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Abstract

Let [ be a Lie algebra with a root decomposition and with
semisimple commutator algebra. We assume that [ has a 3-
grading compatible with the root decomposition. In this note we
analyze the structure of the 2-graded weight modules of a 3-
graded Lie algebra . The classification results for such modules
play a key role in the characterization of the locally finite split
Lie algebras with faithful unitary highest weight modules because
they arise in the description of such Lie algebras as semidirect
sums of almost reductive Lie algebras with generalized Heisenberg
algebras.

Introduction

The characterization of the locally finite split Lie algebras with faithful unitary
highest weight modules in [Ne0Ob] shows that these Lie algebras are semidirect
sums g = u X [, where [ is almost reductive, i.e., [1,[] is semisimple (a direct sum of
simple ideals), and u is a generalized Heisenberg algebra, i.e., a two step nilpotent
Lie algebra. Since the structure of both pieces u and [ is quite well understood,
the main point in understanding the structure of g is to understand the action of
[ on u.



The Lie algebra [ has a natural 3-grading [ = [_; & [p @ [;, and we have
u="V x3(g), where V=V*T®V~ is an [-module which is 2-graded in a way that
is compatible with the 3-grading of [. The objective of this note is to describe the
structure of 2-graded [-modules V.

Since the Lie algebra g is assumed to have a root decomposition g = h @
Y aca 8¢ with respect to a splitting Cartan subalgebra b, the [-module V' is an
integrable weight module of [ in the sense that it is the sum of the weight spaces
for the Cartan subalgebra b := h N[ of [. Thus we have to consider 2-graded
weight modules of 3-graded almost reductive Lie algebras. The key idea to analyze
the structure of the [-module V is first to reduce matters to the case where [ is
semisimple. Then [ = [, & [, where [, is the ideal generated by [+;. Now V turns
out to be a small weight module for the ideal [, , which means that u(&) € {-1,0,1}
holds for all weights p of V' and roots a of [,. Section I contains basic material
on weight modules, and in Section II we completely describe the structure of small
weight modules. In particular we show that small weight modules are semisimple
and that the simple ones are highest weight modules. After reduction to the case
of simple Lie algebras, we describe in Section III all those weights A for which the
corresponding integrable highest weight module L(\) is small (Theorem II1.3). In
Section IV we turn to the description of 2-graded modules. The possible 3-gradings
of [ have been described in [NeSt99] (see also [Ne90]), and for simple 3-graded Lie
algebras we classify the 2-graded simple modules in Theorem IV.11. The outcome
of our analysis is that the 2-graded [-module V is a semisimple [,-module, and
each isotypic component W C V' is isomorphic to L(A) ® W}, where L(A) is a 2-
graded simple highest weight module of a simple ideal of [, , and W} is an arbitrary
weight module of . Thus we have a complete description of the [,-action on V',
but there is essentially no information on the [;-action. We conclude this paper
with some remarks on infinite tensor products in Section V.

In this paper all Lie algebras are Lie algebras over a field K of characteristic 0.

I. Weight modules

In this section we discuss basic properties of weight modules of split Lie algebras
which are almost reductive.

Definition I.1. (a) We call an abelian subalgebra h of the Lie algebra g a
splitting Cartan subalgebra if h is maximal abelian and the operators in ad b are
simultaneously diagonalizable. If g contains a splitting Cartan subalgebra, then it
is called a split Lie algebra. This means that we have a root decomposition

g=h+ ) g%

aEA
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where g® = {z € g:(Vz € h)[z, 2] = a(x)z} and A :={a € h*\ {0}:g* # {0}} is
the corresponding root system.

(b) A subset AT C A is called a positive system and its elements positive roots if
A = ATU— AT and no non-trivial sum of positive roots is zero. This requirement
implies in particular that A = —A and that each positive system contains exactly
one root of each set {a,—a}. We call a subset X C A parabolic if XU —-X = A
and (X +X)NA CX (cf. [Ne98, Def. 1.6] for a discussion of this concept).

(c) We call aroot o € A integrableif there exist 11, € gT such that the subalgebra
(o, T_q) generated by these two elements is three-dimensional simple and ad x4,
are locally nilpotent operators on g. We write A; for the set of integrable roots
and observe that A; = —A,; follows from the symmetry in the definition of A;. It
can be shown that for all integrable roots a the root space g“ is one-dimensional
and that the subalgebra g(«) := g“ +g~* + [g%, g~ ?] is isomorphic to sl(2,K) (cf.
[St99a, Prop. 1.6]). The unique element & € [g%, g~ %] with a(d) = 2 is called
the coroot corresponding to . We write A C b for the set of all coroots of
integrable roots. The subgroup W C GL(h*) generated by the reflections r, given
by ro.0 = — B(&@)a is called the Weyl group.

(d) We call a Lie algebra g locally finite if every finite subset of g is contained
in a finite-dimensional subalgebra. In [Ne0Oa, Th. VI.3], it was shown that if all
roots are integrable, then g is locally finite, so that [St99a, Th. IV.7, Lemma IV.8]
show that the commutator algebra [g, g], which equals span A + > aea 8% in this
case, is a semisimple Lie algebra, i.e., a direct sum of simple ideals. If g is finite-
dimensional, then this is equivalent to g being reductive. Therefore we call a Lie
algebra g for which the commutator algebra is semisimple almost reductive. ]

Throughout this paper g = h+>_ . §“ is asplit K-Lie algebra with A = A,
i.e., g is a locally finite almost reductive split Lie algebra (cf. [St99a, Th. I11.19)).

Definition I.2.  (a) For a g-module V and 3 € h* we write VF := {v € V :

(VX € h)X.v = p(X)v} for the weight space of weight /3.

(b) Let V be a g-module and 0 # v € V* an h-weight vector. We say that v is

a primitive element of V (with respect to the positive system AT) if g*.v = {0}

holds for all « € AT. A g-module V is called a highest weight module with highest

weight A (with respect to AT) if it is generated by a primitive element of weight .
|

Proposition 1.3.  Let g be split Lie algebra and AY a positive system. Then,
for each X\ € b* there exists a unique irreducible highest weight module L(\, At),
and each highest weight module V' of highest weight A with respect to AT has a
unique mazimal submodule M with V/M = L(\, At).

Proof. This is proved as Prop. IX.1.13 in [Ne99]. ]



If V is a g-module, then we write py for the corresponding representation
of g on V, and if, in particular, V = L(A,A™) is an irreducible highest weight
module with respect to a positive system AT, then we abbreviate py := PL(A,A+) -

Definition I.4.  (cf. [DiPe99]) (a) Let g be an almost reductive split Lie algebra.

A g-module V is called a weight module (with respect to h) if it is the sum of

the bh-weight spaces, where h C g is a splitting Cartan subalgebra. We write

Py:={a e h*:V* £ {0}} for the set of h-weights of V.

(b) A weight module V is said to be

(1) small if for each p € Py and o € A we have p(q) € {—1,0,1}.

(2) finite if for each p € Py and each o € A the set {n € Z:p+ na € Py} is
finite.

(3) integrable if for each o € A and z, € g* the operator py(x,) on V is locally
nilpotent.

(¢) If V' is a weight module and V* C V a weight space, then we identify its

dual space (V*)* with the subspace of V* consisting of all those linear functionals

vanishing on > gcp \ 10 VP . Now the subspace V# := Dacp, (V)™ C V™ is

invariant under the natural action of g on the algebraic dual space V* given by

pv+(z).a ;== —a o py(x). It is called the dual weight module because it is a weight

module and the largest with this property in V*. [ ]

Lemma I.5. Let V be a weight module.

(i) If V is small, then V is finite.

(il) If V s finite, then it is integrable.

(iii) If V s integrable, then Py is contained in the weight group P :=
{Beb*:(Vae A)p(a) e Z}.

Proof. (i) and (ii) are trivial consequences of the fact that a(d) = 2 and

pv(T4).VH C VHTe whereas (iii) follows from the representation theory of s((2, K).
]

Lemma 1.6. IfV is an integrable weight module of g and gy a finite-dimensional
b -tnvariant subalgebra, then V s a locally finite go-module, i.e., every element
generates a finite-dimensional submodule.

Proof. Let v, € V# be a weight vector. For each root av € Ay := {a € A:g® C
go} we choose a non-zero vector x, € g* and thus obtain a vector space basis of
(b, g0]. Let Ag = {aq,...,a,}. Then the Poincaré-Birkhoff-Witt Theorem implies
that

W= 3 Koy (wa)™ - pv(a,)™ v,
mGNg
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is a go-invariant subspace. Moreover, we see by induction, using the local nilpotence
of the operators py (z4), that there exist ¢y,...,¢, € N such that

W= 3 Kpy(@a)™ - pv(@a,)™ v,

m<ceNy

and hence that W is finite-dimensional (cf. [MoPi95, p.125] for a similar argument
for sl(2,K)). n

Remark 1.7. Applied to the subalgebras g(a) := g® 4+ g=* + [g¢, g~ “], the
preceding lemma implies that each integrable weight module of g is a locally finite
module of g(a) = sl(2,K). This implies that the set Py is invariant under the
corresponding reflection r,. Thus, for each integrable weight module V' the set Py
is invariant under the Weyl group W (cf. [Bou90, Ch. 8, no. 7.1, Cor. 2]). Moreover,
the representation theory of s(2,K) shows that for each p € Py the set

{n€Z:p+nacPy}

is an uninterrupted string of integers. ]

Lemma 1.8. A highest weight module V' of highest weight X s integrable if and
only if X 1s dominant integral, i.e.,

Ma)eNy  forall o€ AT,

FEvery integrable highest weight module V is simple, i.e., V = L(\, AT).

Proof.  (cf. [DiPe99, Th. 5]) Let vy € V be a primitive element. To see that
V is integrable if and only if A(d@) € Ny for all & € AT, we first note that if V
is integrable and « € AT, then the g(a)-module U(g()).vy is finite-dimensional,
so that A(&) € Ny. If, conversely, this condition is satisfied, then vy is a g(a)-
finite element (it generates a finite-dimensional g(«)-submodule), so that the local
finiteness of the action of g(a) on g implies that the set of g(«)-finite elements
in V is a g-submodule of V' containing vy, so that V is a locally finite g(«)-
module. Therefore the corresponding operators py(zi,) are locally nilpotent for
Tio € g, This proves that V is integrable.

Suppose that V is integrable and let M C V be the maximal proper sub-
module (Proposition 1.3). If M # {0}, then there exists an h-invariant finite-
dimensional semisimple subalgebra gy C g such that Vy := U(go).vy intersects M
non-trivially (cf. [St99a, Prop. V.5]). Now Vj is an integrable highest weight mod-
ule of gg, hence finite-dimensional and simple (cf. [Bou90, Chap. 8, no. 7.2, Th. 1]).
This contradicts Vo # Vo N M # {0}. u
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Theorem 1.9. (Classification of integrable highest weight modules) For each
weight A € P = {p € h*: Va € A)u(d) € Z} there exists a positive system A~

such that X is dominant integral. If AT is another positive system for which X\ is
dominant integral, then

(1.1) LA AT 2 LA, AT),
so that we may write L(\) := L(\, AT). Furthermore

L2 L(p) <  peWa

Proof. These facts follow essentially from the discussion in Section I of [Ne98],
where the unitary highest weight modules of the corresponding complex Lie algebras
have been classified in the same manner. For the sake of completeness, we include
the key arguments.

For A € P we consider the subset Xy := {a € A: A(&) > 0} and observe that
this is a parabolic system of A (cf. [Ne98, Lemma 1.18]) because parabolic systems
of A and A are in one-to-one correspondence via the map « — ¢ (cf. [Bou90]). In
view of [Ne98, Cor. I1.10], the parabolic system X, contains a positive system AT,
and now A is AT -dominant integral.

The weight set Ppxa+) is contained in A — Ng[A*] C X — Z[A], where
No[AT] denotes the set of finite sums of elements of AT and Z[A] denotes the
additive subgroup of h* generated by A. Now the formula

(1.2) Prov,a+y = conv(W.A) N (A + Z[A]),

where we view P as a subset of the real vector space R®yz P, shows that the weight
set Pr(x,a+) does not depend on the positive system. If V' is a simple g-module
with

A€ Py CA—Ny[AT],

then V = L(\,AT) follows from the fact that each non-zero element vy € V* is
a primitive element with respect to A1 because a ¢ —Ny[A*] for each o € AT
(this follows from the definition of a positive system). Now (1.1) follows from

Proat) = PL(A,Z+)'
In the following we write

Ext(C)={x € C:(y,z€ C,A€]0, 1,z =Ay+ (1 = N)2) =z =y = z}

for the set of extreme points of a convex set C. If L(A) = L(u), then the equality
of the weight sets Prx) = Pr(,) implies that

W.A = Ext(conv W.A) = Ext (conv Pry))
= Ext (conv Pr,)) = Ext(conv W.pu) = W.p
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(cf. [Ne98, Th. I1.11]), so that p € W.A. If, conversely, u € W.A, then p+ Z[A] =
A+Z[A], and (1.2) lead to Pr(x) = Pr(u), so that the observation in the preceding
paragraph implies that L(A) & L(p). n

II. Small weight modules

In this section we discuss the special class of small weight modules.

Proposition II.1. If V s a small weight module, then for each weight A\ € Py
and 0 # vy € V> the submodule U(g).uy is an integrable highest weight module
isomorphic to L(\).

Proof. Using Theorem I.9, we find a positive system A™ such that A is dominant
integral with respect to At. Let o € AT. Then (A + a)(&) > 2 implies that
A+ a € Py, and hence that each non-zero weight vector vy € V? is a primitive
element, for g with respect to AT. We conclude that W := U(g).v, is an integrable
highest weight module, hence simple by Lemma 1.8, and therefore W = L(A). =

Corollary I1.2. (a) Each small weight module V is a semisimple g-module.
(b) Every simple small weight module is an integrable highest weight module.

Proof. (a) In view of Proposition II.1, the module V is a sum of simple
submodules, hence a semisimple module.
(b) This follows directly from Proposition II.1. n

Remark I1.3. That simple small weight modules are highest weight modules relies
heavily on the smallness requirement. The weaker condition pu(&) € {£2,+£1,0} for
all 4 € Py and « € A is not sufficient to conclude that a simple weight module V
is a highest weight module.

To see this, we consider the Lie algebra g := gl(N,K) as the union of the
subalgebras g, := gl(2n,K), n € N, and fix the standard positive system AT :=
{ej —er:j < k}. For each n € N we consider the dominant integral weight

Ap = (\1,1,...,11,\—1,—1,...,—1)

>y

TV TV
n times n times

with respect to A} := A, NAY and A, := {a € A:g* C g, }. Then the set Pry,)
of weights of the highest weight module L(A,,A}) is given by

2n 2n
Pria) = {Z%é‘ji%‘ €{-1,0,1},) "a; = 0},
j=1 j=1
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as follows easily from Pry,y = conv(Wyp.An) N (A + Z[A]), where A, C by,
denotes the roots of g,,. In particular each weight a € Pr(,,) can be written as

o= Z&‘j— Zé‘j, where |Ni|=|N2|<n and N;NN=0.
JEN JEN2

We see in particular that A, is a weight of Pr(y,), and that the corresponding
weight space generates a g,_1-submodule of highest weight A,_;. Using a fixed
choice of embeddings

L()\nv gn) — L(/\n~|—17 gn+1)7 n < N7

we obtain a simple weight module V := lim L(\,,,g,) of g. The weight system of
_)

this module is given by

Py = U PLixn) = {Zajaj:m € Nya; € {—1,0,1},Zaj = 0},
j=1 o

neN

If @« € Py is an extreme point of conv(Py ), then there exists an n € N with
a = 23221 aje; € Pr(n,)- Then a € Ext(convPy,) = Wy.Ay. This means that
[{j:a; =1}| =n. Then « is not extremal in conv(Py,_, ), hence not in conv(Py ).
This contradiction shows that Ext (conv(Pv)) = O holds in the real vector space

R ®z P, and hence that V' is not a highest weight module (cf. [Ne98, Cor. 1.14]).m

Proposition 11.4.  For an integrable weight module V' the following are equiva-
lent:

(1) V s small.

(2) For each r4 € g%, a € A, we have py(14)2 =0.

If, in addition, V is simple, then these conditions are equivalent to

(3) W acts transitively on Py and V' is a highest weight module.

Proof. (1) = (2): Since (Py,q) C {0,1,—-1} and «a(d@) = 2, we have
pV(xa)z = 0.

(2) = (1): Let p € Py. If [u(&)] > 1, then the subspace ), ., V#T"* contains
g()-submodules of dimension > 2, so that py(z4)? # 0. This means that if V is
not small, then (2) is not satisfied.

(2) = (3): If V is simple, then V = L(\) for each A € Py (Proposition II.1).
Hence L(A) 2 L(u) for each p € Py, so that Theorem 1.9 implies that p € W.A.
(3) = (2): We view Py as a subset of the real vector space R ®z P. Then (3)
implies that every weight p € Py is an extreme point of conv(Py ). Hence for each
p € Py the weight string (p 4+ Za) NPy is of length < 2, and this implies that
(@] < 1. m
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Corollary II.5. If V' is a small weight module, then the isotypic submodules
of V' are in one-to-one correspondence with the VW -orbits in Py . For each such
orbit W.\ C Py the subspace Zwew VWA s an isotypic submodule isomorphic to
L(A) @ V*, where V* is viewed as a trivial g-module.

Proof. Let A € Py . Since each non-zero weight vector v € V* generates a
simple integrable highest weight module W, = L()\), and W} = Kv, we see that
we have an inclusion

L) @ V= L(\) @ Homg(L(A\),V) =V,  v® D D(v).

Since W acts transitively on Pr() (Proposition I1.4(3)), we see that the image of
the above inclusion map coincides with the subspace > V@A The remaining
assertions are clear. |

Lemma I1.6. Let g = g1 @ g2 be a direct sum decomposition of g.

(i) If V s a simple g-module which contains a simple gi-submodule Vi with
Endg, (V1) = K1, then there exists a simple ga-module Vy such that V =
VieVs.

(ii) If Vi is a simple g1 -module with Endg, (V1) = K1 and Va a simple gs-module,
then V :=V, ® Va is a simple g-module with Endg(V) =2 1 ® Endg, (V2).

Proof. (i) The subspace V' :=3"pcy(g,) pv(D).V1 is a g-submodule of V', and
each subspace py (D).V; either is zero or a simple g; -submodule isomorphic to V;.
In view of the simplicity of V', we conclude that V' = V'’ and hence that V is a
semisimple isotypic gj-module. Therefore there exists a trivial g;-module V5 with
V 2V ®@ Ve as gi-modules. In view of [Ne99, Lemma [X.4.7], the assumption
Endg, (V1) = K1 implies that

Endg, (V) 2 Endg, (V1 ® V2) = 1 ® End(V3).

Hence py(g2) € Endg, (V) implies that there exists a homomorphism py,:gs —
End(V2) with py(X) =1® py,(X) for X € go. This proves that V =2 V; ® V; as
g-modules, and the simplicity of V' implies that V5 is a simple g-module.

(ii) Jacobson’s Density Theorem ([La74, Th. XVIIL.3.2]) implies that for each finite
dimensional subspace E C V; we have

Hom(E, V1) = pv, (U(g1)) |&-

For each linearly independent subset {ei,...,e,} C Vi we thus obtain elements
Dj € U(gl) with Dj.ek = (5kjej.

Now let 0 # 2z := 2?21 z; ®y; € Vi ® Vo and assume w.l.o.g. that the
x; are linearly independent and y; # 0 for each j. We have to show that z
generates V3 ® V5 as a g-module. With Jacobson’s Density Theorem we obtain an

element D € U(gy) with D.x; = 0 for j = 2,...,n and D.x; = 1. Therefore
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the g-submodule of V' generated by z contains the element D.z = 27 ® y;. Now
U(gl)DZ = U(gl)JZl ®y1 = V1 ®y1 and further U(gz)(Vl ®y1) = V1 ®U(92)y1 =
V1 ® V. The second assertion follows from the argument in the proof of (i). n

The following theorem provides crucial information on the rough structure of
weight modules of a direct sum Lie algebra g = g; @ go which are small for g;.
The essential information is that these modules are tensor products of modules of
g1 and go, where the g;-module is small and therefore well behaved, whereas there
is no further information available on the gs-module.

Theorem I1.7.  (Factorization Theorem) Let g = g1 © g2 and V a simple g-
module which is a small weight module for g1. Then there exists an integrable
highest weight module L()\) of g1 and a simple go-module Vo with V 22 L(\) ® V5.

Proof. According to Corollary I1.2, V' is a semisimple g; -module, hence contains
a simple submodule V;. Now Vi = L()\) for some A € b} (Proposition II.1), so
that Endg, (Vi) = K1. Therefore Lemma I1.6 applies. u

Remark II.8. Let V be a weight module of the commutator algebra gy := |g, g
with respect to the splitting Cartan subalgebra by := b N [g,g] = span A and
recall that A separates the points of spanA (cf. [St99a, Prop. II1.7]). Then we
may identify the group Z[A] with a subset of hj. In this sense, for every weight
1 € Pv C bg the subspace V(u) := 3", ca] VA+e ig a submodule, and V is the
direct sum of such submodules. Therefore we may assume that Py C p + Z[A].
Now we extend p to an element i € h* and define an action on the weight space
vite o e ZIA], by x.v:= (ji(z) + a(z))v for € h. One directly verifies that we
thus obtain a representation of the whole Lie algebra g on V which has the same
submodules. In this sense all classification problems for weight modules of g can
directly be reduced to modules of the semisimple commutator algebra gg.

We also observe that if V' is a simple weight module for g and A € Py,
then Py C A + Z[A] implies that each go-submodule is adapted to the weight
decomposition, showing that V is a simple gg-module. [ ]

III. The classification of simple small modules

In this section we describe the classification of simple small weight modules. Since
all small weight modules are semisimple (Corollary I1.2), this yields a description
of all small weight modules. First we reduce the situation to the case of simple Lie
algebras.
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Lemma IIL.1. Let [g,g] = GBjngj be the decomposition into simple ideals,
bj:=bng;, A€ P, and \j := Xy, . Then the integrable highest weight module
L(A) is small if and only if all the integrable highest weight modules L(\;) of the
ideals g; are small.

Proof. Let vy € L(\) be a primitive element. Since the g;-submodule U(g;).vx
is isomorphic to L(A;), all these modules are small if L(A) is small.

If, conversely, all the modules L(\;) are small and o € A, then there exists
a j € J with g* C g;. Now

L) = U(EP #:)Ulg;)-0r

i#]

implies that Pry (&) = Pr,)(@) € {-1,0,1} because U(@i# gi) commutes
with &, hence preserves its eigenspaces. Therefore L(\) is small. [ ]

In view of the preceding lemma, it suffices to classify the simple small modules
for simple Lie algebras. We will see in Proposition V.2 below how these modules can
be put together to a module of the big Lie algebra g by an infinite tensor product
construction.

Definition II1.2. A root system of a locally finite split semisimple Lie algebra is
called a root system of semisimple type. It is called irreducible if the corresponding
Lie algebra is simple. u

According to [NeSt99] (see also [Ka73], [KaKi75]), for each infinite cardinal
represented by a set J, there exist (up to linear equivalence) exactly four irreducible
root systems of semisimple type Ay, By, Cy and D described below. These root
systems still make sense for finite sets J, where we assume that |J| > 2 for A; and
By, |J| >3 for Cy, and |J| > 4 for Dy. We also have the exceptional finite root
systems Eg, E7, Fg, Fy and Gy (cf. [Bou90, Ch. 8]). We call the root systems of
types A—D root systems of classical type.

Here we realize the root systems of classical type in the subspace Q7 C K’
which is the dual space of the Q-vector space Q) with the canonical basis (€j)jer-
We write ¢; € Q’ for the elements of the corresponding “dual basis” determined
by €;(ex) = 0. Then

Ay :={ej —ep:j4, ke J j#k},

By :={tej, tej teg:j ke J,j#k},
Cyi={+2ej,%e; £ep: j,k € J,j # k},and
Djy:={%xejxey:j,kelj#k}
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Our notation for Ay is such that Ay 3 & A,—1 in the finite-dimensional
notation. For a more detailed discussion of the corresponding infinite-dimensional
Lie algebras we refer to [NeSt99].

In the following we call a weight A € P smallif L()) is a small weight module.
For a subset M C J we put ep 1= ZjeM g; €Q) ¥ (QW))* and consider it as the
linear functional on Q) given by ep(z) = 3 jenr @5 (all these sums are finite).
We write M¢:=J\ M for the complement of M in J.

Theorem II1.3.  (Classification of small weight modules) In the following we

represent a weight A € P C b* as a function J — K, i.e., as an element of K’ .

We assume that A # 0.

(Ay) A weight X of Ay is small if and only if it can be represented as A = epy for
a subset M C J. Its Weyl group orbit is given by

WA = {en: M\ N| = [N\ M| < ool.

(By) A weight X of By is small if and only if there exists a subset M C J with
A= %(6]\/[ —epge) . Its Weyl group orbit is given by

WA = {%(sN “ene): M\ N|,IN\ M| < oo}.

(Cy) The small weights of Cy are xej, j € J. They form a single VW -orbit.
(Dy) The small weights for Dy are the weights xej, j € J, which form a single
W -orbit, and the weights A = 3(ep — enre) whose W-orbits are given by

1
WA= {5(en = ene): M\ NI, [N\ M| < o0, [M\ N| - [N\ M| € 22 }.

(B, ) For Eg there exist two VW -orbits of small weights and for E there is one.
For the other exceptional root systems there is none.

Proof. (Aj) Suppose that A is small and observe that this implies in particular
that there exists an m € K such that A(J) C m + Z, and A(J) —m is a bounded
subset of Z. Therefore we may assume that A(J) C m—Ny. Replacing m by m—n
for a suitable n € Ny, we even may assume that m € A(J). Now A(&) € {0,1,—1}
for o =¢5 — ey, j # k, implies that A(J) C {m, m — 1}, i.e., there exists a subset
M C J with A = mep + (m — 1)epe . Subtracting the constant function m —1 on
J does not change the represented weight, so that we obtain A = ;. Conversely,
it is clear that e, is a small weight. The description of the W-orbit follows directly
from the fact that W acts as the group S(j) of finite permutations of the set .J.

(By) From &; = 2e; we derive that A(J) C {0,£1}, but since X is assumed to
be non-zero, the integrality implies that A(J) C {£3}, L.e., A = 3(em — ene) for
M := A‘l(%). That, conversely, all these weights are small is clear. The description
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of the W-orbit follows from the fact that W acts as the group {+1}(/) x S(y) of
finite signed permutations on K’ .

(Cy) From (2¢;) = e; we derive that A(J) C {0,%1}, and the smallness implies
that [A7'({£1})] < 1 and {£1} € A(J). Hence A = ¢, for some j € J.
The description of the W-orbit follows from the fact that VW acts as the group
{£1})) % Sy of finite signed permutations on K”.

(Dy) It is clear that the weights +e;, j € J, are small. These are the only
small weights for which A; # 0 holds for only one j € J. Next we assume that
Aj, Ak, # 0 holds for some j # k € J. Then we get A(J) C {£4} and therefore
A= %(5 M — epe) for some subset M C J. The description of the W-orbit follows
from the fact that W acts as the subgroup of those elements (a,0) € {£1}/) xS
for which the set {j € J:a; = —1} has even cardinality.

(Ey) See [Bou90, Ch. 8, no. 7.3]. u

Remark III.4. For the applications that we have in mind, we will also need
information on whether for a small highest weight module L(\) the corresponding
operators py(z), € g, are of finite rank. Since the Lie algebra g corresponding
to an irreducible root systems is simple and the operators of finite rank in g[(L()\))
form a Lie algebra ideal, the following are equivalent:

(1) All operators py(x), x € g, are of finite rank.

(2) There exists a root a € A such that px(&) is of finite rank, which means that

the set {u € W.A: (&) # 0} is finite.

Condition (2) can easily be checked for the weights A showing up in Theorem

III.3. Of course, we may assume that J is infinite, because otherwise all modules
L(X) are finite-dimensional.
(Ay) If X is constant, then L(A) = L(0) = K is trivial. If A is not constant and M
and M€ contain at least two elements, then one easily finds an & such that py(&)
has infinite rank. If |[M| = 1, then we obtain A = ¢; for M = {j}. Therefore
L(\) 2 K¢) is the identical representation for which all the operators are of finite
rank. For |M¢| =1 we obtain the dual weight module which also has this property
(cf. Definition L.4(c)).

For general M the functional A = Zje u €j is the highest weight of the
representation of g = sl(J,K) on the space AM)(K(/)) which we describe in
Section V below. If M is finite, then this space is the |M|-th exterior power
AMIK)) with the basis elements ej, A ... Aej, , where k = |M]|.

(By) If A is small, then A = Z(ep — epe) and each W-conjugate of A has this
form. For j € J the relation pu(é;) # 0 for each p € W.X therefore shows that
pa(€;) has infinite rank.

Up to automorphisms of the corresponding Lie algebra g, respectively the
root system (cf. [St99b]), we may assume that A = %Zjejgj' This is the highest
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weight of the spin representation of g on the space A(K(W)) := @y2 j A¥F(KW)) (see
Sect. V in [Ne98]).

(Cy) Let J* := JU—J, where —J is a copy of the set .J whose elements we denote
by —j, j€J. On KV ) we consider the skew-symmetric bilinear form given by

Qv,w) = Y _(vjw_j — v_jwj)

jeJ
and put
sp(J,K) := {X € gl(J*,K): (Yo, w € KV Q(X.v, w) + Q(v, X.w) = 0}
This Lie algebra is simple split with splitting Cartan subalgebra
hy =spang{E;; —E_; _j:j € J},

where Fji, j,k € J, denote the canonical matrix units. The corresponding root
system is of type Cy, where ¢;(Eyr — E__) = 63, for j,ke J.

In this case the only small module is the identical representation of sp(.J, K)
on KUT) which is a representation by finite rank operators.
(Dy) On KV ) we consider the symmetric bilinear form given by

Blo,w) =Y (vjw_; + v_jw;)

JeJ
and put
o(JE,K) := {X € gI(J*,C): (Yv,w € KV)) B(X.v, w) + Bv, X.w) = 0}

This Lie algebra is simple split with splitting Cartan subalgebra b; = spang{E;; —
E_j_j:j € J}, where Ej, j, k € J, denote the canonical matrix units. The
corresponding root system is of type D, where €;(Epp—E_j_1) = 63 for j,k € J.

The weights A = Ze; correspond to the identical representation of o(J*, K)

on K*) which is a representation by finite rank operators. Next we assume that
A= %(EM — epre). Then either M or M€ is infinite, and we assume that M is.
Pick a # b € M. Then we can exchange every element in M \ {a,b} with a fixed
element ¢ € M° and thus obtain infinitely many weights in YW.A which are non-zero
on the coroot of €, + &,. Therefore the operators py(z), = € g, are of infinite rank.

The standard spin representation on A(K(”)) decomposes for each m € J as
the direct sum of representations of highest weight

%Zsj and (%Zq)—sm.

JjeJ JjeJ
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The preceding discussion shows that the only simple small modules V' for
which the operators py (z), = € g, are of finite rank are the identical representation
for Ay, C; and Dj and the dual of the identical representation for A;. For C}
and Dj the identical representation is self-dual as a weight representation. |

Problems III. Classify the (simple) finite weight modules of semisimple locally
finite split Lie algebras. For the case of countably dimensional Lie algebras g, this
has been done in [DiPe99]. Important questions in this context are: Are finite weight
modules always semisimple? Are simple weight modules restricted to semisimple
subalgebras always semisimple modules? [ ]

IV. 2-graded weight modules

For the description of those locally finite involutive Lie algebras which admit a
faithful unitary highest weight representation, we have to study the following type
of modules (cf. [Ne0Ob]). We consider a 3-graded locally finite split almost reductive
Lie algebra

g=9-1Dgo D g1,
where g contains a splitting Cartan subalgebra h, and we are interested in graded

weight modules V' of the graded Lie algebra g which are 2-graded in the sense that
V=V~-® V™', where

goVECVE g VFCVE and g4 VE={0}.
Since go is assumed to contain a splitting Cartan subalgebra b, the root

decomposition of g leads to a disjoint decomposition A = A_;UAqUA, where
A_1=—A;.

Example IV.1. A typical example of such a gradation arises as follows. Let J
be a set and g := gl(J,K) be the Lie algebra of finite J x J-matrices. We further
fix a subset M C J. We thus obtain a direct sum decomposition of the space
V=K =VteV- =KM gKU\M)  Writing the elements of g accordingly as

2 x 2-block matrices X = (? Z) , we get the gradation g =g; ® go ® g—1 with

91:{<8 8>} 90:{<8 2)} and 9—1={<2 8)} .
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Lemma IV.2. [f g is simple, then g1 is a simple go-module and go = [g1,9-1]-

Proof. Let {0} # W C g; be a go-invariant subspace. Then W is invariant
under the subalgebra gy + g1, so that the ideal generated by W is given by

W+ [g_1, W]+ [9_1, (g1, WH Cg1DgoDg-_1.

We conclude that W = g; and go = [g—1,91]. It follows that g; is a simple go-
module. |

Lemma IV.3. There exists a unique linear functional f:spang[A] — K with
Ay = f7H£1) and Ay = f710).

Proof. We may w.l.o.g. assume that g is simple, because we can put the functions
[ corresponding to the simple ideals of [g, g] together. Moreover, we assume that
g1 # {0}, otherwise we may take f =0. Now ¥ := Ay UA; is a parabolic system.
Let A € A;. We claim that A ¢ span Ag. Suppose that this is false and that

k
(41) /\ = ij(l/j
1=1

with o € Ag and my,...,mp € K. Then there exists a finite-dimensional
semisimple h-invariant subalgebra a C g with ang; # {0} and A\, a1,...,ax € A,
(cf. [St99a, Prop. V.5]). Since ¥, := ¥ N A, is a parabolic system in the finite root
system A,, the fact that A € X, \ =X, implies

A & span(X, N —%,).

This contradicts (4.1), and we conclude that KA Nspan Ay = {0}. Hence there
exists a linear functional f:spany A — K with f(A\) =1 and Ay C ker f.

Since g; is a simple go-module (Lemma IV.2), for each A € A; we have A; C
A+ Z[Ay], showing that f(A;) = {1}, and we likewise see that f(A_;) = {—1}.
The uniqueness of f follows trivially from the requirements. ]

Definition IV.4. Let A be a root system of semisimple type. A partition A =
A_1UAQUA, is called a 3-grading if g1 := > ,cn,, 8% and go:=h+ Y cp, 8%
defines a 3-grading of g (cf. [NeSt99] and [Ne90]). It is clear that each 3-grading
is completely determined by the set Aj. [ ]
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Proposition IV.5.  The sets Ay corresponding to 3 -gradings of the root systems

A=A;,B;,Cy,Djy are given by

(Ay) Ay(M)1={ej —er:j e M,k g M}, where M C J is a subset.

(Br) By(m)1 = {em} U{em £€j:j #m}, where m e J.

(Cy) CJ(M)]_ = {Ej—Ek:j eM k¢ M}U{é‘j—l—é‘k:j,k € M}U{—é‘j—é‘k:j,k ¢ M},
where M C J 1is a subset.

(Dy) Dj(m)1 = {em£ej:j #m} = By(m)1ND;, where m € J, or by D;(M), =
CJ(M)]_ NDjy.

The corresponding functions f are given by f(a) = «ley) for Bj(m); and

Ds(m)y, and by
1
Fl) =5 (X ale) = X aley)
JEM JE€M
f07“ AJ(M)l, CJ(M)]_ and DJ(M)]_ .
Proof. [NeSt99, Prop. VIL.2]. [ |

Having described the possible 3-gradings of irreducible root systems, we now
turn to the description of the corresponding 2-graded modules.

Lemma IV.6. The subspace gq := g1+ g-1+ [81,9-1] C [g, 9] is an ideal of g.

Proof. This is a trivial calculation. ]

If g is semisimple, then we can write it as g = g, @ g», Where g is an ideal
of g contained in gy. In the following g denotes an almost reductive locally finite
split Lie algebra with 3-grading.

Proposition IV.7. Let V be a 2-graded weight module of g. Then the following
assertions hold:

(i) If V is simple and VF # {0}, then V* are simple go-modules with g4,.VT =
VE and VE =V = {v € V:ipy(gs1).v = {0}}.

(ii) V is a small weight module for the ideal g, .

(ili) For a, 8 € A1 and A € Py+ with A(&) = A(B) = 1, we have a(f) > 0.

(iv) V is a semisimple gq-module.

Proof. (i) Let W C VT be a non-zero go-submodule. Then the Poincaré—

Birkhoff-=Witt Theorem implies that

U)W =W+py(g-1)WCVrteV",

so that the simplicity of V leads to W = V¥ and V= = py(g_1).VT. This proves
that V' is a simple gp-module. Likewise we see that V~ is a simple module and
that Vt =g,.V ™.

In view of the definition of a 2-graded module, we have VT C V%  so that
Ve = V+ 4+ (V- N V). The subspace V=~ N (V) is annihilated by g; and



18

g_1 and invariant under gg, hence a submodule. Now the simplicity of V' yields

Ve NV~ ={0}, so that V¥ = V*. Likewise we get V~ = V-1,

(i) If € Ay, then the g(a)-module generated by a weight vector vy € VANV T is

a simple module of g(«) = s((2,K) of dimension A(&)~+1. Since V is 2-graded, we

have z2 vy = 0 for each z_, € g=*. Thus A(&) € {0,1} holds for each o € A;.
If BeAg, 0, then go,Ngo=[g1,9-1] (Lemma IV.6) implies that there exists

an « € Ay with B(&) # 0. We now have

(rp-A) (@) = A(&) =A(B)B(@).
~— =~

€{0,1} €{0,1}

Hence A(B)B(a) € {-1,0,1} and since B(c&) is a non-zero integer, we see that
A(B) € {~1,0,1} holds for all B € A4, o. We conclude that (&) € {0,+1} for all
a € Ay, , ie. that V is a small g,-module.

(iii) Since A(cv) = 1, the functional ro.A = A — « is a weight of V'~ , and therefore
g PV = {0} yields 0> (ro.A) () = A(B) — a(B) = 1 — a(B), so that a(B) > 0.
(iv) follows directly from Corollary II.2. u

Lemma IV.8. If g =a®b is a direct sum of graded Lie algebras and V is a
simple 2 -graded weight module with py(ay) # {0}, then py(b1) = {0}.

Proof.  The assumption py(a;) # {0} implies that a;.V~ C VT is non-zero.
Moreover, it is a go-submodule, and therefore coincides with V* (Proposition
IV.7(i)). We conclude that b_;.V*T = a;b_1.V~ = {0}, so that b_; annihilates V,
and likewise b; annihilates V. [

Proposition 1V.9. Suppose that g is almost reductive, V a simple 2-graded
weight module, and a < g, a simple ideal with py(ay) # {0}. Then all other
simple ideals b < g, act trivially on V.

Proof. This is an immediate consequence of Lemma [V.8 applied to the semisim-
ple ideal [g, g] of g for which V is a simple module (see Remark I1.8). ]

In view of Proposition IV.7(iv), to describe the 2-graded weight modules
of g, it suffices to describe those which are isotypic for g,. These can be written
as V = Vi3 ® V,, where V5 is a simple weight module of g, and V; is a simple
2-graded weight module of g,. Suppose that V; is non-trivial as a g;-module.
In view of Proposition IV.9, there exists a unique simple ideal gy < g, acting
non-trivially on Vi, and all others act trivially. If, conversely, V; is a simple 2-
graded weight module of a simple ideal gy < g,, and Vs a simple gp-module,
then Endg, (V1) = K1 follows from the fact that V; is an integrable highest weight
module, and Lemma I1.6(ii) implies that V := V; ® V5 is a simple 2-graded weight
module of g, where the gradation of V is given by V* := Vli ® Vs
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Therefore we are essentially left with the problem to determine those small
weight modules of a simple 3-graded Lie algebra g which are 2-graded. The
following lemma provides a handy criterion.

Lemma IV.10. Let f:span A — K be a linear functional defining the 3-grading
of A in the sense of Lemma IV.3, and V = L(\) an integrable highest weight
module. Then the following are equivalent:

(1) V s 2-graded.

(2) f(Proy —A) is a two-element set.

Proof. (1) = (2): Suppose that V. = V*t @&V~ is a 2-graded g-module.
Then V* are simple go-modules, so that the function f is constant on the subsets
Py C Py.

(2) = (1): Suppose that f(A—Py) C {m, M}, where m < M. Then

Vti= > VE and V7= > VH

BEPL(y fF(A—p)=m BEPL Ny, fFA—p)=M

yields a decomposition V = V+ & V'~ which is a 2-gradation of the g-module V.
Note that M = m + 1 holds automatically. ]

Now it only remains to check the condition of Lemma IV.10 for the modules
occurring in Theorem II1.3, where the functional f is as in Proposition IV.5.

Theorem IV.11. (Classification of 2-graded simple modules) For a simple 3 -
graded split Lie algebra g the non-trivial simple 2 -graded modules are the following:
(Ay) For Ay = Ay({m})1 all small modules L(en), N C J, are 2-graded.

(Ay) For Ay = Aj(M)y with |[M| > 1 and |[M¢| > 1 only the module L(g;) = K()
(not depending on j € J), and the dual weight module L(—¢;) are 2-graded.

(By) For Ay = By(m)1 only the spin representation on L(3e;) = ACY)) and
the quasi-equivalent representations with highest weight A = %(gM — EMe),
M C J, are 2-graded.

(Cy) For Ay = Cy(M)1 only the identical representation on L(Ee;) = K™ s
2 -graded.

(Dy) For Ay = Dj(m)1 only the two simple constituents of the spin representation
on A(K(J)) and the corresponding quasi-equivalent representations are 2 -
graded.

(Dy) For Ay = Dj(M); only the identical representation on L(+e;) = KU and
for |J| = 4 the module L(X) = A°IY(K*) with A = 1(e1 + &2 + 5 — €4) is
2 -graded.

(E,) For the exceptional algebras there are no 2-graded modules.

Proof. In view of [Ne99, Th. A.V.6], there exists no 2-graded simple modules
for the exceptional algebras, so that we may assume that A is of classical type.
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(Ay) For Ay = Ajy({m}); we have f(a) = a(ey) (Proposition IV.5). According
to Theorem III.3, we may assume that A = ey for some subset N C J. Then the
weight set of L(\) is given by

WA= {ex:|[K\N| = [N\ K| < oo}

In view of f(W.A\) ={0,1}, the module L(\) is 2-graded.

For Ay = A;(M). with [M], M| > 1 we have f(a)=>_,-5 a(e;) (Propo-
sition IV.5). Again, we may assume that A\ = ey for some subset N C J. If
IN| =1, then

WA= {g:jed},

so that f(W.\) = {1,0} implies that L(\) is 2-graded, and for |N¢| = 1 one argues
similarly. Assume that |N|,|N¢| > 1. Then

WA—A={ex —en:|[K\N|=|N\ K| < 0}
={er\y —emk: [K\ N| =[N\ K| < oo}
:{€M1 _€M2:‘M1‘: ’M2‘ < 00, My chaMng}-

Since we may assume that A is Aj-dominant, we have M C N or N C M
because otherwise there exists an m € M \ N and an n € N \ M which leads
to Aem —en) = —1.
Suppose first that M C N. Then f(ep, —en,) = —|M2 N M|, so that
—2 € f(W.XA — A) implies that this set contains the three numbers {0, —1,—2}. If
N C M, then
flear, —en) = |My| = [M2 0 M|,

so that 2 € f(W.X — A) implies that this set contains the three numbers {0,1,2}.
In both cases we see that L(\) is not 2-graded.

(By) For Ay = By(m); we have f(a) = alen) (Proposition IV.5). According to
Theorem III.3, we may assume that A = %(6]\/[ — eppe) for some subset M C J.
Then the weight set of L(A) is given by

WA = {%(aN ~ene): IMAN]LIN A M| < o0},

and we see that f(W.A) = {£1}, showing that L()) is 2-graded. That all
these modules are quasi-equivalent to the spin representation, which corresponds
to M = J, follows from the fact that there exists an automorphism ¢ of g with
¢(h) = b such that (¢lp)*A = e (cf. [St99b]).

(Cy) For Ay = Cy(M); we have f(a) = %(ZjeMa(ej) — D jeme a(ej)). The

only small module L()) is the identical representation on K(/ ) with the weight
set Prn) = {£e;:5 € J}. Now f(Pr(n)) = {£3} shows that L(\) is 2-graded.
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(Dy) For Ay = Dj(m); we have f(a) = a(en) (Proposition IV.6). For A =¢; we
have W.A = {£e,: k € J}, so that f(W.A) ={0,1, -1}, and therefore L(A) is not
2-graded. Now we assume that A\ = %(gM — epe) for some subset M C J. Then
we weight set of L(A) is given by

1
WA= {5(en —ene): M\ N|,IN\ M| < 00, |M\ N| - [N\ M]| € 22,

and we see that f(W.A) = {£3}, showing that L(X) is 2-graded.

For A; = Dj(M); we have f(a) = %(ZJEM alej) = D jenme a(ej)) which
immediately shows that for A = ¢; the module L()) is 2-graded. We note that,
under the automorphism of the root system given by e; — —e; for j € M and
fixing the other ¢;’s, this 3-grading is conjugate to the one defined by M = J,
so that Ay = Dy(J); and f(a) = %Zjeja(ej). Therefore we may assume that
M=J.

We consider A = %(5 N — €ne) for some subset N C J. Then we have

WA= A

1
:{§(€K—5Kc—5N+5Nc):|K\N|,|N\K| <oo,|K\N|—|N\K|ezz}

- {gK\N —enui: JK\ N, IN\ K| < 00, |[K\ N| = N\ K| € 2z}

and
Flexw — emi) = 3 (K \ N| — [N\ K))

If |J| > 5, then we may w.l.o.g. assume that N contains at least four elements
(otherwise we may add roots in A; to A). Then there exists a K C N with
N\ K =4, so that we obtain the value —2 for f. So let us assume that |J| =4
and that |V| < 4. By the same argument as above, we may assume that |N| = 3.
Then |[K\N| <1 and [N\ K| <3 yield f(ex\n —emx) € [—3, 3] and therefore
flekn —€en\k) € {—1,0}. This proves that L()) is 2-graded. It is the odd part
ACY(KH) = AY(K?) @ A3(K*) of the spin representation on A(K*). ]

V. Infinite tensor products

Let (V;)i;er be a family of vector spaces and F denote the free vector space on

the cartesian product [[;c; Vi. A map m:[[,c; Vi — W into a vector space W is
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called multilinear if it is linear in each argument provided that all other arguments
are fixed. For 7 € I let F; C F' be the subspace generated by elements of the type

(@ witys) — (@ wi) = (@' pe), A&, ai)— (@) Aw), mi,p € Viyd! € [[ViAeK
JFi
We put @;c; Vi = F/); F;. Then we have a natural map m:[[,c; Vi = &,c; Vi

which is multilinear, and one easily checks that each multilinear map [[.., Vi = W
factors uniquely through m.

iel

From this universal property, it follows immediately that for each collection
of linear maps A; € End(V;), we obtain a linear map

RicrAi € End (V) with  ®ies Asm((vi)ier) = m((Aivi)ier)
icl
because the right hand side defines a multilinear map [[;c; Vi = @;cr Vi
Let g = @, 9i be a direct sum of Lie algebras. If for each i € I the space V;

is a g;-module, then ). ;V; carries a natural g-module structure with the ideals
g; acting by

el

p(ml) Rjer Vj = ;.03 & (®j;&'ﬂ]j)'
Note that if g; = 0 for all ¢ € I, then this construction does not lead to a
representation of 0 on the tensor product space because, if I is infinite, then the
diagonal algebra 0 is not contained in the direct sum Lie algebra g.
Now suppose that I is a set and that V; =V for all + € I. Then the restricted

symmetric group Sy acts on the space T':= K),; Vi. We consider the subspace

U:=span{o.x —c(o)riv € T,o € S} CT
and define
AMWV):=T/U and  Ajer v := Qicrv; + U.

Vi = AL(V) which is multilinear and alter-
Vi W

Then we have a natural map A:[[;c;
nating, and it is easy to see that each alternating multilinear map []
factors through A.

iel

The construction of a representation of a Lie algebra on subspaces of the space
Af(V) is a bit subtle. To obtain this representation, we fix for each ¢ € I an element
v; € V and consider the subspace A (V) := span{A;crw;: |{i: w; # vi}| < 0o}

Now suppose that V is a module of the Lie algebra g such that for each x € g
the corresponding operator py (x) annihilates all but finitely many of the v;. Then
for each x € g the operator

p(l’) Nier W5 1= Z T.w; N (/\j#wj)
1€l
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is defined because the sum on the right hand side is always finite. Note that the
expression on the right hand side is not meant as a product in an algebra. It
corresponds to writing the elements of a product set [[;c; X; as © = (z;)jer =
(i, (7)) for some i € I. We thus obtain a representation p of g on A (V).

A typical example of such a situation is given by the canonical representation
of gl(J,K) on V. = K. Let (ej)jes denote the canonical basis of V and
M C J be a subset. Then we obtain a representation of g = gl(J,K) on the
space AM) (K with A = > jem€j as an extremal weight. The typical examples
which are discussed in [KR87] are J = Z and M = {...,m —2,m — 1,m} for
m e 7.

Lemma V.1. Let g= @jEJgj be a direct sum of locally finite almost reductive
split Lie algebras and V; simple g;-weight modules with Endg, (V;) = K1. For each

J € J we pick a non-zero weight vector v; € Vjaj . Then the submodule ®j€JVj -
®j€J Vj generated by the weight vector v := ®jcjv; of weight o =Y
stmple g-module.

jes % 18 a
Proof. If FF C J is a finite subset and gp := ZjeF g;, then the gp-submodule
VF generated by v is isomorphic to ) jer Vi which is simple according to Lemma
IL.6(ii) applied inductively. We conclude that @);c;V; is an inductive limit of
simple gr-modules Vr and therefore a simple g-module. ]

Proposition V.2. For a simple highest weight module of the direct sum g =
EBjejgj of locally finite almost reductive split Lie algebras g; we have

—~

LLAY, ) = (X).

1€

IL(/\M A;I—v gl)v

where A\; = Xy, and b; :==bHNg; is a splitting Cartan subalgebra of g; . [ ]
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