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�

Abstrat

We onsider the nonstationary Navier-Stokes equations in an aperture do-

main 
 � R

3

onsisting of two halfspaes separated by a wall, but onneted

by a hole in this wall.

In this speial domain one has to impose an auxiliary ondition to single

out a unique solution. This an be done by presribing either the ux through

the hole or the pressure drop between the two halfspaes.

We onstrut suitable Stokes operators for both of the auxiliary onditions

and show that they generate holomorphi semigroups. Then we prove the

existene and uniqueness of solutions as well as a maximal regularity estimate

for the Stokes equations subjet to one of the auxiliary onditions. For the

orresponding Navier-Stokes equations we prove existene and uniqueness of

loal in time solutions.

1 Introdution

The ow of a visous inompressible uid in a region 
 with rigid walls is governed

by the following Navier-Stokes equations:

u

t

��u+ u�ru+rp = f in 
� (0; T );

u(0) = u

0

in 
;

div u = 0 in 
� (0; T );

u = 0 on �
� (0; T );

(1)

where u is the veloity �eld and p the pressure. It turns out, that for some do-

mains 
 even the stationary Stokes equations are not uniquely determined by the

orresponding equations, but one has to impose an auxiliary ondition to single out

a unique solution. This was �rst disovered by Heywood, onsidering a so alled

aperture domain, see [4℄:

Definition 1 Let R

3

�

= fx 2 R

3

: �x

3

> d=2g, d � 0 and B = fx 2 R

3

: jxj < Rg,

R > 0. Then we all 
 � R

3

an aperture domain, if 
 is a domain and


 [B = R

3

+

[ R

3

�

[B:

�
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Sine we are interested in strong solutions we further assume that �
\B is of lass

C

1;1

.

M

�




+




�




Figure 1: An aperture domain

In the following we �rst onsider some suitable funtion spaes for the setting of

the Navier-Stokes equations. De�ning the Stokes operators assoiated with a pre-

sribed ux or pressure drop, we show that they generate holomorphi semigroups.

Then we prove existene, uniqueness and a maximal regularity result for the Stokes

equations subjet to one of the auxiliary onditions. Finally the loal existene

and uniqueness of strong solutions for the orresponding Navier-Stokes equations is

shown.

The loal existene and uniqueness of strong solutions with a presribed ux was

already shown by Heywood, [6℄. He also onstruted generalized solutions for both

of the auxiliary onditions, see [4℄, [5℄.

2 The Basi Funtion Spaes

For a proper setting of the (Navier-)Stokes equations we have to introdue some

appropriate funtion spaes for the veloity u and the pressure p. In eah of the

ases we have two di�erent possibilities:

Definition 2 Let C

1

0;�

(
) be the subspae of all solenoidal vetor �elds of C

1

0

(
)

3

.

Then we de�ne

J

1

(
) = losure of C

1

0;�

(
) in H

1

(
)

3

;

J

�

1

(
) = fv 2 H

1

0

(
)

3

: div v = 0g:

Let C

1

0

(
) be the funtions of C

1

0

(R

3

) restrited to 
, and L

2

lo

(
) the funtions

belonging to L

2

(
 \B) for every �nite ball B. Then we de�ne

G(
) = frp 2 L

2

(
)

3

: p 2 L

2

lo

(
)g;

G

�

(
) = losure of frp : p 2 C

1

0

(
)g in L

2

(
)

3

:

In the ase where the domain 
 is the whole spae, a halfspae, a bounded or an

exterior domain, J

�

(
) and J(
) as well as G(
) and G

�

(
) oinide, see [2℄, [4℄.

For investigating the ase of an aperture domain, we have to de�ne the physial

ux preisely:
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Definition 3 Let M � 
\B be a smooth 2-dimensional manifold, suh that 
nM

onsists of two disjoint domains 


+

and 


�

with M = �


+

\ �


�

. Furthermore let

� be the normal vetor on M direted into 


�

. Then for u 2 J

�

1

(
) we de�ne

�(u) =

Z

M

u�� do

to be the ux through the aperture from 


+

to 


�

.

By the trae theorem it is easy to see, that � is a linear funtional on J

�

1

(
).

Moreover � does not depend on the speial shape of M , beause the vetor �elds

are solenoidal; e.g. we an take M = R

3

+

\ �B.

Now we an show the following haraterization:

Theorem 1 Let 
 be an aperture domain. Then

a) dim(J

�

1

(
)=J

1

(
)) = 1 and J

1

(
) = fv 2 J

�

1

(
) : �(v) = 0g.

b) There are onstants p

�

2 R, suh that

kp� p

�

k

L

6

(


�

)

� Ckrpk

L

2

(


�

)

:

The pressure drop [p℄ = p

+

� p

�

an be estimated by

j[p℄j � Ckrpk

L

2

(
)

:

Moreover dim(G(
)=G

�

(
)) = 1 and G

�

(
) = frp 2 G(
) : [p℄ = 0g, i.e. for every

rp 2 G(
) we have the unique deomposition

rp = rp

�

+ [p℄r�

+

; rp

�

2 G

�

(
); (2)

where �

+

is a smooth funtion with �

+

= 1 on 


+

nB and �

+

= 0 on 


�

nB.

Proof. Let f�

0

; �

+

; �

�

g be a partition of unity in 
 with the following properties:

0 � �

0

, �

+

, �

�

� 1 and there exists a ball B

0

= fx 2 R

3

jxj � R

0

g, R

0

> R, suh that

�

0

= 1 on 
 \ B, �

+

= 1 on 


+

nB

0

and �

�

= 1 on 


�

nB

0

.

Now let u 2 J

�

1

(
) with �(u) = 0. Then for u

+

= u�

+

, g

+

= u �r�

+

we have

div u

+

= g

+

. Beause of the ompatibility ondition

Z




+

\B

0

g

+

dx =

Z

�(


+

\B

0

)

u

+

�n do =

Z




+

\�B

0

u�n do = ��(u) = 0

we an use [3℄, Theorem III.3.2 to get a vetor �eld v

+

2 H

1

0

(


+

\ B

0

), suh that

div v

+

= g

+

. Hene u

+

� v

+

2 J

�

1

(


+

). In the same way we get a vetor �eld

v

�

2 H

1

0

(


�

\B

0

), suh that u

�

�v

�

2 J

�

1

(


�

). Setting u

0

= u�

0

and v

0

= v

+

+v

�

,

we have u

0

+ v

0

2 J

�

1

(
 \ B

0

) and u = (u

+

� v

+

) + (u

�

� v

�

) + (u

0

+ v

0

). Now J

�

1

and J

1

oinide for the perturbed halfspaes 


�

and the bounded domain 
 \ B

0

,

see [3℄, Chap III.4, hene u 2 J

1

(
).

It remains to show, that there exists a vetor �eld u 2 J

�

1

(
) with a non vanishing

ux: For the speial aperture domain fx 2 R

3

: x

3

6= 0 or jxj < 1g Heywood, [4℄,
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onstruted an expliit vetor �eld v 2 J

�

1

\H

2

\C

1

, suh that �(v) = 1. Using one

more [3℄, Theorem III.3.2, we �nd a vetor �eld v

0

2 C

1

0

(
\B

0

) solving the problem

div v

0

= g

0

= v�r�

0

. Now it is easy to see, that u = v�

0

�v

0

2 J

�

1

(
)\H

2

(
)\C

1

(
)

with �(u) = 1.

A proof of b) an be found in [2℄. 2

Corollary 1 Let u 2 J

�

1

(
) and rp 2 G(
). Then

Z




rp�u dx = �[p℄�(u): (3)

Proof. Let u 2 J

�

1

(
). Then for p

�

2 C

1

0

(
) we get by the Gauss divergene

theorem

Z




rp

�

�u dx = 0:

This arries over to rp

�

2 G

�

(
) by density. Taking �

+

instead of p

�

yields

Z




r�

+

� u dx =

Z




+

\B

0

r�

+

� u dx =

Z

�(


+

\B

0

)

u�

+

� n do = ��(u):

Using the deomposition (2) we obtain (3). 2

Theorem 2 Let J(
), J

�

(
) be the losure in L

2

(
)

3

of J

1

(
), J

�

1

(
) resp. Then

we have the orthogonal deomposition

L

2

(
)

3

= J

�

(
)

?

� G

�

(
) = J(
)

?

� G(
): (4)

Proof. We prove J

�

(
)

?

= J

�

1

(
)

?

= G

�

(
), hene J

�

(
)

?

� G

�

(
).

Let v = rp

�

2 G

�

(
). Then by (3) we have v 2 J

�

1

(
)

?

. Now let v 2 J

�

1

(
)

?

�

L

2

(
)

3

. Then

Z




v �u dx = 0

for u 2 J

�

1

(
). Beause of C

1

0;�

(
) � J

�

1

(
) and [3℄, Lemma III.1.1, we have v =

rp 2 G(
). Now (3) yields [p℄ = 0, hene v = rp 2 G

�

(
) by Theorem 1b).

The proof of J(
)

?

� G(
) follows the same lines. 2

The orthogonal deompositions (4) are alled Helmholtz deompositions. They imply

the existene of the assoiated Helmholtz projetions P

�

on J

�

(
) and P on J(
).
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3 The Stokes Operator in Aperture Domains

Consider the Stokes equations in an aperture domain 
,

u

t

��u+rp = f in 
� (0; T );

u(0) = u

0

in 
;

div u = 0 in 
� (0; T );

u = 0 on �
 � (0; T );

(5)

under the auxiliary ondition

�(u) = � or [p℄ = �:

We have two Helmholtz projetions, one for eah of the di�erent auxiliary on-

ditions, yielding two di�erent abstrat formulations:

First we onsider the Stokes equations with a presribed pressure drop: Let u

be a solution of (5) with [p℄ = �. Applying P

�

to the �rst equation and using the

deomposition (2) we obtain

u

t

+ A

�

u = f

�

; u(0) = u

0

; (6)

where A

�

= P

�

(��) and f

�

= P

�

(f � �r�

+

).

The Stokes equations with presribed ux an be redued to the ase of vanishing

ux by subtrating a suitable vetor �eld arrying the ux. Hene it is suÆient to

onsider the ase of vanishing ux:

Let u be a solution of (5) with �(u) = 0. Then by applying P to the �rst

equation, we obtain

u

t

+ Au = g; u(0) = u

0

; (7)

with A = P (��) and g = Pf .

Note the di�erene between the two auxiliary onditions: Presribing the ux is a

Dirihlet type boundary ondition, where we have to impose the ondition �(u) = �

by hoosing a suitable funtion lass. In ontrast, presribing the pressure drop is a

Neumann type boundary ondition, leading to an additional term on the right hand

side of the di�erential equation.

Now let D(A

�

) = H

2

(
) \H

1

0

(
) \ J

�

(
) and D(A) = H

2

(
) \H

1

0

(
) \ J(
).

Then we all

A

�

: D(A

�

) � J

�

(
)! J

�

(
); A

�

= P

�

(��)

the Stokes operator assoiated to a presribed pressure drop and

A : D(A) � J(
)! J(
); A = P (��)

the Stokes operator assoiated to a presribed ux.

The following results will imply, that the above Stokes operators generate holo-

morphi semigroups:
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Theorem 3 Let 
 be an aperture domain with C

1;1

boundary and 0 < " < �. Then

for every f 2 L

2

(
) and � 2

P

"

,

P

"

:= f0 6= z 2 C : j arg zj < � � "g

there exists a unique solution (u;rp) 2 H

2

(
)�G(
) of the resolvent system

�u��u+rp = f; div u = 0; uj

�


= 0; [p℄ = 0: (8)

Moreover

j�jkuk+ kr

2

uk+ krpk �M

"

kfk; (9)

where r

2

u is the matrix of the seond order partial derivatives.

The theorem ontinues to hold with �(u) = 0 instead of [p℄ = 0.

Proof. See [1℄, Theorem 1.2. 2

Corollary 2 Let 0 < " < �. Then we have

k�(A

�

+ �)

�1

k �M

"

; � 2

P

"

: (10)

Hene A

�

is the generator of a bounded holomorphi semigroup on J

�

(
). For

u 2 D(A

�

) we have

kr

2

uk � CkA

�

uk: (11)

Moreover D((A

�

)

1=2

) = J

�

1

(
) and

k(A

�

)

1=2

uk = kruk (12)

for u 2 J

�

1

(
). The orollary holds true with A

�

substituted by A.

Proof. Let f 2 J

�

(
) and u be the solution of (8). Then by applying P

�

to (8)

we obtain

�u+ A

�

u = f: (13)

Hene (A

�

+ �) is surjetive. Now let u 2 D(A

�

). Then u is the solution of (8) with

f = (A

�

+ �)u and by (9) we have

j�jkuk+ kr

2

uk � M

"

k(A

�

+ �)uk:

Hene (A

�

+ �) is injetive and (10) holds true. By letting � & 0 in the above

estimate we obtain (11).

For u 2 D(A

�

) integration by parts yields

k(A

�

)

1=2

uk

2

= hA

�

u; ui = h��u; ui = kruk

2

:

By the density of D(A

�

) in D((A

�

)

1=2

) and J

�

1

(
), the assertion follows. The proof

for the operator A is analogous. 2
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4 The Nonstationary Stokes Equations

We show that the solutions of the abstrat equations (6) and (7) are indeed the

unique solutions of the Stokes equations (5) under the auxiliary onditions [p℄ = �,

�(u) = � respetively.

Therefore we need the following lemma, whih is well known, e.g. [8℄:

Lemma 1 Let H be a Hilbert spae and let A : D(A) � H �! H be the generator

of a holomorphi semigroup e

�tA

. Then for every f 2 L

2

(0; T ;H) and u

0

2 D(A

1=2

)

the abstrat evolution equation

u

t

+ Au = f; u(0) = u

0

has a unique solution u 2 S(0; T ) := L

2

(0; T ;D(A)) \W

1;2

(0; T ;H). This solution

is given by

u(t) = e

�tA

u

0

+

Z

t

0

e

�(t�s)A

f(s) ds

and satis�es

Z

T

0

ku

t

k

2

+ kAuk

2

dt � C

�

kA

1=2

u

0

k

2

+

Z

T

0

kfk

2

dt

�

: (14)

Moreover

S(0; T ) ,! C([0; T ℄; D(A

1=2

)): (15)

Using this Lemma, we an prove existene, uniqueness and maximal regularity

of the nonstationary Stokes equations subjet to the auxiliary onditions. First we

onsider a presribed pressure drop:

Theorem 4 Let f 2 L

2

(0; T ;L

2

(
)

3

), � 2 L

2

(0; T ) and u

0

2 H

1

(
)

3

satisfying

the ompatibility onditions u

0

j

�


= 0 and div u

0

= 0. Then there exists a unique

solution

(u;rp) 2 (W

1;2

(0; T ;L

2

(
)

3

) \ L

2

(0; T ;H

2

(
)

3

))� L

2

(0; T ;L

2

(
)

3

)

of the Stokes equations

u

t

��u+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; [p℄ = �: (16)

Furthermore the solution satis�es

Z

T

0

ku

t

k

2

+kr

2

uk

2

+krpk

2

dt+k�(u)k

2

H

1

� C

�

kru

0

k

2

+

Z

T

0

kfk

2

dt+k�k

2

2

�

; (17)

as well as the energy equality

ku(t)k

2

+

Z

t

0

kruk

2

d� = ku

0

k

2

+

Z

t

0

hf; ui+ ��(u) d� ; 0 < t < T: (18)
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Proof. By assumption f

�

= P

�

(f � �r�

+

) 2 L

2

(0; T ; J

�

(
)) and u

0

2 J

�

1

(
).

Lemma 1 asserts the existene of a unique solution u 2 S

�

(0; T ) = L

2

(0; T ;D(A

�

))\

W

1;2

(0; T ; J

�

(
)) of (6). It follows by (4)

u

t

��u� f + �r�

+

= rp

�

2 L

2

(0; T; G

�

(
)): (19)

Hene (u;rp) is the unique solution of (16).

From (3), the Poinar�e inequality and Theorem 1b) for p = ru, it follows that

j�(u)j =

�

�

�

�

Z




u�r�

+

dx

�

�

�

�

� Ckuk

L

6

(


+

\B)

� Ckruk

6

� Ckr

2

uk:

Moreover we have j

d

dt

�(u)j � Cku

t

k. Now using the estimates (11), (12) and kf

�

k �

kfk+ Cj�j, as well as (19), we dedue (17) from (14).

Taking the salar produt of (16) with u and integrating in � 2 (0; t) yields (18).

2

For a presribed ux we have an analogous theorem:

Theorem 5 Let f 2 L

2

(0; T ;L

2

(
)

3

), � 2 H

1

(0; T ) and u

0

2 H

1

(
)

3

satisfying

the ompatibility onditions u

0

j

�


= 0, div u

0

= 0 and �(u

0

) = �(0). Then there

exists a unique solution

(u;rp) 2 (W

1;2

(0; T ;L

2

(
)

3

) \ L

2

(0; T ;H

2

(
)

3

))� L

2

(0; T ;L

2

(
)

3

)

of the Stokes equations

u

t

��u+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; �(u) = �: (20)

Furthermore the solution satis�es

Z

T

0

ku

t

k

2

+kr

2

uk

2

+krpk

2

dt+k[p℄k

2

2

� C

�

kru

0

k

2

+

Z

T

0

kfk

2

dt+k�k

2

1;2

�

(21)

as well as the energy equality

ku(t)k

2

+

Z

t

0

kruk

2

d� = ku

0

k

2

+

Z

t

0

hf; ui+ �[p℄ d� ; 0 < t < T: (22)

Proof. Let � 2 D(A

�

) with �(�) = 1 be given. Then by assumption v

0

=

u

0

� �(0)� 2 J

1

(
) and g = P (f � �

0

�+ ���) 2 L

2

(0; T ; J(
)). Hene by Lemma

1 we obtain an unique solution v 2 S(0; T ) = L

2

(0; T ;D(A)) \W

1;2

(0; T ; J(
)) of

(7). Setting u = v + �� we proeed as in the proof of Theorem 4. 2
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5 Loal Solutions of the Nonstationary Navier-

Stokes Equations

To solve the Navier-Stokes equations we use the ontration mapping theorem.

Therefore we need suitable estimates for the nonlinearity:

Lemma 2 Let v, w 2 H

2

(
)

3

. Then we have

kv �rwk � Ckrvkkrwk

1=2

kr

2

wk

1=2

: (23)

Furthermore for u 2 J

�

1

(
) and v, w 2 H

1

(
)

3

we have

Z




(u�rw)�v dx = �

Z




(u�rv)�wdx : (24)

Proof. Using the H�older inequality as well as Theorem 1b) for v and rw we

obtain

kv �rwk � kvk

6

krwk

3

� kvk

6

krwk

1=2

krwk

1=2

6

� Ckrvkkrwk

1=2

kr

2

wk

1=2

:

Let v

j

and w

k

� C

1

0

(
)

3

be sequenes approximating v, w respetively in

H

1

(
)

3

. Then we have by Corollary 1

0 =

Z




u�r(v

j

�w

k

) dx =

Z




(u�rv

j

)�w

k

dx +

Z




(u�rw

k

)�v

j

dx :

Now letting j, k !1 yields (24). 2

Using Lemma 2 we prove the following existene and uniqueness result for the

Navier-Stokes equations.

Theorem 6 Let the assumptions of Theorem 4 hold. Then there exists a time

T

0

> 0 and a unique solution

(u;rp) 2 (W

1;2

(0; T

0

;L

2

(
)

3

) \ L

2

(0; T

0

;H

2

(
)

3

))� L

2

(0; T

0

; L

2

(
)

3

);

of the Navier-Stokes equations

u

t

��u+ u�ru+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; [p℄ = �: (25)

If (0; T

0

) is the maximal interval of existene, then T

0

> (CM

4

0

)

�1

, where

M

2

0

= kru

0

k

2

+

Z

T

0

kf

�

k

2

dt ; f

�

= P

�

(f � �r�

+

):

Furthermore the solution satis�es the energy equality (18).

Proof. For Æ > 0 we de�ne the following equivalent Norm jjj�jjj

T

0

on S

�

(0; T

0

):

jjjvjjj

2

T

0

= max

�

Ækv(0)k

2

;

Z

T

0

0

kv

0

k

2

dt ;

Z

T

0

0

kA

�

vk

2

dt

�

:
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Then for v, w 2 S

�

(0; T

0

) we get by (23), (11) and (15)

Z

T

0

0

kv �rwk

2

dt � C jjjvjjj

2

T

0

jjjwjjj

T

0

Z

T

0

0

kA

�

wk dt � CT

1=2

0

jjjvjjj

2

T

0

jjjwjjj

2

T

0

: (26)

Now by Lemma 1 it is easy to show that (u;rp) is a solution of (25), if and only if

u 2 S

�

(0; T

0

) is a �xed point of 	,

	v(t) = e

�tA

�

u

0

+

Z

t

0

e

�(t�s)A

�

(f

�

(s)� P

�

(v �rv)(s)) ds :

To solve the �xed point problem we onsider the iteration u

k+1

= 	u

k

, k � 1, where

u

1

(t) = e

�tA

�

u

0

+

Z

t

0

e

�(t�s)A

�

f

�

(s) ds

is the solution of the Stokes equation to the given data. Now we show that 	 ful�lls

the onditions of the ontration mapping theorem on

M

�

0

= fv 2 S

�

(0; T

0

) : jjjv � u

1

jjj

T

0

�M

0

g;

where T

0

is suitably hosen: Setting Æ < M

0

=ku

0

k we get by Lemma 1 jjju

1

jjj

T

0

�M

0

.

Moreover using the estimate (26) we obtain for v, w 2 M

�

0

jjj	v � u

1

jjj

T

0

� CT

1=4

0

jjjvjjj

2

T

0

� CT

1=4

0

(jjjv � u

1

jjj

T

0

+ jjju

1

jjj

T

0

)

2

� 4CT

1=4

0

M

2

0

;

jjj	v � 	wjjj

T

0

� CT

1=4

0

�

jjjvjjj

T

0

+ jjjwjjj

T

0

�

jjjv � wjjj

T

0

� 4CT

1=4

0

M

0

jjjv � wjjj

T

0

:

Hene for T

0

� (4CM

0

)

�4

the operator 	 has a unique �xed point in M

�

0

. Consid-

ering (24) we obtain the energy equality as in the linear ase, see Theorem 4. The

standard argumentation yields the uniqueness of the solution. 2

We have a similar result for the Navier-Stokes equations with presribed ux:

Theorem 7 Let the assumptions of Theorem 5 hold. Then there exists a time

T

0

> 0 and a unique solution

(u;rp) 2 (W

1;2

(0; T

0

;L

2

(
)

3

) \ L

2

(0; T

0

;H

2

(
)

3

))� L

2

(0; T

0

;L

2

(
)

3

)

of the Navier-Stokes equations

u

t

��u+ u�ru+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; �(u) = �: (27)

Furthermore the solution satis�es the energy equality (22).

Proof. Let v = u � ��, v

0

= u

0

� �(0)� and g = P (f � �� + ���), where

� 2 D(A

�

) with �(�) = 1. Then it is easy to show, that (u;rp) is a solution of the

Navier-Stokes equations (27), if and only if v 2 S(0; T

0

) is a �xed point of 	,

	w(t) = e

�tA

�

v

0

+

Z

t

0

e

�(t�s)A

�

(g(s)� P ((w � ��)�r(w� ��))(s)) ds :

Now we proeed as in the proof of Theorem 6. 2

Under the same assumptions on the data as in the above theorems, we an

onstrut global weak solutions for both of the auxiliary onditions, following an

idea of Miyakawa and Sohr, see [7℄.
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