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�

Abstra
t

We 
onsider the nonstationary Navier-Stokes equations in an aperture do-

main 
 � R

3


onsisting of two halfspa
es separated by a wall, but 
onne
ted

by a hole in this wall.

In this spe
ial domain one has to impose an auxiliary 
ondition to single

out a unique solution. This 
an be done by pres
ribing either the 
ux through

the hole or the pressure drop between the two halfspa
es.

We 
onstru
t suitable Stokes operators for both of the auxiliary 
onditions

and show that they generate holomorphi
 semigroups. Then we prove the

existen
e and uniqueness of solutions as well as a maximal regularity estimate

for the Stokes equations subje
t to one of the auxiliary 
onditions. For the


orresponding Navier-Stokes equations we prove existen
e and uniqueness of

lo
al in time solutions.

1 Introdu
tion

The 
ow of a vis
ous in
ompressible 
uid in a region 
 with rigid walls is governed

by the following Navier-Stokes equations:

u

t

��u+ u�ru+rp = f in 
� (0; T );

u(0) = u

0

in 
;

div u = 0 in 
� (0; T );

u = 0 on �
� (0; T );

(1)

where u is the velo
ity �eld and p the pressure. It turns out, that for some do-

mains 
 even the stationary Stokes equations are not uniquely determined by the


orresponding equations, but one has to impose an auxiliary 
ondition to single out

a unique solution. This was �rst dis
overed by Heywood, 
onsidering a so 
alled

aperture domain, see [4℄:

Definition 1 Let R

3

�

= fx 2 R

3

: �x

3

> d=2g, d � 0 and B = fx 2 R

3

: jxj < Rg,

R > 0. Then we 
all 
 � R

3

an aperture domain, if 
 is a domain and


 [B = R

3

+

[ R

3

�

[B:

�
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Sin
e we are interested in strong solutions we further assume that �
\B is of 
lass

C

1;1

.

M

�




+




�




Figure 1: An aperture domain

In the following we �rst 
onsider some suitable fun
tion spa
es for the setting of

the Navier-Stokes equations. De�ning the Stokes operators asso
iated with a pre-

s
ribed 
ux or pressure drop, we show that they generate holomorphi
 semigroups.

Then we prove existen
e, uniqueness and a maximal regularity result for the Stokes

equations subje
t to one of the auxiliary 
onditions. Finally the lo
al existen
e

and uniqueness of strong solutions for the 
orresponding Navier-Stokes equations is

shown.

The lo
al existen
e and uniqueness of strong solutions with a pres
ribed 
ux was

already shown by Heywood, [6℄. He also 
onstru
ted generalized solutions for both

of the auxiliary 
onditions, see [4℄, [5℄.

2 The Basi
 Fun
tion Spa
es

For a proper setting of the (Navier-)Stokes equations we have to introdu
e some

appropriate fun
tion spa
es for the velo
ity u and the pressure p. In ea
h of the


ases we have two di�erent possibilities:

Definition 2 Let C

1

0;�

(
) be the subspa
e of all solenoidal ve
tor �elds of C

1

0

(
)

3

.

Then we de�ne

J

1

(
) = 
losure of C

1

0;�

(
) in H

1

(
)

3

;

J

�

1

(
) = fv 2 H

1

0

(
)

3

: div v = 0g:

Let C

1

0

(
) be the fun
tions of C

1

0

(R

3

) restri
ted to 
, and L

2

lo


(
) the fun
tions

belonging to L

2

(
 \B) for every �nite ball B. Then we de�ne

G(
) = frp 2 L

2

(
)

3

: p 2 L

2

lo


(
)g;

G

�

(
) = 
losure of frp : p 2 C

1

0

(
)g in L

2

(
)

3

:

In the 
ase where the domain 
 is the whole spa
e, a halfspa
e, a bounded or an

exterior domain, J

�

(
) and J(
) as well as G(
) and G

�

(
) 
oin
ide, see [2℄, [4℄.

For investigating the 
ase of an aperture domain, we have to de�ne the physi
al


ux pre
isely:
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Definition 3 Let M � 
\B be a smooth 2-dimensional manifold, su
h that 
nM


onsists of two disjoint domains 


+

and 


�

with M = �


+

\ �


�

. Furthermore let

� be the normal ve
tor on M dire
ted into 


�

. Then for u 2 J

�

1

(
) we de�ne

�(u) =

Z

M

u�� do

to be the 
ux through the aperture from 


+

to 


�

.

By the tra
e theorem it is easy to see, that � is a linear fun
tional on J

�

1

(
).

Moreover � does not depend on the spe
ial shape of M , be
ause the ve
tor �elds

are solenoidal; e.g. we 
an take M = R

3

+

\ �B.

Now we 
an show the following 
hara
terization:

Theorem 1 Let 
 be an aperture domain. Then

a) dim(J

�

1

(
)=J

1

(
)) = 1 and J

1

(
) = fv 2 J

�

1

(
) : �(v) = 0g.

b) There are 
onstants p

�

2 R, su
h that

kp� p

�

k

L

6

(


�

)

� Ckrpk

L

2

(


�

)

:

The pressure drop [p℄ = p

+

� p

�


an be estimated by

j[p℄j � Ckrpk

L

2

(
)

:

Moreover dim(G(
)=G

�

(
)) = 1 and G

�

(
) = frp 2 G(
) : [p℄ = 0g, i.e. for every

rp 2 G(
) we have the unique de
omposition

rp = rp

�

+ [p℄r�

+

; rp

�

2 G

�

(
); (2)

where �

+

is a smooth fun
tion with �

+

= 1 on 


+

nB and �

+

= 0 on 


�

nB.

Proof. Let f�

0

; �

+

; �

�

g be a partition of unity in 
 with the following properties:

0 � �

0

, �

+

, �

�

� 1 and there exists a ball B

0

= fx 2 R

3

jxj � R

0

g, R

0

> R, su
h that

�

0

= 1 on 
 \ B, �

+

= 1 on 


+

nB

0

and �

�

= 1 on 


�

nB

0

.

Now let u 2 J

�

1

(
) with �(u) = 0. Then for u

+

= u�

+

, g

+

= u �r�

+

we have

div u

+

= g

+

. Be
ause of the 
ompatibility 
ondition

Z




+

\B

0

g

+

dx =

Z

�(


+

\B

0

)

u

+

�n do =

Z




+

\�B

0

u�n do = ��(u) = 0

we 
an use [3℄, Theorem III.3.2 to get a ve
tor �eld v

+

2 H

1

0

(


+

\ B

0

), su
h that

div v

+

= g

+

. Hen
e u

+

� v

+

2 J

�

1

(


+

). In the same way we get a ve
tor �eld

v

�

2 H

1

0

(


�

\B

0

), su
h that u

�

�v

�

2 J

�

1

(


�

). Setting u

0

= u�

0

and v

0

= v

+

+v

�

,

we have u

0

+ v

0

2 J

�

1

(
 \ B

0

) and u = (u

+

� v

+

) + (u

�

� v

�

) + (u

0

+ v

0

). Now J

�

1

and J

1


oin
ide for the perturbed halfspa
es 


�

and the bounded domain 
 \ B

0

,

see [3℄, Chap III.4, hen
e u 2 J

1

(
).

It remains to show, that there exists a ve
tor �eld u 2 J

�

1

(
) with a non vanishing


ux: For the spe
ial aperture domain fx 2 R

3

: x

3

6= 0 or jxj < 1g Heywood, [4℄,
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onstru
ted an expli
it ve
tor �eld v 2 J

�

1

\H

2

\C

1

, su
h that �(v) = 1. Using on
e

more [3℄, Theorem III.3.2, we �nd a ve
tor �eld v

0

2 C

1

0

(
\B

0

) solving the problem

div v

0

= g

0

= v�r�

0

. Now it is easy to see, that u = v�

0

�v

0

2 J

�

1

(
)\H

2

(
)\C

1

(
)

with �(u) = 1.

A proof of b) 
an be found in [2℄. 2

Corollary 1 Let u 2 J

�

1

(
) and rp 2 G(
). Then

Z




rp�u dx = �[p℄�(u): (3)

Proof. Let u 2 J

�

1

(
). Then for p

�

2 C

1

0

(
) we get by the Gauss divergen
e

theorem

Z




rp

�

�u dx = 0:

This 
arries over to rp

�

2 G

�

(
) by density. Taking �

+

instead of p

�

yields

Z




r�

+

� u dx =

Z




+

\B

0

r�

+

� u dx =

Z

�(


+

\B

0

)

u�

+

� n do = ��(u):

Using the de
omposition (2) we obtain (3). 2

Theorem 2 Let J(
), J

�

(
) be the 
losure in L

2

(
)

3

of J

1

(
), J

�

1

(
) resp. Then

we have the orthogonal de
omposition

L

2

(
)

3

= J

�

(
)

?

� G

�

(
) = J(
)

?

� G(
): (4)

Proof. We prove J

�

(
)

?

= J

�

1

(
)

?

= G

�

(
), hen
e J

�

(
)

?

� G

�

(
).

Let v = rp

�

2 G

�

(
). Then by (3) we have v 2 J

�

1

(
)

?

. Now let v 2 J

�

1

(
)

?

�

L

2

(
)

3

. Then

Z




v �u dx = 0

for u 2 J

�

1

(
). Be
ause of C

1

0;�

(
) � J

�

1

(
) and [3℄, Lemma III.1.1, we have v =

rp 2 G(
). Now (3) yields [p℄ = 0, hen
e v = rp 2 G

�

(
) by Theorem 1b).

The proof of J(
)

?

� G(
) follows the same lines. 2

The orthogonal de
ompositions (4) are 
alled Helmholtz de
ompositions. They imply

the existen
e of the asso
iated Helmholtz proje
tions P

�

on J

�

(
) and P on J(
).
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3 The Stokes Operator in Aperture Domains

Consider the Stokes equations in an aperture domain 
,

u

t

��u+rp = f in 
� (0; T );

u(0) = u

0

in 
;

div u = 0 in 
� (0; T );

u = 0 on �
 � (0; T );

(5)

under the auxiliary 
ondition

�(u) = � or [p℄ = �:

We have two Helmholtz proje
tions, one for ea
h of the di�erent auxiliary 
on-

ditions, yielding two di�erent abstra
t formulations:

First we 
onsider the Stokes equations with a pres
ribed pressure drop: Let u

be a solution of (5) with [p℄ = �. Applying P

�

to the �rst equation and using the

de
omposition (2) we obtain

u

t

+ A

�

u = f

�

; u(0) = u

0

; (6)

where A

�

= P

�

(��) and f

�

= P

�

(f � �r�

+

).

The Stokes equations with pres
ribed 
ux 
an be redu
ed to the 
ase of vanishing


ux by subtra
ting a suitable ve
tor �eld 
arrying the 
ux. Hen
e it is suÆ
ient to


onsider the 
ase of vanishing 
ux:

Let u be a solution of (5) with �(u) = 0. Then by applying P to the �rst

equation, we obtain

u

t

+ Au = g; u(0) = u

0

; (7)

with A = P (��) and g = Pf .

Note the di�eren
e between the two auxiliary 
onditions: Pres
ribing the 
ux is a

Diri
hlet type boundary 
ondition, where we have to impose the 
ondition �(u) = �

by 
hoosing a suitable fun
tion 
lass. In 
ontrast, pres
ribing the pressure drop is a

Neumann type boundary 
ondition, leading to an additional term on the right hand

side of the di�erential equation.

Now let D(A

�

) = H

2

(
) \H

1

0

(
) \ J

�

(
) and D(A) = H

2

(
) \H

1

0

(
) \ J(
).

Then we 
all

A

�

: D(A

�

) � J

�

(
)! J

�

(
); A

�

= P

�

(��)

the Stokes operator asso
iated to a pres
ribed pressure drop and

A : D(A) � J(
)! J(
); A = P (��)

the Stokes operator asso
iated to a pres
ribed 
ux.

The following results will imply, that the above Stokes operators generate holo-

morphi
 semigroups:
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Theorem 3 Let 
 be an aperture domain with C

1;1

boundary and 0 < " < �. Then

for every f 2 L

2

(
) and � 2

P

"

,

P

"

:= f0 6= z 2 C : j arg zj < � � "g

there exists a unique solution (u;rp) 2 H

2

(
)�G(
) of the resolvent system

�u��u+rp = f; div u = 0; uj

�


= 0; [p℄ = 0: (8)

Moreover

j�jkuk+ kr

2

uk+ krpk �M

"

kfk; (9)

where r

2

u is the matrix of the se
ond order partial derivatives.

The theorem 
ontinues to hold with �(u) = 0 instead of [p℄ = 0.

Proof. See [1℄, Theorem 1.2. 2

Corollary 2 Let 0 < " < �. Then we have

k�(A

�

+ �)

�1

k �M

"

; � 2

P

"

: (10)

Hen
e A

�

is the generator of a bounded holomorphi
 semigroup on J

�

(
). For

u 2 D(A

�

) we have

kr

2

uk � CkA

�

uk: (11)

Moreover D((A

�

)

1=2

) = J

�

1

(
) and

k(A

�

)

1=2

uk = kruk (12)

for u 2 J

�

1

(
). The 
orollary holds true with A

�

substituted by A.

Proof. Let f 2 J

�

(
) and u be the solution of (8). Then by applying P

�

to (8)

we obtain

�u+ A

�

u = f: (13)

Hen
e (A

�

+ �) is surje
tive. Now let u 2 D(A

�

). Then u is the solution of (8) with

f = (A

�

+ �)u and by (9) we have

j�jkuk+ kr

2

uk � M

"

k(A

�

+ �)uk:

Hen
e (A

�

+ �) is inje
tive and (10) holds true. By letting � & 0 in the above

estimate we obtain (11).

For u 2 D(A

�

) integration by parts yields

k(A

�

)

1=2

uk

2

= hA

�

u; ui = h��u; ui = kruk

2

:

By the density of D(A

�

) in D((A

�

)

1=2

) and J

�

1

(
), the assertion follows. The proof

for the operator A is analogous. 2
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4 The Nonstationary Stokes Equations

We show that the solutions of the abstra
t equations (6) and (7) are indeed the

unique solutions of the Stokes equations (5) under the auxiliary 
onditions [p℄ = �,

�(u) = � respe
tively.

Therefore we need the following lemma, whi
h is well known, e.g. [8℄:

Lemma 1 Let H be a Hilbert spa
e and let A : D(A) � H �! H be the generator

of a holomorphi
 semigroup e

�tA

. Then for every f 2 L

2

(0; T ;H) and u

0

2 D(A

1=2

)

the abstra
t evolution equation

u

t

+ Au = f; u(0) = u

0

has a unique solution u 2 S(0; T ) := L

2

(0; T ;D(A)) \W

1;2

(0; T ;H). This solution

is given by

u(t) = e

�tA

u

0

+

Z

t

0

e

�(t�s)A

f(s) ds

and satis�es

Z

T

0

ku

t

k

2

+ kAuk

2

dt � C

�

kA

1=2

u

0

k

2

+

Z

T

0

kfk

2

dt

�

: (14)

Moreover

S(0; T ) ,! C([0; T ℄; D(A

1=2

)): (15)

Using this Lemma, we 
an prove existen
e, uniqueness and maximal regularity

of the nonstationary Stokes equations subje
t to the auxiliary 
onditions. First we


onsider a pres
ribed pressure drop:

Theorem 4 Let f 2 L

2

(0; T ;L

2

(
)

3

), � 2 L

2

(0; T ) and u

0

2 H

1

(
)

3

satisfying

the 
ompatibility 
onditions u

0

j

�


= 0 and div u

0

= 0. Then there exists a unique

solution

(u;rp) 2 (W

1;2

(0; T ;L

2

(
)

3

) \ L

2

(0; T ;H

2

(
)

3

))� L

2

(0; T ;L

2

(
)

3

)

of the Stokes equations

u

t

��u+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; [p℄ = �: (16)

Furthermore the solution satis�es

Z

T

0

ku

t

k

2

+kr

2

uk

2

+krpk

2

dt+k�(u)k

2

H

1

� C

�

kru

0

k

2

+

Z

T

0

kfk

2

dt+k�k

2

2

�

; (17)

as well as the energy equality

ku(t)k

2

+

Z

t

0

kruk

2

d� = ku

0

k

2

+

Z

t

0

hf; ui+ ��(u) d� ; 0 < t < T: (18)
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Proof. By assumption f

�

= P

�

(f � �r�

+

) 2 L

2

(0; T ; J

�

(
)) and u

0

2 J

�

1

(
).

Lemma 1 asserts the existen
e of a unique solution u 2 S

�

(0; T ) = L

2

(0; T ;D(A

�

))\

W

1;2

(0; T ; J

�

(
)) of (6). It follows by (4)

u

t

��u� f + �r�

+

= rp

�

2 L

2

(0; T; G

�

(
)): (19)

Hen
e (u;rp) is the unique solution of (16).

From (3), the Poin
ar�e inequality and Theorem 1b) for p = ru, it follows that

j�(u)j =

�

�

�

�

Z




u�r�

+

dx

�

�

�

�

� Ckuk

L

6

(


+

\B)

� Ckruk

6

� Ckr

2

uk:

Moreover we have j

d

dt

�(u)j � Cku

t

k. Now using the estimates (11), (12) and kf

�

k �

kfk+ Cj�j, as well as (19), we dedu
e (17) from (14).

Taking the s
alar produ
t of (16) with u and integrating in � 2 (0; t) yields (18).

2

For a pres
ribed 
ux we have an analogous theorem:

Theorem 5 Let f 2 L

2

(0; T ;L

2

(
)

3

), � 2 H

1

(0; T ) and u

0

2 H

1

(
)

3

satisfying

the 
ompatibility 
onditions u

0

j

�


= 0, div u

0

= 0 and �(u

0

) = �(0). Then there

exists a unique solution

(u;rp) 2 (W

1;2

(0; T ;L

2

(
)

3

) \ L

2

(0; T ;H

2

(
)

3

))� L

2

(0; T ;L

2

(
)

3

)

of the Stokes equations

u

t

��u+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; �(u) = �: (20)

Furthermore the solution satis�es

Z

T

0

ku

t

k

2

+kr

2

uk

2

+krpk

2

dt+k[p℄k

2

2

� C

�

kru

0

k

2

+

Z

T

0

kfk

2

dt+k�k

2

1;2

�

(21)

as well as the energy equality

ku(t)k

2

+

Z

t

0

kruk

2

d� = ku

0

k

2

+

Z

t

0

hf; ui+ �[p℄ d� ; 0 < t < T: (22)

Proof. Let � 2 D(A

�

) with �(�) = 1 be given. Then by assumption v

0

=

u

0

� �(0)� 2 J

1

(
) and g = P (f � �

0

�+ ���) 2 L

2

(0; T ; J(
)). Hen
e by Lemma

1 we obtain an unique solution v 2 S(0; T ) = L

2

(0; T ;D(A)) \W

1;2

(0; T ; J(
)) of

(7). Setting u = v + �� we pro
eed as in the proof of Theorem 4. 2
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5 Lo
al Solutions of the Nonstationary Navier-

Stokes Equations

To solve the Navier-Stokes equations we use the 
ontra
tion mapping theorem.

Therefore we need suitable estimates for the nonlinearity:

Lemma 2 Let v, w 2 H

2

(
)

3

. Then we have

kv �rwk � Ckrvkkrwk

1=2

kr

2

wk

1=2

: (23)

Furthermore for u 2 J

�

1

(
) and v, w 2 H

1

(
)

3

we have

Z




(u�rw)�v dx = �

Z




(u�rv)�wdx : (24)

Proof. Using the H�older inequality as well as Theorem 1b) for v and rw we

obtain

kv �rwk � kvk

6

krwk

3

� kvk

6

krwk

1=2

krwk

1=2

6

� Ckrvkkrwk

1=2

kr

2

wk

1=2

:

Let v

j

and w

k

� C

1

0

(
)

3

be sequen
es approximating v, w respe
tively in

H

1

(
)

3

. Then we have by Corollary 1

0 =

Z




u�r(v

j

�w

k

) dx =

Z




(u�rv

j

)�w

k

dx +

Z




(u�rw

k

)�v

j

dx :

Now letting j, k !1 yields (24). 2

Using Lemma 2 we prove the following existen
e and uniqueness result for the

Navier-Stokes equations.

Theorem 6 Let the assumptions of Theorem 4 hold. Then there exists a time

T

0

> 0 and a unique solution

(u;rp) 2 (W

1;2

(0; T

0

;L

2

(
)

3

) \ L

2

(0; T

0

;H

2

(
)

3

))� L

2

(0; T

0

; L

2

(
)

3

);

of the Navier-Stokes equations

u

t

��u+ u�ru+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; [p℄ = �: (25)

If (0; T

0

) is the maximal interval of existen
e, then T

0

> (CM

4

0

)

�1

, where

M

2

0

= kru

0

k

2

+

Z

T

0

kf

�

k

2

dt ; f

�

= P

�

(f � �r�

+

):

Furthermore the solution satis�es the energy equality (18).

Proof. For Æ > 0 we de�ne the following equivalent Norm jjj�jjj

T

0

on S

�

(0; T

0

):

jjjvjjj

2

T

0

= max

�

Ækv(0)k

2

;

Z

T

0

0

kv

0

k

2

dt ;

Z

T

0

0

kA

�

vk

2

dt

�

:
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Then for v, w 2 S

�

(0; T

0

) we get by (23), (11) and (15)

Z

T

0

0

kv �rwk

2

dt � C jjjvjjj

2

T

0

jjjwjjj

T

0

Z

T

0

0

kA

�

wk dt � CT

1=2

0

jjjvjjj

2

T

0

jjjwjjj

2

T

0

: (26)

Now by Lemma 1 it is easy to show that (u;rp) is a solution of (25), if and only if

u 2 S

�

(0; T

0

) is a �xed point of 	,

	v(t) = e

�tA

�

u

0

+

Z

t

0

e

�(t�s)A

�

(f

�

(s)� P

�

(v �rv)(s)) ds :

To solve the �xed point problem we 
onsider the iteration u

k+1

= 	u

k

, k � 1, where

u

1

(t) = e

�tA

�

u

0

+

Z

t

0

e

�(t�s)A

�

f

�

(s) ds

is the solution of the Stokes equation to the given data. Now we show that 	 ful�lls

the 
onditions of the 
ontra
tion mapping theorem on

M

�

0

= fv 2 S

�

(0; T

0

) : jjjv � u

1

jjj

T

0

�M

0

g;

where T

0

is suitably 
hosen: Setting Æ < M

0

=ku

0

k we get by Lemma 1 jjju

1

jjj

T

0

�M

0

.

Moreover using the estimate (26) we obtain for v, w 2 M

�

0

jjj	v � u

1

jjj

T

0

� CT

1=4

0

jjjvjjj

2

T

0

� CT

1=4

0

(jjjv � u

1

jjj

T

0

+ jjju

1

jjj

T

0

)

2

� 4CT

1=4

0

M

2

0

;

jjj	v � 	wjjj

T

0

� CT

1=4

0

�

jjjvjjj

T

0

+ jjjwjjj

T

0

�

jjjv � wjjj

T

0

� 4CT

1=4

0

M

0

jjjv � wjjj

T

0

:

Hen
e for T

0

� (4CM

0

)

�4

the operator 	 has a unique �xed point in M

�

0

. Consid-

ering (24) we obtain the energy equality as in the linear 
ase, see Theorem 4. The

standard argumentation yields the uniqueness of the solution. 2

We have a similar result for the Navier-Stokes equations with pres
ribed 
ux:

Theorem 7 Let the assumptions of Theorem 5 hold. Then there exists a time

T

0

> 0 and a unique solution

(u;rp) 2 (W

1;2

(0; T

0

;L

2

(
)

3

) \ L

2

(0; T

0

;H

2

(
)

3

))� L

2

(0; T

0

;L

2

(
)

3

)

of the Navier-Stokes equations

u

t

��u+ u�ru+rp = f; div u = 0; u(0) = u

0

; uj

�


= 0; �(u) = �: (27)

Furthermore the solution satis�es the energy equality (22).

Proof. Let v = u � ��, v

0

= u

0

� �(0)� and g = P (f � �� + ���), where

� 2 D(A

�

) with �(�) = 1. Then it is easy to show, that (u;rp) is a solution of the

Navier-Stokes equations (27), if and only if v 2 S(0; T

0

) is a �xed point of 	,

	w(t) = e

�tA

�

v

0

+

Z

t

0

e

�(t�s)A

�

(g(s)� P ((w � ��)�r(w� ��))(s)) ds :

Now we pro
eed as in the proof of Theorem 6. 2

Under the same assumptions on the data as in the above theorems, we 
an


onstru
t global weak solutions for both of the auxiliary 
onditions, following an

idea of Miyakawa and Sohr, see [7℄.
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