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Abstrat

Let l be a Lie algebra with a root deomposition and with

semisimple ommutator algebra. We assume that l has a 3 -

grading ompatible with the root deomposition. In this note we

analyze the struture of the 2 -graded weight modules of a 3 -

graded Lie algebra l . The lassi�ation results for suh modules

play a key role in the haraterization of the loally �nite split

Lie algebras with faithful unitary highest weight modules beause

they arise in the desription of suh Lie algebras as semidiret

sums of almost redutive Lie algebras with generalized Heisenberg

algebras.

Introdution

The haraterization of the loally �nite split Lie algebras with faithful unitary

highest weight modules in [Ne00b℄ shows that these Lie algebras are semidiret

sums g = uo l , where l is almost redutive, i.e., [l; l℄ is semisimple (a diret sum of

simple ideals), and u is a generalized Heisenberg algebra, i.e., a two step nilpotent

Lie algebra. Sine the struture of both piees u and l is quite well understood,

the main point in understanding the struture of g is to understand the ation of

l on u .
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The Lie algebra l has a natural 3-grading l = l

�1

� l

0

� l

1

, and we have

u = V � z(g), where V = V

+

�V

�

is an l -module whih is 2-graded in a way that

is ompatible with the 3-grading of l . The objetive of this note is to desribe the

struture of 2-graded l -modules V .

Sine the Lie algebra g is assumed to have a root deomposition g = h �

P

�2�

g

�

with respet to a splitting Cartan subalgebra h , the l -module V is an

integrable weight module of l in the sense that it is the sum of the weight spaes

for the Cartan subalgebra h

l

:= h \ l of l . Thus we have to onsider 2-graded

weight modules of 3-graded almost redutive Lie algebras. The key idea to analyze

the struture of the l -module V is �rst to redue matters to the ase where l is

semisimple. Then l = l

a

� l

b

, where l

a

is the ideal generated by l

�1

. Now V turns

out to be a small weight module for the ideal l

a

, whih means that �(��) 2 f�1; 0; 1g

holds for all weights � of V and roots � of l

a

. Setion I ontains basi material

on weight modules, and in Setion II we ompletely desribe the struture of small

weight modules. In partiular we show that small weight modules are semisimple

and that the simple ones are highest weight modules. After redution to the ase

of simple Lie algebras, we desribe in Setion III all those weights � for whih the

orresponding integrable highest weight module L(�) is small (Theorem III.3). In

Setion IV we turn to the desription of 2-graded modules. The possible 3-gradings

of l have been desribed in [NeSt99℄ (see also [Ne90℄), and for simple 3-graded Lie

algebras we lassify the 2-graded simple modules in Theorem IV.11. The outome

of our analysis is that the 2-graded l -module V is a semisimple l

a

-module, and

eah isotypi omponent W � V is isomorphi to L(�)
W

b

, where L(�) is a 2-

graded simple highest weight module of a simple ideal of l

a

, and W

b

is an arbitrary

weight module of l

b

. Thus we have a omplete desription of the l

a

-ation on V ,

but there is essentially no information on the l

b

-ation. We onlude this paper

with some remarks on in�nite tensor produts in Setion V.

In this paper all Lie algebras are Lie algebras over a �eld K of harateristi 0.

I. Weight modules

In this setion we disuss basi properties of weight modules of split Lie algebras

whih are almost redutive.

De�nition I.1. (a) We all an abelian subalgebra h of the Lie algebra g a

splitting Cartan subalgebra if h is maximal abelian and the operators in ad h are

simultaneously diagonalizable. If g ontains a splitting Cartan subalgebra, then it

is alled a split Lie algebra. This means that we have a root deomposition

g = h+

X

�2�

g

�

;
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where g

�

= fz 2 g: (8x 2 h)[x; z℄ = �(x)zg and � := f� 2 h

�

n f0g: g

�

6= f0gg is

the orresponding root system.

(b) A subset �

+

� � is alled a positive system and its elements positive roots if

� = �

+

_

[��

+

and no non-trivial sum of positive roots is zero. This requirement

implies in partiular that � = �� and that eah positive system ontains exatly

one root of eah set f�;��g . We all a subset � � � paraboli if � [ �� = �

and (� + �) \� � � (f. [Ne98, Def. I.6℄ for a disussion of this onept).

() We all a root � 2 � integrable if there exist x

��

2 g

��

suh that the subalgebra

g(x

�

; x

��

) generated by these two elements is three-dimensional simple and adx

��

are loally nilpotent operators on g . We write �

i

for the set of integrable roots

and observe that �

i

= ��

i

follows from the symmetry in the de�nition of �

i

. It

an be shown that for all integrable roots � the root spae g

�

is one-dimensional

and that the subalgebra g(�) := g

�

+ g

��

+ [g

�

; g

��

℄ is isomorphi to sl(2; K ) (f.

[St99a, Prop. I.6℄). The unique element �� 2 [g

�

; g

��

℄ with �(��) = 2 is alled

the oroot orresponding to � . We write

�

� � h for the set of all oroots of

integrable roots. The subgroup W � GL(h

�

) generated by the reetions r

�

given

by r

�

:� = � � �(��)� is alled the Weyl group.

(d) We all a Lie algebra g loally �nite if every �nite subset of g is ontained

in a �nite-dimensional subalgebra. In [Ne00a, Th. VI.3℄, it was shown that if all

roots are integrable, then g is loally �nite, so that [St99a, Th. IV.7, Lemma IV.8℄

show that the ommutator algebra [g; g℄ , whih equals span

�

� +

P

�2�

g

�

in this

ase, is a semisimple Lie algebra, i.e., a diret sum of simple ideals. If g is �nite-

dimensional, then this is equivalent to g being redutive. Therefore we all a Lie

algebra g for whih the ommutator algebra is semisimple almost redutive.

Throughout this paper g = h+

P

�2�

g

�

is a split K -Lie algebra with � = �

i

,

i.e., g is a loally �nite almost redutive split Lie algebra (f. [St99a, Th. III.19℄).

De�nition I.2. (a) For a g -module V and � 2 h

�

we write V

�

:= fv 2 V :

(8X 2 h)X:v = �(X)vg for the weight spae of weight � .

(b) Let V be a g -module and 0 6= v 2 V

�

an h -weight vetor. We say that v is

a primitive element of V (with respet to the positive system �

+

) if g

�

:v = f0g

holds for all � 2 �

+

. A g -module V is alled a highest weight module with highest

weight � (with respet to �

+

) if it is generated by a primitive element of weight � .

Proposition I.3. Let g be split Lie algebra and �

+

a positive system. Then,

for eah � 2 h

�

there exists a unique irreduible highest weight module L(�;�

+

) ,

and eah highest weight module V of highest weight � with respet to �

+

has a

unique maximal submodule M with V=M

�

=

L(�;�

+

) .

Proof. This is proved as Prop. IX.1.13 in [Ne99℄.
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If V is a g -module, then we write �

V

for the orresponding representation

of g on V , and if, in partiular, V = L(�;�

+

) is an irreduible highest weight

module with respet to a positive system �

+

, then we abbreviate �

�

:= �

L(�;�

+

)

.

De�nition I.4. (f. [DiPe99℄) (a) Let g be an almost redutive split Lie algebra.

A g -module V is alled a weight module (with respet to h) if it is the sum of

the h -weight spaes, where h � g is a splitting Cartan subalgebra. We write

P

V

: = f� 2 h

�

:V

�

6= f0gg for the set of h -weights of V .

(b) A weight module V is said to be

(1) small if for eah � 2 P

V

and � 2 � we have �(��) 2 f�1; 0; 1g .

(2) �nite if for eah � 2 P

V

and eah � 2 � the set fn 2 Z:�+ n� 2 P

V

g is

�nite.

(3) integrable if for eah � 2 � and x

�

2 g

�

the operator �

V

(x

�

) on V is loally

nilpotent.

() If V is a weight module and V

�

� V a weight spae, then we identify its

dual spae (V

�

)

�

with the subspae of V

�

onsisting of all those linear funtionals

vanishing on

P

�2P

V

nf�g

V

�

. Now the subspae V

℄

:=

L

�2P

V

(V

�

)

�

� V

�

is

invariant under the natural ation of g on the algebrai dual spae V

�

given by

�

V

�

(x):� := �� Æ �

V

(x). It is alled the dual weight module beause it is a weight

module and the largest with this property in V

�

.

Lemma I.5. Let V be a weight module.

(i) If V is small, then V is �nite.

(ii) If V is �nite, then it is integrable.

(iii) If V is integrable, then P

V

is ontained in the weight group P :=

f� 2 h

�

: (8� 2 �)�(��) 2 Zg .

Proof. (i) and (ii) are trivial onsequenes of the fat that �(��) = 2 and

�

V

(x

�

):V

�

� V

�+�

, whereas (iii) follows from the representation theory of sl(2; K ).

Lemma I.6. If V is an integrable weight module of g and g

0

a �nite-dimensional

h-invariant subalgebra, then V is a loally �nite g

0

-module, i.e., every element

generates a �nite-dimensional submodule.

Proof. Let v

�

2 V

�

be a weight vetor. For eah root � 2 �

0

:= f� 2 �: g

�

�

g

0

g we hoose a non-zero vetor x

�

2 g

�

and thus obtain a vetor spae basis of

[h; g

0

℄ . Let �

0

= f�

1

; : : : ; �

n

g . Then the Poinar�e{Birkho�{Witt Theorem implies

that

W :=

X

m2N

n

0

K �

V

(x

�

1

)

m

1

� � ��

V

(x

�

n

)

m

n

:v

�
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is a g

0

-invariant subspae. Moreover, we see by indution, using the loal nilpotene

of the operators �

V

(x

�

), that there exist 

1

; : : : ; 

n

2 N suh that

W =

X

m�2N

n

0

K �

V

(x

�

1

)

m

1

� � ��

V

(x

�

n

)

m

n

:v

�

;

and hene that W is �nite-dimensional (f. [MoPi95, p.125℄ for a similar argument

for sl(2; K )).

Remark I.7. Applied to the subalgebras g(�) := g

�

+ g

��

+ [g

�

; g

��

℄ , the

preeding lemma implies that eah integrable weight module of g is a loally �nite

module of g(�)

�

=

sl(2; K ). This implies that the set P

V

is invariant under the

orresponding reetion r

�

. Thus, for eah integrable weight module V the set P

V

is invariant under the Weyl group W (f. [Bou90, Ch. 8, no. 7.1, Cor. 2℄). Moreover,

the representation theory of sl(2; K ) shows that for eah � 2 P

V

the set

fn 2 Z:�+ n� 2 P

V

g

is an uninterrupted string of integers.

Lemma I.8. A highest weight module V of highest weight � is integrable if and

only if � is dominant integral, i.e.,

�(��) 2 N

0

for all � 2 �

+

:

Every integrable highest weight module V is simple, i.e., V

�

=

L(�;�

+

) .

Proof. (f. [DiPe99, Th. 5℄) Let v

�

2 V be a primitive element. To see that

V is integrable if and only if �(��) 2 N

0

for all � 2 �

+

, we �rst note that if V

is integrable and � 2 �

+

, then the g(�)-module U(g(�)):v

�

is �nite-dimensional,

so that �(��) 2 N

0

. If, onversely, this ondition is satis�ed, then v

�

is a g(�)-

�nite element (it generates a �nite-dimensional g(�)-submodule), so that the loal

�niteness of the ation of g(�) on g implies that the set of g(�)-�nite elements

in V is a g -submodule of V ontaining v

�

, so that V is a loally �nite g(�)-

module. Therefore the orresponding operators �

V

(x

��

) are loally nilpotent for

x

��

2 g

��

. This proves that V is integrable.

Suppose that V is integrable and let M � V be the maximal proper sub-

module (Proposition I.3). If M 6= f0g , then there exists an h -invariant �nite-

dimensional semisimple subalgebra g

0

� g suh that V

0

:= U(g

0

):v

�

intersets M

non-trivially (f. [St99a, Prop. V.5℄). Now V

0

is an integrable highest weight mod-

ule of g

0

, hene �nite-dimensional and simple (f. [Bou90, Chap. 8, no. 7.2, Th. 1℄).

This ontradits V

0

6= V

0

\M 6= f0g .
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Theorem I.9. (Classi�ation of integrable highest weight modules) For eah

weight � 2 P = f� 2 h

�

: (8� 2 �)�(��) 2 Zg there exists a positive system �

+

suh that � is dominant integral. If

e

�

+

is another positive system for whih � is

dominant integral, then

(1:1) L(�;�

+

)

�

=

L(�;

e

�

+

);

so that we may write L(�) := L(�;�

+

) . Furthermore

L(�)

�

=

L(�) () � 2 W:�:

Proof. These fats follow essentially from the disussion in Setion I of [Ne98℄,

where the unitary highest weight modules of the orresponding omplex Lie algebras

have been lassi�ed in the same manner. For the sake of ompleteness, we inlude

the key arguments.

For � 2 P we onsider the subset �

�

:= f� 2 �:�(��) � 0g and observe that

this is a paraboli system of � (f. [Ne98, Lemma I.18℄) beause paraboli systems

of � and

�

� are in one-to-one orrespondene via the map � 7! �� (f. [Bou90℄). In

view of [Ne98, Cor. I.10℄, the paraboli system �

�

ontains a positive system �

+

,

and now � is �

+

-dominant integral.

The weight set P

L(�;�

+

)

is ontained in � � N

0

[�

+

℄ � � � Z[�℄, where

N

0

[�

+

℄ denotes the set of �nite sums of elements of �

+

and Z[�℄ denotes the

additive subgroup of h

�

generated by �. Now the formula

(1:2) P

L(�;�

+

)

= onv(W:�) \ (�+ Z[�℄);

where we view P as a subset of the real vetor spae R


Z

P , shows that the weight

set P

L(�;�

+

)

does not depend on the positive system. If V is a simple g -module

with

� 2 P

V

� �� N

0

[�

+

℄;

then V

�

=

L(�;�

+

) follows from the fat that eah non-zero element v

�

2 V

�

is

a primitive element with respet to �

+

beause � 62 �N

0

[�

+

℄ for eah � 2 �

+

(this follows from the de�nition of a positive system). Now (1.1) follows from

P

L(�;�

+

)

= P

L(�;

e

�

+

)

.

In the following we write

Ext(C) = fx 2 C: (y; z 2 C; � 2℄0; 1[; x = �y + (1� �)z)) x = y = zg

for the set of extreme points of a onvex set C . If L(�)

�

=

L(�), then the equality

of the weight sets P

L(�)

= P

L(�)

implies that

W:� = Ext(onvW:�) = Ext

�

onvP

L(�)

�

= Ext

�

onvP

L(�)

�

= Ext(onvW:�) =W:�
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(f. [Ne98, Th. I.11℄), so that � 2 W:� . If, onversely, � 2 W:� , then �+ Z[�℄ =

�+Z[�℄, and (1.2) lead to P

L(�)

= P

L(�)

, so that the observation in the preeding

paragraph implies that L(�)

�

=

L(�).

II. Small weight modules

In this setion we disuss the speial lass of small weight modules.

Proposition II.1. If V is a small weight module, then for eah weight � 2 P

V

and 0 6= v

�

2 V

�

the submodule U(g):v

�

is an integrable highest weight module

isomorphi to L(�) .

Proof. Using Theorem I.9, we �nd a positive system �

+

suh that � is dominant

integral with respet to �

+

. Let � 2 �

+

. Then (� + �)(��) � 2 implies that

� + � 62 P

V

, and hene that eah non-zero weight vetor v

�

2 V

�

is a primitive

element for g with respet to �

+

. We onlude that W := U(g):v

�

is an integrable

highest weight module, hene simple by Lemma I.8, and therefore W

�

=

L(�).

Corollary II.2. (a) Eah small weight module V is a semisimple g-module.

(b) Every simple small weight module is an integrable highest weight module.

Proof. (a) In view of Proposition II.1, the module V is a sum of simple

submodules, hene a semisimple module.

(b) This follows diretly from Proposition II.1.

Remark II.3. That simple small weight modules are highest weight modules relies

heavily on the smallness requirement. The weaker ondition �(��) 2 f�2;�1; 0g for

all � 2 P

V

and � 2 � is not suÆient to onlude that a simple weight module V

is a highest weight module.

To see this, we onsider the Lie algebra g := gl(N ; K ) as the union of the

subalgebras g

n

:= gl(2n; K ), n 2 N , and �x the standard positive system �

+

:=

f"

j

� "

k

: j < kg . For eah n 2 N we onsider the dominant integral weight

�

n

:= (1; 1; : : : ; 1

| {z }

n times

;�1;�1; : : : ;�1

| {z }

n times

)

with respet to �

+

n

:= �

n

\�

+

and �

n

:= f� 2 �: g

�

� g

n

g . Then the set P

L(�

n

)

of weights of the highest weight module L(�

n

;�

+

n

) is given by

P

L(�

n

)

=

n

2n

X

j=1

a

j

"

j

: a

j

2 f�1; 0; 1g;

2n

X

j=1

a

j

= 0

o

;
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as follows easily from P

L(�

n

)

= onv(W

n

:�

n

) \ (�

n

+ Z[�

n

℄); where �

n

� h

�

n

denotes the roots of g

n

. In partiular eah weight � 2 P

L(�

n

)

an be written as

� =

X

j2N

1

"

j

�

X

j2N

2

"

j

; where jN

1

j = jN

2

j � n and N

1

\N

2

= �:

We see in partiular that �

n�1

is a weight of P

L(�

n

)

, and that the orresponding

weight spae generates a g

n�1

-submodule of highest weight �

n�1

. Using a �xed

hoie of embeddings

L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

); n 2 N ;

we obtain a simple weight module V := lim

�!

L(�

n

; g

n

) of g . The weight system of

this module is given by

P

V

=

[

n2N

P

L(�

n

)

=

n

m

X

j=1

a

j

"

j

:m 2 N ; a

j

2 f�1; 0; 1g;

m

X

j=1

a

j

= 0

o

:

If � 2 P

V

is an extreme point of onv(P

V

), then there exists an n 2 N with

� =

P

2n

j=1

a

j

"

j

2 P

L(�

n

)

. Then � 2 Ext(onvP

�

n

) = W

n

:�

n

. This means that

jfj: a

j

= 1gj = n . Then � is not extremal in onv(P

�

n+1

), hene not in onv(P

V

).

This ontradition shows that Ext

�

onv(P

V

)

�

= � holds in the real vetor spae

R 


Z

P , and hene that V is not a highest weight module (f. [Ne98, Cor. I.14℄).

Proposition II.4. For an integrable weight module V the following are equiva-

lent:

(1) V is small.

(2) For eah x

�

2 g

�

, � 2 � , we have �

V

(x

�

)

2

= 0 .

If, in addition, V is simple, then these onditions are equivalent to

(3) W ats transitively on P

V

and V is a highest weight module.

Proof. (1) ) (2): Sine hP

V

; ��i � f0; 1;�1g and �(��) = 2, we have

�

V

(x

�

)

2

= 0.

(2) ) (1): Let � 2 P

V

. If j�(��)j > 1, then the subspae

P

n2Z

V

�+n�

ontains

g(�)-submodules of dimension > 2, so that �

V

(x

�

)

2

6= 0. This means that if V is

not small, then (2) is not satis�ed.

(2) ) (3): If V is simple, then V

�

=

L(�) for eah � 2 P

V

(Proposition II.1).

Hene L(�)

�

=

L(�) for eah � 2 P

V

, so that Theorem I.9 implies that � 2 W:� .

(3) ) (2): We view P

V

as a subset of the real vetor spae R 


Z

P . Then (3)

implies that every weight � 2 P

V

is an extreme point of onv(P

V

). Hene for eah

� 2 P

V

the weight string (� + Z�) \ P

V

is of length � 2, and this implies that

j�(��)j � 1.
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Corollary II.5. If V is a small weight module, then the isotypi submodules

of V are in one-to-one orrespondene with the W -orbits in P

V

. For eah suh

orbit W:� � P

V

the subspae

P

w2W

V

w:�

is an isotypi submodule isomorphi to

L(�)
 V

�

; where V

�

is viewed as a trivial g-module.

Proof. Let � 2 P

V

. Sine eah non-zero weight vetor v 2 V

�

generates a

simple integrable highest weight module W

v

�

=

L(�), and W

�

v

= K v , we see that

we have an inlusion

L(�)
 V

�

�

=

L(�)
Hom

g

(L(�); V ) ,! V; v 
D 7! D(v):

Sine W ats transitively on P

L(�)

(Proposition II.4(3)), we see that the image of

the above inlusion map oinides with the subspae

P

w2W

V

w:�

. The remaining

assertions are lear.

Lemma II.6. Let g = g

1

� g

2

be a diret sum deomposition of g .

(i) If V is a simple g-module whih ontains a simple g

1

-submodule V

1

with

End

g

1

(V

1

) = K 1 , then there exists a simple g

2

-module V

2

suh that V

�

=

V

1


 V

2

.

(ii) If V

1

is a simple g

1

-module with End

g

1

(V

1

) = K1 and V

2

a simple g

2

-module,

then V := V

1


 V

2

is a simple g-module with End

g

(V )

�

=

1
 End

g

2

(V

2

) .

Proof. (i) The subspae V

0

:=

P

D2U(g

2

)

�

V

(D):V

1

is a g -submodule of V , and

eah subspae �

V

(D):V

1

either is zero or a simple g

1

-submodule isomorphi to V

1

.

In view of the simpliity of V , we onlude that V = V

0

and hene that V is a

semisimple isotypi g

1

-module. Therefore there exists a trivial g

1

-module V

2

with

V

�

=

V

1


 V

2

as g

1

-modules. In view of [Ne99, Lemma IX.4.7℄, the assumption

End

g

1

(V

1

) = K1 implies that

End

g

1

(V )

�

=

End

g

1

(V

1


 V

2

) = 1
 End(V

2

):

Hene �

V

(g

2

) � End

g

1

(V ) implies that there exists a homomorphism �

V

2

: g

2

!

End(V

2

) with �

V

(X) = 1
 �

V

2

(X) for X 2 g

2

. This proves that V

�

=

V

1


 V

2

as

g -modules, and the simpliity of V implies that V

2

is a simple g

2

-module.

(ii) Jaobson's Density Theorem ([La74, Th. XVII.3.2℄) implies that for eah �nite

dimensional subspae E � V

1

we have

Hom(E; V

1

) = �

V

1

(U(g

1

)) j

E

:

For eah linearly independent subset fe

1

; : : : ; e

n

g � V

1

we thus obtain elements

D

j

2 U(g

1

) with D

j

:e

k

= Æ

kj

e

j

.

Now let 0 6= z :=

P

n

j=1

x

j


 y

j

2 V

1


 V

2

and assume w.l.o.g. that the

x

j

are linearly independent and y

j

6= 0 for eah j . We have to show that z

generates V

1


 V

2

as a g -module. With Jaobson's Density Theorem we obtain an

element D 2 U(g

1

) with D:x

j

= 0 for j = 2; : : : ; n and D:x

1

= x

1

. Therefore
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the g -submodule of V generated by z ontains the element D:z = x

1


 y

1

. Now

U(g

1

)D:z = U(g

1

):x

1


y

1

= V

1


y

1

and further U(g

2

):(V

1


y

1

) = V

1


U(g

2

):y

1

=

V

1


 V

2

. The seond assertion follows from the argument in the proof of (i).

The following theorem provides ruial information on the rough struture of

weight modules of a diret sum Lie algebra g = g

1

� g

2

whih are small for g

1

.

The essential information is that these modules are tensor produts of modules of

g

1

and g

2

, where the g

1

-module is small and therefore well behaved, whereas there

is no further information available on the g

2

-module.

Theorem II.7. (Fatorization Theorem) Let g = g

1

� g

2

and V a simple g-

module whih is a small weight module for g

1

. Then there exists an integrable

highest weight module L(�) of g

1

and a simple g

2

-module V

2

with V

�

=

L(�)
 V

2

:

Proof. Aording to Corollary II.2, V is a semisimple g

1

-module, hene ontains

a simple submodule V

1

. Now V

1

�

=

L(�) for some � 2 h

�

1

(Proposition II.1), so

that End

g

1

(V

1

) = K 1 . Therefore Lemma II.6 applies.

Remark II.8. Let V be a weight module of the ommutator algebra g

0

:= [g; g℄

with respet to the splitting Cartan subalgebra h

0

:= h \ [g; g℄ = span

�

� and

reall that

�

� separates the points of span� (f. [St99a, Prop. III.7℄). Then we

may identify the group Z[�℄ with a subset of h

�

0

. In this sense, for every weight

� 2 P

V

� h

�

0

the subspae V (�) :=

P

�2Z[�℄

V

�+�

is a submodule, and V is the

diret sum of suh submodules. Therefore we may assume that P

V

� � + Z[�℄.

Now we extend � to an element e� 2 h

�

and de�ne an ation on the weight spae

V

�+�

, � 2 Z[�℄, by x:v := (e�(x)+�(x))v for x 2 h . One diretly veri�es that we

thus obtain a representation of the whole Lie algebra g on V whih has the same

submodules. In this sense all lassi�ation problems for weight modules of g an

diretly be redued to modules of the semisimple ommutator algebra g

0

.

We also observe that if V is a simple weight module for g and � 2 P

V

,

then P

V

� � + Z[�℄ implies that eah g

0

-submodule is adapted to the weight

deomposition, showing that V is a simple g

0

-module.

III. The lassi�ation of simple small modules

In this setion we desribe the lassi�ation of simple small weight modules. Sine

all small weight modules are semisimple (Corollary II.2), this yields a desription

of all small weight modules. First we redue the situation to the ase of simple Lie

algebras.
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Lemma III.1. Let [g; g℄ =

L

j2J

g

j

be the deomposition into simple ideals,

h

j

:= h \ g

j

, � 2 P , and �

j

:= � j

h

j

. Then the integrable highest weight module

L(�) is small if and only if all the integrable highest weight modules L(�

j

) of the

ideals g

j

are small.

Proof. Let v

�

2 L(�) be a primitive element. Sine the g

j

-submodule U(g

j

):v

�

is isomorphi to L(�

j

), all these modules are small if L(�) is small.

If, onversely, all the modules L(�

j

) are small and � 2 �, then there exists

a j 2 J with g

�

� g

j

. Now

L(�) = U

�

M

i6=j

g

i

�

U(g

j

):v

�

implies that P

L(�)

(��) = P

L(�

j

)

(��) � f�1; 0; 1g beause U

�

L

i6=j

g

i

�

ommutes

with �� , hene preserves its eigenspaes. Therefore L(�) is small.

In view of the preeding lemma, it suÆes to lassify the simple small modules

for simple Lie algebras. We will see in Proposition V.2 below how these modules an

be put together to a module of the big Lie algebra g by an in�nite tensor produt

onstrution.

De�nition III.2. A root system of a loally �nite split semisimple Lie algebra is

alled a root system of semisimple type. It is alled irreduible if the orresponding

Lie algebra is simple.

Aording to [NeSt99℄ (see also [Ka73℄, [KaKi75℄), for eah in�nite ardinal

represented by a set J , there exist (up to linear equivalene) exatly four irreduible

root systems of semisimple type A

J

, B

J

, C

J

and D

J

desribed below. These root

systems still make sense for �nite sets J , where we assume that jJ j � 2 for A

J

and

B

J

, jJ j � 3 for C

J

, and jJ j � 4 for D

J

. We also have the exeptional �nite root

systems E

6

, E

7

, E

8

, F

4

and G

2

(f. [Bou90, Ch. 8℄). We all the root systems of

types A{D root systems of lassial type.

Here we realize the root systems of lassial type in the subspae Q

J

� K

J

whih is the dual spae of the Q -vetor spae Q

(J)

with the anonial basis (e

j

)

j2J

.

We write "

j

2 Q

J

for the elements of the orresponding \dual basis" determined

by "

j

(e

k

) = Æ

jk

. Then

A

J

:= f"

j

� "

k

: j; k 2 J; j 6= kg;

B

J

:= f�"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg;

C

J

:= f�2"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg; and

D

J

:= f�"

j

� "

k

: j; k 2 J; j 6= kg:
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Our notation for A

J

is suh that A

f1;:::;ng

�

=

A

n�1

in the �nite-dimensional

notation. For a more detailed disussion of the orresponding in�nite-dimensional

Lie algebras we refer to [NeSt99℄.

In the following we all a weight � 2 P small if L(�) is a small weight module.

For a subset M � J we put "

M

:=

P

j2M

"

j

2 Q

J

�

=

(Q

(J)

)

�

and onsider it as the

linear funtional on Q

(J)

given by "

M

(x) =

P

j2M

x

j

(all these sums are �nite).

We write M



:= J nM for the omplement of M in J .

Theorem III.3. (Classi�ation of small weight modules) In the following we

represent a weight � 2 P � h

�

as a funtion J ! K , i.e., as an element of K

J

.

We assume that � 6= 0 .

(A

J

) A weight � of A

J

is small if and only if it an be represented as � = "

M

for

a subset M � J . Its Weyl group orbit is given by

W:� = f"

N

: jM nN j = jN nM j <1g:

(B

J

) A weight � of B

J

is small if and only if there exists a subset M � J with

� =

1

2

("

M

� "

M



) . Its Weyl group orbit is given by

W:� =

n

1

2

("

N

� "

N



): jM nN j; jN nM j <1

o

:

(C

J

) The small weights of C

J

are �"

j

, j 2 J . They form a single W -orbit.

(D

J

) The small weights for D

J

are the weights �"

j

, j 2 J , whih form a single

W -orbit, and the weights � =

1

2

("

M

� "

M



) whose W -orbits are given by

W:� =

n

1

2

("

N

� "

N



): jM nN j; jN nM j <1; jM nN j � jN nM j 2 2Z

o

:

(E

n

) For E

6

there exist two W -orbits of small weights and for E

7

there is one.

For the other exeptional root systems there is none.

Proof. (A

J

) Suppose that � is small and observe that this implies in partiular

that there exists an m 2 K suh that �(J) � m + Z , and �(J)�m is a bounded

subset of Z . Therefore we may assume that �(J) � m�N

0

. Replaing m by m�n

for a suitable n 2 N

0

, we even may assume that m 2 �(J). Now �(��) 2 f0; 1;�1g

for � = "

j

� "

k

, j 6= k , implies that �(J) � fm;m� 1g , i.e., there exists a subset

M � J with � = m"

M

+ (m� 1)"

M



. Subtrating the onstant funtion m� 1 on

J does not hange the represented weight, so that we obtain � = "

M

. Conversely,

it is lear that "

M

is a small weight. The desription of the W -orbit follows diretly

from the fat that W ats as the group S

(J)

of �nite permutations of the set J .

(B

J

) From �"

j

= 2e

j

we derive that �(J) � f0;�

1

2

g , but sine � is assumed to

be non-zero, the integrality implies that �(J) � f�

1

2

g , i.e., � =

1

2

("

M

� "

M



) for

M := �

�1

(

1

2

). That, onversely, all these weights are small is lear. The desription
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of the W -orbit follows from the fat that W ats as the group f�1g

(J)

o S

(J)

of

�nite signed permutations on K

J

.

(C

J

) From (2"

j

)�= e

j

we derive that �(J) � f0;�1g , and the smallness implies

that j�

�1

(f�1g)j � 1 and f�1g 6� �(J). Hene � = �"

j

for some j 2 J .

The desription of the W -orbit follows from the fat that W ats as the group

f�1g

(J)

o S

(J)

of �nite signed permutations on K

J

.

(D

J

) It is lear that the weights �"

j

, j 2 J , are small. These are the only

small weights for whih �

j

6= 0 holds for only one j 2 J . Next we assume that

�

j

; �

k

6= 0 holds for some j 6= k 2 J . Then we get �(J) � f�

1

2

g and therefore

� =

1

2

("

M

� "

M



) for some subset M � J . The desription of the W -orbit follows

from the fat that W ats as the subgroup of those elements (a; �) 2 f�1g

(J)

oS

(J)

for whih the set fj 2 J : a

j

= �1g has even ardinality.

(E

n

) See [Bou90, Ch. 8, no. 7.3℄.

Remark III.4. For the appliations that we have in mind, we will also need

information on whether for a small highest weight module L(�) the orresponding

operators �

�

(x), x 2 g , are of �nite rank. Sine the Lie algebra g orresponding

to an irreduible root systems is simple and the operators of �nite rank in gl

�

L(�)

�

form a Lie algebra ideal, the following are equivalent:

(1) All operators �

�

(x), x 2 g , are of �nite rank.

(2) There exists a root � 2 � suh that �

�

(��) is of �nite rank, whih means that

the set f� 2 W:�:�(��) 6= 0g is �nite.

Condition (2) an easily be heked for the weights � showing up in Theorem

III.3. Of ourse, we may assume that J is in�nite, beause otherwise all modules

L(�) are �nite-dimensional.

(A

J

) If � is onstant, then L(�)

�

=

L(0)

�

=

K is trivial. If � is not onstant and M

and M



ontain at least two elements, then one easily �nds an �� suh that �

�

(��)

has in�nite rank. If jM j = 1, then we obtain � = "

j

for M = fjg . Therefore

L(�)

�

=

K

(J)

is the idential representation for whih all the operators are of �nite

rank. For jM



j = 1 we obtain the dual weight module whih also has this property

(f. De�nition I.4()).

For general M the funtional � =

P

j2M

"

j

is the highest weight of the

representation of g = sl(J; K ) on the spae �

(M)

(K

(J)

) whih we desribe in

Setion V below. If M is �nite, then this spae is the jM j -th exterior power

�

jMj

(K

(J)

) with the basis elements e

j

1

^ : : : ^ e

j

k

, where k = jM j .

(B

J

) If � is small, then � =

1

2

("

M

� "

M



) and eah W -onjugate of � has this

form. For j 2 J the relation �(�"

j

) 6= 0 for eah � 2 W:� therefore shows that

�

�

(�"

j

) has in�nite rank.

Up to automorphisms of the orresponding Lie algebra g , respetively the

root system (f. [St99b℄), we may assume that � =

1

2

P

j2J

"

j

. This is the highest
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weight of the spin representation of g on the spae �(K

(J)

) :=

L

1

k=0

�

k

(K

(J)

) (see

Set. V in [Ne98℄).

(C

J

) Let J

�

:= J

_

[�J , where �J is a opy of the set J whose elements we denote

by �j , j 2 J . On K

(J

�

)

we onsider the skew-symmetri bilinear form given by


(v; w) =

X

j2J

(v

j

w

�j

� v

�j

w

j

)

and put

sp(J; K ) := fX 2 gl(J

�

; K ): (8v; w 2 K

(J

�

)

) 
(X:v; w) + 
(v;X:w) = 0g:

This Lie algebra is simple split with splitting Cartan subalgebra

h

1

= span

K

fE

jj

� E

�j;�j

: j 2 Jg;

where E

jk

, j; k 2 J , denote the anonial matrix units. The orresponding root

system is of type C

J

, where "

j

(E

kk

�E

�k�k

) = Æ

jk

for j; k 2 J .

In this ase the only small module is the idential representation of sp(J; K )

on K

(J

�

)

whih is a representation by �nite rank operators.

(D

J

) On K

(J

�

)

we onsider the symmetri bilinear form given by

�(v; w) =

X

j2J

(v

j

w

�j

+ v

�j

w

j

)

and put

o(J

�

; K ) := fX 2 gl(J

�

; C ): (8v; w 2 K

(J

�

)

) �(X:v; w) + �(v;X:w) = 0g:

This Lie algebra is simple split with splitting Cartan subalgebra h

1

= span

K

fE

jj

�

E

�j;�j

: j 2 Jg; where E

jk

, j; k 2 J , denote the anonial matrix units. The

orresponding root system is of type D

J

, where "

j

(E

kk

�E

�k�k

) = Æ

jk

for j; k 2 J .

The weights � = �"

j

orrespond to the idential representation of o(J

�

; K )

on K

(J

�

)

whih is a representation by �nite rank operators. Next we assume that

� =

1

2

("

M

� "

M



). Then either M or M



is in�nite, and we assume that M is.

Pik a 6= b 2 M . Then we an exhange every element in M n fa; bg with a �xed

element  2M



and thus obtain in�nitely many weights in W:� whih are non-zero

on the oroot of "

a

+ "

b

. Therefore the operators �

�

(x), x 2 g , are of in�nite rank.

The standard spin representation on �(K

(J)

) deomposes for eah m 2 J as

the diret sum of representations of highest weight

1

2

X

j2J

"

j

and

�

1

2

X

j2J

"

j

�

� "

m

:
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The preeding disussion shows that the only simple small modules V for

whih the operators �

V

(x), x 2 g , are of �nite rank are the idential representation

for A

J

, C

J

and D

J

and the dual of the idential representation for A

J

. For C

J

and D

J

the idential representation is self-dual as a weight representation.

Problems III. Classify the (simple) �nite weight modules of semisimple loally

�nite split Lie algebras. For the ase of ountably dimensional Lie algebras g , this

has been done in [DiPe99℄. Important questions in this ontext are: Are �nite weight

modules always semisimple? Are simple weight modules restrited to semisimple

subalgebras always semisimple modules?

IV. 2-graded weight modules

For the desription of those loally �nite involutive Lie algebras whih admit a

faithful unitary highest weight representation, we have to study the following type

of modules (f. [Ne00b℄). We onsider a 3-graded loally �nite split almost redutive

Lie algebra

g = g

�1

� g

0

� g

1

;

where g

0

ontains a splitting Cartan subalgebra h , and we are interested in graded

weight modules V of the graded Lie algebra g whih are 2-graded in the sense that

V = V

�

� V

+

, where

g

0

:V

�

� V

�

; g

�1

:V

�

� V

�

and g

�1

:V

�

= f0g:

Sine g

0

is assumed to ontain a splitting Cartan subalgebra h , the root

deomposition of g leads to a disjoint deomposition � = �

�1

_

[�

0

_

[�

1

; where

�

�1

= ��

1

.

Example IV.1. A typial example of suh a gradation arises as follows. Let J

be a set and g := gl(J; K ) be the Lie algebra of �nite J � J -matries. We further

�x a subset M � J . We thus obtain a diret sum deomposition of the spae

V := K

(J)

= V

+

�V

�

= K

(M)

�K

(JnM)

. Writing the elements of g aordingly as

2� 2-blok matries X =

�

a b

 d

�

, we get the gradation g = g

1

� g

0

� g

�1

with

g

1

=

n

�

0 b

0 0

�

o

; g

0

=

n

�

a 0

0 d

�

o

and g

�1

=

n

�

0 0

 0

�

o

:
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Lemma IV.2. If g is simple, then g

1

is a simple g

0

-module and g

0

= [g

1

; g

�1

℄ .

Proof. Let f0g 6= W � g

1

be a g

0

-invariant subspae. Then W is invariant

under the subalgebra g

0

+ g

1

, so that the ideal generated by W is given by

W + [g

�1

;W ℄ +

�

g

�1

; [g

�1

;W ℄

�

� g

1

� g

0

� g

�1

:

We onlude that W = g

1

and g

0

= [g

�1

; g

1

℄ . It follows that g

1

is a simple g

0

-

module.

Lemma IV.3. There exists a unique linear funtional f : span

K

[�℄ ! K with

�

�1

= f

�1

(�1) and �

0

= f

�1

(0) .

Proof. Wemay w.l.o.g. assume that g is simple, beause we an put the funtions

f orresponding to the simple ideals of [g; g℄ together. Moreover, we assume that

g

1

6= f0g , otherwise we may take f = 0. Now � := �

0

[�

1

is a paraboli system.

Let � 2 �

1

. We laim that � 62 span�

0

. Suppose that this is false and that

(4:1) � =

k

X

j=1

m

j

�

j

with �

j

2 �

0

and m

1

; : : : ;m

k

2 K . Then there exists a �nite-dimensional

semisimple h -invariant subalgebra a � g with a\ g

1

6= f0g and �; �

1

; : : : ; �

k

2 �

a

(f. [St99a, Prop. V.5℄). Sine �

a

:= �\�

a

is a paraboli system in the �nite root

system �

a

, the fat that � 2 �

a

n ��

a

implies

� 62 span(�

a

\ ��

a

):

This ontradits (4.1), and we onlude that K � \ span�

0

= f0g . Hene there

exists a linear funtional f : span

K

�! K with f(�) = 1 and �

0

� ker f .

Sine g

1

is a simple g

0

-module (Lemma IV.2), for eah � 2 �

1

we have �

1

�

� + Z[�

0

℄; showing that f(�

1

) = f1g , and we likewise see that f(�

�1

) = f�1g .

The uniqueness of f follows trivially from the requirements.

De�nition IV.4. Let � be a root system of semisimple type. A partition � =

�

�1

_

[�

0

_

[�

1

is alled a 3-grading if g

�1

:=

P

�2�

�1

g

�

and g

0

:= h+

P

�2�

0

g

�

de�nes a 3-grading of g (f. [NeSt99℄ and [Ne90℄). It is lear that eah 3-grading

is ompletely determined by the set �

1

.
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Proposition IV.5. The sets �

1

orresponding to 3-gradings of the root systems

� = A

J

; B

J

; C

J

; D

J

are given by

(A

J

) A

J

(M)

1

= f"

j

� "

k

: j 2M;k 62Mg , where M � J is a subset.

(B

J

) B

J

(m)

1

= f"

m

g [ f"

m

� "

j

: j 6= mg , where m 2 J .

(C

J

) C

J

(M)

1

= f"

j

�"

k

: j 2M;k 62Mg[f"

j

+"

k

: j; k 2Mg[f�"

j

�"

k

: j; k 62Mg ,

where M � J is a subset.

(D

J

) D

J

(m)

1

= f"

m

�"

j

: j 6= mg = B

J

(m)

1

\D

J

, where m 2 J , or by D

J

(M)

1

=

C

J

(M)

1

\D

J

.

The orresponding funtions f are given by f(�) = �(e

m

) for B

J

(m)

1

and

D

J

(m)

1

, and by

f(�) =

1

2

�

X

j2M

�(e

j

)�

X

j 62M

�(e

j

)

�

for A

J

(M)

1

, C

J

(M)

1

and D

J

(M)

1

.

Proof. [NeSt99, Prop. VII.2℄.

Having desribed the possible 3-gradings of irreduible root systems, we now

turn to the desription of the orresponding 2-graded modules.

Lemma IV.6. The subspae g

a

:= g

1

+ g

�1

+ [g

1

; g

�1

℄ � [g; g℄ is an ideal of g .

Proof. This is a trivial alulation.

If g is semisimple, then we an write it as g = g

a

� g

b

, where g

b

is an ideal

of g ontained in g

0

. In the following g denotes an almost redutive loally �nite

split Lie algebra with 3-grading.

Proposition IV.7. Let V be a 2-graded weight module of g . Then the following

assertions hold:

(i) If V is simple and V

�

6= f0g , then V

�

are simple g

0

-modules with g

�1

:V

�

=

V

�

and V

�

= V

g

�1

:= fv 2 V : �

V

(g

�1

):v = f0gg .

(ii) V is a small weight module for the ideal g

a

.

(iii) For �; � 2 �

1

and � 2 P

V

+
with �(��) = �(

�

�) = 1 , we have �(

�

�) > 0 .

(iv) V is a semisimple g

a

-module.

Proof. (i) Let W � V

+

be a non-zero g

0

-submodule. Then the Poinar�e{

Birkho�{Witt Theorem implies that

U(g):W =W + �

V

(g

�1

):W � V

+

� V

�

;

so that the simpliity of V leads to W = V

+

and V

�

= �

V

(g

�1

):V

+

. This proves

that V

+

is a simple g

0

-module. Likewise we see that V

�

is a simple module and

that V

+

= g

1

:V

�

.

In view of the de�nition of a 2-graded module, we have V

+

� V

g

1

, so that

V

g

1

= V

+

+ (V

�

\ V

g

1

). The subspae V

�

\ (V

g

1

) is annihilated by g

1

and
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g

�1

and invariant under g

0

, hene a submodule. Now the simpliity of V yields

V

g

1

\ V

�

= f0g , so that V

g

1

= V

+

. Likewise we get V

�

= V

g

�1

.

(ii) If � 2 �

1

, then the g(�)-module generated by a weight vetor v

�

2 V

�

\V

+

is

a simple module of g(�)

�

=

sl(2; K ) of dimension �(��)+1: Sine V is 2-graded, we

have x

2

��

:v

�

= 0 for eah x

��

2 g

��

. Thus �(��) 2 f0; 1g holds for eah � 2 �

1

.

If � 2 �

g

a

;0

, then g

a

\ g

0

= [g

1

; g

�1

℄ (Lemma IV.6) implies that there exists

an � 2 �

1

with �(��) 6= 0. We now have

(r

�

:�)(��)

| {z }

2f0;1g

= �(��)

|{z}

2f0;1g

��(

�

�)�(��):

Hene �(

�

�)�(��) 2 f�1; 0; 1g and sine �(��) is a non-zero integer, we see that

�(

�

�) 2 f�1; 0; 1g holds for all � 2 �

g

a

;0

. We onlude that �(��) 2 f0;�1g for all

� 2 �

g

a

, i.e. that V is a small g

a

-module.

(iii) Sine �(��) = 1, the funtional r

�

:� = �� � is a weight of V

�

, and therefore

g

��

:V

�

= f0g yields 0 � (r

�

:�)(

�

�) = �(

�

�)� �(

�

�) = 1� �(

�

�); so that �(

�

�) > 0.

(iv) follows diretly from Corollary II.2.

Lemma IV.8. If g = a � b is a diret sum of graded Lie algebras and V is a

simple 2-graded weight module with �

V

(a

1

) 6= f0g , then �

V

(b

1

) = f0g .

Proof. The assumption �

V

(a

1

) 6= f0g implies that a

1

:V

�

� V

+

is non-zero.

Moreover, it is a g

0

-submodule, and therefore oinides with V

+

(Proposition

IV.7(i)). We onlude that b

�1

:V

+

= a

1

b

�1

:V

�

= f0g , so that b

�1

annihilates V ,

and likewise b

1

annihilates V .

Proposition IV.9. Suppose that g is almost redutive, V a simple 2-graded

weight module, and a E g

a

a simple ideal with �

V

(a

1

) 6= f0g . Then all other

simple ideals b E g

a

at trivially on V .

Proof. This is an immediate onsequene of Lemma IV.8 applied to the semisim-

ple ideal [g; g℄ of g for whih V is a simple module (see Remark II.8).

In view of Proposition IV.7(iv), to desribe the 2-graded weight modules

of g , it suÆes to desribe those whih are isotypi for g

a

. These an be written

as V = V

1


 V

2

, where V

2

is a simple weight module of g

b

and V

1

is a simple

2-graded weight module of g

a

. Suppose that V

1

is non-trivial as a g

1

-module.

In view of Proposition IV.9, there exists a unique simple ideal g

V

E g

a

ating

non-trivially on V

1

, and all others at trivially. If, onversely, V

1

is a simple 2-

graded weight module of a simple ideal g

V

E g

a

, and V

2

a simple g

b

-module,

then End

g

V

(V

1

) = K 1 follows from the fat that V

1

is an integrable highest weight

module, and Lemma II.6(ii) implies that V := V

1


 V

2

is a simple 2-graded weight

module of g , where the gradation of V is given by V

�

:= V

�

1


 V

2

.
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Therefore we are essentially left with the problem to determine those small

weight modules of a simple 3-graded Lie algebra g whih are 2-graded. The

following lemma provides a handy riterion.

Lemma IV.10. Let f : span�! K be a linear funtional de�ning the 3-grading

of � in the sense of Lemma IV.3, and V = L(�) an integrable highest weight

module. Then the following are equivalent:

(1) V is 2-graded.

(2) f(P

L(�)

� �) is a two-element set.

Proof. (1) ) (2): Suppose that V = V

+

� V

�

is a 2-graded g -module.

Then V

�

are simple g

0

-modules, so that the funtion f is onstant on the subsets

P

V

�
� P

V

.

(2) ) (1): Suppose that f(�� P

�

) � fm;Mg , where m < M . Then

V

+

:=

X

�2P

L(�)

;f(���)=m

V

�

and V

�

:=

X

�2P

L(�)

;f(���)=M

V

�

yields a deomposition V = V

+

� V

�

whih is a 2-gradation of the g -module V .

Note that M = m+ 1 holds automatially.

Now it only remains to hek the ondition of Lemma IV.10 for the modules

ourring in Theorem III.3, where the funtional f is as in Proposition IV.5.

Theorem IV.11. (Classi�ation of 2-graded simple modules) For a simple 3-

graded split Lie algebra g the non-trivial simple 2-graded modules are the following:

(A

J

) For �

1

= A

J

(fmg)

1

all small modules L("

N

) , N � J , are 2-graded.

(A

J

) For �

1

= A

J

(M)

1

with jM j > 1 and jM



j > 1 only the module L("

j

)

�

=

K

(J)

(not depending on j 2 J ), and the dual weight module L(�"

j

) are 2-graded.

(B

J

) For �

1

= B

J

(m)

1

only the spin representation on L(

1

2

"

J

)

�

=

�(C

(J)

) and

the quasi-equivalent representations with highest weight � =

1

2

("

M

� "

M



) ,

M � J , are 2-graded.

(C

J

) For �

1

= C

J

(M)

1

only the idential representation on L(�"

j

)

�

=

K

(J

�

)

is

2-graded.

(D

J

)For �

1

= D

J

(m)

1

only the two simple onstituents of the spin representation

on �(K

(J)

) and the orresponding quasi-equivalent representations are 2-

graded.

(D

J

)For �

1

= D

J

(M)

1

only the idential representation on L(�"

j

)

�

=

K

(J

�

)

and

for jJ j = 4 the module L(�)

�

=

�

odd

(K

4

) with � =

1

2

("

1

+ "

2

+ "

3

� "

4

) is

2-graded.

(E

n

) For the exeptional algebras there are no 2-graded modules.

Proof. In view of [Ne99, Th. A.V.6℄, there exists no 2-graded simple modules

for the exeptional algebras, so that we may assume that � is of lassial type.
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(A

J

) For �

1

= A

J

(fmg)

1

we have f(�) = �(e

m

) (Proposition IV.5). Aording

to Theorem III.3, we may assume that � = "

N

for some subset N � J . Then the

weight set of L(�) is given by

W:� = f"

K

: jK nN j = jN nKj <1g:

In view of f(W:�) = f0; 1g; the module L(�) is 2-graded.

For �

1

= A

J

(M)

1

with jM j; jM



j > 1 we have f(�) =

P

j2M

�(e

j

) (Propo-

sition IV.5). Again, we may assume that � = "

N

for some subset N � J . If

jN j = 1, then

W:� = f"

j

: j 2 Jg;

so that f(W:�) = f1; 0g implies that L(�) is 2-graded, and for jN



j = 1 one argues

similarly. Assume that jN j; jN



j > 1. Then

W:�� � = f"

K

� "

N

: jK nN j = jN nKj <1g

= f"

KnN

� "

NnK

: jK nN j = jN nKj <1g

= f"

M

1

� "

M

2

: jM

1

j = jM

2

j <1;M

1

� N



;M

2

� Ng:

Sine we may assume that � is �

1

-dominant, we have M � N or N � M

beause otherwise there exists an m 2 M n N and an n 2 N nM whih leads

to �(e

m

� e

n

) = �1.

Suppose �rst that M � N . Then f("

M

1

� "

M

2

) = �jM

2

\ M j , so that

�2 2 f(W:�� �) implies that this set ontains the three numbers f0;�1;�2g . If

N �M , then

f("

M

1

� "

M

2

) = jM

1

j � jM

2

\M j;

so that 2 2 f(W:�� �) implies that this set ontains the three numbers f0; 1; 2g .

In both ases we see that L(�) is not 2-graded.

(B

J

) For �

1

= B

J

(m)

1

we have f(�) = �(e

m

) (Proposition IV.5). Aording to

Theorem III.3, we may assume that � =

1

2

("

M

� "

M



) for some subset M � J .

Then the weight set of L(�) is given by

W:� =

n

1

2

("

N

� "

N



): jM nN j; jN nM j <1

o

;

and we see that f(W:�) = f�

1

2

g , showing that L(�) is 2-graded. That all

these modules are quasi-equivalent to the spin representation, whih orresponds

to M = J , follows from the fat that there exists an automorphism ' of g with

'(h) = h suh that (' j

h

)

�

� =

1

2

"

J

(f. [St99b℄).

(C

J

) For �

1

= C

J

(M)

1

we have f(�) =

1

2

�

P

j2M

�(e

j

) �

P

j2M



�(e

j

)

�

. The

only small module L(�) is the idential representation on K

(J

�

)

with the weight

set P

L(�)

= f�"

j

: j 2 Jg . Now f(P

L(�)

) = f�

1

2

g shows that L(�) is 2-graded.
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(D

J

) For �

1

= D

J

(m)

1

we have f(�) = �(e

m

) (Proposition IV.6). For � = "

j

we

have W:� = f�"

k

: k 2 Jg , so that f(W:�) = f0; 1;�1g , and therefore L(�) is not

2-graded. Now we assume that � =

1

2

("

M

� "

M



) for some subset M � J . Then

we weight set of L(�) is given by

W:� =

n

1

2

("

N

� "

N



): jM nN j; jN nM j <1; jM nN j � jN nM j 2 2Z

o

;

and we see that f(W:�) = f�

1

2

g , showing that L(�) is 2-graded.

For �

1

= D

J

(M)

1

we have f(�) =

1

2

�

P

j2M

�(e

j

) �

P

j2M



�(e

j

)

�

whih

immediately shows that for � = "

j

the module L(�) is 2-graded. We note that,

under the automorphism of the root system given by "

j

7! �"

j

for j 2 M and

�xing the other "

j

's, this 3-grading is onjugate to the one de�ned by M = J ,

so that �

1

= D

J

(J)

1

and f(�) =

1

2

P

j2J

�(e

j

). Therefore we may assume that

M = J .

We onsider � =

1

2

("

N

� "

N



) for some subset N � J . Then we have

W:�� �

=

n

1

2

("

K

� "

K



� "

N

+ "

N



): jK nN j; jN nKj <1; jK nN j � jN nKj 2 2Z

o

=

n

"

KnN

� "

NnK

: jK nN j; jN nKj <1; jK nN j � jN nKj 2 2Z

o

and

f("

KnN

� "

NnK

) =

1

2

(jK nN j � jN nKj):

If jJ j � 5, then we may w.l.o.g. assume that N ontains at least four elements

(otherwise we may add roots in �

1

to �). Then there exists a K � N with

N nK = 4, so that we obtain the value �2 for f . So let us assume that jJ j = 4

and that jN j < 4. By the same argument as above, we may assume that jN j = 3.

Then jK nN j � 1 and jN nKj � 3 yield f("

KnN

� "

NnK

) 2 [�

3

2

;

1

2

℄ and therefore

f("

KnN

� "

NnK

) 2 f�1; 0g . This proves that L(�) is 2-graded. It is the odd part

�

odd

(K

4

) = �

1

(K

4

)� �

3

(K

4

) of the spin representation on �(K

4

).

V. In�nite tensor produts

Let (V

i

)

i2I

be a family of vetor spaes and F denote the free vetor spae on

the artesian produt

Q

i2I

V

i

. A map m:

Q

i2I

V

i

! W into a vetor spae W is
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alled multilinear if it is linear in eah argument provided that all other arguments

are �xed. For i 2 I let F

i

� F be the subspae generated by elements of the type

(x

0

; x

i

+y

i

)�(x

0

; x

i

)�(x

0

; y

i

); �(x

0

; x

i

)�(x

0

; �x

i

); x

i

; y

i

2 V

i

; x

0

2

Y

j 6=i

V

j

; � 2 K :

We put

N

i2I

V

i

:= F=

P

i

F

i

: Then we have a natural map m:

Q

i2I

V

i

!

N

i2I

V

i

whih is multilinear, and one easily heks that eah multilinear map

Q

i2I

V

i

!W

fators uniquely through m .

From this universal property, it follows immediately that for eah olletion

of linear maps A

i

2 End(V

i

), we obtain a linear map




i2I

A

i

2 End

�

O

i2I

V

i

�

with 


i2I

A

i

:m((v

i

)

i2I

) = m((A

i

:v

i

)

i2I

)

beause the right hand side de�nes a multilinear map

Q

i2I

V

i

!

N

i2I

V

i

.

Let g =

L

i2I

g

i

be a diret sum of Lie algebras. If for eah i 2 I the spae V

i

is a g

i

-module, then

N

i2I

V

i

arries a natural g -module struture with the ideals

g

i

ating by

�(x

i

):


j2I

v

j

= x

i

:v

i


 (


j 6=i

v

j

):

Note that if g

i

= d for all i 2 I , then this onstrution does not lead to a

representation of d on the tensor produt spae beause, if I is in�nite, then the

diagonal algebra d is not ontained in the diret sum Lie algebra g .

Now suppose that I is a set and that V

i

= V for all i 2 I . Then the restrited

symmetri group S

(I)

ats on the spae T :=

N

i2I

V

i

. We onsider the subspae

U := spanf�:x� "(�)x:x 2 T; � 2 S

(I)

g � T

and de�ne

�

I

(V ) := T=U and ^

i2I

v

i

:= 


i2I

v

i

+ U:

Then we have a natural map ^:

Q

i2I

V

i

! �

I

(V ) whih is multilinear and alter-

nating, and it is easy to see that eah alternating multilinear map

Q

i2I

V

i

! W

fators through ^ .

The onstrution of a representation of a Lie algebra on subspaes of the spae

�

I

(V ) is a bit subtle. To obtain this representation, we �x for eah i 2 I an element

v

i

2 V and onsider the subspae �

(I)

(V ) := spanf^

i2I

w

i

: jfi:w

i

6= v

i

gj <1g:

Now suppose that V is a module of the Lie algebra g suh that for eah x 2 g

the orresponding operator �

V

(x) annihilates all but �nitely many of the v

i

. Then

for eah x 2 g the operator

�(x): ^

i2I

w

i

:=

X

i2I

x:w

i

^ (^

j 6=i

w

j

)
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is de�ned beause the sum on the right hand side is always �nite. Note that the

expression on the right hand side is not meant as a produt in an algebra. It

orresponds to writing the elements of a produt set

Q

j2I

X

j

as x = (x

j

)

j2I

=

(x

i

; (x

j

)

j 6=i

) for some i 2 I . We thus obtain a representation � of g on �

(I)

(V ).

A typial example of suh a situation is given by the anonial representation

of gl(J; K ) on V = K

(J)

. Let (e

j

)

j2J

denote the anonial basis of V and

M � J be a subset. Then we obtain a representation of g = gl(J; K ) on the

spae �

(M)

(K

(J)

) with � =

P

j2M

"

j

as an extremal weight. The typial examples

whih are disussed in [KR87℄ are J = Z and M = f: : : ;m � 2;m � 1;mg for

m 2 Z .

Lemma V.1. Let g =

L

j2J

g

j

be a diret sum of loally �nite almost redutive

split Lie algebras and V

j

simple g

j

-weight modules with End

g

j

(V

j

) = K 1 . For eah

j 2 J we pik a non-zero weight vetor v

j

2 V

�

j

j

. Then the submodule

f

N

j2J

V

j

�

N

j2J

V

j

generated by the weight vetor v := 


j2J

v

j

of weight � =

P

j2J

�

j

is a

simple g-module.

Proof. If F � J is a �nite subset and g

F

:=

P

j2F

g

j

, then the g

F

-submodule

V

F

generated by v is isomorphi to

N

j2F

V

j

whih is simple aording to Lemma

II.6(ii) applied indutively. We onlude that

f

N

j2J

V

j

is an indutive limit of

simple g

F

-modules V

F

and therefore a simple g -module.

Proposition V.2. For a simple highest weight module of the diret sum g =

L

j2J

g

j

of loally �nite almost redutive split Lie algebras g

j

we have

L(�;�

+

; g)

�

=

g

O

i2I

L(�

i

;�

+

i

; g

i

);

where �

i

= � j

h

i

and h

i

:= h \ g

i

is a splitting Cartan subalgebra of g

i

.
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