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Abstra
t

Let l be a Lie algebra with a root de
omposition and with

semisimple 
ommutator algebra. We assume that l has a 3 -

grading 
ompatible with the root de
omposition. In this note we

analyze the stru
ture of the 2 -graded weight modules of a 3 -

graded Lie algebra l . The 
lassi�
ation results for su
h modules

play a key role in the 
hara
terization of the lo
ally �nite split

Lie algebras with faithful unitary highest weight modules be
ause

they arise in the des
ription of su
h Lie algebras as semidire
t

sums of almost redu
tive Lie algebras with generalized Heisenberg

algebras.

Introdu
tion

The 
hara
terization of the lo
ally �nite split Lie algebras with faithful unitary

highest weight modules in [Ne00b℄ shows that these Lie algebras are semidire
t

sums g = uo l , where l is almost redu
tive, i.e., [l; l℄ is semisimple (a dire
t sum of

simple ideals), and u is a generalized Heisenberg algebra, i.e., a two step nilpotent

Lie algebra. Sin
e the stru
ture of both pie
es u and l is quite well understood,

the main point in understanding the stru
ture of g is to understand the a
tion of

l on u .
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The Lie algebra l has a natural 3-grading l = l

�1

� l

0

� l

1

, and we have

u = V � z(g), where V = V

+

�V

�

is an l -module whi
h is 2-graded in a way that

is 
ompatible with the 3-grading of l . The obje
tive of this note is to des
ribe the

stru
ture of 2-graded l -modules V .

Sin
e the Lie algebra g is assumed to have a root de
omposition g = h �

P

�2�

g

�

with respe
t to a splitting Cartan subalgebra h , the l -module V is an

integrable weight module of l in the sense that it is the sum of the weight spa
es

for the Cartan subalgebra h

l

:= h \ l of l . Thus we have to 
onsider 2-graded

weight modules of 3-graded almost redu
tive Lie algebras. The key idea to analyze

the stru
ture of the l -module V is �rst to redu
e matters to the 
ase where l is

semisimple. Then l = l

a

� l

b

, where l

a

is the ideal generated by l

�1

. Now V turns

out to be a small weight module for the ideal l

a

, whi
h means that �(��) 2 f�1; 0; 1g

holds for all weights � of V and roots � of l

a

. Se
tion I 
ontains basi
 material

on weight modules, and in Se
tion II we 
ompletely des
ribe the stru
ture of small

weight modules. In parti
ular we show that small weight modules are semisimple

and that the simple ones are highest weight modules. After redu
tion to the 
ase

of simple Lie algebras, we des
ribe in Se
tion III all those weights � for whi
h the


orresponding integrable highest weight module L(�) is small (Theorem III.3). In

Se
tion IV we turn to the des
ription of 2-graded modules. The possible 3-gradings

of l have been des
ribed in [NeSt99℄ (see also [Ne90℄), and for simple 3-graded Lie

algebras we 
lassify the 2-graded simple modules in Theorem IV.11. The out
ome

of our analysis is that the 2-graded l -module V is a semisimple l

a

-module, and

ea
h isotypi
 
omponent W � V is isomorphi
 to L(�)
W

b

, where L(�) is a 2-

graded simple highest weight module of a simple ideal of l

a

, and W

b

is an arbitrary

weight module of l

b

. Thus we have a 
omplete des
ription of the l

a

-a
tion on V ,

but there is essentially no information on the l

b

-a
tion. We 
on
lude this paper

with some remarks on in�nite tensor produ
ts in Se
tion V.

In this paper all Lie algebras are Lie algebras over a �eld K of 
hara
teristi
 0.

I. Weight modules

In this se
tion we dis
uss basi
 properties of weight modules of split Lie algebras

whi
h are almost redu
tive.

De�nition I.1. (a) We 
all an abelian subalgebra h of the Lie algebra g a

splitting Cartan subalgebra if h is maximal abelian and the operators in ad h are

simultaneously diagonalizable. If g 
ontains a splitting Cartan subalgebra, then it

is 
alled a split Lie algebra. This means that we have a root de
omposition

g = h+

X

�2�

g

�

;
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where g

�

= fz 2 g: (8x 2 h)[x; z℄ = �(x)zg and � := f� 2 h

�

n f0g: g

�

6= f0gg is

the 
orresponding root system.

(b) A subset �

+

� � is 
alled a positive system and its elements positive roots if

� = �

+

_

[��

+

and no non-trivial sum of positive roots is zero. This requirement

implies in parti
ular that � = �� and that ea
h positive system 
ontains exa
tly

one root of ea
h set f�;��g . We 
all a subset � � � paraboli
 if � [ �� = �

and (� + �) \� � � (
f. [Ne98, Def. I.6℄ for a dis
ussion of this 
on
ept).

(
) We 
all a root � 2 � integrable if there exist x

��

2 g

��

su
h that the subalgebra

g(x

�

; x

��

) generated by these two elements is three-dimensional simple and adx

��

are lo
ally nilpotent operators on g . We write �

i

for the set of integrable roots

and observe that �

i

= ��

i

follows from the symmetry in the de�nition of �

i

. It


an be shown that for all integrable roots � the root spa
e g

�

is one-dimensional

and that the subalgebra g(�) := g

�

+ g

��

+ [g

�

; g

��

℄ is isomorphi
 to sl(2; K ) (
f.

[St99a, Prop. I.6℄). The unique element �� 2 [g

�

; g

��

℄ with �(��) = 2 is 
alled

the 
oroot 
orresponding to � . We write

�

� � h for the set of all 
oroots of

integrable roots. The subgroup W � GL(h

�

) generated by the re
e
tions r

�

given

by r

�

:� = � � �(��)� is 
alled the Weyl group.

(d) We 
all a Lie algebra g lo
ally �nite if every �nite subset of g is 
ontained

in a �nite-dimensional subalgebra. In [Ne00a, Th. VI.3℄, it was shown that if all

roots are integrable, then g is lo
ally �nite, so that [St99a, Th. IV.7, Lemma IV.8℄

show that the 
ommutator algebra [g; g℄ , whi
h equals span

�

� +

P

�2�

g

�

in this


ase, is a semisimple Lie algebra, i.e., a dire
t sum of simple ideals. If g is �nite-

dimensional, then this is equivalent to g being redu
tive. Therefore we 
all a Lie

algebra g for whi
h the 
ommutator algebra is semisimple almost redu
tive.

Throughout this paper g = h+

P

�2�

g

�

is a split K -Lie algebra with � = �

i

,

i.e., g is a lo
ally �nite almost redu
tive split Lie algebra (
f. [St99a, Th. III.19℄).

De�nition I.2. (a) For a g -module V and � 2 h

�

we write V

�

:= fv 2 V :

(8X 2 h)X:v = �(X)vg for the weight spa
e of weight � .

(b) Let V be a g -module and 0 6= v 2 V

�

an h -weight ve
tor. We say that v is

a primitive element of V (with respe
t to the positive system �

+

) if g

�

:v = f0g

holds for all � 2 �

+

. A g -module V is 
alled a highest weight module with highest

weight � (with respe
t to �

+

) if it is generated by a primitive element of weight � .

Proposition I.3. Let g be split Lie algebra and �

+

a positive system. Then,

for ea
h � 2 h

�

there exists a unique irredu
ible highest weight module L(�;�

+

) ,

and ea
h highest weight module V of highest weight � with respe
t to �

+

has a

unique maximal submodule M with V=M

�

=

L(�;�

+

) .

Proof. This is proved as Prop. IX.1.13 in [Ne99℄.
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If V is a g -module, then we write �

V

for the 
orresponding representation

of g on V , and if, in parti
ular, V = L(�;�

+

) is an irredu
ible highest weight

module with respe
t to a positive system �

+

, then we abbreviate �

�

:= �

L(�;�

+

)

.

De�nition I.4. (
f. [DiPe99℄) (a) Let g be an almost redu
tive split Lie algebra.

A g -module V is 
alled a weight module (with respe
t to h) if it is the sum of

the h -weight spa
es, where h � g is a splitting Cartan subalgebra. We write

P

V

: = f� 2 h

�

:V

�

6= f0gg for the set of h -weights of V .

(b) A weight module V is said to be

(1) small if for ea
h � 2 P

V

and � 2 � we have �(��) 2 f�1; 0; 1g .

(2) �nite if for ea
h � 2 P

V

and ea
h � 2 � the set fn 2 Z:�+ n� 2 P

V

g is

�nite.

(3) integrable if for ea
h � 2 � and x

�

2 g

�

the operator �

V

(x

�

) on V is lo
ally

nilpotent.

(
) If V is a weight module and V

�

� V a weight spa
e, then we identify its

dual spa
e (V

�

)

�

with the subspa
e of V

�


onsisting of all those linear fun
tionals

vanishing on

P

�2P

V

nf�g

V

�

. Now the subspa
e V

℄

:=

L

�2P

V

(V

�

)

�

� V

�

is

invariant under the natural a
tion of g on the algebrai
 dual spa
e V

�

given by

�

V

�

(x):� := �� Æ �

V

(x). It is 
alled the dual weight module be
ause it is a weight

module and the largest with this property in V

�

.

Lemma I.5. Let V be a weight module.

(i) If V is small, then V is �nite.

(ii) If V is �nite, then it is integrable.

(iii) If V is integrable, then P

V

is 
ontained in the weight group P :=

f� 2 h

�

: (8� 2 �)�(��) 2 Zg .

Proof. (i) and (ii) are trivial 
onsequen
es of the fa
t that �(��) = 2 and

�

V

(x

�

):V

�

� V

�+�

, whereas (iii) follows from the representation theory of sl(2; K ).

Lemma I.6. If V is an integrable weight module of g and g

0

a �nite-dimensional

h-invariant subalgebra, then V is a lo
ally �nite g

0

-module, i.e., every element

generates a �nite-dimensional submodule.

Proof. Let v

�

2 V

�

be a weight ve
tor. For ea
h root � 2 �

0

:= f� 2 �: g

�

�

g

0

g we 
hoose a non-zero ve
tor x

�

2 g

�

and thus obtain a ve
tor spa
e basis of

[h; g

0

℄ . Let �

0

= f�

1

; : : : ; �

n

g . Then the Poin
ar�e{Birkho�{Witt Theorem implies

that

W :=

X

m2N

n

0

K �

V

(x

�

1

)

m

1

� � ��

V

(x

�

n

)

m

n

:v

�
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is a g

0

-invariant subspa
e. Moreover, we see by indu
tion, using the lo
al nilpoten
e

of the operators �

V

(x

�

), that there exist 


1

; : : : ; 


n

2 N su
h that

W =

X

m�
2N

n

0

K �

V

(x

�

1

)

m

1

� � ��

V

(x

�

n

)

m

n

:v

�

;

and hen
e that W is �nite-dimensional (
f. [MoPi95, p.125℄ for a similar argument

for sl(2; K )).

Remark I.7. Applied to the subalgebras g(�) := g

�

+ g

��

+ [g

�

; g

��

℄ , the

pre
eding lemma implies that ea
h integrable weight module of g is a lo
ally �nite

module of g(�)

�

=

sl(2; K ). This implies that the set P

V

is invariant under the


orresponding re
e
tion r

�

. Thus, for ea
h integrable weight module V the set P

V

is invariant under the Weyl group W (
f. [Bou90, Ch. 8, no. 7.1, Cor. 2℄). Moreover,

the representation theory of sl(2; K ) shows that for ea
h � 2 P

V

the set

fn 2 Z:�+ n� 2 P

V

g

is an uninterrupted string of integers.

Lemma I.8. A highest weight module V of highest weight � is integrable if and

only if � is dominant integral, i.e.,

�(��) 2 N

0

for all � 2 �

+

:

Every integrable highest weight module V is simple, i.e., V

�

=

L(�;�

+

) .

Proof. (
f. [DiPe99, Th. 5℄) Let v

�

2 V be a primitive element. To see that

V is integrable if and only if �(��) 2 N

0

for all � 2 �

+

, we �rst note that if V

is integrable and � 2 �

+

, then the g(�)-module U(g(�)):v

�

is �nite-dimensional,

so that �(��) 2 N

0

. If, 
onversely, this 
ondition is satis�ed, then v

�

is a g(�)-

�nite element (it generates a �nite-dimensional g(�)-submodule), so that the lo
al

�niteness of the a
tion of g(�) on g implies that the set of g(�)-�nite elements

in V is a g -submodule of V 
ontaining v

�

, so that V is a lo
ally �nite g(�)-

module. Therefore the 
orresponding operators �

V

(x

��

) are lo
ally nilpotent for

x

��

2 g

��

. This proves that V is integrable.

Suppose that V is integrable and let M � V be the maximal proper sub-

module (Proposition I.3). If M 6= f0g , then there exists an h -invariant �nite-

dimensional semisimple subalgebra g

0

� g su
h that V

0

:= U(g

0

):v

�

interse
ts M

non-trivially (
f. [St99a, Prop. V.5℄). Now V

0

is an integrable highest weight mod-

ule of g

0

, hen
e �nite-dimensional and simple (
f. [Bou90, Chap. 8, no. 7.2, Th. 1℄).

This 
ontradi
ts V

0

6= V

0

\M 6= f0g .
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Theorem I.9. (Classi�
ation of integrable highest weight modules) For ea
h

weight � 2 P = f� 2 h

�

: (8� 2 �)�(��) 2 Zg there exists a positive system �

+

su
h that � is dominant integral. If

e

�

+

is another positive system for whi
h � is

dominant integral, then

(1:1) L(�;�

+

)

�

=

L(�;

e

�

+

);

so that we may write L(�) := L(�;�

+

) . Furthermore

L(�)

�

=

L(�) () � 2 W:�:

Proof. These fa
ts follow essentially from the dis
ussion in Se
tion I of [Ne98℄,

where the unitary highest weight modules of the 
orresponding 
omplex Lie algebras

have been 
lassi�ed in the same manner. For the sake of 
ompleteness, we in
lude

the key arguments.

For � 2 P we 
onsider the subset �

�

:= f� 2 �:�(��) � 0g and observe that

this is a paraboli
 system of � (
f. [Ne98, Lemma I.18℄) be
ause paraboli
 systems

of � and

�

� are in one-to-one 
orresponden
e via the map � 7! �� (
f. [Bou90℄). In

view of [Ne98, Cor. I.10℄, the paraboli
 system �

�


ontains a positive system �

+

,

and now � is �

+

-dominant integral.

The weight set P

L(�;�

+

)

is 
ontained in � � N

0

[�

+

℄ � � � Z[�℄, where

N

0

[�

+

℄ denotes the set of �nite sums of elements of �

+

and Z[�℄ denotes the

additive subgroup of h

�

generated by �. Now the formula

(1:2) P

L(�;�

+

)

= 
onv(W:�) \ (�+ Z[�℄);

where we view P as a subset of the real ve
tor spa
e R


Z

P , shows that the weight

set P

L(�;�

+

)

does not depend on the positive system. If V is a simple g -module

with

� 2 P

V

� �� N

0

[�

+

℄;

then V

�

=

L(�;�

+

) follows from the fa
t that ea
h non-zero element v

�

2 V

�

is

a primitive element with respe
t to �

+

be
ause � 62 �N

0

[�

+

℄ for ea
h � 2 �

+

(this follows from the de�nition of a positive system). Now (1.1) follows from

P

L(�;�

+

)

= P

L(�;

e

�

+

)

.

In the following we write

Ext(C) = fx 2 C: (y; z 2 C; � 2℄0; 1[; x = �y + (1� �)z)) x = y = zg

for the set of extreme points of a 
onvex set C . If L(�)

�

=

L(�), then the equality

of the weight sets P

L(�)

= P

L(�)

implies that

W:� = Ext(
onvW:�) = Ext

�


onvP

L(�)

�

= Ext

�


onvP

L(�)

�

= Ext(
onvW:�) =W:�
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(
f. [Ne98, Th. I.11℄), so that � 2 W:� . If, 
onversely, � 2 W:� , then �+ Z[�℄ =

�+Z[�℄, and (1.2) lead to P

L(�)

= P

L(�)

, so that the observation in the pre
eding

paragraph implies that L(�)

�

=

L(�).

II. Small weight modules

In this se
tion we dis
uss the spe
ial 
lass of small weight modules.

Proposition II.1. If V is a small weight module, then for ea
h weight � 2 P

V

and 0 6= v

�

2 V

�

the submodule U(g):v

�

is an integrable highest weight module

isomorphi
 to L(�) .

Proof. Using Theorem I.9, we �nd a positive system �

+

su
h that � is dominant

integral with respe
t to �

+

. Let � 2 �

+

. Then (� + �)(��) � 2 implies that

� + � 62 P

V

, and hen
e that ea
h non-zero weight ve
tor v

�

2 V

�

is a primitive

element for g with respe
t to �

+

. We 
on
lude that W := U(g):v

�

is an integrable

highest weight module, hen
e simple by Lemma I.8, and therefore W

�

=

L(�).

Corollary II.2. (a) Ea
h small weight module V is a semisimple g-module.

(b) Every simple small weight module is an integrable highest weight module.

Proof. (a) In view of Proposition II.1, the module V is a sum of simple

submodules, hen
e a semisimple module.

(b) This follows dire
tly from Proposition II.1.

Remark II.3. That simple small weight modules are highest weight modules relies

heavily on the smallness requirement. The weaker 
ondition �(��) 2 f�2;�1; 0g for

all � 2 P

V

and � 2 � is not suÆ
ient to 
on
lude that a simple weight module V

is a highest weight module.

To see this, we 
onsider the Lie algebra g := gl(N ; K ) as the union of the

subalgebras g

n

:= gl(2n; K ), n 2 N , and �x the standard positive system �

+

:=

f"

j

� "

k

: j < kg . For ea
h n 2 N we 
onsider the dominant integral weight

�

n

:= (1; 1; : : : ; 1

| {z }

n times

;�1;�1; : : : ;�1

| {z }

n times

)

with respe
t to �

+

n

:= �

n

\�

+

and �

n

:= f� 2 �: g

�

� g

n

g . Then the set P

L(�

n

)

of weights of the highest weight module L(�

n

;�

+

n

) is given by

P

L(�

n

)

=

n

2n

X

j=1

a

j

"

j

: a

j

2 f�1; 0; 1g;

2n

X

j=1

a

j

= 0

o

;
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as follows easily from P

L(�

n

)

= 
onv(W

n

:�

n

) \ (�

n

+ Z[�

n

℄); where �

n

� h

�

n

denotes the roots of g

n

. In parti
ular ea
h weight � 2 P

L(�

n

)


an be written as

� =

X

j2N

1

"

j

�

X

j2N

2

"

j

; where jN

1

j = jN

2

j � n and N

1

\N

2

= �:

We see in parti
ular that �

n�1

is a weight of P

L(�

n

)

, and that the 
orresponding

weight spa
e generates a g

n�1

-submodule of highest weight �

n�1

. Using a �xed


hoi
e of embeddings

L(�

n

; g

n

) ,! L(�

n+1

; g

n+1

); n 2 N ;

we obtain a simple weight module V := lim

�!

L(�

n

; g

n

) of g . The weight system of

this module is given by

P

V

=

[

n2N

P

L(�

n

)

=

n

m

X

j=1

a

j

"

j

:m 2 N ; a

j

2 f�1; 0; 1g;

m

X

j=1

a

j

= 0

o

:

If � 2 P

V

is an extreme point of 
onv(P

V

), then there exists an n 2 N with

� =

P

2n

j=1

a

j

"

j

2 P

L(�

n

)

. Then � 2 Ext(
onvP

�

n

) = W

n

:�

n

. This means that

jfj: a

j

= 1gj = n . Then � is not extremal in 
onv(P

�

n+1

), hen
e not in 
onv(P

V

).

This 
ontradi
tion shows that Ext

�


onv(P

V

)

�

= � holds in the real ve
tor spa
e

R 


Z

P , and hen
e that V is not a highest weight module (
f. [Ne98, Cor. I.14℄).

Proposition II.4. For an integrable weight module V the following are equiva-

lent:

(1) V is small.

(2) For ea
h x

�

2 g

�

, � 2 � , we have �

V

(x

�

)

2

= 0 .

If, in addition, V is simple, then these 
onditions are equivalent to

(3) W a
ts transitively on P

V

and V is a highest weight module.

Proof. (1) ) (2): Sin
e hP

V

; ��i � f0; 1;�1g and �(��) = 2, we have

�

V

(x

�

)

2

= 0.

(2) ) (1): Let � 2 P

V

. If j�(��)j > 1, then the subspa
e

P

n2Z

V

�+n�


ontains

g(�)-submodules of dimension > 2, so that �

V

(x

�

)

2

6= 0. This means that if V is

not small, then (2) is not satis�ed.

(2) ) (3): If V is simple, then V

�

=

L(�) for ea
h � 2 P

V

(Proposition II.1).

Hen
e L(�)

�

=

L(�) for ea
h � 2 P

V

, so that Theorem I.9 implies that � 2 W:� .

(3) ) (2): We view P

V

as a subset of the real ve
tor spa
e R 


Z

P . Then (3)

implies that every weight � 2 P

V

is an extreme point of 
onv(P

V

). Hen
e for ea
h

� 2 P

V

the weight string (� + Z�) \ P

V

is of length � 2, and this implies that

j�(��)j � 1.
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Corollary II.5. If V is a small weight module, then the isotypi
 submodules

of V are in one-to-one 
orresponden
e with the W -orbits in P

V

. For ea
h su
h

orbit W:� � P

V

the subspa
e

P

w2W

V

w:�

is an isotypi
 submodule isomorphi
 to

L(�)
 V

�

; where V

�

is viewed as a trivial g-module.

Proof. Let � 2 P

V

. Sin
e ea
h non-zero weight ve
tor v 2 V

�

generates a

simple integrable highest weight module W

v

�

=

L(�), and W

�

v

= K v , we see that

we have an in
lusion

L(�)
 V

�

�

=

L(�)
Hom

g

(L(�); V ) ,! V; v 
D 7! D(v):

Sin
e W a
ts transitively on P

L(�)

(Proposition II.4(3)), we see that the image of

the above in
lusion map 
oin
ides with the subspa
e

P

w2W

V

w:�

. The remaining

assertions are 
lear.

Lemma II.6. Let g = g

1

� g

2

be a dire
t sum de
omposition of g .

(i) If V is a simple g-module whi
h 
ontains a simple g

1

-submodule V

1

with

End

g

1

(V

1

) = K 1 , then there exists a simple g

2

-module V

2

su
h that V

�

=

V

1


 V

2

.

(ii) If V

1

is a simple g

1

-module with End

g

1

(V

1

) = K1 and V

2

a simple g

2

-module,

then V := V

1


 V

2

is a simple g-module with End

g

(V )

�

=

1
 End

g

2

(V

2

) .

Proof. (i) The subspa
e V

0

:=

P

D2U(g

2

)

�

V

(D):V

1

is a g -submodule of V , and

ea
h subspa
e �

V

(D):V

1

either is zero or a simple g

1

-submodule isomorphi
 to V

1

.

In view of the simpli
ity of V , we 
on
lude that V = V

0

and hen
e that V is a

semisimple isotypi
 g

1

-module. Therefore there exists a trivial g

1

-module V

2

with

V

�

=

V

1


 V

2

as g

1

-modules. In view of [Ne99, Lemma IX.4.7℄, the assumption

End

g

1

(V

1

) = K1 implies that

End

g

1

(V )

�

=

End

g

1

(V

1


 V

2

) = 1
 End(V

2

):

Hen
e �

V

(g

2

) � End

g

1

(V ) implies that there exists a homomorphism �

V

2

: g

2

!

End(V

2

) with �

V

(X) = 1
 �

V

2

(X) for X 2 g

2

. This proves that V

�

=

V

1


 V

2

as

g -modules, and the simpli
ity of V implies that V

2

is a simple g

2

-module.

(ii) Ja
obson's Density Theorem ([La74, Th. XVII.3.2℄) implies that for ea
h �nite

dimensional subspa
e E � V

1

we have

Hom(E; V

1

) = �

V

1

(U(g

1

)) j

E

:

For ea
h linearly independent subset fe

1

; : : : ; e

n

g � V

1

we thus obtain elements

D

j

2 U(g

1

) with D

j

:e

k

= Æ

kj

e

j

.

Now let 0 6= z :=

P

n

j=1

x

j


 y

j

2 V

1


 V

2

and assume w.l.o.g. that the

x

j

are linearly independent and y

j

6= 0 for ea
h j . We have to show that z

generates V

1


 V

2

as a g -module. With Ja
obson's Density Theorem we obtain an

element D 2 U(g

1

) with D:x

j

= 0 for j = 2; : : : ; n and D:x

1

= x

1

. Therefore
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the g -submodule of V generated by z 
ontains the element D:z = x

1


 y

1

. Now

U(g

1

)D:z = U(g

1

):x

1


y

1

= V

1


y

1

and further U(g

2

):(V

1


y

1

) = V

1


U(g

2

):y

1

=

V

1


 V

2

. The se
ond assertion follows from the argument in the proof of (i).

The following theorem provides 
ru
ial information on the rough stru
ture of

weight modules of a dire
t sum Lie algebra g = g

1

� g

2

whi
h are small for g

1

.

The essential information is that these modules are tensor produ
ts of modules of

g

1

and g

2

, where the g

1

-module is small and therefore well behaved, whereas there

is no further information available on the g

2

-module.

Theorem II.7. (Fa
torization Theorem) Let g = g

1

� g

2

and V a simple g-

module whi
h is a small weight module for g

1

. Then there exists an integrable

highest weight module L(�) of g

1

and a simple g

2

-module V

2

with V

�

=

L(�)
 V

2

:

Proof. A

ording to Corollary II.2, V is a semisimple g

1

-module, hen
e 
ontains

a simple submodule V

1

. Now V

1

�

=

L(�) for some � 2 h

�

1

(Proposition II.1), so

that End

g

1

(V

1

) = K 1 . Therefore Lemma II.6 applies.

Remark II.8. Let V be a weight module of the 
ommutator algebra g

0

:= [g; g℄

with respe
t to the splitting Cartan subalgebra h

0

:= h \ [g; g℄ = span

�

� and

re
all that

�

� separates the points of span� (
f. [St99a, Prop. III.7℄). Then we

may identify the group Z[�℄ with a subset of h

�

0

. In this sense, for every weight

� 2 P

V

� h

�

0

the subspa
e V (�) :=

P

�2Z[�℄

V

�+�

is a submodule, and V is the

dire
t sum of su
h submodules. Therefore we may assume that P

V

� � + Z[�℄.

Now we extend � to an element e� 2 h

�

and de�ne an a
tion on the weight spa
e

V

�+�

, � 2 Z[�℄, by x:v := (e�(x)+�(x))v for x 2 h . One dire
tly veri�es that we

thus obtain a representation of the whole Lie algebra g on V whi
h has the same

submodules. In this sense all 
lassi�
ation problems for weight modules of g 
an

dire
tly be redu
ed to modules of the semisimple 
ommutator algebra g

0

.

We also observe that if V is a simple weight module for g and � 2 P

V

,

then P

V

� � + Z[�℄ implies that ea
h g

0

-submodule is adapted to the weight

de
omposition, showing that V is a simple g

0

-module.

III. The 
lassi�
ation of simple small modules

In this se
tion we des
ribe the 
lassi�
ation of simple small weight modules. Sin
e

all small weight modules are semisimple (Corollary II.2), this yields a des
ription

of all small weight modules. First we redu
e the situation to the 
ase of simple Lie

algebras.
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Lemma III.1. Let [g; g℄ =

L

j2J

g

j

be the de
omposition into simple ideals,

h

j

:= h \ g

j

, � 2 P , and �

j

:= � j

h

j

. Then the integrable highest weight module

L(�) is small if and only if all the integrable highest weight modules L(�

j

) of the

ideals g

j

are small.

Proof. Let v

�

2 L(�) be a primitive element. Sin
e the g

j

-submodule U(g

j

):v

�

is isomorphi
 to L(�

j

), all these modules are small if L(�) is small.

If, 
onversely, all the modules L(�

j

) are small and � 2 �, then there exists

a j 2 J with g

�

� g

j

. Now

L(�) = U

�

M

i6=j

g

i

�

U(g

j

):v

�

implies that P

L(�)

(��) = P

L(�

j

)

(��) � f�1; 0; 1g be
ause U

�

L

i6=j

g

i

�


ommutes

with �� , hen
e preserves its eigenspa
es. Therefore L(�) is small.

In view of the pre
eding lemma, it suÆ
es to 
lassify the simple small modules

for simple Lie algebras. We will see in Proposition V.2 below how these modules 
an

be put together to a module of the big Lie algebra g by an in�nite tensor produ
t


onstru
tion.

De�nition III.2. A root system of a lo
ally �nite split semisimple Lie algebra is


alled a root system of semisimple type. It is 
alled irredu
ible if the 
orresponding

Lie algebra is simple.

A

ording to [NeSt99℄ (see also [Ka73℄, [KaKi75℄), for ea
h in�nite 
ardinal

represented by a set J , there exist (up to linear equivalen
e) exa
tly four irredu
ible

root systems of semisimple type A

J

, B

J

, C

J

and D

J

des
ribed below. These root

systems still make sense for �nite sets J , where we assume that jJ j � 2 for A

J

and

B

J

, jJ j � 3 for C

J

, and jJ j � 4 for D

J

. We also have the ex
eptional �nite root

systems E

6

, E

7

, E

8

, F

4

and G

2

(
f. [Bou90, Ch. 8℄). We 
all the root systems of

types A{D root systems of 
lassi
al type.

Here we realize the root systems of 
lassi
al type in the subspa
e Q

J

� K

J

whi
h is the dual spa
e of the Q -ve
tor spa
e Q

(J)

with the 
anoni
al basis (e

j

)

j2J

.

We write "

j

2 Q

J

for the elements of the 
orresponding \dual basis" determined

by "

j

(e

k

) = Æ

jk

. Then

A

J

:= f"

j

� "

k

: j; k 2 J; j 6= kg;

B

J

:= f�"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg;

C

J

:= f�2"

j

;�"

j

� "

k

: j; k 2 J; j 6= kg; and

D

J

:= f�"

j

� "

k

: j; k 2 J; j 6= kg:
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Our notation for A

J

is su
h that A

f1;:::;ng

�

=

A

n�1

in the �nite-dimensional

notation. For a more detailed dis
ussion of the 
orresponding in�nite-dimensional

Lie algebras we refer to [NeSt99℄.

In the following we 
all a weight � 2 P small if L(�) is a small weight module.

For a subset M � J we put "

M

:=

P

j2M

"

j

2 Q

J

�

=

(Q

(J)

)

�

and 
onsider it as the

linear fun
tional on Q

(J)

given by "

M

(x) =

P

j2M

x

j

(all these sums are �nite).

We write M




:= J nM for the 
omplement of M in J .

Theorem III.3. (Classi�
ation of small weight modules) In the following we

represent a weight � 2 P � h

�

as a fun
tion J ! K , i.e., as an element of K

J

.

We assume that � 6= 0 .

(A

J

) A weight � of A

J

is small if and only if it 
an be represented as � = "

M

for

a subset M � J . Its Weyl group orbit is given by

W:� = f"

N

: jM nN j = jN nM j <1g:

(B

J

) A weight � of B

J

is small if and only if there exists a subset M � J with

� =

1

2

("

M

� "

M




) . Its Weyl group orbit is given by

W:� =

n

1

2

("

N

� "

N




): jM nN j; jN nM j <1

o

:

(C

J

) The small weights of C

J

are �"

j

, j 2 J . They form a single W -orbit.

(D

J

) The small weights for D

J

are the weights �"

j

, j 2 J , whi
h form a single

W -orbit, and the weights � =

1

2

("

M

� "

M




) whose W -orbits are given by

W:� =

n

1

2

("

N

� "

N




): jM nN j; jN nM j <1; jM nN j � jN nM j 2 2Z

o

:

(E

n

) For E

6

there exist two W -orbits of small weights and for E

7

there is one.

For the other ex
eptional root systems there is none.

Proof. (A

J

) Suppose that � is small and observe that this implies in parti
ular

that there exists an m 2 K su
h that �(J) � m + Z , and �(J)�m is a bounded

subset of Z . Therefore we may assume that �(J) � m�N

0

. Repla
ing m by m�n

for a suitable n 2 N

0

, we even may assume that m 2 �(J). Now �(��) 2 f0; 1;�1g

for � = "

j

� "

k

, j 6= k , implies that �(J) � fm;m� 1g , i.e., there exists a subset

M � J with � = m"

M

+ (m� 1)"

M




. Subtra
ting the 
onstant fun
tion m� 1 on

J does not 
hange the represented weight, so that we obtain � = "

M

. Conversely,

it is 
lear that "

M

is a small weight. The des
ription of the W -orbit follows dire
tly

from the fa
t that W a
ts as the group S

(J)

of �nite permutations of the set J .

(B

J

) From �"

j

= 2e

j

we derive that �(J) � f0;�

1

2

g , but sin
e � is assumed to

be non-zero, the integrality implies that �(J) � f�

1

2

g , i.e., � =

1

2

("

M

� "

M




) for

M := �

�1

(

1

2

). That, 
onversely, all these weights are small is 
lear. The des
ription
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of the W -orbit follows from the fa
t that W a
ts as the group f�1g

(J)

o S

(J)

of

�nite signed permutations on K

J

.

(C

J

) From (2"

j

)�= e

j

we derive that �(J) � f0;�1g , and the smallness implies

that j�

�1

(f�1g)j � 1 and f�1g 6� �(J). Hen
e � = �"

j

for some j 2 J .

The des
ription of the W -orbit follows from the fa
t that W a
ts as the group

f�1g

(J)

o S

(J)

of �nite signed permutations on K

J

.

(D

J

) It is 
lear that the weights �"

j

, j 2 J , are small. These are the only

small weights for whi
h �

j

6= 0 holds for only one j 2 J . Next we assume that

�

j

; �

k

6= 0 holds for some j 6= k 2 J . Then we get �(J) � f�

1

2

g and therefore

� =

1

2

("

M

� "

M




) for some subset M � J . The des
ription of the W -orbit follows

from the fa
t that W a
ts as the subgroup of those elements (a; �) 2 f�1g

(J)

oS

(J)

for whi
h the set fj 2 J : a

j

= �1g has even 
ardinality.

(E

n

) See [Bou90, Ch. 8, no. 7.3℄.

Remark III.4. For the appli
ations that we have in mind, we will also need

information on whether for a small highest weight module L(�) the 
orresponding

operators �

�

(x), x 2 g , are of �nite rank. Sin
e the Lie algebra g 
orresponding

to an irredu
ible root systems is simple and the operators of �nite rank in gl

�

L(�)

�

form a Lie algebra ideal, the following are equivalent:

(1) All operators �

�

(x), x 2 g , are of �nite rank.

(2) There exists a root � 2 � su
h that �

�

(��) is of �nite rank, whi
h means that

the set f� 2 W:�:�(��) 6= 0g is �nite.

Condition (2) 
an easily be 
he
ked for the weights � showing up in Theorem

III.3. Of 
ourse, we may assume that J is in�nite, be
ause otherwise all modules

L(�) are �nite-dimensional.

(A

J

) If � is 
onstant, then L(�)

�

=

L(0)

�

=

K is trivial. If � is not 
onstant and M

and M





ontain at least two elements, then one easily �nds an �� su
h that �

�

(��)

has in�nite rank. If jM j = 1, then we obtain � = "

j

for M = fjg . Therefore

L(�)

�

=

K

(J)

is the identi
al representation for whi
h all the operators are of �nite

rank. For jM




j = 1 we obtain the dual weight module whi
h also has this property

(
f. De�nition I.4(
)).

For general M the fun
tional � =

P

j2M

"

j

is the highest weight of the

representation of g = sl(J; K ) on the spa
e �

(M)

(K

(J)

) whi
h we des
ribe in

Se
tion V below. If M is �nite, then this spa
e is the jM j -th exterior power

�

jMj

(K

(J)

) with the basis elements e

j

1

^ : : : ^ e

j

k

, where k = jM j .

(B

J

) If � is small, then � =

1

2

("

M

� "

M




) and ea
h W -
onjugate of � has this

form. For j 2 J the relation �(�"

j

) 6= 0 for ea
h � 2 W:� therefore shows that

�

�

(�"

j

) has in�nite rank.

Up to automorphisms of the 
orresponding Lie algebra g , respe
tively the

root system (
f. [St99b℄), we may assume that � =

1

2

P

j2J

"

j

. This is the highest
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weight of the spin representation of g on the spa
e �(K

(J)

) :=

L

1

k=0

�

k

(K

(J)

) (see

Se
t. V in [Ne98℄).

(C

J

) Let J

�

:= J

_

[�J , where �J is a 
opy of the set J whose elements we denote

by �j , j 2 J . On K

(J

�

)

we 
onsider the skew-symmetri
 bilinear form given by


(v; w) =

X

j2J

(v

j

w

�j

� v

�j

w

j

)

and put

sp(J; K ) := fX 2 gl(J

�

; K ): (8v; w 2 K

(J

�

)

) 
(X:v; w) + 
(v;X:w) = 0g:

This Lie algebra is simple split with splitting Cartan subalgebra

h

1

= span

K

fE

jj

� E

�j;�j

: j 2 Jg;

where E

jk

, j; k 2 J , denote the 
anoni
al matrix units. The 
orresponding root

system is of type C

J

, where "

j

(E

kk

�E

�k�k

) = Æ

jk

for j; k 2 J .

In this 
ase the only small module is the identi
al representation of sp(J; K )

on K

(J

�

)

whi
h is a representation by �nite rank operators.

(D

J

) On K

(J

�

)

we 
onsider the symmetri
 bilinear form given by

�(v; w) =

X

j2J

(v

j

w

�j

+ v

�j

w

j

)

and put

o(J

�

; K ) := fX 2 gl(J

�

; C ): (8v; w 2 K

(J

�

)

) �(X:v; w) + �(v;X:w) = 0g:

This Lie algebra is simple split with splitting Cartan subalgebra h

1

= span

K

fE

jj

�

E

�j;�j

: j 2 Jg; where E

jk

, j; k 2 J , denote the 
anoni
al matrix units. The


orresponding root system is of type D

J

, where "

j

(E

kk

�E

�k�k

) = Æ

jk

for j; k 2 J .

The weights � = �"

j


orrespond to the identi
al representation of o(J

�

; K )

on K

(J

�

)

whi
h is a representation by �nite rank operators. Next we assume that

� =

1

2

("

M

� "

M




). Then either M or M




is in�nite, and we assume that M is.

Pi
k a 6= b 2 M . Then we 
an ex
hange every element in M n fa; bg with a �xed

element 
 2M




and thus obtain in�nitely many weights in W:� whi
h are non-zero

on the 
oroot of "

a

+ "

b

. Therefore the operators �

�

(x), x 2 g , are of in�nite rank.

The standard spin representation on �(K

(J)

) de
omposes for ea
h m 2 J as

the dire
t sum of representations of highest weight

1

2

X

j2J

"

j

and

�

1

2

X

j2J

"

j

�

� "

m

:



15

The pre
eding dis
ussion shows that the only simple small modules V for

whi
h the operators �

V

(x), x 2 g , are of �nite rank are the identi
al representation

for A

J

, C

J

and D

J

and the dual of the identi
al representation for A

J

. For C

J

and D

J

the identi
al representation is self-dual as a weight representation.

Problems III. Classify the (simple) �nite weight modules of semisimple lo
ally

�nite split Lie algebras. For the 
ase of 
ountably dimensional Lie algebras g , this

has been done in [DiPe99℄. Important questions in this 
ontext are: Are �nite weight

modules always semisimple? Are simple weight modules restri
ted to semisimple

subalgebras always semisimple modules?

IV. 2-graded weight modules

For the des
ription of those lo
ally �nite involutive Lie algebras whi
h admit a

faithful unitary highest weight representation, we have to study the following type

of modules (
f. [Ne00b℄). We 
onsider a 3-graded lo
ally �nite split almost redu
tive

Lie algebra

g = g

�1

� g

0

� g

1

;

where g

0


ontains a splitting Cartan subalgebra h , and we are interested in graded

weight modules V of the graded Lie algebra g whi
h are 2-graded in the sense that

V = V

�

� V

+

, where

g

0

:V

�

� V

�

; g

�1

:V

�

� V

�

and g

�1

:V

�

= f0g:

Sin
e g

0

is assumed to 
ontain a splitting Cartan subalgebra h , the root

de
omposition of g leads to a disjoint de
omposition � = �

�1

_

[�

0

_

[�

1

; where

�

�1

= ��

1

.

Example IV.1. A typi
al example of su
h a gradation arises as follows. Let J

be a set and g := gl(J; K ) be the Lie algebra of �nite J � J -matri
es. We further

�x a subset M � J . We thus obtain a dire
t sum de
omposition of the spa
e

V := K

(J)

= V

+

�V

�

= K

(M)

�K

(JnM)

. Writing the elements of g a

ordingly as

2� 2-blo
k matri
es X =

�

a b


 d

�

, we get the gradation g = g

1

� g

0

� g

�1

with

g

1

=

n

�

0 b

0 0

�

o

; g

0

=

n

�

a 0

0 d

�

o

and g

�1

=

n

�

0 0


 0

�

o

:
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Lemma IV.2. If g is simple, then g

1

is a simple g

0

-module and g

0

= [g

1

; g

�1

℄ .

Proof. Let f0g 6= W � g

1

be a g

0

-invariant subspa
e. Then W is invariant

under the subalgebra g

0

+ g

1

, so that the ideal generated by W is given by

W + [g

�1

;W ℄ +

�

g

�1

; [g

�1

;W ℄

�

� g

1

� g

0

� g

�1

:

We 
on
lude that W = g

1

and g

0

= [g

�1

; g

1

℄ . It follows that g

1

is a simple g

0

-

module.

Lemma IV.3. There exists a unique linear fun
tional f : span

K

[�℄ ! K with

�

�1

= f

�1

(�1) and �

0

= f

�1

(0) .

Proof. Wemay w.l.o.g. assume that g is simple, be
ause we 
an put the fun
tions

f 
orresponding to the simple ideals of [g; g℄ together. Moreover, we assume that

g

1

6= f0g , otherwise we may take f = 0. Now � := �

0

[�

1

is a paraboli
 system.

Let � 2 �

1

. We 
laim that � 62 span�

0

. Suppose that this is false and that

(4:1) � =

k

X

j=1

m

j

�

j

with �

j

2 �

0

and m

1

; : : : ;m

k

2 K . Then there exists a �nite-dimensional

semisimple h -invariant subalgebra a � g with a\ g

1

6= f0g and �; �

1

; : : : ; �

k

2 �

a

(
f. [St99a, Prop. V.5℄). Sin
e �

a

:= �\�

a

is a paraboli
 system in the �nite root

system �

a

, the fa
t that � 2 �

a

n ��

a

implies

� 62 span(�

a

\ ��

a

):

This 
ontradi
ts (4.1), and we 
on
lude that K � \ span�

0

= f0g . Hen
e there

exists a linear fun
tional f : span

K

�! K with f(�) = 1 and �

0

� ker f .

Sin
e g

1

is a simple g

0

-module (Lemma IV.2), for ea
h � 2 �

1

we have �

1

�

� + Z[�

0

℄; showing that f(�

1

) = f1g , and we likewise see that f(�

�1

) = f�1g .

The uniqueness of f follows trivially from the requirements.

De�nition IV.4. Let � be a root system of semisimple type. A partition � =

�

�1

_

[�

0

_

[�

1

is 
alled a 3-grading if g

�1

:=

P

�2�

�1

g

�

and g

0

:= h+

P

�2�

0

g

�

de�nes a 3-grading of g (
f. [NeSt99℄ and [Ne90℄). It is 
lear that ea
h 3-grading

is 
ompletely determined by the set �

1

.
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Proposition IV.5. The sets �

1


orresponding to 3-gradings of the root systems

� = A

J

; B

J

; C

J

; D

J

are given by

(A

J

) A

J

(M)

1

= f"

j

� "

k

: j 2M;k 62Mg , where M � J is a subset.

(B

J

) B

J

(m)

1

= f"

m

g [ f"

m

� "

j

: j 6= mg , where m 2 J .

(C

J

) C

J

(M)

1

= f"

j

�"

k

: j 2M;k 62Mg[f"

j

+"

k

: j; k 2Mg[f�"

j

�"

k

: j; k 62Mg ,

where M � J is a subset.

(D

J

) D

J

(m)

1

= f"

m

�"

j

: j 6= mg = B

J

(m)

1

\D

J

, where m 2 J , or by D

J

(M)

1

=

C

J

(M)

1

\D

J

.

The 
orresponding fun
tions f are given by f(�) = �(e

m

) for B

J

(m)

1

and

D

J

(m)

1

, and by

f(�) =

1

2

�

X

j2M

�(e

j

)�

X

j 62M

�(e

j

)

�

for A

J

(M)

1

, C

J

(M)

1

and D

J

(M)

1

.

Proof. [NeSt99, Prop. VII.2℄.

Having des
ribed the possible 3-gradings of irredu
ible root systems, we now

turn to the des
ription of the 
orresponding 2-graded modules.

Lemma IV.6. The subspa
e g

a

:= g

1

+ g

�1

+ [g

1

; g

�1

℄ � [g; g℄ is an ideal of g .

Proof. This is a trivial 
al
ulation.

If g is semisimple, then we 
an write it as g = g

a

� g

b

, where g

b

is an ideal

of g 
ontained in g

0

. In the following g denotes an almost redu
tive lo
ally �nite

split Lie algebra with 3-grading.

Proposition IV.7. Let V be a 2-graded weight module of g . Then the following

assertions hold:

(i) If V is simple and V

�

6= f0g , then V

�

are simple g

0

-modules with g

�1

:V

�

=

V

�

and V

�

= V

g

�1

:= fv 2 V : �

V

(g

�1

):v = f0gg .

(ii) V is a small weight module for the ideal g

a

.

(iii) For �; � 2 �

1

and � 2 P

V

+
with �(��) = �(

�

�) = 1 , we have �(

�

�) > 0 .

(iv) V is a semisimple g

a

-module.

Proof. (i) Let W � V

+

be a non-zero g

0

-submodule. Then the Poin
ar�e{

Birkho�{Witt Theorem implies that

U(g):W =W + �

V

(g

�1

):W � V

+

� V

�

;

so that the simpli
ity of V leads to W = V

+

and V

�

= �

V

(g

�1

):V

+

. This proves

that V

+

is a simple g

0

-module. Likewise we see that V

�

is a simple module and

that V

+

= g

1

:V

�

.

In view of the de�nition of a 2-graded module, we have V

+

� V

g

1

, so that

V

g

1

= V

+

+ (V

�

\ V

g

1

). The subspa
e V

�

\ (V

g

1

) is annihilated by g

1

and
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g

�1

and invariant under g

0

, hen
e a submodule. Now the simpli
ity of V yields

V

g

1

\ V

�

= f0g , so that V

g

1

= V

+

. Likewise we get V

�

= V

g

�1

.

(ii) If � 2 �

1

, then the g(�)-module generated by a weight ve
tor v

�

2 V

�

\V

+

is

a simple module of g(�)

�

=

sl(2; K ) of dimension �(��)+1: Sin
e V is 2-graded, we

have x

2

��

:v

�

= 0 for ea
h x

��

2 g

��

. Thus �(��) 2 f0; 1g holds for ea
h � 2 �

1

.

If � 2 �

g

a

;0

, then g

a

\ g

0

= [g

1

; g

�1

℄ (Lemma IV.6) implies that there exists

an � 2 �

1

with �(��) 6= 0. We now have

(r

�

:�)(��)

| {z }

2f0;1g

= �(��)

|{z}

2f0;1g

��(

�

�)�(��):

Hen
e �(

�

�)�(��) 2 f�1; 0; 1g and sin
e �(��) is a non-zero integer, we see that

�(

�

�) 2 f�1; 0; 1g holds for all � 2 �

g

a

;0

. We 
on
lude that �(��) 2 f0;�1g for all

� 2 �

g

a

, i.e. that V is a small g

a

-module.

(iii) Sin
e �(��) = 1, the fun
tional r

�

:� = �� � is a weight of V

�

, and therefore

g

��

:V

�

= f0g yields 0 � (r

�

:�)(

�

�) = �(

�

�)� �(

�

�) = 1� �(

�

�); so that �(

�

�) > 0.

(iv) follows dire
tly from Corollary II.2.

Lemma IV.8. If g = a � b is a dire
t sum of graded Lie algebras and V is a

simple 2-graded weight module with �

V

(a

1

) 6= f0g , then �

V

(b

1

) = f0g .

Proof. The assumption �

V

(a

1

) 6= f0g implies that a

1

:V

�

� V

+

is non-zero.

Moreover, it is a g

0

-submodule, and therefore 
oin
ides with V

+

(Proposition

IV.7(i)). We 
on
lude that b

�1

:V

+

= a

1

b

�1

:V

�

= f0g , so that b

�1

annihilates V ,

and likewise b

1

annihilates V .

Proposition IV.9. Suppose that g is almost redu
tive, V a simple 2-graded

weight module, and a E g

a

a simple ideal with �

V

(a

1

) 6= f0g . Then all other

simple ideals b E g

a

a
t trivially on V .

Proof. This is an immediate 
onsequen
e of Lemma IV.8 applied to the semisim-

ple ideal [g; g℄ of g for whi
h V is a simple module (see Remark II.8).

In view of Proposition IV.7(iv), to des
ribe the 2-graded weight modules

of g , it suÆ
es to des
ribe those whi
h are isotypi
 for g

a

. These 
an be written

as V = V

1


 V

2

, where V

2

is a simple weight module of g

b

and V

1

is a simple

2-graded weight module of g

a

. Suppose that V

1

is non-trivial as a g

1

-module.

In view of Proposition IV.9, there exists a unique simple ideal g

V

E g

a

a
ting

non-trivially on V

1

, and all others a
t trivially. If, 
onversely, V

1

is a simple 2-

graded weight module of a simple ideal g

V

E g

a

, and V

2

a simple g

b

-module,

then End

g

V

(V

1

) = K 1 follows from the fa
t that V

1

is an integrable highest weight

module, and Lemma II.6(ii) implies that V := V

1


 V

2

is a simple 2-graded weight

module of g , where the gradation of V is given by V

�

:= V

�

1


 V

2

.
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Therefore we are essentially left with the problem to determine those small

weight modules of a simple 3-graded Lie algebra g whi
h are 2-graded. The

following lemma provides a handy 
riterion.

Lemma IV.10. Let f : span�! K be a linear fun
tional de�ning the 3-grading

of � in the sense of Lemma IV.3, and V = L(�) an integrable highest weight

module. Then the following are equivalent:

(1) V is 2-graded.

(2) f(P

L(�)

� �) is a two-element set.

Proof. (1) ) (2): Suppose that V = V

+

� V

�

is a 2-graded g -module.

Then V

�

are simple g

0

-modules, so that the fun
tion f is 
onstant on the subsets

P

V

�
� P

V

.

(2) ) (1): Suppose that f(�� P

�

) � fm;Mg , where m < M . Then

V

+

:=

X

�2P

L(�)

;f(���)=m

V

�

and V

�

:=

X

�2P

L(�)

;f(���)=M

V

�

yields a de
omposition V = V

+

� V

�

whi
h is a 2-gradation of the g -module V .

Note that M = m+ 1 holds automati
ally.

Now it only remains to 
he
k the 
ondition of Lemma IV.10 for the modules

o

urring in Theorem III.3, where the fun
tional f is as in Proposition IV.5.

Theorem IV.11. (Classi�
ation of 2-graded simple modules) For a simple 3-

graded split Lie algebra g the non-trivial simple 2-graded modules are the following:

(A

J

) For �

1

= A

J

(fmg)

1

all small modules L("

N

) , N � J , are 2-graded.

(A

J

) For �

1

= A

J

(M)

1

with jM j > 1 and jM




j > 1 only the module L("

j

)

�

=

K

(J)

(not depending on j 2 J ), and the dual weight module L(�"

j

) are 2-graded.

(B

J

) For �

1

= B

J

(m)

1

only the spin representation on L(

1

2

"

J

)

�

=

�(C

(J)

) and

the quasi-equivalent representations with highest weight � =

1

2

("

M

� "

M




) ,

M � J , are 2-graded.

(C

J

) For �

1

= C

J

(M)

1

only the identi
al representation on L(�"

j

)

�

=

K

(J

�

)

is

2-graded.

(D

J

)For �

1

= D

J

(m)

1

only the two simple 
onstituents of the spin representation

on �(K

(J)

) and the 
orresponding quasi-equivalent representations are 2-

graded.

(D

J

)For �

1

= D

J

(M)

1

only the identi
al representation on L(�"

j

)

�

=

K

(J

�

)

and

for jJ j = 4 the module L(�)

�

=

�

odd

(K

4

) with � =

1

2

("

1

+ "

2

+ "

3

� "

4

) is

2-graded.

(E

n

) For the ex
eptional algebras there are no 2-graded modules.

Proof. In view of [Ne99, Th. A.V.6℄, there exists no 2-graded simple modules

for the ex
eptional algebras, so that we may assume that � is of 
lassi
al type.
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(A

J

) For �

1

= A

J

(fmg)

1

we have f(�) = �(e

m

) (Proposition IV.5). A

ording

to Theorem III.3, we may assume that � = "

N

for some subset N � J . Then the

weight set of L(�) is given by

W:� = f"

K

: jK nN j = jN nKj <1g:

In view of f(W:�) = f0; 1g; the module L(�) is 2-graded.

For �

1

= A

J

(M)

1

with jM j; jM




j > 1 we have f(�) =

P

j2M

�(e

j

) (Propo-

sition IV.5). Again, we may assume that � = "

N

for some subset N � J . If

jN j = 1, then

W:� = f"

j

: j 2 Jg;

so that f(W:�) = f1; 0g implies that L(�) is 2-graded, and for jN




j = 1 one argues

similarly. Assume that jN j; jN




j > 1. Then

W:�� � = f"

K

� "

N

: jK nN j = jN nKj <1g

= f"

KnN

� "

NnK

: jK nN j = jN nKj <1g

= f"

M

1

� "

M

2

: jM

1

j = jM

2

j <1;M

1

� N




;M

2

� Ng:

Sin
e we may assume that � is �

1

-dominant, we have M � N or N � M

be
ause otherwise there exists an m 2 M n N and an n 2 N nM whi
h leads

to �(e

m

� e

n

) = �1.

Suppose �rst that M � N . Then f("

M

1

� "

M

2

) = �jM

2

\ M j , so that

�2 2 f(W:�� �) implies that this set 
ontains the three numbers f0;�1;�2g . If

N �M , then

f("

M

1

� "

M

2

) = jM

1

j � jM

2

\M j;

so that 2 2 f(W:�� �) implies that this set 
ontains the three numbers f0; 1; 2g .

In both 
ases we see that L(�) is not 2-graded.

(B

J

) For �

1

= B

J

(m)

1

we have f(�) = �(e

m

) (Proposition IV.5). A

ording to

Theorem III.3, we may assume that � =

1

2

("

M

� "

M




) for some subset M � J .

Then the weight set of L(�) is given by

W:� =

n

1

2

("

N

� "

N




): jM nN j; jN nM j <1

o

;

and we see that f(W:�) = f�

1

2

g , showing that L(�) is 2-graded. That all

these modules are quasi-equivalent to the spin representation, whi
h 
orresponds

to M = J , follows from the fa
t that there exists an automorphism ' of g with

'(h) = h su
h that (' j

h

)

�

� =

1

2

"

J

(
f. [St99b℄).

(C

J

) For �

1

= C

J

(M)

1

we have f(�) =

1

2

�

P

j2M

�(e

j

) �

P

j2M




�(e

j

)

�

. The

only small module L(�) is the identi
al representation on K

(J

�

)

with the weight

set P

L(�)

= f�"

j

: j 2 Jg . Now f(P

L(�)

) = f�

1

2

g shows that L(�) is 2-graded.
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(D

J

) For �

1

= D

J

(m)

1

we have f(�) = �(e

m

) (Proposition IV.6). For � = "

j

we

have W:� = f�"

k

: k 2 Jg , so that f(W:�) = f0; 1;�1g , and therefore L(�) is not

2-graded. Now we assume that � =

1

2

("

M

� "

M




) for some subset M � J . Then

we weight set of L(�) is given by

W:� =

n

1

2

("

N

� "

N




): jM nN j; jN nM j <1; jM nN j � jN nM j 2 2Z

o

;

and we see that f(W:�) = f�

1

2

g , showing that L(�) is 2-graded.

For �

1

= D

J

(M)

1

we have f(�) =

1

2

�

P

j2M

�(e

j

) �

P

j2M




�(e

j

)

�

whi
h

immediately shows that for � = "

j

the module L(�) is 2-graded. We note that,

under the automorphism of the root system given by "

j

7! �"

j

for j 2 M and

�xing the other "

j

's, this 3-grading is 
onjugate to the one de�ned by M = J ,

so that �

1

= D

J

(J)

1

and f(�) =

1

2

P

j2J

�(e

j

). Therefore we may assume that

M = J .

We 
onsider � =

1

2

("

N

� "

N




) for some subset N � J . Then we have

W:�� �

=

n

1

2

("

K

� "

K




� "

N

+ "

N




): jK nN j; jN nKj <1; jK nN j � jN nKj 2 2Z

o

=

n

"

KnN

� "

NnK

: jK nN j; jN nKj <1; jK nN j � jN nKj 2 2Z

o

and

f("

KnN

� "

NnK

) =

1

2

(jK nN j � jN nKj):

If jJ j � 5, then we may w.l.o.g. assume that N 
ontains at least four elements

(otherwise we may add roots in �

1

to �). Then there exists a K � N with

N nK = 4, so that we obtain the value �2 for f . So let us assume that jJ j = 4

and that jN j < 4. By the same argument as above, we may assume that jN j = 3.

Then jK nN j � 1 and jN nKj � 3 yield f("

KnN

� "

NnK

) 2 [�

3

2

;

1

2

℄ and therefore

f("

KnN

� "

NnK

) 2 f�1; 0g . This proves that L(�) is 2-graded. It is the odd part

�

odd

(K

4

) = �

1

(K

4

)� �

3

(K

4

) of the spin representation on �(K

4

).

V. In�nite tensor produ
ts

Let (V

i

)

i2I

be a family of ve
tor spa
es and F denote the free ve
tor spa
e on

the 
artesian produ
t

Q

i2I

V

i

. A map m:

Q

i2I

V

i

! W into a ve
tor spa
e W is



22


alled multilinear if it is linear in ea
h argument provided that all other arguments

are �xed. For i 2 I let F

i

� F be the subspa
e generated by elements of the type

(x

0

; x

i

+y

i

)�(x

0

; x

i

)�(x

0

; y

i

); �(x

0

; x

i

)�(x

0

; �x

i

); x

i

; y

i

2 V

i

; x

0

2

Y

j 6=i

V

j

; � 2 K :

We put

N

i2I

V

i

:= F=

P

i

F

i

: Then we have a natural map m:

Q

i2I

V

i

!

N

i2I

V

i

whi
h is multilinear, and one easily 
he
ks that ea
h multilinear map

Q

i2I

V

i

!W

fa
tors uniquely through m .

From this universal property, it follows immediately that for ea
h 
olle
tion

of linear maps A

i

2 End(V

i

), we obtain a linear map




i2I

A

i

2 End

�

O

i2I

V

i

�

with 


i2I

A

i

:m((v

i

)

i2I

) = m((A

i

:v

i

)

i2I

)

be
ause the right hand side de�nes a multilinear map

Q

i2I

V

i

!

N

i2I

V

i

.

Let g =

L

i2I

g

i

be a dire
t sum of Lie algebras. If for ea
h i 2 I the spa
e V

i

is a g

i

-module, then

N

i2I

V

i


arries a natural g -module stru
ture with the ideals

g

i

a
ting by

�(x

i

):


j2I

v

j

= x

i

:v

i


 (


j 6=i

v

j

):

Note that if g

i

= d for all i 2 I , then this 
onstru
tion does not lead to a

representation of d on the tensor produ
t spa
e be
ause, if I is in�nite, then the

diagonal algebra d is not 
ontained in the dire
t sum Lie algebra g .

Now suppose that I is a set and that V

i

= V for all i 2 I . Then the restri
ted

symmetri
 group S

(I)

a
ts on the spa
e T :=

N

i2I

V

i

. We 
onsider the subspa
e

U := spanf�:x� "(�)x:x 2 T; � 2 S

(I)

g � T

and de�ne

�

I

(V ) := T=U and ^

i2I

v

i

:= 


i2I

v

i

+ U:

Then we have a natural map ^:

Q

i2I

V

i

! �

I

(V ) whi
h is multilinear and alter-

nating, and it is easy to see that ea
h alternating multilinear map

Q

i2I

V

i

! W

fa
tors through ^ .

The 
onstru
tion of a representation of a Lie algebra on subspa
es of the spa
e

�

I

(V ) is a bit subtle. To obtain this representation, we �x for ea
h i 2 I an element

v

i

2 V and 
onsider the subspa
e �

(I)

(V ) := spanf^

i2I

w

i

: jfi:w

i

6= v

i

gj <1g:

Now suppose that V is a module of the Lie algebra g su
h that for ea
h x 2 g

the 
orresponding operator �

V

(x) annihilates all but �nitely many of the v

i

. Then

for ea
h x 2 g the operator

�(x): ^

i2I

w

i

:=

X

i2I

x:w

i

^ (^

j 6=i

w

j

)
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is de�ned be
ause the sum on the right hand side is always �nite. Note that the

expression on the right hand side is not meant as a produ
t in an algebra. It


orresponds to writing the elements of a produ
t set

Q

j2I

X

j

as x = (x

j

)

j2I

=

(x

i

; (x

j

)

j 6=i

) for some i 2 I . We thus obtain a representation � of g on �

(I)

(V ).

A typi
al example of su
h a situation is given by the 
anoni
al representation

of gl(J; K ) on V = K

(J)

. Let (e

j

)

j2J

denote the 
anoni
al basis of V and

M � J be a subset. Then we obtain a representation of g = gl(J; K ) on the

spa
e �

(M)

(K

(J)

) with � =

P

j2M

"

j

as an extremal weight. The typi
al examples

whi
h are dis
ussed in [KR87℄ are J = Z and M = f: : : ;m � 2;m � 1;mg for

m 2 Z .

Lemma V.1. Let g =

L

j2J

g

j

be a dire
t sum of lo
ally �nite almost redu
tive

split Lie algebras and V

j

simple g

j

-weight modules with End

g

j

(V

j

) = K 1 . For ea
h

j 2 J we pi
k a non-zero weight ve
tor v

j

2 V

�

j

j

. Then the submodule

f

N

j2J

V

j

�

N

j2J

V

j

generated by the weight ve
tor v := 


j2J

v

j

of weight � =

P

j2J

�

j

is a

simple g-module.

Proof. If F � J is a �nite subset and g

F

:=

P

j2F

g

j

, then the g

F

-submodule

V

F

generated by v is isomorphi
 to

N

j2F

V

j

whi
h is simple a

ording to Lemma

II.6(ii) applied indu
tively. We 
on
lude that

f

N

j2J

V

j

is an indu
tive limit of

simple g

F

-modules V

F

and therefore a simple g -module.

Proposition V.2. For a simple highest weight module of the dire
t sum g =

L

j2J

g

j

of lo
ally �nite almost redu
tive split Lie algebras g

j

we have

L(�;�

+

; g)

�

=

g

O

i2I

L(�

i

;�

+

i

; g

i

);

where �

i

= � j

h

i

and h

i

:= h \ g

i

is a splitting Cartan subalgebra of g

i

.
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