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Abstrat

In this note we lassify all those algebras over �elds of harateristi di�erent from 2

in whih every vetor subspae is a subalgebra.

Introdution

The author's investigations of algebras in whih every subspae is a subalgebra have originated

in topologial inidene geometry. The study of topologial aÆne translation planes motivates

to onsider topologial vetor spaes admitting a so-alled stable spread, that is, a partition

of the vetor spae into pairwise omplementary subspaes whih is ompat in the respetive

Grassmann topology (f. [2℄). A slight generalisation leads to so-alled stable translation

strutures whih are onstruted from Lie groups admitting a partition into losed subgroups

of half dimension (f. [3℄). So the problem arises to �nd suh Lie groups.

A rough lassi�ation of suh groups is ontained in [5℄. It turns out that in almost all

of the known examples the groups are almost abelian in the sense that the orresponding Lie

algebra arries a vetor spae struture over some skew�eld suh that every vetor subspae

is a subalgebra (f. [4℄). So one is lead to lassify those algebras. For real �nite-dimensional

Lie algebras a lassi�ation is ontained in [1℄, see Theorem II.2.30. In the present note the

respetive lassi�ation problem is solved for arbitrary algebras over �elds of harateristi

6= 2 without any restrition on the dimension and without assuming any additional struture

exept a bilinear multipliation on the underlying vetor spae.

Throughout, the ground �eld of the algebras under onsideration is denoted by K and

supposed to have harateristi 6= 2.

De�nitions and Examples

1 De�nition. We all an algebra A almost abelian if every vetor subspae is a subalgebra,

and we all it abelian if xy = 0 holds for all x; y 2 A. A vetor x 2 A is alled isotropi

if x

2

= 0; otherwise it is alled anisotropi. An algebra is alled sympleti if it onsists

only of isotropi vetors.

2 Examples. (a) Obviously, every abelian algebra is an almost abelian algebra.

(b) Let V be a vetor spae over K. On the vetor spae K�V we de�ne a multipliation by

(a; v)(b; w) := (0; aw � bv):

Endowed with this multipliation K�V beomes an almost abelian algebra whih we denote

by dil(V ). Almost abelian algebras of this type are alled dilatation algebras.

() Again let V be a vetor spae over K and k 2 K. On the vetor spaes K � V and

K �K � V we de�ne multipliations by

(a; v)(b; w) := b(1� k)(a; v) + ak(b; w)

and

(a; b; v)(; d; w) := ((1 � k)� d)(a; b; v) + (ak + b)(; d; w);

respetively. Endowed with these multipliations the onsidered vetor spaes beome almost

abelian algebras whih we denote by fab

1

(V; k) and fab

2

(V; k), respetively.
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Obviously, an algebra is almost abelian if every 2-dimensional vetor subspae is a subalge-

bra. Having this in mind it is easy to see that the aforementioned algebras are almost abelian.

In our examples we have onsidered four types of algebras, namely abelian ones, dilatation

algebras and algebras of type fab

1

(V; k) and fab

2

(V; k). Now we are going to investigate in

whih ases two of these algebras of di�erent type an be isomorphi.

Abelian as well as dilatation algebras are sympleti algebras whereas algebras of type

fab

1

(V; k) and fab

2

(V; k) are not. Moreover, one an say that a dilatation algebra is abelian

if and only if it is 1-dimensional. Now we laim that two algebras fab

1

(V; k) and fab

2

(W; l)

are never isomorphi. This follows from the fat that an algebra of type fab

1

(V; k) ontains

an ideal of odimension 1 (namely f0g � V ) whereas an algebra of type fab

2

(V; k) does not.

(In our ontext an ideal of an algebra A is ment to be a vetor subspae I that satis�es

AI [ IA � I.) The latter statement is obvious if V = f0g. In order to see it in general, we

note that the existene of a 1-odimensional ideal in some algebra fab

2

(V; k) would imply the

existene of a 1-dimensional ideal in any 2-dimensional subalgebra of fab

2

(V; k), ontraditing

the fat that fab

2

(0; k) embeds into fab

2

(V; k).

The Sympleti Case

First, we treat low-dimensional ases. Clearly, we are only interested in non-abelian algebras.

So let A be a 2-dimensional non-abelian sympleti almost abelian algebra and let x; y 2 A

be a basis for the vetor spae A. Then there exist a; b 2 K suh that z := xy = ax + by.

By sympletiity we have xy = �yx and therefore we an assume that b 6= 0 holds. Setting

u := b

�1

x and v := z we obtain uv = v and the assignment u 7! (1; 0) and v 7! (0; 1)

indues an isomorphism of A onto dil(K). Hene, any at most 2-dimensional sympleti

almost abelian algebra is either abelian or isomorphi to dil(K).

3 Lemma. Let A be a sympleti almost abelian algebra. If we have dimA > 2 then A

ontains a 2-dimensional abelian subalgebra.

Proof. Let x; y; z 2 A be linearly independent and suppose that no two of these elements

generate an abelian subalgebra. Aording to the previous onsiderations we an assume that

xy = x. Sine A is almost abelian, there exist a; b 2 K suh that xz = ax+ bz and we obtain

Kx�K(y + z) 3 x(y + z) = (a+ 1)x+ bz:

This implies b = 0 and thus Kx�K(ay � z) is a 2-dimensional abelian subalgebra. 2

4 Proposition. Let A be an almost abelian algebra, B � A an abelian subalgebra, and sup-

pose further that dimB > 1. Then for any x 2 A we have xB � B and multipliation with x

from the left is a homothety on B.

Proof. The assertion is obvious if A = B or if x 2 B. So assume B 6= A and pik

x 2 A n B. Then for any y 2 B n f0g and any z 2 B nKy we obtain

K(x+ z)�Ky 3 (x+ z)y = xy 2 Kx�Ky;

and sine x, y and z are linearly independent this implies xy 2 Ky. Now the assertion follows

by simple linear algebra. 2
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5 Theorem. If A is a sympleti almost abelian algebra, then exatly one of the following

holds:

(i) A is abelian.

(ii) A is isomorphi to some dilatation algebra.

Proof. Aording to our previous onsiderations, the assertion is true if dimA < 3. In

the sequel A is supposed to be non-abelian and of dimension at least 3. We hoose an abelian

subalgebra B of maximal dimension of A and onsider elements x; y 2 A n B. By Lemma

3 we know that the dimension of B is at least 2. Therefore, Proposition 4 applies and we

obtain the existene of a; b 2 K so that xz = az and yz = bz hold for any z 2 B. This yields

(ay� bx)B = f0g and by maximality of B we get ay� bx 2 B. Maximality of B also implies

a 6= 0 and thus we have y 2 Kx + B. So we see that B has odimension 1 and by resaling

we an ahieve a = 1. Now it is obvious that A is isomorphi to dil(B). 2

The General Case

As in the sympleti ase, we �rst onsider low-dimensional ases. If A is a non-sympleti

almost abelian algebra we �nd an element x 2 A satisfying x

2

= x. Thus, if A is 1-dimensional

it is isomorphi to fab

1

(0; k) for any k 2 K. In order to treat the 2-dimensional ase we need

a �rst result.

6 Lemma. Let A be an almost abelian algebra, x; y 2 A linearly independent, and let a; b 2 K

be suh that x

2

= ax, and y

2

= by. Then we have (x+ y)

2

= (a+ b)(x+ y). In partiular, if

B � A is a sympleti subalgebra, and if x is isotropi, then B+Kx is a sympleti subalgebra

of A.

Proof. As A is almost abelian we �nd ; d 2 K so that

(x+ y)

2

= (x+ y) and (x� y)

2

= d(x� y):

Adding these two equations yields

2ax+ 2by = (+ d)x+ (� d)y

and we obtain  = a+ b, beause of the linear independene of x and y. 2

7 Lemma. Let A be an almost abelian algebra and suppose that dimA > 1. Then A ontains

at least one non-zero isotropi vetor.

Proof. Choose x; y 2 A linearly independent and suppose that both x and y are non-

isotropi vetors. By resaling we an ahieve x

2

= x and y

2

= �y. Appliation of Lemma 6

then yields (x+ y)

2

= 0. 2

8 Lemma. Any at most 2-dimensional non-sympleti almost abelian algebra is isomorphi

to either one of the algebras fab

1

(0; k), fab

2

(0; k), or fab

1

(K; k) for some k 2 K.

Proof. We already know that any 1-dimensional non-sympleti almost abelian algebra

is isomorphi to fab

1

(0; k) for any k 2 K, so let A be a 2-dimensional non-sympleti almost

abelian algebra. Then, in view of Lemma 7, we �nd a basis x; y 2 A of the vetor spae A

whih satis�es x

2

= x and y

2

= 0. Applying Lemma 6, we obtain (x+ y)

2

= x+ y, and thus
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yx = y�xy. Sine x and y form a basis for A there exist a; b 2 K be suh that xy = ax+ by,

and by resaling we an ahieve a 2 f�1; 0g. Now we onsider the assignment x 7! (1; 0) and

y 7! (0; 1). For a = 0 this assignment indues an isomorphism of A onto fab

1

(K; b) and for

a = �1 it indues an isomorphism onto fab

2

(0; b). 2

9 Proposition. Every almost abelian algebra of positive dimension ontains a sympleti

subalgebra of odimension 1.

Proof. Let A be an almost abelian algebra. The assertion is trivial if A is sympleti,

so we assume A to be non-sympleti. Let B be a maximal sympleti subalgebra of A.

Suppose that dimA=B > 1. By hoosing a vetor spae omplement of B in A, Lemma 7

yields the existene of some isotropi vetor x 2 A n B. Aording to Lemma 6 this implies

that B+Kx is a sympleti subalgebra of A whih properly ontains B. Sine this ontradits

the maximality of B, we obtain dimA=B = 1, and the assertion is proved. 2

10 Theorem. Let A be an almost abelian algebra. Then one of the following holds:

(i) A is abelian.

(ii) A is isomorphi to some dilatation algebra.

(iii) A is isomorphi to an algebra of type fab

1

(V; k) or fab

2

(V; k).

Proof. The sympleti ase and the non-sympleti ase where dimA < 3 are overed by

Theorem 5 and Lemma 8, respetively. So in the sequel we assume A to be non-sympleti and

of dimension at least 3. Aording to Proposition 9 there exists a 1-odimensional sympleti

subalgebra B of A, and sine A is non-sympleti we �nd some x 2 A n B satisfying x

2

= x.

As in the proof of Lemma 8, we obtain yx = y � xy for eah y 2 B. If B is abelian then we

know by Proposition 4 that there exists k 2 K suh that xy = ky holds for eah y 2 B. In

this ase the assignment x 7! (1; 0) and y 7! (0; y) for eah y 2 B indues an isomorphism of

A onto fab

1

(B; k).

If B is non-abelian, then, by Theorem 5, it is a dilatation algebra and we obtain that

C := span

K

fyz j y; z 2 Bg is an abelian subalgebra of A of odimension 2. Further, we �nd

some y 2 B n C suh that yw = w holds for eah w 2 C. Now for any w 2 C we have

K(x+ y)�Kw 3 (x+ y)w = xw + w 2 Kx�Kw;

and thus xw 2 Kw. The latter ondition implies the existene of some k 2 K satisfying

xw = kw for eah w 2 C. Next we show that xy = �x+ky. In order to see this we note that

K(x+w) �Ky 3 (x+ w)y = xy � w 2 �w +Kx�Ky

implies xy 2 �x+Ky; so there exists l 2 K suh that xy = �x+ ly. Sine we have

Kx�K(y + w) 3 x(y + w) = �x+ ly + kw 2 �x+Ky �Kw

we obtain k = l, and now it is easy to hek that the assignment x 7! (1; 0; 0), y 7! (0; 1; 0)

and w 7! (0; 0; w) for eah w 2 C indues an isomorphism of A onto fab

2

(C; k). 2
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