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Abstra
t

In this note we 
lassify all those algebras over �elds of 
hara
teristi
 di�erent from 2

in whi
h every ve
tor subspa
e is a subalgebra.

Introdu
tion

The author's investigations of algebras in whi
h every subspa
e is a subalgebra have originated

in topologi
al in
iden
e geometry. The study of topologi
al aÆne translation planes motivates

to 
onsider topologi
al ve
tor spa
es admitting a so-
alled stable spread, that is, a partition

of the ve
tor spa
e into pairwise 
omplementary subspa
es whi
h is 
ompa
t in the respe
tive

Grassmann topology (
f. [2℄). A slight generalisation leads to so-
alled stable translation

stru
tures whi
h are 
onstru
ted from Lie groups admitting a partition into 
losed subgroups

of half dimension (
f. [3℄). So the problem arises to �nd su
h Lie groups.

A rough 
lassi�
ation of su
h groups is 
ontained in [5℄. It turns out that in almost all

of the known examples the groups are almost abelian in the sense that the 
orresponding Lie

algebra 
arries a ve
tor spa
e stru
ture over some skew�eld su
h that every ve
tor subspa
e

is a subalgebra (
f. [4℄). So one is lead to 
lassify those algebras. For real �nite-dimensional

Lie algebras a 
lassi�
ation is 
ontained in [1℄, see Theorem II.2.30. In the present note the

respe
tive 
lassi�
ation problem is solved for arbitrary algebras over �elds of 
hara
teristi


6= 2 without any restri
tion on the dimension and without assuming any additional stru
ture

ex
ept a bilinear multipli
ation on the underlying ve
tor spa
e.

Throughout, the ground �eld of the algebras under 
onsideration is denoted by K and

supposed to have 
hara
teristi
 6= 2.

De�nitions and Examples

1 De�nition. We 
all an algebra A almost abelian if every ve
tor subspa
e is a subalgebra,

and we 
all it abelian if xy = 0 holds for all x; y 2 A. A ve
tor x 2 A is 
alled isotropi


if x

2

= 0; otherwise it is 
alled anisotropi
. An algebra is 
alled symple
ti
 if it 
onsists

only of isotropi
 ve
tors.

2 Examples. (a) Obviously, every abelian algebra is an almost abelian algebra.

(b) Let V be a ve
tor spa
e over K. On the ve
tor spa
e K�V we de�ne a multipli
ation by

(a; v)(b; w) := (0; aw � bv):

Endowed with this multipli
ation K�V be
omes an almost abelian algebra whi
h we denote

by dil(V ). Almost abelian algebras of this type are 
alled dilatation algebras.

(
) Again let V be a ve
tor spa
e over K and k 2 K. On the ve
tor spa
es K � V and

K �K � V we de�ne multipli
ations by

(a; v)(b; w) := b(1� k)(a; v) + ak(b; w)

and

(a; b; v)(
; d; w) := (
(1 � k)� d)(a; b; v) + (ak + b)(
; d; w);

respe
tively. Endowed with these multipli
ations the 
onsidered ve
tor spa
es be
ome almost

abelian algebras whi
h we denote by fab

1

(V; k) and fab

2

(V; k), respe
tively.
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Obviously, an algebra is almost abelian if every 2-dimensional ve
tor subspa
e is a subalge-

bra. Having this in mind it is easy to see that the aforementioned algebras are almost abelian.

In our examples we have 
onsidered four types of algebras, namely abelian ones, dilatation

algebras and algebras of type fab

1

(V; k) and fab

2

(V; k). Now we are going to investigate in

whi
h 
ases two of these algebras of di�erent type 
an be isomorphi
.

Abelian as well as dilatation algebras are symple
ti
 algebras whereas algebras of type

fab

1

(V; k) and fab

2

(V; k) are not. Moreover, one 
an say that a dilatation algebra is abelian

if and only if it is 1-dimensional. Now we 
laim that two algebras fab

1

(V; k) and fab

2

(W; l)

are never isomorphi
. This follows from the fa
t that an algebra of type fab

1

(V; k) 
ontains

an ideal of 
odimension 1 (namely f0g � V ) whereas an algebra of type fab

2

(V; k) does not.

(In our 
ontext an ideal of an algebra A is ment to be a ve
tor subspa
e I that satis�es

AI [ IA � I.) The latter statement is obvious if V = f0g. In order to see it in general, we

note that the existen
e of a 1-
odimensional ideal in some algebra fab

2

(V; k) would imply the

existen
e of a 1-dimensional ideal in any 2-dimensional subalgebra of fab

2

(V; k), 
ontradi
ting

the fa
t that fab

2

(0; k) embeds into fab

2

(V; k).

The Symple
ti
 Case

First, we treat low-dimensional 
ases. Clearly, we are only interested in non-abelian algebras.

So let A be a 2-dimensional non-abelian symple
ti
 almost abelian algebra and let x; y 2 A

be a basis for the ve
tor spa
e A. Then there exist a; b 2 K su
h that z := xy = ax + by.

By symple
ti
ity we have xy = �yx and therefore we 
an assume that b 6= 0 holds. Setting

u := b

�1

x and v := z we obtain uv = v and the assignment u 7! (1; 0) and v 7! (0; 1)

indu
es an isomorphism of A onto dil(K). Hen
e, any at most 2-dimensional symple
ti


almost abelian algebra is either abelian or isomorphi
 to dil(K).

3 Lemma. Let A be a symple
ti
 almost abelian algebra. If we have dimA > 2 then A


ontains a 2-dimensional abelian subalgebra.

Proof. Let x; y; z 2 A be linearly independent and suppose that no two of these elements

generate an abelian subalgebra. A

ording to the previous 
onsiderations we 
an assume that

xy = x. Sin
e A is almost abelian, there exist a; b 2 K su
h that xz = ax+ bz and we obtain

Kx�K(y + z) 3 x(y + z) = (a+ 1)x+ bz:

This implies b = 0 and thus Kx�K(ay � z) is a 2-dimensional abelian subalgebra. 2

4 Proposition. Let A be an almost abelian algebra, B � A an abelian subalgebra, and sup-

pose further that dimB > 1. Then for any x 2 A we have xB � B and multipli
ation with x

from the left is a homothety on B.

Proof. The assertion is obvious if A = B or if x 2 B. So assume B 6= A and pi
k

x 2 A n B. Then for any y 2 B n f0g and any z 2 B nKy we obtain

K(x+ z)�Ky 3 (x+ z)y = xy 2 Kx�Ky;

and sin
e x, y and z are linearly independent this implies xy 2 Ky. Now the assertion follows

by simple linear algebra. 2
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5 Theorem. If A is a symple
ti
 almost abelian algebra, then exa
tly one of the following

holds:

(i) A is abelian.

(ii) A is isomorphi
 to some dilatation algebra.

Proof. A

ording to our previous 
onsiderations, the assertion is true if dimA < 3. In

the sequel A is supposed to be non-abelian and of dimension at least 3. We 
hoose an abelian

subalgebra B of maximal dimension of A and 
onsider elements x; y 2 A n B. By Lemma

3 we know that the dimension of B is at least 2. Therefore, Proposition 4 applies and we

obtain the existen
e of a; b 2 K so that xz = az and yz = bz hold for any z 2 B. This yields

(ay� bx)B = f0g and by maximality of B we get ay� bx 2 B. Maximality of B also implies

a 6= 0 and thus we have y 2 Kx + B. So we see that B has 
odimension 1 and by res
aling

we 
an a
hieve a = 1. Now it is obvious that A is isomorphi
 to dil(B). 2

The General Case

As in the symple
ti
 
ase, we �rst 
onsider low-dimensional 
ases. If A is a non-symple
ti


almost abelian algebra we �nd an element x 2 A satisfying x

2

= x. Thus, if A is 1-dimensional

it is isomorphi
 to fab

1

(0; k) for any k 2 K. In order to treat the 2-dimensional 
ase we need

a �rst result.

6 Lemma. Let A be an almost abelian algebra, x; y 2 A linearly independent, and let a; b 2 K

be su
h that x

2

= ax, and y

2

= by. Then we have (x+ y)

2

= (a+ b)(x+ y). In parti
ular, if

B � A is a symple
ti
 subalgebra, and if x is isotropi
, then B+Kx is a symple
ti
 subalgebra

of A.

Proof. As A is almost abelian we �nd 
; d 2 K so that

(x+ y)

2

= 
(x+ y) and (x� y)

2

= d(x� y):

Adding these two equations yields

2ax+ 2by = (
+ d)x+ (
� d)y

and we obtain 
 = a+ b, be
ause of the linear independen
e of x and y. 2

7 Lemma. Let A be an almost abelian algebra and suppose that dimA > 1. Then A 
ontains

at least one non-zero isotropi
 ve
tor.

Proof. Choose x; y 2 A linearly independent and suppose that both x and y are non-

isotropi
 ve
tors. By res
aling we 
an a
hieve x

2

= x and y

2

= �y. Appli
ation of Lemma 6

then yields (x+ y)

2

= 0. 2

8 Lemma. Any at most 2-dimensional non-symple
ti
 almost abelian algebra is isomorphi


to either one of the algebras fab

1

(0; k), fab

2

(0; k), or fab

1

(K; k) for some k 2 K.

Proof. We already know that any 1-dimensional non-symple
ti
 almost abelian algebra

is isomorphi
 to fab

1

(0; k) for any k 2 K, so let A be a 2-dimensional non-symple
ti
 almost

abelian algebra. Then, in view of Lemma 7, we �nd a basis x; y 2 A of the ve
tor spa
e A

whi
h satis�es x

2

= x and y

2

= 0. Applying Lemma 6, we obtain (x+ y)

2

= x+ y, and thus

3



yx = y�xy. Sin
e x and y form a basis for A there exist a; b 2 K be su
h that xy = ax+ by,

and by res
aling we 
an a
hieve a 2 f�1; 0g. Now we 
onsider the assignment x 7! (1; 0) and

y 7! (0; 1). For a = 0 this assignment indu
es an isomorphism of A onto fab

1

(K; b) and for

a = �1 it indu
es an isomorphism onto fab

2

(0; b). 2

9 Proposition. Every almost abelian algebra of positive dimension 
ontains a symple
ti


subalgebra of 
odimension 1.

Proof. Let A be an almost abelian algebra. The assertion is trivial if A is symple
ti
,

so we assume A to be non-symple
ti
. Let B be a maximal symple
ti
 subalgebra of A.

Suppose that dimA=B > 1. By 
hoosing a ve
tor spa
e 
omplement of B in A, Lemma 7

yields the existen
e of some isotropi
 ve
tor x 2 A n B. A

ording to Lemma 6 this implies

that B+Kx is a symple
ti
 subalgebra of A whi
h properly 
ontains B. Sin
e this 
ontradi
ts

the maximality of B, we obtain dimA=B = 1, and the assertion is proved. 2

10 Theorem. Let A be an almost abelian algebra. Then one of the following holds:

(i) A is abelian.

(ii) A is isomorphi
 to some dilatation algebra.

(iii) A is isomorphi
 to an algebra of type fab

1

(V; k) or fab

2

(V; k).

Proof. The symple
ti
 
ase and the non-symple
ti
 
ase where dimA < 3 are 
overed by

Theorem 5 and Lemma 8, respe
tively. So in the sequel we assume A to be non-symple
ti
 and

of dimension at least 3. A

ording to Proposition 9 there exists a 1-
odimensional symple
ti


subalgebra B of A, and sin
e A is non-symple
ti
 we �nd some x 2 A n B satisfying x

2

= x.

As in the proof of Lemma 8, we obtain yx = y � xy for ea
h y 2 B. If B is abelian then we

know by Proposition 4 that there exists k 2 K su
h that xy = ky holds for ea
h y 2 B. In

this 
ase the assignment x 7! (1; 0) and y 7! (0; y) for ea
h y 2 B indu
es an isomorphism of

A onto fab

1

(B; k).

If B is non-abelian, then, by Theorem 5, it is a dilatation algebra and we obtain that

C := span

K

fyz j y; z 2 Bg is an abelian subalgebra of A of 
odimension 2. Further, we �nd

some y 2 B n C su
h that yw = w holds for ea
h w 2 C. Now for any w 2 C we have

K(x+ y)�Kw 3 (x+ y)w = xw + w 2 Kx�Kw;

and thus xw 2 Kw. The latter 
ondition implies the existen
e of some k 2 K satisfying

xw = kw for ea
h w 2 C. Next we show that xy = �x+ky. In order to see this we note that

K(x+w) �Ky 3 (x+ w)y = xy � w 2 �w +Kx�Ky

implies xy 2 �x+Ky; so there exists l 2 K su
h that xy = �x+ ly. Sin
e we have

Kx�K(y + w) 3 x(y + w) = �x+ ly + kw 2 �x+Ky �Kw

we obtain k = l, and now it is easy to 
he
k that the assignment x 7! (1; 0; 0), y 7! (0; 1; 0)

and w 7! (0; 0; w) for ea
h w 2 C indu
es an isomorphism of A onto fab

2

(C; k). 2
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