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Abstract

We consider the nonstationary Navier-Stokes equations in an aperture do-
main Q C R?® consisting of two halfspaces separated by a wall, but connected
by a hole in this wall.

In this special domain one has to impose an auxiliary condition to single
out a unique solution. This can be done by prescribing either the flux through
the hole or the pressure drop between the two halfspaces.

We construct suitable Stokes operators for both of the auxiliary conditions
and show that they generate holomorphic semigroups. Then we prove the
existence and uniqueness of solutions as well as a maximal regularity estimate
for the Stokes equations subject to one of the auxiliary conditions. For the
corresponding Navier-Stokes equations we prove existence and uniqueness of
local in time solutions.

1 Introduction

The flow of a viscous incompressible fluid in a region €2 with rigid walls is governed
by the following Navier-Stokes equations:

u—Au+u-Vu+Vp = f inQx(0,T),
u(0) = wp in Q,
divu =0  inQx(0,7),
u=0 ondQx(0,T),

(1)

where u is the velocity field and p the pressure. It turns out, that for some do-
mains €2 even the stationary Stokes equations are not uniquely determined by the
corresponding equations, but one has to impose an auxiliary condition to single out
a unique solution. This was first discovered by Heywood, considering a so called
aperture domain, see [4]:

DEFINITION 1 LetRY = {z € R® : 23 > d/2},d >0 and B= {z € R’ : |z| < R},
R > 0. Then we call @ C R® an aperture domain, if Q is a domain and

QUB=R: UR? UB.
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Since we are interested in strong solutions we further assume that 92N B is of class

oL,
Q @ "

Figure 1: An aperture domain

In the following we first consider some suitable function spaces for the setting of
the Navier-Stokes equations. Defining the Stokes operators associated with a pre-
scribed flux or pressure drop, we show that they generate holomorphic semigroups.
Then we prove existence, uniqueness and a maximal regularity result for the Stokes
equations subject to one of the auxiliary conditions. Finally the local existence
and uniqueness of strong solutions for the corresponding Navier-Stokes equations is
shown.

The local existence and uniqueness of strong solutions with a prescribed flux was
already shown by Heywood, [6]. He also constructed generalized solutions for both
of the auxiliary conditions, see [4], [5].

2 The Basic Function Spaces

For a proper setting of the (Navier-)Stokes equations we have to introduce some
appropriate function spaces for the velocity u and the pressure p. In each of the
cases we have two different possibilities:

DEFINITION 2 Let C§%,(Q) be the subspace of all solenoidal vector fields of C§°(2)°.
Then we define

Ji1(Q) = closure of Cg% () in H'(Q)?,
JH(Q) = {v e Hy(Q)? : divv = 0}.

Let C§°(Q) be the functions of CZ(R?) restricted to 0, and L% _(Q) the functions

loc

belonging to L*(Q N B) for every finite ball B. Then we define

G(Q) = {Vp € L*(2)* : p € Ly, ()},
G*(Q) = closure of {Vp :p € C(Q)} in L*(Q)*.
In the case where the domain €2 is the whole space, a halfspace, a bounded or an
exterior domain, J*(2) and J(2) as well as G(€2) and G*(Q2) coincide, see [2], [4].

For investigating the case of an aperture domain, we have to define the physical
flux precisely:
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DEFINITION 3 Let M C QN B be a smooth 2-dimensional manifold, such that Q\ M
consists of two disjoint domains Q0 and Q_ with M = 0Q, NOQ_. Furthermore let
v be the normal vector on M directed into Q_. Then for u € J;(Q2) we define

o) = [ wrio

to be the flux through the aperture from Q. to Q2_.

By the trace theorem it is easy to see, that ® is a linear functional on J; ().
Moreover ® does not depend on the special shape of M, because the vector fields
are solenoidal; e.g. we can take M =R3 NJB.

Now we can show the following characterization:

THEOREM 1 Let € be an aperture domain. Then
a) dim(J5(Q)/J1(2)) =1 and J1(Q) = {v € J;(Q) : &(v) = 0}.
b) There are constants pL € R, such that

lp — p+llzear) < ClIVDPllLzay)-

The pressure drop [p] = p; — p_ can be estimated by

[Pl < ClIVPllL2 ()

Moreover dim(G(Q)/G*(Q)) =1 and G*(Q) = {Vp € G(Q) : [p| = 0}, i.e. for every
Vp € G(2) we have the unique decomposition

Vp = Vp* + [p|Vny, Vp* € G*(Q), (2)

where Ny is a smooth function with ny =1 on Q. \B and n,. =0 on Q_\ B.

PROOF. Let {ng,ny,n_} be a partition of unity in 2 with the following properties:
0 <o, 7+, 7 < 1 and there exists a ball B' = {x € R*|z| < R'}, R’ > R, such that
m=1lonQNB,n.=1onQ,\B andn =1onQ \B.

Now let uw € Jf(Q2) with ®(u) = 0. Then for u, = uny, g = u-Vn, we have
divu, = g,. Because of the compatibility condition

/ g+ dx :/ uy-ndo :/ u-ndo =—-®(u)=0
Q4NB d(Q4NBY) Q4NoB’

we can use [3], Theorem IIL.3.2 to get a vector field v, € H} (2, N B'), such that
divv, = gy. Hence uy — vy € Jf(Qy). In the same way we get a vector field
v € Hy(Q_NB'), such that u_ —v_ € JF (). Setting up = uny and vy = vy +v_,
we have ug +vg € JF(QN B') and v = (uy —vy) + (u_ — v_) + (up + vg). Now J;
and J; coincide for the perturbed halfspaces Q4 and the bounded domain Q N B’,
see [3], Chap III.4, hence u € J;(12).

It remains to show, that there exists a vector field u € J;(£2) with a non vanishing
flux: For the special aperture domain {x € R?® : z3 # 0 or |z| < 1} Heywood, [4],
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constructed an explicit vector field v € JFNH2NC>, such that ®(v) = 1. Using once
more [3], Theorem II1.3.2, we find a vector field vy € C§°(22NB’) solving the problem
divvy = go = vVro. Now it is easy to see, that u = v —vy € JF(Q)NH?(Q)NC>(Q)
with ®(u) = 1.

A proof of b) can be found in [2]. O

COROLLARY 1 Let u € J{(Q) and Vp € G(Q2). Then

/Q Vp-ude = —[p(u). (3)

PROOF. Let u € J¥(Q). Then for p* € C5°(Q) we get by the Gauss divergence

theorem
/Vp*~u dx = 0.
Q

This carries over to Vp* € G*(Q) by density. Taking 7, instead of p* yields

/Vn+-udw:/ Vn+-udw:/ uny -ndo = —®(u).
Q Q4 NB' d(Q4NB)

Using the decomposition (2) we obtain (3). O

THEOREM 2 Let J(Q), J*(Q) be the closure in L*(Q) of J1(Q), JF(Q) resp. Then

we have the orthogonal decomposition

L(Q) = J*(Q) & G*(Q) = J(Q) & G(9). (4)

L
PrOOF. We prove J*(Q)1 = JF(Q)*+ = G*(Q), hence J*(Q) & G*().
Let v = Vp* € G*(Q2). Then by (3) we have v € J;(Q)*. Now let v € J;(Q)* C

L?(Q)%. Then
/v-udaz =0
Q

for u € Jy(Q2). Because of C§5(Q2) C J;(Q2) and [3], Lemma II1.1.1, we have v =
Vp € G(Q2). Now (3) yields [p] = 0, hence v = Vp € G*(Q) by Theorem 1b).

1
The proof of J(2) & G(€2) follows the same lines. O

The orthogonal decompositions (4) are called Helmholtz decompositions. They imply
the existence of the associated Helmholtz projections P* on J*(2) and P on J().
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3 The Stokes Operator in Aperture Domains

Consider the Stokes equations in an aperture domain {2,
uw—Au+Vp = f inQx(0,7T),
u(0) = up in Q,
divu = 0 in Q x (0,7),
v=0 ondQx(0,T),

under the auxiliary condition

dw)=a or [p=4B.
We have two Helmholtz projections, one for each of the different auxiliary con-

ditions, yielding two different abstract formulations:

First we consider the Stokes equations with a prescribed pressure drop: Let «
be a solution of (5) with [p] = 8. Applying P* to the first equation and using the
decomposition (2) we obtain

u+ A'u =, u(0) = uy, (6)
where A* = P*(—A) and f* = P*(f — fVny).

The Stokes equations with prescribed flux can be reduced to the case of vanishing
flux by subtracting a suitable vector field carrying the flux. Hence it is sufficient to
consider the case of vanishing flux:

Let u be a solution of (5) with ®(u) = 0. Then by applying P to the first
equation, we obtain

u+ Au =g, u(0)= uy, (7)
with A= P(—A) and g = Pf.

Note the difference between the two auxiliary conditions: Prescribing the flux is a
Dirichlet type boundary condition, where we have to impose the condition ®(u) = «
by choosing a suitable function class. In contrast, prescribing the pressure drop is a
Neumann type boundary condition, leading to an additional term on the right hand
side of the differential equation.

Now let D(A*) = H2(Q) N Hy(Q) N J*(Q) and D(A) = H2(Q) N H () N J(Q).
Then we call

A*: D(A") C J(Q) — J(Q), A* = P*(-A)
the Stokes operator associated to a prescribed pressure drop and
A:D(A) C J(Q) — J(Q), A=P(-A)

the Stokes operator associated to a prescribed flux.

The following results will imply, that the above Stokes operators generate holo-
morphic semigroups:
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THEOREM 3 Let Q be an aperture domain with C*! boundary and 0 < ¢ < w. Then
for every f € L*(Q) and A € ),

Y. ={0#2€C:|argz| <m—¢}
there exists a unique solution (u, Vp) € H*(Q) x G(Q) of the resolvent system
A —Au+Vp=f, divu=0, ulgg=0, [p]=0. (8)

Moreover

Alllall + [IV2ull + IVpll < M|£]] (9)

where V2u is the matriz of the second order partial derivatives.
The theorem continues to hold with ®(u) = 0 instead of [p] = 0.

PrOOF. See [1], Theorem 1.2. O

COROLLARY 2 Let 0 < e < 7w. Then we have
|A(A*+ )7 < M., red .. (10)

Hence A* is the generator of a bounded holomorphic semigroup on J*(2). For
u € D(A*) we have
IVl < Cl|A™ul]. (11)

Moreover D((A*)Y/?) = J¥(Q) and
1(A") 2l = ||Vl (12)

for u € Jf(Q). The corollary holds true with A* substituted by A.

PROOF. Let f € J*(2) and u be the solution of (8). Then by applying P* to (8)
we obtain

Au+ A*u = f. (13)

Hence (A*+ )\) is surjective. Now let u € D(A*). Then u is the solution of (8) with
f = (A*+ N)u and by (9) we have

Alllell + [1V2ul] < Mc]I(A"+ Aull.

Hence (A*+ A) is injective and (10) holds true. By letting A ™, 0 in the above
estimate we obtain (11).
For u € D(A*) integration by parts yields

(A" 2l = (A*u, u) = (~Au, u) = || Vul]*

By the density of D(A*) in D((A*)'/?) and J;(Q), the assertion follows. The proof
for the operator A is analogous. O



STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN APERTURE DOMAINS 7

4 The Nonstationary Stokes Equations

We show that the solutions of the abstract equations (6) and (7) are indeed the
unique solutions of the Stokes equations (5) under the auxiliary conditions [p] = 3,
®(u) = a respectively.

Therefore we need the following lemma, which is well known, e.g. [8]:

LEMMA 1 Let H be a Hilbert space and let A : D(A) C H — H be the generator
of a holomorphic semigroup e=*A. Then for every f € L*(0,T; H) and uy € D(A'/?)
the abstract evolution equation

u+ Au = f, u(0) = ug

has a unique solution u € S(0,T) := L*(0,T; D(A)) N WY2(0,T; H). This solution
s given by

t
u(t) = e g ~|—/ e A5 (s5) ds
0

and satisfies

T T
/ r|utu2+r|Auu2dtsc(uAl/zuouu / ufr|2dt). (14)
0 0

Moreover
5(0,T) — C([0,T], D(AY?)). (15)

Using this Lemma, we can prove existence, uniqueness and maximal regularity
of the nonstationary Stokes equations subject to the auxiliary conditions. First we
consider a prescribed pressure drop:

THEOREM 4 Let f € L*(0,T;L*(Q)?), 8 € L*(0,T) and uy € H'(Q)? satisfying
the compatibility conditions uglgg = 0 and divug = 0. Then there exists a unique
solution

(u, Vp) € (WH2(0,T; L*()*) N L*(0, T; H*(Q)*)) x L*(0,T; L*(22)?)
of the Stokes equations
u—Au+Vp=f, divu=0, u(0)=uy, ulsga=0, I[p] =2 (16)

Furthermore the solution satisfies

T T
/0 el 241192l + | Vp 2+ [ B (@)l < c(uwouu / HfHZdHHBH%), (17)

as well as the energy equality

[u®I + [ IVulPdr =l + [ (0 + 88w dr,  0<t<T. (19
0 0
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PROOF. By assumption f* = P*(f — 8Vn.) € L*(0,T; J*(Q)) and uy € JF ().
Lemma 1 asserts the existence of a unique solution v € S*(0,T) = L%(0,T; D(A*))N
WhH2(0,T; J*(Q2)) of (6). It follows by (4)

uy — Au — f + Vny = Vp* € L*(0, T, G*(Q)). (19)

Hence (u, Vp) is the unique solution of (16).
From (3), the Poincaré inequality and Theorem 1b) for p = Vu, it follows that

B(u)] = \/ u-Vi, da
Q

< Cllullzsa,nzy < €l Vulls < O V2l

Moreover we have |4 ®(u)| < C||u¢||. Now using the estimates (11), (12) and [|f*|| <
If]| + C|B], as well as (19), we deduce (17) from (14).

Taking the scalar product of (16) with u and integrating in 7 € (0, ¢) yields (18).
a

For a prescribed flux we have an analogous theorem:

THEOREM 5 Let f € L*(0,T;L*()*), o € HY0,T) and uy € H(Q)® satisfying
the compatibility conditions uglag = 0, divug = 0 and ®(ug) = «(0). Then there
erists a unique solution

(u, Vp) € (WH2(0,T; L*(Q)%) N L*(0, T; H*(Q)%)) x L*(0, T; L*(Q)°)
of the Stokes equations
u—Au+Vp=f, divu=0, u(0)=uy, ulsga=0, @(u)=a  (20)

Furthermore the solution satisfies

T T
/0HutH2+HVzuH2+HVpH2dt+H[p]H§SC(HVUOH2+/OHszdHHOzH?,z) (21)

as well as the energy equality

t t
O+ [ 19ul?dr =l + [ () +abldr,  0<t<T. (22
0 0

Proor. Let x € D(A*) with ¢(x) = 1 be given. Then by assumption vy =
up — a(0)x € J1(Q) and g = P(f — o/x + aAx) € L*(0,T; J(Q)). Hence by Lemma
1 we obtain an unique solution v € S(0,7) = L*(0,T; D(A)) N W'2(0,T; J(2)) of
(7). Setting u = v + ax we proceed as in the proof of Theorem 4. O
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5 Local Solutions of the Nonstationary Navier-
Stokes Equations

To solve the Navier-Stokes equations we use the contraction mapping theorem.
Therefore we need suitable estimates for the nonlinearity:

LEMMA 2 Let v, w € H*(Q)3. Then we have
lo- V|| < C|Vol| [V ||/2]V2w][ 2. (23)

Furthermore for u € Jf () and v, w € H'(Q)* we have

/Q(u-Vw)-vda: = —/(u-Vv)-wda:. (24)

Q

PRrROOF. Using the Holder inequality as well as Theorem 1b) for v and Vw we
obtain

lo-Vol| < [lolls|Valls < [[olls| Vol Vellg™ < ClIVoll| V|| Vw|.

Let v; and wy, C Cs°(Q2)? be sequences approximating v, w respectively in
H'(©2)3. Then we have by Corollary 1

O:/u-V(vj-wk)dar :/(wij)-wkda? +/(U~Vwk)-vjdar.
Q Q Q

Now letting j, k — oo yields (24). O

Using Lemma 2 we prove the following existence and uniqueness result for the
Navier-Stokes equations.

THEOREM 6 Let the assumptions of Theorem j hold. Then there exists a time
Ty > 0 and a unique solution

(u, Vp) € (Wh2(0,Ty; L*(Q)*) N L*(0, To; H?(Q2)*)) x L*(0, Ty, L*(Q)?),
of the Nauvier-Stokes equations
u—Au+u-Vu+Vp=f, divu=0, u(0)=up, ulsga =0, [p|=05. (25)

If (0,Tp) is the mazimal interval of existence, then Ty > (CMg) ™!, where

T
M = [VuolP + [ NFPde, 5= P - 8.
0
Furthermore the solution satisfies the energy equality (18).

PRrOOF. For § > 0 we define the following equivalent Norm ||-[|;, on S*(0, Tp):

To To
nwazmw{MWW%A WWw,AerWw}
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Then for v, w € S*(0,T,) we get by (23), (11) and (15)

To

To
* 1/2
/0 lo-Vw|[*dt < C vz, \HWH\TO/O A w|| dt < CTy [lvll3, lwl, - (26)

Now by Lemma 1 it is easy to show that (u, Vp) is a solution of (25), if and only if
u € S*(0,Tp) is a fixed point of ¥,

To(t) = e g +/0 e DA (f(s) — P*(v-V)(s)) ds .

To solve the fixed point problem we consider the iteration ug.1 = Yug, k > 1, where

t
uy (t) = e g +/ e DA £(5) ds
0

is the solution of the Stokes equation to the given data. Now we show that ¥ fulfills
the conditions of the contraction mapping theorem on

Mi={v € §°(0,T0) : v - uilly, < Mo},

where Tj is suitably chosen: Setting 6 < Mo /[|uo|| we get by Lemma 1 [Juy ||, < M.
Moreover using the estimate (26) we obtain for v, w € M

1/4 1/4 1/4
Vo —wlly, < CT"* Jollz, < CTy (lo — willy, + llwlly, ) < 4CTy Mg,

1/4 1/4
1o — wwlly, < CT (Ilolly, + lwly,) v = wly, < 4CTy" Mo llv = wlly, -

Hence for Ty < (4C'M;,)~* the operator ¥ has a unique fixed point in M$. Consid-
ering (24) we obtain the energy equality as in the linear case, see Theorem 4. The
standard argumentation yields the uniqueness of the solution. a

We have a similar result for the Navier-Stokes equations with prescribed flux:

THEOREM 7 Let the assumptions of Theorem 5 hold. Then there exists a time
Ty > 0 and a unique solution

(u, Vp) € (Wh2(0,Ty; L*(Q)*) N L*(0, To; H*(Q2)*)) x L*(0, Tp; L*(Q)?)
of the Navier-Stokes equations
ur— Au~+u-Vu+Vp=f, divu =0, u(0) =ug, ulsga =0, ®(u) =a. (27)
Furthermore the solution satisfies the energy equality (22).

PrROOF. Let v = u — ay, vop = up — a(0)x and g = P(f — ax + aAx), where
x € D(A*) with ®(x) = 1. Then it is easy to show, that (u, Vp) is a solution of the
Navier-Stokes equations (27), if and only if v € S(0,Tp) is a fixed point of ¥,

Bu(t) = e 4y + / e 94 (4(s) — P((w — ax)-V(w — ax))(s)) ds.

Now we proceed as in the proof of Theorem 6. O

Under the same assumptions on the data as in the above theorems, we can
construct global weak solutions for both of the auxiliary conditions, following an
idea of Miyakawa and Sohr, see [7].
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