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Abstract

In this note we classify all those algebras over fields of characteristic different from 2
in which every vector subspace is a subalgebra.

Introduction

The author’s investigations of algebras in which every subspace is a subalgebra have originated
in topological incidence geometry. The study of topological affine translation planes motivates
to consider topological vector spaces admitting a so-called stable spread, that is, a partition
of the vector space into pairwise complementary subspaces which is compact in the respective
Grassmann topology (cf. [2]). A slight generalisation leads to so-called stable translation
structures which are constructed from Lie groups admitting a partition into closed subgroups
of half dimension (cf. [3]). So the problem arises to find such Lie groups.

A rough classification of such groups is contained in [5]. It turns out that in almost all
of the known examples the groups are almost abelian in the sense that the corresponding Lie
algebra carries a vector space structure over some skewfield such that every vector subspace
is a subalgebra (cf. [4]). So one is lead to classify those algebras. For real finite-dimensional
Lie algebras a classification is contained in [1], see Theorem I1.2.30. In the present note the
respective classification problem is solved for arbitrary algebras over fields of characteristic
# 2 without any restriction on the dimension and without assuming any additional structure
except a bilinear multiplication on the underlying vector space.

Throughout, the ground field of the algebras under consideration is denoted by K and
supposed to have characteristic # 2.

Definitions and Examples

1 Definition. We call an algebra A almost abelian if every vector subspace is a subalgebra,
and we call it abelian if zy = 0 holds for all z,y € A. A vector z € A is called isotropic
if 2 = 0; otherwise it is called anisotropic. An algebra is called symplectic if it consists
only of isotropic vectors.

2 Examples. (a) Obviously, every abelian algebra is an almost abelian algebra.
(b) Let V be a vector space over K. On the vector space K x V we define a multiplication by
(a,v)(b,w) := (0, aw — bv).

Endowed with this multiplication K x V becomes an almost abelian algebra which we denote
by dil(V'). Almost abelian algebras of this type are called dilatation algebras.

(c) Again let V' be a vector space over K and k € K. On the vector spaces K x V and
K x K xV we define multiplications by

(a,v)(b,w) :=b(1 — k)(a,v) + ak(b, w)
and
(a,b,v)(c,d,w) := (¢(1 — k) —d)(a,b,v) + (ak + b)(c,d, w),

respectively. Endowed with these multiplications the considered vector spaces become almost
abelian algebras which we denote by fabi(V, k) and fabs(V, k), respectively.



Obviously, an algebra is almost abelian if every 2-dimensional vector subspace is a subalge-
bra. Having this in mind it is easy to see that the aforementioned algebras are almost abelian.
In our examples we have considered four types of algebras, namely abelian ones, dilatation
algebras and algebras of type faby(V, k) and faby(V, k). Now we are going to investigate in
which cases two of these algebras of different type can be isomorphic.

Abelian as well as dilatation algebras are symplectic algebras whereas algebras of type
faby (V, k) and faby(V, k) are not. Moreover, one can say that a dilatation algebra is abelian
if and only if it is 1-dimensional. Now we claim that two algebras fab;(V, k) and faby(W,1)
are never isomorphic. This follows from the fact that an algebra of type faby (V) k) contains
an ideal of codimension 1 (namely {0} x V') whereas an algebra of type fabs(V, k) does not.
(In our context an ideal of an algebra A is ment to be a vector subspace I that satisfies
AI' UIA C I.) The latter statement is obvious if V = {0}. In order to see it in general, we
note that the existence of a 1-codimensional ideal in some algebra faby(V, k) would imply the
existence of a 1-dimensional ideal in any 2-dimensional subalgebra of fabs(V, k), contradicting
the fact that fabs(0, k) embeds into fabs(V, k).

The Symplectic Case

First, we treat low-dimensional cases. Clearly, we are only interested in non-abelian algebras.
So let A be a 2-dimensional non-abelian symplectic almost abelian algebra and let z,y € A
be a basis for the vector space A. Then there exist a,b € K such that z := xy = azx + by.
By symplecticity we have zy = —yz and therefore we can assume that b # 0 holds. Setting
u = b 'z and v := z we obtain uv = v and the assignment u +— (1,0) and v — (0,1)
induces an isomorphism of A onto dil(K). Hence, any at most 2-dimensional symplectic
almost abelian algebra is either abelian or isomorphic to dil(K).

3 Lemma. Let A be a symplectic almost abelian algebra. If we have dim A > 2 then A
contains a 2-dimensional abelian subalgebra.

PROOF. Let x,y,z € A be linearly independent and suppose that no two of these elements
generate an abelian subalgebra. According to the previous considerations we can assume that
zy = x. Since A is almost abelian, there exist a,b € K such that z = ax + bz and we obtain

Ke®dK(y+z)2z(ly+2) =(a+ 1)z + bz.
This implies b = 0 and thus Kz & K(ay — z) is a 2-dimensional abelian subalgebra. O

4 Proposition. Let A be an almost abelian algebra, B C A an abelian subalgebra, and sup-
pose further that dim B > 1. Then for any © € A we have xB C B and multiplication with
from the left is a homothety on B.

PROOF. The assertion is obvious if A = B or if x € B. So assume B # A and pick
z € A\ B. Then for any y € B\ {0} and any z € B\ Ky we obtain

Kz+2z)®Ky> (zr+2)y=zy € Kz ® Ky,

and since x, y and z are linearly independent this implies zy € Ky. Now the assertion follows
by simple linear algebra. O



5 Theorem. If A is a symplectic almost abelian algebra, then exactly one of the following
holds:

(i) A is abelian.

(ii) A is isomorphic to some dilatation algebra.

PROOF. According to our previous considerations, the assertion is true if dim A < 3. In
the sequel A is supposed to be non-abelian and of dimension at least 3. We choose an abelian
subalgebra B of maximal dimension of A and consider elements z,y € A\ B. By Lemma
3 we know that the dimension of B is at least 2. Therefore, Proposition 4 applies and we
obtain the existence of a,b € K so that zz = az and yz = bz hold for any z € B. This yields
(ay — bz)B = {0} and by maximality of B we get ay — bx € B. Maximality of B also implies
a # 0 and thus we have y € Kx + B. So we see that B has codimension 1 and by rescaling
we can achieve @ = 1. Now it is obvious that A is isomorphic to dil(B). O

The General Case

As in the symplectic case, we first consider low-dimensional cases. If A is a non-symplectic
almost abelian algebra we find an element = € A satisfying 2> = x. Thus, if A is 1-dimensional
it is isomorphic to fab; (0, k) for any k£ € K. In order to treat the 2-dimensional case we need
a first result.

6 Lemma. Let A be an almost abelian algebra, x,y € A linearly independent, and let a,b € K
be such that x? = ax, and y* = by. Then we have (z +y)? = (a + b)(z +y). In particular, if
B C A is a symplectic subalgebra, and if x is isotropic, then B+ Kz is a symplectic subalgebra
of A.

PROOF. As A is almost abelian we find ¢,d € K so that
(+y’=clz+y) and (z-y)*=dz-y).
Adding these two equations yields
2az +2by = (c+d)z + (c — d)y
and we obtain ¢ = a + b, because of the linear independence of x and y. O

7 Lemma. Let A be an almost abelian algebra and suppose that dim A > 1. Then A contains
at least one non-zero isotropic vector.

PrOOF. Choose z,y € A linearly independent and suppose that both £ and y are non-
isotropic vectors. By rescaling we can achieve 22 = 2 and 2 = —y. Application of Lemma 6
then yields (z + y)? = 0. O

8 Lemma. Any at most 2-dimensional non-symplectic almost abelian algebra is isomorphic
to either one of the algebras fab1(0, k), fabo(0, k), or faby (K, k) for some k € K.

Proor. We already know that any 1-dimensional non-symplectic almost abelian algebra
is isomorphic to fab; (0, k) for any k € K, so let A be a 2-dimensional non-symplectic almost
abelian algebra. Then, in view of Lemma 7, we find a basis z,y € A of the vector space A
which satisfies 22 = x and y? = 0. Applying Lemma 6, we obtain (z + y)? = = + v, and thus



yx =y — xy. Since z and y form a basis for A there exist a,b € K be such that xy = az + by,
and by rescaling we can achieve ¢ € {—1,0}. Now we consider the assignment x — (1,0) and
y — (0,1). For a = 0 this assignment induces an isomorphism of A onto faby(K,b) and for
a = —1 it induces an isomorphism onto faby (0, b). O

9 Proposition. Every almost abelian algebra of positive dimension contains a symplectic
subalgebra of codimension 1.

PROOF. Let A be an almost abelian algebra. The assertion is trivial if A is symplectic,
so we assume A to be non-symplectic. Let B be a maximal symplectic subalgebra of A.
Suppose that dim A/B > 1. By choosing a vector space complement of B in A, Lemma 7
yields the existence of some isotropic vector z € A\ B. According to Lemma 6 this implies
that B+ Kz is a symplectic subalgebra of A which properly contains B. Since this contradicts
the maximality of B, we obtain dim A/B = 1, and the assertion is proved. O

10 Theorem. Let A be an almost abelian algebra. Then one of the following holds:
(i) A is abelian.
(ii) A is isomorphic to some dilatation algebra.

(iii) A is isomorphic to an algebra of type faby(V, k) or faby(V, k).

PROOF. The symplectic case and the non-symplectic case where dim A < 3 are covered by
Theorem 5 and Lemma, 8, respectively. So in the sequel we assume A to be non-symplectic and
of dimension at least 3. According to Proposition 9 there exists a 1-codimensional symplectic
subalgebra B of A, and since A is non-symplectic we find some x € A\ B satisfying z? = .
As in the proof of Lemma 8, we obtain yz = y — xy for each y € B. If B is abelian then we
know by Proposition 4 that there exists k € K such that zy = ky holds for each y € B. In
this case the assignment z — (1,0) and y — (0,y) for each y € B induces an isomorphism of
A onto faby (B, k).

If B is non-abelian, then, by Theorem 5, it is a dilatation algebra and we obtain that
C = spang{yz|y,z € B} is an abelian subalgebra of A of codimension 2. Further, we find
some y € B\ C such that yw = w holds for each w € C. Now for any w € C' we have

Kz+y)yoKw> (x+yw=cw+we Kz ® Kuw,

and thus zw € Kw. The latter condition implies the existence of some k € K satisfying
zw = kw for each w € C'. Next we show that vy = —z + ky. In order to see this we note that

Krx+w)@eKys(z+w)y=2y—we —w+ Kz Ky
implies zy € —x + Ky; so there exists [ € K such that xy = —x + ly. Since we have
KedKly+w)dz(ly+w)=—-z+ly+kwe -+ Kyd Kw

we obtain k = [, and now it is easy to check that the assignment z — (1,0,0), y — (0,1,0)
and w — (0,0, w) for each w € C induces an isomorphism of A onto faby(C, k). O
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