be the left invariant

z-valued 1-form with �

1

= p

z

, the linear projetion

b

g

�

=

g�

!

z ! z . Then d� = �q

�


 follows

from

d�

1

((X; z); (X

0

; z

0

)) = �p

z

([(X; z); (X

0

; z

0

)℄) = �!(X;X

0

) = �(q

�


)

1

((X; z); (X

0

; z

0

))

and the left invariane.

If �:G!

b

G is a smooth setion, then �

�

� is a z-valued 1-form on G with

d�

�

� = �

�

d� = ��

�

q

�


 = �(q Æ �)

�


 = �
;

so that 
 is exat.

(b) Suppose that 
 is exat. Then the same holds for q

�

G


 on

e

G , so that Corollary V.17 implies

the existene of a entral extension of

e

G by z whih an be written as a produt. We onlude

in partiular that per

!

= 0.

Sine

e

G has a z-extension with a smooth setion, by fatoring the disrete entral subgroup

�, we obtain a entral extension Z ,!

e

G�

f

Z

Z !!

e

G with a global smooth oyle f

Z

:

e

G�

e

G! Z .

Reall that we annot simply apply de Rham's Theorem to onlude that the ohomology

lass �([f ℄) vanishes if 
 is exat. This would work with Theorem IV.12 if every element of �

2

(G)

ould be represented by a smooth map S

2

! G . Suh results are available for �nite-dimensional

manifolds, where they heavily use the smooth paraompatness and even embeddings into vetor

spaes with tubular neighborhoods. One has to fae similar obstrutions if one wants to represent

singular ohomology lasses in H

2

sing

(G) by smooth hains.

Lemma V.20. Suppose that

b

G is de�ned by a homomorphism :�

1

(G) ! Z

�

=

z=� . In

addition, we assume that G is smoothly paraompat. Then

b

G! G has a smooth setion if and

only if there exists a homomorphism e:�

1

(G) ! z with q

Z

Æ e =  , where q

Z

: z ! Z is the

quotient map.

Proof. Suppose �rst that

b

G! G has a smooth setion. The natural map

q

b

G

:

e

G� z!

e

G� Z !

b

G = (

e

G� Z)=�(

�1

); (g; z) 7! [g; q

Z

(z)℄

is the universal overing of

b

G , so that �

1

(

b

G) an be identi�ed with

ker q

b

G

= f(d; z) 2 �

1

(G) � z: (d)q

Z

(z) = 1g:

This desription diretly shows that we have a short exat sequene

� = �

1

(Z) ,! �

1

(

b

G)!! �

1

(G):

The triviality of the bundle

b

G implies the existene of a homomorphi setion �:�

1

(G)! �

1

(

b

G)

with �(d) = (d;�e(d)) for a homomorphism e:�

1

(G) ! z . Then (d)q

Z

�

� e(d)

�

= 1 implies

that q

Z

Æ e =  .

Suppose, onversely, that there exists a homomorphism e with the required properties.

Then

G

1

:= (

e

G� z)=�(�e)

is a entral extension of G by z and

b

G

�

=

G

1

=�: On the other hand, G

1

! G is a z-prinipal

bundle. This bundle has aÆne �bers, so that the smooth paraompatness of G implies the

existene of smooth global setions, so that G

1

�

=

G �

f

z , where f :G � G ! z is a smooth

2-oyle. Therefore

b

G

�

=

G�

f

Z

Z , where f

Z

:= q

Z

Æ f , is a trivial Z -bundle.
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Remark V.21. Assume that

b

G is de�ned by a homomorphism :�

1

(G) ! Z

�

=

z=�. Let �

be a left invariant z-valued 1-form on

b

G for whih �

1

:

b

g ! z is a linear projetion onto z . Let

q

b

G

:

e

G�z!

b

G denote the universal overing map. Then p

�

� = df for the projetion f :

e

G�z! z .

Hene the homomorphism

�([�℄):�

1

(

b

G)! z

is given by

�

1

(

b

G)

�

=

f(d; z) 2 �

1

(G)� z: (d)q

Z

(z) = 1g ! z; (d; z) 7! z:

It follows in partiular that im �([�℄) = q

�1

Z

(im ): The range of �([�℄) is ontained in � if and

only if  is trivial, whih means that

b

G

�

=

G� Z is a trivial entral extension.

For � = f0g we obtain in partiular

�([�℄) = �:�

1

(G)! z:

Now the existene of a smooth setion �:G ! z is equivalent to the existene of a smooth

funtion h:

e

G! z with

h(gd) = (d)

�1

h(g); g 2

e

G; d 2 �

1

(G):

Suh funtions an be onstruted with a smooth partition of unity, but it is not lear how they

should be obtained if G is not smoothly paraompat. The point is that the map

H

1

dR

(G; z) ,! Hom(�

1

(G); z)

need not be surjetive (f. Theorem III.6).

Remark V.22. It is interesting to ompare ondition (2) in the Cartan onstrution with the

ondition �

3;2

([!℄) = 0. In view of Proposition V.16 and Theorem V.9, ondition (2) implies

�

3;2

([!℄) = 0, i.e., the exatness of all 1-forms i(X

r

):
. If, onversely, this ondition is satis�ed,

then it is not at all lear why this should imply ondition (2). In the speial ase where 
 = 0,

the ondition �

3;2

([!℄) = 0 is trivially satis�ed, but there might be a losed z-valued 1-form �

on G for whih �

�

g

� � � is not exat for some g 2 G . Geometrially this means that the hoie

of the smooth setion for the orresponding entral extension of

e

G might be suh that it annot

be pushed down to a smooth setion for the entral extension of G .

VI. Examples

In this setion we disuss several important lasses of examples whih will demonstrate the

e�etiveness of the long exat sequene for the determination of the entral extensions of an

in�nite-dimensional Lie group G .

Remark VI.1. (Central extensions of abelian Lie groups)

(a) Suppose that G is an abelian Lie group with an exponential funtion exp: g! G whih is a

universal overing homomorphism (f. Remark III.16). Sine the overing map exp indues an

isomorphism of the seond homotopy groups, �

2

(G)

�

=

�

2

(g) is trivial. Hene we have the exat

sequene

Hom(g; Z)

res

����!Hom

�

�

1

(G); Z

�

�

1

����!Ext

Lie

(G;Z)

�

2

����!H

2



(g; z)

�

3

����!Hom

�

�

1

(G);Hom



(g; z)

�

:

For abelian Lie algebras the oboundary operator is trivial, so that H

2



(g; z) = Alt

2

(g; z)

oinides with the spae of ontinuous alternating bilinear forms g� g! z . Here the map �

3

is

quite simple:

�

3

: Alt

2

(g; z)! Hom

�

�

1

(G);Hom



(g; z)

�

; �

3

(!)(d;X) = !(X; d):
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Therefore the ondition for the existene of a Lie group extension

b

G! G by Z is that

�

1

(G) � rad(!) := fX 2 g:!(X; g) = f0gg:

If this ondition is satis�ed, then ! fators through G�G to a smooth 2-oyle

f :G�G! z; (expX; expY ) 7! !(X;Y ):

We thus obtain a group G�

f

z whih is a overing of the group G�

f

Z

Z .

(b) If span�

1

(G) is dense in g , then we all G a generalized torus. Then ker �

3

= f0g implies

that �

2

= 0, and therefore that �

1

is surjetive, so that

Ext

Lie

(G;Z)

�

=

Hom

�

�

1

(G); Z

�

=

�

Hom(g; Z) j

�

1

(G)

�

:

If dimG <1 , then span�

1

(G) = g , and �

1

(G) is a lattie in g . Therefore Hom

�

�

1

(G); Z

�

=

Hom(g; Z) j

�

1

(G)

leads to

Ext(T

n

; Z) = f0g for all n 2 N; Z = z=�:

() Let g be a loally onvex spae g and D � g a disrete subgroup. Then there exists a

ontinuous seminorm p on g with D \ p

�1

([0; 1℄) = f0g , showing that the image in the normed

spae g

p

:= g=p

�1

(0) is a disrete subgroup isomorphi to D . This implies that every disrete

subgroup of a loally onvex spae is isomorphi to a disrete subgroup of a Banah spae. As

has been shown by Sidney ([Si77, p.983℄), ountable disrete subgroups of Banah spaes are free.

This implies in partiular that disrete subgroups of separable Banah spaes are free.

Let E be a vetor spae and f :D ! E a homomorphism of additive groups. Sine

every �nitely generated subgroup of D is a disrete subgroup of the vetor spae it spans,

every linear relation

P

d

�

d

d = 0 implies that

P

d

�

d

f(d) = 0. Hene f extends to a linear

map f : spanD ! E . Suh an extension need not be ontinuous if D is not �nitely generated.

Suppose that D is ountably in�nite and that g is a Banah spae. Let (e

n

)

n2N

be a basis of

D as an abelian group. We de�ne f(e

n

) := nke

n

k . Then f extends to a linear map on spanD

whih obviously is not ontinuous. We onlude in partiular that if G is an in�nite-dimensional

separable generalized Banah torus, then

Ext

Lie

(G;R)

�

=

Hom

�

�

1

(G);R

�

=

�

Hom(g;R) j

�

1

(G)

�

6= f0g:

(d) If

b

G is a entral extension with abelian Lie algebra, then its universal overing group is the

vetor spae

b

g = g� z , and the fundamental group �

1

(

b

G) is de�ned by an exat sequene

� = �

1

(Z) ,! �

1

(

b

G)

p

g

����!�

1

(G);

where p

g

:

b

g! g is the projetion onto the �rst fator. In this sense we have a natural map

�: Ext(G;Z)! Ext

�

�

1

(G); �

1

(Z)

�

:

If �

1

(G) is free, then the group on the right hand side is trivial, so that � vanishes, but if �

1

(G)

is not free, then there might be non-trivial lasses in Ext

�

�

1

(G); �

1

(Z)

�

, and therefore

b

G is

non-trivial.

The relation �(�

1

()) = 0 means that  an be lifted to a homomorphism e:�

1

(G) ! z

(f. Lemma V.20), so that we have a z-extension of G overing the Z -extension

b

G . This

extension is trivial if and only if the homomorphism �

1

(G)! z extends ontinuously to g whih

might not be possible, as we have seen in ().

(e) Let g be a Banah spae, D � g a disrete subgroup with Ext(D;Z) 6= f0g and G := g=D .

The exatness of the sequene

Hom(D;Z) ,! Hom(D;R) ! Hom(D;T)! Ext

ab

(D;Z)! Ext

ab

(D;R) = f0g

(Theorem A.1.4) shows that there exists a homomorphism :D! T whih annot be lifted to a

homomorphism e:D ! R . In view of (d), this implies that the orresponding abelian extension

T ,!

b

G := (g� T)=�(

�1

)!! G

�

=

g=D

has no global ontinuous setion.

We do not know of any example of a disrete subgroup of a Banah spae whih is not

free.
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Example VI.2. We onsider the real Banah spae g = 

0

(N;R) of sequenes onverging to 0

endowed with the sup-norm. Then Z

(N)

= Z

N

\ 

0

(N;R) is a disrete subgroup spanning a dense

subspae, so that G := g=Z

(N)

is a generalized torus with �

1

(G)

�

=

Z

(N)

. Now Remark VI.1(b)

implies that

Ext

Lie

(G;R)

�

=

R

N

=l

1

(N;R):

Remark VI.3. In [Se81, Prop. 7.4℄ G. Segal laims that for a onneted Lie group G the

sequene

Hom

�

�

1

(G);T

�

�

1

����!Ext(G;T)

�

2

����!H

2



(g;R)



T

����!H

2

sing

(G;T)

is exat (see Remark IV.11 for the de�nition of 

T

). This is false if G = T

2

is the two-dimensional

torus. As we have seen in Remark VI.1(b), we have Ext(G;T) = f0g , and Remark VI.1(a) shows

that H

2



(g;R)

�

=

R . Using a simpliial deomposition of G , one easily obtains H

2

(G)

�

=

Z , where

the generator is the fundamental yle (G is an orientable surfae). Hene H

2

sing

(G;T)

�

=

T . We

onlude that the sequene above leads to a onrete sequene

T

2

�

1

����!f0g

�

2

����!R

�

3

����!T:

On the other hand the de�nition of �

3

shows that it is ontinuous, and this ontradits Segal's

laim.

Example VI.4. Let G := Di�

+

(T) be the group of orientation preserving di�eomorphisms of

the irle T . Then

e

G an be identi�ed with the group

e

G := ff 2 Di�(R): (8x 2 R) f(x + 2�) = f(x) + 2�g;

and the overing homomorphism q:

e

G ! G is given by q(f)([x℄) = [f(x)℄; where [x℄ = x + Z 2

T

�

=

R=Z . Then ker f onsists of all translations �

a

, a 2 Z . Moreover, the inlusion map

�: PSL(2;R) ,! Di�

+

(T)

is a homotopy equivalene (f. [Fu86, p. 302℄). Note also that

e

G is a onvex set of maps R ! R ,

so that this group is obviously ontratible (f. [TL99, 6.1℄). In partiular we have

�

1

(G)

�

=

Z and �

k

(G) = f1g; k > 1:

As a onsequene, we obtain Hom(�

1

(G);T)

�

=

T: Moreover,

H

2

sing

(G;T)

�

=

H

2

sing

(T;T)

�

=

Hom(H

2

(T);T) = f0g:

Furthermore we have

H

2



(g;R)

�

=

R:

Therefore the long exat sequene in Theorem V.9 leads to an exat sequene

T ,! Ext(G;T)! R ! Hom(�

1

(G); g

�

):

Now one has to show that the standard generator [!℄ of H

2



(g;R) has trivial image in the spae

Hom(�

1

(G); g

�

) to get an exat sequene

T ,! Ext(G;T)!! R;

and hene

Ext(G;T)

�

=

T� R

�

=

(Z� R)b

(f. [Se81, Cor. 7.5℄). Identifying g with V(T), with respet to the the basis L

n

, n 2 Z , the

oyle ! is given by

!(L

n

; L

�m

) = n(n� 1)(n+ 1)Æ

n;m

;
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hene trivial on spanfL

0

; L

1

; L

�1

g

�

=

sl(2;R). Therefore i(X

r

):
 j

PSL(2;R)

= 0 for all X 2

sl(2;R): In fat, for g 2 PSL(2;R), X 2 sl(2;R) and Y 2 g we have




g

(X

r

(g); d�

g

(1):Y ) = !(Ad(g)

�1

:X; Y ) 2 !(sl(2;R); g) = f0g:

This implies that the orresponding homomorphism �

1

(G) ! g

�

is trivial, so that the sequene

in [Se81℄ is exat (see Remark VI.3), even though it is not exat for all in�nite-dimensional Lie

groups.

For the simply onneted overing group we likewise have

Ext(

e

G;T)

�

=

H

2



(g;R)

�

=

R:

This implies in partiular that G has a universal entral extension Z ,!

b

G ! G with

Z

�

=

Z� R (f. [Ne00℄). One an realize the group

b

G as a entral extension of

e

G by R . This is

the universal overing group of the Virasoro group.

Example VI.5. Let H be an in�nite-dimensional Hilbert spae, G := GL

2

(H), and g =

B

2

(H) its Lie algebra, i.e., the spae of Hilbert{Shmidt operators on H . Then

�

1

(G)

�

=

�

1

�

indlim

n!1

GL(n; C )

�

�

=

Z; �

2

(G)

�

=

�

2

�

indlim

n!1

GL(n; C )

�

�

=

f1g

(f. [Pa65℄ for the separable ase and Lemma III.5 in [Ne98℄ for the extension to the general

ase). Moreover, for eah ! 2 Z

2



(g;R) there exists an operator C 2 B(H) with

!(X;Y ) = tr([X;Y ℄C); X; Y 2 g

whih leads to

H

2



(g;R)

�

=

B(H)=(B

2

(H) + R1)

(f. [dlH72, p.141℄).

We laim that �

3

vanishes. Sine �

2

(G) is trivial, this will follow from the exatness of the

1-forms i(X

r

):
 for every ! 2 Z

2

(g;R) (f. Lemma III.7). So let ! 2 Z

2



(g;R) and C 2 B(H)

with !(X;Y ) = tr([X;Y ℄C) for X;Y 2 g . We onsider the funtion

f

X

:G! R; f

X

(g) := tr

�

(gCg

�1

� C)X

�

;

and observe that

gCg

�1

� C = (g � 1)Cg

�1

+ C(g

�1

� 1) 2 B

2

(H);

so that f

X

is a well-de�ned smooth funtion. We have for all Y 2 g :

df

X

(g)d�

g

(1):Y = tr(gY Cg

�1

X)� tr(gCY g

�1

X) = tr([g

�1

Xg; Y ℄C)

= !(Ad(g)

�1

:X; Y ) = (i(X

r

):
)(g):(d�

g

(1):Y ):

Hene df

X

= i(X

r

):
, showing that the 1-forms i(X

r

):
 are all exat, and therefore that �

3

vanishes.

Sine [g; g℄ = B

1

(H) is dense in g , we have Hom(

e

G;Z) = f0g for eah abelian Lie group

Z , so that the long exat sequene (Theorem V.9) leads to the short exat sequene

Hom(�

1

(G); Z)

�

=

Hom(Z; Z)

�

=

Z ,! Ext(G;Z)!! H

2



(g; z):

For the simply onneted overing group

e

G we obtain with �

2

(

e

G)

�

=

�

2

(G) = f1g that

Ext(

e

G;T)

�

=

H

2



(g;R)

�

=

B(H)=(C 1+B

2

(H)):

Example VI.6. (a) Let H be an in�nite-dimensional Hilbert spae. Then all homotopy groups

of U(H) vanish (see [Ku65℄ for the separable ase and [BW76℄ for the general ase). Let PU(H)



Central extensions of in�nite-dimensional Lie groups 39

denote the projetive unitary group. Then the surjetive map q: U(H) ! PU(H) de�nes a

prinipal bundle, hene indues an exat sequene

�

2

(G) = f1g ! �

2

(PU(H)

�

! �

1

(T)! �

1

(U(H)

�

�

=

f1g:

Therefore

�

2

�

PU(H)

�

�

=

�

1

(T)

�

=

Z

is non-trivial. We likewise have

�

1

(PU(H)

�

�

=

�

0

(T) = f1g:

With Z := T , G := U(H) and G=Z

�

=

PU(H), we have �

1

(Z�(G=Z))

�

=

Z 6

�

=

�

1

(G) = f1g:

Therefore G is not homeomorphi to Z � (G=Z).

(b) (see [DL66, p.147℄) Let G := PU(H)�PU(H). Then G is simply onneted and �

2

(G)

�

=

Z

2

.

Let

b

g := (u(H)�u(H)

�

=iR(1;

p

2) whih is a entral extension of g = L(G). Then the Lie algebra

b

g is not enlargible: The Lie algebra

e

g := u(H) � u(H) is an enlargible entral extension. Let

e

G = U(H) � U(H) be the orresponding group. Then the subgroup

e

C �

e

G orresponding to

e

z := ker(

e

g !

b

g) is not losed. If there were a Banah{Lie group

b

G with Lie algebra

b

g , then

the Lie algebra homomorphism

e

g !!

b

g would imply the existene of a orresponding group

homomorphism q:

e

G!!

b

G . Then ker q ontains the dense subgroup exp(iR(1;

p

2)) of the torus

Z(

e

G)

�

=

T

2

. This ontradits L(ker q) = kerdq(1) = iR(1;

p

2):

() A similar onstrution as in (b) works more generally as follows. Suppose that G is a

simply onneted Lie group and ! 2 Z

2



(g;R) with per

!

6= 0. If im(per!) is not disrete,

then we already have an example of a non-integrable entral extension. Suppose that im(per

!

)

is disrete, so that we may assume that im(per

!

) = Z . Let q:

b

G ! G be the orresponding

T-extension of G . We put g

1

:= g� g , G

1

:= G�G , and

!

1

((X;Y ); (X

0

; Y

0

)) := !(X;Y ) +

p

2!(X

0

; Y

0

):

Then im(per

!

1

) = im(per

!

)+

p

2 im(per

!

) is not disrete, so that there exists no smooth entral

extension of G

1

orresponding to !

1

(Theorem V.7).

This an also be proved more diretly as follows: The group

b

G

2

:=

b

G �

b

G is a entral

extension of G

1

by the two-dimensional torus T

2

with period group Z

2

� R

2

. If a entral exten-

sion

b

G

1

! G

1

orresponding to !

1

would exist, then we ould onstrut a loal homomorphism

of some 1-neighborhood in

b

G

2

to

b

G

1

, and then use Lemma II.3 to extend it to a Lie group

homomorphism

b

G

2

!

b

G

1

with the orret di�erential. Then the entral torus T

2

in

b

G

2

would

be mapped onto the subgroup orresponding to z

1

�

=

R . So this subgroup would be a quotient

of T

2

modulo a dense wind, whih is absurd.

Example VI.7. Let (M;�) be a ompat onneted sympleti manifold. Then the group

Sp(M;�) of all sympletomorphisms of (M;�) arries a natural Lie group struture suh that

its Lie algebra is the spae

g := fX 2 V(M):L

X

:� = 0g

of all loally Hamiltonian vetor �elds (f. [Omo97℄). Endowing C

1

(M;R) with the Poisson

braket, we get an exat sequene

R ,! C

1

(M;R) ! g!! H

1

dR

(M;R)

whih, on the level of di�erential forms orresponds to

R ,! C

1

(M;R)

d

����!Z

1

dR

(M;R) !! H

1

dR

(M;R):

Sine we have assumed that M is ompat, this Lie algebra extension is trivial. The spae

n

f 2 C

1

(M;R):

Z

M

f�

n

= 0

o

is a vetor spae omplement of R1 whih is a Lie subalgebra of C

1

(M;R) (f. [Omo97, Th. 3.2℄).
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VII. Relations to onneting homomorphisms in homotopy

In our onstrution of smooth entral extensions from Lie algebra oyles we have used the

results of van Est and Korthagen to enlarge loal groups to global groups. That this is possible

was haraterized for simply onneted groups by the ondition that all periods are ontained

in �, so that we obtain a homomorphism per

!

:�

2

(G) ! �

�

=

�

1

(Z). On the other hand the

exat homotopy sequene of the Z -prinipal bundle

b

G ! G leads diretly to a onneting

homomorphism Æ:�

2

(G) ! �

1

(Z). In Proposition VII.7 below we will see that both are

related by the formula per

!

= �Æ . On the other hand the loop group 
(G) of G satis�es

�

2

(G)

�

=

�

1

(
(G)), so that the period map an also be viewed as a homomorphism �

1

(
(G))! z .

In Remark VII.5 below we will explain how the ondition that the range of this map is ontained

in � implies the existene of a smooth extension of G .

The path-loop �bration

Remark VII.1. (a) If F is an s..l.. spae and X a ompat spae, then C(X;F ) is an s..l..

spae with respet to the topology of uniform onvergene. For eah ontinuous seminorm p on

F the presription

p

X

(f) := sup

x2X

p(f(x))

de�nes a ontinuous seminorm on C(X;F ), and the set of all these seminorms de�nes the

topology of ompat onvergene on C(X;F ). It is easy to verify that with respet to this

topology the spae C(X;F ) is sequentially omplete, i.e., an s..l.. spae.

(b) If U � F is an open subset, then C(X;U) is an open subset of C(X;F ). Now let U

j

� F

j

,

j = 1; 2, be open subsets of s..l.. spaes and ':U

1

! U

2

a smooth map. We onsider the map

'

X

:C(X;U

1

)! C(X;U

2

);  7! ' Æ :

Then '

X

is smooth. The ontinuity follows from [Ne97, Lemma III.6℄. For eah x 2 X and

; � 2 C(X;F

1

) we have

lim

t!0

'((x) + t�(x)) � '((x))

t

= lim

t!0

Z

1

0

d'((x) + st�(x)):�(x) ds = d'((x)):�(x):

Sine the integrand is ontinuous in [0; 1℄

2

� X , the limit exists uniformly in X , hene in the

spae C(X;F

2

). Therefore d'

X

()(�) exists. Sine d':TU

1

�

=

U

1

� F

1

! F

2

is a ontinuous

map, the �rst part of the proof shows that

d'

X

:C(X;TU

1

)

�

=

C(X;U

1

)� C(X;F

1

)! C(X;F

2

)

is ontinuous, so that '

X

is C

1

. Iterating this argument shows that '

X

is C

1

.

Proposition VII.2. If G is a Lie group and X is a ompat spae, then C(X;G) , endowed

with the topology of uniform onvergene is a Lie group with Lie algebra C(X; g) .

Proof. We use Remark VII.1(b) to see that the inversion and multipliation in the anonial

loal harts are smooth. The remainder is a routine veri�ation.

De�nition VII.3. Let G be a Lie group and

P (G) := ff 2 C([0; 1℄; G): f(0) = 1g
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the orresponding path group endowed with the topology of uniform onvergene, where the

multipliation is pointwise. This turns P (G) into a Lie group (Proposition VII.2), and the

evaluation map

ev:P (G)! G;  7! (1)

is a ontinuous group homomorphism whose kernel is the loop group


(G) := ker ev

�

=

ff 2 C(T; G): f(1) = 1g:

It is alled the path-loop �bration of G .

Lemma VII.4. For a Fr�ehet{Lie group G the path-loop �bration has a smooth loal setion.

Proof. Let U � G be a 1-neighborhood for whih UU is di�eomorphi to an open onvex set

in g . Then there exists a map h: [0; 1℄�U ! U whih is smooth in the sense that it extends to a

smooth map on a neighborhood of [0; 1℄�U in R �G . Furthermore we require that h(0; x) = 1

and h(1; x) = x for all x 2 U . Then

�

U

:U ! P (G); �

U

(x)(t) := h(t; x)

is a smooth setion of ev (see [Ne97, Th. III.4℄ whih requires the manifolds under onsideration

to be Fr�ehet).

Remark VII.5. (Identi�ation of the period map via loops) Let G be a simply onneted

Fr�ehet{Lie group, z a Fr�ehet spae, � � z a disrete subgroup and Z := z=�. We reall

from Lemma IV.8 that eah Lie algebra oyle ! 2 Z

2



(g; z) de�nes a loal extension of G by

Z := z=�, � � z a disrete subgroup. Below we explain how the path-loop �bration of G an

be used to see that the obstrution to the extendability of suh a loal entral extension is a

homomorphism �

2

(G)

�

=

�

1

(
(G)) ! Z .

Let Z ,! N !! U be a loal entral extension, where U � G is a symmetri open 1-

neighborhood and let f :U � U ! Z be its loal oyle. We an pull bak f to a loal oyle

f

P

(�; �) := f(�(1); �(1))

on ev

�1

(U) = f 2 P (G): (1) 2 Ug .

Sine the group P (G) is ontratible, its singular ohomology groups are all trivial. Hene

Theorem IV.7 implies that there exists an open symmetri 1-neighborhood V � P (G) suh that

the restrition of f

P

to V an be extended to a Z -valued oyle on the whole group P (G).

Let

Z ,!

b

P (G)

q

P

����!P (G)

denote the orresponding entral extension of P (G) by Z whih an be given the struture of

a smooth extension (Proposition IV.2). Note that all these arguments do not require G to be

Fr�ehet. This assumption is only needed as soon as Lemma VII.4 is used. By restrition, we

obtain a entral extension

Z ,!

b


(G) := q

�1

P

(
(G))! 
(G):

Now we would like to �nd a setion of this extension �




: 
(G) !

b


(G) whose range is a losed

normal subgroup of

b

P (G). Then

b

P (G)=�




(
(G)) would be a natural andidate for a entral

extension

b

G of G .

The loal oyle f

P

is trivial on 
(G), showing that the groups

b


(G) and 
(G) � Z

are loally isomorphi. Therefore the pullbak of this entral extension to the universal overing

group of 
(G) is trivial (Lemma II.3), and this implies that the entral extension

b


(G) is de�ned

by a homomorphism

:�

1

(
(G))

�

=

�

2

(G)! Z

as

�

e


(G) � Z

�

=�(

�1

). Here we use that G is simply onneted, so that 
(G) is onneted.
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If the loal extension of U extends to a global entral extension

b

G of G , then the pullbak

of this extension of P (G) would be trivial on 
(G). Therefore the vanishing of  is a neessary

ondition. Suppose, onversely, that  is trivial. We laim that the adjoint ation of eah element

� 2 P (G) on

b

p = p�

!

P

z whih is given by the oyle �:P (G)� p! z satis�es �(�; �) = 0 for

� 2 
(g). Let � 2 
(g) and onsider i(�

r

):


P

whih satis�es

hi(�

r

):


P

; 

r

i(�) = 


P

(�

r

; 

r

)(�) = !

P

(Ad(�)

�1

:�; )

= !(Ad(�(1))

�1

:�(1); (1)) = !(Ad(�(1))

�1

:0; (1)) = 0:

We onlude that the funtion �(�; �) vanishes (see Lemma V.6, Proposition V.15). This implies

that the loal group homomorphism of a 1-neighborhood in 
(G)�Z extends to a global group

homomorphism

e


(G)� z !

b


(G) �

b

P (G)

whih is equivariant with respet to the ation of P (G) on both sides (Lemma II.3). Clearly this

homomorphism fators through a homomorphism

e


(G) � Z !

b


(G) �

b

P (G):

Let D �

e


(G)�Z be its kernel whih is the graph of the trivial homomorphism :�

1

(
(G)) ! Z .

Therefore D = �

1

(
(G)), so that the homomorphism fators through the embedding


(G) � Z !

b


(G) �

b

P :

In view of the P -equivariane of this map, the orresponding homomorphism �




: 
(G) !

b

P is

P -equivariant and its image is a losed normal subgroup. Therefore

b

G :=

b

P=�




(
(G))

is a topologial group whih has a anonial homomorphism q:

b

G! G whose kernel is

ker q =

b


(G)=�




(
(G)) =

�

Z�




(
(G))

�

=�




(
(G));

hene entral and isomorphi to Z . Composing a smooth loal setion �

U

:U ! P (G) (here we

need that G is Fr�ehet) with a loal setion of the entral extension

b

P (G) ! P (G), we obtain

a ontinuous map

b�

U

:U !

b

P (G)!

b

G

satisfying q Æ b�

U

= id

U

. Moreover, we see that the entral extension

b

P (G) of P (G) has an open

1-neighborhood di�eomorphi to

U �

b


(G)

�

=

U � Z �
(G):

This proves that the loal oyle orresponding to the setion b�

U

is smooth, and therefore that

b

G arries a unique Lie group struture for whih q is a smooth entral extension (Proposition

IV.2)

The preeding onstrution is partiularly interesting for Banah{Lie groups beause Swier-

zkowki has shown in [Sw70℄ that for every Banah{Lie algebra g the Banah{Lie algebra P (g)

is enlargible in the sense that it is the Lie algebra of a group. Hene g

�

=

P (g)=
(g) is a quotient

of an enlargible Lie algebra. This observation an also be used to onstrut groups for a given

entral extension of Banah{Lie algebras.
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The onneting homomorphism in homotopy

De�nition VII.6. We reall the de�nition of relative homotopy groups. Let I

n

:= [0; 1℄

n

denote the n-dimensional ube. Then the boundary �I

n

of I

n

an be written as I

n�1

[ J

n�1

,

where I

n�1

is alled the initial fae and J

n�1

is the union of all other faes.

Let X be a topologial spae, A � X a subspae, and x

0

2 A . A map

f : (I

n

; I

n�1

; J

n�1

)! (X;A; x

0

)

is a ontinuous map f : I

n

! X satisfying f(I

n�1

) � A and f(J

n�1

) = fx

0

g . We write

�

n

(X;A; x

0

) for the homotopy lasses of suh maps (f. [Ste51℄). Likewise we de�ne �

n

(X; x

0

).

We have a anonial map

�:�

n

(X;A; x

0

)! �

n�1

(A; x

0

); [f ℄ 7! [f j

I

n�1
℄:

Suppose that we have a entral extension of Lie groups q:

b

G ! G with kernel Z . Then

q de�nes in partiular the struture of a Z -prinipal bundle on

b

G , so that we have a natural

homomorphism Æ:�

2

(G)! �

1

(Z) whih is de�ned as follows. We have an isomorphism

q

�

:�

2

(

b

G;Z) := �

2

(

b

G;Z;1)! �

2

(G); [f ℄ 7! [q Æ f ℄

([Ste51, Cor. 17.2℄), and therefore a map

Æ := � Æ (q

�

)

�1

:�

2

(G)! �

1

(Z):

Proposition VII.7. If per

!

is the period map of the Lie algebra oyle ! 2 Z

2



(g; z)

orresponding to the extension q:

b

G! G , then

Æ = � per

!

:�

2

(G)! �

1

(Z)

�

=

� � z:

Proof. Let �([f ℄) 2 H

2

sing

(G; z) be the ohomology lass de�ned by the loal z-valued oyle

f :U � U ! z onstruted in Lemma IV.8. A orresponding G-invariant Alexander{Spanier

oyle is given by

F (g

0

; g

1

; g

2

) := f(g

�1

0

g

1

; g

�1

1

g

2

)

on the neighborhood of the diagonal in G

3

whih onsists of all 2-dimensional U -simplies

(De�nition IV.6).

Using a smooth loal ross setion �:V !

b

G , V � G a 1-neighborhood ontained in U ,

we �nd in

b

G a 1-neighborhood of the form

b

V := �(V ) � q

Z

(U

z

)

�

=

V � U

z

, where U

z

� z is a

0-neighborhood on whih q

Z

: z ! Z is a di�eomorphism, and for g; g

0

; gg

0

2 V , z; z

0

2 U

z

we

have

�(g)q

Z

(z)�(g

0

)q

Z

(z

0

) = �(gg

0

)q

Z

(z + z

0

+ f(g; g

0

)):

This leads to

(�(g)q

Z

(z))

�1

�(g

0

)q

Z

(z

0

) = �(g

�1

g

0

)q

Z

(z

0

� z � f(g; g

�1

) + f(g

�1

; g

0

)):

Let

p

z

:

b

V ! z; �(g)q

Z

(z) 7! z:

Then the funtion H(x

0

; x

1

) := p

z

(x

�1

0

x

1

) de�nes a G-invariant Alexander{Spanier ohain with

ÆH

�

1; �(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

= H(�(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

�H(1; �(g

2

)q

Z

(z

2

)

�

+H(1; �(g

1

)q

Z

(z

1

)

�

= z

2

� z

1

� f(g

1

; g

�1

1

) + f(g

�1

1

; g

2

)� z

2

+ z

1

= �f(g

1

; g

�1

1

) + f(g

�1

1

; g

2

) = �f(g

1

; g

�1

1

g

2

)

= �(q

�

F )

�

1; �(g

1

)q

Z

(z

1

); �(g

2

)q

Z

(z

2

)

�

:
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This proves that q

�

F is an Alexander{Spanier oboundary with q

�

F = �ÆH .

Now let : (I

2

; �I

2

)! (

b

G;Z) be a ontinuous map, representing an element of �

2

(

b

G;Z)

�

=

�

2

(G). Then

per

!

([q Æ ℄) = hF; q Æ i = hq

�

F; i = �hÆH; i = �hH; �i = �hH j

Z

;  j

�I

2

i;

where the pairing means the pairing between Alexander{Spanier ohains and singular hains as

in Remark A.2.5. Therefore it remains to show that for eah ontinuous loop �: [0; 1℄! Z with

�(0) = �(1) = 1 we have

hH j

Z

; �i = [�℄ 2 �

�

=

�

1

(Z):

In view of ÆH j

Z

= �q

�

F j

Z

= 0, the ohain H j

Z

is losed, hene a oyle, so that we may

assume that �(t) = q

Z

(tz) for some z 2 �. We hoose a partition

0 = t

0

< t

1

< : : : < t

n

= 1

of [0; 1℄ suh that (t� s)z 2 U

z

for t; s 2 [t

j

; t

j+1

℄ , j = 0; : : : ; n� 1. Then we obtain

hH j

Z

; �i =

n�1

X

j=0

hH j

Z

; � j

[t

j

;t

j+1

℄

i =

n�1

X

j=0

H(�(t

j

); �(t

j+1

)) =

n�1

X

j=0

(t

j+1

� t

j

)z = z:

This ompletes the proof.

Remark VII.8. (a) Let Z ,!

b

G !! G be a entral extension of onneted Lie groups and

assume that Z is onneted. Then the long exat homotopy sequene of this bundle leads to an

exat sequene

�

2

(Z)! �

2

(

b

G)! �

2

(G)! �

1

(Z)! �

1

(

b

G)! �

1

(G)! �

0

(Z) = f1g;

so that �

2

(Z)

�

=

�

2

(z) = f1g leads to

�

2

(

b

G) ,! �

2

(G)

per

!

����!�

1

(Z)! �

1

(

b

G)!! �

1

(G):

This implies that

�

2

(

b

G)

�

=

kerper

!

� �

2

(G) and �

1

(G)

�

=

�

1

(

b

G)= okerper

!

:

These relations show how the period homomorphism ontrols how the �rst two homotopy groups

of G and

b

G are related. In partiular we see that �

2

(

b

G) is smaller than �

2

(G).

Suppose that we start with the spae z and the Lie algebra oyle ! 2 Z

2



(g; z). If

im(per

!

) � z is disrete, then we may put � := im(per

!

) and Z := z=�. We thus obtain a

entral Z -extension

b

G of G for whih the homomorphism �

1

(

b

G) ! �

1

(G) is an isomorphism.

In partiular

b

G is simply onneted if G has this property.

Remark VII.9. (a) We have just seen that every entral extension of G by T de�nes a

homomorphism �

2

(G) ! �

1

(T)

�

=

Z . Let BT be the lassifying spae of T . For topologial

spaes X and Y we write [X;Y ℄ for the set of homotopy lasses of ontinuous maps f :X ! Y .

Sine T is an Eilenberg{MaLane spae of type K(Z; 1), we have for eah paraompat loally

ontratible topologial group G natural isomorphisms

[G;BT℄ = [G;BK(Z; 1)℄

�

=

[G;K(Z; 2)℄

�

=

H

2

sing

(G;Z)

beause for suh groups

�

Ceh and singular ohomology are isomorphi (f. [Hub61℄, [Br97,

p. 184℄). If G is simply onneted, we thus obtain an isomorphism

[G;BT℄! H

2

sing

(G;Z)

�

=

Hom(�

2

(G);Z);
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showing that eah homomorphism Æ:�

2

(G) ! Z

�

=

�

1

(T) is the onneting homomorphism of a

prinipal T-bundle T ,!

b

G!! G (Setion IV.4 in [tD91℄).

(b) Now let G := 
(SU(2)) be the loop group of SU(2). Then

�

2

(G)

�

=

�

3

(SU(2))

�

=

�

3

(S

3

)

�

=

Z and �

1

(G)

�

=

�

2

(SU(2)) = f1g:

On the Lie algebra g

1

:= 


1

(su(2)) of the group 


1

(SU(2)) of C

1

-loops one has the natural

2-oyle

!(�; �) :=

Z

T

�(�(t); �

0

(t)) dt;

where � is the Cartan{Killing form of su(2). Of ourse, this oyle has no ontinuous extension

to 
(su(2)). It is quite plausible that H

2



(
(g

0

);R) = f0g for every semisimple ompat Lie

algebra g

0

(ontrary to a statement in [Omo97, p.254℄). Assuming this, the long exat sequene

for entral extensions would lead to

Ext(
(SU(2));T) = f1g:

In ontrast to that, the inlusion G

1

,! G is a homotopy equivalene, but presumably

H

2



(


1

(su(2));R)

�

=

R;

whih, in view of [EK64, p.28℄, would lead to

Ext(


1

(SU(2));T)

�

=

Z:

A. Appendix

A.1. Universal oeÆients and abelian groups

Theorem A.1.1. (Universal CoeÆient Theorem) Let K be a omplex of free abelian groups

K

n

and Z be any abelian group. Put H

�

(K;Z) := H

�

(Hom(K;Z)) . Then for eah dimension

there is an exat sequene

f0g ! Ext

ab

�

H

n�1

(K); Z

�

�

����!H

n

(K;Z)

�

����!Hom

�

H

n

(K); Z

�

! f0g

with homomorphisms � and � natural in Z and K . This sequene splits by a homomorphism

whih is natural in Z but not in K .

The seond map � is de�ned on a ohomology lass [f ℄ as follows. Eah n-oyle of

Hom(K;Z) is a homomorphism f :K

n

! Z vanishing on �K

n+1

, so indues f

�

:H

n

(K) ! Z .

If f = Æg is a oboundary, it vanishes on yles, so (Æg)

�

= 0 . Now de�ne �([f ℄) := f

�

.

Proof. This [MaL63, Th. III.4.1℄

Remark A.1.2. If the abelian group Z is divisible, then Ext

ab

(B;Z) = f0g for eah abelian

group B , so that Theorem A.1.1 leads to an isomorphism

H

n

(K;Z)

�

=

Hom

�

H

n

(K); Z

�

of abelian groups.
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Remark A.1.3. For eah topologial spae X we have the omplex C

�

(X) of singular hains.

The group C

n

(X) is the free abelian group over the set of all ontinuous maps �

n

! X , where

�

n

� R

n+1

is the n-dimensional standard simplex. To desribe the boundary operator on

C

n

(X), we write �

n

= hd

0

; : : : ; d

n

i to emphasize the verties d

0

; : : : ; d

n

of �

n

. Then the

boundary operator is given by

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

(f. [Wa83℄).

We write H

�

(X) for the homology of this omplex and H

�

sing

(X;Z) for the ohomology

of the di�erential omplex C

�

sing

(X;Z) := Hom(C

�

(X); Z), where Z is an abelian group. We

apply Theorem A.1.1 to the omplex C

�

(X) and obtain for eah abelian group Z a short exat

sequene

f0g ! Ext

ab

�

H

n�1

(X); Z

�

! H

n

sing

(X;Z)! Hom

�

H

n

(X); Z

�

! f0g:

If Z is divisible, then we have

H

n

sing

(X;Z)

�

=

Hom

�

H

n

(X); Z

�

:

If n � 2 and X is (n � 1)-onneted, then the Hurewiz Theorem (Remark A.2.1) yields

H

n�1

(X) = f0g , so that the Universal CoeÆient Theorem also shows in this ase that

H

n

sing

(X;Z)

�

=

Hom

�

H

n

(X); Z

�

�

=

Hom

�

�

n

(X); Z

�

for all abelian groups Z .

Theorem A.1.4. (Cartan{Eilenberg) Let E:A

�

��!B

�

��!C be an extension of abelian groups

and Z an abelian group. Then the sequene

f0g !Hom(C;Z)��!Hom(B;Z)��!Hom(A;Z)

E

�

����!Ext

ab

(C;Z)

�

�

��!Ext

ab

(B;Z)

�

�

��!Ext

ab

(A;Z)! f0g

is exat, where �

�

:[f ℄ = [f Æ (���)℄ and E

�

: = [ Æ f

E

℄ , where E is represented by the oyle

f

E

. Moreover, for every abelian group G , we obtain the following exat sequene

f0g !Hom(G;A)��!Hom(G;B)��!Hom(G;C)

E

�

��!Ext

ab

(G;A)

�

�

��!Ext

ab

(G;B)

�

�

��!Ext

ab

(G;C)! f0g;

where �

�

:[f ℄ = [� Æ f ℄ and E

�

: = [f

E

Æ ( � )℄ .

Proof. The proof an be found in [Fu70, Th. 51.3℄.

Theorems I.5 and I.6 are variants of this theorem for entral extensions of non-abelian

groups.

If A is an abelian group, then we write

b

A := Hom(A;T) for its harater group.

Lemma A.1.5. If � is a �nitely generated abelian group, then

Ext

ab

(�;Z)

�

=

tor� and Hom(�;Z)

�

=

�= tor�:

Proof. The Struture Theorem for Finitely Generated Abelian Groups yields �

�

=

F �Z

n

for

some n 2 N and a �nite group F . Therefore the exat sequene

f0g ! Hom(�;Z)! Hom(�;R) !

b

�! Ext

ab

(�;Z)! f0g

(Theorem A.1.4; R is divisible) an be written as

Z

n

,! R

n

!

b

�

�

=

b

F � T

n

!! Ext

ab

(�;Z):

Therefore

Ext

ab

(�;Z)

�

=

b

F

�

=

F

�

=

tor�:

The relation Hom(�;Z)

�

=

Hom(�= tor�;Z)

�

=

�= tor� follows from �= tor�

�

=

Z

n

.
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Remark A.1.6. (f. Cor. 15.14.1 in [BT82℄) If the groups K

n

in the omplex K are �nitely

generated, then Lemma A.1.5 and Theorem A.1.1 ombine for Z = Z to

f0g ! torH

n�1

(K)

�

����!H

n

(K;Z)

�

����!H

n

(K)= torH

n

(K)! f0g:

A.2. Topology of manifolds

Remark A.2.1. (a) The Hurewiz-Theorem says that if n � 2 and X is arwise onneted

with �

i

(X) = f0g for 1 � i < n (X is (n� 1)-onneted), then

�

n

(X)

�

=

H

n

(X)

(f. [Br93, Cor. VII.10.8℄). For n = 1 we have the omplementary result that for any arwise

onneted topologial spae X ,

�

1

(X)=(�

1

(X); �

1

(X))

�

=

H

1

(X):

In both ases we obtain

Hom

�

H

n

(X); Z

�

�

=

Hom

�

�

n

(X); Z

�

for every abelian group Z .

(b) If, in addition, M is a smoothly paraompat manifold (f. [KM97, Th. 34.7℄), then

H

n

dR

(M;R)

�

=

H

n

(M;R)

�

=

Hom

�

H

n

(M);R

�

:

Remark A.2.2. Let M be a di�erentiable manifold (not neessarily �nite-dimensional). Then

the seond part of Theoren A.1.4 yields an exat sequene

f0g !Hom

�

H

n

(M);Z

�

����!Hom

�

H

n

(M);R

�

����!Hom

�

H

n

(M);T

�

����!Ext

ab

(H

n

(M);Z)����!Ext

ab

(H

n

(M);R)����!Ext

ab

(H

n

(M);T)! f0g:

Remark A.1.3 implies that

Hom

�

H

n

(M);R

�

�

=

H

n

(M;R) and Hom

�

H

n

(M);T

�

�

=

H

n

(M;T);

and this leads to the shorter exat sequene

f0g ! Hom

�

H

n

(M);Z

�

! H

n

(M;R) ! H

n

(M;T)! Ext

ab

(H

n

(M);Z)! f0g:

If, in addition, M is ompat, then M an be triangulated (Whitney's Theorem), showing

that the homology groups are �nitely generated. Therefore Lemma A.1.5 yields

Hom

�

H

n

(M);Z

�

�

=

H

n

(M)= torH

n

(M) and Ext

ab

(H

n

(M);Z)

�

=

torH

n

(M):

Lemma A.2.3. If M is an arwise onneted simply onneted spae, then H

1

sing

(M;Z) = f0g

for eah abelian group Z .

Proof. First we note that H

0

(M)

�

=

Z and H

1

(M) = f0g holds for the singular homology

groups by Hurewiz's Theorem (Remark A.2.1), so that the Universal CoeÆient Theorem A.1.1

leads to

H

1

sing

(M;Z)

�

=

Hom(H

1

(M); Z)� Ext

ab

(H

0

(M); Z) = f0g � f0g = f0g;

beause Z is free, so that Ext

ab

(Z; Z) = f0g .
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De�nition A.2.4. We reall the de�nition of the Alexander{Spanier ohomology of a topolog-

ial spae M . Let Z be an (additive) abelian group and A

n

(M;Z) := Z

M

n+1

be the set of all

funtions M

n+1

! Z onsidered as an abelian group with pointwise addition. Then we obtain

a di�erential omplex via

Æf(m

0

; : : : ;m

n+1

) :=

n+1

X

j=0

(�1)

j

f(m

0

; : : : ; m

j

; : : : ;m

n+1

):

Let A

n

0

(M;Z) � A

n

(M;Z) be the subgroup onsisting of all those funtions vanishing on a

neighborhood of the diagonal in M

n+1

. These subgroups form a subomplex, so that we an

form the quotient omplex. The ohomology of this omplex

H

n

A�S

(M;Z) := H

n

�

A

�

(M;Z)=A

�

0

(M;Z)

�

is alled the Alexander{Spanier ohomology of M with oeÆients in Z .

Remark A.2.3. Below we explain that one has a natural homomorphism

H

n

A�S

(M;Z)! H

n

sing

(M;Z)

whih for loally ontratible paraompat Hausdor� spaes M is an isomorphism (f. [Br97,

xIII.2℄ or [Sp66, Cor. 6.9.7℄). Let U be an open overing of M . We say that a singular simplex

�: �

n

! M is U -small if there exists a U 2 U with �(�

n

) � U , and we write �

U

for the

subomplex of the singular omplex of M onsisting of U -small simplies. Now we onsider the

open neighborhood W :=

S

U2U

U

n+1

of the diagonal in M

n+1

. If f :W ! Z represents an

Alexander{Spanier oyle, then we an evaluate f on U -small singular simplies � via

'(f)(�) := f(�(d

0

); : : : ; �(d

n

));

where d

0

; : : : ; d

n

are the verties of the standard simplex �

n

� R

n+1

. One easily veri�es that

'(Æf) = Æ'(f) = '(f) Æ� , showing that for eah oyle f , the image '(f) is a singular oyle

and that if f is a oboundary, then '(f) vanishes on yles. We thus obtain a homomorphism

['℄:H

n

A�S

(M;Z)! H

n

sing

(M;Z)

�

=

H

n

(�

W

; Z); [f ℄ 7! ['(f)℄

whih turns out to be an isomorphism if M is a loally ontratible paraompat spae.

Let M be a smooth manifold and z be an s..l.. spae. For a vetor �eld X 2 V(M)

de�ned in an open neighborhood of the points x

0

; : : : ; x

n

, and a smooth z-valued funtion F on

an open subset of M

n+1

, we write

(�

i

(X):F )(x

0

; : : : ; x

n

) := dF (x

0

; : : : ; x

n

)(0; : : : ; 0; X(x

i

); 0; : : : ; 0); i 2 f0; : : : ; ng;

for the partial derivative of F in the i-th omponent in the diretion of X . We write �:M !

M

n+1

for the diagonal map and (x

0

; : : : ; x

n

) for the elements of M

n+1

. We assoiate to eah

smooth funtion F :W ! z , where W is an open subset of M

n+1

ontaining the diagonal, the

di�erential n-form on M given by

(�:F )(X

1

; : : : ; X

n

)(p) :=

X

�2S

n

"(�) �

�

�

1

(X

�(1)

) � � � �

n

(X

�(n)

):F

�

(p; : : : ; p)

for vetor �elds X

1

; : : : ; X

n

on M de�ned in a neighborhood of p . On the other hand the

presription

ÆF (x

0

; : : : ; x

n+1

) :=

n+1

X

j=0

(�1)

j

F (x

0

; : : : ; bx

j

; : : : ; x

n+1

)

de�nes a smooth funtion on an open neighborhood of the diagonal in M

n+2

. In fat, for

i = 0; : : : ; n+ 1 we write p

j

:M

n+2

! M

n+1

for the projetions obtained by omitting the j -th

omponent. Then

T

n+1

j=0

p

�1

j

(W ) is an open subset of M

n+2

on whih ÆF is de�ned. For small

n we have the formulas

n = 1: �(F )(X) = �

1

(X):F .

n = 2: �(F )(X;Y ) = �

1

(X)�

2

(Y ):F � �

1

(X)�

2

(Y ):F .
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Theorem A.2.6. (van Est-Korthagen) If M is a onneted �nite-dimensional manifold and

 :H

n

A�S

(M; z)! H

n

dR

(M; z)

the anonial isomorphism between Alexander{Spanier and de Rham ohomology, then for eah

smooth funtion f :W ! z , where W �M

n+1

is an open neighborhood of the diagonal, satisfying

Æf = 0 , we have

 ([f ℄) = [�(f)℄;

where [f ℄ 2 H

n

A�S

(M; z) is the Alexander{Spanier lass de�ned by f , and [�(f)℄ is the de Rham

lass of the di�erential form �(f) .

Proof. Composing z-valued di�erential forms and ohains with ontinuous linear funtionals

on z (whih separate the points), it suÆes to prove the assertion for z = R . We verify that �

intertwines the di�erential d with the oboundary operator Æ in the sense that �(ÆF ) = d�(F )

holds for F 2 C

1

(W;R) (see the appendix of [EK64℄). First we observe that for a vetor �eld

Y on M we have

Y:

��

�

1

(X

1

) � � � �

n

(X

n

):f

�

Æ�

�

=

�

�

0

(Y )�

1

(X

1

) � � � �

n

(X

n

):f

�

Æ�

+

n

X

i=1

�

�

1

(X

1

) � � � �

i

(Y )�

i

(X

i

) � � � �

n

(X

n

):f

�

Æ�:(A2:1)

Now let

f

i

(x

0

; : : : ; x

n+1

) := f(x

0

; : : : ; bx

i

; : : : ; x

n+1

)

and write �

n

for the diagonal map M !M

n+1

. Then

(A2:2) f

i

Æ�

n+1

= f Æ�

n

and Æ:f =

P

n+1

i=0

(�1)

i

f

i

. Sine the funtion f

i

is independent of x

i

, we obtain

(A2:3) �

1

(X

1

) � � � �

n+1

(X

n+1

):f

i

= 0; i � 1:

Therefore

�

1

(X

1

) � � � �

n+1

(X

n+1

):(Æf) = �

1

(X

1

) � � � �

n+1

(X

n+1

):f

0

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):f

�

0

:

In view of (A2.2) and (A2.1), this leads to

�

�

1

(X

1

) � � ��

n+1

(X

n+1

):(Æf)

�

Æ�

n+1

=

�

�

0

(X

1

) � � � �

n

(X

n+1

):f

�

Æ�

n

= X

1

:

��

�

1

(X

2

) � � � �

n

(X

n+1

):f

�

Æ�

n

�

n

X

i=1

�

�

1

(X

2

) � � � �

i

(X

1

)�

i

(X

i+1

) � � � �

n

(X

n+1

):f

�

Æ�

n

:

From this formula one easily derives that �(Æf) = d�(f).

Let A

n

1

(U;R) := C

1

(U

n+1

;R) denote the spae of smooth Alexander{Spanier ohains on

an open subset U �M and A

n

(M;R) the orresponding sheaf of germs of smooth Alexander{

Spanier ohains on M . Then the di�erential Æ:A

n

1

(U;R) ! A

n+1

1

(U;R) (De�nition A.2.4)

yields a torsionfree �ne resolution

0! R! A

0

(M;R)

Æ

����!A

1

(M;R)

Æ

����!A

2

(M;R)

Æ

����! : : :

of the onstant sheaf R = M � R . This follows with the same argument as for the standard

Alexander{Spanier ohomology beause M is smoothly paraompat and all operations preserve

smoothness (f. [Wa83, 5.26℄).

Likewise the de Rham omplex leads to a torsionfree �ne resolution

0! R! E

0

(M;R)

d

����!E

1

(M;R)

d

����!E

2

(M;R)

d

����! : : : ;

where E

n

(M;R) is the sheaf of germs of smooth n-forms on M . Sine the map � above

intertwines the di�erentials of these resolutions, we obtain a homomorphism of resolutions:

0 ! R ! A

0

(M;R)

Æ

����! A

1

(M;R)

Æ

����! A

2

(M;R)

Æ

����! : : :

?

?

y

=

?

?

y

�

?

?

y

�

?

?

y

�

0 ! R ! E

0

(M;R)

d

����! E

1

(M;R)

d

����! E

2

(M;R)

d

����! : : : ;

whih in turn indues an isomorphism in ohomology ([Wa83, Th. 5.25℄).
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Remark A.2.7. (a) Let M be a manifold whih might be in�nite-dimensional and even not

smoothly paraompat, and z an s..l.. spae. If W � V are open neighborhoods of the diagonal

in M

n+1

, then we have a natural restrition map

�

WV

:C

1

(V; z)! C

1

(W; z); f 7! f j

W

:

Let C

n

s

(M; z) = C

1

(M

n+1

; z)

�

denote the diret limit of these spaes. We all its elements

the germs of smooth funtion on the diagonal in M

n+1

. The Alexander-Spanier oboundary

operator yields a oboundary operator

Æ:C

n

s

(M; z)! C

n+1

s

(M; z);

and we have also seen above that we have a natural map

� :C

n

s

(M; z)! 


n

(M; z); [f ℄ 7! �([f ℄)

satisfying

�(Æ[f ℄) = d�([f ℄):

Therefore eah element of

Z

n

s

(M; z) := f[f ℄ 2 C

n

s

(M; z): Æ[f ℄ = 0g

de�nes a losed z-valued n-form �(f) on M .

(b) Suppose, in addition, that M = G is a Lie group. Then eah open 1-neighborhood V � G

de�nes an open G-invariant neighborhood

W := f(x

0

; : : : ; x

n

) 2 G

n+1

:x

�1

i

x

j

2 V for 0 � i < j � ng:

To eah funtion f 2 C

1

(V

n

; z) we now assoiate a smooth funtion F :W ! z by

F (x

0

; : : : ; x

n

) := f(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

);

and this assignment intertwines the Alexander{Spanier oboundary operator on C

1

(W; z) with

the oboundary operator given by

Æf(x

1

; : : : ; x

n+1

)

= f(x

2

; : : : ; x

n+1

) +

n

X

i=1

(�1)

i

f(x

1

; : : : ; x

i

x

i+1

; : : : ; x

n

) + (�1)

n+1

f(x

1

; : : : ; x

n

);

where we write the multipliation in Z additively.

Therefore eah smooth oyle f 2 C

1

(V

n

; z) de�nes a losed z-valued n-form on G via

�([F ℄) . In addition, the G-invariane of the funtion F on W and the G-equivariane of �

implies that the n-form �(F ) is left invariant.

A.3. Loal topologial group onstrutions

In this appendix we explain the results of van Est and Korthagen leading to the proof of Theorem

IV.7. Most of the material is ontained in [Est62℄.

De�nition A.3.1. Let L be a set, D � L� L a subset, and m:D ! L; (x; y) 7! xy a map.

We say that the produt xy is de�ned if (x; y) 2 D . We all L , endowed with this struture, a

loal group if the following onditions are satis�ed:

(1) Suppose that xy and yz are de�ned. If (xy)z or x(yz) is de�ned, then the other produt

is also de�ned and both are equal.

(2) There exists an element 1 2 L suh that all produts x1 and 1x are de�ned with x1 =

1x = x for all x 2 L .

(3) For eah x 2 L there exists a unique element x

�1

2 L suh that xx

�1

and x

�1

x are de�ned

with xx

�1

= x

�1

x = 1 .

(4) If xy is de�ned, then y

�1

x

�1

is de�ned.

A (strong) homomorphism of loal groups is a map ':L ! L

0

for whih '(x)'(y) is

de�ned if and only if xy is de�ned, and in this ase we have '(xy) = '(x)'(y). Its kernel is

ker' := '

�1

(1). Then all produts in ker' are de�ned, showing that ker' is a group.
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Example A.3.2. If G is a group and U � G a symmetri subset ontaining the identity

element 1 , then U is a loal group with

D := f(x; y) 2 U � U :xy 2 Ug:

In this setion we will disuss the following problem. Let G and Z be topologial groups,

where Z is abelian. Let U � G be a symmetri 1-neighborhood and f :U � U ! Z a funtion

satisfying

f(x;1) = f(1; x) = 1; f(x; y)f(xy; z) = f(x; yz)f(y; z) for x; y; z; xy; yz 2 U:

We all f a loal Z -valued 2-oyle on U . The oyle ondition for z = x and y = x

�1

yields

f(x; x

�1

) = f(x

�1

; x); x 2 U:

The set L := U � Z beomes a loal group with respet to

D := f

�

(x; z); (x

0

; z

0

)

�

:xx

0

2 Ug and (x; z)(x

0

; z

0

) :=

�

xx

0

; zz

0

f(x; x

0

)

�

:

The inversion in L is given by

(x; z)

�1

:= (x

�1

; z

�1

f(x; x

�1

)

�1

) = (x

�1

; z

�1

f(x

�1

; x)

�1

):

The projetion map q

L

:L! U; (x; z) 7! x is a strong homomorphism of loal groups.

Now the natural question is whether there exists a entral extension

b

G! G extending the

loal entral extension L! U . This is equivalent to the existene of an extension of the oyle

f :U � U ! Z to a Z -valued oyle on G�G (f. [Est62℄). To address this question, one has

to translate this group ohomologial problem into one in singular ohomology.

De�nition A.3.3. Let

V := fV � G: 1 2 V

0

; V = V

�1

g

be the olletion of all symmetri 1-neighborhoods in G .

(a) We write �

n

= hd

0

; : : : ; d

n

i � R

n+1

for the standard n-simplex with the verties d

0

; : : : ; d

n

.

Then a ontinuous map �: �

n

! G is alled a V -simplex if

�(x)�(y)

�1

2 V for all x; y 2 �

n

:

We write �

G

for the singular omplex of G , i.e., the hain group C

n

(�

G

) is the free abelian

group on the set of all G-simplies. The orresponding boundary operator is given by

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

:

For eah V 2 V we then have a subomplex �

V

� �

G

whose elements are alled V -hains. For

W � V in V the inlusion map �

W

,! �

V

indues a homomorphism

�

WV

:H

�

(�

V

; Z)! H

�

(�

W

; Z);

so that we obtain a direted system of groups. Using baryentri subdivison, one obtains

isomorphisms

H

n

sing

(G;Z) = H

n

(�

G

; Z)

�

=

indlim

V 2V

H

n

(�

V

; Z)

(f. [Est62, p.415℄).

(b) Let V 2 V . A V -loal n-tuple is an element (x

1

; : : : ; x

n

) 2 V

n

with

x

p+1

� � �x

q�1

x

q

2 V for 0 � p � q � n:
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The spae C

n

(V ) of V -loal n-hains is the free group over the set of V -loal n-tuples. On this

spae we have a boundary operator given for n � 1 by

�(x

1

; : : : ; x

n

) = (x

2

; : : : ; x

n

)+

n�1

X

i=1

(�1)

i

(x

1

; : : : ; x

i�1

; x

i

x

i+1

; x

i+2

; : : : ; x

n

)+(�1)

n

(x

1

; : : : ; x

n�1

):

All summands on the right hand side are V -loal (n � 1)-tuples. On the spae C

n

(V; Z) :=

Hom(C

n

(V ); Z) of Z -valued V -loal n-ohains the orresponding oboundary operator is given

by

Æf(x

1

; : : : ; x

n+1

) = f(�(x

1

; : : : ; x

n+1

))

= f(x

2

; : : : ; x

n+1

) +

n

X

i=1

(�1)

i

f(x

1

; : : : ; x

i

x

i+1

; : : : ; x

n

) + (�1)

n+1

f(x

1

; : : : ; x

n

);

where we write the multipliation in Z additively. For low degrees the oboundary operator is

given by

n = 0: Æf(x) = f � f = 0.

n = 1: Æf(x; y) = f(y)� f(xy) + f(x).

n = 2: Æf(x; y; z) = f(y; z)� f(xy; z) + f(x; yz)� f(x; y).

This means that the 1-oyles are the loal homomorphisms V ! Z and that the two 2-oyles

orrespond to loal entral extensions of V by Z . It is readily veri�ed that Æ

2

= 0 ([Est62℄).

We write H

i

(V; Z) for the orresponding ohomology groups.

() The ohomology groups de�ned above rely heavily on the group struture of G . To establish a

link with the topologial struture of G , one relates them to the Alexander{Spanier ohomology

of G as follows.

An n-dimensional V -simplex on G is an element (x

0

; : : : ; x

n

) 2 G

n+1

with

x

�1

i

x

j

2 V for 0 � i < j � n:

The orresponding spae of n-dimensional V -hains is denoted C

n

(�

V

). On this spae we have

a boundary operator given for n � 1 by

�(x

0

; : : : ; x

n

) =

n

X

i=0

(�1)

i

(x

0

; : : : ; bx

i

; : : : ; x

n

):

All summands on the right hand side are (n � 1)-dimensional V -simplies. On the spae

C

n

(�

V

; Z) := Hom(C

n

(�

V

); Z) of Z -valued V -ohains the orresponding oboundary operator

is given by

Æf(x

0

; : : : ; x

n+1

) = f(�(x

0

; : : : ; x

n+1

)) =

n+1

X

i=0

(�1)

i

f(x

0

; : : : ; bx

i

; : : : ; x

n+1

):

For low degrees the oboundary operator is given by

n = 0: Æf(x; y) = f(y)� f(x).

n = 1: Æf(x; y; z) = f(y; z)� f(x; z) + f(x; y).

n = 2: Æf(x; y; z; a) = f(y; z; a)� f(x; z; a) + f(x; y; a)� f(x; y; z).

The ohomology groups with values in Z of the orresponding omplex are denoted H

n

(�

V

; Z).

For W � V in V the inlusion map �

W

,! �

V

indues a homomorphism

�

WV

:H

�

(�

V

; Z)! H

�

(�

W

; Z);

so that we obtain a direted system of groups. For n 2 N

0

we de�ne the Vietoris ohomology

groups

H

n

(�

V

; Z) := indlim

V 2V

H

n

(�

V

; Z):
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Sine the set of n-dimensional V -simplies is a neighborhood of the diagonal in G

n+1

, eah

oyle f 2 Z

n

(�

V

; Z) de�nes anonially an Alexander{Spanier oyle beause the oboundary

operators are given by the same formula (see De�nition A.2.4). Therefore we obtain a natural

map

H

n

(�

V

; Z)! H

n

A�S

(G;Z):

The group G ats on the spae of n-dimensional V -simplies by

g:(x

0

; : : : ; x

n

) := (g:x

0

; : : : ; g:x

n

):

We write [x

0

; : : : ; x

n

℄ for the G-orbit of (x

0

; : : : ; x

n

). The ohomology of the subomplex of

G-invariant ohains is denoted H

n

eq

(�

V

; Z) and alled the equivariant Vietoris ohomology.

(d) For eah n 2 N

0

and V 2 V we put

C

n

(�

G

mod�

V

) := C

n

(�

G

)=C

n

(�

V

):

The orresponding ohain groups

C

n

(�

G

mod�

V

; Z) := ff 2 C

n

(�

G

; Z):C

n

(�

V

) � ker fg � C

n

(�

G

; Z)

onsist of those ohains vanishing on C

n

(�

V

). Then

C

n

(�

G

mod�

V

; Z) :=

[

V 2V

C

n

(�

G

mod�

V

; Z)

is the group of all those ohains f for whih there exists a V 2 V suh that f vanishes on all V -

simplies. The ohomology of this omplex is denoted H

n

(�

G

mod�

V

; Z), and sine ohomology

ommutes with diret limits, we have

H

n

(�

G

mod�

V

; Z) = indlim

V 2V

H

n

(�

G

mod�

V

; Z):

We similarly de�ne C

n

eq

(�

G

mod�

V

; Z) and H

n

eq

(�

G

mod�

V

; Z), and obtain

H

n

eq

(�

G

mod�

V

; Z) = indlim

V 2V

H

n

eq

(�

G

mod�

V

; Z):

Lemma A.3.4. The map �: [(x

0

; : : : ; x

n

)℄ ! (x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

) yields a bijetion from the

set of G-orbits in the set of n-dimensional V -simplies on G onto the set of V -loal n-tuples.

The inverse of this map is given by

�(y

1

; : : : ; y

n

) := [(1; y

1

; y

1

y

2

; : : : ; y

1

� � � y

n

)℄:

The orresponding map �

�

:C

n

(V; Z)! C

n

eq

(�

V

; Z) ommutes with the oboundary operators on

both sides and indues an isomorphism

H

n

(�):H

n

(V; Z)! H

n

eq

(�

V

; Z):

Proof. That � intertwines the boundary operators follows from

��([(x

0

; : : : ; x

n

)℄) = �(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

)

= (x

�1

1

x

2

; : : : ; x

�1

n�1

x

n

)

+

n�1

X

i=1

(�1)

i

(x

�1

0

x

1

; : : : ; x

�1

i�1

x

i

x

�1

i

x

i+1

| {z }

x

�1

i�1

x

i+1

; : : : ; x

�1

n�1

x

n

) + (�1)

n

(x

�1

0

x

1

; : : : ; x

�1

n�2

x

n�1

)

= �([�(x

0

; : : : ; x

n

)℄):

On the other hand

�

�

(f)(x

0

; x

1

; : : : ; x

n

) = f(x

�1

0

x

1

; : : : ; x

�1

n�1

x

n

)

and

(�

�

)

�1

(F )(y

1

; : : : ; y

n

) := F (1; y

1

; : : : ; y

1

� � � y

n

):

Sine �

�

is an isomorphism of hain omplexes, for eah n 2 N

0

the map H

n

(�) is an

isomorphism H

n

(V; Z)! H

n

eq

(�

V

; Z).

The following theorem is the ruial link between group ohomology and singular ohomol-

ogy.



54 freen.tex Otober 5, 2000

Theorem A.3.5. (van Est) Let G be a onneted loally ontratible topologial group. We

write d

0

; : : : ; d

n

for the verties of the standard simplex �

n

� R

n+1

. Then for eah V 2 V we

have a map � 7! '

V

(�) = (�(d

0

); : : : ; �(d

n

)) from singular V -simplies to V -simplies on G

whih extends to a homomorphism '

V

:C

n

(�

V

)! C

n

(�

V

) , induing a homomorphism of hain

omplexes, hene a natural map

H

n

('

V

):H

n

(�

V

; Z)! H

n

(�

V

; Z):

Passing to the limit of the direted systems further leads to a map

H

n

('

V

):H

n

(�

V

; Z)! indlim

V 2V

H

n

(�

V

; Z)

�

=

H

n

(�

G

; Z) = H

n

sing

(G;Z)

whih for eah n 2 N

0

is an isomorphism.

Proof. We write �

n

= hd

0

; : : : ; d

n

i to emphasize the verties. The boundary operator on

C

n

(�

V

) is given by

��

n

= �hd

0

; : : : ; d

n

i =

n

X

i=0

(�1)

i

�hd

0

; : : : ;

b

d

i

; : : : d

n

i

and aordingly

�� =

n

X

i=0

(�1)

i

� j

hd

0

;:::;

b

d

i

;:::d

n

i

:

This formula immediately shows that '

V

intertwines the boundary operators on eah side, hene

yields a homomorphism of hain omplexes. For the remaining assertions we refer to the seond

part of [Est62℄.

Remark A.3.6. Let us assume that G is onneted, loally ontratible and, in addition,

paraompat. Sine the natural homomorphism H

n

(�

V

; Z)! H

n

A�S

(G;Z) (De�nition A.3.3())

omposed with the natural isomorphism H

n

A�S

(G;Z) ! H

n

sing

(G;Z) (Remark A.2.5) leads to

the isomorphism desribed in Theorem A.3.5, it follows that for a loally ontratible topologial

group G we have a hain of isomorphisms

H

n

(�

V

; Z)! H

n

A�S

(G;Z)! H

n

sing

(G;Z):

Lemma A.3.7. We have

H

i

(�

G

; Z)

�

=

�

Z for i = 0

f0g for i > 0.

Proof. We de�ne a homomorphism

h:C

n

(�

G

)! C

n+1

(�

G

); h(x

0

; : : : ; x

n

) := (1; x

0

; : : : ; x

n

):

Then one veri�es that �h+ h� = id, and therefore that the dual operator

h

�

:C

n+1

(�

G

; Z)! C

n

(�

G

; Z)

satis�es Æh

�

+ h

�

Æ = id. This proves that H

i

(�

G

; Z) = f0g for i > 0. For i = 0 we have

H

0

(�

G

; Z) = Z

0

(�

G

; Z)

�

=

f onstant funtionsg

�

=

Z:

Remark A.3.8. For eah �xed V 2 W the short exat sequene

f0g ! C

�

(�

G

mod�

V

)! C

�

(�

G

)! C

�

(�

V

)! f0g

of hain omplexes indues a long exat sequene in ohomology

� � � ! H

n

(�

G

mod�

V

; Z)! H

n

(�

G

; Z)! H

n

(�

V

; Z)! H

n+1

(�

G

mod�

V

; Z)! : : : ;
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so that Lemma A.3.7 leads to

H

n

(�

V

; Z)

�

=

H

n+1

(�

G

mod�

V

; Z); n � 1:

Moreover, the fat that G is generated by eah V 2 V implies that H

0

(�

V

; Z) = Z , so that

H

0

(�

G

mod�

V

; Z) = f0g , and

H

1

(�

G

mod�

V

; Z) ,! H

1

(�

G

; Z) = f0g

yields H

1

(�

G

mod�

V

; Z) = f0g . Passing to the limit with respet to V 2 V , we obtain

H

n

(�

V

; Z)

�

=

H

n+1

(�

G

mod�

V

; Z); n � 1

and

H

0

(�

G

mod�

V

; Z) = H

1

(�

G

mod�

V

; Z) = f0g:

Now we explain the proof of Theorem IV.7:

Theorem IV.7. (van Est{Korthagen) Let G be a topologial group, Z an abelian group,

V � G a symmetri 1-neighborhood, f :V � V ! Z a loal Z -valued 2-oyle, and �(f) 2

H

2

sing

(G;Z) the orresponding singular ohomology lass. If there exists an open symmetri 1-

neighborhood W � V suh that f j

W�W

extends to a Z -valued 2-oyle on G � G , then

�(f) = 0 . The onverse holds if G is loally ontratible, onneted and simply onneted.

Proof. We write [f

Z

℄ 2 H

2

(V; Z) for the ohomology lass de�ned by f . In Lemma A.3.4 we

have explained the isomorphism H

2

(V; Z)

�

=

H

2

eq

(�

V

; Z), and we also have natural maps

H

2

eq

(�

V

; Z)! H

2

(�

V

; Z)! H

2

(�

V

; Z)

obtained diretly from the de�nitions.

We onsider the following ommutative diagram, where the vertial arrows denote the

restrition maps and the horizontal lines are piees of the long exat ohomology sequene

(f. Remark A.3.8):

H

2

eq

(�

G

; Z)

�

����! H

2

eq

(�

V

; Z)

Æ

1

����! H

3

eq

(�

G

mod�

V

; Z) ����! H

3

eq

(�

G

; Z)

?

?

y

?

?

y

�

1

?

?

y

�

2

?

?

y

H

2

(�

G

; Z) ����! H

2

(�

V

; Z)

Æ

2

����! H

3

(�

G

mod�

V

; Z) ����! H

3

(�

G

; Z):

In view of H

2

(�

G

; Z) = H

3

(�

G

; Z) = f0g (Lemma A.3.7), Æ

2

is an isomorphism.

That V ontains an open neighborhood W on whih f

Z

is extendable to G means that the

image [f

Z

℄ of the orresponding ohomology lass in H

2

(�

V

; Z) is ontained in the image of the

restrition map � . In view of the exatness of the upper row in the diagram, this is equivalent

to Æ

1

([f

Z

℄) = 0. We therefore get �

1

([f

Z

℄) = Æ

�1

2

�

2

Æ

1

([f

Z

℄) = 0; so that the image �(f

Z

) of

�

1

([f

Z

℄) in H

2

sing

(G;Z) vanishes.

Suppose, onversely, that �(f

Z

) = 0 and that G is loally ontratible, onneted and

simply onneted. Then the injetivity of the map H

2

(�

V

; Z)! H

2

sing

(G;Z) in Theorem A.3.5

implies that �

1

([f

Z

℄) = 0. Sine G is onneted and loally ontratible, it is arwise onneted.

Therefore Lemma A.2.3 implies that H

1

sing

(G;Z) = f0g . Then Remark 2 after Theorem 10.1 in

[Est62℄ yields an isomorphism

Æ

�1

2

Æ �

2

:H

3

eq

(�

G

mod�

V

; Z)! H

2

(�

V

; Z)

�

=

H

2

sing

(G;Z);

where we identify H

2

(�

V

; Z) and H

2

sing

(G;Z). It follows in partiular that �

2

is an isomorphism.

Now Æ

1

([f

Z

℄) = �

�1

2

Æ

2

�

1

([f

Z

℄) = 0, so that the exatness of the upper row in the diagram proves

the assertion.
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